Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Subcommittee on Reliability an Probability Risk Assessment	or Safeguards Id
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Friday, January 24, 2003	
Work Order No.:	NRC-744	Pages 1-178

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	+ + + +
6	MEETING OF THE SUBCOMMITTEE ON
7	RELIABILITY AND PROBABILITY RISK ASSESSMENT
8	+ + + +
9	FRIDAY,
10	JANUARY 24, 2003
11	+ + + + +
12	The Subcommittee met at 8:30 a.m. in Room T2B3,
13	Two White Flint North, Rockville, Maryland, George
14	Apostolakis, Chairman, presiding.
15	ACRS MEMBERS PRESENT:
16	GEORGE APOSTOLAKIS Chairman
17	MARIO V. BONACA Member
18	F. PETER FORD Member
19	THOMAS S. KRESS Member
20	GRAHAM M. LEITCH Member
21	VICTOR H. RANSOM Member
22	STEPHEN L. ROSEN Member
23	JOHN D. SIEBER Member
24	WILLIAM J. SHACK Member
25	

		2
1	NRC STAFF PRESENT:	
2	MEDHAT EL-ZEFTAWY	Designated Federal Official
3	MICHAEL R. SNODDERLY	Cognizant ACRS Staff Engineer
4	RICHARD Y. LEE	NRR
5	ROBERT PALLA	NRR
6		
7	PRESENTERS:	
8	MICHAEL CORLETTI	Westinghouse
9	SELIM SANCAKTAR	Westinghouse
10	JIM SCOBEL	Westinghouse
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		

ĺ	3
1	A-G-E-N-D-A
2	Introduction
3	Review goals and objectives for this meeting
4	George Apostolakis, ACRS 4
5	Mike Corletti, Westinghouse 5
6	Level 2 and 3 PRA - Jim Scobel, Westinghouse 6
7	Quantification
8	Level 2 Phenomenological Studies
9	Summary of PRA Results and Insights
10	Selim Sancaktar, Westinghouse 49
11	BREAK
12	In-vessel retention of Molten Core Debris
13	Jim Scobel 62
14	LUNCH
15	NRC Staff Presentation
16	Bob Palla, NRR
17	Richard Lee, RES 153
18	Westinghouse Summary, Mike Corletti,
19	Westinghouse
20	General Discussion, ACRS Members 170
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards, Subcommittee on
б	Reliability and Probabilistic Risk Assessment. I am
7	George Apostolakis, Chairman of the Subcommittee.
8	Subcommittee members in attendance are Tom
9	Kress, Graham Leitch, William Shack, and Jack Sieber.
10	The purpose of this meeting is to continue to review
11	the PRA provided by the Westinghouse Electric Company
12	in support of its application for certification of the
13	AP1000 design.
14	The Subcommittee will gather information,
15	analyze relevant issues and facts, and formulate
16	proposed positions and actions as appropriate for
17	deliberation by the full committee. Medhat El-Zeftawy
18	is the designated federal official, and Michael
19	Snodderly is the cognizant ACRS staff engineer for
20	this meeting.
21	The rules for participation in today's
22	meeting have been announced as part of the notice of
23	this meeting previously published in the Federal
24	Register on December 27, 2002. A transcript of the
25	meeting is being kept and will be made available as

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5
stated in the Federal Register notice.
It is requested that speakers first
identify themselves and speak with sufficient clarity
and volume so that they can be readily heard. We have
received no written comments or requests for time to
make oral statements from members of the public
regarding today's meeting.
We will now proceed with the meeting and
I call upon Mr. Mike Corletti of Westinghouse to
begin.
MR. CORLETTI: Good morning. Thank you,
Dr. Apostolakis. This morning we are going to make a
presentation on Level 2 and 3 PRA. I think we will
probably slightly switch the agenda and talk then
about a brief summary of our results and insights and
then we will go to the phenomenological studies that
we have performed in support of the PRA.
Our speaker now is Mr. Jim Scobel. Jim is
our lead on the Level 2 PRA and our phenomenological
studies that we've performed in support of AP1000. He
was also our lead in this area of in-vessel retention
for AP600 as well so he has been with this project for
quite a long time.
I just wanted to say that the Level 2 PRA

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	by collaborative effort with Westinghouse. Also with
2	members of FORDUM which is a Finish utility that has
3	worked in this area.
4	Also members of Dr. Theofanous at the
5	University of California, Santa Barbara. Also members
6	of Foske and Associates which is a Westinghouse
7	distributor subsidiary, and also members of
8	Electricite de France, EDF, in France.
9	Jim has led this effort and he's going to
10	be presenting that later today. I'll turn it over to
11	Jim.
12	MEMBER SIEBER: Help we out for a second.
13	That slide is slide 115 in our books?
14	MR. CORLETTI: Yes, sir.
15	MEMBER SIEBER: And the Level 2 PRA in the
16	original submittal, what page does that start on?
17	MR. CORLETTI: In the PRA?
18	MEMBER SIEBER: Yeah.
19	MR. CORLETTI: Chapter 35 34.
20	MEMBER SIEBER: All right. You may begin
21	while I hunt.
22	MR. SCOBEL: Good morning. Give me a
23	second here while I figure out how to work this.
24	MEMBER SIEBER: Scroll.
25	MR. SCOBEL: Okay. For the Level 2 PRA,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

like all Level 2 PRAs, we start out with a containment of entry that we use to quantify the frequency of events that can happen to the containment during a severe accident. For the AP1000 containment of entry we essentially used the same structure of the event three that we used for the AP600.

7 We actually added a node, therefore, containment venting. Then we ended up not using it. 8 9 The reason for that is that we initially did not believe that we would have much capability of cooling 10 11 the containment with a dry PCS but as we got into the 12 analyses and we benchmarked the models against the test data that are codes, then we found that we had a 13 14 much better chance of cooling the containment with a 15 dry PCS than we had originally anticipated. We ended up not using the venting. 16

Also additionally we improved the reliability of the water cooling of the PCS by adding the third diverse line that Terry talked about yesterday.

21 This is the containment of entry 22 You can see it's a small containment of structure. entry. It's got 23 paths on it. We quantify one of 23 24 these for each of the accident classes using fault tree linking techniques for the system nodes. 25 There

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

7

are a few phenomenological notes on there as well that we will cover.

3 We look at different phenomenon, system 4 availability on the containment of entry. Things that 5 we are looking at mainly are reactor cooling system pressure to look at high-pressure core melt phenomena; 6 7 containment isolation to see if the containment is open at the beginning of the accident or not; cavity 8 flooding specifically for externally cooling the 9 reactor vessel for IVR; in-vessel reflooding which has 10 11 impacts on hydrogen and also in terms of knowing 12 whether you are cooling the debris from the outside and the inside of the vessel which is important; 13 14 vessel failure; passive containment cooling water; 15 hydrogen control; containment over temperature which is a result of disfussion flames at the reactor vessel 16 17 walls; hydrogen combustion events such as deflagrations or detonations; and also, 18 finally, 19 containment integrity.

20 Operator actions that are specifically 21 modeled on the tree are several recovery actions to 22 depressurize the RCS if you have a high-pressure core 23 melt accident, or to isolate the containment if the 24 containment has not been isolated automatically by the 25 systems. And also to actuate PCS water if PCS water

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

8

	9
1	has not been automatically actuated.
2	MEMBER KRESS: How do you have the high
3	pressure if the AES system doesn't work?
4	MR. SCOBEL: Yeah, you would have to have
5	a failure of like start-up feed water, ADS passive
6	RHR.
7	MEMBER KRESS: Pretty low frequency.
8	MR. SCOBEL: Consequently we have a very
9	low frequency of those events. Also then we include
10	two severe accident management actions which are
11	essentially just to flood the cavity to promote IDR
12	and to actuate hydrogen control.
13	MEMBER LEITCH: I'm a little confused
14	about containment venting. Is there an operator
15	action to vent the containment in a severe accident
16	situation?
17	MR. SCOBEL: We no. We have set the
18	failure probability. We put the note on the tree
19	initially and then we set the failure probability to
20	one in the tree. We haven't put anything there
21	actually would be something ad hoc in the SAM-Gs but
22	there's nothing credited in the PRA.
23	MEMBER LEITCH: But there is the physical
24	provision to do that, though. I mean
25	MR. SCOBEL: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	10
1	MEMBER LEITCH: Okay.
2	MEMBER KRESS: Your success criteria for
3	butting the reactor cavity, the success of keeping
4	debris in the vessel.
5	MR. SCOBEL: Yes.
6	MEMBER KRESS: If you flood and if you're
7	depressurized?
8	MR. SCOBEL: If you flood and if you're
9	depressurized, yes.
10	MEMBER KRESS: Then your assumption is
11	yes, the debris never gets into the container.
12	MR. SCOBEL: That's right. And there are
13	two major assumptions on the containment of entry that
14	allow us to have such a small containment event tree.
15	The first one is that if you have a high pressure core
16	melt accident, that it's going to lead to induced
17	steam generator tube failure.
18	MEMBER KRESS: What is your basis for
19	that? Have you run a bunch of calculations to show
20	that steam generator tube would fail because of filter
21	and pressure?
22	MR. SCOBEL: It's actually and uncertainty
23	and we're taking the worst of the paths.
24	MEMBER KRESS: You're saying if you have
25	this, this gives you the worst consequences?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	MR. SCOBEL: Yes. This will lead to
2	MEMBER KRESS: That's a conservative way
3	to do the PRA then.
4	MR. SCOBEL: Exactly.
5	MEMBER ROSEN: This is a lot of shorthand.
6	I would like you to go through the phenomenology of
7	that first bullet.
8	MR. SCOBEL: The phenomenology?
9	MEMBER ROSEN: Yeah. What exactly
10	happens?
11	MR. SCOBEL: Okay. I'm sorry. If you
12	have a high-pressure core melt accident, the core will
13	which is a very rare event in the AP1000 which is
14	one of the reasons that we take the shortcut, the core
15	will uncover at high pressure. You will be the
16	primary system will be at the set point of the safety
17	valve. This is assuming that you have no start-up
18	feed water, no passive RHR, the core makeup tanks
19	don't inject, and you don't get ABS.
20	MEMBER ROSEN: Admittedly a very, very low
21	probability event.
22	MR. SCOBEL: Right. Exactly.
23	MEMBER ROSEN: We can talk about it
24	anyway.
25	MR. SCOBEL: Okay. That's fine. So the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

core begins to uncover at high pressure. You have
very strong natural circulation in the primary system
because you have massive steam generators that are
acting as heat sinks, the metal.

5 You know, you've dried out the steam 6 generators and the metal of the steam generators are 7 acting as a heat sink. You get strong natural 8 circulation through the entire RCS. You need to 9 realize that the AP1000 does not have a loop seal 10 because of the canned reactor cooling pumps.

You get full loop natural circulation in the primary system which heats up the primary system very uniformly, as opposed to a current reactor -- a current generation reactor which has a loop seal which will heat up the hot legs and the surge line much more rapidly than it will heat up the steam generator tubes.

As the system heats up, if you look at the creep rupture characteristics of the hot leg, the surge line, the steam generator tubes, it becomes a horse race as to which one is going to fail first. The steam generator tubes have a bit of an advantage because they can have a back pressure in the steam generator that's helping to support them.

Because they are also very thin and they

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	13
1	have high hoop stresses, what we see is that it
2	becomes kind of a 50/50 probability which component
3	will fail first if you look at this on a current
4	plant.
5	MEMBER KRESS: And we thought this out.
6	MR. SCOBEL: I'm sure you have.
7	MEMBER KRESS: The assumption has always
8	been that the hot leg would fail first.
9	MEMBER SHACK: If you had a loop.
10	MEMBER KRESS: If you had a loop. We had
11	our doubts about
12	MR. SCOBEL: About the hot leg?
13	MEMBER KRESS: Well, you know, this could
14	be a probability for distribution. I think this is a
15	better assumption. On the regulatory side it comes
16	down as conservative.
17	MR. SCOBEL: Well, I think one reason we
18	can make this is that we have improved the plant
19	capability so much in the high-pressure core melt. We
20	know this is a vulnerability so on the mitigation
21	side, if you are in this kind of a situation, that
22	means that you've lost everything so you are making a
23	lot of assumptions with regard to getting things back
24	which who knows what you're going to get back and
25	when. We really put a lot of effort into the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	prevention side of the high-pressure core melt
2	accidents. The second assumption
3	MEMBER ROSEN: Well, finally what this is
4	is that the tubes fail.
5	MR. SCOBEL: The tubes fail and you have
б	a high pressure into the steam generator which can
7	open safety valve or relief valve and then you have a
8	direct release to the environment. It goes to
9	containment bypass, which I remembered to put on the
10	slide.
11	MEMBER KRESS: You have to put some sort
12	of source term with that also?
13	MR. SCOBEL: There is a source term
14	associated with that event, yes. I'll talk about
15	source terms a little later.
16	The second major assumption is that if you
17	have a vessel failure and debris relocation into the
18	containment that immediately results in an early
19	containment failure. This is a highly conservative
20	assumption that is we can make this because of our
21	in-vessel retention story being successful.
22	MEMBER KRESS: I agree that is a
23	conservative assumption. I guess we have to hone in
24	on questioning it later to look at more detail on your
25	assumption that it's depressurized and flooding melt

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	through. That's the first phase in this. There's the
2	place where there are some questions but that is a
3	good assumption.
4	MR. SCOBEL: So if you make this
5	assumption, what it allows you to do is to essentially
6	eliminate ex-vessel phenomena from the containment.
7	MEMBER KRESS: You still have to calculate
8	the fuel cooling interactions or whatever. Just
9	assume it fails for a minute.
10	MR. SCOBEL: Just for fun.
11	MEMBER KRESS: Once again you have to have
12	source term.
13	MR. SCOBEL: Yes.
14	MEMBER KRESS: I would have to see what
15	you use for that.
16	MR. SCOBEL: Okay.
17	MEMBER KRESS: Still, that's also very low
18	frequency.
19	MR. SCOBEL: Yes.
20	MEMBER KRESS: For the same reason.
21	MR. SCOBEL: Interestingly I once looked
22	at the containment of entry and calculated how many
23	paths we would have on that 23 path containment of
24	entry if we didn't have this assumption. It was like
25	150 so it spans

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	MEMBER KRESS: These two phases happened
2	simultaneously, the same accident sequence?
3	MR. SCOBEL: Typically not. In fact, the
4	pressurization is the first node on the containment of
5	entry so if you have a high-pressure accident sequence
6	
7	MEMBER KRESS: Failure of the RCS I
8	mean the steam generator tubes, that will
9	depressurize.
10	MR. SCOBEL: If you fail the steam
11	generator tubes, it just goes to an end state so you
12	go then and look at all the other phenomena
13	associated. It goes to a bypass end state.
14	MEMBER ROSEN: Was the question, Tom, that
15	if you fail the steam generator tubes, do you also
16	then fail the vessel?
17	MEMBER KRESS: Yes.
18	MEMBER ROSEN: I don't think you answered
19	that.
20	MR. SCOBEL: Actually, in the accident
21	sequence we think about how we model that in the MAAP
22	code. Actually, it would fail the vessel because you
23	don't depressurize that much from the you would
24	have to go on in the accident sequence you would
25	have to go on and then probably melt through a hot leg

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	and model that. Then you would depressurize. That
2	would be your depressurization mechanism later on in
3	the accident sequence.
4	MEMBER KRESS: There might be additional
5	source term with that.
6	MR. SCOBEL: In the end, the source term
7	for the bypass is so high that any little change
8	MEMBER KRESS: It doesn't matter.
9	MR. SCOBEL: It doesn't matter.
10	MEMBER KRESS: If you have a high source
11	term.
12	MR. SCOBEL: Right. Our focus in the PRA
13	is more oriented not toward fine lining the source
14	terms, but keeping the containment intact. If you
15	have an intact containment, your off-site dose is
16	going to be around 2 rem or less at the site boundary.
17	If you it's definitely less than 25 rem
18	which is our goal. If you fail the containment, it's
19	definitely above and that includes failure by
20	containment bypass. Really our focus when we do the
21	Level 2 PRAs, how do we keep the containment intact
22	during a severe accident.
23	MEMBER KRESS: And then what sort of leak
24	rate do you assume?
25	MR. SCOBEL: Design leak rate from the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	containment. We calculate
2	MEMBER KRESS: Adjust it for the pressure.
3	MR. SCOBEL: Yes. We calculate a whole
4	size based on the design leak rate.
5	MEMBER KRESS: Okay. And then use Delta-
6	В.
7	MR. SCOBEL: Yes. For interface with the
8	Level 1 PRA we've created a bunch of accident classes
9	and these are exactly the same accident classes that
10	we used in the AP600. I use the word accident class
11	and plant damage state kind of interactively.
12	I would have used the word plant
13	demonstrate but the accident class came from the
14	original Italian AP600 PRA that was done in like 1980
15	whatever it was and it kind of hung around. If I use
16	the word plant damage state, it kind of means the same
17	thing.
18	MEMBER KRESS: Those Italians have a funny
19	way of doing things.
20	MR. SCOBEL: I like to say it's loosely
21	translated from the original Italian.
22	The accident classes labeled 1 are the
23	high-pressure accident classes. They include core
24	damage following a transient such as loss of feed
25	water or turbine trip or something like that. Core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	damage from a small LOCA or an RCS leak with the
2	passive RHR heat exchanger working.
3	1D is core damage with partial
4	depressurization of RCS. That one actually becomes so
5	small that we lump it in with another accident class.
6	The accident classes labeled 3 are LOCA accident
7	classes. 3A is an ATWS, anticipated transient without
8	scram.
9	3BR is core damage following a large LOCA
10	with full depressurization but you fail the
11	accumulator so you have a core uncovery that is not
12	recovered fast enough so you get core damage but you
13	do end up recovering the core eventually.
14	3BE is an accident class where you have a
15	large LOCA or some kind of a LOCA where you have full
16	depressurization and you may or may not recover the
17	core depending on whether the break recovers and you
18	can get flowback into the break.
19	3BL is core damage following a loss of
20	recirculation of IRWST water so everything works fine
21	until you get to gravity recirc. and then you don't
22	get enough recirculation so long-term cooling fails.
23	3C is core damage following a vessel
24	rupture which occurs below the elevation of the core
25	in the vessel so you can't recover the core until you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	flood up the containment all the way past the break.
2	MEMBER KRESS: That must be a low
3	frequency.
4	MR. SCOBEL: You know, it actually shows
5	up in like the top five dominance sequences because
6	everything is so low and there is an assumption on the
7	initiating event frequency. It's kind of a single
8	note failure cut set.
9	3D is core damage following the LOCA where
10	instead of having three our of four ADS 4 valves you
11	have two out of four. Then accidents in Class 6 are
12	initiated by steam generator tube ruptures.
13	We have all the sequences from the Level
14	1 PRA are lumped into these accident classes and they
15	are run through the containment of entry. Just to
16	give you a feel for the accident class frequencies
17	from the Level 1 PRA you can see that less than 5
18	percent fall into the high-pressure accident classes.
19	As you were saying, we do have a very low
20	frequency of high-pressure core damage. Almost
21	everything falls into these accident classes which are
22	depressurized or partially depressurized at least.
23	Then we have 4 percent probability of having steam
24	generator tube rupture initiate severe accidents.
25	CHAIRMAN APOSTOLAKIS: Regarding what?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	MR. SCOBEL: Yes, sir. This will be an
2	adventure I haven't done with you. Here we go.
3	CHAIRMAN APOSTOLAKIS: I think in 3BR you
4	say in the event tree that you don't take credit for
5	CMTs because they are insufficient. It really is not
6	a LOCA accumulated event. Right?
7	MR. SCOBEL: That's correct. They don't
8	inject rapidly enough to cool the core so you get some
9	it's actually fairly minor core damage unless you
10	make a lot of assumptions on you only have one CMT and
11	you set the flow rate to the worst possible dimension.
12	CHAIRMAN APOSTOLAKIS: You don't mention
13	it here. You don't include it in the event tree that
14	leads to 3BR. Is there any reason or just
15	MR. SCOBEL: I don't understand the
16	question.
17	CHAIRMAN APOSTOLAKIS: Why is CMT
18	mentioned here? In the event tree I don't see a CMT.
19	It's just accumulator.
20	MR. SCOBEL: Oh, in the Level 1 event
21	tree?
22	CHAIRMAN APOSTOLAKIS: Yes. Does it make
23	any difference or is it just something that something
24	typed in?
25	MR. SCOBEL: Well, they would make if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	you assume that the CMTs were completely failed, it
2	would change the accident sequence a bit but you would
3	still have gravity injection so you would still refill
4	the vessel. It would just be
5	CHAIRMAN APOSTOLAKIS: Through the
6	accumulator.
7	MR. SCOBEL: No, from gravity injection.
8	CHAIRMAN APOSTOLAKIS: When you say
9	gravity injection, what does it mean?
10	MR. SCOBEL: Gravity injection is from the
11	IRWST.
12	CHAIRMAN APOSTOLAKIS: Not in this
13	sequence. For this sequence you go straight to 3BR.
14	Anyway
15	MR. SCOBEL: Okay. I see what you're
16	saying.
17	CHAIRMAN APOSTOLAKIS: The frequency for
18	this state does not include failure of the CMTs. They
19	are just complete.
20	MR. SCOBEL: Selim.
21	MR. SANCAKTAR: Selim Sancaktar from
22	Westinghouse. If you go back and look at the large
23	LOCA event tree on slide No. 43, you will see that
24	actually in the ADS we also require CMT. Either
25	failure of ADS or CMT will cause failure.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	CHAIRMAN APOSTOLAKIS: The large LOCA
2	event tree we have doesn't show CMT.
3	MR. SANCAKTAR: Look under ADS F. It says
4	XADMA. That is equal to either ADS fails or CMT
5	fails.
6	CHAIRMAN APOSTOLAKIS: 3BR, sequence 9, on
7	the same figure is only large LOCA and failure of the
8	accumulator. That is the state we're talking about.
9	MR. SANCAKTAR: Okay. I just wanted to
10	say that CMT is consistent with the large LOCA.
11	CHAIRMAN APOSTOLAKIS: Yeah, but in this
12	sequence look, it may be a trivial matter.
13	MR. SCOBEL: I actually understand the
14	question. To get the RCS to pressurize, even in a
15	large LOCA, you have to have full ADS. To get ADS you
16	need to have CMTs so what Selim is saying is the CMTs
17	are inherently in the tree not as their own node but
18	they are included in considering failure of ADS. If
19	you are in 3BR, you are fully depressurized so either
20	you had CMTs, which is most likely, or the operator
21	manually initiated ADS.
22	MR. CORLETTI: Jim, this is Mike Corletti.
23	It's because ADS is actuated from the CMT draining.
24	MR. SCOBEL: Yes.
25	MR. CORLETTI: So we require the CMTs to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	24
1	drain to actuate ADS.
2	MEMBER ROSEN: To automatically actuate.
3	MR. CORLETTI: Yes.
4	MEMBER ROSEN: You can always actuate ADS
5	manually.
6	MEMBER KRESS: These accident classes you
7	have include a number of sequences, each one of them.
8	MR. SCOBEL: Yes.
9	MEMBER KRESS: How do you end up getting
10	the frequency? Do you just add up the frequencies
11	that follow?
12	MR. SCOBEL: Yes. For the end states of
13	the containment of entry, we have assigned seven
14	release categories. The release categories are
15	because there are only seven, they are pretty coarsely
16	defined.
17	They include the first one is intact
18	containment which is a successful severe accident
19	where you mitigate the accident successfully and
20	maintain only leakage to the environment. Accident
21	class BP which, as we discussed earlier, is a
22	containment bypass typically from steam generator tube
23	rupture initiated accident or an induced 2 rupture.
24	Containment isolation failure which is a
25	release that goes through the containment so you get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	some attenuation of fission products but then there is
2	a release of fission products to the environment
3	through what we consider to be an open HVAC line which
4	is an 18-inch diameter hole in the containment. Early
5	containment
6	MEMBER ROSEN: Is that the biggest line?
7	MR. SCOBEL: That is the biggest line.
8	MEMBER ROSEN: In this plant?
9	MR. SCOBEL: Yes, it is.
10	MEMBER ROSEN: 18-inch.
11	MR. SCOBEL: The 18-inch.
12	MR. CUMMINS: It's the biggest this is
13	Ed Cummins that is not a closed system like main
14	steam or main feed.
15	MEMBER ROSEN: It's the biggest
16	ventilation one.
17	MR. CUMMINS: Yes.
18	MR. SCOBEL: Then we have early
19	containment failure. We stuck containment venting in
20	there because we thought we might need it but then we
21	didn't need it. It's still there but it has a
22	frequency of zero.
23	Intermediate containment failure which is
24	a containment failure which is a containment failure
25	that occurs after the high energetic core relocation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	period of the accident when you are out in time and
2	the containment becomes well mixed and you fail the
3	containment but it's prior to 24 hours which is kind
4	of a magic number, one day after the accident.
5	Then, finally, late containment failures
6	which would occur after 24 hours. As we discussed
7	yesterday, actually intermediate containment failure,
8	late containment failure have very low frequencies.
9	This is a results table from the
10	quantification of the Level 2. It's listed by
11	these are the accident classes that we went through
12	before and these are the that's the core damage
13	frequency for each of the accident classes. These are
14	the frequencies for each of the release categories.
15	Down here, this is the large release frequency.
16	If you look at like intermediate
17	containment failure, we have numbers in here that are
18	like 10 to 10th, 10 to the 14th, 13th, 12th. Very low
19	frequencies. There's not a lot of severe challenge
20	after the in-vessel core melting and relocation phase
21	of the accident.
22	Especially considering that we lump all of
23	the vessel failures into early containment failure.
24	A lot of your severe challenges that would come
25	associated with long-term ex-vessel phenomena such as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	core concrete interaction are already accounted for in
2	early containment failure. Also, late containment
3	failure 10 to the 13th, 14th, 15th even. We don't
4	have a lot of frequency of these CFL and CFI.
5	This number down here for containment
6	effectiveness, this is like Selim-speak for CCFP,
7	conditional containment failure probability. It's one
8	minus the conditional containment failure probability.
9	We presented it in a more positive light
10	how well did the containment perform. You can see
11	that for like the LOCA categories we have actually
12	very good containment performance, 96/97 percent
13	effectiveness for the containment.
14	Now, 1A sequences. This is high-pressure
15	core melt. These sequences have a containment
16	effectiveness of 60 percent so 40 percent would fall
17	into a category where the operator was able to
18	recovery the pressurization before the tubes were
19	threatened.
20	1AP. This is also another high-pressure
21	category where you would need to look at recovery
22	actions related to depressurize the containment before
23	you have a challenge to the steam generator tubes.
24	3A. These are the ATWS accident sequences
25	and they have a very poor containment performance. In

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	fact, as you will see later, these are dominant core
2	damage sequence related to ATWS, or large release
3	sequences. Also most of our large release is also
4	tied up in steam generator tube rupture initiated
5	accidents.
6	MEMBER KRESS: Now, we often counter the
7	concept of good balance when it's core damage
8	frequency and given traditional containment failure
9	probability of .1. How do you extract that condition
10	out of all of these classes? Do you weigh them by
11	frequency?
12	MR. SCOBEL: We come up with a large
13	release frequency compared to the core damage
14	frequency to
15	MEMBER KRESS: Well, I'm just looking at
16	them all, the entire condition of containment failure
17	probability.
18	MR. SCOBEL: Yes.
19	MEMBER KRESS: That's different than by
20	general release. You would have to do similar things
21	being a large release frequency. You just restrict it
22	to the earlies.
23	MR. SCOBEL: Well, yes, except that our
24	intermediate and late failures are so small that our
25	large release frequency and our large early release

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	frequency are the same number. That's why we just
2	call it a large release frequency. There's not much
3	intermediate and late. Our CCFP for this plant is 8
4	percent which is one minus this number here.
5	MEMBER KRESS: Is that the average of
6	those things across there?
7	MR. SCOBEL: This here? This is the
8	containment effectiveness for each of the plant damage
9	states.
10	CHAIRMAN APOSTOLAKIS: It's one minus a
11	condition for containment failure.
12	MEMBER KRESS: For that.
13	CHAIRMAN APOSTOLAKIS: For that.
14	MEMBER KRESS: I'm interested in how you
15	get that.
16	MR. SCOBEL: Well, this would be the large
17	release frequency for this plant damage state divided
18	by the core damage frequency.
19	MEMBER KRESS: That's what I was asking,
20	how you get that number from those numbers.
21	MR. SCOBEL: Yes. So on an individual
22	basis these are the containment effectiveness numbers
23	for each. But for the total plant this is the column
24	here for the overall conditional containment failure
25	probability. It's 1 minus this number which makes it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	8 percent.
2	MEMBER KRESS: That comes out of this
3	process that you just described.
4	MR. SCOBEL: Yes.
5	CHAIRMAN APOSTOLAKIS: This is the weight
6	on top of it.
7	MEMBER KRESS: It's a weighted average.
8	That's what I was trying to get at, how to weight it.
9	CHAIRMAN APOSTOLAKIS: If my goals if
10	I look at option 3 saying that the condition
11	containment failure probability should be less than 10
12	percent, obviously you are not meeting that.
13	MR. SCOBEL: No, we are. We have 8
14	percent.
15	CHAIRMAN APOSTOLAKIS: The interesting
16	thing, though, is the range of the values there.
17	MR. SCOBEL: These values?
18	CHAIRMAN APOSTOLAKIS: Yes. I mean,
19	that's the same range that we had in NUREG 1150.
20	MEMBER KRESS: Option 3, remember, groups
21	things by frequency, though.
22	CHAIRMAN APOSTOLAKIS: But you can choose
23	everything to go with the core damage frequency in the
24	condition of containment variable.
25	MEMBER KRESS: For different bins of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	frequency, though.
2	CHAIRMAN APOSTOLAKIS: Yeah.
3	MEMBER KRESS: They have different
4	balances. This might fit into that okay. This seems
5	to put a lot more emphasis on preventing core damage.
6	If we're looking for a defense in depth balance that
7	is assigned to option 3, I think this would fit into
8	it.
9	CHAIRMAN APOSTOLAKIS: You mean satisfy?
10	MEMBER KRESS: Satisfy.
11	CHAIRMAN APOSTOLAKIS: It does.
12	MEMBER KRESS: I mean, even the allocation
13	to frequency ranges.
14	MEMBER ROSEN: It's very much like what
15	present day plants are like which is typically 10
16	percent. Here they have eight.
17	MEMBER KRESS: Typically some of the BWRs
18	are .8.
19	MEMBER ROSEN: I guess I'm referring to
20	PWRs.
21	CHAIRMAN APOSTOLAKIS: In terms of
22	release, which list categories are the worst?
23	MR. SCOBEL: Bypass, BP, and containment
24	isolation failure.
25	CHAIRMAN APOSTOLAKIS: Which is?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	MR. SCOBEL: Bypass is here.
2	CHAIRMAN APOSTOLAKIS: BP.
3	MR. SCOBEL: Bypass is mainly related to
4	the high pressure 1A.
5	CHAIRMAN APOSTOLAKIS: This is the worst
6	from the frequency point of view or from the
7	consequence point of view?
8	MR. SCOBEL: From the consequence point of
9	view.
10	CHAIRMAN APOSTOLAKIS: So that has 10 to
11	the -8 frequency. Right?
12	MR. SCOBEL: Yes.
13	CHAIRMAN APOSTOLAKIS: This is almost the
14	whole thing.
15	MR. SCOBEL: About 54 percent of the large
16	release.
17	CHAIRMAN APOSTOLAKIS: Of the large
18	release. Most of it comes from where? From which
19	plant up state?
20	MR. SCOBEL: Mostly from 6 which is
21	initiated by steam generator tube failure.
22	CHAIRMAN APOSTOLAKIS: 6 and 3A.
23	MR. SCOBEL: Yeah, they are both the same.
24	MEMBER ROSEN: 3A is inducted?
25	MR. SCOBEL: 3A is ATWS.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	MEMBER ROSEN: Where is the induced steam
2	generator tube failure?
3	MR. SCOBEL: 1A. 1A and 1AP together.
4	CHAIRMAN APOSTOLAKIS: So the containment
5	is doing a pretty bad job protecting you from 3A,
6	isn't it?
7	MR. SCOBEL: Because it doesn't go through
8	the containment.
9	MR. SCOBEL: It's actually part of the
10	problem presenting the results is that the containment
11	does such a good job that the bypasses all pop way up.
12	The only way to not have them pop way up is to make
13	the containment do a worse job.
14	MEMBER SHACK: In your next table we have
15	the dominant sequences, 3A and 6.
16	MR. SCOBEL: Yes. May I go to the next
17	table?
18	CHAIRMAN APOSTOLAKIS: Let's go back to
19	the slide. I'm trying to understand it.
20	MEMBER SIEBER: Nice try.
21	CHAIRMAN APOSTOLAKIS: Plant damage states
22	for which the containment is doing a good job, the
23	most frequent ones?
24	MR. SCOBEL: Yes. In fact
25	CHAIRMAN APOSTOLAKIS: Where do I see

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	that?
2	MR. SCOBEL: Well, you can look at the
3	containment effectiveness and say this is where the
4	containment is doing a good job. The ones that are
5	high, 99, 98, 97. These 3BRs, 3D, 3C.
6	CHAIRMAN APOSTOLAKIS: And these are the
7	most frequent?
8	MR. SCOBEL: These are yeah, we don't
9	have a
10	CHAIRMAN APOSTOLAKIS: So what I lose in
11	the containment is the frequencies lower.
12	MR. SCOBEL: Yes. In fact, if we go back
13	one more, I think, the ones that were losing the
14	containment are 6, 1A, 1AP, and 3A.
15	CHAIRMAN APOSTOLAKIS: Okay.
16	MR. SCOBEL: They have a combined
17	probability of like 8 percent which goes for our 8
18	percent conditional containment failure probability.
19	For these sequences are the benign severe accidents,
20	the LOCA, things that are depressurized.
21	That's one nice thing about this plant.
22	When you have an accident in which ATS is actuated,
23	all the accidents tend to look alike because the ADS
24	system overwhelms the break basically so you know
25	where the releases come from.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	You know where your energy is coming from
2	driving the containment's natural circulation. You
3	end up having all these sequences that essentially all
4	look the same. Some of them are flooded in-vessel and
5	some of them aren't. That's one difference.
б	Other than that, they are all
7	depressurized. They are all pretty benign overall in
8	terms of energy, consequences of their containment.
9	Then you have these outwires which really have
10	we're into one times 10 to the -8 frequency on them.
11	MEMBER ROSEN: I think I know what you
12	mean by benign in this context but it's not a word I
13	would chose.
14	MR. SCOBEL: Well, my world is a little
15	skewed.
16	MEMBER KRESS: Now, the core is a lot like
17	standard PWR.
18	MR. SCOBEL: Just a little taller.
19	MEMBER KRESS: A little taller. The power
20	of the level is like 1,000 megawatts of metrical which
21	is somewhat in the same power level lot that most of
22	the current plants are. You don't really have to deal
23	with the fission products here.
24	You're just calculating a large early
25	release which is really a large is when you go to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	failed containment early in line so that this large
2	early release would compare to the NRC acceptance
3	criteria if they had one.
4	MR. SCOBEL: Yes.
5	MEMBER KRESS: Because it's so much like
6	the PWRs and their acceptance criteria is based on
7	current PWRs of that level and sort of a mean of sites
8	around the country. You don't really deal with
9	fission products at all.
10	MR. SCOBEL: I'm sorry. I missed the last
11	sentence.
12	MEMBER KRESS: You're not deal with
13	fission products at all. You don't really have to
14	have a source term because your source term is the
15	same as current plants if you get a large release.
16	MR. SCOBEL: Yes. We do generate a source
17	term.
18	MEMBER KRESS: Without MAAP?
19	MR. SCOBEL: With MAAP.
20	MEMBER KRESS: It's a close description.
21	But you don't use it.
22	MR. SCOBEL: Well, we do a Level 3. We do
23	a site boundary dose.
24	MEMBER KRESS: A Level 3 you've got a site
25	boundary available?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	37
1	MR. SCOBEL: Yes. We focus mainly on site
2	boundary because our goals
3	MEMBER KRESS: You don't have a site.
4	MR. SCOBEL: Yeah, we don't have a site.
5	You asked the question yesterday about this. What we
6	used was the Surrey site with the ocean filled in with
7	land just to have something. I believe that comes
8	from URD recommendation for a plant without a site.
9	Do you want to stay here or do you want to
10	go on?
11	These are the dominant sequences that
12	contribute to the large release. These top sequences
13	make up 96 percent of the large release sequences.
14	You can see that the top two are 3A and 6, the
15	containment bypass. The first one is from ATWS and
16	the second one is from steam generator tube rupture.
17	The next two are from vessel failure.
18	These two are here because of the assumption that if
19	you don't flood the containment, vessel fails and you
20	have an early containment failure.
21	The next one is the induced steam
22	generator tube rupture from the 1A accident. In fact,
23	down here is the induced steam generator tube
24	rupture from the 1AP. Here is the vessel failure
25	initiating event.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I kind of like to use this line as a
benchmark because everything that is below here is
less likely than the vessel rupturing falling apart.
It's kind of a way to think about it. There's no
regulation or anything with that but it's just a way
to think about like the rest of the sequences.

7 This sequence is a 3D accident class where you are partially depressurized and it kind of assumes 8 9 that in this partial depressurization it's assuming 10 you have no stage 4 ADS so you have all your hydrogen 11 releases through the IRWST and you have a failure of 12 the vents such that you have a diffusion flame next to the contaminant wall. 13

Containment isolation failure falls in 14 15 down here. Then you start to get into failures from -- early failures from detonation in the containment. 16 17 MEMBER SHACK: And your fractions are very small for all these sequences really. 18

MR. SCOBEL: Yes. The percent of the core 19 20 damage frequency for these sequences are all tiny. Excuse me, Jim. 21 MR. SNODDERLY: I see 22 that we've got about half hour left if we want to stay 23 on schedule. 24

MR. SCOBEL: Yes.

So just to keep it in MR. SNODDERLY:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

	39
1	mind. I know you want to spend probably about a half
2	hour on the ex-vessel cooling so maybe we could spend
3	five more minutes on the importance and sensitivity in
4	the source term and then try to go
5	to
6	MR. SCOBEL: Actually, I thought I was
7	just going to finish up the PRA and then let Selim go.
8	MR. SNODDERLY: Great.
9	MR. SCOBEL: And I'm almost done.
10	MR. SNODDERLY: Okay. Great.
11	MR. SCOBEL: There were sensitivity
12	analyses that were done also. For example, we didn't
13	take credit for depressurization in the steam
14	generator tube rupture case. We had the CCFP went
15	from 8 to 10.3. We reduced reliability for
16	containment isolation and doubled the CCFP.
17	Reduced the reliability for hydrogen
18	ignitors and CCFP went up a little bit. We reduced
19	reliability for PCS and it hardly went up at all
20	because PCS is so it's actually very reliable. No
21	credit for pressurization of the high-pressure plant
22	demonstrates. The CCFP went up to 12.1 percent.
23	Finally, we set the vessel failure
24	probability to 1. This is with regards to for our
25	vessel failure probability we looked at you could fail

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	the vessel high up on the vessel and not release
2	debris of the containment with our assumption that if
3	you release debris of the containment, you get an
4	early containment failure. We weren't getting all
5	early containment failures in 3C. In this we set the
6	probability of 3C vessel failure to 1. We came up
7	with 11.8 percent for the CCFP.
8	Finally, for the plant damage states where
9	you could have large hydrogen releases through the
10	IRWST, we assumed diffusion flame and detonation
11	probabilities were 1. Actually, the LRF became pretty
12	high.
13	It shows that it's a good idea to keep
14	hydrogen out of the IRWST which seems like a no-
15	brainer to me. It's a small confined space and you
16	have fence along the containment wall. It's not a
17	place where you want to be putting a lot of hydrogen.
18	There was an important analysis where we
19	set each of the nodal probabilities to 1 and then
20	looked at how that affected the containment
21	effectiveness. Obviously if you set containment
22	isolation failure to 1, you have no containment so RCS
23	depressurization reduces it a bit but it's only in the
24	small frequency accident classes.
25	Cavity flooding has a strong impact on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 containment failure, especially with respect to our 2 assumption that if you don't flood the cavity. This 3 tells you there are some sequences that flood the 4 cavity inherently.

You don't always manually have to flood.
It's kind of a 50/50, 60/40 kind of thing. Those
sequences which show up still as successes are the
ones that automatically flood the cavity.

9 reflooding. If you fail Core core 10 reflooding, you actually get а little higher 11 containment effectiveness because there's a hydrogen 12 impact to flooding the core but it's small. It doesn't show up all that much because of ignitors and 13 14 things like that.

Vessel failure has an impact on -- this is the 3C set to 1. That's the same one we talked about in the other one. Passive containment cooling. We have an assumption on the containment of entry that if you don't have passive containment cooling water, that you fail the containment in the long term like after 24 hours.

That's a conservative assumption. We get into a realm where we have some probability of containment failure based on the containment furgility Lurve. It's not real high unless you consider -- I'm

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	going to cover this under the phenomena.
2	Unless you consider like you are having a
3	really bad day like it's 120 degrees outside and the
4	K heat is the highest that it could possibly be for
5	the whole time, you will get a containment failure out
6	in time.
7	Under nominal circumstances you have a
8	very low containment failure probability. We just
9	assume that in the long term you have a containment
10	failure probability of 1 if you don't have passive
11	containment cooling water. We also have a very
12	reliable PCS water delivery system so it's a
13	conservative assumption that's not going to hurt us.
14	Hydrogen ignitors are important to this
15	plant and have a significant impact on containment
16	effectiveness as well as diffusion flame. There was
17	not a lot of impact on just setting the hydrogen
18	detonation probabilities to 1. This would be because
19	of the ignitors.
20	MEMBER SHACK: Let me understand. If I
21	assume a total failure of the passive cooling system,
22	my LRF is still only 2 times 10 to the -7?
23	MR. SCOBEL: That is the core damage
24	frequency.
25	MEMBER SHACK: Then you assume it's 1.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. SCOBEL: Yes.
2	MEMBER SHACK: How about that.
3	MEMBER ROSEN: Yesterday when I asked
4	about whether the ignitors were powered during station
5	blackout from an alternate source, I think the answer
6	was no. Then there was some discussion about why.
7	MR. SCOBEL: No, they are.
8	MEMBER ROSEN: Here you say they are
9	important to the plant. I'm a little bit confused
10	about the power sources to the ignitors.
11	MR. SCOBEL: The ignitors are on AC power
12	and they are also on batteries. Emergency batteries.
13	They are nonsafety, non-1E. If you recall, we don't
14	have a lot of probability in station blackout. I
15	think station blackout is like .2 percent of the core
16	damage frequency.
17	Selim, station blackout is something like
18	.2 percent of core damage frequency?
19	There isn't much station blackout
20	frequency so loss of power and the ignitors wouldn't
21	even show up. Especially then in light of the fact
22	that those are high-pressure core damage sequences and
23	they most likely go off the containment bypass and
24	they don't even ask the question about the ignitors.
25	MR. CUMMINS: This is Ed Cummins. Maybe

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	I can help a little bit here. Yesterday we said that
2	the batteries that power these last two hours which is
3	about right because they power other things of
4	interest like the nonsafety I&C.
5	The other source is AC power in the plant
6	like the diesels so there's quite a good reliability
7	for AC power even in the absence of offsite power.
8	MEMBER ROSEN: And the DC power to the
9	ignitors is rectified. Is converted to AC.
10	MR. CUMMINS: Yes.
11	MR. SCOBEL: So our final large release
12	frequency is 2 times 10 to the -8 , the relayers of the
13	goal, which is less than 1 times 7 minus 6 per reactor
14	year. The overall containment effectiveness is 92
15	percent meaning CCFP is 8 percent.
16	ATWS has the lowest containment
17	effectiveness and the containment effectiveness for
18	steam generator tube rupture is 57 percent. If all of
19	them go to bypass the overall containment
20	effectiveness, it's still 90 percent.
21	LRF is not sensitive to the reliability of
22	the hydrogen ignitors, but if the ignitors are assumed
23	to be failed with a probability of 1, we do have a
24	significant drop off in containment effectiveness.
25	If the diffusion flame failure probability

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	is set to 1 for all of the sequences that put a lot of
2	hydrogen into the IRWST, the containment effectiveness
3	drops to 85 percent and the LRF increases by a factor
4	of 4. Controlling hydrogen is a pretty significant
5	is a pretty important thing in this plant.
6	In Level 3 we've generated AP1000 specific
7	source terms with the MAAP 4 code and we used MAX 2,
8	version 1.12 to calculate offsite doses. Our goal for
9	the Level 3 was to keep the frequency of the site
10	boundary dose less than 25 rem at 24 hours and to have
11	that less than 10 to the -6 per reactor year. This
12	plot presents the results of
13	MEMBER ROSEN: What's the EDE stand for?
14	MR. SCOBEL: Effective dose equivalent.
15	From this plot I guess the goal is right about here if
16	we were to go above this line here.
17	MEMBER KRESS: Is that sort of another
18	version of release frequency?
19	MR. SCOBEL: Yes.
20	MEMBER ROSEN: So where's I'm having
21	trouble reading this chart. Where is the 25 rem?
22	MR. SCOBEL: I don't actually care for
23	this plot either. I can say that because I didn't
24	make it. It would be about right here. It would be
25	25 rem. 10 to the -6 is right there so on a log scale

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	
2	MEMBER SHACK: That's more like 60 or 70
3	rem, isn't it?
4	MR. SCOBEL: Well, this is a log scale so
5	that's 1 and that's 100 so 10 is here.
6	MEMBER ROSEN: I don't get anything from
7	that chart.
8	MEMBER KRESS: That's a frequency
9	consequence.
10	MEMBER SHACK: I was going to ask you,
11	Tom. That is so much more enlightening than a CDF and
12	LRF.
13	MEMBER KRESS: Yeah. It tells me a lot.
14	MR. SCOBEL: I actually put this up for
15	you.
16	MEMBER KRESS: Thank you.
17	MEMBER SHACK: You're going to explain
18	this to me later, right?
19	CHAIRMAN APOSTOLAKIS: The frequency of
20	exceeding 25 rem is 2 or 3 10 to the -7. That's what
21	he's saying. No more, no less.
22	MEMBER SHACK: If I don't melt the core I
23	don't get a big release.
24	CHAIRMAN APOSTOLAKIS: That's why it's
25	flat.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	MEMBER SHACK: That's why it's very flat.
2	MR. SCOBEL: Actually, the frequency of
3	exceeding 25 rem would be the large release frequency
4	which is 2 times 7 minus 8.
5	CHAIRMAN APOSTOLAKIS: Well, that's not
6	what you show there.
7	MR. SCOBEL: Well, 25 rem is
8	CHAIRMAN APOSTOLAKIS: Oh.
9	MR. SCOBEL: This is the core damage.
10	CHAIRMAN APOSTOLAKIS: It can't be up
11	there.
12	MR. SCOBEL: This is the core damage
13	frequency.
14	CHAIRMAN APOSTOLAKIS: Okay. Oh. There's
15	one below which is really flat.
16	MEMBER ROSEN: I'm used to TED. What is
17	the difference between that and EDE, total effective
18	dose.
19	MR. SCOBEL: I think it's the same thing.
20	I think so. I'm not a dose guy.
21	MS. WHITING: This is Erin Whiting from
22	Westinghouse. Do you have gamma dose included in that
23	as well as EDE when you get total effective dose
24	equivalent?
25	MEMBER ROSEN: And so your standard

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	doesn't include gamma dose?
2	MR. SCOBEL: I think it would. This may
3	be it should say TEDE, I think. We can check on
4	that. It's probably just
5	MS. WHITING: This is Erin Whiting.
6	Usually the gamma dose is not a significant
7	contributor so they just might have done EDE for a
8	feel of how it was. Usually it's not a big
9	contributor to the TEDE.
10	MEMBER ROSEN: But the 25 rem standard is
11	a TEDE standard. Isn't it?
12	MR. SCOBEL: I believe so, yes.
13	MEMBER ROSEN: So you're only showing part
14	of it here. Actually you should clear this up some.
15	MR. SCOBEL: Yes. I think we can do that.
16	I don't think that's a problem. I'm betting I'm a
17	betting man that this is a TEDE dose that you would
18	get from max.
19	MEMBER KRESS: Well, it only shows up in
20	the design basis accidents anyway, the TEDE. This is
21	PRA so you can use anything you want. The rules for
22	TEDE are in the design basis space. I like this plot.
23	CHAIRMAN APOSTOLAKIS: What bothers me the
24	age of the earth's crust is 3 times 10 to the 9th
25	years. If you've had one event or one release, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	will get a frequency of 3 times 10 to the -10 .
2	MEMBER ROSEN: Assuming AP1000 went into
3	operation at the same time as the earth's crust was
4	formed.
5	CHAIRMAN APOSTOLAKIS: Doesn't that make
6	you stop and think about the meaning of these numbers?
7	MEMBER KRESS: They're kind of hard to
8	CHAIRMAN APOSTOLAKIS: It's very hard to
9	swallow that.
10	MEMBER KRESS: when they get that low.
11	The PRA, that's what
12	CHAIRMAN APOSTOLAKIS: That's right. PRA
13	came down from the mountain and we had these problems.
14	MR. SCOBEL: What's next?
15	MR. CORLETTI: Mike Corletti. We were
16	going to have Selim do now a wrap-up of the PRA which
17	he will just talk about summary of the insights and
18	also touch on the question that you had yesterday
19	about how did we explicitly model spurious ADS 4. I
20	think it won't end the discussion on this but we
21	wanted while it was fresh in anyone's mind give you
22	explicitly how it's modeled in our PRA and the basis
23	for that number.
24	CHAIRMAN APOSTOLAKIS: Very good.
25	MR. SANCAKTAR: My objective here was to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	wrap this up by showing you some of the results and
2	insights. In addition to that, if you allow me three
3	to five minutes, I would like to try to answer one of
4	the questions that Dr. Rosen asked about how the
5	reliability of the failure probabilities of the values
6	assigned.
7	MEMBER ROSEN: Do you have a microphone
8	on?
9	CHAIRMAN APOSTOLAKIS: You have to put it
10	on your tie. Oh, it's not on at all? That's the
11	first thing you have to do.
12	MR. SANCAKTAR: Is that better?
13	CHAIRMAN APOSTOLAKIS: Put it on your tie.
14	MR. SANCAKTAR: Okay.
15	CHAIRMAN APOSTOLAKIS: High.
16	MR. SANCAKTAR: Okay. How's this?
17	CHAIRMAN APOSTOLAKIS: How you're wired.
18	MR. SANCAKTAR: Okay. Shall I repeat what
19	I said before?
20	MEMBER ROSEN: Yes.
21	MEMBER KRESS: You don't have to. We
22	heard you.
23	CHAIRMAN APOSTOLAKIS: Don't do it then.
24	MR. SANCAKTAR: This slide was shown
25	yesterday also. It's the same slide I showed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	51
1	yesterday. This just kind of shows the relation
2	between AP600 and AP1000. It compares the numerical
3	results and also shows the areas where analyses were
4	performed.
5	Basically the very first observation we
6	have is the low risk of AP600 has been also retained
7	in AP1000. We also acknowledge that there was an
8	increase in core damage frequency as reported before.
9	Some of it was actually reduced by changing the
10	success factor here. Safety goals are met, of course.
11	CHAIRMAN APOSTOLAKIS: With significant
12	margin?
13	MR. SANCAKTAR: With significant margin.
14	CHAIRMAN APOSTOLAKIS: How do you know
15	that?
16	MR. SANCAKTAR: According to the numbers,
17	mean values of whatever you want to call it. We can
18	argue about what those numbers mean, uncertainties and
19	so on.
20	CHAIRMAN APOSTOLAKIS: You have only
21	included parameter of uncertainty which is really
22	relevant. You really believe it's a factor of 6?
23	MR. SANCAKTAR: Yeah.
24	CHAIRMAN APOSTOLAKIS: Something that has
25	never been built and you are claiming 10 to the -7

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	core damage frequency. You can only be uncertain by
2	a factor of 6?
3	MR. SANCAKTAR: Six. We discussed this a
4	little bit yesterday. Who was there? Oh, you were
5	there. Let me mention this for your information. We
6	have clearly stated in our data analysis that we are
7	going to be using mean values and anything that is a
8	mean value, anything we think.
9	CHAIRMAN APOSTOLAKIS: Converted to that.
10	MR. SANCAKTAR: Converted.
11	CHAIRMAN APOSTOLAKIS: That's not what the
12	issue is.
13	MR. SANCAKTAR: Once we converted it to a
14	mean value, those results hold. Now, we can go back
15	one step and say were they really mean values or
16	medium values. That's a different issue.
17	CHAIRMAN APOSTOLAKIS: That's not the
18	issue. The issue is there are so many models have
19	gone through this. Human performance, failures and so
20	on. Why is the number there? It comes from the
21	utilitary documents so nature is going to say, "Gee,
22	it's in every document. I'd better comply."
23	Then what I'm doing is I'm looking back at
24	the LWR and I'm seeing the numbers going all over the
25	place as we learn more with more experience. I think

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	it's an under estimate. I'm not saying that the
2	changes are based on conclusions but I think saying
3	that you're meeting the goals with significant margin
4	is pushing it a little bit. You just don't know. I
5	don't know. You may be right but I don't know.
6	MR. SANCAKTAR: The point is, I agree with
7	you philosophically. However, in a world of practical
8	decision making we have to hold it to that line and
9	explain the reasons behind it and so on. Otherwise,
10	I agree with you. Then I could make the same argument
11	about anything.
12	I'm not certain about many other things
13	and I can go back and talk about 10 to the -5 and 10
14	to the -4 and we can talk endlessly because there is
15	no decision making factor defined by anybody. Nobody
16	has said that you should meet by 99 percentile
17	confidence. There is nothing to meet. We have to at
18	some point define it, draw the line.
19	MEMBER ROSEN: I understand the pragmatics
20	of it but to reinforce what George is saying, when we
21	talk about current day operating plants that have been
22	operating for a significant period of time, we're
23	talking about uncertainties that are larger than a
24	factor of 6 typically like an order of magnitude.
25	MEMBER KRESS: According to what?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	MEMBER ROSEN: Not by 1150. I'm just
2	saying when we propagate uncertainty through these
3	analyses, we come up with an answer that says a factor
4	of 10.
5	MR. SANCAKTAR: If it makes you feel more
6	comfortable, we can do that for you.
7	MEMBER ROSEN: It doesn't make me more
8	comfortable. All it says is that these things this
9	plant certainly the uncertainty in this plant's
10	analysis cannot be smaller than the uncertainty and
11	the analysis of plants that have been built and run
12	for a long time.
13	CHAIRMAN APOSTOLAKIS: Selim, one of the
14	goals of this agency is building public confidence.
15	I don't think that by saying that it's a factor of 6
16	we are contributing to that. Why don't you go ahead.
17	MR. SANCAKTAR: So, where were we? The
18	total plant severe release frequency is another order
19	of magnitude this was just discussed a few minutes
20	ago. We discussed this a little bit yesterday,
21	internal flooding.
22	MEMBER ROSEN: I don't understand why
23	you're going over this again.
24	MR. SANCAKTAR: I don't know honestly. I
25	agree with you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	CHAIRMAN APOSTOLAKIS: You're supposed to
2	talk about the reliability of the valves. Go ahead.
3	MR. SANCAKTAR: Thank you. I guess this
4	was a request for whoever it is, not here, something
5	to present to wrap up.
б	CHAIRMAN APOSTOLAKIS: Repetition is one
7	way of making people understand something.
8	MEMBER KRESS: Tell them what you're going
9	to say and say it.
10	MR. SANCAKTAR: Thank you very much.
11	These are not necessarily my slides. I'm just trying
12	to repeat.
13	Dr. Rosen asked about how the failure
14	problem of explosive valves were assigned so I wanted
15	to quickly tell you what the number is, where we got
16	it from. These are pages that I photocopied from our
17	submittal to the NRC PRA. If you want, I can give it
18	to you officially or unofficially, whatever is
19	easiest. Or I can just mention to you which page it
20	is and you can just read it.
21	I'm looking at page 8, section 32, data
22	analysis section. There's a table there that says
23	explosive valves, failure to operate. Mean value on
24	demand is 5.8 10 to the -4. It says, "Remark - See
25	note from Priscilla" which appears on page 32-20.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

This very clearly indicates what we did 2 which I will summarize to you. The URD document had 3 an explosive valve failure probability on demand of 3 4 times 10 to the -3. It is the general consensus of people who use these valves that they are very that number really is not 6 reliable. I mean, representative of the valve liability.

That was the general consensus because 8 it's higher reliability than that. Where did this 9 number come from, the 3 times 10 to the -3, that went 10 11 into the URD? I don't know but I can guess because 3 12 times 10 to the -3 immediately reminds me of the NUREG 1150 where the valves were assigned 3 times 10 to the 13 14 -3 failure probability. I'm not saying this is a fact 15 but I'm surmising that might have just been used across the board without really considering the 16 17 characteristics currently used explosive valve.

did was we went to Sandia 18 What we Laboratories and we asked them. We said, "Do you have 19 20 experience with explosive valves?" They have lots of 21 experience. We're not talking about 10 hours or 100 22 We are talking about a 100,000 hours of hours. 23 experience.

24 difference departments of Sandia Two 25 Laboratories sent us letters back in writing. They

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

	57
1	gave us their data, number of hours, number of
2	failures. From that we obtained two different values,
3	two more values. We have one number that the URD gave
4	us. We didn't throw it away but it is kind of
5	suspicious.
6	If it is this unreliable, why are people
7	saying this is a reliable valve and they are using it?
8	It just doesn't jive if it has the same failure
9	probability as MOV. It just doesn't make sense other
10	than the fact that somebody picked it up and plugged
11	it in there.
12	The bottom line I'm about to finish
13	we got two letters in writing from two different
14	departments of the Sandia Laboratories with total
15	mission times of 10s and 100s of thousands of hours.
16	From that there were two more numbers. One was 2
17	times 10 to the -4 and the other one was 3.2 times 10
18	to the -4. We now have three numbers.
19	MEMBER ROSEN: What number did you use
20	again since I don't have it in front of me? Five
21	times 10 to the -4?
22	MR. SANCAKTAR: Right.
23	MEMBER KRESS: Average.
24	MR. SANCAKTAR: We have three numbers now.
25	We don't know which one is right and which one is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 We don't want to pass judgement on it so we wrong. 2 checked with three experts. They gave us three 3 different numbers. We too a geometric average of the 4 three numbers and we came up with a number 5.8 times 5 10 to the -4. We don't anything else. We don't have our own tests. We don't have any magic numbers. 6 We 7 just looked around for --8 MEMBER ROSEN: I've never tested them. So 9 you're using the Sandia numbers. Okay. Now, that 10 helps because what I thought you were doing was using 11 the BWR numbers. The BWR numbers are clearly not 12 applicable to a 14-inch valve. Now, we have Sandia giving you two numbers 13 14 which in those letters, which I haven't seen but I 15 believe you, say they are applicable to the 14-inch 16 Can we get some further assurance of that? valve. MR. SANCAKTAR: That, I think, we will try 17 18 to give you that assurance in our next meeting. Ι 19 just wanted to give you facts as it existed today what 20 we did and then we'll go to the next stage. MEMBER ROSEN: Selim, I wouldn't pester 21 22 you if it weren't so important. 23 MR. SANCAKTAR: Okay. 24 MEMBER ROSEN: The central issue of ADS as 25 a safety function in this plant.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

58

	59
1	MR. SANCAKTAR: Certainly.
2	MR. CORLETTI: This is Mike Corletti.
3	While it was fresh in our minds we wanted to give you
4	what we did use. I think we would plan at the plant
5	meeting we would have to provide a better presentation
б	of the valves and the history.
7	MEMBER ROSEN: I worry you might get into
8	some classified stuff with Sandia. What I would like
9	to see is the numbers that you know, backup to
10	those letters, what kind of valves are they, and make
11	the case that the things they have actually tested.
12	They have a lot of experience and tell me what the
13	experience is. Show me the construction of the
14	valves. Make me comfortable that the ones they use
15	are like this one and in the same size range.
16	MEMBER SHACK: Isn't the case really here
17	whether the charge goes off? I mean, you can do the
18	analysis for the rest of it in a believable way.
19	MEMBER ROSEN: I thought that for a while
20	and then I looked at these valves and I worried that
21	the charge might go off and the piston might not go
22	down. Charge goes off, bang, and the piston sits
23	right where it is because it's cocked and it never
24	separates.
25	MEMBER SHACK: This is a valve that sits

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	on a noncorrosive environment. It's not going to bind
2	up, build corrosion products. You're not going to
3	find a whole lot of testing experience on these
4	valves. I can guarantee you that.
5	MEMBER ROSEN: That's what worries me.
6	MR. CUMMINS: This is Ed Cummins. We
7	agreed yesterday to provide more information. I'm not
8	sure the level of the more information will satisfy
9	you so we won't prejudge the next meeting. But
10	certainly we'll bring the expertise that we can find
11	to discuss the topic.
12	MEMBER ROSEN: Given the importance, I
13	don't think I'm ever going to be satisfied until I see
14	the valve built, you put 10 of them up there and you
15	go
16	MEMBER SHACK: Yeah, but 5 times 10 to the
17	-4 you're going to be testing a lot of valves.
18	MEMBER ROSEN: I know. I know, but at
19	least phenomenlogically
20	MEMBER SHACK: But I'll sign up for the
21	contract.
22	MEMBER KRESS: You don't have to attach 10
23	to the four of them. You can use statistical.
24	MEMBER ROSEN: I am a hands-on plant kind
25	of guy. I like to see things that are supposed to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

61 1 work work. And then I can get some familiarity with 2 how they work. And then when I'm comfortable that Right now we're just 3 they work, I'm comfortable. 4 talking about data and analysis, and that's 5 interesting but the closer you can get to the ideal, I know you can never achieve it but I want to hear 6 7 more about that. 8 MEMBER SHACK: That's а binomial 9 probability, Tom. If I want a 95 percent confidence 10 on that binomial probability, I'm going to be doing a 11 lot of testing. 12 MEMBER KRESS: Oh, yeah. It's about twice the number. It's like twice of -- the inverse of 1 on 13 14 10 to the -4. But that's a lot of math. But you're 15 never going to get that and we've got to rely on what we've got, I think, in this case. 16 17 We would have to make a judgement on the Sandia data or a calculation, so I don't think you're 18 19 ever going to achieve a reliability out of testing 20 these. It's not going to happen. So we have to make 21 our judgments on what we've got, I think. 22 Now the other question that I have is that 23 the new Westinghouse logo? 24 MR. SANCAKTAR: Yes. 25 MEMBER ROSEN: Are you done Selim?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	MR. SANCAKTAR: Yeah, I'm done.
2	MEMBER KRESS: Thank you. I don't think
3	you should have averaged in the utility requirements
4	document number. You should have gave me a higher
5	number.
6	MR. SANCAKTAR: We don't trust that number
7	but we thought if we leave it out, we will have even
8	more headaches than we would otherwise.
9	MEMBER ROSEN: Now we have a discussion of
10	in-vessel retention of molten core debris scheduled to
11	be complete by our break at 10:05. I don't think so.
12	MEMBER KRESS: You want to take a break
13	now?
14	MEMBER ROSEN: I think so. That would
15	make more sense. Our break was supposed to have been
16	a 25-minute break. Let's get back here by 10:25.
17	10:20 would be good enough.
18	(Whereupon, off the record.)
19	MEMBER ROSEN: All right. We are back in
20	session.
21	MR. SCOBEL: Okay. I am going to talk
22	about what we've done for in-vessel retention for the
23	AP1000. Just a little run-through for anybody who
24	doesn't have a strong background in in-vessel
25	retention, the phenomena that we're talking about is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

63 1 maintaining molten-core debris in the lower head of the reactor vessel by externally cooling the outer 2 3 surface of the reactor vessel with water. 4 The AP1000, like the AP600, is able to 5 flood the reactor cavity above the loop nozzles of the reactor vessel. If you get core debris in the lower 6 7 plenum of the reactor vessel and you boil the water on the outside of the reactor vessel and cool the outer 8 surface of the vessel, the vessel doesn't fail and the 9 debris is maintained inside without then being 10 relocated to the containment and causing problems like 11 12 interaction concrete ex-vessel core or steam 13 explosion, that sort of thing. 14 MEMBER ROSEN: We worry about departure 15 from nuclear boiling in a lot of places. This is one Are you going to talk about that? 16 of them. 17 MR. SCOBEL: Yes. 18 MEMBER KRESS: The cartoon that you have 19 there shows two layers stratified. 20 MR. SCOBEL: Yes. 21 MEMBER KRESS: How do you know that's what 22 is going to happen? 23 MR. SCOBEL: Based on the melt relocation phenomena, which I'll get into a little later, what 24 25 you end up with is oxide debris filling up the lower

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	plenum and contacting the metal debris from the bottom
2	allowing the metal debris to then melt on top of the
3	oxide debris with a crust in between.
4	MEMBER KRESS: In a core melt accident
5	don't metal phases generally melt first?
6	MR. SCOBEL: They do but they refreeze at
7	the bottom of the at the bottom of the core there's
8	a lot of volume there. I am going to kind of get into
9	in-vessel melt relocation. I'll continue and then
10	we'll go there.
11	The AP1000 has a bunch of reliable plant
12	features that promote in-vessel retention, the first
13	of which is post-accident reactor cooling system
14	depressurization which reduces the stresses on the
15	reactor vessel if you have debris in the lower head.
16	You will weaken the lower head and think it
17	significantly so you really need to be depressurized
18	for this to be successful.
19	There are no lower head penetrations in
20	the reactor vessel. The only failure mechanism
21	basically is creep failure of the lower head. The
22	reactor vessel is submerged in water post-accident
23	which is either automatically by the progression of
24	the accident or the operator has the ability to
25	manually flood and fill up the cavity.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	The lower support plate sits very low in
2	the lower plenum. Therefore, the lower plenum debris
3	that fills up in the lower plenum can contact and melt
4	the lower support plate on top of the debris. This
5	creates a thick metal layer on top of the debris and
6	it mitigates something that is called the focusing
7	effect of heat transfer where the heat that is
8	transferred from the oxide layer into the metal layer
9	is spread out over a larger area of the reactor vessel
10	by the thick metal layer.
11	Also we have reactor vessel insulation
12	that is designed to allow water to come in contact
13	with the outside surface of the reactor vessel and to
14	vent steam from the top of the insulation. There's an
15	annulus between the reactor vessel and the insulation.
16	I have a cartoon. First of all, this is
17	a containment flooding. You've seen this picture
18	before. When the water from the IRWST is drained into
19	the containment it fills up what we call the floodable
20	region of the containment and will fill up above the
21	loop elevations. You can see the ADS stage 4 sticks
22	up like a snorkel above the water level. In IVR
23	configuration this would be the successful containment
24	flooding configuration.
25	This is a cartoon of reactor vessel

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	insulation that promotes IVR. There's an inlet at the
2	bottom that is designed to normally be sealed for
3	normal operation. You have complete insulation but
4	when you flood up, it allows water to come in through
5	the bottom.
6	It forms a baffle around the lower head
7	that channels the flow. At the top there are vents
8	designed that go through the concrete and vent up into
9	the nozzle gallery near the reactor vessel loops.
10	MEMBER ROSEN: This cartoon looks like
11	it's some sort of toilet bowl float. Is that what it
12	is?
13	MEMBER SIEBER: Yeah, a float valve.
14	MR. SCOBEL: There is a design on paper
15	that has like float valves. There's a whole bunch of
16	them. It gets kicked around to change that design to
17	something.
18	MEMBER ROSEN: What do you mean it gets
19	kicked around?
20	MR. CUMMINS: This is Ed Cummins. We
21	don't claim to have the detailed design of the valve
22	but the concept of the valve is that it must passively
23	open when water comes in to make it float. The
24	current one is a bunch of float balls and then the
25	detailed design is a COL item actually.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	MEMBER ROSEN: But normally it's sealed so
2	there is no air flow through there.
3	MR. CUMMINS: Exactly. You want the
4	cooling air to go up to the vessel supports.
5	MR. SCOBEL: In normal circumstances the
6	top of these vents is covered and the bottom is
7	sealed.
8	MEMBER KRESS: What is the general size of
9	that annulus?
10	MR. SCOBEL: It's 6 to 9 inches, I
11	believe.
12	MEMBER ROSEN: And how do you get the tops
13	off? I understand how you are thinking about getting
14	the bottom open but how do you get the tops to seal
15	the tops off?
16	MR. SCOBEL: They just sit on top of the
17	vent.
18	MEMBER ROSEN: So they don't come off when
19	you go to in-vessel retention?
20	MR. SCOBEL: They do. You get a lot of
21	steam and water flow up through there which is
22	MEMBER ROSEN: So it pops them off.
23	MR. SCOBEL: Pops them off.
24	MEMBER SIEBER: What would happen if you
25	didn't have anything and it was just open?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	MR. SCOBEL: You wouldn't want it to be
2	open because of the insulation. You get a lot of heat
3	from the reactor vessel that would be coming up
4	through there.
5	MR. CUMMINS: This is Ed Cummins. The way
6	we cool the reactor vessel support is by blowing air
7	into that cavity. It goes up on the outside of the
8	insulation and comes up and cools the vessel supports.
9	You need to do that to keep the concrete less than 200
10	degrees.
11	MEMBER SIEBER: Okay.
12	MEMBER KRESS: And am I looking at the top
13	at an annulus that goes around, or am I looking at a
14	couple of pipes?
15	MR. SCOBEL: There are four of these.
16	MEMBER KRESS: Four of these?
17	MR. SCOBEL: Yes.
18	MEMBER KRESS: Okay. So this annulus
19	funnels itself into four.
20	MR. SCOBEL: Yes.
21	MEMBER KRESS: Located 90 degrees apart.
22	MR. SCOBEL: Yes.
23	MEMBER ROSEN: Kind of like Rogers.
24	MEMBER KRESS: Has that configuration been
25	tested somewhere?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	69
1	MR. SCOBEL: Yes, it has actually.
2	MEMBER KRESS: ROSPLOT?
3	MR. SCOBEL: No, ULPU. For the AP600 we
4	performed risk oriented accident analysis by Professor
5	Theofanous for our IVR assessment. It was presented
6	in DOE report. There was an analysis and a test
7	program and a peer review associated with this
8	analysis. From this analysis there were two tests
9	that were done.
10	The first was ACOPO which looked at the
11	natural convection of the debris inside the reactor
12	vessel and the way the heat transfer was partitioned
13	in the oxide layer. And ULPU which was a test to
14	investigate critical heat flux capability on the
15	outside surface of the reactor vessel lower head.
16	From that report and investigation of
17	AP600 we found that the limiting vessel failure
18	criterion was DNB basically, departure from nuclear
19	boiling. Exceeding the critical heat flux, or keeping
20	the heat flux to the vessel wall from the debris less
21	than the critical heat flux is our success criteria.
22	Also the steady state two-layer debris
23	configuration presented the limiting challenge to the
24	reactor vessel. I should say the credible limiting
25	challenge to the reactor vessel which was a metal over

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

70 1 oxide debris bed configuration in the lower plenum. 2 And AP600 showed a very large vessel 3 failure actually. We had about a 50 percent -- 50 or 4 60 percent -- the heat transfer to the vessel wall was 5 about 50 to 60 percent of the critical heat flux for With the cavity flooded and the RCS 6 AP600. 7 depressurized we had success. 8 MEMBER KRESS: Did the metal layer in 9 these tests have any heat source other than from the 10 oxide? MR. SCOBEL: No, it was all from the 11 12 It was considered to be in the oxide. oxide. MEMBER KRESS: The heaters were put into 13 14 the oxide? 15 MR. SCOBEL: No. The ACOPO test. The natural circulation of the ACOPO test was actually 16 done on kind of a cool-down basis. 17 MEMBER KRESS: Hot debris in the first 18 19 place? 20 MR. SCOBEL: No. It was done with freon. 21 Water and freon. The purpose of the test was to look 22 at the heat fluxes to the vessel wall. 23 MEMBER ROSEN: Does the surface of the 24 bottom of the vessel outside matter --25 MR. SCOBEL: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	MEMBER ROSEN: what the condition is?
2	MR. SCOBEL: Yes. It does matter.
3	Especially for AP1000.
4	MEMBER ROSEN: Can you tell us more about
5	what you are requiring?
6	MR. SCOBEL: Talk about AP1000 versus
7	AP600. The designs are similar but there are changes
8	between the designs that impact us. The first is that
9	we have the taller core with 157 14-foot fuel
10	assemblies instead of 145 12-foot fuel assemblies and
11	the power level is increased from 1,933 megawatts up
12	to 3,400 megawatts.
13	We have a core shroud instead of a core
14	reflector and the reflector in AP600 impacted the in-
15	vessel core melt progression significantly. Now we
16	have a core shroud. Also the lower core support plate
17	sits a little lower in the vessel. This is a very
18	minor impact. I'll talk about these in a second here.
19	To implement IVR for the AP1000 there were
20	specific things that we needed to do. We needed to be
21	able to figure out how to increase the critical heat
22	flux on the vessel surface because with the higher
23	power level and the debris mass that we had, we were
24	actually predicting not that we would exceed the
25	critical heat fluxes that we had determined for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
Í	72
1	AP600 configuration, but we were really bumping up
2	against them very closely.
3	We had a pitch point. We needed to figure
4	out how to increase the critical heat flux and able to
5	maintain the margins that we had seen in AP600.
6	If you are going to increase the power level of the
7	vessel, then you need to demonstrate that this thermal
8	failure criterion is still the limiting failure over
9	a structural failure of the reactor vessel itself.
10	If you are going to increase the heat
11	load, you are actually going to thin the vessel a
12	little more and you have to make sure that you still
13	have a margin of failure structurally.
14	Because of the changes inside the vessel
15	with the new core and the core shroud instead of the
16	reflector, we need to investigate the in-vessel melt
17	progression and make sure there isn't a change to the
18	in-vessel melt progression and make sure that there
19	isn't a change to the in-vessel melt progression that
20	would lead to a different lower head debris
21	configuration that we expect for AP600.
22	Also to demonstrate that the correlations
23	that we're using for the heat transfer if they
24	continue to scale properly for AP1000 or if we've
25	exceeded the scaling of the testing that we had

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	already done.
2	MEMBER KRESS: Is the vessel diameter
3	about the same?
4	MR. SCOBEL: The vessel diameter is
5	exactly the same. The lower head geometry is the
6	same.
7	MEMBER KRESS: Did you repeat the ROAM
8	process for the AP1000?
9	MR. SCOBEL: Say that again, please?
10	MEMBER KRESS: Did you repeat the ROAM?
11	MR. SCOBEL: No. This is not a ROAM
12	analysis. This is following the road map that was
13	laid out by AP600 ROAM but it doesn't have the full
14	we have some tests that we've done, and I'll get into
15	that, but we don't have like the full peer review.
16	To look at increasing the critical heat
17	flux, we got Theo to fire up the ULPU test again. The
18	last test that was done for AP600 was ULPU
19	Configuration 3. This is ULPU Configuration 4. It
20	consist of a lower-head slice geometry at a full-scale
21	radius of reactor vessel. It gives you a full-scale
22	simulation including all the water head and affects
23	using a power shaping technique to simulate upstream
24	conditions at any given test point.
25	The ULPU Configuration 4 was still set up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	with the AP600 entrance and exit losses but we
2	actually did not consider this to be a major
3	limitation. We didn't think that was a limiting
4	factor in the test.
5	MEMBER KRESS: Did you model increased
6	decay heat with the new test?
7	MR. SCOBEL: Since we're looking for the
8	limit, the critical heat flux limit, we were pushing
9	the limits higher but we're not actually modeling
10	decay heat. We are looking for the limit, not a
11	scaled test with the decay heat. Do you know what I
12	mean?
13	MEMBER KRESS: Yeah, I know what you mean.
14	MR. SCOBEL: The difference between the
15	real difference between the two tests, between
16	Configuration 3 and 4 is Configuration 4 had a movable
17	baffle that conforms to the lower head. However, it
18	was fixed at a 90 degree point. That kind of gave us
19	a little bit of a limitation there. These tests are
20	completed and we examine lower-head baffle geometry
21	impacts and water level impacts.
22	MEMBER ROSEN: I assume everybody in the
23	room knows what this acronym ULPU or UPLU is except
24	me.
25	MR. SCOBEL: Probably not because it's not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	an acronym.
2	MEMBER ROSEN: Oh.
3	MR. SCOBEL: When they were first doing
4	the tests they were being done for the Lovisa plant
5	which also implemented an IVR program. They had a
6	bunch of Finnish engineers that were taken from their
7	homes in Finland and taken out to Santa Barbara.
8	MEMBER ROSEN: Cruel.
9	MR. SCOBEL: Yes, it was very cruel. One
10	of the engineers was missing his girlfriend. Her name
11	was ULPU and this test became his new girlfriend so
12	the test is called ULPU. Isn't that a nice story?
13	This is a picture of ULPU. These are the heater
14	blocks down here. There's a riser.
15	MEMBER BONACA: She doesn't look that
16	good.
17	MR. SCOBEL: Sorry?
18	MEMBER BONACA: She doesn't look that
19	good.
20	MR. SCOBEL: Yeah. She's got nice wiring.
21	There's a downcomer. I have a schematic that kind of
22	actually shows the components a little better. This
23	gives you an idea of the scale. There is our buddy
24	Tony standing next to it.
25	MEMBER KRESS: When you talk about power

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	shaping, you're talking about the distribution of
2	energy along that surface.
3	MR. SCOBEL: Yes.
4	MEMBER KRESS: That comes from other tests
5	that you've made or calculations of how that's
б	distributed?
7	MR. SCOBEL: Yes. For any given test the
8	critical heat flux is being found at a particular
9	point. When you are doing a critical heat flux test
10	you're not actually finding a critical heat flux shape
11	over the whole test. You're finding determining
12	the critical heat flux at 85 degrees.
13	The power in the upstream cartridges is
14	tuned to give the proper upstream conditions in terms
15	of void fraction and flow rate to simulate the flow
16	over a hemispherical this is a constant slice
17	geometry. It's not a pie shape. When you have flow
18	at a given point, it's not the same flow that you
19	would get over the slice. Do you understand what I
20	mean? Theo has come up with an algorithm to tune the
21	flow.
22	MEMBER KRESS: I see. It's like finding
23	the critical heat flux off of a flat plate but
24	changing the angle of the flat plate it looks to me
25	like.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	MR. SCOBEL: Yes.
2	MEMBER KRESS: It's the angle that makes
3	the difference in the critical heat flux.
4	MR. SCOBEL: That's correct. It does.
5	How fast you can move the bubbles away. The power
б	shaping, I can't talk of the power shaping in
7	significant detail how it's done but it is described
8	in detail in the ULPU reports.
9	MEMBER RANSOM: What did you say about
10	this? That it's just a constant width rather than a
11	pie?
12	MR. SCOBEL: Yes. The difference is taken
13	into account in the way the upstream heat transfer is
14	adjusted in these each one of these wires is going
15	into a cartridge that's embedded in the heater block.
16	MEMBER KRESS: Basically it looks to me
17	like a clever way to get the effect of the angle from
18	the critical heat flux. Where you're going you're
19	looking at departure from nuclear boiling conditions
20	that you get. This is just a way to do every angle.
21	You run the test so departure from nuclear
22	boiling is apt to give a location. You don't care
23	about really modeling the whole bottom. You're just
24	looking for the effect of the angle and the critical
25	heat flux.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	MEMBER RANSOM: Well, I assume he's trying
2	to get enough boiling as you move along the surface.
3	MEMBER KRESS: In order to get the void
4	fraction.
5	MEMBER RANSOM: Like you said, the void
6	fraction, bubble population would be typical of that
7	point in the pie.
8	MR. SCOBEL: Right. Exactly.
9	MEMBER ROSEN: I'm getting a little
10	worried about getting on with this.
11	MR. SCOBEL: Yes, sir. This is just
12	showing the difference between the two configurations.
13	If you look closely, the only difference is the shape
14	of the baffle. In AP600 we have a conical baffle.
15	In this one it's more hemispherical
16	conforming to the lower head. That comes up with
17	increasing the critical heat flux. That's one of the
18	effects that we get.
19	MEMBER KRESS: That has an affect on the
20	velocity.
21	MR. SCOBEL: Yes. Exactly. What we see
22	if we have a low water level here is an example
23	with low water level it's just like boiling a pool.
24	You are venting steam, you're not venting water. The
25	flow rate is very low.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	Even with the baffle you can see that in
2	ULPU Configuration 4 this line represents the results
3	of AP600 and we're getting the same affect in AP600 as
4	we are in Configuration 4.
5	When you fill up the when you have a
6	high water level and you are venting water and steam
7	together, you actually have very, very high flow
8	rates. Amazingly high flow rates actually. You get
9	a significant impact in the heat transfer. We were
10	getting about 30 percent higher heat transfer in ULPU
11	Configuration 4.
12	MEMBER RANSOM: Are those critical heat
13	flux values?
14	MR. SCOBEL: These are the values of the
15	critical heat flux, yes. There were different baffle
16	positions but, if you remember, it was a fixed baffle
17	at 90 degrees. When they moved the baffle it was only
18	at the bottom.
19	MEMBER KRESS: So is that enough increase
20	in heat flux to overcome the new higher power?
21	MR. SCOBEL: Actually, it is. Then we had
22	some conclusions from ULPU Configuration 4. We
23	submitted the test report to the NRC. In fact, this
24	is the number. CHF can be increased significantly to
25	accommodate AP1000 but we have to channel the flow

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

80 1 around the lower head and we have to do it with a high 2 water level. 3 AP600 didn't have this high water level 4 restriction. We did see an adverse exit affect associated with the fact that we couldn't move the 5 We still had the same AP600 6 baffle up there. 7 Configuration on top of the baffle. That leads us into ULPU Configuration 5. 8 ULPU Configuration 5 is an I-NERI funded 9 program. It's AP1000 specific inlet and steam venting 10 11 modeling including, as you were asking about the turn 12 and the pinch point includes that. It's got a more adjustable baffle design so you can change it at the 13 14 top and the bottom and everything. 15 Additional aspects that are we investigating, surface effects which you were just 16 17 asking about, water chemistry and the exit phenomena that I was discussing earlier. We are using ULPU 18 19 Configuration 5 to optimize the insulation. These are results from ULPU Configuration 20 21 5. You can kind of see that this is the line that we 22 showed before for the AP600 correlation from the 23 original ULPU. You can see that we're getting much higher heat fluxes. 24 These are with the three-inch baffle at the bottom. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

81 Then also at the top we qot more consistent results with the six-inch baffle at the top. In the end the final cases that we looked at were a baffle that went from three inches to six inches and we used tap water. We were getting critical heat fluxes that were much higher even than ULPU Configuration 4. Part of the reason for this was with the At the end of the program they were tap water. willing to oxidize the surface of ULPU which was kept clean at the beginning. Once the surface was oxidized we got very consistent results around 2 megawatts at the top of the 90 degree point. MEMBER ROSEN: And that's what you want. You want high heat fluxes. Very high critical heat MR. SCOBEL: fluxes because that's our limit. That's our success criteria, success or failure. MEMBER ROSEN: You're at nuclear boiling is what this says. This is nuclear boiling. MR. SCOBEL: MEMBER ROSEN: You get these kind of heat fluxes and it has to be nuclear.

24 MR. SCOBEL: That's correct.

MEMBER ROSEN: Otherwise it would drop off

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

	82
1	dramatically.
2	MR. SCOBEL: Drops off amazingly fast,
3	yes. You can see that if you look at the ULPU test
4	report because they take it up to critical heat flux.
5	Whenever they test a point they take it up to critical
6	heat flux and you see the temperature excursion like
7	it goes straight up.
8	Then they scram, allow it to cool down,
9	and then they take it up to the last point where they
10	achieve critical heat flux and they allow it to run to
11	make sure that actually is like a sustainable critical
12	heat flux point.
13	MEMBER KRESS: Now you have to show that
14	you don't exceed these heat fluxes.
15	MR. SCOBEL: This was step one.
16	MEMBER KRESS: I'm sorry.
17	MR. SCOBEL: That's okay. So ULPU
18	Configuration 5. These tests have shown that the
19	AP1000 critical heat flux that we determined in ULPU
20	Configuration 4 can be met with margin. The exit
21	phenomena that we saw before is negligible.
22	The optimum surface that we've seen from
23	this was unpainted and oxidized. This is being taken
24	into account in how we are designing our installation
25	of the reactor vessel into the plant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MEMBER ROSEN: So this is a plant where
2	the old dictum of you could move saluted if not
3	painted is not a very good idea.
4	MR. SCOBEL: Not with the vessel, no. We
5	don't want we did test paint samples, like samples.
6	Well, it was kind of part of the ULPU program.
7	There's a thing called mini ULPU that they can look at
8	I might be mixing up the tests. There's like a
9	whole bunch of little tests that go along with this.
10	They looked at a bunch of paint samples and we weren't
11	really getting the kind of results we wanted from the
12	painted surfaces. From the oxidized unpainted surface
13	we get great
14	MEMBER ROSEN: Normally oxidized just
15	because the plant runs.
16	MR. SCOBEL: Yes.
17	MEMBER ROSEN: Do you have to preoxidize?
18	MR. SCOBEL: It will oxidize on its own.
19	It gets a late oxidation. With us and CE now being
20	partners we have like a lot of experience and we had
21	some really interesting discussions with CE because
22	they don't paint their reactor vessels. They said you
23	get a light oxidation and then it stays that way.
24	MEMBER ROSEN: Just build a vessel and put
25	it out there in Chattanooga in the backyard for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	awhile.
2	MR. SCOBEL: They use a strippable coating
3	that they take off once they install it. It protects
4	it when it's sitting out in the yard. Then when they
5	take it off they come and they say it's handstripped
6	away from the vessel.
7	MEMBER KRESS: I'm envisioning hot debris
8	inside the vessel melting away some of the metal to
9	the inside. It's thin enough that you can carry the
10	flux out through it but it's accepted by the less than
11	the critical heat flux on the outside. You thin it
12	around. You've got a heavy start in there and maybe
13	you thin it so much that at that temperature it can't
14	stand the weight. That's what you call structural
15	failure.
16	MR. SCOBEL: Yes.
17	MEMBER KRESS: What do you call thermal
18	failure?
19	MR. SCOBEL: Thermal failure is exceeding
20	the critical heat flux.
21	MEMBER KRESS: It's going to melt through
22	that spot?
23	MR. SCOBEL: Yes. I would envision that
24	it would melt through the whole way around because it
25	would get so hot.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	MEMBER KRESS: Which is also a structural
2	failure that happens a lot differently. It happens
3	because
4	MR. SCOBEL: Because it melts through.
5	MEMBER KRESS: It melts through. Okay.
6	MEMBER ROSEN: It melts through because it
7	exceeded the critical heat flux.
8	MR. SCOBEL: Exactly.
9	MEMBER KRESS: The other way is just
10	weight. Just basic creep rupture.
11	MR. SCOBEL: Yes.
12	MEMBER KRESS: Because the metal is thin.
13	MR. SCOBEL: Yes.
14	MEMBER RANSOM: I have a question. Has
15	the Thermal Hydraulic Subcommittee ever reviewed this
16	experiment?
17	MEMBER KRESS: We have reviewed it to some
18	extent for AP600. We had Theofanous come in and talk
19	about the attendance in the ROAM. This was some time
20	ago. We haven't reviewed these new experiments. At
21	some point you're going to talk about the heat
22	transfer on the inside?
23	MR. SCOBEL: Yes. For the structural
24	failure we wanted to confirm at the higher power level
25	that we were still okay and considering abounding heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	flux of 2000 the heat fluxes that we are expecting
2	from AP1000 are actually about 1,400 or 1,500
3	kilowatts per square meter so this is a heat flux.
4	The vessel is still carrying 36 times the
5	thickness that it needs to carry at that load which is
6	on the same order of magnitude as AP600. AP600 was
7	more like 70. It was like double that.
8	MEMBER KRESS: Is the heat flux still
9	maximum in the metal layer?
10	MR. SCOBEL: Yes. This is a maximum.
11	Actually when you consider that this is about the
12	critical heat flux, it's about the biggest heat flux
13	that you can stand. Even at a lower heat flux this
14	would be more like 50 or 60.
15	Here we get to in-vessel melt progression
16	which is leading up to what we're taking about. The
17	AP600 in-vessel melt progression was strongly
18	influenced by having a low power density and
19	MEMBER KRESS: MAAP 4 results?
20	MR. SCOBEL: No. This is talking about
21	what we did for AP600 and then how it relates to
22	AP1000.
23	MEMBER KRESS: How did you get to AP600
24	in-vessel melt progression, MAAP 4?
25	MR. SCOBEL: No. Actually, it was done

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	with a bunch of engineers working on it for a long
2	time because you can't model the details with MAAP 4,
3	the details of how things progress with MAAP 4 so
4	there were models that were done that you could
5	consider to be almost like hand calculations.
6	First principle calculations if you will.
7	The melt progression and it was like not one person
8	but it was like Theo and people from Argonne, Senece
9	and Company and Ruth Spencer's group.
10	MEMBER KRESS: This was part of the ROAM
11	process?
12	MR. SCOBEL: This was part of the ROAM
13	process. It was not like one day. It was like a one-
14	year program to come up with the melt progression for
15	AP600.
16	MEMBER KRESS: It boils down to expert
17	opinion on the probability of these things happening?
18	MR. SCOBEL: There was expert opinion
19	involved, yes. But the conclusions that were
20	important was that the downward relocation halfway is
21	blocked which is consistent with things like Three-
22	Mile Island.
23	You have a sideward failure through the
24	reflector into the dead-ended region which would then
25	allow the debris to contact the core barrel. The core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

88
barrel would fail and the debris would relocate into
the lower head.
Some other things that aren't specifically
up there. In AP600 the reflector around the core was
a very thick chunky piece of metal. It was five
inches thick.
MEMBER KRESS: Does that protect the
vessel against radiation embrittling or was it a
thermal barrier or neutron effect?
MR. SCOBEL: It was for neutronics and it
also protected the vessel from fluents. I'm speaking
a little beyond my complete knowledge. There was this
big chunky reflector there. It was a strong thermal
barrier.
The core melt progression downward was a
lot faster than melting through the reflector so
consequently in AP600 you essentially have to melt the
entire core before it can generate enough energy to
melt through the reflector and then through the core
barrel.
When you got the initial relocation into
the lower head, you would have this oxide pull that
would melt through the reflector and then the core
barrel and then pour down into the lower head and
contact the lower support plate from below. It all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	occurred in kind of one fell swoop and filled up and
2	contacted the lower support plate.
3	AP1000 has a higher core power density and
4	a core shroud instead of a reflector so we really need
5	to investigate how we expect the AP1000 core melt
6	progression to progress.
7	This is a picture of the core shroud which
8	is not really compared to the reflector but the shroud
9	part itself is seven-eight's of an inch thick around
10	the core and it has the support rings on the outside.
11	At the bottom there's a four-inch thick
12	plate and it has 16 cooling holes that go through it.
13	Each of these holes is about three-quarters of an inch
14	in diameter. They go down and they turn 90 degrees
15	and they get their cooling flow from below the top of
16	the the bottom of the active fuel.
17	This is under normal circumstances you
18	have a bypass flow that goes through the core shroud
19	there. Then the core barrel sits on the outside and
20	these rings kind of rest inside the core barrel. This
21	is the lower support plate.
22	MEMBER KRESS: All that is steel?
23	MR. SCOBEL: It's all stainless steel. So
24	in modeling this core relocation, the first thing we
25	needed was an accident sequence, by definition a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

successful IVR fully depressurized. We want to look 2 at the earliest core uncovery core melt progression being higher 3 because of decay heat so that's 4 conservative.

We don't want the vessel to be reflooded 5 inside because our bounding case is no water in the 6 7 vessel cooling. We were only cooling the core from 8 the outside. What I conservatively assumed, it 9 doesn't have anything to do with probability or 10 anything, I just looked at a spurious ADS stage 4 case 11 because you can't reflood the vessel. It's a large It's very early. It progresses very rapidly. 12 LOCA. 13 This was my case.

14 I did run MAAP 4 cases but because I'm 15 looking at detailed heat up of the core internals, the MAAP 4 model for the core internals are very prude. 16 17 If you're looking at the core melting they are fine for that. If you are looking at how the core shroud 18 19 and core barrel heat up, they are not so good for 20 We put together a Finite difference model of that. 21 the core and internals which used the uncovery timing 22 from MAAP 4.

23 Now, this model had its limitations in 24 that it actually couldn't model the melting and 25 relocation of the core once it heated up to a certain

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	91
1	level. We also have
2	MEMBER KRESS: Finite difference models
3	are usually fixed geometry.
4	MR. SCOBEL: Fixed geometry. Exactly. To
5	supplement what we did with MAAP 4 and what we did
6	with that, we also have hand calculations of the core
7	heat up and melting that were much like what was done
8	for AP600 to look at how it would relocate to the
9	different regions of the reactor vessel and then heat
10	up.
11	The first thing we see is the formation of
12	a in-core debris pool. During the melting process
13	the heat up and melting process we actually see
14	that the upper parts of the core shroud melt actually
15	prior to the fuel melting.
16	MEMBER KRESS: Radiation?
17	MR. SCOBEL: It's from radiation. Heat
18	transfer from the fuel. When it's getting up close to
19	its melting temperature, the inside of the shroud
20	would melt and we saw and thinning of the core barrel
21	as well. It's very overheated.
22	Most of the peripheral fuel assemblies,
23	though, by radiation cooling to the core barrel and to
24	the core shroud remain intact so you have this
25	boundary around the core of intact fuel assemblies.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We expect a blockage an oxide blockage to occur at
one meter above the bottom of the fuel.
This is significant because if you
remember what I said in AP600 we melted the entire
core before we were able to melt out through the sides
of the reflector and the core barrel. Now, in AP1000
we don't melt the entire core. We have a blockage.
At the point where you get an oxide debris
pool that can then generate super heat and fail
through the side, you already have the core not the
reflector but the shroud is already melted so the
boundary is actually inside the oxide fuel assemblies,
the peripheral fuel assemblies that are intact.
When they fail the in-core debris pool
will then pour down into between the bottom shroud,
which is still there, and the core barrel. It will
fill up contacting the core barrel which is
significantly overheated and you have a sideward
failure at the top of the oxide pool that then allows
the debris to core down into the lower head.
MEMBER ROSEN: Top of the oxide?
MR. SCOBEL: That's actually where the
heat flux because when you have the in-core debris
pool you have strong heat fluxes upward.

MEMBER SIEBER: I would have sort of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	93
1	guessed that the oxidation of the cladding would have
2	been so severe prior to this happening that the fuel
3	would more or less fall apart before it melted.
4	MR. SCOBEL: In the peripheral fuel
5	assemblies?
6	MEMBER SIEBER: Yes. Is that potentially
7	the case or not? Because there's going to be a lot of
8	oxidation going on.
9	MR. SCOBEL: Yes, there is a lot of
10	oxidation. You do have less in the peripheral fuel
11	assemblies, actually.
12	MEMBER SIEBER: That's true.
13	MR. SCOBEL: But the temperatures that
14	we're seeing led us to predict that they were still
15	standing.
16	MEMBER SIEBER: Still standing.
17	MR. SCOBEL: You see, this is
18	MEMBER SIEBER: It probably doesn't make
19	a difference.
20	MR. SCOBEL: It's also a conservative
21	assumption. I'm sorry. It's a conservative
22	assumption, too. There's like so much stuff to this
23	that keeping track of it is difficult. But it's
24	conservative also to assume that the peripheral fuel
25	assemblies are standing because it significantly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	limits the mass associated with this initial
2	relocation which, as we continue to talk about the
3	progression, it sounds funny that we want more melted
4	fuel but we do. What we want to do is we want to
5	contact the lower support plate like we did in AP600
6	to melt the metal debris on top of the oxide debris.
7	MEMBER ROSEN: You need to pick up the
8	pace a little bit.
9	MR. SCOBEL: I'm sorry. There's so much to
10	this.
11	MEMBER ROSEN: I know, but we only have
12	MEMBER KRESS: Let me make one comment
13	here. The committee normally deals in the
14	propabalistic world and view this as one potential
15	melt progression description out of a number of
16	possible ones.
17	Normally they would think in terms of the
18	worst configuration you could have and what is the
19	probability I'm getting that configuration and does
20	that worst configuration fail through the vessel by
21	any means. It's a little difficult to accept one
22	description of core melt degration. There are
23	probably other possible ones. That's my initial
24	reaction right now.
25	MR. SCOBEL: The other really likely

NEAL R. GROSSCOURT REPORTERS AND TRANSCRIBERS1323 RHODE ISLAND AVE., N.W.(202) 234-4433WASHINGTON, D.C. 20005-3701

95
scenario that I could potentially think of would be
it's not very likely because
MEMBER KRESS: I would make a scenario
independent. I would ask myself given this stuff in
the core that I have, what is the worst condition down
there that I can have that would cause it to melt
through. Is there some configuration in there that
would cause it to fail? Then back into that and say
what is the probability of me getting that.
MR. SCOBEL: Actually
MEMBER KRESS: You don't have to get into
scenarios.
MR. SCOBEL: This is the process that I
went through. In doing this I was partnered with
FORDUM, Aali Kimeleinen. Actually, the guy you named
the ULPU test. We actually were trying to fail the
vessel in doing this. This is the core melt
progression that we came up with knowing what we know
about how it's going to melt.
The downward relocation you have a whole
lot of frozen metal down here and it's just solid at
the top of the core support plate. It's not going
anywhere. Because of the melting of the core shroud
and core barrel, those tiny little holes at the bottom
of a core shroud are blocked.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Not only that, the exits to them are 2 blocked with metal as well. The only failure scenario 3 for getting the debris out through from up here to 4 down here is through the side. There's really no 5 other place for it to go. The way that it would come through the side because we were saying the core 6 7 barrel up here is heated up and overheated but the way that it comes through the side is by melting the core 8 barrel. 9 The way that it melts the core barrel is 10 11 you have a debris pool with super heat in it and so 12 it's going to start the melt and where the highest heat flux is with the debris pool. That occurs at the 13 14 top of a pool because of the natural circulation in 15 the pool. You fail the debris pool and then you kind of oblate a hole as the debris pours through the hole. 16 17 MEMBER KRESS: Then what I would have done is take that debris and set it on the bottom of the 18 19 vessel. 20 MR. SCOBEL: Yes. 21 MEMBER KRESS: I'm not quite sure how deep 22 I would look at different depths and see if it is. 23 there is some optimum depth to fail the vessel.

24 MR. SCOBEL: We looked at how deep the 25 debris would be next.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

96

	97
1	MEMBER KRESS: I don't know how deep it
2	is.
3	MR. SCOBEL: Well, we know what a minimum
4	mass would be because minimum would be bad.
5	MEMBER KRESS: That's why I said lower
6	mass because you're concentrating it down with a bad
7	heat intake.
8	MR. SCOBEL: In terms of minimum mass it's
9	like we held up the peripheral fuel assemblies, we
10	held up what ends up between where the core shroud and
11	core barrel would be. We held up as much debris as
12	possible. We had a minimum debris relocation of 6.2
13	cubic meters.
14	MEMBER KRESS: That's getting close to
15	what I was saying.
16	MR. SCOBEL: I think we're on the same
17	page. It's just that I'm trying to go through this
18	quickly.
19	MEMBER ROSEN: And the 14-foot fuel,
20	that's two feet of it left?
21	MR. SCOBEL: That's actually about a
22	meter.
23	MEMBER KRESS: So you've got
24	MR. SCOBEL: That's conservatively high.
25	MEMBER KRESS: You've got competition

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	between label that and the heat transfer and the
2	thinning of that vessel down there.
3	MR. SCOBEL: Yes. Well, down here you
4	have water.
5	MEMBER KRESS: Oh, there's water down
6	there?
7	MR. SCOBEL: Yeah, there's water that's up
8	to about the bottom of active fuel.
9	MEMBER KRESS: You're going to boil that
10	off?
11	MR. SCOBEL: Yes. Now, what you have is
12	a horse race between how fast this debris up here
13	melts and pours into the lower head versus how long
14	the water will last. That's the next slide. Actually
15	what we see and we make conservative assumptions on
16	how long the water is going to last.
17	We assume actually that based on boiling
18	the water, we assume that we filled up the entire
19	lower head which we haven't done so we put more heat
20	into the water than is actually there. We have done
21	this on a conservative basis trying to fail it and
22	having math errors and thinking that we failed it and
23	then finding them.
24	In the end what we came up with, since I
25	have to go fast, we have like an early timing and a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

duration for relocation. This is for our modeling of the subsequent relocation of the debris. We model each of the regions and we keep track of how much heat is in each one and how much mass based on our conservative calculations of how much initially relocated.

7 What we come out with for success we say 8 the debris contacts the lower support plate before you 9 get to dry out. This is for mitigating the focusing 10 effect. We get a debris contact occurring at -- well, 11 times zero is 6,000 seconds so it's like 717 seconds 12 after the initial relocation. The lower plenum dryout 13 occurs.

Like I said, this was conservatively 14 15 calculated quickly at 6,888 seconds. What this means 16 is that expect all the transient debris we configurations that would be in the lower head before 17 you contact the support plate to be water-cooled. 18 19 Once you contact the lower support plate, then the 20 focusing effect is mitigated by the amount of debris 21 that you can melt into the lower head.

22 MEMBER KRESS: Did you take any credit for 23 this in assessing or design basis accidents in the 24 SAR?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. SCOBEL: Design basis accidents don't

(202) 234-4433

25

1

2

3

4

5

6

	100
1	have melting fuel.
2	MEMBER KRESS: This is all for the PRA?
3	MR. SCOBEL: This is all for the PRA.
4	This is all for IBR specifically.
5	MEMBER RANSOM: Do you have a severe
6	accident model that you use to do the thermal
7	calculations and relocation? Does MAAP give you that?
8	MR. SCOBEL: We actually did it with
9	this is a schematic of the model we used and it was
10	done on a spreadsheet.
11	MEMBER KRESS: This is all to support your
12	success assumption in the PRA?
13	MR. SCOBEL: Yes.
14	MEMBER KRESS: You've got depressurized
15	and water in the cavity, then you don't fail.
16	MR. SCOBEL: Yes. This is basically to
17	come up with the debris configuration in the lower
18	head to justify metal over oxide debris configuration.
19	We are relocating oxide and it's contacting the lower
20	head. It's contacting the lower support plate from
21	the bottom and melting.
22	MEMBER KRESS: What's happening to that
23	melting debris while you're having the race going on?
24	MR. SCOBEL: Down here?
25	MEMBER KRESS: Yes. It's got a crust?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	MR. SCOBEL: It's got a crust. It's got
2	water. It's cooled with water.
3	MEMBER KRESS: So you're not melting the
4	head during that part?
5	MR. SCOBEL: No. It means that the heat
6	fluxes from the debris in the lower head to the lower
7	head are bounded by the final steady state debris that
8	you get when you have a full natural circulating
9	debris pool.
10	MEMBER KRESS: Yeah, but do you think an
11	oxide crust on the bottom of that pool provides any
12	protection to the lower head?
13	MR. SCOBEL: Yes.
14	MEMBER KRESS: Do you have a model that
15	says that?
16	MR. SCOBEL: Just based on the heat
17	transfer calculations that we do for assessing the
18	final steady state IVR configuration.
19	MEMBER KRESS: Steady state is okay in
20	this case and I don't mind that. I would like to see
21	the model because only a crust will adjust its
22	thickness to accommodate the heat flux through it.
23	MR. SCOBEL: That's taken
24	MEMBER KRESS: It's the heat flux and the
25	temperature that you get on the bottom side that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	determines whether you're melting it.
2	MR. SCOBEL: That's actually taken into
3	account, yes. That's all taken into account.
4	MEMBER KRESS: Show me where the
5	documentation is.
6	MR. SCOBEL: It's all based on the same
7	model from the AP600 ROAM. The crust has an inside
8	surface temperature that is the liquid of the oxide.
9	MEMBER KRESS: Of the oxide. Right.
10	MR. SCOBEL: Yes. And so you have an
11	isothermal boundary around.
12	MEMBER KRESS: You have an isothermal
13	boundary so the crust adjust its thickness.
14	MR. SCOBEL: Yes. So you
15	MEMBER KRESS: You get the heat flux.
16	MR. SCOBEL: And you get the heat fluxes
17	from the natural circulation so when you get each of
18	those heat fluxes you calculate a crust thickness
19	based on the heat flux.
20	MEMBER KRESS: And that fixes the metal
21	temperature.
22	MR. SCOBEL: And that fixes exactly.
23	MEMBER KRESS: And that's the model you
24	have?
25	MR. SCOBEL: Yes, sir. That's exactly!the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	model we have.
2	MEMBER KRESS: Ok`y.
3	MR. SCOBEL: RASPLAV and MASCA. We had
4	specific questions about RASPLAV and MASCA. We
5	address these in detail in REI720047. These are in-
6	vessel material testing using prototypic materials.
7	However, the conditions for RASPLAV and MASCA are not
8	protypical. The really numbers are too low.
9	MEMBER KRESS: You don't have enough for
10	the
11	MR. SCOBEL: Yeah, you can't get the
12	scale. You can't get it big enough.
13	MEMBER KRESS: You can't get it big
14	enough.
15	MR. SCOBEL: Right. Really numbers are
16	too low. Heat fluxes are too high and they are coming
17	from the wrong places like they use radiant heating in
18	some cases which is from outside the debris, not
19	inside the debris so the crust are all wrong. They
20	don't have acceptable ratios of the masses.
21	Consequently I don't really think we draw a whole lot
22	from them.
23	MEMBER KRESS: It's not prototypic enough
24	for AP1000.
25	MR. SCOBEL: No. But we don't believe

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	that they contradict our position because for our
2	conditions
3	MEMBER KRESS: What did they find out in
4	RASPLAV and MASCA?
5	MR. SCOBEL: There were certain cases
6	where they had reactions between metals and oxide that
7	resulted in
8	MEMBER KRESS: Material interactions.
9	MR. SCOBEL: Yeah, material interactions
10	between where they had a bottom uranium layer, uranium
11	and steel.
12	MEMBER KRESS: If you've got uranium and
13	steel in the bottom, you fail the vessel.
14	MR. SCOBEL: Not necessarily. No,
15	actually.
16	MEMBER KRESS: It depends on whether they
17	carry any heat flux.
18	MR. SCOBEL: Well, it depends on that. It
19	depends on how much heat flux it carries. It depend
20	on how much metal it takes away because if you assume
21	that you react like a whole lot of it and you can
22	assume that it thins the top metal layer. Those
23	interactions are
24	MEMBER KRESS: Are they exothermic?
25	MR. SCOBEL: They are actually oxidation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

105 1 reduction reactions so they aren't strongly exothermic 2 at all. 3 MEMBER KRESS: Almost neutral. 4 MR. SCOBEL: Yeah. 5 MEMBER RANSOM: Who made these tests? Where were they done? 6 7 MR. SCOBEL: They were done in Russia and 8 they were sponsored by CSNI and OECD? I'm asking Bob Palla. 9 10 MR. PALLA: I think yes. MR. SCOBEL: Bob Palla thinks yes. 11 12 MEMBER RANSOM: And the data is open? I don't believe it is. 13 MR. SCOBEL: 14 MEMBER RANSOM: How are you able to use it 15 then? I'm not actually using it. 16 MR. SCOBEL: 17 I'm asking people for assessments, people who have the I rely on people who are able to see the data 18 data. 19 and I have not seen it. That's why I'm kind of like 20 this is what I know about it. There are open papers 21 of results but the overall program is not open. 22 MR. SNODDERLY: Dr. Ransom, this is Mike Snodderly. I think later on we're going to hear from 23 24 the staff and Richard Lee from the Office of Research. 25 The Office of Research is one of the sponsors of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	RASPLAV experiments and hopefully they will be able to
2	give us some more information and the availability of
3	the data.
4	MEMBER RANSOM: Good.
5	MR. SCOBEL: Okay. So let me get into the
6	application of heat transfer coefficients. The bottom
7	line is that we are not really violating still even
8	with our higher power levels. We're getting toward
9	the top of the oxide debris pool heat transfer but we
10	are still within the range of the data.
11	We are well within the metal layer heat
12	transfer data. We have a modest extrapolation for the
13	Globe-Dropkin correlation. However, it's only for
14	really thick metal layers and thick metal layers
15	aren't the ones that give us problems. It's when you
16	thin the metal later.
17	MEMBER RANSOM: The question I have, you
18	talked about these metal layers. Are there test data
19	or calculations that indicate that you actually would
20	have something like that in a severe accident?
21	MR. SCOBEL: Actually have a metal layer?
22	MEMBER RANSOM: Right. Do you get the
23	separation of the layers?
24	MR. SCOBEL: You do. Even in RASPLAV and
25	MASCA they saw the separation of the layers. Those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	would be the tests where we would
2	MR. BEHBAHANI: This is Ali Behbahani from
3	Office of Research. As Mike as noted, Office of
4	Research is participating in MASCA and RASPLAV. In
5	RASPLAV experiment they did test four different type
6	of corium compositions, 100 percent oxidic and then
7	they lowered the oxidation rate of the corium.
8	In the RASPLAV experiment it was shown if
9	you add carbon to the mass you have a certification of
10	the melt where you have two layers of oxidic melt.
11	One richer in metal than the lower one.
12	In MASCA experiment it was mainly done
13	from material point of view where you had zirconium
14	containing corium. Then we added iron to it and then
15	you get separation. Thereby you have heavy metal
16	relocated to the lower part of the mass next to the
17	vessel wall.
18	If I recall correctly, the density of the
19	metal melting relocated to the lower part of plenum
20	was about 12 percent higher than the oxidic melt
21	itself. It was very heavy. I don't know whether you
22	can mix the whole thing even if you have such a high
23	number with that variation of densities. This is the
24	finding so far in MASCA experiment.
25	In addition, I should mention addition of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
boron carbide to the melt in addition to iron that accentuates this whole melt separation where you have larger amount of metallic melt relocated to the bottom.

5 MEMBER RANSOM: I guess the important 6 thing would be that your model is considered to be 7 conservative and you are sort of taking a worst case 8 type situation where you get the highest heat transfer 9 and assume natural circulation exist in these layers. 10 Is that what you're doing?

11 MR. SCOBEL: Yes. It actually is. You 12 can say can you have a worst case with like a heavy metal layer on the bottom. Depending on assumptions 13 14 of how you partition the heat, heat doesn't go with 15 It's in the fission products, not the uranium. If you sink uranium metal layer to the 16 uranium. bottom and it has no -- it doesn't have like all of 17 the decay heat in it, then --18

19 MEMBER KRESS: Then it just helps you. 20 It's not a problem. MR. SCOBEL: Yeah. 21 MEMBER KRESS: Tests have shown that when 22 you do that the metals strip out the metallic fission 23 products to some extent. It does carry fission 24 products with it. You would expect them to go with 25 it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	109
1	MR. SCOBEL: But it actually has to carry
2	a lot of fission products with it. It's not just
3	if it's like 20 percent, it's still okay.
4	MEMBER KRESS: It does boil down to how
5	much internal heat generation metal will carry with
6	it.
7	MR. SCOBEL: But if you have these natural
8	circulation rates that we are considering, you know,
9	peak the heat fluxes at particular points on the
10	vessel, and we're looking at peak heat fluxes
11	conservatively at the top of the oxide layer, in the
12	metal layer, depending on how much metal you can
13	include in the debris which comes down to whether or
14	not you can contact the support plate. We are trying
15	to look at it, you know, conservatively but not overly
16	conservatively. It's a PRA so we're trying
17	MEMBER KRESS: Overly conservative would
18	be put the metal on the bottom and put all the heat
19	in.
20	MR. SCOBEL: Yeah.
21	MEMBER KRESS: That would be going too
22	far.
23	MR. SCOBEL: Yes.
24	MEMBER RANSOM: Well, I know people like
25	SCDAP. There's another severe accident code around

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	they use.
2	MR. SCOBEL: MELCOR.
3	MEMBER RANSOM: MELCOR.
4	MR. SCOBEL: It's a lot like MAAP.
5	MEMBER RANSOM: I know they are doing a
6	lot of work with the Europeans on this sort of thing
7	and I'm wondering is that available to you to try to
8	at least it has some mechanism in an attempt to
9	model where the sources of energy are and whether
10	separation is occurring, melting of the materials.
11	MR. SCOBEL: I'm not aware of their
12	studies. I don't know who's doing that.
13	MEMBER RANSOM: But you're not using any
14	severe accident codes to drive what you're doing here,
15	I guess?
16	MR. SCOBEL: No, not right here. This is
17	done in calculations specifically
18	MEMBER RANSOM: I would think it would be
19	of some concern to the NRC how your calculations,
20	whether they would agree or disagree with what is
21	predicted from some of the severe accident codes.
22	MEMBER KRESS: Most of those severe
23	accident codes when they
24	MEMBER ROSEN: Could you talk into the
25	microphone?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER KRESS: Most of those severe accident codes when the debris goes to the lower head, a few tens of seconds later it goes through the head because the outside of the head is not cooled. You would have to modify those codes to take care of this cooling on the outside. Plus, they don't have real detailed models for the natural circulation in a pool. MEMBER RANSOM: Well, I know they attempt to do that.

10 MEMBER KRESS: It's not very important in 11 those codes because every time you get the debris down 12 there it goes right through the head so they don't need to pay much attention to it. Here you've got a 13 14 different situation and you need to do a little better 15 job, I think, of modeling the heat transfer in a pool. 16 might learn some things about this melt You 17 progression and what gets down there in the first place by using some of those codes. 18

MEMBER RANSOM: That's what I would be concerned with is are these really conservative.

21 MEMBER KRESS: Does he have the right 22 materials down there at the right timing and places. 23 You might learn some things and get some insight on 24 that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. SCOBEL: I don't know if this answers

(202) 234-4433

25

1

2

3

4

5

6

7

8

9

	112
1	your question but if I were to model this in the MAAP
2	code with AP1000 I don't fail the vessel. MAAP has
3	lower head cooling models.
4	MEMBER KRESS: Oh, MAAP does.
5	MR. SCOBEL: MAAP does. I don't fail the
6	vessel and it's not that I don't trust the MAAP result
7	but I want to look at it in more detail. MAAP doesn't
8	model the specific in-vessel core relocation effects
9	that we have modeled outside of the code.
10	It doesn't it uses like five rings on
11	the lower head to model the vessel and we're trying to
12	look at this more detailed with the natural
13	circulation from the testing that we have and to
14	figure out if we believe that the lower head will stay
15	intact for IVR and if we have margin. That's kind of
16	the next slide.
17	MEMBER ROSEN: Let me just point out we've
18	got 45 minutes left until we can adjourn for the
19	morning. Between you and Selim we've got a couple of
20	important conclusary topics to make. However you
21	figure it out but by 12:15 we are going to adjourn.
22	MR. SCOBEL: Okay. I think I'm almost
23	done with this. Talking about heat transfer and say
24	we scale okay. Quantification of the thermal loads.
25	Now that we have a model for the lower head we have a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

113 1 metal over oxide debris pool configuration. 2 We use the DOE methodology that Theo developed. We 3 are using the new critical heat flux from ULPU 4 Configuration 4. 5 We use AP1000 specific input parameters on geometry and heatloads. We developed some probability 6 7 distributions for uncertain parameters such as the fraction of cladding reaction, the mass of stainless 8 steel that would be included in the debris, and the 9 10 timing with respect to shutdown. 11 This is a bounding calculation just to 12 show you the critical heat flux line with the 30 percent increase from ULPU Configuration 4. This line 13 14 here is the heat flux, the solid line. This dotted 15 line in between is the ratio of the heat load to the critical heat flux for this calculation. 16 17 In AP600 where we were down around here and AP1000 was up around 70 percent for a bounding 18 calculation. We have a probability distribution for 19 20 the three places that we look at that are specifically 21 where you would expect failure to occur, at the bottom 22 of the lower head, at the top of the oxide pool, or 23 the bottom of the metal pool.

The probability distributions of the heat loads look like this out here at the maximum. You can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

114 see we are about the same place for that bounding calculation that I presented earlier which is about 70 percent. Our conclusions were that we have demonstrated that IVR is successful for the AP1000. we have a margin of failure that's similar to AP600, not quite as much. We had to increase the critical

7 not quite as much. We had to increase the critical 8 heat flux which leads us to other success criteria 9 with respect to operator actions flooding the cavity. 10 We have a new structural requirement on 11 our insulation that AP600 was required. Basically the 12 structure of the insulation couldn't break free to

block flow paths. We now have a structural limitation from the lower head that it actually forms the baffle around the lower head to increase the critical heat flux with the velocity of the flow. We need to have deep flooding of the reactor cavity.

That's the end of the IVR presentation. 18 19 MEMBER ROSEN: Now, we explored a little 20 bit model uncertainty. To me the most salient point 21 is does this thing progress the way you say it does? 22 MR. SCOBEL: Yes. MEMBER ROSEN: Tom asked a few questions 23 24 about that. I quess what I'm struggling with is

trying to get the confidence that the sequence is as

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

1 you suggest. Did you do any similar calculations for other model or sequences of the melt progression and 2 assure yourselves that this is the most severe one? 3 4 MR. SCOBEL: Yes. I have some bounding 5 calculations that I've done for looking at heat loads from metal on the bottom. Having metal on the bottom 6 7 and sending the upper metal layer. Obviously if you put heat load into the 8 9 bottom, then you don't have the same -- then this 10 comes down to do you put all the decay heat in the 11 bottom metal layer? How much of the decay heat do you 12 I have some backup slides actually if you put in? want to see them. I haven't presented these anywhere 13 14 before. 15 MEMBER ROSEN: It's up to you -- the 16 question is on the table -- how you want to address 17 it. 18 MR. SCOBEL: Okay. To assess heat transfer in the bottom metal layer, if you look at ---19 20 start out by looking at this INEL report that has a 21 model for key transfer of the bottom metal layer and 22 it's not right. 23 I don't know if there's a map there or 24 something but they have some conditions that are 25 actually similar to what I would say would be a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

115

	116
1	bounding condition for AP1000. The heat flux that
2	they are getting at the bottom of the vessel is
3	uniform over the entire bottom metal layer. It's like
4	4 megawatts.
5	If you look at the it's really high, 4
6	megawatts per square meter. If you look at it, that
7	assumes that over that area that's all of the decay
8	heat. It's like 100 percent of the decay heat.
9	That's not right.
10	I started looking at that and I was like
11	I did a calculation and to get heat fluxes through a
12	metal layer like that it's like tens of thousands of
13	degrees to conduct that kind of energy. Even if you
14	assume less energy through half a meter or whatever
15	you expect this bottom metal layer to be thick.
16	You get like tens of thousand degrees to
17	transfer any kind of a heat flux through the bottom.
18	Heat just doesn't really want to go down like that.
19	What that means is you're going to end up with like a
20	stratified bottom metal layer.
21	You're going to have the bottom part
22	conducting to the vessel wall and the top part is
23	going to have a natural circulation flow in it that's
24	going to be conducting upward into the oxide layer.
25	You have a total thickness of the metal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	layer and you have some thickness of it that is the
2	conducting part and you're going to have some
3	thickness of it that is the convecting part. the
4	boundary between those two layers is going to be a
5	common temperature. You can kind of draw this up
6	as
7	MEMBER KRESS: Is that a solid restrictor
8	or is that just temperature because that's an in-layer
9	down there that doesn't circle it.
10	MR. SCOBEL: You mean this temperature?
11	MEMBER KRESS: Is the bottom layer a
12	solid?
13	MR. SCOBEL: No, it's just not
14	circulating.
15	MEMBER KRESS: Just not circulating.
16	MR. SCOBEL: Yes.
17	MEMBER KRESS: Okay.
18	MR. SCOBEL: Just not circulating. And
19	then this is the vessel wall. This is your boiling
20	temperature so it's like saturation. Then you can
21	kind of pull these things all together with some
22	assumptions. First of all, I'm using this because I'm
23	not real smart and I can't do curved geometries and
24	stuff like that. I used an infinite slab.
25	PARTICIPANT: Two dimensional.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	MR. SCOBEL: It's just yes. It's
2	actually one dimensional. This is conservative at the
3	minimum margin point of zero degrees because that
4	would be where it's thickest if you're looking at it
5	in one dimension. This is kind of like a bounding
6	calculation which you like.
7	Now, another assumption I'm making is the
8	bottom metal layer has 40 percent weight percent of
9	uranium which is consistent with the assumptions that
10	were in the INEL document and also the peer review
11	comments that Theo got from Professor Olander.
12	Now, I'm assuming that 100 percent of the
13	decay heat from the fission products that come from an
14	equivalent volume of the oxide needed to create that
15	amount of uranium went along with the uranium so this
16	is conservative.
17	MEMBER KRESS: Just a DTSE ratio there.
18	MR. SCOBEL: Sorry?
19	MEMBER KRESS: Take the total inventory
20	and DTSE ratio.
21	MR. SCOBEL: Yes. Yes. I'm assuming that
22	it's 100 percent of that decay heat so it's not just
23	the metals. The initial masses of the metal involved
24	in the reaction is 3,000 kilograms of stainless steel

because that is actually what's down there already,

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	119
1	and 7,000 kilograms of zirconium because that's what
2	I can calculate could potentially be molten at the
3	time when you are relocating oxide.
4	That's the unfrozen zirconium that would
5	be in the system somewhere. I'm not even saying how
6	it got down there because it doesn't really have a
7	pathway that we can figure out but just assuming that
8	it went.
9	So what you come up with are properties of
10	a bottom metal layer that has a volume of 1.53 cubic
11	meters. It's got a height of a little over half a
12	meter. These are the masses that you get when you
13	react it based on the 40 percent uranium. The power
14	density in this layer is 1.38 megawatts per cubic
15	meter.
16	MEMBER RANSOM: Can you clarify a little
17	bit for me, you do have an offside layer you're
18	talking about sitting on top of this metallic layer.
19	MR. SCOBEL: This is the bottom metal
20	layer, yes.
21	MEMBER RANSOM: And it includes part of
22	the fission products or not?
23	MR. SCOBEL: Yes, there are fission
24	products. You mean in the metal layer?
25	MEMBER RANSOM: In terms of this energy

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	source. Right.
2	MR. SCOBEL: I'm assuming that a lot of
3	the fission products went with this metal layer.
4	That's what I'm assuming. A conservative lot.
5	MEMBER RANSOM: So it does generate it
6	doesn't have internal heat generation as well as being
7	conducted through it, I guess.
8	MR. SCOBEL: Yes. Actually it does not
9	have heat coming to it from the oxide layer.
10	MEMBER RANSOM: Does not?
11	MR. SCOBEL: It does not. It's putting
12	heat into the oxide layer.
13	MEMBER RANSOM: I'm not sure I understand
14	the model. The oxide layer has no fission products in
15	it?
16	MR. SCOBEL: No. The oxide layer is being
17	heated, too. The metal layer is hotter by a couple
18	hundred degrees.
19	I don't know if you care about seeing
20	equations but these are the equations. You get these
21	equations. If there's equations for the conduction
22	layer this is through the metal itself. This is
23	through the vessel wall. Then in the convection layer
24	there's a nestled number. This comes out of some
25	ACOPO tests that were published separately from the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	DOE report.
2	MEMBER KRESS: And for the Raeli number
3	you just use the thickness.
4	MR. SCOBEL: For the Raeli number you use
5	the thickness of the yeah. In fact, the Raeli
6	number, this is where the height of the convecting
7	layer is and the Raeli number contains the height of
8	the conducting layer. You have to vary those heights
9	to
10	MEMBER KRESS: You're reiterating on
11	those.
12	MR. SCOBEL: You're reiterating on the
13	heights to converge on the temperature so you converge
14	on that temperature.
15	MEMBER KRESS: I see.
16	MEMBER RANSOM: What is the internal heat
17	generation term?
18	MR. SCOBEL: That was the 1.38 megawatts
19	per cubic meter.
20	MEMBER RANSOM: I mean, I don't see any
21	MR. SCOBEL: Oh, it's in the Raeli number.
22	It's here and it's in the Raeli number. The Raeli
23	number contains the internal heat generation number.
24	Can I help you?
25	MEMBER RANSOM: No. I was just I don't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	know. It would take me some time to look into it to
2	see if you included conduction through the conduction
3	layer as well as internal heat generation in the
4	layer.
5	MR. SCOBEL: Yes. That's why you get this
б	quadratic term for the conduction.
7	MEMBER KRESS: That assumes it's
8	completely insulated on top.
9	MR. SCOBEL: Well, yeah. Because the
10	layers have the same temperature, then it's insulated
11	on the bottom of the convecting layer and on the top
12	of the conducting layer. When you do that you get the
13	peak heat flux to the vessel wall is 415 kilowatts per
14	square meter.
15	The CHF down there is 640 and that's based
16	on ULPU 4. ULPU 5 it's even higher just to let you
17	know. That's a q/qchf of 0.65. We still have
18	bounding results and still have a margin to failure
19	with these assumptions. That's that.
20	Then if you look at the same assumptions
21	with respect to how much metal you depleted from the
22	metal layer by sinking these bounding what I would
23	consider to be bounding amounts of the metals to the
24	bottom metal layer
25	MEMBER KRESS: Those wouldn't have any

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	heat in them.
2	MR. SCOBEL: Sorry?
3	MEMBER KRESS: No heat in them.
4	MR. SCOBEL: Yes. With no heat in them.
5	I'm not reducing the heat to the metal layer. I do a
6	bounding metal layer heat flux. I get a bounding
7	metal heat flux of 1578. That's higher than what I
8	got before because I have a thinner metal layer.
9	The qchf is 1875 there based on ULPU
10	Configuration 4. Once again, ULPU Configuration 5 is
11	higher. Based on this number I'm at 84 percent of the
12	margin to failure so I still have bounding result with
13	margin to failure.
14	MEMBER ROSEN: The question was have you
15	considered alternative models and you have that you
16	have shown to us very briefly, of course. Thank you
17	for that answer.
18	MR. SCOBEL: You're welcome. Thank you
19	for asking the question.
20	MR. SNODDERLY: The committee will need a
21	copy of those slides for the record. Thanks.
22	Why don't we try to spend 15 minutes on
23	the ex-vessel phenomena to help the committee to
24	understand that you have done some analyses to address
25	the fact that if, indeed, in fact the melt would be to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	go ex-vessel, you've done some studies so I think it's
2	important for them to hear about that.
3	MEMBER KRESS: Is this FCI?
4	PARTICIPANT: FCI, high-pressure melt,
5	CCI.
6	MEMBER KRESS: Okay. NCCI.
7	MR. SCOBEL: Well, just to say, we looked
8	at all these severe accident phenomena in-vessel fuel
9	coolant, high pressure, hydrogen generation, detention
10	to fission flame, heating the wall, containment over
11	pressure by decay, which we talked about some before.
12	Reactor vessel integrity which is related to IVR. Ex-
13	vessel fuel cooling interactions, core concrete
14	interactions, and equipment survivability during a
15	severe accident.
16	In-vessel fuel cooling interactions.
17	There was a ROAM assessment that was done for AP600
18	that was called lower head integrity under steam
19	explosion loads. It showed a very large margin of
20	failure, like 300 times the strength needed to
21	withstand the in-vessel steam explosion. We have
22	actually extended these conclusions to AP1000 because
23	conservatively we are expecting similar debris
24	relocation pathway.
25	We don't expect a massive bottom failure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

125
to relocate the entire core at one time into the lower
head. The sideward pathway gives you the largest mass
flow rate at one time. If you were to assume that it
came out through the holes in the reflector, it's a
very limited flow pathway. We have a similar debris
relocation pathway with similar debris flowrate into
the same geometry.
MEMBER KRESS: But you have a higher
fraction.
MR. SCOBEL: Actually we don't because the
initial collapse of the pool is ceramic because the
metals would be drained before melting through the
core barrel.
MEMBER KRESS: The ROAM process assumes
some sort of energetic conversion factor of .03?
MR. SCOBEL: Actually, I don't recall
that. The modeling that was done in AP600 was all
done with PM-ALFA and S-POZEM models that were really
incredibly critically reviewed by the staff, if you
remember.
Mike, you were head of that, right?
It was all based on testing program that was
done specifically for that AP600 ROAM. That's my
politician answer to the question. I don't know what
the conversion factor was. We rely on the AP600

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	results. Since we had so much margin to failure, we
2	have a similar type relocation that is no different
3	for AP1000 for in-vessel steam explosion.
4	High pressure core damage, we talked about
5	how those were treated earlier so if I can just go on.
6	You want to talk about hydrogen?
7	MEMBER KRESS: Does your hydrogen source
8	stem from MAAP?
9	MR. SCOBEL: Actually, we used MAAP but we
10	generated like probability distributions and
11	accentuated MAAP results to be conservative like for
12	detonation considerations. I could say, yes, it was
13	based on MAAP but it wasn't
14	MEMBER KRESS: But you let the experts do
15	the distribution with it.
16	MR. SCOBEL: Yes.
17	MEMBER KRESS: Could be high or low but
18	just use that as a guide.
19	MR. SCOBEL: Yes. I want to cover
20	something about diffusion flames. We were talking
21	about diffusion flames and hydrogen being released
22	through the IRWST. We did make an improvement to the
23	plant response to how hydrogen would be channeled
24	through the IRWST and released to the containment.
25	There are vents all the way around the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	IRWST that balance the loads when you have a design
2	basis released to the IRWST which is based on
3	saturated conditions in the pool and then like a full
4	blow-down of the ADS into the IRWST.
5	Under normal conditions it's not
6	saturated. It's subcooled and you don't have such
7	large releases. There are vents that are along the
8	steam generator wall that are well away from the
9	containment wall so we have decided that under low
10	delta-P situations, what you would get when you are
11	releasing hydrogens through the IRWST, that these
12	vents would preferentially open over the vents along
13	the wall to release the hydrogen away from the
14	containment shell so you don't have the issue related
15	to diffusion when heating the containment shell.
16	MEMBER KRESS: On what basis do you assume
17	that the hydrogen preferentially will go through these
18	vents?
19	MR. SCOBEL: These vents are springloaded
20	to keep them closed and these aren't. They kind of
21	flop open and stay open under pressure. And they open
22	at a lower delta-P than the springloaded vents do.
23	MEMBER KRESS: If they are springloaded
24	they don't overcome the spring.
25	MR. SCOBEL: Yes. If you're venting from

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	these vents, then these vents don't open.
2	MEMBER KRESS: And you have ignitors
3	somewhere in there?
4	MR. SCOBEL: Yeah, there's some ignitors
5	inside the IRWST. There are ignitors like all over
6	next to the vents and all through the containment.
7	MEMBER KRESS: And concentrations determine
8	that it's a diffusion flame instead of a detonation?
9	MR. SCOBEL: Yeah. Yes. Inside here you
10	get if the hydrogen release is into the IRWST.
11	MEMBER KRESS: This is looking down on top
12	of the IRWST.
13	MR. SCOBEL: Yes, this is looking down on
14	top. I should point out this is also a low
15	probability event because if you have stage 4 ADS,
16	that would be the preferential pathway to release
17	hydrogen. It's inside the compartment. The steam
18	generator doghouses it. It's shielded away from the
19	walls.
20	If, in fact, you have stage 4 ADS
21	available, you will be releasing hydrogen away from
22	the containment wall anyway. This will be where it's
23	going. It's only in the event that you don't have
24	stage 4 ADS open that you have releases through the
25	IRWST into the containment so it's not a dominant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	129
1	sequence but it's a consideration for defense in
2	depth.
3	MEMBER ROSEN: Also if you release it
4	through ADS 4 you'll have ignitors in the
5	compartments.
6	MR. SCOBEL: Yes. There are ignitors all
7	through the containment doghouses. I have ignitor
8	placement diagrams if you would like to see. There
9	were specific criteria for placing ignitors near all
10	potential release points of hydrogen with a specific
11	distance between them to prevent flame acceleration.
12	You had to have double coverage with two
13	trains of power. Everything is double covered and in
14	the loop compartments, in the PXS compartments at the
15	exit stall to those compartments and in the upper
16	compartment.
17	For ex-vessel steam explosion, which we
18	consider to be prevented by in-vessel retention of
19	core debris, we had an assessment that was done for
20	the AP600 that was a hinged failure of the lower head
21	into a partially flooded cavity since this was our
22	is our primary failure mode for the reactor vessel.
23	We are expecting a similar vessel failure for the
24	AP600.
25	The hinged vessel failure of the lower

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	130
1	head is a huge flow rate of molten debris. We have a
2	similar geometry, although the AP1000 vessel is closer
3	to the floor which results in like a higher water
4	level on the vessel with respect to the debris and
5	what not.
6	If you have a hinged vessel failure, we
7	expect similar masses, similar conditions, and similar
8	geometry so we just said we've already done a steam
9	explosion analysis for that configuration so we're
10	just extending those conclusions to AP1000.
11	MEMBER KRESS: In this case wouldn't you
12	have more metal?
13	MR. SCOBEL: Well, AP600 was metal as
14	well. It's like the same
15	MEMBER KRESS: Same faction of metal.
16	MR. SCOBEL: Yes.
17	MEMBER KRESS: It's the metal that causes
18	it to have a problem.
19	MR. SCOBEL: Yes.
20	MEMBER KRESS: Is the calculation made
21	that showed that it failed containment or not failed
22	containment?
23	MR. SCOBEL: It did not fail the
24	containment. It damaged the cavity pretty good but it
25	didn't fail the containment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	MEMBER KRESS: You're saying that AP1000
2	wouldn't fail containment.
3	MR. SCOBEL: We're extending that
4	conclusion to AP1000, yes.
5	MEMBER SHACK: Is it better or worse
6	because you have a higher design pressure in there in
7	the AP1000? Right?
8	MR. SCOBEL: We didn't take credit for that.
9	MEMBER KRESS: Actually, you might be better
10	off because you expect the same sort of energetics,
11	the same mass material. It's the same metal and you
12	get the same sort of energetics. You've got more
13	water. If you've got too much water, it actually
14	helps. You're probably better off with AP1000 then
15	you were in AP600. A bigger containment volume,
16	higher pressure.
17	MEMBER SHACK: Bigger is always better.
18	Right?
19	MEMBER ROSEN: Let's pick it up.
20	MR. SCOBEL: Okay. The core concrete
21	interaction. This is another ex-vessel phenomena
22	prevented by in-vessel retention. We looked at two
23	vessel failure modes, hinged failure and a localized
24	failure. The hinged failure tends to spread the
25	debris.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2 debris up under the reactor vessel and not spread. We 3 looked at two concrete types, limestone and basaltic, 4 so that in the event we decide we want to use either 5 one, we're not limited by the analysis. Our success criteria was the basemat remained intact for 24 hours. 6 7 It was done with MAAP 4 and the minimum time to basemat failure in the analyses with all the 8 9 different kinds of concrete was 2.8 days to melt through the basemat. In all of our cases the basemat 10 11 melt through occurs before you over-pressurize the 12 containment with noncomencable gasses. MEMBER KRESS: You used MAAP 4 to consider 13 14 retransfer to the water on top? 15 Yes, but we limited the MR. SCOBEL: 16 amount of water on top like we would for our normal vessel failure case so it dried out pretty quickly 17 18 actually. That's another thing actually. To do this 19 20 analysis we limited the amount of water that was 21 available at the initial vessel failure. Under normal 22 circumstances that water would actually recycle back 23 to the cavity. 24 MEMBER KRESS: It would condense on the --MR. SCOBEL: Yeah. It would condense on 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	133
1	the shell. We subverted that process so that it
2	remained dry. This was a dry calculation.
3	MEMBER KRESS: Radiation off the top and
4	down through the cavity.
5	MR. SCOBEL: Those were the things that
6	you specifically wanted to see. Equivalent
7	survivability, I believe, is my last slide. Are there
8	any other severe accident issues that you would like
9	to discuss as I would be happy to do so?
10	MEMBER ROSEN: Is this the end of your
11	prepared remarks or how much more time do you need?
12	MR. SCOBEL: I'm done.
13	MEMBER ROSEN: Completely done. And Selim
14	is going to come up now?
15	MR. SCOBEL: Selim is done now.
16	MEMBER ROSEN: So we're all done.
17	MR. SCOBEL: We're done and the only thing
18	left at the end of the day would be talk about the
19	next steps for future meetings.
20	MEMBER SHACK: Could you say a couple
21	words about the dry PCS cooling?
22	MR. SCOBEL: Sure.
23	MEMBER SHACK: That's for all sequences
24	we're talking?
25	MR. SCOBEL: Okay. Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	134
1	MEMBER SHACK: You've got the PCS cooling
2	here so we'll buy that. It was the dry one that I was
3	interested in.
4	MR. SCOBEL: Dry PCS cooling is sufficient
5	to prevent containment failure for at least 24 hours
6	it's actually more than that based on our
7	success criteria which is the containment fergility
8	curve. Under nominal conditions like nominal
9	containment the temperature outside, we don't expect
10	any failure probability at all.
11	Now, conservatively if you take ANS decay
12	heat plus 2 sigma and an outside temperature of 115
13	degrees, we came up with a failure probability of two
14	percent at 24 hours. In fact, we used that number
15	conservatively in the PRA as our containment failure
16	probability at 24 hours if you don't have PCS cooling.
17	That could have been we could have made
18	it zero and then made that an uncertainty calculation
19	but it really wouldn't have shown up that way either.
20	It doesn't show up anywhere even with the 2 percent
21	because PCS water reliability is so good and we didn't
22	even credit all the capability of that system. It was
23	just easier to just go the conservative route, take
24	the hit on 2 percent.
25	MEMBER KRESS: This decay heat is all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	going into steam. Right?
2	MR. SCOBEL: The decay heat is all going
3	into steam. When we do these calculations we actually
4	cool the core because that maximizes the heat load to
5	the containment and gives you the earliest time for
6	containment failure.
7	MEMBER KRESS: Heat transfer on the
8	outside air duct, is that what's controlling the
9	you've got condensation on the inside?
10	MR. SCOBEL: The end transfer on the
11	outside is controlling because you don't have the
12	evaporation. You just have the convective cooling of
13	the flow through the PCS annulus. Failure is by over-
14	pressurization. Anything else?
15	MEMBER ROSEN: No. I think unless the
16	members have any further questions, I don't see any
17	interest in that. Any further comments from any
18	member of the audience?
19	If not, we have a session that begins at
20	1:15 this afternoon if I'm not mistaken with the staff
21	taking over. NRC staff presentation begins at 1:15.
22	I assume Westinghouse will stick around for that and
23	we'll see you all back here then at 1:15.
24	(Whereupon, off the record for lunch to
25	reconvene at 1:15 p.m.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:17 p.m.
3	MEMBER ROSEN: Output for the research
4	report. Make sure you take it with you and do what
5	you are supposed to do based on that. I have now
6	fulfilled my obligation to Dr. Ford.
7	MEMBER SHACK: Let me just mention that if
8	you have any editing comments, either send them to me
9	or give me a marked up copy so I can include those
10	when I'm doing the lowly-paid editor's job.
11	MEMBER ROSEN: Okay.
12	MEMBER SIEBER: Is this going to be sent
13	to us by e-mail attachment or anything?
14	MEMBER ROSEN: I don't know. You would
15	have to ask Peter.
16	MEMBER SIEBER: That would be great if we
17	would and it's easier for you and me.
18	MEMBER ROSEN: Yeah, that's a good thought
19	because I'm going to have to revise parts of this so
20	if I had it electronically it would be easier.
21	MEMBER SIEBER: Yeah. It makes everything
22	much simpler.
23	MEMBER SHACK: I think Peter is intending
24	to do that.
25	MEMBER ROSEN: Okay. Let's get on with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	137
1	the afternoon's entertainment. Mr. Palla.
2	MR. PALLA: Okay. Hi. I'm Bob Palla.
3	I'm in the Probabilistic Safety Assessment Branch of
4	NRR. We are responsible for reviewing both the Level
5	2 PRA. You heard about the Level 1 yesterday. I'm
6	going to speak to the Level 2 and 3 portions of the
7	PRA and the severe accident analyses that are part of
8	the application in support of the PRA.
9	As background, the review in these areas
10	is split between the Office of Nuclear Reactor
11	Regulation and our Office of Research. We are
12	reviewing the Level 2 and 3 PRAs within NRR but in the
13	area of severe accidents we rely heavily on the Office
14	of Research to perform the more in depth review of the
15	specific underlying analyses of severe accidents and
16	some of the reviews of the phenomenological analyses.
17	Richard Lee will present a brief
18	discussion of the research activities as soon as I'm
19	finished here. The sooner the better. You get to
20	hear the real substantial information.
21	Our review objectives and approaches
22	basically as Nick Saltos outlined it to you yesterday,
23	we want to look at PRA in terms of is the quality
24	sufficient to support the intended use. Does it
25	sufficiently guide the insights regarding the safety

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	of the design and what's important to the design.
2	We want to also focus on the similarities
3	and the differences between AP600 and AP1000 for help.
4	Basically to provide some efficiency in the review.
5	We will be looking most closely at these areas of
6	differences like the increased power levels and how
7	that influences in-vessel retention, molten debris
8	masses that could affect core concrete interaction and
9	these kind of aspects of the model. We'll look at the
10	impacts that they would have on the major results.
11	Now, what I've got on the remainder of
12	this slide and on the next slide is in essence a high-
13	level summary of the areas of concern that we
14	addressed in the request for information that we
15	transmitted to Westinghouse.
16	This presentation might have been a little
17	more meaningful if it would have preceded the
18	presentation by Jim Scobel because then you might pick
19	up on those things that were presented that were
20	specifically in the areas that we were asking for.
21	I'll kind of point it out here just what the key areas
22	are. Many of these areas you've already heard Jim
23	explain analyses in part but then we'll answer our
24	questions.
25	It's kind of a broad-sweeping issue that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 we had with the AP1000 submittal was that when it came 2 to issues like hydrogen generation and mixing and the 3 probability of distributions used within the Level 2 4 analysis. Thermal loads on the vessel for example, 5 the in-vessel and ex-vessel fuel cooling interactions, as well as the fission product release fractions. 6 7 All of this information was in the AP vessels. We didn't receive AP1000 specific analyses 8

9 on those issues. Rather, what Westinghouse approached 10 in the initial supplemental was that the composition, 11 the masses, the super heat that was calculated for 12 AP600 is similar and similar enough to AP1000 that the 13 results were bounding.

I guess in recognition of the power differences between the plants and the changes that were made with reactor vessel internals like the shroud replacing the reflector, and also some of the information in the AP1000 submittal was suggestive of the possibility that accident progression is quite a bit more drastic than AP1000 because of AP600.

For all of those reasons we were skeptical in accepting at face value without some kind of justification or analysis to support the statement that the various aspects of the analysis were directly applicable.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Jim explained much of this today. He 2 presented AP1000 specific calculations in several of 3 these areas. We expect that's largely going to be 4 responsive to the kinds of issues that we were concerned about. We'll be looking for closely at that information. 6

7 MEMBER SHACK: The responses you have to the RAIs, or at least Westinghouse thinks they have 8 9 answered these questions.

MR. PALLA: We have not had a feedback 10 11 We are still early in the process of looking vet. 12 We've given them a quick look. through. I think Richard may be able to speak a little bit more 13 14 definitively. I think they are a little further along 15 in their reviews.

In some regard, some of the areas that 16 17 they are looking at are the same things that we're looking at. In-vessel retention we're kind of both 18 19 looking at it, but we look to them to provide the real 20 horsepower for the details.

For example, the RASPLAV and the MASCA 21 22 test results, are they applicable or not. Are they 23 prototypic. This is something that Research and Ali 24 Behbahani is much more familiar with so we will be 25 relying on them.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	141
1	I don't want to prejudge something as
2	being a resolved issue if I think it's closed, but
3	then they upon further thought and reflection on it
4	might think there are still some additional details
5	there. I'm going to be kind of noncommittal to saying
6	things are resolved. The state that are, at least in
7	my mind, is that we are still looking at these things.
8	Applicability of AP600 results. We now
9	have AP1000 specific calculations that we will be
10	looking at so that hole has been plugged. In the area
11	of external reactor vessel cooling, as Jim mentioned,
12	the same logic as was used in AP600 has been used for
13	AP1000.
14	Basically if the reactor cavity is
15	successfully flooded with a different success criteria
16	there's been a tweaking on the success criteria
17	and if the RCS is fully depressurized, the debris
18	stays in-vessel.
19	Now, we've looked at that for AP600 and we
20	concluded in our review for AP600 that reactor in-
21	vessel integrity is likely to be maintained but we
22	acknowledged relatively large uncertainties in the
23	processes involved. They are very complex.
24	These attempts to model this situation
25	experimentally is quite difficult, the design

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 experiments that faithfully reproduce it. One could 2 argue whether the results are prototypic or not. We 3 see large uncertainties in being able to predict 4 things like the heat fluxes.

5 The general heat transfer expressions in and of themselves have uncertainties associated with 6 7 them. In our review of AP600 we sponsor some work at INEL where they looked at alternate debris bed 8 9 configurations such as the one that Jim kind of touched on that in his last few slides where he 10 11 described the metallic layer that could sink to the 12 bottom if sufficient uranium is dissolved and it becomes more dense. 13

You could have a heat-producing layer on the bottom. We postulated a couple of other scenarios. A thinner layer on the top, thinner than what was proposed in the Theofonous report.

We also postulated the possibility of kind of a sandwich steel layer where debris was both below and above the steel layer heating it from above and below. Perhaps it's a variation on this focusing affect.

But in recognition of all of those uncertainties, we think that it was prudent, and we did in the AP600, require additional calculations,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

deterministic calculations of ex-vessel phenomena. So while within the PRA we have accepted the basic assumption that the brief stays in-vessel given that the two major success criteria are met, we did require, and similarly for AP1000, we are requiring ex-vessel calculations to be done to assure that in the event that the debris goes ex-vessel that the containment is not directly challenged.

With regard to each of these items here, 9 reduced margins to CHF, impact of uncertainties, the 10 11 work that we had done on AP600 indicated that while we 12 expected things to stay in-vessel, the margins, we had much smaller margins because we had a model that 13 14 solved the same governing equations as in the ROAM 15 propagated through both parametric report but uncertainties, uncertainties in the correlations, and 16 looked these alternative 17 also at debris bed configurations. 18

When you take that additional information on balance, you would say chances are if you have that kind of configuration, it looks like you'll stay invessel but the margins are less.

Then if you have these other configurations, we're not so sure. Again, we went to this balanced approach where there is a reliance on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8
	144
1	in-vessel retention but yet we cover all the bases by
2	looking at the consequences in terms of pressure loads
3	if you go ex-vessel.
4	MEMBER SIEBER: One of the issues if you
5	go ex-vessel is that you're going to end up going into
б	this big pool of water that surrounds the vessel. The
7	Westinghouse calculation basically says that there's
8	plenty of margin for steam explosion. Have you looked
9	at how much margin there really is?
10	MR. PALLA: Yeah. We're in the process of
11	looking at it. Richard may talk to that if he's got
12	some time. With regard to recent experimental work,
13	the work that you heard Jim describe, the RASPLAV and
14	the MASCA results and their applicability, we had a
15	basic question given we've got several years between
16	AP600 and now.
17	We've learned a lot of those tests have
18	been completed in the intervening years. We ask what
19	are the implications? What does that say about this
20	stratified layer? We thought it may actually be that
21	those tests are not as prototypic as one might hope
22	for but there are insights that we want to make sure
23	that we bring to bear on this whole question.
24	Another issue we raised was the thinned
25	RPVs. Jim mentioned it. You look at the heat fluxes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and the heat fluxes determine theoretically the thickness of the steel vessel that you're left with. I think the number was 36 times the amount required to accommodate the deadload.

5 If you look at the pressurization that might occur, if you have a small pressure spike within 6 7 the vessel upon a reflood, for example, it looks like about 35 PSI might be enough to eat up that margin 8 that you have. 9 35 PSI integrated over the crosssectional area of the vessel and carried over a small 10 11 thickness gives you what we thought to be some 12 concerns regarding just pressure oscillations in the vessel being a structural load. 13

That's been addressed with some arguments based on expected pressurization rates for a couple of different situations. We have an REI response. We haven't really fully reviewed its adequacy yet. Design a thermal insulation is something, as Jim had mentioned again.

For AP600 the heat transfer situation is basically an open free pool of water that just bubbles freely. The details of the design of the insulation were not critical because there was no attempt to really optimize critical heat flux.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

What we see with AP1000 is essentially the

(202) 234-4433

25

need to optimize that design, to maximize the CHF because that's necessary to accommodate the decay heat loads.

4 The way that one would take the 5 experimental data, and perhaps, I quess, the ULPU Configuration 5 would be the best source of that data, 6 7 but one has to determine the specifications that one would design this insulation system for to ensure that 8 9 it maintains its structural integrity under the flooded up conditions with the kind of flows and 10 11 pressure oscillations that one could see. If you've 12 ever had a chance to look at the ULPU test facility, one thing that is pretty impressive is just the large 13 14 degree of pressure oscillations that is apparent from 15 looking at the test rig. There's like a plenum below the heated blocks. It basically has flat sides to it. 16 17 When that test gets chugging away, you can just watch the sides of that little plenum chamber kind of 18 19 oscillating.

During the AP600 review it became an issue of where are you going to get the pressure data from to design this insulation and how does it scale. It's on the table here. It's still a question that we are going to have to be dealing with.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

We had some questions about hydrogen

(202) 234-4433

25

1

2

3

control. We questioned the diffusion flame mitigation strategy. I think there was maybe a bit of confusion 3 in the application where it appeared that Westinghouse 4 was relying on a creep rupture calculation that they had done for AP600 as part of the mitigation strategy for AP1000 as well. 6

7 We question whether they really intended to do that and they have given us clarification. 8 In 9 essence the strategy does not rely on creep rupture. Rather, it has the hooded IRWST vents that will close 10 and redirect the hydrogen to the more central areas of 11 12 containment where it won't challenge the shell.

We asked some questions about ignitor 13 14 placement velocity and the effectiveness. We had some 15 concerns because the same number of ignitors are 16 covering a larger volume. We wanted to make sure that 17 there isn't the possibility to have increased concentrations as a result of the greater distances 18 19 between that. We got a response on it and we'll be 20 looking at that more closely.

21 Like in AP600 there is a nonsafety related 22 containment spray header in this design. Kind of a follow-on from the AP600 carryover. 23

24 MEMBER SHACK: They didn't say much about 25 it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

1 MR. PALLA: No. In fact, I thought that they might have included a top event in the event tree 2 3 to deal with the effects of the spray that it might 4 have. It has both potentially negative effects as 5 well as the obviously positive effects of fission scrubbing, could de-inert the 6 product but it 7 containment when you were otherwise thinking it might be better to be inert sometime. 8

9 If you operate the sprays, you could 10 create a flammable situation. It's really the same 11 question that we asked on AP600. It wasn't modeled in 12 the event tree there either. It's still not modeled 13 here. We just want to make sure that there's nothing 14 -- it's not going to create any kind of a risk or 15 pervasion on the results.

Direct containment heating would appear to not be an issue. Admittedly the likelihood of high pressure melt events is quite small in this design but there is a little bit of a history behind the direct containment heating and how one deals with it in design certification.

I guess in 1993 in SECY 93-087 there is kind of a staff policy paper that went up to the commission. It said the staff's view is that advanced reactor vendors should design the cavity with features

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 Subsequently around 1996 Sandia and the 6 Office of Research completed work on a methodology to 7 quantify the pressure loads from DCH events. When we 8 reviewed AP600 Westinghouse in response to staff 9 request provided quantitative assessment of the loads 10 consistent with that methodology.

Now, for AP1000 we were expecting that one 11 12 could make arguments as they had made arguments about masses in compositions being comparable to AP600. 13 We 14 didn't get that kind of an argument. The argument was 15 we need those items specified in SECY 93-087. We got a depressurization system and we got the cavity that 16 has these kind of features the staff was looking for. 17 We asked for a DCH mechanistic calc. 18 We 19 didn't get one yet so we'll probably be asking again

to do that. We will at least have some dialogue on
it. We would at least like to know that the pressure
loads are comparable to the AP600.

23 With regard to core concrete interactions, 24 one thing that's different as a result of the design 25 being the higher power level, higher core masses, same

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	exact footprint as far as the reactor vessel and the
2	reactor cavity so naturally the debris debts are going
3	to be different in the two designs.
4	In the initial application it did not
5	indicate that there was any change being made to the
б	cavity. In particular, there's a sump within the
7	cavity. The sump is located the reactor vessel is
8	on one side of the cavity. The sump is on the other
9	side.
10	There's actually like an intervening wall
11	with a doorway past that wall that goes into the other
12	part of the cavity. The sump is on the far side.
13	There's a curb around it. The curb was designed to be
14	at a height such that I think the full core could
15	reside in the cavity and not overflow the curb. That
16	curb probably wasn't changed from AP600.
17	Analyses were submitted in the application
18	that argued that it was not an issue. Debris in the
19	sump would not be an issue but that was predicated on
20	an assumption that metallic and oxide components of
21	the debris would separate and that the metallics if
22	you look at what ended up on the far side it would be
23	primarily metallic. If you looked at what was below
24	the reactor vessel it would be primarily oxidic.
25	Being skeptical, naturally, we thought

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

151
what if it wasn't that way. What if it was an
uniformly distributed homogenous mixture that's spread
out. We expected to see some calculations of that.
We didn't get that yet. We did get an indication that
the design has been changed.
The sump curb has been increased to
accommodate what I think would be the full core, the
fully inventory. We still have some questions about
the core concrete interactions, the effect of the
deeper depth of debris on basemat penetration.
The last item here is just three different
areas where the application did not include the same
level of information that was included in which we
used in the AP600 reviews. Equipment survivability
assessment was stripped of all of the details.
Pressure and temperature histories have now been
provided in response to that.
Important analyses results, some of which
Jim presented, I think were lacking in the submittal
but were provided subsequently.
CHAIRMAN APOSTOLAKIS: Who cares? Does
anyone use those?
MR. PALLA: I just threw it in there. No.
It was for completeness. What I did here was I
summarized what we were asked for and now you've heard

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	it.
2	CHAIRMAN APOSTOLAKIS: Are you going to
3	take any action based on these results? No.
4	MR. PALLA: My point was if you looked
5	only in the submittal, you won't find these things.
6	CHAIRMAN APOSTOLAKIS: I understand that.
7	MR. PALLA: You have to go to the RAIs and
8	the modified and there will be an update to it. That
9	was the only point. With that done, Richard can fill
10	you in on the research activities.
11	CHAIRMAN APOSTOLAKIS: I mean, it's not
12	like we're talking about
13	MR. PALLA: It was missing information.
14	We're not even saying there were problems in those
15	areas. We're just saying there wasn't any information
16	submitted.
17	CHAIRMAN APOSTOLAKIS: By the way, we are
18	still categorizing SSCs as seculated and nonseculated.
19	Right? I guess later you will probably consider
20	option 2 yourself. We wonder why not now. It's
21	because of regulations.
22	MR. LEE: Thank you. As Bob mentioned, I
23	hate to disappoint you, Dr. Seiber. We don't have
24	excuse me? We haven't got the results yet for this
25	analysis. It's about one and a half month away before

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	we finish all this analysis.
2	I will walk you through what type of
3	analysis we plan to do to address some of the severe
4	accident related issues that we like to know for the
5	AP1000 and to help in the design certification within
6	the next two months.
7	I would like to mention that besides me in
8	the Office of Research, there are two key persons.
9	Dr. Basu helps us with the analysis and FCI related
10	stuff. Also on the MELCOR concrete interactions. In
11	the in-vessel retention, Dr. Behbahani is involved
12	with a lot of the RASPLAV project and the MASCA, as
13	you mentioned earlier. That is an area that we will
14	be concentrating on plus other things.
15	We have contracted with ERI to do these MELCOR
16	analysis.
17	CHAIRMAN APOSTOLAKIS: With whom?
18	MR. LEE: Energy Research Institute, ERI,
19	with Dr. Mohsen Khatib-Rahbar. As you can see here,
20	the reason is that we are using MELCOR. Dr. Ransom
21	earlier asked us whether you can use MAAP. MAAP
22	doesn't give you detail on melt progression inside in
23	the severe accident arena but MELCOR does.
24	It's comparable to the SCDAP 5. We
25	decided we are going to use the MELCOR code to do our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	analysis to get some of these initial conditions and
2	mass and so we can do the other subsequent analysis.
3	The MELCOR 1.8.5 we are using now are
4	different from the one that we used back in the AP600
5	analysis a while ago. So we went back and we also
6	benchmarked the new code against the previous code and
7	looked at the results to make sure that they are
8	comparable in terms reasonably giving the similar
9	results. So we benchmark against AP600 first and now
10	we modified the data for the AP1000. And that has been
11	completed recently.
12	We also get a lot of information through
13	Westinghouse, and also they give us the MAAP, which
14	give us a lot of information we needed for our
15	analysis.
16	Now, you understand that the MELCOR has
17	some limitation in terms of doing the in-vessel
18	retention type analysis because the model earlier
19	you asked us whether we have a monitor can do the melt
20	partitionings and whether the fission products will go
21	to the right place.
22	We are in the process of this year
23	implementing such a model in MELCOR but it's not
24	available for our purpose here so we are going to do
25	the sequence analysis, look at the melt mass

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 composition and so forth and we are going to use a 2 separate model to do the in-vessel retention analysis. 3 We also have the model that Jim mentioned 4 from INEL and CRI has it. We found the same error 5 that you did. We think that the analysis we show at equivalency, that is a valid 6 about looking 7 methodology that you're using. We intend to do the same thing but with the models with a hemisphere. 8 From that we are going to look into the 9 base on what the MELCOR compilations we find. We can 10 11 look at all the different type configurations. For 12 example, if you have metal down there with oxidic melt, and then on top you have another thin layer of 13 14 metallic, we can look at all those variations with a 15 separate analysis. That is what we intend to do for the in-vessel retention questions so we can explore 16 the whole range of it. 17 Let me show you a viewgraph that is not in 18 your handout.

19 your handout. These are the results from the MASCA 20 project. There are four tests here. It started with 21 a composition of this and these are the metal part. 22 It ends up with a composition which this one is oxidic 23 and this one is metallic.

You can look at how much is oxidized and this tells you the uranium zirconium ratio. These are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

155

	156
1	the full tests. You can see that it depends on the
2	type of additives you put in. You can see that the
3	subsequent compositions are different.
4	That gives you some idea that even though
5	you started off with these two material, they end up
6	in the different configurations based on different
7	conditions. These are the type of insights we like to
8	look into for our in-vessel retention analysis.
9	If ACS want to listen to the start presentation from
10	Research on MASCA in the future, we will be glad to
11	present that to you in details.
12	The sequence that we have chosen to do the
13	analysis, as you have seen here, are from the
14	Westinghouse one, two, and three which are frequency
15	dominant sequence 29, 18, and 9. We also chose one,
16	No. 20.
17	Actually, we asked them for some more
18	clarification on this sequence and we subsequently
19	received some of the information but we may need to
20	have some more. Do you have some more questions on
21	that?
22	PARTICIPANT: There will be some minor
23	questions.
24	MR. LEE: So there are some minor
25	questions that I think we can clear with you. This

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	has to do with something with whether this is really
2	drained directly into the cavity and about the IRWST,
3	these two items here. This is really, I think, just
4	clarification. These are the four sequences we intend
5	to base our calculation on.
6	CHAIRMAN APOSTOLAKIS: Of course, again,
7	I have the same problem with your description on the
8	left of the last LOCA. The sequence that you are
9	referring to, 18 percent of the total is just large
10	LOCA and failure of one accumulator. It doesn't say
11	anything about RHR or BRHR or CMT. I don't know how
12	that would affect your calculations. That's block
13	damage state 3BR.
14	MR. LEE: That's correct.
15	CHAIRMAN APOSTOLAKIS: Maybe you put it
16	there for completeness.
17	MR. LEE: Yes. That's what it is.
18	Because this is a low-pressure sequence, this is
19	somewhere over medium and this is something high.
20	MR. KHATIB-RAHBAR: Excuse me. This is
21	Mohsen Khatib-Rahbar. George, whatever is listed as
22	a description of a scenario are those which are
23	credited in the calculation. They are not just for
24	listing those items. These are reproduced from the
25	Westinghouse document. We are not looking at why CMTs

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	are operating for large LOCA and similar to core
2	damage, etc. We are taking those as given.
3	CHAIRMAN APOSTOLAKIS: Well, if I read the
4	description of the large LOCA event tree for that
5	sequence, they say that the core makeup tanks are
6	insufficient so they stop part of the event. For the
7	other sequences they are.
8	MR. KHATIB-RAHBAR: For these they are
9	also insufficient. You go to core damage.
10	CHAIRMAN APOSTOLAKIS: Yeah.
11	MR. KHATIB-RAHBAR: Right.
12	CHAIRMAN APOSTOLAKIS: The sequence that
13	leads to it's not really 18. It's 19 something
14	is 3BR which is the lowest one.
15	MR. KHATIB-RAHBAR: This is one of the
16	sequences. This is the dominant one in 3BR. Exactly.
17	It's 18 percent, I think, of the 19 percent that you
18	have. Yes.
19	MR. LEE: So this forms the basis for our
20	getting the initial conditions for subsequent analysis
21	which is looking into other sensitivity analysis in
22	the ex-vessel for MCCI.
23	In this one here we plan to use the core
24	coat stand-alone model to do the analysis so we can do
25	also variation because we don't really need to use the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 whole core to do the analysis for this one over here. 2 also are going to look into We the 3 containment spray operation that is within MELCOR 4 itself. The reason we are looking into this because 5 the spray now is located -- the containment is taller so I believe the flow rate is still the same. 6 We 7 think the efficiency will become a little bit lower because the drop intensity will be lower and the drop 8 calculations. Because of those two reasons. 9 This is 10 to look into what impact this has had on the containment loads, pressure and temperature as well as 11 12 fission power scrubbing, too. What I didn't mention here that we will do 13 14 the FCI in-vessel, ex-vessel separately, too. For 15 those we have many options. I think the PM-ALFA 16 astro, we are going to use that. We also have the 17 option to use Texas coat from the University of Wisconsin for the FCI analysis. 18 19 I think we expect to finish all this within about a month or so and we should be able to 20 21 tell you something more by that time. I'm not too 22 sure if you're interested in looking at these. This 23 is the MELCOR deck. This is the vessel, the steam 24 generators, and simulation for all the rest of the 25 components here. This is the nodalization for the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

159

	160
1	containment.
2	As a matter of fact, at this time we have
3	already finished one of the calculations on the 3BE
4	but we haven't looked at the results yet.
5	MEMBER RANSOM: Each one of the boxes, is
6	that a control volume or node in MELCOR?
7	MR. LEE: Yes.
8	MEMBER RANSOM: So you have composition
9	and what flows from one to the other?
10	MR. LEE: That's correct. For example
11	here, if I'm correct, we didn't show all the detailed
12	nodes in here. The five-ring model is here with the
13	10 axle nodes. The MELCOR 1.8.5 MELCOR used to
14	only have three rings and 10 axle nodes but we try to
15	maintain only one code instead of maintaining SCDAP 5
16	and MELCOR so we make MELCOR and improve it to be 5
17	rings.
18	The reason is SCDAP 5 has 5 rings. When
19	we do comparison between different type of analysis
20	between SCDAP 5 comparison we want to have one-to-one
21	comparison between the nodes. Now we have developed
22	a 5-ring model for MELCOR. We can tell details of
23	melt progression inside over here. Within this frame
24	work we can analyze how AP1000 melt progression will
25	look like.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	CHAIRMAN APOSTOLAKIS: Is this a major
2	effort?
3	MR. LEE: Which one?
4	CHAIRMAN APOSTOLAKIS: As such you
5	described.
6	MR. LEE: For which one?
7	CHAIRMAN APOSTOLAKIS: The whole thing.
8	MR. LEE: The model here, we started this
9	back like in October of last year. We have an AP600
10	deck and I think
11	MR. KHATIB-RAHBAR: It's a few months of
12	effort.
13	MR. LEE: We mostly converted it in two
14	months. We did a QA on it.
15	CHAIRMAN APOSTOLAKIS: Out of curiosity,
16	take 3BR. Frequency is 4.6 events every 100 million
17	years. 4.6 events every 100 million reactor years.
18	How low would you have to go for you not to do
19	anything? Why are you doing all this? I mean, this
20	is an incredible event. There may be two answers.
21	One is defense-in-depth, the structure of this
22	approach. No matter what you do in Level 1 I want to
23	spend
24	MR. LEE: That's right.
25	CHAIRMAN APOSTOLAKIS: The other one that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	you don't believe the number. Between a rock and a
2	hard place.
3	MR. CORLETTI: Can we vote?
4	CHAIRMAN APOSTOLAKIS: I'm serious. How
5	low does it have to go? Every billion reactor years?
6	Where do you draw the line?
7	MR. PALLA: I guess
8	CHAIRMAN APOSTOLAKIS: Defense-in-depth?
9	MR. PALLA: No. I was just going to say
10	that I think what you draw from these kind of analyses
11	you can argue just how many analyses do you need to
12	do. We thought that a few analyses would be not that
13	intense of an effort given that we were starting with
14	a deck that was already available so relatively
15	straightforward changes to the deck to account for the
16	changes in the designs.
17	And then some sequences that could be used
18	to assess and to confirm the general nature of the
19	accident progression because you can't get wed to the
20	exact specifics of these kinds of scenarios anyway.
21	The uncertainties in accident progression are quite
22	significant code to code. Even within the same code
23	you could perturb the sequence and end up with
24	substantial differences.
25	We would look to these as general

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	confirmation that, yeah, the calculations used as the
2	basis for the AP600 PRA are in general agreement in
3	terms of the order of the events and the general
4	timing of the events.
5	CHAIRMAN APOSTOLAKIS: What you just said
6	gives me makes me think of something that occurred
7	to me this morning.
8	MR. PALLA: But you could confirm, like
9	fission products, for example, could be confirmed.
10	Order of magnitude confirmation. Once you've run the
11	calculation you can do simple sensitivity studies like
12	turn on the sprinklers and let the thing go ex-vessel
13	and let it oblate concrete and see if you are in the
14	same ballpark with pressurization rates, oblation
15	depths. We didn't view it as a major sinkhole of
16	resources.
17	CHAIRMAN APOSTOLAKIS: You just said
18	something just now that there is uncertainty within
19	the code, model uncertainties. I remember now I
20	don't remember, I look at the figures that Jim
21	presented this morning. You're talking about
22	condition containment failure probability of .07, .08.
23	Based on what you just said and what I
24	remember from 1150 this would be anywhere from zero to
25	what? What am I learning from all this? I'm trying

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	to understand what I'm learning from this. I'm
2	learning nothing.
3	MEMBER RANSOM: Is it possible these are
4	the high consequence situations? I mean, if you put
5	it in terms of number of depths for reactor year of
6	operation, do these contribute more than some of the
7	others?
8	CHAIRMAN APOSTOLAKIS: I don't know. Do
9	they? They certainly run high with respect to core
10	damage frequency.
11	MR. BASU: George, this is Sud Basu from
12	the Office of Research. There is a third answer. We
13	need initial and bounding conditions for other
14	analysis such as FCI, such as CCI. We need to do
15	MELCOR calculations.
16	CHAIRMAN APOSTOLAKIS: CCI stand for?
17	MR. BASU: Core concrete interactions.
18	CHAIRMAN APOSTOLAKIS: Why do I have to
19	worry about that? Selim has done such a great job.
20	Why do I have to worry about that?
21	MR. BASU: Okay. Now, if you want to
22	rely entirely on the frequency argument without
23	CHAIRMAN APOSTOLAKIS: Ah, it's defense of
24	that.
25	MR. BASU: There you go. Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	MEMBER SHACK: Structuralist.
2	MR. LEE: Maybe we will find out it's
3	better than what they claim so you should worry less
4	even about it.
5	CHAIRMAN APOSTOLAKIS: I don't worry.
6	MR. LEE: Right. I don't either.
7	CHAIRMAN APOSTOLAKIS: I'm really
8	skeptical about the value of these numbers that we're
9	getting at the end, even the uncertainties. It's
10	between zero and what? Anyway, do you have anything
11	else to say?
12	MR. LEE: No.
13	CHAIRMAN APOSTOLAKIS: Bob? Any members?
14	Westinghouse? Thank you very much.
15	MR. LEE: Thank you.
16	CHAIRMAN APOSTOLAKIS: According to the
17	schedule, we are going back to Mike, right?
18	MR. CORLETTI: This is Mike Corletti,
19	Westinghouse. I don't think it's very useful to go
20	over any more slides.
21	CHAIRMAN APOSTOLAKIS: Unless you have
22	something interesting.
23	MR. CORLETTI: No, not really. Perhaps at
24	this time it's just best to talk about the next steps
25	as far as future meetings. First of all, I want to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	thank you all for the two days of meetings. The
2	questions give us good insight and some more things to
3	think about.
4	All in all hopefully we have met your
5	expectations for providing you information. I'm sure
6	we'll be hearing more about that if we haven't. In
7	any event, I think the next interaction that we have
8	with the ACRS will be, Med was just telling me, March
9	19th and 20th which we'll have a thermal hydraulic
10	subcommittee. I think if you look in your book I had
11	listed I think it's on slide 5. No, slide 6.
12	Maybe it's slide 7.
13	CHAIRMAN APOSTOLAKIS: Slide 7, ACRS
14	meeting.
15	MR. CORLETTI: Yes. As far as the subject
16	matter, I think for the thermal hydraulic do you have
17	any input as far as additional topics for the thermal
18	hydraulic meeting? I think that's probably a full
19	plate with safety analysis, the issues of entrainment
20	and the Oregon state testing that's going on. It
21	think that's what we planned on discussing at that
22	meeting.
23	Then I think that I show April but I
24	believe the meeting will actually be in May, a plant
25	subcommittee according to what Med said. There we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	will talk about I think the issues are listed.
2	Plus I think there is an additional issue
3	of man machine interface that the committee would like
4	to hear about as far as what our plans are for AP1000.
5	I don't have any that can come off the list. I think
6	the best is to talk amongst yourselves and work with
7	Med to give me any other changes to that.
8	Then I believe we'll have a meeting in
9	June to close out any open items that may come from
10	that meeting, so May and June, and then have a full
11	committee meeting in July. The July meeting we would
12	be looking for a letter.
13	MEMBER LEITCH: One of the things in that
14	plant system meeting that's not quite the right
15	term for it in April or May, I guess I would like
16	to be able to take a look at what I would call P&IDs
17	of particularly the passive safety systems.
18	There were some P&IDs along with the CDs
19	that you sent us on the PRA, but it seemed like there
20	was two versions of them. One was a very, very
21	simplified system drawing which was not useful for the
22	purpose that I wanted to look at.
23	Then another one was a P&ID that was
24	hopelessly compressed. If was just difficult to read.
25	I'm looking for something that is kind of in between

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

168 1 that other than hard drawings how to do that, I guess. 2 MR. CORLETTI: Is it that you would like 3 a -- we could submit our P&IDs to review a bigger 4 version of the compressed one, of the detailed one? MEMBER LEITCH: Yeah, I think that would 5 6 satisfy my need. It wasn't that it had too much 7 information. It was just --8 MR. CORLETTI: It was 11 by 17 version of a --9 10 MEMBER LEITCH: Actually it was 8 1/2 by 11 11. 12 We have half-size MR. CORLETTI: Okay. The DCD has an 11 by 17 version. 13 drawings. Do you 14 have a hard copy of the DCD? 15 MEMBER LEITCH: No. So you probably have the 16 MR. CORLETTI: 17 CD. MEMBER LEITCH: CD, yeah. 18 19 MR. CORLETTI: What we submitted is 11 by 20 17 which maybe we can get a copy of that, Jerry? 21 MR. WILSON: This is Jerry Wilson. Yeah, 22 Mike, don't you have hard copies? there are. 23 MR. CORLETTI: We should be able to check 24 with Med and see if we have the hard copy. I'm pretty 25 sure we do. If we don't, we can work with --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	MR. EL-SADAWY: We just have one hard copy
2	of the whole DCD. What we had is the CDs that all
3	members received.
4	MR. CORLETTI: How about if we prepare a
5	package of information that is a docket of information
6	that is the P&IDs but we'll just collect it in a
7	package of 11 by 17 drawings and we can furnish X
8	amount of copies.
9	MEMBER LEITCH: That would be helpful to
10	me.
11	CHAIRMAN APOSTOLAKIS: Are you done, Mike?
12	MR. CORLETTI: I'm done.
13	CHAIRMAN APOSTOLAKIS: Thank you very
14	much. Thank you and your colleagues for taking the
15	time.
16	MR. SNODDERLY: George, this is Mike
17	Snodderly. I just wanted to thank Mike Corletti for
18	all his support in preparing this material for the
19	committee and the presentation. And also I wanted to
20	say something about Larry Burkhardt from the staff.
21	He was very helpful in helping us to prepare for this
22	meeting. Thank you.
23	CHAIRMAN APOSTOLAKIS: Okay. The last
24	part of the day and a half is to go around the table
25	and you gentlemen will tell me what you think about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	AP1000. Shall we start with Jack?
2	MEMBER SIEBER: Well, as far as I'm
3	concerned, I thought this for me was a pretty good
4	learning experience because I'm not a PRA expert so
5	the documentation was put together very well that I
6	could understand it.
7	It seems to me from what I do know that
8	the techniques and the calculations that you did are
9	pretty straight forward and pretty standard. There
10	were no surprises or places where I would feel
11	inclined to scratch my head and doubt the information
12	you put forth.
13	On that basis, I think the PRA document
14	was well prepared and relatively easy to understand
15	and your presentations were good. I don't have any
16	negative comments at this time.
17	CHAIRMAN APOSTOLAKIS: Thank you. Bill.
18	MEMBER SHACK: Superb presentation. I
19	found it very helpful. Reading through a PRA is kind
20	of a painful thing. I thought the presentations were
21	very well prepared. I feel pretty good about AP1000.
22	CHAIRMAN APOSTOLAKIS: So it's not just
23	the presentation. It's the content as well.
24	MEMBER SHACK: Yes.
25	CHAIRMAN APOSTOLAKIS: It feels good.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	MEMBER SHACK: It feels good. Warm
2	feeling.
3	CHAIRMAN APOSTOLAKIS: Vic.
4	MEMBER RANSOM: It was a very good
5	presentation and learning experience for me. The only
6	thing I found a little bit surprising, I guess, were
7	your comments in the end where it seemed like an awful
8	lot of work had gone into this rather complex accident
9	type situation with many things that I think the
10	thermal hydraulics committee would obviously like to
11	look into, I guess, or should.
12	On the other hand, if it has very little
13	consequence, I'm wondering why did so much effort go
14	into that and not more into the higher consequence
15	things, I guess. It was a good learning experience.
16	CHAIRMAN APOSTOLAKIS: Remember that when
17	we discuss philosophical operations in depth. Are you
18	finished?
19	MEMBER RANSOM: Yes.
20	CHAIRMAN APOSTOLAKIS: Okay. Graham?
21	MEMBER LEITCH: Well, like my colleagues,
22	I found the presentations very helpful. I thought
23	they were well done. I think the staff has identified
24	a number of appropriate issues that are still
25	undetermined or are being worked on at the moment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

172
I think there are a number of issues there
that we need to hear the resolution of those issues,
and obviously we will. I think that as we went
through the presentations and then I heard the staff
comment indicate where they still had some questions,
I thought it was largely in line with the issues that
I had in mind as well. I think they have identified
the right issues and we just need to work our way
through the resolution of this.
CHAIRMAN APOSTOLAKIS: Tom?
MEMBER KRESS: Well, I, too, though we had
a very good PRA and a good presentation. I was a
little bit shaken, like you were, about the state of
the uncertainties but I don't think it matters very
much.
The only areas where I still want to
convince myself a little bit on are the squib valve
reliability. I'm looking forward, like Steve is, to
seeing the database that backs that up.
I still wasn't quite convinced mainly
because I didn't have time to digest it all on the in-
vessel retention and whether or not we found the worst
configuration or the most problem configuration and
whether or not it would fail the vessel.
Then I haven't we didn't see much

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	detail on the fuel-coolant interaction ex-vessel that
2	we were all told is the same energetics as the AP600.
3	I've forgotten what the AP600 energetics were and what
4	they were based on so I've got to go back to the old
5	ROAM and see what they did there.
6	Assuming that was acceptable then, it's
7	probably acceptable now and they have a bigger,
8	stronger containment here. It probably doesn't affect
9	anything in the sense of the PRA. Staff, I think,
10	appears to have asked the right questions and I'm
11	anxious to see what kind of responses we get from
12	them. All in all I don't see any show stoppers. I
13	think it looks pretty good.
14	CHAIRMAN APOSTOLAKIS: Let me ask you
15	gentlemen, you heard that the core damage frequency is
16	what, 2
17	MEMBER KRESS: 4 times 10 to the -7.
18	CHAIRMAN APOSTOLAKIS: 4 times 10 to the
19	-7. 2.4 events.
20	MEMBER SHACK: Internal events.
21	CHAIRMAN APOSTOLAKIS: Internal events
22	every 10 million reactor years. Your gut feeling.
23	How high do you think it could be given all the
24	uncertainties that we have? They say it's a factor of
25	6.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	MEMBER KRESS: I think it could be as much
2	as 2 orders of magnitude
3	CHAIRMAN APOSTOLAKIS: So that would make
4	it 2
5	MEMBER KRESS: The question what's the
6	probability of it being
7	CHAIRMAN APOSTOLAKIS: Right. So the 95th
8	percentile would be still on the order of 10 to the -5
9	which is pretty.
10	MEMBER KRESS: Which is all right.
11	CHAIRMAN APOSTOLAKIS: Anybody else?
12	MEMBER SHACK: I don't see it from
13	uncertainties, George. The nagging fear is that
14	you've missed something. It's the completeness
15	argument. I think you could analyze uncertainties
16	until hell froze over.
17	CHAIRMAN APOSTOLAKIS: No.
18	MEMBER KRESS: I'm basing my 2 orders of
19	magnitude on sort of the NUREG-1150 thinking which is
20	supposed to incorporate that kind of thought.
21	MEMBER SHACK: Well, I don't know how to
22	incorporate any completeness as an uncertainty.
23	CHAIRMAN APOSTOLAKIS: From the overall
24	quality of what you heard and the review that the
25	staff is doing, surely you don't think they missed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	175
1	something that has a probability of 1.
2	MEMBER SHACK: No. 10 to the -8, that's
3	getting pretty tough.
4	CHAIRMAN APOSTOLAKIS: Do you think the
5	contributor will be found six years from now that it
б	would be 10 to the -3?
7	MEMBER SHACK: No.
8	CHAIRMAN APOSTOLAKIS: That's what I'm
9	saying. You agree then with Tom?
10	MEMBER KRESS: When I start putting
11	uncertainties on I talk about things like
12	CHAIRMAN APOSTOLAKIS: I include
13	incompleteness.
14	MEMBER KRESS: Yeah, I do, too.
15	CHAIRMAN APOSTOLAKIS: I include
16	incompleteness. I am not like God.
17	MEMBER KRESS: If you didn't have
18	incompleteness in there, you would only get an order
19	of magnitude higher.
20	MEMBER SHACK: But I don't know what you
21	do with incompleteness.
22	CHAIRMAN APOSTOLAKIS: Yeah, but you do
23	know that it's not 1. You do, I think, believe that
24	it's not 10 to the -4.
25	MEMBER SHACK: That's engineering

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	judgment, George.
2	CHAIRMAN APOSTOLAKIS: What else could you
3	give me?
4	MEMBER SHACK: When it comes to things
5	like the large break LOCA frequency, those numbers to
6	me are probably conservative for pipe breaks. It's
7	this notion is there some other way I can get a large
8	break LOCA that I haven't thought about.
9	CHAIRMAN APOSTOLAKIS: But even that is
10	not so unknown.
11	MEMBER SHACK: No. If I raise it by an
12	order of magnitude, you know, it would still look
13	pretty good.
14	MEMBER SIEBER: There's only so many
15	things you can break.
16	CHAIRMAN APOSTOLAKIS: Sorry?
17	MEMBER SIEBER: There's only so many
18	things you can break.
19	CHAIRMAN APOSTOLAKIS: Or open.
20	MEMBER SIEBER: Or open.
21	CHAIRMAN APOSTOLAKIS: So it seems to me
22	that we have a consensus here that this is a very good
23	piece of work.
24	MEMBER KRESS: It looks pretty good to me.
25	MEMBER SHACK: The other one is the plant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	protection system. You know, those numbers.
2	CHAIRMAN APOSTOLAKIS: But, again, you
3	know, when you find yourself in situations like that,
4	start with extreme numbers. Is it too high? No, I
5	don't believe it. Then you start working down and
6	then pretty soon you have some fairly good idea.
7	I mean, you cannot say it's 6 times 10 to
8	the -5 but some range. I believe most people here at
9	the table, if not all, believe even if you look at the
10	high-pressure the level would be below the goal.
11	MEMBER SHACK: I'm still glad to have a
12	containment.
13	CHAIRMAN APOSTOLAKIS: I don't know why.
14	Then those low numbers will go up in the name of
15	defense-in-depth. But then we are not reviewing the
16	errors of commission because we have never seen those.
17	Right? We've seen many challenges to the containment
18	but never errors of commission.
19	MEMBER RANSOM: One added question, I
20	guess, would be is there any thought about considering
21	terrorist-type acts and including that in a PRA?
22	CHAIRMAN APOSTOLAKIS: Not in the
23	certification process. Don't look at me like that.
24	MEMBER RANSOM: It seems to me that would
25	be an event that might be more likely than many of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	things we have heard.
2	MR. ROSENTHAL: This is Jack Rosenthal,
3	Safety Margins and Systems Analysis Branch in
4	Research. This is an open meeting and I don't think
5	that is the forum to discuss it, but we could discuss
6	issues in some other forum.
7	CHAIRMAN APOSTOLAKIS: That's your answer.
8	Anything else? Well, thank you very much. I would
9	like to thank you again and the staff for taking the
10	trouble to come here and prepare these presentations.
11	Yes, I would add my congratulations also to you. It
12	was a great presentation. Especially when Selim says
13	that we can talk about it philosophically forever and
14	never reach a conclusion. Thank you all. This
15	meeting is adjourned.
16	(Whereupon, at 2:20 p.m. the meeting was
17	adjourned.)
18	
19	
20	
21	
22	
23	
24	
25	