Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Materials and Metallurgy & Plant Operations Joint Subcommittee Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, April 22, 2003

Work Order No.: NRC-881

Pages 1-355

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	U.S. NUCLEAR REGULATORY COMMISSION
2	+ + + + +
3	ADVISORY COMMITTEE ON
4	REACTOR SAFEGUARDS
5	+ + + + +
6	MATERIALS AND METALLURGY AND
7	PLANT OPERATIONS SUBCOMMITTEES
8	+ + + + +
9	TUESDAY,
10	APRIL 22, 2003
11	+ + + +
12	
13	The Subcommittees met at 8:30 a.m. in Room
14	OG16, One White Flint North, 11545 Rockville Pike,
15	Rockville, Maryland, F. Peter Ford and John D. Sieber,
16	Co-Chairmen, presiding.
17	SUBCOMMITTEE MEMBERS PRESENT:
18	F. PETER FORD, Co-Chairman
19	JOHN D. SIEBER, Co-Chairman
20	THOMAS S. KRESS
21	DANA A. POWERS
22	STEPHEN L. ROSEN
23	WILLIAM J. SHACK
24	GRAHAM B. WALLIS
25	

		2
1	<u>NRC STAFF PRESENT</u> :	
2	MAGGALEAN WESTON, Staff Engineer	
3	ALAN HISER, RES	
4	RICHARD BARRETT, NRR	
5	WILLIAM CULLEN, JR., RES	
6	ALSO PRESENT:	
7	LARRY MATHEWS, Southern Nuclear	
8	TOM ALLEY, Duke Energy	
9	ALEX MARION, NEI	
10	DAVID STEININGER	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	<u>CONTENTS</u>
2	PAGE
3	Overview of NRC Activities, Richard Barrett 7
4	Industry Positions on RPV Head and VHP Nozzle
5	Inspections:
6	Larry Mathews
7	David Steininger 60
8	Tom Alley
9	Presentation of Alex Marion
10	NRC Sponsored Research, William Cullen 229
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:33 a.m.)
3	CO-CHAIRMAN FORD: Good morning. The
4	meeting will now come to order.
5	This is a two-day meeting of the ACRS
6	Joint Subcommittees on Materials and Metallurgy and on
7	Plant Operations.
8	I'm Peter Ford, Chairman of the Materials
9	and Metallurgy Subcommittee. My Co-Chair is Jack
10	Sieber, Chairman of the Plant Operations Subcommittee.
11	ACRS members in attendance are Thomas
12	Kress, Dana Powers, Steve Rosen, Bill shack, and
13	Graham Wallis.
14	The purpose of this meeting is to discuss
15	the vessel head penetration cracking and RPV head
16	degradation issues. We've had a number of full
17	committee and subcommittee meetings on these issues
18	over the last couple of years.
19	The subcommittee will gather information,
20	analyze relevant issues and facts, and formally
21	propose positions and actions as appropriate for
22	deliberation by the full committee.
23	Maggalean W. Weston is the cognizant ACRS
24	staff engineer for this meeting.
25	The rules for participation in today's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	meeting have been announced as a part of the notice of
2	this meeting published in the Federal Register on
3	April the 4th, 2003.
4	The transcript of the meeting is being
5	kept and will be made available as stated in the
б	<u>Federal Register</u> notice.
7	It's requested that speakers use one of
8	the microphones available, identify themselves, and
9	speak with sufficient clarity and volume that they may
10	be readily heard.
11	We have received no written comments from
12	members of the public regarding today's meeting.
13	This whole topic of the VHP degradation
14	issues has been the subject of two bulletins and one
15	order in the last couple of years. It covers a wide
16	range of degradation phenomena, cracking, boric acid
17	corrosion, and inspection methods and strategy, and
18	repair/replacement decisions, plus the associated
19	understanding of the various physical phenomena.
20	We have raised questions at various
21	meetings and/or communications relating to, for
22	instance, adequacy of crack prediction, inspection
23	prioritization, algorithms for Alloy 600 and 182;
24	prediction and, therefore, management of boric acid
25	corrosion in VHP assemblies; factors of improvement

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	for replacement Alloy 690 and its relevance;
2	qualification of the inspection methods and its
3	application periodicity; the review of the safety
4	analysis; and also the impact of VHP observations on
5	cracking of other components, for instance,
6	pressurizers for the bottom head penetrations for PWRs
7	and BWRs.
8	Now, I hope that many of these issues will
9	be discussed at this meeting.
10	Jack, do you have any comments at this
11	stage?
12	MR. POWERS: Has the NRC budget been cut
13	so badly that we can't afford lights?
14	(Laughter.)
15	CO-CHAIRMAN FORD: Can we deal with that?
16	Actually it is rather dark in here.
17	MS. WESTON: I think he cut them off
18	because of the screen.
19	CO-CHAIRMAN FORD: Ah, okay.
20	MR. SHACK: What you need is darkness and
21	speak very softly.
22	CO-CHAIRMAN FORD: Okay. Could you just
23	experiment with the lights?
24	Okay. We'll now proceed with the meeting,
25	and I'll ask Richard Barrett of the NRR to start off.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	Sorry. We will turn around.
2	MR. BARRETT: This is all very new. We
3	don't know where to stand or where to sit.
4	CO-CHAIRMAN FORD: That's right.
5	MR. BARRETT: Hopefully we know what to
6	say.
7	(Laughter.)
8	MR. BARRETT: Thank you. Thank you very
9	much for inviting us here today. I think this is
10	obviously the perfect kind of a topic for the ACRS.
11	It's a technically complex topic, one that's very
12	important to safety, and one that requires attention
13	over long periods of time, and so as I've said on many
14	occasions, we always learn something when we come to
15	ACRS, and this is an area where we continue to learn
16	and grow.
17	I think it goes without saying that there
18	was a time when we believed that the reactor coolant
19	system was impervious to failure, and because of that
20	we didn't see the need to even analyze its failure as
21	part of the design basis.
22	Over the past several years, we've gone
23	through a cycle where we've begun a cycle which seems
24	to go in three phases. The first phase is surprise,
25	followed by interim compensatory measures.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	The second phase is the imposition of
2	robust requirements or what we believe to be robust
3	requirements.
4	And the third phase is to go back and
5	examine those robust requirements to see if we've gone
6	too far.
7	And we certainly haven't even begun to
8	touch the third phase in this area right now.
9	I'd say that we could start the history of
10	this with about two and a half years ago when we began
11	to see some large surprises, and we began to take
12	interim compensatory measures as a result. We saw a
13	surprise at Oconee in the spring of 2001 when we found
14	large circumferential cracks in the reactor vessel
15	head penetrations, and as a result we issued 2001-01,
16	clearly an interim compensatory measure, looking,
17	doing visual inspections, looking for leaks, clearly
18	not the kind of situation you want to be in in the
19	long term.
20	In the spring of 2002, we found another
21	large surprise which was the wastage in the Davis-
22	Besse upper head. Again, we issued an interim
23	compensatory measure, Bulletin 2002-01, asking
24	licensees to assess wastage at their plants, again,
25	not the kind of situation you want to be in the long

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

term.

1

2

3

4

5

6

7

And then we found the surprise last fall where in North Anna Unit 2 shut down and found a great deal of problems with failures or what degradation of their head, which resulted in a special effort on their part to replace the head in an unscheduled manner.

8 We felt that last fall we began to turn a 9 corner. We issued Bulletin 2002-02, which had as its 10 purpose the requirement that licensee begin to look 11 for the precursors of leakage, not the leakage itself. 12 We began to look at the existence of axial cracking in 13 tubes, the existence of moisture in the annulus region 14 outside of these tubes.

And we followed that in February of this year with a set of orders which not only requested the licensees consider these types of inspections, but actually placed upon them a binding requirement that they do so. And we feel that that was justified, and we felt at the time that we were beginning to get a handle on this.

And I think it's fair to say that we are getting a handle on this. Nevertheless we continued to see surprises, and at this moment, as this meeting starts today, we're not sure of the magnitude of some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

9

	10
1	of these surprises.
2	I think that clearly all of you by now are
3	aware of the 5072 event report that came in a week ago
4	Sunday from South Texas, and the potential
5	implications of that in terms of the possibility that
6	there would be a mechanism that would lead to crackage
7	and leakage on the lower head of the vessel; that this
8	is leakage that could potentially be outside of the
9	regime of the models that we have been using to
10	analyze previous cracking.
11	So it's fair to say that we continue to
12	get surprises, and this is one that we're taking
13	extremely seriously. I can say on the positive side
14	of the ledger that we've had conversations with the
15	licensee and they're taking it equally seriously and
16	pursuing this with a great deal of vigor.
17	MR. WALLIS: Rich, you said it was beyond
18	something that had been considered before. If you had
19	a break of the size of the Davis-Besse on the lower
20	head, that would be a different event than having it
21	on the upper head.
22	MR. BARRETT: Absolutely.
23	MR. WALLIS: Loss of coolant accident.
24	MR. BARRETT: Right.
25	MR. WALLIS: And I'm not sure that that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	sort of event has been analyzed.
2	MR. BARRETT: No, that's certainly the
3	case. One of the issues, one of the aspects of
4	Bulletin 2002-01 that we issued following the Davis-
5	Besse wastage issue discovery was a request, was kind
6	of a far-reaching request that licensees begin to tell
7	us what they're doing with regard to work acid
8	control, corrosion control programs for the remainder
9	of the reactor coolant system.
10	And we issued that for two reasons. One
11	was that we knew there were other places in the
12	reactor coolant system that were potentially
13	susceptible to the same kind of problems that we saw
14	at Davis-Besse because, given the model that we had,
15	the susceptibility model, we knew there were other
16	areas that were also quite hot.
17	We also knew that there were other areas
18	of the reactor coolant system that were potentially
19	more serious in their implications, and as you pointed
20	out, the LOCA in the lower head from a thermal
21	hydraulics perspective can be more challenging, can be
22	significantly more challenging than a LOCA in the
23	upper heard or in the piping systems.
24	So that's one of the reasons why we
25	considered this to be something we wanted to watch

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	extremely carefully.
2	The reason I said it was potentially
3	outside or could be outside of the models that we used
4	is that our models for stress corrosion cracking tend
5	to point toward time at temperature. This is a plant
6	that has not had very much time, as much time to
7	operate as some of the plants that have seen cracking
8	in the past, and the lower head does not see the
9	temperatures that we've seen in the upper head.
10	So this is another potential surprise for
11	us and one that we plan to pursue very vigorously.
12	And there will be hopefully some discussion of that.
13	As I mentioned earlier, there is a third
14	phase to all of this and a phase that we haven't even
15	begun to enter, and that is that at some point in time
16	when we feel that we have gotten our arms around the
17	entire reactor coolant system, when we feel that we've
18	got requirements out there that cover all of the
19	surprises we've seen and all of the potential other
20	problems that you could see, then I think it would be
21	appropriate for us to go back and ask have we gone too
22	far in some ways.
23	It's possible, for instance, that we would
24	take a closer look at the phenomenology here , which
25	is a complex phenomenology involving the tube itself,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

13
the J groove weld, the base metal, the liner and other
aspects, and ask ourselves if there's a smarter, more
efficient way of doing the inspections and assessments
and repairs than what we've been requesting and
requiring so far.
And I think the other possible avenue in
this respect, of course, is to take a hard look at
what we will do for Alloy 690 as plants begin to
replace heads, replace penetrations. We currently
make no provision in our requirements for a
distinction between the Alloy 600 and Alloy 690.
So that's a phase that's somewhere down
the road. I'm sure you're going to hear about some of
that from the industry today. We believe that our
Office of Research has a key role in performing
confirmatory research to understand what we can feel
justified to do in this area.
But we also feel that the industry has
the burden of responsibility in this respect, and I
know that the industry is very interested in this
problem. You'll probably hear a great deal about it
here today from the industry, and of course, as a
reliable regulator, we will be very carefully
evaluating what they bring to the table.
How will all of this play out in the long

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 I don't have a crystal ball. I can imagine two term? 2 extreme possibilities. The one extreme might be a 3 situation in which the reactor coolant system some day 4 will revert to the situation we thought we had some 5 time ago in which it's impervious to cracking, imperious to leakage, and can be ignored. 6 I don't 7 believe that's a realistic possibility. Perhaps at 8 the other end of the spectrum you could imagine a 9 situation similar to what we do today with stream 10 generators in which we have very active programs to 11 inspect, assess, and repair. 12 I think that it's possible that as time goes by we will evolve to something in between. Where 13 14 in between I'm not quite sure, but at the moment it's 15 difficult to look that far down the road because we're still in the stream here. 16 17 And while I would say we're far better off today than we were in the early part of 2001-01, when 18 19 we found the Oconee cracking, we're not out of the 20 woods yet, to mix metaphors. And we believe there's 21 a great deal to learn. 22 Rich, I mean, when you say MR. WALLIS: 23 you're far better off now than you were, it's really 24 a matter of how better off you think you are because 25 if you look to 2000, you thought you were much better

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

14

	15
1	off then.
2	MR. BARRETT: Right.
3	MR. WALLIS: So I'm not quite sure whether
4	you're talking about your state of mind or something
5	that's more objective.
б	MR. BARRETT: Right. I understand your
7	point, and, of course, it's easy to say. It's easy to
8	question is the NRC staff still in the dark on this
9	issue. I don't think that is the case.
10	I think that where we are today, and I
11	believe this is always the case, you're always better
12	off when you're engaged, when you're looking hard at
13	the operational experience, when you're asking
14	yourself tough questions, when you're taking actions
15	in a timely fashion.
16	I believe that when you compare our
17	situation today, having issued three bulletins and an
18	order to every plant in the country vis-a-vis where we
19	were before the Oconee cracking, when, in fact, we had
20	operational experience, not as serious as Oconee, not
21	as serious as Davis-Besse, but nevertheless we had
22	operational experience; I believe that being engaged
23	as we are today is a far better position to be in than
24	we were before.
25	CO-CHAIRMAN FORD: As Dr. Wallis points

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	out, it is an evolving technical situation, and you
2	made the point that in the middle of last year you
3	were starting to get into a proactive phase. You had
4	all of the problems
5	MR. BARRETT: Right.
6	CO-CHAIRMAN FORD: sorted out and you
7	were going to solve them before they occur.
8	MR. BARRETT: Right.
9	CO-CHAIRMAN FORD: You came up with an
10	action plan. The NRR came up with an action plan
11	involving research and other contractors. Has that
12	action plan been modified in view of the changing
13	situation and has there been changes in the
14	prioritization in that action plan?
15	MR. BARRETT: Well, I think if you're
16	referring to South Texas, I think it's a bit early to
17	be in that situation. I think right now with regard
18	to South Texas we're on a pretty steep learning curve,
19	as is the licensee. We're trying to keep an open mind
20	about what we're seeing and why we're seeing it.
21	So modifying the action plan, I don't know
22	that that's in the cards at the moment, but I will say
23	this. The Lessons Learned Task Force, the action plan
24	that resulted from the Lessons Learned Task Force has
25	in it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

17 1 CO-CHAIRMAN FORD: You're talking about 2 the action plan that was issued in the middle of last 3 year, which is primarily related to the cracking 4 problems rather than the Davis-Besse lessons learned. 5 There's two action plans. Right. I think that it's 6 MR. BARRETT: 7 fair to say that as a result of the Lessons Learned 8 Task Force, the action plan that we now have in place, 9 the four-part action plan which came from the Lessons Learned Task Force, which includes a part that relates 10 11 to the vessel, is more balanced between the cracking 12 phenomena the boric acid corrosion control phenomena than perhaps we were before. 13 14 One of the provisions of that is that we 15 examine the results of the industry survey that came out of Bulletin 2001-01 regarding boric acid control 16 program attributes and make a recommendation 17 to management as to what additional requirements might be 18 19 necessary. 20 And the deadline for that is coming soon. 21 We're in the process of evaluating that within the 22 staff as to what we would propose to upper management, 23 and at the moment as we look at what we saw at South 24 Texas, which was the result of a full environmental

visual of the lower head, clearly that's going to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	18
1	color what we propose.
2	But as we look at the industry programs,
3	the South Texas program is on the more aggressive end
4	of the spectrum at this point.
5	So I'm not sure I've answered your
6	question. I've said a lot of things, but I'm not sure
7	I've answered your question.
8	CO-CHAIRMAN FORD: I think we'll come to
9	it at the end of the meeting again.
10	MR. BARRETT: Sure.
11	MR. POWERS: Rich, I get the impression
12	well, I can put a different spin on everything you've
13	said.
14	MR. BARRETT: Sure.
15	MR. POWERS: Which is almost a negative,
16	but I don't want to go into that exercise. What I'm
17	a little more interested in is we find ourselves
18	confronting a variety of material interaction issues
19	for the current generation of plans. We now have
20	before us a lot of proposals on some very, very
21	innovative plans which involve innovative materials,
22	new material interactions, and whatnot.
23	Are we getting some sort of insight on the
24	magnitude of effort that we need to undertake to
25	understand material interactions in those new plants?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	MR. BARRETT: Frankly, Dana, I'm not in
2	the position to answer that question.
3	MR. POWERS: Yeah.
4	MR. BARRETT: I would really
5	MR. POWERS: You know, I mean, it's a
6	little bit afield.
7	MR. BARRETT: Yes.
8	MR. POWERS: But it hints at if we go into
9	a new style of plant, one maybe where water isn't used
10	as a coolant, we really need to do a heck of a lot
11	more than we did when we went into the current
12	generation of plants just because we never want to get
13	into this sort of situation again.
14	MR. BARRETT: Right. I know that this is
15	an area that has been looked at, but I would not be in
16	a position at this point to really give you a sense of
17	how deeply, how thoroughly. I know, for instance,
18	that people
19	MR. POWERS: I don't think that
20	MR. BARRETT: are looking at the
21	experience in Canada and other places regarding the
22	CANDU reactors, but I'm not in a position to speak to
23	it with any authority. Perhaps when we have
24	presentations from the Office of Research today you
25	can delve into that more. Maybe by that time they can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	go back and find the answer.
2	MR. POWERS: But I mean, I think the
3	reasonable answer I mean, it would stun me if you
4	said, "Oh, yes, and here's the outline we have on what
5	has to be done."
6	MR. BARRETT: Yeah.
7	MR. POWERS: But it seems to me that as we
8	go through these things we need to bear in mind what
9	has to be the baseline technical detail that we have
10	about these material properties going into a reactor
11	design.
12	I mean, it's not just a regulatory agency.
13	I mean, it seems to be the kind of information that
14	someone who wants to build one has to have.
15	MR. BARRETT: Yeah, I think that you could
16	take the view that, gee, for these advanced reactors
17	we don't know what kind of issues we will run into.
18	I would rather take the other view which
19	is that over the 30 or so years that we've been
20	building and operating nuclear power plants certain
21	types of issues have recurred over and over again, and
22	materials issues will be with us, and they need to be
23	a focus, and we just need to make sure that we put our
24	resources there.
25	CO-CHAIRMAN FORD: Just finally, Rich, it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	21
1	is likely that we'll be writing a letter at the full
2	committee meeting. Is it your formal position that
3	you would like a letter?
4	MR. BARRETT: Well, I think
5	CO-CHAIRMAN FORD: Are you requesting a
6	letter?
7	MR. BARRETT: I don't know that we've had
8	a discussion about that. Let me discuss that with
9	others involved and get back to you and see, you know,
10	whether we want a letter and what the scope of that
11	would be.
12	CO-CHAIRMAN FORD: Fine. Thank you very
13	much, indeed.
14	I'd like to call now on Larry Mathews,
15	Southern Nuclear. If I'm right or wrong, make a
16	comment, Larry. I understand that your co-authors are
17	Tom Alley from Duke, Alex Marion and Jim Riley from
18	NEI; is that correct?
19	MR. MATHEWS: Yeah, they're here. They
20	don't have I'll tell you who's going to make
21	presentations.
22	As you said, I'm Larry Mathews from
23	Southern Nuclear Operating Company. I'm the Chairman
24	of the Alloy 600 Issues Task Group of the Materials
25	and Liability Program.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	I'm going to make a presentation to start
2	this off on reactor vessel head inspection results.
3	First off, I'm glad to be here and I'm
4	glad it's not a blizzard outside like it was to keep
5	us from coming in February, and this is basically the
6	presentation we had planned for February. A lot of
7	issues have been going on and we really haven't had
8	much time to update this presentation. We have more
9	information in our minds. So maybe we can answer a few
10	questions.
11	I'm going to make a presentation on the
12	reactor vessel head inspection results up through
13	February, and you know, there's been some since then
14	and maybe I can update that as I walk through, not in
15	numbers, but
16	MR. WALLIS: Is there a focus somewhat
17	better on that picture?
18	MR. MATHEWS: I don't have any control
19	over it.
20	MR. SHACK: They're working on it.
21	MR. POWERS: I think it's the technology.
22	MR. MATHEWS: They're working on the zoom
23	anyway.
24	MR. POWERS: They have an action plan in
25	place, and they will be sending out a generic letter

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	on this item.
2	MR. WALLIS: Is 95 percent good enough?
3	MR. MATHEWS: It depends on your eyes.
4	Following my first presentation, David
5	Steininger from EPRI is going to make a presentation
6	on our process that we're going through to revise our
7	recommended inspection program for the top head. Then
8	he's also going to talk about some research that we
9	have planned for the North Anna 2 head, which has been
10	replaced. It's sitting in the burial cell in Utah,
11	and he's going to discuss our plans for retrieving
12	samples from the head.
13	That was a very interesting set of
14	inspection results from the head, and we're going
15	after that to try and learn more information.
16	And then finally Tom Alley from Duke
17	Energy will make a presentation concerning the update
18	on the inspection demonstration program that we've had
19	ongoing relative to the inspection volume or
20	volumetric inspection techniques.
21	CO-CHAIRMAN FORD: Just looking through
22	the list of topics that are going to be covered here,
23	Larry, we asked for a presentation on the EPRI
24	sponsored research on boric acid corrosion, the
25	capability to predict the extent of corrosion at a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	given head penetration. Is that going to be covered?
2	MR. MATHEWS: We don't have a presentation
3	on that. It's a little bit early. I can pull out our
4	action plan
5	MR. STEININGER: I can give the status of
6	it.
7	MR. MATHEWS: and we can talk about
8	where we are on that.
9	MR. STEININGER: I have one slide. I can
10	give a status in my presentation.
11	CO-CHAIRMAN FORD: What we'd like to know
12	is, you know, what's your rationale and how you will
13	get to the end result, you know, to predict why you
14	have cracking sorry wastage in that penetration
15	and not in that penetration.
16	MR. STEININGER: That's a challenge.
17	MR. MATHEWS: Well, it sure is.
18	MR. WALLIS: It's much more interesting to
19	learn what you've understood rather than just what you
20	don't. We can see that you've reached some sort of
21	technical conclusions from your
22	MR. MATHEWS: With boric acid we're not
23	there yet.
24	CO-CHAIRMAN FORD: Well, I recognize that.
25	MR. MATHEWS: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	25
1	CO-CHAIRMAN FORD: Just what your
2	rationale is.
3	MR. MATHEWS: Okay. What I'm going to
4	cover in the inspection results is an overview of the
5	results by plant, and then we've done some
6	subpopulation looks at it, trying to glean out some of
7	what's the differences from plant to plant.
8	And then it says inspection plans for the
9	spring, and we're at least half through that by now.
10	So maybe I can touch on what people have done on some
11	of those plants.
12	We brought this beautiful slide.
13	MR. WALLIS: You had that last time.
14	MR. MATHEWS: Yeah, and what I presented
15	last time was a two-hour summary or shorter of what
16	we're trying to cover today. So this was in the
17	presentation last time. It's very difficult to see in
18	black and white or color.
19	MR. WALLIS: Well, there was this sort of
20	hypothetical point on Sequoia 1, which is the second
21	one or third one up or something.
22	MR. MATHEWS: Yes, yes.
23	MR. WALLIS: But that has gone away now,
24	hasn't it?
25	MR. MATHEWS: In a lot of people's minds

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	it has gone away. Alloy 600, kind of the surprise of
2	the season, made a feint toward Tennessee and then
3	dodged to South Texas.
4	(Laughter.)
5	MR. MATHEWS: So maybe it was a feint.
6	CO-CHAIRMAN FORD: Well, you made an
7	interesting statement, Larry. In some people's mind
8	it has gone away. Is that a slip of the tongue or is
9	that
10	MR. MATHEWS: No, I fully believe it has
11	gone away, but
12	CO-CHAIRMAN FORD: Do you know why it has
13	gone? What is the rationale for it going away?
14	MR. MATHEWS: Yes, yes. They've
15	inspected. They did everything they could on that
16	nozzle, and to the best of my knowledge, they found no
17	indications of a crack. Boric acid
18	CO-CHAIRMAN FORD: UT and
19	MR. MATHEWS: They did UT. They did PT of
20	the weld. They did zero degree UT looking to see if
21	there was any kind of erosion in the interference fit,
22	and they aged the boron to be several years old, like
23	ten years old based on their cesium ratio.
24	And they had a major leak on the top of
25	the head back then, ten years ago, ten or 12. In

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	TVA's mind, they've concluded it was not a leaking
2	nozzle. That was residual boron from their canopy
3	seal weld leak ten years ago.
4	MR. ROSEN: Is there any possibility that
5	the same logic pattern will follow South Texas?
6	MR. MATHEWS: It's a little early to say.
7	It's a little early to say. The indications from
8	South Texas now, they've got boric acid around two
9	nozzles, and not a real clear other way it could have
10	gotten there.
11	MR. WALLIS: It doesn't leak upwards and
12	it doesn't trip upwards.
13	MR. MATHEWS: No.
14	MR. WALLIS: On the upper head it could
15	MR. MATHEWS: It could easily run down
16	from above, but to my knowledge, there was no
17	indication that they had it running from above.
18	MR. WALLIS: It would have to run around
19	to get there, around from above.
20	MR. MATHEWS: Frequently, a lot of plants
21	have boric acid running down the side of the vessel
22	from
23	MR. WALLIS: Frequently they have boric
24	acid running?
25	MR. MATHEWS: Yeah, from canopy I mean

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	from the cavity seal. At least it's in cold
2	condition. The cavity seals will have leaks.
3	MR. WALLIS: This is why it doesn't
4	concern them when they see it?
5	MR. MATHEWS: Well, no. It's just it's
6	cold and it's minor and it doesn't do any damage. But
7	at South Texas right now they have boric acid around
8	two nozzles, and that's about all we know at this
9	point.
10	They're launching into, I believe, an NDE
11	program to see what they can figure out about it.
12	MR. WALLIS: Well, if it's only around the
13	nozzles, that's information. If it's a track coming
14	from somewhere else
15	MR. MATHEWS: There is no track, to my
16	knowledge. So that that's there's no information
17	that says that these aren't leaking that has been
18	developed at this point in time.
19	MR. WALLIS: Could you tell me more? We
20	heard about popcorn in Davis-Besse. Is this popcorn
21	when you say it has been seen or is it something else
22	that's seen?
23	MR. MATHEWS: The boric acid that
24	accumulated around these two nozzles was very small
25	popcorn I would say.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	MR. WALLIS: It was popcorn. So it has
2	been coming and drawing out.
3	MR. MATHEWS: I think so, yeah. I guess
4	I'd rather not get into being the source of
5	information out of those guys in the public forum, if
6	you know what I mean.
7	(Laughter.)
8	MR. MATHEWS: I may know something they
9	haven't released publicly, and I
10	MR. WALLIS: Well, I'd ask him because I
11	think that what you see when boric acid comes out of
12	a crack and it squirts out and dries and the steam
13	runs through it is probably rather difference in
14	appearance than something which came from somewhere
15	else and then just happened to dry in place. It will
16	look different, won't it?
17	The drying mechanism is different for
18	creating it, and so it will look different.
19	MR. MATHEWS: The tracks down the side of
20	the vessels look different than the leakage in the
21	annulus nozzles on the top head and looks different
22	than at least
23	MR. WALLIS: To make popcorn you always
24	have to have something sort of blowing through it to
25	fluff it up, don't you, that you wouldn't have if it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	30
1	just dried in place?
2	So maybe the appearance of the deposit
3	is
4	MR. MATHEWS: Well, I'm not sure you need
5	air flow or steam flow through it, and if it's just
6	kind of oozing out of the
7	MR. WALLIS: Well, I'm saying just looking
8	for it is different from looking at some
9	characteristics of it as well that might tell you
10	where it came from.
11	MR. MATHEWS: Yeah, and they're trying to
12	characterize this stuff as well as they can from
13	chemistry, radioisotopes, texture, everything they can
14	get on it.
15	MR. WALLIS: Well, maybe if they
16	understood how it formed, to get back to my colleague,
17	Dr. Ford's questions, if they understood what was
18	going on, you'd be in a better position to interpret
19	what you see.
20	MR. MATHEWS: Yeah.
21	MR. WALLIS: Okay.
22	MR. MATHEWS: Go to the next slide.
23	The overview, that table showed
24	graphically if you could see it in color, it shows
25	how many of the plants had inspected and to what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	extent by the early part of this spring and where the
2	cracks had been detected, and in general those were
3	toward the plants.
4	They were sorted by effective degradation
5	years, and most of the degradation was toward the top
6	of the chart, which is where the high affected
7	degradation years are.
8	There was other information on there.
9	MR. WALLIS: So by visual inspection of
10	this slide, this is a digital projection. I wonder
11	why it's so
12	MR. MATHEWS: I guess it's coming through
13	the TV camera.
14	We try and update that slide periodically
15	every outage season.
16	If you look at the next one, maybe we can
17	oh, we can't even read these numbers either place.
18	This is just a wrap-up of all the plants that up till
19	this spring had detected any kind of cracking in their
20	nozzles and how many.
21	MR. WALLIS: I don't know if we're going
22	to read their slides and if we had them out, they
23	would be even more late.
24	MR. MATHEWS: That might be a good idea.
25	MR. WALLIS: Do we have some more?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	MR. MATHEWS: I don't think we're going to
2	be able to read these numbers on the overhead anyway.
3	It depends on your trifocles.
4	MR. WALLIS: Well, we can read the slides
5	if we have enough light on it.
6	MR. MATHEWS: Yeah. This is just a
7	summary. At that point in time we had about 82
8	nozzles that had experienced cracking in the base
9	metal and 75 with cracks in the weld. Most of those
10	were axial cracks, but there had been up to 19 nozzles
11	in the fleet that had detected circumferential
12	cracking.
13	I'm just reading across the lower right-
14	hand corner of the chart there, and most of these are
15	B&W plant, B&W designed plants. There's one CE plant,
16	and then a few Westinghouse plants that are all pretty
17	high in effective degradation years.
18	Cook 2 is fairly low, and Millstone was
19	also fairly low at the time they detected their
20	cracking.
21	CO-CHAIRMAN FORD: You said just now,
22	Larry, that these were all plants with circumferential
23	cracking?
24	MR. MATHEWS: No, no. These are all of
25	the plants that have had any cracking at all in their

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	nozzle.
2	CO-CHAIRMAN FORD: That's what I thought.
3	Okay.
4	MR. MATHEWS: And if you look at the
5	right-hand column well, it's not even on the
6	overhead. It's on the chart it shows the
7	CO-CHAIRMAN FORD: Yes.
8	MR. MATHEWS: which ones had circ.
9	cracks and how many.
10	CO-CHAIRMAN FORD: But the majority of
11	them, just reading from this chart here, the majority
12	of them have.
13	MR. WALLIS: This is interesting because,
14	in fact, all welds have cracks. It's a question of
15	how big the crack is. So what you're really saying is
16	it's detectable on some scale, the cracks.
17	MR. MATHEWS: Yes.
18	MR. WALLIS: All cracks really
19	MR. MATHEWS: Either with eddy current or
20	BT.
21	MR. WALLIS: there ought to be some
22	other indication of what you mean by a detectable
23	crack.
24	MR. MATHEWS: Detectable crack, it's
25	something that comes out with the PT or the eddy

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

34
current.
MR. WALLIS: So then find out what that
means technically in terms of risk because I know
there are always cracks in these things of some size,
aren't there, or flaws?
A flaw is a crack or how big is a flaw
before it is a crack and all of that?
So I don't know whether these cracks are
inevitable or not.
MR. MATHEWS: Well, they are significant
because in many cases or in several cases anyway, they
have led to leakage on top of the head with no
detectable flaws in the nozzle itself, and so those
cracks are significant.
The predominant source of the weld
cracking, you know, if you look at the numbers, has
been in the Rotterdam heads, the North Anna 2 head
anyway. That's the one where they did the most weld
inspections and they had a lot of flaws. That head
has since been replaced.
Jim, go to the next one.
I'm just slicing and dicing all of the
same data.
MR. WALLIS: Yes. If we knew how roughly
these grew and we knew how big they were, we might be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

able to know whether it constitutes a risk or not.
MR. MATHEWS: Well, weld flaws grow fairly
rapidly, quite rapidly, more rapidly than the flaws in
the base metal, at least from the test data that we've
had. So a detectable flaw on the ID of the weld is
not something that we want to find. It's something
that leads to, you know, how long can you run with
that.
And so we're into repairing detectable
flaws.
MR. WALLIS: That's the question really,
is how long can you run.
MR. MATHEWS: And the answer is we don't,
I believe. We repair detectable flaws in the weld.
MR. SHACK: Larry, on the 42 cracks in the
weld metal at North Anna 2, are those really cracks,
you know?
MR. MATHEWS: Most of them are eddy
current indications over a certain size, is the way
that and they were reported as cracks.
MR. SHACK: Did they go back and UT those
or they just
MR. MATHEWS: Well, a UT weld is a very
difficult thing to do. They had UTed the nozzles, I
believe, or some of them.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	MR. SHACK: So this is just a J. So they
2	have to just rely on the eddy current.
3	MR. MATHEWS: That's right. It's the J
4	group weld that had these indications on it, and when
5	they started seeing this many, Dominion started
6	looking for an alternative to try to repair all of
7	those welds.
8	MR. SHACK: Now, I mean, have other people
9	done comparable eddy current exams?
10	MR. MATHEWS: A few plants have done
11	comparable eddy current exams. The Cook units, I
12	believe have done comparable eddy current exams. A
13	lot of people have done some weld exams, although not
14	100 percent on very many plants at this point in time.
15	I can't it's getting to be too many
16	outages for me to remember it all. I used to be able
17	to, but I can't do that anymore.
18	I do have a cheat sheet, but it's small
19	Type 2, but most of them are doing volumetric on the
20	tube and not that many plants have opted to do eddy
21	current on the nozzles I mean on the welds.
22	If we look at the next slide, you'll see
23	the CRDM/CEDM nozzles that have been inspected by the
24	techniques, and this kind of goes to your question.
25	For those plants that are in the greater than 12 VDY

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

category, essentially 90 percent of the units or 92 percent of the head penetrations have been inspected by bare metal visual. About half of the nozzles have been inspected by eddy current or UT, and this was before the spring outage and before the implementation of the order.

And then only about 16 percent of the J group welds had been inspected by eddy current or PT. MR. WALLIS: Well, I'm sorry to interrupt you, but the bare metal visual obviously depends on how well you're focused and how much you magnify the image and all of that sort of thing. I would think the same thing applies to ET.

14 If you had a much more sensitive ET, it 15 would presumably detect more cracks. So I again don't 16 quite know what to make of this because I don't know 17 how sensitive these measurement techniques are. I 18 don't quite know what they're telling me.

MR. MATHEWS: Tom's going to discuss the demonstration program that we've had for the vendors who are doing the eddy current, and he can get into some of that.

23 MR. WALLIS: But do you specify something
24 about how good the eddy current technique has to be?
25 Because there must be different grades of this, and if

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	you really wanted to be fussy and to take very, very
2	small cracks, you could presumably do it by using a
3	very sophisticated computer analysis of some data or
4	something. I don't know what it is, but
5	CO-CHAIRMAN FORD: Are we going to be
6	discussing the specifics of the sensitivity and the
7	probability of the detection?
8	MR. MATHEWS: Yeah, Tom's going to discuss
9	the mock-ups we've built, what flaws were in them, and
10	what the inspection results were for the tools that
11	were implemented in the field.
12	CO-CHAIRMAN FORD: So you will be able to
13	answer Graham's question at that time?
14	MR. MATHEWS: Yeah, we'll tell him what
15	we've got and go from there.
16	CO-CHAIRMAN FORD: On this one, just
17	interpretation, if you look at the Lesson 8 EDY, so
18	the nozzle tube middle column, maybe it's my
19	interpretation of this graph or this table.
20	MR. MATHEWS: Okay.
21	CO-CHAIRMAN FORD: You've inspected none
22	of the units, and yet you're saying you've inspected
23	92 nozzles?
24	MR. MATHEWS: That's interesting.
25	MR. SHACK: No, none of the units get 100

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	percent inspection
2	MR. MATHEWS: Ah, none of the units were
3	totally, 100 percent inspected.
4	CO-CHAIRMAN FORD: Okay.
5	MR. MATHEWS: Thank you.
6	We did do some nozzles at some units.
7	Okay?
8	Are we on the next one?
9	And this is the results of having
10	performed that number of inspections spread across the
11	various EDY groupings. Again, you can see from this
12	that most of the detected flaws are in the higher than
13	12 EDY category. In fact, it looks like all of them.
14	MR. SHACK: But isn't Millstone an
15	exception here?
16	MR. MATHEWS: Millstone was right at 12
17	when they did their inspection. It may have actually
18	been slightly below, but you know, it's right in that
19	ballpark.
20	MR. SHACK: I thought 11.2 was the number
21	that sticks in my head.
22	MR. MATHEWS: Maybe it was. I'm not sure.
23	And we've had many more inspections this
24	spring. So these numbers would be much more updated
25	when we get through with the spring outage, a lot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	higher fractions.
2	The next chart, I believe, is just a bar
3	chart way of looking at it. Some people like these.
4	Bare metal visual, you can see broken down
5	by category. We've already covered most of the
6	nozzles by at least a bare metal visual, especially in
7	the high EDY category. We've done UT on about half of
8	them, and that's going to jump way up this spring and
9	then some smaller fraction of the welds.
10	Next.
11	The next one is just separating out the
12	B&W units because they were the ones that operated
13	typically at the highest temperatures and also the
14	ones that have experienced the greatest amount of
15	degradation except for the welds at North Anna.
16	I'm trying to pick out the pertinent
17	information here.
18	CO-CHAIRMAN FORD: But apart from the
19	operating temperature, there is nothing else in the
20	B&W design or fabrication that would give you cause to
21	think that the B&W design, forget the operating
22	temperature, should make it more susceptible?
23	MR. MATHEWS: From a design standpoint, I
24	don't know that there's a lot of difference. Perhaps
25	the weld sizes and the manufacturing process might be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	slightly different resulting in slightly different
2	stresses.
3	Another parameter which we don't have in
4	our models is the material properties.
5	CO-CHAIRMAN FORD: But the shrink
б	stresses, the size of the weld, and thereby the
7	prediction of the amount of residual stress, how do
8	they fit into the answer to my question? No
9	difference in the shrink stresses?
10	MR. MATHEWS: Well, there's a range of
11	shrink fits out in the industry. B&W plants were
12	typically up to one and a half mils of interference
13	fit.
14	CO-CHAIRMAN FORD: As compared with?
15	MR. MATHEWS: Plants ranging from two to
16	four, I believe, and a half on the Titus one, and most
17	of the CE vessels were manufactured with up to a three
18	mil interference fit. So, you know, it's not huge
19	differences there.
20	The tube diameters are essentially the
21	same.
22	CO-CHAIRMAN FORD: So there's nothing in
23	the B&W design, apart from the operating temperature,
24	say, because of the stresses, because of the material
25	per se; there's nothing to say that they are more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

42 1 susceptible than anything else, apart from the 2 temperature? 3 MR. MATHEWS: Unless there's something 4 that's tied to their material, that B&W tubular 5 products material, but that goes across more than just the B&W plant because other plants have used B&W 6 7 tubular products material, and so that would be 8 something that might --9 FORD: keep CO-CHAIRMAN We hearing 10 Rotterdam Dockyards talking about. What is specific 11 about Rotterdam Dockyards being the fabricator of the 12 head? MR. MATHEWS: 13 That was --14 CO-CHAIRMAN FORD: Has any pathological 15 work been done on their fabrication method, point towards them, or is that just a red herring? 16 17 We don't know. MR. MATHEWS: We don't know if it's a red herring or not. We know that the 18 19 places that have had the most extensive weld flaws, 20 the units that have had the most extensive weld flaws, 21 North Anna 2 and perhaps one of the Surry units -- I 22 can't remember -- had several weld flaws and weld 23 flaws only, nothing in the tube. 24 CO-CHAIRMAN FORD: And were done at 25 Rotterdam.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. MATHEWS: Those were built at
2	Rotterdam. All four of the original Dominion Energy
3	vessels were built at Rotterdam, and there's about, I
4	think, five other vessels in the country that were
5	made by Rotterdam, all of which are cold head plants.
6	CO-CHAIRMAN FORD: Now, that seems to me
7	a pretty important observation, that the weld defects
8	in Rotterdam fabricated heads, the frequency of them,
9	if that's a fact. Has that been followed up as to the
10	impact of that on this failure frequency?
11	I'm trying to look for
12	MR. MATHEWS: Sure.
13	CO-CHAIRMAN FORD: other things. Has
14	that been done? Has that analysis been done?
15	MR. MATHEWS: As far as where the other
16	Rotterdam welds are
17	CO-CHAIRMAN FORD: Yes.
18	MR. MATHEWS: and who has those? Yeah,
19	everybody knows who's got those, and those guys are
20	CO-CHAIRMAN FORD: But the second part of
21	my question is the impact. If Rotterdam Dockyards
22	does not apparently have a very good weld quality
23	control, what is the impact of that on the cracking?
24	MR. MATHEWS: I don't know. I don't know,
25	and the inspections are the only way we're going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	find out.
2	CO-CHAIRMAN FORD: Recognize that what I'm
3	looking for is what other things are we missing in
4	this prediction prioritization algorithm.
5	MR. MATHEWS: Yes. The four Rotterdam
6	manufactured vessels that have high head temperatures,
7	all four of those are being replaced, bam. They're
8	all out at Dominion, and they're all being replaced
9	right away.
10	The others are cold head plants, one of
11	which was Sequoia, and they are, you know, evaluating
12	what they need to do. Hopefully nothing, but you
13	know, because they are cold head plants, but certainly
14	Sequoia raised the flag, but then it turned out that
15	it wasn't leaking in their minds.
16	MR. WALLIS: You might compare this with
17	your previous slides. Your previous slides, the
18	message seems to be it's the welds that cracked.
19	There's 22 percent of the welds inspected that were
20	cracked on the old plants, and the other numbers are
21	much smaller.
22	But when we get to this slide, it's the
23	welds which were inspected the least compared with the
24	tubes, for instance. So I would think you emphasize
25	inspecting the welds more and increase those numbers

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	from eight percent to 40 percent or something.
2	MR. MATHEWS: Well, the B&W plants are all
3	replacing their heads.
4	MR. WALLIS: But you see what I mean. It
5	seems to be the welds that are the most likely to
6	crack, and they're the ones you don't inspect so much.
7	MR. MATHEWS: The weld data relative to
8	the tube data is clearly skewed by the North Anna 2
9	results where almost every nozzle in the head had a
10	weld flaw or
11	MR. WALLIS: So it's artificial.
12	MR. MATHEWS: Yeah. When you look at how
13	many of those were cracked, you know, relative to how
14	many were inspected, it kind of skews the results. It
15	really does.
16	CO-CHAIRMAN FORD: I haven't heard this
17	weld flaw argument stated before. It may have been
18	stated. I just don't remember. These are surface
19	breaking weld defects?
20	MR. MATHEWS: Yes.
21	CO-CHAIRMAN FORD: So they could act as
22	initiators for environment assisted cracking?
23	MR. MATHEWS: Yes, if they are not they
24	could be and probably are PWSCC flaws either
25	connecting weld defects during the manufacturing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	process.
2	CO-CHAIRMAN FORD: And is there any plan
3	at all to, as you go forward, to try to improve the
4	prioritization algorithms? Is there any plan at all
5	to introduce that known fact into the prioritization
6	in the future?
7	MR. MATHEWS: Yeah, we've got to learn
8	everything we can. North Anna 2 was the head that had
9	the most significant weld flaws. It also had circ.
10	flaws in the nozzle we believe emanating from weld
11	flaws without leaking to the top of the head because
12	they never penetrated the annulus.
13	And that is very interesting to us, and
14	we're going after those nozzles to understand what is
15	going on there. We're going to take those nozzles and
16	section them in the lab and figure out what's going on
17	with those welds. It's the welds at North Anna and
18	how that propagated into the nozzle.
19	CO-CHAIRMAN FORD: Looking forward I
20	mean this is fascinating figuring it out here as
21	you look forward and you're going to replace many of
22	your heads with 690, are they going to be fabricated
23	by Rotterdam?
24	MR. MATHEWS: I don't believe anybody
25	bought a head from Rotterdam.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	CO-CHAIRMAN FORD: Okay. That answers
2	mine.
3	MR. MATHEWS: Good. Okay. Can I skip to
4	the slide that says "Summary of Inspection Results
5	Statistics"?
6	No, keep going. I'm going to skip these
7	guys. This is just slicing and dicing with B&W
8	separated out, et cetera.
9	The 3,871 CRDM nozzles, 1,090 CEDM
10	nozzles, which are essentially the same, and 94 in
11	core instrument nozzles on the CE units, which are
12	very similar at 69 units in the country.
13	Bare metal visual and/or nonvisual NDE
14	inspections have now been performed on almost 81
15	percent of the reactor vessel head nozzles, including
16	the cold heads, and we found 47 roughly to be leaking.
17	About eight percent of the nozzles in the fleet have
18	shown leaking to date.
19	If you look at the non-B&W plants,
20	however, it has been limited to North Anna 2 and Surry
21	1, and those were primarily weld cracking.
22	Nonvisual examinations have been performed
23	on about half of the plants that were over 12, and
24	it's going up significantly as a result of the spring
25	outage inspections, and about a third of the moderate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	eight to 12 category and about two thirds of the
2	nozzles in the B&W plants and 25 percent of the
3	nozzles in the non-B&W plants have been examined
4	volumetrically.
5	Go to the next slide.
6	About 19 percent of the inspected B&W
7	plant nozzles show base metal cracking, and base metal
8	cracking in the non-B&W plants has so far been limited
9	to Millstone 2 and Cook 2, and although North Anna 1
10	and 2 nozzles had weld cracking, some of it did
11	propagate into the base metal, we believe, on at least
12	North Anna 2.
13	And this spring we detected at Beaver
14	Valley some nozzle cracking on the OD of the nozzle
15	below the weld, axial cracks on four nozzle., and
16	those have been repaired, and the unit is on its way
17	back to power.
18	About eight percent of the J groove welds
19	have been examined by ET or PT, which is not a large
20	fraction, but that's what the statistics were in
21	February.
22	We've seen weld flaws, you know, some
23	plants that have had no flaws, Robinson, for instance,
24	and some plants that have had extensive flaws like
25	North Anna 2, and they were both very high on the EDY
	•

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	rankings. So it says there could be something to the
2	way the weld was manufactured, although, you know, so
3	far we can't say, you know, that Rotterdam head, we
4	don't have an issue. We're not going there.
5	MR. WALLIS: No, but if you go back to,
6	again, this Slide 9, the non-B&W, less than 80 EDY,
7	you've only inspected one weld. Maybe that means one
8	sort of zero percent in that right-hand bottom
9	corner. So you haven't inspected the welds on these
10	plants which are nonsusceptible.
11	MR. MATHEWS: In the cold head plants,
12	you're right.
13	MR. WALLIS: You can't reach any
14	conclusion about them.
15	MR. MATHEWS: On the cold head plants,
16	you're right. We have inspected some from the higher
17	time and temperature.
18	Where was I?
19	The point, and I guess we've said it,
20	Rotterdam and B&W are the only manufacturers in which
21	we've detected weld flaws that were potentially
22	leaking or significant weld flaws on any of the units.
23	Basically I don't believe that there has been any
24	cracking detected in a CE manufactured head or the
25	other manufacturer in the welds.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We've also broken it down by material and fabrication groups and trying to glean out the data. That's one of the things we've been trying to do based on the inspection results, but it's hard at this point to isolate anyone out other than the information that I've already given.

7 If you look at the plants that have had circ. cracks above or over the J groove weld, there's 8 9 only been five units that have had those circ. cracks, and the only one -- that have detected them -- and the 10 11 only one that is not a B&W unit, B&W designed unit, is 12 the North Anna 2 head, and those cracks for the most part, we believe, initiated in the weld and propagated 13 14 up and into the tube.

Talking about inspection plans for the spring outages, per the order all of the plants that were in the greater than 12 BDUY category, I believe, are doing -- this was before the order -- but all of the plants that were in the greater than 12 are doing volumetric examinations, and everybody, I believe, is complying with the order as best they can.

22 So there's a lot more volumetric exams 23 this spring. 24 Back to San Onofre, which may have been

24 Back to San Onofre, which may have been 25 included, they did UT. Let's see who else. Turkey

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

Point has done UT. Beaver Valley has done UT. Sequoia did a few nozzles. They're a very low susceptibility plant. Farley 1 did UT. Indian Point did some UT, and when I said UT it may include eddy current also of the nozzle surface, and there are other plants that have not finished their outages yet that have plans to do so.

8 CO-CHAIRMAN FORD: I understand, Larry, 9 that three of those plants, Turkey Point 3, Calvert 10 Cliffs (phonetic), and Palo Verde, have all asked for 11 some sort of relief on this inspection. Are you able 12 to say anything at all about that, explain why?

MR. MATHEWS: Well, I suspect that every unit will have some relaxation request per the order. It's just kind of hard to write a generic order that covers every situation, and so most plants are going to find some minor limitations in coverage because it was very specific in the order: two inches above to the bottom of the nozzle.

Inspecting all the way to the bottom of the nozzle can be problematic, depending upon the probe design. Access could limit to two inches above or below or certain areas around. So everybody will probably -- I won't say everybody, but many plants will have some relaxation request.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	52
1	I'm not sure exactly what Turkey Point's
2	were. I believe theirs was related to minor lack of
3	coverage at the bottom of the nozzles.
4	CO-CHAIRMAN FORD: Will someone from the
5	staff be
6	MR. HISER: Yes, this is Alan Hiser
7	(phonetic).
8	Tomorrow we'll talk about a little more
9	detail on the relaxation requests, but actually I
10	think of the plants up there, Turkey Point, Farley,
11	Calvert
12	MS. WESTON: Palo Verde he mentioned.
13	MR. HISER: Yeah, Palo Verde, Beaver
14	Valley, Indian Point, virtually all plants. A lot of
15	it is things at the bottom of the nozzles, either
16	threads for guide funnels or tapers on the ID of the
17	nozzles to prevent coupling of the transducer. Things
18	like that are a lot of the issues.
19	There are some more significant ones, but
20	we'll talk about those tomorrow in more detail.
21	CO-CHAIRMAN FORD: Thank you.
22	MR. SHACK: The order, you had to do UT
23	because you have to be able to see both the ID and the
24	OD?
25	MR. MATHEWS: Well, the order allowed a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	full surface eddy current where you did the weld, the
2	OD of the tube and the ID of the tube. If you could
3	do that and say there's no flaws, then that would be
4	good enough or if you chose the UT path instead of
5	doing a weld exam, they allowed a zero degree query
6	for the leakage assessment and through the
7	interference fit.
8	MR. SHACK: But you can't do an OD exam
9	with the eddy current, can you?
10	MR. MATHEWS: Below the weld you can.
11	MR. SHACK: Oh, below the weld.
12	MR. MATHEWS: On the stub piece that
13	sticks down. So it would be like a full wedded
14	surface eddy current, and if you examine the surface
15	and there is no surface breaking flaws, then that was
16	satisfactory per the order.
17	MR. WALLIS: That stub that sticks down is
18	not really characteristic of what's up above it, is
19	it? The stresses and everything are different.
20	MR. MATHEWS: Exactly. The stresses taper
21	off very rapidly once you go below the weld, but you
22	want to if you want to use just the surface exam to
23	say there's no leakage path, then you need to examine
24	the whole surface so that you can assure yourself
25	there's nothing that started right below the weld and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	propagated up through to the annulus.
2	So if you chose the surface, the eddy
3	current, you need to do the full wedded surface. If
4	you chose UT, then you could query the tube and also
5	look for leakage through the annulus. Okay?
6	I'm not sure there's much point in walking
7	through the rest of the inspection plans for this
8	spring since the order kind of preempted what a lot of
9	people had at that point in time, although we were
10	already the MRP was already in the process of
11	recommending that all units at some point in the near
12	future go do a baseline volumetric or under the head
13	NDE exam.
14	We had just had too many surprises, and we
15	said we need to know what the condition of the fleet
16	is. So we were in the process of making that same or
17	a very similar recommendation to that.
18	CO-CHAIRMAN FORD: Do I understand that
19	the outstanding questions about the inspection
20	sensitivity will be covered later on?
21	MR. MATHEWS: Tom will cover the
22	demonstration program.
23	CO-CHAIRMAN FORD: And we'll be talking
24	later on about on the basis of these observations,
25	plus the possibility at South Texas, how you're going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	to change your prioritization. That's going to be
2	discussed later?
3	MR. MATHEWS: Yes. David is going to walk
4	through a process that we're going through right now
5	to revise our inspection recommendations.
б	CO-CHAIRMAN FORD: And will that also
7	cover other than VHPs?
8	MR. MATHEWS: Well, this is geared toward
9	the vessel head penetration.
10	CO-CHAIRMAN FORD: Will the next, the
11	further discussion that's going to come on later on;
12	will that also extend this prioritization to cover
13	over components in the primary system, such as
14	popcorn?
15	MR. MATHEWS: The MRP is working on that,
16	but we don't have a presentation on that. We're
17	developing that process, and it's going to be a more
18	rigorous process than we've been through in the past.
19	CO-CHAIRMAN FORD: Okay.
20	MR. MATHEWS: Now, you had asked about the
21	
22	CO-CHAIRMAN FORD: At some time or other
23	we would like to know what the industry's position is
24	on, for instance, inspection prioritization algorithms
25	that extend the VHP situation to bottom head, not only

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	from the pressure vessel, but also the pressurizers.
2	It's all the same mechanism. Therefore, the
3	prioritization algorithm
4	MR. MATHEWS: Yeah.
5	CO-CHAIRMAN FORD: should at least
6	account for these changes due to material or stress
7	differences.
8	MR. MATHEWS: Or time at temperature if
9	that's still relevant.
10	CO-CHAIRMAN FORD: Correct.
11	MR. MATHEWS: So, you know,
12	CO-CHAIRMAN FORD: So you may not be able
13	to cover it today or tomorrow, but soon.
14	MR. MATHEWS: We'd be glad to come back
15	and talk to you when we get a little further down.
16	You had asked a little bit about the boric acid
17	program that we have. I believe David has the status
18	of it.
19	We had laid out a program that was going
20	to go after some of the first principles on the head
21	penetration issue, and some of the first principles
22	just on alloy steel corrosion rates, et cetera.
23	There has been a lot of work done in the
24	past, but some of it was not, if you will,
25	prototypical of the configuration that is at the top

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	of the head.
2	And so we have laid out a program to go
3	after
4	CO-CHAIRMAN FORD: When are you planning
5	to present that?
6	MR. MATHEWS: Well, right now it's in the
7	process of bidding to do the work.
8	CO-CHAIRMAN FORD: No, I knew that. It's
9	just when you mete out your RFP, you presumably had
10	some idea of a logic plan
11	MR. MATHEWS: Yes.
12	CO-CHAIRMAN FORD: of what you wanted
13	to cover and what the endpoint was going to be
14	MR. MATHEWS: Yes.
15	CO-CHAIRMAN FORD: and when that
16	endpoint was going to be. That's what we like to
17	hear.
18	What was your logic?
19	MR. MATHEWS: Well, we
20	CO-CHAIRMAN FORD: the RFP, what was
21	your logic thought?
22	MR. MATHEWS: Our logic was to look at the
23	various both what do you call it? separate
24	effects tests, to go after the various conditions that
25	could exist as a cavity develops or leak starts and a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	cavity develops on top of a head, and then to combine
2	them into full mock-up tests if and when those are
3	necessary.
4	CO-CHAIRMAN FORD: What about the physical
5	phenomena associated with it, fundamental phenomena
6	associated with it?
7	MR. MATHEWS: Of the corrosion?
8	CO-CHAIRMAN FORD: Corrosion kinetics,
9	thermal hydraulics.
10	MR. MATHEWS: Yes, we were going to look
11	at stagnant and low flow tests. We were going to look
12	at high flow tests with jets and impingement.
13	CO-CHAIRMAN FORD: Well, that would be
14	covered later on even on one page? Yes?
15	The reason why I'm asking when it was
16	going to be done is because I know that Bill Cullen
17	has got a fairly extensive discussion of the NRR and
18	his research plans, and it would be useful to have
19	those two presentations side by side so that we can
20	see what's being covered.
21	MR. MATHEWS: We don't have a
22	presentation. We've got one slide on the status; is
23	that correct?
24	MR. STEININGER: I can talk off the top of
25	my head, but

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	MR. MATHEWS: And I have about a six page
2	write-up on the plan that we had put together to go
3	after this. This was before we went out for bids,
4	but
5	CO-CHAIRMAN FORD: It is rather important
6	that we have a prediction capability for this so that
7	we can prioritize where we look for boric acid
8	corrosion on the head and, indeed, anywhere else in
9	the country into the primary system.
10	MR. MATHEWS: Unless you look everywhere.
11	CO-CHAIRMAN FORD: Yeah.
12	MR. MATHEWS: And frequently enough.
13	CO-CHAIRMAN FORD: And prioritize. If you
14	knew what the mechanism was, et cetera, et cetera.
15	Okay, Larry. Thank you very much.
16	MR. MATHEWS: Okay.
17	CO-CHAIRMAN FORD: If we may, we'll cover
18	that one page of your extemporaneous discussion at the
19	time we take Bill.
20	MR. MATHEWS: Okay.
21	CO-CHAIRMAN FORD: Are there any other
22	questions for Larry on this particular segment?
23	(No response.)
24	CO-CHAIRMAN FORD: Thank you very much,
25	indeed.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	MR. MATHEWS: Okay. At this time I would
2	like to have David come, and he's going to walk
3	through the slides.
4	Craig Harrington was going to make this
5	presentation originally. He's the Chairman of the RPV
6	head working group in the ITG.
7	CO-CHAIRMAN FORD: Okay. This is for the
8	record David Steininger?
9	MR. MATHEWS: David Steininger with
10	Electric Power Research Institute.
11	MR. STEININGER: Well, hello, gentlemen.
12	Like Larry said, the person that created this
13	presentation, Craig Harrington, who is Chairman of our
14	RPV head working group, went to South Texas to help
15	out. Craig is from Texas Utilities, and South Texas
16	asked for a number of industry people to go help out
17	at South Texas, which they do.
18	Craig went, and the person that works for
19	me that would have been the next choice to make the
20	presentation, Christine King, also went. So I'm the
21	one that drew the short straw.
22	So what I'd like to talk to you about is
23	the process that Larry mentioned earlier, and that is
24	a much more formal, detailed procedure that we're
25	going to institute when we relook at our inspection
25	going to institute when we relook at our inspection

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	plan for the RPV head.
2	As you know, last year the well, first
3	let me introduce myself. My name is David Steininger,
4	and I am the lead manager for both the MRP program at
5	EPRI and the SGNP program, the steam generator
6	management program, at EPRI.
7	So a lot of this stuff that's going on in
8	the MRP program is not too unknown to me because I've
9	suffered through quite a bit of 25 years of disasters
10	in the steam generator world.
11	MR. ROSEN: As have some of us.
12	MR. STEININGER: Yes. In fact, he was on
13	one of our committees for many years, Steve was.
14	Okay. As you know, last year the MRP did,
15	in fact, produce an inspection document for its
16	members for inspection of the RPF top head. For
17	practical reasons, as we all know, that inspection
18	plan was essentially replaced by the requirements or
19	the suggestions provided in the NRC Bulletin 2002-02
20	and then subsequent to that the order.
21	But in any event, there's nothing to
22	suggest that the inspection frequencies and the
23	inspection tapes that were presented in our inspection
24	plan were invalid, and in fact, we still believe that
25	everything that, in fact, we had proposed in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	inspection plan is still valid.
2	But what we want to talk to you today
3	about is the process that now we are formally going to
4	institute to take a relook at that inspection plan and
5	see if it still holds true and modify it as necessary.
6	So the topics that I'm going to discussion
7	are what we now call the overall safety assessment
8	process, which will support the inspection plan. I'll
9	mention to you the requirement that we've now placed
10	on our members to actually go in and do a baseline
11	inspection. I'll mention the failure modes and
12	effects analysis, which is a very formal procedure
13	trying to identify all the possible modes of failure
14	associated with
15	MR. WALLIS: Those inspection intervals
16	chosen to insure safety implies that you know
17	something about how rapidly things occur between these
18	intervals.
19	MR. STEININGER: Yes, we thought we did.
20	MR. WALLIS: Do you know that?
21	MR. STEININGER: Well, the documented the
22	MRP 75, which was a technical basis document for our
23	inspection program that we provided our members last
24	year.
25	MR. WALLIS: So you're pretty sure about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	this insuring safety because you know the things
2	couldn't happen faster?
3	MR. STEININGER: We still are very
4	confident that what we provided in the document still
5	holds true.
6	Okay. Then the supporting, again,
7	everything that we have just mentioned here obviously
8	boils down to that you have to know your crack growth
9	rates; you have to know your stress intensity factors;
10	and obviously with the boric acid situation, you're
11	going to have to know how the boric acid corrodes the
12	carbon steel.
13	So let's go on to the next slide.
14	CO-CHAIRMAN FORD: David, just to make
15	sure, this is essentially the MRP 75?
16	MR. STEININGER: This is a whole new
17	process to relook at MRP 75 and modify it if
18	necessary. We didn't actually go through this kind of
19	formal process when we developed MRP 75. I guess you
20	could call it the fog of war back then. There was a
21	lot of midnight oil being burned, and we produced an
22	inspection document and its technical basis.
23	CO-CHAIRMAN FORD: So this is what I see
24	referred to as the revision of MRP
25	MR. STEININGER: That's correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	CO-CHAIRMAN FORD: 75, and has this
2	been reviewed by the staff, what you're about to
3	MR. STEININGER: The revision hasn't been
4	produced yet. This is going to lead to possibly a
5	revision of MRP 75. This is the process.
6	CO-CHAIRMAN FORD: But the process here is
7	new.
8	MR. STEININGER: Yes. This is the process
9	that we've essentially now instituted that we will
10	follow in coming up with a revision to MRP 75.
11	MR. POWERS: Peter, do we have MRP 75?
12	CO-CHAIRMAN FORD: We do not. ACRS does
13	not formally have MRP 75. I have it.
14	MR. STEININGER: A long time ago, and
15	we've made presentations on MRP 75.
16	CO-CHAIRMAN FORD: Oh, everyone has
17	received it?
18	MS. WESTON: Yes.
19	CO-CHAIRMAN FORD: Oh, I take that back.
20	So what you're hearing today, Dana, is
21	MR. POWERS: New and different. I
22	understand. I'm trying to recall MRP 75.
23	MS. WESTON: Yeah, way back in the early
24	part of 2002 we sent you a copy.
25	CO-CHAIRMAN FORD: The approach was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	discussed at the full committee meeting in June of
2	2002, June or July.
3	If I may for Dr. Powers, there's two key
4	documents, MRP 55, I believe it is, which relates to
5	the crack growth rate, which you have seen, I think.
6	And subsequent to that was MRP 75, which made use of
7	crack growth rate.
8	MR. STEININGER: That's correct.
9	CO-CHAIRMAN FORD: What you are about to
10	hear now is not in the document, MRP 55. We have not
11	received a copy of this.
12	MR. STEININGER: Correct.
13	Okay. So let me just go over very briefly
14	the overall process that we've now defined that we
15	will formally go through in order to verify that what
16	we have in MRP 75 is correct or it needs modification.
17	We're now in the process of following a
18	failure mode and effects analysis, and that's where,
19	well, as we all know, we've been surprised many times
20	in the past. We were surprised by the axial cracking
21	in the nozzle. We thought that's all we were going to
22	see, as mentioned before, and then we got hit with OD
23	cracking outside of the nozzle.
24	We ended up getting wastage at the top of
25	the head and now we're getting cracking at the bottom

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

66
head of the vessel. So
MR. ROSEN: Maybe.
MR. STEININGER: Maybe. In any event,
we're sick of being surprised. So what we'd like to
do is formulate a process here in our revision to MRP
75 which tries to get us ahead of the curve, and
obviously one of the things that we need to do is to
try to anticipate the various modes of failure and
degradation that we may see in the future.
And if this overall process is successful
in applying it to MRP 75, this is the process that
will probably follow for all of the components in the
RCS system because that's essentially where we're
headed, to try to do this in a prioritization type way
and trying to understand where failures are going to
hit us in the future, and that's where the industry is
going.
The first application of this overall
process though is for the nozzles.
So you can see that what we first tried to
do is we and this is an application to the
nozzle we try to identify all failures, all forms
of degradation that can lead to the failure for the
nozzle, and as you can see, I've listed that here in
the second column.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	And once you do that, you obviously have
2	to define a probability of detection for the
3	degradation. You have to set your inspection cycles
4	appropriately, and you finally go through and do a
5	formalized safety assessment analysis.
6	MR. WALLIS: Do you have a probability of
7	detection for these UT and ET methods?
8	MR. STEININGER: Well, we have a whole
9	process that we have instituted to go and find out
10	what that probability of
11	MR. WALLIS: Actually you don't know what
12	it is yet. Maybe he'll tell us.
13	MR. STEININGER: He may tell you.
14	Probability of detection?
15	MR. ALLEY: POD, we did the mock-ups.
16	MR. STEININGER: So it's just
17	demonstration then that's going on.
18	Okay. Tom will tell you about the
19	program, but you're absolutely right. At some point
20	you have to define probability of detection. That's
21	what you were bringing up earlier. We can't get away
22	from it.
23	Okay. Then you end up going into
24	developing a safety assessment report. You have
25	defined your inspection cycles. You've defined the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	types of inspections that you're going to recommend,
2	and everything that is done out in the field will have
3	to be bracketed by that safety assessment report.
4	Okay. The next slide.
5	CO-CHAIRMAN FORD: Hold it. Stop.
6	MR. MATHEWS: Yes.
7	CO-CHAIRMAN FORD: You say this schema
8	you're showing here, schematic, is going to be the
9	framework for which you're going to apply to all I
10	think you said all components. I'm assuming you mean
11	just to all
12	MR. STEININGER: No.
13	CO-CHAIRMAN FORD: primary water side
14	ones.
15	MR. STEININGER: Correct. This is the
16	forma process that we're using to modify MRP 75, and
17	I would hazard to guess if this process is successful,
18	we'll probably use this kind of process for all other
19	components that we have to address.
20	CO-CHAIRMAN FORD: And so this is the
21	template upon which
22	MR. STEININGER: Correct.
23	CO-CHAIRMAN FORD: you based all future
24	developments of, four instance, inspection technology,
25	et cetera.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	MR. STEININGER: I would say that's
2	probably true.
3	CO-CHAIRMAN FORD: You do not have on this
4	graph low temperature embrittlement at 619 or 152.
5	MR. STEININGER: Well, if you look at it,
6	there's a little box right up at the top. It says
7	technical basis for Alloy 690, 152 and 52. That's
8	where.
9	CO-CHAIRMAN FORD: But as it relates to
10	the failure mechanisms showing the second
11	MR. STEININGER: Right.
12	CO-CHAIRMAN FORD: and embrittlement is
13	not in the second.
14	MR. STEININGER: That's probably true, but
15	it is a concern.
16	CO-CHAIRMAN FORD: Is there work being
17	done? I know I'm probably jumping the
18	MR. STEININGER: You are. It's not even
19	in the presentation.
20	CO-CHAIRMAN FORD: When you say I am
21	jumping the gun, you mean you're going to cover it
22	later on in this presentation.
23	MR. STEININGER: I'm not covering it in
24	this presentation, but we are looking at that
25	phenomenon, low temperature embrittlement of 690.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	CO-CHAIRMAN FORD: And the welds.
2	MR. STEININGER: Yes.
3	MR. MATHEWS: The FMEA, you know, the
4	second column here, are, if you will, results of
5	degradation. The FMEA, he's got it as one box, but
6	it's actually this huge flow chart that walks through
7	every possible degradation and how that could progress
8	to some accident scenario.
9	And so if we're evaluating a 690
10	component, that would be potentially one of the
11	degredation mechanisms that has to be walked through
12	the failure modes and effects analysis.
13	CO-CHAIRMAN FORD: Now, when you said it's
14	going to be addressed, specifically when will it be
15	addressed?
16	The reason why I'm pushing you here is
17	that up until Davis-Besse we said, "Hey, you're not
18	going to get boric acid corrosion in that particular
19	part of that subassembly." Now I'm positing another
20	failure mechanism that's not out of the question.
21	MR. STEININGER: You're talking about
22	hydrogen embrittlement at low temperature.
23	CO-CHAIRMAN FORD: Well, hydrogen effects
24	on high chrome-nickel based objects.
25	MR. STEININGER: Yeah, and we do have some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	testing going on in that area.
2	CO-CHAIRMAN FORD: Okay, and that will be
3	completed in time so that they're not going to have a
4	huge reaction.
5	MR. STEININGER: As Larry said, when we
6	applied the failure modes and effects analysis, that's
7	one of the phenomena we identified as a concern, and
8	we are working on it. Okay?
9	CO-CHAIRMAN FORD: Okay.
10	MR. STEININGER: Next slide.
11	MR. WALLIS: Well, I just have a comment.
12	You have all of these technical evaluations in these
13	boxes. I hope that they include what our Chairman is
14	talking about, which is an understanding of what's
15	going on from the point of view of the physics,
16	chemistry, and so on, in more than a superficial way.
17	MR. STEININGER: Yes.
18	MR. WALLIS: So your expert committees
19	involve people who work on these areas?
20	MR. STEININGER: Well, that's what we did
21	for MRP 55, which was the expert panel, to put
22	together their recommendation on crack growth rate for
23	Inconel 600.
24	MR. WALLIS: That's correct.
25	MR. STEININGER: That's the process we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
follow.

1

2 So the MRP is essentially Okay. 3 transitioning to a combination of baseline inspections 4 and periodic inspections. The timing of the baseline 5 inspection and the reinspection interval, obviously, will be based on all of this analysis, and it will be 6 7 based up by a more extensive bare metal inspection of the reactor pressure vessel head. 8 inspection 9 The revised plan, as Ι

10 indicated before, will be based on the entire safety 11 assessment report, which will document this entire 12 process that I briefly described earlier.

Just in summary, the safety assessment report begins with the failure modes and effects analysis. It anticipates all possible failures associated with the component, subject component, or has been observed in the field.

Then finally we'll use the analysis, the kind of analysis that you've already seen, which is presented to MRP 75.

21 CO-CHAIRMAN FORD: Now, when you look at 22 this and responding to Professor Wallis' comments and 23 mine, you've got a huge program. There's a huge 24 amount of development involved.

MR. STEININGER: Absolutely.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

72

	73
1	CO-CHAIRMAN FORD: So what is the timing
2	of the completion of either the complete article or
3	various submodes of it?
4	MR. STEININGER: We expect to have the
5	safety assessment report done for the nozzles by the
6	middle or late summer. So essentially we would have
7	this finished for the nozzles by middle or late
8	summer.
9	CO-CHAIRMAN FORD: So you'll have
10	finished
11	MR. STEININGER: Correct, this process.
12	CO-CHAIRMAN FORD: all of the boric
13	acid
14	MR. STEININGER: No.
15	CO-CHAIRMAN FORD: which goes into
16	this?
17	MR. STEININGER: No, no. For nozzle
18	cracking.
19	CO-CHAIRMAN FORD: Oh, nozzle cracking.
20	I didn't hear.
21	MR. STEININGER: Correct.
22	CO-CHAIRMAN FORD: I missed the word
23	"cracking."
24	Okay, and when will all of the other
25	degradation modes be addressed? You'd gone down one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	path of this crack. The question of the treatment of
2	the wastage, of the low temperature embrittlement, any
3	other loads, your expert panel may
4	MR. STEININGER: I'll have to get back to
5	you on that. I don't know the schedule.
б	MR. MATHEWS: The boric acid schedule,
7	well, you have the schedule, right? But it's a couple
8	of year program to really understand this cavity
9	formation.
10	MR. STEININGER: For example, we're just
11	now going out with the RFP, as you know, on boric
12	acid.
13	Okay. Next slide.
14	Well, again, the failure modes and effects
15	analysis establishes the kind of technical evaluations
16	that we'll need. I would like to point out as I
17	indicated earlier, our existing calculations show that
18	the nonvisual inspections that we've documented or
19	recommended to MRP 75 probably still holds true.
20	There's nothing to suggest that they're wrong.
21	The calculations done to date to support
22	MRP 75 indicate extremely low probability of nozzle
23	ejection and significant wastage, and ultimately an
24	extremely small consequential increase in core damage
25	frequency, which is consistent with NRC Reg. Guide

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1.174.

1

2	Okay. As indicated earlier by Larry,
3	subsequent to the release of MRP 75 to our members,
4	which established our recommended inspection plan, we
5	sent out a letter to our members which recommended a
6	baseline inspection be performed, and this baseline
7	inspection consists of a combination of inspections
8	which I've listed here. The members could use UT or
9	bare metal visual and UT of the base metal from the
10	tube ID and bare metal visual to give an indication as
11	to whether the weld had cracked or not. They could
12	perform a UT or eddy current; UT of the base metal for
13	the tube ID and ET or PT of the weld surface.
14	Finally, they could perform eddy current
15	for both nozzle and the weld. For the nozzle it would
16	be ID and OD, and then they could use ET/PT for the
17	weld surface.
18	MR. WALLIS: Why is it just the weld
19	surface? I mean, aren't there cracks inside the weld?
20	MR. STEININGER: The weld is very
21	difficult to detect by
22	MR. WALLIS: Well, you don't do it because
23	it's difficult or you don't need to know it?
24	MR. STEININGER: Well, I think it's a
25	combination. What we're asking here is simply to use

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

75

	76
1	eddy current surface.
2	MR. WALLIS: Well, you do what you can.
3	It may not be that's enough and maybe you need a
4	method for looking inside of the weld.
5	MR. STEININGER: Well, that very well
6	could be.
7	MR. WALLIS: Well, if you do need it, then
8	you ought to say so.
9	MR. STEININGER: Well, the PWSCC is going
10	to attack the surface of the weld, correct? So that's
11	why we're looking at the surface of the weld.
12	MR. MATHEWS: Plus volumetric exams of
13	weld metal, nickel based weld metal is very, very
14	difficult.
15	MR. WALLIS: Okay. So you're assuming if
16	there's a crack under the weld because it's not
17	subjected to this stress corrosion cracking you won't
18	know unless it breaks the surface? That's sort of a
19	technical judgment, I guess.
20	MR. MATHEWS: Well, I think fatigue
21	analysis, et cetera, for those types of cracks would
22	indicate they're okay.
23	MR. STEININGER: Okay. Next slide.
24	MR. SHACK: Dave, can I just come back?
25	MR. STEININGER: Yeah.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	MR. SHACK: One thing in MRP 75. You
2	really looked at an average plant, and are you going
3	to do more to address the kind of range of variations
4	that might be possible?
5	MR. STEININGER: I'm not so sure we looked
б	at the average plant, but we took the worst case heat
7	that was cracking in the field, for example. We used
8	the
9	MR. SHACK: No. When Pete did his Monte
10	Carlo analysis, he really sampled over the whole
11	distribution, which is, in effect, looking at an
12	average. I mean, he did not try to define a 95th
13	percentile probability of failure. He was basically
14	getting the probability of failure of the average
15	plant.
16	MR. STEININGER: But he took worst case
17	material properties, for example, when he did that
18	analysis, and he also used the
19	MR. SHACK: No. I mean, he sampled from
20	a distribution. He was trying to avoid I mean,
21	that would be one solution, would be to take bounding
22	cases, but he really didn't do that, you know. And it
23	seems to me that that still has to be addressed in the
24	MRP 75 kind of analysis.
25	Essentially it's not good enough to show

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	that the probability of a failure in the average plant
2	is very small.
3	MR. STEININGER: Well, I know in the past
4	Steve Long has brought this up, the same comment, and
5	you know.
6	MR. MATHEWS: There's been some
7	modifications to the PFM analysis. I'm not sure of
8	the details yet. I know we've changed the way we
9	propagate the flaw and a couple of other things in
10	response to some of the questions we've gotten from
11	the staff, and Pete's not through his new work, but we
12	need to take a look at that.
13	You're saying we need to possibly look at
14	a worst case plan as opposed to an average.
15	MR. SHACK: Well, I mean, there's a
16	distribution of plants.
17	MR. MATHEWS: Yes, there is.
18	MR. SHACK: I mean, you know, the average
19	plant is not the one I'm worried about. The average
20	plant is not a problem.
21	MR. STEININGER: You're worried about the
22	plant where all of the uncertainties stack up in the
23	wrong direction for you.
24	MR. SHACK: No, no, it's not even the
25	uncertainty. It's just that there's a range of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	material properties. A plant with the average
2	properties is probably not a problem. A plant with
3	the worst properties
4	MR. STEININGER: Worst case, that's right.
5	MR. SHACK: is a problem, and at least
6	the way the analysis was done in MRP 75, I don't
7	believe that you are really considering properly the
8	range of properties that were encountered because of
9	the way you did the analysis.
10	MR. MATHEWS: I think there were some
11	sensitivity studies done, but I'll take a note, and
12	we'll get back.
13	MR. STEININGER: Yeah, we'll get back to
14	you. We'll let Pete develop an answer for you on
15	that.
16	Okay. In this process, the time at
17	temperature is still going to be the parameter of
18	choice that we'll use to rank the susceptibility
19	groups for a plant, and this baseline inspection is
20	expected to be completed for the high susceptibility
21	plants by the next refueling outage. So this
22	presentation was made for, I guess, the February ACRS
23	meeting. So probably all of the high susceptibility
24	plants will have probably implemented the baseline
25	inspection by now.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	It is expected that the moderate
2	susceptibility plants will perform the baseline
3	inspection by approximately 2005, and the low
4	susceptibility plants by 2007.
5	MR. ROSEN: So how does the South Texas
6	experience, assuming that this time there are cracks,
7	play with this whole strategy?
8	MR. STEININGER: Well, again, this is
9	directed to the top head.
10	MR. ROSEN: Yeah, that's exactly my
11	question.
12	MR. MATHEWS: It depends, you know, and we
13	can go chase the rabbit trails of what if South Texas
14	is this or what if it's that, and until we know, we're
15	spinning our wheels.
16	CO-CHAIRMAN FORD: But combining that
17	question with Bill's question, is this methodology you
18	said was for all primary water systems.
19	MR. STEININGER: Probably will be a part.
20	CO-CHAIRMAN FORD: It must, therefore,
21	include pressurized penetrations as well as open head
22	penetrations.
23	MR. MATHEWS: Eventually.
24	MR. STEININGER: Eventually, yes.
25	CO-CHAIRMAN FORD: Oh, no, you said

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	cracking by the mid-summer.
2	MR. MATHEWS: Not the top.
3	MR. STEININGER: For the top head.
4	CO-CHAIRMAN FORD: For the top head. So
5	assume South Texas, it turns out to be unfortunately
6	the situation that we believe it might be, and
7	therefore, you cannot
8	MR. POWERS: Which is what?
9	MR. ROSEN: All we're doing here is
10	hypothesizing one side or the other. So I want to
11	know what your hypothesis in this sentence is.
12	CO-CHAIRMAN FORD: Well, I don't want to
13	go on the record as saying South Texas is cracked. We
14	just don't know.
15	MR. ROSEN: Right. No one knows right
16	now.
17	CO-CHAIRMAN FORD: But we do know that
18	pressurized is cracked.
19	MR. STEININGER: Yes.
20	CO-CHAIRMAN FORD: And it's the same
21	mechanism. It's the same phenomenon. So if this all
22	singing, all dancing analytical process is full, it
23	should be able to take into account changes because of
24	residual stress variability, materials variability,
25	Bill's point, and cover pressurized, and moreover the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	repair of pressurized.
2	So does that enter into your timing? I
3	know you said quite specific now it's cracking only
4	for primary water side, vessel head penetrations.
5	MR. STEININGER: Right.
6	CO-CHAIRMAN FORD: But you've got to
7	expand it eventually.
8	MR. STEININGER: Yes.
9	CO-CHAIRMAN FORD: And when does that
10	expansion take place? How quickly does it take place,
11	especially if it's pushed by potential
12	MR. MATHEWS: Well, South Texas could
13	clearly push us to speed up our process, if you will.
14	CO-CHAIRMAN FORD: Well, maybe this is
15	another management discussion, but we all recognize
16	resource restrictions.
17	MR. MATHEWS: Yeah. There's only so many
18	of us.
19	CO-CHAIRMAN FORD: I'm assuming.
20	MR. ROSEN: And there's only so much
21	inspection resource.
22	MR. MATHEWS: So much?
23	MR. ROSEN: Inspection resource.
24	MR. MATHEWS: Right, right.
25	MR. ROSEN: People who can do whatever

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	83
1	technique turns out to be necessary to determine what
2	it is that may be cracking.
3	MR. MATHEWS: And tools that can deliver
4	the transducers.
5	CO-CHAIRMAN FORD: I recognize we're
6	putting you in the hot spot here, but obviously if
7	there's resource limitations, there's going to be a
8	prioritization.
9	MR. MATHEWS: Right.
10	CO-CHAIRMAN FORD: How are you going to
11	decide on your prioritization, coming up with your
12	prioritization algorithm? What's your decision making
13	process for deciding how quickly you're going to
14	evolve these modified all singing, all dancing
15	prioritization of them?
16	MR. MATHEWS: For the top head, we're
17	going to try and get it out by the end of the summer
18	for revised inspection program, which is, to be
19	honest, may not deviate a lot from what's been
20	ordered, if you will.
21	CO-CHAIRMAN FORD: Right. You're already
22	going ahead.
23	MR. MATHEWS: Yeah. We may have some
24	recommendations to certain things, such as
25	reinspection frequency or something, that we want to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	pursue with the staff in the process of revising that
2	inspection plan.
3	For the rest of the components, we have
4	another working group, not the head working group. We
5	call it the butt weld working group, but their charter
6	is to include all of the Alloy 600 in the plant and to
7	go after it.
8	There's two things we're trying to do
9	here. Number one, show that the plants are safe; and,
10	number two, figure out when and how we need to be
11	inspecting these components to assure the continued
12	safety, and that's the point of what we're trying to
13	do here with the FMEA and all of this other work, is
14	to walk through a process so that we can figure out
15	what is the right timing for what kind of inspections
16	to assure the continued safety.
17	And you know, we've put our resources
18	first on the butt welds, but then that got
19	overshadowed very quickly by the top head, and we've
20	put some more resources back on the butt welds and now
21	South Texas could drive us to reassess not only what
22	that does to other components, but perhaps also what
23	it might do to our previous assumptions as far as the
24	top head.
25	And we've just got to wait and see what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

85

1 they find. We've got to wait and see what they find. 2 configuration the bottom And the on mounted 3 instruments is potentially going to make it very, very 4 difficult to get to a real base root cause on this, 5 you k now. You don't just go take a boat sample down It's not as easy as a top head or a weld in 6 there. 7 the plant or something like that.

8 CO-CHAIRMAN FORD: If you had cracking, 9 what is physically different? You've had cracking in 10 pressurizers, bottom head penetrations in 11 pressurizers.

MR. MATHEWS: Temperature is very, very different. The pressurizer is the hottest component in the plant, and so the time at temperature on a pressurizer is basically T SAT for the life of the plant..

17 CO-CHAIRMAN FORD: Is that predicated by 18 the current -- if that's the only change, temperature, 19 is that predicted by any current algorithms?

20 MR. MATHEWS: Yeah. If we just do a time 21 temperature analysis, it at would sav that 22 pressurizers ought to be having problems or that would 23 be a component where you would expect to see PWSCC. 24 Also for instrument penetrations, those are at T-hot for the life of the plant, if you will, and they 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	experience problems there.
2	They've never seen them on cold leg nozzle
3	penetrations I don't believe, and so you know, the
4	time at temperature, it's a simplified model, but it
5	has up till now been fairly useful to us in
6	prioritizing where we need to look and what we need to
7	be doing.
8	CO-CHAIRMAN FORD: So you're sticking to
9	the I'm sorry to keep going on this line here, but
10	it is fundamental to how we manage this whole
11	situation.
12	So you are sticking to the argument for
13	the time being that temperature is the sole driving
14	parameter.
15	MR. MATHEWS: No, I'm not going to make
16	that argument. I'm saying it is a major driver, and
17	to say that you can't override the temperature effect
18	which is there with some other effect to the extreme,
19	the tails of some other distribution can't make things
20	happen that will lower temperature; I'm not going to
21	say that because it can. I mean, that's rather
22	obvious, I think.
23	But you know, what the situation is at
24	South Texas I don't know and, you know, it's going to
25	be a while.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

87 1 CO-CHAIRMAN FORD: I agree entirely with 2 what you say. So if you look at material changes, and 3 we've already got from Argonne an approach for 4 attacking the range of responses because of ranges in 5 material composition or micro structure, is there an insuperable technical guide to overcome to take into 6 7 account changes in stress, residual stress? Is that an insuperable technical barrier that has to be 8 9 overcome? MR. MATHEWS: I'm not saying no. I mean, 10 11 you can analyze the design, but then you've got to 12 worry about repairs and what have repairs in the manufacturing process done to the stresses that you 13 14 might calculate? 15 CO-CHAIRMAN FORD: But you could bend 16 things according to that. You know whether it's been 17 repaired or not. 18 You should, yes. MR. MATHEWS: 19 CO-CHAIRMAN FORD: So you can bend things 20 as --21 MR. MATHEWS: Yeah, I think people are 22 already doing that in their own minds at their own 23 plants. They're thinking, well, you know, which welds 24 did I have major repairs on the ID. Do I have any? 25 And those are the ones I need to be paying attention

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

And people are starting to do that at
their own plants, you know. For the MRP to go and try
to catalogue every Alloy 600 weld in the industry
would be a monumental task. You know, I think we can
provide information to the utilities to work on their
own plants.

8 CO-CHAIRMAN FORD: There's enough data on 9 the effect of stress on the cracking of these alloys, 10 especially 182 and 600. So at least to be able to do 11 a sensitivity analysis of how much it would change if 12 you changes the visage of stress profile by so much. 13 Has that been done?

MR. MATHEWS: Well, stress profiles are built into the way we've done the analysis from crack propagation, et cetera, and sensitivity studies, I believe, have been done on what's the effects and that sort of thing.

19 CO-CHAIRMAN FORD: And would it explain20 the possible cracking, that sort of nexus?

21 MR. MATHEWS: We didn't analyze the cold 22 head situation for a bottom mounted instrument. I 23 mean, we didn't model that yet.

24 CO-CHAIRMAN FORD: Okay, okay.

MR. STEININGER: Okay. Continue to the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

88

	89
1	next slide?
2	CO-CHAIRMAN FORD: Yes, please.
3	MR. STEININGER: Okay. Again, I just want
4	to emphasize that we're starting off on this rather
5	new approach called the failure mode and the effects
6	analysis, which essentially just identifies the cause
7	of the degradation, the effect, the consequence, the
8	detectability requirement, and the frequency of
9	occurrence of the degradation.
10	And you can establish relationships
11	between these various characteristics by a block
12	diagram, and we'll get to that in a minute. Anyway
13	MR. WALLIS: You use the quality of what
14	goes into each box, and you can have the diagram.
15	That's sort of easy to put out, but then deciding how
16	far you have to go in understanding things in each box
17	is
18	MR. STEININGER: That's the difficult
19	road. That's correct.
20	Okay, and if you go to the next slide, if
21	we try to apply this failure modes and effect analysis
22	to the nozzle, what you'll identify is that you could,
23	in fact, have nozzle ejection due to net section
24	collapse. You could have a cladding blowout due to
25	wastage, for example, which would have happened at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	Davis-Besse, or if you did, in fact, have nozzle
2	ejection, you generate a number of loose parts which
3	could produce consequential damage.
4	Now, there are various failure processes
5	involved that could lead to these various
6	consequences, and I've listed them there. PWSCC
7	initiation at various locations; you can get primary
8	coolant leakage into the annulus, which then could
9	start corroding the carbon steel, and the list goes on
10	and on.
11	Now, the block diagram that I was talking
12	about a little bit earlier is in the next slide, and
13	I don't think we need to go through the various
14	scenarios that are listed here, but effectively, for
15	example, you could start off with a crack in the weld
16	which subsequently grows and becomes a circumferential
17	crack in the base metal, which doesn't leak into the
18	annulus. So you're not picking it up by a visual
19	inspection.
20	The circ. crack goes around the nozzle,
21	and you ultimately could lead to nozzle ejection.
22	That's just one example.
23	Go to the next.
24	CO-CHAIRMAN FORD: This is a tremendously
25	involved process.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	MR. STEININGER: Yes.
2	CO-CHAIRMAN FORD: Requiring a lot of
3	quantifiable data of a quantifiable quality. Have you
4	done through a similar exercise before for other
5	components in light water reactors to know where
6	the rate limiting step in going from the bottom up to
7	the top is? For instance, the quality of the stress
8	corrosion cracking data is going to be one, I would
9	imagine.
10	MR. MATHEWS: I don't think the VIP walk
11	through exactly this process, but I think they've gone
12	through component by component in the vessel and done
13	similar type of things. How can it fail? What are
14	the consequences of failure? What are the ultimate
15	consequences? At what point do I need to inspect to
16	prevent that failure?
17	And that's kind of the point of this, is
18	where in this process of degradation should we insert
19	inspection of what type to stop the chain because the
20	core damage is the top of the box and nobody you
21	know, we need to stop it before there, and we believe
22	the order would stop it before there, but what we're
23	trying to do is figure out where do you do what to
24	stop each of the degradation chains?
25	This chart here is a little bit old. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	saw a later one that we had in South Texas last week
2	that we were working on converting to the bottom
3	MR. WALLIS: Well, let's look at one thing
4	here. I mean, you've got cracks which form and then
5	there's an arrow which goes into a nozzle leak. I
6	don't know that we have any good basis for knowing how
7	you go from a crack, which is a very skinny thing;
8	it's a fault in the metal and the metal can part, but
9	it's still a very, very small path of flow.
10	How you go the development of a big
11	enough hole from the crack to really call it a leak
12	and how that develops and, you know, progresses, I'm
13	not sure you have any handle on that at the moment.
14	MR. STEININGER: Well, I think you're
15	absolutely right, and that's one of the reasons why
16	we're
17	MR. WALLIS: But I mean, you can draw the
18	diagram the rest of your life, but you have no way of
19	predicting what happens at that arrow. I don't know
20	that you're too much further ahead.
21	MR. MATHEWS: But let's just say I have an
22	inspection technique that I could insert in the middle
23	of that arrow and terminate the arrow.
24	MR. WALLIS: That is your strategy. Is
25	that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	MR. MATHEWS: It's certainly one of the
2	things that we will be looking at, what's the
3	appropriate inspection
4	MR. WALLIS: You don't have any
5	understanding of anything. You just sort of say,
6	"We'll see where we are in this map in terms of our
7	inspections. We'll use inspections to tell where we
8	are in the map rather than analysis."
9	MR. MATHEWS: Well, I think we have to
10	have some form of inspection here that would give us
11	information about what's going on in the plant. I
12	mean, it's not a purely analytical sit-down with your
13	computer and convince yourself everything is safe.
14	MR. WALLIS: No, no, no. They've got to
15	complement each other obviously.
16	MR. MATHEWS: Yes.
17	CO-CHAIRMAN FORD: Could I suggest that
18	just flipping through you charts there are a lot of
19	things here that I think there might be questions on
20	that need to be addressed that are central to the way
21	you're going to go in the future, which is preparatory
22	to saying let's have a quarter of an hour break, until
23	25 to 11. Then we'll get back to discuss this.
24	MR. MATHEWS: Okay, sure.
25	CO-CHAIRMAN FORD: Could I just double

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	check with you? The presentations for the rest of the
2	morning, is it essentially these three extra?
3	MR. MATHEWS: It's finishing this one.
4	MR. STEININGER: And there's North Anna.
5	MR. MATHEWS: The one on the North Anna 2
6	head.
7	CO-CHAIRMAN FORD: Yes.
8	MR. MATHEWS: And then the one from Tom
9	Alley on the inspection and demonstration program.
10	CO-CHAIRMAN FORD: Okay. So let's hope we
11	can get through before 12:30 because I know this
12	afternoon we have a time crunch.
13	MR. MATHEWS: Okay.
14	MR. STEININGER: Okay.
15	CO-CHAIRMAN FORD: Okay. Let's take until
16	25 to 11 as a break.
17	(Whereupon, the foregoing matter went off
18	the record at 10:20 a.m. and went back on
19	the record at 10:40 a.m.)
20	CO-CHAIRMAN FORD: Okay. Sorry. We're
21	five minutes late because we've been gabbing away
22	here.
23	Okay. Shall we continue?
24	MR. STEININGER: Yes.
25	CO-CHAIRMAN FORD: We're giving you a hard

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	95
1	time on this particular
2	MR. STEININGER: No, no, no. We admit we
3	don't have all of the necessary information. That's
4	what we have to do: get it. So you're just picking
5	up on that.
6	Okay. Where was I? I've got my glasses
7	on. Let's see.
8	Okay. Yeah, failure modes, failure modes
9	and effects analysis. This goes back to your comment
10	actually.
11	MR. WALLIS: You need to be very careful
12	with the noncredible failures.
13	MR. STEININGER: Yes.
14	MR. WALLIS: I was going to ask: are
15	those quantifiable?
16	MR. STEININGER: Well, it says it requires
17	a strong technical argument and thorough documentation
18	with a high threshold. So we agree with you. That's
19	what it says.
20	CO-CHAIRMAN FORD: And this will be
21	finished mid-summer. I keep coming back to that.
22	MR. STEININGER: Yeah, that's correct.
23	CO-CHAIRMAN FORD: So this situation about
24	where you move from one to the next expanding on the
25	classification, you will need some numbers, won't you?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	CO-CHAIRMAN FORD: And that will be in
2	terms of frequency or
3	MR. STEININGER: Better be.
4	MR. MATHEWS: To say a pathway is not
5	credible, you need a very good well, it takes a
6	very rigorous argument.
7	MR. WALLIS: I think you used the wrong
8	word because you can get a better word than
9	"credible."
10	MR. STEININGER: Low probability?
11	MR. WALLIS: It's very low probability.
12	MR. STEININGER: yeah.
13	MR. WALLIS: "Credible" sort of means no
14	one could imagine it, which is rather different.
15	MR. MATHEWS: Well, we've already imagined
16	it or it wouldn't be on the chart.
17	MR. STEININGER: Well, let's look at a
18	bottom head nozzle, for example, at BWR. You know,
19	a bottom head nozzle can't eject completely because of
20	the platforms there. So it's a not credible event.
21	For the bond to head nozzle on a PWR,
22	could be ejected. You could have a nozzle ejection on
23	a PWR bond to head nozzle. So one is not credible,
24	and these obviously are credible. That's what I think
25	we meant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	Physically you can't establish the event.
2	MR. WALLIS: It's impossible?
3	MR. STEININGER: Yes. That's what I think
4	the author meant.
5	Okay, and then there's also the
6	classification is not applicable, and this goes back
7	to Larry's earlier comment. We go through this
8	sequence of events. You put some action in early so
9	that you don't get to the place where you don't want
10	to be. So we would call that as a nonactionable, and
11	obviously there are actionable inputs that you have to
12	deal with, and that's all part of the overall plan.
13	And then finally you have a whole range of
14	a number of you have been bringing up other factors
15	that are involved in this whole process of FMEA, you
16	know, stress intensity. There's environmental
17	fatigue, fabrication practices of the nozzle.
18	You know, Peter would like for us to try
19	to ferret that out. It's not clear that we can.
20	The condition of the inside surface
21	cladding, primary water chemistry factors; the list
22	goes on and on.
23	Okay. Next slide.
24	Okay. One of the things that's very
25	crucial in this overall analysis is what you use to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	actually predict the crack or leak, predict when the
2	crack gets to the point that it's unacceptable, or
3	when do you actually experience a leak?
4	And we do that by looking at all of the
5	field data or any lab data, and we apply an
6	appropriate Weibull analysis. I think everybody is
7	familiar with that.
8	An example of that is on the bottom, which
9	is what we have used in our MRP 75. We have plants
10	here which have manifested nozzle leakage at the top
11	of the head, and we have plotted that on this Weibull
12	curve.
13	We also have 42 other plants which did
14	not, which did not experience any kind of head
15	leakage, and we
16	CO-CHAIRMAN FORD: Is this the
17	MR. STEININGER: No, the next slide.
18	MR. POWERS: Is the Weibull distribution
19	of any significance or it's just an empirical
20	correlation?
21	MR. STEININGER: It's just empirical based
22	on data that we have available from the field.
23	MR. POWERS: Does the curve ever get
24	extrapolated or is it just fitting data points and you
25	interpolate in between?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	MR. STEININGER: That's correct. And I
2	think you'll see this in MRP 75 or the technical basis
3	document.
4	MR. WALLIS: You're really stretching
5	things if you say the lines have much to do with the
6	data really. There's far more series that you could
7	concoct that would look better than that.
8	MR. STEININGER: Probably.
9	MR. MATHEWS: Well, this was a Weibull
10	that was constructed with a given slope based upon
11	MR. STEININGER: Lab data, other data.
12	MR. MATHEWS: other Weibull data on
13	Alloy 600. You could put a different slope on the
14	curve.
15	MR. STEININGER: And the other thing that
16	I want to point out and I want to emphasize, like I
17	said, there's 42 if I understand it correctly,
18	there are 42 plants here in this plot which the plants
19	actually did not exhibit leakage, but we put them in
20	as though they had a leaker. This is one way that
21	we've actually established conservatism in the overall
22	process.
23	MR. WALLIS: What's the axial coordinate
24	here?
25	MR. STEININGER: Cumulative fraction of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	leaking nozzles of circ. crack near top of the weld.
2	MR. SHACK: It's effective degradation
3	years on the X axis and the fraction of leaking welds
4	on
5	MR. WALLIS: Oh, it's degradation?
6	MR. SHACK: It's degradation years.
7	MR. WALLIS: Oh, I see it, way down on top
8	of the cooling tower, right.
9	MR. MATHEWS: You said axial thought,
10	didn't you?
11	MR. SHACK: Well, it's the horizontal
12	axis.
13	MR. WALLIS: I thought it was part of the
14	EPRI logo.
15	MR. STEININGER: It's becoming that.
16	MR. SHACK: It's becoming part of the EPRI
17	logo.
18	(Laughter.)
19	MR. STEININGER: Okay, and the next slide.
20	Now we actually go through this is kind
21	of the involved process that one has to go through
22	just for simple nozzle ejection, and as you can see,
23	you start out with the assessment. For example, the
24	plant lab experience with PWSCC for Alloy 600;
25	assessment of the processing fabrication differences;

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

compilation material properties; actual field experience for leakage.

You then go into your Weibull analysis, 3 4 and you just go from left to right, as you can see the 5 thought process here. You define your probability of detection or the detectability limits associated with 6 7 leakage, for example. You have to assess what is the allowable circ. crack flaw size for the nozzle, and 8 ultimately what you end up doing, as Larry indicated 9 earlier, is you calculate a change to the core damage 10 11 frequency, and you compare that change to what's 12 allowable.

Maybe "allowable" is not the right term to use, but what is presented in Reg. Guide 1.174. And if you don't meet that recommendation, 1.174, you go back into the process to see what you can, in fact, change in order for you to meet that requirement.

For example, you may need better probability of detection, for example.

20 CO-CHAIRMAN FORD: Now, have you gone 21 through this process? 22 MR. STEININGER: For nozzle ejection, yes. 23 CO-CHAIRMAN FORD: For nozzle ejection 24 because of circ. --

MR. STEININGER: Correct.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

101

	102
1	CO-CHAIRMAN FORD: of the tube.
2	MR. STEININGER: And we went through a
3	simplified variation of this at MRP 75.
4	CO-CHAIRMAN FORD: Did I ask I realize
5	I'm jumping the gun here in terms of recommendations
6	as to what we present at the fall meeting, but it
7	would be very useful
8	MR. STEININGER: We're not going to a full
9	meeting.
10	CO-CHAIRMAN FORD: Pardon?
11	MR. STEININGER: Are we going to a full
12	meeting?
13	PARTICIPANT: Fall.
14	MR. STEININGER: Oh, fall meeting.
15	MR. MATHEWS: If he asks, we will come
16	back. Okay?
17	MR. POWERS: We already had that.
18	MS. WESTON: As in May.
19	CO-CHAIRMAN FORD: As in May.
20	MR. STEININGER: Oh, May meeting. Got
21	you.
22	CO-CHAIRMAN FORD: My accent.
23	MR. STEININGER: I thought it was like
24	tomorrow or something.
25	CO-CHAIRMAN FORD: My point is that this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	103
1	is a great schema, schematic, having gone through
2	this. Now, you have data for filling in these boxes.
3	So if you're going to come up with the full or single
4	dancing thing within a few minutes, somehow you should
5	be able to show draft one of the actual use of this,
6	actual applications, and a graph is worth 100
7	vugraphs, and show you as working through that because
8	it's going to be
9	(Laughter.)
10	MR. ROSEN: I'm having trouble
11	understanding why Reg. Guide 1.174 is appropriate as
12	a standard against which to measure your increase in
13	core damage frequency that comes out of this.
14	Reg. Guide 1.174 has a spectrum depending
15	on the core damage frequency for the plant, low, for
16	instance, South Texas, very low core damage frequency
17	estimate now. You are saying that that kind of plant
18	might have a different reaction to what you come out
19	of this than a plant that has a higher core datum. Is
20	that
21	MR. STEININGER: If I remember correctly,
22	I thought 1.174 lists changes to core damage
23	frequency, and if you have this amount of change
24	you're okay.
25	MR. ROSEN: It's a function of the core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	damage.
2	MR. STEININGER: Right, exactly. And if
3	you have this amount of change it says NRC requires
4	management review before you can do anything, and if
5	you have this amount of change it says you're probably
6	dead in the water, something like that.
7	MR. ROSEN: It's a delta CDF on the Y
8	axis. You've got CDF on the X axis, and so that says
9	that depending upon where you are on the X axis of a
10	given plant, you can take different delta CDF. And
11	you're suggesting applying that same schema to
12	MR. STEININGER: Yeah, and I think the
13	value we use is one times ten to the negative sixth
14	change in CDF. If we're within that, we think
15	we're
16	MR. ROSEN: So it's really a number. It's
17	not
18	MR. STEININGER: It's a number. It's a
19	number.
20	MR. ROSEN: You're not using the Reg.
21	Guide 1.174
22	MR. STEININGER: No, no, no.
23	MR. ROSEN: schematic. It's a
24	standard.
25	MR. STEININGER: Right.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	105
1	MR. ROSEN: But delta CDF which is
2	different
3	MR. STEININGER: Right, delta CDF.
4	MR. ROSEN: So it's not going to be
5	variable across the plants as a function of their CDF.
6	MR. MATHEWS: We hadn't looked at it in
7	that way I don't think. We were just trying to we
8	were targeting to get
9	MR. KRESS: That's consistent with 1.174,
10	at that level.
11	MR. ROSEN: At that level, but not a
12	variable number depending on
13	MR. WALLIS: I think you'll find that the
14	uncertainties are large. You just don't have enough
15	information in these boxes to be very sure of things,
16	to really be sure that you report the uncertainty in
17	the CDF. And if you do Weibull fit to the data you
18	showed us on the previous curve, that's not a very
19	certain curve. There's a lot of uncertainty about
20	extrapolating that at all, and that's going to be
21	reflected in what you report as a CDF.
22	MR. MATHEWS: Well, again, we have to
23	appropriately account for that as the input to the PFM
24	work and how that flows through the core damage
25	frequency.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	MR. STEININGER: You can sample the
2	uncertainty associated with the Weibull plot, for
3	example, when you do the analysis.
4	MR. WALLIS: That may tell you where you
5	need to do some more work.
6	MR. STEININGER: Exactly. Okay. Getting
7	off the nozzle ejection, go to the next slide, which
8	is a hastily developed logic chart associated with
9	this process as it relates to wastage on the top of
10	the head, and that's obviously an area where we do
11	have a lot of missing data, and as Peter knows, we're
12	going out with an RFP to help us fill in many of the
13	blocks that are stipulated here.
14	But, again, we did, in fact, do a
15	probabilistic analysis for wastage at the top of the
16	head, and that's documented at MRP 75. I mean, you
17	can question the degree of uncertainty associated with
18	the analysis, but it is there, and that's what we're
19	going to have to reevaluate.
20	MR. WALLIS: Don't you have to do leakage
21	before you do wastage? If you don't know how to
22	assess leakage, leakage is a precursor to wastage. So
23	how are you going to fit that in?
24	MR. STEININGER: Well, mild leakage, the
25	degree of leakage is obviously going to affect

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	MR. WALLIS: Yeah.
2	MR. STEININGER: the degree of wastage
3	over a period of time. The degree of leakage is a
4	function of the crack morphology, the crack geometric
5	characteristics.
6	MR. WALLIS: Where does that appear in
7	this
8	MR. STEININGER: It's not in here.
9	MR. WALLIS: box diagram?
10	MR. STEININGER: It's not in there because
11	we don't right now
12	MR. WALLIS: You guys
13	MR. MATHEWS: Isn't there something, I
14	believe, in the planned additional boric acid
15	testing
16	MR. STEININGER: Yes.
17	MR. MATHEWS: that's going to speak to
18	that?
19	MR. WALLIS: All right.
20	MR. MATHEWS: That program that we're
21	launching. You're working on some, too, right?
22	MR. ROSEN: Well, to be kind, what I would
23	say, Graham, is that it's inside this block that says
24	"establishment of boric acid corrosion wastage rates,"
25	and all of that leakage

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	MR. STEININGER: There's a lot that goes
2	in that.
3	MR. ROSEN: There's a lot that goes in
4	that block.
5	MR. STEININGER: That's right.
6	MR. WALLIS: What, do you mean the cracks
7	go in there as well?
8	MR. STEININGER: Yes.
9	MR. WALLIS: All precursors go in there,
10	too?
11	MR. MATHEWS: Leakage is a function of
12	crack size, et cetera.
13	MR. ROSEN: You can go back to rabbit
14	trail (phonetic), what Dave just laid out.
15	MR. STEININGER: Okay. The next slide.
16	So now we get down to the particular areas
17	that we are working on or will be working on.
18	Obviously the crack growth rate is a significant
19	parameter. A number of people have already mentioned
20	it.
21	We had an expert panel established to give
22	us our best estimate as to what we should expect for
23	crack growth and Alloy 600 base material. They are
24	presently working on coming up with an expert judgment
25	on what to expect in weld metal material, 182 and 82.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	MR. ROSEN: Would Peter Ford recognize the
2	names of any of the people?
3	MR. STEININGER: I would think so.
4	MR. MATHEWS: No, John Hickling
5	(phonetic), do you know John? Peter Scott. I mean,
6	there's
7	CO-CHAIRMAN FORD: The answer is yes.
8	MR. STEININGER: Raj Pathan (phonetic),
9	yeah, you know everyone.
10	MR. SHACK: Round up the usual suspects.
11	MR. MATHEWS: Yeah, that's exactly right.
12	Lock them in a room and say, "Come on in here."
13	MR. POWERS: You didn't get it right the
14	first time, right?
15	MR. STEININGER: And they are meeting.
16	Bill, I think they are meeting at the March 28th or
17	29th, I think, here in Washington, D.C I'm sorry.
18	May, May, May.
19	PARTICIPANT: No, April.
20	MR. STEININGER: April.
21	MR. MATHEWS: I thought they were, yes,
22	next week.
23	MR. STEININGER: And I think that's where
24	they're going to have to figure out exactly
25	MR. POWERS: There's a very broad

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	uncertainty distribution even in the meeting dates.
2	The data is going to be really broad.
3	MR. MATHEWS: It's next week.
4	CO-CHAIRMAN FORD: Just to run it by me
5	and others, the curve that's used for disposing of the
б	cracks or disposition in the cracks is the 95
7	percentile of the data; is that correct?
8	MR. MATHEWS: It was 75th percentile.
9	CO-CHAIRMAN FORD: Seventy-fifth
10	percentile.
11	MR. MATHEWS: I believe that was included
12	in the latest flow evaluation guidelines that the NRC
13	issued.
14	CO-CHAIRMAN FORD: Okay.
15	MR. STEININGER: And that was using MRP
16	75, right?
17	CO-CHAIRMAN FORD: Okay. Just to remind
18	me.
19	MR. MATHEWS: It was MRP 75, yeah.
20	MR. CULLEN: Bill Cullen from the Office
21	of Research.
22	The curve that's being used now officially
23	is out of a Stroschneider (phonetic) letter from
24	November, the year 2000, and I don't know where it is
25	in the MRP scheme of things, but it's higher. It's a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	more conservative curve.
2	Is that right, Alan? No, maybe Alan is
3	going to correct me on that.
4	MR. HISER: Actually we have issued
5	revised flow evaluation guidelines. I don't remember
6	the date on that. That incorporates the MRP 55, which
7	we do, and the NRC has not completed its review of
8	that report. So it's an interim curve at this point
9	within those guidelines.
10	MR. STEININGER: But you haven't given us
11	comments on that yet, have you? On MRP 55?
12	MR. HISER: No, we're still working on
13	that.
14	MR. STEININGER: Okay.
15	MR. HISER: With relaxation requests and
16	other things, it's
17	MR. STEININGER: Yeah, I understand.
18	Okay. The next slide.
19	This was pointed out earlier today, I
20	think, by Peter. Stress intensity factors is an
21	important parameter, and as you probably know, NRC has
22	done a lot of calculations on calculating the stress
23	intensity around the weld, for example.
24	We've done that. We've compared notes,
25	and from what I understand there's good agreement

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	between NRC calculations, their contractor and ours.
2	MR. WALLIS: Well, my comment on this is
3	there's an enormous amount of history of people
4	studying cracks and stress intensity and so on.
5	There's a huge technical base you have here. So you
6	should be in reasonably good shape.
7	To get to your next slide
8	MR. STEININGER: I think we're in better
9	shape there than probably anywhere else.
10	MR. WALLIS: then you have a problem.
11	MR. STEININGER: Yeah, the next slide is
12	where
13	CO-CHAIRMAN FORD: No, no, no. Don't go
14	on to the next slide yet. These are all calculations.
15	MR. STEININGER: Yeah.
16	CO-CHAIRMAN FORD: Now, as far as I
17	remember, the only good base for evaluating those
18	finite calculations are for pipes, from the BWR work.
19	There's been a very small amount of work done on
20	double V notch or very large pipes. What is the
21	amount of data for more complicated J welds as a
22	function of weld heating, welding speed, et cetera, et
23	cetera? Is there any qualifying data for these
24	calculations regardless of who does the calculation?
25	MR. MATHEWS: You're not looking at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	experts here.
2	MR. STEININGER: Yeah. It's beyond my
3	knowledge base.
4	CO-CHAIRMAN FORD: Because the way I'm
5	seeing the arguments going, hey, our calculations are
б	really your calculations, but who is to say the
7	calculations are any good for these particular
8	geometries, which are very complex?
9	MR. STEININGER: I will say that what we
10	hope to do in the North Anna examination is to do
11	residual stress not residual stress stress
12	intensity measurements, residual stress on the nozzle.
13	MR. SHACK: And there are measurements
14	that were made by EDF and the Japanese back in the
15	early '90s.
16	MR. CULLEN: That's the same answer I was
17	going to give.
18	CO-CHAIRMAN FORD: And that was going to
19	be my follow-up question. I know undoubtedly the EDF
20	has done them, but I know the Japanese have done it.
21	Have you made use of that data, those data?
22	MR. STEININGER: It's beyond my knowledge
23	base. I don't know. We'll have to get back to you.
24	MR. MATHEWS: Probably, but I don't know.
25	CO-CHAIRMAN FORD: And the Japanese, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	know it was for
2	MR. SHACK: They're reported in PWSCC
3	workshops that EPRI held in, you know, '93-'94 time
4	frame.
5	MR. MATHEWS: A lot of that had to do with
6	steam generators thought.
7	MR. SHACK: No, no. This was when nozzle
8	head cracking first appeared, you know. You have to
9	remember the first incarnation of the problem.
10	MR. MATHEWS: Okay. And I'm sure the
11	people that are working on it are aware of all the
12	information that has been reported. Now, whether that
13	data has specifically been factored into their models,
14	I can't say that.
15	CO-CHAIRMAN FORD: And a follow-on
16	question to that is: how is the uncertainty of these
17	calculations factored into the prediction of the
18	amount of crack growth? Because in one of the
19	documents that you produced later on, I noticed that
20	somebody said stress intensity has got not much to do
21	with it, but I don't understand. One of your
22	documents which I saw and was reading says
23	MR. STEININGER: Yeah, I was hoping you
24	didn't see that. I didn't write that.
25	CO-CHAIRMAN FORD: Stress intensity was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	not that important or was not a major input to the
2	calculations, and I wanted to know the foundation for
3	that statement and whether it was, in fact, relevant
4	or not.
5	MR. STEININGER: Well, on this whole area
6	of stress intensity factor, that's the bottom bullet,
7	I think. The one you're referring to is the bottom
8	bullet.
9	I was going to try to skip over that one.
10	I'm sorry.
11	MR. SHACK: Well, if you believe the EDF
12	data, Peter, it goes like K to .1 power.
13	CO-CHAIRMAN FORD: Well, yeah.
14	MR. STEININGER: Pretty flat.
15	MR. MATHEWS: The crack growth rate curves
16	have a stress intensity factor dependence built into
17	them, the ones that we have, but I guess what this
18	bullet is saying is that when you look at the impact
19	of changing that stress intensity factor dependence,
20	it's not nearly as important as other parameters on
21	determining the impact on the probability of nozzle
22	ejection.
23	MR. STEININGER: Yeah, I think the
24	uncertainty associated with stress intensity is the
25	secondary factor. I don't think it's the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	probability of nozzle ejection is not being driven by
2	the uncertainty associated with stress intensity
3	factor. That's what I think the author was trying to
4	say.
5	MR. SHACK: Yeah, you know, they vary with
6	the yield stress of the weld, and if you look at the
7	range of yield stresses that you could expect and how
8	that affects the stress intensity factor, it changes
9	your ejection probability by a factor of two, which
10	considering all of your other uncertainties.
11	CO-CHAIRMAN FORD: It's just that
12	statement by itself really worries me. It doesn't go
13	according to history at least.
14	MR. STEININGER: It rubbed me the wrong
15	way. I agree.
16	CO-CHAIRMAN FORD: Okay.
17	MR. STEININGER: Okay. If you go on to
18	the next slide, which caused considerable
19	discussion
20	CO-CHAIRMAN FORD: Well, could I just
21	MR. STEININGER: Sure.
22	CO-CHAIRMAN FORD: The NRR, do they
23	believe that? When you say you're evaluating this
24	report, does that worry you, that last statement?
25	MR. HISER: Well, regarding our review of

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	117
1	the report, MRP 75, we provided preliminary comments
2	to the industry. The industry, I believe, the
3	December-January time frame withdrew the report. So
4	we stopped our review.
5	CO-CHAIRMAN FORD: Okay, fine.
6	MR. STEININGER: Okay. Well, if you go to
7	the next slide, which is the one that's probably going
8	to generate even more discussion, that is the status
9	report on boric acid corrosion testing. What have we
10	done heretofore?
11	Well, essentially we thought we understood
12	the process. We documented what we thought we
13	understood in MRP 75, which is essentially a crack
14	through the nozzle, leakage up through the annulus,
15	boric acid, primary coolant sitting on the top of the
16	head, and a top-down corrosion into the vessel, and
17	that's what's presented in MRP 75.
18	And a probabilistic analysis associated
19	with that process, a probabilistic analysis similar to
20	what we do for nozzle ejection.
21	Subsequent to that, we actually
22	established an expert panel to review the methodology
23	and the conclusions, documented MRP 75, and that
24	expert panel came back with a series of
25	recommendations which we have documented or I should

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	say used to write our request for proposal that's
2	going out.
3	Has it gone out or will go out?
4	MR. MATHEWS: I think we've got some
5	proposals back in.
6	MR. STEININGER: Yeah. Okay. So
7	MR. MATHEWS: We haven't written a
8	contract yet, but we're getting close, I believe.
9	MR. STEININGER: So that's the situation.
10	We had the expert panel. They gave us the
11	recommendations. We wrote the RFP.
12	CO-CHAIRMAN FORD: Well, looking at your
13	first sub-bullet, analysis to understand the thermal
14	hydraulic and chemical environment along the leak
15	path, are there experiments in your RFP? And
16	presumably, you know, somebody is awarded the
17	contract, in that RFP does it call for thermal
18	hydraulic calculations and follow-up work on what the
19	chemical environment is?
20	MR. STEININGER: Yes. Do you have it with
21	you?
22	MR. MATHEWS: It's broken into about four
23	or five phases, and Phase 1 deals with steel corrosion
24	in a stagnant or low flow primary water conditions.
25	MR. WALLIS: But you haven't got to that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	yet. You've got to look at how the crack develops
2	into a leak and how the crack gets big enough to have
3	a big enough leak long before these other things
4	happen.
5	The thing that puzzles me is why, for
6	instance, at Davis-Besse we can get extensive wastage
7	on one nozzle and the adjacent nozzle there is no
8	wastage. So physically what is different between
9	those two nozzles?
10	MR. MATHEWS: We believe it has got to do
11	with the flow rate into the corroding area.
12	MR. WALLIS: Why?
13	MR. MATHEWS: Why what?
14	CO-CHAIRMAN FORD: Why is the flow rate
15	important?
16	MR. MATHEWS: Well, the flow rate
17	influences the amount of cooling that's going on and
18	the state of the boric acid on top of the head at that
19	point in time.
20	CO-CHAIRMAN FORD: Okay, but we hear this
21	argument about evaporated cooling into a huge heat
22	sink. It doesn't physically seem to make sense. Are
23	the data to back up this for the same heat sink?
24	I know they have been done on a small
25	specimen, but for a large

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	MR. MATHEWS: Lab data I do not know.
2	We've done finite element heat transfer modeling to
3	model that and shown that it's in the .1 gpm rate.
4	Through this geometry, you can cool the head
5	sufficiently through evaporative cooling in the local
6	area to maintain a liquid state.
7	CO-CHAIRMAN FORD: But you can't have one
8	gpm.
9	MR. STEININGER: Point, one gpm.
10	CO-CHAIRMAN FORD: Oh, .1. I'm sorry.
11	MR. STEININGER: That was what was
12	presented in MRP 75, and those were the results of a
13	finite element model of the whole head with heat
14	transfer through that.
15	CO-CHAIRMAN FORD: I've heard people
16	saying with .1 gpm you would have tons of boric acid
17	in the head.
18	MR. STEININGER: And they did.
19	(Laughter.)
20	CO-CHAIRMAN FORD: but that was cumulative
21	over five years or so. I mean, can you get that flow
22	rate?
23	MR. WALLIS: Well, my problem is how do
24	you get from a crack? You know, the previous slide
25	was a crack. So how do you get from a crack to a .1

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

121 1 gpm leak? There's a lot of things that have got to 2 happen in the intermediate. 3 PARTICIPANT: That's right. It's got to 4 grow. 5 MR. MATHEWS: And obviously we haven't gone through the detailed analysis. 6 7 MR. WALLIS: What I see missing in all of 8 this is you have all of this stuff about cracks, and 9 then there's this stuff about once you get enough of a leak, how does it at the head, but how do you go 10 11 from that crack which hasn't leaked yet to a leak which is big enough? 12 CO-CHAIRMAN FORD: 13 I guess what you're 14 facing is at least two members here are reasonably technically competent. 15 16 (Laughter.) 17 MR. POWERS: Okay. Now, which two are we that are reasonably technically competent? 18 19 CO-CHAIRMAN FORD: The silent majority. 20 There's another part to that statement. 21 Well, Graham I, and Ι think, are 22 technically competent and yet we're having a gut feeling that there's something missing. 23 24 MR. MATHEWS: Is the thing that you're 25 perceiving as missing is the flow rate as a function

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	of crack size, crack morphology?
2	CO-CHAIRMAN FORD: Well, that; whether you
3	can, in fact, cool down a thick, huge heat capacity
4	low alloy steel even though it's a surface phenomenon
5	I know you're talking about. Can you really do that?
6	Just a gut feeling tells me
7	MR. WALLIS: I don't have your gut
8	struggle. I think it's quite possible to do that, and
9	I'll believe it when I see it. I believe that, you
10	know, these guys are competent enough to do it. I'm
11	inclined to believe their result.
12	But the problem I have is I don't know how
13	you go from microscopic crack to this big leak.
14	There's an awful lot of things that can happen in
15	between. It may take years.
16	MR. MATHEWS: We think it does.
17	MR. WALLIS: But we don't know.
18	MR. MATHEWS: We agree. Well, that's the
19	point in our crack growth rate testing, which there's
20	been quite a bit of crack growth rate testing in base
21	metal, and we've developed an MRP 55 to determine how
22	those cracks will grow as a function of the stress
23	intensity factors that are there in the nozzles, and
24	that crack will grow, and if it grows through wall,
25	then you can get a leak, and when it grows bigger, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	can get a bigger leak.
2	Now, the details of that leak versus crack
3	size, you know, I'm not sure we're going to try to go
4	to those because there are so many different things
5	that could be going on here.
6	MR. WALLIS: But does your crack growth
7	analysis include the crack opening once it has gone
8	through?
9	MR. MATHEWS: Well, it would have to if
10	we're trying to predict the flow versus crack size.
11	MR. WALLIS: Is three an influence between
12	the flow going through and the way in which this crack
13	opens that doesn't want to influence the other?
14	MR. MATHEWS: Yeah. Well
15	MR. WALLIS: And that's where this
16	chemical environment
17	MR. MATHEWS: The flow is certainly a
18	function of how open the crack is and how long it is.
19	MR. WALLIS: And the chemical environment
20	inside that crack as the flow is going through and
21	evaporating and whatever it does in there. Presumably
22	it evaporates inside the crack itself
23	MR. MATHEWS: Yeah, most of the pressure
24	drop would be inside the crack.
25	CO-CHAIRMAN FORD: I'm sorry. The

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	question came up at the last full meeting when you
2	gave a presentation, Larry, that from managing this
3	situation, you have got to be able to predict why one
4	nozzle wasted and the other one didn't in some sort of
5	engineering terms.
б	MR. MATHEWS: Yeah.
7	CO-CHAIRMAN FORD: In terms of gap between
8	the two components, the tube and the pressure vessel,
9	or whatever the things that you can measure are. Can
10	you predict why one nozzle erodes or corrodes and the
11	other one does not?
12	Is that the end objective of this RFP?
13	MR. MATHEWS: That is certainly part of
14	what we're going after in this RFP, is to understand
15	the corrosion dynamics in this geometry and how it is
16	influenced by all of the parameters, the flow rates,
17	the chemistry, temperature, everything else, how all
18	of those things feed into the corrosion dynamics.
19	And if you understand all of those details
20	and we can refine whatever models we have or build new
21	ones to try and account for what's different about
22	Nozzle 3 and Nozzle 2. Why has three got a big cavity
23	and two has got a small cavity and some other one has
24	no cavity? Most of them have no cavity.
25	And so we need to understand that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

125

3 4 for the cavity formation, you need to take into 5 consideration things that might be going on with impingement and/or flow accelerated corrosion and 6 7 erosion. And so those things because you can get a 8 high velocity out of a tiny crack, and so we have 9 Phase 2 is dealing with high flow primary water steam 10 11 conditions. What happens to the corrosion rate of 12 low alloy steel under those conditions? And then some more separate effects tests 13 14 in the liquid state, and then finally using all of 15 that information to design appropriately and conduct some full scale mock-up testing. 16 That's what the 17 program is laid out to do right now. 18 CO-CHAIRMAN FORD: Okay. And if it doesn't tell us 19 MR. MATHEWS: 20 why one does it and the other one doesn't, then we're 21 still missing some data, but that's where we're going 22 after, is to fully understand the corrosion dynamics 23 in this geometry.

24 CO-CHAIRMAN FORD: And this prediction 25 algorithm that you'll come up with will be finished in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	126
1	you said two years. So in May 2005 or thereabouts.
2	MR. MATHEWS: Probably. We have a
3	proposed budget that goes through the rest of this
4	year and all of '04, and it shows the full scale mock-
5	up testing in '04.
6	MR. STEININGER: Okay. The last slide.
7	Next. The last slide, Jim.
8	I think the operative bullet to look at is
9	the second to the last one because that's our
10	schedule, and as I indicated earlier, we expect the
11	safety assessment to be done and a revised inspection
12	plan by summer of 2003.
13	And you're right. If you're thinking
14	about the wastage, it's not going to be done, and
15	whatever is not done we'll have to attribute the
16	appropriate uncertainties and conservatively take that
17	into account.
18	CO-CHAIRMAN FORD: Okay. Thank you.
19	MR. MATHEWS: Preemptive.
20	MR. STEININGER: Okay. Do you want to
21	continue on then?
22	CO-CHAIRMAN FORD: Yes, please.
23	MR. STEININGER: Okay. We'll go to the
24	yes?
25	CO-CHAIRMAN FORD: Yes, you've got two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	more?
2	MR. STEININGER: Well, one more from me
3	and Tom.
4	CO-CHAIRMAN FORD: So you're going to
5	cover the
6	MR. STEININGER: Well, I'm going to cover
7	the North Anna Unit 2 vessel head destructive
8	examination, and this should be very quick.
9	The head is in the middle of the desert
10	somewhere in Utah.
11	MR. MATHEWS: Clive, Utah.
12	MR. STEININGER: Where is it? Clyde?
13	MR. MATHEWS: Clive, C-l-i-v-e, is the
14	town.
15	MR. STEININGER: Okay.
16	MR. MATHEWS: If you could call it a town.
17	MR. STEININGER: Okay. Jim, if you could
18	just jump to the third, we'll skip the second.
19	There's not need to go into the second. It's just
20	waving the flag. No, the one before this.
21	Now, we've all said this a number of times
22	today, but I'll have to say it again, and that is the
23	process that we've been involved with for the last
24	year or so, two years, has been nothing but surprise
25	after surprise. People got rather upset, gave us

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	strong direction to try to get ahead of the problem.
2	And when you try to get ahead of a problem
3	like this, the first thing you identify is you're
4	going to have to start destructively examining some of
5	these things that you're dealing with instead of
6	playing some kind of guessing games.
7	So the industry committed to destructively
8	examine a portion of the North Anna 2 head, and that's
9	what this presentation is all about. We're in the
10	preliminary phases of it. We just released the
11	contract or we identified the contractor to cut the
12	head; is that correct, Larry?
13	MR. MATHEWS: Yes, yeah.
14	MR. STEININGER: So that's essentially
15	where we're at, is that we've identified the
16	contractor that will cut the head, and we're in the
17	process of evaluating the responses to the RFP for the
18	destructive examination of the nozzles themselves,
19	right?
20	MR. MATHEWS: Right.
21	MR. STEININGER: So if you go to the next
22	slide
23	MR. POWERS: And you're going to try to
24	measure residual stresses, too?
25	MR. STEININGER: Yeah, that was the plan.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	129
1	MR. MATHEWS: That was part of it.
2	MR. STEININGER: Yeah, that was planned.
3	CO-CHAIRMAN FORD: That will just be by
4	displacement
5	MR. STEININGER: That I don't know.
6	MR. MATHEWS: We may ask for innovative
7	CO-CHAIRMAN FORD: An X-ray.
8	MR. MATHEWS: I'm not exactly sure what's
9	in the RFP.
10	MR. STEININGER: I think the RFP listed a
11	series of techniques that Al Macklery (phonetic) has
12	used in the past and said, "Okay. Give us what you
13	think is the best appropriate technique to use for
14	this configuration."
15	So essentially what we're trying to do is
16	a comprehensive metallurgical examination of the North
17	Anna 2 head, the failed components; determine who
18	caused the generic implications.
19	One of the prime goals is to establish an
20	acceptable correlation between the NDE indications and
21	as found defects.
22	The next slide shows, I believe, a
23	conceptual shipping arrangement. I don't know why
24	this is in here, but like I said, the head is in the
25	desert in Clive, Utah.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	MR. MATHEWS: Well, it kind of constrains
2	how we can get two things to take it out of the head.
3	MR. STEININGER: Okay. Is that actually
4	the way it was set up?
5	MR. MATHEWS: Yeah.
6	MR. STEININGER: Because it says
7	"conceptual."
8	MR. MATHEWS: Well, the insulation is
9	across here, and then there's a couple of shipping
10	things that are boxed around. There's stuff down in
11	here, but they're going to I believe they will go
12	in through the top and cut sections of the head,
13	nozzles and all, and reduce those down to shippable
14	pieces and take them to a lab to do detailed
15	sectioning.
16	One of our concerns with this sectioning
17	process and cutting the nozzles out was to try and
18	insure that we didn't destroy evidence, if you will,
19	in the process of removing the nozzles, and to that
20	end, you can't use water in the cell.
21	MR. SHACK: You can't do that
22	MR. MATHEWS: No, we can't. We can't even
23	use water cooling on a band you know, there's no
24	water allowed in this process because of where it is
25	in the cell in the burial site. And so that leaves

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	you with a torch, and so we want to be careful that we
2	don't destroy evidence in the process.
3	So we're doing mock-ups on the flame
4	cutting and seeing how far away we've got to be to
5	preserve the evidence.
6	And the other thing, you burn the carbon
7	steel, but the stainless steel melts. So you've got
8	to
9	MR. POWERS: Can you use the laser
10	cutting?
11	MR. MATHEWS: Laser?
12	MR. POWERS: Un-huh.
13	MR. MATHEWS: Nobody proposed that. Let
14	me put it that way.
15	
16	MR. STEININGER: Okay.
17	MR. POWERS: A more heat affected zone.
18	MR. MATHEWS: Huh?
19	MR. POWERS: Like a smaller heat affected
20	zone.
21	MR. MATHEWS: Well, I think most of the
22	people feel like we I can't oxy well, it's not
23	oxyacetylene. It's a very powerful flame torch.
24	MR. WALLIS: So you make sure that if it's
25	a heat affected zone when you do this it's small

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	enough and then grind it off, and then you can look at
2	something which has not been affected by your cutting
3	person?
4	MR. MATHEWS: Well, we're going to take
5	enough carbon steel around the nozzles of interest out
6	so that when they take big plates out of several
7	models and then cut those down some other
8	MR. STEININGER: And then they take the
9	chunks to a band saw someplace.
10	MR. MATHEWS: And the details of that the
11	vendors are working out right now, and you've got to
12	do it in a containment. So they have to build a
13	containment building around it, things like that.
14	Anyway, we're going to section out nozzles
15	and we're going to insure that our target was that the
16	metal interface in the area of interest doesn't go
17	over 600 Fahrenheit because it hasn't seen that for
18	quite a while. So we want the flames, you know, far
19	enough away that we don't destroy it.
20	We're building mock-ups to demonstrate
21	those cutting techniques right now. In fact, the
22	demos may be going on this week, I think. It's very
23	soon. The demos will be done, and then they'll go to
24	Utah and cut it.
25	MR. STEININGER: Okay. Go to the next

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	slide. Okay. WE're there.
2	These are the objectives of the
3	destructive examination. First under the formation of
4	the circumferential flaws in the outer diameter of the
5	nozzle base material in that position relative to the
6	flaws of the J groove weld, and I'll show you a
7	schematic later on, what I'm talking about there.
8	Determine the most probable cause of
9	initiation, propagation of the weld false.
10	Characterize the final nozzle annulus operating
11	environment prior to shutdown, and identify the
12	associated corrosion mechanisms by analysis of the
13	deposits found in the annulus.
14	Next slide.
15	Examine the previously repaired Nozzle 51
16	that exhibited visual evidence of renewed leakage in
17	the following of the subsequent outage. Determine
18	both the modes of degradation that resulted in leakage
19	and the leak path through the pressure boundary.
20	Facilitate development of better
21	understanding of the actual capability of current
22	inspection techniques and technologies to detect the
23	OD circumferential cracks in the base material, axial
24	circumferential cracks in the weld material, et
25	cetera.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	That's what I mentioned earlier, to try to
2	establish that relationship between physical reality
3	and what NDE is telling us.
4	And if you go to the next slide, you'll
5	see looking up towards Nozzle 54 a depiction of where
6	we found cracking. That's looking up from the bottle
7	on Nozzle 54.
8	And then if you go to the next slide,
9	there's the three dimensional picture which puts this
10	all together. It puts the indications at the bottom
11	of the nozzle in relation to the indications that were
12	picked up by NDE, and you can see that if you go to
13	the far right, if you connect the bottom indication to
14	the top indication, it's kind of thanks, Larry
15	how the circ. crack well, it appears to be how the
16	circ. crack formed, and it started in the weld
17	material, and as you can see, it starts to propagate
18	in the base material, and did it in a position such
19	that you don't have resultant leakage into the
20	annulus.
21	So if this turns out to be true, that's
22	something that's, you know, something that you don't
23	want to see because
24	MR. MATHEWS: This and similar nozzles, if
25	you think back to MRP 75, one of the basis premises of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MRP 75 was that visual inspections on the top of the 2 head were an adequate inspection technique. This and 3 similar nozzles which have developed circumferential 4 flaws right near the root of the weld without 5 penetrating into the annulus and developing leakage on top of the head certainly call into question the 6 7 viability of a visual inspection as a long-term 8 inspection technique. MR. ROSEN: It's called the Stealth crack. 9 It's hit --10 MR. MATHEWS: Yes. 11 MR. ROSEN: Below your radar. 12 MR. MATHEWS: Right. This is scary. 13 MR. STEININGER: 14 MR. MATHEWS: And so because of that we 15 said, well, we've got to pull 75 back as far as saying a visual inspection is the only thing you really need 16 17 to do, and we're going now -- and we recommended that all plants do over the next few years a volumetric or 18 19 an under the head NDE to find the base condition of 20 their plant. 21 And in the process then we would be 22 revising MRP 75 to come up with a recommendation that 23 takes into account these phenomena, but in order to do 24 that well, in the long run we really want to 25 understand what happened here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

135

1 So we're pulling this nozzle and several 2 other nozzles out to not only understand how you can 3 grow one up through the weld and into the tube, a 4 Stealth crack, if you will, but also to determine what 5 we can about the propensity of these welds to crack. What is the actual cracking mechanism that was going 6 7 on in this head? And so we'll take several nozzles out of 8 9 this head. I think six is our target, and we've 10 picked out particular ones based on the NDE results 11 and go section those and figure out what's going on 12 there. MR. STEININGER: Okay. The next slide 13 14 gives you an example of how we tried to prioritize 15 what we had to go after. What I've done here is I've shown what penetration we're going to go after and 16 17 hopefully what kind of results that penetration is going to give us, what kind of information and how 18 19 that information satisfies which objective that I just 20 read to you. 21 CO-CHAIRMAN FORD: You get that Nozzles 51 22 and 63, repair weld. According to the incident 23 report, it mentioned that this was repair welded with 24 Alloy 52; is that correct?

> MR. MATHEWS: Yes.

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

	137
1	CO-CHAIRMAN FORD: And this is the alloy
2	that's going to be used for all replacement heads.
3	MR. MATHEWS: Right, 52 or 152.
4	CO-CHAIRMAN FORD: One, fifty-two, yeah.
5	so the news is not bad. Either it's the weld itself,
6	52, will crack easily when it's not environmentally
7	assisted crack, or it will undergo cracking during the
8	welding process.
9	MR. MATHEWS: You mean hot cracking?
10	CO-CHAIRMAN FORD: Hot cracking or yes.
11	Obviously I'm assuming that this analysis
12	will show which of those bad messages it is.
13	MR. MATHEWS: We're going to find the leak
14	path on these nozzles that were repaired on this one
15	nozzle. One nozzle was well repaired and then leaked
16	subsequently.
17	The utility believes that the weld repair
18	and I think the vendor does, too the weld repair
19	where they what they did was they overlaid the old
20	weld, the 82-182 weld. They overlaid that with 52
21	weld metal. They did not remove
22	CO-CHAIRMAN FORD: the leak path
23	because they both leaked. So the leak path was
24	through the hot cracked weld, 52 weld.
25	MR. MATHEWS: Right.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	CO-CHAIRMAN FORD: Into a preexisting
2	crack in 182.
3	MR. MATHEWS: Well, no, no. What the
4	utility and the vendor believe, I believe, is that the
5	weld repair did not cover all of the 82 material, and
6	that the leak path is probably in the butter.
7	Basically you've got stainless steel clad
8	that you're looking at at the bottom of the vessel.
9	You've got stainless steel clad and then you've got a
10	182 butter material, which you should have roughly an
11	oval of 182 butter material, and then you've got a
12	weld to the tube of 82 or 182.
13	When they overlaid the previous weld with
14	the new 52 material, the thought now is that they had
15	seen flaws that they thought were out in the cladding
16	when they PTed it because they did not fully
17	understand the size of the weld and the butter that
18	was there.
19	And so when they've gone back and etched
20	it, and indeed, there is I believe it's 182 material
21	outside the oval of the 52 overlay that they performed
22	to seal the cracks, and so the thought is that they
23	didn't seal the crack, didn't stop the leak path
24	because they didn't go far enough out to get under the
25	stainless.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	CO-CHAIRMAN FORD: And that occurred in
2	both welds, both repair welds, 52 and 63, I guess, the
3	next one down. Yeah, 51 and 63.
4	MR. MATHEWS: I'd have to go back to the
5	details, but
6	CO-CHAIRMAN FORD: This is obviously going
7	to come out one day after
8	MR. MATHEWS: And that's our objective, is
9	to go on these two. One of the objectives for those
10	two nozzles is to find if that one is leaking. I
11	can't remember whichever one is leaking, and maybe
12	both of them. We're to find that leak path.
13	Was it through the new 690 material? Was
14	it through the old butter that was not covered up by
15	the weld repair?
16	CO-CHAIRMAN FORD: But regardless, Alloy
17	52 and 152 and 182 are not easily weldable. They're
18	not easy welds to make. How extensive are the weld
19	qualification process for items of this size,
20	assemblies of this size?
21	MR. MATHEWS: I believe they've done quite
22	a bit of demonstration of their welding processes now.
23	CO-CHAIRMAN FORD: Presumably from France;
24	is that correct?
25	MR. MATHEWS: No, I think the guys who are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	doing these overlays have done their own. They had to
2	qualify their own welding process.
3	CO-CHAIRMAN FORD: Okay. The reason I
4	MR. MATHEWS: Men you've got to
5	demonstrate your process before you weld on my plant
6	or anybody else's.
7	CO-CHAIRMAN FORD: All I'm questioning
8	here is you've got two weld repairs done. Both are
9	thorough at 52 and both, assuming we don't find it in
10	that covering, both have failed by one mechanism or
11	other.
12	MR. MATHEWS: ell, I thought only one of
13	them leaked again.
14	MR. STEININGER: The other one, 63 was
15	masked. So they weren't sure whether there was
16	leaking or not.
17	MR. MATHEWS: Okay.
18	MR. STEININGER: I have to remember that.
19	MR. MATHEWS: But I'll be honest with you.
20	I think they feel quite confident that the 52 did not
21	cover the entire 82-182. They've etched the surface,
22	and as I recall they're quite confident that they did
23	not.
24	CO-CHAIRMAN FORD: When is the examination
25	finished? Did they say?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	MR. MATHEWS: I don't know how long the
2	hot cell stuff is going to take. I don't know. We're
3	hoping it's by the end of the year, I think. I'm
4	hoping it's by the end of the year, but I'm not in
5	that bid process.
6	CO-CHAIRMAN FORD: Because there's a lot
7	of plants thinking of to begin replacing heads
8	involving this weld.
9	MR. MATHEWS: The 52?
10	CO-CHAIRMAN FORD: Yeah.
11	MR. MATHEWS: Absolutely, absolutely, and
12	we need to know if that was the source of the leakage,
13	but you know, I think everybody that has looked at the
14	data feels quite confident that they did not do a
15	repair that covered the entire 82-182 weld.
16	I'm sorry. Go to the microphone. That's
17	true.
18	MR. SIMS: William Sims, Entergy
19	Operations.
20	The leaking nozzle, they also pulled a
21	boat sample on that to see the 52 and 82 material
22	that's still left exposed.
23	MR. MATHEWS: Yes.
24	CO-CHAIRMAN FORD: They have pulled a boat
25	sample?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	MR. MATHEWS: Yes, yes. I forgot that.
2	They did pull a boat sample on one of these that was
3	subsequently leaking, and that's, I believe, where
4	they got the information that clued me in that they
5	didn't fully cover the original
6	CO-CHAIRMAN FORD: You have the boat
7	sample presumably?
8	MR. MATHEWS: Yes, but the boat sample did
9	not capture, if I recall correctly, did not capture
10	the leak path, but it did capture enough information
11	about the materials to say the overlay did not cover
12	the original 82-182 weld completely.
13	CO-CHAIRMAN FORD: And the boat sample
14	contained 52 or the crack weld?
15	MR. STEININGER: That I don't remember.
16	MR. MATHEWS: There may have been some hot
17	cracking. I don't know. I'll have to go back and dig
18	that out, but you're right. Fifty-two and all of
19	these nickel alloys are difficult stuff to weld with.
20	MR. STEININGER: Okay. If you go to the
21	next overhead, you'll see the plate sections,
22	depiction of the plate sections that we're probably
23	going to take out and then took the individual nozzles
24	out of the plate sections.
25	MR. MATHEWS: You know, this was the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	original, and the details may depend on the mock-ups
2	and how close we come to whatever nozzles of interest.
3	MR. STEININGER: And that's really all I
4	have. The RFP I don't believe for the destructive
5	examination has gone out yet.
6	MR. MATHEWS: Yeah, I believe that was
7	waiting on the details of what nozzles are going to be
8	available.
9	MR. STEININGER: They're working on it as
10	we speak. Okay?
11	MR. SHACK: How difficult is the eddy
12	current inspection of those welds? I mean, do you get
13	a lot of artifacts the way you do in eddy current
14	inspection of the steam generator?
15	MR. MATHEWS: Well, Tom's presentation is
16	going to talk about a demonstration program, and I
17	think it depends well, he'll tell you it depends a
18	great deal on the weld surface condition.
19	MR. STEININGER: If it's really rough, you
20	get a lot of liftoff. So you get a lot of artifacts
21	with liftoff. That's all I know. That's my
22	knowledge.
23	MR. MATHEWS: If it's ground smooth, which
24	a lot of these welds are,
25	MR. STEININGER: You see, a lot of these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	144
1	are ground welds.
2	MR. MATHEWS: Yeah.
3	MR. STEININGER: So for the new heads you
4	have to make that determination, you know: leave it
5	as welded there or are you going to ground it off so
6	you can inspect it?
7	MR. MATHEWS: But even nowadays the even
8	as welded condition is a lot smoother than it used to
9	be.
10	CO-CHAIRMAN FORD: Tom, could I ask you
11	roughly, bearing in mind the density of questions
12	we're having here, how do you long you reckon you will
13	be? I'm talking about break for lunch now or wait.
14	MR. ALLEY: I probably have about 30
15	minutes worth of material, but then again it depends
16	upon the questions that you pose. There's been a lot
17	of NDE questions. So I really don't know how to
18	answer that.
19	CO-CHAIRMAN FORD: What's the view of
20	everybody? Do you want to go for lunch now?
21	No, keep going.
22	MR. ALLEY: Okay. I'm Tom Alley with Duke
23	Energy, and I chair the Alloy 600 ITG inspection
24	working group.
25	So we're here today to present an outline

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	of the inspection committee's activities over the last
2	year, maybe even going back two years to give you an
3	idea and a feel for the demonstration process, the
4	techniques, and what we've done to do that.
5	I want to go back and cover a few of the
6	CRDM issues, a little bit of the background. We've
7	heard some of that already. So I'll be brief on that.
8	We have produced a visual exam guidance
9	document which I'd like to introduce you to briefly.
10	The MRP approach to the NDE
11	demonstrations, how the demonstrations are organized,
12	processed and thoughts that went into the
13	demonstration protocols and inspections themselves.
14	Go over the 2001 demonstration process and
15	results, the 2002 demonstration process and results,
16	and then future activities.
17	We've already heard a little bit of
18	background with regards to the initial industry issues
19	that we had that prompted 9701 response, which is
20	cracks initiating on the ID of the tubes. This was
21	the European experience. The demonstrations and
22	protocols then mostly involve the eddy current
23	examinations of the tube IDs supported by ultrasonics.
24	And as has already been mentioned, the
25	events at Oconee with tube OD cracking and then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

subsequently later on weld cracking caused us to identify need to modify the NDE demonstrations that were done years before, and we're also doing it in a mode that required rapid development and deployment and adaption of existing equipment to respond to an industry need that was identified at Oconee.

7 We've already had some discussion here again that the visual evidence and leakage on the head 8 9 vastly differed from what we initially thought. We initially thought there would be large piles of boron 10 11 on the head when these nozzles tended to leak, and 12 instead at Oconee we saw about a half a cubic inch. So there was a paradigm shift there with regards to 13 14 what we expected.

The first phase of the MRP demonstrations that were available to support the fall outages of 2001, that was a rapid effort that took place in about three months to try to get that off the ground and go on --

20 MR. WALLIS: Why did you think you'd find 21 more leakage?

22 MR. ALLEY: It was postulated that the 23 leaks would --24 MR. WALLIS: Would grow very rapidly?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. ALLEY: Just the pressure and the

25

1

2

3

4

5

6

	147
1	moisture and going through the
2	MR. SHACK: You've got to remember .001
3	gpm gives you 15 pounds of boron per year.
4	MR. WALLIS: But you're going to get to
5	that big a leak from a crack.
6	MR. ALLEY: Well, .001 gpm isn't exactly
7	gushing.
8	MR. ALLEY: We really expected to see a
9	lot more boron on the head than what we saw at Oconee.
10	That was somewhat of a shift in what we expected to
11	see.
12	MR. WALLIS: How big a hole does that
13	correspond to?
14	MR. SHACK: Point, zero, zero, one?
15	Depends on the stress state, but you know, a half inch
16	crack, something like that.
17	MR. WALLIS: No, but how wide?
18	MR. ALLEY: These cracks are very tight,
19	and they meander through the material. It's not like
20	a fatigue crack where it's straight across. It's got
21	pretty much of a Lambert flow through there.
22	MR. WALLIS: through the media?
23	MR. ALLEY: I don't know how to answer
24	your question, but they don't tend to leak very much
25	from what we've seen so far, and Larry can maybe

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	address that better than I.
2	But the first phase of the MRP
3	demonstrations were oriented toward the detection of
4	safety significant flaws, the big axial flaws and the
5	circumferential flaws is where the initial focus was.
6	The second phase, which was a year later,
7	we started looking in the J groove welds because by
8	then we had the well cracking experience. We wanted
9	to get more information on the depth sizing and things
10	and the tube metal itself.
11	The next slide is just a brief
12	introduction to the visual examination guidance that
13	was published. We had a meeting in August of 2001.
14	One of the main topics in that meeting was to present
15	visual evidence what utilities had seen on top of the
16	head during these visual inspections. We certainly
17	got a number of phone calls at Duke with regards to
18	what did you see, how did you see it.
19	This small boron deposit, this popcorn,
20	you know, what's popcorn? We got a lot of questions
21	like that. So the MRP initiated a project at that
22	point in time to go around and collect pictures that
23	people had of various experiences they had and make
24	sure that we get that communicated to the industry so
25	that personnel that were going to go on top of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	head to do inspections were beginning to see what
2	other folks were detecting.
3	That document is now periodically updated.
4	I think we're probably working on Revision 3 now. It
5	doesn't really have a time schedule. It's whenever
6	some visual events tend to indicate there's something
7	different here.
8	Lessons learned, we've learned about
9	paint. We've learned about dye penetrant developer
10	sprayed on nozzles and things. We try to communicate
11	those lessons learned to the industry.
12	There's a good picture of the popcorn
13	presentation there in the top slide. And the lower
14	slide is just what industry refers to as spaghetti
15	strings. We see the boron is
16	MR. WALLIS: It kind of looks like a leak,
17	but when is it not a leak? How clean does it have to
18	be before you say it's not a leak? That's the
19	question I would have.
20	MR. ALLEY: On the nozzles themselves, the
21	industry is pretty much settled in on a description of
22	no indication at all or a masked nozzle or a leaking
23	nozzle. A masked nozzle would be a nozzle that
24	contains boron deposits around there that could have
25	come from other locations on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

150
MR. WALLIS: has to tell you something
about magnification, you know, using with your
telescope or whatever you're suing?
MR. ALLEY: Most of these are done
visually or a camera on a stick. There are some
robotic examinations that are done.
MR. WALLIS: They're pretty crude in terms
of resolution.
MR. ALLEY: Yes.
MR. ROSEN: Well, I don't think so. The
ones that are done by a robotic crawler are actually
very good, the ones I've seen.
MR. ALLEY: Yeah, it's whatever technique
you can use to get up there and get the best view.
MR. MATHEWS: I think the gap is like 30
mils or so, and it looks like a canyon on some of the
robotic crawler in fact, you have to kind of back
off and take a little bit further look so that you
don't fool yourself. Things that look like they're a
grain of sand looks like a boulder on some of them,
depending on the technology you're using.
MR. SHACK: What's the spaghetti one? I
MR. SHACK: What's the spaghetti one? I hadn't seen that one.
MR. SHACK: What's the spaghetti one? I hadn't seen that one. MR. ALLEY: I don't know. Can you show

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	can turn it over, but
2	MR. WALLIS: It has been extruded from a
3	hole.
4	MR. ALLEY: Yeah, and we've seen that at
5	several different locations or different utilities
6	that had experienced this spaghetti string looking
7	deposit that's coming from the annulus area.
8	Again, we wanted to communicate that to
9	the industry. The first time somebody saw it and
10	referred to it, everybody was wanting to know what's
11	spaghetti strings. So we put these in a visual
12	guidance again and showed pictures of that.
13	MR. ROSEN: That's the first picture of
14	that I've ever seen. Is it rare?
15	MR. ALLEY: I won't say it's rare. It's
16	not as common as the popcorn type deposits, but there
17	have been, you know, more than one occurrence of this.
18	MR. WALLIS: You're probably got macaroni
19	and all kinds of things.
20	MR. ALLEY: Yeah, we've got all kinds of
21	names for things.
22	So we do have a document that we and a
23	CD and a videotape that has gone out to the
24	industry. People review that before their inspectors
25	go in to do visual inspections of the head.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	MR. WALLIS: Well, you're saying that this
2	is the sign of a leak. Now, you're implying that
3	anything that comes out of the leak and solidifies
4	will be stay there and won't get blown away. Suppose
5	you have a leak that's tossing out particles or boric
6	acid but they're not sticking. You wouldn't see that,
7	would you?
8	MR. ALLEY: Well, you'll see other signs
9	of boron deposits on the head.
10	MR. WALLIS: You would? I don't know. I
11	don't know. I can imagine a hole which is simply
12	spewing out bullets instead of spaghetti.
13	MR. ALLEY: We certainly haven't seen any
14	of that, nor have we seen that in the NDE results that
15	indicate that we have nozzles that are acting like
16	that, that we don't have visual evidence of.
17	MR. WALLIS: Well, I know, but you see the
18	point. I mean, we don't really know all of the
19	possibilities when you get a leak in the form of the
20	solidified or otherwise boric acid is coming out.
21	MR. ALLEY: And we recognize that. That's
22	why this document has been revised twice now, because
23	we continue to learn. As we do inspections, we
24	continue to learn and want to communicate that to the
25	industry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I	153
1	MR. SHACK: but you've got a lot more
2	volume now. Did you find anything in your volumetric
3	inspections this spring that would indicate a through
4	wall crack that you didn't see visually?
5	MR. ALLEY: I don't understand your
6	question.
7	MR. SHACK: You did a lot of volumetric
8	inspections in the spring inspections. Did you find
9	any through wall cracks that did not produce a visual
10	indication?
11	MR. ALLEY: No. We have some that are
12	being debated, but again, NDE is not exact science.
13	So it's debatable as to whether or not the crack went
14	right up to the edge or actually went through wall and
15	we're still having some of those debates.
16	I can only think of one case where that's
17	really being debated. Can you think of another?
18	MR. MATHEWS: Well, the other situation is
19	the one that just doesn't leak, like North Anna, the
20	Stealth crack.
21	MR. ALLEY: Right.
22	MR. MATHEWS: And you know, you can find
23	it with NDE/UT, but if it doesn't penetrate the
24	annulus, you won't have a leak.
25	MR. ROSEN: Right. It hasn't gone through

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	the surface.
2	MR. MATHEWS: Right.
3	MR. ROSEN: So there's no leak path to the
4	surface.
5	MR. MATHEWS: Yeah, exactly. So it takes
6	some other technique besides visual to find it, and
7	that's why we're saying that we've got to go back and
8	look at the basis for 75.
9	MR. ALLEY: And to skip from the visual
10	document, the approach that MRT has taken to
11	demonstrations, we work very close with the reactor
12	vessel head working group. That group defines to the
13	NDE committee relevant flaw mechanisms, the SEC or
14	BWSCC, fatigue, whatever those mechanisms might be.
15	They communicate that to the inspections committee.
16	They define the inspection locations in volumes, are
17	interested in weld metal tubes, define the range of
18	flaws that they wish to address in the mock-ups.
19	The inspection working group works on the
20	approach that we will take to demonstration and we'll
21	go into some details on that. Mock-up design and
22	procurement, we'll go into some additional details on
23	that.
24	Specification for the flaws in the mock-
25	ups, the realism of the flaws in the mock-ups

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

155 1 MR. WALLIS: Are you going to be trying to 2 duplicate spaghetti and popcorn in these experiments? MR. ALLEY: 3 We have skipped here to the 4 volumetric stuff. So now we're talking about the 5 flaws as they appear in the nozzles and the tube and This is for ultrasonic purpose and eddy 6 the weld. 7 current purposes now for a visual. 8 MR. WALLIS: Okay. So you're still on cracks then. 9 10 MR. ALLEY: We're on cracks. 11 And then we developed a demonstration 12 protocol of the schedules to work with the various vendors. There was a Tiger team that was put together 13 14 of key individuals from both the working head group 15 and the inspection group. 16 MR. WALLIS: Do these qive false indications sometimes? 17 18 Certainly. MR. ALLEY: 19 MR. WALLIS: How do you sort that out? 20 It's a very difficult task. MR. ALLEY: 21 It could be that many of MR. WALLIS: 22 these flaws which were reported earlier this morning 23 are simply false indication. 24 MR. ALLEY: Well, typically in an NDE you 25 would like to have more than one piece of information

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	that you rely on when you're going to make conclusions
2	with your NDE for that reason. We don't always have
3	that luxury, but we certainly look for that.
4	You like to see the visual signs of
5	leakage on the head supported by volumetric
6	examination that finds flaws. You feel very confident
7	about those results.
8	If you only have one NDE discipline, then
9	your confidence in a result can tend to be
10	MR. WALLIS: So you really want to detect
11	them before they leak, don't you?
12	MR. ALLEY: That would be the preference,
13	yes. Again, you like to have eddy current results and
14	ultrasonic results. You like to have overlaying
15	results because there is the potential for false
16	calls, and it's not necessarily a small potential.
17	So the Tiger team got together, which was
18	key individuals from the head working group and the
19	inspection working group to design the next generation
20	of mock-ups, and again, we'll get into some more
21	details on that.
22	If we look at the demonstration process,
23	there's several characteristics of these
24	demonstrations that have been consistent ever since
25	the 9701 response. One of those is tha these are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	blind mock-ups. The inspection vendors are asked to
2	examine these mock-ups without knowing the location,
3	size, and orientation of the flaws. We demonstrate
4	the procedure so that it's application of the
5	procedure. We make sure that the procedure is
6	followed and it contains the essential variables.
7	We try to demonstrate the best available
8	techniques. As we mentioned earlier, this is an
9	evolving inspection, and it is changing with every
10	outage season actually.
11	The ASME codes should drive out the
12	technique and personnel qualifications. This is not
13	a qualification process. We are not out there trying
14	to qualify vendors, and as I'll mention later, nor do
15	we have an acceptance criteria. Those are left up to
16	code committees.
17	We're trying to demonstrate the state of
18	the art with regards to inspections. We're trying to
19	define the limits of the inspections, but we're not
20	trying to qualify the person at all.
21	MR. WALLIS: Do you have some
22	specifications for the sensitivity of these detection
23	techniques?
24	MR. ALLEY: We don't specify sensitivity
25	levels. The vendors work with their test pieces and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	mock-ups to understand the sensitivities. What we do
2	is report back to the utilities and the end users of
3	this technology what these techniques are capable of
4	delivering.
5	We tried not to design the test. We leave
6	that to the vendors. What we're trying to do is
7	define the boundaries of the test.
8	MR. WALLIS: So you report to them that
9	they failed to detect ten percent of the flaws. They
10	don't really know whether this is the fault of the way
11	the personnel did the test or the sensitivity of their
12	device or something else.
13	MR. ALLEY: Well, again, what we do is we
14	look at their procedure and make sure they followed
15	the procedure. The calls that are made on whether a
16	flaw is real or false or the size or the depth or the
17	length is spelled out in the procedures. We do
18	monitor that process to make sure that the procedures
19	and the calls are done in accordance with the process
20	that they've outlined, and again, we've defined the
21	boundaries of that process and the results.
22	MR. WALLIS: So you're talking about
23	I'm a little bit puzzled. This procedure
24	demonstration, there are no acceptance criteria.
25	MR. ALLEY: That's correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	MR. WALLIS: And you don't qualify the
2	people or the technique
3	MR. ALLEY: That's correct.
4	MR. WALLIS: At what point does the
5	industry take responsibility?
6	MR. ALLEY: Well, the ASME code committees
7	need to drive that out. What we're, again, trying to
8	do, and these procedures are evolving. They're quite
9	a bit different today than they were two years ago.
10	We're trying to define the boundaries of
11	the procedure, and these demonstrations are set up to
12	do that. The acceptance of that procedure for use on
13	these heads is utility specific, and we'll get into a
14	little more details with regards to that as far as the
15	information utilities are provided here.
16	CO-CHAIRMAN FORD: So when the order goes
17	out to inspect, for instance, as it just has or for
18	the fall outages, who sets the criteria for the people
19	and the technique?
20	MR. ALLEY: It's normally worded that the
21	techniques will be demonstrated through the MRP
22	protocol.
23	CO-CHAIRMAN FORD: So you do set the
24	acceptance criteria.
25	MR. ALLEY: Well, the acceptance criteria

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	160
1	is that the boundaries have been defined, but not what
2	those boundaries are. We don't say that you've got to
3	have a minimum detection limit of ten percent through
4	the wall. We don't get to that.
5	What we're saying is that you have to
6	define what your boundaries are as part of this
7	process. You need to understand we've got maybe four
8	players in this ball game. So there's not a lot of
9	vendors that are out there going through this
10	protocol.
11	CO-CHAIRMAN FORD: So there's no
12	acceptance criteria of the crack depth, seven inches
13	plus or minus, that has been done by a qualified
14	person.
15	MR. ALLEY: No, sir.
16	CO-CHAIRMAN FORD: And there's no
17	information on the probability of detection.
18	MR. ALLEY: No, sir. Again, we were
19	trying to set the boundaries of this exam. We did
20	have a discussion, which we'll talk about perhaps in
21	a minute, with the Tiger team about probability of
22	detection. That actually requires a different set of
23	mock-ups with different flaw orientations and
24	different numbers of flaws and sizes of flaws.
25	Again, we're pushing the boundaries of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

161
these inspections right now just trying to define the
limits.
CO-CHAIRMAN FORD: So when are you going
through your decision path that you showed on the
evaluating cracking and then applying eventually Reg.
Guide 1.174?
There's no uncertainties at all then.
MR. ALLEY: Normally what's looked at is
the minimum detection limit, and we detected that 100
percent of the time, but what we didn't do is go back
and repeat that exam ten, 15, 20 times to make sure
that it's detected every single time. Again, that's
where you start shifting protocols when you start
addressing the POD.
We're trying to set the boundaries of the
examination now. It may be later that we do address
POD, but to try to do all of that at one time and
develop the techniques did not seem to be a very good
goal.
So when we report, we would report minimum
detectability. Then normally the inspection committee
and these people looking at assessment would assume
that false highs or however they want to do that, and
the statisticians can draw some POD from the flaws
that we've got here, although it may have a fairly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	wide variance.
2	MR. SHACK: In MRP 75 you assumed a
3	failure to not detect at like .08. Does that
4	number
5	MR. MATHEWS: I thought it was much higher
6	than
7	MR. SHACK: Much higher than that?
8	MR. MATHEWS: Yeah. I thought the
9	volumetric failure to detect was much higher than
10	that. I'd have to pull the document and look.
11	The visual was I know on the visual it
12	was like only a 60 percent probability of detection,
13	and then if you missed it the next time, it was like
14	20 percent of that. So you only had like a 12 percent
15	probability of picking it up a second outage.
16	On the volumetric, he had put in some kind
17	of POD curve based on vessel stuff, but I thought it
18	was more than an eight percent. It might have been
19	eight percent. I'm not sure. I'd have to pull that
20	out for the peak. I mean, that was just an
21	assumption.
22	CO-CHAIRMAN FORD: Alan, when you get up
23	later tomorrow, I guess, will you be addressing these
24	issues?
25	MR. HISER: These issues, can you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	enumerate what "these issues"
2	CO-CHAIRMAN FORD: Well, the issues that
3	I just brought up, the question of what acceptance
4	criteria is that the NRC is expecting.
5	MR. HISER: Well, we have reviewed the
6	demonstrations that the various vendors have been able
7	to perform. We have reviewed the MRP documents that
8	specify what the performance was, and we have found
9	those to be acceptable to providing, you know, the
10	reasonable assurance kind of level of inspection.
11	CO-CHAIRMAN FORD: Okay.
12	MR. HISER: So bottom line, we found the
13	inspections and the way they've been able to
14	demonstrate those to be to be acceptable.
15	MR. ALLEY: We know the ASME is working on
16	this, and that's usually an organization that drives
17	out in the industry the personnel qualifications and
18	accepted standards for things. So we're looking to
19	the ASME to drive that out if it's going to happen.
20	Again, what we're trying to do is define
21	the boundaries of the exams.
22	MR. HISER: And at this point the NRC has
23	found those boundaries to be acceptable. The problem
24	is the ASME code is not able to turn as quickly as the
25	industry is and we're able to do.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

164 1 CO-CHAIRMAN FORD: So do we keep pointing 2 in the other direction as to it's the NRC, no, it's the MRP, no, it's the industry, no, it's ASME? 3 4 MR. HISER: Well, I think the MRP provides 5 a report card on what the vendors are able to do, and we find that the grades so far have provided 6 7 acceptable inspections. 8 CO-CHAIRMAN FORD: Okay. 9 Ultimately the ASME codes MR. HISER: 10 should be the ones that should become a more 11 automated process within the ASME code, but we're not 12 there yet. 13 CO-CHAIRMAN FORD: Okay. Thank you. 14 MR. ALLEY: Okay. To carry on, the 15 demonstration the protocol process, that was developed, the vendors collected data on the mock-ups 16 and reported the findings. We evaluate the measure 17 versus the true values of the flaws. 18 The detection of the number of flaws 19 20 versus total flaws; the location with respect to 21 pressure boundaries. Sizing results are documented. 22 False call performance is documented. 23 The NDE center documents the essential 24 variables. Again, we talked about this in the 25 procedure. There's things in the procedure, the way

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	you set your sensitivities, the transducers that are
2	being used, angles, frequencies, those are essential
3	variables as defined by ASME and some other areas.
4	Those essential variables are documented as part of
5	the procedure review.
6	We verify that the vendors are actually
7	using the procedures and the essential variables that
8	were reported in the procedures.
9	MR. WALLIS: I have no idea about this
10	process. Is this a process where the technician
11	manipulates a lot of things, and he flips on a screen
12	and has to interpret them, or is there a computer that
13	analyzes all kind of stuff and gives him an image of
14	what the flaws look like in some way?
15	MR. ALLEY: Probably more the first point,
16	as in they see, as you see, blips on the screen.
17	That's all computer enhanced and all of that, but they
18	have to in their procedure, they have to spell out
19	their decision making process, and it has to be
20	consistent. It has to be applicable to A inspector or
21	B inspector or C inspector. They have to follow the
22	procedure.
23	So the procedure will say: if you see a
24	blip in this location and it has this orientation and
25	this definition to it, you call it a crack or you call

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	it a false call.
2	Those are the essential variables in the
3	analysis part of the procedure.
4	MR. WALLIS: ultimate judgment of the
5	person.
6	MR. ALLEY: Well, in the application of
7	the procedure it's not as much personal judgment as it
8	is the application of the procedure. The procedure
9	spells out the decision making. We try to keep it
10	immune from this black box, and we don't look in it
11	and pull an answer out.
12	The procedure has to spell out the logic
13	that you follow to get to that answer, and that has to
14	be consistent form one person to the next.
15	Theoretically that procedure should be able to be
16	followed by any inspector and they would get the same
17	answer consistently.
18	It's the same basic protocol that's
19	followed with the ASME Section 11, Appendix 8 PDI
20	process. You demonstrate the procedures. You
21	demonstrate the adequacy of the procedures to do it.
22	You take out as much of the human error or human
23	judgment part of this as you possibly can.
24	And then to summarize, the results are
25	given to the utilities.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

167 1 MR. POWERS: Well, I quess I'm -- why the 2 emphasis on getting the human judgment out? There are 3 only four vendors that are doing this. One guy is 4 just really good. He looks at and is communicative 5 about what he sees. Well, you'll certainly find 6 MR. ALLEY: 7 utilities expressing an interest to have one inspector or one person on their site versus another. 8 So it gets to be a word of mouth idea, but what we're trying 9 to demonstrate here is the capabilities of 10 the 11 equipment and the capabilities of the procedures, not 12 the capabilities of the individual. If the procedures and the equipment are 13 14 capable of detecting and locating sizing and detecting 15 these flaws, then we have demonstrated that we have adequate techniques to do that. 16 17 The next part of that may go into the personnel qualification piece of this, how someone 18 19 applies the procedure, but right now we're trying to 20 demonstrate the capabilities of the procedures and the 21 techniques. 22 Dr. Ford, just one other MR. HISER: 23 Where the NRC gets involved in this, for inpoint. 24 plant implementation of inspections we have а 25 temporary instruction that's used by either the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	residents or regional staff to oversee and evaluate
2	the implementation of the inspections. They go back
3	and verify that the essential variables that are used
4	at the plant are consistent with what the vendor
5	demonstrated.
6	So there is that level of review and
7	evaluation as well that the NRC does on these
8	inspections.
9	CO-CHAIRMAN FORD: I was hoping to see a
10	plot of actual crack depth and location versus
11	measured crack depth and location.
12	MR. ALLEY: I have some results to share
13	with you, but we don't have that plot. That's the
14	POD data you're actually looking for.
15	CO-CHAIRMAN FORD: But such plots do
16	exist.
17	MR. ALLEY: They exist with some
18	techniques and some processes. That's true. That was
19	not the goal of this process, to define a bounds of
20	probability of detection as indicated in a least
21	squares fit and all of that. That was not the goal of
22	this demonstration process.
23	CO-CHAIRMAN FORD: Well, reassure me that,
24	for instance, if someone goes in and looks at North
25	Anna or any reactor and they size a crack, what makes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	me think that I should believe that?
2	MR. ALLEY: They have demonstrated on
3	these mock-ups that their sizing has a certain error
4	associated with it. We have enough different size
5	flaws in there to say that they found this flaw and
6	that they size it X. We have data to support the fact
7	that they had the capabilities to do that.
8	What we don't have is the error defined
9	associated with that.
10	CO-CHAIRMAN FORD: Okay. So one of the
11	four teams goes in and does such a measurement.
12	MR. ALLEY: Un-huh.
13	CO-CHAIRMAN FORD: And it agrees to within
14	a certain tolerance of the actual
15	MR. ALLEY: Well, that's some
16	CO-CHAIRMAN FORD: and then they're
17	okay.
18	MR. ALLEY: That's some of what we're
19	hoping to drive out when we cut up these North Anna
20	pieces. I mean, ideally you'd like to have the
21	destructive analysis to go along with the NDE
22	findings. This environment is very tough to do that,
23	and so we don't have that analysis, and that's what
24	we're hoping to get out of the North Anna heads.
25	We are asking all of the vendors to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	through and reexamine the North Anna nozzles prior to
2	sectioning so that we will now be able to get a better
3	feel for what we're actually seeing versus what we're
4	actually detecting, and it may be that we evolve to
5	this point you're talking about now.
6	Right now we're pushing the boundaries of
7	the capabilities of the vendors to even get sound
8	energy in these things and get data out. So we're
9	trying to define those boundaries.
10	CO-CHAIRMAN FORD: Okay.
11	MR. ALLEY: I mean, you're talking
12	probably a more mature program here versus one that's
13	still evolving.
14	MR. WALLIS: Doesn't it really depend on
15	how you're acoustically coupled to the thing you're
16	looking at?
17	MR. ALLEY: Certainly, and that's one of
18	the things that the demonstration has done, and this
19	has been a very valuable experience for everyone
20	involved in this. And I've got some pictures later on
21	that will show you we simulated the nozzles through
22	the heads with the J groove welds that cause
23	distortion on these nozzles. They're not perfectly
24	round on the ID, and what we saw many of the vendors
25	do as part of this process, they were at one time

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

scanning in the circumferential direction in what's called a raster scan. They would scan the increment and scan the increment, and what we saw was the way they were losing coupling when they would go over some distortion in the weld. Now most of the vendors are scanning in the up and down direction. Okay? So those are the things that were driving through as a result of this demonstration process. This is not only to demonstrate the techniques. It's to improve the techniques, and we've got some things I'll talk about later on that we're doing to even further that some more.

14 As we mentioned before, it's a very 15 complicated weld examination volume. It's very, very difficult to inspect the weld metal itself. 16 It's very, very difficult to inspect through the tube into 17 the weld metal. 18

19 They're asymmetrical welds, which adds the 20 whole geometry factor to it. So it's just not a very 21 easy environment to inspect.

22 There's a whole host of different probes 23 and carriages and schemes of which you can go about 24 inspecting. There's open tube probes. This is when 25 the internals are pulled from the drives and you have

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

an open diameter tube that you can now inspect. When you have that luxury, you can now deploy a big scanner that's got multiple probes and multiple transducers and eddy current probes and all of that stuff on one scanner and actually go in and interrogate the volume. In service we typically use blade probes,

7 and a blade probe is like a probe on a Venetian blind. We have to get in between the other components in 8 9 there, and some of these areas I think Al will talk about tomorrow. I think some of these relief requests 10 11 have to do with restricted areas. Things are not 12 perfectly concentric. So there's the thermal sleeves and the lead screws and the stuff will push to one 13 14 side or the other and you jam blade probes and these 15 types of issues we're having to deal with in actually implementing these things in the field. 16

MR. ROSEN: Isn't it another confusion factor that each nozzle is different in terms of where it is on the circumference? The degree of ovality is changing --

21 MR. ALLEY: That is certainly an issue. 22 MR. ROSEN: -- as you go from the center 23 to the outside periphery.

24 MR. ALLEY: Yes, and then one of the 25 things that we also wanted to demonstrate here is the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	173
1	ability to map the weld because you've got to know
2	where you are on that weld itself. And, again,
3	they're asymmetrical.
4	There are some that are on the higher
5	slope, lower sides, and of course, the one on number
6	one nozzle is pretty concentric. So all of those
7	variables make this somewhat difficult.
8	And probes are designed to accomplish
9	specific objectives. The specific volumes, flaw
10	orientations, detection techniques. There's quarter
11	traps, tip diffractions. There's just a number of
12	different schemes that we can use to interrogate this
13	volume.
14	MR. WALLIS: All of these are qualitative
15	arguments. I'd like to go back a bit before. I used
16	to have some sort of a quantitative demonstration of
17	what's actually being measured versus what's there.
18	What are the sources of error, and so on?
19	That could probably be put into one or two
20	slides.
21	MR. ALLEY: I've got some summary slides
22	to show you some typical results. We can certainly
23	compare the true versus the indicated size on a given
24	flaw, but again, what we don't have, in a statistical
25	word, you'd like to run that a number of times to be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	able to see what that error band is.
2	We know that the vendors have oversized or
3	under sized flaws. We have information and data to
4	support that, but in reality the way you apply this,
5	too, is typically this is a detection. If you detect
6	these flaws in these nozzles, most utilities are going
7	to invoke a repair immediately. So it's almost a
8	detection game.
9	Whether you size or under size or oversize
10	a flaw to a relative degree doesn't really matter in
11	reality. We repair them.
12	MR. MATHEWS: There have been a few that
13	have been left in service for one cycle, but believe
14	me, the UT data get scrutinized to the hilt to come up
15	with is it okay to leave this flaw in service for a
16	cycle. Is it going to grow through wall or grow 75
17	percent through wall?
18	And the NRC is buying off on that.
19	CO-CHAIRMAN FORD: So the ASME 11 book are
20	relying under the flaw it doesn't exist.
21	MR. ALLEY: The only place we have a
22	CO-CHAIRMAN FORD: If you find a flaw, you
23	replace.
24	MR. ALLEY: The only place we have a
25	MR. MATHEWS: I said some have been left

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	in service. Very shallow ID flaws may be left in
2	service for a period of time.
3	MR. WALLIS: Okay.
4	MR. SHACK: The next, shallow axials?
5	MR. MATHEWS: Yeah, I don't believe
6	there's any that have been left in service.
7	MR. ALLEY: Yeah, shallow axial flaws
8	which were typical of what we saw back in the 9701.
9	There is some analysis to allow you reasonable times
10	to reinspect those flaws, but once you get on the OD
11	of the tube and then the weld metal of the tube,
12	detection really is what you're trying to accomplish.
13	Okay. More than one probe, as mentioned
14	before, can be used to examine a volume, particularly
15	when we're dealing with blade probes. It's a decision
16	to make with regard to which blade probe you want to
17	deploy in trading off the sensitivity of one blade
18	probe versus another.
19	CO-CHAIRMAN FORD: Just to go back to
20	Graham's point, if you have such a presentation at the
21	full committee meeting in a couple of weeks' time
22	rather than all of these word slides, a graph of real
23	versus observed or observed versus actual
24	MR. ALLEY: Okay.
25	CO-CHAIRMAN FORD: it would be very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	helpful.
2	MR. ALLEY: Okay. Let's regress just
3	slightly and talk a little bit more about the 2001
4	demo process. Again, we were looking for the safety
5	significant flaws in the two base metals.
6	The mock-ups consisted of two different
7	mock-up blocks or samples. One was the stub-in pieces
8	off the Oconee penetration tubes, and I've got a
9	picture to show you there.
10	The concept behind that was to demonstrate
11	that the ultrasonic techniques were capable of
12	detecting a cracked HIP, and this was a real PWSCC.
13	So you actually did the vendors did hand scanning
14	on this block to show that they could detect the
15	cracked HIPs, which is the primary mode that we're
16	using for detection.
17	We had a good range of flaw sizes in the
18	Oconee pieces which you'll observe in just a minute.
19	Then we had a full scale mock-up, and that full scale
20	mock-up contained EDM notches, which are not
21	particularly challenging in the NDE world.
22	At the same time, this is where we started
23	taking into account distortion issues, access to the
24	nozzle, scanning rates, patterns, those sorts of
25	mechanical devices probably as much as ultrasonic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	devices were demoed as part of that.
2	MR. SHACK: Now, these EDM notches, did
3	you try to squeeze them down, tighten them up at all?
4	MR. ALLEY: This was the first round. So
5	these were EDM notches, and we did use squeeze notches
6	on the second round, which I'll discuss that in just
7	a few moments.
8	We had flaws located relative to the weld.
9	We had some cluster tight flaws, notches. In this
10	case we call them flaws, but notches. We had triple
11	point indications or notches in the triple point area.
12	Again, I've already mentioned we used EDM notches, and
13	the initial demo here was blind, but immediately after
14	the vendor turned over the results, we unfolded the
15	scales on the keys to the blocks. We were able to now
16	negotiate with the vendor with regards to what they
17	detected and what they found, a very helpful exercise
18	in developing the techniques.
19	MR. POWERS: I don't understand what you
20	mean, "negotiate." I mean you either found something
21	or you didn't.
22	MR. ALLEY: Well, you can try smaller
23	probe size. You can try a different frequency. Why
24	don't you do this? Why don't you do that? Trying to
25	work with the vendors at this point in time, showing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	them what they missed and trying to explain to them
2	why they missed it.
3	This first round of demos we started in
4	the fall of 2001, actually went on for about six
5	months. We envisioned first that we would have these
6	blocks and we'd run these in a week, and I think the
7	NRC actually was invited on many of these demos and
8	came down and witnessed, and you stood around a lot
9	because the vendor would go in and do some of the
10	inspection work and then have to go back and tweak a
11	probe.
12	So this process went on and on and on.
13	This block was shipped all over the country; these
14	blocks were, trying to get the techniques developed.
15	So when I said "negotiate," that's what we
16	were trying to do, is basically push the technology
17	and the development of the technology. It was a
18	learning experience.
19	Okay. The next slide will show you the
20	Oconee in-stub pieces. This was the ends of the tubes
21	that were removed at Oconee as part of the repair
22	process. You can see the flaws that were contained on
23	these tubes, ID and OD flaws.
24	MR. WALLIS: Now, I can see a whole lot of
25	sort of vein like things. Those are all flaws?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	MR. ALLEY: That's PT results from
2	MR. WALLIS: Anything there which doesn't
3	look like a homogeneous substance is a flaw?
4	MR. ALLEY: All the bleed-out there that
5	we see in the dye penetrant. This was a dye penetrant
6	picture of the stub-in pieces only, Oconee unit.
7	Those are all
8	MR. WALLIS: It's riddled with flaws.
9	MR. ALLEY: Yes, it is.
10	MR. WALLIS: And you're looking for one
11	flaw?
12	MR. ALLEY: Well, we picked out flaws that
13	were oriented at 45 degrees, the ID flaws and the OD
14	flaws, and we asked the vendors to take their probes
15	and manually manipulate their probes on the surface to
16	see that they could detect the tips of these flaws.
17	That was part of
18	MR. WALLIS:looking for rivers from a
19	satellite. I mean, you can see them, but if they're
20	small enough you won't see them.
21	MR. ALLEY: True.
22	MR. WALLIS: So there must be something
23	that you can specify about the resolution or the
24	sensitivity or something. Isn't that a requirement?
25	MR. ALLEY: It's looking at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	180
1	MR. WALLIS: You don't have any
2	specifications; is that right?
3	MR. ALLEY: It's looking for the tips. I
4	mean, they needed to demonstrate that their techniques
5	were capable of finding the tips, and it wasn't always
6	done.
7	Excuse me?
8	MR. WALLIS: Atomic size tip?
9	MR. ALLEY: No, we picked out a flaw in
10	here, the 45 degree off-axis flaws to demonstrate that
11	they're capable of doing that. Again, this wasn't to
12	define minimum detectabilities. This was to show that
13	they're getting sound energy to the cracked tip and
14	they're able to see resident energy off of that tip.
15	MR. WALLIS: It just sounds so
16	qualitative.
17	MR. ALLEY: This was the first cut through
18	these demos. So if they can't find crack tips,
19	they're not going to perform on any demonstration. So
20	the idea here was you find the crack tips first. Then
21	we'll go to the next round. So this was kind of a
22	screening process. It actually worked very well for
23	that.
24	MR. MATHEWS: And most of those is this
25	the same? Well, these are two different most of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	those that all those flaws on the OD, most of them
2	were not through wall by any stretch.
3	MR. ALLEY: No.
4	MR. MATHEWS: Marked through wall flaws of
5	various depths, and they picked out one or some.
6	MR. ALLEY: The off-axis flaws is one we
7	were very interested in.
8	MR. MATHEWS: Yeah.
9	MR. SHACK: You should have been around in
10	the days before they looked for the crack tip
11	reflection if you really wanted to see a qualitative
12	argument.
13	(Laughter.)
14	MR. ALLEY: The only thing in NDE worse
15	than finding something is finding nothing.
16	MR. SHACK: Amplitude drop and all of
17	those exciting parameters.
18	MR. ALLEY: Yeah. Then the next slide
19	just shows the full scale mock-up that was
20	constructed. Again, this had EDM notches in it, but
21	you can see here that we tried to emulate some of what
22	we had seen in the field. Here are some cross-hatches
23	with a circumferential flaw on the 45 degree slope,
24	and the inspection vendor has some difficulty not in
25	detecting that, but in trying to resolve the axial

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	flaws from circumferential flaw.
2	We had another circumferential flaw over
3	flaw number three there. It's a bit challenging.
4	It's got little cross-hatches on it as well. Again,
5	for the speed of trying to get this done for the fall
6	inspections, these were just all of the EDM notches
7	that we put in place.
8	You can see a picture of that block over
9	on the side there, and you see that that's full scale.
10	MR. WALLIS: So these flaws, these are not
11	it can't be like the real flaw.
12	MR. ALLEY: These are notches.
13	MR. WALLIS: And they're much more
14	microscopic than the real flaws, aren't they?
15	MR. MATHEWS: Yes.
16	MR. ALLEY: Yeah.
17	MR. MATHEWS: The goal was to demonstrate
18	the ability to detect the tip of a PWSCC flaw on a
19	real PWSCC flaw. That was the goal with the two stub
20	pieces from Oconee that had PWSCC flaws in them.
21	Then using that technique in a mock-up
22	with notches, the purpose of the notch mock-up with
23	notches was to demonstrate the ability to deliver
24	sound to the location, with the presumption, if you
25	will, that if you get the sound there and you can see

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	the tip, then it will work.
2	MR. ALLEY: Yeah, the notices were not
3	challenging, but again, it was somewhat challenging to
4	pick out the axials versus circumferentials when you
5	have all of these axials lined up with a
6	circumferential flaw cutting through it. That was a
7	bit challenging.
8	And we had WesDyne, Framatome, and
9	Technatome actually participated in these mock-ups.
10	We also had eddy current mock-up which I didn't show
11	here. it was an eddy current mock-up with a J groove
12	weld that just had three flaws located in it. So we
13	had some ability to do the eddy current.
14	The results were distributed by the MRP.
15	Vendors were capable of detecting the crack tips on
16	the Oconee tube ends after enhancing their
17	procedures. So to me that was the successful part of
18	this demo. The vendors came in at first and tried to
19	find crack tips on those tube pieces and couldn't find
20	them. So we changed the procedures and the techniques
21	associated with that until they were able to find
22	them.
23	Then you go to the full-scale mock-ups.
24	that was a very valuable experience.
25	Vendors were able to detect the flaws in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ches are
at we did
ery long
ack, you
ound it.
anged
now, but
obes and
d, those
l scanned
ick tips.
echnique
out and
make it
away and
"
"we,"
ing them
ing them to that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	MR. ALLEY: So the EPRI NDE center is kind
2	of managing this system for us.
3	CO-CHAIRMAN FORD: So you educated them of
4	it and
5	MR. ALLEY: Used the 45 degree shear wave
б	(phonetic), you know, that kind of thing.
7	The results were demonstrated periodically
8	as we had a chance to update this or something new
9	happened in the demonstration process. We updated the
10	industry on where we were.
11	The next slide is just a table that shows
12	typical results. The vendors still treat this as
13	fairly much proprietary as far as what angles and what
14	probes and what frequencies they're doing. There's
15	certainly a commercial aspect to them having developed
16	most of these techniques.
17	Again, the goal of MRP was not to develop
18	these techniques. The vendors needed to develop that.
19	Just to give you a feel for the types of
20	results that we were able to get, you can see a number
21	of different techniques or flaw sizes that were used
22	across the top. The A, B, C, D, E, F, which is scaled
23	on the right-hand side, shows you the orientation of
24	those flaws, the techniques and whether they were
25	detected and whether they were sized successfully.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

186
These are the kind of tables that went out
along with additional information to the industry for
all of the vendors that went through the examination.
So that was the first round of demos done
very hurriedly and done with notches and what we could
get our hands on very quickly.
MR. SHACK: Were the Framatome people
using the same techniques that they used on the French
reactors? I mean, were they
MR. ALLEY: Well
MR. SHACK: They run with cracks.
MR. ALLEY: The initial approach that
Framatome used at Oconee, for instance, when we found
Oconee 1 with some issues, they deployed the
techniques that were developed as part of 9701: eddy
current ID, rotating probe, and went in and did that.
And the performance of that was not anywhere near what
it is today. So those techniques have changed.
Now, the eddy current techniques are still
the same, but the ultrasonic techniques have changed
quite a bit in the last two years.
Again, what the French were looking at was
eddy current detection and then a very shallow focused
ID flaw for sizing, and it was backed into sizing. If
you didn't see it, you would assume it was the minimum

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	detection limits of the probe. So that kind of broad
2	brushed approach to the 9701 was very successful in
3	that program, but in this program since the flaws are
4	oriented from the OD and coming in, that approach was
5	not as successful. So we had to change.
6	Now, for the 2002 demos, we replaced the
7	EDM notices with CIP flaws, which is cold isostatic
8	pressure. We actually EDM the flaws in place and then
9	put it in autoclave and slam the flaws shut and make
10	a very tight flaw.
11	We were able to have depth sizing, length
12	sizing, and location with respect to the weld. We had
13	an increase population of flaws, many more flaws in
14	the blocks. We had blocks manufactured to have flaws
15	in the attachment welds. We had wanted to identify
16	flaws that reached the triple point, and the triple
17	point is the point where you have the two materials,
18	the weld metal and the buttering, all meeting at that
19	one point up there, which is the spot at which you
20	have to get across the triple point in order to leak
21	into the annulus.
22	So, again, there's several different
23	schemes about how you might go about addressing this
24	problem. One is if I don't see any indications to the

25 triple point, then I don't have leakage. If I don't

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	have leakage, I can't have circumferential flaws.
2	So there's a logic approach for a while.
3	We wanted to get some information on that.
4	The effects of cluster flaws we know is
5	part of the 9701, that many of these nozzles contain
б	crazed type IDs, shallow clusters. So what would
7	happen if we had a flaw line beneath that? So we
8	wanted to include that in the next round of demos.
9	So the Tiger team, to go back to that real
10	quickly, the Tiger team did design the next round of
11	mock-ups. These were the goals of the mock-ups.
12	We wanted to maintain a blind. We wanted
13	to demonstrate the sizing capabilities. We wanted to
14	maintain a full scale mock-up. We wanted to establish
15	inspection thresholds. What's the minimum
16	detectability?
17	Again, we talked about the POD. That was
18	not part of the goal of this process. We wanted to
19	provide practice blocks, and we wanted to include the
20	craze cracking.
21	So those were the high level goals that we
22	approached going into the next round of demos.
23	The mock-up flaws must be representative
24	and appropriate for the NDE methods to be
25	demonstrated. For UT we needed specular reflection

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	off the flaws. We needed tipped fraction responses
2	and corner trap responses. So we needed to make sure
3	those were included in there.
4	For eddy current, we needed a realistic
5	electromagnetic properties and crack widths.
6	The goals as realistic reproduction of key
7	detection and sizing variables. So any differences
8	were monitored and considered during the demonstration
9	process. Again, numerous NDE methods were being
10	applied, a number of different probe frequencies and
11	schemes were being applied.
12	The CIP flaws we considered. The Tiger
13	team considered all different flaw making techniques.
14	MR. ROSEN: What's sift?
15	MR. ALLEY: CIP, cold isostatic pressure.
16	We basically put it in an autoclave and just put so
17	much pressure in there that we're able to slam these
18	notches shut and get a very tight flaw.
19	We reviewed all of the different flaw
20	making techniques, fatigue cracks, thermal fatigue
21	cracks, mica disks, EDM notches, CIP flaws, HIP flaws,
22	which is hot isostatic pressure, and we settled in on
23	the CIP as being a good approximate for the eddy
24	current. They are very tight and no unrealistic
25	electromagnetic features. They didn't give us false

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

190
calls, in other words. They were appropriate for UT.
They gave good tip responses, which again tip response
is the primary detection mode now.
The reason that we use CIP rather than a
true SCC flaw is because we can control the dimensions
of that. We machine the notch in it. We know how
deep it is, how long it is, and the orientation of it
before we put it in an autoclave to slam it shut, and
that way we've got good sizing ability to know what it
is.
If it's a true SCC flaw, we really,
because of the sonic uncertainties, you don't
understand what the true bounds are. So that was one
of the primary goals.
MR. POWERS: But the trouble is now you
don't know anything about the detection of true flaws.
MR. ALLEY: Well, the true flaws, as I
mentioned before, they meander, and they sort of break
up and scatter and work their way through the
material. So there's some ultrasonic uncertainties
associated with that.
In defining the boundaries of the exam, we
wanted to make sure that we eliminate those
uncertainties.
MR. POWERS: I understand that, but the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	result is that the skeptic says, "Great. This is an
2	inapplicable."
3	MR. ALLEY: It's inapplicable?
4	MR. POWERS: Doesn't have anything to do
5	with reality.
6	MR. ALLEY: Because the true flaw may not
7	be truly represented?
8	MR. POWERS: Doesn't look like that at
9	all. It meanders and goes around, gets diffused, and
10	there are a lot of things that fool the detector.
11	MR. ALLEY: That's why we're very
12	interested in the North Anna results. The only way to
13	truly understand detection versus true in real life is
14	to cut flaws up, and that's what we're going to
15	accomplish with the North Anna. We should be able to
16	answer that question better for you once we have
17	sectioned the North Anna components and can compare
18	the true ultrasonic responses to the true
19	MR. POWERS: And the scenario
20	MR. MATHEWS: We simulate some of that
21	though. We did try to simulate some of the branching,
22	et cetera, by intersecting multiple flaws in the EDM
23	before they were squeezed, et cetera.
24	MR. ALLEY: That's correct.
25	MR. MATHEWS: Some of that was captured in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	the way some of these flaws were manufactured, and
2	plus what do you call it? The irregularity of the
3	flaw face, I think, was tried to be captured in some
4	of the flaws or maybe all of them.
5	So they do the best they can to create a
6	flaw that will represent what's in the field.
7	MR. POWERS: And then the question is
8	whether that best you can is good enough. Now, the
9	problem we have with the North Anna is here's one
10	that's unusual, unique, and whatnot. So you get done
11	with that, what do you have?
12	MR. ALLEY: You've got several different
13	orders of uncertainty, and one is uncertainty in the
14	technique itself, which is where we need to have
15	clearly defined rules for how we can define that,
16	which is what the CIP flaws accomplish.
17	The other is the physical boundaries of
18	the technique itself, and that's what you're asking.
19	What are the physical boundaries when physics starts
20	to distort the answer?
21	And, again, the only way I know to
22	accomplish that is to cut samples up. This protocol
23	here is not designed to answer the physical
24	boundaries. When we start pushing the physics beyond
25	its abilities, we can't define that in this protocol

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	here.
2	Does that answer your question? You still
3	look confused.
4	Do I continue?
5	CO-CHAIRMAN FORD: Please.
6	MR. ALLEY: Again, what Larry mentioned
7	was we actually went in and machined the notches so
8	they would have some faceting to them, again, to try
9	to emulate a flaw that would tend to meander through
10	a material.
11	We did have branching in several of the
12	flaws. We also found out from studies that when the
13	notched tip collapses, it actually forms a little Y
14	where the material collapses, and it gives us two real
15	good branches there to get tip refractions off of. So
16	those flaws worked very well for that.
17	We did use accelerated corrosion cracks.
18	We had some mock-ups that we used, weld metal to
19	accelerate the cracks. We used this mostly with the
20	eddy current, which I'll get into in a minute when we
21	show you the eddy current blocks.
22	We were able to use the SCC flaws for eddy
23	current because eddy current, you have almost no depth
24	information on eddy currents. So the actual depth of
25	flaw is not as important in that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	Again, just to kind of go through what the
2	Tiger team had
3	MR. POWERS: How did you make your
4	accelerated flaws?
5	MR. ALLEY: Weld metal in the tube that's
6	then put in an autoclave. So the weld metal has a lot
7	of residual stress, and you put it in the autoclave
8	and then put it in the environment. It got slow to
9	start, and then it went pretty well. So we got a
10	little behind on that process.
11	I'll show you a picture of one of those in
12	a minute.
13	CO-CHAIRMAN FORD: I'd like to finish by
14	about five to one, 11 minutes to one.
15	MR. ALLEY: Okay.
16	MR. WALLIS: Mr. Chairman, are we doing
17	now what we would normally do after lunch on the
18	program or do we have something after lunch as well?
19	Are we doing Part 5 now or four or what?
20	CO-CHAIRMAN FORD: We did Part 5.
21	MR. WALLIS: We did Part 5. So we're
22	doing this afternoon's session now.
23	CO-CHAIRMAN FORD: Yes.
24	MR. ROSEN: Why are we doing the afternoon
25	session now? I thought we would go to lunch. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	thought we were going to go to noon when you took the
2	poll at 11:30.
3	CO-CHAIRMAN FORD: Well, I know that.
4	that's why I asked the question. Do you want to have
5	lunch at half past 11 or
6	PARTICIPANTS: Or not at all.
7	(Laughter.)
8	MR. MATHEWS: He didn't phrase it that
9	way.
10	PARTICIPANT: This is the way it's working
11	out.
12	CO-CHAIRMAN FORD: Could I suggest Jack
13	reminds me that you might have problem getting lunch
14	in the cafeteria?
15	PARTICIPANT: Yeah, if you wait long
16	enough they all go home.
17	CO-CHAIRMAN FORD: Sine you're just
18	starting the 2002 topic, maybe this is a good time to
19	break if that's okay with you.
20	MR. ALLEY: Very good, yeah.
21	CO-CHAIRMAN FORD: And then let's go into
22	recess now until half past one, and then we'll start
23	up again at half past one.
24	(Whereupon, at 12:28 p.m., the meeting was recessed
25	for lunch, to reconvene at 1:30 p.m., the same day.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:33 p.m.)
3	CO-CHAIRMAN FORD: Okay. We're back in
4	session.
5	You're all well fed. Mike says I'd better
6	keep you awake now.
7	Okay. Tom.
8	MR. ALLEY: Okay. Where I am is 2002
9	mock-ups. The next slide, I think. Let me get the
10	video here and where I am on the same page.
11	Okay. Yeah, what the Tiger team has
12	decided to do in the 2002 mock-ups is have axial
13	circumferential and off-axis tube flaws. Now, I use
14	"flaws" to describe notches before, but these are
15	actually the CIP flaws.
16	We had approximately 20 flaws, up to 100
17	percent in depth, ranging in length from 1/100,000 to
18	three inches. We had cluster flaws in the tube, 25
19	flaws up to 20 percent deep, 1/100,000 to 1/250,000;
20	axial circumferential flaws in the attachment welds.
21	We located them at the well head and weld to tube
22	interface, and flaws approaching and through the
23	triple point. So, again, it was one of the inspection
24	philosophies here was being able to look at that
25	triple point. So we wanted to be able to define the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

capability to do that.

1

2

3

4

5

6

7

The next slide is just a graphical presentation, and this is typical because, again, these blocks are steel blond (phonetic). So we did hand this out to the inspection vendors and had time to show a representation of the flaws and the locations and what we're trying to accomplish.

This isn't the actual drawing of 8 the block, and it shows the orientation across the weld. 9 You can see the little clustered flaws, 14 and 15 up 10 11 on the right-hand side. That was to look at the 12 detectability through the craze crack along the ID that we saw on the left-hand side. You could see some 13 14 cross-sectional views of flaws that would be in a 15 circumferential direction and in the axial direction. I'll have a few more details on this as we 16 17 go along. The J groove welds, this is a similar view 18

for what was proposed to build and construct in the J groove itself. You could see flaws along the lower part of the weld, through the weld, axial --MR. ROSEN: It would help me if you could point out as you're going along what you're talking

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24 about.

25

MR. ALLEY: Okay. We've got defects that

(202) 234-4433

(202) 234-4433

197

198 1 would essentially be in the circumferential location 2 even though it's on an off axis. You just talk a lot 3 about the off axis, but it's following the weld root 4 area. 5 We've got the axial flaws that would go down through the weld approaching the triple point. 6 7 We've got flaws up through the triple point. These are in the weld metal. 8 MR. WALLIS: How do you make those flaws? 9 MR. ALLEY: Those flaws in the weld metal 10 were made by notches, and then collapsed. 11 12 MR. WALLIS: Notches and then you squeeze it all together again? 13 14 MR. ALLEY: Yeah. 15 MR. ROSEN: Can you put the red dot on the triple point? 16 17 MR. ALLEY: The triple point would be right here. 18 19 MR. ROSEN: Right there. 20 So, again, you're thinking MR. ALLEY: 21 this is probably on the ID. This is on the OD of the 22 weld. So it's a --23 PARTICIPANT: OD of the tube. 24 MR. ALLEY: I mean the OD of the tube, 25 even though it looks like the ID. Exactly, you've

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	opened up what's called a C scan view. So we've got
2	a variety of flaws proposed in here.
3	The next slide is just a copy of what we
4	call the J block, which is, again, the tube weld I
5	mean the tube defects that we put in here and the
б	location. You can see the full scale mock-up here on
7	the side, and we actually suspend it off the floor.
8	So we have to manipulate the equipment underneath it
9	and then access up to the bottom of the tube and scan
10	the tube.
11	These defects are in the tube themselves.
12	So you'll see OD circumferential, ID circumferential.
13	We see the axial flaws here, both OD and ID. This
14	particular block was manufactured as a piece and then
15	welded in place. We were able to
16	MR. WALLIS: Excuse me. These flaws are
17	straight, aren't they? They're relatively simple
18	geometry?
19	MR. ALLEY: Well, we talked about before
20	we've fastened them as much as we can. You have to
21	machine the notch in, and then we can collapse them.
22	So there aren't absolutely straight specular
23	reflectors. They've got some twisting and turning to
24	them. We've tried to emulate branching in some of
25	them. They're just graphically shown here as being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	straight to show the orientation.
2	And then it's very important to us that we
3	did some work to show that the tip, as I mentioned
4	before, when it collapses it actually forms a little
5	Y. As all of that material collapses, it's very
6	important because the vendors rely on cracked tip
7	detection as a means for detection and sizing the
8	flaw. So now we have a couple of tips up here that we
9	can now detect with tip responses. If it was just a
10	specular reflector, we wouldn't get a very good tip
11	response off of that.
12	So that's the ones that are in the tube
13	material themselves. The next slide, again, shows the
14	K mock-up, we call it. This was the one with the weld
15	metal defects that are located here, and then we've
16	got these defects are shown growing this way You'
17	can't really see it in this slide, but they're shown
18	growing circumferentially around the nozzle and up
19	through the weld.
20	So there are actually two blocks there for
21	that, and those, again, were ship flaws.
22	We did UT tests on the inside of the tube
23	to try to detect these. Again, we're interested in
24	seeing how far in the weld metal we can see things,
25	and we did eddy current inspections from the wetted

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	surface to see the interface of these flaws to where
2	they interface to wetted surfaces.
3	MR. ROSEN: How do you put the pressure on
4	the outside of this thing to close the
5	MR. ALLEY: It's done in autoclave.
6	MR. ROSEN: You make this whole part and
7	put it in the autoclave?
8	MR. ALLEY: Well, there's kind of a
9	usually we end up having to crop it off here and crop
10	it off somewhere else and weld it together and
11	reassemble it. We make sure that the area that
12	contains the effects here is what goes through the
13	treatment, and then we'll manufacture that in place.
14	We can't put that whole block in.
15	So it can cause us some sonic concerns out
16	here and some sonic concerns down here, but that's not
17	the area of interest for us.
18	MR. ROSEN: So you put it in the autoclave
19	and you take the autoclave up to a couple thousand psi
20	MR. ALLEY: Yeah, I forgot.
21	MR. MATHEWS: Forty-five thousand.
22	MR. ALLEY: I've forgotten what the
23	pressure is, but it's
24	MR. POWERS: Are you doing your own or are
25	you having somebody do it for you?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	202
1	MR. ALLEY: EPRI does this for us.
2	MR. POWERS: Oh, okay.
3	MR. ALLEY: One of the few facilities to
4	do this is at the NDE Center. So we're able to do
5	that there. But we are very confined as far as the
6	size of the flaw. I think its axial length, and I'm
7	not sure what volume we're able to accommodate, but
8	it's
9	MR. ROSEN: If it's something to 45,000
10	psi, it's too big.
11	MR. POWERS: There's a guy up in
12	Worcester, Massachusetts that uses a bell off one of
13	the U.S. battle ships, and so it has either a 14 or a
14	16 inch bore on it for doing both HIP and CIP. So if
15	you need a bigger one, there are bigger ones around.
16	MR. ALLEY: Yeah. CIP works well for us.
17	We found the HIP actually will fuse some of the flaw
18	characteristics back together again. So sonically
19	we're kind of locked into the CIP process.
20	MR. ROSEN: After all of this work, you've
21	gone back and fused
22	MR. POWERS: It might make them look
23	realistic.
24	MR. ALLEY: That would be debatable.
25	Okay. The next slide is going to show the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 mock-up that was designed for the eddy current 2 inspection, just and here we have а plastic 3 representation of the vessel and the nozzle, and we've 4 machined into this receptacles, square receptacles for 5 these coupons. We're able to grow these coupons in the laboratory. 6 7 As I mentioned before, they contain actual 8 SCC cracks. Then we're able to take these coupons and 9 imbed them in this sample and then run the eddy 10 current probe around the sample. This allows us to mix them up and change them around and keeps some 11 blindness to these tests. 12 But we are actually using SCC samples for 13 14 the eddy current. 15 So that's fairly clever. MR. ROSEN: 16 MR. ALLEY: We have our moments. 17 MR. MATHEWS: Except these weld beads are straight instead of curved, you 18 know. 19 MR. ALLEY: Yeah. 20 But it is a way that you MR. MATHEWS: 21 could shuffle things around and give each guy a 22 different test. 23 MR. ALLEY: We're able to vary the width 24 and the length and the orientation of the flaws this 25 way because we grow them in the laboratory, and then

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	we can transport them over to the sample. We don't
2	have to worry about trying to grow them in that
3	sample, which would be a very difficult task to do.
4	The next slide just shows the close-up.
5	CO-CHAIRMAN SIEBER: That makes an
6	interface though of materials, right?
7	MR. ALLEY: Yeah, but the
8	CO-CHAIRMAN SIEBER: It's very hard to get
9	a sonic.
10	MR. ALLEY: This is an eddy current.
11	CO-CHAIRMAN SIEBER: An eddy current.
12	MR. ALLEY: Yeah. So we're just
13	interested in the service, and the flaws, if you'll
14	put the next slide up, I'm not sure you'll be able to
15	see them in the view, but we can show it and see.
16	We've got well, yeah. See, there's a
17	flaw right there, which is in one of the beads of the
18	weld. The flaw is actually contained right in there.
19	So we're able to imbed that from the eddy current.
20	You know, we can just window in on that area and test
21	that coupon.
22	MR. ROSEN: Is that difficult on the
23	surface that you see in the field?
24	MR. MATHEWS: It's pretty rough.
25	MR. ALLEY: It's pretty rough actually.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

There's probably some vessels out there that aren't that rough, but most of them we find the condition is much better than that. Some of them have been ground 3 4 smooth. There are just various states of condition on these J groove welds, which is an issue we continue to wrestle with. 6

7 Okay. You can change it to the next slide. We'll start going over some general rolled up 8 results from what the vendors were able to accomplish. 9

Again, for Vendor A, if we look at the 10 11 blade probe UT or the penetration tube, now, blade 12 probe, again, is one transducer on a very flexible metal stick. It's actually split up the side of the 13 14 nozzle. So we have to combined different blade probe 15 results which I'll show you a table of that in a but we were able to detect flaws it raised 16 moment. 17 from 15 to 100 percent through wall were detected as part of this process. 18

19 When they're oriented perpendicular to the 20 beam direction, we're able to detect flaws 15 to 100 21 percent through wall when they're oriented parallel to 22 the beam direction.

23 MR. WALLIS: Now, does that means you do 24 not detect them if they're 12 percent or just you 25 didn't investigate that?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

5

	206
1	MR. ALLEY: No, they were not detected if
2	they were less than
3	MR. WALLIS: They have to be bigger
4	than
5	MR. ALLEY: That's correct. That was the
6	minimum detectability.
7	MR. WALLIS: Is the resolution limit.
8	MR. ALLEY: That was the minimum
9	detectability for those flaws. We had flaws in the
10	blocks that were smaller than that that were not
11	detected.
12	Okay. Now, it's important excuse me?
13	MR. POWERS: How is the probe coupled?
14	MR. ALLEY: It's just water.
15	MR. POWERS: You immerse
16	MR. ALLEY: No. They've got a little
17	squirter that comes at the back of the probe and just
18	sprays the coupling on the nozzle to the blade probes.
19	Now, the rotating probes are usually done
20	with a boot or something on the bottom that flood the
21	tube. It's important to note here one of the things
22	we wanted to try to understand better was just beam
23	direction orientation because with blade probes to go
24	in and try to do the same level of examination you
25	would do with the rotating probe, which has seven or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

eight different probe packages on it, you would have to do eight separate exams.

3 So you begin to swap off what you're able 4 to accomplish with a given exam. Are you looking for 5 circumferential flaws or axial flaws, and are the detection capabilities of one flaw for a flaw that's 6 7 not oriented right for that direction of sound? You like for the sound to come in perpendicular to the 8 flaws all the time, but what happens if it's coming in 9 same direction of the flaws? 10 the What's our 11 detectability?

There's two philosophies in doing this, and again, this gets to the utility specific part of this. It's certainly the prior information we had on MRP 75 said you've got to have an axial flaw before you can have leakage to the annulus and get a circumferential flaw.

So some utility said, "I'm going to go look for axial flaws. I'm going to look in this direction to find the large axials because if I have no large axials I can't have circumferential."

22 Other utilities have said, "Well, I'm 23 going to go in and I'm going to look for the safety 24 significant circumferential flaw." So they want to 25 look in this direction.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	208
1	So immediately the question is: well, if
2	you didn't find any circumferential flaws, what kind
3	of detectability do you have for the axial flaws
4	looking in the other orientation? That's part of this
5	mock-up. That's why you see the notes in here
б	indicating the flaw direction and the beam direction.
7	So we found that we had very good
8	detection capabilities with the off axis probe. So
9	the circumferential probes did fairly well. For the
10	axial flaws and the axial probes, did fairly well with
11	the circumferential.
12	CO-CHAIRMAN FORD: In the new revision of
13	MRP 75, you start to calculate the amount crack to
14	grow; you assume that the crack grows 15 percent,
15	through wall thickness.
16	MR. MATHEWS: That would factor into the
17	reinspection frequency. Where do you start and how
18	long can you grow?
19	CO-CHAIRMAN FORD: That's right.
20	MR. MATHEWS: And I'm not sure 15 would be
21	the number we'd use. It may be something bigger. I'm
22	not sure, but when you're trying to figure out what
23	the reinspection frequency is, you'd start there and
24	grow from there. I would think that would be a way to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 do it. Makes sense.

(202) 234-4433

	209
1	MR. ALLEY: So we saw on Vendor A the
2	blade probe performance, the open tube. Rotating
3	probe performance, again, was a little better, 13
4	percent to 100 percent, again with the ideal
5	orientation, and with the non-ideal orientation we had
6	15 to 100 percent.
7	You'll see these numbers pretty
8	consistently through here, which tends to indicate to
9	some we're probably pushing the boundaries of the
10	technology.
11	Vendor B, we see the same numbers, 15 to
12	100 percent for blade probe and 15 to 100 percent for
13	the non-optimum orientation blade probe. Open tube,
14	we see down to ten percent here for this particular
15	vendor, perform perhaps a little better, although
16	we're starting to get, you know the five percent is
17	starting to get kind of in the grass.
18	MR. ROSEN: What does the E in TWE stand
19	for?
20	MR. ALLEY: The through wall extent.
21	MR. ROSEN: Extent.
22	MR. ALLEY: Then the open tube rotating
23	probe, tube to weld interface. One vendor chose not
24	to try to qualify detection. Vendor A chose not to
25	try to qualify detection of flaws in the weld metal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	with the tube scanner.
2	Vendor B selected to try to demonstrate
3	that they had the ability to see through the tube into
4	the weld metal. So we saw that we were able to see
5	tube to weld metal interface flaws when the flaws
6	extended up to the triple point. So that big, long
7	flaw that we showed in that mock-up when you asked
8	where the triple point was, you're able to detect that
9	at the interface. The flaws that actually weren't
10	that large and went through that interface you were
11	unable to detect.
12	The weld metal is highly attenuative and
13	very, very difficult to examine, and what we're
14	finding out is even under the best of conditions right
15	now to get sound energy through the tube and into the
16	weld metal and get any kind of detection there is
17	quite a challenge.
18	CO-CHAIRMAN FORD: I recognize, Tom, that
19	you're not qualifying people, these vendors. If he
20	chooses not to do it, then do you use him?
21	MR. ALLEY: Well, it depends on your
22	philosophy again. I mean, some utilities said that
23	I'm going to use as a basis for my inspection program
24	an examination of the triple point to show that I have
25	no leaking into the annulus and, therefore, no

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

circumferential flaw.

1

2 So if that utility used that as an 3 approach, they would go to this demo, and I would 4 think that they would have to have a vendor that would 5 be able to interrogate that interface. If they 6 didn't, then to me then they would have to take an 7 alternate approach.

8 That kind of leaves some flexibility in 9 the situation as I mentioned before.

Okay. Again, just to reiterate, the weld metal flaws that did not extend up to the triple point were not detected. So if we're seeing anything in that weld metal, we're seeing just a very, very small volume of that weld metal right at that tube interface.

Vendor C looked at blade probe UT as well, 17 16 percent to 100 percent, 18 to 100 percent. The 18 open tube scanner was 13 to 100 and flaws ranged from 19 15 to 100 with the open tube scanner that are oriented 20 parallel to the beam direction.

Again, we're seeing a lot of consistency in these numbers. They are from ten to 15 percent to 100 percent through wall for all of these vendors. Now, what that means to me personally is we're starting to push that technique about as far as we can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	get it. It's very consistent from vendor to vendor,
2	and they're using different transducers and different
3	probes and things that are slightly different. It's
4	each their own approach to solving this problem; yet
5	they're getting the same performance from it. So I
б	tend to think we're probably pushing the bounds
7	slightly.
8	MR. POWERS: Does it also mean that the
9	test is not very challenging to them?
10	MR. ALLEY: It's not very challenging?
11	MR. POWERS: Yeah.
12	MR. ALLEY: It's very challenging. It's
13	very challenging.
14	MR. POWERS: If it was very challenging,
15	wouldn't you see a scatter between the best and the
16	worst and things like that?
17	MR. ALLEY: Well, when I say very
18	challenging, I think that if you look at the open tube
19	scanners, we're using the sheer wave data, time of
20	flight data. We're using straight beam data. We've
21	got about all of the sound energy in different modes
22	that we can put into that volume we're putting in that
23	volume with those open tube scanners, and these are
24	the results that we're getting out.
25	And I think that's telling us that with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	everything we know to throw into that volume, these
2	are the best results we're going to get. And we're
3	seeing that consistently from vendor to vendor.
4	I will say there's not a whole lot of
5	difference in the way that they have attacked this
6	problem with regards to their techniques, but then,
7	again, those techniques are pretty readily understood
8	by the industry as being the best techniques available
9	to do this.
10	The next slide gives us just the flaw
11	designations and nomenclature again. This will go
12	along with the table I'll present in a minute. You
13	have these in your handout, although they might be
14	hard for you to read, but it gives you the
15	orientation, the flaws, and the type of flaws that
16	were contained in that mock-up. So this is just a key
17	for the table I'm going to show you next.
18	This is just a representative sample of
19	the results that were obtained. The reason I wanted
20	to show this to you is not necessarily to communicate
21	the exact results that we achieved with this vendor,
22	but to show you all of the variations that we have and
23	the inspection capabilities that were there.
24	You see the A, B, and C type flaws that
25	were referenced in the previous slide. You see down

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 the left-hand side the axial blade probes, the 2 circumferential blade probes, the open tube scanners, you see different increments in the open tube scanner. 3 4 You know, we're looking at do we take five degree 5 slides through these probes or three degree slides through these problems. It basically doubles the 6 7 inspection time for the utility. So if the utility wanted to take a farther 8 9 B cut through it, what does that do to the detection 10 limits and the ability of the system and the performance of the transducers to increase those 11 12 increments? tried all of these different 13 So we 14 variations. So this table here was just to basically 15 highlight to you that it's a very complex set of results that are used when an individual utility would 16 17 go in to select a vendor. The next slide I wanted to talk briefly on 18 19 the eddy current demonstrations. One vendor chose to 20 demonstrate eddy current at the time of the 2002 21 demonstrations. We've got very, very mixed results 22 with regards to eddy current. 23 As we've already alluded to earlier, 24 detection is very sensitive to the weld surface 25 conditions, and we'll give you some data that supports

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

214

	215
1	that conclusion.
2	The ground surface condition, we had
3	smooth surfaces of the welds to do the eddy current
4	inspections on. We were able to detect 1/160,000 inch
5	long flaws with about 3/10 of a mil in width.
6	To contrast that, on the unground, as
7	welded surface conditions, we did detect a flaw that
8	was a half inch long roughly by two mils wide. We
9	also missed a 1.5 inch long flaw that was five mils
10	wide. Okay? So we're very sensitive to surface
11	condition with the eddy current.
12	And EPRI right now is working on increased
13	sensitivity with array (phonetic) probes and some
14	other probes that we're trying to deploy to help
15	eliminate some of these issues, but what we're finding
16	out with eddy current is that there's going to be
17	aswamp between the false call rates and the detection
18	limits of what we have and what we're able to find in
19	reality.
20	We could go in and we could increase the
21	sensitivities and increase the gains of these probes
22	so that we found everything and just paint the surface
23	black, but that doesn't help us decide what's real and
24	what's not real.
25	So there's this constant swap in eddy

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 current in trying to find this middle ground here 2 where you've got good sensitivity for the flaws you 3 want to find, but you're not out there increasing your 4 false call rates to a point that you can't manage the 5 false calls. We've got some work to do in eddy 6 current. 7 CO-CHAIRMAN FORD: Is there any, quote,

8 control on the grinding that has to be done in order 9 to make this be more sensitive?

MR. ALLEY: Well, there is no grinding that we do in the field because if we grind in the field, we induce cold work in the weld, and that's going to cause us a lot of problems with crack initiation. So we're stuck with what we were delivered during the original manufacture.

CO-CHAIRMAN FORD: Okay.

17 MR. ALLEY: So, you know, one of the challenges that goes to a utility if they want to do 18 19 the eddy current examinations or to look at the surface conditions of their welds and make certain 20 21 that that's a good exam philosophy for them to adopt, 22 if it's not, then they need to go to and the volumetric exams of the two materials. 23

24 So, again, it's pretty much utility 25 specific.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16

	217
1	MR. MATHEWS: Correct me if I'm wrong. I
2	believe that long flaw that was missed was on one of
3	the rougher samples.
4	MR. ALLEY: It was a very rough sample.
5	I mean, this is the extreme, but it does give you an
6	idea.
7	Future demos. The Technatome folks are
8	going to demo eddy current of the attachment welds.
9	That's scheduled for next month. We've already
10	completed the volumetric exams there, open tube and
11	blade tube scanning capabilities for one of the
12	vendors there.
13	Framatome is going to eddy current the
14	attachment welds. We just completed kind of a
15	preliminary scan last week with the Framatome scanners
16	deploying the new EPRI array eddy current technique.
17	They had some scanner problems, some contact problems.
18	So they've gone back to work on that some more.
19	There's other surface methods that are
20	being looked at by the various vendors out there.
21	Framatome and WesDyne both are looking at a thermal
22	imaging process where they induce a laser thermal
23	field in the weld surface, and that's affected by the
24	track, and you get a thermal image back.
25	So they're both working on the deployment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

218

of that.

1

2

3

4

5

6

7

WesDyne is looking at the UT end of the tube to weld interface steel. Again, that's looking at the critical point. They're trying to increase sensitivity of that area, eddy current of the attachment weld and, as I mentioned before, thermal imaging.

B&W Canada has recently come onto the scene as far as inspection capabilities for preservice inspection of new heads. We basically invoke the same requirements for pre-service inspection that we do for in-service inspection. So we're able to baseline what's out there.

14 One of the biggest issues we have to deal 15 with right now in the inspection community is we don't have a baseline of what was originally manufactured. 16 So that's a lot of the issues the utility has with 17 doing eddy current today and doing penetrating exams 18 19 today, is that we know the crack growth rates in the 20 weld metal are difficult to manage. Yet we know that these weld metals contain point type defects and 21 22 little defects in them that have been there since the 23 day they were manufactured.

24 So we continue to wrestle with how we're 25 going to handle that. Now, we're going to get ahead

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

of that on new heads, as I'll mention here in a minute, but B&W Canada is scheduled next week actually to start doing the UT examination of the mock-ups, and then in May they're looking at doing eddy current exams.

Future activities for the inspection 6 7 committee. We have a new set of mock-ups under 8 construction. We got a lot of feedback from the 9 vendors that indicated that the mock-up process that 10 we use now gave them a very good opportunity to train 11 people. They go out in the field and they may not see 12 a flaw for two or three exams, and we've got blocks in here that have got 30, 40, 50 flaws in it. 13

So we'd really like to have the key to these blocks so that we can train people on what we have. We thought that was a very noble cause.

We're going to manufacture another set of mock-ups that can be used as blind mock-ups, and we're going to turn over all of this data to the inspection vendors in hopes that they will be able to train people and improve their capabilities.

22 Replacement head inspections. We've 23 issued -- is the letter issued now, the pre-service 24 letter? We've got a letter either issued or pending 25 to be issued recommending the pre-service requirements

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

for anybody having a head manufactured now, which will include surface weld, eddy current, PT, volumetric of the tube.

4 We're also going to do equivalent studies. We believe there will be no acoustic differences 5 between Alloy 82 and 182 and the 52 and 152, but we're 6 7 going to build a miniature set of blocks into acoustic studies on that so that we now feel very comfortable 8 9 in using the demonstration process that we have demoed for the Alloy 600 on the new fabrication. So we're in 10 the process of doing that work. 11

12 Now the mock-up drawings are already in place, and then as we have mentioned before, we're 13 14 very much tuned to what's going on with the North Anna 15 We've asked the inspected vendors to provide head. 16 inspection data or rescan the tubes that are going to 17 be destructively analyzed. I think it's vitally important that we're able to compare the truth to the 18 indicated. 19

So in summary, the MRP has an organized and comprehensive approach to the recent industry events. We believe we've made considerable progress considering the short amount of time we've been working on this. We didn't have techniques for doing this two, two and a half years ago. I think we have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	221
1	come a long ways with the demonstrations and the
2	development of equipment.
3	The demonstrations are an ongoing process.
4	I don't see it coming to an end any time soon. We're
5	getting ready to go through another round as you saw
6	on the future correction, and we don't see that coming
7	to an end.
8	We realize that there needs to be
9	increased emphasis on the attachment welds and
10	inspection frequencies. We're working on a rate probe
11	right now, eddy current, to do the J groove welds and
12	improve inspection capabilities on that.
13	And that concludes the comments I have for
14	you.
15	CO-CHAIRMAN FORD: Tom, thank you very
16	much.
17	I believe, Alex, you would like to make a
18	comment? A couple of minutes. The industry
19	MR. POWERS: let me just ask one question.
20	This was very interesting and nobel effort to develop
21	and test the capabilities to detect cracks, but you're
22	still doing it with artificial cracks, cracks not
23	produced by chemistry, but you're going to apply it to
24	looking at structures that, in fact, have root cracks,
25	root cracks produced by chemistry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	When do we get a report card or how do we
2	go about getting a report card that says, "Gee, these
3	guys inspected all of these locations and they got
4	99.3 percent of all the cracks"?
5	MR. ALLEY: That's going to be very
6	difficult because you'd have to cut up samples
7	essentially to understand what you missed. I think
8	it's pretty easy I won't say it's easy because it's
9	difficult just from an access standpoint, but it is an
10	easier question to prove that you saw what you saw.
11	What's difficult to prove is that you didn't see
12	something that's out there, and the only way to do
13	that is just to take good samples and start cutting
14	those up because we don't have a way to know that
15	there's anything in them.
16	So that half of that question is doable,
17	and I think the North Anna piece is certainly a
18	component to that. The other half of that I just
19	don't understand how you would do that. I don't
20	understand how you would understand what you've
21	missed.
22	The other that I think is an important
23	comment to make with regards to real flaws versus
24	fabricated flaws, and that is we continue where we
25	have real flaws and where we have removed real flaws

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	from service and understand what they are. We
2	continue to compare the ultrasonic signals, the wave
3	forms that were generated from real flaws to those
4	from manufactured flaws, and we have very good
5	correlation of the signal responses of the
6	manufactured flaws to the real flaws.
7	So we continue to try to get better and
8	better information with regards to showing that the
9	fabricated flaws have similar responses to the real
10	flaws.
11	MR. POWERS: The difficulty is there
12	doesn't seem to be I mean, I never see a plot that
13	says, "Here is the realness of my fabricated flaw, the
14	fraction of realness, " you know, some measure of, you
15	know, what a real flaw looks like versus a fabricated
16	flaw. I've never seen anything like that. I never
17	know. They say, "Well, it's a good characteristic,"
18	but you know, I'm a very generous person. I'll say
19	that something is good that Peter here would say
20	that's bloody awful or some equivalent expression.
21	MR. ALLEY: Well, again, what we have done
22	is we have taken ultrasonic responses. I believe we
23	took some off of V.C. Summer actually and did acoustic
24	studies looking at the way forms and the way that that

data was generated by and compared that to the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	224
1	manufactured flaws to make sure that the way forms
2	appeared the same.
3	We do those where we have the opportunity
4	to do that. We have some data on that. I don't know
5	how extensive it is, but we do have some.
б	MR. MATHEWS: And it seems like in the PDI
7	process where they were coming up with how you build
8	the lots of samples you've got to have for doing PDI.
9	They went through extensive discussions with Dr.
10	Doctor and others at the staff about what's an
11	acceptable way to build the flaws to put into the
12	samples to do your PDI testing, and so some of that
13	was, you know, I'm sure used in the thought processes
14	of the people who were designing these flaws.
15	MR. ALLEY: And, again, for the
16	qualification and demonstration process you have to
17	know the dimensions of that flaw to be able to answer
18	your other questions that you have about how accurate
19	are the results. So you've got to weigh the accuracy
20	of the information that you're treating as truth.
21	MS. WESTON: Tom, are the heads that have
22	been replaced, candidates for looking at actual flaws
23	of those you might have missed?
24	MR. ALLEY: Certainly North Anna is.

25 That's one of the things we want to do with with North

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	Anna. I don't know that there's any work proposed
2	right now on any of the other heads to do anything
3	like that.
4	Certainly the Duke head, I know, we fixed
5	all of the flaws we found. We ground them out.
6	They're on chips on the floor. So I don't know what
7	opportunities we'd have.
8	The North Anna head certainly presents us
9	with a great opportunity, and we're going to seize
10	that.
11	MR. MATHEWS: And the nice thing about
12	North Anna well, I won't call it nice. The North
13	Anna 2 head was replaced in an outage in which there
14	was a lot of inspection done, and then the decision
15	made to replace. Most of the time when you're
16	replacing the head, you've planned it.
17	We're not going in and spend two or \$3
18	million to inspect something that's going to the
19	garbage dump, and so you don't have that last cycle
20	inspection result unless you go pay to do it.
21	CO-CHAIRMAN FORD: Are there any other
22	questions for either Tom or Larry?
23	(No response.)
24	CO-CHAIRMAN FORD: Okay. Alex.
25	Thank you very much.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	226
1	MR. MARION: Thank you.
2	For the record, my name is Alex Marion.
3	I'm Director of Engineering at NEI.
4	And during the discussions this morning,
5	I realized that it may be informative and useful to
6	you folk to get a sense of what we have in place
7	within the industry to take a more holistic view, an
8	integrated view of how industry deals with the
9	management of materials issues moving forward.
10	And let me just make it very clear that
11	when the EPRI materials reliability program was
12	formed, the basic objective was to position it to be
13	totally proactive, and as you heard this morning,
14	looking at the regulatory documents that have been
15	issued over the past couple of years, specifically
16	three bulletins and an order, it's very difficult for
17	a group like the MRP to be proactive in that kind of
18	environment.
19	Now, here we are today with new findings
20	coming out of the South Texas project, and we have to
21	wait and see what the results of the analyses are and
22	then determine what the generic applicability is going
23	to be, et cetera. And, again, we're in a reactive
24	mode in dealing with the planned experiences.
25	Last summer as a result of the Davis-Besse

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 event, questions were raised among the industry chief 2 executive officers sa to whether or not the industry 3 dealing with these issues with the proper was 4 perspective. Are we looking at them as completely as 5 possible, as objectively as possible so that we can determine what needs to be done and then apply the 6 7 industry resources to do that, and can we position ourselves to deal both with the reactive element of 8 9 these issues, as well as the necessary proactive 10 element?

And from those discussions an executive task force was formed and a working group, and the initial thrust of the effort was to conduct a selfassessment of the industry programs, of the major industry programs dealing with materials performance issues.

And the self-assessment was completed. Findings and recommendations were communicated to the industry chief nuclear officers, and we've developed a guideline document for a more balanced and a more integrated, industry-wide management scheme for materials issues moving forward.

And that document was just distributed to the chief nuclear officers last Friday for their review and approval, and we hope to get their support

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	to endorse a formal industry initiative that
2	establishes this new management process in an
3	integrated manner as the industry moves fowards in
4	dealing with materials issues in the future.
5	This is not in any way a criticism of any
6	of the programs, and it does not in any way suggest
7	that the existing programs have to change drastically,
8	but what we're trying to accomplish with this effort
9	is to position the industry overall to be more
10	proactive when let me give you an example when
11	an issue occurs at a plant.
12	The first question that comes to mind:
13	what do we know about this degradation mechanism?
14	What do we not know? What do we need to do to
15	improvement our intelligence base so that we can move
16	forward with the right course of action in terms of
17	inspection and repair mitigation, what have you?
18	And as you can appreciate, some of these
19	are very complex, technical issues. As we talked
20	about today, a lot of information needs to be brought
21	to bear if you're going to make the right decision.
22	So clearly operating experience and
23	improving your knowledge base on this degradation or
24	these degradation mechanisms is very important, and
25	we're hopeful that we can position the industry and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	deal with a lot of this information on an
2	international level to make our actions in the future
3	much, much more completely informed.
4	Our goal is to be sufficiently proactive
5	so that we can prevent events at plants or incidents
6	at plants, as Chairman Diaz likes to characterize
7	Davis-Besse, at a minimum, and that's what we hope to
8	achieve. And I thought it would be of some interest
9	to you to get a brief discussion of that.
10	And that completes what I had to say. I
11	don't know if you'll have any questions about the
12	effort or not. Our intent is to have this new process
13	in place effective the first of 2004.
14	CO-CHAIRMAN FORD: Thank you very much,
15	indeed.
16	MR. MARION: Thank you.
17	CO-CHAIRMAN FORD: Any questions?
18	(No response.)
19	CO-CHAIRMAN FORD: I'd like to thank the
20	industry presentations, representatives. Thank you
21	very much, indeed.
22	We're going to change now to the NRC and
23	Bill Cullen.
24	MR. CULLEN: All right. Let's go here
25	because we've got the TV and we've got the handouts

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	and we've got everything else.
2	For the record, I'm Bill Cullen from
3	Materials Engineering Branch here at the U.S. NRC's
4	Office of Research.
5	Just a quick word. I joined this agency
6	just a hair over a year or so ago, and within about 30
7	days after I started we got notification about Davis-
8	Besse.
9	MR. POWERS: Oh, so you were the
10	responsible party here.
11	MR. CULLEN: Something like that must have
12	happened.
13	So this is my first presentation in this
14	go-round in front of the ACRS, but about 25 or so
15	years ago when I was a contractor to the NRC, I had a
16	few opportunity to appear before the then ACRS.
17	I've got several things we're going to
18	talk about today, but they do all fall into the very
19	general categories of CRDM cracking issues, which of
20	course we've been talking about virtually the whole
21	morning.
22	And then in the second almost half of the
23	presentation I want to talk a little bit about some of
24	the specifics on Davis-Besse and what the Office of
25	Research is doing to address some of the issues raised

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	by that.
2	So moving ahead here, there's a half a
3	dozen or so individual items. We're going to talk a
4	little bit about the research that we're currently
5	funding in those areas that are shown; a little bit
6	more on some additional programs that are not funded
7	by the NRC, although we may participate in some of
8	these efforts, but these are efforts in other
9	countries and by other groups that really do bring an
10	awful lot to bear on the topics that we're talking
11	about here.
12	I want to talk a little bit to get a
13	little more into some specifics about some things that
14	I feel could be done or could be certainly thought
15	about to be done here in the U.S. to look at some
16	heat-by-heat analyses of the tubing materials that are
17	in some of our plants; look a little bit at a topic
18	that has been mentioned and, in fact, somewhat
19	extensively this morning, but no mention of this topic
20	could be extensive enough for my liking. I think that
21	stress analysis of these penetrations offers an awful
22	lot of potential for our understanding of what it is
23	that is going on in these things.
24	I'm going to talk a little bit about the
25	potential for NRC-industry collaboration, a potential

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	232
1	that and I'll be very honest about this is not
2	approaching activation nearly fast enough to satisfy
3	me, and I'm going to try to make a point of that when
4	we get to it.
5	And then I'll close with a fairly
6	extensive discussion on some of the findings that the
7	industry has provided to us on their examinations of
8	the Davis-Besse cavity and specifically what that
9	means to the NRC and to the Materials Engineering
10	Branch as research, in particular.
11	Also, just as a little bit of an
12	advertisement, I'm going to talk up here about some
13	LLTF, lessons learned task force, issues that they
14	raised about stress corrosion cracking in the Alloy
15	600 and then the boric acid corrosion issue. But down
16	here and you'll hear about both of these things in
17	a much more detail tomorrow. One of my colleagues,
18	Danny Santos will be talking specifically tomorrow
19	about the LLTF recommendations on the barrier
20	integrity or on leakage, and that's another issue that
21	was raised somewhat extensively this morning and I

think will be a good deal talked about tomorrow on the

leakage issue and what those recommendations mean and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

what we might be led to in that particular area.

(202) 234-4433

Okay.

22

23

24

25

	233
1	MR. POWERS: Let me I mean, you've
2	given me quite a list of research activities that
3	you're involved in either as a principal or as a
4	partner and a few research activities that you'd like
5	to be involved in.
6	And what I'm struggling with here a little
7	bit is why are you involved at all. I Mean, isn't
8	this an industry problem? They've got to fix it. All
9	the NRC has to do is say prove to me that your vessel
10	has sufficient integrity for me to let you keep
11	running.
12	MR. CULLEN: It sounds to me like a
13	question you have asked before.
14	MR. POWERS: I'm practiced at this
15	question.
16	MR. CULLEN: You've practiced this
17	question. We've practiced our answer.
18	There are two reasons. One is that we
19	must do an ASP, an accident sequence precursor
20	analysis. IT's a congressional requirement, and for
21	that ASP analysis, we have got to do calculations of
22	the properties, the situation, if you will, at the
23	Davis-Besse plant, starting from one year before this
24	was found up until the time that it was found.
25	In order to do that sort of calculation,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

there's a lot of information that we need about the shape and the size and the characteristics of the cavity and of the exposed clad. That's why I, in particular, as a materials kind of guy, am very, very interested in the findings that the industry has produced in showing what those findings are and what they mean to us.

8 It is not my position, however, to present 9 these findings to you, to discuss them. You are 10 absolutely correct in that regard. It's an industry 11 problem, what it was that they found there and what it 12 was that led to that. It's their responsibility to 13 create the root cause.

The second reason that we're involved in this thing is that it is of enormous interest to a great percentage, great fraction of our stakeholders, internally and externally, the licensees, the general public, and for that reason we are doing a reasonable amount of research that addresses some of those specific things in which we have an interest.

21 MR. POWERS: It seems to me that what your 22 stakeholders want could be adequately served if you 23 worked as a clearinghouse and reviewer of information 24 generated by the industry. I'll give in to you on 25 Item A(2). You need some information, but the rest of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	235
1	it, I mean, it seems like all you have to do is read
2	Corrosion and Corrosion Science and keep
3	MR. CULLEN: Were that the case. Well, a
4	couple of ways of responding to that. One is on this
5	issue of corrosion and, again, there will be
6	another opportunity a little deeper into the
7	presentation to get into this a little bit more I
8	was quite aghast, is a reasonably good word, in the
9	middle to later part of March when I went into the
10	research to try to dig out some of the properties of
11	corrosion of low alloy steel and boric acid solutions,
12	and while there is quite a lot that has been written,
13	EPRI had put together the "Boric Acid Corrosion Guide
14	Book," with which you are familiar, and there's a lot
15	of experiments that are discussed in there. Virtually
16	none of them model accurately the Davis-Besse
17	experience.
18	Now, you've heard this morning and
19	it's correct EPRI has an RFP out on the market now
20	to create some mock-ups, among other things, that
21	would perhaps do that somewhat after the fact and will
22	add to our research base, and we in the Materials
23	Engineering Branch also have a corrosion work as a
24	corrosion program that I certainly want to admit, if

you will, that it was spurred on by the Davis-Besse

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	236
1	experience, but our program is not Davis-Besse
2	specific in any sense of the word. It is more
3	generically more broad based, broad brushed look at
4	corrosion of low alloy steels.
5	MR. POWERS: I don't think the Chairman
6	wants to spend an enormous amount of time on my little
7	heartache here, but what I will comment is that when
8	I look at this slide I cannot understand where you're
9	trying to go with this corrosion program, what you're
10	trying to achieve, what capabilities you want to have.
11	Okay?
12	It looks like a bunch of things that
13	you're plucking up to respond for the current
14	incident, which it's worth responding to the current
15	incident, I suspect, but I'm more concerned about the
16	next 25 years where I'm visibly looking at things that
17	have license removal and stuff like that.
18	MR. CULLEN: Well, I would agree with you
19	that it is not in our mandate at all to address
20	licensee specific issues and solve that issue for the
21	licensee. We all understand that quite well.
22	But when some of these issues either cause
23	us to recognize that there's a more generic substrate
24	that underlies that, then I think that it is our
25	business to go about investigating that generic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	substrate, and there are some other things that bear
2	on this, too.
3	I tend to think that we do have some
4	mandate to resolve issues that are of concern to a
5	reasonable fraction of our stakeholders, and I think
6	this is certainly one of those things.
7	Okay. Let's move on a little bit here,
8	and I do want to discuss one of these issues that
9	maybe falls into this category. We are doing a
10	structural integrity assessment of the cavity and the
11	exposed clad at the Davis-Besse plant. That
12	information is very specifically absolutely required
13	by the ASP analysis, and it is for that that we are
14	doing this predominantly.
15	MR. POWERS: Where do I go to find some
16	documentation that says what's required and how well
17	it's required to understand it?
18	MR. CULLEN: What's required? Are you
19	asking for the statement of work that was generated
20	for that program?
21	MR. POWERS: Maybe that's the document.
22	MR. CULLEN: That's the first thing that
23	comes to my mind, and certainly tha t
24	MR. POWERS: Somewhere somebody has said
25	to do this ASP I've got to have this information, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	it has to be this good.
2	MR. CULLEN: Well, asking the question
3	that way I'm not quite the right person to answer it,
4	and I don't see anybody from the group doing the ASP
5	that would be qualified, but I suspect they also have
6	a statement of work that is required. Pat Bernowski's
7	group and Gary DeMoss specifically is crunching the
8	numbers and gathering the data.
9	We have, you know, a fraction of the input
10	to that that I will describe somewhat briefly somewhat
11	deep into my presentation here, and then as I've said
12	now, I'm going to show some of the results that the
13	licensees has provided to us about what they found in
14	that cavity and what it really means, and then some
15	other things that are spinoffs of all of this and why
16	we are doing those things as well.
17	Okay. Expanding a little bit now on one
18	of these items from the second slide, we have had for
19	a great many years an environmentally assisted
20	cracking program going on at Argonne National
21	Laboratory, and this involves some tasks that are very
22	specific to what we're talking about today: stress
23	corrosion crack growth rate testing of nickel based
24	super alloys both in BWR and PWR water because many of
25	these alloys are used in both types of reactors,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	although we're here today to talk about the cracking
2	in the PWR much more.
3	We are doing more than just looking at
4	stress corrosion crack growth rates. In most cases
5	we're also taking a look at some of the other
6	properties of these alloys that can be brought to
7	bear, may have meaning for understanding the
8	mechanisms of the stress corrosion crack growth
9	process.
10	This program has been ongoing; this task
11	in this program has been ongoing since about 1997; has
12	generated a couple of NUREGs, which are certainly
13	available, and we've been talking today a lot about
14	stress corrosion crack growth rate in Alloy 182, and
15	what I can point out is that we are due to receive a
16	report on stress corrosion crack growth rates out of
17	this Argonne program about a year and a half or so
18	from now.
19	And then after much more testing has been
20	completed, we're going to get another NUREG with the
21	schedule in late 2005.
22	I can see a question coming.
23	MR. POWERS: I'm going to ask another
24	question I'm practiced at.
25	MR. CULLEN: Go for it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	240
1	MR. POWERS: But I never get an answer to
2	this one. Maybe I'll get one now.
3	We have 600 we don't like because of
4	cracks. Now we have 690 that we like better because
5	at least it's slower to crack. But my European
6	friends, they're just ape over 800. Why aren't we
7	excited about 800?
8	MR. CULLEN: I don't know the answer to
9	that. I'd be happy to try to find that out. I'm
10	aware that in the German plants particularly in some
11	of the Belgium plants they
12	MR. POWERS: They got religion over this
13	subject.
14	MR. CULLEN: Now, they are using that in
15	steam generators. I am not aware of its use in larger
16	diameter, thicker section penetrations, but I'm
17	guessing a little bit on that answer.
18	Does anybody have any idea? Keith?
19	PARTICIPANT: Germans' use of steam
20	generators.
21	MR. CULLEN: Yeah. Let me paraphrase
22	Keith's answer, which was the same as the one I gave.
23	We know it's being used extensively in steam generator
24	tubing and retubing, but again, I'm not aware of any
25	use of that allow in thicker sections. It's pretty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	expensive stuff, and that may be a reason that
2	MR. POWERS: How expensive is it relative
3	to pulling out a steam generator and putting it back
4	in?
5	MR. CULLEN: It certainly
6	MR. POWERS: I mean, it seems to me you
7	can spend an awful lot on an alloy if you don't have
8	to change your steam generator out every 20 years.
9	MR. CULLEN: Yeah, that's just not
10	something that I can comment on at all.
11	MR. POWERS: I was just curious.
12	CO-CHAIRMAN FORD: I've got a question.
13	When you say evaluating strength, is that specifically
14	for this question about low temperature embrittlement?
15	MR. CULLEN: Not at this point. What I
16	was referring to there is that as you know, Peter,
17	there's some dependance or proposed dependance of
18	crack growth rates on yield strength, of grain
19	boundary carbide coverage, things like that.
20	Let me jump ahead to something I was going
21	to say because I know this is very high on your mind.
22	Can I give a little bit of a preamble though?
23	I'm not sure that everybody in the room
24	understands what you mean by the low temperature
25	degradation, but about a year or so ago, in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

summertime of last year, there was a couple of 2 publications generated by what's now called Bechtel-Bettis Atomic Power Lab, where they presented some 3 4 results of a low temperature degradation in fracture toughness, in fracture toughness of Alloy 82 and some of its near neighbor variations. 6

7 That degradation happened under some rather specific set of circumstances. 8 It was at 130 degrees Fahrenheit that the degradation maximized. It 9 was also maximized in very highly hydrogenated water. 10 11 Normal hydrogenation would be around 30 to 50 cc's per 12 kilogram of hydrogen. This degradation really kicked in at higher hydrogen concentrations. If memory 13 14 serves right they were up in around 150 or so cc's per 15 kilogram when it got to be really strong.

So this was a degradation in fracture 16 toughness in Alloy 82 and some of its kin. 17

There also is a rather well know ductility 18 19 dip cracking issue, which is a weldability issue. 20 First off I was talking about a hydrogen Okay. 21 assisted cracking issue. Now I'm talking about a 22 weldability issue, also in this same alloy, and that 23 data largely comes out of what we know is Lockheed-24 Knowles (phonetic) Atomic Power Lab. So it's 25 basically the nuclear Navy people that have generated

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	243
1	the bulk of the work to establish the problems with
2	Alloy 52, 152, and similar materials.
3	Some of these same problems are also
4	found, by the way, in 182 and also in 690. I think
5	that's important to remember, but the problem with
6	stress corrosion cracking tends to disappear as the
7	temperature increases.
8	So at reactor operating temperatures, this
9	is a nonexistent problem. So there's two things going
10	against this problem under normal operation. One is
11	the temperature is too high. The other is that the
12	hydrogen is too low. So we're not likely to get this
13	degradation or I certainly wouldn't think we would get
14	this degradation under normal operating circumstances,
15	but this may be an issue of where there's smoke
16	there's fire.
17	My position, and I'll speak really for
18	myself, is that we want to stand back a little bit,
19	continue to watch the work that is generated by the
20	nuclear Navy, watch the work which is generated by the
21	industry and make our own decisions about whether or
22	not this really appears to be an issue that may have
23	safety importance.
24	The other thing that we're going to be
25	finding out starting quite soon is that the first of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the French plants to replace their heads is coming up for their ten-year inspection rather shortly, later this year, next year. I'm not sure, but very soon is the answer.

5 We're going to get the first evaluation, will, the first information about 6 if you the 7 performance of these replacement heads from the 8 experience that the French will have in these 9 inspections, and of course, you know they've been replacing heads at the rate of three, four, five a 10 11 So they're going to be generating an equal year. 12 number of ten-year inspections from now over the next 13 ten years.

So we will be getting an awful lot of information, precursing information that should be very, very useful to us. Again, I have a few more things I want to say regarding that, but it all bears on what I think we will be able to find out going forward on this issue of Alloy 52 and 152.

So going back to Peter's question, to try to bring closure to that now, Peter asked me whether or not we're evaluating strength in the sense of the low temperature degradation and toughness, and the answer here is no. We are evaluating strength within our program simply as correlative information to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	245
1	stress corrosion cracking determination on these
2	particular materials.
3	CO-CHAIRMAN FORD: I don't doubt. I agree
4	with you entirely. You're not going to get it at
5	operating temperatures. My concern is more accident
6	conditions. We might have a
7	MR. CULLEN: Starts, shutdowns, standbys.
8	CO-CHAIRMAN FORD: Well, also thermal
9	shock situation during an accident.
10	MR. POWERS: But if it's hydrogen
11	embrittlement is that what I understand it to be?
12	MR. CULLEN: I would not use the word
13	"embrittlement."
14	CO-CHAIRMAN FORD: I don't know if it's
15	hydrogen embrittlement in the classical mechanistic
16	sense. It is associated, as Bill rightly says.
17	You've had hydrogen absorbed into the material. When
18	you have the high chromium content, energy changes
19	and, therefore, your plasticity changes, and it's a
20	known fact as Bill says.
21	MR. POWERS: But it seems to me that
22	certain events the hydrogen can't organize itself
23	to do whatever it is that it does in the face of
24	sudden events like pressurized thermal shock and stuff
25	like that. I mean, it gets up to high temperatures.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	246
1	The hydrogen is either desorbed or it has diffused
2	kind uniform (phonetic). It's no longer creating
3	anything that's vulnerable. You suddenly cool it.
4	That hydrogen can't move fast enough
5	MR. CULLEN: That's correct.
6	MR. POWERS: to respond. So it
7	couldn't affect a pressurized thermal shock event.
8	CO-CHAIRMAN FORD: Maybe I'm using the
9	wrong word, pressurized thermal shock, because maybe
10	you're getting something in your mind about mechanism
11	of pressurized thermal shock. I'm talking about a
12	thermal shock on, for instance, the stub tubes into
13	the top head, and if you had a burst of cold water,
14	regardless of how you got it, could you get a thermal
15	shock on a pre-cracked stub tube sheer-off?
16	That's purely my scenario. I think it's
17	rather low possibility, but it's interesting.
18	MR. CULLEN: But I think it's our job to
19	try and think about these sorts of
20	CO-CHAIRMAN FORD: The worst case
21	scenario.
22	MR. CULLEN: The right temperature, the
23	right stress, and the right hydrogen content, and then
24	we could have a bad problem.
25	CO-CHAIRMAN FORD: The other question I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	wanted to ask you about that first line and then we'll
2	get off it is PWRs. I understand why you're working
3	on BWRs. Is there anyone in research or in NRR
4	looking at the question of cracking of BWR bottom head
5	penetrations?
6	MR. CULLEN: I would say not looking at,
7	so far as I know.
8	CO-CHAIRMAN FORD: Evaluating?
9	MR. CULLEN: Yeah, we're aware of the one
10	issue I think it's only one in Japan to this
11	point. That was a rather small flaw. They found it;
12	they disposed of it.
13	I know from a research point of view, we
14	are not doing any specific research other than trying
15	to maintain an awareness.
16	CO-CHAIRMAN FORD: I'm sort of inviting Al
17	to say something.
18	MR. HISER: Oh, boy. We'll talk about
19	that tomorrow.
20	CO-CHAIRMAN FORD: Fantastic.
21	MR. HISER: How does that sound?
22	MR. CULLEN: Okay. Items B and C I put on
23	here because I want to create a lead-in to a great
24	deal more discussion I want to have a little bit later
25	on. We are doing some testing of materials removed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	from Davis-Besse, both the Alloy 600 from nozzle
2	number three, which is the heat that appears to crack
3	the most predominantly and Alloy 182 from the near
4	neighbor nozzle J weld.
5	We're doing this sort of testing simply to
б	create data on what may be susceptible materials and
7	add that to the overall database of Alloy 600 and
8	Alloy 182 stress corrosion crack growth rate.
9	The LLTF made a number of recommendations.
10	A great many of them fall into the stress corrosion
11	crack area. One of their recommendations was to
12	create or write a critique of the susceptibility
13	model. This also came down to us as a user request
14	from NRR. I've completed this report a couple of
15	months ago. It has been circulating internally, been
16	revised, and will be available much more generally
17	within about three or four weeks. And certainly I can
18	see that it will get sent down to you.
19	I'm going to talk about this a great deal
20	more four or five slides down the road because I want
21	to mention some of the things, some of the issues,
22	some of the additions, improvements that might be
23	possibly made to the time at temperature
24	susceptibility model that was talked about a good deal
25	this morning.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	There are two other deliverables that are
2	both coming forward from here. One is to write a
3	report, collect the worldwide Alloy 600 cracking
4	experience and produce that report late at the end of
5	this year and another to collect the boric acid
6	corrosion experience worldwide and produce that report
7	later on in 2004.
8	CO-CHAIRMAN FORD: Just to make sure we're
9	talking about the same thing, the report talked about
10	on C-1 is the Rev. 1 of MRP 75?
11	MR. CULLEN: No, no. This is absolutely
12	independent. Do you mean the susceptibility report?
13	CO-CHAIRMAN FORD: Yes, your C-1.
14	MR. CULLEN: No, that had nothing to do
15	with MRP 75. That was something generated entirely
16	within the MEB.
17	CO-CHAIRMAN FORD: No, but it's the model
18	that was used.
19	MR. CULLEN: Oh, it's the model that was
20	used, yeah. I'm sorry. Yes, yes. Yeah, I'll show
21	the usual chart that you expect to see in a few
22	minutes.
23	CO-CHAIRMAN FORD: Okay.
24	MR. CULLEN: Okay? And talk about some of
25	the things that I think could be done to fix that up.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	Okay. There are a number of additional
2	programs that, as I said in my prologue, we're aware
3	of; we're participating in to some degree or other.
4	We are not funding any of these things.
5	I think it's important for everyone who's
6	interested to know a little bit about these things.
7	The Japanese are doing an awful lot of crack growth
8	rate research on the alloys in which we have an
9	interest.
10	As you might expect perhaps, it's a little
11	bit difficult sometimes to find out about this data.
12	I'm going to make somewhat of an effort using the
13	appropriate international channels that we have here
14	available to us at the NRC.
15	MR. POWERS: Just ask our subcommittee
16	chairman. He spends half of his time in Asia.
17	MR. CULLEN: Ah-ha, there we go. But
18	there's a lot of data that the Japanese are generating
19	that would be very, very helpful. Some of the data
20	from this electric joint research project which is now
21	completed actually is beginning to show up in the
22	literature.
23	In fact, we'll talk about the postpones
24	conference that I was going to have towards the end of
25	March. There was going to be one paper in there with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	some of the results from Alloy 182.
2	There is a much larger program, the
3	national nickel based alloy material project which
4	continues through 2006. It's a multi, multimillion
5	dollar funded program, almost exclusively directed at
6	stress corrosion crack growth rates, and at this
7	particular point I have no knowledge, cannot find any
8	knowledge at all on when we would expect to get any
9	results out of that at all. I'd like to find that out
10	somehow.
11	Another thing that's going to provide a
12	lot of data is the International Cooperative Group on
13	Environmentally Assisted Cracking, ICGEAC, which is in
14	the beginning stages of conducting a round robin on
15	Alloy 600 crack growth rate testing.
16	At the present time the specimens for
17	testing have been distributed. Some tests have been
18	completed, and we will begin to get the first of the
19	data next month.
20	MR. POWERS: And you say we're not
21	participating in this one?
22	MR. CULLEN: We are members of the ICGEAC,
23	both the NRC I mean, I attend those meetings.
24	Argonne Laboratory people attend those meetings.
25	There is 100 or so people that attend those meetings

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	252
1	worldwide. So we participate in the meetings.
2	Argonne is actually participating in the
3	round robin, and they will use NRC RES funding to pay
4	for the testing.
5	MR. POWERS: Okay. So we're that's
6	good.
7	MR. CULLEN: Yeah, we're an active
8	participant on the same plane with everybody else.
9	MR. POWERS: That's good.
10	MR. CULLEN: Okay. The Phase 1 of the
11	test was just to collect data on how people did the
12	testing and shake down a test routine that everybody
13	could use.
14	Phase 2, which is the one that we're in
15	right now is to test a 30 percent cold-worked Alloy
16	600, then compare those results and prove the methods
17	and do a follow-on test. Thirty percent cold-worked
18	Alloy 600 should crack fairly expeditiously, shall we
19	say? The test should last about a month or so, given
20	what the specific test parameters are. It should not
21	be an impossible onus on any laboratory.
22	In Phase 3, we will go on and test Alloy
23	182. So we will get a good deal of data on both Alloy
24	600 and Alloy 182 out of this particular round robin
25	experience.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

253
MR. POWERS: And what do we do with that
data?
MR. CULLEN: We will throw it up on that
curve, that data plot that you saw earlier this
afternoon and I'm going to show next, and I'll talk
about that, again, in just a couple more minutes.
Just very quickly and qualitatively,
there's also testing underway in France, Spain,
Sweden, and perhaps in other places that I have not
heard about. These are individual labs or individual
agencies that are doing their own test programs, and
again, we would expect that over the long haul that
data also ought to be made available.
We're currently in a dialogue to obtain
some of the mock-ups from replacement head
fabrications. Specifically we're working with Duke
Energy to get a mock-up that was created just prior to
the Oconee 3 head being fabricated.
We will use that mock-up as a test bed for
residual stress determination, for obtaining materials
on which to do testing. Of course, those materials
would be Alloy 690 and Alloy 52-152. I'm not exactly
sure what the weld materials were that went into that
head.
Okay. I'd like to take two slides and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 digress a little bit about what knowledge might be 2 gained from some of these heads that we're discarding 3 for one reason or another. As an example to start 4 with here, if we look at the head that came off the 5 Davis-Besse plant, there are three alloys in there, in that head, that are also used in other plants. 6 7 Now, as it turns out those other plants are Oconee 3, Ark. Nuke. 1, Oconee 1, and -- oh, I'm 8 9 This one here is a heated material that is sorry. actually not found, but it's a heated material that 10 may have some sensitivity or susceptibility to stress 11 12 corrosion cracking. Now, these plants over here in which these 13 14 materials are found are all having their heads 15 So there's no particular need to learn replaced. 16 something specific about stress corrosion crack growth rates in these particular heats of Alloy 600 in order 17 to apply that information to these heads. 18 That's a 19 nonstarter. 20 So the conclusion here is that specifics 21 about those particular nozzle heats from Davis-Besse 22 are not applicable in the long term. 23 However, that's not the situation with the 24 North Anna 2 head. We saw over here a listing of all 25 of the heats of Alloy 600 that were found in North

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

254

	255
1	Anna 2 and where those heats show up in some of these
2	other plants.
3	Now, as we just learned this morning,
4	North Anna 1 is also replacing its head, as is Surry
5	2, but these other plants, Sequoia 1 and 2, Watts Bar,
6	Catawba, McGuire, don't have any immediate plans. I
7	think Sequoia has got a long term, maybe 2006 plan.
8	But what the implication here is is that
9	if some licensee would like to have specific crack
10	growth rate data in order to use in some sort of a
11	disposition presumably of a flaw that they have found,
12	they know where to go and get that information.
13	So there's a great deal to be learned, to
14	be obtained potentially at least from some of these
15	heads that are coming off, and I think it serves
16	everybody well to kind of keep a little matrix, as the
17	MRP is doing, by the way. All of this information
18	came from documents that were provided to me by the
19	MRP, and I just want to point out that this potential
20	for learning, very helpful information does exist.
21	CO-CHAIRMAN FORD: Bill, we often ask the
22	question can you identify the heat in a specific head
23	penetration, and you get mixed answers. You're saying
24	you can. But every particular tube penetration
25	MR. CULLEN: Okay. I've got to stop short

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

of saying we can. I've heard also the same anecdotal information that you have, that the individual licensees probably have this information. Certainly in the case of the BMW plants we know for a fact that the pin by pin information does exist, has been documented.

7 For some of the other vendors, I have not 8 had a qualified vendor representative look me in the 9 eye and say, "Yes, we know exactly what is in 10 penetration number such-and-such at plant so-and-so." 11 But I would tend to think that that 12 information is available. Now, we may have a problem with a few heads that were fabricated by vendors that 13 14 are now out of business, but other than that, I would

15 tend to think that the information is available and 16 that is what I have heard.

17 Okay. Just a quick word. I think most of you were aware that we were supposed to have a 18 19 conference March 24th through the 26th, but due to the 20 geopolitical situation, to use a politically correct 21 term, that conference was canceled when we found out 22 that several representatives from foreign countries 23 that we really needed to have attend in order to have 24 a complete picture about what the worldwide situation 25 was were not going to be permitted to travel to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

United States during that particular time period.

2 We again polled these people last week, 3 and there are still a handful who are not permitted to 4 travel even within Europe at this particular point. 5 We're going to continue to keep polling the people who said they're going to attend and others as well, and 6 7 when the restrictions have been lifted, when the coast 8 seems а little more clear, we'll get about 9 rescheduling this conference so that we can bring together all of the people who have good information 10 11 on the inspection, on crack growth rates, on repair 12 issues, on plant operation issues, get them all into one room for three or four days, and have a real good 13 14 meeting to try and come up with a good evaluation of 15 where we are and where we are going, in particular.

I've got three or four slides I 16 Okav. want to present here that talk a little bit about the 17 NRC sponsored work on stress analysis, and I said 18 19 again in my prologue that I really feel like this is 20 very, very important work. As far as I know, this 21 sort of work is being carried out by a mere handful of 22 vendors here in the United States. I can only think 23 of three: Structural Integrity Associates and Dominion 24 Engineering, both of them doing work for the 25 licensees, and EMCC, which is doing work under

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

257

258
contract to the Materials Engineering Branch. Of
course, this is the EMCC results that I'm going to
show to you.
Fortunately from what I have seen, all
three vendors are generating results which are more or
less the same. That in a sense may be good news, but
I do lose a little bit of sleep wondering whether all
three of us are wrong.
The question was raised this morning how
is it that you calibrate this stuff. Has this stuff
ever been calibrated?
I felt the answer was only partial. There
was some mention, Al Hiser mentioned correctly, and I
mentioned that there had been some experimental
verification of these computation algorithms done by
Electricite de France in the early 1990s, but most of
that work, in fact, I think, even all of it was done
on pressurizer nozzle designs.
The residual stresses were measured using
the X-ray techniques, which is quite a reasonably good
method, gets only the elastic part of the strain, not
the plastic part, but it's a reasonably good way to
evaluate residual stresses, and the agreement was at
least in the publications I have read stated to be
rather good.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	259
1	I am not aware and if somebody does
2	know, I'd appreciate hearing that information I am
3	not aware of any extensive, well qualified, calibrated
4	work, if you will, on a full scale CRDM nozzle, which
5	would be typical of a power reactor head. That is
6	something that I personally would like to do. We've
7	got the heads coming off that allow us the potential
8	to do that kind of thing. We're also exploring the
9	possibilities of doing that kind of thing in some
10	mock-ups.
11	And I am aware that the industry is also
12	at least thinking about that. David, do yo u know
13	where you are in your thinking? Is it more positive
14	than just thinking at this point?
15	MR. STEININGER: I remember talking to Al
16	McElry about whether he was going to put something
17	like that in the RFP, and he indicated at that time
18	that he was.
19	MR. CULLEN: Okay, all right. So
20	MR. POWERS: This is one of those things
21	that you do once or is it something that you have to
22	do all the time? I mean, is it a one shot deal or is
23	it answers all of your questions or does it have to
24	be
25	MR. CULLEN: I think the answer from an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

260 1 idealistic standpoint, the answer is you do it once 2 and you're done. 3 However, there are so doggone many 4 variables that you will be doing an almost infinite 5 number of cases once, and what I'm thinking, what I'm alluding to is not only the fact that you have the 6 7 geometry problems or the geometry issues. What's 8 showing up here just as an example is the number one 9 nozzle, the absolute center nozzle. That's the only axi-symmetric position in the whole head. 10 11 You've got all of these nozzles that are 12 on the side-hill. Each one of them has -- well, not each one of them. There obviously are some multiples, 13 14 but a great many of them, maybe eight to ten 15 combinations, all at different inclinations. Then you've got the potential issue of how 16 these things were actually assembled. 17 During the course of the assembly, how many weld beads were 18 19 ground out and laid back down a second time or a third 20 time or whatever? 21 Then you have the issues of repairs. 22 There's a lot of issues which I think you could or a 23 lot of considerations that you could basically sum up 24 by saying geometry differences that you really need to 25 have a look at in order to get the whole big picture.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 We may get to a case or to a situation, a 2 time frame with the ever increasing computational 3 speed that we have available to us where this might 4 not be such a big deal no matter what the differences 5 might be for a nozzle that you'd like to know about in particular. You could devise the input necessary for 6 7 that, run that into your computer, go home for the 8 night and come back the next morning and you've got 9 the answer. Right now, this whole business, which I'd 10 11 like to describe briefly at this juncture, all three 12 of the vendors that I've mentioned earlier proceed in Usinq finite element 13 roughly the same way. 14 techniques, you cast a weld bead, a single weld bead. 15 You allow it to cool, contract, build up the strain. You do that calculation. Then you put down the second 16 weld bead, allow it to cool, contract, and put down 17 its strain, and so on and so on. 18 19 You build up this weld bead in the way 20 that is shown in this figure provided by AMCC, and at 21 the end you then have a couple more steps that you 22 have to do.

This entire thing is then -- again, numerically you simulate the hydro test, the 1.25 hydro test that is applied pre-operation, and that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

261

	262
1	gives you then the final stress state that obtains in
2	that particular nozzle weld.
3	MR. POWERS: If the finite elements are no
4	more dense than what's shown on your figure, this is
5	a few minutes on a good machine.
6	MR. CULLEN: This whole process of casting
7	these in bead by bead, allowing the cooling, the
8	contracting for which you need stress-strain
9	properties for the whole temperature curve, thermal
10	conductivities for the whole temperature curve it's
11	a good thing you're sitting down takes about a
12	month on a two megahertz personal computer.
13	MR. POWERS: Oh.
14	MR. CULLEN: Okay?
15	MR. POWERS: On a PC.
16	MR. CULLEN: Well, yeah.
17	MR. POWERS: Oh.
18	MR. CULLEN: That's what's available to
19	us. we don't have Crays underneath our desk
20	unfortunately, or whatever.
21	MR. POWERS: A few more Crays. I've been
22	marketing machines lately.
23	MR. CULLEN: But you get the drift of what
24	I mean.
25	So that's where we are with these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

calculations these days.
A couple of examples. An example of the
axial stresses. Now, red is bad; blue is good. Red
is tension; blue is compression. And you can see that
as far as axial stresses now, axial stress in this
direction causes circumferential or would drive
circumferential cracking is maximized here right at
the toe of the weld on the outside diameter, which by
itself would not be a particularly problematic area.
What would be a little more problematic is
that you've got another elevation in stress right up
here which is above or at the triple point of the
weld, and if you get a crack growing up in here,
emanating from that particular elevation in stress,
admittedly it's not so high as down here at the toe,
bt it is in positive territory. That's the one that
could drive a circumferential crack.
But that's not the whole story. There's
more than just axial stresses in there. There's also

more than just axial stresses in there. There's also hoop stresses, and hoop stresses would tend to drive the axial cracks, and as you know, we've got as we heard this morning at least by current count slightly more axials than we do circumferentials. So the size of the high tensile area is quite a bit larger, extends essentially throughout the entire volume of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	the weld, with the exception of this toe back here
2	near the clad, and well up into the Alloy 600.
3	So that's why at least in the center
4	position we can understand why we're getting a good
5	many axial cracks.
6	The last slide in this series is that if
7	you compute both the axial, the circumferential, and
8	the radial stresses, it turns out that the resolution
9	of these stresses is on an inclined plane. I'm kind
10	of waving the laser here in parallel with the arrows,
11	which I presume are visible to you more in front of
12	the screen. But what this says since a crack tends to
13	grow normal to the principle stresses is that cracks
14	should grow perhaps somewhat along these would be
15	a circumferential crack now perhaps along about a
16	45 degree incline plane.
17	I'm not talking here about the fact that
18	in a side-hill nozzle that the cracks are growing in
19	a kind of oval, which is on an inclined plane. I'm
20	talking about through thickness they're also on an
21	inclined plane.
22	Remember this particular modeling is for
23	the center hole position, which is the axi-symmetric.
24	You know, there's no side-hill in this particular
25	case, but we don't know whether this is the case or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	not because all of the cracks that have been found to
2	date have been ground out and repaired.
3	However, with some of the heads now coming
4	off, we again have the potential to find out whether
5	or not these stress calculations are predicting
6	correctly the inclination of the cracks.
7	MR. ROSEN: Bill, these are great
8	pictures, but I don't think you'd be showing them to
9	us unless you thought stress mattered, and what we've
10	heard over and over again is just tell me how long the
11	stuff has been at a given temperature, and I'll tell
12	you what the problem is or if there's a problem.
13	And now what I think I hear you saying or
14	getting ready to say is stress matters.
15	MR. CULLEN: Yeah. I really believe that.
16	I saw the slide this morning that stress is a
17	secondary consideration. Crack growth rates are the
18	primary consideration. I don't disagree with that
19	conclusion at all. But
20	MR. ROSEN: Crack growth rates are the
21	primary you mean
22	MR. CULLEN: Well, crack growth rates are
23	temperature dependent.
24	MR. ROSEN: Yeah, temperature.
25	MR. CULLEN: You know, through the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	266
1	temperature dependence of the crack growth rates. I
2	thought that correct me if I'm wrong. I can't
3	remember whether it was Larry or David that had that
4	slide, but I think the inference at least do I have
5	it right? was that the stress was secondary to the
6	crack growth rates or did you say stress was secondary
7	to temperature?
8	MR. MATHEWS: It was a secondary impact on
9	the core damage frequency relative to the
10	MR. CULLEN: All right. Well, so we're
11	more than once removed.
12	The message wants to be here that crack
13	growth rates are temperature dependent. They are the
14	most important consideration in the calculation, if
15	you will, of susceptibility of an individual plant.
16	But I'm here to say that I think stress is
17	important. The message I'd like to deliver is that
18	after all, we call this stuff stress corrosion
19	cracking. If we didn't have stress to start with, we
20	wouldn't be here, folks. If these guys 30 years ago
21	understood all of the ramifications of residual stress
22	and also figured out some way to get rid of all or
23	most of it, we wouldn't be here today.
24	MR. ROSEN: Well, I'm going to say that up
25	until now I've been thinking that all I know is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	effect of degradation years, and I'm at a given spot
2	and I'm cool.
3	Now what you're saying is stress matters
4	and we've got some indication here particularly if the
5	South Texas stuff turns out to be cracking that maybe
6	stress matters more than we thought and might even
7	matter more than effective degradation years.
8	MR. CULLEN: That would be my opinion, and
9	I'm pleased to get a little bit of validation back
10	here.
11	MR. ROSEN: Well, I'm just trying to see
12	if I'm putting these tea leaves together here into a
13	pattern.
14	MR. CULLEN: Well, I think you are, but
15	I'm a materials kind of guy, and in away, I think it's
16	a bit funny for me to stand up here and talk about
17	stress, which is not my business. I mean, I'm saying
18	it's the other guys who should have a lot of business.
19	I mean, certainly we've got materials
20	problems, too, but, yeah, I think we could benefit a
21	lot more from understanding how the stress varies as
22	a function of the geometry issues that I've talked
23	about and a lot of other things, and then how these
24	two are going to play together to calculate the
25	potential for cracking a plant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	268
1	Boy, they're lining up back there now.
2	MR. ROSEN: We have these ant hills in
3	Texas, fire ant hills, that if you just take a big
4	stick and you poke it once or twice, you want to get
5	out of the way real quick, and that's what I just did.
6	MR. MATHEWS: This is Larry Mathews.
7	I guess we've never said stress is
8	irrelevant, and we've never said material properties
9	are irrelevant. We all know that both of those play
10	into the stress corrosion cracking.
11	All we've said is that we don't know
12	enough about them at the time we were making these
13	rankings and trying to figure out which plants ought
14	to be doing what kinds of inspections; that we would
15	assume they were similar, if you will, and we would
16	rank plants based on time at temperature.
17	Not to say that if you're below some
18	threshold you can go home and everybody else has got
19	to a problem, but to simply say this is the ranking
20	mechanism to determine at what point people should be
21	thinking about doing inspections.
22	It's not a model that is, you know,
23	unequivocal; that, you know, if you calculate 8.2
24	you're okay, and if you calculate 8.3, you've got a
25	pending disaster. We've never said that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	It's just a ranking model. That is all it
2	has been, to help us rank when we ought to be doing
3	what kinds of inspections. Okay?
4	CO-CHAIRMAN SIEBER: It seems that there
5	is an underlying assumption that the stresses were
б	similar in
7	MR. MATHEWS: Yes. All of these nozzles
8	were put together, not identical properties clearly.
9	All of the materials were put together, not identical,
10	but they were all 600 and they were all welded with
11	interference fits and J groove welds, and there will
12	be variation from nozzle to nozzle on the same head
13	and from head to head, and depending on who's
14	manufacturing it.
15	But we just didn't have enough information
16	to try to home in and say, "Okay. Here is the point,
17	and if you reach here, you've got a problem. Before
18	that, you don't."
19	It was just a mechanism to help us rank
20	the plants for inspection, and that's all we were
21	really trying to do with the time and temperature, not
22	to reach, you know, here's a threshold. Below that
23	you absolutely don't have an issue.
24	And stress is a factor in all of the
25	models that we've used in our PFM work, probabilistic
	•

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	fracture mechanics work. The material properties are,
2	too, but I'm not sure we're modeling everything, but
3	certainly all of this stuff goes into the model.
4	We're not ignoring any of it.
5	MR. SIMS: Going back to the statement
6	about stresses though and proving it in the industry -
7	-
8	PARTICIPANT: You have to identify
9	yourself.
10	MR. SIMS: William Sims, Entergy
11	Operations.
12	The B&W units in general have stress
13	relieved all of their nozzles except for their large
14	bore CRDM nozzles, and they have not had any
15	there's only been one B&W nozzle failure in the entire
16	industry.
17	And the CE fleet, on the other hand, they
18	did not stress relieve the nozzles after fabrication,
19	and there have been, you know, several of those
20	nozzles fail.
21	So there is correlation between stress and
22	probability of failure due to PWSCC, but I think the
23	bottom line goal of the MRP is to take that part out
24	of the equation because with B&W, the CRDM nozzles
25	that we had, they were actually center ground on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	OD surface of these nozzles. It caused higher stress
2	and actually the fabrication process of straightening
3	the tube cold-worked the tube back and forth and
4	caused high residual stress.
5	But if you hold everything constant and
6	only change it due to temperature, then we're bounded
7	by the rest of the plant. So I think that's what the
8	MRP's final goal was.
9	It is highly dependent on stress for each
10	of these locations.
11	MR. CULLEN: Bill Shack had it right this
12	morning when he said he made the point that in
13	these nozzles
14	MR. POWERS: This is dubious, to begin
15	with.
16	MR. CULLEN: It's very difficult in any
17	given nozzle, subject to issue of triaxial constraint,
18	to get the stress higher than the yield stress of that
19	particular nozzle material. True statement.
20	And since the yield stresses of these
21	nozzles vary over a 20 to maybe 25 KSI range at best,
22	then, yeah, that does confine you to a fairly, fairly
23	narrow range of possible stresses in these nozzles.
24	You have your choice. You can either have
25	a high stress or you can have a higher stress, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 that also tends to make the stress issue a wee bit 2 secondary to the crack growth rate or temperature 3 issue. 4 While we're on this business of finite 5 element analysis at the nozzles, a couple other questions that were raised this morning that I can 6 7 give at least a partial answer to. One, we talked about leaks and leak rates 8 and who's working on that kind of thing. 9 EMCC, the same vendor that's doing this work for us, is also 10 11 doing leak rate calculations. 12 Now, as anybody who has been in the steam business tell leak 13 generator can you, rate 14 calculations have a spread in variability that is just 15 astounding, depending on what assumptions you pump into that. For a 45 mil or 60 mill thick piece of 16 17 steam generator tubing you can get leak rates which cover a couple of orders of magnitude under otherwise 18 19 reasonable assumptions. 20 And if you think that's bad, try doing that same calculation on a .62 inch thick CRDM nozzle 21 22 with a stress corrosion crack in it, and it gets, you 23 know, pretty dicey. 24 MR. POWERS: Offhand, I'd sav the 25 experimental data on the leak rates for at least one

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

272

	273
1	thickness of steam generator tubes also has huge
2	spreads.
3	MR. CULLEN: I'm not sure which specific
4	set of data you're talking about, but I'm not at all
5	surprised by that kind of a statement.
б	All right. So I think I tried to deliver
7	a few minutes ago the message, if you will, that if we
8	had learned a long time ago how to manage the residual
9	stresses in these things, we wouldn't be in such a bad
10	position as we are today.
11	That's a message that applies going
12	forward as well, and I do know that the vendors who
13	are working on the replacement heads for domestic
14	plants are concerned about that, but there are at
15	least two vendors that are involved. I don't have any
16	detailed evidence from either one about how
17	specifically or what they are doing specifically to
18	mitigate stresses. That is proprietary information.
19	There's a good reason that I don't have that.
20	But it does raise in my mind the concern
21	about whether or not those two vendors are doing
22	things with a reasonable similarity or reasonable end
23	results, and that brings me to the issue of whether or
24	not we're going to have to be vendor specific in our
25	modeling of these replacement heads.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The last issue that I want to raise is that people, myself included from time to time, talk ad nauseam about the cryptomium like properties of Alloy 690 and the fact that that's going in our replacement heads and that should solve all of our problems.

7 A lot of other people will say any 8 material placed at or near its yield stress and left 9 in a warm environment for a long period of time is 10 going to crack, and that may well be the case with 11 Alloy 690 also. We just don't yet have the kind of 12 experience that we need to have.

Certainly in laboratory tests it is much better than Alloy 600 and the Alloy 152 is much better than its corresponding Alloy 182, but those are lab tests, and I'm not so sure --

MR. POWERS: When you say "better," do youmean better or slower?

MR. CULLEN: Slower. I don't mean faster crack growth rates. I mean a better quality material, less susceptible, slower crack growth rates, however you want to say that.

But we do have some of these issues, the low temperature degradation and toughness and things that may come back to haunt us in another way that we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	275
1	haven't yet quite figured out.
2	Peter, I'm not so sure exactly when you
3	want to break, but I'd like to stir up a couple more
4	ant hills before a break if that's at all possible.
5	CO-CHAIRMAN FORD: Sure. You're just
6	going to go through this?
7	MR. CULLEN: This one and if you'd like me
8	to do one more quick one, I can do that.
9	CO-CHAIRMAN FORD: Okay.
10	MR. CULLEN: But this one will probably
11	be
12	CO-CHAIRMAN FORD: Well, this one will
13	really stir up ant hills.
14	MR. CULLEN: No, no, it's not.
15	(Laughter.)
16	MR. POWERS: I'm sitting here waiting.
17	MR. CULLEN: I've got something to say
18	about that. I don't like what I hear.
19	Okay. In the middle of last summer, June
20	or July, I proposed to the industry, specifically to
21	EPRI and Christine King, that we've got so many
22	common interests in the whole nickel based alloy
23	business that we would really benefit from a much more
24	close NRC-industry collaboration on all of these
25	issues.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Of course, that went over very well. We 2 had a great conference call in September. We had 3 another great conference call in November, and out of 4 the November conference call we developed seven particular tasks on which we were going to have NRCindustry collaboration. 6

7 Since that time we have not heard word 8 one, and I am here to whine about that very plainly. 9 Any backing that I can get from the ACRS that can be 10 provided to kick this along would be very, very 11 welcome.

12 I don't need to go into reading all of these things, but, in particular, the failure analysis 13 14 of the North Anna RPV head. We put this line item 15 into our budgets for 2004-2005. Christine King provided me with Craig Harrington's initial plan for 16 17 doing this kind of work, and beyond that I have not heard a single thing from the industry until what we 18 19 just heard today, but I'm not at all sure how it is 20 that we're supposed to collaborate with the industry, 21 if indeed the industry even wants our collaboration, 22 on failure analysis of the North Anna RPV head.

23 Well, it seems to me that MR. POWERS: 24 that particular one poses real challenges for the 25 independence of the agency. I mean, we've been

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

277 1 reasonably happy with the idea of collaboration in the 2 industry when it consists of going out and getting 3 data, and then each side goes and takes the data and 4 analyzes it as they see fit. 5 But you're saying here let's now collaborate on the analysis of the data, and I think 6 7 that poses real conceptual challenges on the proper role of the NRC as an independent regulatory body 8 9 here. MR. CULLEN: What I hear in your voice and 10 11 and Ι would agree with in your concern, one 12 interpretation that I believe you are making of the word "collaboration," which you know, involves working 13 14 closely with producing results to which we both agree, 15 losing our independence. That is not at all what I would propose, what any of us would propose. 16 17 really would like to get But Ι the opportunity for the NRC to get its own look at the 18 19 North Anna head, to do things that perhaps the 20 industry would not choose to do that might serve the 21 particular purposes that we have in mind. 22 I'm not suggesting that we do a second 23 time what it is that the industry would propose to do. My sense of the word "collaboration" would have a 24 25 synonym that's more like coordination.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Remember that our business in the Office of Research is to do confirmatory research, and that is one of the things that I think we could do with pieces of that North Anna head.

1

2

3

4

5

Another thing that I believe we could do would be to take a look at some of the inspection 6 7 related questions that we might have specifically. Perhaps the industry would choose to look at them. We 8 would want to look at them also in a confirmatory way 9 or even using our own initiative or for reasons that 10 11 would fall into the category of anticipatory research.

12 So I realize that there is an implicit danger when we would begin to work closely with the 13 14 industry that we might lose our sense of independence, 15 but that is something that we just have to go into these programs and be very careful of. 16

17 There are a great many precedents for the NRC working with industry even to the extent of co-18 19 funding. I'm not sure what mechanism, what financial 20 mechanism might be involved here. It could range to 21 something as reasonably intricate as co-funding. Ιt 22 could simply mean funding our own independently chosen 23 vendors to execute statements of work that we would 24 put together on our own.

Does that response reasonably satisfy your

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	279
1	concern?
2	MR. POWERS: Well, I caution that I would
3	work on my language here.
4	MR. CULLEN: Okay.
5	MR. POWERS: Because I think you can set
6	this up as a reasonable collaborative program if that
7	program consists of, the collaboration consists of
8	acquiring the data.
9	But the analysis of the data has to be
10	independent, it strikes me.
11	MR. CULLEN: Absolutely.
12	MR. POWERS: It absolutely has to be
13	independent.
14	MR. CULLEN: No, there is no question
15	about that.
16	MR. POWERS: And so I'd be cautious about
17	the language that I use here.
18	MR. ROSEN: As far as backing up your
19	whine, is there a quid pro quo here, I mean, where
20	they send you a quid and you send them a quo?
21	MR. CULLEN: No, I don't detect that. At
22	least at the beginning what I would like to achieve,
23	and there are a couple of specific things I can
24	mention here in a second as example, I'd like to
25	achieve better coordination maybe is a better word

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

now, where we might have a topic and the NRC would do these four things and the industry would do these four things, and we would preplan so that they interlace or intercalate a little better.

5 Now, what I'd like to point out specifically as an example of what I feel is really a 6 7 lack of collaboration is that we kicked off our boric 8 acid corrosion program -- and I will tell you a little 9 bit more about that shortly -- in the August-September 10 time frame last year. As you've heard this morning, 11 EPRI has put their RFP out on the streets something 12 like five weeks ago, let me say, plus or minus a week 13 or two.

14 If you look at that industry RFP, it is 15 more broad based than the program that I've put in 16 place at Argonne, but it contains everything in that 17 program that I put in place out at Argonne. Why are 18 we doing this twice? I have no idea.

 19
 MR. ROSEN: Argonne will get twice as much

 20
 money?

 21
 MR. CULLEN: No. Argonne won't do their

work for the industry. That would be a conflict of interest. Boy, would that get some people excited. But you know, somebody somewhere is going to do this program for the industry, and they're going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	to generate the same doggone collection of data that
2	we're generating at Argonne. I have no idea why.
3	MR. WALLIS: I'm not sure they will. I
4	mean, it seems to me this might be one of those areas
5	where the science is so poorly understood that having
6	two groups working might not be such a stupid thing to
7	do.
8	MR. CULLEN: I hear what you're saying,
9	and I think that some overlap in a coordinated program
10	is just fine, but why you would overlap 100 percent of
11	the program is a little bit beyond me.
12	Now, we are having a few things
13	specifically done by the Argonne people that are not
14	in the EPRI program, I'll grant you, but
15	MR. WALLIS: Are they going to do the same
16	experiment, exactly the same?
17	MR. CULLEN: It looks like it if the
18	vendor responds to the EPRI RFQ in the way that it
19	looks like they should. I would say yes.
20	MR. POWERS: There's nothing like
21	replication to give you confidence, is there?
22	MR. CULLEN: I mean, that is
23	MR. POWERS: We'd love to see replication
24	even once in this field.
25	MR. CULLEN: That's one way of looking at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2.82 1 it, but why would you take a six figure program and do 2 it a second time in its entirety? I'm not so sure 3 why. 4 Okay. Now, the last one I want to point 5 out here is something that in the area of mitigation testing, that for the present time, as I've pointed 6 7 out here, this is fully an industry effort. Even 8 though we've listed it in the NRC-industry 9 collaboration scheme of things, for the moment 10 mitigation testing is something that I'm quite 11 comfortable just letting the industry go for it as 12 much as they want to. Industry is going to look at stress 13 14 mitigation. They're going to look at environmental 15 mitigation, and I just want to sit back and watch what's happening for the time being. 16 17 If it comes to a point where we may need some confirmatory research of something that the 18 19 industry has shown, then we may entertain proposals to 20 take a look at that, but for the moment, this 21 particular item on mitigation is an industry only 22 item. 23 The nozzle 46 may turn out to be just an 24 NRC item. I'm not sure about that. Again, we don't 25 seem to have the kind of level of conversation going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

283
that I would like to have here, but again, I'll say a
little bit more in a few slides from now.
We are harvesting a couple of sections out
of the Davis-Besse head in a way that is similar to
the way the industry described harvesting pieces of
the North Anna head, and one of the pieces that we're
harvesting from the Davis-Besse head is Nozzle 46,
which had an anomalous UT indication that may or may
not be a leak path.
Nozzle 46 also had some circumferential
indications in the J weld that were never fully
disposed, and I'd like to get about more completely
disposing those indications, finding out whether or
not they linked up to provide a leaker, and if so, did
that leaker create a leak path that, indeed, is the
explanation for this, quote, anomalous indication?
The other nozzle that we're harvesting out
of Davis-Besse is Nozzle No. 2. That's the one with
the small cavity, if you will, "small" being just
what, a half an inch in depth, not seven inches in
depth. Many people look at that Nozzle 2 as being a
youthful version of the the cavity around Nozzle 2
as being a youthful version of the cavity that was
discovered at Nozzle 3 and may give us some
indication, some enlightenment, if you will, on how

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	284
1	these corrosion cavities get started.
2	All right. Shall we do one more thank or
3	shall we break?
4	CO-CHAIRMAN FORD: I think we should break
5	here.
6	MR. CULLEN: Let's do it.
7	CO-CHAIRMAN FORD: Or else we'll have a
8	revolution.
9	I'm going to recess until half past.
10	We'll start probably at half past.
11	(Whereupon, the foregoing matter went off
12	the record at 3:18 p.m. and went back on
13	the record at 3:33 p.m.)
14	CO-CHAIRMAN FORD: Let's get back into
15	session, please.
16	Okay, Bill. It's all yours again, please.
17	MR. CULLEN: All right. Now you all know
18	what's coming from the handout. This next slide
19	always gets a few chuckles, but the message that I
20	want to bring today is that here we have crack growth
21	rates in Alloy 600. Alloy 600, depending on its heat
22	treatment, depending on the normal allowable
23	differences in its chemistry, can take on a wide range
24	of crack growth rates as its normal property.
25	It's nobody's objective to fit a line

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

through this data. That is not what this line is. It's not a fit. This line is intended to be representative. It's the 75th mean percentile line of data from alloys that actually exhibited a crack growth rate.

6 I'm not here to go into a long lecture, a 7 long monologue on how it was that all of this data was 8 generated and qualified, but suffice it to say that 9 this particular slide does show that Alloy 600 takes 10 on a variety of possible crack growth rates, spanning 11 a couple of orders of magnitude.

The main reason that I wanted to put this slide up here is to take a more forward look at the data that's going to be added in a couple of years, and I alluded to that or described that briefly on some of the earlier slides.

17 I described a couple of Japanese programs that generated data that spanned a fairly wide range 18 19 of stress intensity factors. None of that data is on 20 this plot at the present time. I can't possibly tell 21 you where that data is going to wind up, but suffice 22 it to say that when the results of the Japanese 23 program have been produced and publicly distributed, 24 that we will have quite a lot more data from that that 25 will appear on this graph.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

MR. POWERS: One of the problems with this 2 kind of graph, and we get to see a lot of them in the 3 metallurgical business, and we're assured that there 4 are 10,000 reasons why these things show a lot of scatter, and my colleague, Professor Wallis, will look at a plot like this and say, "Gee, this is proof positive that there are some other variables in this 8 thing," and that's what you've alluded to.

9 Metallurgists are good at coming up with lots and lots of candidates. What we never see is the 10 11 multivariate plot in which you say, "Okay. Here are 12 the effects not only of stress intensity factor, but everything else included, and here are the ones that 13 14 are important and the ones that are not important."

15 Instead all we hear is, "Here are all of 16 these factors that important, potentially are 17 important."

> Just a list. MR. CULLEN:

19 MR. POWERS: Yeah. We never see a 20 quantification of what's important and what's not 21 important.

22 MR. CULLEN: I described a, quote, 23 critique of the susceptibility model that I wrote and 24 finished up a couple of months ago and said I would 25 make it available to you all in a month or so. There

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

6

7

18

287 1 are some of those sorts of plots in there that you're 2 describing, plots of crack growth rate versus yield 3 strength, plots of crack growth rate versus grain 4 boundary carbide coverage. 5 MR. POWERS: But any time you plot against one of these variables, you're going to have a plot 6 7 like this. What you need is one of the multivariate 8 plots that says, "Okay. I've set up a model. Ιt 9 could be linear or nonlinear, and here is predicted versus observed, and here is my factor analysis on all 10 11 of those things that I've included to show you which 12 one makes a difference and which ones are never minds." 13 14 MR. CULLEN: Ι suspect you know the 15 discipline called artificial neural network design, 16 ANNs, neural networks. 17 MR. POWERS: I have stayed away from that assiduously. 18 19 MR. CULLEN: I kind of thought when you 20 used the expression "multivariate analysis" that that 21 would be one of the technologies or techniques --22 MR. POWERS: It is a technique that people 23 use. 24 MR. CULLEN: -- that you were thinking of. You know, they all fall into the general 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	288
1	category of I call it pattern recognition. You can
2	use a variety of approaches. Neural networks is one.
3	I have just received a draft NUREG report
4	from another contractor that I asked to do a neural
5	network analysis, which is what I think you're asking
6	for, suggesting a multivariate analysis of exactly,
7	well, not this data because the details of this are
8	still proprietary, but we had a reasonably well
9	conditioned set of data from other sources that did
10	have all of the information about chemistry and
11	processing, metallography and things that we wanted to
12	be able to pump into this neural network analysis.
13	That analysis will be published I will say
14	in a couple of months, the kind of time frame it takes
15	to turn around a NUREG.
16	So this sort of work is being done. I'm
17	not sure what, if anything, the industry might be
18	doing along this line. Perhaps something. I just
19	don't know.
20	MR. POWERS: Well, the question is: when
21	does it creep into our discussions of what the
22	research
23	MR. CULLEN: Well, it needs to mature, and
24	I think we're a long ways from maturation.
25	MR. POWERS: Somehow a regression analysis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	289
1	is not a triumph
2	MR. CULLEN: Of modern day technology. I
3	realize it, yeah. It was not exactly yesterday that
4	somebody discovered least squares regression, but the
5	application of that to this sort of database where,
6	you know, everything has variations is something that
7	I think is much more modern day and still at this
8	point less mature and less reliable than, you know,
9	fitting data to something else.
10	MR. WALLIS: Well, where does this come
11	from? Is this just from this steel, some other
12	situation, or is it for steel under reactor
13	conditions, the environment that you have there or
14	what is it?
15	MR. CULLEN: Again, to try to be brief
16	because this was described by John Hickling and his
17	colleagues to the ACRS oh, I don't know. Tell me
18	when. September, October, some June of last year.
19	Okay.
20	This data was very, very carefully vetted
21	by this Alloy 600 task group. I sat in those meetings
22	and listened to their discussions. Yes, it is data
23	generated for materials that are reactor typical in
24	environments that are reactor typical, and believe me,
25	in the totality of the data that was considered, there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	are a far greater number of data points that were
2	discarded as being not valid for inclusion in this
3	database.
4	MR. WALLIS: Well, if you had more data,
5	you'd just get better coverage of the paper.
6	(Laughter.)
7	MR. CULLEN: You're absolutely correct,
8	and that is the point. In a way, we want to know what
9	the full extent of the variability is. We're not
10	looking to have all of this data collapsed onto a very
11	thin line and, you know, at some point in time
12	somebody finding out that, you know, the low liers or
13	the outliers were bad data sets for some particular
14	reason. That's not what we're looking for at all.
15	We're looking for a plot of data that is
16	representative of all of the materials that could
17	possibly be found in the heads of our domestic plants.
18	MR. WALLIS: What are you going to do with
19	it?
20	MR. POWERS: I mean, this is like the
21	heavy section steel program. We'll just keep looking
22	until we find another variable that affects things,
23	and then we can go experiment on that for another six
24	months.
25	CO-CHAIRMAN FORD: Let me try and help.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	I don't think it's quite as bad as you're saying.
2	The end result is to come up in this case
3	using artificial network approaches, to come up with
4	this multivariable algorithm that you're talking
5	about.
6	MR. POWERS: Peter, I do not need neural
7	networks to do a multivariate analysis.
8	MR. CULLEN: But it's one technique.
9	CO-CHAIRMAN FORD: But by getting the
10	multivariate analysis whether you artificial network
11	approaches is going to come up with this multivariable
12	approach, but it needs the data, the good quality
13	data.
14	Your objection is if you put some more
15	data on there, you come up with a mass of data. If
16	it's unqualified data, I agree with you 100 percent,
17	but this will be qualified data. If that is
18	accomplished, then he has got hope of coming up with
19	this multivariable algorithm.
20	MR. WALLIS: Isn't scatter here because of
21	these mysterious heats which are all somehow different
22	because of what has happened to them in the past?
23	MR. POWERS: Well, that might be one way
24	to
25	MR. WALLIS: The variable to quantify.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	292
1	CO-CHAIRMAN SIEBER: That's one factor.
2	MR. CULLEN: That might be one way of
3	saying it, but it's not getting to the root cause of
4	the scatter, which is differences in the
5	microstructure of the material.
6	MR. KRESS: Okay, but do you know what
7	those differences are?
8	MR. CULLEN: We're getting onto that, and
9	that's another point that I want to make, is as time
10	goes on, the experiments that we do get better and
11	better, and the correlative data that we come to
12	understand is necessary gets to be more and more a
13	part of the overall package.
14	MR. KRESS: On this plot do you know the
15	differences between the Xes and the squares?
16	MR. CULLEN: I can't stand here and say
17	that I do. I might be able to dig and, you know,
18	maybe guess that these might be very low yield
19	strength materials as a possible example, and if so,
20	then I would say, well, that probably explains why
21	they're sitting down there at pretty low crack growth
22	rates, and you know, this stuff up here might turn out
23	to be highly cold-worked, high yield with rotten grain
24	boundary coverage. See, now we understand why that's
25	high.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	293
1	I think we're getting onto this. Do we
2	have it for every data point that's on the plot?
3	Well, I doubt that, but I think we're getting on to
4	understanding what it is that produces these valid
5	differences.
6	MR. WALLIS: What kind of K do you get in
7	these control rod drives?
8	MR. CULLEN: Up to about the yield
9	strength of the material, which would be up here in
10	about the 60
11	MR. WALLIS: It is not a yield strength.
12	You have to have floor size and things.
13	MR. CULLEN: Well, yeah. I'm sorry. You
14	were asking the right question. I was just giving the
15	wrong answer, but
16	MR. POWERS: Thirty-five.
17	MR. CULLEN: Yeah.
18	MR. WALLIS: Oh, the middle.
19	MR. CULLEN: Yeah, somewhere in here
20	because these things have .625 thickness to them.
21	MR. WALLIS: And they're highly stretched.
22	So that's where the K comes from.
23	MR. CULLEN: That's where the K comes
24	from. Now, you have to worry a little bit about
25	constraint.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

294
MR. WALLIS: material. Is it applied
K? The applied K from the stress condition, do you
know the stress condition well enough to know the
applied K?
MR. CULLEN: I think we do, yes. I mean,
if you believe the finite element plots that I put up
a half hour ago, K is being routinely calculated using
those stresses, and you know representative crack
lengths through the thickness of the housing.
So yeah, and in fact, those sorts of K
relationships are being
MR. WALLIS: Well, what are you going to
do when you get scatter like this? Are you just going
to keep on correlating until you try and get something
with less scatter?
MR. CULLEN: Well, the goal of this
MR. WALLIS: engineering decision with
something like that?
MR. CULLEN: The goal of this particular
report was to come up with a proposed curve that could
be used to disposition flaws, and the MRP is
suggesting that this curve reside at the 75th
percentile.
MR. POWERS: This will be the most obscure
number to pick as a percentile. A 65.3 or something

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	like that.
2	MR. CULLEN: But, again, you have to keep
3	this in the bigger context of there are other
4	conservatisms in the overall analysis that are part of
5	the overall package.
6	MR. POWERS: Which is the most
7	catastrophic way to do an uncertainty analysis that I
8	can think of.
9	MR. CULLEN: Well, yes, I realize, but
10	we're trying to
11	MR. POWERS: Put conservatisms here, put
12	conservatisms here, and put conservatisms here, and
13	then tell me what you've got at the end. You have no
14	clue what you've got at the end.
15	MR. CULLEN: You're talking about the
16	difference
17	MR. WALLIS: You're talking about the top
18	point, I mean, the highest points. I mean, you've got
19	a whole population of reactors which maybe have steels
20	which lie all over this map. Some of them are going
21	to be up there growing a few centimeters a year.
22	MR. CULLEN: That is a possibility.
23	MR. WALLIS: And therefore, you're making
24	decisions based on that.
25	MR. CULLEN: You are correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	296
1	MR. WALLIS: You have your inspection
2	intervals accordingly.
3	MR. CULLEN: Again, correct.
4	MR. WALLIS: Forget about everything else.
5	MR. KRESS: Or you use a Bayesian update
6	for each specific reactor. State with that one and
7	Bayesian update each one of them.
8	MR. WALLIS: As you learn.
9	MR. KRESS: As you go along and learn.
10	MR. WALLIS: Yes.
11	MR. KRESS: I agree.
12	MR. CULLEN: In a slide or two I can't
13	remember yeah, two slides, I'm going to talk about
14	the susceptibility model, and I think some of the
15	questions that you're asking now might be addressed a
16	little better when I get to that opportunity.
17	CO-CHAIRMAN FORD: Okay, guys. If you
18	could look at your root thing because the technician
19	is going to play with the quality of this picture.
20	CO-CHAIRMAN SIEBER: It might get worse?
21	(Laughter.)
22	MR. POWERS: Is he going to add some data
23	to this picture?
24	MR. WALLIS: You mean after the two
25	previous works on that graph, all of the points will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	come down?
2	MR. ROSEN: That's right.
3	MR. CULLEN: Okay. Let's move ahead just
4	a little bit.
5	MR. ROSEN: Artificial neural network.
6	MR. WALLIS: Just tell the guys where to
7	look out.
8	CO-CHAIRMAN FORD: Thanks, Bob.
9	PARTICIPANT: That means no more problems
10	here.
11	(Laughter.)
12	MR. CULLEN: Okay. Let's forget ahead
13	here a little bit.
14	The point I'm trying to make on this
15	particular slide is that we have several research
16	programs that relate to the overall CRDM cracking
17	issues other than the ones that I'm mainly involved
18	in, which are stress corrosion cracking. But we have
19	a contract out to look at inspection techniques and
20	probability of detection, issues like that that relate
21	to inspection.
22	We have the program that I talked about to
23	model residual stresses; another program task aspect
24	that involves developing a probabilistic model, and so
25	on, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	MR. POWERS: For something called T sub F.
2	MR. MATHEWS: Time to failure.
3	MR. CULLEN: Time to failure.
4	MR. POWERS: You are bright.
5	MR. CULLEN: And all of these different
6	contract tasks are combined and fed into improved risk
7	analysis models. I want to make again the point here
8	that we are continuing the testing of stress corrosion
9	crack growth rate determination in these relevant
10	alloys and that we are using some materials that we've
11	harvested out of the Davis-Besse head.
12	MR. WALLIS: Does this probabilistic model
13	have any physics and chemistry in it?
14	MR. CULLEN: There's a member here of the
15	ACRS who could perhaps comment on that a little bit
16	more.
17	MR. SHACK: It will have some chemistry
18	and physics in it.
19	MR. POWERS: All things in life, Graham,
20	are chemistry. So you know that there's some
21	chemistry in it.
22	MR. SHACK: It will include the
23	mechanistic pictures that we've developed for the
24	residual stresses.
25	There are things that we know well. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	think we know a lot about residual stresses. We know
2	a lot about K. I think we know a lot about crack
3	growth rate.
4	MR. WALLIS: About leakage through cracks?
5	MR. SHACK: We're going up to the place
6	where the leakage starts. We actually know a lot
7	about leakage through cracks, too. You know, it all
8	has to come together.
9	MR. CULLEN: Let me stress that the
10	probabilistic model that we are developing is to
11	calculate an inspection interval which would be
12	optimized to discover a leak very, very soon obviously
13	after it may emerge after we go through a wall.
14	So it's not to provide any inspection
15	interval calculations for a plant that already has
16	known leakers in it. What we're trying to do is to
17	come up with intervals for inspection that will help
18	us or assist us to discover leaks as soon as they
19	reasonably can be discovered in a given plant.
20	MR. KRESS: What do you do when you
21	discover a leak? Go fix it?
22	MR. CULLEN: I'd rather have the licensee
23	answer that, but I think generally you have the right
24	idea, yeah.
25	MR. KRESS: Do you fix it the next
	•

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	300
1	shutdown?
2	MR. CULLEN: Well, of course, they would
3	be shut down at that particular point.
4	CO-CHAIRMAN SIEBER: NERC does not allow
5	you to operate with a leak except
6	MR. KRESS: WE operate with a leak through
7	the steam generator tube. Why is this any different?
8	CO-CHAIRMAN SIEBER: We didn't operate
9	with a leak. We just didn't operate with leaks.
10	That's the way we interpreted the ASME code.
11	MR. KRESS: Tech specs allows a certain
12	amount of leakage.
13	CO-CHAIRMAN SIEBER: Identified leakage,
14	but it can't keep from
15	MR. SHACK: If you identify it as a crack
16	in the reactor coolant boundary, it's got to be fixed.
17	CO-CHAIRMAN SIEBER: There are fair amount
18	of bolted joints or gasketed joints in a plant, some
19	of which may leak. You know, a packing gland
20	(phonetic) on a valve may drip a drop of water on the
21	floor once in a while, and so you're allowed to
22	operate under those circumstances, but you aren't
23	allowed to operate when you have a breach of the
24	physical material of the plant. That's what the code
25	says.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	301
1	MR. ROSEN: Except for the steam generator
2	tubes.
3	CO-CHAIRMAN SIEBER: We didn't interpret
4	it that way.
5	MR. ROSEN: The tech specs interpret it
6	that way.
7	CO-CHAIRMAN SIEBER: Yeah, I know. There
8	is a tech spec that says you can't have more than a
9	gallon a day or something.
10	MR. KRESS: So when you detect a crack
11	that's going to be 70 percent through wall by the time
12	of your next shutdown or it's going to you're going
13	to repair it at 70 percent through wall or are you
14	going to wait for it to leak?
15	CO-CHAIRMAN SIEBER: Well
16	MR. KRESS: Since you can't have a leak,
17	you've got to decide how far through the wall you're
18	going to let it.
19	CO-CHAIRMAN SIEBER: When you're operating
20	you aren't going to know.
21	MR. POWERS: You have flaw evaluation
22	guidelines.
23	MR. KRESS: Oh, yeah. I haven't read
24	those yet.
25	CO-CHAIRMAN SIEBER: The only way you're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 going to know that you have a leak is when your 2 unidentified number changes, your leak rate number, or 3 you get changes in containment like additional 4 particulate activity or increased humidity. There are 5 indications that you're leaking, but you can't tell That's why they call it where it's coming from. 6 7 unidentified. Bill, this construct 8 CO-CHAIRMAN FORD: 9 looks very similar to the NRP construct. Will we have two identical models or two different models or what? 10 MR. CULLEN: This, I think, falls in the 11 12 category of confirmatory research. CO-CHAIRMAN FORD: Well, what happens if 13 14 it gives a different answer? 15 MR. CULLEN: We need to resolve an issue like that. 16 17 CO-CHAIRMAN FORD: It's bound to give a different answer. 18 19 (Laughter.) 20 CO-CHAIRMAN FORD: I quess I'm wondering what do we do in a case like that. Do you have an 21 22 argument, a discussion? 23 I think I don't have an MR. CULLEN: 24 answer to that right now. It's kind of a wait and see 25 once we get there kind of a thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

302

	303
1	CO-CHAIRMAN FORD: Now, the industry are
2	saying that they will have this for Alloy 600 for
3	cracking by the middle of this year. What is your
4	time scale?
5	MR. CULLEN: Well, this is a work in
6	progress. I think the time scale is roughly the same,
7	but it is definitely a work in progress.
8	CO-CHAIRMAN FORD: Okay.
9	MR. SHACK: South Texas may cause some
10	upset to the model.
11	(Laughter.)
12	MR. CULLEN: Okay. Let's
13	MR. SHACK: Because the model doesn't
14	predict South Texas at the moment.
15	MR. CULLEN: Let's move on here a little
16	bit. I've mentioned a couple of times now that I've
17	been a couple of months taking a look at this
18	susceptibility plot. As we've heard a few times
19	today, the current model depends only on time at
20	temperature, and the current model, I would have to
21	admit, and it's very easy to see, is doing a very nice
22	job of projecting when the plants will develop obvious
23	leaks.
24	All of the red squares down here at the
25	bottom are bare metal visual observations of leaking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	304
1	CRDMs. So the model works. That's indisputable.
2	There are a couple of orange triangles
3	over here which are NDE cracks, discovered by NDE and
4	repaired. So you know, where these boundaries are
5	maybe something that could be discussed further.
6	Remember, of course, this is a statistical
7	distribution. So you know, you're going to find some
8	things elsewhere other than right up here at the upper
9	tail.
10	MR. WALLIS: What does plant ranking mean
11	here?
12	MR. CULLEN: Oh, we just number from the
13	plant with the highest number of EDYs to the plant
14	with the lowest number.
15	MR. WALLIS: Then it should be a
16	monotonically increasing curve.
17	MR. CULLEN: And it is.
18	MR. WALLIS: It's not. It has got wiggles
19	in it.
20	MR. CULLEN: I think if you take a look,
21	every data point is a little further to the right.
22	Now, you won't see any back-ups except for something
23	like this which is in there twice.
24	MR. WALLIS: It should be up as well if
25	it's just a ranking based on EDY.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

305
MR. MATHEWS: The growth mark plant
ranking, it was ranking as of a given date and time,
and the plots were the inspections for that time of
the inspection.
MR. CULLEN: Yeah, that's true.
MR. WALLIS: Ah, that's the only
difference.
MR. CULLEN: I'm thinking maybe what's
confusing things is like that orange triangle also has
another data point out here for that same plant. You
know, if you eliminated the duplicity where a plant
had
MR. POWERS: The duplicity. Let us
eliminate the duplicity at all opportunities.
MR. CULLEN: If you eliminate the double
counting of the plant? Okay.
You know, some plants had an observation
and disposition at one point in time, and the same
plant had another observation and different
disposition at a second point in time. Kind of
belaboring that in order to straighten it out.
CO-CHAIRMAN FORD: I know we asked the
question why the discontinuity in the curve up here
and, boom, like that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	306
1	CO-CHAIRMAN FORD: And I know the answer
2	was given, but I've forgotten what it is.
3	MR. CULLEN: Well, these are all cold head
4	plants. So they build up EDYs very, very, very
5	slowly. I'm not sure what that plant is. You know,
6	everything has an explanation, but you know, these are
7	basically all of the cold head plants. These are all
8	of the really hot head plants.
9	CO-CHAIRMAN FORD: But Graham's point is
10	if you have the same algorithm here, it should be a
11	smooth curve.
12	MR. CULLEN: I wouldn't say a smooth
13	curve.
14	MR. WALLIS: The different times
15	apparently. They ranked them at different times when
16	they calculated EDY, but it should be essentially a
17	smooth curve. There's no new information involved by
18	plotting plant ranking. It's really on the basis of
19	EDY, the points to the right.
20	MR. CULLEN: Yeah. The worst plant is the
21	number one plant, the worst in terms of the maximum
22	EDY, and the best plant is up there.
23	CO-CHAIRMAN FORD: Okay.
24	MR. CULLEN: It's just a convenience to
25	plot things that way.
	•

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	Okay, but the point that I want to make
2	here is that, you know, in a statistical basis we can
3	all envision the day perhaps where a plant down in
4	here is going to develop a leak, and we may know about
5	this already, but I'm not going to stand up here and
6	mention names.
7	So you know, there are other factors that

are going to affect this susceptibility ranking one way or another. Some of these low plants are going to develop a crack, and we're going to have to figure out why.

Some of these plants up here in the high ones, maybe that star right there which so far is a good plant, no observations from NDE. You know, this may go on out as a green star for a long, long period of time, and we're going to have to come to some way of understanding why that is.

Again, it's not my role to take a plant 18 position, but I can well imagine that licensee asking 19 for some sort of relaxation from the NRC. You know, 20 21 why are we driving ourselves nuts just because we're 22 in the high susceptibility category? But, you know, 23 we've got other rationale for why we're staying clean. 24 So I can see that some of these other factors that I've mentioned, yield strength, grain 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

8

9

10

11

	308
1	boundary carbides, actual measurements of stress
2	corrosion crack growth rates in nozzle materials,
3	might be something that we might want to take a look
4	at and have some consideration of going forward.
5	Okay. I'm going to launch into kind of
б	the last part of this, but I actually thought the last
7	part might generate more questions than the first
8	part. If that's the case, bring in the sleeping bags.
9	Okay. The Davis-Besse licensee, FENOC
10	(phonetic), has completed the experimental work on the
11	investigation of the cavity dropout from the Davis-
12	Besse plant, and they have provided that information
13	to us at the NRC, and I do have explicit permission
14	from them to show you the pictures that I'm going to
15	show you.
16	And the reason that I want to show some of
17	these pictures to you, some of the descriptions of
18	what they found metallographically and
19	fractographically is because this information plays
20	directly into the research programs that we're
21	conducting here in the MEB. Basically they looked at
22	the axial and circumferential cracks in the J weld and
23	also in the small section of the nozzle that's still
24	Nozzle No. 3 that remained.
25	They took a look at the cracks in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

clad, and they took a look at the walls of the cavity, 2 and I'm going to show one example in all four the axial crack in the nozzle, axial 3 categories: 4 crack and circumferential cracks in the J weld, the 5 cracks in the clad. the fourth thing is the walls in the cavity. Because all of those things are important 6 7 to some of our research programs.

As an example of what they did --8 Okay. 9 and all of this work was conducted won in Lynchburg by BWXT -- here's a portion of the cavity. Now, actually 10 11 they have sliced essentially horizontally through the 12 head and removed what would have been the top part of the head at about two thirds of the way up or at the 13 14 point where the nose of the cavity was, actually had 15 its greatest extent.

16 So not to belabor or point out the 17 obvious, but the Nozzle No. 3 was right in here. The zero degrees is always downhill for reference, and 18 19 you'll need that point of reference as I go through and talk about all of this. 20

21 The largest cracks in the nozzle were very 22 near ten degrees, right about there, and that is the 23 one that was spewing water into the cavity and causing 24 this corrosion.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

There's another very large crack, actually

(202) 234-4433

25

1

	310
1	somewhat larger crack, at 180 degrees which was non-
2	leaking.
3	MR. WALLIS: Could you tell me again while
4	I'm looking at them? Am I looking down into a hole?
5	MR. CULLEN: Yes. You're looking from the
6	top down.
7	MR. WALLIS: It looks as if it's coming
8	out to me. It's actually going away from me.
9	MR. CULLEN: It's going away from you,
10	yes. That's hogged out or dug out. The illumination
11	is a little bit
12	MR. WALLIS: And you're looking at the
13	bright cladding.
14	MR. CULLEN: Yes. This, of course, is the
15	exposed cladding that has been cleaned up now, and
16	it's shining back at you. This is the low alloy
17	steel. This is the J weld. There's a very nice
18	picture of that coming up in the next slide.
19	MR. WALLIS: But the boundary is very
20	sharp on the surface of
21	MR. CULLEN: No, no. Remember if my hand
22	is describing the thickness of the head, we've sliced
23	through that at approximately two thirds of the way
24	up.
25	MR. WALLIS: Oh, through the head.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	311
1	MR. CULLEN: Yeah. So there's another
2	matching piece that would sit on top of this, and if
3	you could see the outside of that, you'd be looking at
4	the original top of the head.
5	MR. SHACK: Oh. The 180 degree crack was
6	also through wall and metallographically was a larger
7	extent than the ten degree crack?
8	MR. CULLEN: One, point, two inches versus
9	1.1.
10	MR. SHACK: Was it through wall?
11	MR. CULLEN: Yes.
12	MR. SHACK: Okay. Why do you label it
13	non-leaking?
14	MR. CULLEN: Because it didn't leak.
15	There's no corrosion. There's no leak path.
16	PARTICIPANT: Non-eroding at any rate.
17	MR. CULLEN: If you look at this wall,
18	it's as pristine as something like that should look.
19	Okay. Now, this is a picture of a little
20	section of the J weld. Now, remember this surface has
21	never been seen before by man or woman. This is the
22	surface that was exposed by the corrosion of the boric
23	acid.
24	Here is the low allow steel that I've
25	labeled over here, and this is J weld deposit, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	312
1	this surface, of course, was in intimate contact with
2	carbon steel once upon a time.
3	So I'm just showing this as kind of a
4	MR. WALLIS: But the J weld was not
5	touched. That's
6	MR. CULLEN: The J weld was not attached.
7	That is correct.
8	MR. WALLIS: Is it similar material to the
9	clad or is
10	MR. CULLEN: No. Clad is basically a 308
11	stainless steel, something that looks vaguely like
12	MR. WALLIS: The stuff that you weld
13	stainless to carbon with?
14	MR. CULLEN: Yeah, this is the Alloy 182
15	that we've talked about repeatedly this morning.
16	MR. WALLIS: I didn't know what it is.
17	MR. CULLEN: Okay.
18	MR. ROSEN: It doesn't get attacked by
19	boric acid.
20	MR. CULLEN: That's correct, and the
21	stainless steel clad does not seem to be attacked
22	wither. The reason that this section was made at this
23	point was that this distance here happens to be the
24	very thinnest that the clad got anywhere within the
25	cavity. If memory serves right, this is .208 inches

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	313
1	thick right here at this little tucked in corner.
2	MR. WALLIS: This is a place where the
3	hole is pretty narrow. So it's really in the corner.
4	It goes into a
5	MR. ROSEN: Maybe you can go back to the
6	picture before and show us roughly from above where
7	that is.
8	MR. CULLEN: Okay. You're looking at this
9	piece right here.
10	MR. WALLIS: It's amazing how narrow that
11	whatever you call it is.
12	MR. CULLEN: Yeah. Well, you know, it was
13	corroding.
14	MR. WALLIS: It would carve out in that
15	pattern is really remarkable that you would cut so
16	deep and so narrow.
17	MR. CULLEN: Well, I mean, the depth of
18	the cavity was almost seven inches.
19	MR. WALLIS: I know, but isn't this a
20	remarkable pattern?
21	MR. CULLEN: Well, it certainly is
22	interesting. Yeah, "remarkable" is a fine word.
23	Interesting, stupendous.
24	MR. POWERS: Elicited a lot of comment.z
25	MR. ROSEN: Earth shattering, curious.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	314
1	MR. CULLEN: All of these kinds of things.
2	Curious. All right.
3	MR. WALLIS: One has to really think about
4	how that pattern could be developed.
5	MR. CULLEN: Are you talking about this
6	pattern right here?
7	MR. WALLIS: Oh, no, no, no. The pattern
8	of the hole, the
9	MR. CULLEN: Oh, the geometry of this
10	MR. WALLIS: Yes.
11	MR. CULLEN: overall cavity at that
12	location. Well, in the same sort of line, I think,
13	there is a little bit of a corrosion undercut right
14	here. Originally I actually thought that maybe there
15	would be a substantial undercut. That turns out to be
16	not true.
17	This is almost the undercut in its
18	entirety. If I had included more of the picture, it
19	kind of goes up very quickly up along here.
20	This photo is a 180 degree reversal of
21	this because of the difference in the type of camera.
22	This is an ordinary camera. This is a telegraph. So
23	this little undercut is actually that little thing
24	right there that you can see.
25	MR. ROSEN: And there's a crack extending,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	315
1	right?
2	MR. CULLEN: No, that is not a crack.
3	That is just simply the boundary between cladding and
4	low alloy steel. It does look sharp. I agree.
5	Visually it looks like a crack, but it is not a crack.
6	MR. ROSEN: Looks like a crack to me.
7	MR. CULLEN: No. Take my word for it.
8	It's not.
9	MR. WALLIS: Is there any pattern on the
10	low alloy steel that indicates convection patterns or
11	anything?
12	MR. CULLEN: We're going to get that in
13	the second and third slides from the end.
14	Okay. As I've said two or three or four
15	times now, we're doing actual crack growth rate
16	testing of the Alloy 600 that was in Nozzle No. 3.
17	This is some metallography on that nozzle material.
18	This is the remnants of the non-leaking
19	crack, the longest one, that was in Nozzle No. 3.
20	Basically what happened, as the licensee was, on March
21	the 8th, boring up to prepare this nozzle for its
22	repair, they got up to a certain point where they had
23	actually gotten rid of three of the four cracks that
24	were in this nozzle when it tipped on them, but there
25	was the tail end of that fourth and longest crack, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

uphill crack. The one at 180 degrees was still partly in the nozzle. So that's the one that still remains, and that's what you see. Right there is the tip end of that particular crack.

5 Looking at the metallography of this, and 6 I also would like to mention, and it comes out later 7 actually, the yield strength of this particular 8 material is known, and I would call it moderate, in 9 the middle of the range of yield strengths that we 10 know for this particular material, and the grain 11 boundary coverage is pretty good.

12 darkened line right That there is basically carbides all along this particular grain 13 14 boundary. If you do an analysis of the carbides, you 15 get this huge chrome peak right there. Over here there it is right there. You can see it's nothing 16 like what it is over here. 17

On the other hand, here's the iron peak and here's the nickel peak, and they are virtually nonexistent over here. So there was essential chrome depletion nearby and chrome carbides right on the grain boundary, very low in iron and nickel, but the matrix has the normal Alloy 600 chemistry.

24 Basically my message here is that 25 considering the chemistry of this material, the yield

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	strength of this material, the fact that the micro
2	hardness traverse on it is fairly flat, basically this
3	is pretty good Alloy 600.
4	MR. WALLIS: So downhill on this thing is
5	the furthest extent of the hole, is downhill, isn't
6	it? So the debris from the hole is flowing out of the
7	downhill edge presumably.
8	MR. CULLEN: At the downhill edge, yeah.
9	That is not this crack that we're talking about here.
10	This is
11	MR. WALLIS: Going back to the previous
12	picture, yeah. It's flowing no, no, the one before
13	that. This is uphill somewhere. It's flowing out
14	over there. It's coming out on the right.
15	MR. CULLEN: It is coming out at probably
16	about this angle right here, pretty much, you know,
17	coming out of the ten degree crack, and I would say
18	pretty much coming
19	MR. WALLIS: Oh, that's where it's coming
20	out of the crack, from the crack.
21	MR. CULLEN: Yeah.
22	MR. WALLIS: Okay. So that's also on the
23	side of the most erosion or corrosion.
24	MR. CULLEN: Right, but the crack that I'm
25	showing in that slide, two slides ahead, is up back

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

318 1 That's the only crack that remained after the here. 2 nozzle tipped over on them. It's the only one that we 3 have to look at. The downhill crack, the ten degree 4 crack, the leaking crack is a goner. 5 Okay. This is a metallograph of that stress corrosion crack that you saw in a normal photo 6 7 on the previous slide. I'm showing this simply to reinforce what we talked about this morning, the 8 9 tortuosity of --10 MR. WALLIS: The crack growth rate you 11 mentioned is what, the actual distance with a straight 12 line between the end? No, it's the linear crack 13 MR. CULLEN: 14 growth rate. It would be what you would see if you 15 looked straight down normal --MR. WALLIS: When it wanders around like 16 17 this, doesn't K vary? On a highly, highly --18 MR. CULLEN: 19 MR. WALLIS: -- then it must be changing its K all of the time. 20 21 MR. CULLEN: But fracture mechanics don't 22 think of the driving force behind a crack in that 23 regard. 24 MR. WALLIS: Oh, they don't? 25 MR. CULLEN: You may be correct on a very,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	319
1	very local basis, but fracture mechanics is a more
2	global analysis of crack driving forces.
3	MR. WALLIS: But the K forms sort of an
4	analysis of an ideal crack and the square root law for
5	the stress distribution.
6	MR. CULLEN: That's correct.
7	MR. WALLIS: Is that the radius? That's
8	where K comes from.
9	MR. CULLEN: That's correct.
10	MR. WALLIS: And this doesn't look
11	anything like the model that K is based upon.
12	MR. CULLEN: That is
13	MR. WALLIS: How can you use a K?
14	MR. CULLEN: Well, in a highly local way
15	that's true. It doesn't look like, you know, a linear
16	crack with an infinitesimally sharp notice.
17	MR. WALLIS: The tip, it's still doing the
18	same thing. See?
19	MR. CULLEN: What we do know is that
20	cracks that look like this still, if you will, observe
21	the laws of fracture mechanics.
22	MR. WALLIS: Except that you can't
23	correlate the data.
24	MR. CULLEN: No, let's not go that way.
25	Okay. If you open this crack up, this is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	320
1	what you see: classic intergranular stress corrosion
2	cracking. You couldn't get a picture that's more
3	textbook perfect than that, and that's the reason that
4	the licensee did this, is to prove, if you will, that
5	a stress corrosion crack in a field typical nozzle
6	really looked like that.
7	It's not the first time that we've been
8	able to do that, but it's helpful to know that.
9	MR. POWERS: Maybe you should tell me what
10	I am not seeing here.
11	MR. CULLEN: Well, I'm going to sidestep
12	that question because I think what we are seeing is
13	what we would expect to see.
14	MR. POWERS: I mean, what you're saying is
15	because you see lots of dodecahedral kind of
16	structures, you're breaking in between the cracks.
17	MR. CULLEN: Exactly right. So this is
18	classic textbook IGSCC. You don't need another
19	explanation.
20	MR. WALLIS: Nothing else looks like that?
21	MR. CULLEN: Now we're getting into a
22	Pandora's box. Are you looking for an answer to that
23	question?
24	MR. WALLIS: Well, yeah. You said this was
25	now we know sort of for certain that this is an IGSCC

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	321
1	crack.
2	MR. CULLEN: Yeah.
3	MR. POWERS: I mean, almost ipso facto
4	because it's obviously intergranular and it's
5	obviously a crack. He doesn't know that stress
6	corrosion caused that crack.
7	MR. CULLEN: Well, you know, it has been
8	suggested, as an example, that thermal fatigue may
9	drive some of these cracks in the head. We don't see
10	any evidence of that, and I'm happy for that. I mean,
11	that would complicate our lives enormously.
12	So, I mean, it's those sorts of things
13	that we don't see that gives me some ability to
14	understand better what it is that is driving this
15	thing.
16	MR. SHACK: You don't see the river
17	patterns that you would get if you saw some sort of
18	hydrogen embrittlement.
19	MR. WALLIS: That's some tip.
20	MR. POWERS: The thing that puzzles me
21	about this crack, the speakers that precede you a lot
22	said, "Gee, these cracks are very tight."
23	And I look at that and say, "Gee, that
24	doesn't look like a tight crack to me."
25	Is that a tight crack to you?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	322
1	MR. CULLEN: No. You're not looking at
2	the crack tip though. You were looking at the crack
3	tip.
4	MR. WALLIS: There is no crack tip. There
5	are thousands of crack tips.
6	MR. CULLEN: That's true, and that
7	reinforces the point that was made by another speaker
8	this morning, is that stress corrosion cracks
9	typically branch all over the place and give you lots
10	of NDE signatures to look at.
11	Now, back in here, you know, this is the
12	original ID, and so, yes, the crack has a large
13	opening at this particular point, but if you come down
14	at the end of it and you take a look at some of these
15	tips, you know, they're pretty tight. Up in here it
16	looks open. I'm not so sure we're really looking at
17	the tip of the crack.
18	And remember this is just a slice.
19	MR. POWERS: I understand.
20	MR. CULLEN: And the tip may be who knows
21	what?
22	MR. POWERS: In or up in the material that
23	you
24	MR. CULLEN: Yeah. So I don't think we
25	should be misled by what appears to be a certain

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	323
1	openness in the crack enclave.
2	MR. POWERS: But it is that, those
3	stringer kind of things that you see out there that
4	are being described as tight.
5	MR. CULLEN: That's correct.
6	MR. WALLIS: Now, tell me about stress
7	corrosion. That corrosion part must imply some kind
8	of chemistry going on. There's something going
9	through the crack which is causing this to pop
10	through?
11	MR. CULLEN: Well, I could launch into a
12	long monologue at this point, but
13	MR. WALLIS: No, but there is something in
14	the crack? The environment makes a difference?
15	MR. CULLEN: The environment absolutely
16	makes a difference, yeah. Now, exactly micro
17	mechanistically, micro chemically what's going on,
18	let's not go there.
19	MR. WALLIS: The environment has to
20	diffuse an awful long way through those metal cracks
21	to relate what's in there to what's back in the
22	reactor.
23	MR. CULLEN: Well, but remember this was
24	solid metal.
25	MR. WALLIS: I know.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	324
1	MR. CULLEN: So solid metal with water out
2	here, what happens when that metal opens? I mean
3	something has got to get sucked up in there and
4	MR. WALLIS: There must be a tremendous
5	gradients in the chemical environment going on in
6	there.
7	MR. CULLEN: I would tend to agree with
8	you. There probably are, and that's been several
9	thousand theses generated on that issue.
10	MR. WALLIS: Did they ever resolve it? Do
11	you have a model for it?
12	MR. ROSEN: Yeah, there are lots.
13	MR. CULLEN: Lots of models. Very, very
14	difficult to prove. Now you get into how do you
15	sample the environment that's up there in the crack.
16	You may be aware there's some attempts been made to
17	sample the environment in the crevice in steam
18	generator tubing, tube sheets, but all of this
19	sampling business is very, very difficult.
20	MR. WALLIS: You probably influence it
21	just in trying to sample it.
22	MR. CULLEN: Yeah.
23	MR. WALLIS: You change what's there.
24	MR. CULLEN: You know, when you go sample
25	something, you probably are extracting a volume of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	325
1	material that is totally disruptive to the total
2	volume of the crack.
3	MR. WALLIS: So what's in the crack?
4	There's a liquid in the crack?
5	MR. CULLEN: Presumably.
6	MR. WALLIS: Where did the material go
7	that disappeared from the crack?
8	MR. CULLEN: I don't think anything has
9	disappeared.
10	MR. WALLIS: Well, how is it opened up
11	then?
12	MR. CULLEN: Stress.
13	MR. WALLIS: It has opened up. It has
14	moved. It has moved apart.
15	MR. CULLEN: Yeah. There's a
16	displacement.
17	MR. WALLIS: There's a displacement.
18	Okay.
19	MR. CULLEN: Okay. I just wanted to show
20	this as examples of the cracks in the J weld, and
21	again, we have got sections of the J weld at Argonne.
22	We're going to be doing our own crack growth rates on
23	this material.
24	Going now to the clad
25	MR. WALLIS: That was wonderful.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	326
1	MR. CULLEN: I'm sorry?
2	MR. WALLIS: That's wonderful, I said,
3	wonderful.
4	MR. CULLEN: I still didn't hear.
5	MR. WALLIS: It's wonderful, the shapes of
6	these things.
7	MR. CULLEN: Oh, okay.
8	MR. WALLIS: Remarkable.
9	MR. CULLEN: Well, you know, initially the
10	first observation that was made of the exposed clad
11	did not provide any indication that there were
12	actually cracks in the stuff. The black right here
13	was originally low alloy steel. Okay? So this
14	surface here, absent a little bit of wastage that has
15	occurred, was the surface that was in fused contact
16	with the low alloy steel. Okay? The surface that is
17	in contact with the reactor coolant is down here
18	somewhere. I don't know where. This is only a part
19	of the thickness of the clad. So this is the exposed.
20	So this was after the cavity developed
21	highly concentrated boric acid solution, probably at
22	a temperature approaching the boiling point, the
23	normal ambient pressure boiling point, say, 200 and
24	something degrees Fahrenheit.
25	And these cracks, if you open them up as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	we have right here, the crack path is interdendritic
2	in a weld that is the analog to intergranular stress
3	corrosion cracking.
4	MR. WALLIS: Well, why do you say it was
5	212? Doesn't the boiling point go up on
6	MR. CULLEN: It does. Give me a number.
7	MR. WALLIS: It goes up quite a lot.
8	MR. CULLEN: I'd be happy with 215. I
9	don't know. We don't know the concentration of boric
10	acid. That's why, you know, I've got to hesitate on
11	that.
12	MR. WALLIS: It's got to be pretty
13	concentrated.
14	MR. CULLEN: Pretty concentrated is
15	definitely the answer, but what the boiling point
16	elevation is I'm not sure, but the message I'm trying
17	to deliver there is not 605 degree temperature water.
18	It was down quite low, and we do know that low
19	temperature, concentrated boric acid solutions will
20	corrode the low alloy steel, and that's why 40 pounds
21	of it disappeared.
22	MR. ROSEN: I didn't just disappear. It
23	just kind of flowed out. It wasn't magic.
24	MR. CULLEN: It was not magic. That's
25	true.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The message that I was trying to deliver is that initially we didn't know that these cracks existed in the clad. So the safety analysis, structural integrity assessment that we had originally tried to do used the entire thickness of the clad on an assumption that the clad had its original thickness. Okay?

But now, just a few weeks ago when these photographs were presented to us, we found out that we've got cracks in this stuff. Well, the good news is that the cracks are, quote, only about 40 to 60 mils deep in clad that is between 200 and 300 mils thickness depending on where you are. So they only go a fourth or a fifth of the --

MR. WALLIS: Only produce the stressconcentration and all of that kind of stuff?

MR. CULLEN: We're in the process of trying to calculate that right now. It will be two or three more months before we get to the bottom line answer.

21 MR. WALLIS: Very interesting because the 22 assurance we were given was that this thing was a long 23 way from disaster.

24 MR. CULLEN: We still believe that to be 25 the correct answer.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

	329
1	MR. WALLIS: Just include these cracks in
2	that.
3	MR. CULLEN: Even including the cracks, we
4	still believe that that's the correct answer.
5	MR. ROSEN: Now, this stuff was yielded,
6	right?
7	MR. CULLEN: There was a bulge. This is
8	a point I have to be kind of careful with right now,
9	and it is going to be part of our ultimate
10	dispositioning of this thing. It is correct that
11	there was a bulge in the clad, a bulge of the licensee
12	tells us approximately an eighth of an inch. We take
13	that to be reasonably accurate. We've got the data.
14	It's reasonably accurate.
15	However, the interesting thing is that
16	these cracks which are located right on top of the
17	bulge show no evidence of plasticity at all, zero. We
18	don't quite understand that yet. We're working on
19	that, but it is very, very perplexing that these
20	cracks appear to be driven entirely by intergranular
21	stress corrosion cracking, no evidence of ductility,
22	plasticity, void formation, whatever you want to look
23	for that would give you some indication that there was
24	plastic deformation going on in addition to stress
25	corrosion cracking. We see no evidence of that, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	330
1	it is, very frankly, a dilemma
2	MR. ROSEN: Because there's a bulge.
3	MR. CULLEN: Because there's a bulge.
4	Now, that bulge, it was not a case of the cracks
5	growing and then the bulging because we would see
6	rounded crack tips.
7	MR. WALLIS: This is the bulge which is
8	left. It isn't the plastic deformation alone. The
9	elastic deformation would have made a bigger bulge on
10	top of that.
11	MR. CULLEN: Well, we wouldn't see the
12	elastic deformation. No, that would have snapped back
13	when the
14	MR. WALLIS: I know, but it would have
15	been there. It would have been there on top of.
16	MR. CULLEN: Oh, it would have been there
17	on top of that. That's absolutely true, but, you
18	know, to a much
19	MR. WALLIS: So it would have opened the
20	crack some more maybe.
21	MR. CULLEN: Well, that, you know, stress
22	corrosion cracks are driven by the elastic stress
23	field. Generally stress corrosion cracks don't like
24	plastic stress fields, plastic strain. That tends to
25	blunt them and stop them. We don't see any evidence

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	331
1	of that.
2	And it's very, very hard to imagine that
3	the cavity opened, the bulge occurred, and then all of
4	these cracks got started. That's not a very
5	comfortable scenario. I mean, it just doesn't sit
6	well.
7	CO-CHAIRMAN FORD: So this is relevant to
8	the ultimate safety analysis, this particular
9	incident.
10	MR. CULLEN: Yes.
11	CO-CHAIRMAN FORD: What does it tell us
12	about
13	MR. CULLEN: Can I defer your question for
14	one or two more slides? Because there's another
15	message coming.
16	CO-CHAIRMAN FORD: Okay.
17	MR. CULLEN: There is a message about
18	that.
19	CO-CHAIRMAN FORD: Okay.
20	MR. CULLEN: So I mean these other things
21	are just more of the same, but one part of the message
22	well, I guess I've belabored that point. There's
23	no tearing even near the bulge.
24	I'm sorry. I didn't mean to switch quite
25	so fast, but we'll leave it. That's okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Another part of the message, the licensee 2 made measurements on the depth of those cracks on the 3 remaining ligament. No matter where the cracks occur 4 in the clad, no matter what the thickness of the clad 5 at that particular location, there's about 200 mils of clad remaining intact, in other words, 6 intact, 7 unflawed thickness of the clad. 8 Why did those cracks all pop in? Ι 9 shouldn't use that. Erase the tape. Why did those cracks all develop, move 10 11 down, and with 200 mils of clad remaining stop? We 12 don't know. Could it be they are driven by stress? 13 14 Possibly, and the stress just ran out of gas. 15 Shut down the reactor. MR. WALLIS: That could be. 16 MR. ROSEN: Well, but remember this 17 MR. CULLEN: cavity probably did not develop overnight, and these 18 19 cracks are distributed throughout the cavity. So 20 you've got to assume that the ones near the nozzle 21 probably got an early start. 22 They should be longer. MR. WALLIS: 23 They should be longer, but MR. CULLEN: 24 they're not. I mean, all of these cracks go down and 25 leave about, you know -- so my guess is that they were

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	333
1	probably driven by some sort of residual stress, and
2	we do know that when you apply cladding to low alloy
3	steel you create a tensile stress field as the
4	cladding contracts and solidifies and cools.
5	So it makes some sense that we do know
6	there is a reasonably thin layer of residual stress in
7	the clad. So maybe the crack got nucleated, got
8	started, grew until it just ran out of stress gas, so
9	to speak.
10	Another possibility is that it's
11	temperature controlled because remember you've got 605
12	degree water on the underside and you've got 200
13	degree Fahrenheit, 218, whatever you want to say
14	concentrated boric acid solution on the top. So
15	you've got a temperature gradient through the clad,
16	and maybe that influences crack growth rate in clad.
17	We don't know because we've never seen
18	stress corrosion crack growth rates in essentially, I
19	mean, pure water. Agree it has lots of boric acid in
20	it, but no other contaminants.
21	MR. WALLIS: It would be worse, wouldn't
22	it? I mean if it's colder on top it would tend to
23	open up more.
24	MR. CULLEN: You would tend to think so,
25	yes. I agree with that, yeah.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	334
1	Lots more questions than we have answers
2	right now.
3	Okay. Peter, we're getting a little
4	closer to the answer to the question that you were
5	trying to ask me a few minutes ago.
6	MR. WALLIS: Well, the big question for me
7	has always been why was the hole the shape it was.
8	Have you got any handle on that at all?
9	MR. CULLEN: I don't at the present time.
10	I'm not sure where the industry program that we heard
11	about this morning is going to take us, but it might
12	take us in that direction.
13	We may learn I say "we" in the sense of
14	NRC RES may learn something from our probable
15	investigation of the cavity around Nozzle 2 and the
16	shape that that had relative to the crack that was in
17	Nozzle 2. We just don't know the answer to your
18	question in a sentence today.
19	MR. WALLIS: Why did it make a cavity
20	instead of just a river or sort of an erosion pattern
21	under the river?
22	MR. CULLEN: Don't know.
23	Okay. What we're looking at here is a
24	normal photograph, J groove weld. The difference in
25	coloration here is probably due just to the etching.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	335
1	It doesn't mean anything particularly about deposits
2	to the welds or anything like that, and this is the
3	clad. This, of course, is where the cavity was, up in
4	here, and this is where reactor coolant was down here.
5	Here's a little bit of an expansion. What
6	I'm getting at and you'll see much better in the next
7	slide, is there's a bunch of little stress corrosion
8	cracks right over here in the corner as well. There
9	they are metallographically now. This is the clad,
10	and you can see that there's quite a large number of
11	very fine, relatively short cracks, some of which
12	actually penetrate the boundary. This is J weld down
13	here. This is 308 stainless I'm sorry yeah,
14	that's right, 308 stainless up here, 182 J weld down
15	here.
16	This type of cracking only occurs very,
17	very near the J weld. So I'm presuming that it has
18	got something to do with the residual stresses that
19	were set up when the J weld was deposited, and again,
20	they only run down to and just barely into the J weld,
21	and they seem to stop more or less, you know, where
22	that boundary is.
23	The point that I want to make here, and to
24	some extent in the previous slides at the cracks in
25	the cladding is that we have known; you folks in the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	336
1	ACRS are well familiar with irradiation assisted
2	stress corrosion cracking in stainless steels,
3	sensitized stainless steels. You're very familiar
4	with boiling water reactor cracking problems in
5	sensitized stainless steels, but we do not generally
6	see stress corrosion cracking in stainless steel weld
7	metal in the weld.
8	We usually see it at the heat affected
9	zone or in some other sensitized part. We don't
10	generally see stress corrosion cracking in weld metal,
11	and here we have it in abundance.
12	We also have some IGA in abundance,
13	intergranular attack, and some wastage, some grain
14	dropout. These are things admittedly we've got a very
15	off chemistry situation here with highly concentrated,
16	probably highly oxygenated boric acid solution.
17	But, again, we've never seen this sort of
18	a thing, and some of the people, some of the
19	researchers, science regulators that I have talked to
20	about this feel like this may become an issue,
21	something that we might have to take a deeper look at
22	going forward from here.
23	Whether this is the precursor to more
24	stress corrosion cracking issues in a material that we
25	thought was going to be fairly immune to this stuff I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	337
1	don't know, but that's the message that I wanted to
2	deliver here, is that
3	MR. WALLIS: You've got this thin
4	stainless steel there. You've got a tremendous heat
5	flux through there presumably
6	MR. CULLEN: Yes.
7	MR. WALLIS: compared with what you had
8	originally. So you have to supply a lot more liquid
9	to keep it cool.
10	MR. CULLEN: That's absolutely correct.
11	MR. WALLIS: Someone has done all of those
12	calculations and figured out what was going on?
13	MR. CULLEN: In MRP 75, I think it's
14	Appendix C, you might take a look at that. While I'm
15	not a TH kind of guy, I can read through that enough
16	and see through that. I really believe that they have
17	got the right handle, the right model for why liquid
18	at 200 and something degrees accumulated in that
19	cavity. I think I can understand that even though I
20	don't understand the complexity of the calculation.
21	And I would recommend that. It's good
22	reading, good background reading.
23	Okay. We had a question just a few
24	minutes ago about the walls of the cavity and what do
25	we see on the walls of the cavity. So this is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	338
1	low alloy steel now, and actually I've changed.
2	If you think back to the very first slide
3	in this series where I showed how a typical hunk of
4	the cavity had been sectioned up every which way from
5	Sunday and I said the thing had been split
6	horizontally, well, now we're looking at the top part
7	that was lifted off, but we're looking at the top part
8	from the cut side.
9	So this is the opening that was visible to
10	the licensee on March the 8th. Okay? And this is the
11	nose, the deepest penetration of the corrosion, and
12	this is the saw cut, horizontal or nearly horizontal
13	surface.
14	All right. So three examples. This then
15	would be about at the 180 degree or downhill side.
16	The leak, in other words the orientation has
17	changed the leak is, you know, back up here and
18	streaming water pretty much straight into the nose of
19	the cavity here.
20	And we have side walls. Again, if you're
21	standing at the top dead center of the head looking
22	down at Nozzle No. 3, this would be to your right
23	side. This would be to your left side, and you can
24	see that there are slightly different morphologies,
25	more of the sort of pock marking on this left-hand

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	339
1	side, more of the striations and sort of linearized
2	texture on the right-hand side, and straight ahead
3	almost nothing but pock marks.
4	So people will look at this and say, "Oh,
5	my gosh, that is classic flow assisted corrosion." I
6	personally have a problem with that because I don't
7	think .01 gpm squirting through this murky solution of
8	concentrated boric acid and hitting this wall seven
9	inches away is going to have very much flow assistance
10	impact to it, but you know, I've heard that spoken by
11	some people in
12	MR. WALLIS: Well, if the water is more
13	like boiling, I would think is going on in this hole.
14	MR. CULLEN: That is definitely true. I
15	mean, you've got enormous what you just said a few
16	minutes ago: a lot of heat flux coming through that
17	quarter inch thick piece of clad down there. So a lot
18	of the stuff spewing into here.
19	As it turns out, if you look at Appendix
20	C, 80 percent of the water that's coming out of the
21	crack at 0.1 gpm, about 80 percent of it goes off
22	immediately as steam and only 20 percent of it has a
23	chance of remaining as liquid. But of that 20
24	percent, a whole lot of that is going to be boiled
25	away.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	340
1	But there's still enough. I mean, the
2	leak rate is enough, according to the calculation that
3	you still have residual aqueous solution.
4	Early on the people were fussing with the
5	possibility of molten boric acid, a kind of gooey,
6	gummy concoction. I don't see any chance that that
7	existed in any amount that would make any sense or any
8	difference.
9	Okay. I put this slide up because in the
10	Argonne program we are doing wastage measurements in
11	both quiescent and slightly flowing environments. So
12	the kind of attack that we get may, indeed, look like
13	some of this stuff. I hope it does because then we'll
14	kind of have a rationale for why these sorts of
15	patterns developed.
16	So, you know, it's nice to have actual
17	photographs of what happened to this low alloy steel
18	as a way of correlating or validating our laboratory
19	investigations.
20	The same sort of thing, the last slide in
21	this particular series. Again, this is a cross-
22	section that shows how rough that low alloy steel
23	surface was.
24	Two enlargements that show you what some
25	of these dimples looked like in cross-section, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	341
1	again, I'm just showing this and waiting to see what
2	the Argonne results
3	MR. WALLIS: Those dimples have nothing to
4	do with the micro structure. They're too big.
5	MR. CULLEN: Well, you know, my experience
6	in similar environment I won't say exactly similar
7	environments but concentrated acid, concentrated
8	sulfate environments of low alloy steel is that these
9	sorts of dimples usually develop where you have an
10	inclusion that acts as a local corrosion accelerant.
11	So, yeah, they are related to the micro
12	structure. The point that the licensee is going to
13	make is that these depressions are related to this
14	layering, this segregation, banding, whatever you'd
15	like to call it. You can see this cutout right here
16	is kind of related to these bands. This here is
17	related to that black band. You have another
18	MR. WALLIS: This looks more geological
19	all the time.
20	MR. CULLEN: Oh, yeah, yeah. But you
21	know, this banding is related to the inclusion content
22	in the alloy and does provide what I think is a
23	reasonable rationale for why you get the highly
24	textured surface, the voiding.
25	MR. WALLIS: Well, you've almost got the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	342
1	old man of the mountains up there.
2	MR. CULLEN: Yeah, yeah. You can let your
3	mind run in a lot of directions on some of those
4	profiles.
5	Okay. So talking a little bit now about
6	the specific program that we've got in place out at
7	Argonne, I want to stress that although we started
8	this program as a result of finding this massive
9	corrosion at Davis-Besse and as a consequence of the
10	fact that I really couldn't find data that we needed
11	to have to help with the dispositioning and the
12	understanding of that right at the beginning, we
13	developed this program at Argonne.
14	There is a lot of work on the generic
15	description of corrosion of pressure boundary alloys
16	and concentrated boric acid solutions, low alloy
17	steel, Alloy 600 and 182. I think we've going to try
18	to get some 308 in here as well.
19	So even though the program was spurred on,
20	if you will, by the findings at Davis-Besse, we've
21	designed this program to be very generic and not at
22	all specific to the particular issue at Davis-Besse.
23	MR. WALLIS: Are they doing experiments in
24	boiling boric acid?
25	MR. CULLEN: Yes. The temperature range

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	343
1	is from just what you said, from boiling solutions at
2	various concentrations up to as high a temperature as
3	we can get and whatever solution we can get in the
4	autoclaves that are available, something around 600
5	and extremely concentrated is the answer.
6	We've encountered some experimental
7	difficulties in elevated temperatures in more highly
8	concentrated solutions, which is not surprising to me,
9	but most of the work in boiling solutions has been
10	completed.
11	MR. WALLIS: When the boric dissolves the
12	steel, what form of chemical ferreting stuff comes off
13	or whatever it is?
14	MR. CULLEN: A question that I can't
15	answer. I'm not the kind of guru that gets into that
16	kind of thing, but I do know from some steam generator
17	related research there are lithium ion borates, the
18	usual list of suspects and culprits that I think you'd
19	expect when you corrode low alloy steel in boric acid
20	solutions.
21	And some of them are very complex, and we
22	may not have a full set of thermodynamic data for all
23	of the compounds that are going to be formed, but
24	there is some modeling of the environment that's going
25	to go on here that's going to be completed.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

344
I talked a little bit earlier on about the
computational model and the inputs into that model,
and I've talked quite extensively about the fact that
we've harvested some of the alloys and that we're
going to do some actual crack growth rate.
MR. WALLIS: When they took off the head
and tried to, I think, bore it out and the thing fell
over and all of that
MR. CULLEN: Yeah.
MR. WALLIS: the material in the hole
was solid?
MR. CULLEN: I've got other pictures. The
hole was there. The hole was not full of something.
MR. WALLIS: It was not full?
MR. CULLEN: No, and presumably because
whatever was there
MR. WALLIS: Liquid would have evaporated,
but solid would have perhaps stayed in.
MR. CULLEN: Yeah. Now, the cavity was
crudded up, and that may be putting it lightly.
MR. WALLIS: Analyzing the crud might be
very useful. I'm sure it's being done.
MR. CULLEN: The analysis of some of
the crud was recovered.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	345
1	there was a hole, they cleaned the head, and then they
2	said, "Oops, there's a hole," and yeah, there were
3	some trace deposits that were found. I'm not sure
4	that we've seen the analyses of those, the chem.
5	analyses, but not much.
6	I mean, unfortunately, things got further
7	away before they realized they had a problem.
8	MR. WALLIS: It was the first time they
9	cleaned the head, wasn't it?
10	MR. CULLEN: I'm sorry?
11	PARTICIPANT: Until then they had never
12	cleaned it?
13	MR. CULLEN: The licensee is going to
14	deliver a final report to the agency somewhere in a
15	month or so kind of time frame, as far as I know, and
16	presumably all of that information is going to be in
17	that report.
18	And we're also going to do the
19	electrochemical potential and polarization
20	measurements of these solutions against the materials
21	that are relevant.
22	A couple of slides here now on the
23	structural integrity assessment. Remember I said a
24	few minutes ago that we needed to know the properties
25	of the clad, the extent of the cracking in the clad in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	346
1	order to revise and redo a structural integrity
2	assessment that was underway.
3	That information has been provided to our
4	contractor. We expect to get answers to this in a
5	couple of months, but the approach is both analytic
6	and experimental. A finite element model of the head
7	containing the cavity and the exposed cladding.
8	There are two possible approaches, simple
9	plastic well, I say "simple." Easy for me to
10	say plastic instability model that's calibrated by
11	some experimental data that already existed, and then
12	also to take a look at whether those cracks would have
13	extended in length by a ductile tearing process.
14	All of that is going to be a part of this
15	deliverable which will arrive in a couple of
16	MR. POWERS: Excuse me. Do I understand
17	that you're doing this to say, "Okay. I got a quarter
18	of an inch of this stainless steel cladding left. How
19	much pressure can it tolerate to fail?"
20	MR. CULLEN: That is one of the two
21	questions that we're trying to deliver to our
22	colleagues doing the ASP. That's correct.
23	MR. POWERS: Okay, and could you tell me
24	the second question before I ask my second question?
25	MR. CULLEN: The second question gets a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	347
1	little more difficult to articulate, but part of the
2	ASP process is to try to predict where this licensee,
3	where the plant was a year ago. So we have to sort of
4	back-calculate what we think the size of the cavity
5	was.
6	MR. POWERS: And so you want to say, okay,
7	what's the failure probability with the cladding plus
8	a little bit of material.
9	MR. CULLEN: But in both cases
10	MR. POWERS: Suppose that you find out
11	that it's 8,000 psi.
12	MR. CULLEN: Okay.
13	MR. POWERS: Are you going to announce,
14	oh, okay; everybody can go ahead and let their vessels
15	corrode?
16	MR. ROSEN: They've got this really robust
17	layer lying there.
18	MR. CULLEN: Of clad.
19	MR. POWERS: I mean suppose you get the
20	answer to this question. What are you going to do
21	with it?
22	MR. CULLEN: Well, you know, from a number
23	like 8,000 psi, not that people are going to let their
24	heads corrode or let the licensees get away with a lot
25	of leakage or anything like that, but we would, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	348
1	think derive some better understanding of the overall
2	robustness of the design of these plants.
3	And you know, it gives you a warm, fuzzy
4	feeling. I don't want to say that we're sinking tens
5	of thousands of dollars into trying to get a warm,
6	fuzzy feeling, but it's a requirement for us to
7	provide this data to this analysis, and we're doing
8	that.
9	MR. KRESS: Are you going to ask the
10	question how big that hole has to be before it fails?
11	MR. CULLEN: I'm not sure whether that's
12	going to be part of this or not. I don't think so.
13	It's not a requirement for us to project going
14	forward.
15	MR. POWERS: Tom, even if I had that
16	answer, I mean, what would I do with it? Say, "Okay.
17	We can make these vessels out of Playdough or
18	something"?
19	It seems like it's an answer to a question
20	that I don't know how I'd utilize it.
21	MR. WALLIS: Well, the story would be more
22	complete. It would make a much better story and a
23	drama if you knew the answer to some of these things
24	whether you're going to do anything with it or not.
25	MR. KRESS: But Dana is right. There's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	349
1	nothing you would do with it in a regulatory sense.
2	MR. POWERS: Yeah. Am I going to tell
3	them, okay, you know, go ahead and build them out of
4	tin sheeting or something like that?
5	CO-CHAIRMAN SIEBER: There may be some
6	public confidence aspect.
7	MR. POWERS: I'm pretty sure that the
8	public reaction to you saying that the vessel wasn't
9	going to fail is going to be loss of confidence in the
10	NRC.
11	MR. KRESS: Maybe it's an input into the
12	significance determination process.
13	MR. POWERS: You know, it seems to me that
14	there's just no choice in this matter. You're going
15	to have to say, "Look. The ASME code says build the
16	damned thing this thick. You're going to build it
17	that thick and keep it intact."
18	I don't care how thing the stuff gets.
19	Don't let it get thin.
20	MR. WALLIS: I think when you're up there
21	and some Senator asks you these questions you don't
22	have an answer. Otherwise you might just
23	MR. POWERS: No, the answer to these
24	question is this was a bad thing. We don't like this
25	to happen to our reactor heads.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	350
1	MR. WALLIS: That doesn't sound very
2	technically sophisticated.
3	MR. POWERS: I don't think I have to be
4	very technically sophisticated to tell him this was a
5	bad thing. He knows it from the face of it.
6	CO-CHAIRMAN FORD: Let's move on.
7	MR. POWERS: Okay, all right.
8	MR. CULLEN: Summarizing now, this
9	structural integrity assessment has both an analytical
10	aspect to it and an experimental aspect to it shown on
11	the next slide. We are constructing a simplified,
12	admittedly, model of the cavity with stainless steel
13	that simulates the unbacked cladding, and I can't
14	remember exactly how many of these models are going to
15	be constructed, but several is definitely the answer.
16	MR. POWERS: Let me ask you a question.
17	You say it simulates the unbacked cladding. I mean,
18	how in the world do you do that?
19	MR. CULLEN: Does somebody here know the
20	answer to that? I'm not the PM for that particular
21	program.
22	PARTICIPANT: (Unintelligible), NRC.
23	We are using cutout from the vessel
24	cladding, and so the disks have been cut out, and then
25	they will be in this chamber. This is the pressurizer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	351
1	chamber.
2	MR. POWERS: So it's not simulating the
3	cladding. It is the cladding.
4	PARTICIPANT: It is the cladding.
5	MR. ROSEN: Is it from P.D. Ruff
6	(phonetic) or Midland or
7	PARTICIPANT: P.D. Ruff.
8	MR. WALLIS: You're going to boil boric
9	acid in the hole?
10	MR. CULLEN: No, I don't think that's the
11	point of this particular program.
12	MR. KRESS: Pressurize it at temperature?
13	MR. CULLEN: Yeah, just pressurize it and
14	find out when it's going to blow out.
15	MR. WALLIS: experiments where you boil
16	boric acid in holes and see how fast the hole grows?
17	MR. CULLEN: No.
18	MR. KRESS: This is to validate your
19	pressure.
20	MR. CULLEN: Yeah, right. It's the
21	validate the calculational model with these sorts of
22	admittedly simplified experiments, but
23	MR. POWERS: You mean there are
24	calculational models on what happens to a it
25	amounts to a rupture disk problem here are so bad

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	352
1	that we have to do a whole suite of calculations?
2	MR. CULLEN: Well, I mean, you say
3	"rupture disk," and you know, that was my first
4	impression, too, is, my gosh, these guys have been
5	making rupture disks for years. The equations have to
6	exist.
7	But you know, the similitude is not that
8	perfect. The cladding is more thick in a proportional
9	way than you would get in a rupture disk.
10	MR. POWERS: That's right.
11	MR. CULLEN: The disk cladding had flaws
12	in it. That's the point I want to get to.
13	MR. POWERS: That's right. You're going
14	to find out how many flaws you have in this cladding.
15	If you do any one particular one of these tests you'll
16	get a pressure. Now, repeat exactly that same
17	you're going to end up with another one of your plots
18	with data all over the place.
19	MR. CULLEN: Possibly.
20	MR. POWERS: I mean it's all going to be
21	because of little flaws that you haven't
22	characterized.
23	MR. WALLIS: So we need 59 experiments.
24	MR. POWERS: To create a plot we can't
25	use.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	353
1	MR. ROSEN: Mr. Chairman.
2	MR. WALLIS: I think we should move on,
3	yes.
4	CO-CHAIRMAN FORD: Yes.
5	MR. CULLEN: But at any rate, we are going
б	to pressurize and measure the bursting pressure on
7	this unbacked cladding that is not flawed, that is
8	flawed, flawed in various geometries so that we kind
9	of get a spectrum of the performance of the simulated
10	cavities that look like that.
11	Okay. These things are coming in kind of
12	one by one here.
13	MR. WALLIS: Now you said you were
14	duplicating the EPRI work. Are they doing the same
15	thing?
16	MR. CULLEN: No, I don't think EPRI is
17	doing anything like this. I was sort of whining about
18	that with respect to the boric acid corrosion program.
19	Now, this is something that we're doing on
20	our own initiative, and again, principally as input to
21	the ASP.
22	CO-CHAIRMAN FORD: Okay. Good.
23	MR. CULLEN: Okay. One last thing here
24	now just to review a little bit and point out again
25	what's happening going forward. The licensee has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	354
1	taken a look at Nozzle No. 3 and you've seen a summary
2	of that sort of work. Very soon the Nozzle Nos. 2 and
3	46 are going to be removed from the Davis-Besse head
4	and to be sent a couple of different places for
5	different types of examinations.
6	One last time we're doing crack growth
7	rate testing on the alloys that came out of the Davis-
8	Besse head, and as you heard this morning, the North
9	Anna Unit 2 head is being harvested by the industry
10	and hopefully will have some coordination of the
11	research and the failure analysis that will be done on
12	that thing.
13	And with that, I finally made it through.
14	CO-CHAIRMAN FORD: Thank you very much,
15	and you're just in time to get your flight.
16	MR. CULLEN: Yeah.
17	CO-CHAIRMAN FORD: Any questions for Bill?
18	(No response.)
19	CO-CHAIRMAN FORD: Thank you very much,
20	indeed. I appreciate it.
21	I was told earlier on that for the full
22	committee meeting that the MRP or industry will not be
23	present because of prior am I correct? because
24	of prior engagements. Therefore, the presentations
25	will be primarily restricted to the NRC regulators and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	355
1	research.
2	So when you're thinking about what advice
3	we're going to give, bear in mind they will only be
4	there.
5	Do I have a motion to retire for the
6	night?
7	MR. KRESS: You do.
8	MR. POWERS: You can do it in a high
9	handed, cavalier fashion.
10	MR. KRESS: You have absolutely power to
11	do this.
12	CO-CHAIRMAN FORD: We will recess until
13	tomorrow morning at 8:30.
14	(Whereupon, at 4:50 p.m., the meeting was
15	adjourned, to reconvene at 8:30 a.m., Wednesday, April
16	23, 2003.)
17	
18	
19	
20	
21	
22	
23	
24	
25	