Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
	Subcommittee on Future Plant Designs

- Docket Number: (not applicable)
- Location: Monroeville, Pennsylvania
- Date: Friday, July 18, 2003

Work Order No.: NRC-1011

Pages 1-159

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1UNITED STATES OF AMERICA2NUCLEAR REGULATORY COMMISSION3+ + + + +4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUECOMMITTEE ON FUTURE PLANT DESIGNS6+ + + + +7FRIDAY, JULY 18, 20038+ + + + +9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER2021212223242425		1
3+++++4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUBCOMMITTEE ON FUTURE PLANT DESIGNS6+++++7FRIDAY, JULY 18, 20038+++++9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER2021212322232324	1	UNITED STATES OF AMERICA
4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUBCOMMITTEE ON FUTURE PLANT DESIGNS6+++++7FRIDAY, JULY 18, 20038+++++9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232324	2	NUCLEAR REGULATORY COMMISSION
5 SUBCOMMITTEE ON FUTURE PLANT DESIGNS 6 + + + + + 7 FRIDAY, JULY 18, 2003 8 + + + + + 9 MONROEVILLE, PENNSYLVANIA 10 The Subcommittee met at the Westinghouse Energy 11 Center, 4350 Northern Pike, Monroeville, PA, at 1:00 12 p.m., Thomas Kress, Chairman, presiding. 13 SUBCOMMITTEE MEMBERS: 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20	3	+ + + +
 +++++ FRIDAY, JULY 18, 2003 +++++ MONROEVILLE, PENNSYLVANIA The Subcommittee met at the Westinghouse Energy Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER GRAHAM WALLIS - MEMBER GRAHAM LEITCH - MEMBER GRAHAM LEITCH - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 4 	4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
7FRIDAY, JULY 18, 20038+ + + +9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232324	5	SUBCOMMITTEE ON FUTURE PLANT DESIGNS
 ************************************	6	+ + + +
9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232424	7	FRIDAY, JULY 18, 2003
 The Subcommittee met at the Westinghouse Energy Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 20 21 23 24 	8	+ + + +
 Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 4 	9	MONROEVILLE, PENNSYLVANIA
 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER J 	10	The Subcommittee met at the Westinghouse Energy
 13 SUECOMMITTEE MEMBERS: 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	11	Center, 4350 Northern Pike, Monroeville, PA, at 1:00
 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	12	p.m., Thomas Kress, Chairman, presiding.
 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	13	SUBCOMMITTEE MEMBERS:
 JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. 20 21 22 23 24 	14	THOMAS KRESS - CHAIRMAN
 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	15	GRAHAM WALLIS - MEMBER
 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	16	JOHN SIEBER - MEMBER
19 F. PETER FORD - MEMBER 20	17	GRAHAM LEITCH - MEMBER
20 21 22 23 24	18	VICTOR RANSOM - MEMBER
21 22 23 24	19	F. PETER FORD - MEMBER
22 23 24	20	
23 24	21	
24	22	
	23	
25	24	
	25	

1	ALSO PRESENT:
2	MEDHAT EL-ZEFTAWY
3	MIKE CORLETTI
4	TERRY SCHULZ
5	ED CUMMINS
6	TOM HAYES
7	DAN FREDERICK
8	RALPH CARUSO
9	JIM SCOBEL
10	SELIM SANCAKTAR
11	JUN LI
12	JIM GRESHAM
13	M. KHATIB-RAHBAR
14	MIKE ZAVISCA
15	SUD BASU
16	H ESMAILI
17	JOELLE STAREFOS
18	RICHARD ORR
19	JOHN SEGALA
20	RON VIJUK
21	TIM ANDREYCHECK
22	JIM GROVER
23	WARREN BAMFORD
24	BOB FULD
25	

2

		3
1	C-O-N-T-E-N-T-S	
2	INTRODUCTION	
3	Thomas Kress, Chairman	4
4	DSER OPEN ITEMS	
5	Joelle Starefos	4
6	WESTINGHOUSE RESOLUTION PATHS	
7	Mike Corletti	40
8	PUBLIC COMMENT	
9	Susan Starret	61
10	AP1000 DRAFT SAFETY EVALUATION REPORT	
11	OPEN ITEMS RELATED TO LBB	
12	Warren Bamford	69
13	AP1000 CONTAINMENT RECIRC SCREEN PERFORMANCE	
14	Terry Schulz	108
15	PERFORMANCE	
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:35 a.m.
3	CHAIRMAN KRESS: This is the second day of
4	the Advanced Reactor Subcommittee meeting. I don't
5	have any introductory comments, so we are starting
б	with the DSER open items and I guess the Staff is
7	leading off.
8	MS. STAREFOS: Good morning. My name is
9	Joelle Starefos, I'm one of the project managers on
10	the AP1000 project in the Office of Nuclear Reactor
11	Regulation.
12	With me today is John Segala, our senior
13	project manager and lead for the AP1000 project. Our
14	staff is part of our staff is going to be available
15	via the teleconference today.
16	They have been emailed the slides so they
17	should be able to follow along with what we are
18	discussing.
19	CHAIRMAN KRESS: How many staff do we have
20	working with this?
21	MS. STAREFOS: We have more than 50
22	reviewers on this project. We also have support from
23	NSER, which is our security section, and research.
24	MEMBER WALLIS: That is the entire AP1000,
25	or just your part?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1CHAIRMAN KRESS: That is all.2MS. STAREFOS: The entire3MEMBER WALLIS: That is the whole thing?4MS. STAREFOS: The whole thing, yes. I5thought I would start out with a current review6status. We issue the DSER on June 16, with 174 open7items.8After a 14 day proprietary review by9Westinghouse the DSER was made public on July 1st with10no changes. We were working to resolve right now11we are working to resolve the open items.12We have engaged Westinghouse on 82 of the13174 open items. We have resolved 5 of the open items,14and we are satisfied with Westinghouse's responses on1531 of the open items. Those have now been considered16confirmatory.17We have characterized these items as open,18confirmatory, or resolved. Confirmatory being items19that we're satisfied with the response. However, we20still expect to see changes in the DCD, or associated21WCAP or other licensing document prior to determining22The schedule for the FSER, or the final23The schedule for the FSER, or the final24safety analysis, or evaluation report, I apologize, it25should be evaluation report, is September 2004. We		5
3 MEMBER WALLIS: That is the whole thing? 4 MS. STAREFOS: The whole thing, yes. I 5 thought I would start out with a current review 6 status. We issue the DSER on June 16, with 174 open 7 items. 8 After a 14 day proprietary review by 9 Westinghouse the DSER was made public on July 1st with 10 no changes. We were working to resolve right now 11 we are working to resolve the open items. 12 We have engaged Westinghouse on 82 of the 13 174 open items. We have resolved 5 of the open items, 14 and we are satisfied with Westinghouse's responses on 15 31 of the open items. Those have now been considered 16 confirmatory. 17 We have characterized these items as open, 18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 The schedule for the FSER, or the final 23 The schedule for the FSER, or the final 24	1	CHAIRMAN KRESS: That is all.
 MS. STAREFOS: The whole thing, yes. I thought I would start out with a current review status. We issue the DSER on June 16, with 174 open items. After a 14 day proprietary review by Westinghouse the DSER was made public on July 1st with no changes. We were working to resolve right now we are working to resolve the open items. We have engaged Westinghouse on 82 of the 174 open items. We have resolved 5 of the open items, and we are satisfied with Westinghouse's responses on 31 of the open items. Those have now been considered confirmatory. We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete. The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it 	2	MS. STAREFOS: The entire
5thought I would start out with a current review status. We issue the DSER on June 16, with 174 open items.7items.8After a 14 day proprietary review by 99Westinghouse the DSER was made public on July 1st with no changes. We were working to resolve right now we are working to resolve the open items.12We have engaged Westinghouse on 82 of the 174 open items. We have resolved 5 of the open items, and we are satisfied with Westinghouse's responses on 31 of the open items. Those have now been considered confirmatory.17We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete.23The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it	3	MEMBER WALLIS: That is the whole thing?
 status. We issue the DSER on June 16, with 174 open items. After a 14 day proprietary review by Westinghouse the DSER was made public on July 1st with no changes. We were working to resolve right now we are working to resolve the open items. We have engaged Westinghouse on 82 of the 174 open items. We have resolved 5 of the open items, and we are satisfied with Westinghouse's responses on 31 of the open items. Those have now been considered confirmatory. We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete. The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it 	4	MS. STAREFOS: The whole thing, yes. I
7items.8After a 14 day proprietary review by9Westinghouse the DSER was made public on July 1st with10no changes. We were working to resolve right now11we are working to resolve the open items.12We have engaged Westinghouse on 82 of the13174 open items. We have resolved 5 of the open items,14and we are satisfied with Westinghouse's responses on1531 of the open items. Those have now been considered16confirmatory.17We have characterized these items as open,18confirmatory, or resolved. Confirmatory being items19that we're satisfied with the response. However, we20still expect to see changes in the DCD, or associated21WCAP or other licensing document prior to determining22that resolution is complete.23The schedule for the FSER, or the final24safety analysis, or evaluation report, I apologize, it	5	thought I would start out with a current review
8After a 14 day proprietary review by9Westinghouse the DSER was made public on July 1st with10no changes. We were working to resolve right now11we are working to resolve the open items.12We have engaged Westinghouse on 82 of the13174 open items. We have resolved 5 of the open items,14and we are satisfied with Westinghouse's responses on1531 of the open items. Those have now been considered16confirmatory.17We have characterized these items as open,18that we're satisfied with the response. However, we20still expect to see changes in the DCD, or associated21WCAP or other licensing document prior to determining22The schedule for the FSER, or the final23The schedule for the FSER, or the final24safety analysis, or evaluation report, I apologize, it	6	status. We issue the DSER on June 16, with 174 open
 9 Westinghouse the DSER was made public on July 1st with 10 no changes. We were working to resolve right now 11 we are working to resolve the open items. 12 We have engaged Westinghouse on 82 of the 13 174 open items. We have resolved 5 of the open items, 14 and we are satisfied with Westinghouse's responses on 15 31 of the open items. Those have now been considered 16 confirmatory. 17 We have characterized these items as open, 18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it 	7	items.
no changes. We were working to resolve right now we are working to resolve the open items. We have engaged Westinghouse on 82 of the 174 open items. We have resolved 5 of the open items, and we are satisfied with Westinghouse's responses on 31 of the open items. Those have now been considered confirmatory. We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete. The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it	8	After a 14 day proprietary review by
11 we are working to resolve the open items. 12 We have engaged Westinghouse on 82 of the 13 174 open items. We have resolved 5 of the open items, 14 and we are satisfied with Westinghouse's responses on 15 31 of the open items. Those have now been considered 16 confirmatory. 17 We have characterized these items as open, 18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	9	Westinghouse the DSER was made public on July 1st with
12We have engaged Westinghouse on 82 of the13174 open items. We have resolved 5 of the open items,14and we are satisfied with Westinghouse's responses on1531 of the open items. Those have now been considered16confirmatory.17We have characterized these items as open,18confirmatory, or resolved. Confirmatory being items19that we're satisfied with the response. However, we20still expect to see changes in the DCD, or associated21WCAP or other licensing document prior to determining22that resolution is complete.23The schedule for the FSER, or the final24safety analysis, or evaluation report, I apologize, it	10	no changes. We were working to resolve right now
 13 174 open items. We have resolved 5 of the open items, and we are satisfied with Westinghouse's responses on 15 31 of the open items. Those have now been considered 16 confirmatory. 17 We have characterized these items as open, 18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it 	11	we are working to resolve the open items.
14and we are satisfied with Westinghouse's responses on1531 of the open items. Those have now been considered16confirmatory.17We have characterized these items as open,18confirmatory, or resolved. Confirmatory being items19that we're satisfied with the response. However, we20still expect to see changes in the DCD, or associated21WCAP or other licensing document prior to determining22that resolution is complete.23The schedule for the FSER, or the final24safety analysis, or evaluation report, I apologize, it	12	We have engaged Westinghouse on 82 of the
 31 of the open items. Those have now been considered confirmatory. We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete. The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it 	13	174 open items. We have resolved 5 of the open items,
16 confirmatory. 17 We have characterized these items as open, 18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	14	and we are satisfied with Westinghouse's responses on
 We have characterized these items as open, confirmatory, or resolved. Confirmatory being items that we're satisfied with the response. However, we still expect to see changes in the DCD, or associated WCAP or other licensing document prior to determining that resolution is complete. The schedule for the FSER, or the final safety analysis, or evaluation report, I apologize, it 	15	31 of the open items. Those have now been considered
18 confirmatory, or resolved. Confirmatory being items 19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	16	confirmatory.
19 that we're satisfied with the response. However, we 20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	17	We have characterized these items as open,
20 still expect to see changes in the DCD, or associated 21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	18	confirmatory, or resolved. Confirmatory being items
21 WCAP or other licensing document prior to determining 22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	19	that we're satisfied with the response. However, we
22 that resolution is complete. 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it	20	still expect to see changes in the DCD, or associated
 23 The schedule for the FSER, or the final 24 safety analysis, or evaluation report, I apologize, it 	21	WCAP or other licensing document prior to determining
24 safety analysis, or evaluation report, I apologize, it	22	that resolution is complete.
	23	The schedule for the FSER, or the final
25 should be evaluation report, is September 2004. We	24	safety analysis, or evaluation report, I apologize, it
	25	should be evaluation report, is September 2004. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	are in the process of reassessing the schedule.
2	What we discussed, with Westinghouse, I
3	believe as you saw earlier, they've got a little bit
4	more of an aggressive schedule to completion than we
5	had originally committed to, and we have agreed to
6	review our schedule after issuance of the DSER open
7	items, and have had further discussions with them on
8	completion dates, when we determine the significance
9	and length of completion of our DSER open items.
10	CHAIRMAN KRESS: That is the time that the
11	ACRS ought to have its final letter, right after you
12	get the FSER?
13	MS. STAREFOS: I expect that would be the
14	time frame for the final discussion with ACRS full
15	Committee.
16	I went ahead and put up a quick five
17	chapter tally of the open items. I would point out
18	that the number of open items in a given chapter may
19	not be an accurate indicator of the scope of work
20	remaining for the Staff and Westinghouse to reach
21	resolution of any of these items.
22	I would point out that there are three
23	that look a little bit like outliers, chapter 3,
24	structures, component and equipment. The significant
25	number of issues there are seismic, and we have some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	wind and tornado loading issues that need to be
2	completed with an additional review.
3	And I will discuss, a little bit about
4	that, in a few minutes. Chapter 14 our verification
5	programs. A good chunk of those were ITAAC,
6	inspections, tests, analysis and acceptance criteria,
7	that the Staff had either questions or additional
8	ITAAC that they recommended.
9	Chapter 19, which was severe accidents,
10	the majority of those are PRA, and there are also some
11	seismic margin issues associated with those.
12	MEMBER WALLIS: Now, I'm not sure this
13	number is really significant. We spent a day and a
14	half here on, I suppose, chapter 6.
15	MS. STAREFOS: Absolutely, and that is why
16	we
17	MEMBER WALLIS: identify something like
18	half a dozen unresolved items right there, without
19	and they seem to be significant items.
20	MS. STAREFOS: Absolutely, Dr. Wallis, and
21	that is why I prefaced by saying that the number is
22	really not a direct indicator of the remaining work,
23	or major issues.
24	And I will discuss that a little bit in
25	the next slides. What I went ahead and did was,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 instead of discussing each of the 174 open items, 2 thought it was more appropriate to bin them by issu 3 So I'm going to speak about some of 4 more major issues, or</pre>	es. the
3 So I'm going to speak about some of	the
4 more major issues, or	ven
	ven
5 MEMBER WALLIS: These folks can't e	
6 write an introduction without open items?	
7 (Laughter.)	
8 MS. STAREFOS: I do address that.	
9 MR. CUMMINS: We are trying to get bett	er.
10 MS. STAREFOS: Those are general st	aff
11 open items that I do address that	
12 (Laughter.)	
13 MS. STAREFOS: The supplemental D	SER
14 sections, we are planning to issue supplemental DS	ERs
15 on the following chapters or sections. There wer	e a
16 number of different reasons for that.	
17 One of the reasons was documentation	of
18 our AP1000 FSER. It needs to stand on its own	for
19 rulemaking, for part 52 rulemaking. And in order	to
20 do that we need to ensure that we document all of	the
21 information pertinent to AP1000 that was included	in
22 the AP600 DCDs, and in any other information that	we
23 use to support the AP1000 and directly tie that b	ack
24 to its appropriateness for the AP1000.	
25 So you will see that there is a pre	tty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	significant open item in chapter 21 to document that,
2	prior to issuance of the FSER. Section 14.2 of the
3	initial test program, we had additional work that we
4	needed to do with technical staff support. So that
5	also is still remaining open.
6	Security, I will talk about a little bit
7	in another slide, but that is also a significant
8	review that is under way at this time. Leak before
9	break, we had an issue that has come up sort of late
10	in the process, before the DSER was issued.
11	I will speak to that a little bit in here,
12	but I understand that Westinghouse has a presentation
13	specifically on that, to discuss that. And when
14	Westinghouse makes that presentation I'm hoping that
15	our technical staff will be available to answer any
16	questions from the NRC staff.
17	And wind and tornado loadings, that was
18	another issue that we had not completed the review
19	and, as such, have additional work to do. We do
20	expect to issue supplemental DSERs on those.
21	MEMBER LEITCH: The initial test program
22	seems not to include those things that one might call
23	pre-op tests, or start-up tests. Is that correct, or
24	a description of those tests refer to the COL stage?
25	MS. STAREFOS: No, that is one of the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	items that we are addressing right now. Both of those
2	should be included, and if appropriate, associated
3	with that prior to the agency giving approval, the
4	Commission giving approval to go forward for an
5	applicant, or licensee at that point.
6	We need to make sure that all of them are
7	incorporated in the ITAAC appropriately. But our
8	technical review, at this time, is not complete. We
9	need to have our technical reviewers verify that those
10	systems, structures and components that have testing,
11	the testing is appropriate and complete for those
12	items. And that is part of our additional review.
13	MEMBER LEITCH: And that would be done at
14	this stage?
15	MS. STAREFOS: Yes, prior to the FSER.
16	MEMBER LEITCH: Yes, right.
17	MR. SEGALA: This is John Segala. For
18	clarification, our area of review on that item does
19	include the preoperational testing that we have to
20	make sure that we have that correctly described, so
21	that that can be done when the plant is built.
22	MEMBER LEITCH: Okay, thanks.
23	CHAIRMAN KRESS: Let me ask you a
24	procedural question while you are doing that. Let's
25	just, as a hypothetical example, talk about squib

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	valve reliability.
2	Now, suppose it was you guys came to
3	the judgement that what they have now is not an
4	adequate data base on which to judge the reliability
5	of the squib valve.
6	Now, in order to certify the plant you may
7	say something like you have to have a monitoring
8	program, and look at these squib valves, as you go
9	along. And, you know, they have one already that
10	they've outlined to us.
11	How does that end up being part of the
12	certification, is that going to DAC, or ITAAC, or?
13	MS. STAREFOS: I would expect that to be
14	a COL action item.
15	CHAIRMAN KRESS: A COL action item?
16	MS. STAREFOS: Right. That would be
17	deferred to the COL stage.
18	CHAIRMAN KRESS: Where is that spelled out
19	in the process to certify?
20	MS. STAREFOS: We identify all the COL
21	action items in well, they will be identified in
22	the FSER.
23	CHAIRMAN KRESS: As part of the FSER?
24	MS. STAREFOS: That is correct, and also
25	in the DCD. We would expect them to update the DCD to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	reflect any of those that the Staff may find necessary
2	to approve the design.
3	CHAIRMAN KRESS: And, similarly, if there
4	were materials issue, and you had to do a certain
5	inspection, or monitoring, that would show up in
6	places like that, too?
7	MS. STAREFOS: Yes, it would depend. If
8	it was something that needed to be done prior to
9	approval, or licensing, we would if it was in a
10	Part 52 stage, we would do it under an ITAAC, and that
11	would be identified and enumerated in the EFSER, as
12	well.
13	CHAIRMAN KRESS: Okay, thank you.
14	MS. STAREFOS: You are welcome.
15	MEMBER LEITCH: Just another question
16	about the initial test program. Would Chapter 14
17	describe I would assume, let's say there is some
18	distinction between first of a kind testing, that
19	would be done on first unit built, and subsequent
20	units.
21	MS. STAREFOS: That is correct.
22	MEMBER LEITCH: Does Chapter 14
23	differentiate between those two?
24	MS. STAREFOS: Yes, it does. And it
25	identifies first testing, and first replant testing,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	which is the way that Westinghouse went with certain
2	tests they wanted to get more than one plant, but not
3	continue through the
4	MR. CUMMINS: We had some help with the
5	Staff in identifying those.
6	MS. STAREFOS: The next slide I have
7	discussed kind of my general open items from DSER
8	chapter 1, this goes to Dr. Wallis' comment about the
9	introduction.
10	These are three issues that we identified,
11	that are sort of generic in nature, that the Staff
12	needed to complete prior to issuance of the FSER. The
13	first being we needed to ensure that all the revisions
14	of the design control document, the DCD, were reviewed
15	prior to making a determination, safety determination.
16	When we were in the DSER stage, we had
17	made a decision that the Staff would review through
18	rev 3. So anything you see in the DSER, unless it is
19	otherwise enumerated in there, is based on DCD rev 3.
20	However, we do need we've currently
21	gotten in through rev 6 now, and we do need to ensure
22	that we've addressed all of the revs prior to issuance
23	of the FSAR.
24	And we will have to discuss how,
25	logistically, we are going to do that, in the future,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	when it gets closer. But that will happen prior to
2	the FSAR.
3	The second issue had to do with
4	identification of tier 2 star information. It needs
5	to be completed prior to the FSER issuance.
б	CHAIRMAN KRESS: We have some haven't
7	been through the certification before. Could you
8	clarify what you mean by tier 1 and tier 2 for those
9	people?
10	MS. STAREFOS: Certainly. The tier 1
11	information is information that will actually be
12	pulled up into the Rule. It will be an Appendix to
13	Part 52, and it is required to be done prior to
14	certification, I'm sorry, prior to licensing.
15	Prior to approval to load fuel from the
16	Commission. That information is going to be in
17	appendix, I believe it is appendix delta for AP1000,
18	I believe that has already been identified.
19	That will be done through the rulemaking
20	process. That is tier 1. Tier 2 information is
21	information that your typical safety analysis report
22	type of information. That information is information
23	that a future COL applicant, or licensee, will be able
24	to change, using a 50.59 like process.
25	We also have a similar process in part 52

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	to allow them to make certain changes if the COL
2	applicant makes application and decides on AP1000.
3	The third is tier 2 star information. The
4	tier 2 star is somewhere between a tier 2 and a tier
5	1. It was information that we didn't see we didn't
б	want to necessarily put in the rules because it may be
7	something like an ASME code that they have that
8	they wanted to follow, and then we expect that there
9	will be updates, or a better way to do that.
10	We wanted to allow the NRC approval to
11	make those changes. So those tier 2 star information
12	needs NRC approval to be changed, and is identified as
13	italicized information in the DCD, and will also be
14	identified as italicized information for any of that
15	which we pull up into the FSER to make our safety
16	evaluation.
17	That is pretty much our open item. We
18	need to make sure that we have incorporated all of the
19	italicized information, or all of the information that
20	we have pulled up into the FSER, that is tier 2 star,
21	is identified as such, in our FSER.
22	So it is something that we need to focus
23	on.
24	MEMBER FORD: So if there is a new, for
25	instance, materials degradation phenomena, which had

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16 1 not been addressed by either the Staff, nor the 2 applicant, but which would need to be done some time in the process, that would be a tier 2, is that 3 4 correct? There is a process --5 MS. STAREFOS: Not necessarily. The tier information that the applicant 6 2 star is has 7 identified in their DCD. So when they present that to 8 us they said, this is stuff that we feel strongly 9 about we are not going to change. 10 Of course I'm sure some of that was with help from the Staff. 11 12 Yes, it really was -- on MR. CUMMINS: AP600, at the end of the licensing on AP600, the Staff 13 14 and Westinghouse sat down and went through the whole 15 DCD, and the FSAR, for what are the most important things that we don't want you to make a change with a 16 50.59 process, that you have to come back to us. 17 And a lot of it was related to the version 18 19 of the Code, the ASME, the things that one might think 20 that maybe the Staff had wanted to tier 1 but it 21 wasn't appropriate because the burden of the approved 22 code -- that the Staff would accept changes. So they wanted to allow it to change, but 23 24 it was still very important, and so it is really 25 changes that can't be made with just a 50.59 process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

17 MR. SEGALA: In terms of your issue, you know, once this is put into the Rule, and then a plant adopts it, if some new degradation mechanism comes up, we will have to handle that in the normal process, either issue an order, or issue generic а communication, or something like that to get them to address that new issue. It sounds kind of late in MEMBER FORD:

9 the process. But we will discuss it when it comes up. 10 MR. CUMMINS: I think that maybe the 11 nature of your question is, how do you have a list of 12 actions, future actions, that the applicant, or some 13 future applicant must address.

And there is really two ways to do that. There is the COL items, and we have something like 170 of them, which are open items, if you will, that combined operating license applicant has to address when they come in for the combined operating license.

And the other one, which is a little tougher, and a lot more sensitive policy-wise is a DAC, which is in ITAAC, which really is a process where you provide design and the NRC reviews it at the level of tier 1.

And the examples that we have of ITAAC, like that, are basically to the main control room

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	18
1	design, where we have a process, not a design. And
2	INC design. Because the idea there was technology
3	could change, and instead of licensing a product, you
4	license the process.
5	MEMBER WALLIS: I have a question for you.
6	I haven't had a chance to look at this disc yet. And
7	if I want to figure out what you are doing, I look at
8	the disc.
9	MS. STAREFOS: I'm sorry?
10	MEMBER WALLIS: I haven't had a chance to
11	look at this disc, which is the
12	MS. STAREFOS: Okay, yes.
13	MEMBER WALLIS: So I have no idea what is
14	in it. When I open it up I see these chapters, and I
15	can find these open items?
16	MS. STAREFOS: Yes, sir.
17	MEMBER WALLIS: And then I have to go to
18	the DCD to find out what it is all about?
19	MS. STAREFOS: There should be some
20	description of our concern
21	MEMBER WALLIS: Do I have the DCD
22	somewhere?
23	MR. CUMMINS: Yes, I can give you rev 6.
24	MEMBER WALLIS: Maybe you should do that
25	today.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	MR. CUMMINS: The other thing that you
2	need is the responses to the open items.
3	MEMBER WALLIS: That is somewhere else?
4	MR. CUMMINS: There have been six letters,
5	so far, that Westinghouse has responded I can put
6	it all on a disk.
7	MEMBER WALLIS: That would really help.
8	And this is going to be something I can open in my
9	computer?
10	MEMBER SIEBER: As opposed to General
11	Electric's practice to give you a disk and you can't
12	open it.
13	MR. SEGALA: To give you an overview, you
14	can go to section 1.6, and we have a brief discussion
15	of every open item, and every confirmatory item. And
16	it is only 30 pages long, or something like that.
17	So you can get a flavor for the open item,
18	and then go to that chapter to get more details in
19	that item, if you are interested.
20	MS. STAREFOS: We also have additional
21	information on our website. We are trying to maintain
22	that updated, and we are catching up. But
23	unfortunately I don't have that.
24	MEMBER WALLIS: If I find an open item has
25	to do with some of the things we discussed on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	first day, what do I find, if I look in the
2	Westinghouse document do I find sort of words where it
3	says it is all fine, and here is a code.
4	Or do I find enough so that I can
5	understand what is really behind it, such as the stuff
6	that was revealed when we talked here?
7	MR. CUMMINS: I think typically what you
8	find is a question from the Staff, which we call an
9	RAI, a Westinghouse response. They are all words.
10	sometimes there is some analysis, because there may be
11	some analysis.
12	But, generally speaking that analysis,
13	because the Staff wants it more permanently
14	documented, gets incorporated in future revisions of
15	the DCD, and probably has already been incorporated if
16	it came from an RAI.
17	MEMBER SIEBER: The practice, over the
18	last four years, has been to have these job books
19	where the real analysis is, and then you have a
20	summary, or a description of that, with a conclusion
21	as the official document.
22	Is that really the way it works?
23	MR. CUMMINS: Yes, Westinghouse has what
24	we call calculations, where the real analysis is. And
25	we provide a summary to the Staff, and sometimes a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 summary is not enough, and the Staff wants more, so we 2 give them some more. 3 And they come and look at it 4 MEMBER SIEBER: Which is more often the 5 case. 6 MEMBER WALLIS: They can do that, but we 7 can't do that so easily. And that is another problem 8 it is a slew 9 MR. CORLETTI: It is a slew, and you heard 10 we are revising a half a slew.</pre>	
And they come and look at it MEMBER SIEBER: Which is more often the case. MEMBER WALLIS: They can do that, but we can't do that so easily. And that is another problem it is a slew MR. CORLETTI: It is a slew, and you heard	
 MEMBER SIEBER: Which is more often the case. MEMBER WALLIS: They can do that, but we can't do that so easily. And that is another problem it is a slew MR. CORLETTI: It is a slew, and you heard 	
<pre>5 case. 6 MEMBER WALLIS: They can do that, but we 7 can't do that so easily. And that is another problem 8 it is a slew 9 MR. CORLETTI: It is a slew, and you heard</pre>	
6 MEMBER WALLIS: They can do that, but we 7 can't do that so easily. And that is another problem 8 it is a slew 9 MR. CORLETTI: It is a slew, and you heard	
<pre>7 can't do that so easily. And that is another problem 8 it is a slew 9 MR. CORLETTI: It is a slew, and you heard</pre>	
8 it is a slew 9 MR. CORLETTI: It is a slew, and you heard	
9 MR. CORLETTI: It is a slew, and you heard	
10 we are revising a half a slew.	
11 MEMBER WALLIS: So we are going to have	
12 CDs of all of those, too, so that we can follow, if	
13 you really want to go into some item, we can follow	
14 your logic and everything?	
15 MR. CORLETTI: Yes, we have made CDs that	
16 are all the AP1000 WCAS, and we can put those on a CD	
17 as well.	
18 MEMBER WALLIS: Are you going to give them	
19 to us	
20 CHAIRMAN KRESS: Coordinate through MED	
21 MR. CORLETTI: It is a room full of stuff.	
22 MEMBER WALLIS: I don't want a room full.	
23 MR. SEGALA: Another thing that may be	
24 helpful, some sort of link between the open item and	
25 the RAI, it is not always obvious how to get from one	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	to the next.
2	MR. CORLETTI: Link these CDs, you click
3	on the open item and it takes you to the next we
4	did that for Dana Powers, we gave him a link that was
5	30 boxes of stuff that was all linked. That requires
6	some upfront work. I don't have it right now, but we
7	can
8	CHAIRMAN KRESS: When did we rename the
9	FSAR to a DCD?
10	MR. CORLETTI: At the end of the process
11	of the FSAR, there was a process that turned the SAR
12	into a DCD. So the Staff suggested why don't you just
13	work with that, so you can shorten that process.
14	And the main difference is the tier 2 star
15	information. So we are working with that to try to
16	gain overall efficiency. Now, when a plant would
17	reference building AP1000 records, they take our DCD,
18	and they take our first 18, 19 chapters, or whatever
19	that is. And that has become their FSAR, their final
20	safety analysis report.
21	CHAIRMAN KRESS: Would that constitute the
22	design basis, then, of your plant, the DCD?
23	MR. CORLETTI: Essentially, you have the
24	licensing basis.
25	MR. ZAVISCA: Let me ask, for tier 1

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	information, is that part of the ACR subcooled?
2	MS. STAREFOS: I am not sure
3	CHAIRMAN KRESS: We don't usually look at
4	tier 1 stuff.
5	MS. STAREFOS: The question, Joe, was
б	whether or not the ACRS has involvement in the ITAAC,
7	or tier 1 information, and approval of that, during
8	their letter, for the letter?
9	MR. WILSON: This is Jerry Wilson. The
10	answer is yes, in the past ACRS has looked at the
11	issue of what information is taken from tier 2 and put
12	into tier 1, and becomes ITAAC.
13	MR. ZAVISCA: Is that going to be done
14	after the FSAR?
15	MR. WILSON: I think we would like the
16	Committee to consider that prior, as part of the FSAR
17	review. But there will be a rulemaking, and the final
18	decision on those matters will be handled through
19	rulemaking, and we will come before the ACRS with our
20	proposed rule.
21	MS. STAREFOS: Thank you, Jerry. I will
22	get to the last bullet on the slide, identification
23	and incorporation of the combined license action items
24	in the FSAR or DCD. Additional reviews may come up
	with more of this items as our review process is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	completed.
2	But the intent is to capture the COL
3	action items in our FSAR, and ensure that Westinghouse
4	makes the appropriate changes in their DCD.
5	And that brings me into the combined
6	license items. There are numerous combined license
7	action items, open items I should say, in this DSER,
8	18 to be specific.
9	Many of those open items propose new COL
10	action items, or changes to the existing COL action
11	items. And, again, as I stated additional items may
12	be identified as the reviews are completed.
13	Another area where we had a numerous
14	amount of open items was the ITAAC, the inspection,
15	test, analysis and acceptance criteria. There are,
16	approximately, 35 well, there are 35, approximately
17	15 of those are still open.
18	The remaining have been resolved, or the
19	Staff is satisfied with Westinghouse's response such
20	that we have considered them confirmatory at this
21	point.
22	Quality assurance, we have two specific
23	open items that I wanted to bring to your attention.
24	One is an inspection that we plan to do of the test
25	control implementation of the QA program at Oregon

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25 1 State University on the AP1000 facility. 2 As you heard in the thermal-hydraulic subcommittee, we are using the test data from that to 3 4 support our evaluation of liquid entrainment and we 5 wanted to ensure that the ΟA standards were appropriate, and that Oregon State was following the 6 7 expectations there. The next bullet is the inspection of the 8 implementation of the projects, specific quality plan 9 10 here at Westinghouse. We expect to come to this 11 facility and look at their implementation during this 12 AP1000 process to ensure that their QA plan was appropriate and implemented. 13 14 MEMBER LEITCH: I have a question about 15 the quality status of the plant equipment. I'm not sure if this is exactly the place to bring it up. But 16 17 it seems like the passive safety systems are safety related, and full quality assurance program is in 18 19 place there. 20 And then there are other things that are 21 not safety related. But I got the feeling, reading 22 through this, that there was still an issue about 23 exactly the quality status of what I will call the 24 active systems.

Is that true? I'm talking about the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	26
1	active systems.
2	MR. CORLETTI: In AP600 a significant
3	amount of the review was on the regulatory treatment
4	of non-safety systems. And there was an issue that
5	was identified early, by the ACRS as well.
6	And it was really, given now that you have
7	this new design of a passive plant, what should we do
8	with the reactor systems that we've always thought as
9	safety related, and the regulations were written
10	around them being safety related.
11	So we did an there was a process set up
12	which was the regulatory treatment of non-safety
13	system, where we use PRA, and looked at the PRA
14	importance and essentially and combined that with
15	trying to asses the importance of the non-safety
16	systems, as well as are there augmented inspection
17	requirements.
18	Even though they are not safety related,
19	can we do availability controls on the non-safety
20	systems to make sure that they are good systems, and
21	that they will be available? Because they do provide
22	defense in depth.
23	For AP1000 we followed the same process.
24	And I think one of the chapters is and one that we
25	are very proud of, there are zero open items on that,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	and we actually followed the same process, we used our
2	PRA to see if there were any differences with the new
3	with the AP1000, and actually one did.
4	We ended up the diverse actuation system
5	had a little bit, the way I think the PRA fell out,
6	had a little bit higher importance and we actually
7	implemented an additional tech speech on the DAS as a
8	result of that.
9	CHAIRMAN KRESS: Did you use the same
10	importance measure, criteria, that you used for AP600?
11	MR. CORLETTI: Yes, we did. I think that
12	was part of it, and can you meet the safety goals
13	without the non-safety systems? So we did this focus
14	PRA.
15	CHAIRMAN KRESS: Where you just didn't
16	have, you put them to zero reliability
17	MR. CORLETTI: You put them to zero, and
18	you still meet the safety goals in your PRA. And if
19	you couldn't, then you had to have one keep that in
20	your non-safety system, until you can meet the safety
21	goal. And those were the important and then it came
22	out that part of the DAS fell into that category.
23	MEMBER LEITCH: So the passive systems are
24	full Appendix-B 18 criteria and everyTHing. And then
25	these other systems are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	MR. CORLETTI: Yes.
2	MEMBER LEITCH: some modified version
3	of that depending upon the
4	MR. CORLETTI: They tend to be non-safety
5	related. However, they often, we have redundancy
6	requirements, certain system level redundancies are in
7	that. But they tend to be commercial grade.
8	We have these additional availability
9	controls that are in our DCD that the owner/operator
10	will have to agree that there are a certain amount and
11	test them every so often to make sure they are
12	available.
13	And they tend to be the systems you need
14	to run the plant. So like the CBCS, you need to keep
15	that operable to run your plant. So plants are going
16	to maintain they have a high incentive to maintain
17	them, anyway.
18	CHAIRMAN KRESS: I remember the debate was
19	over what was meant by availability, control
20	MEMBER LEITCH: Is there some term that we
21	are using to call those things?
22	MR. CORLETTI: They were called defense in
23	depth systems. But we don't have we haven't
24	painted them all blue, they are not all we haven't
25	categorized them quite that way, but we have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	identified them as our systems that have availability
2	controls.
3	MEMBER LEITCH: Thanks a lot.
4	CHAIRMAN KRESS: There is a letter of
5	regulatory treatment of non-safety systems for ACRS
6	that would be useful. I forget the time frame, but it
7	goes
8	MEMBER LEITCH: That was at the time of
9	AP600, I guess.
10	MR. CORLETTI: Typically you categorize as
11	quality group B, which there is quality group A, B,
12	and they tend to be commercial, but maybe some
13	additional high commercial, right. And that tends
14	to be the way we categorize them.
15	MEMBER LEITCH: Okay, thanks.
16	MS. STAREFOS: The next slide security
17	is one of our major open issues. It was identified,
18	in our letter, as one of the two major issues that
19	could impact completion of the review.
20	In light of everything that is going on
21	today we are evaluating security on a different
22	schedule, which we expect to mesh up to our FSER in
23	the end.
24	In April and May of this year we provided
25	the interim compensatory measures, and the revised

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	design basis threat to Westinghouse for their
2	consideration.
3	In May of 2003 we met with them to discuss
4	the information that we had provided, and later in May
5	2003 Westinghouse revised their design control
6	document to defer their security plan to the COL
7	applicant.
8	In June of this year Westinghouse provided
9	a letter with an assessment of the impact of the ICMs,
10	and the revised DVT on the AP1000 design. The Staff
11	is currently reviewing the DCD against Part 73, the
12	ICMS, and the revised DBT for design implications that
13	are not site-specific. That review is ongoing at this
14	time.
15	It is my understanding that there is a
16	separate subcommittee that addresses security and
17	although we don't have a date now, we
18	MEMBER WALLIS: These issues are physical
19	things, security issues, rather than procedural, these
20	are physical things about access to places, or doors,
21	and that sort of stuff?
22	MR. CUMMINS: Some of them are physical
23	with access to places, yes. Many of them are process,
24	number of guards, training of guards.
25	MEMBER WALLIS: That is likely to be a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	variable thing, that we would refer to the COL, I
2	would think.
3	MR. CUMMINS: Yes.
4	MEMBER SIEBER: Somebody in our staff can
5	stop me if I'm asking the wrong question, but there is
6	an issue in the security area of vulnerability of
7	structures.
8	Is that one of the issues that is being
9	looked at?
10	MS. STAREFOS: I would have to defer that
11	question to Westinghouse.
12	MR. CUMMINS: It is not on either the
13	ICMs, or the design basis
14	MEMBER SIEBER: Yes, and it is not a
15	design basis for any other plant. On the other hand
16	it is an issue of concern, that I would presume that
17	somebody is going to analyze at some point.
18	MEMBER WALLIS: I mean, it is almost like
19	seismic.
20	MR. CORLETTI: Perhaps that would be best
21	assessed in the security
22	MEMBER SIEBER: Well, I'm on that
23	subcommittee, so I will ask somebody.
24	MS. STAREFOS: The next slide is the leak
25	before break issue. This is sort of a late breaking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 issue that came up. There were two aspects of this. 2 One having to do with the Alloy 690/52/152 susceptibility to primary wash stress corrosion 3 4 cracking. There is limited test data and operating 5 experience, so the Staff had a lot of questions on 6 that. 7 The Staff has discussed, with 8 Westinghouse, the need for inspections and an 9 understanding of sensitivity study margins to provide sufficient defense in depth to address the uncertainty 10 11 of PWSCC. 12 The second issue has to do with piping stress analysis for the most limiting leak before 13 14 break systems. The Staff is working to determine if 15 the bounding limits are appropriate, and appropriately established in the preliminary analysis results, 16 during the design certification phase. 17 The information that the Staff needs to 18 19 make safety conclusions regarding that preliminary 20 analysis results, have not yet been provided. But we 21 are in the process of having meetings and discussions 22 with Westinghouse, and we have plans for future meetings at Westinghouse to address both of these 23 24 issues, the aspects of these issues, I should say. 25 The next one is sump performance. We have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

32

33 1 staff concerns and open items regarding the debris 2 loading of the IRWST, the recirculation screens, and 3 debris that would come in through a reactor coolant 4 system break. 5 The Staff will be available at 10:15, during a specific presentation that Westinghouse is 6 7 going to give on sumps to address any questions that 8 we have, specifically, on that. But we recently audited the associated 9 Westinghouse calculation, and we have identified that 10 11 some of the assumptions of debris size, density and 12 porosity, are not consistent with industry practices, so we still have more work to do in this area to 13 14 determine, to come to resolution here. 15 CHAIRMAN KRESS: I think there are about five open items, in one form or another. And I quess 16 17 we are going to hear about that whole discussion later this morning? 18 19 MR. CORLETTI: Yes, Terry Schulz will be 20 here to make a presentation on that. We don't really 21 have a good handle job on the inconsistencies with the 22 best practices --? 23 MS. STAREFOS: Either yesterday or the day 24 before --25 MR. CORLETTI: had couple We а of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	discussion with the Staff, but I think we are still
2	working on it.
3	MS. STAREFOS: In an effort to provide you
4	the greatest and latest, I don't have all the details
5	on that. Hopefully our expert will be able to address
6	that.
7	The structural and seismic designs, we
8	identified 38 structural and seismic items. And I
9	also included in that the section 19a, which is that
10	last portion of the PRA in that 388 count, many of
11	which require an audit of specific Westinghouse
12	calculations to resolve.
13	One of the things that was identified in
14	an April 2000 audit, was that the containment design
15	was not completed. Based on yesterday's Westinghouse
16	presentation, it sounds like Westinghouse is further
17	along with that work.
18	However, the Staff still plans to follow-
19	up with additional audit and review of this
20	information prior to resolution.
21	The next is liquid entrainment. This was
22	the second of two major issues that was identified in
23	the letter
24	MEMBER WALLIS: In the thermal-hydraulic
25	we now have a staff that is able to make independent

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

35 1 calculations. In seismic, when they show you a 2 picture which has all kinds of rebar here, or rebar 3 there, and they assure you that now this is good 4 enough, how do you know that it is good enough? 5 Do you do your own calculations, do you have some places for checking? 6 7 MR. SEGALA: Tom has a set of contractors 8 that are helping him do the review, and they are doing 9 a lot of audits. I'm not sure if they are doing 10 independent calcs. I'd say these contractors 11 MR. CUMMINS: 12 are pretty impressive. MEMBER WALLIS: What do they do, though? 13 14 MR. CUMMINS: They do give us a hard time 15 on our calculations. They certainly look at ours and 16 have comments. MR. CORLETTI: On AP600 they did a lot of 17 independent calculations, I just don't know the 18 19 extent. 20 The next slide, being MS. STAREFOS: 21 liquid entrainment, as I was saying --22 CORLETTI: MR. They are almost as 23 challenging as the ACRS meetings, I would say. 24 MS. STAREFOS: Liquid entrainment, long 25 term cooling, core swell and boron precipitation, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	liquid entrainment issue was identified as one of our
2	major issues in a letter transmitting the DSER.
3	One of the items that could affect our
4	completion of this review. We have had numerous
5	discussions at ACRS, thermal-hydraulic subcommittee
6	meetings, our latest being the last couple of days, on
7	the 16th and 17th of July.
8	And it has provided a good technical
9	exchange for the Staff regarding these issues. The
10	Staff review will continue with independent analysis
11	and review of the Westinghouse submittal.
12	We are not there yet, but it sounds like
13	we are headed in the right direction, I hope. The
14	next slide discussed probabilistic risk assessment,
15	PRA. The reason I put this up here is because,
16	primarily, we had so many open items in this area.
17	But as of our last conversations with our
18	reviewers, there aren't any outlying significant big
19	issues that we are concerned with at this point. We
20	just have a lot of work left to do to resolve our
21	issues, our items.
22	In January of 2003 we had an ACRS PRA
23	Subcommittee meeting, and one of the questions or
24	issues that was raised during that, was the ADS 4
25	squib valve reliability issue, which we discussed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	yesterday.
2	In February of 2003 we had a PRA meeting
3	between the Staff and Westinghouse to discuss RAIs,
4	and are continuing to have interface to resolve the
5	rest of these issues. Right now we have 24 PRA
6	related open items.
7	There are some other issues, too. In an
8	effort to try to look at the 14 and characterize them,
9	I thought it was appropriate to give you a bigger
10	picture of the issues that we had a lot of work left
11	to resolve.
12	But we also have issues associated with
13	combustible gas control, 10CFR50.44 is in the process
14	of being changed, the Rule is being updated, and we
15	are trying to determine the best way to go forward
16	with the applicant well, the application and the
17	request and the approach that the applicant took to
18	address combustible gas control, in light of the fact
19	that this Rule has not yet changed, and how we need to
20	handle that.
21	And so we are working with that. Another
22	issue was the short term atmospheric relative
23	concentration values, also known as K over Q.
24	We are in the process, I guess
25	Westinghouse is in the process of addressing some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	38
1	changes that were very recent to Reg Guide 1.193.
2	Those changes were made as late as June 2003.
3	So we still have some work to do there to
4	try to look at Westinghouse's review of, and any
5	changes that may come out of that review.
6	CHAIRMAN KRESS: Is Q an appropriate thing
7	to put out to the COL stage, since it tends to be site
8	specific?
9	MR. CORLETTI: I have a slide on that.
10	MS. STAREFOS: There were other things as
11	well, such as some tech spec open items, dose
12	analysis, turbine materials, technical support center
13	habitability, communication systems, the initial test
14	program, which we did talk a little bit about, fire
15	protection, human factors, missile protection, reactor
16	coolant pressure bounding materials, steam generator
17	design.
18	Things of that nature that I wanted to
19	mention because we do have open items, but at this
20	time we don't see these as real significant issues.
21	MEMBER WALLIS: The question was when the
22	the question had to do with when the Staff reviews
23	the seismic analysis having to do with how much we've
24	already put in here, and that sort of thing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 to confirm the validity of these things, or do 2 just look at Westinghouse's documents? 3 MR. CHENG: When we did this, we revi	they
3 MR. CHENG: When we did this, we revi	
	iewed
4 their design analysis, and design calculations.	The
5 Staff did not do any independent confirmatory ana	lysis
6 as we have done for AP600, because based on	our
7 review, the Westinghouse followed the SRP guidel	ines,
8 so that is why we think it is acceptable.	
9 We did not perform indeper	ndent
10 confirmatory analysis.	
11 MS. STAREFOS: Thank you, Tom. I	guess
12 I'm at the summary. And I will try to say it sin	mply,
13 we are still resolving the DSER open items, ar	nd if
14 there is any further questions?	
15 CHAIRMAN KRESS: Do you use consultan	ts in
16 this review of the seismic issues?	
17 MR. CHENG: Yes, we do use we used	d Dr.
18 Constantino, and two of his associates, one is a	a Dr.
19 Tsai. Both of them work with the Staff, and oth	ners,
20 in advanced reactor review.	
21 They have various experience in doing	this
22 review for the Staff.	
23 CHAIRMAN KRESS: Do they write up t	cheir
24 reviews in a report to you?	
25 MR. CHENG: Yes.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

40 1 CHAIRMAN KRESS: Can we get copies of 2 those? 3 MR. CHENG: You mean the report written by 4 them? 5 CHAIRMAN KRESS: Yes. We converted that as DSER 6 MR. CHENG: 7 section. I can provide you the original write-up, if 8 you need it. 9 CHAIRMAN KRESS: Yes, that is what we would like. 10 11 MS. STAREFOS: Thank you. 12 CHAIRMAN KRESS: Thank you. MS. STAREFOS: There are no further 13 14 questions, thank you, Tom. 15 MR. CHENG: Thank you. 16 MS. STAREFOS: Are there any further 17 questions? 18 (No response.) 19 MS. STAREFOS: presentation is My 20 complete, and I will turn it over to Mike. Thank you. 21 MR. CORLETTI: The next presentation is 22 going to be on the -- I will try to minimize the 23 repeat with Joelle's. 24 But, really, this is just identifying, of these issues, we think we have come to the Committee 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

41 1 with the thermal-hydraulic issues, pretty extensively, 2 and probably the PRA as well. 3 Yesterday we had a talk on the seismic and 4 structural issues with Richard Orr. Two issues that 5 we are going to speak of today, the leak-before break materials issue, we have Warren Bamford, from our 6 7 engineering services department, and he will speak to 8 that. We are also going to have a presentation 9 later on sump performance issues by Terry Schulz. 10 So 11 I'm going to address the last four, real briefly, and 12 I think Joelle already did. With regards to security the only thing I 13 14 will say here is that it is largely a COL applicant 15 responsibility. I think the reason that it is an open item is less technical and more programmatic. 16 17 That department of the NRC has been really busy with all of the issues related to security at 18 19 this time. And the other open issue is they haven't 20 done the review yet, so it is not a technical issue at 21 this time. 22 The only other thing I will say is that we 23 did provide a report that is the design feaTures of 24 AP1000 requirements. In the revised DBT and the ICM. 25 Southern Nuclear which also is our contractor there,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	and they are safeguard agents in that regard, and are
2	more familiar with those kinds of they are working
3	with us on that issue.
4	With regard to the main control room X/Q ,
5	I think that this is one of those things that is
6	sort of a COL applicant interface issue. But also is
7	related to the design, because how you calculate your
8	control room X/Q is related to certain design features
9	of the plant.
10	And I think we are working with the Staff
11	to try to understand what is the requirement that
12	should be captured in design certification, or what
13	are the parts of that evaluation that we want to have
14	approved by the Staff as part of a design
15	certification, and what is the true interface.
16	And so the MET data, for instance, is an
17	interface. And when we do our control room X/Q we
18	take an assumed MET data, or a worse case MET data,
19	but we do have to accurately capture what are the
20	interface requirements there, so that when an
21	applicant can reference the AP1000 he is able to asses
22	those analysis for his site.
23	But we have performed control room dose
24	calculations with the X/Q that we calculated, that we
25	believe is appropriate for AP1000, based on a limiting
-	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	site set of site meteorological information.
2	We looked at several potential candidates
3	for the MET data, and tried to come up with a limiting
4	X/Q dose calculations.
5	CHAIRMAN KRESS: The Reg Guide discusses
6	wake issues related to the buildings?
7	MR. GROVER: The Reg Guide is, primarily,
8	guidance on the use of the Argon 96 computer code for
9	which is specifically created to calculate the
10	CHAIRMAN KRESS: Yes. And just gives you
11	guidance on how to use it?
12	MR. GROVER: Yes, and limitations on
13	assumptions.
14	MR. CORLETTI: Recognize, we did this
15	calculation for AP600 in 1996, or '97, long before the
16	Guidance came out. And at that time there was
17	guidance, there was a NUREG. And so we did what we
18	think is a conservative calculation using that.
19	And we just got the Reg Guide in June, and
20	we are trying to understand the conservatisms we
21	used are equivalent to the conservatisms that is in
22	the Reg Guide, and we need to provide that to the
23	Staff to asses this issue.
24	MEMBER LEITCH: I seem to recall that
25	there were, really, a package of three Reg Guides that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	were issued in June. Is there only one that applies
2	to the control room design?
3	Perhaps I'm mistaken, but
4	MR. GROVER: There are three, one was on
5	the assessment issue, one was on Argon 96 guidance.
6	I don't remember the other one.
7	MR. CORLETTI: On the tracer gas issue,
8	that is probably more appropriate for the COL. So
9	there are certain commitments to do leakage tests in
10	the control room. But the specifics on how you do
11	that assay control
12	MR. SEGALA: We do have a COL.
13	MEMBER SIEBER: But there are ancillary
14	issues associated with that. For example, if you have
15	a control room surrounded by a bunch of other all
16	kinds of different BPs, I think that the design in the
17	ventilation system ought to be such that you can
18	provide sufficient assurance that you are always
19	negative in the control room, instead of negative here
20	and positive there.
21	MR. CORLETTI: This was a tough issue for
22	us on AP600. Our HVAC, or our safety for our
23	control room, that we depressurize our control room.
24	And we shut off, I think, the surrounding HVAC system.
25	So we felt that we have a very good, by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	the nature of that design, overpressurizing the
2	control room, we are able to demonstrate that pressure
3	without the tracer gas test.
4	However, I think that unless you agree
5	to do that sort of test for AP600, and we are carrying
6	that for AP1000.
7	MR. SEGALA: Part of this depends on how
8	tight the control room is when it is actually built,
9	whether gas would allow us to verify that the
10	assumptions are consistent with
11	MEMBER SIEBER: Well, the practical
12	problems that you are going to run into is the fact
13	that you usually have cable spreading area, which is
14	why you would like it to be leak tight and separate
15	from the control room.
16	And then also the process rack room, where
17	your instrumentation and your process equipment is,
18	which requires cooling, external cooling. A lot of
19	switch gear, low voltage switch gear.
20	And because of the fire restrictions that
21	are in different rooms, with different air
22	conditioning requirements, that is
23	MR. CUMMINS: Yes. The AP1000 and the
24	AP600 design in this area is we have four divisions
25	of batteries, and four divisions of INC, we call it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	PMS, protection and monitoring system. You will see
2	some of that this afternoon.
3	And then we have four divisions of
4	whatever electrical switch gear that is required.
5	They are all in the clean auxiliary building, and they
6	are all in separate floors. They are away.
7	And what we normally do is supply HVAC and
8	cooling to them with a sort of a standard HVAC system
9	that is not safety related. And if we lose power, or
10	lose those systems for some reason, we have analyzed
11	that in a 72 hour period, the heat sink of the
12	building, and the concrete, will maintain the
13	temperatures in the room at acceptable temperatures
14	for the operation of the equipment.
15	So it is a passive cooling system, and the
16	same applies to the control room ceiling, control
17	room, basically from the ceiling. For the so for
18	those switch gear room, and INC rooms, there is no
19	HVAC supplied in that period.
20	For the control room we still needed to
21	have it pressurized, even though we had no power for
22	some fan. So what we did use is air bottles. We have
23	and we pressurized the control with a continuous
24	supply of air from air bottles, for the 72 hours.
25	And it turns out that after 72 hours the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

47 1 dose calculations are such that you can open it up after that period, and still have acceptable dose 2 rates for the operators. 3 4 MEMBER SIEBER: Well, this is the same 5 design as many of the current generation plants. Ι guess my -- my only concern is that a lot of licensees 6 7 are struggling now to try to meet the current regulations, and you are putting forth a design that 8 is very similar, in my opinion. And you are going to 9 10 struggle, too. 11 MR. SEGALA: There are a few plants that 12 have bottles, but they don't rely on them for 72 Most of them have one hour. 13 hours. 14 MEMBER SIEBER: The one down the road here 15 has one hour bottles, and it has a subatmospheric containment, and the idea is the containment is 16 17 supposed to go subatmospheric and leak in instead of out, at about the same time the bottles are exhausted. 18 19 By the way, those bottles are 2,000 pound 20 bottles, and there are six of them, and they are big. 21 And so if you have them for 72 hours --22 MR. CORLETTI: We have big bottles. 23 That is a big deal. MEMBER SIEBER: Ι 24 mean -- I would expect that number of bottles would be 25 in --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

48 1 MR. CORLETTI: We can show a drawing of 2 the picture of the bottles. There are 30 some bottles. 3 4 MEMBER LEITCH: The experience with the 5 existing -- is that most people are experiencing much higher control room leakage than was originally 6 7 predicted. And so I guess the admonition here is to make sure you've got enough bottles, or if there is 8 9 anything that can be done in the design at this stage to consider and minimize control room leakage, that 10 11 would be of value. 12 MR. SEGALA: A lot of what the existing plants are facing is they have other ventilation 13 14 systems that run duct work through the control room, 15 that leak into the control room. They have duct work for the control room ventilation system that goes 16 17 outside of the envelope, and on the negative side of the fan, that will suck contaminated air in and put it 18 19 in the control room. 20 They have poorer construction of the 21 actual boundary of the control room. And there are 22 many factors that affect plants that with the bottle 23 system you don't necessarily have all those mechanisms 24 that the existing plants have. 25 MR. CUMMINS: Yes, one other comment that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	the digital control room really eliminates cable
2	spreading room. So the number of cables or wires that
3	come into a digital control room are, I don't know,
4	they are tens. Instead of thousand, they are maybe
5	ten.
6	MEMBER SIEBER: So you use the data buss
7	like a
8	MR. CUMMINS: Exactly.
9	MEMBER SIEBER: As opposed to individual
10	signal wire?
11	MR. CUMMINS: Yes.
12	MR. SEGALA: So the controls are all by
13	sending a signal out a data buss, so it is one wire,
14	it is not really one wire, because there is some
15	redundancy. And there are a few manual controls, and
16	that is where you actually have the wire that can
17	control
18	The interface computers aren't in the
19	control room.
20	MEMBER SIEBER: Let's say you have a piece
21	of fiber, and that goes through the control board, you
22	have to have something in the control board to read
23	that piece of fiber, or metallic
24	MR. CUMMINS: Yes.
25	MEMBER SIEBER: And interpret what that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	is, and route it to indicators, control switches, and
2	so forth. There has to be stuff there.
3	MR. CUMMINS: Yes, I think this afternoon
4	we can see.
5	MEMBER SIEBER: Yes, I'm looking forward
б	to it, thank you.
7	MR. CORLETTI: The soon to be revised
8	10CFR50.44, which essentially allows for some
9	relaxation of the QA on some of the hydrogen
10	recombiners equipment, like the hydrogen I think we
11	were expecting this to be approved, I think, last
12	year.
13	I think it is now slated for approval this
14	year. We've performed our design looking at that.
15	One thing we did maintain our passive hydrogen
16	recombiners response that we had from AP1000, or
17	AP600. The change there is that they are not safety
18	related.
19	And that is how we've addressed that is
20	how we've modified the design to be in compliance with
21	or to allow for relaxation. They still provide for
22	defense in depth.
23	I think it is going to be more of a
24	programmatic as, hopefully, the new regulation can be
25	passed before I would like our FSER before the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	regulation passes, but we will deal with it.
2	I think that the nature of this, there may
3	be a technical issue that is I'm not sure, I think
4	that is largely the issue.
5	MR. SEGALA: The staff has, they are still
6	reviewing it, they are looking at mixing inside the
7	containment and stuff, but they haven't finished their
8	technical review.
9	MEMBER SIEBER: You do provide igniters in
10	the
11	MR. CORLETTI: Yes, we do. We have
12	igniters throughout the containment.
13	MEMBER SIEBER: And I presume you do not
14	provide recombiners?
15	MR. CORLETTI: We have not the active
16	recombiners that you are familiar with, but we have
17	these passive H2 recombiners.
18	MEMBER SIEBER: Right, okay.
19	MR. CORLETTI: And maintain those. For
20	defense in depth, also, there is some international
21	applications that would still require, like hydrogen
22	recombiners, and we would like to apply AP1000 in
23	other places besides the United States.
24	CHAIRMAN KRESS: Are these big enough to
25	do the severe accident hydrogen?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	MR. CORLETTI: They are probably not fast
2	enough, is an issue but we haven't tried to qualify
3	them for that.
4	This next slide, that is really the end of
5	my presentation on the open items, and this is just my
6	way of introducing Warren. I just wanted to just make
7	a point that AP1000 is really is a passive plant.
8	But really it is using proven features
9	throughout. And in the materials issue we think with
10	the operating fleet of PWRs, we have excellent leading
11	indicators of materials issues.
12	And we have been trying to incorporate
13	that knowledge into the design of AP1000. And so
14	being a PWR, and really using proven components, we
15	have the benefit of the operating experience of the
16	fleet of reactors.
17	And I don't know if you all have the same
18	appreciation for the design of AP1000 in regards to
19	the reactor coolant system, as a lead-in, some of the
20	key features of the reactor vessel, which is no
21	penetrations in the bottom head, the penetration is in
22	the top head.
23	We have designed for inspectability of
24	those penetrations. The flu piping is made largely of
25	vent pipe, reduced number of valves, with elimination

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

53 1 of the cross-over pipe is a reduction of the welds in 2 the piping. 3 Steam generators are similar to steam 4 generators that are in operation today. I think we 5 have most closely looked at our reactor steam generator that we provided, and others, to serve as a 6 7 delta 125 starting point to the AP1000 steam 8 generator. MEMBER WALLIS: It is a bit of a stretch 9 10 to say that because it was approved for AP600, it is a proven component. 11 12 No, it is not -- you are MR. CORLETTI: absolutely right, if that was the only reason, it 13 14 wouldn't be. It was really because these components 15 are in operation today. MEMBER WALLIS: That makes sense. 16 MR. CORLETTI: Not because it was AP600. 17 MEMBER WALLIS: Well, I think that is what 18 19 you need to stress. 20 MR. CORLETTI: Yes. And I think that is 21 what I'm trying to -- all these components have proven 22 operating experience. 23 So with that I think, if there is any 24 other questions on reactor coolant system -- yes, 25 John?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	MEMBER SIEBER: I would like to jump back
2	to control room reliability for two short questions.
3	MR. CORLETTI: Sure.
4	MEMBER SIEBER: Could you tell me what the
5	thickness of the concrete is on the containment?
6	MR. CORLETTI: On the containment shield
7	building?
8	MEMBER SIEBER: Yes.
9	MR. CORLETTI: It is three feet.
10	MEMBER SIEBER: Three feet. And the
11	control room walls?
12	MR. CORLETTI: Two feet.
13	MEMBER SIEBER: Two feet.
14	MR. CUMMINS: It is a pretty massive
15	structure.
16	MEMBER SIEBER: And right outside the
17	control room, according to your drawings, you have one
18	of the two main steam lines, right on that opposite
19	wall, right? Big line?
20	MR. CORLETTI: Yes.
21	MEMBER SIEBER: With a lot of flow?
22	MR. CUMMINS: Yes, we were challenged on
23	that by the Staff, in the AP600.
24	MEMBER SIEBER: And yet you did it again.
25	MR. CUMMINS: And I think that, I'm not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	absolutely certain about this, but we had to define a
2	break, I think it was a one square foot break, and
3	then
4	MEMBER SIEBER: It is possible you can get
5	one that small.
6	MR. CUMMINS: And prove that the wall was
7	fine, and the control room was fine, and we went
8	through that series of discussions.
9	MEMBER SIEBER: Well, do you have blowout
10	panels, or something like that?
11	MR. CUMMINS: Yes, we do.
12	MEMBER SIEBER: As opposed to just blowing
13	up the guys in the control room, of which I used to be
14	one?
15	MR. CUMMINS: We do have blowout panels.
16	And I would say that I'm not sure that we were so
17	interested in protecting the operator as not
18	pressurizing the room to
19	(Laughter.)
20	MEMBER SIEBER: You meet the regulation
21	but unfortunately the operator didn't survive. That
22	answers my question, which actually deal with several
23	issues.
24	MEMBER FORD: I have a question. Joelle
25	is at least 18 unresolved RAIs, and you addressed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	some, and you passed some of them to Warren. What is
2	your feeling as to how quickly some of these
3	unresolved RAIs are going to be resolved?
4	MR. CORLETTI: Well, of 174 questions,
5	there were probably, of that, about there is a
б	number of about 80 or 90 were kind of new items. And
7	80 were items that actually we knew about, and have
8	already provided the answers in April.
9	And the Staff, it is understandable, they
10	have to stop accepting new information at some time,
11	and write the issues. But I think since when they
12	were done writing, I think they have a response for,
13	say, half of those issues, that they have been
14	evaluating now.
15	And that is why they have already been
16	able to resolve some 35, I think, quickly. Probably
17	the ones we've already identified we think we gave
18	very responsive answers, so I would expect
19	MEMBER FORD: So which is the is it the
20	Staff, or with you?
21	MR. CORLETTI: And the rest of the
22	questions we owe answers, I think, we said in July we
23	provided all but about 20 answers. So I think it is
24	a combination of are our answers good enough, and can
25	we have the Staff read them.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	I think we can we believe we can
2	resolve these issues in a short time frame. Since
3	there are 40 on ITAAC, there is largely programmatic
4	issues.
5	I think we had a meeting, and I think
6	almost all of them have been resolved. So the number
7	is big, but I think we can we expect to be able to
8	resolve these in the July and August time frame.
9	MR. CUMMINS: Yes, but Westinghouse has a
10	goal of providing all the answers by the end of July,
11	and then revising the DCD and the PRA by the end of
12	August, that is so that these confirmatory things can
13	be, in fact, confirmed.
14	And the Staff, understandably, has to look
15	at them, and decide where their resources are. And I
16	think they are in the process, and they can speak of
17	trying to schedule their part, because the ball is
18	going back to them, and their part of the review, to
19	see what they can do with them.
20	MEMBER FORD: But you heard Dr. Wallis,
21	which I fully agree with, that we need more
22	information from the DCD. So we can have more detail,
23	to some of Warren's concerns, and some of the
24	hydraulic concerns, and things of these nature.
25	So it will take time for us to understand

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	what the real problem is, rather than just what the
2	word problem is.
3	MR. CORLETTI: Yes.
4	MEMBER FORD: And I'm just trying to work
5	out where the ACRS stands on this, as to how we can be
6	productive, and what we can honestly sign off on.
7	MR. CUMMINS: I think we have tried to
8	highlight, in the meetings, what we felt were the real
9	issues. The real issues have been thermal-hydraulic
10	issues that we've been dealing with for a while.
11	Maybe issues on materials, it is a very
12	important issue to us, and when we understood the
13	nature of it, we already had one meeting two weeks
14	ago, and we are probably going to have another, and I
15	think next week, and I think we are making progress.
16	So that is a technical issue that is
17	important to us.
18	MR. SEGALA: Part of the thing is, you
19	know, Westinghouse at the end of July is going to
20	respond to all of our open items. The Staff is going
21	through and looking at them, reviewing them, and they
22	are going to do an acceptability review to let us know
23	which ones are okay and which ones aren't.
24	And just because Westinghouse responds to
25	it in July doesn't mean that it is necessarily

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	acceptable to the Staff, and we have to go through
2	that, and look at that, and communicate back to
3	Westinghouse what our remaining issues are, and have
4	further meetings, and further discussions to hash them
5	out.
6	I think the more we articulate and
7	communicate, the quicker we can get this stuff
8	resolved. But, again, we have to reassess our
9	schedule, get feedback from the Staff, after they have
10	looked at all these responses to see how far out is
11	this going to take us, to resolve these issues.
12	MR. CORLETTI: And there is, you know, as
13	Joelle said there and liquid entrainment is one
14	issue, and it is hard to resolve that issue we
15	would probably quit.
16	(Laughter.)
17	MEMBER RANSOM: It is getting easier.
18	Could you explain your second sub-bullet, under your
19	first bullet, to me? The first bullet.
20	MR. CORLETTI: Yes. We have our core
21	design is a 14 foot, 157 pool assembly those two
22	reactors have the same
23	MEMBER RANSOM: Oh, those are reactors?
24	MR. CORLETTI: Those are operating
25	MEMBER RANSOM: Now I understand.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	(Everyone speaks at the same time.)
2	MR. CORLETTI: I mean, you are right, 193.
3	So, you are right, it is 14 foot fuel
4	MEMBER SIEBER: I just wondered if you
5	MR. CORLETTI: No, we are proud of Texas.
6	CHAIRMAN KRESS: In the configuration not
7	only is the core the same, but the internals are about
8	the same, it is not exactly the same. The issues with
9	internals are similar.
10	MEMBER SIEBER: The AP600 is 12 foot fuel?
11	MR. CORLETTI: Twelve foot fuel
12	MEMBER SIEBER: Like your current plant?
13	MR. CORLETTI: You are right. And
14	essentially AP600 had 1,000 megawatt reactor, and we
15	had derated it to a 600 megawatt. And we had a few
16	less assemblies to allow for that radial reflector.
17	When we went to AP1000 we took more of a
18	standard design.
19	MEMBER SIEBER: Except that it is a little
20	longer than your 1970s vintage plant?
21	MR. CORLETTI: Slightly longer than the
22	to allow, we have a little more gas space in the
23	MEMBER SIEBER: They have the same numbers
24	of grids as the 12 foot, or did you add an extra grid?
25	I'm sure you added an extra grid, at least one, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	would imagine.
2	CHAIRMAN KRESS: Okay. Is this the time
3	for a break now?
4	MEMBER SIEBER: Yes, it is.
5	CHAIRMAN KRESS: Before we do that I have
6	been reminded that we have a public citizen here that
7	may want to make some comments, is that right? You
8	may want to introduce yourself.
9	MS. STARRET: My name is Susan Starret,
10	I'm a professor of philosophy at Duke University. And
11	I think most of you have heard me speak before. Prior
12	to my academic career I worked in the nuclear power
13	industry, including on the AP600 for Ron Vijuk.
14	The topic I'm going to bring up today is
15	the same as the one last time, it is just that I'm
16	going to tie it, show how it relates to do I need
17	to speak louder? Show how it relates to the open
18	items.
19	If you remember that the question I asked,
20	when I spoke earlier this year to the ACRS, was about
21	the level of design completeness in the systems
22	design. That is, is it a conceptual design of the
23	system capabilities, or is it a final design.
24	The process of this process of going
25	from a completed design, the AP600 to the AP1000, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 think can makes it especially difficult to	
	tell,
2 because there is lots of detail there the	at is
3 inherited from the AP600.	
4 So do you know, you know, was that	; pipe
5 size designed with that valve design, or is it	there
6 because it was there for the AP600 and we just o	lidn't
7 change it, and maybe it needs to be changed, and	maybe
8 it doesn't.	
9 So that is the question. And	I was
10 especially talking about fluid systems designs	s, the
11 flow temperature and pressure in the systems.	
12 Now, in the 10CFR52 process,	as I
13 understand it, the level of design is to be the	e same
14 of the DCD submittal, is to be the same lev	rel of
15 detail as under the old system, the point in	ı time
16 where an operating license was being applied f	or.
17 So that means, basically, the	fluid
18 systems design should be done insofar as th	is is
19 possible. Now, this was a concern that cut a	across
20 many systems, and so my concern was kind of amon	rphous
21 at the time, trying to make it a little more spec	cific,
and tie it into the open items.	
	, many
23 So to make it a little more specific	
23 So to make it a little more specific 24 of the statements that are making in the DCD are	about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	an example, I just pulled out one of your DSER
2	section, section 10, on the main steam system.
3	I didn't have time to go through all of
4	them. But that was the one I used an example from,
5	the last time I spoke to you. So the review looks
6	like what gets done is, they look at what the claims
7	are for the system capabilities made in the DCD, and
8	then compare them to the standard review plan criteria
9	and say, yes, this meets the criteria.
10	So my question is, that is fine, but the
11	further question I have is, what are you asking the
12	question have the systems been designed, have the
13	design details been done.
14	So the example I gave last time, just as
15	an example, and it wasn't that I had any reason to
16	have a specific concern, but I just said, for example,
17	the main steam system, one of the changes, whenever
18	you do an upgrade is upgrading, usually is that the
19	steam pressure changes.
20	And so you check things like, okay, that
21	is the driving force for things like the relief
22	valves, and any other lines that use the main steam
23	system pressure.
24	So I would I think that when you do an
25	upgrading you actually check and see, okay, these are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	the things that should have changed, or have to be
2	looked at, you have to do new calcs for that, did you
3	do that.
4	I'm not sure whether those kinds of
5	questions are getting asked. And the approach that
б	you are taking here, where you are taking the standard
7	review plan, you are looking at the claims that are
8	made for the capabilities of the system.
9	That is the question I have. I honestly
10	don't know the answer, I'm just raising it. Maybe an
11	analogy here is something that was talked about
12	earlier, say, an analogy in the structural arena would
13	be the level of detail for the containment structural
14	design.
15	For instance, there was a statement in the
16	DCD that the containment meets the ASME code, then
17	when the Staff asks, is the analysis done, the answer
18	was, we thought that was a COL item, as I understand
19	the documents I've read.
20	And then the NRC's response is no, you
21	really have to do that now, and that is the kind of
22	question, point, I have here. It is just that it is
23	in fluid systems design arena, rather than the
24	structural.
25	So the next I think the response that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	was given the last time I brought this up was, well,
2	is this really related to safety analysis, because it
3	looks like for the primary systems, for the primary
4	passive systems, we really do look at the flows and
5	stuff.
6	Well, I think that a lot of the auxiliary
7	systems, I think it is it should be part of the
8	review, because you are approving this design, you
9	want the main steam system to be able to do what it
10	claims it can do.
11	Some of them might come up in RTNSS, but
12	again, I wonder if the RTNSS review isn't something
13	like the standard review plan review, where you say,
14	well okay, here is what the system is the important
15	system is supposed to do. Good, it does it, and
16	therefore the RTNSS review is okay.
17	Again, the question I'm asking has to do
18	with the claim about what the system capability is,
19	versus whether the design detail is done.
20	Now, how does this tie into the open
21	items? Well, one open item it relates to is the one
22	about the QA process. That was on slide 7 of Joelle's
23	presentation, where inspection of the implementation
24	of the project specific quality plan at Westinghouse.
25	So I will just explain why I think it is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	related to that open item, and how. The QA process
2	for the AP1000 can't be exactly like the AP600. For
3	example, there have been some organizational changes.
4	I don't know what they all are, but one that has to be
5	different is that the Advanced Reactor Corporation is
6	not involved any more, and they provided some sort of
7	role in guidance, or review, or whatever.
8	They were involved in every design change.
9	For people that don't know about the AP600, the
10	Advanced Reactor Corporation included people from all
11	different utilities. So you had this involvement of
12	utilities.
13	Now, why is that important? Well, because
14	I think that how the AP600 information is used, and is
15	partly dependent on well, it is going to have to be
16	covered in this process.
17	And the question of who gets to decide
18	whether a change needs to be made or not, from the
19	AP600, well I think that that is important. I mean,
20	is it at the level of people who are just involved in
21	projects, and they say, these are the things that
22	we've identified, we have to change, so let's go make
23	those design changes.
24	What is the process? I really don't know
25	what the process is. But one thing you might think is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	natural is to say, well, when the engineers who signed
2	off all these AP600 reports and designs, did they
3	are they part of the process in making this change
4	from the AP600 to the AP1000, did they get to say,
5	okay, yes I agree that the AP600 design fits for the
6	AP1000?
7	I really don't know what the process is,
8	but I can't I don't think it makes sense to say
9	that we are going to use the same as the AP600,
10	because it seems to me new kinds of questions arise.
11	I think that is all I have to say.
12	CHAIRMAN KRESS: Does anybody want to
13	respond? It seems like a question to the Staff.
14	JOE: We have no comments at this time, I
15	think.
16	MS. STARRETT: Okay.
17	MS. STAREFOS: I think on behalf of the
18	Staff, we have had some stakeholder interface on
19	certain issues, and we intend to try to address the
20	concerns, and we plan to do that in a public forum.
21	MS. STARRETT: Okay.
22	MS. STAREFOS: And possibly a letter of
23	some sort.
24	CHAIRMAN KRESS: When will this public
25	forum be?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	MS. STAREFOS: A letter, a publicly
2	available letter to respond to some of these issues.
3	MEMBER WALLIS: Will the letter give
4	specific examples, or just generalities?
5	JOE: I think she has a general overall
6	concern, and she is giving specific examples to try to
7	point out what her overall concern is. So I think we
8	are going to try to address the overall concern.
9	MEMBER WALLIS: But not make specific
10	examples?
11	MEMBER SIEBER: Well, I don't think these
12	examples are totally accurate, but the concern is
13	still there. For example, steam pressure in the main
14	steam system is a function of what P average is.
15	I said the specific examples don't exactly
16	fit, when you upgrade, or up the power of reactor, the
17	steam pressure is a function of T average. And what
18	goes up is steam flow, so you have to size the line to
19	accommodate the flow.
20	Relief valve setpoints don't change, but
21	relieving capacity must change, because you have more
22	stored heat.
23	MR. CORLETTI: Sure.
24	MEMBER SIEBER: So even though we might
25	not be totally accurate in the way it is presented,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	the point is that you have to consider all these
2	things, as you go through the design process for the
3	auxiliary systems.
4	And so from that standpoint I accept and
5	understand the
6	MS. STARRETT: Okay, fine. The question
7	is a question about level of detail. In other words,
8	you can easily size a valve, and then you say, well,
9	what about the actual layout of the line, do I get the
10	flow I need.
11	MEMBER SIEBER: Thank you.
12	CHAIRMAN KRESS: Okay, I guess now would
13	be a good time for a break.
14	(Whereupon, the above-entitled matter
15	went off the record at 10:07 a.m. and
16	went back on the record at 10:30 a.m.)
17	CHAIRMAN KRESS: Let's come back to order
18	now. At this time, Warren, you are up.
19	MR. BAMFORD: We are going to pick up the
20	presentations again. My name is Warren Bamford, I'm
21	a consulting engineer here at Westinghouse, and I deal
22	with cracks, and almost everything.
23	I was involved in leak report break in the
24	original presentations to you folks back in 1983 and
25	'84, when we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 CHAIRMAN KRESS: I don't remember that. 2 MR. BAMFORD: concept of 3 CHAIRMAN KRESS: I don't remember that. 4 MR. BAMFORD: Well, I'm not going to go 5 over it right now. 6 So what we are going to talk about today 7 is leak-before break issues, relative to AP1000. The 8 concept that we are using in AP1000 is to use the same 9 is to use the piping design acceptance criteria, 10 instead of a set of detailed piping design and 11 analysis calculations. 12 It is the same approach that was already 13 used in ABWR, and also the system 80+. The AP1000 14 piping configurations are pretty similar to the AP600 15 configurations. The routings of the lines are the 16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, <tr< th=""><th></th><th>70</th></tr<>		70
3CHAIRMAN KRESS: I don't remember that.4MR. BAMFORD: Well, I'm not going to go5over it right now.6So what we are going to talk about today7is leak-before break issues, relative to AP1000. The8concept that we are using in AP1000 is to use the same9 is to use the piping design acceptance criteria,10instead of a set of detailed piping design and11analysis calculations.12It is the same approach that was already13used in ABWR, and also the system 80+. The AP100014piping configurations are pretty similar to the AP60015configurations. The routings of the lines are the16same, the piping size in some cases have changed.17MEMBER WALLIS: Which pipes are you18talking about?20MEMBER WALLIS: Which pipes are you21talking about? You are not talking about the main22pipes in the RCS? Do we get to find out, later on,23MR. CUMMINS: We are talking about the	1	CHAIRMAN KRESS: I don't remember that.
4MR. BAMFORD: Well, I'm not going to go5over it right now.6So what we are going to talk about today7is leak-before break issues, relative to AP1000. The8concept that we are using in AP1000 is to use the same9 is to use the piping design acceptance criteria,10instead of a set of detailed piping design and11analysis calculations.12It is the same approach that was already13used in ABWR, and also the system 80+. The AP100014piping configurations are pretty similar to the AP60015configurations. The routings of the lines are the16same, the piping size in some cases have changed.17MEMBER WALLIS: Which pipes are you18talking about?20MEMBER WALLIS: Which pipes are you21talking about? You are not talking about the main22pipes in the RCS? Do we get to find out, later on,23MR. CUMMINS: We are talking about the	2	MR. BAMFORD: concept of
5 over it right now. 6 So what we are going to talk about today 7 is leak-before break issues, relative to AP1000. The 8 concept that we are using in AP1000 is to use the same 9 is to use the piping design acceptance criteria, 10 instead of a set of detailed piping design and 11 analysis calculations. 12 It is the same approach that was already 13 used in ABWR, and also the system 80+. The AP1000 14 piping configurations are pretty similar to the AP600 15 configurations. The routings of the lines are the 16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the	3	CHAIRMAN KRESS: I don't remember that.
6 So what we are going to talk about today 7 is leak-before break issues, relative to AP1000. The 8 concept that we are using in AP1000 is to use the same 9 is to use the piping design acceptance criteria, 10 instead of a set of detailed piping design and 11 analysis calculations. 12 It is the same approach that was already 13 used in ABWR, and also the system 80+. The AP1000 14 piping configurations are pretty similar to the AP600 15 configurations. The routings of the lines are the 16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 WR. CUMMINS: We are talking about the	4	MR. BAMFORD: Well, I'm not going to go
 is leak-before break issues, relative to AP1000. The concept that we are using in AP1000 is to use the same is to use the piping design acceptance criteria, instead of a set of detailed piping design and analysis calculations. It is the same approach that was already used in ABWR, and also the system 80+. The AP1000 piping configurations are pretty similar to the AP600 configurations. The routings of the lines are the same, the piping size in some cases have changed. MEMBER WALLIS: Which pipes are you talking about? MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? MR. CUMMINS: We are talking about the 	5	over it right now.
 concept that we are using in AP1000 is to use the same is to use the piping design acceptance criteria, instead of a set of detailed piping design and analysis calculations. It is the same approach that was already used in ABWR, and also the system 80+. The AP1000 piping configurations are pretty similar to the AP600 configurations. The routings of the lines are the same, the piping size in some cases have changed. MEMBER WALLIS: Which pipes are you talking about? MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? MR. CUMMINS: We are talking about the 	6	So what we are going to talk about today
 9 is to use the piping design acceptance criteria, instead of a set of detailed piping design and analysis calculations. 12 It is the same approach that was already used in ABWR, and also the system 80+. The AP1000 piping configurations are pretty similar to the AP600 configurations. The routings of the lines are the same, the piping size in some cases have changed. MEMBER WALLIS: Which pipes are you talking about? MR. BAMFORD: I'm sorry? MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? MR. CUMMINS: We are talking about the 	7	is leak-before break issues, relative to AP1000. The
10 instead of a set of detailed piping design and analysis calculations. 12 It is the same approach that was already used in ABWR, and also the system 80+. The AP1000 piping configurations are pretty similar to the AP600 configurations. The routings of the lines are the same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? 24 MR. CUMMINS: We are talking about the	8	concept that we are using in AP1000 is to use the same
11analysis calculations.12It is the same approach that was already13used in ABWR, and also the system 80+. The AP100014piping configurations are pretty similar to the AP60015configurations. The routings of the lines are the16same, the piping size in some cases have changed.17MEMBER WALLIS: Which pipes are you18talking about?19MR. BAMFORD: I'm sorry?20MEMBER WALLIS: Which pipes are you21talking about? You are not talking about the main22pipes in the RCS? Do we get to find out, later on,23Which pipes these are?24MR. CUMMINS: We are talking about the	9	is to use the piping design acceptance criteria,
12It is the same approach that was already13used in ABWR, and also the system 80+. The AP100014piping configurations are pretty similar to the AP60015configurations. The routings of the lines are the16same, the piping size in some cases have changed.17MEMBER WALLIS: Which pipes are you18talking about?19MR. BAMFORD: I'm sorry?20MEMBER WALLIS: Which pipes are you21talking about? You are not talking about the main22pipes in the RCS? Do we get to find out, later on,23MR. CUMMINS: We are talking about the	10	instead of a set of detailed piping design and
 used in ABWR, and also the system 80+. The AP1000 piping configurations are pretty similar to the AP600 configurations. The routings of the lines are the same, the piping size in some cases have changed. MEMBER WALLIS: Which pipes are you talking about? MEMBER WALLIS: Which pipes are you talking about? I'm sorry? MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? MR. CUMMINS: We are talking about the 	11	analysis calculations.
14 piping configurations are pretty similar to the AP600 15 configurations. The routings of the lines are the 16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the	12	It is the same approach that was already
<pre>15 configurations. The routings of the lines are the 16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the</pre>	13	used in ABWR, and also the system 80+. The AP1000
<pre>16 same, the piping size in some cases have changed. 17 MEMBER WALLIS: Which pipes are you 18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the</pre>	14	piping configurations are pretty similar to the AP600
MEMBER WALLIS: Which pipes are you talking about? MR. BAMFORD: I'm sorry? MEMBER WALLIS: Which pipes are you talking about? You are not talking about the main pipes in the RCS? Do we get to find out, later on, which pipes these are? MR. CUMMINS: We are talking about the	15	configurations. The routings of the lines are the
<pre>18 talking about? 19 MR. BAMFORD: I'm sorry? 20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the</pre>	16	same, the piping size in some cases have changed.
19MR. BAMFORD: I'm sorry?20MEMBER WALLIS: Which pipes are you21talking about? You are not talking about the main22pipes in the RCS? Do we get to find out, later on,23which pipes these are?24MR. CUMMINS: We are talking about the	17	MEMBER WALLIS: Which pipes are you
20 MEMBER WALLIS: Which pipes are you 21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the	18	talking about?
21 talking about? You are not talking about the main 22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the	19	MR. BAMFORD: I'm sorry?
22 pipes in the RCS? Do we get to find out, later on, 23 which pipes these are? 24 MR. CUMMINS: We are talking about the	20	MEMBER WALLIS: Which pipes are you
<pre>23 which pipes these are? 24 MR. CUMMINS: We are talking about the</pre>	21	talking about? You are not talking about the main
24 MR. CUMMINS: We are talking about the	22	pipes in the RCS? Do we get to find out, later on,
	23	which pipes these are?
25 main pipes of the RCS.	24	MR. CUMMINS: We are talking about the
	25	main pipes of the RCS.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. BAMFORD: Well, what we are going to talk about, the final design and analysis design is completed during the COL stage, but we are going to talk about the concept of licensing leak-before break for the design because there are some important aspects of leak-before break that will have impact on the design.

8 So we are working through the design 9 aspects with the assumption that the piping systems 10 will be qualified to leak-before break, but the final 11 analyses will be confirmed during the COL stage, and 12 the final piping design and analysis is verified by 13 the ITAAC during construction, as I think you might 14 have heard before.

There are two items that I'm going to talk about, that have been identified relative to leakbefore break, and the numbers are shown there. I will try to explain what they are. They are really closely related.

20 related to stress Thev are due to 21 cracking, and there is a very long bullet here that 22 explains what this is. But what we are being asked to 23 do is to include, in the combined operating license 24 applicant commitment, to implement certain inspection 25 plans, evaluation criteria, and other measures that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7
	72
1	are imposed, or adopted by operating PWRs with
2	currently approved leak-before break applications.
3	We have incorporated the combined
4	operating license item in the AP1000 DCD as part of
5	the commitment to complete the leak-before break
б	evaluations.
7	MEMBER FORD: Warren, could you just
8	expand on that last bullet, the last sub-bullet? As
9	our conversation goes on, through your presentation,
10	it could well be that there will be other degradation
11	modes that need to be taken into account, which may
12	well need experimentation to resolve.
13	MR. BAMFORD: Right. And that is the
14	MEMBER FORD: How does
15	MR. BAMFORD: we are having it as a COL
16	item, because there not only may be other things like
17	that, that come along, but there may be other
18	operating plant experiences that come along, that we
19	need to take account of before we actually license one
20	of these.
21	And that is the reason for having some of
22	the actions done now, and some of the actions done at
23	the time of commercial operation.
24	MEMBER FORD: Even tough that might impact
25	on safety, rather than availability?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	MR. BAMFORD: I'm not entirely sure what
2	you mean.
3	MEMBER FORD: If it is just a leakage
4	question then that, presumably, would affect
5	availability rather than safety. If it affects
б	rupture of the pipe, then that would be safety.
7	MR. BAMFORD: Right.
8	MEMBER FORD: And is it appropriate, if
9	you have that situation, that it would be put off to
10	the COL? Should it not be attacked up front? Of
11	course that is a question which I'm not too sure
12	MR. BAMFORD: I will give you my opinion.
13	Putting it off to the COL would make sure that any
14	issues that come along, between now and then, could be
15	addressed before the plant would be licensed.
16	So I think that it is probably an
17	advantage to put it off. Now, we are covering all of
18	the issues that we believe exist right now. But we
19	know, from the experience of the last two or three
20	years in our operating plants, we have had some
21	surprises.
22	And the purpose of making sure, the
23	purpose of postponing, dealing with this in a final
24	way through the COL, is to make sure that any
25	surprises that come about, between now and then, we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	can deal with.
2	So we are trying to deal with everything
3	we know about, right now. And then anything that will
4	come along in the meantime, between now and 8 or 10
5	years, or whenever we would license one of these, we
6	should be able to deal with at that time.
7	MEMBER SIEBER: Let me ask the question,
8	the leak-before break for the reactor coolant system
9	applies to the current generation of operating
10	reactors.
11	But some of the elements have measured
12	leakage, and there is
13	(Phone interruption.)
14	MEMBER SIEBER: Let me continue on with my
15	question as we rearrange the furniture.
16	There is a oops.
17	(Phone interruption.)
18	MEMBER SIEBER: There is a standard way,
19	in a Westinghouse PWR, and other ones, to measure RCS
20	leakage, that is basically a water balance technique,
21	and you can look for other things.
22	If the way AP1000 operators are to measure
23	RCS leakages is the same as the current method, then
24	you can tell me that. If it is something new, or more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	MR. CUMMINS: The first way to measure RCS
2	leakage is pressurizer mass balance. It is just
3	traditional. I would say that in the AP1000 it is
4	easier to do a pressurizer mass balance, because we
5	don't have seal injections, and we don't have letdown.
6	So there is less variables in the
7	equation. After that our criteria for measuring
8	leakage is .5 GPM in an hour. We want to be able to
9	measure a leak of .5GPM in an hour.
10	MEMBER SIEBER: What would be the
11	uncertainty associated with that, do you know?
12	MR. CUMMINS: I think that we multiply and
13	you can tell me here, we multiply it by ten, right?
14	That is in his equation he assumes a safety factor of
15	10 for leakage.
16	So we have a very sensitive sump monitor,
17	and we have been careful to direct all of the drains,
18	etcetera, to the sump. So that is, probably, our
19	primary way to see a leakage.
20	And we also have, because of the really
21	the redundancy, or the diversity requirements for the
22	Staff, we have a sensitive radiation detector which is
23	supposed to be able to measure leakage, or increases
24	in leakage of that order of magnitude. So there are
25	three ways.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	MEMBER SIEBER: The secondary measurement,
2	which is radiation, another one is humidity, and
3	there is you look at a couple of different kinds of
4	radiation. There are also standard procedures.
5	I never really preferred measuring sump
6	level, because you have cooling water systems in
7	there, inside containment, which typically condense
8	moisture out of the containment environment, drip on
9	the floor, run to the sump, and it is usually far
10	greater than a leakage out of the reactor coolant
11	system.
12	So that masks the true measure of leakage.
13	Now, I take it, that you can just measure changes in
14	pressurizer level, and you don't need integrators on
15	let down, and seal injection, and leakoff, and that
16	kinds of stuff.
17	MR. CUMMINS: There is always some little
18	analysis of temperature changes
19	MEMBER SIEBER: Yes, that goes along with
20	it. But that is the only measurement that you have to
21	make, other than temperature and pressure?
22	MR. CUMMINS: Yes.
23	MEMBER SIEBER: Okay. That answers my
24	question, thank you.
25	MR. BAMFORD: All right, let me go on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	77
1	here. The second open item was a related item, and it
2	was the NRC that has requested that we do some
3	sensitivity studies to address uncertainties related
4	to PWSCC, and its impact.
5	Specifically they suggested that we, in
б	the way we make the leak rate calculations, that we
7	look at a possible model of crack morphology based on
8	TGSCC as an example.
9	The reason that they suggested this is
10	that we are unable to crack alloy 690, or 152, or 52,
11	so we don't have any cracks that are typical of stress
12	corrosion cracks.
13	So they have suggested that we use a
14	typical TGSCC crack in stainless steel, as a model for
15	that. And we are evaluating whether that would make
16	a good surrogate or not. And we are still having some
17	discussions with them about how to make those
18	calculations.
19	The net impact of such a thing is that the
20	more rough that the crack surface is, the less crack,
21	the less leakage you can get out of it for a different
22	crack size.
23	So we have had some discussions about
24	that, and I will try to go over some of the details of
25	that, in the next few slides.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We had a meeting with the NRC last Friday, and I think we had some good discussions. We each had some ideas about how to resolve these issues. We had some follow-up discussions at our plant, and I am going to try to discuss what the issues are, here, and talk a little bit about some of the ideas that we have for resolving them.

8 And my presentation is probably 15 9 minutes, or thereabouts, plus however many questions 10 you may have.

11 MEMBER WALLIS: When materials people work 12 on cracks, and they tell us something about morphology 13 of cracks, and all this stuff, and I have not yet seen 14 any capability, in the agency, to predict the leak 15 rate through these tortuous cracks.

And so it is possible that you could get cracks which are actually much bigger than you think, without much leakage.

19 MR. BAMFORD: Well. there are _ _ 20 Westinghouse has an internal program that we have 21 developed, that is based on a lot of experimental 22 data, and also there is a program that has been 23 written, which I believe was written by the NRC, 24 called PISEP, that does the same sort of thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

So there are programs around that are

(202) 234-4433

25

1

2

3

4

5

6

7

	79
1	useful to make such predictions. They have been
2	benchmarked against
3	MEMBER WALLIS: It would depend, a lot, on
4	the morphology of the crack, all these materials crack
5	differently, and you get these things which are all
б	very sort of wiggly, squiggly, and have all kinds of
7	branches going everywhere.
8	MR. BAMFORD: That is right, and the more
9	of that stuff you have, then the more tortuous the
10	path is for the leakage. And so
11	MEMBER WALLIS: But you could have a
12	material which is sort of riddled with cracks, and is
13	about to fail, but it doesn't leak very much.
14	MR. BAMFORD: Well, it is important to
15	mention that the materials that we have in the AP1000
16	are all very ductile, stainless steel, and the alloy
17	690, and 182 materials are all extremely ductile to
18	fracture.
19	The material is so tough that it really is
20	very difficult to even fail it. It fails it is not
21	even sensitive to the presence of a crack. It fails
22	in the same manner as if it would fail if there was a
23	notch.
24	So the fact that you have a sharp crack
25	doesn't seem to even affect these materials. So they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 are very, very high pressure tolerance. And the materials, and they were chosen just for that rease So the materials that we have in the 	on. che 32,
	che 32,
3 So the materials that we have in .	32,
4 present plants, are alloy 600, and alloy 82 and 1	to
5 which are all known to be sensitive or susceptible	
6 stress corrosion cracking.	
7 And because of that we have decided not	to
8 use those materials in AP1000, and also AP600.	And
9 what we have gone through is alloy 690, and 52, a	and
10 152, which are I will describe in a little bit	he
11 differences.	
12 But they basically have been shown, by	/ a
13 number of years of testing, and research, to be a	iot
14 susceptible to stress corrosion cracking.	
15 However, the recent cracking experience	in
16 alloy 600, and 182 and 82, has peaked the NRG	!'s
17 concern about these type materials, and whether	we
18 know enough about the new materials that we have	ave
19 adopted, to be sure that they won't crack in service	e.
20 And so that is what I want to talk abo	out
21 here, is what we know, and how we are going to try	to
22 resolve that concern. But the cracking that	las
23 happened in operating plants really isn't direct	ly
24 relevant to the AP1000.	
25 However, it does bring up the question	on,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	well how much do we know about the new materials. A
2	historical perspective on 690 was put together for me
3	by Bob Fuld, who is sitting right over there, and he
4	is going to answer any hard questions that I get.
5	But the history of Alloy 690 was that it
6	was adopted as a steam generator tube material, or
7	replacement material, as far back as 1986. The first
8	alloy 690 thermally treated material began service as
9	steam generator tube flux around that same time.
10	Since the initial replacement steam
11	generator startup at DC Cook, in May of '89, alloy 690
12	has been in service, and it is now in service at more
13	than 50 PWRs, and the number is growing, as more
14	plants replace their steam generators.
15	Applications of 690 have been expanded to
16	extend to steam generator divider plates, pressurizer
17	heater sleeve penetrations, the heater sleeve
18	penetrations, and the combustion engineering design,
19	and B&W designs are alloy 600, and they are being
20	replaced with alloy 690, so that is another place
21	where they are showing up.
22	They are also being alloy 690 is also
23	being used as a replacement for CRDM tubes in
24	replacement reactor vessel heads, that I'm sure you
25	are aware of now, and also small bore instrument

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	penetrations have are being replaced with 690.
2	MEMBER SIEBER: Let me ask a quick
3	question. When you talking about steam generators
4	divider plates, are you talking about tube support
5	plates, or the divider plate in the channel head, or
6	the wrapper, or what?
7	MR. BAMFORD: The divider in the channel
8	head. The newer designs have alloy 690 solid divider
9	plates now.
10	MEMBER SIEBER: Thank you.
11	MR. BAMFORD: Several of the CE designs
12	that have been repaired with 690 have been in service
13	since around 1989. So we have about 14 years of
14	operating experience at temperatures exceeding 620
15	degrees and nearly 16 years in pressurizer penetration
16	applications.
17	So we really we do have a fairly
18	extensive operating history with the alloy 690 base
19	metal. However, alloy 690 base metal is not really
20	used in the primary loop of the AP1000, or the AP600.
21	What we have is the equivalent weld, which
22	is alloy 52 and 152. They have a shorter period of
23	service, experience, in those materials. And the next
24	couple of slides are mainly intended to identify how
25	long these have been in service.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MEMBER FORD: Warren, a clarification.
2	You said 690 that 152 and 52 are?
3	MR. BAMFORD: In the piping systems the
4	place where we are using the anconeal materials is in
5	the safe end regions.
6	MEMBER FORD: So the piping could be,
7	what, 316L?
8	MR. BAMFORD: It is 304 or 316, stainless
9	steel.
10	MEMBER FORD: With 52, 152 welds?
11	MR. BAMFORD: And those welds would be the
12	welds between the pyritic vessels and the stainless
13	piping.
14	MEMBER SIEBER: The main piping
15	MR. BAMFORD: No, it is forged. The
16	reason for that is to avoid thermal issues that we
17	have had before.
18	So alloy 52 and 152 are welds that are
19	going to be used in the primary piping system, where
20	the system meets ferritic components like the reactor
21	vessel, for example.
22	And 52 and 152 have been used for a long
23	time as well, but not as long as the base metal, 690.
24	And you can see here, from the slide, that they have
25	been pretty widely deployed, and the material, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	chemistry is pretty similar to the chemistry of 690,
2	so we expect the same level of corrosion resistance
3	that we see at 690.
4	The earliest application was in combustion
5	engineering design pressurizers with partial
6	penetration welds in the repairs that were made in the
7	bottom head of pressurizers.
8	We also have alloy 52 and 152 welds in
9	some steam generator replacements. The first of those
10	were in North Anna 1, and DC Summer. They went into
11	service in around 1993.
12	So we've got nine and a half to ten years
13	of service, basically, with alloy 52 and 152 in PWRs.
14	MEMBER FORD: They are all relatively
15	small, is that correct?
16	MR. BAMFORD: I would say, in general that
17	is true, yes.
18	MR. FULD: Usually partial penetration as
19	opposed to your large
20	MEMBER FORD: Coming on to it, I think you
21	were talking about North Anna, and repair welds, which
22	there was crack, so that is why I bring
23	MR. FULD: You mean the CRDM?
24	MEMBER FORD: Correct.
25	MR. BAMFORD: Yes, the biggest

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	application, I guess, or the biggest case that I can
2	think of, where alloy 52 is being used is in the
3	repair that was done for VC Summer on their outlet
4	nozzle pipe weld, a couple of years ago.
5	What we have seen so far, in the field, as
6	well as in the lab, is that we are not able to crack
7	these materials. However, the materials have not been
8	used for a long time frame. So you could ask yourself,
9	well, does that mean it is going to crack in another
10	two years, or does that mean it is never going to
11	crack?
12	Well, you know, a comparison could be made
13	to alloy 600. When Alloy 600 went into service in
14	steam generators, cracking was found somewhere in the
15	three to four year period after it first went into
16	service.
17	So we have 15 years of service with 690,a
18	nd no cracking. So we know that we are a lot better,
19	and we think, the metallurgists among us think that we
20	are in great shape, but you never know for sure. And
21	so that is really the crux of the issue that we have
22	been discussing with the NRC, is that how do you
23	ensure that we don't use a material that might crack
24	some years down the line.
25	MEMBER FORD: Maybe I'm jumping onto what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	you will cover later on, but since you talked about 52
2	and 152, could you say something about their
3	weldability, ease of weldability?
4	MR. BAMFORD: Well, we know that the
5	weldability of 52 and 152 is not as good as it is for
6	82 and 182. And some of the cases where we have had
7	big repairs that have been made, the exposed surface
8	has been I will talk about the VC Summer repair,
9	for example.
10	The exposed surface to the water was 52
11	material, but the bulk of the weld was filled with
12	192, either 82 or 182, I'm not sure. It was probably
13	82, the automatic weld equivalent.
14	The bulk of the weld was filled with 82.
15	And the reason for that was that impurity buildup,
16	when you are welding 52 and 152, and you can end up
17	with cracking that will not allow you to meet the code
18	acceptance criteria. So there is some work that needs
19	to be done there.
20	And work is going on in that area.
21	MEMBER FORD: But what I'm hearing you say
22	is that for large structural nozzle welds the
23	experience base is not very high for 52 or 152?
24	MR. BAMFORD: As I said, up until now
25	that is true, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MEMBER FORD: And we know that those tw 2 alloys are prone to hot shorting, and not easy to 3 weld. 4 MR. FULD: We ran into quite a learning 5 curve with both in Pensacola and with the use of 6 the 52, even for a to the point where, for example 7 when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav 10 had to fight their way through that problem. So INCCO 11 as you may know, has done some modificational 12 chemistry. So there is a 52M which, ostensibly, was 13 supposed to eliminate these floaters, and things likk 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity in 17 grinding, as they make these things. I think right	o g f , d
 weld. MR. FULD: We ran into quite a learning curve with both in Pensacola and with the use of the 52, even for a to the point where, for example when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav had to fight their way through that problem. So INCO as you may know, has done some modificationa chemistry. So there is a 52M which, ostensibly, wa supposed to eliminate these floaters, and things lik that, that contribute to the problems with th welding. And they had to do a lot more activity in 	g f d
 MR. FULD: We ran into quite a learning curve with both in Pensacola and with the use of the 52, even for a to the point where, for example when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav had to fight their way through that problem. So INCO as you may know, has done some modificationa chemistry. So there is a 52M which, ostensibly, wa supposed to eliminate these floaters, and things lik that, that contribute to the problems with the welding. And they had to do a lot more activity in 	f d
 curve with both in Pensacola and with the use of the 52, even for a to the point where, for example when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav had to fight their way through that problem. So INCO 11 as you may know, has done some modificationa 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things like 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity in 	f d
 6 the 52, even for a to the point where, for examples 7 when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav 10 had to fight their way through that problem. So INCO 11 as you may know, has done some modificational 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things like 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity in 	d e
7 when Sema replaced the spanish units, they use 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav 10 had to fight their way through that problem. So INCC 11 as you may know, has done some modificationa 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things lik 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity i	d
 8 82/180. They just wanted to avoid the issue. 9 They wouldn't do that today, and they hav 10 had to fight their way through that problem. So INCO 11 as you may know, has done some modificational 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things like 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity is 	e
9 They wouldn't do that today, and they hav 10 had to fight their way through that problem. So INCO 11 as you may know, has done some modificational 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things like 14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity is	
10 had to fight their way through that problem. So INCO 11 as you may know, has done some modificationa 12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things lik 14 that, that contribute to the problems with th 15 welding. 16 And they had to do a lot more activity i	
11as you may know, has done some modificational12chemistry. So there is a 52M which, ostensibly, wa13supposed to eliminate these floaters, and things like14that, that contribute to the problems with the15welding.16And they had to do a lot more activity is	,
12 chemistry. So there is a 52M which, ostensibly, wa 13 supposed to eliminate these floaters, and things lik 14 that, that contribute to the problems with th 15 welding. 16 And they had to do a lot more activity i	
13 supposed to eliminate these floaters, and things lik 14 that, that contribute to the problems with th 15 welding. 16 And they had to do a lot more activity i	1
14 that, that contribute to the problems with the 15 welding. 16 And they had to do a lot more activity in	S
<pre>15 welding. 16 And they had to do a lot more activity i</pre>	e
16 And they had to do a lot more activity i	e
17 grinding, as they make these things. I think righ	n
	t
18 now the technology, and in terms of the application of	f
19 the technology, I think is a lot better than what i	t
20 was.	
But you are right, we don't have a lot o	f
22 heavy section weld	
23 MEMBER FORD: provide a qualit	У
24 assurance/quality control aspect during the initia	1
25 fabrication. Is this a topic that is high on the hi	t
25 fabrication. Is this a topic that is high on the hi	t

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	list of things that the Staff are looking at?
2	MR. BAMFORD: I think it is not a serious
3	issue, because it is not like we are going to put
4	things in service that have a lot of cracks in them,
5	because the inspections that are required for all of
6	these are much more intense than they ever were
7	before.
8	And one of the reasons we know about the
9	cracking that we see in 152 and 52, is because the
10	repairs didn't pass the inspection requirements. So
11	I think it is something that we need to be it is a
12	manufacturing issue, an issue that we need to be
13	watching.
14	But it is not an issue where we are going
15	to have a lot of degraded wells that are going to go
16	into service, because we have inspection requirements.
17	MEMBER FORD: Is this an item that is on
18	the Staff's evaluation list of things?
19	MS. STAREFOS: Let's ask Joe Sebrosky.
20	MEMBER FORD: I guess Joe is not there.
21	MR. SEBROSKY: Yes, this is Joe Sebrosky,
22	I'm a little away from the phone.
23	MR. BAMFORD: Well, let me explain what we
24	were just discussing. Peter Ford just asked the
25	question about weldability of 51 and 152. And the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	question that he raised, and he can correct me, is
2	there a concern at NRC about, or is this an issue that
3	the NRC is paying attention to.
4	He asked, since we know that 52 and 152 is
5	known for the ability to easily produce high cracks,
6	and also impurities that can create problems with the
7	weld, as they build up, is that a concern?
8	And I said that it is not a big concern to
9	me because it is something that would be found by
10	inspections that are regularly required, during
11	fabrication, as well as during operation.
12	And then Peter asked, well, is that a
13	concern that the NRC has. So it is you.
14	MR. ELLIOTT: This is Barry Elliott at NRC
15	headquarters. We are having difficulty of welding
16	(inaudible).
17	MR. BAMFORD: You mean 52?
18	MR. ELLIOTT: For 52. We had the ASME
19	code has a code on the welding of this material, and
20	we have endorsed that code case. Nothing else, as far
21	as the NRC Staff, has approved its use.
22	MS. STAREFOS: Thank you, Barry.
23	MR. BAMFORD: Okay, let me continue. So
24	what I was telling you is that we really have a lot of
25	information available on the stress cracking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	resistance of 52 and 152.
2	And we expect that laboratory testing will
3	continue during the time between the time that the
4	AP1000 is licensed, and when it goes into operation.
5	So we will have even more experience by the time the
6	plant goes into operation.
7	One of the things I wanted to mention, the
8	second bullet here, is that even specimens that we
9	pre-cracked and fatigued, that have sharp cracks, have
10	been shown not to propagate.
11	And we put a lot of the information and
12	details of these tests in the revision of our response
13	to RAI 251.004. So that is where to find more details
14	about that.
15	We talked about the repairs that have been
16	done to our reactor vessel nozzles, both at VC
17	Summers, and similar repairs are going on at
18	Ringhals, although they are being repaired with an
19	overlay, rather than a replacement of the butt weld,
20	at Ringhals.
21	We also used an overlay technique for a
22	repair of the CRDM tube degradation at North Anna unit
23	1, and that was approved in I don't think it is
24	2002, not 1992, that is a correction.
25	And that repair, which we called the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

91 1 imbedded flow repair, was generically approved in July 2 of this year, just recently. 3 And so, in conclusion, we feel that these 4 materials show excellent resistance to PWSCC, both in But we recognize the 5 lab and field experience. reservations that the NRC has about this, because we 6 7 haven't had 40 years of field experience with this material yet, or these materials. 8 We will get more lab and field experience 9 between now and the time the plant will be licensed. 10 11 And we feel confident that we still, that this 12 experience will validate our decision to use the material, and will have, probably, a total of 20 years 13 14 experience, at least, by that time. 15 So that is another reason why we put this issue as a COL issue. So it will be looked at, again, 16 before the plant actually -- before the first plant 17 goes into operation. 18 19 MEMBER FORD: Before you go on, Warren, 20 could I bring up a question that arose earlier this 21 week? You are going for the high chromium nickel 22 based alloys because of their admitted increase in 23 stress corrosion cracking resistance in the primary 24 side. However, those particular types of alloys 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	can exhibit embrittlement at lower temperatures, after
2	they have been exposed to hydrogenated water. During
3	an accident scenario you could have large amounts of
4	cold water coming from the CMT tanks.
5	Which, conceivably, could give rise to
б	thermal shock at these large alloy 52, 152 welds.
7	Therefore, what is the probability of those welds just
8	shearing off because of thermal shock, if the nozzles
9	get down to temperatures of below about 150?
10	Now, the phenomena has been known for a
11	long time. The question is, is it applicable to this
12	particular system? You are shoving in lots of cold
13	water, during an accident scenario, lots of cold
14	water. Could you get shearing off because of the
15	decrease in K1C, because of prior exposure to
16	hydrogenated water?
17	MR. BAMFORD: I think you have a good
18	question, there, Peter. We have, we know that these
19	materials have much reduced pressure toughness, and
20	that it occurs when we have the material exposed to a
21	low temperature with a hydrogen overpressure.
22	So in order to answer the question we have
23	to look at what the hydrogen pressure levels are
24	during an accident. And I'm not prepared to answer
25	that question right now, but I think you have a good

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	question, and we should pursue that.
2	The question actually also applies to
3	operating plants, because the alloy 182 and 82
4	materials have the same issues. And during a safety
5	injection event the same thing could happen there.
6	So it is not just an AP1000 issue. But
7	you do have a good question, and I think we should
8	just take the action to answer that. I don't think we
9	should answer it right now, we have to look into it.
10	MEMBER FORD: The reason why I'm trying to
11	single out the AP1000, as opposed to the other
12	operating plants, and I don't know the thermal-
13	hydraulic are not issues enough to know if I'm right
14	or not.
15	But these two alloys, 52 and 152, do have
16	very high chrome contents. And if I'm right, more
17	than 182, is that correct?
18	MR. FULD: Yes.
19	MEMBER FORD: So they do have a higher
20	chrome content, and in AP1000 the unique feature is
21	you have large amounts of cool water impacting into
22	lines which were hot legs, or the ADS lines, which
23	were prior exposed to high temperatures
24	MR. BAMFORD: And my sense is that it is
25	not a problem, but I don't want to slough it off

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	without looking into it. And I really think we should
2	look into it.
3	The fact that you might have a reduced
4	fracture toughness in the material doesn't necessarily
5	mean that is a problem, either. Because the issue
6	occurs for the time period that the pipe or the
7	material would be cold, that time frame could be
8	fairly short.
9	You would have to have a flaw in the
10	material at the same time, and the likelihood of all
11	those things happening is probably not very high, but
12	it is still something we should look for.
13	MEMBER FORD: Well, my next question
14	MR. SCHULZ: This doesn't mean a whole
15	lot, but I think your perception that AP1000 and AP600
16	are unique in their ability to inject cold water at
17	high pressure is not true.
18	Almost every operating plant has high
19	pressure safety injection pumps, if they are turned on
20	by the same kind of signal, to turn on the core makeup
21	tank, you will get cold water in the injection lines.
22	(Everyone speaks at the same time.)
23	MEMBER FORD: And I excuse myself, by a
24	lack of knowledge in the thermal-hydraulics. But it
25	is a fact that we have high chrome content nickel-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	based alloys, two of the ones that we are talking
2	about here, 52 and 152, known to be hard to weld.
3	Therefore you could have a preexisting
4	crack in the surface, which may have missed the
5	inspection procedure. So that is my question. A
6	question that comes out of it, that thought process,
7	is that fed into the thermal-hydraulics community, and
8	is that then fed into the PRA community?
9	MR. BAMFORD: We'll take that under
10	advisement.
11	MR. CORLETTI: Is the design information
12	that these welds will have design transients, is that
13	fed into is that the question?
14	MEMBER FORD: Yes.
15	MR. CORLETTI: Yes, we do. I mean, we do
16	identify our design transient.
17	MEMBER FORD: So you do have, in your
18	thermal-hydraulics codes, temperature variations
19	MR. CORLETTI: Yes, and we do have an
20	evaluation.
21	MEMBER FORD: Well, my next question is,
22	is that information fed up to the materials community
23	and say, is this a problem? I'm not hearing a crisp
24	answer yes. But I'm hearing more of an answer no.
25	MR. BAMFORD: Well, I think the answer is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	that we will look into that, because I don't think
2	that we have all the right people to answer that
3	question here right now.
4	But I think you have a good question, and
5	it is not just a question for AP1000, I think it is
6	for every plant.
7	MEMBER SIEBER: Is there a difference in
8	chemistry between 52 and 152?
9	MR. FULD: Yes.
10	MEMBER SIEBER: What is it?
11	MR. FULD: The chromium concentrations are
12	almost identical. Ferrite is a little bit lower, and
13	I believe it is the silica
14	MEMBER SIEBER: And that is what gives the
15	difference in weld characteristics?
16	MR. FULD: Well, 52 and 152 are pretty
17	similar, different than 82, 182. In 82 you have
18	about four percent chromium, higher than 182. Both of
19	those, even those weld.
20	Every time we do an inspection we take
21	weld samples, we find there are residual hot cracks in
22	those materials, as well. These chromium nickel based
23	don't weld like stainless. We can't throw a little
24	ferrite in there.
25	So we haven't done we have never seen,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	the only thing I can say unambiguously, we have never
2	clearly seen a relationship between existence of a hot
3	crack, and the initiation or propagation of PWSCC.
4	Peter's question is somewhat differently
5	directed. It posits that you may have what amounts to
6	a flaw, which has a structural weakness associated
7	with it, and all of a sudden there is this huge
8	thermal shock.
9	And the associated material can't
10	accommodate the plastic flow, and you get kind of a
11	failure. I talked to Bill, somewhat, about that. And
12	I can't reproduce the Bill Mills is in Venice, and
13	has done probably 80 percent of the work in this
14	particular phenomena.
15	And I can't recall I can't reproduce,
16	here, his arguments. But I don't think that they are
17	substantial concern for this. But I think Peter
18	Warren is right. I think we can summarize that, and
19	try to work with the T&H guys, to try to put a
20	boundary analysis on
21	MR. BAMFORD: There is an EPRI program
22	that is under way to look at this, as well, for all
23	plants, if you are not aware of it.
24	Let me try to summarize where I am here.
25	We feel that 52 and 152 have excellent resistance. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	recognize the reservations the NRC has. We are still
2	confident that the materials are good ones.
3	The AP1000 LBB systems are the same as
4	those designed for the AP600. As I mentioned earlier,
5	some of the line sizes have increased, some are
6	actually the same size. The line routings are the
7	same.
8	The stress analyses that are completed for
9	AP600 demonstrate the feasibility that the AP1000
10	piping systems can be designed to meet the bounding
11	analysis curve that have the leak-before break margins
12	built into them.
13	These are the lines that are designed for
14	LBB in the AP1000. Presented here for completeness.
15	One of the things that the NRC asked us was, well, how
16	close are these lines to being exactly the same. And
17	this is one of the examples that we showed them last
18	week.
19	This is the IRWST injection DVI line, and
20	you can see here that the AP600 is up at the top, and
21	the AP1000 is at the bottom. And you can see that in
22	some of the lines the sizes increase.
23	Like the one line here is went from 6
24	to 10. This one line to the reactor vessel stayed at
25	8 inches. So there are some changes, but you can look
	I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	at the two designs and you can see that they are very,
2	very similar.
3	And this is just an example to show you
4	how similar the line layouts are. The leak-before
5	break analysis is done for the AP1000 by developing a
6	set of bounding analysis curves that are based on the
7	pipe material, the pipe size.
8	And they build in the required leak-before
9	break margins, which are shown here, margin of 10 on
10	leak detection, 2 on flow size, and a margin of 1 on
11	load, using absolute summation of the loads
12	combinations.
13	The bounding analysis methods are detailed
14	in the DCD appendix 3B, and these methods and criteria
15	were reviewed by the Staff in great detail, at a
16	meeting here in Pittsburgh September a year ago.
17	MEMBER WALLIS: A margin of 10 on a leak
18	means you are ten times as accurate as you need to be?
19	MR. BAMFORD: No, the idea is, the concept
20	a simple view to me, of leak-before break is, that
21	if you have a piping system, you have a leak, you can
22	find the leak before you get a break.
23	And then the question is, what margins do
24	you need to impose. Well, when we do the leak-before

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	would yield on GPM, for example, we would use the size
2	flaw that would yield 10 GPM.
3	And then we would compare that flaw size
4	with the failure flaw size. So that is the way the
5	margin would come in, in that particular case.
6	MEMBER SIEBER: The margin of 1, the
7	bullet there, that looks to me like the absolute value
8	of the sum of frequencies in the seismic analysis. Is
9	that what that refers to? That is, in my view, that
10	is sort of artificial.
11	On the other hand there was a case where
12	the agency determined that summing the absolute values
13	was the way that they chose to correctly interpret it,
14	which is conservative, that is the conservative way to
15	do that. Thank you.
16	MR. BAMFORD: To resolve the issue about
17	stress corrosion cracking we have proposed to complete
18	a preliminary typing stress analysis for NRC review,
19	indicate some of the details of that to the NRC last
20	week, to the Staff.
21	We picked this one DVI-A piping analysis.
22	And if you want me to tell you what that means, I
23	can't tell you, but one of these guys can. But that
24	particular line, or system, was selected based on the
25	experience with the AP600.
I	·

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	It was one of the more difficult lines to
2	qualify, so we thought, well, that might be a good
3	line to use as a conservative example. It is a
4	complicated piping system, it has cases where some of
5	the piping sizes were changed.
6	It also contains the smallest pipe size
7	that was qualified for LBB. And it has some
8	subcompartment pressurization impacts if the line
9	would not meet the LBB criteria.
10	So that was another reason for choosing
11	that.
12	MR. CARUSO: I'm just curious about that.
13	Does that mean you are using leak-before break to
14	eliminate a number of subcompartment pressurization
15	analysis requirements in the containment?
16	MR. CORLETTI: Yes.
17	MR. CARUSO: Where else do you use that,
18	what sort of piping do you do that for the large
19	bore piping, the really large bore piping tubes?
20	MR. CORLETTI: To the piping system that
21	we identified as the LBB candidate system.
22	MR. CARUSO: So you don't do
23	subcompartment analysis for reactor
24	MR. CORLETTI: We do for the biggest pipe
25	that is in that loop that is not qualified for leak-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

102 1 before break. MR. CUMMINS: I think this is standard 2 3 practice. We can ask the Staff, but this is standard 4 practice. 5 MR. CORLETTI: So, for instance, the subcompartment that has a four inch line does not 6 7 qualify for leak-before break, and so we calculate the 8 pressurization from that pipe. This is an example of the 9 MR. BAMFORD: There are a number of different cases, 10 results. 11 different pipe sizes, and whatever. But I just chose 12 this one at random to show you what the results look like. 13 14 What we have here is this bounding curve. 15 What we are looking at is the maximum stress here, 16 versus the normal stress. What we are looking at here 17 is this curve incorporates the margins that are required for leak-before break on leak rate, flaw size 18 19 and stress. 20 And if we plot the stress results for the 21 piping system on this curve, and they are below this 22 line, or on this line, then the system qualifies for 23 leak-before break. 24 So you can see, in this particular case, 25 there wasn't any issue. The analyses that we are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	dealing with, right now, are preliminary. They are
2	not yet finalized and verified.
3	But we presented this just to give you an
4	idea of what the results look like for a typical
5	example.
6	MEMBER SIEBER: I have a question that
7	will force you back to slide 21. The you have a
8	list of systems designated for leak-before break. And
9	the principle of being able to detect and measure the
10	leak applies, in my mind, to all of the systems.
11	And when I go through the list all of them
12	are included in the boundary of what you would measure
13	for RCS leak rate, except main steam lines A and B.
14	How do you detect and measure the leak rate for steam
15	lines A and B, in order to apply leak-before break?
16	MR. CUMMINS: We have better experts than
17	me on this, and maybe the Staff can help me out here.
18	But the main steam lines are actually in a break
19	exclusion zone when they are outside of containment.
20	Inside of the containment you can measure
21	leakage and it looks like anything.
22	MEMBER SIEBER: It doesn't look like the
23	sump on the old E&D argument that says all the cooling
24	lines sweat and, therefore, have a tendency to mask
25	small amounts of leakage, I think still applies.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	MR. CUMMINS: Yes, I think that we would
2	claim that our sump can measure .5 GPM in an hour,
3	including the effects of condensation. And, in fact,
4	most the most likely form of a leak is some kind of
5	a steam leak, anyway.
6	And it just represents itself as
7	condensation.
8	MEMBER SIEBER: So you can't distinguish,
9	you can't tell the difference.
10	MR. CUMMINS: If you get condensation you
11	have to call it a leak if you get .5GPM. And, in
12	fact, the containment is air conditioned, if you will,
13	and it is fairly dry in normal operation.
14	But certainly when you first start off,
15	and when you open the containment for the first little
16	bit of time, until you establish a humidity level, or
17	a fairly steady humidity, you might have issues
18	associated with being able to detect the leak.
19	I think after you get in a steady state
20	humidity, then if you see a humidity change, or
21	condensation, what you are seeing is really a leak.
22	And you need to address that.
23	MEMBER SIEBER: Will the tech specs
24	address that?
25	MR. CUMMINS: Yes, I think we have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	MEMBER SIEBER: their tech specs do
2	not. Inside from the operator in order to interpret
3	radiation levels, changes in humidity, and so forth,
4	as indicators of leakage related to leak-before break
5	systems. Is that not the case? I think it is.
6	MR. CUMMINS: I'm not positive. I think
7	we actually have tech specs on measurement of some
8	leakage.
9	MR. CORLETTI: We do, we do have leak
10	detection. Our tech specs do cover that leak
11	detection.
12	MR. CUMMINS: So if you get .5GPM there,
13	you have to go investigate, regardless of where it
14	came from.
15	MEMBER SIEBER: That means shutdown.
16	MR. CORLETTI: Well, maybe.
17	MEMBER SIEBER: I don't know how else you
18	would
19	MR. CORLETTI: Based on what the tech
20	specs require, yes.
21	MR. CUMMINS: I think that where people
22	have found leakage off, in this steam generator
23	manways, and pressurizer manways, where they didn't
24	quite bolt it back correctly, really to go inspect
25	those you have to shutdown, because the radiation is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

106
such
MEMBER SIEBER: Yes, shutdown. I have a
set of standard tech specs, short distance from here,
and I will check that. In the meantime, do you have
your tech specs with you?
MR. CORLETTI: Yes, they are in chapter 16
in our DCD, and I'm going to give you
MEMBER SIEBER: I can compare it.
MR. CORLETTI: Yes, sure.
MEMBER SIEBER: I will compare that
tonight.
MR. CORLETTI: And that is how the Staff
has reviewed our tech specs, a very thorough review of
every deviation to the standard. And we have had to
have an explanation.
Because I think deviation based on a
design difference of your plant, and it is not, we
need a darn good reason.
MEMBER SIEBER: So you are comparing to
the Westinghouse standard tech specs for current
generation PWR?
MR. CORLETTI: The Staff has reviewed it
that way.
MR. CORLETTI: Does the Staff have a
document that documents that review?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

107 1 MR. SEGALA: The DSER, chapter 16, of the 2 DSER. I think I have an older 3 MEMBER SIEBER: 4 version of that. 5 MR. ZAVISCA: This is the only version we have. 6 7 That is the official MS. STAREFOS: version. 8 9 MEMBER SIEBER: What version is that? 10 (Everyone speaks at the same time.) 11 MEMBER SIEBER: Well, I have that. My 12 wife keeps trying to throw it away. IT has been sitting on the kitchen table for a few --13 14 (Laughter.) 15 MEMBER SIEBER: Thank you. MR. BAMFORD: This is a slide that talks 16 17 about our discussions with the NRC. The AP1000 piping systems are similar to the AP600, which has been 18 19 approved. And, by the way, has the same materials in 20 it. 21 The evaluation of one AP1000 system is 22 currently in progress, and I showed you an example of 23 some of the results there. Discussions continue as to 24 the best way to ensure that alloy 690, and 52, and 152, will be immune throughout the service lifetime of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1AP1000.2Any questions that you didn't already ask?3CHAIRMAN KRESS: I have an impression that4the AP1000 t-hot is higher than current operating5experience, is that correct?6MR. CORLETTI: That is not correct. That7is t minus 6-10. And operating plants are up to about86-30. They did have an AP600 with 600.9CHAIRMAN KRESS: Perhaps that is what I'm10remembering, is the delta there. Thank you.11MR. CORLETTI: The next presentation we12have Terry Schulz on some performance issues.13MR. SCHULZ: What I'm going to be trying14to talk about is kind of an overview of the AP100015relative to the so I'm going to talk a little bit16about the general characteristics, and things that we17have done to significantly improve the performance of18AP1000 relative to operating plants.19And then at the end of the discussion I
3CHAIRMAN KRESS: I have an impression that4the AP1000 t-hot is higher than current operating5experience, is that correct?6MR. CORLETTI: That is not correct. That7is t minus 6-10. And operating plants are up to about86-30. They did have an AP600 with 600.9CHAIRMAN KRESS: Perhaps that is what I'm10remembering, is the delta there. Thank you.11MR. CORLETTI: The next presentation we12have Terry Schulz on some performance issues.13MR. SCHULZ: What I'm going to be trying14to talk about is kind of an overview of the AP100015relative to the so I'm going to talk a little bit16about the general characteristics, and things that we17have done to significantly improve the performance of18AP1000 relative to operating plants.19And then at the end of the discussion I
 the AP1000 t-hot is higher than current operating experience, is that correct? MR. CORLETTI: That is not correct. That is t minus 6-10. And operating plants are up to about 6-30. They did have an AP600 with 600. CHAIRMAN KRESS: Perhaps that is what I'm remembering, is the delta there. Thank you. MR. CORLETTI: The next presentation we have Terry Schulz on some performance issues. MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants.
<pre>5 experience, is that correct? 6 MR. CORLETTI: That is not correct. That 7 is t minus 6-10. And operating plants are up to about 8 6-30. They did have an AP600 with 600. 9 CHAIRMAN KRESS: Perhaps that is what I'm 10 remembering, is the delta there. Thank you. 11 MR. CORLETTI: The next presentation we 12 have Terry Schulz on some performance issues. 13 MR. SCHULZ: What I'm going to be trying 14 to talk about is kind of an overview of the AP1000 15 relative to the so I'm going to talk a little bit 16 about the general characteristics, and things that we 17 have done to significantly improve the performance of 18 AP1000 relative to operating plants. 19 And then at the end of the discussion I</pre>
6 MR. CORLETTI: That is not correct. That 7 is t minus 6-10. And operating plants are up to about 8 6-30. They did have an AP600 with 600. 9 CHAIRMAN KRESS: Perhaps that is what I'm 10 remembering, is the delta there. Thank you. 11 MR. CORLETTI: The next presentation we 12 have Terry Schulz on some performance issues. 13 MR. SCHULZ: What I'm going to be trying 14 to talk about is kind of an overview of the AP1000 15 relative to the so I'm going to talk a little bit 16 about the general characteristics, and things that we 17 have done to significantly improve the performance of 18 AP1000 relative to operating plants. 19 And then at the end of the discussion I
 is t minus 6-10. And operating plants are up to about 6-30. They did have an AP600 with 600. CHAIRMAN KRESS: Perhaps that is what I'm remembering, is the delta there. Thank you. MR. CORLETTI: The next presentation we have Terry Schulz on some performance issues. MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
 6-30. They did have an AP600 with 600. CHAIRMAN KRESS: Perhaps that is what I'm remembering, is the delta there. Thank you. MR. CORLETTI: The next presentation we have Terry Schulz on some performance issues. MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
 9 CHAIRMAN KRESS: Perhaps that is what I'm 10 remembering, is the delta there. Thank you. 11 MR. CORLETTI: The next presentation we 12 have Terry Schulz on some performance issues. 13 MR. SCHULZ: What I'm going to be trying 14 to talk about is kind of an overview of the AP1000 15 relative to the so I'm going to talk a little bit 16 about the general characteristics, and things that we 17 have done to significantly improve the performance of 18 AP1000 relative to operating plants. 19 And then at the end of the discussion I
 remembering, is the delta there. Thank you. MR. CORLETTI: The next presentation we have Terry Schulz on some performance issues. MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
11MR. CORLETTI: The next presentation we12have Terry Schulz on some performance issues.13MR. SCHULZ: What I'm going to be trying14to talk about is kind of an overview of the AP100015relative to the so I'm going to talk a little bit16about the general characteristics, and things that we17have done to significantly improve the performance of18AP1000 relative to operating plants.19And then at the end of the discussion I
 have Terry Schulz on some performance issues. MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
 MR. SCHULZ: What I'm going to be trying to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
 to talk about is kind of an overview of the AP1000 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. And then at the end of the discussion I
15 relative to the so I'm going to talk a little bit about the general characteristics, and things that we have done to significantly improve the performance of AP1000 relative to operating plants. 19 And then at the end of the discussion I
16 about the general characteristics, and things that we 17 have done to significantly improve the performance of 18 AP1000 relative to operating plants. 19 And then at the end of the discussion I
 17 have done to significantly improve the performance of 18 AP1000 relative to operating plants. 19 And then at the end of the discussion I
18AP1000 relative to operating plants.19And then at the end of the discussion I
19 And then at the end of the discussion I
20 will be talking about some calculations we've done on
21 differential pressures across the sump screen.
22 So this first slide here is listing some
23 of the general differences in things that relate to
24 improvements relative to this issue.
25 The AP1000 has takes longer to get into

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

109 recirculation, anywhere from twice to four times as 1 2 long as operating plants. This is the benefit in that 3 things that will settle have longer times to settle 4 out debris. 5 The floodup levels are deeper, the screens are taller, they are located several feet off the 6 7 bottom of the floor, which means that stuff that does settle is less likely to somehow get at the screens. 8 9 The flow rates that are going through the 10 containment are much less than operating plants. And 11 part of that is the fact that we don't have pumps that 12 are sized for early on in the accident, running through the whole accident, just turning up old 13 14 containment. 15 Another part of it is we don't have a 16 system that is washinq down the whole spray 17 containment, that is adding also to the flow rates, through the sumps. That reduces the velocities and 18 19 the turbulence in the deep pool that we have, again makes it easier for things to settle. 20 21 We have the unique feature that we have 22 applied to our sump screens, and I will show you what 23 this is. But we have located a horizontal plate right

24 above the screen, that is located very close to the 25 top of the screen, so that debris that might somehow

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1be getting into the water cannot come into the water, right in front of the screen. It is physically precluded from happening.3This means we have some minimum distance, from the screen, that stuff might get in the water and, therefore, with our low velocity it is very hard for that stuff to get to the screens.8Another thing that we have done is to eliminate fiberglass insulation from anywhere where a LOCA blowdown inject can damage the insulation.11MEMBER SIEBER: I have a question about that. Does that mean that other places in containment contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe. Now, we've carefully routed those lines		110
3precluded from happening.4This means we have some minimum distance,5from the screen, that stuff might get in the water6and, therefore, with our low velocity it is very hard7for that stuff to get to the screens.8Another thing that we have done is to9eliminate fiberglass insulation from anywhere where a10LOCA blowdown inject can damage the insulation.11MEMBER SIEBER: I have a question about12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	1	be getting into the water cannot come into the water,
4This means we have some minimum distance,5from the screen, that stuff might get in the water6and, therefore, with our low velocity it is very hard7for that stuff to get to the screens.8Another thing that we have done is to9eliminate fiberglass insulation from anywhere where a10LOCA blowdown inject can damage the insulation.11MEMBER SIEBER: I have a question about12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	2	right in front of the screen. It is physically
from the screen, that stuff might get in the water and, therefore, with our low velocity it is very hard for that stuff to get to the screens. Another thing that we have done is to eliminate fiberglass insulation from anywhere where a LOCA blowdown inject can damage the insulation. LOCA blowdown inject can damage the insulation. MEMBER SIEBER: I have a question about that. Does that mean that other places in containment contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then? MR. SCHULZ: That is correct. MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	3	precluded from happening.
 and, therefore, with our low velocity it is very hard for that stuff to get to the screens. Another thing that we have done is to eliminate fiberglass insulation from anywhere where a LOCA blowdown inject can damage the insulation. MEMBER SIEBER: I have a question about that. Does that mean that other places in containment contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then? MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe. 	4	This means we have some minimum distance,
7for that stuff to get to the screens.8Another thing that we have done is to9eliminate fiberglass insulation from anywhere where a10LOCA blowdown inject can damage the insulation.11MEMBER SIEBER: I have a question about12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	5	from the screen, that stuff might get in the water
 Another thing that we have done is to eliminate fiberglass insulation from anywhere where a LOCA blowdown inject can damage the insulation. MEMBER SIEBER: I have a question about that. Does that mean that other places in containment contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then? MR. SCHULZ: That is correct. MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe. 	6	and, therefore, with our low velocity it is very hard
 eliminate fiberglass insulation from anywhere where a LOCA blowdown inject can damage the insulation. MEMBER SIEBER: I have a question about that. Does that mean that other places in containment contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then? MR. SCHULZ: That is correct. MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe. 	7	for that stuff to get to the screens.
10LOCA blowdown inject can damage the insulation.11MEMBER SIEBER: I have a question about12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	8	Another thing that we have done is to
11MEMBER SIEBER: I have a question about12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	9	eliminate fiberglass insulation from anywhere where a
12that. Does that mean that other places in containment13contain fibers, insulation, of one sort or another,14and that you are only using mere insulation in the15blowdown damage, then?16MR. SCHULZ: That is correct.17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	10	LOCA blowdown inject can damage the insulation.
 contain fibers, insulation, of one sort or another, and that you are only using mere insulation in the blowdown damage, then? MR. SCHULZ: That is correct. MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe. 	11	MEMBER SIEBER: I have a question about
14 and that you are only using mere insulation in the 15 blowdown damage, then? 16 MR. SCHULZ: That is correct. 17 MEMBER SIEBER: So you haven't taken the 18 fibrous material out of containment? 19 MR. SCHULZ: We've taken probably 90, 95 20 percent of it out. But we have not taken all of it 21 out. One of the reasons why we still have some is 22 because we bring chilled water into the containment 23 for our fan coolers. And that insulation doesn't 24 work, to try to keep sweating off the cold pipe.	12	that. Does that mean that other places in containment
15 blowdown damage, then? MR. SCHULZ: That is correct. MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	13	contain fibers, insulation, of one sort or another,
MR. SCHULZ: That is correct. MEMBER SIEBER: So you haven't taken the fibrous material out of containment? MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	14	and that you are only using mere insulation in the
17MEMBER SIEBER: So you haven't taken the18fibrous material out of containment?19MR. SCHULZ: We've taken probably 90, 9520percent of it out. But we have not taken all of it21out. One of the reasons why we still have some is22because we bring chilled water into the containment23for our fan coolers. And that insulation doesn't24work, to try to keep sweating off the cold pipe.	15	blowdown damage, then?
18 fibrous material out of containment? 19 MR. SCHULZ: We've taken probably 90, 95 20 percent of it out. But we have not taken all of it 21 out. One of the reasons why we still have some is 22 because we bring chilled water into the containment 23 for our fan coolers. And that insulation doesn't 24 work, to try to keep sweating off the cold pipe.	16	MR. SCHULZ: That is correct.
MR. SCHULZ: We've taken probably 90, 95 percent of it out. But we have not taken all of it out. One of the reasons why we still have some is because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	17	MEMBER SIEBER: So you haven't taken the
20 percent of it out. But we have not taken all of it 21 out. One of the reasons why we still have some is 22 because we bring chilled water into the containment 23 for our fan coolers. And that insulation doesn't 24 work, to try to keep sweating off the cold pipe.	18	fibrous material out of containment?
21 out. One of the reasons why we still have some is 22 because we bring chilled water into the containment 23 for our fan coolers. And that insulation doesn't 24 work, to try to keep sweating off the cold pipe.	19	MR. SCHULZ: We've taken probably 90, 95
because we bring chilled water into the containment for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	20	percent of it out. But we have not taken all of it
for our fan coolers. And that insulation doesn't work, to try to keep sweating off the cold pipe.	21	out. One of the reasons why we still have some is
24 work, to try to keep sweating off the cold pipe.	22	because we bring chilled water into the containment
	23	for our fan coolers. And that insulation doesn't
25 Now, we've carefully routed those lines	24	work, to try to keep sweating off the cold pipe.
	25	Now, we've carefully routed those lines

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	close to the containment wall to keep them as far away
2	from blowdown as possible. But that is one example
3	where in order to achieve the function, insulation
4	function that we wanted to do, couldn't really use the
5	metal insulation.
6	MEMBER SIEBER: On the other hand, current
7	plants don't insulate them at all, they just rely on
8	them to rust away, right?
9	MR. SCHULZ: We are trying to do a better
10	plant design. And most of the plants don't bring
11	chilled water in. They will bring pump cooling water,
12	which can be cold, but our water
13	MEMBER SIEBER: Well, it is colder than
14	containment.
15	MR. SCHULZ: Yes, especially with a humid
16	containment.
17	MEMBER SIEBER: condensation
18	MR. ANDREYCHECK: Some of the pipes I've
19	seen have their chilled water insulation with fibrous
20	insulation inside containment.
21	MEMBER SIEBER: Some do.
22	MR. ANDREYCHECK: Some do, not all. But
23	
24	MEMBER SIEBER: Well, more don't than do,
25	I think.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	112
1	MR. ANDREYCHECK: I won't argue numbers
2	but I have seen some. The other thing that is
3	important in the AP1000 side is that it doesn't use
4	calcium does not use that, we know that from the
5	NRC researchers, particularly troublesome material.
6	MR. CARUSO: Do you route those lines in
7	such a way that they are not subjected to mechanical
8	damage during normal operation, or refueling? I mean,
9	a lot of these lines they get very mushy over the
10	years, because people step on them, or they bang into
11	them, because people are just in the area.
12	If you locate them in a place where they
13	are inaccessible, they just sit there. But if they
14	are close to where people work or move, they get soft,
15	and they get mushy, and if they get wet they just
16	MR. SCHULZ: It sounds like you are
17	talking about the silicate insulation, and we don't
18	have any of that.
19	MR. ANDREYCHECK: That was the fiberglass
20	insulation. That is why we put a plastic bundle like
21	NUCOM, which NUCOM has a plastic tag inside a metal
22	sheet, also, which gives you another level of
23	protection
24	(Everyone speaks at the same time.)
25	MR. ANDREYCHECK: like you put in your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1attic, has metal shielding around it, does have a2tendency to become broken down, if stepped on, or3damage to the impact things like that.4MEMBER SIEBER: These lines are moderate5sized lines, ring header, in a standard plant, they6are ring header around the outside of the containment,7which means they don't get a lot of stepping damage.8MR. CUMMINS: Very similar to AP1000.9And they are relatively high elevation, they are at10the top of the steam generator level, so11MR. CARUSO: And they are wrapped in12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK: I don't have the14specifics on the design on the insulation.15MR. CUMMINS: I think the standard in the16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ: One other general20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle24in our environment, very readily.	Í	113
3damage to the impact things like that.4MEMBER SIEBER: These lines are moderate5sized lines, ring header, in a standard plant, they6are ring header around the outside of the containment,7which means they don't get a lot of stepping damage.8MR. CUMMINS: Very similar to AP1000.9And they are relatively high elevation, they are at10the top of the steam generator level, so11MR. CARUSO: And they are wrapped in12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK: I don't have the14specifics on the design on the insulation.15MR. CUMMINS: I think the standard in the16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ: One other general20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22square foot, that if it becomes detached, will settle	1	attic, has metal shielding around it, does have a
4 MEMBER SIEBER: These lines are moderate 5 sized lines, ring header, in a standard plant, they 6 are ring header around the outside of the containment, 7 which means they don't get a lot of stepping damage. 8 MR. CUMMINS: Very similar to AP1000. 9 And they are relatively high elevation, they are at 10 the top of the steam generator level, so 11 MR. CARUSO: And they are wrapped in 12 stainless, they are metal encapsulated in some way? 13 MR. ANDREYCHECK: I don't have the 14 specifics on the design on the insulation. 15 MR. CUMMINS: I think the standard in the 16 spec the standard is not encapsulated, but an outer 17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 square foot, that if it becomes detached, will settle	2	tendency to become broken down, if stepped on, or
sized lines, ring header, in a standard plant, they are ring header around the outside of the containment, which means they don't get a lot of stepping damage. MR. CUMMINS: Very similar to AP1000. And they are relatively high elevation, they are at the top of the steam generator level, so MR. CARUSO: And they are wrapped in stainless, they are metal encapsulated in some way? MR. ANDREYCHECK: I don't have the specifics on the design on the insulation. MR. CUMMINS: I think the standard in the spect of either stainless steel or aluminum. Stainless steel or aluminum are usually what is used. MR. SCHULZ: One other general characteristic that we have, is a little different in AP1000, is the coating used inside containment. We have specified a high density coating, 100 pounds per square foot, that if it becomes detached, will settle	3	damage to the impact things like that.
are ring header around the outside of the containment, which means they don't get a lot of stepping damage. MR. CUMMINS: Very similar to AP1000. And they are relatively high elevation, they are at the top of the steam generator level, so MR. CARUSO: And they are wrapped in stainless, they are metal encapsulated in some way? MR. ANDREYCHECK: I don't have the specifics on the design on the insulation. MR. CUMMINS: I think the standard in the spec the standard is not encapsulated, but an outer sheet of either stainless steel or aluminum. Stainless steel or aluminum are usually what is used. MR. SCHULZ: One other general characteristic that we have, is a little different in AP1000, is the coating used inside containment. We have specified a high density coating, 100 pounds per square foot, that if it becomes detached, will settle	4	MEMBER SIEBER: These lines are moderate
7 which means they don't get a lot of stepping damage. 8 MR. CUMMINS: Very similar to AP1000. 9 And they are relatively high elevation, they are at 10 the top of the steam generator level, so 11 MR. CARUSO: And they are wrapped in 12 stainless, they are metal encapsulated in some way? 13 MR. ANDREYCHECK: I don't have the 14 specifics on the design on the insulation. 15 MR. CUMMINS: I think the standard in the 16 spec the standard is not encapsulated, but an outer 17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	5	sized lines, ring header, in a standard plant, they
8MR. CUMMINS:Very similar to AP1000.9And they are relatively high elevation, they are at10the top of the steam generator level, so11MR. CARUSO:12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK:14specifics on the design on the insulation.15MR. CUMMINS:16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ:20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle	6	are ring header around the outside of the containment,
9 And they are relatively high elevation, they are at 10 the top of the steam generator level, so 11 MR. CARUSO: And they are wrapped in 12 stainless, they are metal encapsulated in some way? 13 MR. ANDREYCHECK: I don't have the 14 specifics on the design on the insulation. 15 MR. CUMMINS: I think the standard in the 16 spec the standard is not encapsulated, but an outer 17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	7	which means they don't get a lot of stepping damage.
10the top of the steam generator level, so11MR. CARUSO: And they are wrapped in12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK: I don't have the14specifics on the design on the insulation.15MR. CUMMINS: I think the standard in the16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ: One other general20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle	8	MR. CUMMINS: Very similar to AP1000.
11MR. CARUSO: And they are wrapped in12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK: I don't have the14specifics on the design on the insulation.15MR. CUMMINS: I think the standard in the16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ: One other general20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle	9	And they are relatively high elevation, they are at
12stainless, they are metal encapsulated in some way?13MR. ANDREYCHECK: I don't have the14specifics on the design on the insulation.15MR. CUMMINS: I think the standard in the16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ: One other general20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle	10	the top of the steam generator level, so
13MR. ANDREYCHECK:I don't have the14specifics on the design on the insulation.15MR. CUMMINS:16spec the standard is not encapsulated, but an outer17sheet of either stainless steel or aluminum.18Stainless steel or aluminum are usually what is used.19MR. SCHULZ:20characteristic that we have, is a little different in21AP1000, is the coating used inside containment. We22have specified a high density coating, 100 pounds per23square foot, that if it becomes detached, will settle	11	MR. CARUSO: And they are wrapped in
14 specifics on the design on the insulation. 15 MR. CUMMINS: I think the standard in the 16 spec the standard is not encapsulated, but an outer 17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	12	stainless, they are metal encapsulated in some way?
MR. CUMMINS: I think the standard in the spec the standard is not encapsulated, but an outer sheet of either stainless steel or aluminum. Stainless steel or aluminum are usually what is used. MR. SCHULZ: One other general characteristic that we have, is a little different in AP1000, is the coating used inside containment. We have specified a high density coating, 100 pounds per square foot, that if it becomes detached, will settle	13	MR. ANDREYCHECK: I don't have the
<pre>16 spec the standard is not encapsulated, but an outer 17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle</pre>	14	specifics on the design on the insulation.
17 sheet of either stainless steel or aluminum. 18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	15	MR. CUMMINS: I think the standard in the
18 Stainless steel or aluminum are usually what is used. 19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	16	spec the standard is not encapsulated, but an outer
19 MR. SCHULZ: One other general 20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	17	sheet of either stainless steel or aluminum.
20 characteristic that we have, is a little different in 21 AP1000, is the coating used inside containment. We 22 have specified a high density coating, 100 pounds per 23 square foot, that if it becomes detached, will settle	18	Stainless steel or aluminum are usually what is used.
AP1000, is the coating used inside containment. We have specified a high density coating, 100 pounds per square foot, that if it becomes detached, will settle	19	MR. SCHULZ: One other general
have specified a high density coating, 100 pounds per square foot, that if it becomes detached, will settle	20	characteristic that we have, is a little different in
23 square foot, that if it becomes detached, will settle	21	AP1000, is the coating used inside containment. We
	22	have specified a high density coating, 100 pounds per
24 in our environment, very readily.	23	square foot, that if it becomes detached, will settle
П	24	in our environment, very readily.
25 MR. CARUSO: And that is going to apply to	25	MR. CARUSO: And that is going to apply to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

114 1 all the components, like the crane, so that every 2 component supplier is going to have to use this 3 particular type of coating, and not their standard 4 coatings? 5 MR. SCHULZ: I don't think that is the way it is specified, no. It is the bulk of the walls, 6 7 structural members. Something like a crane I wouldn't expect doing that. But it is not going to be imposed 8 9 on everything inside containment. We will be trying to minimize the use of 10 11 coatings, in general, using ratings, and things like 12 that, to minimize the use of coatings where it is practical. 13 14 And where we have structural steel, 15 concrete walls, that will be specified to be high density coating, which actually will be a safety 16 classified environmentally qualified material, but 17 will not be required to be applied and inspected in 18 19 accordance with safety QA requirements. 20 Because if it becomes detached, it is 21 okay. 22 MEMBER SIEBER: So that is what you mean 23 by non-safety coatings, that appendix B doesn't apply, 24 you don't have to worry about how thick or thin it is, or whether it adheres or not. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. SCHULZ: Now, we are trying to -- we 2 have a lot of input from the utilities, and they don't mind -- but the real onerous job on their part is the 3 4 initial installation, and in particular the maintenance of that, and discovering that there is a 5 little patch here, now they have to fix it, they have 6 7 to shut down, and all of that.

8 So they encouraged us to find a better 9 solution. So we think that buying good paint is 10 environmentally qualified, so we expect it to stay in 11 place, but we can't guarantee it, so we evaluate the 12 plant, so what happens if it doesn't. And we think we 13 have a good --

MR. CARUSO: And they are going to accept, as part of their licensing basis, the fact that they can't ever repaint inside containment for 60 years, unless they use 100 pound per --

MR. SCHULZ: Yes.

MEMBER SIEBER: That is not the big problem. I have to think about that, that is a pretty low standard set. But I guess our concern is whether it has a safety implication or not, and I will think about it.

24 MR. CUMMINS: Terry is going to tell you 25 it doesn't.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

18

	116
1	MR. SCHULZ: on AP600, same approach.
2	The next couple of slides are intended to give you a
3	physical, or in some cases remind you the physical
4	situation inside containment, and also to show you a
5	bit more where the screens are, and how these plates
6	are located.
7	This is the flowup picture that we are
8	looking at, and
9	MEMBER WALLIS: I'm having trouble with
10	these two figures, because that shows a big pool
11	across the bottom of the whole containment. In fact
12	they are separate rooms down there.
13	MR. SCHULZ: They do connect, though.
14	MEMBER WALLIS: They have to somehow
15	interconnect the IRWST, the real thing doesn't show
16	any gutters at all. There are a lot of things that
17	are in the cartoon which are hard to relate to the
18	real picture.
19	MR. SCHULZ: That is right. And the
20	reason that I made the cartoon is so that you can see
21	all the stuff that is in the plant, which if you are
22	looking at a general arrangement drawing the gutters
23	would show up, not because it is not there, it is
24	because it is too small.
25	MEMBER WALLIS: Then there is the screen

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	that we are going to talk about, and it isn't shown in
2	the real plant, at all. Where is that?
3	MR. SCHULZ: Let me start here, inside the
4	IRWST. This is a plant view, obviously. The IRWST is
5	defined in this area, you have the passive RHR, the
6	two spargers.
7	Here is one of the screens for the
8	injection line out of IRWST. These are the injection
9	screens, not the recirc screens. And the next figure
10	shows a plan view, there is a pit underneath where the
11	pipe comes out that goes to the IRWST injection.
12	And above that is the screen. Now, this
13	is inside the IRWST.
14	MEMBER WALLIS: They are different screens
15	we are talking about, then.
16	MR. SCHULZ: We don't think these screens
17	are as at-risk in getting debris on them. They are
18	inside the IRWST, there is limited access to the
19	IRWST.
20	Yes, there can be some stuff in the IRWST.
21	But we think, for the most part, if there are some
22	particles or debris, it will sit on the floor of the
23	tank and will stay there.
24	MEMBER SIEBER: Let me just get in my mind
25	the general plant arrangement. The top of the IRWST

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	is actually the operating deck, correct?
2	MR. CUMMINS: Yes.
3	MEMBER SIEBER: But it is not a continuous
4	deck, all the way across, in the area of the reactor
5	it is open, right?
6	MR. CUMMINS: Right. There is a refueling
7	pool. So but the over the IRWST there is a
8	continuous floor. And one of the borders of the IRWST
9	is the refueling pool wall.
10	MEMBER SIEBER: And do they connect?
11	MR. CUMMINS: Yes.
12	MEMBER SIEBER: So garbage that is in the
13	refueling cavity, they can connect?
14	MR. SCHULZ: The IRWST overflows into the
15	refueling pool, so they connect in that sense. And it
16	drains into the refueling pool, that go back into the
17	bulk of the containment.
18	MEMBER SIEBER: And the screen that you
19	are talking about, for the IRWST, is in the bottom of
20	that tank, which is shown on slide 70?
21	MR. SCHULZ: Yes, it is also shown in the
22	slide right here.
23	MEMBER WALLIS: The gutter collects all
24	the junk, which feeds directly into the IRWST?
25	MR. SCHULZ: And it goes to a four inch

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	pipe. So the connection from the gutter to the tank
2	is through two pipes that are not that big.
3	MEMBER WALLIS: Isn't this where you are
4	likely to get blockage?
5	MR. SCHULZ: I don't think so.
6	MEMBER WALLIS: All this paint and stuff
7	from the containment washing down into the gutter.
8	MR. SCHULZ: The gutter doesn't have to
9	work in this situation. Were you worried about the
10	gutter bringing debris into the tank, or the gutter
11	flow?
12	MEMBER WALLIS: Well, both.
13	MR. SCHULZ: The gutter flooding has no
14	safety significance.
15	MEMBER SIEBER: In fact it would be an
16	advantage, right?
17	(Everyone speaks at the same time.)
18	MR. SCHULZ: Now, the debris is limited in
19	size by the pipe. There are only two pipes.
20	MR. CARUSO: But it brings lots and lots
21	of little paint chips.
22	MR. SCHULZ: The paint it is likely to
23	bring is the paint on the containment, and it will
24	sink very rapidly.
25	MR. CUMMINS: The paint in the containment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	vessel is safety related both inside and outside, not
2	because of this issue, but because of the other issues
3	of heat transfer, and so the containment vessel paint
4	is safety related, including its application.
5	MEMBER SIEBER: And that is the bulk of
6	the paint that is in there. You are saying it sinks,
7	but I think in discussing AP600 we concluded that
8	organic zinc with hot water will actually react with
9	that, and will probably produce gases.
10	So the organic zinc paint pool is going to
11	be bubbling, and probably lifting stuff up by the
12	buoyancy of the bubbles attached to the paint, and it
13	is not going to be just a static stuff laying ont e
14	bottom of the IRWST.
15	MR. ANDREYCHECK: I have not seen the
16	energetic chemical reactions that you described.
17	MEMBER WALLIS: Well, it takes a I
18	guess my colleague Dr. Powers assured me that this
19	zinc paint will tend to react and produce gases.
20	MR. ANDREYCHECK: It is true that the zinc
21	will react with boric acid solution, generally
22	hydrogen.
23	MEMBER WALLIS: Right, hydrogen makes
24	bubbles which don't escape from these paint chips,
25	they stick to them, and they make the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	MR. ANDREYCHECK: Well, first of all, zinc
2	doesn't stick to
3	MEMBER WALLIS: Well, it does on some
4	MR. ANDREYCHECK: Not zinc, zinc doesn't
5	fail that way, zinc
6	(Everyone speaks at the same time.)
7	MR. ANDREYCHECK: And because it is powder
8	it will tend to reside on the surface of the
9	MEMBER WALLIS: I think it will go up and
10	down.
11	MR. ANDREYCHECK: It depends on the
12	circumstances, it can actually penetrate
13	MEMBER WALLIS: That is right. It doesn't
14	take much of a bubble to lift the particle
15	MR. SCHULZ: I think we are forgetting
16	that that paint that we are talking about is safety
17	related in terms of its application, its design
18	MEMBER WALLIS: Well, the question is,
19	what is its reaction with the boric acid, does it make
20	bubbles? If it does, then you can no longer think
21	that they are just sinking.
22	MR. SCHULZ: It is still attached, it
23	doesn't become
24	MEMBER WALLIS: It is floating down into
25	the IRWST.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	(Everyone speaks at the same time.)
2	MR. SCHULZ: I was starting to talk about
3	the bulk of the paint in containment, but I had not
4	mentioned that the paint on the inside of the
5	containment surface is an inorganic zinc, is safety
6	related, including the material, its application, and
7	inspection
8	MEMBER WALLIS: And it is guaranteed not
9	to come off, is that it?
10	MR. CARUSO: What about the paint on the
11	crane, the polar crane? Where is that going to go?
12	MR. SCHULZ: Depends on where the crane is
13	located. Some of it may get down into this gutter.
14	MEMBER SIEBER: But that doesn't have the
15	zinc problem, right?
16	MR. SCHULZ: That is right, it does not
17	have the zinc problem.
18	MR. CARUSO: But that is also not going to
19	be 100 pound per square foot paint. It will be
20	whatever the
21	MR. CORLETTI: The majority of that crane
22	is structural steel, which will be painted in
23	accordance with the
24	MR. CARUSO: It will be painted by the COL
25	holder, or will it be painted by the crane

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	manufacturer, or will deliver a completed crane to the
2	site, and have it lifted in place by your planning
3	thing here it says, okay, we put the rail in place,
4	then we will put the crane
5	MEMBER SIEBER: It is painted before it
6	gets there.
7	MR. SCHULZ: There is going to be a lot of
8	stuff that is going to be built in factories, okay?
9	You've heard modules, okay? And a lot of people are
10	going to have to have this paint to settle out with
11	the cement particles where the steel
12	MEMBER SIEBER: I take it containment is
13	just one single fire here, right? It is not
14	compartmentalized for fire?
15	MR. CUMMINS: Well, we've designed for
16	fire analysis purposes into zones, and we do do
17	analysis of the fires in zones. But it is one single
18	fire area.
19	MEMBER SIEBER: And so you really don't
20	need fire barriers for penetrations, right?
21	MR. CUMMINS: As a general rule we haven't
22	provided fire barriers. But where we have, we have an
23	objective of keeping division of A and C separate from
24	B and D, in the containment, just because it is
25	redundant operating device.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	So A and C goes to one DVI train, and B
2	and D go to the other. And so wherever, in this one
3	place in particular, where they enter the containment,
4	we put fire barriers around two of the divisions, so
5	that they don't interact with the other two.
6	MEMBER SIEBER: And what are they, what
7	are those fire barriers made out of, thermal
8	(Everyone speaks at the same time.)
9	MR. CUMMINS: No, it is a steel plate
10	composite with concrete, cement in between, and there
11	are some fibers to try to pull the things together,
12	but that is about it.
13	MEMBER SIEBER: Like your modular
14	sandwich?
15	MR. CUMMINS: No, it is not, sort of a
16	cross between a wall, like this, with a metal screen,
17	or
18	MEMBER SIEBER: So you would not use the
19	ordinary fire barrier stuffing any place?
20	MR. CUMMINS: No.
21	MEMBER SIEBER: For a number of reasons.
22	MR. SCHULZ: Not on the containment.
23	MEMBER SIEBER: For a number of reasons.
24	For example, if you had blowdown it would blow out all
25	that stuffing, anyway. And the other one is to keep

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1the fibrous material out of containment.2MR. SCHULZ: Right.3MEMBER SIEBER: Thank you.4MR. SCHULZ: Now, we've had some5discussions, recently, with the Staff about the6potential for resident debris, there will be a program7to keep the containment clean, but they can't keep8every spec of dust and dirt in here, and maybe9clothing, fibers and layers, out of containment.10The operating plants have assumed, in11their evaluation, somewhere between 100 and 500 pounds12of this resident debris. And we have performed an13evaluation to consider this debris, and the potential14for it getting onto the screens.15MR. CARUSO: Plants like to prestage a lot16of material into containment before refueling. They17are bringing in wood for scaffolding, the HPs love to18bring in rolls and rolls of plastic sheeting that they
 MEMBER SIEBER: Thank you. MR. SCHULZ: Now, we've had some discussions, recently, with the Staff about the potential for resident debris, there will be a program to keep the containment clean, but they can't keep every spec of dust and dirt in here, and maybe clothing, fibers and layers, out of containment. The operating plants have assumed, in their evaluation, somewhere between 100 and 500 pounds of this resident debris. And we have performed an evaluation to consider this debris, and the potential for it getting onto the screens. MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
 MR. SCHULZ: Now, we've had some discussions, recently, with the Staff about the potential for resident debris, there will be a program to keep the containment clean, but they can't keep every spec of dust and dirt in here, and maybe clothing, fibers and layers, out of containment. The operating plants have assumed, in their evaluation, somewhere between 100 and 500 pounds of this resident debris. And we have performed an evaluation to consider this debris, and the potential for it getting onto the screens. MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
discussions, recently, with the Staff about the potential for resident debris, there will be a program to keep the containment clean, but they can't keep every spec of dust and dirt in here, and maybe clothing, fibers and layers, out of containment. The operating plants have assumed, in their evaluation, somewhere between 100 and 500 pounds of this resident debris. And we have performed an evaluation to consider this debris, and the potential for it getting onto the screens. MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
6 potential for resident debris, there will be a program 7 to keep the containment clean, but they can't keep 8 every spec of dust and dirt in here, and maybe 9 clothing, fibers and layers, out of containment. 10 The operating plants have assumed, in 11 their evaluation, somewhere between 100 and 500 pounds 12 of this resident debris. And we have performed an 13 evaluation to consider this debris, and the potential 14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to
to keep the containment clean, but they can't keep every spec of dust and dirt in here, and maybe clothing, fibers and layers, out of containment. The operating plants have assumed, in their evaluation, somewhere between 100 and 500 pounds of this resident debris. And we have performed an evaluation to consider this debris, and the potential for it getting onto the screens. MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
8 every spec of dust and dirt in here, and maybe 9 clothing, fibers and layers, out of containment. 10 The operating plants have assumed, in 11 their evaluation, somewhere between 100 and 500 pounds 12 of this resident debris. And we have performed an 13 evaluation to consider this debris, and the potential 14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to
9 clothing, fibers and layers, out of containment. 10 The operating plants have assumed, in 11 their evaluation, somewhere between 100 and 500 pounds 12 of this resident debris. And we have performed an 13 evaluation to consider this debris, and the potential 14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to
10The operating plants have assumed, in11their evaluation, somewhere between 100 and 500 pounds12of this resident debris. And we have performed an13evaluation to consider this debris, and the potential14for it getting onto the screens.15MR. CARUSO: Plants like to prestage a lot16of material into containment before refueling. They17are bringing in wood for scaffolding, the HPs love to
11 their evaluation, somewhere between 100 and 500 pounds 12 of this resident debris. And we have performed an 13 evaluation to consider this debris, and the potential 14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to
12 of this resident debris. And we have performed an evaluation to consider this debris, and the potential for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
<pre>13 evaluation to consider this debris, and the potential 14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to</pre>
14 for it getting onto the screens. 15 MR. CARUSO: Plants like to prestage a lot 16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to
MR. CARUSO: Plants like to prestage a lot of material into containment before refueling. They are bringing in wood for scaffolding, the HPs love to
<pre>16 of material into containment before refueling. They 17 are bringing in wood for scaffolding, the HPs love to</pre>
17 are bringing in wood for scaffolding, the HPs love to
18 bring in rolls and rolls of plastic sheeting that they
19 lay down on the floors, and they put it all up in
20 place.
21 The welders bring in blankets and material
22 to put up, because they know they are going to have to
23 go into an area to do some welding, so the bring it
all in, and they have it all in place.
25 Does this mean that you are not going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	let licensees prestage material for refueling outages?
2	MR. SCHULZ: You don't prestage in the
3	containment.
4	MR. CARUSO: I have seen plants do that,
5	they do that. The HPs, the refueling machines are
6	typically wrapped in plastic because the HPs don't
7	like it to get the the contamination to get lose.
8	And they put up all sorts of boxes, they put up
9	plastic sheeting all over the place. How is that
10	controlled?
11	MR. SCHULZ: Well, it is not allowed in
12	the containment before refueling operations. We have
13	a staging area in the AP1000 that is just outside the
14	containment, so they can stage it close to containment
15	but not inside.
16	MR. CARUSO: And you are going to make
17	sure that the HP types don't leave any plastic
18	sheeting inside the containment during normal
19	operation, they are going to leave the refueling
20	machine is going to be radiologically clean so it
21	doesn't have to be bagged?
22	MR. CUMMINS: I don't think that that is
23	the requirement. That it has to be radiologically
24	cleaned in a controlled area.
25	MR. CARUSO: Well, if you have any plant,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	you will find that there are components all over the
2	refueling floor that are wrapped in plastic sheeting,
3	because the HPs say that is how to keep the
4	contamination attached to the materials.
5	MEMBER WALLIS: Well, presumably one
6	plastic sheet can't get to the screen, because if it
7	did, it wouldn't take much of a plastic sheet to cover
8	it.
9	MR. SCHULZ: That is true for any
10	MEMBER WALLIS: plastic sheet getting
11	to this place where the screens are?
12	MR. SCHULZ: Well, most of the operating
13	plants, I'm thinking of BWRs.
14	MR. CARUSO: But in this case, I mean,
15	what do you do?
16	MR. SCHULZ: You have to preclude what you
17	put in there
18	MR. CARUSO: Is that documented someplace?
19	MR. SCHULZ: The COL will develop a
20	cleanliness program which is consistent with the
21	design of the plant, in terms of recirculation.
22	MEMBER SIEBER: In our plants, right
23	before you did containment close out, there was a
24	suite set aside one or two shifts, where everything
25	was brought out, and then there was final inspection.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	But that is just a couple of units.
2	I don't know what other people do, because
3	I was never there in any other plant during the
4	closeout. And before they closed out, and after they
5	closed out. But our plants, everything was pulled
6	out.
7	MR. ANDREYCHECK: Many plants have a
8	solution program, they do exactly as you suggested.
9	MEMBER SIEBER: And you have to account
10	for everything.
11	MR. ANDREYCHECK: Yes. And at that point
12	with things like plastic sheeting, they are supposed
13	to look for things like masking tape, trays, so on and
14	so forth. Yes, loose stuff, loose tags, paper tags,
15	those are all supposed to be identified, removed,
16	post, before you seal up the containment and go back
17	up to power.
18	But that is what solutions programs are
19	designed to do, so that type of material was not left
20	inside the containment.
21	MEMBER SIEBER: Yes. One of the issues
22	there, that was of concern, is a lot of licensees use
23	strippable paint to decontaminate the refueling
24	cavity. And the question is, do you get it all out?
25	And if you don't, where does it go during a LOCA?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	And the object for everyone that I knew
2	that did that, was to get it all out.
3	MR. SCHULZ: Okay. This slide and the
4	next slide talk about analysis that we have done to
5	evaluate the differential pressure that might be
6	caused by the resident debris, these 500 pounds,
7	assuming that it is 50 percent fibrous, 50 percent
8	particle, which would be a challenge for the system.
9	If it was all particle none of it would
10	get trapped by the screen. So some of it has to be
11	fiber to allow the fiber to trap the particles. We
12	assume that all of that 500 pounds go out to the worse
13	point, either one of the screens, whatever we were
14	evaluating.
15	Actually it was three separate evaluations
16	to be done. Before we go on, I've mentioned here that
17	we have done this in based on a NUREG. We have
18	recently, we've had the discussions with the Staff
19	about whether we did this correctly, and there was
20	some question raised by the Staff that maybe we
21	hadn't.
22	And in fact we have discovered, recently,
23	that it wasn't quite right, and we are in the process
24	of fixing that. We don't think it is going to have a
25	significant impact on the results I'm going to show

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	you, but we will be talking with the Staff, in the
2	next week or so, and present them a revised assessment
3	and description of the of this analysis that I'm
4	going to show you here.
5	But what we looked at is this debris
6	getting to three separate areas. And in these three
7	evaluations we have taken the whole 500 pounds and
8	considered it getting to the IRWST screen.
9	Or all of the 500 pounds getting to the
10	containment recirc screens, or in the final case we
11	looked at a case where you might have had a break of
12	a pipe that gets flooded, and some of the debris would
13	get into the core.
14	Now, there it would end up splitting the
15	amount, apportioning the debris, depending on the
16	integrated flow through the break, versus through the
17	screens.
18	So here you basically see the results of
19	the evaluation. For IRWST screens there will always
20	be flow through both the injection screens, even with
21	a single failure, even with a DVI break.
22	And so we proportioned the 500 pounds, we
	put it all inside the IRWST, but we split it equally
23	
23 24	between the two screens. Now, one of the screens is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	injection from the IRWST has to go through that
2	screen.
3	So that is what we ended up evaluating
4	with the DP that is very small, a quarter of a psi, at
5	the steady flow rate. And if you compare that
6	differential pressure, to the differential pressure in
7	that injection mine, at this time, it is very small,
8	it is insignificant.
9	So the potential degradation of the
10	injection is not going to be important. And, by the
11	way, when I was talking to you, two days ago, about my
12	long-term cooling analysis, and my sort of hand
13	calculation, I've actually put these BPs into that
14	analysis.
15	But they are not in the NOTRUMP analysis.
16	For the containment recirculation screen, it is
17	possible there, after a DVI break, to have only one of
18	the recirc screens available. And because you could
19	flood the squib valves, and they might not work. They
20	are designed to work, but they are not qualified to
21	work.
22	If that is the case then all the recirc
23	would be coming through one screen. So in that case
24	we piled all the 500 pounds of fiber and particles,
25	onto the one screen, and you get a little higher

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

pressure drop.

1

2

5

Also during the recirculation, the pressure drop through the recirc lines is a bit lower 3 4 than the injection line, so this represents the figure percentage increase in the resistance of the flow.

The recirc flow, in this case, might 6 7 decrease ten percent, which our assessment was, was not that significant. 8 In addition if you, for 9 example, considered instead of the worse possible 10 recirc line resistance, а more best estimate 11 resistance, that would compensate completely for the 12 presence of this debris.

MEMBER WALLIS: All these delta P add up 13 14 in the Bill Brown analysis because they changed his 15 So I don't think this is saying is 10 or 20 curve. percent results, or whether it is 29 inches level, you 16 17 have to look at what effect this has on that window of non-coolability, or whatever you want to call it, than 18 19 Bill Brown talked about. It is going to move his 20 curve over.

21 MR. CUMMINS: Bill Brown's curve was for 22 IRWST injection. 23 MEMBER WALLIS: Yes, that is what this is.

24 MR. SCHULZ: Well, the top one, which is 25 much minor impact --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

132

	133
1	(Everyone speaks at the same time.)
2	MR. SCHULZ: Mine included both of these
3	effects actually simultaneously. In my analysis. So
4	from the plant analysis that I did, it included that.
5	CHAIRMAN KRESS: How do you calculate this
6	BP, do you take a given thickness of this stuff, and
7	see how much area it blocks off for that thickness,
8	and the rest of the area is what is left for the flow?
9	MR. SCHULZ: Yes, you basically you go
10	through a process that, again, is documented in this
11	NUREG, and it is related to the amount of material you
12	put on.
13	So we relate the 500 pounds, we split it
14	50 percent fiber, we put it onto one or two screens,
15	depending on where we are analyzing, and that builds
16	up a thickness. Then you consider putting particles
17	in there, and the flow of DP, and that can compress
18	the bed, and which then allows for, say, less
19	porosity, less holes through the debris.
20	CHAIRMAN KRESS: So you put that much
21	weight over the whole surface area?
22	MR. CUMMINS: That is correct.
23	CHAIRMAN KRESS: And that fixes your
24	thickness, then?
25	MR. CUMMINS: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	CHAIRMAN KRESS: And then because you know
2	the density of the stuff?
3	MR. CUMMINS: That is correct.
4	CHAIRMAN KRESS: And then you compress it
5	a little bit, so you've got a different density.
6	MR. CUMMINS: What causes the compression
7	is the flow
8	CHAIRMAN KRESS: And then you have a
9	correlation, somewhere, for DP versus this thickness,
10	as compressed, and that comes out of somebody
11	measured that somewhere, did they?
12	(Everyone speaks at the same time.)
13	CHAIRMAN KRESS: That was a Los Alamos
14	paper?
15	MR. ANDREYCHECK: Yes, NUREG 6224 has a
16	good basis for it, and so flat screen, flat plate type
17	pressure drop. And the it is generally considered
18	conservatism. If you normally apply the fiber across
19	the screen, and then apply the particulates uniformly
20	on that, anything that is non-uniform tends to give
21	you a smaller head loss across the screen.
22	MEMBER WALLIS: We have very little idea
23	what this resident debris is.
24	MR. ANDREYCHECK: And there is a current
25	program in place, and I worked in Los Alamos, and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	NRC, to try to determine that. Five plants have
2	agreed to provide samples of resident debris.
3	MEMBER WALLIS: All you need to do is
4	vacuum the containment a few times.
5	MR. ANDREYCHECK: Actually, there are two
6	types that actually wipe out, do a power wash of the
7	containment, and they use it primarily for purpose of
8	decontamination, but they get an amazingly clean
9	containment. There are two plants that I'm aware that
10	do that. I think there are several others. But that
11	is a good point.
12	As part of their containment close out,
13	just before they go back up to power.
14	MR. SCHULZ: The final evaluation we did
15	was considering some debris getting into the RCS and
16	bypassing the screen. And again this is this would
17	have to be some neutrally buoyant fibers, which is
18	what we assumed for the other two cases.
19	And we split these 500 pounds of debris,
20	again, 50 percent fiber, but it would be into sort of
21	integrated flow rates for several hours, we get about
22	40 percent going through the recirc screens, and about
23	60 percent going through the break.
24	And so we took 60 percent of the debris,
25	and put it in the reactor, and build up a bit inside

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	the
2	CHAIRMAN KRESS: Once again using the same
3	process?
4	MR. SCHULZ: Same process, how thick the
5	bed is, and what the flow rate now, of course the
6	flow rate here is the total flow rate from the break,
7	and from the screens, and DVI lines, and get about a
8	one psi pressure drop. The area in the core is not as
9	big as the screens.
10	Now, in this time frame with this flow
11	rate, is shortly after recirculation begins, so the
12	flow rates are still fairly high. This is about the
13	maximum recirc flow rate that we have seen.
14	Now we relate the downcomer densities that
15	we have to about 29 inches a head extra that we would
16	need, to overcome this BP that we added to the core.
17	And what I looked at was the WCOBRA/TRAC long term
18	cooling analysis, which showed that the water level
19	was more than twice that below the DVI connection.
20	So that by backing it up some, basically,
21	you were not imposing any increase in the injection
22	pressure. If you backed up the water to at or above
23	the DVI connection, now the DVI connection would see
24	some additional back pressure.
25	CHAIRMAN KRESS: What if you put that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	debris, if you put it on different areas of the core?
2	MR. SCHULZ: We looked at two different
3	cases.
4	CHAIRMAN KRESS: So that you blocked up
5	just part of the core, and what will that do to that
6	set of fuel channels that is blocked.
7	MR. SCHULZ: Ken has some analyses that
8	they have done on operating plants. It wouldn't
9	completely block it. Again, this is porous. So water
10	would still get
11	CHAIRMAN KRESS: cross flow
12	MR. SCHULZ: And that is the other point
13	that Tim was going to talk about, where they actually
14	looked at the cooling
15	MEMBER LEITCH: containment
16	MR. ANDREYCHECK: We looked at blocking
17	the bottom of the core for 3,400 megawatt for PWR, and
18	we did parametric studies looking at 20, 40, 60, and
19	80 percent blockage.
20	And we started assuming the blockage in
21	the center of the core had worked out radially, so we
22	were getting water around the periphery. Having to
23	get to the hot channels and the center of the core.
24	We were able to demonstrate, analytically,
25	that we would get sufficient amount of cross flow,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	through the channels, that with 80 percent blockage we
2	would be several hundred degrees away from fuel clad
3	damage.
4	MEMBER WALLIS: self correcting in the
5	hot channel, and that means the hydrostatic head goes
6	sideways?
7	MR. ANDREYCHECK: But we did get added
8	water flow from the periphery, into the center of the
9	hot channel, and provide adequate cooling for clad
10	damage.
11	MEMBER WALLIS: So this 500 pounds seems
12	just a number that came from somewhere?
13	MR. ANDREYCHECK: It came from the NRC
14	study for GSI-191
15	MEMBER WALLIS: It seems somewhat
16	unrealistic.
17	MR. ANDREYCHECK: That number was based on
18	scaling from PWR sump screen blockage issues, based on
19	surface area of PWR containment versus
20	MEMBER WALLIS: So is 500 pounds of debris
21	being likely? There is no evidence of 500 pounds
22	being likely?
23	MR. ANDREYCHECK: No, there is none. In
24	fact, the NRC's study looked at scaling and said that
25	the range that they would get from the surface areas

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1of PWR and BWR containments was between 100 and 5002pounds.3We chose 500 pounds as a maximum amount,4and typically we would not expect to see that amount.5And this was, again, particulate and fibrous debris.6MR. SCHULZ: The last couple of slides7talk about the coating failure, and some settling8calculations that we have done.9Again, we don't expect the coatings to10fail, because we are putting in qualified coatings.11But we think we can't tolerate the failure of the12coatings primarily because of the requirement that13they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are19insulated, and they would be they would have a20coating on them. The rust also, I would think, would21be heavy, would settle.22Again, the characteristics of the23MEMBER WALLIS: Well, there is rust on the24reactor vessel, there is rust on guite a few things.25MR. SCHULZ: Not really rust, no, oxide.		139
3 We chose 500 pounds as a maximum amount, 4 and typically we would not expect to see that amount. 5 And this was, again, particulate and fibrous debris. 6 MR. SCHULZ: The last couple of slides 7 talk about the coating failure, and some settling 8 calculations that we have done. 9 Again, we don't expect the coatings to 10 fail, because we are putting in qualified coatings. 11 But we think we can't tolerate the failure of the 12 coatings primarily because of the requirement that 13 they be of high density. 14 MEMBER WALLIS: Now, these are coatings? 15 How about rust? 16 MR. SCHULZ: There should not be any rust. 17 MEMBER WALLIS: Rust on your water lines. 18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 10 coating on them. The rust also, I would think, would 11 be heavy, would settle. 12 Again, the characteristics of the 13 MEMBER WALLIS: Well, there is rust on the 14 reactor vessel, there is rust on quite a few thi	1	of PWR and BWR containments was between 100 and 500
and typically we would not expect to see that amount. And this was, again, particulate and fibrous debris. MR. SCHULZ: The last couple of slides talk about the coating failure, and some settling calculations that we have done. Jagain, we don't expect the coatings to fail, because we are putting in qualified coatings. But we think we can't tolerate the failure of the coatings primarily because of the requirement that they be of high density. MEMBER WALLIS: Now, these are coatings? How about rust? MR. SCHULZ: There should not be any rust. MEMBER WALLIS: Rust on your water lines. MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle.	2	pounds.
5 And this was, again, particulate and fibrous debris. 6 MR. SCHULZ: The last couple of slides 7 talk about the coating failure, and some settling 8 calculations that we have done. 9 Again, we don't expect the coatings to 10 fail, because we are putting in qualified coatings. 11 But we think we can't tolerate the failure of the 12 coatings primarily because of the requirement that 13 they be of high density. 14 MEMBER WALLIS: Now, these are coatings? 15 How about rust? 16 MR. SCHULZ: There should not be any rust. 17 MEMBER WALLIS: Rust on your water lines. 18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	3	We chose 500 pounds as a maximum amount,
6MR. SCHULZ: The last couple of slides7talk about the coating failure, and some settling8calculations that we have done.9Again, we don't expect the coatings to10fail, because we are putting in qualified coatings.11But we think we can't tolerate the failure of the12coatings primarily because of the requirement that13they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are19insulated, and they would be they would have a20coating on them. The rust also, I would think, would21be heavy, would settle.22Again, the characteristics of the23MEMBER WALLIS: Well, there is rust on the24reactor vessel, there is rust on quite a few things.	4	and typically we would not expect to see that amount.
7talk about the coating failure, and some settling calculations that we have done.9Again, we don't expect the coatings to10fail, because we are putting in qualified coatings.11But we think we can't tolerate the failure of the coatings primarily because of the requirement that they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle.22Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things.	5	And this was, again, particulate and fibrous debris.
 calculations that we have done. Again, we don't expect the coatings to fail, because we are putting in qualified coatings. But we think we can't tolerate the failure of the coatings primarily because of the requirement that they be of high density. MEMBER WALLIS: Now, these are coatings? How about rust? MR. SCHULZ: There should not be any rust. MR. SCHULZ: The water lines. MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle. Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things. 	6	MR. SCHULZ: The last couple of slides
9Again, we don't expect the coatings to10fail, because we are putting in qualified coatings.11But we think we can't tolerate the failure of the12coatings primarily because of the requirement that13they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are19insulated, and they would be they would have a20coating on them. The rust also, I would think, would21be heavy, would settle.22Again, the characteristics of the23MEMBER WALLIS: Well, there is rust on the24reactor vessel, there is rust on quite a few things.	7	talk about the coating failure, and some settling
10fail, because we are putting in qualified coatings.11But we think we can't tolerate the failure of the12coatings primarily because of the requirement that13they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are19insulated, and they would be they would have a20coating on them. The rust also, I would think, would21be heavy, would settle.22Again, the characteristics of the23MEMBER WALLIS: Well, there is rust on the24reactor vessel, there is rust on quite a few things.	8	calculations that we have done.
11But we think we can't tolerate the failure of the coatings primarily because of the requirement that they be of high density.13they be of high density.14MEMBER WALLIS: Now, these are coatings?15How about rust?16MR. SCHULZ: There should not be any rust.17MEMBER WALLIS: Rust on your water lines.18MR. SCHULZ: The water lines are19insulated, and they would be they would have a20coating on them. The rust also, I would think, would21be heavy, would settle.22Again, the characteristics of the23MEMBER WALLIS: Well, there is rust on the24reactor vessel, there is rust on quite a few things.	9	Again, we don't expect the coatings to
12 coatings primarily because of the requirement that 13 they be of high density. 14 MEMBER WALLIS: Now, these are coatings? 15 How about rust? 16 MR. SCHULZ: There should not be any rust. 17 MEMBER WALLIS: Rust on your water lines. 18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	10	fail, because we are putting in qualified coatings.
13 they be of high density. 14 MEMBER WALLIS: Now, these are coatings? 15 How about rust? 16 MR. SCHULZ: There should not be any rust. 17 MEMBER WALLIS: Rust on your water lines. 18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	11	But we think we can't tolerate the failure of the
14 MEMBER WALLIS: Now, these are coatings? 15 How about rust? 16 MR. SCHULZ: There should not be any rust. 17 MEMBER WALLIS: Rust on your water lines. 18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	12	coatings primarily because of the requirement that
How about rust? MR. SCHULZ: There should not be any rust. MEMBER WALLIS: Rust on your water lines. MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle. Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things.	13	they be of high density.
16 MR. SCHULZ: There should not be any rust. MEMBER WALLIS: Rust on your water lines. MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle. 22 Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things.	14	MEMBER WALLIS: Now, these are coatings?
MEMBER WALLIS: Rust on your water lines. MR. SCHULZ: The water lines are insulated, and they would be they would have a coating on them. The rust also, I would think, would be heavy, would settle. Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things.	15	How about rust?
18 MR. SCHULZ: The water lines are 19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	16	MR. SCHULZ: There should not be any rust.
19 insulated, and they would be they would have a 20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	17	MEMBER WALLIS: Rust on your water lines.
<pre>20 coating on them. The rust also, I would think, would 21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.</pre>	18	MR. SCHULZ: The water lines are
21 be heavy, would settle. 22 Again, the characteristics of the 23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	19	insulated, and they would be they would have a
Again, the characteristics of the MEMBER WALLIS: Well, there is rust on the reactor vessel, there is rust on quite a few things.	20	coating on them. The rust also, I would think, would
23 MEMBER WALLIS: Well, there is rust on the 24 reactor vessel, there is rust on quite a few things.	21	be heavy, would settle.
24 reactor vessel, there is rust on quite a few things.	22	Again, the characteristics of the
	23	MEMBER WALLIS: Well, there is rust on the
25 MR. SCHULZ: Not really rust, no, oxide.	24	reactor vessel, there is rust on quite a few things.
	25	MR. SCHULZ: Not really rust, no, oxide.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	MEMBER WALLIS: Well, oxide is rust.
2	MR. SCHULZ: It is not like, you know,
3	it is a thin film that, I think, would also be high
4	density.
5	MR. ANDREYCHECK: If you are looking at a
6	parallel between the migration of corrosion, in the
7	PWR sense, and BWR issues, with what we have in the
8	AP1000, there was a high velocities in the taurus and
9	the suppression pools that tended to migrate and move.
10	And there is also very energetic steam
11	bubble collapsing that tended to stir pools up, that
12	would move and make transportable the corrosion
13	products, which have a tendency to sit on the bottom
14	of the pool.
15	MEMBER WALLIS: I understand there is
16	quite a lot down there.
17	MR. ANDREYCHECK: It could be, I'm not
18	familiar with but the for the AP1000 as pointed
19	out by Terry, the velocities, even in the pools, tends
20	to be fairly low. And products that have a tendency
21	to have higher specific gravities, and the 100 pounds
22	per cubic feet of coating density gives us a specific
23	gravity of approximately 1.3. And iron oxide is above
24	that, as I recall.
25	So the tendency would be for those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	products to settle out. We chose very light density
2	products to do these analyses, even the fiber and the
3	particulates. Everything that you are running up, in
4	the way of other products, corrosion and also
5	galvanized products that might be subjected, would
6	have a tendency to have a higher specific gravity, and
7	would have a tendency to settle in this particular
8	kind of environment that we are talking about, very
9	low velocity, throughout the entire region of the
10	AP1000.
11	You see, here
12	MEMBER WALLIS: Davis Besse was a PWR.
13	MR. ANDREYCHECK: Davis Besse is a B&W
14	design
15	MEMBER WALLIS: And they had 900 pounds of
16	solid material on top of the head, or something like
17	that? There are ways in which you can build up
18	corrosion product, and other things in the
19	containment, if you don't pay attention.
20	MR. ANDREYCHECK: You are correct, if you
21	don't pay attention. And, in fact, they had other
22	things staged inside containment, like power washing
23	equipment, to clean off their fan coolers, which
24	tended to clog with boric acid.
25	MR. CARUSO: What drives this is they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	can't afford to shut down an extra day in order for
2	refueling. They are trying to cut down on refueling
3	times.
4	MR. SCHULZ: We have addressed that by
5	providing a special area, just outside the
6	containment, and very easy access in the containment,
7	so that they only have the problem is getting stuff
8	into containment, like they do today.
9	CHAIRMAN KRESS: I hate to cut this short
10	MR. CARUSO: The plant I remember most
11	vividly is Connecticut Yankee. It is gone now, but
12	they had built cages inside the containment, that held
13	all of the supplies that they would need during
14	refuelings and they had these enormous metal cages
15	built inside containment, that held rolls of
16	polyethylene, and staging, and welding supplies.
17	And then there were piles of wood for
18	scaffolding all over the place.
19	MR. ANDREYCHECK: I'm not disagreeing with
20	you, but I think the issue that NRC has brought to
21	light is making utilities to take a look at what they
22	are doing.
23	Your point is well taken, that wasn't
24	that was the way things were done in the past, I'm
25	not going to disagree with you on that. But I think

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	that if you are looking at across the board, as Terry
2	mentioned, for AP1000 is addressed by the staging area
3	outside
4	CHAIRMAN KRESS: I think all of this is
5	not part of design cert review, this is an issue, or
6	a set of issues which are the review of the
7	cleanliness program of the COL applicant.
8	MEMBER SIEBER: Do you have an equipment
9	hatch in the AP1000?
10	MR. ANDREYCHECK: We have two, sixteen
11	foot
12	MEMBER SIEBER: Where are they? I mean,
13	do they open up into a building, or do they open up to
14	the blue sky?
15	MR. ANDREYCHECK: Into the annex building,
16	this is what Terry was talking about.
17	MEMBER SIEBER: Both of them?
18	MR. ANDREYCHECK: Both of them do.
19	MEMBER SIEBER: If you were going to
20	change a steam generator, which I'm sure you don't
21	anticipate
22	MR. ANDREYCHECK: The steam generator is
23	too large to get through the equipment hatch, and the
24	method of removal is to lift it with a polar crane,
25	and then lift it up the top of the center of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	144
1	exhaust, if you will, of the PTS. We cut the steel
2	containment. There is no structural concrete there,
3	and lift it up through the top.
4	CHAIRMAN KRESS: I hate to cut this off,
5	I think we are running short on time. Let's see the
6	figures.
7	MEMBER WALLIS: The higher flow takes the
8	debris close to the screen, presumably.
9	MR. SCHULZ: What this means is that
10	no, they are not reversed, it is a communication issue
11	here. In the case one we assume higher flow coming
12	from the front of the screen, and lower flow coming
13	from the side.
14	In the case two it was a different
15	scenario where we assumed uniform flow out at the edge
16	of the screen, coming from both the front and the
17	side. So when it says higher flow, it means higher
18	flow approaching the front of the screen, which is the
19	side of the screen.
20	So it is conservative, the cases one is
21	showing you the approach from 10 foot away, from the
22	front of the screen. The plate extends out seven foot
23	to the one side.
24	MEMBER WALLIS: So this is the sump size
25	particle, and there is only one particle that is going
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1to take that trajectory?2MR. SCHULZ: Yes.3MEMBER WALLIS: And there is a whole4distribution of particles?5MR. SCHULZ: And densities, right.6MEMBER WALLIS: So it doesn't really give7the picture very well.8MR. SCHULZ: It depends on what picture9you are trying to show, right.10MEMBER WALLIS: Well, I mean, another one11is to the screen, the big ones fall down.12MR. SCHULZ: Possibly.13MEMBER WALLIS: Yes, they will.14MR. SCHULZ: Well, Graham, there is an15issue here with fluttering, smaller particles won't16tend to flutter as much as bigger particles.17MEMBER WALLIS: Well, we had a talk with18Graham McIntyre about maple trees, and the leaves that19come down, I remember that. They flutter, they don't20go straight down.21MR. SCHULZ: But if you get a small22MR. SCHULZ: The whole point is that23MEMEER WALLIS: The whole point is that24there isn't just one trajectory.25MR. SCHULZ: I'm not saying there is.		145
3 MEMBER WALLIS: And there is a whole 4 distribution of particles? 5 MR. SCHULZ: And densities, right. 6 MEMBER WALLIS: So it doesn't really give 7 the picture very well. 8 MR. SCHULZ: It depends on what picture 9 you are trying to show, right. 10 MEMBER WALLIS: Well, I mean, another one 11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 MEMBER WALLIS: The whole point is that 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	1	to take that trajectory?
4 distribution of particles? 5 MR. SCHULZ: And densities, right. 6 MEMBER WALLIS: So it doesn't really give 7 the picture very well. 8 MR. SCHULZ: It depends on what picture 9 you are trying to show, right. 10 MEMBER WALLIS: Well, I mean, another one 11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 Particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	2	MR. SCHULZ: Yes.
5 MR. SCHULZ: And densities, right. 6 MEMBER WALLIS: So it doesn't really give 7 the picture very well. 8 MR. SCHULZ: It depends on what picture 9 you are trying to show, right. 10 MEMBER WALLIS: Well, I mean, another one 11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	3	MEMBER WALLIS: And there is a whole
 MEMBER WALLIS: So it doesn't really give the picture very well. MR. SCHULZ: It depends on what picture you are trying to show, right. MEMBER WALLIS: Well, I mean, another one is to the screen, the big ones fall down. MR. SCHULZ: Possibly. MEMBER WALLIS: Yes, they will. MR. SCHULZ: Well, Graham, there is an issue here with fluttering, smaller particles won't tend to flutter as much as bigger particles. MEMBER WALLIS: Well, we had a talk with Graham McIntyre about maple trees, and the leaves that come down, I remember that. They flutter, they don't go straight down. MR. SCHULZ: But if you get a small particle it is going to tend to not MEMBER WALLIS: The whole point is that there isn't just one trajectory. 	4	distribution of particles?
7 the picture very well. 8 MR. SCHULZ: It depends on what picture 9 you are trying to show, right. 10 MEMBER WALLIS: Well, I mean, another one 11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	5	MR. SCHULZ: And densities, right.
8 MR. SCHULZ: It depends on what picture 9 you are trying to show, right. 10 MEMBER WALLIS: Well, I mean, another one 11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	б	MEMBER WALLIS: So it doesn't really give
 you are trying to show, right. MEMBER WALLIS: Well, I mean, another one is to the screen, the big ones fall down. MR. SCHULZ: Possibly. MEMBER WALLIS: Yes, they will. MR. SCHULZ: Well, Graham, there is an issue here with fluttering, smaller particles won't tend to flutter as much as bigger particles. MEMBER WALLIS: Well, we had a talk with Graham McIntyre about maple trees, and the leaves that come down, I remember that. They flutter, they don't go straight down. MR. SCHULZ: But if you get a small particle it is going to tend to not MEMBER WALLIS: The whole point is that there isn't just one trajectory. 	7	the picture very well.
10MEMBER WALLIS: Well, I mean, another one11is to the screen, the big ones fall down.12MR. SCHULZ: Possibly.13MEMBER WALLIS: Yes, they will.14MR. SCHULZ: Well, Graham, there is an15issue here with fluttering, smaller particles won't16tend to flutter as much as bigger particles.17MEMBER WALLIS: Well, we had a talk with18Graham McIntyre about maple trees, and the leaves that19come down, I remember that. They flutter, they don't20go straight down.21MR. SCHULZ: But if you get a small22particle it is going to tend to not23MEMBER WALLIS: The whole point is that24there isn't just one trajectory.	8	MR. SCHULZ: It depends on what picture
<pre>11 is to the screen, the big ones fall down. 12 MR. SCHULZ: Possibly. 13 MEMBER WALLIS: Yes, they will. 14 MR. SCHULZ: Well, Graham, there is an 15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.</pre>	9	you are trying to show, right.
12MR. SCHULZ: Possibly.13MEMBER WALLIS: Yes, they will.14MR. SCHULZ: Well, Graham, there is an15issue here with fluttering, smaller particles won't16tend to flutter as much as bigger particles.17MEMBER WALLIS: Well, we had a talk with18Graham McIntyre about maple trees, and the leaves that19come down, I remember that. They flutter, they don't20go straight down.21MR. SCHULZ: But if you get a small22particle it is going to tend to not23MEMBER WALLIS: The whole point is that24there isn't just one trajectory.	10	MEMBER WALLIS: Well, I mean, another one
 MEMBER WALLIS: Yes, they will. MR. SCHULZ: Well, Graham, there is an issue here with fluttering, smaller particles won't tend to flutter as much as bigger particles. MEMBER WALLIS: Well, we had a talk with Graham McIntyre about maple trees, and the leaves that come down, I remember that. They flutter, they don't go straight down. MR. SCHULZ: But if you get a small particle it is going to tend to not MEMBER WALLIS: The whole point is that there isn't just one trajectory. 	11	is to the screen, the big ones fall down.
14MR. SCHULZ: Well, Graham, there is an15issue here with fluttering, smaller particles won't16tend to flutter as much as bigger particles.17MEMBER WALLIS: Well, we had a talk with18Graham McIntyre about maple trees, and the leaves that19come down, I remember that. They flutter, they don't20go straight down.21MR. SCHULZ: But if you get a small22particle it is going to tend to not23MEMBER WALLIS: The whole point is that24there isn't just one trajectory.	12	MR. SCHULZ: Possibly.
15 issue here with fluttering, smaller particles won't 16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	13	MEMBER WALLIS: Yes, they will.
16 tend to flutter as much as bigger particles. 17 MEMBER WALLIS: Well, we had a talk with 18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	14	MR. SCHULZ: Well, Graham, there is an
MEMBER WALLIS: Well, we had a talk with Graham McIntyre about maple trees, and the leaves that come down, I remember that. They flutter, they don't go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	15	issue here with fluttering, smaller particles won't
18 Graham McIntyre about maple trees, and the leaves that 19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	16	tend to flutter as much as bigger particles.
<pre>19 come down, I remember that. They flutter, they don't 20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.</pre>	17	MEMBER WALLIS: Well, we had a talk with
20 go straight down. 21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	18	Graham McIntyre about maple trees, and the leaves that
21 MR. SCHULZ: But if you get a small 22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	19	come down, I remember that. They flutter, they don't
22 particle it is going to tend to not 23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	20	go straight down.
23 MEMBER WALLIS: The whole point is that 24 there isn't just one trajectory.	21	MR. SCHULZ: But if you get a small
24 there isn't just one trajectory.	22	particle it is going to tend to not
	23	MEMBER WALLIS: The whole point is that
25 MR. SCHULZ: I'm not saying there is.	24	there isn't just one trajectory.
	25	MR. SCHULZ: I'm not saying there is.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	This is giving you a feeling for the extreme
2	MEMBER WALLIS: This is the extreme case?
3	MR. SCHULZ: The extremely low settling
4	velocities you would need, in order to challenge the
5	screen.
6	MEMBER WALLIS: Well, I don't know yet,
7	because I don't know what particle you are talking
8	about and so on. So I guess this is all in the hands
9	of the Staff, the Staff is going to follow this up,
10	and make sure it is done right?
11	MS. STAREFOS: Yes.
12	MEMBER WALLIS: Now, what is the size of
13	the particle in this trajectory?
14	MR. SCHULZ: The particles were, are
15	basically a quarter inch.
16	MEMBER WALLIS: A quarter inch in
17	diameter?
18	MR. SCHULZ: They were selected so that
19	they could potentially clog the screens.
20	MEMBER WALLIS: So they are big particles?
21	MR. SCHULZ: They were selected to be big
22	enough to challenge the screen.
23	MEMBER WALLIS: So they are pretty big?
24	MR. ANDREYCHECK: Yes.
25	MEMBER WALLIS: So little particles would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	have gone right to the screen, in this picture? They
2	got through the reactor and everything else.
3	MR. ANDREYCHECK: And in fact there were
4	velocities in the reactor where
5	MEMBER WALLIS: Another interesting
6	question for you guys is why a quarter inch mesh? I
7	mean, the mesh should be designed in anticipation of
8	the kind of debris you are likely to get.
9	MR. SCHULZ: Well, that is not how it is
10	selected, it is to make sure that everything
11	downstream, including in operating plants that
12	includes valves, pumps, as well as the fuel
13	MEMBER SIEBER: Can take the debris.
14	MR. SCHULZ: That is right.
15	MEMBER SIEBER: So it will catch a bolt,
16	or something like that?
17	MR. SCHULZ: It is intended to catch stuff
18	that could cause blockage downstream.
19	MEMBER WALLIS: Beer can or something.
20	MR. CARUSO: But the fuel debris screen
21	are a lot smaller than a quarter inch?
22	MR. SCHULZ: Not for this plant.
23	MR. CARUSO: I thought you were going to
24	use a standard Westinghouse vantage fuel design?
25	(Everyone speaks at the same time.)

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	148
1	MR. SCHULZ: We will be using the standard
2	fuel design, yes.
3	MR. CARUSO: And that has debris screens
4	that have holes that are
5	MR. SCHULZ: will be consistent with
6	this screen size.
7	MR. CARUSO: So it is going to be
8	different than the one that is currently in
9	MR. SCHULZ: That may be the case, yes.
10	MR. CARUSO: Does that mean, then, that
11	the competition decides to try sell a reload, they are
12	going to have to sell a downsized debris screen? The
13	reason I ask is fuel is not part of this review,
14	right?
15	MR. SCHULZ: That is not true, fuel has
16	been a part of the debris.
17	MR. CARUSO: Is that constraint part of
18	the DCD, is that explained in the DCD, that the fuel
19	debris screen has to be
20	MR. SCHULZ: The latest South Texas, or
21	the latest design is consistent with a quarter inch.
22	The latest South Texas fuel assembly I'm saying
23	south Texas because I know that is so our latest
24	fuel design is consistent with that.
25	MR. ANDREYCHECK: The design for Calloway

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	is consistent with the licensing requirements to REG
2	guide 1.82, which does say that some screens eliminate
3	in their ECCS flow path, and that includes the
4	sprays.
5	MR. CARUSO: Is that a requirement in the
6	DCD that the fuel
7	MR. ANDREYCHECK: I can't answer that.
8	MR. SCHULZ: Yes, it is a requirement that
9	the quarter inch be limiting blockage yes, it is in
10	the DCD.
11	MR. CORLETTI: The next presentation, and
12	I think we can just drive through this one in five
13	minutes, on INC, because we are going to be showing
14	you our INC
15	MR. SOBROSKY: This is Joe Sobrosky, I was
16	hoping to kill an action item. We have John Lenox
17	here, from this morning there was questions from
18	Joelle's presentation about the associated
19	Westinghouse calculation, and identified assumptions
20	with the (inaudible)
21	MR. CORLETTI: I understand that, and
22	we've been looking at that as well, and when you told
23	us that last night, we understand that.
24	MR. SOBROSKY: Yes, but when I heard this
25	morning we said that we had John Lenox available to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	address that if the ACRS was interested in it. So
2	before I let John go, did we want to address that
3	question?
4	CHAIRMAN KRESS: I think we will just let
5	you two work it out, and then we will look at it.
6	MS. STAREFOS: Thank you, John.
7	CHAIRMAN KRESS: Thank you.
8	MR. HAYES: The primary purpose for this
9	part of the agenda is simply to prepare you for this
10	afternoon's session out at the automation
11	headquarters. When I refer to 286, that is what we
12	are talking about.
13	There is actually two specific places out
14	there where there will be presentations. One is an
15	INC product demonstration, presentation and
16	demonstration. And one is presentation in what we
17	call the advance control room development facility,
18	where we are looking at concepts of advanced control
19	rooms.
20	The main point I want to make in all of
21	this is what you see this afternoon is not AP1000
22	specific. I almost want to say it is not AP1000.
23	But, yes, those products will be in the AP1000.
24	But those people are not involved with
25	AP1000 today, they are involved in product

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	development, they are involved in developing boxes
2	that will ultimately be used to put together to make
3	an INC system.
4	The reason I can say that is because for
5	INC, and for human factors, we took a slightly
6	different approach from what we did in the fluid
7	systems. And that is what we certify, as part of the
8	design certification, is the INC design process, not
9	the design.
10	In addition to that, in the certified
11	design, or the functional requirements for the INC, in
12	fact we talked about some of them yesterday, when we
13	talked about squib valve control. But the actual
14	design of the INC, the computers and how they talk
15	together, the details of that design are not made.
16	What is certified is all the requirements
17	on the design when it is done. The COL will be
18	obligated to show that the final design meets those
19	requirements.
20	Why did we do that? This is consistent
21	with what was done with the other design certification
22	plants. The world of computers is moving very fast,
23	and we don't want to freeze a design today, when the
24	plant may not be built for a number of years in the
25	future.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So the intent is to allow current 2 technology, whatever current means, today we are 3 saying those words. And to give you an example, when 4 we licensed AP600, we did design certification for AP600, we expected a product we called "Eagle" to be the safety system. 6

7 Today we don't make Eagle any more, or we are in the last throes of making Eagle. It has been 8 9 replaced with something called Common Q. Functionally it is very similar, but is newer design, using newer 10 11 electronics, based on current design of electronics.

12 But on the other side of this I want to point out that, again, for this afternoon, those 13 14 products are not just AP1000/AP600 products. They are 15 used in other places, and including upgrades in other American plants. 16

17 So just in the short time frame of the AP600 and AP1000, we changed the safety product. 18 We 19 did not change the non-safety product, but that is 20 because it changed during the AP600 design process. 21 So my point here, and it is really only

22 one point, please understand, when you are out there,

23 this is not AP1000, although it relates.

24 But part of what we would like you to come 25 away with, from the visit out there, is more than just

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	153
1	your AP1000 review, because you guys are interested in
2	other U.S. plants, also.
3	Now, with that, I will turn it over to Bob
4	Fuld, who is our leading human factors person, and he
5	is going to talk about the control room design and
6	tell you, essentially, the same story about the
7	control room.
8	MR. FULD: Thanks. I will try to be brief
9	since we are behind. I'm not really sure what you
10	thought I might address understand design acceptance
11	criteria, but I have done this sort of literally,
12	which is to say practically we were dealing with the
13	design acceptance criteria are under human factors.
14	I believe you are all familiar with ITAAC,
15	that is table in the tier 1 of the DCDs, in the
16	various Q1 sections, they all have design
17	commitment, the inspections test analysis column, and
18	the associated design acceptance criteria, or DAC.
19	I believe what they do is provide a firm
20	commitment to auditable, or verifiable results and
21	acceptable conclusions in tier 1, which makes it very
22	formal, and difficult to change, without a great deal
23	of scrutiny.
24	This is to provide closure to the part 52,
25	the one step licensing process for ALWR plants. And
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	it is the responsibility of the applicant, the license
2	applicant to satisfy these criteria but the vendor, of
3	course, or anyone else can do it ahead of time, and
4	the COL applicant will be happy.
5	With respect to human factors engineering,
6	I think you of human factors engineers for
7	different reasons, and different context, and are
8	familiar with
9	CHAIRMAN KRESS: Is that a definition,
10	that first bullet, of human
11	MR. FULD: Well, that was my definition,
12	for lack of a better one. How do you like that
13	definition?
14	CHAIRMAN KRESS: We will take it, that is
15	all right.
16	MR. FULD: That is good. I'm happy with
17	it, too.
18	In the part 52 licensing process human
19	factors has emphasized review of the design process,
20	as opposed to, perhaps, more product related
21	orientation for the plant design fleet at this time.
22	But the process review is guided by NUREG
23	0711. I think you are familiar with this. The
24	product review, such as it remains, is guided by 0700,
25	and I have added validation test results to that,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

155 1 because I don't want the importance of this to escape 2 mention. 3 So I will propose a human factors DAC 4 confirms closure of the open elements of the human 5 factors plan, that is the 0711 plan, related plan I should say. And a second overlapping item that I have 6 7 is that it confirms specific aspects of the tier 1 design description requirements for the control room, 8 the shutdown room, and the local control stations, to 9 have been met satisfactorily. 10 And this was already done for the first 11 12 item, and I could probably add to this list with other things that are, likewise, largely redundant, but I 13 14 wasn't sure that it was necessary. 15 If I were to add a third I think it would be the B&B activities that we conduct, which is also 16 redundant with each of these things, to some extent, 17 a subset. 18 For AP1000 it is listed in the table in 19 20 section 3.2 of tier 1, in the DCD. It has 13 line 21 items, some of those have a similar number of items, 22 and each of those can stand for relatively large activities, so it is very high level in the hierarchy. 23 24 But the design acceptance criteria, the 25 formula if you like, typically states that something

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	like a report existing concludes that something for
2	required inspection to confirm that that specific item
3	has some characteristic or object.
4	And this is sort of the boilerplate of the
5	DAC. So this sort of brings me to the end of looking
6	at DAC, here. DAC COL commitment in DCD tier 1, so it
7	has a lot of legal clout, so that they are auditable
8	or verifiable results, and acceptable conclusions with
9	the design that they have been met.
10	These commitments include, for human
11	factors, is the B&B activities, which is line 5,
12	primarily. And this brings closure to the human
13	factors design process in 711.
14	And if there are any questions?
15	MR. CORLETTI: I think
16	MR. HAYES: Part of the reason we wanted
17	to mention this is because you will see what we call
18	the control room development facility, that looks a
19	lot like the AP1000 control room, but it is not. And
20	it is close enough that it confuses a lot of people
21	into thinking that they are looking at
22	(Laughter.)
23	CHAIRMAN KRESS: Before we close I think
24	we probably ought to talk about this next meeting,
25	which right now is scheduled for September. As far as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	I'm concerned we can leave it in September, because
2	I'm going to view it as more of a progress report for
3	the full Committee, some of what we have already heard
4	here.
5	And my suggestion is, for example, that
6	for the Westinghouse people, that we have two hours,
7	and that is to be split between Westinghouse and
8	Staff, and I think Westinghouse get the bulk of the
9	time.
10	And I think we ought to discuss progress
11	on what I view was ACRS concerns. And I would list
12	these, like in the thermal-hydraulics area, I would
13	say the entrainment issue, the level swell issue, and
14	the boron precipitation issue.
15	And maybe cover these somewhat with the
16	bounding and simplified approach. The other issues
17	that I think might be of interest, that were brought
18	up by ACRS members, are the containment lambda, make
19	it a lot shorter than what we heard before.
20	And vessel retention, particularly the
21	question of where and how it breaks through the
22	vessel, and how that relates to the fuel coolant
23	interactions.
24	And the squib valve reliability, you will
25	we will have to convince Steve Rosin that that is
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1okay. As far as the containment lambda, I would say2here is the why we chose this particular sequence3to look at, to validate what we use, and how that4translates into the lambda.5I don't know, do any of the members have6any choices, what about the thermal-hydraulics, did I7choose8MEMBER WALLIS: What do you think about9the screens, the sump screens? Can you do that10quickly? Because it is an issue that we are aware of.11CHAIRMAN KRESS: Yes, I think that ought12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete25your presentation, the more convincing, the fewer the		158
3 to look at, to validate what we use, and how that 4 translates into the lambda. 5 I don't know, do any of the members have 6 any choices, what about the thermal-hydraulics, did I 7 choose 8 MEMBER WALLIS: What do you think about 9 the screens, the sump screens? Can you do that 10 quickly? Because it is an issue that we are aware of. 11 CHAIRMAN KRESS: Yes, I think that ought 12 to be part of it. Now, for the Staff, we would like 13 a status report on the open items, and maybe some of 14 the stuff that was presented to us on the confirmation 15 calculations using RELAP. 16 And I don't think they have time for much 17 more there, but that would be my guess. 18 MR. CORLETTI: So you want about two 19 hours, an hour and a half from Westinghouse, and 30 10 minutes from the Staff? 21 CHAIRMAN KRESS: Yes. And you have to of 22 course account for time for questions. But that would 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete <td>1</td> <td>okay. As far as the containment lambda, I would say</td>	1	okay. As far as the containment lambda, I would say
4translates into the lambda.5I don't know, do any of the members have6any choices, what about the thermal-hydraulics, did I7choose8MEMBER WALLIS: What do you think about9the screens, the sump screens? Can you do that10quickly? Because it is an issue that we are aware of.11CHAIRMAN KRESS: Yes, I think that ought12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	2	here is the why we chose this particular sequence
5I don't know, do any of the members have any choices, what about the thermal-hydraulics, did I choose8MEMBER WALLIS: What do you think about the screens, the sump screens? Can you do that quickly? Because it is an issue that we are aware of.11CHAIRMAN KRESS: Yes, I think that ought to be part of it. Now, for the Staff, we would like a status report on the open items, and maybe some of the stuff that was presented to us on the confirmation calculations using RELAP.16And I don't think they have time for much more there, but that would be my guess.18MR. CORLETTI: So you want about two hours, an hour and a half from Westinghouse, and 30 minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split.24MEMBER WALLIS: I think the more complete	3	to look at, to validate what we use, and how that
 any choices, what about the thermal-hydraulics, did I choose MEMBER WALLIS: What do you think about the screens, the sump screens? Can you do that quickly? Because it is an issue that we are aware of. CHAIRMAN KRESS: Yes, I think that ought to be part of it. Now, for the Staff, we would like a status report on the open items, and maybe some of the stuff that was presented to us on the confirmation calculations using RELAP. And I don't think they have time for much more there, but that would be my guess. MR. CORLETTI: So you want about two hours, an hour and a half from Westinghouse, and 30 minutes from the Staff? CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	4	translates into the lambda.
 choose MEMBER WALLIS: What do you think about the screens, the sump screens? Can you do that quickly? Because it is an issue that we are aware of. CHAIRMAN KRESS: Yes, I think that ought to be part of it. Now, for the Staff, we would like a status report on the open items, and maybe some of the stuff that was presented to us on the confirmation calculations using RELAP. And I don't think they have time for much more there, but that would be my guess. MR. CORLETTI: So you want about two hours, an hour and a half from Westinghouse, and 30 minutes from the Staff? CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	5	I don't know, do any of the members have
8MEMBER WALLIS: What do you think about9the screens, the sump screens? Can you do that10quickly? Because it is an issue that we are aware of.11CHAIRMAN KRESS: Yes, I think that ought12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	6	any choices, what about the thermal-hydraulics, did I
 the screens, the sump screens? Can you do that quickly? Because it is an issue that we are aware of. CHAIRMAN KRESS: Yes, I think that ought to be part of it. Now, for the Staff, we would like a status report on the open items, and maybe some of the stuff that was presented to us on the confirmation calculations using RELAP. And I don't think they have time for much more there, but that would be my guess. MR. CORLETTI: So you want about two hours, an hour and a half from Westinghouse, and 30 minutes from the Staff? CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	7	choose
10quickly? Because it is an issue that we are aware of.11CHAIRMAN KRESS: Yes, I think that ought12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	8	MEMBER WALLIS: What do you think about
11CHAIRMAN KRESS: Yes, I think that ought12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	9	the screens, the sump screens? Can you do that
12to be part of it. Now, for the Staff, we would like13a status report on the open items, and maybe some of14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	10	quickly? Because it is an issue that we are aware of.
 13 a status report on the open items, and maybe some of 14 the stuff that was presented to us on the confirmation 15 calculations using RELAP. 16 And I don't think they have time for much 17 more there, but that would be my guess. 18 MR. CORLETTI: So you want about two 19 hours, an hour and a half from Westinghouse, and 30 20 minutes from the Staff? 21 CHAIRMAN KRESS: Yes. And you have to of 22 course account for time for questions. But that would 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete 	11	CHAIRMAN KRESS: Yes, I think that ought
14the stuff that was presented to us on the confirmation15calculations using RELAP.16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	12	to be part of it. Now, for the Staff, we would like
 15 calculations using RELAP. 16 And I don't think they have time for much 17 more there, but that would be my guess. 18 MR. CORLETTI: So you want about two 19 hours, an hour and a half from Westinghouse, and 30 20 minutes from the Staff? 21 CHAIRMAN KRESS: Yes. And you have to of 22 course account for time for questions. But that would 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete 	13	a status report on the open items, and maybe some of
16And I don't think they have time for much17more there, but that would be my guess.18MR. CORLETTI: So you want about two19hours, an hour and a half from Westinghouse, and 3020minutes from the Staff?21CHAIRMAN KRESS: Yes. And you have to of22course account for time for questions. But that would23be about my guess of the split.24MEMBER WALLIS: I think the more complete	14	the stuff that was presented to us on the confirmation
17 more there, but that would be my guess. 18 MR. CORLETTI: So you want about two 19 hours, an hour and a half from Westinghouse, and 30 20 minutes from the Staff? 21 CHAIRMAN KRESS: Yes. And you have to of 22 course account for time for questions. But that would 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete	15	calculations using RELAP.
 MR. CORLETTI: So you want about two hours, an hour and a half from Westinghouse, and 30 minutes from the Staff? CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	16	And I don't think they have time for much
 hours, an hour and a half from Westinghouse, and 30 minutes from the Staff? CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	17	more there, but that would be my guess.
<pre>20 minutes from the Staff? 21 CHAIRMAN KRESS: Yes. And you have to of 22 course account for time for questions. But that would 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete</pre>	18	MR. CORLETTI: So you want about two
 CHAIRMAN KRESS: Yes. And you have to of course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	19	hours, an hour and a half from Westinghouse, and 30
 course account for time for questions. But that would be about my guess of the split. MEMBER WALLIS: I think the more complete 	20	minutes from the Staff?
 23 be about my guess of the split. 24 MEMBER WALLIS: I think the more complete 	21	CHAIRMAN KRESS: Yes. And you have to of
24 MEMBER WALLIS: I think the more complete	22	course account for time for questions. But that would
	23	be about my guess of the split.
25 your presentation, the more convincing, the fewer the	24	MEMBER WALLIS: I think the more complete
	25	your presentation, the more convincing, the fewer the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	questions, hopefully.
2	CHAIRMAN KRESS: Well, you can't count on
3	that.
4	MEMBER WALLIS: It is a self-reinforcing
5	thing, if you are disorganized, then you will get more
6	questions, and you get even more disorganized, and you
7	will take longer and longer.
8	MR. CUMMINS: We will try to do a good
9	job.
10	CHAIRMAN KRESS: Before we close I would
11	like to thank everyone. It has been a very good
12	meeting, I think we see a lot of progress. I
13	particularly thank the Westinghouse people for their
14	hospitality, and their good presentations. And Staff
15	was your openness was very good, so I think it has
16	been a very good meeting.
17	MR. CORLETTI: We appreciate coming to
18	Pittsburgh, and the disruption, but we were really
19	excited to have you here, and we are glad you came to
20	see us.
21	CHAIRMAN KRESS: I declare the meeting
22	adjourned.
23	(Whereupon, at 12:50 p.m., the above-
24	entitled matter was adjourned.)
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701