Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
	Subcommittee on Future Plant Designs

- Docket Number: (not applicable)
- Location: Monroeville, Pennsylvania
- Date: Thursday, July 17, 2003

Work Order No.: NRC-1011

Pages 1-216

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1UNITED STATES OF AMERICA2NUCLEAR REGULATORY COMMISSION3+ + + + +4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUECOMMITTEE ON FUTURE PLANT DESIGNS6+ + + + +7THURSDAY, JULY 17, 20038+ + + + +9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER20212123222423242425		1
3+++++4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUBCOMMITTEE ON FUTURE PLANT DESIGNS6+++++7THURSDAY, JULY 17, 20038+++++9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232424	1	UNITED STATES OF AMERICA
4ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)5SUBCOMMITTEE ON FUTURE PLANT DESIGNS6+++++7THURSDAY, JULY 17, 20038+++++9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232324	2	NUCLEAR REGULATORY COMMISSION
5 SUBCOMMITTEE ON FUTURE PLANT DESIGNS 6 +++++ 7 THURSDAY, JULY 17, 2003 8 +++++ 9 MONROEVILLE, PENNSYLVANIA 10 The Subcommittee met at the Westinghouse Energy 11 Center, 4350 Northern Pike, Monroeville, PA, at 1:00 12 p.m., Thomas Kress, Chairman, presiding. 13 SUBCOMMITTEE MEMBERS: 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 21 22 22 23 24 1	3	+ + + +
 +++++ THURSDAY, JULY 17, 2003 +++++ MONROEVILLE, PENNSYLVANIA The Subcommittee met at the Westinghouse Energy Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER GRAHAM WALLIS - MEMBER GRAHAM LEITCH - MEMBER GRAHAM LEITCH - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 4 	4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
7THURSDAY, JULY 17, 20038+ + + +9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232324	5	SUBCOMMITTEE ON FUTURE PLANT DESIGNS
 ************************************	6	+ + + +
9MONROEVILLE, PENNSYLVANIA10The Subcommittee met at the Westinghouse Energy11Center, 4350 Northern Pike, Monroeville, PA, at 1:0012p.m., Thomas Kress, Chairman, presiding.13SUBCOMMITTEE MEMBERS:14THOMAS KRESS - CHAIRMAN15GRAHAM WALLIS - MEMBER16JOHN SIEBER - MEMBER17GRAHAM LEITCH - MEMBER18VICTOR RANSOM - MEMBER19F. PETER FORD - MEMBER202121232424	7	THURSDAY, JULY 17, 2003
 The Subcommittee met at the Westinghouse Energy Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 20 21 23 24 	8	+ + + +
 Center, 4350 Northern Pike, Monroeville, PA, at 1:00 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER 4 	9	MONROEVILLE, PENNSYLVANIA
 p.m., Thomas Kress, Chairman, presiding. SUBCOMMITTEE MEMBERS: THOMAS KRESS - CHAIRMAN GRAHAM WALLIS - MEMBER JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. PETER FORD - MEMBER J 	10	The Subcommittee met at the Westinghouse Energy
 13 SUECOMMITTEE MEMBERS: 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	11	Center, 4350 Northern Pike, Monroeville, PA, at 1:00
 14 THOMAS KRESS - CHAIRMAN 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	12	p.m., Thomas Kress, Chairman, presiding.
 15 GRAHAM WALLIS - MEMBER 16 JOHN SIEBER - MEMBER 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	13	SUBCOMMITTEE MEMBERS:
 JOHN SIEBER - MEMBER GRAHAM LEITCH - MEMBER VICTOR RANSOM - MEMBER F. PETER FORD - MEMBER F. 20 21 22 23 24 	14	THOMAS KRESS - CHAIRMAN
 17 GRAHAM LEITCH - MEMBER 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	15	GRAHAM WALLIS - MEMBER
 18 VICTOR RANSOM - MEMBER 19 F. PETER FORD - MEMBER 20 21 22 23 24 	16	JOHN SIEBER - MEMBER
19 F. PETER FORD - MEMBER 20	17	GRAHAM LEITCH - MEMBER
20 21 22 23 24	18	VICTOR RANSOM - MEMBER
21 22 23 24	19	F. PETER FORD - MEMBER
22 23 24	20	
23 24	21	
24	22	
	23	
25	24	
	25	

		2
1	ALSO PRESENT:	
2	MEDHAT EL-ZEFTAWY	
3	MIKE CORLETTI	
4	TERRY SCHULZ	
5	ED CUMMINS	
6	TOM HAYES	
7	DAN FREDERICK	
8	RALPH CARUSO	
9	JIM SCOBEL	
10	SELIM SANCAKTAR	
11	JUN LI	
12	JIM GRESHAM	
13	M. KHATIB-RAHBAR	
14	MIKE ZAVISCA	
15	SUD BASU	
16	H ESMAILI	
17	JOELLE STARFOS	
18	RICHARD ORR	
19		
20		
21		
22		
23		
24		
25		

	3	
1	C-O-N-T-E-N-T-S	
2	INTRODUCTION	
3	Thomas Kress, Chairman 4	
4	ADS 4 SQUIB VALVE RELIABILITY	
5	System design -Terry Schulz 7	
6	ADS 4 Controls - Tom Hayes 30	
7	Valve Design Dan Frederick 45	
8	Modeling in AP1000 PRA - Selim Sancaktar 80	
9	Post LOCA Aerosol Deposition on Containment	
10	Jun Li 92	
11	Thermal Hydraulic Conditions for AP1000 Lambda	
12	Calculation - Jim Scobel 130	
13	MELCOR Analysis - M. Zavisca 137	
14	In-Vessel Retention and Ex-Vessel Fuel Coolant	
15	Interactions with AP1000 - H. Esmaili 155	
16	AP1000 Seismic and Structural Design	
17	Richard Orr 194	
18		
19		
20		
21		
22		
23		
24		
25		

1P-R-O-C-E-E-D-I-N-G-S21:00 p.m.3CHAIRMAN KRESS: Let's get started if we4can, please. The meeting will now please come to5order. This is a meeting of the ACRS Subcommittee on6Future Plant Design.7I'm Thomas Kress, Chairman of this8Subcommittee. The other ACRS members in attendance9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,25previously published in the Federal Register, on July		4
3 CHAIRMAN KRESS: Let's get started if we 4 can, please. The meeting will now please come to 5 order. This is a meeting of the ACRS Subcommittee on 6 Future Plant Design. 7 I'm Thomas Kress, Chairman of this 8 Subcommittee. The other ACRS members in attendance 9 are Peter Ford, Graham Leitch, Victor Ransom, Graham 10 Wallis, and I presume Jack Sieber will be here 11 shortly. 12 For today's meeting the Subcommittee will 13 review and discuss the AP1000 instrumentation and 14 control design concept, the manned machine interface 15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 Mr. Medhat El-Zeftawy is the cognizant 21 Mr. Medhat El-Zeftawy is meeting. 22 The rules for participation in today's meeting have 23 the rules for participation in today's meeting have 24	1	P-R-O-C-E-E-D-I-N-G-S
 can, please. The meeting will now please come to order. This is a meeting of the ACRS Subcommittee on Future Plant Design. I'm Thomas Kress, Chairman of this Subcommittee. The other ACRS members in attendance are Peter Ford, Graham Leitch, Victor Ransom, Graham Wallis, and I presume Jack Sieber will be here shortly. For today's meeting the Subcommittee will review and discuss the AP1000 instrumentation and control design concept, the manned machine interface design acceptance criteria, human factors issues, and the open items regarding the design reviews. The Subcommittee will gather information, analyze relevant issues and facts, and formulate proposed positions and actions as appropriate, for deliberation for the full Committee. Mr. Medhat El-Zeftawy is the cognizant ACRS staff member, staff engineer, for this meeting. The rules for participation in today's meeting have been announced, as part of the notice of this meeting, 	2	1:00 p.m.
5order. This is a meeting of the ACRS Subcommittee on6Future Plant Design.7I'm Thomas Kress, Chairman of this8Subcommittee. The other ACRS members in attendance9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	3	CHAIRMAN KRESS: Let's get started if we
6Future Plant Design.7I'm Thomas Kress, Chairman of this8Subcommittee. The other ACRS members in attendance9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	4	can, please. The meeting will now please come to
7I'm Thomas Kress, Chairman of this8Subcommittee. The other ACRS members in attendance9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	5	order. This is a meeting of the ACRS Subcommittee on
8Subcommittee. The other ACRS members in attendance9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	6	Future Plant Design.
9are Peter Ford, Graham Leitch, Victor Ransom, Graham10Wallis, and I presume Jack Sieber will be here11shortly.12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	7	I'm Thomas Kress, Chairman of this
 10 Wallis, and I presume Jack Sieber will be here 11 shortly. 12 For today's meeting the Subcommittee will 13 review and discuss the AP1000 instrumentation and 14 control design concept, the manned machine interface 15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting, 	8	Subcommittee. The other ACRS members in attendance
11 shortly. 12 For today's meeting the Subcommittee will 13 review and discuss the AP1000 instrumentation and 14 control design concept, the manned machine interface 15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	9	are Peter Ford, Graham Leitch, Victor Ransom, Graham
12For today's meeting the Subcommittee will13review and discuss the AP1000 instrumentation and14control design concept, the manned machine interface15design acceptance criteria, human factors issues, and16the open items regarding the design reviews.17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	10	Wallis, and I presume Jack Sieber will be here
13 review and discuss the AP1000 instrumentation and 14 control design concept, the manned machine interface 15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	11	shortly.
 14 control design concept, the manned machine interface 15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting, 	12	For today's meeting the Subcommittee will
15 design acceptance criteria, human factors issues, and 16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	13	review and discuss the AP1000 instrumentation and
16 the open items regarding the design reviews. 17 The Subcommittee will gather information, 18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	14	control design concept, the manned machine interface
17The Subcommittee will gather information,18analyze relevant issues and facts, and formulate19proposed positions and actions as appropriate, for20deliberation for the full Committee.21Mr. Medhat El-Zeftawy is the cognizant22ACRS staff member, staff engineer, for this meeting.23The rules for participation in today's meeting have24been announced, as part of the notice of this meeting,	15	design acceptance criteria, human factors issues, and
18 analyze relevant issues and facts, and formulate 19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	16	the open items regarding the design reviews.
19 proposed positions and actions as appropriate, for 20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	17	The Subcommittee will gather information,
20 deliberation for the full Committee. 21 Mr. Medhat El-Zeftawy is the cognizant 22 ACRS staff member, staff engineer, for this meeting. 23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	18	analyze relevant issues and facts, and formulate
 Mr. Medhat El-Zeftawy is the cognizant ACRS staff member, staff engineer, for this meeting. The rules for participation in today's meeting have been announced, as part of the notice of this meeting, 	19	proposed positions and actions as appropriate, for
 ACRS staff member, staff engineer, for this meeting. The rules for participation in today's meeting have been announced, as part of the notice of this meeting, 	20	deliberation for the full Committee.
23 The rules for participation in today's meeting have 24 been announced, as part of the notice of this meeting,	21	Mr. Medhat El-Zeftawy is the cognizant
24 been announced, as part of the notice of this meeting,	22	ACRS staff member, staff engineer, for this meeting.
	23	The rules for participation in today's meeting have
25 previously published in the Federal Register, on July	24	been announced, as part of the notice of this meeting,
	25	previously published in the Federal Register, on July

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5
8th, 2003.
The transcript of this meeting is being
kept, and the transcript will be made available as
stated in the Federal Register Notice. It is
requested that speakers identify themselves, and speak
with sufficient clarity and volume, so that they can
be readily heard.
We have received no written comments, or
requests for time to make oral statements from any
members of the public. I don't have any particular
introductory comments, so with that I will turn it
over to Mike, to get it started.
MR. CORLETTI: Thanks, Tom. The
presentations that we are going to have for the next
day and a half are geared to providing you information
that has either been the Committee has expressed an
interest in seeing, a more detailed presentation, or
related to the Draft Safety Evaluation Report.
And we've got our first presentation
today, it is on the ADS Squib valve reliability, which
was an issue that was raised at the PRA Subcommittee
meeting.
The first presentation is with Terry
Schulz.

MR. SCHULZ: Good afternoon. I'm going to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

Í	6
1	start this off, we will be talking a little bit about
2	the system design and concentrating on the
3	requirements for the stage 4 ADS squib valves. Then
4	Tom Hayes will talk about the instrumentation control
5	of the ADS 4 squib valves.
6	And then Dan Frederick is here from the
7	valve vendor that makes these kinds of valves, and is
8	our expert witness on how these valves are being
9	designed, what has been their experience in the past.
10	And then, to wrap it up, we will have
11	Selim Sancaktar talk about the PRA modeling, and in
12	particular some considering some newer information
13	on valve reliabilities, and what means to the PRA.
14	You've seen this picture before, I don't
15	want to really belabor it, but the four valves that we
16	are talking about are the four squib valves connected
17	to the hot legs, which we have been talking about,
18	from a thermal-hydraulic performance, extensively.
19	These valves are normally closed. There
20	is an upstream, normally opened, motor operated valve.
21	That valve provides isolation capability, in case
22	there is any leakage through the squib valve, which is
23	an extremely unlikely situation to happen.
24	They also provide an ability to isolate
25	the valve, if it had opened in an accident, and you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	are in a recovery mode.
2	CHAIRMAN KRESS: Do those things ever fire
3	off accidentally, and open up?
4	MR. SCHULZ: We will
5	CHAIRMAN KRESS: That is part of the
6	reliability questions.
7	MR. SCHULZ: Yes. Tom Hayes, in
8	particular, will be talking about the details of the
9	INC, I will talk a little bit about the logic, and the
10	interlocks, and permissives that we have in the design
11	from a logic point of view, and Tom will talk, very
12	much, about the potential, or how the valve is
13	controlled.
14	And, in fact, he will go into fire hazards
15	issues and how we will prevent that from inadvertently
16	opening the valve.
17	MR. CUMMINS: Just to review the open
18	item. Was the ACRS comment that the AP1000 PRA relied
19	significantly on the performance of the 4 stage ADS
20	valves, and could we please present why they will open
21	when we want them to open, and why they won't open
22	when we don't want them to open, and that is the title
23	of this presentation, really.
24	CHAIRMAN KRESS: The question was, where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	PRA.
2	MR. SCHULZ: Yes, and why is that a good
3	number to have. If you step back a little bit, I was
4	not involved with the certification of the AP600.
5	MEMBER LEITCH: But as I understand it, it
6	did not have a valve such as this?
7	MR. SCHULZ: No, it did.
8	MEMBER LEITCH: It did?
9	MR. SCHULZ: The configuration, as you see
10	on this picture, was both for AP600 and AP1000.
11	MEMBER LEITCH: Okay.
12	MR. SCHULZ: There were two of the four
13	squib valves are shown here, AP600 had four squib
14	valves. The only difference is these are bigger than
15	AP600. These are 14 inch pipe, the AP600 were in a
16	ten inch pipe.
17	Now, that doesn't really connect them to
18	the IDS, but they are bigger for AP1000. There also
19	are squib valves in the injection lines, and the
20	recirc lines. We are not specifically going to talk
21	about those today.
22	But most of what we are talking about, or
23	will talk about, is applicable to those valves, also,
24	in terms of their reliability and the simplicity of
25	their design and operation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	MEMBER LEITCH: Okay, thank you.
2	MR. SCHULZ: The ADS 4 valves are their
3	function is to work in a loss of coolant accident,
4	because they are not needed, or intended to be used in
5	non-LOCA accidents.
б	They are they play a role in getting
7	the plant down to the low pressures required for the
8	gravity drain from the IRWST, as was talked about in
9	the last day and a half in the Therma-Hydraulic
10	Subcommittee meetings.
11	That is a very important function of these
12	valves. The whole ADS system, as we as you see
13	here, actually involves four separate stages. Three
14	of them are connected to the pressurizer, discharge
15	into the IRWST from a sparger. Those are motor
16	operated valves.
17	I show three stages here, there is
18	actually two groups of those, there is a total of six
19	flow paths. There is four stage 4 valves, they are
20	actually kind of in a sequence. This valve opens, and
21	then about a minute later the second stage 4 opens in
22	both pairs, too.
23	And the whole purpose of the staging of
24	the ADS is to control and smooth out the transient
25	that the reactor cooling system goes through, in going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	from high pressures down to very close to atmospheric
2	pressure.
3	The ADS valves are controlled by their
4	core make up tanks level. That is what actuates them.
5	The core make up tank level was a good indication, in
6	our plant, of how much high pressure inventory, safety
7	injection inventory is still available.
8	So as the inventory gets depleted, then in
9	a kind of a LOCA sequence, then, we actuate ADS. And
10	stage 1 is actuated on what we call a low 1 core make
11	up tank level. That is about two-thirds volume set
12	point.
13	That is sent by four level sensors in each
14	core make up tank.
15	CHAIRMAN KRESS: What are those level
16	sensors?
17	MR. SCHULZ: What kind of sensors?
18	CHAIRMAN KRESS: Yes. Are they weight
19	MR. SCHULZ: They are DP switch, actually.
20	They are very simple. We've actually used the
21	switches because to keep them somewhat different from
22	some of the other DP sensors that we have in the plant
23	from a PRA point of view.
24	So there is a narrow range set of four DP
25	sensors for the low 1. There is a separate set of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	narrow range DP sensors for the level 2. And one of
2	the reasons why we use that level narrow range, is
3	because we can run into significant density
4	differences in the safety water, depending on whether
5	it is recircd or not.
6	Initially it is cold, high density water.
7	We could have gone through, in a very small LOCA,
8	substantial recirculation period, the water could heat
9	up. And because of that the density could be reduced.
10	And to minimize the impact on the set
11	point we came up with a very narrow range sensors.
12	These sensors, of course, go into the protection
13	system to actuate the valves.
14	The second and third stage are controlled
15	by the low 1 set point plus timers. So that the stage
16	2 will always go off a minute or so after stage 1; and
17	stage 3 will go off three minutes after stage one,
18	kind of sequencing.
19	Stage 4 the CMT level is
20	MEMBER LEITCH: Restored? Will that stop
21	the action of ADS 2 and 3?
22	MR. SCHULZ: No.
23	MEMBER LEITCH: So once the sequence is
24	started you are going to get 1, 2, and 3?
25	MR. SCHULZ: That is right. Now, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	won't necessarily get 4.
2	MEMBER LEITCH: I understand.
3	MR. SCHULZ: It is a separate set point.
4	And that set point is low, more like 20 percent volume
5	of the core make up tank. And the fact that the
6	operators take the recommended emergency procedure
7	actions, which is to turn the normal RHR system, which
8	can act like a low head safety injection pump.
9	If they take that action, and that system
10	works, and it is not a safety system, so we can't
11	guarantee that it will work. But if it does work then
12	what it does is it slows down the core make up tank
13	injection and stops it, because of a favorable
14	interaction in the wake of RNS pump flow comes in, it
15	comes in here, goes through this orifice.
16	Which then, if these pumps are running,
17	and replacing the core makeup tank flow, the back
18	pressure stops the core makeup tank injection, the
19	water stays in the core makeup tank, so it is
20	available should the RNS system quit, or be shut off
21	inadvertently later on.
22	But if the RNS does get started, and keeps
23	running, then the CMT level will not drop down to
24	actuate stage 4. Because you don't really need it
25	with RNS pumps running, because they provide enough

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	pressure, with ADS 1-3 to adequately cool the core.
2	There are, of course, manual controls both
3	through the projection system, and the diverse
4	actuation system. Either one of those systems, there
5	are separate controls, in the control room, to control
6	the ADS valves.
7	In both cases it requires two switches to
8	be actuated, to minimize the chance of inadvertent
9	actuation. The power supplies, each stage 4 has three
10	separate sets of wires coming to it, coming to three
11	separate igniters that are located in the valve. Two
12	of those sensor wires are coming from the protection
13	system. So any one of the four squib valve either has
14	a train A and train C wire coming through it, or a
15	train B and D.
16	This minimized, improves the reliability,
17	minimizes the consequences of a single failure. So in
18	that whole ADS system, the worse single failure is a
19	single stage 4 valve. You cannot have a single
20	failure that will affect stage 1, 2, and 3, and stage
21	4, for example.
22	In addition each stage 4 valve has a third
23	set of wires coming to it, coming from the diverse
24	actuation system. This is a diverse INC system, the
25	DAS control of the ADS is only manual, there is no

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	automatic.
2	And we did that, partly, to minimize the
3	chance of inadvertent actuation, and partly because it
4	wasn't needed to be automatic, based on our PRA
5	insights.
6	Now, I will talk a little bit about the
7	logic that controls the automatic signals. In order
8	to get an automated protection system actuation of
9	stage 4, we first need to actuate the core makeup
10	tanks, this is basically an S-signal, like low
11	pressurizer pressure.
12	You will also need the core makeup tank
13	level to drop, to this low 1 set point, and then you
14	need timers to go through to give a permissive for the
15	low 2 level, and then you need the low 2 level to have
16	occurred.
17	And you will also need to be below a
18	specified RCS pressure. This is about 1,300, 1,200
19	psi. This is where you would go to in a small LOCA,
20	and it is a little bit below the set point. Excuse
21	me, the set point is a little bit above the steam
22	generator safety valve set point.
23	So in a case where passive RHR is going to
24	be moving all the decay heat, which can happen shortly
25	after an accident, that is where the plant will tend

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	to go with the leak.
2	But it also gives us an additional
3	interlock to prevent inadvertent actuation at high
4	pressure. So you need all these things to take place,
5	from a logic point of view, and in order for the stage
6	4 valve to be automatically actuated.
7	MEMBER LEITCH: Are the instrument lines
8	connected to these level switches, are they
9	independent all the way into the CMT? In other words,
10	or do you have multiple instruments hanging off the
11	same set of instrument lines? Maybe that is a detail
12	that hasn't been worked out.
13	MR. SCHULZ: You are talking about the
14	tubing sensors going into the tank?
15	MEMBER LEITCH: Yes. In other words you
16	talked about four different level switches.
17	MR. SCHULZ: Yes.
18	MEMBER LEITCH: But are they independent
19	all the way to the penetrations into the tank?
20	MR. SCHULZ: They actually are not. And
21	we've gone through an evaluation of the consequences
22	of (unintelligible) out of all those lines. Remember
23	there are two tanks, and either core makeup tank can
24	actuate ADS.
25	In addition to that I would have to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1back and look at I know we looked at that very carefully to make sure that was okay. We lock open3the valves, so they can't inadvertently be closed, the root isolation valves.5MEMBER LEITCH: I understand yes.6MR. SCHULZ: And we have gone through evaluations of what is going to happen here, leaks going out of the9MEMBER LEITCH: drops off on one of those root isolation valves, or something like that.11MR. SCHULZ: Yes.12MEMBER LEITCH: But you do have another complete tank which would also actuate the system?14MR. SCHULZ: In either tank can actuate15ADS.16MEMBER LEITCH: Yes.17MR. SCHULZ: both tanks have level18sensors for low 1 and low 2.19MEMBER LEITCH: Yes. Okay, good, thanks.20MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches.24Tom Hayes will MR. HAYES: were for sensors, too.	ĺ	16
3 the valves, so they can't inadvertently be closed, the 4 root isolation valves. 5 MEMBER LEITCH: I understand yes. 6 MR. SCHULZ: And we have gone through 7 evaluations of what is going to happen here, leaks 8 going out of the 9 MEMBER LEITCH: drops off on one of 10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	1	back and look at I know we looked at that very
4 root isolation valves. 5 MEMBER LEITCH: I understand yes. 6 MR. SCHULZ: And we have gone through 7 evaluations of what is going to happen here, leaks 8 going out of the 9 MEMBER LEITCH: drops off on one of 10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MEMBER LEITCH: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	2	carefully to make sure that was okay. We lock open
5 MEMBER LEITCH: I understand yes. 6 MR. SCHULZ: And we have gone through 7 evaluations of what is going to happen here, leaks 8 going out of the 9 MEMBER LEITCH: drops off on one of 10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	3	the valves, so they can't inadvertently be closed, the
6 MR. SCHULZ: And we have gone through 7 evaluations of what is going to happen here, leaks 8 going out of the 9 MEMBER LEITCH: drops off on one of 10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	4	root isolation valves.
 evaluations of what is going to happen here, leaks going out of the MEMBER LEITCH: drops off on one of those root isolation valves, or something like that. MR. SCHULZ: Yes. MEMBER LEITCH: But you do have another complete tank which would also actuate the system? MR. SCHULZ: In either tank can actuate ADS. MEMBER LEITCH: Yes. MR. SCHULZ: both tanks have level sensors for low 1 and low 2. MEMBER LEITCH: Yes. Okay, good, thanks. MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches. Tom Hayes will 	5	MEMBER LEITCH: I understand yes.
 going out of the MEMBER LEITCH: drops off on one of those root isolation valves, or something like that. MR. SCHULZ: Yes. MEMBER LEITCH: But you do have another complete tank which would also actuate the system? MR. SCHULZ: In either tank can actuate ADS. MEMBER LEITCH: Yes. MR. SCHULZ: both tanks have level sensors for low 1 and low 2. MEMBER LEITCH: Yes. Okay, good, thanks. MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches. Tom Hayes will 	6	MR. SCHULZ: And we have gone through
9 MEMBER LEITCH: drops off on one of 10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	7	evaluations of what is going to happen here, leaks
10 those root isolation valves, or something like that. 11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	8	going out of the
11 MR. SCHULZ: Yes. 12 MEMBER LEITCH: But you do have another 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	9	MEMBER LEITCH: drops off on one of
 MEMBER LEITCH: But you do have another complete tank which would also actuate the system? MR. SCHULZ: In either tank can actuate ADS. MEMBER LEITCH: Yes. MR. SCHULZ: both tanks have level sensors for low 1 and low 2. MEMBER LEITCH: Yes. Okay, good, thanks. MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches. Tom Hayes will 	10	those root isolation valves, or something like that.
 13 complete tank which would also actuate the system? 14 MR. SCHULZ: In either tank can actuate 15 ADS. 16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will 	11	MR. SCHULZ: Yes.
14MR. SCHULZ: In either tank can actuate15ADS.16MEMBER LEITCH: Yes.17MR. SCHULZ: both tanks have level18sensors for low 1 and low 2.19MEMBER LEITCH: Yes. Okay, good, thanks.20MR. SCHULZ: So from a point of view of a21real inadvertent signal coming through to the valves,22we think it is incredibly low with all the interlocks23and permissives that we have, and redundant switches.24Tom Hayes will	12	MEMBER LEITCH: But you do have another
 ADS. MEMBER LEITCH: Yes. MR. SCHULZ: both tanks have level sensors for low 1 and low 2. MEMBER LEITCH: Yes. Okay, good, thanks. MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches. Tom Hayes will 	13	complete tank which would also actuate the system?
16 MEMBER LEITCH: Yes. 17 MR. SCHULZ: both tanks have level 18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	14	MR. SCHULZ: In either tank can actuate
 MR. SCHULZ: both tanks have level sensors for low 1 and low 2. MEMBER LEITCH: Yes. Okay, good, thanks. MR. SCHULZ: So from a point of view of a real inadvertent signal coming through to the valves, we think it is incredibly low with all the interlocks and permissives that we have, and redundant switches. Tom Hayes will 	15	ADS.
18 sensors for low 1 and low 2. 19 MEMBER LEITCH: Yes. Okay, good, thanks. 20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	16	MEMBER LEITCH: Yes.
19MEMBER LEITCH: Yes. Okay, good, thanks.20MR. SCHULZ: So from a point of view of a21real inadvertent signal coming through to the valves,22we think it is incredibly low with all the interlocks23and permissives that we have, and redundant switches.24Tom Hayes will	17	MR. SCHULZ: both tanks have level
20 MR. SCHULZ: So from a point of view of a 21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	18	sensors for low 1 and low 2.
21 real inadvertent signal coming through to the valves, 22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	19	MEMBER LEITCH: Yes. Okay, good, thanks.
22 we think it is incredibly low with all the interlocks 23 and permissives that we have, and redundant switches. 24 Tom Hayes will	20	MR. SCHULZ: So from a point of view of a
23 and permissives that we have, and redundant switches. 24 Tom Hayes will	21	real inadvertent signal coming through to the valves,
24 Tom Hayes will	22	we think it is incredibly low with all the interlocks
	23	and permissives that we have, and redundant switches.
25 MR. HAYES: were for sensors, too.	24	Tom Hayes will
	25	MR. HAYES: were for sensors, too.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MR. SCHULZ: Yes, when I say four sensors,2there is A, B, C, D division for each set, okay?3MR. HAYES: And we do it two out of four4votes.5MEMBER RANSOM: What protection do you6have against sabotage?7MR. CUMMINS: Tom will address it is some8respects.9MR. SCHULZ: These valves are, of course,10inside containment.11MEMBER RANSOM: Right. So it is very hard12to get to them.13MEMBER RANSOM: And where are the14switches?15MR. SCHULZ: The switches are in the16control room.17MEMBER RANSOM: Are they located right18together, or do they have any interlocks, or any way19to prevent20MR. SCHULZ: The switches for the21protection system, there is two safety handles in the22plant, in the control room. They are not located next23to each other. And you have to actuate a switch on24both panels, so one person can't do it.25The DAS is a little bit different, but		17
3 MR. HAYES: And we do it two out of four 4 votes. 5 MEMBER RANSOM: What protection do you 6 have against sabotage? 7 MR. CUMMINS: Tom will address it is some 8 respects. 9 MR. SCHULZ: These valves are, of course, 10 inside containment. 11 MEMBER RANSOM: Right. So it is very hard 12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	1	MR. SCHULZ: Yes, when I say four sensors,
 votes. MEMBER RANSOM: What protection do you have against sabotage? MR. CUMMINS: Tom will address it is some respects. MR. SCHULZ: These valves are, of course, inside containment. MEMBER RANSOM: Right. So it is very hard to get to them. MEMBER RANSOM: And where are the switches? MR. SCHULZ: The switches are in the control room. MEMBER RANSOM: Are they located right to getter, or do they have any interlocks, or any way to prevent MR. SCHULZ: The switches for the protection system, there is two safety handles in the plant, in the control room. They are not located next to each other. And you have to actuate a switch on both panels, so one person can't do it. 	2	there is A, B, C, D division for each set, okay?
5 MEMBER RANSOM: What protection do you 6 have against sabotage? 7 MR. CUMMINS: Tom will address it is some 8 respects. 9 MR. SCHULZ: These valves are, of course, 10 inside containment. 11 MEMBER RANSOM: Right. So it is very hard 12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	3	MR. HAYES: And we do it two out of four
 have against sabotage? MR. CUMMINS: Tom will address it is some respects. MR. SCHULZ: These valves are, of course, inside containment. MEMBER RANSOM: Right. So it is very hard to get to them. MEMBER RANSOM: And where are the switches? MR. SCHULZ: The switches are in the control room. MEMBER RANSOM: Are they located right together, or do they have any interlocks, or any way to prevent MR. SCHULZ: The switches for the protection system, there is two safety handles in the plant, in the control room. They are not located next to each other. And you have to actuate a switch on both panels, so one person can't do it. 	4	votes.
7 MR. CUMMINS: Tom will address it is some 8 respects. 9 MR. SCHULZ: These valves are, of course, 10 inside containment. 11 MEMBER RANSOM: Right. So it is very hard 12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	5	MEMBER RANSOM: What protection do you
 8 respects. 9 MR. SCHULZ: These valves are, of course, inside containment. 11 MEMBER RANSOM: Right. So it is very hard 12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it. 	б	have against sabotage?
 MR. SCHULZ: These valves are, of course, inside containment. MEMBER RANSOM: Right. So it is very hard to get to them. MEMBER RANSOM: And where are the switches? MR. SCHULZ: The switches are in the control room. MEMBER RANSOM: Are they located right together, or do they have any interlocks, or any way to prevent MR. SCHULZ: The switches for the protection system, there is two safety handles in the plant, in the control room. They are not located next to each other. And you have to actuate a switch on both panels, so one person can't do it. 	7	MR. CUMMINS: Tom will address it is some
<pre>10 inside containment. 11 MEMBER RANSOM: Right. So it is very hard 12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.</pre>	8	respects.
MEMBER RANSOM: Right. So it is very hard to get to them. MEMBER RANSOM: And where are the switches? MR. SCHULZ: The switches are in the control room. MEMBER RANSOM: Are they located right together, or do they have any interlocks, or any way to prevent MR. SCHULZ: The switches for the protection system, there is two safety handles in the plant, in the control room. They are not located next to each other. And you have to actuate a switch on both panels, so one person can't do it.	9	MR. SCHULZ: These valves are, of course,
12 to get to them. 13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	10	inside containment.
13 MEMBER RANSOM: And where are the 14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	11	MEMBER RANSOM: Right. So it is very hard
<pre>14 switches? 15 MR. SCHULZ: The switches are in the 16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.</pre>	12	to get to them.
15MR. SCHULZ: The switches are in the16control room.17MEMBER RANSOM: Are they located right18together, or do they have any interlocks, or any way19to prevent20MR. SCHULZ: The switches for the21protection system, there is two safety handles in the22plant, in the control room. They are not located next23to each other. And you have to actuate a switch on24both panels, so one person can't do it.	13	MEMBER RANSOM: And where are the
<pre>16 control room. 17 MEMBER RANSOM: Are they located right 18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.</pre>	14	switches?
17MEMBER RANSOM: Are they located right18together, or do they have any interlocks, or any way19to prevent20MR. SCHULZ: The switches for the21protection system, there is two safety handles in the22plant, in the control room. They are not located next23to each other. And you have to actuate a switch on24both panels, so one person can't do it.	15	MR. SCHULZ: The switches are in the
18 together, or do they have any interlocks, or any way 19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	16	control room.
19 to prevent 20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	17	MEMBER RANSOM: Are they located right
20 MR. SCHULZ: The switches for the 21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	18	together, or do they have any interlocks, or any way
21 protection system, there is two safety handles in the 22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	19	to prevent
22 plant, in the control room. They are not located next 23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	20	MR. SCHULZ: The switches for the
23 to each other. And you have to actuate a switch on 24 both panels, so one person can't do it.	21	protection system, there is two safety handles in the
24 both panels, so one person can't do it.	22	plant, in the control room. They are not located next
	23	to each other. And you have to actuate a switch on
25 The DAS is a little bit different, but	24	both panels, so one person can't do it.
	25	The DAS is a little bit different, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 there is two switches on a panel that are close 2 together, but there is a separate power switch that 3 you have to turn on to actuate, turn power on to the 4 manual controls.

5 And that is physically separate from the 6 valve control switches. This just gives you a picture 7 of how much bigger the piping and valves get when 8 going from AP600 to AP1000. You can also get a 9 feeling, here, for some of the advantages of the squib 10 valves, relatively compact, compared to a motor 11 operated valve.

12 motor operated valve, And а really, wouldn't meet the functional requirements for this 13 14 valve, it wouldn't open fast enough. They also 15 wouldn't be diverse from stages 1, 2, and 3. So you 16 probably would have to go to something a bit more 17 exotic than a motor operated valve as an alternative. MEMBER RANSOM: I have a design question. 18 19 Why isn't the motor operated valve located downstream

20 of the squib valve?

21 MR. SCHULZ: Because we want the squib 22 valve to discharge directly to the containment, to 23 maximize its performance, piping downstream.

24 MEMBER RANSOM: I would think from a 25 leakage point of view -- well, the other thing is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	maintenance, the motor operated valve, don't you have
2	to once in a while actuate that valve?
3	MR. SCHULZ: No, because it has no safety
4	function.
5	MEMBER RANSOM: But you want it to close.
6	MR. SCHULZ: We would want it to close,
7	but we would not there is no in-surface testing
8	requirements for that valve, because it is no safety
9	function valve.
10	Would the valve be exercised? Probably,
11	not necessarily at power.
12	MEMBER RANSOM: Well, you are clearly not
13	at power.
14	MR. SCHULZ: The valves are also flanged
15	in, and with the valve located at the end of the pipe,
16	it is easier to take the valve apart, because you
17	don't have a flange on both sides of the valve, you
18	only have it on the one side.
19	So if you ever actuated the valve, and
20	then wanted to refurbish it, rebuild it for operation
21	again, you have to take the upstream part off, and it
22	is a little easier to do it in this location.
23	MEMBER RANSOM: Well, this is a shear
24	valve, so that you destroy the valve if you open it?
25	MR. SCHULZ: No, it doesn't destroy the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	valve.
2	MEMBER RANSOM: Well, it destroys its
3	seal?
4	MR. SCHULZ: It cuts part of the valve,
5	engineered shear section inside the valve. We will be
6	showing you what that looks like.
7	MEMBER SIEBER: I presume
8	MR. SCHULZ: This is a view
9	MEMBER SIEBER: that there are
10	substantial pipe restraints on the ADS lines, too,
11	because of the reaction force, if you use them?
12	MR. SCHULZ: There are.
13	MR. CUMMINS: Put your picture back up.
14	MEMBER SIEBER: Yes, the drawing doesn't
15	show any restriction.
16	MR. CUMMINS: the little lips on the
17	end there, those are forced numbers that go right to
18	the steam generator well, so if it goes off, we've
19	designed them so that it could go off at operating
20	pressure, and it wouldn't cause the pipe to wet.
21	MEMBER SIEBER: Right.
22	MR. SCHULZ: This shows you a view of the
23	functional requirements. I mentioned that it is a 14
24	inch pipe. The hole going through the valve has a
25	nine and a quarter inch ID.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	And, of course, it is a safety seismic
2	class one design, full system pressure design. It is
3	designed to open at full system pressure, and it is
4	also designed to open at very low pressure, which is
5	actually more challenging than the high pressure.
6	Expected opening pressure, as you heard
7	from hydraulic, is somewhere 100 psi, or in fact a
8	little bit lower. The normal water temperature, up
9	against the valve will be hot. It won't be full
10	system pressure because there is a partial loop seal
11	in front of the valve.
12	We are requiring the valve to be designed
13	so that it can tolerate full hot leg pressure. It is
14	flanged upstream, both up and downstream, and it is
15	stainless steel construction.
16	I talked about several of the aspects here
17	of why we selected squib valves. We actually didn't
18	originally have squib valves in AP600. We were
19	thinking of using some gas piston valve of some kind.
20	But we became concerned when we actually started
21	talking to valve vendors about the availability of
22	those valves, and the development issues.
23	So we ended up selecting the squib valves
24	partially, a very strong reason, was that they are
25	very reliable valves. And, of course, this is an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2.2 1 important PRA safety function, so that reliability is 2 very important. 3 The ability to use the three independent 4 control circuits, all the ways through the valve, is 5 a unique and very beneficial function. They are very diverse from the motor operated stage 1, 2, and 3 6 7 valves, again, a PRA benefit. They have a very low chance of inadvertent 8 9 opening, or leakage. That is a very beneficial 10 function. The in-service testing and inspection is 11 simplified versus motor operated, or air operated 12 valves. They actually are less expensive than air 13 14 operated valves that we looked at. Even though there 15 is some development costs in coming up with these valves for the ADS-4, there is in our minds less 16 uncertainty and the cost will be lower, than coming up 17 with the -- an alternate valve. 18 And as a final thing, the US utilities who 19 20 are working with us, when we were developing AP600, 21 actually suggested this to us, and supported the use 22 of the squib valves. 23 The last two slides I have deal with in-24 service testing and inspection. Both are being --25 will be performed in accordance with ASME

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	requirements.
2	Basically ASME says that for squib valve
3	you should take 20 percent of the valves, of a given
4	function or design, and every two years replace the
5	propellant, and put it in a test fixture, and fire it,
6	make sure that the pressure developed would have been
7	sufficient to actuate the valve.
8	CHAIRMAN KRESS: So you take one valve
9	every two years and do that?
10	MR. SCHULZ: No, we only have four, so it
11	is actually 25 percent of the valves, because we have
12	four valves.
13	MEMBER RANSOM: What do you do if you find
14	one that doesn't fire?
15	MR. SCHULZ: Then you need to look at, you
16	know, the whole parts of the quality control. And this
17	is, when you make the propellant, initially, you make
18	it in batches, and you do testing of that before you
19	even put the propellant in the valve, to make sure
20	that this was a new manufacture to start with.
21	So there is, also, a propellant that is
22	designed, it is over-designed so that it will work
23	with 80 percent, or something like that, of the design
24	amount of propellant that you put in.
25	So it is very unlikely that that will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	happen, but not impossible. If something like that
2	happens you need to try to find out what the root
3	cause of the problem was.
4	MEMBER RANSOM: Do you go back and replace
5	all the ones that came from that batch?
6	MR. SCHULZ: That is a definite
7	possibility. If you can't figure out what the problem
8	is, or if you do figure it out, and it is for
9	something with aging, or that was different than when
10	you first made it. So there are some alternatives
11	there that you can take and certainly one of them is
12	to replace the propellant in the other valves.
13	MEMBER LEITCH: One thing that we always
14	did in other squib valve applications was in the
15	storeroom you would test one from each batch before
16	you used it, in actual application, to be sure that
17	that batch did, indeed, fire properly.
18	MEMBER RANSOM: I imagine the manufacturer
19	did something similar
20	MEMBER RANSOM: Perhaps, I'm not sure what
21	the manufacturer's practices were, but
22	MR. HAYES: We have a manufacturer here
23	that you can ask.
24	MEMBER RANSOM: Yes.
25	CHAIRMAN KRESS: The test fixture that you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	25
1	test this in, what measures the force, the charge, it
2	measures the
3	MR. SCHULZ: the pressure?
4	CHAIRMAN KRESS: the pressure, maybe.
5	MR. FREDERICK: Yes, I will get into the
6	details when I give my presentation, if that is okay.
7	MR. SCHULZ: Another thing that we do is
8	that when we disconnect the wiring from the
9	propellant, and reconnect it, we will do a continuity
10	check to make sure everything is hooked back together
11	and, in fact, that the firing circuit inside of the
12	valve is intact, and it is all connected together.
13	And, of course, the valve position sensor,
14	that is in-service inspection, now this relates to,
15	primarily, inadvertent opening of the valve, somehow
16	cracking, rupturing of the valve opening.
17	The shear cap, which we will be seeing in
18	a little bit, is the main issue here. The valve body
19	is a massive chunk of stainless steel, and I don't
20	think there is any issue with it breaking.
21	The flange is connecting the valve body to
22	the piping, are very robust also. So I think that the
23	focus of question of in-service inspection, and
24	potential leakage/rupturing is with the shear cap.
25	And one of the things that we would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

26 1 concentrate on in-service inspection, we would look at 2 take the valve apart, inspect it that, from a 3 dimensions point of view, make sure there was no 4 thinning. 5 We would also look for any cracking in that shear cap. And if there is any problems we will 6 7 replace it. Once you've got the valve apart it is not that big of a deal. 8 And we anticipate that although this will 9 be done every ten years, that it probably wouldn't be 10 11 done all four valves every ten years, it would be some 12 kind of a staggered, it would give you intermediate data. 13 14 CHAIRMAN KRESS: Have you made some sort 15 of analysis to see if that valve is thermally cycled? When you have a dead end off of a hot thing with a --16 sometimes these things can get thermally cycled, and 17 are you having -- do you have temperature measurements 18 19 on it, or --MR. SCHULZ: 20 We do not --21 CHAIRMAN KRESS: -- way to monitor it? 22 MR. SCHULZ: -- measurements in the plant. 23 The piping is big piping. 24 CHAIRMAN KRESS: Yes, 14 inch. MR. SCHULZ: To make it up the top of the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	hot leg.
2	CHAIRMAN KRESS: Yes.
3	MR. SCHULZ: So we anticipate that it will
4	be uniformly hot.
5	CHAIRMAN KRESS: It is full of liquid, you
6	drain any air out?
7	MR. SCHULZ: That is right.
8	CHAIRMAN KRESS: So you have a dead end
9	with hot liquid coming off the hot leg?
10	MR. SCHULZ: Yes.
11	MR. CUMMINS: If I may, Tom? For AP600,
12	where we did such an evaluation for the dead end pipes
13	like that, for thermal stratification, for AP1000,
14	where we were using the DAC approach, that is a
15	commitment to perform that assessment as part of the
16	final piping design.
17	CHAIRMAN KRESS: Okay.
18	CHAIRMAN WALLIS: You have to vent this
19	pipe, don't you?
20	MR. CUMMINS: I'm sorry?
21	CHAIRMAN WALLIS: Don't you have to vent
22	it, you get electrolytic pulls because you are letting
23	off the gases, the noble gases
24	CHAIRMAN KRESS: hydrogen get up there?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	probably would. You have to vent any kind of a dead
2	end like that. Otherwise you are likely to
3	accumulate, over a long period of time, hydrogen.
4	MR. SCHULZ: Well, two things. One I
5	don't see that as being a problem.
6	CHAIRMAN WALLIS: It doesn't matter if it
7	pulls the hydrogen
8	MR. SCHULZ: If there is some up there
9	CHAIRMAN WALLIS: expose the mixture,
10	too, it is radiolosis.
11	MR. SCHULZ: We have some other high
12	points where we do actually have an isobaric chart
13	inlet which is in the CMT inlets, both of those where
14	the presence of hydrogen might, adversely, interact
15	with the natural circulation of the system.
16	We have high point, not only high point
17	vents, but high point gas chambers on top of high
18	points to level sensors, that actually measure. Now,
19	we don't anticipate actually seeing anything up there,
20	okay?
21	But in those those functions are much
22	more sensitive to the presence of hydrogen.
23	CHAIRMAN WALLIS: If it did fill up with
24	the explosive mixture of hydrogen and oxygen, and you
25	set off the squib valve, you might set that off, too?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	You probably would.
2	MR. SCHULZ: I don't think so.
3	CHAIRMAN WALLIS: Why not?
4	MEMBER FORD: explosions occurred in
5	some PWR plants, hot legs of PWR plants. But there,
6	I think, there has been an explosive mixture of
7	hydrogen and oxygen, oxygen in your case. And you
8	also need an ignition source.
9	And I'm not too sure, unless the motor
10	operated valve is moving=
11	MR. SCHULZ: I don't know
12	MEMBER FORD: Probably the PWR explosion,
13	it doesn't mean
14	(Everyone speaks at the same time.)
15	MEMBER SIEBER: very rapid rate,
16	sometimes it self-ignites when you do that. But
17	these valves start off with hydrogen, and also leaps
18	pretty good, these valves are just a single valve.
19	And no matter how good the manufacturer
20	is, they are probably going to leak a little bit, too,
21	so the hydrogen will probably leak.
22	MR. SCHULZ: I don't think these valves
23	will leak.
24	MEMBER SIEBER: I've never seen a valve
25	that didn't leak a drop or two every month.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	MR. SCHULZ: Well, these aren't your
2	regular valves. Now, two of these valves actually
3	have the
4	MEMBER SIEBER: Better off
5	MR. SCHULZ: connection off of them.
6	And that would be the ADS 4 tees off horizontally,
7	passive RHR goes straight up.
8	CHAIRMAN KRESS: Yes, but that collects
9	hydrogen.
10	MR. SCHULZ: So that will tend to collect
11	it for that, if it does exist.
12	CHAIRMAN KRESS: The actual design, it
13	would be important, but you can still have thermal
14	stratification in there.
15	MR. SCHULZ: Yes, which we said would be
16	something to look at. That is the end of my portion.
17	Tom Hayes will now talk about the controls of the
18	valves.
19	MR. HAYES: Good afternoon, I'm Tom Hayes
20	from Westinghouse. I'm an electrical engineer, so
21	most of what you are talking about, so far, is foreign
22	to me.
23	I'm here to try to answer the questions
24	about why do we think this valve
25	CHAIRMAN KRESS: What you say will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	probably be foreign to us.
2	MR. HAYES: Okay, good. But I'm focusing
3	on the actuation circuit of these valves, and pointing
4	out what we have done to ensure that the valves will
5	receive an actuation signal when necessary, and will
6	not receive an actuation signal when they should not.
7	As Terry mentioned, each of these ADS 4
8	squib valves can be actuated by either of two
9	protection system channels, protection system that
10	carry the initials PMS, but that is the safety grade
11	system.
12	It is a four channel system. So, as Terry
13	mentioned, two of these four valves get an AMC signal,
14	and two of the valves get a B&D signal. And for each
15	of those valves, one of those signals will cause the
16	valve to actuate.
17	The protection system has both automatic
18	and manual means of generating that signal. And then
19	there is a diverse actuation system that also has a
20	manual way of actuating that valve.
21	Each one of these circuits are energized
22	to actuate, driven primarily by the characteristics of
23	the valve. It is not like an AOD that you can have be
24	a fail open valve. It needs energy so that it can
25	actuate, that is just the design of the valve.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	So I would like to first address the issue
2	of the reliability to actuate when you want it to.
3	And we address this by the three separate signals that
4	go to the valve.
5	What I have here is a block diagram of a
6	single ADS 4 valve, the circuits that would actuate
7	it. There are three of them, they are independent all
8	the way out to the valve. Each one of these valves
9	will have three actuators, or three igniters at least,
10	so that any one of those igniters will open the valve.
11	MEMBER WALLIS: What kind of a signal do
12	you send?
13	MR. HAYES: It is a pulse of current.
14	MEMBER WALLIS: One pulse of current?
15	MR. HAYES: One pulse of current.
16	MEMBER WALLIS: So some kind of a fire
17	that caused a short might send a pulse of current?
18	MR. HAYES: We will talk about that in
19	just a minute. You are getting ahead. If you want me
20	to jump ahead, I would be willing to. That would get
21	us back on schedule if I do that.
22	(Laughter.)
23	MR. HAYES: Let me first address how we
24	are addressing the issue of reliability to actuate,
25	and then we will talk about the reliability to not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	actuate, when you don't want it to, which is what you
2	are asking about.
3	MEMBER WALLIS: A lightning strike, or
4	anything that sends a
5	MR. HAYES: Certainly a lightning strike
6	would set one of these off.
7	MEMBER WALLIS: It would?
8	MR. HAYES: Inside containment, it has to
9	be inside containment.
10	MEMBER WALLIS: No, no, outside, surge.
11	MR. HAYES: Outside, no. I'm talking
12	about lightning striking through the steel containment
13	into this valve.
14	Okay, so in effect we are triple
15	redundant, and there are three different ways of
16	actuating this valve, three way redundant, two way
17	diverse. The two top halves we show here are from the
18	protection system, the energy for this current that
19	would open the valve comes from the class 1E power
20	MEMBER WALLIS: The supposed current level
21	is not are you talking about what goes from the
22	controller to the valve? I was talking about what
23	comes to the controller, what comes from the side of
24	PMS division to the controller.
25	Is this a piece of digital information, or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	is it a pulse of current?
2	MR. HAYES: Oh, okay. When you talk about
3	what the controller is this box that I have labeled
4	squib valve controller is, basically, a capacitor with
5	interlock circuits, okay?
6	So you charge it up, let's talk about how
7	the controller works. Each controller has what we
8	call an arm and a fire circuit. Now you are getting
9	into this the reason we did that is to do
10	everything we can to preclude spurious actuations.
11	Now, what the arm circuit is relatively
12	low current compared to the five amps it takes to fire
13	this valve, it would be something in the less than one
14	amp range, that would charge a capacitor in the
15	controller.
16	When the capacitor is charged, and the
17	armed circuit has been de-energized, there is
18	interlocked circuits to look for that, then the fire
19	circuit, if the controller sees an energy on the fire
20	circuit, this control grade signals
21	MEMBER WALLIS: Just a pulse of some
22	current in the fire circuit?
23	MR. HAYES: These are not the pulse is
24	out here on the fire side. These are just normal
25	digital signals.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	MEMBER WALLIS: So there is a digital
2	signal that is an encoded signal, with quite a bit of
3	information?
4	MR. HAYES: No, no, it is just an on and
5	off. A digital, to me, is on versus off. It is not,
6	well it is a continuous current.
7	MEMBER WALLIS: It is a very simple thing
8	I'm getting at.
9	MR. HAYES: Yes.
10	MEMBER WALLIS: If it were an encoded
11	digital
12	MR. HAYES: No, it is not encoded.
13	MEMBER WALLIS: signal, then there is
14	much less chance of it being fudged by a short. But
15	if you have just a current, then that could easily be
16	fudged by a short.
17	MR. HAYES: Sure, I understand that. But
18	these are simple signals. It is either energy there,
19	or not energy there.
20	But, remember what I said about this
21	control, what it is, is the capacitor that will charge
22	up. It gets its current from the arm signal, so it
23	gets a half an amp or so, for 30 seconds or so, and
24	charges up the capacitor.
25	And then, when that capacitor is charged,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	the fire signal will release that pulse of current to
2	go out to the valve.
3	MEMBER SIEBER: I picture what you are
4	describing as a capacitor, SPD switch on it?
5	MR. HAYES: Well, it is a little more than
б	that. Let's talk a minute about what that is.
7	CHAIRMAN KRESS: Okay.
8	MR. HAYES: So each controller has two
9	inputs, an arm signal and a fire signal, and the arm
10	signal is where it gets its energy to charge the
11	capacitor.
12	Now, what are the interlocks we have
13	associated with that? First of all the intended
14	operational sequence is to the arm circuit, to be
15	energized long enough to charge the capacitor, for the
16	arm signal to go away, and then the fire signal to
17	appear. And that will release the energy.
18	Now, in that process we have an indication
19	and alarm to the operator when that capacitor is
20	charged. There are times he wants it charged.
21	Obviously right before he wants the style to open.
22	There are times he wants it not charged, which all the
23	other times.
24	So you need an alarm on that to say that
25	that capacitor got charged, and you didn't mean for it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	to. So we have a capacitor there that normally it
2	sits there de-energized. We have interlock circuits in
3	this controller box, that says there is nothing you
4	can do on either one of those signal lines to make
5	this capacitor discharge.
6	You send it the fire signal to charge, it
7	will try to discharge, but it has nothing to
8	discharge. You send it the arm signal, with no fire
9	signal, it will charge up the capacitor, and that
10	capacitor will stay charged if that arm signal is
11	still there, but it will never fire, there is never a
12	fire signal.
13	MEMBER WALLIS: It won't let you fire when
14	it is partially charged?
15	MR. HAYES: It will let you try to fire it
16	if you partially charged it, and the arm signal has
17	gone away. You can try to fire it. But it won't stay
18	partially charged, it won't stay charged, or even
19	partially charged very long.
20	It is a matter of minutes, it has a lead
21	resistor that discharge the capacitor back down.
22	MEMBER SIEBER: I take it that it is a big
23	electrolytic capacitor?
24	MR. HAYES: Yes.
25	MEMBER SIEBER: So it has a lifetime, you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	have to change them out every ten
2	MR. HAYES: Sure.
3	MEMBER SIEBER: or so? Okay.
4	MR. HAYES: They will be tested every
5	refueling for degradation, and probably changed every
6	ten years even if they don't show degradation.
7	MEMBER SIEBER: I would.
8	MR. HAYES: I would too. That is a plant
9	operator issue at this point.
10	MEMBER LEITCH: I'm still a little
11	confused. Can you back up to the level switches? I
12	mean, the level is going down, and at the same level
13	do you actuate both the arm and the fire?
14	MR. HAYES: Well, yes. The level tells
15	the protection system it is time to open the ADS 4
16	valves.
17	MEMBER LEITCH: Right.
18	MR. HAYES: Then what the protection
19	system does, with its own internal timers, is it
20	actuates the arm signal for 30 seconds, then
21	deactivates the arm signal, and then actuates the fire
22	signal.
23	MEMBER LEITCH: Okay. If the arm signal
24	is not de-actuated will it fire?
25	MR. HAYES: No.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	MEMBER LEITCH: Okay.
2	MR. HAYES: It has to be a coordinated
3	sequence of things that happen into that control.
4	Now, most of this
5	MEMBER LEITCH: Back up to that again, to
6	the level switches. I'm still a little confused about
7	the logic there. Four level switches?
8	MR. HAYES: Right.
9	MEMBER LEITCH: And they are arranged like
10	in an H pattern, one out of two
11	MR. HAYES: Two out of four.
12	MEMBER LEITCH: Two out of four, okay.
13	Okay, thanks.
14	MR. HAYES: So you have the idea of
15	this controller, now, and it is driven very much by
16	concerns about shorts resulting from fires. Now, we
17	are into the shorts resulting from fires question that
18	came up.
19	If we go back to the picture one more
20	time, I will just pick one of these. If you have a
21	fire that is causing this circuit to hot short. And,
22	by the way, this is what we call a two pole circuit,
23	so it has both wires there, and they are both broken
24	on the upstream end.
25	But you get smart hot short. Both of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	those conductors short to two conductors somewhere
2	else. You can't get an arm signal. And when that arm
3	signal gets in there, and charges the capacitor, the
4	operator will get unarmed.
5	Now it is possible for a fire to cause
б	that to happen. It is possible for that fire to then
7	burn enough to break the conductors and make this an
8	open circuit. It is possible for a fire to, then,
9	cause this fire circuit to do the same thing, two
10	smart hot shorts.
11	However, it is not possible for that to
12	happen instantaneously. That takes a little bit of
13	time. In the meantime there are fire detectors in the
14	room where this might happen, smoke alarms, and the
15	operators have procedures that tell them to go turn
16	the power off in that room if there is a fire.
17	So if you look, from a fire actuated point
18	of view, if you are looking from this box forward,
19	there is nothing to short to. This is all passive
20	stuff with no energy stored.
21	These cables are in trays and could,
22	conceivably, short to another cable, but they are in
23	instrument trays. Instrument circuits are 4 to 20
24	milliamps, 20 milliamps won't fire one of these
25	valves.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	So there is although it would be
2	potentially possible for those wires to short to
3	something, there is nothing for them to short to,
4	within the trays they are in.
5	The fire would have to take those wires
6	out of the trays they are in, put them in a different
7	tray, and have these two conductors short. And that
8	is just beyond design basis, in my mind.
9	Now, upstream from these controllers, we
10	now are in areas where there are wires that you could
11	conceivably short to, but that is where you start
12	meeting these coordinated shorts, in multiple places
13	in a single room, or in multiple rooms.
14	And that is where we get into the, by the
15	time that happens, somebody has noticed their plant is
16	on fire, and they've turned the power off. Now, I
17	think I just went through about the next five slides.
18	MEMBER SIEBER: That is good.
19	MR. HAYES: These are just some more of
20	the interlocks that are in the box. Basically
21	attempting to prevent any spurious, reasonable
22	spurious things that could happen as a result of
23	inadvertent things happening.
24	Upstream of the squib valve we have the
25	arm and fire signal coming from two different places,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	so they are physically separated, at least in the room
2	that they are coming from. The rest of the story I've
3	been through, you turn the power off.
4	This is all energized, actuate stuff, turn
5	the power off when there is a fire. These manual
6	actuation switches, and Terry has already mentioned
7	it, are located at minimum two different places in the
8	control room, where somebody has to be bumping into a
9	switch.
10	The switches are going to be covered.
11	This is, obviously, not a switch you want to have so
12	that the guy can't even inadvertently bump one of
13	them. He is going to have to bump two, and they are
14	going to be in two different places.
15	The only other issue that I can think of,
16	that could cause a problem for spurious actuation is,
17	the protection system is a computer based system.
18	And software does screw up. And what I have to tell
19	you is that this is the best software you are going to
20	get.
21	It is protection grade software, it is
22	class 1E software, and Bill Gates was not involved.
23	Again, I emphasized, the squib valve controller itself
24	has no power, has no stored energy, except for the
25	potential, if you could come up with some possibility

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	that the capacitor gets energized, but that is
2	alarmed.
3	So under normal conditions the controller
4	is sitting there with no energy, no power, no way to
5	generate a signal, absolutely none. I don't care how
б	smart your little rodent that gets in there, or your
7	fire, or whatever.
8	Failures downstream of the controller.
9	Yes, here, what we are looking for is some way of
10	generating the five amps that it takes to actuate one
11	of these valves in some kind of cable to cable fault.
12	And we are simply saying there are no
13	adjacent cables that have the ability to generate five
14	amps. Those circuits just aren't there, they are in
15	other trays.
16	MEMBER SIEBER: Actually, the way I think,
17	it would be better to know what the voltage is,
18	because the amperage is determined by the resistance
19	of the detonator, right?
20	MR. HAYES: Well, the voltage is 48 volts,
21	it is at 24/48.
22	MEMBER SIEBER: Thanks.
23	MR. HAYES: But 24 volts could, I mean,
24	the detonator has very low resistance. So what we
25	have, though, is a power supply internal impedance,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	and 24 volts won't get you five amps.
2	Again, this is basically a summary of what
3	I've been repeating. So, basically, we believe the
4	old possibilities of fires, operator error, equipment
5	failures, and have at least some reasonable belief
6	that this is not likely to have a problem.
7	MR. CARUSO: Are there any on-line
8	monitoring and continuity to this normal operation?
9	MR. HAYES: We are not going to do that
10	because we are worried that that is more dangerous
11	from a spurious actuation point of view.
12	MR. CARUSO: You made a conscious decision
13	not to
14	MR. HAYES: We made a conscious decision
15	to do that check right after we have done our
16	refueling. The INC system guys are going to make me
17	check the continuity, check all the way up to the
18	squib valve.
19	So what I believe will happen, at the
20	refueling, is a connector will be pulled, we will put
21	on a test device, we will test fire all the way out,
22	so we know the INC is good up to there.
23	MR. CARUSO: A lot of applications in
24	these valves now that put a very small current
25	through, and then they measure continuity.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	MR. HAYES: I know. And those things have
2	all kinds of problems. It is a great theory. In
3	actual practice we are finding that they do,
4	occasionally, generate a spurious trip.
5	Do you have any more questions before I
6	sit down?
7	(No response.)
8	MR. HAYES: Okay. I will introduce Dan
9	Frederick from Conax Corporation, who is the
10	manufacturer of these types of valves.
11	MR. FREDERICK: As was mentioned, I'm Dan
12	Frederick, I'm Vice President of engineering for
13	Conax, and I work directly in design and development
14	of fire wells. So I have a pretty long history of
15	dealing with devices similar to what we are going to
16	discuss today.
17	It is a fine agenda that has been put
18	forth here, is the overview, first of all, by Conax
19	Florida Corporation, just to give you an idea that
20	yes, we have a building, and do exist.
21	Then we will get into the GE development
22	program, follow that up with the AP1000 valve design,
23	and the squib valve reliability will be taken care of
24	at the end.
25	As you can see that is the plant, there is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	46
1	actually three buildings involved, and it in St.
2	Petersburg, Florida. Just a quick overview of the
3	company.
4	Conax was founded in 1948, the first
5	development of elector-explosive devices was in the
6	early 1950s. Conax Florida subsidiary was formed and
7	moved to Florida in 1982, it became ISO 9001 certified
8	in 1997.
9	We were purchased by Cobham of England in
10	1998. We have about 150 employees, our annual sales
11	about 30 million dollars. And, as previously noted,
12	we are in St. Petersburg.
13	CHAIRMAN KRESS: Who are your customers?
14	MR. FREDERICK: Virtually all major
15	aerospace corporations, Air Force, Navy, Lockheed,
16	Boeing, etcetera, etcetera.
17	CHAIRMAN KRESS: Is Pyronetics one of your
18	brand names?
19	MR. FREDERICK: I personally came from
20	Pyronetics originally. And so I was there for many
21	years, when Pyronetics was relocated in Denver in
22	1980. Time frame, I headed up the engineering for
23	many, many years, I was with OEA until about 1999,
24	actually.
25	During that time frame Pyronetics was,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 quote, absorbed into OEA, because we were in the same 2 building as OEA, Incorporated. And then the aerospace 3 side became OEA Aerospace, because at the same time 4 the airbag industry was starting, and we had the 5 initiator designs for many of the automotive type companies. 6 7 And, therefore, it became OEA Aerospace. Since that time Aerospace has been purchased by UPCO, 8 which is now located in Fairfield, California, and 9 that is where I was at before I decided to move down 10 11 and take the position with Conax. 12 So it is a different CHAIRMAN KRESS: 13 company? 14 MR. FREDERICK: So right now Conax is, 15 obviously, separate from the original Pyronetics, OEA, However, we have a license agreement, and we 16 UPCO. are working directly with them on the sale of 17 18 pyrotechnic valves. 19 CHAIRMAN KRESS: But one reason for asking 20 who your customers were is they -- the customers 21 generally require some sort of QA/QC specs. And we 22 were interested in what sort of QA and QC you have to 23 have on these. 24 And I presume, from these particular 25 customers, that is --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	48
1	MEMBER SIEBER: That is what ISO 9001
2	MR. FREDERICK: ISO 9001, and certified
3	ISO 2000 by October, November time frame of this year.
4	So we are moving forward in the next phase of the ISO
5	certification process.
6	A quick list of some of the products. In
7	addition, we call them, pyrovalves, for the most part
8	pyrovalve and squib valve are virtually the same, they
9	have the same kind of design features.
10	Stored gas systems, water activated
11	systems, pin pullers and cutters, actuation systems,
12	and we even take lots of complex "build to print" jobs
13	in some cases.
14	The advantages of squib valves, they are
15	very fast acting, you have the solid metal seals, you
16	don't really have to worry about leakage over time.
17	They are reliable, environmentally durable, and NASA
18	sponsored and qualified many programs.
19	We build valves because they came to us
20	and said, well, we want these valves to fly on certain
21	missions, and we designed them that way. The other
22	advantage that wasn't noted there, typically a fire
23	valve, just from the nature of it, you are getting so
24	much work from so small an energy source, that you
25	have a very lightweight component, compared to what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	anything else could put out there, that would do
2	something in similar fashion.
3	We have a Class 10,000 clean room, we get
4	involved with electronic assembly on our lot of our
5	life support programs. We have a model shop that we
6	use for a lot of our prototyping and development work.
7	We do a lot of gas purity testing, we have pure gas
8	bottles if you want to model the main missile systems
9	that are produced today.
10	And we have our own environmental testing
11	that we do in-house, as far as vibration, and altitude
12	testing, etcetera. Obviously it is not to the size
13	you would need for this valve.
14	MEMBER SIEBER: Do you build the
15	controller that Mr. Hayes discussed?
16	MR. FREDERICK: No.
17	MEMBER SIEBER: So that comes from some
18	place else?
19	MR. FREDERICK: I believe it comes from
20	Westinghouse right? Yes, we don't do that.
21	MEMBER SIEBER: And you manufacture the
22	detonator, or do you buy that from someone?
23	MR. FREDERICK: What we are going to be
24	doing, on the detonator, which I was calling an
25	initiator, my background, and booster charge, which is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	the main propellant source, we will be going back to
2	UPCO, who built it previously, for all practical
3	purposes, and they will do it again.
4	MEMBER SIEBER: So these are the it
5	will be the same as the General Electric water valves?
б	MR. FREDERICK: Yes, that is exactly
7	right. In fact, I was directly involved with the
8	valve many years ago, and the design activity.
9	Just a brief list, I mean, obviously there
10	is a lot more data up there, and I won't go through
11	those items, but you can see it is a pretty extensive
12	list of things that we are directly involved in.
13	Certification, as I mentioned earlier, we
14	are ISO 9001, in November of 1997, and in January
15	2001, again. And getting into the GE valve development
16	program, just to give you a little history, is what
17	this amounts to.
18	Originally General Electric went out to
19	seven potential bidders to provide a product that
20	would do the work that they needed done. And for all
21	practical purposes that obviously wasn't just going to
22	somebody that made squib valves. That included, from
23	what I recall, going to the Japanese, and getting some
24	kind of a pneumatic system, etcetera, etcetera.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	the time we proposed a two inch ID valve that would be
2	upscaled to the required seven inch valve, as the
3	recommended approach for them to use.
4	And we even provided, at that time, a list
5	of our customers. They went out and contacted a bunch
6	of customers because, you know, obviously if you are
7	moving into a big development program on valve, it is
8	always nice to get some input from the people that say
9	we have been working with to understand where we were
10	coming from, that we had the potential to design
11	something of that size.
12	So then we received a contract, and then
13	we moved out to design a seven inch valve. And the
14	Westinghouse AP600 valve is, in fact, the same ID as
15	the GE valve, and the AP1000 valve, the plan would be
16	to scale up the existing GE seven inch valve, to
17	accommodate the slightly larger 9.24 inch ID diameter
18	for the AP1000 valve.
19	This valve, I will just give you a brief
20	description of. This is the two inch valve that led
21	to the GE valve. And from a quick design description
22	here, we will go through the design description here.
23	You can see, on the top of the valve,
24	right at that cavity, which is really not real clear
25	to everybody, where the initiator is located in that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	valve. There is actually two of them.
2	So if you located it around the other
3	direction you would have one sticking out this side,
4	and one out that side. So they have redundancy built
5	in from two initiators to do the just to cover in
6	case you ever had to have two.
7	But in reality the valve was designed to
8	work with one initiator. And this particular valve,
9	based upon the way it was designed, didn't even
10	require booster charge. And so when you fired the
11	initiator you get ballistic pressure that will build
12	up in this cavity.
13	It would build up a high net plunger right
14	here. So when you got to a control pressure, that it
15	took to break that shear section, then this part right
16	here would stroke down, causing this sheared out
17	section to move down, contact the support plate at the
18	bottom, and then just rotates over down to the bottom,
19	creating a full flow open flow passage.
20	MEMBER SIEBER: Is that hinged at the
21	bottom?
22	MR. FREDERICK: Yes, it is, that is a
23	hinge, yes.
24	MEMBER SIEBER: So it doesn't go shooting
25	across the room?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	MR. FREDERICK: No, no, it is totally
2	contained just like the GE valve that I will show you
3	here in just a second.
4	And in this particular case, which we
5	didn't need on the GE valve, you can see there is
6	metal belts around the outside, because they wanted to
7	prevent any potential for pyrotechnic materials to get
8	out into the system, they were concerned about
9	downstream of the valve.
10	CHAIRMAN KRESS: This thing wouldn't work
11	if you put it in backwards?
12	MR. FREDERICK: That is correct. Yes, it
13	was never intended to be pressurized on this side.
14	MEMBER SIEBER: Well, it wouldn't work
15	anyway.
16	MR. FREDERICK: Depends on what you put in
17	it.
18	MEMBER SIEBER: You would have a hard time
19	bolting it up. There is no flange on the other end.
20	MR. FREDERICK: That is where it all
21	started, that was the valve that we said, hey, we can
22	take that valve and we can stay with that. So let's
23	go to the next slide.
24	So then we took on the design activity,
25	moved forward, and developed the valve that is before

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	you. You can see there is a very large amount of
2	similarity to the two inch valve.
3	MEMBER WALLIS: I presume you made it very
4	high pressure you would have a problem, because you
5	must not fail in tension, but it must fail in shear?
б	MR. FREDERICK: That is correct.
7	MEMBER WALLIS: And so you have been
8	through all that, so there must be some sort of limit
9	to this design if the pressure is too high in the
10	system.
11	MR. FREDERICK: Well, if you got extremely
12	high, you would have a real problem from the
13	standpoint that the higher the pressure, and the
14	bigger the diameter here, the thicker that section
15	MEMBER WALLIS: That is right, and you
16	have to be able to shear it off.
17	MR. FREDERICK: And then what happens is
18	that you could, but the amount of booster charge up in
19	here, and the size of the valve would be very large.
20	So you just have to work into that.
21	I mean, you could get there if you really
22	wanted to. I'm pretty confident we can open up
23	anything we need to open. But this valve, as I
24	pointed out earlier, is based upon the two inch, and
25	you can see that you have a shear section, again, at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	this location.
2	You have a hinge pin, where this thing
3	rotates over
4	MEMBER WALLIS: So you shear it, but you
5	don't first break the hinge?
6	MR. FREDERICK: No. There is a slot right
7	here
8	MEMBER WALLIS: It impacts on the bottom,
9	then?
10	MR. FREDERICK: It impacts on the bottom,
11	and then it just rotates over with this surface
12	contacting that surface. And you are, again, full
13	open.
14	A tension bolt was added up to the top,
15	and you can see that we have a tension bolt here that
16	you didn't see in the prior valve. And the reason for
17	that is because when you go to the much thicker shear
18	section here, we didn't want to rely on static
19	pressure in order to drive the section open.
20	So we gave it a little dynamic impact, as
21	a result of backing it up, and putting a control
22	depth, or distance, between the bottom of the ramp, or
23	piston, and the top of the part that you are trying to
24	shear.
25	This valve, also, although it didn't have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

56 1 the bevels to prevent any flow lines, in particular 2 case of the nuclear environments, we went to all-metal 3 seals. So all the interfaces on all the assembly has 4 metal type o-ring seals. So you don't have any rubber 5 components on the entire design. And just a little more information on it. 6 7 The requirements at that time was that there was an 8 external temperature that the valve had to be exposed 9 to, an internal temperature that was in the pipe. And the goal was to keep the booster propellant below 280 10 degrees fahrenheit, which was the set limit for the 11 12 program, and cooling fans were on the top as well. And we went through the testing and met 13 14 all the requirements, in that regard, as well. On the 15 bottom, which I don't believe you need on the Westinghouse valve, but it was on the GE valve, ins an 16 electro-mechanical switch. 17 And what that did is it told somebody in 18 the control room that if the valve ever did fire, it 19 20 would send a signal back into the control room. 21 Here is what it looks like in -- you can 22 see up here the bolts are broken, but the sheared 23 section actually rotates over center, and the contact 24 to the valve body is down here.

The valve is designed to be refurbishable.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

57 1 The requirement on the prior programs, within 24 hours 2 you had to take apart the valve, remove all the parts 3 that needed to be replaced, put the valve back 4 together. 5 And so you can see, when you look at the valve, that part obviously has got to be replaced 6 7 because you sheared out the section. The tension bolt was broken, and there is a few seals, and that type of 8 9 thing, that go into the refurb process. But GE actually did take the parts that 10 11 were in Wiley, when we shipped them to Wiley, and 12 actually did do a refurb, and it met the requirement of the 24 hour with no problem. 13 14 The key feature there is that you can fire 15 the valve, you can do some surveillance testing, and whatever you need to, and you can save all the real 16 high dollar product of parts that are associated with 17 the valve. 18 19 MEMBER WALLIS: How thick is the shear, 20 the ring of material that is sheared, how thick is it? 21 MR. FREDERICK: This is going from memory. 22 I believe it is a quarter inch on the seven inch 23 valve. And, of course, it would be scaled up because 24 of the bigger diameter and slightly high pressure for the 10 inch in the AP1000 valve. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	Now I will give you a little summary of
2	some of the testing that was done on the previous
3	program, on some of the things that we would go
4	through in order to ensure that we can meet the basic
5	requirements associated with any new program.
6	Of course you always have the examination
7	of product because, obviously, you want to start with
8	meeting your intent and your requirements. We did
9	hydrostatic testing on the sheared out sections, as
10	well as the valve housing.
11	Leakage testing was performed in the inlet
12	pressurizer. We did the thermal exposure testing,
13	which is one I mentioned earlier, where the inlet was
14	at 550, surrounding air at 190, and the booster at the
15	top of the valve had to be below 280, which it was.
16	MEMBER WALLIS: What is the nipple made
17	out of?
18	MR. FREDERICK: In the prior program it
19	was made out of 304L, because that was the material
20	that was chosen at the time. For the AP1000 we have
21	been discussing going to 316L, which is more
22	compatible with what has been used by Westinghouse.
23	But if you look into the material
24	properties, both are very, very close. I mean, 316L,
25	321, 304L are all common materials used in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	aerospace business.
2	Other items, we had verification to make
3	sure that everything was the way it was supposed to
4	be. We did development testing. One valve was fired
5	twice, another valve was fired once. And then the
6	units were delivered to GE for additional testing,
7	subsequent to pyronetics testing at that point.
8	If I'm going to fast, let me know, I know
9	we have a real time constraint.
10	CHAIRMAN KRESS: You are doing good.
11	MR. FREDERICK: Some of the testing that
12	is done, or performed, on initiators and boosters,
13	what is called a closed bomb testing. And that is
14	performed at temperature and in some, not all cases,
15	it is performed with unders, and in some other cases
16	perhaps overloaded boosters.
17	Now, closed bomb testing is where you
18	actually put the booster with the initiators in it,
19	and to a metal enclosure of a control volume, you put
20	in a couple of pressure transducers, one on each side
21	of the bomb. You fire the unit, and what you do is
22	you establish what the pressure time curve is.
23	And that data is important because if you
24	get out there, let's say three or four years, after we
25	delivered the first batch of boosters and initiators,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

you can actually go back, pull those out, put them in a closed bomb, if you choose to do that, run a sample test, and verify you have had no degradation of performance as a result of pressure time data curves that are established during the upfront time to the program.

In addition, before we would ever ship any
boosters, we would also run an in-house, what we call
mod acceptance test, where we would pull some samples
out of the batch and verify that those units, indeed,
do meet the pressure time performance requirements.

12 Under lot sample testing, this is something that you don't normally have to do, most of 13 14 the time. But you do do it occasionally. And 15 generally you would do it, like if you had a nuclear program, or you are trying to verify that the material 16 17 properties would go through what you needed them to, under a nuclear condition, or if you are trying to 18 19 establish a new propellant.

20 CHAIRMAN KRESS: That first bullet just
21 measures the increase in weight with time?
22 MR. FREDERICK: Yes.

23 CHAIRMAN KRESS: And that is a measure of 24 either oxidizing, or picking up moisture?

MR. FREDERICK: Yes, that is right. Yes,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

	61
1	what you are doing here, by running it through this
2	thermal test, and the scanning test, what you are
3	really doing is just looking at this weight loss test.
4	In each of these cases what you are really
5	doing is trying to establish, through that, is there
6	anything unusual that is happening, that gives you an
7	idea that you really don't want to use those
8	materials.
9	And so there are guidelines, that you are
10	looking toward, when you are running those tests, as
11	far as acceptance criteria, so you know what you are
12	going into, and what you are coming out with.
13	And then in this particular case some
14	radiation testing was performed on the boosters, and
15	on the position switch and cables. And those, you can
16	see, is indicated there.
17	In addition boosters were subjected to
18	accelerated thermal aging testing, 25 days at 360
19	fahrenheit would simulate a four year normal life.
20	And the cable assemblies went through a similar type
21	test program. And then a reliability testing is where
22	a lot of boosters were manufactured.
23	And, as I recall, it was over 80. They
24	went through a whole series of tests, they came back
25	to us, we fired them all in closed bombs, and verified

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	that performance was as it should have been.
2	CHAIRMAN KRESS: When you did the
3	radiation testing, what sort of source did you use?
4	MR. FREDERICK: GE did that.
5	CHAIRMAN KRESS: GE?
6	MR. FREDERICK: Yes, we shipped them the
7	product and they ran the testing.
8	MEMBER WALLIS: I presume they are way
9	over designed. You actually had much more booster
10	than you would need to shear off the average nipple,
11	just to make sure that you shear off the more stubborn
12	nipple, you have enough
13	MR. FREDERICK: Well, that section is
14	extremely controlled by dimensional requirements. And
15	we always size valves to function properly with an 80
16	percent minimum charge.
17	And so we actually demonstrate that, by
18	testing, that we do comply with that requirement.
19	CHAIRMAN KRESS: Is there a potential to
20	have too much charge?
21	MR. FREDERICK: The only potential there
22	would be that yes, you could have too much. And,
23	again, what we would normally do is control it on the
24	top end, which typically is 120 percent maximum.
25	Because, obviously, if you put way too

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	much, you would drive that thing right out of the
2	bottom, and it wouldn't function quite right. So you
3	have to control all those parameters pretty closely.
4	MEMBER FORD: Has anyone, on the sheared
5	nipple, and before, in the closed state, there is a
6	fairly small ligament. What is the tensile state on
7	that ligament, under operating conditions?
8	MR. FREDERICK: That sounds like a simple
9	question, but it isn't, because it depends on all the
10	conditions that you have at the time, because you are
11	designing that particular section, based upon your
12	diameter, and your pressure.
13	MEMBER FORD: Right.
14	MR. FREDERICK: So, again, I'm going from
15	memory. If you go back to the GE valve, it was
16	designed more toward the stress at the yield level,
17	than it was ultimately, because the material strength
18	for 304L, the yield value was extremely low, compared
19	to the ultimate.
20	So you design it down here, because you
21	don't want it to yield, either. And so if the number
22	would have been, say, 28000 as an example for yield,
23	it would have been designed to meet that.
0.4	Whereas in a lot of the valves that we
24	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	level because the customer would say, here is approved
2	pressure you have to put on it, here is an ultimate
3	burst pressure.
4	In which case if I'm using titanium, the
5	yield is 120, and the ultimate is 130 so, really,
6	proof is a piece of cake, and the ultimate test is the
7	one you are concerned about.
8	MEMBER FORD: But it is a question to the
9	Westinghouse people. But I agree that 316L is a
10	pretty good choice of material for the primary system.
11	But you can crack 316 L, especially if it is cold
12	worked in any way.
13	Has there been any materials design review
14	taken that this is not going to crack during
15	operational conditions?
16	MR. CORLETTI: Will you be here tomorrow?
17	MEMBER FORD: Why, is there a lot of
18	questions we
19	(Laughter.)
20	MR. CORLETTI: Can we save that question?
21	MEMBER FORD: Absolutely, of course.
22	MEMBER RANSOM: While we are on that,
23	though, is that valve nipple satisfy all the ASME
24	safety requirements for personnel to be around it, at
25	operating pressure?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	MR. SCHULZ: You can't have people around
2	after
3	MEMBER RANSOM: Well, presumably startup,
4	things like that, you don't have any people there?
5	MEMBER RANSOM: But it is designed to ASME
6	code, which
7	MR. FREDERICK: Well, the valve is
8	designed to ASME code, you know, it is a class 1
9	requirement. So there would be no reason why somebody
10	wouldn't be around it. It is just like any other
11	class 1.
12	MEMBER RANSOM: It has sufficient safety
13	margin that you could be around that pressure.
14	MEMBER FORD: Is there any special
15	machining considerations to that nipple region? I
16	mean, are there any criteria put on you as to limiting
17	the final machining operations?
18	MR. FREDERICK: The only thing I can say
19	there is that we control the actual shear-out section.
20	On the inside, obviously, it is a straight section.
21	On the outside it is a curved section, and it is
22	extremely tightly controlled, dimensional.
23	MEMBER FORD: Is it ground, or is it
24	MR. FREDERICK: That is something that we
25	haven't established on this particular program.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	Because if I go back to this program with GE that was
2	not an issue at the time. The issue there is verify
3	the design concept.
4	So that is some of the things that we
5	would have to work out with when on, exactly, the
6	controls associated with that particular
7	MEMBER WALLIS: The nipple is made from
8	one piece, or is it a tube that is welded in?
9	MR. FREDERICK: This is one piece, right
10	here, this entire section. So that is a machine made
11	section.
12	MEMBER WALLIS: Machined from solid, or
13	what?
14	MR. FREDERICK: Yes it was. It had to
15	meet certain roundness associated with the program.
16	I believe it was a hot forced
17	MEMBER WALLIS: Just looking at that
18	beautiful squared edge at the end of that to
19	MR. FREDERICK: Yes, right here?
20	MEMBER WALLIS: Yes.
21	MR. FREDERICK: That is where the sheared
22	out section is and this part here is attached from
23	the other side in order to assemble, because you
24	couldn't get it through otherwise.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

67 1 you have a high strength concentrator, plus the 2 environment? 3 MR. FREDERICK: That is correct. 4 MEMBER FORD: Plus a machined surface for 5 which don't have the specifications for the we I mean, you could have have put residual 6 machining. 7 stress in at that point. Ιt is a beautiful 8 combination. 9 MR. FREDERICK: Yes, in designing valves, 10 you are designing strength. MEMBER FORD: Is that for operating in 11 12 high temperature water? That is exactly right. 13 MR. FREDERICK: MEMBER FORD: That is my concern. I'm not 14 15 concerned about mechanical failure, I'm concerned 16 about stress --17 MR. FREDERICK: That is some of the details that I think we need to look at, as a separate 18 19 issue. 20 CHAIRMAN KRESS: I just want to interject 21 a comment relative to the cracking issues. One of the 22 points is, and they may address some of this. But the 23 other part was in Terry's presentation, you point out 24 that we will be inspecting it, as part of the 25 inspection process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	So if there is any indications I think,
2	you knowanalysis done as to what is causing it. So
3	I think it is important to realize that it is not just
4	sitting
5	(Everyone speaks at the same time.)
6	MEMBER FORD: You might have enough damage
7	occurring in the 18 month cycle
8	MR. FREDERICK: You wouldn't want that.
9	MEMBER FORD: You wouldn't want that,
10	correct.
11	CHAIRMAN KRESS: How does that the
12	hinged part? Is it welded?
13	MR. FREDERICK: Not in that particular
14	configuration it wasn't. It was threaded in with a
15	straight machine from one side.
16	CHAIRMAN KRESS: You put the valve in
17	first then put the pin?
18	MR. FREDERICK: Right.
19	MEMBER SIEBER: We probably know more
20	about these valves than we ever wanted to.
21	MR. FREDERICK: And, lastly, we went
22	through the vibration testing actuation and flow
23	testing, that was done at Wiley.
24	Now getting into the AP1000 valve, just to
25	give you a comparison between the seven inch and the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	new AP1000 valve. You can see, initially here, the ID
2	is going from 7 to 9.24, and we discussed the
3	material.
4	Safety and seismic class is the same, the
5	design pressure is higher than previously, the
6	temperature is slightly higher. And the external
7	temperature is quite a bit less.
8	The radiation level for ten years as
9	identified here, versus four year requirement that was
10	on the prior valve. The inlet as previously
11	mentioned, you are down to 1 psi operation. And the
12	design life of boosters here is eight years as a
13	target, and previously they were just shooting for a
14	four year target.
15	MEMBER WALLIS: Go back to the materials,
16	is there some requirement on the chemistry of the
17	water that is in contact with this thing?
18	MR. CUMMINS: It is primary water
19	chemistry
20	MEMBER WALLIS: Does this valve have some
21	specs that says it has to withstand an environment
22	that sets the chemistry for this period of time?
23	MR. CORLETTI: Yes. But are you saying
24	does the valve impose additional functional
25	requirements?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	MEMBER WALLIS: Another functional
2	requirement here about the chemistry of the water, and
3	the boron, and all that stuff.
4	CHAIRMAN KRESS: That goes into the
5	initial selection of materials.
6	MR. SCHULZ: This is obviously a small
7	subset of the requirements, many other things that we
8	have specified already.
9	MEMBER WALLIS: Have these things ever
10	been in a reactor environment before? Survived for a
11	long period of time?
12	MR. CUMMINS: I think GE uses squib
13	valves, Westinghouse doesn't.
14	MEMBER WALLIS: Actually in there, so they
15	have been in there for a while?
16	MR. CUMMINS: In their plants. I believe
17	they are small ones, three inch or less.
18	MR. FREDERICK: Moving on to the AP1000
19	design. I mean, obviously it is going to be a scaled
20	up design from the original. Analysis design report
21	for the
22	MEMBER WALLIS: You no doubt have all the
23	pipe groups, have you?
24	(Laughter.)
25	MEMBER SIEBER: question about your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	hydrostatic test. If I look at the way the valve is
2	built, the shear section is part of the pressure
3	boundary. And so when you do a hydrotest, if you test
4	it to failure, the place that it will fail will be the
5	shear section.
6	And have you done that, and how much
7	overpressure can this valve take before you get a
8	failure in the shear section?
9	MR. FREDERICK: We didn't take it to
10	destruction.
11	MEMBER SIEBER: How far have you got?
12	MR. FREDERICK: That I don't know off
13	hand.
14	MEMBER SIEBER: which is one and a
15	half, I guess. And not actually prove too much. I
16	guess it is satisfactory, but I was just curious about
17	what kind of margin you have to avoid a failure of the
18	shear section without the actuator working.
19	Because, you know, if that valve operates
20	your plant is in trouble, I think.
21	MR. FREDERICK: Well, we did some
22	hydrostatic testing at whatever the margin was over
23	and above the
24	MEMBER SIEBER: Do you test you test to
25	code, then, right?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. FREDERICK: -- to code, yes. ADS 4 development prototype -- in charge sizing, and hydrostatic, and leap testing, and vibration, and of course actuation with over and under loaded that would be required.

Getting into reliability, some of the 6 7 things that we look at, this is just sort of a heading, and I will discuss it here shortly. 8 Hiah 9 reliability requirements, I mean, most of the aerospace industry, for many, many years, including 10 11 missile, satellites, and everything else, used 12 pyrovalves because they are highly reliable devices.

Failure modes and specs analysis is a standard process that you go through. Ignore that, that was originally a preliminary sample provided to Westinghouse for their review, but it is not in your packet, so if you look for it, it won't be there.

So I don't want you to think you are going to find something that maybe isn't there. Look at the design shear section a little more, reliability of squib valves, and then we will get into replacement of charges at the end.

First of all, what our customers require is basically higher reliability. We are working on life support programs, aerospace programs. And the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

consequences of failures are high. I mean, it is not always dollars, so to speak, but it is also people.

Because a lot of the devices we build are used for life support, and life saving type features. Our procedures control higher reliability. And, as mentioned earlier, we are certified in every way we should be, to meet our standards.

8 Custom valve designs and upscaling is a 9 standard process. The simple valve design reduces 10 problems. I think the key thing there is, like 11 anything else, the fewer parts you have of anything 12 the better off you are.

And if you go back and compare a squib valve with anything else that you might use as a substitute, you will find that you have a lot less parts to deal with and, therefore, that reduces your potential for problems.

The development process that we have been going through, for many years, is to deliver highly reliable valves, and then it has been proven with what we've shipped.

22 Some of the things that we go through, as 23 far as how to build in high reliability, we look at 24 past experience, lessons learned. We performed design 25 analysis, I call it design analysis here because

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	74
1	generally in prior valve, it was a design analysis
2	report, a lot of customers would call up, like stress
3	analysis report where you are doing the same type of
4	thing.
5	Examination and analysis of the drawings
6	in the FMEA, and reliability analysis, obviously, is
7	required. Under testing
8	MEMBER WALLIS: Do you do the
9	MR. FREDERICK: We do. We have an AFSCRAM
10	program that we have some people that
11	Under testing, we get involved with
12	development and prototype units. Margin testing, as
13	I've mentioned over and under loads. Obviously we
14	have to do acceptance and qualification tests.
15	Acceptance being something you would do on
16	everything you build, and then qualification testing
17	is generally samples that you pull out of that
18	acceptable batch.
19	MEMBER WALLIS: To get back to my
20	question, I would think you would have to control that
21	sharp corner pretty carefully, the way you machine
22	that little sharp corner.
23	MR. FREDERICK: That shear out section is
24	really not a corner, as such, it is a radius.
25	MEMBER WALLIS: It must be a radius.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	MR. FREDERICK: But it is a radius, it is
2	very well
3	MEMBER WALLIS: And you specify that very
4	clearly?
5	MR. FREDERICK: Yes. Under design for
6	shear out section, the shear section is a standard
7	pyrovalve design feature. Again, it has been in
8	valves as long as I have worked on valves.
9	So it even dates back, even some of the
10	valve designs that I incorporated in 1980, date back
11	to the late '60s, that were designed for Lockheed
12	Martin and some of the early space programs.
13	The concept has been proven many times,
14	thousands of times with valves. To my knowledge there
15	is no leakage ever reported on a delivered product,
16	through the sheared out section, or the shear section.
17	And I have designed valves as small as three-
18	thousandths of an inch, in some applications for
19	pyrovalves.
20	The concept proposed for the AP1000 is
21	really the same as the AP600, and the SBWR, same
22	design there, as far as the design concept. And the
23	designs, the basic design proposed would meet the ASME
24	codes, as identified.
25	And there would be a design by analysis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	for NB3200.
2	CHAIRMAN KRESS: What is the propellant?
3	Is it proprietary?
4	MR. FREDERICK: Technically it is. It
5	does show up in the Department of Transportation, I
6	believe, or the Department of Energy report someplace
7	along the line. But it was intended to be a
8	proprietary item.
9	So even though you know the name it is not
10	a big deal, because you still have to know how to put
11	it together to get there. So I won't bring that out
12	here, so it is originally considered to be a
13	proprietary item.
14	Getting into corrosion affects, we have
15	discussed this somewhat and I think we all agree that
16	there is more work to be done in that area, as far as
17	corroding effects, and any effects of 316L and the
18	intended application.
19	And in-service inspection, obviously, is
20	something that we have discussed, and obviously there
21	has to be something in place to cover that.
22	Under reliability summary I have it listed
23	here, and I have to give you a few specifics on what
24	the numbers mean, otherwise they won't mean what you
25	think they mean.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	Under UPCO reliability, again, I gave you
2	the track record of what UPCO means relatively to what
3	we are doing today. But they have manufactured more
4	than 64,000 valves, fired 5,300, and the reliability
5	numbers are stable.
б	Under Conax reliability, what I did, was
7	accumulated a bunch of numbers. Conax had not kept
8	records from the beginning of time on valves. So what
9	I had to do is try to accumulate as much information
10	as I could.
11	And there is at least greater than 25,000
12	initiators that have been put out in the field, which
13	went with basic valves at the same time, to no
14	reported failures coming back associated with the
15	valve itself.
16	Sandia reliability numbers, I've included
17	those in there, that is input information that was
18	given to me by Westinghouse, and I just inputted that
19	for information purposes, and it is the intent of
20	Westinghouse to get more details into some of the
21	Sandia information, which will be forthcoming after my
22	presentation.
23	CHAIRMAN KRESS: Is that based on the same
24	25,000 and no failures? It is just a different
25	statistical analysis?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	MR. SCHULZ: We don't know. Sandia has a
2	data base, the manufacturers have a data base, there
3	is some overlap.
4	MR. FREDERICK: This is what I was given
5	probably, I don't know, maybe a month or two ago,
6	prior to all the new information that was just
7	received from Sandia, to support this meeting.
8	MEMBER FORD: I think, since it is on the
9	record, I should just mention, you can crack 316L in
10	PWR primary water, dependent on what the stress is,
11	what the surface condition is.
12	And as you correctly pointed out, more
13	work needs to be done.
14	MR. FREDERICK: Finally here, squib valves
15	have high inherent reliability. I think that is safe
16	to say based upon the thousands of units that are out
17	in the field.
18	Reliability for smaller valves is
19	applicable for larger valves. And, again, some more
20	discussion will follow my presentation in that regard.
21	The same design standards that are basically
22	established for programs, you have engineering
23	analysis, various test requirements, we've got those
24	identified.
25	And design concepts, similar shearing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	material in all cases. It is a standard squib valve
2	design characteristic that you want to have.
3	And, lastly, again to my knowledge, no
4	failures associated with shear section cracking under
5	constant high pressure and temperature. To qualify
6	that, in the applications that we worked in,
7	obviously.
8	CHAIRMAN KRESS: Thank you very much.
9	MR. FREDERICK: That is it for me.
10	MEMBER LEITCH: I have a question.
11	Reliability data is based on the thousands that are
12	commonly manufactured, and I take it that is normally
13	about two inches, or do you have considerable
14	experience with anything larger than that?
15	MR. FREDERICK: Two inches is generally
16	about the largest that we have made. I may be able to
17	backtrack in Conax, and they may have one that is two
18	and a half or something.
19	But, again, it is different, it is a
20	little bit different, but it is the same type of thing
21	where you are shearing off
22	MEMBER LEITCH: The seven inch valve you
23	referred to is not in the
24	MR. FREDERICK: No, I don't even include
25	that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	MEMBER LEITCH: manufactured? Yes,
2	okay.
3	MR. FREDERICK: Thank you.
4	(Telephone interruption.)
5	MR. SANCAKTAR: My name is Selim
6	Sancaktar, I'm in the reliability and risk assessment
7	group at Westinghouse.
8	I wanted to summarize, for you, a few
9	thoughts and facts. I can keep it as short as you
10	want, you can catch up if you want.
11	But we previously discussed with, at
12	least, the PRA, what we did with AP1000. And
13	summarize it on some of my slides. Afterwards
14	basically I will give you first the high level
15	summary.
16	We sought, by function, and all of that
17	information came from Conax. The other part of the
18	information, we went to Sandia Laboratories, and we
19	commissioned them to review what we are doing, and
20	what they are doing in the squib valve area, and tell
21	us what they think of what we are doing.
22	They contact the clients
23	(Laughter.)
24	MR. SANCAKTAR: But I don't know what they
25	talk about. Sandia sent us a report, unfortunately it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	arrived two days ago. So I'm not going to present
2	that, can't give it a fair representation. They also
3	sent us a presentation slides, which you have in your
4	hand, right?
5	CHAIRMAN KRESS: When you say Sandia, do
6	you have a name associated with that?
7	MR. FREDERICK: Yes, it was Ruby Latham
8	was the name of the person. They wanted to make sure
9	that it was independent from the NRC contracts that
10	they had.
11	MR. SANCAKTAR: So all of these slides,
12	the things I noticed are, first of all, unfortunately
13	there are no slide numbers here, but towards the end,
14	there are two tables like this. And included at the
15	bottom there is a failure risk assessment of two minus
16	four, which is equal or lower than their previous
17	estimates, which we used for AP1000.
18	In fact, in their report, they use these
19	numbers to estimate the failure probability we used
20	for AP1000, and it goes down a little bit. So the
21	point is, if you look at it numerically, things are as
22	good as before, or better, according to Sandia's
23	information available to Sandia.
24	Before you asked whether their 25,000
25	valves is the same as Conax 25,000 valves. I don't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	think there are many manufacturers, so I'm sure there
2	are only so many valves around.
3	Sandia did a subset that includes Conax',
4	and UPCO's, and so on, so it is all the same
5	information
6	MR. FREDERICK: Sandia, over the years,
7	have been directly involved with their own type of
8	analysis that so how it all ties together, I don't
9	know. But I don't believe the numbers I put out are
10	totally different.
11	MR. SANCAKTAR: So the bottom line of the
12	Sandia report is, what they said before, and we used,
13	is still valid, or even better. Moreover, they looked
14	at the concern about the structural, possible
15	structural failures, and upscaling failures.
16	And, again, their conclusions, they didn't
17	find anything new. They don't think there is a
18	problem in upscaling, or with respect to the operating
19	temperatures and pressures, which coincide with what
20	Conax also said.
21	So the bottom line is, we still believe
22	that AP1000 calculations are reasonable and the
23	conclusions based on the AP1000 PRA about the risk,
24	contribution to plant risk of these valves is still
25	valid.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	And my personal opinion is that I feel
2	more comfortable, I think, with this slightly better.
3	But not enough information exists to make a big deal
4	out of it.
5	MEMBER FORD: Except that none of these
6	tests that they evaluated have been conducted where
7	high temperature water has been one side of the seal,
8	is that correct?
9	MR. SANCAKTAR: Well, obviously a lot of
10	testing has been done under various conditions, but
11	not to the temperatures that we are talking here. I
12	mean, when we build valves with pyro pressures than
13	24, 2,500, we have a valve with 10,000 psi operating.
14	MEMBER FORD: These are the reliability of
15	the valves in the highest produced condition, not in
16	after-service? Do you understand the difference?
17	After-service. So my question still stands, then.
18	None of these data points relate to after-
19	service in high temperature water.
20	MR. SCHULZ: The boiling water reactor or
21	the
22	(Everyone speaks at the same time.)
23	MR. SCHULZ: concern of failure to open
24	after service?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	about premature opening. Okay, I didn't understand
2	the
3	MR. SCHULZ: These are addressing the
4	issue of reliability to open on demand.
5	MEMBER FORD: Got you, okay.
6	MR. SANCAKTAR: But they also tell us
7	something about other failures, lesser failures of
8	that nature, that they didn't show themselves yet. So
9	we are not certain about (unintelligible) ten minus
10	four.
11	But there aren't any best crossed line
12	beyond what has been reported. So we know they are
13	ten to minus two or three. So we know the level, the
14	threshold that are established with other failures.
15	But how much we know, we don't know.
16	They may be equal to, or it might be
17	(unintelligible). That it is ten minus twelve, or
18	anything like that.
19	So, now, the best, I think go through the
20	presentation, or I can let you ask questions. I will
21	give you a choice, whatever you like.
22	MR. SCHULZ: You could skip to the
23	premature opening, the structural valve
24	(Everyone speaks at the same time.)
25	MR. SANCAKTAR: I just addressed, the last

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	two minutes the
2	MR. SCHULZ: Right.
3	MR. SANCAKTAR: It is telling us that the
4	structural failure aspect that cannot be purely
5	addressed. We have addressed it with situations in
6	generalized operational proportion, and design
7	proportions, and (inaudible).
8	And then you also lack of evidence says
9	that it is at the level of whatever evidence they give
10	us for a lot of failure model (inaudible) report.
11	But just for the sake of getting a feeling
12	for it, if you say that these valves are as reliable
13	as a piece of pipe, as a segment of pipe
14	(unintelligible) of a ten foot piece.
15	So if you say that this is like a segment
16	of pipe, each valve, and you only have definitions of
17	failures, and so on, you follow the same process for
18	these valves. We will end up with, four the four
19	valves, for the year, six times minus six previous
20	failure, from just some catastrophic structural
21	failure.
22	This is about ten percent of what we have
23	assigned now. So this might be so if you say, go
24	back and say this is twice as bad as a pipe, so you
25	get stresses. If you say it is ten times as bad as a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	pipe, you will get this number will be about six
2	times to the sixth, which is, which will be equal to
3	what we assigned to premature opening due to spurious
4	signal.
5	So we have the same orders of magnitudes.
6	And then we have other slide there, that is the
7	one. And what would that mean? For example, if we
8	double the failure to open (unintelligible) we see a
9	15 percent increase in the base PRA.
10	If you don't reach your opening we see an
11	increase of about twelve percent. So if you
12	(unintelligible) a factor of two, about the 25 percent
13	increase, you must be estimated.
14	CHAIRMAN KRESS: Is this small, is this
15	large, is the next question. I will leave it to you,
16	it is not small, it is not large either.
17	MR. SANCAKTAR: I've seen people worrying
18	about small percentages (unintelligible) to me is
19	by a factor of two we are in the same, we agree.
20	CHAIRMAN KRESS: About 10 to the minus 6?
21	Ten to minus 7, that is pretty small.
22	MEMBER FORD: Would you mind going back to
23	slide 32? It should be ten eight times
24	(unintelligible) for R?
25	MR. SANCAKTAR: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	MEMBER FORD: And the first bullet, and
2	I'm trying to I read the phrase, squib valve
3	considers some of the pipe segments. What are the
4	assumptions in that?
5	MR. SANCAKTAR: If they were, let's say it
б	this way, if they were, assumed to be as (inaudible)
7	that is what I would tell them, with the same
8	assumptions of other numbers in the same PRA, just to
9	get some sort of a point to refer to.
10	I'm not saying they are, I'm not saying
11	they are not. But once you get this number, then I
12	can move up and down and say, well, they are not
13	obviously I cannot say they are more reliable than a
14	piece of pipe.
15	CHAIRMAN KRESS: But you are saying even
16	if it is ten times less reliable it doesn't matter?
17	MEMBER WALLIS: Clearly it is not a pipe.
18	MR. SANCAKTAR: So I have to relate it to
19	something that is existing in the PRA, but the number
20	for it, and try to get some numerical thing out of it,
21	other than there is no other intention. Does that
22	answer your question?
23	MEMBER FORD: Yes, I just read the
24	statement, and my natural thought was to challenge it.
25	I'm not really sure why I'm challenging it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	(Laughter.)
2	CHAIRMAN KRESS: That is always his
3	natural thought.
4	(Everyone speaks at the same time.)
5	MEMBER FORD: I can understand your
6	reasoning, and I can understand Tom's reasoning and
7	say, even if you increase it by a factor of ten, but
8	what about a factor 1,000? Because of stress
9	concentrators, whatever.
10	MR. SANCAKTAR: Yes.
11	MEMBER FORD: And I hadn't thought it
12	through.
13	MR. SANCAKTAR: I mean, if it is a
14	thousand times worse, it is worse, then we would be in
15	a domain where we would start seeing failures in other
16	places.
17	So the conclusions basically are that we
18	don't have any new information that considerably
19	differs from what had calculated, because we had
20	calculated slightly (unintelligible) failing to open,
21	valves prematurely opening, it is a good as estimate,
22	as best estimate as you can come up with without too
23	much (unintelligible).
24	CHAIRMAN KRESS: These 25,000 valves are
25	part of the data base, are they two inch valves?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	MR. SANCAKTAR: Yes.
2	CHAIRMAN KRESS: So they are small
3	compared to
4	MR. SANCAKTAR: Yes. And for me the
5	important things that gave me confidence were that
6	both parties are mentioned, said that upscaling was
7	not a problem, and then they didn't see
8	(unintelligible) in this particular case, a subject
9	that would really make a big difference.
10	CHAIRMAN KRESS: So by both parties you
11	mean Conax and Sandia?
12	MR. SANCAKTAR: And Sandia, right. So we
13	think that the conclusions of the, for the AP1000 PRA
14	with respect to (unintelligible) failure of squib
15	valves are still valid, it is reasonable.
16	Just as a side point, if there is a
17	spurious opening, MOVs are three, can be
18	(unintelligible), and we don't want to be in that
19	situation.
20	MEMBER WALLIS: They can close on the full
21	flow? They have to close on the full flow?
22	MR. SCHULZ: They are not designed to do
23	that, no. So I'm not sure (unintelligible). And
24	squib valve opening.
25	MEMBER WALLIS: So they wouldn't shut it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	in time to do any good?
2	MR. SCHULZ: It probably would get you
3	into a
4	MEMBER WALLIS: stay open, because once
5	you are into that LOCA you want to stay
6	MR. SCHULZ: It is a large break LOCA for
7	us.
8	MR. SCHULZ: Eventually you can close one
9	or
10	(Everyone speaks at the same time.)
11	MEMBER WALLIS: Well, it seems a bit
12	let's see, fragile, the reasoning. Fragile reasoning.
13	This thing is not a pipe, it is more like a disk, or
14	something. There is no reason that experience with
15	pipes has anything to do with the experience with
16	squib valves.
17	MR. SANCAKTAR: And we do use it. I mean,
18	we know the AP1000
19	MEMBER WALLIS: You don't use it anyway?
20	MR. SANCAKTAR: Anyway.
21	MEMBER WALLIS: So let's forget it.
22	MR. SANCAKTAR: I just want to give you a
23	feeling about the numbers
24	MEMBER WALLIS: is what you would get?
25	MR. SANCAKTAR: Yes, just to give you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	91
1	(unintelligible). Just to give you a feeling, but I
2	don't have a number to give you. So (unintelligible)
3	on the table
4	CHAIRMAN KRESS: But basically the
5	reliability numbers come from 25,000 two inch squib
6	valves, out there, in operation, none of which have
7	failed, gives you a reliability for that, and
8	expectation that scale-up wouldn't change that, nor
9	the operational conditions would change that.
10	So that is the
11	(Everyone speaks at the same time.)
12	MEMBER WALLIS: but the opening
13	unexpectedly is different.
14	CHAIRMAN KRESS: Yes, it is a different
15	thing too, yes.
16	MR. CORLETTI: We have addressed at least
17	part of it in regards to the (unintelligible).
18	MEMBER WALLIS: Let the PRA people argue
19	about it.
20	MR. CUMMINS: I just want to be able to
21	explain this to Steve
22	(Everyone speaks at the same time.)
23	CHAIRMAN KRESS: Are we ready for a break,
24	then? We will take a 15 minute break, and be back by
25	20 after.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	(Whereupon, the above-entitled matter
2	went off the record at 3:05 p.m. and
3	went back on the record at 3:20 p.m.)
4	CHAIRMAN KRESS: I guess we are ready to
5	start again, and now we will talk about aerosols in
6	the containment? I guess this was, primarily, a
7	question that came from Dana Powers, where he was a
8	bit astounded that the size of the lambda they used,
9	to remove aerosols from containment, and in particular
10	I think he was questioning the diffusio-thermophoresis
11	part of it.
12	Partly because it wasn't clear to him that
13	the rate of steam condensation on the walls was always
14	there at the same time the aerosols were. But,
15	anyway, I just thought I would throw that perspective
16	out, as to where the concern came from. So with that
17	I will turn it over to Dr. Li.
18	MR. LI: Good afternoon. My name is Jun
19	Li, an associate at Polestar Applied Technology.
20	Today I'm going to talk about the calculation, the QA
21	calculation of post-LOCA containment aerosols
22	deposition for AP1000.
23	As an introduction, I would like to
24	mention a few things first. First of all, Polestar
25	has performed a QA calculation for the containment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	aerosol deposition which also is referred to as a
2	containment Lambda.
3	Several years ago for AP600, as a part of
4	AP600 design certification in that calculation the
5	lambda for the best estimated scenario to consider, at
6	the same time an extensive study of the sensitivity
7	of the radial parameter that will affect the
8	containment lambda has also been performed.
9	So we will talk about that later. And
10	similar to AP600, as we all know, that AP1000
11	containment has a very large steel shell that is
12	cooled from outside. So that we will expect very much
13	higher heat transfer rate as compared to AP600
14	operating framework, where the walls (unintelligible).
15	As a result of that, we would expect a
16	much higher natural aerosol removal than what would
17	exist in from the sedimentation alone.
18	MEMBER WALLIS: That depends on the ratio,
19	it is not obvious that condensation is going to drag
20	aerosols to the wall, which I suppose is what you are
21	talking about, faster than sedimentation, until you
22	look at the relative rates of the
23	MR. LI: Yes, that is true. But for
24	everything given the same, for example, the same
25	amount of aerosol, the same volume, and so on and so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	forth, if you only have sedimentation, you don't have
2	a condensation, then the lambda is going to be smaller
3	than the case where you have both.
4	MEMBER WALLIS: You don't know about how
5	much?
6	MR. LI: Yes, we don't know about how
7	much. That is the purpose of this calculation.
8	CHAIRMAN KRESS: But the containment
9	effective height for AP1000 is bigger than AP600. So
10	that reduces your sedimentation level?
11	MR. LI: Yes, you can now say that without
12	kind of assumption, for example, if you have same
13	amount of aerosol
14	CHAIRMAN KRESS: Yes, for the
15	MR. LI: certainly your sedimentation
16	is going to be smaller. But if you have, you increase
17	the volume, but at the same time you increaSe more the
18	amount of aerosol, the sedimentation lambda
19	(unintelligible).
20	So it is not like a yes, in this case
21	it just so happens the AP600, the AP1000 has a 75
22	percent more thermal energy, as well as 75 percent
23	more aerosol I mean, diffusion therefore, you
24	know, 75 percent higher, 75 percent more aerosol in
25	the containment than AP600.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	Now, for the volume only increase by 20
2	percent. Therefore
3	CHAIRMAN KRESS: So you have the initial
4	concentrations?
5	MR. LI: Initial yes, the concentration
6	actually is higher, therefore the sedimentation lambda
7	will be higher.
8	CHAIRMAN KRESS: Yes, they will cross
9	over, you are right.
10	MR. LI: Yes. So we will talk about,
11	because as I said, you know, the third point I want to
12	make is that since the AP1000, and the AP600 have
13	similar design, so this calculation is pretty much the
14	repetition of AP600 calculation, except that we use
15	AP1000 parameters, like a geometry surface, modeling,
16	and the amount of aerosol that (unintelligible) to
17	AP1000 design.
18	At the same time we use AP1000 thermal-
19	hydraulics, because the AP1000 the thermal power is
20	higher, so the thermal-hydraulic condition is going to
21	be different.
22	But in terms of the sensitivity of
23	containment lambda, we are going to rely on our
24	sensitivity study done on the AP600, which we will
25	discuss later, to asses the possible variation on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

96 1 AP1000. 2 CHAIRMAN KRESS: Westinghouse does this for the --3 4 MR. LI: Yes. CHAIRMAN KRESS: They use a code, they are 5 using -- you use the containment code? 6 7 MR. LI: Yes, it is --8 CHAIRMAN KRESS: For the aerosols. 9 MR. LI: For aerosol we use what is called 10 STARNAUA, QA code, which is the one we use for the 11 AP600 calculation. CHAIRMAN KRESS: Which code was it to use? 12 What is the name of the code, again? 13 14 MR. LI: The name of the code is STARNAUA. 15 CHAIRMAN KRESS: Is that one that you guys at Polestar developed? 16 17 MR. LI: Yes, that is right. CHAIRMAN KRESS: I'm not familiar with it. 18 19 MR. LI: It is the one -- the last three 20 pages summarize the --21 CHAIRMAN KRESS: The model? 22 MR. LI: The STARNAUA -- originally from 23 (unintelligible) which --24 CHAIRMAN KRESS: Oh, it comes from the NAUA? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	97
1	MR. LI: Yes.
2	CHAIRMAN KRESS: Okay, I'm sorry, I didn't
3	understand.
4	MR. LI: Yes, it is then it becomes a,
5	actually when I was at Stanford, but I took the NAUA
6	code, because EPRI was the sponsor of my program. So
7	we basically changed the NAUA code to include other
8	kind of
9	CHAIRMAN KRESS: Well, basically the
10	aerosol models there are the same ones that are in
11	containment?
12	MR. LI: Yes, exactly, exactly. It was
13	just additional feature like in STARNAUA we start
14	to consider a spray.
15	So now I would like to, also as a part of
16	introduction, I would like to put the aerosol removal
17	in some kind of perspective. Basically we what we
18	have here is tightly sealed containment, which the
19	design is 1.183 percent that was given by
20	Westinghouse.
21	Then we have this, the larger containment,
22	outside we have a water plume to cool the containment.
23	And on the inside we also have a condensate plume
24	running on the inside surface.
25	And as a result we have a pretty high heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

98
transfer, which I think some early (unintelligible)
talks to that. And then in the containment there will
be steaming, turbulence situation, and we can kind of
visualize that there is a pretty favorable environment
for aerosol removal, as we will show, you know, in the
calculation later.
Basically because of the (unintelligible)

7 Basically because of the (unintelligible), we are basically arguing that there is no way the 8 9 aerosol can bypass those mechanisms to leak out 10 directly, because they have to get to the surface. 11 And the leakage, there is a leak (unintelligible), and 12 it has to be at the surface.

So if you have a warning the aerosol stay 13 14 there, then it cannot leak. So once there is a leak, 15 then it gets to the surface and this (unintelligible) 16 starts to take place.

17 Now, we are going to basically use the AP600 calculation that we have done previously, as a 18 basis to explain what we did for AP1000. So this is 19 20 the time that we want to show the comparison, and so 21 we will know what we are looking for.

22 Now, compared to AP600, as I said earlier, 23 the thermal power is at 75 percent higher. And, 24 therefore, the amount of aerosol is 75 percent more. Volume is increased by 20 percent, which I was told 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

(202) 234-4433

	99
1	that it just makes that taller, therefore the
2	sedimentation area doesn't change.
3	So now we certainly know, with higher
4	with higher thermal powers mean that higher decay
5	heat, therefore there is higher total heat transfer
6	out of the containment, and we expect a higher
7	diffusiophoresis, and a higher thermal phoresis.
8	CHAIRMAN KRESS: At the same time?
9	MR. LI: No, not at the same time, because
10	sometimes it is a competing process. But it is just
11	that conceptually
12	CHAIRMAN KRESS: Conceptually, if you have
13	thermophoresis, if you have diffusional phoresis you
14	don't have thermal phoresis, so if you don't have
15	thermophoresis, you can have thermal phoresis?
16	MR. LI: Yes. I think that usually those
17	mechanisms are the combined mechanism tends to be
18	like one minus, you know, something and .1 minus, the
19	other you know, it is not like it is a product,
20	rather than
21	MEMBER WALLIS: What is thermal phoresis?
22	MR. LI: Thermal phoresis is the particle
23	movement driven by the temperature gradient.
24	MEMBER WALLIS: So how about the
25	condensation, doesn't that drag particles to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	CHAIRMAN KRESS: Absolutely, that is why
2	diffusional phoresis
3	MR. LI: Yes, that is called
4	MEMBER WALLIS: That is actually dragging
5	by flow?
6	CHAIRMAN KRESS: Yes, that is it is
7	misnamed, it should be called step and flow
8	MR. LI: Yes.
9	CHAIRMAN KRESS: It is misnamed.
10	MEMBER WALLIS: Diffusion takes place,
11	anyway, and
12	MR. LI: Exactly, which is the reason why
13	it is not
14	(Everyone speaks at the same time.)
15	MEMBER WALLIS: account of the
16	condensation?
17	MR. LI: Yes, exactly.
18	MEMBER WALLIS: Another question, is this
19	aerosol charged?
20	CHAIRMAN KRESS: That is always a question
21	that is never answered. The feeling is with all the
22	steam in there, that it sort of dilutes the charge.
23	MEMBER WALLIS: Does it?
24	CHAIRMAN KRESS: Well, the aerosols are
25	hygroscopic, and they are sort of wet, and that tends

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	to do something to neutralize the charge.
2	MEMBER WALLIS: Well, the charges on them,
3	it doesn't come off, unless it leaks off somewhere?
4	CHAIRMAN KRESS: Well, they are venting
5	all that water, it sort of neutralizes it.
6	MEMBER WALLIS: It doesn't neutralize it
7	unless there is an equal and opposite charge of some
8	sort, from somewhere. So there is probably a charged
9	cloud in there, I don't know.
10	CHAIRMAN KRESS: Well, that has always
11	been an unanswered question in the aerosol business,
12	are these things charged, and do they affect anything
13	if they are.
14	And that has never been answered.
15	MR. LI: So basically all of the three
16	mechanisms increase the removal rate, rather than
17	decrease it. Therefore we would expect higher
18	containment level for AP1000 than for the AP600.
19	Now, how do we do the calculations? The
20	procedure is like this. First of all, we would select
21	an accident sequence for AP1000 based on relatively
22	high probability. In this case we choose a
23	(unintelligible) sequence out of that.
24	And also the sequence has a timing, in
25	terms of aerosol release, that matches, are similar to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	NRC Regulatory Guide 1.183, timing for PWR fission
2	product release. So that is the criteria.
3	So we selected a sequence, and we used
4	what is called MAAP4 computer code. Actually it is
5	done by Jim in Westinghouse to simulate the accident
6	to produce the thermal-hydraulic conditions.
7	And once we get the thermal-hydraulic
8	condition, then we use that and input, and use the
9	Polestar QA code, STARNAUA, which I talk a little bit
10	about earlier, to calculate the natural aerosol
11	removal under those conditions.
12	CHAIRMAN KRESS: Now, when you look at Reg
13	Guide 100, it specifies a fission product fractional
14	release, and has an option for the timing for that,
15	and it specifies you use the large break LOCA sequence
16	to get the pressure, and the thermal-hydraulics.
17	Is that what you did here?
18	MR. LI: Yes, we used the NRC Reg Guide
19	1.183. You use the release fraction, and the release
20	timing for which is the (unintelligible) release of
21	25 percent.
22	CHAIRMAN KRESS: So this is a design basis
23	space you are dealing with?
24	MR. LI: Yes, exactly. And a maximum
25	release for 1.3 hours, then a release fraction like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	iodine 25 percent, cesium hydroxide 35 percent. So we
2	use the fraction as the for our aerosol
3	specification.
4	CHAIRMAN KRESS: Now, in the PRA space
5	there is no need to do all this, the MAAP code
6	calculates all that for you, right?
7	MR. LI: Yes.
8	CHAIRMAN KRESS: So this is strictly
9	dealing in the design basis?
10	MR. LI: This is design basis.
11	MR. SCOBEL: I think the answer to your
12	question is thermal-hydraulically we did not use the
13	design basis LOCA environment, we used the severe
14	accident environment. I think that was the question
15	that you asked
16	CHAIRMAN KRESS: Yes, that would
17	MR. SCOBEL: pressure and the
18	temperature
19	CHAIRMAN KRESS: Yes, that was one of the
20	parts of the question.
21	MR. SCOBEL: We didn't use the design
22	basis LOCA, we used the severe accident. That is why
23	we used the MAAP code to generate the environment.
24	CHAIRMAN KRESS: And I guess the question
25	is, is that acceptable way to deal with design basis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

104 1 space, to you guys over there? I mean, it is a 2 departure from -- it is almost a redefinition of large 3 break LOCA. 4 MR. SCOBEL: But it is actually the same 5 methodology that we used for AP600, to separate the lambda for AP600. And the reasons, actually, that we 6 7 did that to relate what you were saying were Dr. Power's concerns, where he didn't think that there 8 would be as much condensation at the time when you 9 would have the aerosol, in a small basis LOCA, that is 10 not true, you always have the condensation. 11 12 Yes, it is all at the CHAIRMAN KRESS: same time, isn't it, in design basis? 13 14 MR. SCOBEL: Well, we don't have these 15 kind of aerosols generated in a design basis LOCA for the very reason that you have core cooling going on 16 the entire time. 17 But in a severe accident, when you are 18 19 melting the core, then you tend to not be producing so 20 much steam because you --21 CHAIRMAN KRESS: -- space. 22 MR. SCOBEL: Right. So you have a drop in 23 the mole fraction of steam in the containment, and 24 your condensation rate goes down, which you can 25 actually see in the package of the thermal-hydraulic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	conditions.
2	CHAIRMAN KRESS: So, basically, you are
3	actually picking an accident that probably is worse
4	than the design basis space?
5	MR. SCOBEL: If we had used the design
6	basis we would have gotten better lambdas, that is
7	correct, exactly.
8	CHAIRMAN KRESS: Okay, thank you for that
9	clarification.
10	MEMBER WALLIS: I would think that if you
11	can predict the condensation rates you have a pretty
12	good handle on the diffusiophoresis.
13	MR. LI: Sure, that is exactly
14	MEMBER WALLIS: The particles are dragged
15	by the steam, there is no mechanism for giving any
16	relative velocity, or anything.
17	CHAIRMAN KRESS: That is right. If you
18	have this condensation rate, you can pin down the
19	diffusiophoresis. So that is the secret there, have
20	you got the right condensation rate.
21	MEMBER WALLIS: Well, you know the rate at
22	which you are boiling, and that is the rate you are
23	condensing, pretty well. If you say state
24	CHAIRMAN KRESS: Yes, pretty much, you are
25	right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	MEMBER WALLIS: So just from the decay
2	heat
3	CHAIRMAN KRESS: But if the pressure is
4	going to change, and there may be some
5	(Everyone speaks at the same time.)
6	MEMBER WALLIS: Is this benchmarked by
7	TMI, or anything like that?
8	CHAIRMAN KRESS: It has been benchmarked
9	by large aerosol containment tests, but not TMI.
10	There were no aerosols in TMI.
11	MEMBER WALLIS: Not at all?
12	CHAIRMAN KRESS: No.
13	MEMBER WALLIS: Wonderful, it didn't get
14	that far.
15	CHAIRMAN KRESS: Had some noble gases.
16	MR. LI: So, as I said, we have so
17	using the MAAP code, we can get into (unintelligible)
18	for the containment vessel removal calculation. And,
19	also, since we know that the removal process also
20	depend on the aerosol characteristics, we sample
21	(unintelligible) certainly the heavier, the larger
22	particle, the faster they will settle.
23	And so in our calculation those are the
24	assumptions we made.
25	CHAIRMAN KRESS: That is the log normal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	distribution?
2	MR. LI: Yes, it is log normal
3	distribution, because this is also the assumption we
4	used for AP600. And there is log normal situation,
5	the geometric mean really is .22 micron, sigma is 1.8,
6	which produced a mass mean diameter of 1.3 micron.
7	And we could do this pretty much
8	conservative, because even in the Sandia National Lab
9	study, done by Dana Power, the mass mean diameter they
10	used an extension of 1.5 microns to 5.5. So we used
11	the smaller in the lower end.
12	The efficient power ratio is 1.5 to 1, and
13	we basically neglected the hygroscopicity, because we
14	know that there is a controversy about, you know, what
15	kind of a chemical form this aerosol particle will be.
16	But if there were cesium iodide, we know
17	those are soluble materials, but we neglected the
18	hygrospicity. The packing fraction, we used .8.
19	CHAIRMAN KRESS: And that translates into
20	dynamic shake factor?
21	MR. LI: Yes, that translates into
22	because of, you know, there is a concern that the
23	particle, even though they are the type they are
24	CHAIRMAN KRESS: Basically is reduced to
25	density by that much?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	MR. LI: Yes, exactly, to reduce the
2	density. Because we believe, you know, those aerosol
3	will generate at very high temperature, which they are
4	pretty much liquid and then, when you know, so that
5	it should be close to one, but which was .8 at the
б	best estimate, and we do a sensitivity study.
7	CHAIRMAN KRESS: What that does is
8	reduces, actually, your lambda, doesn't it?
9	MR. LI: Yes, that is right.
10	CHAIRMAN KRESS: It makes it smaller?
11	MR. LI: Yes.
12	CHAIRMAN KRESS: What was your sensitivity
13	study on that, too?
14	MR. LI: The release fraction and timing,
15	as I said earlier, that we used an NRC Regulatory
16	Guide 1.183
17	CHAIRMAN KRESS: Now, the question I have
18	about that is, when did you start it, in the accident
19	sequence, to MAAP?
20	MR. LI: We started at the
21	(unintelligible) we take it is from Reg calculation,
22	we start at the core uncovery, the MAAP started at
23	core uncovery.
24	CHAIRMAN KRESS: You waited until core
25	uncovery?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

109 1 MR. LI: Yes, because what happened is 2 that before that, if there is a lot of steam, a lot of 3 condensation --4 CHAIRMAN KRESS: Yes, that is when you get 5 all that --MR. LI: -- credit for that, because the 6 7 core is not even uncovered. So all the time you see 8 in a tape, the --9 CHAIRMAN KRESS: And you say at the point 10 of core uncovery, do you mean top of the active fuel, or bottom of the active fuel, or --11 It would be top of active 12 MR. SCOBEL: fuel. 13 14 CHAIRMAN KRESS: Top of active fuel. 15 MR. SCOBEL: -- mixture level to dryout. 16 MR. LI: Now, the removal mechanism I 17 think is pretty much a standard -- basically (unintelligible) as I said, there is also a removal by 18 19 spray, into the STARNAUA, but that wasn't used. 20 So the screen mechanism is a sedimentation 21 diffusiophoresis, and thermophoresis. So we can see 22 that the sedimentation is the one that is pretty much 23 sensitive to the sides. 24 And if that is а spherical solid 25 (unintelligible), then fine, the denominator is one.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	(Everyone speaks at the same time.)
2	MR. LI: If the packing fraction is
3	smaller than one, then the phi is going to be larger
4	than one, that is going to affect the sedimentation.
5	Now, as we can see that the
6	diffusiophoresis and the thermophoresis are not that
7	sensitive to the particle side, especially the
8	diffuser. Thermophoresis, there is some small
9	dependency on the particle side, as you can see it,
10	because the number is in there.
11	But other
12	MEMBER WALLIS: Now, this has nothing
13	about condensation?
14	MR. LI: Yes, the Q (unintelligible) is
15	MEMBER WALLIS: Just like conduction. I
16	don't see any HFG, or anything like that.
17	MR. LI: HFG?
18	MEMBER WALLIS: This doesn't come into it,
19	the latent heat of the
20	MR. LI: That will come into the
21	(Everyone speaks at the same time.)
22	MEMBER WALLIS: Why? Doesn't that affect
23	thermophoresis? Where is that in the thermophoresis?
24	Or the diffusiophoresis? That is where it is, okay.
25	MR. LI: That doesn't come out

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MEMBER WALLIS:I'm sorry, now I2understand.3MR. LI: Yes.4CHAIRMAN KRESS: The temperature gradient5is carried forward6(Everyone speaks at the same time.)7MR. LI: So basically what it says is8acceptable sedimentation, the diffusiophoresis, and9the thermophoresis are pretty much dependent on the10decay heat.11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22transfer rate, on the condensation line.23So this is the calculated result. The red24curve is for AP1000, and the green curve is for		111
3MR. LI: Yes.4CHAIRMAN KRESS: The temperature gradient5is carried forward6(Everyone speaks at the same time.)7MR. LI: So basically what it says is8acceptable sedimentation, the diffusiophoresis, and9the thermophoresis are pretty much dependent on the10decay heat.11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22So this is the calculated result. The red	1	MEMBER WALLIS: I'm sorry, now I
4CHAIRMAN KRESS: The temperature gradient5is carried forward6(Everyone speaks at the same time.)7MR. LI: So basically what it says is8acceptable sedimentation, the diffusiophoresis, and9the thermophoresis are pretty much dependent on the10decay heat.11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22So this is the calculated result. The red	2	understand.
 is carried forward (Everyone speaks at the same time.) MR. LI: So basically what it says is acceptable sedimentation, the diffusiophoresis, and the thermophoresis are pretty much dependent on the decay heat. So whatever amount of decay heat you have, as long as you want to let those heat out of the containment, that is going to drive particle. So what you make the lambda calculation, pretty much robust, because we all know that, you know, sooner or later it is the decay heat that basically and the removal process is directly related to that. So there are some dependency on the pressure and temperature, because they will affect the coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. So this is the calculated result. The red 	3	MR. LI: Yes.
 (Everyone speaks at the same time.) MR. LI: So basically what it says is acceptable sedimentation, the diffusiophoresis, and the thermophoresis are pretty much dependent on the decay heat. So whatever amount of decay heat you have, as long as you want to let those heat out of the containment, that is going to drive particle. So what you make the lambda calculation, pretty much robust, because we all know that, you know, sooner or later it is the decay heat that basically and the removal process is directly related to that. So there are some dependency on the pressure and temperature, because they will affect the coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. So this is the calculated result. The red 	4	CHAIRMAN KRESS: The temperature gradient
7MR. LI: So basically what it says is8acceptable sedimentation, the diffusiophoresis, and9the thermophoresis are pretty much dependent on the10decay heat.11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22transfer rate, on the condensation line.23So this is the calculated result. The red	5	is carried forward
 acceptable sedimentation, the diffusiophoresis, and the thermophoresis are pretty much dependent on the decay heat. So whatever amount of decay heat you have, as long as you want to let those heat out of the containment, that is going to drive particle. So what you make the lambda calculation, pretty much robust, because we all know that, you know, sooner or later it is the decay heat that basically and the removal process is directly related to that. So there are some dependency on the pressure and temperature, because they will affect the coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. So this is the calculated result. The red 	6	(Everyone speaks at the same time.)
9 the thermophoresis are pretty much dependent on the decay heat. 11 So whatever amount of decay heat you have, as long as you want to let those heat out of the containment, that is going to drive particle. So what you make the lambda calculation, pretty much robust, because we all know that, you know, sooner or later it is the decay heat that basically and the removal process is directly related to that. 18 So there are some dependency on the pressure and temperature, because they will affect the coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. 23 So this is the calculated result. The red	7	MR. LI: So basically what it says is
10decay heat.11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22transfer rate, on the condensation line.23So this is the calculated result. The red	8	acceptable sedimentation, the diffusiophoresis, and
11So whatever amount of decay heat you have,12as long as you want to let those heat out of the13containment, that is going to drive particle. So what14you make the lambda calculation, pretty much robust,15because we all know that, you know, sooner or later it16is the decay heat that basically and the removal17process is directly related to that.18So there are some dependency on the19pressure and temperature, because they will affect the20coefficient. But the dependency on the temperature21pressure is not as high as on directly the heat22transfer rate, on the condensation line.23So this is the calculated result. The red	9	the thermophoresis are pretty much dependent on the
 12 as long as you want to let those heat out of the 13 containment, that is going to drive particle. So what 14 you make the lambda calculation, pretty much robust, 15 because we all know that, you know, sooner or later it 16 is the decay heat that basically and the removal 17 process is directly related to that. 18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red 	10	decay heat.
13 containment, that is going to drive particle. So what 14 you make the lambda calculation, pretty much robust, 15 because we all know that, you know, sooner or later it 16 is the decay heat that basically and the removal 17 process is directly related to that. 18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	11	So whatever amount of decay heat you have,
14 you make the lambda calculation, pretty much robust, 15 because we all know that, you know, sooner or later it 16 is the decay heat that basically and the removal 17 process is directly related to that. 18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	12	as long as you want to let those heat out of the
because we all know that, you know, sooner or later it is the decay heat that basically and the removal process is directly related to that. So there are some dependency on the pressure and temperature, because they will affect the coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. So this is the calculated result. The red	13	containment, that is going to drive particle. So what
16 is the decay heat that basically and the removal 17 process is directly related to that. 18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	14	you make the lambda calculation, pretty much robust,
17 process is directly related to that. 18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	15	because we all know that, you know, sooner or later it
18 So there are some dependency on the 19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	16	is the decay heat that basically and the removal
19 pressure and temperature, because they will affect the 20 coefficient. But the dependency on the temperature 21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	17	process is directly related to that.
 coefficient. But the dependency on the temperature pressure is not as high as on directly the heat transfer rate, on the condensation line. So this is the calculated result. The red 	18	So there are some dependency on the
21 pressure is not as high as on directly the heat 22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	19	pressure and temperature, because they will affect the
22 transfer rate, on the condensation line. 23 So this is the calculated result. The red	20	coefficient. But the dependency on the temperature
23 So this is the calculated result. The red	21	pressure is not as high as on directly the heat
	22	transfer rate, on the condensation line.
24 curve is for AP1000, and the green curve is for	23	So this is the calculated result. The red
	24	curve is for AP1000, and the green curve is for
25 CHAIRMAN KRESS: Now, do you have that	25	CHAIRMAN KRESS: Now, do you have that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	broken down by components for these three mechanisms?
2	MR. LI: Not for this curve, but in the
3	next one, yes.
4	MEMBER WALLIS: I don't understand
5	fraction per hour. And if you remove a faction of one
6	it is all gone. So what are you talking about?
7	CHAIRMAN KRESS: It is a fraction of what
8	is left.
9	MR. LI: Whatever fraction
10	(Everyone speaks at the same time.)
11	CHAIRMAN KRESS: It is either the amount
12	of
13	(Everyone speaks at the same time.)
14	CHAIRMAN KRESS: It is like a decay
15	MR. LI: If there is no source, only by
16	removal, then the concentration is going to decrease,
17	N is equal to N at a time certain, certain time
18	(Everyone speaks at the same time.)
19	MR. LI: to the minus lambda T.
20	MEMBER WALLIS: But one is a pretty high
21	number then, isn't it?
22	MR. LI: One is let me give you some
23	I know you probably heard that LACE experience
24	performed, and so they measured the concentration as
25	function of time, in their for example, LACE

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	(unintelligible).
2	And their measurement was that the lambda
3	for insoluble particles, which is magnum oxide is
4	around 1.3, 1.4. And the lambda for the soluble
5	material, which is cesium hydroxide, is 1.8.
6	MEMBER WALLIS: But you have a lambda of
7	1 here, for AP1000.
8	MR. LI: Yes.
9	MEMBER WALLIS: Which means in four hours
10	it is turned down to eight to the minus four,
11	presumably?
12	MR. LI: Yes.
13	CHAIRMAN KRESS: That is about right.
14	MEMBER WALLIS: Something like that?
15	MR. LI: Again, in the LACE, as example,
16	they call it half life 23 minutes everything cuts
17	by half. So it is a yes, you are right.
18	MEMBER WALLIS: Well, this is like a very
19	rapid removal rate.
20	CHAIRMAN KRESS: It is pretty rapid.
21	MR. LI: It is, it is. And, as I said,
22	that is what
23	MEMBER WALLIS: Most of it by the
24	condensation?
25	CHAIRMAN KRESS: I think in general most

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	of it is sedimentation, but here it may be the
2	condensation.
3	MR. LI: Yes. In LACE experience it is
4	pretty much done by sedimentation because LACE is kind
5	of a heat transfer, insoluble and soluble.
6	Now, if you want to see the contribution
7	from different removal mechanisms, on the right hand
8	side is AP600, and on the left side is AP1000. Now,
9	for AP600, it just so happen that three mechanisms,
10	basically they kind of contribute.
11	But for AP1000, because as I said earlier,
12	in the presentation, because we have a 75 percent
13	higher heat transfer rate, therefore basically during
14	the competing process, the heat transfer rate
15	basically removes most of the particles, which this is
16	the result.
17	MEMBER WALLIS: So what is this Q double
18	dash?
19	MR. LI: Q double dash is a sensible heat
20	transfer.
21	MEMBER WALLIS: It can't be condensation,
22	it must be just the sensible.
23	MR. LI: Yes, it is sensible, yes. It is
24	basically driven by
25	MEMBER WALLIS: I just wanted to be sure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	you weren't using the total heat transfer.
2	MR. LI: No.
3	MEMBER WALLIS: I'm surprised it is so
4	big.
5	MR. LI: It is. But if the sensible heat
6	transfer drops, then the condensation has to come out,
7	because they have to, the decay heat has to get out.
8	So
9	MR. SCOBEL: I believe one of the things
10	that you are seeing here is that because you do have,
11	for a period of high aerosol concentration, you have
12	a drier containment due to
13	(Everyone speaks at the same time.)
14	MR. SCOBEL: the sensible heat transfer
15	go up.
16	CHAIRMAN KRESS: And I can see why the
17	sedimentation may be a little lower, because it is
18	pretty high effective containment, and that is
19	MR. LI: Actually because we are assuming
20	it is well mixed, so
21	(Everyone speaks at the same time.)
22	MR. LI: doesn't play much role.
23	CHAIRMAN KRESS: Yes, it does, it is
24	directing the lambda. Even though you are well mixed,
25	you still get H you still have to follow that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	height?
2	MR. LI: Yes, that is right. In fact, the
3	assumption is actually making it worse, because
4	CHAIRMAN KRESS: And it would come out
5	faster.
6	MR. LI: Yes, because basically, you know,
7	part of the basis is we move downward. So we are
8	assuming well mixed, so basically it put them up
9	again. Every time, you know, they move down a little
10	bit, and
11	CHAIRMAN KRESS: That is why the height
12	enters into it?
13	MR. LI: Yes, that is right, yes. But as
14	I said, because there are more if you see the
15	equation, in the end it is (unintelligible) in the
16	containment.
17	CHAIRMAN KRESS: Well, what enters into
18	the exponential is the ratio of the volume to the
19	area.
20	MR. LI: Yes, that is right.
21	CHAIRMAN KRESS: And you call that height?
22	MR. LI: Yes.
23	(Everyone speaks at the same time.)
24	MEMBER WALLIS: It seems to me it doesn't
25	make any difference. Well, I guess you are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	superimposing the mixing on the surface sedimentation?
2	CHAIRMAN KRESS: Yes.
3	MEMBER WALLIS: It is not as well mixed as
4	the drift relative to the sedimentation.
5	MR. LI: Yes.
6	MEMBER WALLIS: also there is a drift
7	going on.
8	MR. LI: Yes, if there is not, one reason
9	is pretty much more concentrated
10	MEMBER WALLIS: do it all mixed up so
11	much there is only a little air near the bottom, which
12	is kind of stagnant, where you get sedimentation at
13	all.
14	MR. LI: But actually what happened is one
15	mix, then you have a removal rate down there, so it is
16	just the velocity times the temperature the
17	MEMBER WALLIS: Superimposed, yes.
18	MR. LI: Yes. So if this get removed, so
19	you have a, you know, an air that has no particle any
20	more, but then the well mix is going to provide
21	particle. So in that sense
22	CHAIRMAN KRESS: It comes out because you
23	are removing aerosols as particular velocity, on a
24	particular area. But you are removing those out of
25	the so it is volume over air, it looks like a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	height.
2	MR. LI: Yes.
3	CHAIRMAN KRESS: And that is where it
4	shows up.
5	MEMBER WALLIS: Yes, so you have bigger
6	area, you get more out of it.
7	CHAIRMAN KRESS: Yes. That is
8	interesting.
9	MR. LI: So about sensitivity, as I said
10	earlier, we didn't do a sensitivity study for AP1000,
11	because we are going to borrow the result from AP600.
12	So let's take a look at the sensitivity for the AP600.
13	MEMBER WALLIS: Sorry, isn't there some of
14	alutriation, that the big particles come out first,
15	and the tiny particles are left behind?
16	MR. LI: Yes.
17	MEMBER WALLIS: It is not just quite so
18	simple.
19	CHAIRMAN KRESS: Yes, you get a lambda for
20	each particle size. Now, what they are doing is
21	getting an average lambda
22	(Everyone speaks at the same time.)
23	MEMBER WALLIS: Check the average.
24	CHAIRMAN KRESS: What they get is find out
25	total mass, and then back out the lambda from the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	total mass.
2	MR. LI: Yes, exactly. What we did is we
3	divide the aerosol distribution into multiple bins.
4	MEMBER WALLIS: Okay, now it makes sense.
5	MR. LI: So each bin you calculate its own
6	removal, and the total removal of lambda
7	MEMBER WALLIS: The effects of lambda are
8	averaged over these things, but the change in the
9	weight, because you have different proportions in the
10	bins as you
11	MR. LI: Yes, that is right. But remember
12	that the particle also agglomerate.
13	MEMBER WALLIS: Yes, I was going to ask
14	you that, too.
15	MR. LI: Yes. And so the
16	MEMBER SIEBER: Well, how do you treat
17	that? How do you treat the agglomeration? Because
18	then you are
19	MEMBER WALLIS: It is a random process,
20	where they
21	MR. LI: It is not a random process,
22	actually originally
23	(Everyone speaks at the same time.)
24	MR. LI: The original German code, you
25	know, distribution, by sedimentation, and pretty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1CHAIRMAN KRESS: There is some turbulence?2MR. LI: Yes, turbulence.3MEMBER WALLIS: What is the source of the4turbulence?5CHAIRMAN KRESS: It is natural convection.6And you have to characterize the turbulence level from7the8MR. LI: So for sensitivity study we9changed the diffusion path to inner mass ratio from .510to 3.11CHAIRMAN KRESS: Just out of curiosity,12what did you use for a sedimentation area?13MR. LI: Sedimentation area?14CHAIRMAN KRESS: Yes. The cross section15of the containment, or did you actually look at all16horizontal surfaces? So you did do that, and looked17at all horizontal surfaces?18MR. LI: Yes. That tends to19MEMBER SIEBER: Did you consider angular20flow?21CHAIRMAN KRESS: You can take the22horizontal, the grid is in there, and there is23equipment that had horizontal surface, you can gather24all those up.25MEMBER WALLIS: Do you have convection		120
3 MEMBER WALLIS: What is the source of the 4 turbulence? 5 CHAIRMAN KRESS: It is natural convection. 6 And you have to characterize the turbulence level from 7 the 8 MR. LI: So for sensitivity study we 9 changed the diffusion path to inner mass ratio from .5 10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 12 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	1	CHAIRMAN KRESS: There is some turbulence?
4 turbulence? 5 CHAIRMAN KRESS: It is natural convection. And you have to characterize the turbulence level from the 8 MR. LI: So for sensitivity study we 9 changed the diffusion path to inner mass ratio from .5 10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 10 horizontal, the grid is in there, and there is 21 equipment that had horizontal surface, you can gather 24 all those up.	2	MR. LI: Yes, turbulence.
5 CHAIRMAN KRESS: It is natural convection. 6 And you have to characterize the turbulence level from 7 the 8 MR. LI: So for sensitivity study we 9 changed the diffusion path to inner mass ratio from .5 10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	3	MEMBER WALLIS: What is the source of the
 And you have to characterize the turbulence level from the MR. LI: So for sensitivity study we changed the diffusion path to inner mass ratio from .5 to 3. CHAIRMAN KRESS: Just out of curiosity, what did you use for a sedimentation area? MR. LI: Sedimentation area? MR. LI: Sedimentation area? CHAIRMAN KRESS: Yes. The cross section of the containment, or did you actually look at all horizontal surfaces? So you did do that, and looked at all horizontal surfaces? MR. LI: Yes. That tends to MEMBER SIEBER: Did you consider angular flow? CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is equipment that had horizontal surface, you can gather all those up. 	4	turbulence?
7 the 8 MR. LI: So for sensitivity study we 9 changed the diffusion path to inner mass ratio from .5 10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	5	CHAIRMAN KRESS: It is natural convection.
 MR. LI: So for sensitivity study we changed the diffusion path to inner mass ratio from .5 to 3. CHAIRMAN KRESS: Just out of curiosity, what did you use for a sedimentation area? MR. LI: Sedimentation area? CHAIRMAN KRESS: Yes. The cross section of the containment, or did you actually look at all horizontal surfaces? So you did do that, and looked at all horizontal surfaces? MR. LI: Yes. That tends to MEMBER SIEBER: Did you consider angular flow? CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is equipment that had horizontal surface, you can gather all those up. 	6	And you have to characterize the turbulence level from
 9 changed the diffusion path to inner mass ratio from .5 10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up. 	7	the
10 to 3. 11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 10 horizontal, the grid is in there, and there is 21 equipment that had horizontal surface, you can gather 24 all those up.	8	MR. LI: So for sensitivity study we
11 CHAIRMAN KRESS: Just out of curiosity, 12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	9	changed the diffusion path to inner mass ratio from .5
12 what did you use for a sedimentation area? 13 MR. LI: Sedimentation area? 14 CHAIRMAN KRESS: Yes. The cross section 15 of the containment, or did you actually look at all 16 horizontal surfaces? So you did do that, and looked 17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	10	to 3.
 MR. LI: Sedimentation area? CHAIRMAN KRESS: Yes. The cross section of the containment, or did you actually look at all horizontal surfaces? So you did do that, and looked at all horizontal surfaces? MR. LI: Yes. That tends to MEMBER SIEBER: Did you consider angular flow? CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is equipment that had horizontal surface, you can gather all those up. 	11	CHAIRMAN KRESS: Just out of curiosity,
14CHAIRMAN KRESS: Yes. The cross section15of the containment, or did you actually look at all16horizontal surfaces? So you did do that, and looked17at all horizontal surfaces?18MR. LI: Yes. That tends to19MEMBER SIEBER: Did you consider angular20flow?21CHAIRMAN KRESS: You can take the22horizontal, the grid is in there, and there is23equipment that had horizontal surface, you can gather24all those up.	12	what did you use for a sedimentation area?
15 of the containment, or did you actually look at all horizontal surfaces? So you did do that, and looked at all horizontal surfaces? 18 MR. LI: Yes. That tends to MEMBER SIEBER: Did you consider angular flow? 21 CHAIRMAN KRESS: You can take the horizontal, the grid is in there, and there is equipment that had horizontal surface, you can gather all those up.	13	MR. LI: Sedimentation area?
16 horizontal surfaces? So you did do that, and looked at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	14	CHAIRMAN KRESS: Yes. The cross section
<pre>17 at all horizontal surfaces? 18 MR. LI: Yes. That tends to 19 MEMBER SIEBER: Did you consider angular 20 flow? 21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.</pre>	15	of the containment, or did you actually look at all
18MR. LI: Yes. That tends to19MEMBER SIEBER: Did you consider angular20flow?21CHAIRMAN KRESS: You can take the22horizontal, the grid is in there, and there is23equipment that had horizontal surface, you can gather24all those up.	16	horizontal surfaces? So you did do that, and looked
19MEMBER SIEBER: Did you consider angular20flow?21CHAIRMAN KRESS: You can take the22horizontal, the grid is in there, and there is23equipment that had horizontal surface, you can gather24all those up.	17	at all horizontal surfaces?
20 flow? 21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	18	MR. LI: Yes. That tends to
21 CHAIRMAN KRESS: You can take the 22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	19	MEMBER SIEBER: Did you consider angular
22 horizontal, the grid is in there, and there is 23 equipment that had horizontal surface, you can gather 24 all those up.	20	flow?
equipment that had horizontal surface, you can gatherall those up.	21	CHAIRMAN KRESS: You can take the
24 all those up.	22	horizontal, the grid is in there, and there is
	23	equipment that had horizontal surface, you can gather
25 MEMBER WALLIS: Do you have convection	24	all those up.
	25	MEMBER WALLIS: Do you have convection

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	flowing down the walls
2	MR. LI: Yes.
3	MEMBER WALLIS: I imagine a few feet a
4	second. And as you concentrate particles in that
5	boundary, they don't all go to the walls, some of them
6	go down along the floor?
7	MEMBER SIEBER: Right.
8	MEMBER WALLIS: And then they are more
9	likely to settle out as they are closer to the floor?
10	MEMBER SIEBER: Well, making the turn.
11	MEMBER WALLIS: Making the turn to the
12	inertial separation.
13	(Everyone speaks at the same time.)
14	MR. LI: because of the void fraction.
15	And the things blow out of the core, you know, that
16	they
17	CHAIRMAN KRESS: Probably coming out the
18	ADS 4 valve?
19	MR. LI: Yes. So we thought that was a
20	conservatism. And, also, even when they got to the
21	past and we believed, you know, when it goes through
22	the tortuous path, there should be some you know
23	CHAIRMAN KRESS: Actually, this is design
24	basis space, and they specify an aerosol source that
25	they should use. And in picking that source the Staff

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	rightly decided that there would be things like that,
2	so they don't really use the full core inventory,
3	they've reduced it quite a bit.
4	But they take into account this inertia
5	stuff that they don't know how to calculate, and take
6	account for things like that. So it is built into
7	that kind of thing is actually built into the source
8	that is specified.
9	MEMBER WALLIS: It must be very sensitive
10	to the size of the particles.
11	CHAIRMAN KRESS: Yes, but that gets
12	speared out real fast by the agglomeration process.
13	I mean, you can put them in small, but they will
14	change in a hurry. They don't get that big. Some of
15	them are like 10 to 20 microns, they get pretty big.
16	MEMBER WALLIS: Unless you want to keep
17	them out going around, scrubbing out more.
18	CHAIRMAN KRESS: Well, that has been
19	proposed, that you artificially put aerosol
20	MEMBER SIEBER: For a small break, though,
21	the biggest hole you have in the system is the ADS 4,
22	which is which is a chimney. So you are going to
23	have a big circulation
24	CHAIRMAN KRESS: You have plenty of
25	natural convection.
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	MR. LI: The sensitivity result for AP600,
2	because of the way we think that the NRC time for
3	the diffusion path, but we also know that there will
4	be inner material that will also be releasing the
5	contaminant, not equal to a more inner material that
6	would tend to make the concentration higher, so you
7	have a higher agglomeration that you have to remove.
8	So the how many we will allow into the
9	containment to calculate the lambda will have some
10	effect. So in our as I said, we've assumed 1.5 in
11	the ratio, but we did a sensitivity study by changing
12	the I'm sorry (unintelligible) mass ratio from .5
13	to 3, and we see the change of 5 to 6 percent in total
14	leakage.
15	Now, we didn't compare the lambda, because
16	lambda is basically a function of time. But after the
17	wall we are actually more interested in the leakage
18	out of the containment. So the lambda can change in
19	time, but this is like integral effect on
20	MEMBER WALLIS: Where is it leaking from?
21	CHAIRMAN KRESS: That is unspecified.
22	MEMBER WALLIS: This is just design
23	MR. LI: Yes, it is .1 and
24	(Everyone speaks at the same time.)
25	CHAIRMAN KRESS: In design basis space you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	124
1	take this design basis leak rate, like .1, but you up
2	the leak rate by the pressure that you get out of
3	design basis LOCA. And I was just wondering if you
4	guys actually did that, too.
5	MR. GRESHAM: The containment leak rate is
6	design basis is based on operation, or based on
7	conditions
8	MEMBER SIEBER: It is the LOCA peak
9	pressure.
10	MR. GRESHAM: It is at peak pressure
11	containment, yes.
12	MEMBER SIEBER: And so it starts at that.1
13	and goes down, as containment depressurizes.
14	MR. GRESHAM: The NRC's guidance is assume
15	the design basis for the first 24 hours. And then no
16	further reduction.
17	MR. LI: Now, if you cut the sedimentation
18	area in half, then you can increase the leak rate by
19	13 to 14 percent. And, remember, this is for AP600,
20	where the sedimentation, it will only affect
21	sedimentation.
22	Now, the sedimentation in AP600
23	calculation contribute about 30 percent. So if we cut
24	this sedimentation area by half, the leakage increase
25	by 13 to 14 percent, which means you cut the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	sedimentation in half, because 30 percent times .5 is
2	around 14 percent.
3	So we know, for AP1000, it is going to be
4	five percent, because it only contribute
5	(unintelligible). Another thing we did is reducing
б	the packing fraction from .8 to .1, which kind of
7	exaggerate a little bit. Then it increases the liquid
8	about 14 percent.
9	Again, sooner, because it only affect the
10	pretty much only affect the sedimentation. So for
11	AP1000 we expect to be five percent, too.
12	Now, in smaller value of RG, because
13	already I said that, you know, we use RG and sigma,
14	that is already at the lower end of the Sandia that
15	has been looking, we reduced that further, we get the
16	leakage increase by an order of five percent, which is
17	small.
18	Then, again, if for AP1000, because it is
19	also the fact that, again, only sedimentation, and it
20	should be like two percent, three percent. So that is
21	why we are saying that AP1000 lambda derivation should
22	be lower than on the average.
23	Now, the conservatism that we think in
24	this lambda calculation, on top of that we think, you
25	know, by neglecting the hygroscopicity, our lambda is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	a conservative, because we know cesium hydroxide and
2	cesium (unintelligible) are solid.
3	And we also neglected the inertial
4	impaction on wet surface, and we will discuss that.
5	And we also neglected the aerosol retention in the
6	leak paths, when they leak out through the
7	(unintelligible).
8	CHAIRMAN KRESS: That is not exactly
9	neglected, because some correction to the source term
10	is built into it. The actual specified source term
11	has some recognition that there was some retention in
12	the leak path.
13	MR. LI: You mean in the leak path?
14	CHAIRMAN KRESS: Yes. I'm sorry, you are
15	talking about leaking out of the containment? I'm
16	sorry.
17	MR. LI: Yes, in there they haven't
18	considered the retention in the primary section. We
19	only take what is coming out of the primary system
20	into the containment.
21	CHAIRMAN KRESS: Okay, I'm sorry.
22	MR. LI: And our purpose are that we
23	choose to use a small set (unintelligible) we use the
24	MMD=1.3 micron, and the Sandia work assumes, you know,
25	1.5.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 So the conclusion is	
	s that we saw that the
2 lambda for AP1000 is 1.1 per h	nour. The result is
3 robust because there is a com	nbination of removal
4 mechanisms, and we discussed	d this around the
5 conservatism.	
6 So again, that i	is the end of my
7 presentation.	
8 CHAIRMAN KRESS: The	ere is no surprise to
9 me there is the large contribution	on to thermophoresis.
10 And I guess your explanation of	that, the dry phase,
11 and you still have to get the de	ecay heat out, and do
12 you have higher power than AP10	00, does make sense.
13 MR. LI: Actually I ha	ave thermal-hydraulic
14 data, it connects	
15 CHAIRMAN KRESS: It	is strictly a matter
16 of plugging in that thermophore	esis equation to the
17 thermal-hydraulics.	
18 MEMBER WALLIS: Well	, presumably you have
19 radioactive material which is gas	seous, which is not in
20 the form of aerosols. Not just n	oble gases, but other
21 things that have vapor pressure e	enough to evaporate
22 CHAIRMAN KRESS: No	, just the
23 (Everyone speaks at	the same time.)
24 MEMBER WALLIS: Only	the noble gases. It
25 seems to be because noble gases,	you know, you sort of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	vent them anyway.
2	MR. GRESHAM: After 24 hours the noble
3	gases are down to about one percent of their
4	MEMBER WALLIS: Just because of the
5	leakage?
6	CHAIRMAN KRESS: Yes, they are leaking.
7	MR. GRESHAM: No, because of decay.
8	(Everyone speaks at the same time.)
9	MR. GRESHAM: However, even when the small
10	fraction of iodine seems to be in organic form, and
11	thus gases are at 5 percent, there still is a
12	formidable source.
13	CHAIRMAN KRESS: And the aerosols have
14	settled out, and unless you control the PH of that
15	water, the iodine can come back out. So it is not a
16	question of can you open it just
17	(Everyone speaks at the same time.)
18	CHAIRMAN KRESS: It could be, that element
19	is organic.
20	MEMBER WALLIS: You want to solidify once
21	it gets to
22	CHAIRMAN KRESS: It would be nice to hold
23	it there.
24	MR. SCOBEL: I have a presentation at this
25	time, the analysis currently in the AP1000 is not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	based on this calculation of removal coefficients, it
2	is based on the removal coefficients that were
3	calculated for AP600. So there is
4	CHAIRMAN KRESS: I see, you went ahead and
5	used the same lambda?
6	MR. SCOBEL: We used the same lambda.
7	CHAIRMAN KRESS: So you are saying you
8	would be in the conservative
9	MR. SCOBEL: Well, I'm just saying, it is
10	conservative. We have this information earlier
11	CHAIRMAN KRESS: But you still meet the
12	criteria?
13	MR. SCOBEL: Yes.
14	CHAIRMAN KRESS: So that is all you
15	MR. SCOBEL: We have
16	(Everyone speaks at the same time.)
17	MR. SCOBEL: I have a presentation on the
18	thermal-hydraulics of what we use if you feel that you
19	want to see that. It just discusses the sequence that
20	we used, why, which I've already told you, and then
21	have a presentation of the plot, and with a comparison
22	to AP600, they look a little different, and there is
23	some reason.
24	But if you want to see that I would be
25	glad to present it. If you don't, we can move on.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	CHAIRMAN KRESS: I think the consensus
2	here is we would like to hear that.
3	MR. SCOBEL: Sure.
4	MR. GRESHAM: I think before Jim starts
5	the presentation it would be worth it is worth
6	pointing out that all the curves on here, that have a
7	time of zero hours, that is zero hours is the time
8	when you have uncovery of the active fuel. It is
9	initiation of the accident.
10	MEMBER WALLIS: I was just looking at the
11	handout from Polestar. We have this heat transfer
12	rate, which has these mountains in it, peaks?
13	MR. GRESHAM: That is what Jim is going to
14	talk about.
15	MEMBER WALLIS: So I'm always ahead of
16	you.
17	(Everyone speaks at the same time.)
18	MR. SCOBEL: Like I said, we used the
19	severe accident environment to generate the
20	environments for the containment, because it addresses
21	the dragging it reduces condensation and heat
22	transfer.
23	And it is also the same methodology that
24	we use for the AP600. We used the dominant core
25	damage sequence from the risk assessment, because it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 is a double-ended break in the DVI line. The RCS is 2 fully depressurized, and you fail gravity injection. There is successful cavity flooding on the 3 4 outside of the vessel to prevent the vessel from 5 failing. And as a result you reflood back into the reactor vessel, through the break. And in the 6 7 sequence we also produced a significant amount of hydrogen, and the hydrogen ignitors are turned off. 8 9 MEMBER RANSOM: -- the injection phase, 10 just assumption, or --11 This is what creates the MR. SCOBEL: 12 severe accident, as opposed to a data base accident. MEMBER WALLIS: Is there any mechanism 13 14 that --15 MR. SCOBEL: The mechanism is that it is the dominant sequence in the PRA, the failure --16 17 (Everyone speaks at the same time.) MR. SCOBEL: -- the squib valves, there is 18 19 squib valves in that line, in that gravity injection 20 line. And you have simultaneous failure of multiple 21 squib valves. 22 And this is just a list of the T&H input 23 parameters required for the NAUA code. The first one 24 is containment temperature, and the spikes you see 25 there, that is hydrogen burning at the igniters.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

131

And as opposed to the AP600 case where, apparently, we did not have the igniters turn on. The next one is containment pressure. And this one is kind of interesting. There is -- you know, you can see this difference between AP600 and AP1000, and it is kind of -- you would expect AP1000 to be higher

than AP600, and also you have this depression here, that is different than AP600.

And the reason for that is that AP1000 has 9 a higher core power density. And what you see, then, 10 11 in the results is that the core melt, at the time that 12 you reflood the core, is a lot more severe, and the core is all kind of plugged up, and blocked up. 13

14 And so you end up cutting off your water 15 ingression into the core debris, in the core, inside And so in AP600, where you had a 16 the vessel. 17 pressurization due to heat transfer from the core debris to the water, in AP1000 what you are seeing is 18 19 you are not getting that heat transfer.

20 And so the pressure is coming down because 21 the steaming is going down. So this is, actually, 22 with respect to creating steam, is conservative. But 23 now you have more superheat in the --

24 MEMBER WALLIS: This is a gauge pressure, 25 isn't it?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	133
1	MR. SCOBEL: This is the atmosphere.
2	MEMBER WALLIS: So it goes almost down to
3	one atmosphere?
4	MR. SCOBEL: Yes. Because you are not
5	getting much steam from the core region at that point.
6	And you can see that in the steam low fraction going
7	out here.
8	The other thing I wanted to mention about
9	the pressure is that we also have an effect from
10	hydrogen combustion, because you are taking the
11	partial pressure of hydrogen, which you had almost
12	1,000 kilograms of hydrogen in the containment.
13	You are taking that out of the
14	containment, and it is also taking oxygen out of the
15	containment, so it had an effect on the containment
16	pressure over all, during meltdown.
17	So, anyway, during this initial period of
18	time with the aerosols, before four hours, you can see
19	that there is a substantial decrease in the
20	condensation rate, due to the fact that we are not
21	getting the steaming.
22	CHAIRMAN KRESS: It is interesting, all
23	these hydrogen burns helps you here. It gives you
24	more condensation, it gives you more thermophoresis,
25	and doesn't affect your sedimentation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	MEMBER WALLIS: It stirs things up.
2	MEMBER SIEBER: Why does it give you more
3	condensation, just because of
4	MR. SCOBEL: Say that again?
5	MEMBER SIEBER: Why does it give you more,
6	the hydrogen burn, you get the water from the burn?
7	CHAIRMAN KRESS: You get steam, you get
8	hydrogen, you get steam from the
9	MEMBER SIEBER: The burn?
10	(Everyone speaks at the same time.)
11	MEMBER WALLIS: How much oxygen is there
12	in there to burn all this hydrogen?
13	MEMBER SIEBER: It is a big containment.
14	MR. SCOBEL: There is enough to burn that
15	amount of hydrogen.
16	MEMBER WALLIS: A thousand kilograms?
17	MR. SCOBEL: Sorry?
18	MEMBER WALLIS: A thousand kilograms
19	sounds like a
20	CHAIRMAN KRESS: They keep track of the
21	oxygen content, and that is when they decide when this
22	is going to burn, is when the hydrogen oxygen well,
23	I think that the thousand is spread out over
24	(Everyone speaks at the same time.)
25	CHAIRMAN KRESS: When you get up to 12

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	percent
2	MR. SCOBEL: The hydrogen, also, it would
3	be about 4 to 6 percent.
4	CHAIRMAN KRESS: Four to six, that is
5	right, you are just burning, you are not exploding.
6	MR. SCOBEL: I've actually seen
7	calculations where you have poor concrete interaction,
8	and stuff going on, and you have containment heat
9	removal that is really substantial, and you start to
10	get negative pressures in the containment.
11	You actually have a continuous hydrogen
12	source, over several hours, because the core is still
13	you still have multi core even though it is
14	flooded with water, the water is not getting into this
15	core mass, kind of like TMI.
16	MEMBER WALLIS: And it suddenly gets in
17	and you produce
18	MR. SCOBEL: No, you are accumulating it
19	in the containment as it is being produced.
20	(Everyone speaks at the same time.)
21	CHAIRMAN KRESS: Burns real fast.
22	MEMBER WALLIS: But it has to produce a
23	certain concentration before you get ignition again?
24	MR. SCOBEL: Yes, you have to have the
25	right combination of hydrogen and oxygen.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	MEMBER WALLIS: It seems to me that you
2	have just about enough oxygen
3	MR. SCOBEL: The oxygen will come down,
4	yes, significantly.
5	MEMBER WALLIS: What is the rough order of
6	magnitude calculation?
7	MR. SCOBEL: I have actually seen
8	calculations where you have poor concrete interaction,
9	and stuff going on, and you have containment heat
10	removal that is really substantial, and you start to
11	get negative pressures in the containment for
12	hydrogen.
13	MEMBER SIEBER: Right. Now, you are
14	assuming this debris all stays in the vessel?
15	MR. SCOBEL: All the debris is in the
16	vessel.
17	MEMBER SIEBER: And you don't have any
18	core interaction?
19	MR. SCOBEL: And, in fact, you would
20	expect the sequence is flooded both inside and
21	outside the vessel, it is not just it is not the
22	classic sequence that you are
23	CHAIRMAN KRESS: You are right, it is not
24	flooding in both places?
25	MR. SCOBEL: Yes, it is flooded inside and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	out.
2	CHAIRMAN KRESS: Yes, you are right.
3	MEMBER SIEBER: Well, again, the break is
4	at the direct injection nozzle?
5	MR. SCOBEL: A direct injection line
6	break, yes. And you end up flooding the compartment.
7	MEMBER SIEBER: Up to that, and then it
8	goes into there.
9	MR. SCOBEL: The PXS compartment floods,
10	and then you refilter through the break.
11	CHAIRMAN KRESS: Actually these hydrogen
12	peaks in the heat transfer rate, probably have almost
13	negligible effect on the thermophoresis sharp
14	compared to the I would suspect you get more
15	thermophoresis just from the averaging them out. The
16	time they are there is so short.
17	MR. SCOBEL: Any way, thank you.
18	CHAIRMAN KRESS: Thank you.
19	MEMBER WALLIS: Thank you.
20	MR. ZAVISCA: I'm Mike Zavisca from ERI,
21	and I hope to give you a brief overview of some of the
22	general results of the severe accident analysis that
23	we performed using MELCOR 1.85.
24	MR. ZAVISCA: We performed a number of
25	severe accident analyses for a number of AP1000 core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	damage sequences, in order to support the NRC in
2	formulating positions on a number of severe accident
3	issues.
4	But if I were to list some of the main
5	objectives we were after in these analyses, it would
6	be first of all, we wanted to obtain some data to
7	support our independent analysis of the IVR issue.
8	Second, we wanted to look at what the
9	results would be of molten core concrete interaction,
10	get a picture of what the containment conditions would
11	be, relevant to the hydrogen combustion issue.
12	CHAIRMAN KRESS: Did Westinghouse specify
13	the type of concrete they were going to use?
14	MR. ZAVISCA: We well, we performed
15	sensitivity to a number of different types of
16	concrete. And in addition, just to get a general idea
17	of the timing of the accident progression, and a
18	number of other general issues.
19	We selected a number of sequences for
20	analysis, which we named according to the definition
21	of ASME as used by Westinghouse. We had four base
22	cases, and a number of sensitivities in addition.
23	Our 3BE scenario was a safety injection
24	line break. And this is similar to the scenario that
25	Jim just described. It is a scenario which is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

139 1 expected to lead to successful in-vessel recovery. So this scenario will be used -- we ran mainly to support 2 the IBR analysis. 3 4 And we also had a number of sensitivities 5 to this case, regarding things like efficiency of PCCS operation. Then there was a traditional large LOCA 6 7 type sequence to 3BR, which is similar to one of the 8 top sequences in the PRA. 9 should say that in this table we Ι 10 analogized some of our sequences, to sequences that 11 show up in the Westinghouse PRA, however, they are not 12 identical in all respects. First of all because some details of 13 14 system availability in the PRA were, in some cases, 15 not mentioned, or left ambiguous, we just did not have information on those, so we had to quess. Or, in some 16 cases, we adjusted things deliberately in order to be 17 able to look at aspects we wanted to examine. 18 An example of which is for the 19 3be scenario, where Westinghouse allowed water ingress 20 21 back into the vessel. We disallowed that because we 22 wanted to obtain boundary conditions for no water 23 ingress. 24 And we have a set of 3D scenarios, which 25 are spurious opening of ADS valves. These are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	partially depressurized sequences which, therefore,
2	would not be expected to lead to successful in-vessel
3	recovery, so you have injection of debris to the
4	containment.
5	And these are the scenarios we mainly used
6	to analyze multi core concrete interventions in a
7	number of sensitivities to this, with regards to
8	things like concrete type, conditions in the cavity,
9	etcetera.
10	So you have injection of debris to the
11	containment. And these are the scenarios we used to
12	analyze multi core concrete interventions in a number
13	of sensitivities, with regard to things like concrete
14	type conditions in the cavity, etcetera.
15	And then, lastly, high pressure transient,
16	initiated by loss of heat water, designated sequence
17	(inaudible).
18	Just a few brief words about the MELCOR
19	model employed. We I guess the main point here is
20	that we modeled all safety systems, documents, and the
21	general level of the organization, of the RCS and
22	containment, is basically equivalent to that, that was
23	used in the MELCOR model used by Westinghouse.
24	And the information used in developing
25	this model came from the various design documents. In

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	some cases from parameters in the MELCOR model, and
2	specific responses to RNX.
3	One thing that was not included was molten
4	of the core barrel, during the core damage
5	progression. And this has something to do with some
6	boundary conditions for the lower plenum (inaudible).
7	We also did some things to enhance
8	conductivity in the lower debris, in the debris in the
9	lower plenum to model
10	MEMBER WALLIS: the chemical reactions
11	with the debris, from the shroud?
12	MR. ZAVISCA: That is right. So we are
13	underestimating the amount of steel that is in danger
14	as a result of that. This is one of the things we
15	mentioned as future work, which could be done later.
16	CHAIRMAN KRESS: Can you explain that last
17	slide justa little more. When we made that mixing of
18	the does that mean the question is whether or not
19	you have stratified steel, or metal over ceramic, or
20	what do you mean by the mixing?
21	MR. ZAVISCA: This is really related to
22	the fact that in the MELCOR model of the lower plenum,
23	it has a number of radial rings, and basically mixing
24	between those rings is only done in order to equalize
25	the level.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	There is no sort of advective mixing of
2	the molten debris between rings. We wanted to model
3	a little bit of the effect somehow equalizing the
4	composition and decay heat content of the material
5	between the rings of the lower
6	CHAIRMAN KRESS: Is that to decide whether
7	the
8	MR. KHATIB-RAHBAR: Let me explain this.
9	This is the molten core convection in a sense, because
10	MELCOR does not model multiple convection. The idea
11	was to get a mixing of the debris, because if you do
12	not have the conductivity, you get debris side by side
13	with very different
14	CHAIRMAN KRESS: So this is to decide when
15	it melts through the vessel?
16	MR. KHATIB-RAHBAR: Yes.
17	CHAIRMAN KRESS: That is what it is for,
18	okay, now I understand.
19	MEMBER WALLIS: How do you know how much
20	to enhance the conductivity?
21	MR. KHATIB-RAHBAR: Well, this actually
22	does not affect the result, if you look at that
23	separate IBR issues of this it does not affect any
24	of the things that we do later. This was just done
25	because we wanted to get somewhat of a realistic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1vessel wall temperatures, otherwise it would confuse2temperatures far exceeding the vessel melting3temperature.4This is not official (inaudible) and5without this it would compute large temperature6gradients within the neighboring parts of the lower7plenum.8We just do it to get (unintelligible).9MEMBER WALLIS: In order to get a pretty10uniform temperature?11MR. KHATIB-RAHBAR: Precisely.12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR25MEMBER WALLIS: But it is not necessarily	ĺ	143
 temperature. This is not official (inaudible) and without this it would compute large temperature gradients within the neighboring parts of the lower plenum. We just do it to get (unintelligible). MEMBER WALLIS: In order to get a pretty uniform temperature? MR. KHATIB-RAHBAR: Precisely. MEMBER WALLIS: And this is realistic? MR. KHATIB-RAHBAR: No. Well, realistic yes, from the standpoint of mixing in next presentation. MEMBER WALLIS: In fact this may be the worse case scenario, is that right? What is the implication of having that restriction? MELCOR is that we have less the implication of in the MELCOR model is, of course, we have less steel in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. So we did not assume, in the IVR 	1	vessel wall temperatures, otherwise it would confuse
 This is not official (inaudible) and without this it would compute large temperature gradients within the neighboring parts of the lower plenum. We just do it to get (unintelligible). MEMBER WALLIS: In order to get a pretty uniform temperature? MR. KHATIB-RAHBAR: Precisely. MEMBER WALLIS: And this is realistic? MR. KHATIB-RAHBAR: No. Well, realistic yes, from the standpoint of mixing in next presentation. MEMBER WALLIS: In fact this may be the worse case scenario, is that right? What is the implication of having that restriction? MR. ZAVISCA: The implication of that in MELCOR is that we have less the implication of in the MELCOR model is, of course, we have less steel in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. So we did not assume, in the IVR 	2	temperatures far exceeding the vessel melting
<pre>s without this it would compute large temperature gradients within the neighboring parts of the lower plenum.</pre>	3	temperature.
 6 gradients within the neighboring parts of the lower plenum. 8 We just do it to get (unintelligible). 9 MEMBER WALLIS: In order to get a pretty 10 uniform temperature? 11 MR. KHATIB-RAHBAR: Precisely. 12 MEMBER WALLIS: And this is realistic? 13 MR. KHATIB-RAHBAR: No. Well, realistic 14 yes, from the standpoint of mixing in next 15 presentation. 16 MEMBER WALLIS: In fact this may be the 17 worse case scenario, is that right? What is the 18 implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 10 MELCOR is that we have less the implication of 11 in the MELCOR model is, of course, we have less steel 12 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR 	4	This is not official (inaudible) and
7plenum.8We just do it to get (unintelligible).9MEMBER WALLIS: In order to get a pretty10uniform temperature?11MR. KHATIB-RAHBAR: Precisely.12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR	5	without this it would compute large temperature
8 We just do it to get (unintelligible). 9 MEMBER WALLIS: In order to get a pretty 10 uniform temperature? 11 MR. KHATIB-RAHBAR: Precisely. 12 MEMBER WALLIS: And this is realistic? 13 MR. KHATIB-RAHBAR: No. Well, realistic 14 yes, from the standpoint of mixing in next 15 presentation. 16 MEMBER WALLIS: In fact this may be the 17 worse case scenario, is that right? What is the 18 implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	6	gradients within the neighboring parts of the lower
9MEMBER WALLIS: In order to get a pretty10uniform temperature?11MR. KHATIB-RAHBAR: Precisely.12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR	7	plenum.
10uniform temperature?11MR. KHATIB-RAHBAR: Precisely.12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR	8	We just do it to get (unintelligible).
11MR. KHATIB-RAHBAR: Precisely.12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR	9	MEMBER WALLIS: In order to get a pretty
12MEMBER WALLIS: And this is realistic?13MR. KHATIB-RAHBAR: No. Well, realistic14yes, from the standpoint of mixing in next15presentation.16MEMBER WALLIS: In fact this may be the17worse case scenario, is that right? What is the18implication of having that restriction?19MR. ZAVISCA: The implication of that in20MELCOR is that we have less the implication of21in the MELCOR model is, of course, we have less steel22in the melt. But as we will see later, that23assumption was not carried over into the IVR analysis.24So we did not assume, in the IVR	10	uniform temperature?
 MR. KHATIB-RAHBAR: No. Well, realistic yes, from the standpoint of mixing in next presentation. MEMBER WALLIS: In fact this may be the worse case scenario, is that right? What is the implication of having that restriction? MR. ZAVISCA: The implication of that in MELCOR is that we have less the implication of in the MELCOR model is, of course, we have less steel in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. So we did not assume, in the IVR 	11	MR. KHATIB-RAHBAR: Precisely.
14 yes, from the standpoint of mixing in next 15 presentation. 16 MEMBER WALLIS: In fact this may be the worse case scenario, is that right? What is the implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	12	MEMBER WALLIS: And this is realistic?
15 presentation. 16 MEMBER WALLIS: In fact this may be the 17 worse case scenario, is that right? What is the 18 implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	13	MR. KHATIB-RAHBAR: No. Well, realistic
 MEMBER WALLIS: In fact this may be the worse case scenario, is that right? What is the implication of having that restriction? MR. ZAVISCA: The implication of that in MELCOR is that we have less the implication of in the MELCOR model is, of course, we have less steel in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. So we did not assume, in the IVR 	14	yes, from the standpoint of mixing in next
17 worse case scenario, is that right? What is the 18 implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	15	presentation.
18 implication of having that restriction? 19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	16	MEMBER WALLIS: In fact this may be the
19 MR. ZAVISCA: The implication of that in 20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	17	worse case scenario, is that right? What is the
20 MELCOR is that we have less the implication of 21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	18	implication of having that restriction?
21 in the MELCOR model is, of course, we have less steel 22 in the melt. But as we will see later, that 23 assumption was not carried over into the IVR analysis. 24 So we did not assume, in the IVR	19	MR. ZAVISCA: The implication of that in
in the melt. But as we will see later, that assumption was not carried over into the IVR analysis. So we did not assume, in the IVR	20	MELCOR is that we have less the implication of
 assumption was not carried over into the IVR analysis. So we did not assume, in the IVR 	21	in the MELCOR model is, of course, we have less steel
24 So we did not assume, in the IVR	22	in the melt. But as we will see later, that
	23	assumption was not carried over into the IVR analysis.
25 MEMBER WALLIS: But it is not necessarily	24	So we did not assume, in the IVR
	25	MEMBER WALLIS: But it is not necessarily

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	conservative, steel reacts
2	CHAIRMAN KRESS: It is not conservative
3	with respect to it is not conservative with respect
4	to the MCCI. So I think that is why they are telling
5	us they didn't do it.
6	MR. BASU: But I think it is conservative
7	with respect to the focusing effect.
8	CHAIRMAN KRESS: Yes, with respect to the
9	focusing and melting through the vessel is
10	conservative, so it depends on what you are interested
11	in.
12	MEMBER RANSOM: We actually want to look
13	at that, because that is this is not tested as part
14	of the code, so we didn't want to do something
15	MEMBER WALLIS: Does MELCOR use oloearian
16	representation of these core materials? Oloerian?
17	MR. ZAVISCA: It is actually very simple,
18	it is a point model, so it doesn't do any of that
19	sophistication. It takes a particular mass, it heats
20	it up. And you divide it up into nodes
21	(Everyone speaks at the same time.)
22	MR. ZAVISCA: after the LOCA. It
23	reaches the it goes down to the next one.
24	MR. KHATIB-RAHBAR: Exactly, to the next
25	node.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	MR. ZAVISCA: Automatically.
2	MEMBER RANSOM: So it is an olearian
3	representation?
4	MR. ZAVISCA: Pseudo, yes. The next slide
5	is a schematic to sort of give an idea of our first
6	objective to obtain boundary conditions to the IVR
7	analysis. I showed you some of the main results.
8	Actually I say here these are 3BE, but
9	these were when in the MELCOR column these are
10	results of low pressure best cases we performed in
11	MELCOR.
12	And I show the comparison, the range of
13	MELCOR MAAP4 results that we documented for the DBE
14	IVR classes. And I don't want to say that we are
15	we performed these we did not perform this analysis
16	in order to perform an exclusive comparison with MAAP,
17	we didn't intend to do that. But this is just for
18	information purposes, we want to see how it compares.
19	So core progression between one and two
20	hours, core plate fails at 2.6-3.7 hours, at which
21	time the debris, you get the first relocation of
22	debris to the lower plenum, that is 2.6-3.7 hours.
23	Later you get gross melting of the core
24	plate, 3 to 4 hours. Dryout of all the water in the
25	lower part of the RPV shortly thereafter.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	MEMBER WALLIS: Does the core plate fail
2	by melting, or by softening, or by stresses in
3	breaking, or what?
4	MR. ZAVISCA: Well, in the MELCOR model it
5	simply is assumed to fail to provide structural
6	supports once it reaches a certain temperature.
7	MEMBER WALLIS: So it softens then?
8	MR. ZAVISCA: Yes.
9	MEMBER WALLIS: It becomes very weak, and
10	it doesn't have to melt?
11	(Everyone speaks at the same time.)
12	MR. ZAVISCA: So at the time of the core
13	plate failure, in MELCOR, we get 80 percent of the
14	core, which is then in the form of debris, sitting on
15	top of it, slumps down into the lower plenum.
16	And this mass contains about includes
17	about 27 tons of steel, and 11 to 12 tons of
18	unoxidized zirconium metal.
19	MEMBER WALLIS: About 100 tons, or
20	something?
21	MR. ZAVISCA: This is I think there are
22	about 100 tons.
23	MEMBER WALLIS: Something like that, a
24	rough order
25	MR. ZAVISCA: Some of the corresponding

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	147
1	figures I couldn't extract from the MAAP results.
2	But, as I mentioned, we did not model core rationality
3	here, so this figure is kind of low.
4	I think in the Rome analysis that was done
5	by Westinghouse, they had between 50 and 70 tons. It
6	is basically the lower support plate, and some small
7	mass of structural steel inside the core.
8	The scenario is analyzed from the
9	standpoint of multi core interactions, mainly
10	partially depressurized spurious ADS sequences, which
11	included a number of sensitivities to a concrete type.
12	And conditions in the reactor cavity.
13	And I think I will skip ahead to this
14	slide, because the overall penetrations, concrete
15	penetrations distances we observed, and also a
16	comparison with the Westinghouse results from MAAP4.
17	And this shows that the main difference
18	between our results is we are predicting much lower
19	penetration, much lower concrete penetration as
20	compared with MAAP4.
21	MEMBER WALLIS: No source of groundwater,
22	or anything like that?
23	MR. ZAVISCA: No.
24	MEMBER WALLIS: Just like a big
25	difference, presumably.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	148
1	MR. ZAVISCA: As far as I could tell the
2	initial conditions, and the boundary conditions for
3	these were identical between ours and the MAAP
4	analysis.
5	CHAIRMAN KRESS: Now, MAAP tends to eat
6	down and across, and MELCOR just goes down. Is that
7	the end of
8	(Everyone speaks at the same time.)
9	CHAIRMAN KRESS: Yes, but MAAP does it
10	more, I think.
11	MR. BASU: That depends on the concrete
12	diversity
13	MEMBER WALLIS: So how far does it go in
14	a year?
15	CHAIRMAN KRESS: It stops.
16	MEMBER WALLIS: Looks like quite a long
17	way.
18	MR. KHATIB-RAHBAR: Yes, the model is not
19	designed to calculating such a long time.
20	MEMBER WALLIS: I know.
21	MR. ZAVISCA: So basically within about 60
22	hours one meter penetration in MELCOR, about 2.5
23	maximum in MAAP4. We reiterated here that the graph
24	was for limestone based concrete.
25	For the softest concrete we get, again,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	149
1	significantly less penetration in MELCOR, as compared
2	with MAAP4. Core concrete interactions debris between
3	roughly 1 and 3 tons of hydrogen within 60 hours.
4	Also large quantities of carbon monoxide and carbon
5	dioxide.
6	The larger quantities of hydrogen results
7	from the use of the basaltic concrete. And latest
8	containment pressures in the presence of CCI between
9	two and
10	MEMBER WALLIS: Doesn't the concrete break
11	into chunks and flow to the surface?
12	CHAIRMAN KRESS: No, it melts.
13	MEMBER WALLIS: It actually melts, it
14	doesn't interact with the water in the concrete?
15	(Everyone speaks at the same time.)
16	CHAIRMAN KRESS: It goes up as gas. The
17	water gets released and gets converted to CO and CO2,
18	reacting with the
19	MEMBER WALLIS: The thermal stresses don't
20	just shatter the concrete?
21	CHAIRMAN KRESS: No. Basically it is
22	melting. They did it at Sandia, it was pretty
23	accurate.
24	MR. ZAVISCA: With regard to hydrogen
25	deflagration, in most of these sequences we observed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	150
1	a general early behavior at the release, the initial
2	release occurs to some part of the lower containment,
3	IRWST, or the access compartment, or one of those
4	confined compartments in the lower containment.
5	And so hydrogen initially develops at
6	higher concentrations there, and burns there.
7	Eventually it will migrate up to the the open part
8	of the containment and possibly burn there.
9	So in the early phase we typically see
10	lots of very small burns occurring in the
11	MEMBER WALLIS: If each one is 10 percent
12	H2, then you can calculate just how much oxygen you
13	are removing with each burn.
14	MR. KHATIB-RAHBAR: That is how we did it.
15	CHAIRMAN KRESS: That is automatic.
16	MR. ZAVISCA: We did some calculations
17	assuming but in the MELCOR it will still burn
18	whenever it reaches a specified concentration within
19	a particular compartment, 7 percent, or 10 percent.
20	In the scenarios that involve multiple
21	core concrete interactions, we get vast quantities of
22	hydrogen and carbon monoxide in the late time frame,
23	so you observe one or more relatively large
24	degradations in the late time frame, in the upper part
25	of the containment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	Because sometimes some of the hydrogen
2	results, across the different MELCOR calculations that
3	we performed, you get between 44 and 65 percent
4	equivalent core zirconium oxidized, which corresponds
5	to around 420 to 650 kilograms.
6	And the MAAP4 results are similar, there
7	are many more calculations that they performed, so
8	there is a wider range. But averages
9	MEMBER WALLIS: by water, steam?
10	MR. ZAVISCA: This is oxidation of the
11	cladding during
12	MEMBER WALLIS: Steam?
13	CHAIRMAN KRESS: Steam.
14	MR. ZAVISCA: Containment loads as a
15	result of early combustion were never higher than
16	three and half, that we observed. In the
17	probabilistic AICC calculations that Westinghouse
18	performed it was an upper bound of 4.3.
19	CHAIRMAN KRESS: Now, does that
20	containment design 60 psi? I'm trying to remember.
21	MR. BASU: It is 59.
22	CHAIRMAN KRESS: So we didn't even get up
23	to the design pressure, much less
24	MR. ZAVISCA: That is correct. Now, in
25	the late time frame, with all this additional gas

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	release from MCCI, we sometimes calculate some
2	relatively large deflagrations in the upper
3	containment.
4	CHAIRMAN KRESS: Now, that is getting
5	close to two times design pressure?
6	MR. ZAVISCA: Well, this is this limit
7	here corresponds, approximately, to the service level
8	C, which is about 1 percent condition of probability
9	of containment failure.
10	But this is what we obtained. What
11	determines this upper limit is the amount of available
12	oxygen. Take all the oxygen in containment and burn
13	it all at once in the late time frame, that is about
14	what you get, that is the upper limit.
15	As far as the general timing of events,
16	some of these have been mentioned before. One
17	additional thing we did for the high pressure scenario
18	was calculate a time to rupture of the steam generator
19	tubes using integrated time to failure from with
20	failure parameters.
21	And we determined that the tubes would
22	fail around 7.4 hours, which is a little longer than
23	was calculated, but a little later than was calculated
24	by MAAP. But we reached the same conclusion, that for
25	the high pressure sequences, and pre-rupture of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	tubes is a likely outcome prior to vessel reactor
2	vessel failure.
3	CHAIRMAN KRESS: Well, but that doesn't
4	create a bypass, or does it?
5	MR. ZAVISCA: Yes. In the PRA I believe
6	there are sequences of one hundred percent chance
7	MEMBER WALLIS: What is in the secondary
8	at that time when you bypass
9	MR. ZAVISCA: It is dry.
10	MEMBER WALLIS: It is dry?
11	MR. ZAVISCA: Yes. And the late
12	containment loads, except for brief loads caused by
13	hydrogen combustion, they are generally below 2 bar,
14	very low.
15	And what we obtained from this, first of
16	all, what will deflagration does not challenge the
17	containment in any case. Even the maximum theoretical
18	possible burn only barely reaches the
19	MEMBER WALLIS: You store up hydrogen and
20	then you wait for it to go?
21	MR. ZAVISCA: PCCS is successful in
22	preventing lower pressure containment, as determined
23	by the low late quasi-static load can be calculated.
24	And based on penetration, it is not predicted within
25	3 days, which is the longest calculation that we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	performed.
2	We predict, actually predict the steel
3	liner will be reached within about 30 hours, I think,
4	but full penetration (inaudible). And in general
5	there are no surprises from accident timing or general
6	results.
7	CHAIRMAN KRESS: This MCCI calculations
8	assume dry
9	MR. ZAVISCA: They are both dry and with
10	wet
11	MR. ESMAILI: Tom, if you know, in the
12	MELCOR world it makes a little difference if it got
13	wet or not?
14	CHAIRMAN KRESS: unless you do an
15	aerosol calculation, but in effect so what we get
16	from this is using MELCOR you get results that are not
17	too different than MAAP, and that severe accidents
18	that involve a multitude of reactor vessel, don't
19	really challenge containment very much?
20	MR. ZAVISCA: That is correct.
21	CHAIRMAN KRESS: So this turns into some
22	sort of a this kind of thing, when you look at all
23	the accident sequences, converts into an initial
24	containment failure probability that is pretty low?
25	MR. SCOBEL: It is .08.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	CHAIRMAN KRESS: That is what I thought.
2	MR. ZAVISCA: The most challenging thing
3	we ever observed was one of those late
4	CHAIRMAN KRESS: This just is a
5	confirmation that what they do with MAAP is probably
6	pretty good, is that your message?
7	MR. ZAVISCA: I think in most cases, if
8	anything, the MAAP results will be more conservative.
9	CHAIRMAN KRESS: Very good.
10	MR. ESMAILI: My name is Esmaili, I'm from
11	ERI, and I will be talking about the in-vessel
12	retention of core decay externally cooled by the
13	cavity water, and the potential impact of excess of
14	steam explosions or fuel coolant interactions through
15	the vessel failure.
16	Now, the objectives of the study were two-
17	fold. The first one was to examine the IVR issue in
18	order to determine the likelihood and the location of
19	vessel breach.
20	Following this IVR analysis we also found
21	that it provided some insights into this type of a
22	failure. The second objective was to formulate the
23	FCI scenarios, and quantify the impulse loads on the
24	cavity wall, and on the pressure vessel itself.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	AP600, AP1000, was basically the same as the approach
2	that we used for AP600 over six years ago.
3	Now, the first step was to develop a one-
4	dimensional mathematical model based on our ERI two
5	dimensional model that we used for AP600, and we had
6	to modify this in order to be able to compare our
7	results with the DOE results that they did for AP600,
8	and the INEEL results.
9	Basically we are looking at two
10	configurations. The first configuration that you see
11	here is a molten pulse surrounded by a crust, a
12	solidified crust, in an overlying molten-like metal
13	layer on top of it.
14	Now, this was the base model that we used
15	in AP600 and DOE used for AP600 also. Now, the second
16	configuration is a little bit more challenging. This
17	involves a molten ceramic pool that is sandwiched
18	between heavy metal layer at the bottom, right here,
19	and a light molten metal layer on the top of it.
20	CHAIRMAN KRESS: Now, in Dr. Powers'
21	this was strictly a thermal analysis, or did you have
22	metal interactions with
23	MR. ESMAILI: This was strictly a thermal
24	analysis. I'm going to mention later on
25	MEMBER WALLIS: In reality the steel

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1interacts with the ceramic, doesn't it?2CHAIRMAN KRESS: Not much.3MEMBER WALLIS: Isn't there a thermal4reaction with the5MR. ESMAILI: That is true. The uranium6dissolved in oxidized zirconium, it makes it heavier,7it sinks to the bottom. But you are looking at a8quasi-steady process by the time that the relocation9has occurred and, you know, there is heat transfer to10the vessel wall, and the cavity wall.11So we are looking at it strictly from a12thermal point of view.13CHAIRMAN KRESS: Now, the outside of the14vessel you used the same heat transfer that you got15for the AP600? The boiling on the outside?16MR. ESMAILI: On the outside it is I'm17going to get to that discussion on the next slide.18If it does not exceed the critical heat19flux, so20CHAIRMAN KRESS: Yes.21MR. ESMAILI: Now, for the critical heat22flux they sued the lower head configuration V. At the23time that they did the study, the data and correlation24was not available for this lower head configuration.25But we assumed that CHF was higher by a		157
3MEMBER WALLIS:Isn't there a thermal4reaction with the5MR. ESMAILI:That is true.6dissolved in oxidized zirconium, it makes it heavier,7it sinks to the bottom.But you are looking at a8quasi-steady process by the time that the relocation9has occurred and, you know, there is heat transfer to10the vessel wall, and the cavity wall.11So we are looking at it strictly from a12thermal point of view.13CHAIRMAN KRESS:14vessel you used the same heat transfer that you got15for the AP600?16MR. ESMAILI:17going to get to that discussion on the next slide.18If it does not exceed the critical heat19flux, so20CHAIRMAN KRESS:21MR. ESMAILI:22CHAIRMAN kress:23xas not available for this lower head configuration V. At the24was not available for this lower head configuration.	1	interacts with the ceramic, doesn't it?
4 reaction with the 5 MR. ESMAILI: That is true. The uranium 6 dissolved in oxidized zirconium, it makes it heavier, 7 it sinks to the bottom. But you are looking at a 8 quasi-steady process by the time that the relocation 9 has occurred and, you know, there is heat transfer to 10 the vessel wall, and the cavity wall. 11 So we are looking at it strictly from a 12 thermal point of view. 13 CHAIRMAN KRESS: Now, the outside of the 14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 21 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	2	CHAIRMAN KRESS: Not much.
5 MR. ESMAILI: That is true. The uranium 6 dissolved in oxidized zirconium, it makes it heavier, 7 it sinks to the bottom. But you are looking at a 8 quasi-steady process by the time that the relocation 9 has occurred and, you know, there is heat transfer to 10 the vessel wall, and the cavity wall. 11 So we are looking at it strictly from a 12 thermal point of view. 13 CHAIRMAN KRESS: Now, the outside of the 14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	3	MEMBER WALLIS: Isn't there a thermal
 dissolved in oxidized zirconium, it makes it heavier, it sinks to the bottom. But you are looking at a quasi-steady process by the time that the relocation has occurred and, you know, there is heat transfer to the vessel wall, and the cavity wall. So we are looking at it strictly from a thermal point of view. CHAIRMAN KRESS: Now, the outside of the vessel you used the same heat transfer that you got for the AP600? The boiling on the outside? MR. ESMAILI: On the outside it is I'm going to get to that discussion on the next slide. If it does not exceed the critical heat flux, so CHAIRMAN KRESS: Yes. MR. ESMAILI: Now, for the critical heat flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration. 	4	reaction with the
<pre>7 it sinks to the bottom. But you are looking at a 8 guasi-steady process by the time that the relocation 9 has occurred and, you know, there is heat transfer to 10 the vessel wall, and the cavity wall. 11 So we are looking at it strictly from a 12 thermal point of view. 13 CHAIRMAN KRESS: Now, the outside of the 14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.</pre>	5	MR. ESMAILI: That is true. The uranium
8quasi-steady process by the time that the relocation9has occurred and, you know, there is heat transfer to10the vessel wall, and the cavity wall.11So we are looking at it strictly from a12thermal point of view.13CHAIRMAN KRESS: Now, the outside of the14vessel you used the same heat transfer that you got15for the AP600? The boiling on the outside?16MR. ESMAILI: On the outside it is I'm17going to get to that discussion on the next slide.18If it does not exceed the critical heat19flux, so20CHAIRMAN KRESS: Yes.21MR. ESMAILI: Now, for the critical heat22flux they sued the lower head configuration V. At the23time that they did the study, the data and correlation24was not available for this lower head configuration.	6	dissolved in oxidized zirconium, it makes it heavier,
 has occurred and, you know, there is heat transfer to the vessel wall, and the cavity wall. So we are looking at it strictly from a thermal point of view. CHAIRMAN KRESS: Now, the outside of the vessel you used the same heat transfer that you got for the AP600? The boiling on the outside? MR. ESMAILI: On the outside it is I'm going to get to that discussion on the next slide. If it does not exceed the critical heat flux, so CHAIRMAN KRESS: Yes. MR. ESMAILI: Now, for the critical heat flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration. 	7	it sinks to the bottom. But you are looking at a
10 the vessel wall, and the cavity wall. So we are looking at it strictly from a thermal point of view. 13 CHAIRMAN KRESS: Now, the outside of the vessel you used the same heat transfer that you got for the AP600? The boiling on the outside? MR. ESMAILI: On the outside it is I'm going to get to that discussion on the next slide. If it does not exceed the critical heat flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration.	8	quasi-steady process by the time that the relocation
So we are looking at it strictly from a thermal point of view. CHAIRMAN KRESS: Now, the outside of the vessel you used the same heat transfer that you got for the AP600? The boiling on the outside? MR. ESMAILI: On the outside it is I'm going to get to that discussion on the next slide. If it does not exceed the critical heat flux, so CHAIRMAN KRESS: Yes. MR. ESMAILI: Now, for the critical heat flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration.	9	has occurred and, you know, there is heat transfer to
12 thermal point of view. 13 CHAIRMAN KRESS: Now, the outside of the 14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	10	the vessel wall, and the cavity wall.
 13 CHAIRMAN KRESS: Now, the outside of the 14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration. 	11	So we are looking at it strictly from a
14 vessel you used the same heat transfer that you got 15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	12	thermal point of view.
<pre>15 for the AP600? The boiling on the outside? 16 MR. ESMAILI: On the outside it is I'm 17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.</pre>	13	CHAIRMAN KRESS: Now, the outside of the
MR. ESMAILI: On the outside it is I'm going to get to that discussion on the next slide. If it does not exceed the critical heat flux, so CHAIRMAN KRESS: Yes. MR. ESMAILI: Now, for the critical heat flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration.	14	vessel you used the same heat transfer that you got
<pre>17 going to get to that discussion on the next slide. 18 If it does not exceed the critical heat 19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.</pre>	15	for the AP600? The boiling on the outside?
18If it does not exceed the critical heat19flux, so20CHAIRMAN KRESS: Yes.21MR. ESMAILI: Now, for the critical heat22flux they sued the lower head configuration V. At the23time that they did the study, the data and correlation24was not available for this lower head configuration.	16	MR. ESMAILI: On the outside it is I'm
<pre>19 flux, so 20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.</pre>	17	going to get to that discussion on the next slide.
20 CHAIRMAN KRESS: Yes. 21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	18	If it does not exceed the critical heat
21 MR. ESMAILI: Now, for the critical heat 22 flux they sued the lower head configuration V. At the 23 time that they did the study, the data and correlation 24 was not available for this lower head configuration.	19	flux, so
flux they sued the lower head configuration V. At the time that they did the study, the data and correlation was not available for this lower head configuration.	20	CHAIRMAN KRESS: Yes.
time that they did the study, the data and correlation was not available for this lower head configuration.	21	MR. ESMAILI: Now, for the critical heat
24 was not available for this lower head configuration.	22	flux they sued the lower head configuration V. At the
	23	time that they did the study, the data and correlation
25 But we assumed that CHF was higher by a	24	was not available for this lower head configuration.
11	25	But we assumed that CHF was higher by a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	factor of 1.44, compared to configuration 3 that was
2	reported by Westinghouse. And the reason we did that
3	was that in general that configuration IV was higher
4	by about 20 to 30 percent, the CHF was higher between
5	20 to 30 percent compared to configuration III.
б	And, overall, configuration V was higher
7	by 20 percent, compared to configuration IV. So that
8	is why we used this factor of 1.44. And this is, as
9	you can see, the comparison between I apologize,
10	this is the configuration of the CHF for configuration
11	of III, and the higher CHF for configuration V, which
12	is at an angle of about 90 degrees is about 2.1
13	megawatts per meter square.
14	CHAIRMAN KRESS: This is responsive of the
15	angle from the bottom
16	MR. ESMAILI: From the bottom of the
17	vessel all the way to yes, exactly. That is all
18	the way up to the top of the vessel.
19	MEMBER LEITCH: I don't understand what
20	you mean by these various configurations.
21	MR. ESMAILI: This is the configuration of
22	the insulation around the vessel lower head, but they
23	changed it so they make it more streamlined, so that
24	they would increase the critical heat flux.
25	MR. SCOBEL: The configurations relate to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the open tests that were bounded to determine this 2 critical heat flux, and configuration V actually does 3 a good job of modeling the geometry of the AP1000 4 reactor vessel insulation, and the vent at the top of 5 the insulation, which a higher critical heat flux that we need to get for AP1000, over AP600. 6 7 MR. KHATIB-RAHBAR: It is not to be confused with the ERI melt configuration, we have two 8 9 configurations, I and II. So there are Westinghouse configurations, and ERI configurations. So keep that 10 11 in mind. 12 Now, as far as the heat MR. ESMAILI: transfer in the molten pool region for configuration 13 14 I, all the model PRI, DOE, and INEEL, basically used 15 for the top metal layer, we used the Globe-Dropkin for the heat transfer to the vertical, to the horizontal 16 surfaces. 17 Churchill-Chu for the vertical 18 And surfaces, for the side wall of the reactor vessel. 19 20 For the ceramic pool, at the time of the study for 21 AP600, they used Mayinger's correlation for heat 22 transfer downward into the ceramic pool, and the Kulacki-Emara correlation for the heat transfer upward 23 24 towards the top metal layer.

Now, DOE used the correlation, the Mini-

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

159

	160
1	ACOPO correlation, which was a one-eighth scale test
2	facility, and subsequently used the ACOPO correlation
3	which increased the range of the numbers, and that was
4	a one-half scale facility.
5	MEMBER WALLIS: What is the problem is
6	it very small, or something?
7	MR. ESMAILI: The problem number for
8	ceramic materials is typically about .5, .6, or for
9	metal it is very low, it is about .1, yes. It is
10	about .12 for a metal.
11	Now, the solution method for configuration
12	I was based on the non-linear Newton-Raphson method,
13	and we also allowed for a temperature dependence of
14	viscosity in the molten pool, and in the steel layer.
15	And this was just to be consistent with
16	DOE and INEEL models. The material properties that we
17	used basically the INEEL has documented them very,
18	very well. And we just used those material properties
19	along with the uncertainties in the material
20	properties in the report for AP600.
21	The decay heat partitioning was based on
22	the amount of uranium that was in the ceramic layer,
23	and in the bottom metallic layer, the heavy metallic
24	layer.
25	Now, the first was to verify a model,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

benchmark our model against the DOE and INEEL results, and in order to do that we basically used the DOE heat transfer correlation, and you see the comparisons for the heat flux to water, and the vessel wall thickness here.

Now, we did another additional calculation where we used our own default, which was heat transfer correlation. And all that does is just shift the distribution of heat flux inside the ceramic pool.

10 So where there is lower heat transfer in 11 the ceramic pool, there is a higher heat transfer in 12 the metallic. So that is all it does. But since we 13 got our data from the INEEL reports, of the comparison 14 of our predictions, shows excellent agreement with the 15 INEEL results.

But there is some discrepancy between the DOE results. As a matter of fact I saw the same discrepancy in the metallic layer, as we can see here.

MEMBER WALLIS: This is all theory?

CHAIRMAN KRESS: No.

21MEMBER WALLIS:Is this all theoretical?22CHAIRMAN KRESS:No, the correlations come23out of experiments.

MEMBER WALLIS: There is no data --

MR. ESMAILI: That is correct.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

19

20

24

25

162 1 MEMBER WALLIS: I don't understand the 2 other figure about vessel wall thickness. This is -- you see here, 3 MR. ESMAILI: 4 because of the heat flux is lowest at the bottom of 5 the vessel, and highest towards 90 degrees, towards the top of the molten pool. 6 7 So that is why you see the vessel thickness is about --8 9 CHAIRMAN KRESS: What is happening is the 10 vessel is melting to -- and getting thinner to 11 accommodate the heat flux. 12 MR. KHATIB-RAHBAR: -- heat transfer on the --13 14 MEMBER WALLIS: It looks to me that you 15 are predicting the vessel thickness, which you already 16 know. 17 No, this is thickness CHAIRMAN KRESS: versus position to accommodate the heat flux at that 18 19 location. 20 MEMBER WALLIS: So it is actually melting? 21 MR. ESMAILI: It is actually melting, 22 right. 23 MEMBER WALLIS: This is how far it would 24 melt given that heat flux, until it --MR. ESMAILI: About 6 centimeters less. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	CHAIRMAN KRESS: And that is what is left
2	to have structural integrity. And the question is,
3	now, do the loads on that fail?
4	MR. KHATIB-RAHBAR: That is the key issue
5	here, how much of the vessel wall do you have.
6	CHAIRMAN KRESS: Yes.
7	MR. ESMAILI: Okay. We also predicted the
8	metal pool temperature within a few degrees of both
9	INEEL and DOE results. And, as a matter of fact, the
10	top at the crust, the interface between the ceramic
11	pool and the metal layer was within
12	MEMBER WALLIS: Must be a pretty happy
13	vessel with that temperature inside, and boiling water
14	on the outside.
15	(Laughter.)
16	MEMBER WALLIS: There must be thermal
17	stresses
18	CHAIRMAN KRESS: They are accounted for in
19	the loads.
20	MR. ESMAILI: We can see the top of the
21	vessel is melting, you know, the inside temperature of
22	the vessel can reach up to 1,600, 1,700. And on the
23	outside it is practically saturation temperatures of
24	about 400.
25	MEMBER WALLIS: There are no

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 discontinuities, this is just a nice hemispheric. 2 penetrations, or anything like that?	al
3 CHAIRMAN KRESS: Not in the AP1000.	
4 MR. SCOBEL: There is a drain right is	n the
5 middle. You have a drain line somewhere in the	
6 CHAIRMAN KRESS: I must be thinking of	of
7 (Everyone speaks at the same time.)	
8 MR. ESMAILI: Now, as far as uncertain	nties
9 in the late phase progression, some difference	s in
10 design between AP1000 and AP600, specifically	the
11 power is increased by about 75 percent to 3	3,400
12 megawatts in AP1000.	
13 Now, the reflector in the AP600) is
14 replaced by a thinner core shroud in AP1000 to a	allow
15 for a lower core site, and there is a thicker	ower
16 core support plate.	
17 As I showed you before, we considered	d two
18 bounding melt configurations. Melt configuration	on I
19 was the molten ceramic with an overlaying metal p	pool.
20 The second configuration, the melt configuration	II is
21 the ceramic pool sandwiched between two meta	allic
22 layers, one is heavier than the other.	
23 Now, INEEL also considered a t	hird
24 configuration, and that was the configuration w	where
25 there is a ceramic pool, there is a thin metal la	ayer,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	and there is an additional ceramic pool on top of
2	that.
3	We did not consider that very important
4	and the reason is because, you know, the challenge to
5	the vessel is really due to the thin metal layer
6	associated with the focusing so you have to take
7	care of, you know, the thin metal layer first.
8	CHAIRMAN KRESS: How did you decide how
9	much material was in the bottom heavy metallic layer?
10	MR. ESMAILI: Yes, I'm coming to that, it
11	is coming.
12	CHAIRMAN KRESS: Okay.
13	MR. ESMAILI: Now, this is the when we
14	talked about the ERI, it only accounts for thermal
15	interactions, chemical reactions with the vessel wall
16	is not considered, we have not considered it. And we
17	may have to do it some time in the future, but at this
18	point we have not
19	MR. KHATIB-RAHBAR: Let me add something.
20	Due to chemical energy addition, as you will see later
21	on, with configuration II, which is the heavier metal
22	layer in the bottom, because of the ratio of the heat
23	flux is so small, even if you were to add the chemical
24	reaction heat it would not make a big difference.
25	But the eutectic issue still remains.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	MEMBER SIEBER: Since you don't consider
2	the chemical reactions of the fuel, and internals when
3	they are melting, would you expect largely different
4	compositions in layer thicknesses, from an actual melt
5	experiment that included chemical reactions, as
6	opposed to one that just looks at thermal effects?
7	MR. ESMAILI: Well, they do consider
8	chemical reaction during the core melt progression.
9	MEMBER SIEBER: Chemical reactions with
10	other things, but not within the core itself?
11	MR. ESMAILI: Not within the core, right.
12	Once the pool is formed you assume a quasi-steady.
13	Now, it is possible that because of chemical reaction,
14	heat-up reaction, etcetera, there are periods that the
15	actual, the heating of the material may produce some
16	temperature excursion, but
17	MEMBER WALLIS: But isn't the eutectic
18	thing that Dana is worried about the real source of
19	heat, isn't it?
20	CHAIRMAN KRESS: Yes, one of the things,
21	but
22	(Everyone speaks at the same time.)
23	CHAIRMAN KRESS: question I always had
24	about that is it does have crust layer protection from
25	that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1MR. KHATIB-RAHBAR: And the ceramic layer2is actually the whole issue, the crust affects the3vessel.4CHAIRMAN KRESS: Yes. You have a crust5there, too. Well, maybe maybe not.6MR. ESMAILI: We basically considered four7uncertainty distribution. The first one as the decay8heat, because that is where we define the four9relocations to the lower plenum.10The second was the amount of zirconium11oxidation, the third one was the actual amount of core12relocation to the lower plenum, and the fourth one was13the metal content. And the metal content is really14the molten core uncertainty here.15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19timing of core relocation varied from two and a half20to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable22range in terms of power density. We also considered23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation25that showed an earlier relocation, about two hours		167
 vessel. CHAIRMAN KRESS: Yes. You have a crust there, too. Well, maybe maybe not. MR. ESMAILI: We basically considered four uncertainty distribution. The first one as the decay heat, because that is where we define the four relocations to the lower plenum. The second was the amount of zirconium oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here. In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	1	MR. KHATIB-RAHBAR: And the ceramic layer
 4 CHAIRMAN KRESS: Yes. You have a crust there, too. Well, maybe maybe not. 6 MR. ESMAILI: We basically considered four uncertainty distribution. The first one as the decay heat, because that is where we define the four relocations to the lower plenum. 10 The second was the amount of zirconium oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here. 15 In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	2	is actually the whole issue, the crust affects the
5there, too. Well, maybe maybe not.6MR. ESMAILI: We basically considered four7uncertainty distribution. The first one as the decay8heat, because that is where we define the four9relocations to the lower plenum.10The second was the amount of zirconium11oxidation, the third one was the actual amount of core12relocation to the lower plenum, and the fourth one was13the metal content. And the metal content is really14the molten core uncertainty here.15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19timing of core relocation varied from two and a half20to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation	3	vessel.
6MR. ESMAILI: We basically considered four uncertainty distribution. The first one as the decay heat, because that is where we define the four relocations to the lower plenum.10The second was the amount of zirconium oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here.15In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation	4	CHAIRMAN KRESS: Yes. You have a crust
 uncertainty distribution. The first one as the decay heat, because that is where we define the four relocations to the lower plenum. The second was the amount of zirconium oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here. In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	5	there, too. Well, maybe maybe not.
 heat, because that is where we define the four relocations to the lower plenum. The second was the amount of zirconium oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here. In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	6	MR. ESMAILI: We basically considered four
9relocations to the lower plenum.10The second was the amount of zirconium11oxidation, the third one was the actual amount of core12relocation to the lower plenum, and the fourth one was13the metal content. And the metal content is really14the molten core uncertainty here.15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable22range in terms of power density. We also considered23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation	7	uncertainty distribution. The first one as the decay
10The second was the amount of zirconium11oxidation, the third one was the actual amount of core12relocation to the lower plenum, and the fourth one was13the metal content. And the metal content is really14the molten core uncertainty here.15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19timing of core relocation varied from two and a half20to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable22range in terms of power density. We also considered23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation	8	heat, because that is where we define the four
 oxidation, the third one was the actual amount of core relocation to the lower plenum, and the fourth one was the metal content. And the metal content is really the molten core uncertainty here. In terms of the decay heat, our decay heat distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. And that is how we based our most probable range in terms of power density. We also considered a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	9	relocations to the lower plenum.
12 relocation to the lower plenum, and the fourth one was 13 the metal content. And the metal content is really 14 the molten core uncertainty here. 15 In terms of the decay heat, our decay heat 16 distribution was based on the results of plant- 17 specific MELCOR calculations that showed, if you 18 remember from the previous presentation, that the 19 timing of core relocation varied from two and a half 20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	10	The second was the amount of zirconium
13 the metal content. And the metal content is really 14 the molten core uncertainty here. 15 In terms of the decay heat, our decay heat 16 distribution was based on the results of plant- 17 specific MELCOR calculations that showed, if you 18 remember from the previous presentation, that the 19 timing of core relocation varied from two and a half 20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	11	oxidation, the third one was the actual amount of core
14the molten core uncertainty here.15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19timing of core relocation varied from two and a half20to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable22range in terms of power density. We also considered23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation	12	relocation to the lower plenum, and the fourth one was
15In terms of the decay heat, our decay heat16distribution was based on the results of plant-17specific MELCOR calculations that showed, if you18remember from the previous presentation, that the19timing of core relocation varied from two and a half20to three and a half hours, 3.6 and 3.7 hours.21And that is how we based our most probable22range in terms of power density. We also considered23a high power density up to about three cubic meter,24and that is because we relied on the MAAP4 calculation	13	the metal content. And the metal content is really
16 distribution was based on the results of plant- specific MELCOR calculations that showed, if you remember from the previous presentation, that the timing of core relocation varied from two and a half to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation	14	the molten core uncertainty here.
17 specific MELCOR calculations that showed, if you 18 remember from the previous presentation, that the 19 timing of core relocation varied from two and a half 20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	15	In terms of the decay heat, our decay heat
18 remember from the previous presentation, that the 19 timing of core relocation varied from two and a half 20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	16	distribution was based on the results of plant-
19 timing of core relocation varied from two and a half 20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	17	specific MELCOR calculations that showed, if you
20 to three and a half hours, 3.6 and 3.7 hours. 21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	18	remember from the previous presentation, that the
21 And that is how we based our most probable 22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	19	timing of core relocation varied from two and a half
22 range in terms of power density. We also considered 23 a high power density up to about three cubic meter, 24 and that is because we relied on the MAAP4 calculation	20	to three and a half hours, 3.6 and 3.7 hours.
 a high power density up to about three cubic meter, and that is because we relied on the MAAP4 calculation 	21	And that is how we based our most probable
24 and that is because we relied on the MAAP4 calculation	22	range in terms of power density. We also considered
	23	a high power density up to about three cubic meter,
25 that showed an earlier relocation, about two hours	24	and that is because we relied on the MAAP4 calculation
	25	that showed an earlier relocation, about two hours

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	into the lower plenum.
2	But here we considered only the residual
3	property for this higher power.
4	CHAIRMAN KRESS: How did you decide on the
5	distribution, that is not normal
6	MR. ESMAILI: No, it is not normal. It
7	is, actually, if you go back yes, it is okay, we
8	assume the most probable range was between, let's say,
9	in terms of the core flow decay, between 23 megawatts
10	and 29 megawatts, okay?
11	And it assigned lower probability anything
12	above 29 megawatts, also about 38 megawatts, depending
13	on the core relocation. Also combined the timing of
14	core relocation decay heat to come up with this
15	distribution for it is an accumulated probabilistic
16	distribution, for the Westinghouse is a probability
17	density function.
18	But this showed that the lower bound of
19	decay heat is 1.3 compared to Westinghouse and our
20	analysis, as a matter at the median is also 2.1
21	megawatts and it is the same for Westinghouse.
22	But, as I mentioned to you, because we
23	considered relocation we have a higher upper bound
24	here. Now, the second uncertainty distribution
25	oxidation fraction in vessel, is also based mainly on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the results of MELCOR calculation that we just saw earlier, that showed that the most probable range was about 50 percent for that, but there is a different calculation that showed that it could range from 44 all the way to 65 percent.

So we assigned a most probable range 6 7 between 40 to 60 percent, but we also assigned some probability for 60 to 70, and a residual probability 8 9 between 70 to 80 percent. And the reason we stopped at an upper bound of 80 percent was because under very 10 11 degraded core conditions there is a limited amount of 12 steam and the core is really degraded, so there is not a lot of chance for oxidation of the entire zirconium. 13 14 CHAIRMAN KRESS: What I don't understand 15 is how you decided what probability to assign. You just got a bunch of people together and --16 17 MR. KHATIB-RAHBAR: No. CHAIRMAN KRESS: How did you come up with 18 19 that .5? 20 MR. ESMAILI: This one here? 21 CHAIRMAN KRESS: Yes. 22 ESMAILI: This was based on the MR. 23 results of MELCOR calculation. The MELCOR calculation 24 that we did mostly predicted 50 percent zirconium 25 fraction oxidation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

	170
1	MR. KHATIB-RAHBAR: Tom, I just thought of
2	something similar to what where you say my most
3	likely regime was that zirconium oxidation is going to
4	be between 40 percent to 60 percent.
5	CHAIRMAN KRESS: So then you reduce a
6	factor of 10 to get the
7	MR. KHATIB-RAHBAR: Exactly.
8	CHAIRMAN KRESS: Now I understand what you
9	did.
10	(Everyone speaks at the same time.)
11	MR. KHATIB-RAHBAR: that form the
12	probability level. But in order to show them here,
13	because people have a difficult time understanding
14	what the probability level means, we converted it to
15	power density function, which is more
16	CHAIRMAN KRESS: Most people understand
17	probability but this was decided on, just like
18	MR. ESMAILI: Absolutely, yes.
19	CHAIRMAN KRESS: Now I understand.
20	MR. ESMAILI: And now we have this 30 to
21	40 percent range, if you remember the math calculation
22	that showed that the zirconium oxidation factor can be
23	as low as 30 percent, although it has a lower
24	probability.
25	Now, one of the most important condition

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	is the relocation of ceramic material to the lower
2	plenum. Now, the MELCOR calculation predicted about
3	80 percent
4	(Telephone interruption.)
5	MR. ESMAILI: The MELCOR calculation
6	predicted that about 80 percent of the core melt and
7	relocation to the lower plenum.
8	We also 25 probabilistic distribution, we
9	also relied on some insights from the SCDAP/RELAP
10	calculation that they did for AP600 at the time. Now,
11	SCDAP/RELAP calculation for AP600 showed that the
12	initial relocation of the debris can take only about
13	50 percent of the core debris.
14	Subsequently the second debris relocation
15	involved an additional 35 percent. So the final
16	relocation was about 85 percent. But what is
17	important is the timing between the first relocation
18	and the second relocation, depending on how the
19	modeling approach you use in this code, this can be
20	between 13 minutes to over an hour, depending on how
21	you model this.
22	So, therefore, we said okay, the most
23	probable range for our core relocation to the lower
24	plenum is somewhere from 60 percent to 80 percent, but
25	we cannot rule out the lower relocation, because there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	172
1	is enough time for the debris to form, you know, to
2	dry out the lower plenum and reformat the molten pool.
3	So, therefore, we provided some
4	probability in the 50 to 60 metric ton range. And
5	this is in light of the fact, actually, because the
6	vessel, the entire vessel is cooled, so there is heat
7	transfer from the entire vessel by radiation to the
8	core
9	MEMBER WALLIS: So that is a RELAP5?
10	MR. ESMAILI: So that might delay the
11	timing of the second debris relocation.
12	I'm going to talk about the MAAP4
13	calculation, also about the initial relocation, and
14	about 50 percent of the core, but the relocation was
15	more gradual and eventually a greater proportion of
16	the core relocated downwards.
17	Now, one of the most important
18	uncertainties is the amount of metal. Now, since this
19	directly has to do with the focusing effect, we felt
20	that the amount of steel in the lower plenum had to be
21	dependent on the amount of core that relocated into
22	the lower plenum.
23	Now, if there is not sufficient amount of
24	ceramic material in the lower plenum, it does not
25	touch the lower core support, so in that case the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	amount of steel would have to be limited.
2	And this one we assigned somewhere from 50
3	to 60 metric tons, we assigned 3 metric tons to 8
4	metric tons of steel. Now, the lower 3 metric tons is
5	just the steel that is in the lower head.
6	And the addition of 5 metric tons, over 8
7	metric tons, is due to 25 percent melting of the core
8	barrel. In the MAAP calculation the testing they
9	predicted that 25 percent of the core barrel on the
10	AP1000 PRA has melted and come down.
11	Now, you need about 50 metric tons of
12	ceramic material to touch the
13	(Pause due to computer problems.)
14	MR. ESMAILI: Okay. Now, as soon as you
15	reach threshold for the core ceramic material, about
16	60 metric tons, it starts to touch the core support
17	plate, and the lower metallic blocks. So if you go a
18	little bit further it is possible to melt the entire
19	core support plate, and substantial amount of the
20	lower blockage.
21	So that is why you see this shift of the
22	steel metal from about 60 metric tons to about 40, and
23	then it goes all the way up to about 60 metric tons.
24	And the way we came up with this 40 to 60 is we said,
25	okay, and we assumed that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	(Telephone interruption.)
2	MR. ESMAILI: And so for the 60 to 80
3	metric tons what we have is that we assumed the entire
4	lower plenum melts along with the core support plate,
5	and 50 percent of the core shroud, the barrel. And,
6	of course, this is not very important, but for the
7	upper bound they include the entire mass of steel in
8	the reactor vessel, which is about 70 metric tons.
9	Now, just to give you a comparison, you
10	see that in Westinghouse's, the height of this
11	metallic layer varies from .6 meter all the way to
12	about 1 meter, okay? So this is a very thick metal
13	layer.
14	Because of the thin metal layer assumption
15	that they used, and associated with low ceramic
16	relocation, in our case this red line here is the
17	height of the metal layer that varies somewhere from
18	.2 meters all the way to 1 meter.
19	Now, the one meter in both cases are the
20	same, because the amount of steel is the same. But
21	the important thing is that we have some probability
22	of very, very thin metal layers.
23	MR. SCOBEL: Are you saying that when
24	you are assuming that when the oxide touches the lower
25	support plate, that you only get a part of the lower

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	support plate in through the
2	MR. ESMAILI: I'm just saying because the
3	core support plate is a solid material, so you just
4	need very, very little I mean, once you hit it at
5	the bottom, it is a very, very little amount of UO2,
6	or ceramic material to really submerge the lower
7	support plate.
8	MR. KHATIB-RAHBAR: I think Jim is asking
9	a different question. He is concerned about the lower
10	bound metallic plate, right?
11	MR. SCOBEL: Yes, I'm looking at the metal
12	mass as a function of the UO2 mass, and it gradually
13	increases from 60 up to 80 percent. And I was just
14	trying to understand, so you are saying when you
15	contacted at 60 percent, when you contact the lower
16	support plate at 60 percent, you are saying that it
17	actually gradually melts into
18	You know, at 60 percent if you contact the
19	lower support plate, I would say that you are going to
20	have the lower support plate, and the core shroud down
21	there really fast, because
22	MR. ESMAILI: That is why I think I
23	don't know whether that is why you see at 50,
24	you know, it is
25	MR. SCOBEL: Oh, I see.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701

	176
1	MR. ESMAILI: Do you see what I'm saying?
2	So there is this discontinuity.
3	MR. SCOBEL: I'm sorry, I see.
4	MR. ESMAILI: Yes.
5	CHAIRMAN KRESS: The probability you have
6	in the next curve are actually the probabilities of
7	having the given amount of core melt, and you just
8	you take the correlation and translate it into
9	MR. ESMAILI: Exactly. It translates into
10	this, correct. It translates into this type of
11	probability for the height of the metal layer.
12	So you can see for that
13	MR. KHATIB-RAHBAR: What it shows is that
14	you need to reach, first you need to reach the bottom
15	of the core plate. Once you reach it, then they
16	become very similar. That is why you see this double
17	hump behavior.
18	MR. ESMAILI: And this one here
19	corresponds to that
20	CHAIRMAN KRESS: Sixty percent?
21	MR. ESMAILI: Right. Now, in order to
22	study this, probabilistically, of course we used the
23	LHS computer code, and we generated about 1,000 random
24	samples from those four distributions that I showed
25	you earlier, in addition to the uncertainties in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	material properties.
2	These have all been fed into the one-
3	dimensional heat transfer model, and these are the
4	final results. This is a probability, this is a
5	critical, this is the heat flux ratio that is the
6	ratio of the local heat flux to the critical heat
7	flux, and this shows the probability at three
8	different regions.
9	One is at the bottom of the vessel, so
10	that you can see that this is at the bottom of the
11	vessel, you know, in the ceramic pool. The red line
12	is at top of the oxide layer.
13	Still in the oxide layer, but at the top,
14	where the heat flux is degraded. But even then you
15	can see that the heat flux does not even reach .8.
16	So there is no probability of failure in the ceramic
17	pool region.
18	But you can see, in the top metal layer,
19	the critical heat flux reaches 1 at about .85. So
20	CHAIRMAN KRESS: Now, this is your case
21	for
22	MR. ESMAILI: That is configuration 1,
23	that is right, the two layers, one is the ceramic, and
24	one is the metallic layer, right.
25	And so the estimate of condition of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 failure probability, and the figure of merit here is 2 exceeding critical influx of .151. That means that 3 out of these 1,000 samples, out of these 1,000 4 calculations, 150 of these resulted in failure of the 5 vessel, because the critical heat flux was exceeded. did 6 Now, we also some sensitivity 7 calculations to bound this range of the failure probability. The first thing we did, actually, was to 8 9 add a decay heat in the top metallic layer, and using 10 the approach that was proposed in the report for 11 AP600, we assigned 10 percent to 20 percent of the 12 decay heat that was residing in the top metallic 13 layer. 14 Now, the first thing to notice is that if 15 you compare case -- because there are three things here to notice. One is the focusing effect. 16 That means that the probability of having a very, very low 17 thin metal layer. 18 19 And this we can see by comparing case 1 20 and case 5, or case 6 and case 9. In case -- well, 21 let's concern the cases with the decay heat in the top 22 metal layer. 23 The case six is the base case plus the 24 decay heat in the top metal layer. The CFT is about 25 .27. But if I decrease the probability of load max

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

178

179 1 relocation, essentially saying that we have a very low 2 probability of having a very thin metal layer, the 3 failure probability is decreased by four-fold, from 27 4 percent to about 7 percent. 5 This is true whether you have decay heat in the upper metal layer, or you don't. 6 The second 7 thing is that in the base case we did not have decay 8 heat in the metal layer. And the presence of the decay heat always 9 10 increases the -- always increases the failure 11 probability, but it also depends on what heat transfer 12 correlations you use. Now, if you compare cases 6, 7, and 8, 13 14 which was our heat transfer correlations, the DOE and 15 INEEL heat transfer correlation, you see that the failure probability increases from 27 percent to 31 16 17 percent. After some point it is difficult to 18 19 increase the failure probability, because what you do 20 is that instead of having the decay heat in the 21 ceramic pool, you are putting this into the metallic 22 pool, so you are actually decreasing the amount of 23 heat that is coming from the bottom into the metallic 24 pool. 25 So at some point it -- yes?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	180
1	MEMBER WALLIS: CFP is the conditional
2	failure probability?
3	MR. ESMAILI: That is right.
4	MEMBER WALLIS: And this is saying that
5	the vessel is going to fail at the metal layer?
6	MR. ESMAILI: At the metal layer, right,
7	the metal layer. Because the critical heat flux is
8	exceeded here. But there is no CFP for the ceramic
9	layer, it is basically zero.
10	Another thing would be that, you know, the
11	density did not consider any variations in material
12	properties, you know, there were like 20 material
13	properties in there. And there is a very, very
14	insignificant change in terms of, you know, failure
15	probability.
16	So the material property does not play an
17	important role. And this is very obvious here. The
18	only thing that makes a difference here is the amount
19	of steel that is relocated in the lower plenum, and
20	this is how we quantify it.
21	Now, the case 2 with the melt
22	configuration 2, where we have a ceramic pool
23	sandwiched between a heavy layer, and a light metallic
24	layer, is a little bit more challenging.
25	Now, we did a parametric calculation for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	this particular case, we assumed a conservative
2	estimate. It said that, okay, in case that there is
3	a decay heat in the lower metallic layer, the worse
4	that you can the temperature has to the highest
5	temperature has to occur at the interface.
6	So, therefore, in the limit, the top
7	surface of the bottom layer has to be insulated, okay?
8	So all the decay heat that is generated in the bottom
9	metallic layer have to be going into the vessel.
10	So this is how they did the parametric
11	calculation. But they also required some additional
12	condition which in order to make sure that the
13	saturation is greater than one, so that bottom
14	metallic layer is heavier than the outside layer.
15	And the mass fraction of the uranium in
16	the bottom layer was 6.4, this was in response to the
17	peer review of the original AP600 by one of the peer
18	reviewers.
19	And all they had to do was just change the
20	fraction of the U that is in that oxide form, that
21	means change how much uranium is in the bottom layer,
22	versus what is in the ceramic pool.
23	And the partitioning of decay heat was
24	based, was proportional to mass ratio of uranium.
25	And here are the results. For this faction of U in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1oxide form that translates into the mass of uranium in2the bottom layer, changing from 3,000 kilograms, all3the way to about 9,000 kilograms.4And for this , the three-fold increase in5the mass of uranium, you see that the critical heat6flux ratio, the heat flux ratio, varied from .22 to7.36. So there is not a big difference in terms of8heat flux ratio.9As a matter of fact, even under at the10upper bundle, at about 36.36, it is well below one.12So, therefore, we conclude that the failure of the12lower head, at the bottom location is not likely.13MR. KHATIB-RAHBAR: And this also is a14typical reaction issue, adding additional heat would15probably not do very much.16CHAIRMAN KRESS: Yes, I can see it.17MR. ESMAILI: There is a big margin in18terms of19CHAIRMAN KRESS: You have a lot of margin20to critical heat flux.21MR. ESMAILI: Not only that, you will see22that even if the vessel fails at the bottom, you know,23the FCI loads are more benign than24CHAIRMAN KRESS: How did you decide that?25MR. ESMAILI: We make a calculation, I		182
3 the way to about 9,000 kilograms. 4 And for this, the three-fold increase in 5 the mass of uranium, you see that the critical heat 6 flux ratio, the heat flux ratio, varied from .22 to 7 .36. So there is not a big difference in terms of 8 heat flux ratio. 9 As a matter of fact, even under at the 10 upper bundle, at about 36.36, it is well below one. 11 So, therefore, we conclude that the failure of the 12 lower head, at the bottom location is not likely. 13 MR. KHATIB-RAHBAR: And this also is a 14 typical reaction issue, adding additional heat would 15 probably not do very much. 16 CHAIRMAN KRESS: Yes, I can see it. 17 MR. ESMAILI: There is a big margin in 18 terms of 19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that? </td <td>1</td> <td>oxide form that translates into the mass of uranium in</td>	1	oxide form that translates into the mass of uranium in
4And for this , the three-fold increase in5the mass of uranium, you see that the critical heat6flux ratio, the heat flux ratio, varied from .22 to7.36. So there is not a big difference in terms of8heat flux ratio.9As a matter of fact, even under at the10upper bundle, at about 36.36, it is well below one.11So, therefore, we conclude that the failure of the12lower head, at the bottom location is not likely.13MR. KHATIB-RAHBAR: And this also is a14typical reaction issue, adding additional heat would15probably not do very much.16CHAIRMAN KRESS: Yes, I can see it.17MR. ESMAILI: There is a big margin in18terms of19CHAIRMAN KRESS: You have a lot of margin20to critical heat flux.21MR. ESMAILI: Not only that, you will see22that even if the vessel fails at the bottom, you know,23the FCI loads are more benign than24CHAIRMAN KRESS: How did you decide that?	2	the bottom layer, changing from 3,000 kilograms, all
5the mass of uranium, you see that the critical heat6flux ratio, the heat flux ratio, varied from .22 to7.36. So there is not a big difference in terms of8heat flux ratio.9As a matter of fact, even under at the10upper bundle, at about 36.36, it is well below one.11So, therefore, we conclude that the failure of the12lower head, at the bottom location is not likely.13MR. KHATIB-RAHBAR: And this also is a14typical reaction issue, adding additional heat would15probably not do very much.16CHAIRMAN KRESS: Yes, I can see it.17MR. ESMAILI: There is a big margin in18terms of19CHAIRMAN KRESS: You have a lot of margin20to critical heat flux.21MR. ESMAILI: Not only that, you will see22that even if the vessel fails at the bottom, you know,23the FCI loads are more benign than24CHAIRMAN KRESS: How did you decide that?	3	the way to about 9,000 kilograms.
 flux ratio, the heat flux ratio, varied from .22 to .36. So there is not a big difference in terms of heat flux ratio. As a matter of fact, even under at the upper bundle, at about 36.36, it is well below one. So, therefore, we conclude that the failure of the lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that? 	4	And for this , the three-fold increase in
 .36. So there is not a big difference in terms of heat flux ratio. As a matter of fact, even under at the upper bundle, at about 36.36, it is well below one. So, therefore, we conclude that the failure of the lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that? 	5	the mass of uranium, you see that the critical heat
 heat flux ratio. As a matter of fact, even under at the upper bundle, at about 36.36, it is well below one. So, therefore, we conclude that the failure of the lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that? 	6	flux ratio, the heat flux ratio, varied from .22 to
 As a matter of fact, even under at the upper bundle, at about 36.36, it is well below one. So, therefore, we conclude that the failure of the lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that? 	7	.36. So there is not a big difference in terms of
10 upper bundle, at about 36.36, it is well below one. 11 So, therefore, we conclude that the failure of the 12 lower head, at the bottom location is not likely. 13 MR. KHATIB-RAHBAR: And this also is a 14 typical reaction issue, adding additional heat would 15 probably not do very much. 16 CHAIRMAN KRESS: Yes, I can see it. 17 MR. ESMAILI: There is a big margin in 18 terms of 19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	8	heat flux ratio.
So, therefore, we conclude that the failure of the lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that?	9	As a matter of fact, even under at the
12 lower head, at the bottom location is not likely. MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of 19 CHAIRMAN KRESS: You have a lot of margin to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	10	upper bundle, at about 36.36, it is well below one.
MR. KHATIB-RAHBAR: And this also is a typical reaction issue, adding additional heat would probably not do very much. CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that?	11	So, therefore, we conclude that the failure of the
14 typical reaction issue, adding additional heat would 15 probably not do very much. 16 CHAIRMAN KRESS: Yes, I can see it. 17 MR. ESMAILI: There is a big margin in 18 terms of 19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	12	lower head, at the bottom location is not likely.
<pre>15 probably not do very much. 16 CHAIRMAN KRESS: Yes, I can see it. 17 MR. ESMAILI: There is a big margin in 18 terms of 19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?</pre>	13	MR. KHATIB-RAHBAR: And this also is a
16 CHAIRMAN KRESS: Yes, I can see it. MR. ESMAILI: There is a big margin in terms of 19 CHAIRMAN KRESS: You have a lot of margin to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	14	typical reaction issue, adding additional heat would
MR. ESMAILI: There is a big margin in terms of CHAIRMAN KRESS: You have a lot of margin to critical heat flux. MR. ESMAILI: Not only that, you will see that even if the vessel fails at the bottom, you know, the FCI loads are more benign than CHAIRMAN KRESS: How did you decide that?	15	probably not do very much.
<pre>18 terms of 19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?</pre>	16	CHAIRMAN KRESS: Yes, I can see it.
19 CHAIRMAN KRESS: You have a lot of margin 20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	17	MR. ESMAILI: There is a big margin in
20 to critical heat flux. 21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	18	terms of
21 MR. ESMAILI: Not only that, you will see 22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	19	CHAIRMAN KRESS: You have a lot of margin
22 that even if the vessel fails at the bottom, you know, 23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	20	to critical heat flux.
23 the FCI loads are more benign than 24 CHAIRMAN KRESS: How did you decide that?	21	MR. ESMAILI: Not only that, you will see
24 CHAIRMAN KRESS: How did you decide that?	22	that even if the vessel fails at the bottom, you know,
	23	the FCI loads are more benign than
25 MR. ESMAILI: We make a calculation, I	24	CHAIRMAN KRESS: How did you decide that?
	25	MR. ESMAILI: We make a calculation, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

will show you. We assumed that even if the vessel fails at the lower head, at the bottom of the vessel, because of the difference on the cavity wall, that the loads on the cavity walls are much lower than if it fails at the side wall location. I will show you the results.

Now, the specifications of the issue and boundary conditions for ex-vessel FCI, we used the calculation for the IVR analysis that we did. So as far as core composition, and core temperature was concerned, this was -- this came directly from the IVR analysis that shows that the core has to be metallic, the temperature we estimated at slightly over 2,000K.

Now, the lower head failure size we used lower head failure size of about 40 centimeter. And the reason we did that was our best estimated decay heat density, power density, we can have a metal layer as thick as about 35 centimeters, 40 centimeters, and still fail the vessel.

But that is why for the base we assumed a 40 centimeter failure site. Now, the containment pressure was, according to MELCOR calculation, and the cavity water was 50 degrees subcooled, and lower head was fully submerged, there was a deep water level up to about, I think, a depth of about six meters.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	184
1	MEMBER WALLIS: Does this make sense? The
2	vessel suddenly failed with a hole of four meters, or
3	doesn't it slowly grow?
4	(Everyone speaks at the same time.)
5	CHAIRMAN KRESS: When that molten stuff
6	goes through that hole it just goes, shooo, like this.
7	MR. ESMAILI: The whole thing could come
8	down, the whole thing could come zip. There are
9	different scenarios, the whole thing could come zip
10	and come down, it would unhinge.
11	But as far as the FCI is concerned, their
12	only concern is with the first second or so. You
13	know, because most of the explosion occurs once the
14	MEMBER WALLIS: Very quickly.
15	CHAIRMAN KRESS: Yes.
16	MEMBER WALLIS: It flows it right back
17	into the vessel.
18	(Laughter.)
19	MR. ESMAILI: hydrostatic nothing might
20	come out, so that is another possibility.
21	For the calculation matrix, for the AP600
22	we did a lot of calculations for FCI. In this case,
23	because the lessons learned from the AP600, we only
24	did five calculations, actually.
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1uncertainties in terms of melt progressio2uncertainties that involves melt pour composition, an3failure size, and variability in the modeling of th4fuel coolant interactions.5We used the PM-ALPHA/ESPROSE computer cod6to calculate the impulse loads on the cavity walls7Now, the case one was the best case, case two was th8assume the ceramic pool at high temperature of 3,1009That means that the ceramic material.10Case three was a failure size of .011meters. The reason we showed this .06 meter is -12well, it worked out fine because of the nodalizatio13of the lower head. But at the same time at th14higher, at the upper end of the decay heat, you ca15support a metal layer as thick as 53 centimeter, an16still retain the vessel.17So we went to the larger pool size o
failure size, and variability in the modeling of th fuel coolant interactions. We used the PM-ALPHA/ESPROSE computer cod to calculate the impulse loads on the cavity walls Now, the case one was the best case, case two was th assume the ceramic pool at high temperature of 3,100 That means that the ceramic material. Case three was a failure size of .0 meters. The reason we showed this .06 meter is - well, it worked out fine because of the nodalizatio of the lower head. But at the same time at th higher, at the upper end of the decay heat, you ca support a metal layer as thick as 53 centimeter, an still retain the vessel. So we went to the larger pool size o
 fuel coolant interactions. We used the PM-ALPHA/ESPROSE computer cod to calculate the impulse loads on the cavity walls Now, the case one was the best case, case two was th assume the ceramic pool at high temperature of 3,100 That means that the ceramic material. Case three was a failure size of .0 meters. The reason we showed this .06 meter is - well, it worked out fine because of the nodalizatio of the lower head. But at the same time at th higher, at the upper end of the decay heat, you ca support a metal layer as thick as 53 centimeter, an still retain the vessel.
5We used the PM-ALPHA/ESPROSE computer coded6to calculate the impulse loads on the cavity walls7Now, the case one was the best case, case two was the8assume the ceramic pool at high temperature of 3,1009That means that the ceramic material.10Case three was a failure size of .011meters. The reason we showed this .06 meter is -12well, it worked out fine because of the nodalization13of the lower head. But at the same time at the14higher, at the upper end of the decay heat, you can15support a metal layer as thick as 53 centimeter, an16still retain the vessel.17So we went to the larger pool size or
 to calculate the impulse loads on the cavity walls Now, the case one was the best case, case two was th assume the ceramic pool at high temperature of 3,100 That means that the ceramic material. Case three was a failure size of .0 meters. The reason we showed this .06 meter is - well, it worked out fine because of the nodalizatio of the lower head. But at the same time at th higher, at the upper end of the decay heat, you ca support a metal layer as thick as 53 centimeter, an still retain the vessel.
 Now, the case one was the best case, case two was th assume the ceramic pool at high temperature of 3,100 That means that the ceramic material. Case three was a failure size of .0 meters. The reason we showed this .06 meter is - well, it worked out fine because of the nodalizatio of the lower head. But at the same time at th higher, at the upper end of the decay heat, you ca support a metal layer as thick as 53 centimeter, an still retain the vessel.
 assume the ceramic pool at high temperature of 3,100 That means that the ceramic material. Case three was a failure size of .0 meters. The reason we showed this .06 meter is - well, it worked out fine because of the nodalizatio of the lower head. But at the same time at th higher, at the upper end of the decay heat, you ca support a metal layer as thick as 53 centimeter, an still retain the vessel. So we went to the larger pool size o
9 That means that the ceramic material. 10 Case three was a failure size of .0 11 meters. The reason we showed this .06 meter is - 12 well, it worked out fine because of the nodalizatio 13 of the lower head. But at the same time at th 14 higher, at the upper end of the decay heat, you ca 15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
10Case three was a failure size of .011meters. The reason we showed this .06 meter is -12well, it worked out fine because of the nodalizatio13of the lower head. But at the same time at th14higher, at the upper end of the decay heat, you ca15support a metal layer as thick as 53 centimeter, an16still retain the vessel.17So we went to the larger pool size o
11 meters. The reason we showed this .06 meter is - 12 well, it worked out fine because of the nodalizatio 13 of the lower head. But at the same time at th 14 higher, at the upper end of the decay heat, you ca 15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
12 well, it worked out fine because of the nodalizatio 13 of the lower head. But at the same time at th 14 higher, at the upper end of the decay heat, you ca 15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
13 of the lower head. But at the same time at th 14 higher, at the upper end of the decay heat, you ca 15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
14 higher, at the upper end of the decay heat, you ca 15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
15 support a metal layer as thick as 53 centimeter, an 16 still retain the vessel. 17 So we went to the larger pool size o
<pre>16 still retain the vessel. 17 So we went to the larger pool size o</pre>
17 So we went to the larger pool size o
18 about 60 centimeters. Now, case 4 had to do with th
19 modeling, different particle diameter of .1 compare
20 to .01 in the base case, and the fragmentation rate o
21 400 kilogram per second, compared to 4
22 MEMBER WALLIS: When it comes out, it i
23 assumed it has a diameter of .4 meters? It is a bi
24 jet, and then it has to shatter it.
25 MR. ESMAILI: Yes, but once it goes in th

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	water, presumably, it breaks up, the particles break
2	up, the jet breaks up.
3	Now, there is another code, there is a
4	one-dimensional Texas computer code, actually, that we
5	used for AP600. And that one predicts, you know, the
б	particle breakup.
7	So we came up with this particle size
8	based on the particle size that was predicted with the
9	Texas code. So as the jet goes through the water it
10	breaks up into these small particles, according to the
11	calculation.
12	Now, the case 5 is the bottom failure of
13	the lower head, the one I just discussed. Now, the
14	problem nodalization was similar to the AP600. The
15	model said high vessel lower head, up to a distance of
16	about 6 meter.
17	The only difference was that the lower
18	head was now about only about one meter away from
19	the cavity flow, so we had to drop the lower head.
20	This blue line that you see here, these are the actual
21	boundaries of the computation, okay?
22	It is supposed to be the boundaries of the
23	reactor vessel itself. Now, inside here I should
24	mention that I show this inside the vessel itself
25	we don't do any calculations, because it is just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	solid, okay? So all the calculations are done outside
2	of the boundaries of the reactor vessel.
3	I think we are running out of time, so I
4	will just show you I will go over this very
5	quickly, these are the results of the three mixing
6	calculations in terms of
7	MEMBER WALLIS: Well, what are the units
8	on this
9	MR. ESMAILI: Pardon?
10	MEMBER WALLIS: What are the units on
11	MR. ESMAILI: This is a melt point
12	fraction, of the melt. In the (inaudible) I think the
13	discussion came up from the previous. So you have to
14	specify the melt volume fraction.
15	MEMBER WALLIS: In what, in the water?
16	MR. ESMAILI: You don't see the vessel
17	wall here, because it is yellow, but these are the
18	results of the explosion calculation, and you can see
19	that the explosion starts right here and it propagates
20	to the water.
21	MEMBER WALLIS: What are the colors here,
22	these are still
23	MR. ESMAILI: No, these are not these
24	are the pressures.
25	MEMBER WALLIS: I thought they must be,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	yes.
2	MR. ESMAILI: These are the pressures, and
3	I was just going to go over this very quickly.
4	This is about a millisecond, there is
5	still no at one millisecond these are the
6	pressures, there is no explosion.
7	CHAIRMAN KRESS: What triggers the
8	explosion?
9	MR. ESMAILI: What triggers the explosion?
10	The trigger is the high pressure cell at the bottom of
11	the vessel.
12	CHAIRMAN KRESS: When it hits the bottom
13	of the vessel?
14	MR. ESMAILI: Yes, yes.
15	MEMBER WALLIS: Now, what kind of
16	explosion is this?
17	CHAIRMAN KRESS: It is just a thermal
18	explosion.
19	MEMBER WALLIS: A thermal explosion?
20	(Everyone speaks at the same time.)
21	MR. KHATIB-RAHBAR: Rapid heat transfer.
22	We have a particle that punches and transfers all the
23	heat to the water, and you have
24	MEMBER WALLIS: You can see it.
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	three milliseconds, four milliseconds, and goes all
2	around the vessel, you know, and then from the up
3	around the vessel.
4	Now, here you can see that these are the
5	wall pressures, these are a location of the function
6	of time. You can see the pressures of the lower half,
7	and the interaction between cavity wall and
8	CHAIRMAN KRESS: What would happen if that
9	melt didn't trigger, when it hit the bottom, that more
10	and more came up, and built up, and then you've got
11	MR. ESMAILI: Yes, but that is the thing.
12	Because more and more can settle on the cavity floor.
13	But it is very, very one of the conditions required
14	for a steam explosion is to mix this melt.
15	CHAIRMAN KRESS: It has to be mixed with
16	what?
17	MR. ESMAILI: Mixed with water right.
18	Now, you have a stratified on the cavity floor you
19	would have a stratified situation. You know, there is
20	not a mixing involved in melting for the water
21	CHAIRMAN KRESS: Well, that is debatable,
22	because I just it comes down you have container
23	instabilities, and you have
24	MR. ESMAILI: Absolutely, yes.
25	CHAIRMAN KRESS: And you have other

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	instabilities that entrap water in there. And there
2	could be some water mixed in with that bottom layer.
3	MR. ESMAILI: It could be, but I think
4	stratified explosions are always more benign than
5	CHAIRMAN KRESS: Well, that has been the
6	experience, you are right.
7	MR. ESMAILI: Another thing is that a lot
8	more time for it to cut down, you would produce much
9	higher vapor void fraction. And which increases the
10	you know, there is vapor there, so there is no
11	CHAIRMAN KRESS: But basically the hole
12	size, with the jet coming down, and the distance to
13	the bottom fixes the amount of melt that interacts
14	after that?
15	MR. ESMAILI: That is right.
16	MR. KHATIB-RAHBAR: That is why this is
17	lower, as you will see, the bottom failure, they are
18	low in AP600 because the distances.
19	CHAIRMAN KRESS: Distances, sure.
20	MR. ESMAILI: The area under the curve so
21	I get the impulse loads that we use. For the best
22	case you see about 85 kPa-s. And finally - now, for
23	these five scenarios, the impulse see the bottom
24	failure of the lower head is about 9 kPa-s. So you
25	basically do not have any challenge to containment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	And compared to the 85 and using ceramic
2	melt at a higher initial internal energy, of course
3	you get much higher, about 300 kPa-s.
4	Now, these results, the only
5	MEMBER WALLIS: Go back, what does that
6	mean? The bottom head failure that number means what?
7	MR. ESMAILI: This number?
8	MEMBER WALLIS: Yes.
9	MR. ESMAILI: This is just the impulse
10	load.
11	MEMBER WALLIS: That is what is required
12	to break the
13	CHAIRMAN KRESS: That is the location of
14	the failure, and that is the impulse load you get, it
15	is not saying what impulse load has failed.
16	MR. ESMAILI: No, I'm not saying that at
17	all. That is the calculation. This just shows what
18	the wall experiences in terms of
19	CHAIRMAN KRESS: It is sort of the maximum
20	in
21	(Everyone speaks at the same time.)
22	MR. ESMAILI: Now, for AP600 we did a
23	calculation for this scenario for the subcooled pool
24	with the RPV model. For the AP600 we saw that the
25	maximum impulse load was about 600 Kpa-s.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	Now, consistently the results of AP1000
2	showed that it is a it is a factor smaller than
3	AP600. And the reason is because the vessel is
4	sitting a little closer for AP1000, and also the
5	initial reaction of the melt coming into the water was
6	higher in the AP600 because of a higher initial
7	pressure inside the RCS. So velocity was higher by a
8	factor of 2, also.
9	Finally, so the results of the
10	(Everyone speaks at the same time.)
11	MR. ESMAILI: focusing effect for
12	configuration 1, so we have more
13	CHAIRMAN KRESS: So you end up with more
14	melt, that is why we saw
15	MR. ESMAILI: Yes, absolutely. So we see
16	that the likelihood of failure goes from 4 percent to
17	30 percent. There is no likelihood of failure for the
18	bottom layer. And the side failure of the lower head
19	always results in a higher impulse load, and the
20	bottom failure is not reached.
21	CHAIRMAN KRESS: And did you decide what
22	impulse load the cavity could take, or is that
23	somebody else's job?
24	MR. KHATIB-RAHBAR: That is somebody
25	else's job.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	MR. BASU: For AP600 the impulse load
2	showed that it still lower than
3	CHAIRMAN KRESS: Lower than
4	MR. BASU: So if you compare the AP1000,
5	I don't know what the presuming it is the same. It
6	is even better.
7	CHAIRMAN KRESS: Thank you.
8	MR. CUMMINS: One comment, the slide that
9	we have just seen made a statement that these slides
10	may contain information proprietary to Westinghouse.
11	Westinghouse has reviewed these slides, and they do
12	not contain proprietary information.
13	CHAIRMAN KRESS: Thank you. So we can
14	take them and show them to people?
15	MR. CUMMINS: Yes.
16	CHAIRMAN KRESS: Where are we we have
17	another hour to go?
18	MEMBER SIEBER: We are just getting
19	started.
20	MR. CUMMINS: The next presentation is on
21	seismic and structural design
22	CHAIRMAN KRESS: Does that announcement
23	get kicked out, the one over the PA that said we had
24	15 minutes left?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	194	
1	MR. ORR: My name is Richard Orr, I'm	
2	responsible for the structural design and seismic	
3	analysis, responsible for AP600 and now for AP1000. It	
4	seems I always get the end of the agenda, so I will do	
5	my best to I know I can't meet adjournment by 5:30,	
6	but I will try not to go for an hour.	
7	I will go fairly quickly. If you have	
8	questions please interrupt and let me know.	
9	What I want to cover is the Staff	
10	structural configuration changes from the AP600. We	
11	have an excellent staffing point with e AP600 design,	
12	there were relatively few changes, and so we were able	
13	to do our seismic analysis, and structural design with	
14	a good start.	
15	I will then cover the structural design	
16	basis, the seismic analysis of the nuclear islands, I	
17	will get into the structural design of come of the	
18	critical sections, and I will briefly talk about the	
19	Staff review, and the remaining open items, and a few	
20	slides at the end for seismic margins.	
21	CHAIRMAN KRESS: Now, some of the members	
22	have expressed concern about how structure with a	
23	heavy mass of water on top	
24	MR. ORR: I have a little bit in the	
25	presentation on it, I will try to sort of emphasize it	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195	
1	when I get to it.	
2	CHAIRMAN KRESS: Okay, thank you.	
3	MR. ORR: The primary change for AP1000	
4	from the structural point of view, is that we have to	
5	increase height of containment. Containment is	
6	increased in height by 25'6", the shield building	
7	went up with it.	
8	And because of the increase of heat loads	
9	we increased the size of the PCS tank to 800,000	
10	gallons. We made minor changes at the air inlets, we	
11	got exactly the same air flow, but we made the opening	
12	slightly higher by 25'6", 12' wide, and 16', in order	
13	to get more column in between the air inlets.	
14	The capacity of the polar crane increased	
15	because the steam generators are much heavier. And	
16	this is, primarily, the bridge itself. It probably	
17	has the same capacity, and the load is the same.	
18	All of the RCS equipment increased in	
19	size, and the walls, the shield walls above the	
20	operating deck, around the steam generators and the	
21	pressurizer compartment, the steam generator walls	
22	were raised 5 feet, the pressurizer wall was 7 feet.	
23	There was a minor change in the elevation	
24	of the fuel pit floor, because the fuel is 14 feet,	
25	instead of 12 feet.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	We use these slides to show that there is
2	really no changes in the
3	CHAIRMAN KRESS: Now this
4	MR. ORR: is AP600, the right-hand one
5	is AP1000.
6	CHAIRMAN KRESS: Now, this is more
7	vulnerable than the east-west direction?
8	MR. ORR: Yes. In the east-west direction
9	the footprint from this wall, the east side to the
10	west side, is about 160 feet, or so. The containment
11	is about 150 outside of the shield building. And so
12	this is about 165 in the north-south direction it is
13	256 feet.
14	So most of the seismic results are worse
15	in the east-west direction than in the north-south
16	direction. This just shows a comparison in elevation.
17	Again, the cross sections are pretty much the same.
18	The containment vessel has increased in height, the
19	shield group has gone up.
20	The auxiliary building is virtually
21	identical. And one thing to mention, when we get into
22	structural configuration behavior, we have tied the
23	walls and floors of the auxiliary building directly
24	into the shield building cylinder.
25	The containment vessel is separate from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	the shield building, there is a 4 foot 6 gap between
2	the containment vessel, and the concrete cylinder.
3	The containment vessel sits in the base mat, and the
4	containment internal structures sit inside the
5	containment, the bottom head.
6	Above grade the structures, the
7	containment internal structures, the containment
8	vessel, and the shield building are independent.
9	MEMBER SIEBER: Why is the bottom of the
10	containment building rounded?
11	MR. ORR: Because we the containment
12	vessel is an ASME vessel. The steel head is capable
13	of taking pressure on its own. If it weren't
14	surrounded by concrete, the steel head would be
15	adequate for 59 psi.
16	The other option is to put, effectively,
17	a flat head, design it as a reinforced concrete base
18	mat, and we looked at it a little bit. Some of the
19	details you get into, are try to anchor down a steel
20	vessel into concrete, are difficult to construct.
21	Changes to the containment vessel, the
22	diameter is the same. The height, as I said, went up
23	25 foot 6. Design code is the same. Material has
24	changed. For AP600 we used SA537 material. Here
25	we've got SA738 grade B.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

One of them is 18 KSIA ultimate, the SA738 is a 85KSI ultimate, so there is a slight increase in allowed stress. This was a material that was not in the code in the mid-'90s. It is a material being used successfully by CPI on a lot of non-nuclear vessels, and effectively is going to be replacing the SA537 material that would have been used for AP600.

We increased the thickness from an inch 8 9 and five-eighths on AP600 to inch and three quarters on AP1000. This is the maximum with heat treatment, 10 11 and in response to one of the NRC's issues, we have 12 actually increased the thickness of the lowest course from inch and three quarters, to inch and seven 13 14 eighths, to provide additional marqin in the 15 transition region, where the vessel is imbedded, and 16 goes down into the concrete.

We did the same thing on AP600, but we were only going up to an inch and three quarters, so we didn't have any increased -- this is just two views of the PCS roof tank. As I said, we went from 540,000 gallons to 800,000 gallons.

We did this by increasing the diameter from 80 feet to 89 feet. The height is pretty much the same, but because it slid down, the conical roof, we get slightly more volume.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	199
1	The seismic design basis, firstly it is
2	generally the same as AP600, 0.30gSSE. However, for
3	current design certification purposes, we are only
4	looking at hard rock sites.
5	CHAIRMAN KRESS: This prevents you from
6	building one in Japan?
7	MR. ORR: No, in Japan almost all of their
8	sites are hard rock. Oh, .3, yes. We have actually
9	looked at cases with seismic isolation, there were
10	also the options of operating it a little bit.
11	We have used the same response spectrum,
12	parameter response spectrum, as we used for AP600.
13	This was REG guide 160, which was in existence in the
14	mid '80s and used for most plants. We reviewed it,
15	and then in 1990, and we put in some application of
16	high frequencies, particularly at 25.
17	Some of the recent data in east coast site
18	shows that there is significant amplification around
19	that frequency. We did a series of finite element
20	models for AP1000.
21	This was a similar approach to what we did
22	on AP600. We do finite element models of the
23	buildings, and I will show you two typical ones,
24	shortly, that are used in static analysis, and also in
25	model analysis, and we use those model analysis

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200	
1	results to come up with a simplified stick model of	
2	the, for dynamic purposes.	
3	These stick models are created	
4	individually for the auxiliary and shield building,	
5	for the containment internal structures, for the	
6	containment vessel, and polar crane, and for the	
7	reactor coolant loop.	
8	The stick models have been combined in the	
9	time history analysis.	
10	This now is the typical finite element	
11	model of the shield building, and the auxiliary	
12	building, which has been described. These are	
13	integral structures. It extends all the way from the	
14	base mat up to the top of the shield building group,	
15	where the refinement of the model sufficient for	
16	dynamic behavior.	
17	We did a more detailed model that we used	
18	in the static analysis.	
19	CHAIRMAN KRESS: Are the dots on there	
20	where you concentrated	
21	MR. ORR: Yes. The stick model, the dots	
22	represent either masses or in some cases just the	
23	connecting links between a series of sticks. The	
24	circles are masses, the open circles are the centroid	
25	of the section, and the X's are the shear centers.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201	
1	We developed a similar model inside	
2	containment, very detailed, and the same model was	
3	used both in the dynamic analysis, the model analysis,	
4	and the static analysis.	
5	This particular view represents the	
6	portion of concrete inside the containment vessel, and	
7	all of the concrete structures, including the module	
8	structures that you saw in the presentation at lunch	
9	time.	
10	The seismic analyses that were done,	
11	firstly, on the fairly detailed finite element models,	
12	we do model analysis to get frequency and effective	
13	mass of the dynamic properties.	
14	We also use those models to create	
15	properties for the simplified sticks, and we check the	
16	stick models, the frequencies, and the mass in the	
17	stick models against those in the detailed shell	
18	models.	
19	The stick models are used in a modal	
20	analyses time history that results in responses at	
21	each of the models, time history responses. The	
22	typical responses we look at are maximum acceleration	
23	and relative deflection of the load relative to the	
24	ground.	
25	And we create floor response spectra from	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	202
1	the acceleration time histories for use in equipment
2	design. This typical flow response spectra is at the
3	top of the shield building roof, in the horizontal
4	direction.
5	At the zero period acceleration this is,
6	effectively, the maximum acceleration response of the
7	structure. We have an acceleration of about one point
8	HG at the top of the shield building roof.
9	The response spectra represent the
10	response of a single degree of freedom attached to the
11	structure. If it is in resonance with the structure,
12	for instance here at about 3 hertz, you get very large
13	amplification.
14	This 3 hertz frequency is the fundamental
15	frequency in the east-west direction of the shield
16	building. The smaller peak, at about 8 hertz, 7 or 8
17	hertz, is a local mode of the shield building roof.
18	This is the tank rocking on the conical roof.
19	So when we looked at the design of the
20	tank we are looking at, effectively, these
21	accelerations for the structure, of about 1.7G, and we
22	qualify the building structure for that.
23	In addition we looked at the water in the
24	tank, and we looked at the slushing mode of the tank,
25	and we see movement of the free surface, I think it is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	about 4 or 5 feet.
2	But we have that amount of freed water in
3	the tank, so it does not impact on the outer side.
4	MEMBER SIEBER: You could have added
5	baffles in there, right?
6	MR. ORR: We could have added baffles,
7	yes. I'm not sure how effective they would be,
8	because right now the frequency of the water slushing
9	is at .13 hertz, about 8 seconds. As you get baffles
10	it is going to increase that frequency.
11	We are very well off by the fact that the
12	frequency is so low, that it does not get excited by
13	the 3 hertz contents of there shear.
14	MEMBER SIEBER: Okay.
15	MR. ORR: For AP600 we had extensive
16	structural design. And in our review, with NRC, we
17	established a series of critical sections that were
18	really based on our judgement. We said this is going
19	to be the locations, most congested, most difficult to
20	design.
21	We did the detail design calculations, NRC
22	reviewed those. We have done the same thing for
23	AP1000. There are 22 critical sections. This is just
24	some examples of the shield building roof, and there
25	are actually three critical sections here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 One is the columns between the	he area, and
2 that is the second is immediately abo	ove them, is
3 what we call the tension range, run	ning around
4 immediately above the air inlets. And the	hen there is
5 the lower portion of this cylindrical wa	ill.
6 We do static calculations on	the detailed
7 finite element models, using the acceler	rations from
8 the time history analysis. This is just	one example
9 of models that we created from the shie	eld building
10 roof.	
11 We actually also have models,	this is 180
12 degrees, we have models at 360 degrees, we	e have models
13 at 90 degrees. The one at 90 degrees is	s the one we
14 used in the detailed design calculat	tions, with
15 considerably more requirements than she	own in this
16 portion.	
17 From the detailed plant mod	el we get a
18 number of forces in all of the elements,	and go into
19 hand calculations and processes, to ca	alculate the
20 amount of reinforcement.	
21 This is an example of the rein	forcement in
22 this tension rail, and in the column betw	ween the air
23 inlets. They are congested, but that	at won't be
24 feasible. This was redone for AP1000, bu	t really the
25 changes are not that significant in the qu	uantities of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205	
1	reinforcement between the two plants.	
2	In the early stages of AP1000 we had a	
3	pre-application review,a nd I think at that time I	
4	presented something to ACRS. We were requesting that	
5	we could do much of the seismic analysis and the	
6	structural design to the combined license applicant.	
7	And we had lots of discussion and we were	
8	permitted to do that work. So that is the work that	
9	we did last year, and we had extensive meetings with	
10	NRC. First we had a one week meeting in November,	
11	secondly the one week meeting in April.	
12	The first meeting was primarily seismic	
13	analysis, the second meeting was primarily the	
14	structural design. Resulting from that there are	
15	still a few open items, but we think we made excellent	
16	progress.	
17	In the areas that I am responsible for	
18	firstly there are five open items in chapter 2 that	
19	address the goetechnical interface of the site. Most	
20	of that is that we maintain the information from AP600	
21	in the interim there was a new standard review plan	
22	that was issued, so we have now revised the DCD to	
23	reflect the new standard review plan, that should be	
24	resolved with no great problem.	
25	In the section on seismic analysis,	

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

section 3.7, there are seven open times. We have responded to all of them. The most significant one was a discussion we had with the Staff, actually since the beginning of this year, that we resolved in a meeting in April, related to the assumption of the stiffness of concrete to be used in the seismic analysis.

And after extensive discussion we agreed 8 to do additional analyses, and having done those 9 additional analyses we have actually revised all of 11 the seismic results in the DCD.

12 Changes, we have reduced the stiffness of the concrete by a factor of .8, the changes, the 13 14 frequencies by about 10 percent, and changes to some 15 of the responses more than 10 percent.

Because we changed the stiffness of the 16 concrete we do not change the stiffness of the steel 17 vessel, and the relative frequency between the two now 18 19 changes, and that does change the overall response.

20 MEMBER SIEBER: I don't know hardly 21 anything about concrete, except that I always was 22 under the impression that it doesn't bend. And, therefore, how do you change the stiffness? 23

24 Is there differences in composition, or 25 are you really looking at rebar --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

10

	207
1	MR. ORR: No, this is an analysis
2	assumption of the material property of the concrete,
3	the elastic
4	MEMBER SIEBER: The space it
5	MR. ORR: is used in the past, in most
6	analyses. Recently there has been a change in the
7	state of the art, various FEMA documents that
8	recommend something less, and we have now sort of used
9	actually the 80 percent.
10	MEMBER SIEBER: Okay.
11	MR. ORR: I think it is probably giving us
12	a better estimate of expected behavior than we got in
13	the past.
14	MEMBER SIEBER: If it is a better
15	estimate, does that mean you are better off, or worse
16	off?
17	MR. ORR: Not really. If it is more
18	likely to be it is a best estimate, and then we
19	broaden the floor response spectra plus minus 15
20	percent from that.
21	MEMBER WALLIS: Does the concrete fail, do
22	they get pulled back
23	MR. ORR: Well, what happens is the
24	only reason we have reinforcemnt is because we know
25	that concrete cracks. If it didn't crack, we wouldn't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	need reinforcement.
2	MEMBER WALLIS: For these transients, does
3	it actually open up and then close?
4	MR. ORR: Yes.
5	MEMBER WALLIS: It does, okay.
6	MEMBER SIEBER: Well, I always sort of
7	pictured it as the rebar being the basic structural
8	element with the concrete being a lot of mass that is
9	hanging on the rebar.
10	MR. ORR: From a strength point of view
11	you are relying entirely on reinforcement. From a
12	stiffness point of view, generally, the concrete is
13	more significant than the reinforcement.
14	MEMBER SIEBER: Right. But it is the mass
15	of the concrete, as opposed to the continuity of it,
16	right?
17	MR. ORR: Well, it is also the continuity
18	because what happens is you get cracks every two or
19	three feet.
20	MEMBER SIEBER: Right.
21	MR. ORR: Between that you've got
22	uncracked concrete. So you've actually got a
23	combination of
24	MEMBER SIEBER: A series of plates.
25	MR. ORR: uncracked concrete and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	209
1	cracked concrete.
2	MEMBER SIEBER: Right, okay, thank you.
3	MR. ORR: The third section is the
4	structural design DCD sections 3.8. There we have 14
5	open items on all of the seismic and the structural
6	open items we have provided a response to NRC. We
7	believe that those responses are substantially
8	adequate.
9	We will have at least one further meeting
10	with NRC staff. One of the open items relates to
11	design of containment vessel. We had not presented as
12	much design of the vessel as NRC staff felt was
13	necessary.
14	Since then we have done additional work
15	and the information is available for them to review.
16	CHAIRMAN KRESS: Is the purpose of the
17	seismic to develop some sort of confidence in the
18	probability that the containment will fail? That is
19	the basic purpose, right?
20	MR. ORR: Of the design work?
21	CHAIRMAN KRESS: Of the calculations and
22	the design.
23	MR. ORR: We have originally said that the
24	level of information for containment vessel would
25	basically be design specifications, similar to an ASME

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	design specification and all of their allowable
2	stresses.
3	NRC staff wants to wants a
4	demonstration that the vessel can be designed to those
5	requirements meeting ASME. So that is what we are now
6	doing.
7	As part of the application in the PRA
8	report there is a section related to seismic margins.
9	We did an evaluation for AP600, we updated it for
10	AP1000, and this report is in the PRA report.
11	As part of that we established the high
12	confidence low probability of failure values for each
13	of the safety related structures, and for the systems
14	and components.
15	For the buildings we have evaluated the
16	shield building, and the auxiliary building, the
17	containment vessel, and the interior containment
18	structure. That is also the IRWST tank, because the
19	tank is integrated into the structure.
20	MEMBER SIEBER: Are you folks designing
21	pipe supports, or does somebody else do that?
22	MR. ORR: We have, in the seismic margins
23	evaluation, we include piping and pipe supports.
24	MEMBER SIEBER: For the modules?
25	MR. ORR: Everything, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

211 1 MEMBER SIEBER: But there are other parts 2 of the plant that aren't really built as modules, 3 right? This is -- so not just the 4 MR. ORR: 5 modules. 6 MEMBER SIEBER: Okay. 7 MR. ORR: We evaluate mechanical equipment, a lot of this is based on generic data, and 8 9 the valves and the electrical equipment. The basic requirement is that we demonstrate that we meet, at 10 11 least a review level of .5G. 12 What we found for AP1000 is generally our margins are a little lower, because we 13 14 have higher response for the AP1000. But it is not 15 significantly different. And .5G we have a number of items there. 16 17 We think the lowest one, same as on AP600, is around .5. 18 the 19 MEMBER SIEBER: Let me ask you 20 question that goes way back to the beginning. You are 21 designing for a hard rock site, and it is mγ 22 understanding that more than half of the sites, the 23 potential sites in the U.S. are hard rock. 24 On the other hand you can take one that 25 superficially is in hard rock, and put in franki

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	valves, and things like that. Is that an acceptable
2	alternative to finding a near surface hard rock
3	formation?
4	MR. ORR: One of the open items in the
5	DSER that we just responded to relates to that. That
6	we had the capability in AP600, and we now put it into
7	AP1000, that allows the combined license applicant to
8	do site-specific analyses of AP1000, and make
9	comparisons of floor response spectra at certain key
10	locations.
11	MEMBER SIEBER: Okay.
12	MR. ORR: If he can demonstrate that these
13	spectra are less than that, or he can demonstrate that
14	any exceedences he has made appropriate changes, then
15	this design can be applied directly.
16	MEMBER SIEBER: But do you know the
17	margins? You know, you are going to find, perhaps,
18	exceedencs of your findings, which aren't exceedences
19	of the overall criteria, right?
20	So the licensee, the COL licensee is
21	allowed to use your margins, correct?
22	MR. ORR: As far as I know.
23	MR. CUMMINS: Say your question again.
24	MEMBER SIEBER: I picture you have
25	multiple structures here. And if you look at, for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	213
1	example, selected equipment, or selected buildings,
2	you are going to find some better able to withstand a
3	.5G seismic event, than other ones.
4	So all the COL licensee applicant has to
5	do is to make sure that those areas that don't that
6	are on his site exceed your hard rock analysis, are
7	still within the .5G.
8	MR. ORR: This seismic margin is
9	different. This is the one that says, okay, you've
10	designed for an SSE of .3G. I want you to demonstrate
11	that you are not right at the edge of a cliff, and if
12	the earthquake is .31G everything falls down.
13	So you are demonstrating, all the way up
14	to .5, that the plant hangs together.
15	MR. CUMMINS: And you have to still do
16	that at COL stage. So the margin is really owned by
17	the NRC, not by the applicant, and their customers.
18	MR. ORR: If you have a site .5G, and our
19	design is .3G, then you've got that margin to play
20	with in some manner.
21	Some of our evaluation of seismic margins
22	now is based on a paper plot, and so there are certain
23	commitments that are required for the combined license
24	applicant. He is, obviously, going to demonstrate
25	that the seismic response at his site is lower or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	equal to the ones we've used in design.
2	There are certain equipment choices still
3	to be made, one of them being the electromechanical
4	relays, that he has to demonstrate are robust. And
5	then as you build it, there are always some changes,
6	there are always some things you find, as you do the
7	first walk-down.
8	And so the combined license applicant is
9	required to do the seismic walkdown exactly as has
10	been done on many of the existing plants.
11	MEMBER SIEBER: But that is really
12	intended to do things like tie switch gear together,
13	and
14	MR. ORR: It is also
15	MEMBER SIEBER: as opposed to a
16	reanalysis?
17	MR. ORR: It is also to do a walkdown and
18	see, well, are there certain other interactions there
19	that you didn't quite realize when you were doing the
20	design.
21	MEMBER SIEBER: Right, okay.
22	MR. CUMMINS: But it is not supposed to be
23	reanalysis.
24	MEMBER SIEBER: Right. But there might be
25	in some instances.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	215
1	MR. CUMMINS: Yes.
2	MR. ORR: We are continuing some work on
3	the seismic margins in response to the open items. As
4	I mentioned, we have changed the assumption of
5	stiffness of concrete, and hence we have changed some
6	of our seismic results.
7	We are looking to see if that affects the
8	seismic margins.
9	MEMBER SIEBER: Let me ask another real
10	quick question. You probably do your seismic pipe
11	design in hangars by analysis. But you can't possibly
12	review every pipe in the plant. What is the minimum
13	size pipe that you do by analysis, as opposed to using
14	templates, or something like that?
15	MR. ORR: I believe that the we are
16	analyzing all of the large bore, greater than two
17	inch. I think some of the less than two inch high
18	energy lines we do analysis on, others will be a space
19	table type of
20	MEMBER SIEBER: But all the way down to
21	two inches?
22	MR. ORR: Yes, sir.
23	MR. CUMMINS: I think your answer is for
24	safety related piping.
25	MR. ORR: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	MEMBER SIEBER: Right.
2	MR. CUMMINS: This is seismic one piping.
3	MEMBER SIEBER: Right, which is better
4	than top
5	MR. ORR: I believe all
6	MEMBER SIEBER: And that is better than
7	industry practice had been up to this point, in plants
8	under construction, to my knowledge.
9	MR. ORR: The last item we are doing, as
10	we review the seismic margin, we are updating some of
11	the calcs because we now have better design
12	information on AP1000 than when we did the original
13	seismic margin update.
14	What I would expect is that this is going
15	to increase many of our HCLPFs. We will still meet
16	the requirement of .5.
17	I think I managed to get through in less
18	than my allotted time.
19	CHAIRMAN KRESS: We are adjourned.
20	(Whereupon, at 6:22 p.m., the above-
21	entitled matter was adjourned.)
22	
23	
24	
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701