Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:

Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee OPEN SESSION

Docket Number: (not applicable)

Location:Rockville, MarylandDate:Wednesday, November 13, 2002

Work Order No.: NRC-644

Pages 198-671

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	521
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	MEETING
5	+ + + +
6	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
7	(ACRS)
8	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
9	+ + + + +
10	WEDNESDAY,
11	NOVEMBER 13, 2002
12	+ + + +
13	ROCKVILLE, MARYLAND
14	+ + + +
15	The Subcommittee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B3, 11545 Rockville Pike, at 8:30 a.m., Dr. Graham
18	Wallis, Chairman, presiding.
19	COMMITTEE MEMBERS PRESENT:
20	GRAHAM B. WALLIS, Chairman
21	SANJOY BANERJEE, Consultant
22	THOMAS S. KRESS, Member
23	FREDERICK MOODY, Consultant
24	VICTOR H. RANSOM, Member
25	VIRGIL E. SCHROCK, Consultant

		522
1	ACRS STAFF PRESENT:	
2	PAUL BOEHNERT, Staff Engineer	
3		
4	ALSO PRESENT:	
5	KEN CARLSON, Framatome ANP	
6	RALPH CARUSO, NRC	
7	HUEIMING CHOW, Framatome ANP	
8	JERRY HOLM, Framatome ANP	
9	RALPH LANDRY, NRC	
10	ROBERT MARTIN, Framatome	
11	BILL NUTT, Framatome ANP	
12	LARRY O'DELL, Framatome ANP	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

523
<u>CONTENTS</u>
PAGE
Framatome ANP Presentation:
Introduction, Jerry Holm 524
General RELAP5 Questions, Bob Martin 528
Critical Flow Issues, Ken Carlson 596
Statistical Analysis, Larry O'Dell 644

	524
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:30 a.m.)
3	DR. WALLIS: The meeting will now come to
4	order.
5	This is a continuation of the meeting of
6	the ACRS Subcommittee on Thermal Hydraulic Phenomena.
7	I'm Graham Wallis, Chairman of the
8	Subcommittee.
9	The other ACRS members in attendance are
10	Tom Kress and Victor Ransom. ACRS consultants in
11	attendance are Sanjoy Banerjee, Fred Moody, and Virgil
12	Schrock.
13	For today and tomorrow's sessions, the
14	subcommittee will continue review of the Framatome
15	ANP-Richland S-RELAP5 realistic code version and its
16	application to PWR large break LOCA analyses.
17	Portions of this meeting will be closed to
18	the public for discussion of information considered
19	proprietary to Framatome ANP-Richland, Incorporated.
20	And, Jerry, would you please let us know
21	when that's the case, when you think it's proprietary
22	information?
23	MR. HOLM: Yes.
24	DR. WALLIS: Mr. Paul Boehnert is the
25	cognizant ACRS staff engineer for this meeting.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	525
1	The rules for participation in this
2	meeting have been announced as part of the notice of
3	the meeting previously published in the Federal
4	<u>Register</u> on October 23, 2002.
5	A transcript of this meeting is being
6	kept, and the transcript will be made available as
7	stated in the Federal Register notice.
8	It is requested that speakers first
9	identify themselves and speak with sufficient clarity
10	and volume so that they can be readily heard.
11	We have received no written comments, nor
12	requests for time to make oral statements from members
13	of the public.
14	We will no proceed with the meeting, and
15	I call upon Mr. Jerry Holm from Framatome ANP-Richland
16	to begin.
17	MR. HOLM: Good morning. My name is Jerry
18	Holm. I'm manager of product licensing for Framatome.
19	Just one item of clarification maybe since
20	the last meeting. We've changed the company name.
21	It's now just Framatome ANP. The "Richland" has been
22	dropped. That was part of the initial merger
23	arrangement.
24	Today we're going to talk about the
25	Framatome ANP realistic large break LOCA methodology.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	526
1	I'm going to start with a fairly detailed presentation
2	of the momentum equation which is going to be given by
3	Ken Carlson.
4	We need to target to finish this about
5	mid-afternoon so that we have time for the other
б	items. Then we'll go into the general RELAP5
7	questions, which came from Dr. Moody. Bob Martin is
8	going to do that. We'll talk about selection of node
9	size. Bob Martin is going to do that again.
10	We will then go into critical flow issues.
11	Ken Carlson is going to present that, and then
12	statistical analysis by Larry O'Dell.
13	We also received a request to talk about
14	the force and Rosenow equation correlation, and if we
15	have time, I'd like to stick that at the end of
16	today's presentation. If not, there should be time
17	after Larry O'Dell's tomorrow.
18	And then tomorrow we've got scheduled for
19	a summary of the methodology, and Larry O'Dell is
20	going to do that. He's going to go into the
21	requirements and capabilities, and then the response
22	to the request from the committee, and we're going to
23	talk about changes we made to RELAP5 to create the S-
24	RELAP5 code.
25	We're going to talk about assessment and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

527
ranging parameters and sensitivity uncertainties.
This is an overview of the entire methodology. It
will be fairly similar to the presentation given
previously to the Subcommittee, but since we've got a
number of new members, I think it's worth going over
the information again.
With that, I'll turn it over to Ken
Carlson to start the momentum equation.
DR. WALLIS: I should remind you that you
have a list of 13 questions from me, some of which
have As and Bs and C parts, and you also have a
critique which asks you to respond to. And I think
we're looking for answers to these questions.
MR. HOLM: Right.
DR. WALLIS: So if you don't present them,
then you will have to provide them some other way.
MR. HOLM: Hopefully we have incorporated
those into the presentations. We structured this
presentation intending to respond to those questions,
but we thought it made more sense to have a more
functional presentation structure.
DR. WALLIS: Yes. Well, I hope it will
work out fine.
Thank you.
MR. BOEHNERT: Now, I understand we're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	528
1	going to go into closed session; is that correct?
2	MR. CARLSON: Yes.
3	MR. BOEHNERT: Okay. So anyone here that
4	is not with Framatome ANP or doesn't have an agreement
5	with them to hear proprietary information, please
6	leave the room.
7	And, transcriber, we'll go to closed
8	session transcript. Thank you.
9	(Whereupon, at 8:35 a.m., the open meeting
10	was recessed, to reconvene immediately in closed
11	session and resume the open meeting at 3:17 p.m.)
12	MR. BOEHNERT: I want to remind everybody
13	we are in open session. So the transcriber should
14	have an open session transcript.
15	DR. WALLIS: Whose questions are we
16	answering now?
17	PARTICIPANT: Dr. Moody's questions.
18	DR. WALLIS: Dr. Moody's questions. Okay.
19	MR. MARTIN: Okay. My name is Robert
20	Martin. Believe it or not, I work for Framatome ANP.
21	I can still claim that for a little bit longer, as
22	long as I pay my check every money.
23	Can you hear me now?
24	I'm addressing Dr. Moody's four questions
25	he sent about a month or so ago. These topics, first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	529
1	they are somewhat related: transient discharge of
2	mass and energy I'm just using your titles here
3	propagation flows, forces on piping and structure. I
4	think in the agenda Laurie had separated out the last
5	one.
6	I only have a total of like 17 slides
7	here. So I just stuck it here as one presentation,
8	but that's the last one, selection of node sizes, and
9	for that actually I just pulled out slides from last
10	year, which of course you will hear.
11	DR. WALLIS: I don't think you're going to
12	address the third bullet, forces on piping.
13	MR. MARTIN: Yeah. That's
14	DR. WALLIS: You're not going to address
15	it. It says it, but it's not part of
16	MR. MARTIN: Basically our answer is I
17	mean, if you want to get to the punch line ahead of
18	time
19	DR. WALLIS: You're not addressing it.
20	MR. MARTIN: we're not addressing it
21	for realistic LOCA applications
22	DR. WALLIS: Yes.
23	MR. MARTIN: I guess for LOCA applications
24	in general, forces on piping
25	PARTICIPANT: You don't care.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	530
1	MR. MARTIN: Yeah, we don't care.
2	And as far as our regular reload support,
3	it's not relevant. If we were building plants like
4	all the time, this would be important, and I guess we
5	have methodologies that are probably 20 years old that
6	they're collecting dust, and until we start building
7	plants we probably won't be pulling them up.
8	That was kind of my answer, and that was
9	it.
10	DR. WALLIS: If you were addressing it,
11	then you'd have a different kind of momentum equation
12	which had a force from the piping, including a normal
13	force.
14	MR. MARTIN: And then we'd have to go back
15	and think about this and prepare for
16	DR. WALLIS: It would not look like what
17	we heard earlier today.
18	MR. MARTIN: Yeah, we'd have to prepare it
19	a little bit differently.
20	DR. MOODY: I'm going to assume if they
21	did address it and had to apply it, they'd do it
22	right. How's that?
23	MR. MARTIN: Okay. Your question was
24	this: please describe how the discharge mass flow
25	rate is obtained for the postulated instantaneous

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

531 1 rupture of a long pipe before the quasi-steady 2 blowdown rate is reached. The pipe is attached to a pressure vessel. 3 4 And then you had some discussion there, 5 drawing on some early RELAP5 calculations for this case, sometimes as a result of inflow rates exceeding 6 7 critical flows, too much massing. Just a little background. 8 Okav. Using the fine nodalization and small time steps, RELAP5 9 codes have demonstrated the ability to mechanistically 10 11 capture the choke flow phenomenon. I think in Ken's 12 discussion made reference Dr. Ransom to the calculations done in the '80s, and that's kind of what 13 14 I'm referring to here, that that exercise has been 15 done in the past with RELAP5 codes. It is not what we're doing now because that would require very fine 16 nodes and small time steps. 17 Well, and as I say in the next sentence, 18 19 it's a complication. 20 To achieve fast execution speed, the 21 implicit evaluation is used for those terms 22 responsible for the sonic wave propagation time step, 23 and this allows for a maximum stable time step to 24 approach the current one. 25 Okay. So what do we do? And I'm not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

532 1 going to go into all of the details because that's 2 really a lot of your questions a little bit later, and 3 since Ken likes to suffer more than others, we'll just 4 let him get back up there and be the whipping boy. 5 But where we go is when the break opens up, we start doing the calculation just like Ken's 6 7 talking about, basically Bernoulli calculated 8 velocities and pressures. There's this Alamgir-Lienard-Jones model 9 for subcooled choke flow that were used to determine 10 11 the throat pressure and choke velocity, and then I make here the reference to where it is 12 in the documentation. 13 14 Here we're using local conditions, and 15 when this Bernoulli calculated velocity exceeds choke velocity, then the velocity just sets. 16 17 Now, that still begs your question. You still have the problem that you have once upon a time 18 19 early with the calculations, and I'm going to say, 20 well, yeah, to some extent you do. 21 This figure here is just taken from one of 22 our large break analyses that we've provided for this methodology submission, except for you'll never see it 23 24 because it's only for the first 20th of a second. What we have here is flow rate out the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

533 1 break on the pressure vessel side. You can see the 2 flow rate taken off, and then I have drawn these 3 vertical lines here to indicate when the junction 4 choke. 5 Okay. You can see it takes off and then, wham, the model kicks in. It backs off a little bit, 6 7 and then it goes up again. This is like a liquid line 8 DR. MOODY: 9 that opens up in that first heavy curve going up with the Bernoulli flow? 10 11 MR. MARTIN: Yeah, I'll tell you. The 12 time step here is .000 --DR. MOODY: Whatever it is. 13 MR. MARTIN: -- four. 14 15 That's Bernoulli flow? DR. MOODY: MR. MARTIN: Bernoulli flow up until --16 17 Of liquid, yeah. DR. MOODY: MR. MARTIN: -- up to here and then the 18 choke model comes on. The criteria is met and then we 19 just lock in based on the calculation of the sonic 20 21 calculation there. 22 DR. MOODY: So that's a --23 DR. WALLIS: -- type of wave that 24 propagates along the pipe. You open the break and a 25 decompression wave runs down this pipe and comes back

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	534
1	again. Is that the model?
2	MR. MARTIN: You know, we don't rack that
3	way, and I can't say that I've really looked at that,
4	but maybe this
5	DR. WALLIS: That's not what
6	MR. MARTIN: is part of the answer.
7	DR. WALLIS: No, no, you're not addressing
8	the sort of acoustic transient in the pipeline.
9	MR. MARTIN: No, we're not looking at
10	that. I mean, we're going to say it's in there, and
11	that's the history of the numerics, the sonic
12	component. That's why there's all of the discussion
13	on, you know, code stability, convergence.
14	The concern was, you know, you want to go
15	as fast as you can when you run this. You want to run
16	it at the Courant choke out limit. You don't want to
17	be stuck here at addressing the sonic the wave
18	propagation from these sorts of things, and
19	DR. WALLIS: So when you
20	MR. MARTIN: the formulation equation
21	for
22	DR. WALLIS: open the break when you
23	open the break
24	MR. MARTIN: address that implicitly.
25	DR. WALLIS: When you break open the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	535
1	break, does the a scan to the long pipe of the
2	vessel does the vessel immediately know that the
3	break is open? Does the mathematics
4	MR. MARTIN: No, it
5	DR. WALLIS: all along these nodes and
6	get to the vessel at no time?
7	It does propagate from node to node.
8	MR. MARTIN: Yes. I mean, you'll see
9	it let me explain this slide here a little bit.
10	This is the vessel side break node pressure. You open
11	it up here at 2250.
12	DR. RANSOM: That was the original
13	pressure, 2250?
14	MR. MARTIN: That was the steady state
15	pressure.
16	DR. RANSOM: Okay.
17	MR. MARTIN: Okay? And then this opens,
18	and it immediately drops.
19	DR. RANSOM: It decompresses.
20	MR. MARTIN: And you'll see that. You can
21	look down a little bit farther. This will dissipate.
22	You won't see this drop. At least numerically you
23	won't see that.
24	Spin, once that choke model comes on you
25	no longer see the downstream pressure effect, and then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	536
1	it basically resettles, and so there's a period here
2	of, you know, maybe, let's see, that would be ten, 20,
3	20 time steps before you just rebalance that.
4	MR. SCHROCK: What is it that's predicting
5	this sudden drop in pressure?
6	MR. MARTIN: Excuse me?
7	MR. SCHROCK: What is it that is
8	predicting that sudden drop in pressure?
9	MR. MARTIN: Well, now you're going from
10	2250 to 14.
11	MR. SCHROCK: Right.
12	MR. MARTIN: Fourteen, point, seven, and
13	you know, you're applying basically and I don't
14	want to say momentum equation but basically from
15	the Bernoulli standpoint you've got to balance that,
16	and so air you're sucking right up. So it just
17	happens to be very rapid.
18	MR. SCHROCK: But you're treating it as
19	incompressible flow.
20	MR. MARTIN: Incompressible flow, that's
21	correct.
22	PARTICIPANT: That's for the first time
23	step or so?
24	MR. SCHROCK: Well, I don't know. That's
25	why I'm asking him what it is. More than one thing it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	537
1	could be.
2	MR. MARTIN: Well, I mean, the vessel,
3	when you open at that break, I mean, obviously if I'm
4	going down to 14.7, in which case if this volume does
5	not get down that far you would saturate at some
6	point.
7	DR. RANSOM: I think you'll find that it's
8	not incompressible, that it's liquid, you know, which
9	is only slightly compressible, but the methods that
10	are being used there, you are propagating a
11	decompression wave back into the pipe, and the
12	recompression, of course, is when it reaches the
13	vessel and is reflected back as a compression wave
14	again, and then eventually the pressure stabilizes.
15	DR. BANERJEE: And the minimum pressure
16	probably is determined by Alamgir-Lienard-Jones for
17	nucleation.
18	DR. RANSOM: Right. It's the vapor, you
19	know, whatever, where vaporization begins.
20	DR. BANERJEE: Right.
21	DR. RANSOM: Or cavitation, you know.
22	MR. SCHROCK: See, they did that in a
23	tube. They use a forced off end of the tube. they
24	drive the end off the tube very, very rapidly, and
25	they get a rate of decompression by the amount of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	538
1	force they apply to end plug to drive it off, and then
2	they measure the pressure at the time they see the
3	incipient flashing.
4	And so how does that enter into what
5	you've calculated here on this sudden drop in
6	recovery?
7	MR. MARTIN: Well, I'll yield a lot of
8	that to Ken's discussion at that point because he goes
9	into more detail.
10	MR. SCHROCK: Well, that's a little
11	different than the Jones use of that in a quasi-steady
12	prediction of the critical flow with subcooled liquid
13	stagnation condition.
14	MR. MARTIN: Okay.
15	MR. SCHROCK: That's what Jones did,
16	Abuoff (phonetic) and Jones.
17	MR. MARTIN: Okay.
18	DR. RANSOM: Well, I don't know, but
19	anyway, that's applied as a boundary condition. That
20	pressure, you know, is then the break pressure. It's
21	assumed that it can't go lower than that vaporization
22	pressure. So it becomes a boundary condition.
23	MR. SCHROCK: But it can go lower than
24	that vaporization pressure. That's what Alamgir and
25	Lienard measured

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	539
1	DR. RANSOM: Well, lower than the vapor
2	pressure, yes. The undershoot is
3	MR. SCHROCK: The amount of undershoot.
4	So is it the Alamgir-Lienard that determines that
5	minimum pressure?
6	MR. MARTIN: I would say they do not case
7	(phonetic).
8	DR. CHOW: This is Hueiming Chow.
9	I think that one is really because you
10	discharge too much mass. So your pressure I mean,
11	you have a volume, and your flow is too high. So
12	instantaneously you lost mass. That's why pressure is
13	brought out. This volume pressure is not a junction
14	pressure.
15	MR. MARTIN: I wouldn't say this is real
16	necessarily.
17	DR. CHOW: Yeah, but that's because you're
18	starting to discharge so much mass.
19	MR. MARTIN: Right. Maybe what I was
20	going to get to Moody's question is that other
21	problems that you can probably solve in the old one
22	are still there, but it really doesn't matter.
23	DR. MOODY: You've protected it.
24	MR. MARTIN: I'm protected it.
25	DR. MOODY: You've limited it so that it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	540
1	doesn't go to infinite velocity or
2	MR. MARTIN: Right, right. I mean, the
3	model kicks in and prevents it from going any further.
4	Yeah, maybe you have, you know, some unphysical
5	response here.
6	DR. RANSOM: But the question is what
7	DR. MOODY: What model kicks in?
8	DR. RANSOM: what boundary condition or
9	what model do you use?
10	DR. MOODY: Apply then, yeah.
11	MR. MARTIN: Well, at that time it's the
12	Alamgir-Lienard-Jones model.
13	DR. RANSOM: For the pressure undershoot,
14	right?
15	DR. CHOW: Yeah, for the undershoot.
16	MR. MARTIN: But you turn around and use
17	it for the velocity.
18	DR. RANSOM: Right, and you calculate the
19	velocity that would correspond to that, and if it
20	exceeds the I mean, if that's less than the
21	velocity, I guess, that you calculated, then you say
22	it's true.
23	MR. MARTIN: Yes.
24	DR. RANSOM: And then apply that as the
25	boundary condition.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	541
1	MR. MARTIN: It is just pretty algebraic.
2	There's nothing special about it.
3	Anyway, I guess my point was going to be
4	the problem is still there. It's just that it doesn't
5	really matter.
6	DR. MOODY: Okay.
7	DR. RANSOM: You feel that you do
8	calculate too great a mass flow rate; is that right?
9	MR. MARTIN: Yeah, initially, but
10	DR. RANSOM: Too great relative to what?
11	MR. MARTIN: Well, basically based on the
12	discontinuity, I say that because it's not a smooth
13	result. It comes up above
14	DR. RANSOM: Is it that first peak that
15	you're talking about?
16	MR. MARTIN: and then comes back down,
17	and of course, it progresses on. You know, I'm not
18	going to say that I've quantified, that it's
19	overshoot. But just based on those two slides.
20	DR. RANSOM: What are you going to do then
21	to qualify your model?
22	MR. MARTIN: Well, there's two to do an
23	application, there's a code; there's a methodology,
24	and maybe this gets into some of what Larry will talk
25	about tomorrow. That's why we have a CSAU process,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	542
1	and a lot of that is where you address what's
2	important first.
3	And I think we'll look at that and say,
4	well, this is a break flow phenomenon, and we have an
5	approach for that that we'll go over a little bit
6	tomorrow. We went over it a lot last year.
7	And something like this would be a very
8	minor component to all of that.
9	MR. SCHROCK: Very minor what?
10	MR. MARTIN: So we would sweep it under
11	the rug maybe.
12	MR. SCHROCK: I'm sorry. I couldn't quite
13	understand what you said.
14	MR. MARTIN: At what point?
15	MR. SCHROCK: You said it would be a minor
16	something to that.
17	MR. MARTIN: A minor component to the
18	phenomenon of rate flow.
19	MR. SCHROCK: Okay.
20	MR. MARTIN: You know, we have a code
21	which provides us a certain utility, and the next step
22	is engineering the methodology on how to use it, and
23	that's where you have addressed a lot of these
24	uncertainties, uncertainties in modeling and
25	uncertainties in phenomena, and that's why I think the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	543
1	CSAU methodology is very powerful, because it takes
2	something that's going to be less than desirable that
3	will get through a committee like this hopefully.
4	MR. SCHROCK: I interpreted Fred's
5	question to be an inquiry as to how the flow is
6	initiated from the stagnant condition at the outset,
7	stagnant with respect to the break, and I guess I
8	haven't understood what your explanation for that is.
9	MR. MARTIN: Well, it's all driven by the
10	large pressure drop which then suddenly appears.
11	MR. SCHROCK: Well, I know it's driven by
12	a large pressure drop, but what is done in a
13	calculation to establish the progression of the
14	velocity at the discharge
15	DR. MOODY: What I think I what I think
16	I heard him say was the very first node after the
17	break is accelerated by upstream pressure all of a
18	sudden looking at one atmosphere or whatever the
19	ambient is, and with that DVDT, which showed up in
20	that first drawing or sketch you gave, trace. It goes
21	up very fast, but when it exceeds the choke flow point
22	of Alamgir-Lienard-Jones, that's when you artificially
23	just cut it off and say, "No further. We're going to
24	bring this down now."
25	So you're talking about the discharge of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	544
1	what's coming out of that end node, and the other part
2	of that is what about node number two, node number
3	three?
4	You're probably just treating those all as
5	inflows and outflow nodes so that the propagation may
6	or may not be real, but at least it's going from one
7	node to the next based on your timing step.
8	You're controlling the discharge flow, and
9	so it doesn't exceed anything real.
10	MR. MARTIN: The boundary condition to
11	that point.
12	DR. MOODY: And now, let's see. If you're
13	on the outside of that, you're concerned about what's
14	coming into the room to pressurize. If you're
15	concerned about you know, actually with the
16	well, maybe you're going to get into it a little bit
17	later about decompression moving up and moving back.
18	Maybe you're going to discuss that when you come to
19	the critical flow, but Virgil has asked about that.
20	I think what you've answered for me is the
21	discharge during that first little bit at least is
22	limited so that you don't over exceed.
23	MR. MARTIN: Okay.
24	MR. SCHROCK: But you're imagining that
25	it's calculated as a plug which has a force acting on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	545
1	it, F equals MA, and you get an acceleration.
2	DR. MOODY: Yeah.
3	MR. SCHROCK: That gives you a velocity at
4	the end of the time step. It doesn't tell you what
5	the pressure is there, and the Alamgir-Lienard
6	correlation, the correlation that gave the amount of
7	pressure undershoot at the inception of flashing.
8	DR. MOODY: Yeah, okay.
9	MR. SCHROCK: And so I don't know how to
10	translate that velocity into the pressure under shoot.
11	DR. MOODY: That may be a dangling
12	question. At least you've answered what you do on the
13	discharge. Right or wrong it limits the outflow. We
14	eagerly wait for the rest of the discussion, I guess.
15	Your conclusion there was what?
16	MR. MARTIN: It may for a short period of
17	time over predict the flow. You still use small time
18	steps to limited that kind of problem. I'm assuming
19	you're looking at a time scale from zero to 300 or 800
20	seconds, whatever it happens to be the length of a
21	transient. You'll never see, you know, the symptom,
22	and a short period of over prediction is
23	inconsequential and conservative.
24	And I wouldn't put a lot of stake in
25	conservative because you're talking about so little

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	546
1	anyway.
2	DR. MOODY: I guess the only place that
3	could be vulnerable is if it was a very long pipe and
4	it took maybe the order of a second or two for a
5	pressure wave or decompression wave to go down and
6	come back, and maybe it has to do that a few times
7	before you get to a steady discharge critical flow and
8	whether or not that might be conservative or not,
9	depending on which side of the fence you're on, I
10	guess.
11	DR. KRESS: Your equations calculate the
12	pressure of that first node. Could it be that you set
13	that pressure at this undershoot pressure? Is that
14	the way that works or do you actually put a cap on the
15	flow rate?
16	MR. MARTIN: No, it's on the flow.
17	DR. KRESS: It's on the flow.
18	MR. MARTIN: It's not on the pressure.
19	Okay. Propagative flows. Please describe
20	how moving pressure or velocity services can be
21	tracked by the code. Do they propagate through a
22	subsystem either as sonic, water hammer, or shock
23	waves, the concern being volume, time average
24	properties made to distort spatial gradients that
25	drive propagation or pressure wave?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 The statements on that. Pressure wave velocities will typically range, and it's -- looking 2 3 at relap output actually can be quite broad. I just 4 say below 1,000, although most of the LOCA 5 calculations spends most of his time before 400, I guess, meters per second. 6 7 Most of the RCS loops are less than 50 So it's moving pretty quick around the loop. 8 meters. S-RELAP5 simulates the dynamics of short 9

10 wavelength phenomena, pressure raise disturbances. So
11 we're not Courant limited.

12 No formal effort is made to track 13 propagation of pressure waves in S-RELAP5 because the 14 fact that sound C (phonetic) is calculated. So --

DR. MOODY: If I can translate that, I guess, into other terms you'd say that the time response of a pipe that breaks is very short compared to the time duration of the transient, overall transient that you're trying to analyze. So you can basically skip over it, and it isn't too important.

21 MR. MARTIN: Right. You know, we don't 22 really look at it and don't really see it. I think a 23 lot of these systems are so complex that after the 24 initial shock wave you don't see anything. I mean, 25 things start reflecting all over the place.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

548 1 I did this calculation years ago, and I 2 think you can see, you know, some effect of a pressure wave like that, and this is a gravity wave problem 3 4 where you have a stack of water up. It's a 5 hypothetical problem where you have a stack of water up, a stack of water down, and you let go and while it 6 7 does this bouncing, initially you see this little -this echo up here, and it corresponds to that pressure 8 9 disturbance. It ends up getting amplified. You qo 10 back again, and it starts damping out for that reason 11 or for other reasons probably. 12 But that's the only time you see it. I've seen this. It's been obvious. Outside of that, you 13 14 know, you just can't look at the hydraulic parameters 15 and recognize a pressure wave kind of going through 16 there. 17 DR. MOODY: The little wave length or the little --18 19 MR. MARTIN: A very short one, and this 20 one has a relatively low sonic wave speed. 21 DR. RANSOM: Is that a stratified flow or 22 what is that? 23 Yeah, it's just a pipe. MR. MARTIN: 24 DR. RANSOM: The pipe with stratified --25 MR. MARTIN: You've seen this problem

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	549
1	before. I did it back when you were there.
2	DR. RANSOM: This is the horizontal
3	rhonometer (phonetic) problem?
4	MR. MARTIN: Yes.
5	DR. RANSOM: So really it's the
6	propagation of the void wave back and forth in the
7	pipe.
8	DR. BANERJEE: Sixteen meters per second.
9	That's a fast void rate. It's almost like a two phase
10	pressure wave, two phase.
11	MR. SCHROCK: It is two phase.
12	MR. MARTIN: Yeah, this is maybe I
13	didn't talk about it. This is the void fractions at
14	half and
15	DR. BANERJEE: That's right.
16	MR. MARTIN: So it is.
17	The Framatome experience, small pressure
18	disturbances are imperceptible in plant analysis.
19	Break provides the singular large disturbance in LOCAs
20	and begins to dampen when the choke model is applied
21	quick, very early.
22	The only other time I can think of when
23	you might see something is when maybe ECC came on and
24	you had the cold water coming and you might get an
25	effect in condensation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	550
1	Again, I can't pick up on that, but maybe
2	there's not enough variables in RELAP5 that address
3	that. You know, we always have those in our hip
4	pocket. It's generally not important for LOCA
5	application.
6	DR. BANERJEE: Is it true always that
7	these pressure waves don't give you effects on core
8	structures and things? These are not considered
9	important for LOCA?
10	MR. MARTIN: That's the next one.
11	DR. BANERJEE: I see.
12	MR. MARTIN: Yeah, it's something I can't
13	say I've previously thought about, you know, at least
14	not for a long time, but I know a lot of effort has
15	gone into looking at water hammer and pressurized
16	thermoshock.
17	DR. BANERJEE: They seem to worry about
18	this in Europe quite a bit.
19	MR. MARTIN: Yeah, I think the rules in
20	Europe are a little bit different.
21	DR. BANERJEE: Yeah.
22	DR. MOODY: Maybe it would be a little bit
23	more palatable if you say for the transients that are
24	analyzed at the S-RELAP5, that your propagation
25	effects are negligible or nonconsequential.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	551
1	I'm thinking some years ago that the NRC
2	actually used one of the RELAP programs to determine
3	what happens when a pipe broke within a biological
4	shield. The short side of the break, immediately
5	steady state or quasi-steady state, critical
6	discharge, but the long side of the break, with the
7	way it was calculated without limited the Bernoulli
8	fall, it shot out of there and the doggone thing about
9	it reached an overturning moment on that biological
10	shield, and that, of course, made a lot of eyebrows go
11	up until it was shown that wait a minute; that other
12	side of the pipe, the long side, there was a
13	propagation effect that slowed things down while the
14	pressure waves moved around the biological shield, and
15	that's a propagation effect.
16	And when you balance the two, by the time
17	the pressure wave returned from the pipe, the pressure
18	wave had reached the back side on the biological
19	shield and was beginning to even up. So it was
20	nonconsequential.
21	But still it was a case where propagation
22	effects were important. Can we say that there is no
23	need for propagation effects then in whatever S-RELAP5
24	is going to do?
25	MR. MARTIN: I think we can say that

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	552
1	safely.
2	DR. MOODY: Will some user down the road
3	ever been tempted to use it for well, maybe you had
4	better put a big statement in front.
5	MR. CARUSO: Dr. Moody, this is Ralph
6	Caruso from the staff.
7	I believe that this issue used to known as
8	an issue called asymmetric LOCA loads.
9	DR. MOODY: Yeah.
10	MR. CARUSO: Does that phrase ring a bell?
11	DR. MOODY: I think so.
12	MR. CARUSO: It was resolved when we went
13	to leak before break.
14	DR. MOODY: Okay.
15	MR. CARUSO: That was one of the reasons
16	why we accepted the leak before break concept, was to
17	resolve the asymmetric LOCA loads issue because this
18	is extremely difficult to calculate.
19	There were some other reasons, but based
20	on acceptance of leak before break asymmetric LOCA
21	loads are not considered anymore.
22	Now, someone might ask: well, why do we
23	consider large break LOCAs? And you would have to ask
24	the Commission that. They acknowledged that there was
25	a bit of an incongruity in regulations when they did

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	553
1	that.
2	So we still consider them, but we don't
3	consider the asymmetric LOCA loads.
4	MR. MARTIN: And that's basically what
5	we're talking about here with that, and I'll just skip
6	on over to the selection of the nodes.
7	To some extent you brought this up in
8	Ken's discussion. I'll just overview it here, kind of
9	emphasize the priorities we had in this step.
10	Please describe how various node sizes are
11	selected at a given system, providing assurance that
12	the dominant phenomena are predicted, are presented of
13	the actual system response being analyzed. Of course
14	nodalization may mask important phenomena.
15	Okay. This is kind of where we get
16	into we move beyond code and talk about
17	methodology, and then I've thrown up these quotes from
18	the CSAU bible quantifying reactor safety margins.
19	The plant model must be nodalized finally enough to
20	represent both the important phenomena and design
21	characteristics of a nuclear power plant, but coarsely
22	enough to remain economical.
23	Number two, thus, the preferred path is to
24	establish a standard nuclear power plant nodalization
25	for the subsequent analysis; minimizes or removes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	554
1	nodalization and the freedom to manipulate noding as
2	a contributor to uncertainty.
3	MR. BOEHNERT: Excuse me. Are those
4	emphases yours or from the
5	MR. MARTIN: This is from the Technical
6	Program Group.
7	MR. BOEHNERT: Okay, okay.
8	MR. MARTIN: That did this 13 years ago or
9	whatever.
10	Therefore, a nodalization selection
11	procedure defines the minimum noding needed to capture
12	the important phenomena.
13	DR. WALLIS: That's interesting. This
14	fixing the standard nodalization doesn't really remove
15	uncertainty. What it does is it removes flexibility
16	in prediction. It simply forces you to use one
17	nodalization.
18	There may be uncertainty associated with
19	how well that represents the real thing.
20	MR. MARTIN: The idea being that it
21	would
22	DR. WALLIS: It's a fixed uncertainty.
23	MR. MARTIN: move the uncertainty to
24	your analysis, you uncertainty analysis later.
25	DR. WALLIS: Yes, but you know, it means

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	555
1	that you don't actually investigate uncertainty.
2	MR. MARTIN: Well, and that's not
3	completely true either because, you know, like has
4	been said, the result can be very sensitive to how you
5	nodalize things, and so you want to be careful that
6	you do a reasonably good job.
7	DR. WALLIS: I think what's done is to get
8	a nodalization that drives you to some extremes so
9	that you're conservative. It's a departure from the
10	best estimate code. You nodalize so that your PCT is
11	the maximum rather than doing a whole lot
12	nodalizations doing a spectrum of PCTs and saying,
13	"Well, we'll take some sort of average nodalization,
14	and then we'll look at sensitivities about it."
15	I think the tendency is to say, "Well,
16	look at the extreme case and nodalize that one."
17	Isn't that what's done?
18	MR. MARTIN: Yeah. You know, again, if
19	you're fitting this into CSAU type methodology, all
20	along you've got to be thinking we need to address
21	uncertainty in particular phenomena, and in many cases
22	you can just go to data and take care of it.
23	Sometimes, and maybe they could test
24	examples of ECC bypass, it becomes difficult to get
25	the right kind of data to cover that, and nodalization

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
556 1 in this case can be used, you know, to demonstrate it's conservative against the test data because you 2 3 have a certain nodalization. It can then be used to 4 argue that you're covering that uncertainty. 5 And in fact, that's what we're doing as far as the ECC pipe. 6 7 DR. WALLIS: -- philosophically about 8 saying, "Let's just be conservative." 9 Let's nodalize and get a conservative result rather than saying let's nodalize different 10 ways and look at a spectrum of results in order to 11 12 define different that uncertainty. That's а philosophy. 13 14 One is the old, conservative approach. 15 The new one is perhaps the best estimate with uncertainty approach. So removing noding is -- you're 16 essentially saying, "Let's be conservative about 17 noding based on experience, " rather than use noding as 18 19 a way of looking at uncertainty due to noding. 20 MR. MARTIN: We do that sometimes. You 21 know, where you can, you want to do best estimate, but 22 you know, with limited data, ultimately I think you 23 have to show against data that you do okay, and that 24 really is -- from the outside I'm looking at this 25 stuff. If I see that, you know, one, either you don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	557
1	have any data to support it or that you don't do a
2	very good job against data, then I have no confidence.
3	If you have a situation where you don't
4	have data or you have limited data, I mean, that's
5	we have a lot of data out there, but in some cases,
6	maybe such as these, you have a limited amount of
7	data, and there you might want to say, "I'm covering
8	the uncertainty of the fact there is a limited amount
9	of data in this area by noding up this way."
10	DR. WALLIS: I think with CFD what you try
11	to do is you try to nodalize more finally until it
12	doesn't make any difference anymore. So it's
13	asymptotically approaching what you believe is, let's
14	say, the right answer.
15	I suspect in this case there are just so
16	many games you can play with how you nodalize
17	different places. You're not really converging
18	unannounced on nodalization. There's always
19	uncertainty associated with how you nodalize.
20	MR. MARTIN: And again, the downcomer is
21	a good example because when you get finer nodes,
22	you'll get a different answer, and before we talk
23	about the RAI, so if you have a chance to look at that
24	to some extent, but coarse nodes, you have to think,
25	you know, what does that do. You're modeling this

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	558
1	downcomer or this big, round thing, and I have a point
2	here and a point there and a point there, and that
3	describes my azimuthal. What's my mean free path from
4	break or from intact loop to broken loop?
5	Well, if I have to leap over a hot leg,
6	then it's a bit well, the coarse node is shorter
7	than if you have more detail. If you have to go
8	through, you know, six points versus three points, my
9	mean free path is a lot shorter with a coarse node,
10	and that's why more water is flying out in the coarser
11	node.
12	You've got to think of what do you get
13	when you model like you do, and certainly with fine
14	nodes you get closer to reality.
15	DR. RANSOM: I'd like to make a comment
16	along those lines. I think that sort of in general
17	that I've argued against this idea of convergence or
18	finer and finer nodalizations, ad infinitum, with
19	these methods for several reasons, and the most
20	fundamental one is these are average models, and some
21	people like to look at them as area average, but in
22	reality they have their genesis in volume averaging
23	methods and time average.
24	And so all of the parameters are finite
25	parameters having to do with things like flow regime,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5	5	9
-	-	~

	559
1	frictional factors and things like that.
2	So it isn't true that necessarily finer
3	and finer nodalization make much sense. In fact, my
4	philosophy is that you could go down to as small as,
5	say, a pipe diameter, and that might make some sense
6	for axial nodes.
7	And these kind of studies have been made
8	and these do, indeed, more or less converge, but going
9	a little bit further to the assessment that evolved
10	over the years from application of the law of
11	semiscale and other experiments like that, is you can
12	see some of these plenum models don't make a whole lot
13	of sense from a physical point of view.
14	And so the question could be raise, you
15	know, how well do they work actually, and so they
16	applied those to the different experiments and found
17	nodalizations that agreed with the data and were
18	satisfactory, especially within efficiency, I guess,
19	in the old days.
20	Now, today we could afford more nodes. So
21	that's not quite as big an issue, but then the
22	philosophy was that if it worked in that case, a
23	prototypic experiment, you'd better no change it if
24	you're going to go model a plant and, you know,
25	include something about the peak clad temperature.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	560
1	And so I think even a CSAU methodology
2	spells this out, that the nodalization should be
3	developed at the prototypic experiments and justified
4	on that basis, and then that same philosophy used to
5	model the plant.
6	DR. WALLIS: You mean it should be based
7	on the system experiments.
8	DR. RANSOM: Yes.
9	DR. WALLIS: As a scaled system.
10	DR. RANSOM: Yes.
11	DR. WALLIS: But you don't mean full scale
12	when you say prototypic.
13	DR. RANSOM: Well, if we had full scale,
14	but unfortunately and I think the uncertainty has
15	to be, you know, derived from those experiments.
16	DR. WALLIS: You mean a scaled experiment.
17	So the APEX
18	DR. RANSOM: Semiscale or LOFT or APEX or
19	PUMA or any of the other experiments.
20	DR. BANERJEE: The problem is the idea
21	that you're putting forward is difficult to apply to
22	scale-up since you don't know what is the appropriate
23	scaling parameters. You have really not done a lot of
24	work on nondimensional groups with scale.
25	There is no similitude theory for these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	561
1	things. So the only thing you can appeal to in some
2	way is that the results don't change very much with
3	the nodalization scheme that we've got.
4	If the results are very sensitive to
5	nodalization, then you've got a whole new set of
6	parameters which you can adjust, and one comment was
7	that all he needed was three parameters, and he could
8	fit anything. And here you've got what? Including
9	the nodes about 500 or something.
10	So I don't think that argument really
11	holds water like
12	DR. RANSOM: Well, I've never heard a
13	better argument so far.
14	DR. BANERJEE: Well, the argument should
15	be that your nodalization schemes should not affect
16	the results very much.
17	DR. RANSOM: Well, I think in general
18	that's
19	DR. BANERJEE: You don't have to converge
20	in the normal sense of mathematical convergence, but
21	nonetheless, each time you change a nodal subdivide
22	one, your results change a whole lot and there's
23	something totally wrong.
24	DR. RANSOM: Well, I think you've even
25	heard today that small changes in nodalizations have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	562
1	not changed the results very much, but I think the
2	loss philosophically let's say you model a T
3	differently when you go from the prototypic experiment
4	to the full scale plant safety calculation. I'd say
5	that's kind of dangerous without knowing, you know,
6	what the effect of that nodalization change is.
7	And in terms of scale, now geometrically,
8	of course, the scale is contained within, you know,
9	the structure of a code. The correlations are based
10	on Reynolds number, Weber number, Prandial number, you
11	know, on and on, and an attempt to make these things
12	at least dimensionally independent, and so those
13	become the basis of scale.
14	And I don't know that there's any reason
15	to believe extremely suspicious, you know, of the
16	scaling argument.
17	DR. BANERJEE: I think there is. If
18	you've got a T junction pulling liquid out of an ADS-4
19	valve, and you do this experiment in a one inch pipe
20	or a four inch pipe, and then you have this huge thing
21	which is what, 14 or whatever inches it is? I think
22	the phenomenon is going to not scale that way, but
23	there, again, you can examine that from, say, boundary
24	layer point of view and see what effect the boundaries
25	would make on that sort of thing.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	563
1	You know, there are extremes of scale that
2	certainly you're going to find effects and you're
3	going to have to be careful.
4	DR. BANERJEE: I can probably think of ten
5	examples where you have scaling arguments which need
6	to be made then in a detailed way and actually applied
7	to look at the full scale plant compared to the
8	experiments, maybe 20 areas.
9	DR. RANSOM: I don't profess to be an
10	expert in this area, and a group of experts put
11	together CSAU, and that seems to be the methodology
12	that's being followed, you know.
13	DR. BANERJEE: But Graham and I were on
14	the peer review group unfortunately.
15	DR. RANSOM: Well, I guess you guys can
16	explain it then.
17	DR. WALLIS: The topic is node size and
18	node scaling. I think scaling is a separate question
19	from the node size.
20	DR. BANERJEE: Well, the nodes, what
21	you're saying when Vic says fix it for these
22	experiments and then hope for the best for the
23	reactor, the scale is factor of ten or 20 or something
24	different in certain areas, you know. So
25	DR. WALLIS: I can see if something like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 this was scaling. If what's happening in some device 2 is, say, being governed by, say, the rate at which 3 bubbles can be released from the stratified layer of 4 liquid, and so it takes a certain time; if that 5 becomes -- if the scale for that to happen relative to the scale at which things are happening on this big 6 7 node size is different when you change the scale of 8 the big node, then you've got something different 9 happening.

DR. BANERJEE: I'll give you a classical example of this. They were doing small scale experiments on chemical reactors, which is somehow related to these reactors, and they found that emergency relief was fine.

15 They went to the big reactors. They continued to blow up. Okay? And it's a very simple 16 17 reason that was found. It was found that the level swell in a small reactor when they do this doesn't get 18 19 to the vent because the level swell depends on how 20 much liquid there is to begin with, which scales as 21 eight.

But when you go to something 30 feet high, the level reaches the top and you get two phase flowout. It's a very simple example of where the small scale experiment is completely wrong compared to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	565
1	the full scale stuff.
2	DR. WALLIS: was saying the rate of
3	if you have a small scale experiment, the bubbles can
4	detach from the liquid layer at a certain rate. If
5	you change the scale of things, things are moving up
6	more rapidly. The bubbles can't detach. So you
7	entrain them because these two phenomena don't scale
8	the same way.
9	DR. BANERJEE: Right.
10	DR. WALLIS: One happens on a scale of a
11	foot or something, and the other one takes the node
12	and sweeps it up too quickly for the bubbles to
13	detect. You've got to look at these two effects.
14	One of them changes the scale and the other one
15	doesn't. Therefore, there may be a change in scale.
16	DR. MOODY: I missed something. We were
17	talking about scale, and we were talking about
18	nodalization. How did we make the transition?
19	DR. BANERJEE: Well, he was saying you can
20	fix the scale nodalization based on small scale
21	experiments and just carry it over to the reactor, and
22	I was arguing you cannot.
23	DR. RANSOM: Well, there are examples
24	where you have to be reasonable. For example, in the
25	old Semiscale experiment, they used a pipe downcomer,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

566
and you'd say, okay, a pipe was fine for that, and
then you went to a large break LOCA with an annular
downcomer in a plant, and you'll find that the bypass
is quite different, and so the nodalization has to be
changed.
I mean, you have to temper that with some
reason, I would say. After good scaling arguments, I
think these kinds of things are done, but some of
these things you bring up are a reason for continued
research in this area that the NRC if they are safety
issues should be concerned with.
DR. MOODY: Is the bottom line scaling
really depends on the application? I don't mean
scaling. I meant nodalization depends on the
application largely.
DR. RANSOM: I don't know. I think that's
true.
DR. BANERJEE: I mean, in a sense what Vic
was saying was I recall what CSAU, the methodology
was agreed on that this was a good starting point;
that this sort of gives you the right sort of
nodalization because it works somewhere. We don't
know where, and things are relatively insensitive, but
then you've got to look at phenomena, you know, which
are highly ranked and make sure they're properly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	567
1	scaled, you've got enough nodalization, and everything
2	is properly documented.
3	Now, that's not quite the same thing
4	that's being said there though.
5	DR. MOODY: Go back to the earlier example
6	where he was getting immediate discharge out of the
7	end of a broken pipe. If you had very small nodes or
8	very large nodes, I think that would be handled the
9	same way. You still in one case a large node would
10	take a little longer to get up in the Bernoulli flow
11	to exceed the Alamgir-Lienard-Jones criteria, whereas
12	if you had a very short node, it would just be a
13	millisecond or less to get up there, but you would
14	still limit the flow, and you are saying what really
15	happens in a transient sense doesn't matter too much.
16	So we might as well use about any convenient
17	nodalization in the piping and also other parts of the
18	system.
19	You must look at those and see what's
20	happening in each part of the system. How fine do I
21	need to know this, some property?
22	MR. MARTIN: Yeah, ultimately there are a
23	number of measures when it comes to how good your
24	nodalization is. At least, you know, I did the work,
25	and I was looking for the sensitivity piece as number

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	568
1	one, and if something had I mean that's what we're
2	being measured on in regulatory space, and you know,
3	you have to have your priorities.
4	Now, this next slide here
5	DR. WALLIS: Well, let's look at another
6	example in the case of the R-BEACON experiments. If
7	you have a geometrically similar nozzle discharging
8	critical flow and you go to the big size and you've
9	got similar velocities and it takes longer for fluid
10	to go through those nodes; if there's a relaxation
11	process which takes a certain time, then that
12	relaxation will occur differently relative to the node
13	length in the big scale than it does in the small
14	scale.
15	And so the assumptions you make at one
16	scale are not necessarily it's like this proposal.
17	It's a similar thing, and I think it was shown in that
18	case that the relaxation that the nonequilibrium in
19	the small nozzle is much more likely to be important
20	than in a great big nozzle because in a great big
21	nozzle the fluid has a long time to go through the
22	nozzle and adjust itself to go through the same
23	geometrical shape, and therefore, the equilibrium is
24	less in the big nozzle.
25	So there's a scaling effect on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

phenomena themselves, which isn't captured by just legislating that you have the same geometrically shaped nodes in the two scales.

4 MR. MARTIN: Right, and that's why we have 5 a rather large suite of assessments. We did do the uncertainty analysis on what, a six, eight R-BEACON 6 7 tests, and they had some variation in scale there. 8 It's now whole scale, and that was where our certificates came from, but at the same time we did do 9 LOFT, and we did do the Semiscale thing where it would 10 11 have a blowdown, and while that wasn't included in 12 uncertainty, you can look at that and say, "Well, it was pretty damned close," and you move on. 13

Again, and also break load is something special because we also arrange break area to address that portion of the regulation. So it's somewhat unique.

18 DR. KRESS: What does that last sentence
19 on that --

20MR. MARTIN: Oh, I didn't read the last21sentence.22DR. KRESS: What does it mean?

23 MR. MARTIN: This procedure starts with 24 the analyst experience in previous code assessment and 25 application studies and any document nodalization

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	570
1	studies.
2	Next, nodalization studies are performed
3	during the simulation of separate and integral
4	effects, code data comparison, and finally, a
5	derivative process using the nuclear power plant
6	models is employed to determine sufficiency of the
7	nuclear power plant model nodalization.
8	Is that the last
9	DR. KRESS: It's the very last sentence.
10	MR. MARTIN: that you have a question
11	on.
12	DR. KRESS: Yeah.
13	MR. MARTIN: That's what I call a
14	shakedown. The model shakedown, in the previous code
15	assessment, documentation of what people have done
16	for, you know, the last 30 years. That's out there
17	already.
18	You know, then you can, of course, play
19	with that nodalization on the small scales, you know,
20	for data, and then I'm just saying you can play with
21	that on the big scale because you have other things
22	DR. KRESS: You're looking for sensitivity
23	on that last one there?
24	MR. MARTIN: Right. You're also looking,
25	you know that's when you have to pull in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	571
1	drawings of the actual plant you're actually doing,
2	and there are structural differences, you know. The
3	separate and integral tests are somewhat idealized at
4	the real plant, and you know we spent a lot of time on
5	upper plenum.
6	You have a certain amount of asymmetry
7	just structurally that you have to address, and that's
8	shakedown. You know, you want to address the
9	important phenomena, again. You know, up there
10	because of the asymmetry of flow
11	DR. KRESS: But the problem with the
12	sentence though is I couldn't figure out how to
13	determine what was meant by sufficiency.
14	MR. MARTIN: Oh, okay. Sufficiency?
15	That's an engineering judgment.
16	DR. KRESS: Okay.
17	MR. MARTIN: That's budget, too.
18	DR. KRESS: Okay.
19	MR. MARTIN: But we did spend an awful lot
20	of time and Larry was in my office. "Are you done
21	yet?"
22	And I would say Monday every week.
23	DR. WALLIS: Engineering judgment.
24	Sufficiency is determined by engineering judgment,
25	which is a very hard thing to quantify.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	572
1	MR. MARTIN: It is a hard thing to
2	quantify when it comes to
3	DR. WALLIS: How do I know how good your
4	engineering judgment is?
5	MR. MARTIN: One of the big things that I
6	focused on was even though it's not nodalization, but
7	time step sensitivities because that is something you
8	can't play with to some extent.
9	And of course, what I ended up doing is I
10	went down to basically what was a tolerable limit. As
11	you know, we run like 59 cases, and for this to be a
12	practical methodology we need to have a turnaround
13	within a week, you know, throw in the calculations,
14	and so you know, with the three loop sample problem we
15	had in there, those are taking between three and four
16	hours to run right now, and you multiply that by 60
17	and you get a pretty large number, and that's where I
18	came out.
19	But anyway, I played with the time
20	sensitivities a little bit using the same statistical
21	approach that we talk about to quantify, by randomly
22	varying time steps, to quantify what is, you know, the
23	certainty related to these time steps, and to some
24	extent that also translates to nodalization because
25	that's part of it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

573
DR. WALLIS: What I think you do is the
following. You determine sufficiency of a
nodalization by thinking of ways in which it could be
insufficient and exploring those and satisfying
yourself that you haven't found those and that you've
resolved what look like insufficiencies, and you say
it's now sufficient. That's the way you do it.
We have to sort of rely on your integrity
to explore all of these possible reasonable ways in
which it could be insufficient and then to conclude
that I haven't found any that really make it
sufficient. Therefore it's okay.
MR. MARTIN: Well, that would come out of
our PIRT review teams. They'd come out and, you know,
I would stand up there and somebody like Mark
Thorogood or Larry Hochreiter would say, "You can't do
that," or, "Why don't you do this?"
The same kind of form as we have here, and
you know, half the time they would have a point and go
back and play with it. You know, this is a long time
coming to get to this point.
DR. WALLIS: Yes.
MR. MARTIN: So it has gone through some
fire to get to this point.
MR. O'DELL: This is Larry O'Dell with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Framatome. I guess I would say, too, that we did
really do quite a few iterations on that in the CSAU
process because we started with a nodalization that
was put together based on sort of our previous
experience using the code and, you know, industry
experience. We did a series of comparisons of the
plant calculations to see how the analysis went.
We modified it, the nodalization. Then we
went back, ran a series of assessments primarily LOFT,
CCTF, UPTF, and FLECHT SEASET experiments covering
ranges of scales and looked at the nodalization there,
made nodalization changes, went back through it again.
So this was a real iterative process that,
you know, we ran an awful lot of cases in this to get
this final nodalization.
MR. MARTIN: Okay. Just some of the
necessary conditions that I would apply on
nodalization. Number one, discriminate key
structures' characteristics. This is going to the
drawings. You've really got to match the drawings
first.
Attain acceptable steady state agreement
Attain acceptable steady state agreement with the plant. Okay. There's a ton of art there.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 validate those form losses.

(202) 234-4433

б

(202) 234-4433

575
The reality is that Crane does a really
good job. Crane and IDLECHEK do a really good job,
and there's not a lot of tweaking that has to go on,
and that's fortunate.
Of course, we observed the phenomenon in
this, and that's really the point of your question,
and that's where we apply the CSU philosophy, where we
identify the important phenomena and focus on that and
try to identify what
DR. WALLIS: That's where scaling might
make a difference; that if you've got, you know, a
small scale, you've got more velocities, and they're
small relative to relative loss to bubbles. So the
relative loss to bubbles is important. In the big
scale everything scales up, including the velocities.
And maybe the bubble slip is relatively
unimportant so that the dominant phenomena have
changed by changing the scales, and this is an
important bullet.
MR. MARTIN: It's an important bullet.
You know, there's not a lot of full scale data, right?
So I guess in many ways the scale you address by
getting the scale you have, and there is a broad scale
up there. I mean somebody scaling to LOFT is a pretty
big range, and there's things in between.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	576
1	You can develop a lot of confidence by at
2	least covering that range, and then if there is full
3	scale data, then obviously that goes a long way, too.
4	But I think we've covered that and documented that
5	pretty well in EM-2150.
6	Always in the back of my mind is maintain
7	reasonable computational economics, and on some level
8	like the downcomer nodalization is what it is, you
9	know, for that reason.
10	DR. RANSOM: How many nodes are you using
11	in the large break LOCA in total now?
12	MR. MARTIN: Total?
13	DR. RANSOM: Yeah.
14	MR. MARTIN: I can't count it up, but
15	just look at the core. We have 24 times the four
16	rings. There's 100 there. Gosh, probably at least
17	double that.
18	DR. RANSOM: Two hundred nodes?
19	MR. MARTIN: Two hundred.
20	DR. RANSOM: And that's what, for your
21	steam generators?
22	MR. MARTIN: Yeah. It's probably more
23	than 200. It's probably 300 because you multiply it
24	by, you know, each loop.
25	DR. RANSOM: Now, those are pretty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	577
1	computationally intensive still?
2	MR. MARTIN: Yes, they are still. You
3	know, we're current generation minus one or two, you
4	know. We have 200 megahertz machines, and you know,
5	maybe we have a few processors so we can run some of
6	these parallel, and then we have turf wars on who gets
7	computer time, and that's normal engineering
8	environment.
9	But you know, the three loop sample
10	problem we provide is probably the quickest running
11	we've got, and that's unfortunate because I thought
12	that was the bleeding limit, you know, three and a
13	half hour calculations, but we have you know, we've
14	learned in the last year when we address some of these
15	low containment pressure issues that you can have this
16	large break LOCA go out 1,000 seconds before you get
17	quench.
18	And that calculation is taken closer to
19	six-plus hours.
20	DR. RANSOM: How much?
21	MR. MARTIN: Six-plus hours. so it gets
22	a little painful, but we're kind of you know.
23	DR. RANSOM: And you've got to run 60 of
24	those.
25	MR. MARTIN: We've got to, yeah.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	578
1	Obviously that's what we said we were going to do, and
2	you know, we'll just charge the customer a little bit
3	more for it.
4	(Laughter.)
5	DR. KRESS: With the increased
6	computational capabilities, as computers get better
7	and better, that bullet on maintain reasonable
8	computational economics might disappear some day. If
9	it did, I think it would be worthwhile thinking about
10	what Vic Ransom said, that there's probably some node
11	size where it doesn't make any sense to go finer than
12	anyway for other reasons.
13	Now, what I'd like to know is what are
14	those other reasons, and it might be worthwhile
15	thinking about that because I think that economics may
16	go away one of these days.
17	MR. MARTIN: Wasn't there a paper that I
18	believe Art Shay wrote about the lower limit on node
19	sizes where you may be unable or something like that?
20	DR. RANSOM: I wrote some notes up about
21	12 years ago that argued about this averaging, you
22	know, and what's consistent with the average model,
23	and roughly it's like one L over D, and going beyond
24	that, unless you're treating shocks in a shock tube or
25	something where you know physically that it can be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	579
1	captured by a much smaller control volume, it doesn't
2	make much sense.
3	And we apply these methods to things that
4	involve flow regimes, for example, slugs that even
5	with the coarse nodalizations they have extend over
6	more than one volume, and the physics is not there,
7	you know, in terms of how do these flow regimes change
8	and how are they propagated from volume to volume.
9	I mean, there are a lot of areas like that
10	that really are more uncertain I would guess than some
11	of the things we're dealing with. I mean, it's got to
12	get right, you know, and the onus is on Framatome to
13	get it right so that it can be understood.
14	DR. BANERJEE: In the approximation I
15	mean, I don't really want to argue this because I
16	think it's fairly clear that you have an
17	interpenetrating continuum model here. So when you do
18	that from any other field of polymers or whatever,
19	this has to go down to a mathematical convergence
20	equations. There are two fluid equations which are
21	written in many fields. This is not the only field,
22	and they all converge. This is the only field that
23	they don't, in fact.
24	And the reason they don't most of the time
25	is some physics is left out.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	580
1	DR. RANSOM: Well,f or example the
2	nodalization studies that have been made with these
3	methods are like Edward's pipe problem, you know,
4	fairly simple things where you go to maybe 1,000 or
5	2,000 nodes, and indeed, they converge. I mean,
6	there's no question about it. They get to the point
7	where they don't change anymore even probably at 30,
8	40 to 100 nodes.
9	But I'm not sure that makes any sense, and
10	those are, incidentally, down at where the L over D is
11	much less than what I'd recommend that these things be
12	applied to.
13	DR. BANERJEE: Well, I think they should,
14	but leaving that aside, the days when you were running
15	the code and so on, one could defend 300 nodes as
16	being sort of a computational problem. We routinely
17	run problems with ten to the sixth to ten to the nine
18	nodes now in some of the big machines.
19	DR. RANSOM: Right.
20	DR. BANERJEE: Ten to the nine, of course,
21	is the outer limit, but ten to the six is very common.
22	And I don't understand what the big
23	problem is. CFD people run this all the time.
24	MR. MARTIN: Let me give some perspective.
25	We have I go to these RELAP5 3D meetings

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	581
1	occasionally, and Bettis has been playing with linking
2	RECAP to CFD, and they note basically they've done a
3	large break LOCA where they've taken CFD and handled
4	the core with, you know, I'm sure ten to the sixth
5	order type thing, and then the rest of it is RELAP and
6	LOCA.
7	It took them eight weeks to complete. So
8	I think we're still a ways away.
9	DR. BANERJEE: It depends on how you run
10	it. The CFD codes are run on clusters. We run CFD
11	codes on 32 node clusters with 64 processes. They run
12	fast.
13	MR. MARTIN: And you get a good deal from
14	the manufacturers at universities and stuff.
15	DR. BANERJEE: You can build a 64 process
16	cluster for \$50,000. I'll build you one. Give me the
17	money.
18	DR. RANSOM: Santa Barbara is ahead of its
19	time.
20	(Laughter.)
21	DR. BANERJEE: It's just like neighborhood
22	clusters. It's not that big a deal.
23	MR. MARTIN: In time, you know, we'll
24	improve these things. I mean, we are
25	DR. BANERJEE: So are you running these on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	582
1	sort of a two gigahertz processors or what?
2	MR. MARTIN: Two hundred, 200 megahertz.
3	Well, like I say, we're current generation minus one
4	or two, you know, and these are relatively new
5	machines to me, and so but that cost us 20K, you
6	know, something. You might get four heads or
7	something like that, and we still pay 20K for that.
8	DR. BANERJEE: These machines are costing
9	you 20K?
10	MR. MARTIN: That's what they charge, you
11	know, the old companies.
12	DR. BANERJEE: I can go out and buy a PC
13	which does
14	MR. MARTIN: Yes, we know that. We get
15	mad every time they come back with a quote, and maybe
16	one day we'll just move everything to a PC platform
17	and do it ourselves, but that's a big effort, too,
18	because we have our own qualification procedures that
19	are required.
20	DR. BANERJEE: So you run these on what
21	machines?
22	MR. MARTIN: On Hewlett-Packard.
23	DR. BANERJEE: Hewlett-Packard what?
24	MR. MARTIN: K it's called K-box. K-
25	500 or something like that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	583
1	DR. BANERJEE: And you can't run them on
2	a Linux machine?
3	MR. MARTIN: Our codes aren't qualified
4	for Linux machines, and again, we have our own
5	DR. BANERJEE: Oh, they're not?
6	MR. MARTIN: out own I don't know
7	who actually determines our qualifications for
8	platforms, but we got on HP ten-plus years ago, and
9	that's where we're at, and a migration is not a
10	trivial task.
11	DR. BANERJEE: These are not reportable to
12	machines which are like Fortran, Linux machines?
13	MR. MARTIN: We can do I mean, you
14	know, we have enough hacks around. I've ported to a
15	Mac, you know. Chow has ported it to Linux, and you
16	know, we play our games at home, but when we do
17	production runs, we've got to keep a standard, and
18	we've chosen the Hewlett-Packard platform for that
19	DR. BANERJEE: So the result change when
20	you run it on different machines?
21	MR. O'DELL: No. This is Larry O'Dell of
22	Framatome.
23	DR. BANERJEE: I would really like to know
24	this.
25	MR. O'DELL: Well, no. It's not a matter

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	584
1	of the results changing. We have a process we have to
2	go through to qualify the codes, and we move them
3	from, you know, one compiler to another compiler or
4	one operating system to another operating system on
5	the HP, and if you move to another computer you end up
6	having to go through this full qualification process
7	of a code because we're allowed to use it in licensing
8	analysis.
9	Now, we can just port the code over and
10	play with it and stuff. That's not an issue, but we
11	have to go through this qualification process, you
12	know, in order to have an Appendix B qualified code,
13	and that is not a minor process. It's costly, and it
14	takes a lot of time to do that.
15	So there's some resistance built into the
16	system to being able to move to a code, to another
17	platform and then use it.
18	DR. BANERJEE: So do the results
19	MR. LANDRY: Sanjoy.
20	DR. BANERJEE: or not?
21	MR. LANDRY: Sanjoy, if I may, this is
22	Ralph Landry from the staff.
23	Our regulations require configuration
24	control of a licensing code. That means it must be
25	frozen. It's approved for a particular machine,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

```
(202) 234-4433
```

	585
1	particular compiler. We don't allow changing that
2	without rereviewing the work of the vendor.
3	That is not to tie their hands, but it was
4	intended to keep people from making changes in codes
5	without our knowing those changes were made.
6	Today now that was written back in the
7	mid-'70s. Today you can go out and get a slew of
8	machines, all of them compilers, and run the codes,
9	yes. But you're not maintaining configuration control
10	when you do that.
11	But there has been a history of different
12	machines, whether they are using big ended or little
13	ended CPUs in giving different results. So a code is
14	compiled and run on a particular platform. It's
15	proven on that platform. To change it you have to get
16	permission, and you have to go through the entire
17	requalification program.
18	So it's not not a matter of whether they
19	can go out and buy a Linux box for \$900 versus an HP
20	for \$20,000. It may cost them more to requalify the
21	code to go to that \$900 box than to buy another HP
22	when you consider the cost of what it takes to go
23	through the QA process.
24	So we're not trying to tie their hands
25	with that. This is to maintain control of a code that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	586
1	is regulated under the Code of Federal Regulations.
2	DR. BANERJEE: But if they qualified the
3	code, what is involved, that the code gets the same
4	results or that its results change depending on the
5	platform?
6	MR. LANDRY: There's an enormous
7	MR. CARUSO: It would be like a new
8	submission.
9	MR. LANDRY: There's an enormous amount of
10	paper attached to this, The manpower, the staff
11	loading, the paper work.
12	MR. CARUSO: The documentation is just
13	enormous.
14	DR. BANERJEE: So they're sort of frozen
15	to one platform or what?
16	MR. CARUSO: Pretty much.
17	MR. LANDRY: When we say a frozen code, we
18	mean that that code cannot have anything changed in it
19	without notifying the NRC. That means they can't
20	change a light in the coding without telling us. They
21	cannot change the compiler without telling us. If
22	they change the platform, they have to change the
23	compiler.
24	DR. BANERJEE: So they're the process of
25	qualifying this code right now or it's already

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	587
1	qualified?
2	MR. LANDRY: This code is a frozen code.
3	We have the version number. We have the version
4	numbers for the codes that are interfaced within S-
5	RELAP5, and that defines which platform, which
6	compiler, which operating system, which we happen to
7	have one to match up with.
8	DR. BANERJEE: But this is a new code,
9	right, that they're qualifying?
10	MR. LANDRY: Well, it's the sort of code
11	that's been under development for a decade.
12	DR. BANERJEE: Right, right, but this has
13	to still be qualified, S-RELAP5?
14	MR. LANDRY: They've already qualified
15	before they come in here.
16	DR. BANERJEE: It's already qualified?
17	MR. LANDRY: It has to be. We won't
18	review a copy and I'll talk about this tomorrow
19	we don't review a code that is not a frozen code. It
20	must be frozen, and it must be under configuration
21	control before we will review it.
22	DR. MOODY: Well, that should solve all of
23	the problems really, shouldn't it? If somewhere along
24	the line someone wants to put it on another system,
25	why, then there had better not be any variation in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	588
1	answers because the code is just making
2	mathematical it's counting stuff.
3	MR. LANDRY: It's not very easy to move
4	the code to different platforms. One of the other
5	vendors is still running on the VAX, on the VMS
6	platforms, VMS operating system, because they don't
7	want to transfer to UNIX. It's too much trouble.
8	DR. WALLIS: That's truly remarkable.
9	DR. BANERJEE: I didn't know this, This
10	is a discovery.
11	(Laughter.)
12	MR. LANDRY: If I could make one other
13	comment, we were getting pretty far afield from
14	DR. WALLIS: Yes.
15	MR. LANDRY: what Dr. Martin was trying
16	to talk about here with nodalization. The CSAU
17	DR. WALLIS: I'd like to move on.
18	MR. LANDRY: Huh?
19	DR. WALLIS: I'd like to move on, but why
20	don't you see if we can wrap up this one?
21	MR. LANDRY: Can I make it real quick?
22	The nodalization concept that was put
23	forth in CSAU was to try to get a consistency
24	nodalization approach to the different code modelers.
25	At the time CSAU was written, everybody and their

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

589 brother was using a different concept and different 1 2 approach to nodalization. 3 What this was trying to do was to get 4 everybody to a consistent approach that would be consistent with the nodalization that was used on the 5 experiment evaluations and experimental assessment 6 7 programs. The nodalization that has been used in the 8 past, somebody's wife was using a nodalization on 9 AP600 of 1200 nodes. We had them run a simplified 10 11 version of that code with under 600 nodes and got very 12 much the same answers. You can get ridiculous in this, and what 13 14 this whole process is trying to do is say put some 15 rationality, put some sensibility and put some consistency in the approach you take in nodalizing 16 experimental programs and the nuclear power plant. 17 MR. MARTIN: You're referring to my wife. 18 19 DR. WALLIS: Can we go on? 20 My last bullet, I MR. MARTIN: Sure. 21 guess we can stop here. We've already hit these 22 scalability, important; things: maintain and 23 accuracy; numerical stability; and convergence. 24 And then the conclusions and you can get 25 thing, but initial onto, Ι guess, the next

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

590 1 nodalization is based on experience. Then we go 2 revised based on plant studies and assessments, and then we validated to the performance of 3 final 4 assessments. 5 That's kind of the end there of that. How would you start out 6 DR. KRESS: 7 nodalizing ESBWR? MR. MARTIN: What do you mean? Our SWR-8 1000 that we've kind of thrown on the docket here? 9 DR. KRESS: Yeah. How would you do that? 10 11 MR. MARTIN: Well, first, there isn't 12 really a lot of WR experience. Not much experience there. DR. KRESS: 13 14 MR. MARTIN: And RELAP5. There is some. 15 I believe Brown's Ferry. We do have an old Decker (phonetic) there. So it might be a beginning. 16 Ι 17 can't tell you I've looked at the design. Probably we start throwing something 18 19 together initially, and we've only got to capture the 20 phenomenon, you know. 21 DR. KRESS: It would probably build on 22 your experience you've had with the --23 MR. MARTIN: Sure. We have building 24 experience here. We did EMF-2102, does have a couple of GE tests, you know, 1,000 psi tests, and it's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	591
1	touchy-feely in the beginning, and
2	DR. KRESS: That's where some tests would
3	be helpful.
4	MR. MARTIN: Exactly. Tests are paramount
5	definitely. No, it will be a tough process, a long
6	process to get that down. You know, the phenomenon
7	and the question itself is key. In my opinion, you
8	know, as far as large break LOCA and BWRs, the big
9	players are break flow, and of course, our treatment
10	is pretty broad and it covers a whole break spectrum
11	in the same process.
12	You have heat transfers is important, you
13	know, the important one, and ECC bypass is important,
14	and then everything else kind of tapers off real quick
15	as being, you know, important for this application.
16	BWR, I'm not quite so sure you can just
17	have a few dominant things and win that way. I mean,
18	you talk about the ADS stuff and maybe the AP600 test.
19	You know, that's a phenomenon there.
20	Obviously Ralph referred to AP600 work
21	that my wife worked on in Idaho, and the code didn't
22	always work. More often than not, it didn't get the
23	right result. There was a lot of code versions that
24	we went through, and I would anticipate that we'll do
25	the same with the BWR work, as well as SWR-1000 once

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	592
1	we get down that path.
2	I mean, it's been ten years, 15 years to
3	develop this methodology, and it won't be trivial to
4	go to the next step, but we have a lot of experience
5	now, and we can build on that and be more efficient.
6	MR. O'DELL: This is Larry O'Dell with
7	Framatome again.
8	I would also say that, you know, our
9	counterparts in Germany have been using S-RELAP5 to do
10	BWR plants in Germany already, and we have been, you
11	know, interacting with them in Germany to get their at
12	least initial nodalizations for these types of plants.
13	So we're using that pretty much as a
14	starting point.
15	DR. BANERJEE: Ralph, let me ask you: is
16	this rule also used for reactor physics codes and
17	everything?
18	MR. LANDRY: No. Ralph Landry, staff.
19	Ten CFR 50.46 applies to loss of coolant
20	accident analysis programs only. It is specifically
21	written and applies to light water cooled zirconium or
22	Zircaloy clad uranium dioxide fuel reactors. It's
23	only for calculating LOCAs. It does not apply to
24	physics.
25	We have other regulatory guides and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	593
1	standard review plans that we use to apply to other
2	modeling techniques, physics, transient analyses, et
3	cetera. But there's only one Code of Federal
4	Regulations statement with regard to analysis, and
5	that is with LOCA.
б	MR. CARUSO: I would make the observation
7	that Appendix B, the quality assurance standard, has
8	all of the safety related methods.
9	MR. HOLM: right. This is Jerry Holm with
10	Framatome.
11	I would say that it's the Appendix B
12	requirements that are making us spend all of this time
13	and effort validating the code. Fifty, forty-six
14	requires that we inform the NRC on the LOCA codes. So
15	that's what we would do for LOCA codes.
16	I would change the physics code without
17	telling the NRC, but I still have to validate it under
18	Appendix B if I move from one platform to another. So
19	I'll rerun a whole suite of test cases to verify and
20	get the same answers.
21	And we've had the same experience the NRC
22	has had, that we've moved from one platform. In fact,
23	we've moved from one compiler to another compiler and
24	got different answers. Sometimes we've discovered
25	errors in the compilers that were provided to us.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	594
1	MR. CARUSO: And there are NRC codes that
2	will give you different answers on different
3	platforms.
4	MR. HOLM: So, you know, we have about 160
5	codes, and we move from one platform to another. We
6	have a very big job ahead of us.
7	DR. BANERJEE: So they compile, but they
8	give you different answers.
9	MR. CARUSO: Give you different answers.
10	DR. WALLIS: It's just very strange to me
11	because we will have sort of students running fluent
12	on different platforms for homework, and we accept any
13	of the answers, and we haven't run into problems that
14	we're dependent on the platform or the compiler.
15	MR. CARUSO: There's one NRC code I
16	won't say which one it is but it had a standard run
17	time of 100 seconds with a standard problem, and
18	that's how you check the installation. You ran it for
19	100 seconds, and if you got the same answer as the
20	standard problem, then you declared that you had
21	installed it successfully.
22	Well, one foreign user decided to run it
23	past 100 seconds on two different platforms, and the
24	problems diverged.
25	DR. WALLIS: Okay. It's an interesting

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	595
1	world.
2	(Laughter.)
3	DR. BANERJEE: It will pose problems.
4	DR. WALLIS: Can we move on to the
5	critical flow model? I think these were questions
6	raised by Professor Schrock. Is that what you're
7	going to address now?
8	MR. CARUSO: Yes. If I may, you have one
9	slide with proprietary material on it, and it's a very
10	small piece here. Is it possible for you to just talk
11	around those numbers so we don't have to go into
12	closed session?
13	I mean, people can look at the numbers.
14	Is that acceptable to you guys?
15	DR. KRESS: Yes.
16	MR. CARUSO: Okay. Let's do that then,
17	and I'll make sure that that does not show up in the
18	open portion of the transcript.
19	DR. WALLIS: Now, Virgil, since these are
20	your questions, I think you should have real priority
21	in asking them.
22	DR. RANSOM: Thank you.
23	DR. WALLIS: And being satisfied or not by
24	the answers.
25	MR. CARLSON: Yes, and so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	596
1	MR. SCHROCK: I looked at your first
2	viewgraph, and I have to conclude for this to make any
3	sense to other people, you need to either paraphrase
4	or read the question that was put to you.
5	MR. CARLSON: Right. Yes, I believe that
6	should have been, I believe, on this slide, and I
7	apologize for that.
8	MR. SCHROCK: Well, it's a little bit
9	lengthy, but self-choking discussion as you have it in
10	three bullets is out of context for the question
11	posed.
12	MR. CARLSON: Oh, okay.
13	MR. SCHROCK: So I don't know if you
14	misunderstand the question or
15	PARTICIPANT: What is the question?
16	MR. CARLSON: Well, let's see. "A
17	numerical computation of critical flow in pipes,
18	therefore, necessarily requires very fine nodalization
19	as the critical flow location is approached. These
20	realities are not reflected in S-RELAP5 critical flow
21	model, which should be applicable to real geometries
22	where friction often plays a role. Please provide a
23	rationale for answering that model in the
24	context of the above discussion."
25	There's also more discussion about

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	597
1	convergent nozzle geometry and other appropriate
2	geometries.
3	MR. SCHROCK: Well, it begins with a
4	statement that it's based or inspired by the Ransom-
5	Trapp model.
6	MR. CARLSON: Right.
7	MR. SCHROCK: Which is a model based on
8	the assumption of thermal equilibrium slip flow at
9	constant entropy, and constant entropy assumption
10	limits the application to convergent nozzles. That's
11	a key statement in the preamble to the question.
12	The geometry of the break in general is
13	not a convergent nozzle.
14	MR. CARLSON: The geometry of the break
15	MR. SCHROCK: In order to achieve a
16	constant entropy flow you need that specific geometry.
17	MR. CARLSON: Well, I believe the
18	rationale was that the model was developed assuming
19	constant entropy conditions to develop the model, but
20	then it is applied at any time where there is a large
21	pressure difference between an upstream and a
22	downstream node.
23	And the process of using that model would
24	limit the velocities and considered to be choke or a
25	choke point where and for the critical flow, it was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

598 1 assumed that wave propagation information downstream 2 does not propagate upstream to the --That's not an issue in my 3 MR. SCHROCK: 4 question. 5 MR. CARLSON: Right. The issue has to do with 6 MR. SCHROCK: 7 what is it that can cause the flow to be accelerated 8 in the channel. Three --9 MR. CARLSON: Right. MR. SCHROCK: -- physical factors that are 10 involved are area change, okay, area change --11 12 Friction and volume --MR. CARLSON: MR. SCHROCK: -- high friction and heat 13 14 addition. 15 MR. CARLSON: Yes. MR. SCHROCK: And you're ending up with a 16 17 statement down here in which you are saying friction and heat addition play no role in LOCA. So it's not 18 19 consistent. 20 MR. CARLSON: Yes. 21 MR. SCHROCK: You don't have a convergent 22 nozzle. 23 MR. CARLSON: You don't have a convergent 24 nozzle. MR. SCHROCK: 25 You do have a change of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

ĺ	599
1	state which moves the fluid towards the point of
2	choking.
3	MR. CARLSON: Yes.
4	MR. CARLSON: But you don't have an answer
5	as to what causes that change of state to move it to
6	choking. You can't do that in a straight pipe if you
7	do not have friction or heat addition or both.
8	MR. CARLSON: Would Dr. Chow like to help
9	me out on this?
10	(Laughter.)
11	MR. CARLSON: The answer is no, apparently
12	not.
13	DR. CHOW: Originally what I tried to say,
14	that the equation like the constant entropy, that's
15	for the wave disturbance, for the I mean, basically
16	that's you cannot say that's for the remember
17	when you derive the sun speed (phonetic)? You always
18	use constant entropy. That's because you are leading
19	with wave disturbance for very small distance, very
20	small distance and no entropy change.
21	So basically that answers the question
22	about when you try to provide the wave equation for
23	the choke, that's not really the full equation for the
24	flow. That's the full equation for the wave
25	disturbance.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	600
1	So for the wave disturbance, it's a
2	constant entropy process. So in terms of the friction
3	choke, you are talking about compression drop. In the
4	gas, you have a long, very long pipe. Okay? Then
5	your pressure will be decreased because of friction.
6	And in this case your pressure is a very,
7	very long pipe, but that's done like this in the
8	reactor. We don't get over 300 or 400 long pipe, like
9	that. Okay? So
10	MR. SCHROCK: Three hundred or 400 what?
11	DR. CHOW: Feet, 300 or 400 foot long
12	pipe, like a very, very long pipe. Okay? That's
13	basically and you have to have a compression flow.
14	So you have a density change. Basically in order to
15	be a friction choking, you basically have to have a
16	very, very long pipe. Along the pipe the pressure
17	drop-in, and your density for that, the density will
18	be decreased. So because you have constant flow, so
19	your velocity will increase.
20	At a certain point you will reach a choke
21	point where the speed will be equal to the sun speed
22	(phonetic). Okay? So in the compressible flow, that
23	exact phenomenon of the friction choking is there, but
24	I don't think in the reactor system you can find
25	account the friction choking at all.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	601
1	That's what probably says that it's really
2	in the gas dynamics. In the reactor system, for
3	example, the flow is based with more incompressible.
4	I don't know that word. There is no idea that
5	compressible, I know. So you don't have NCI
6	(phonetic) say the density will be decreased along the
7	long pipe like that. so
8	MR. SCHROCK: I'm having difficulty
9	hearing you well, and I certainly don't understand the
10	point, but I do seem to be hearing that you're making
11	some distinction between compressible flow and some
12	other kind of flow that you imagine exists in the
13	reactor application. Am I correct?
14	DR. CHOW: Yeah. I'm talking about
15	MR. SCHROCK: The fluid is, in fact, a
16	compressible fluid in the two phase state.
17	DR. CHOW: Yeah, I understand that.
18	MR. SCHROCK: Okay.
19	DR. CHOW: Yeah. From choice
20	MR. SCHROCK: And all of its behavior is
21	characterized by the gas dynamics arguments that are
22	developed in Shapiro's text. It's not as though when
23	you go to two phase flow you've created some different
24	kinds of processes that lead to choking. It's the
25	same processes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	602
1	DR. CHOW: Yeah, I understand that. I'm
2	just
3	MR. SCHROCK: And so I'm not able to
4	understand what your argument is.
5	DR. CHOW: Yeah. I'm trying to say that
6	when you depend on your in order to have friction
7	choke, you have to pressure have to be decreased
8	along the pipe. Okay? The pressure
9	MR. SCHROCK: Yes, and in any choking
10	process, the pressure is decreased along the flow
11	direction
12	DR. CHOW: Yeah, that's right.
13	MR. SCHROCK: as you approach the point
14	of choking, and so the issue that I raise is simply
15	that there are three possible ways that this can occur
16	independently or in concert that will lead a one
17	dimensional flow to choking, and those phenomena are
18	the change in cross-sectional area, reduction in the
19	cross-sectional area, the effect of friction, and the
20	effect of heat addition.
21	The Ransom-Trapp model, which is said to
22	be the basis for the RELAP5 critical flow model, has
23	as its initial assumption that the two phase flow is,
24	in fact, an equilibrium flow with slip and constant
25	entropy.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	603
1	But to achieve constant entropy, you need
2	area reduction. So you cannot have the approach to
3	critical flow as described by the Ransom-Trapp model
4	for the case of a straight pipe. Okay?
5	Now, there are a whole range of geometric
б	possibilities from a straight pipe to a convergent
7	nozzle, depending on the rate of reduction in the
8	area. You look at the Marviken geometry, and it's
9	nearly a straight pipe. It's not quite a straight
10	pipe, but it's nearly a straight pipe.
11	You have to have very high mach numbers as
12	you come into the discharge pipe in Marviken. It's
13	not as though you come in with a low mach number and
14	you accelerate to a very high mach number at the
15	outlet of the discharge pipe. In fact, it has to come
16	in at a very high because there's very little
17	distance left for the friction to act, very little
18	area reduction to drive it to the critical state.
19	Okay. So in the real geometry of a broken
20	pipe guillotine break presumably you have two straight
21	pipes, short, admittedly short straight pipes, but
22	they are straight pipes, and in order to get to the
23	critical state in those straight pipes, you have to
24	account for it through friction.
25	DR. WALLIS: Why doesn't RELAP do that?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	604
1	RELAP has friction and all of that.
2	DR. RANSOM: Let me there's a big
3	misconception here. The Ransom-Trapp model was just
4	a method of characteristics to derive what is the
5	choking criterion, you know, V plus or minus the speed
6	of sound equal to zero, which is a stationary wave.
7	And so we came up with an expression for the speed of
8	sound that would apply.
9	It's a local criterion. It's not an
10	integrated criterion that you would apply all the way
11	down a pipe.
12	In terms of what properties that speed is
13	then based on is the nearest node, you know, the
14	nearest node to the break. And so in that section,
15	indeed, if there is heat transfer, area change, it has
16	to be taken into account there.
17	And you know, certainly in the classical
18	sense area change, heat transfer, although Shapiro
19	only deals with in that section, I think, steady flow
20	process that like in a rocket nozzle or something of
21	that type, but
22	MR. SCHROCK: Well, isn't this quasi-
23	steady?
24	DR. RANSOM: At that last node it is a
25	quasi-steady.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	605
1	MR. SCHROCK: Quasi-steady. So it's not
2	an issue.
3	DR. RANSOM: It's derived from transient
4	equations. So I don't think there's
5	DR. CHOW: Yeah. I mean, in terms of the
6	code, the code take care of the friction. It is
7	called Adam, the friction. So the phenomenon is out.
8	It may take care if there is their friction there.
9	So while all they try to say that the
10	criteria is just only for the wave disturbance, so
11	DR. RANSOM: You say on the next
12	viewgraph, "Friction and heat addition mechanisms are
13	important for gas dynamics, but do not play a role in
14	LOCA."
15	DR. CHOW: What we
16	DR. RANSOM: That is absolutely wrong.
17	DR. CHOW: What we try to say, that that's
18	the just we basically all of these frictions
19	still in there. Okay? And trying to say in order to
20	achieve that kind of friction choke defined by the
21	Shapiro and that kind of classical case, it doesn't
22	appear in the from (phonetic). Trying to say that the
23	Shapiro, the classical case, to have a friction
24	constant flow in the sense of that does not appear in
25	the actor (phonetic) because you have to have a long

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	606
1	pipe in order to get this friction going down along
2	the pipe. That's all I am saying.
3	DR. WALLIS: Well, isn't Ransom-Trapp just
4	used as the choking criterion?
5	DR. CHOW: Yeah, just
6	DR. WALLIS: Just like M equals one.
7	You're saying what's the effect if M equals one
8	criterion that's used in Shapiro for both the friction
9	and the added heat addition and the area change.
10	DR. CHOW: Yeah, yeah.
11	DR. WALLIS: It's the same. You use an
12	isotropic M equals one as a criterion at the very end
13	of the pipe no matter how you got there.
14	DR. CHOW: Yeah, that's right.
15	DR. WALLIS: Isn't that what you're doing
16	here?
17	DR. CHOW: Right.
18	DR. WALLIS: You're simply saying no
19	matter how S-RELAP5 gets there, when it gets to the
20	Ransom-Trapp criterion we'll say it's choked even
21	though RELAP5 itself isn't running into any kind of an
22	infinite pressure gradient or anything.
23	So you're imposing a different kind of M
24	equals one than RELAP5 itself would predict, but
25	you're using that and saying, "Ah, ha, it's choked."

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	607
1	DR. CHOW: Yeah, that's right. That's
2	right, yeah.
3	DR. BANERJEE: Is that because the
4	equations for RELAP5 doesn't contain your
5	characteristics or what?
6	DR. RANSOM: Well, as you well know, the
7	equations are ill posed supposedly, and if you look at
8	it in a differential sense, they've got complex
9	characteristics, but
10	DR. BANERJEE: So how did you
11	DR. RANSOM: what Trapp and I, we
12	factored the equations, and we threw away the
13	imaginary part of the characteristic groups and then
14	only looked at the real part, which was presumably the
15	real space propagation rate and show that that comes
16	out to be very near the homogeneous equilibrium speed
17	of sound, and it varies with void fraction, of course,
18	and you know, the density ratio.
19	But I don't know. It's an approximation.
20	I mean, it's but I haven't seen anything better, I
21	guess, at this point.
22	DR. WALLIS: So S-RELAP5 itself isn't
23	predicting that there's some kind of critical event
24	occurring, that you can't get anymore flowout.
25	DR. RANSOM: Well, generally the idea was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

608 1 that you would let RELAP5 calculate until it 2 calculated a velocity that exceeded the speed of 3 sound, and then you'd say, well, this implied a 4 boundary condition. 5 DR. WALLIS: It seems to me the S-RELAP5 might itself have some characteristics which would 6 7 lead to a prediction of choking before you reach the in which case you'd be 8 Ransom-Trapp criteria, 9 predicting infinite pressure gradients in that last 10 node --11 DR. RANSOM: That's possible. 12 DR. WALLIS: -- before you've reached the Ransom-Trapp model. 13 14 I don't know what you do then if Ransom-15 Trapp is your criterion for choking and you haven't been able to get there because S-RELAP5 won't let you 16 17 get there. Not taking it away from -- that was the 18 problem I had here, was if you're imposing a choking 19 20 criterion which doesn't naturally follow from your own equations, you could get into some problems knowing 21 22 which one to use under some circumstances. 23 Well, but you know that DR. BANERJEE: 24 many people like the French and a lot of people put 25 physical effects in to make the characteristics real,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	609
1	not artificially, but by adding a bubble or whatever.
2	DR. RANSOM: Well, I would argue that
3	their methods are as artificial as putting in
4	numerical viscosity. I mean, they added things which
5	were artifacts and
6	DR. BANERJEE: based on physics.
7	DR. RANSOM: And I have a paper I've
8	written that goes into that subject, but what you show
9	is they artificially stabilize the solution long
10	before you'd see stabilization as a result of, say,
11	turbulent phenomena and, you know, the real dissipated
12	mechanisms.
13	So it's as artificial as
14	DR. BANERJEE: Well, without arguing that,
15	you know, that's a very detailed argument. The issue
16	would be more whether imposing something on the
17	outside when it doesn't arise naturally in the
18	equations might lead to certain well, we know that
19	it leads to sometimes on physical effects when you try
20	to choke things.
21	For example, if your choking went above
22	the sound speed of the homogeneous equilibrium model
23	and the situation is such that the flows were closely
24	coupled, you'd get choking in the pipe at multiple
25	points perhaps.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 DR. RANSOM: That physically could happen. 2 And in fact, when we originally did this, we used to 3 allow checking for choking at every point within the 4 pipe, and I think over time they've gotten away from 5 doing that because it tended to cause a lot of numerical difficulty, you know, choking, unchoking, 6 7 choking, and unchoking type of thing. And I'm not sure I'd recommend that 8 9 because, in general, in the LOCA type of problem, you know where it chokes, you know, at the exit. 10 11 DR. MOODY: Let me try to help. 12 DR. RANSOM: unless Or there's а contraction upstream somewhere where it might choke 13 14 like Virgil has brought up. 15 But going back to Virgil's DR. MOODY:

16 original concern, I think the thing he was asking was, 17 first of all, choke flow, constant entropy flow, 18 critical flow at the end of a converging nozzle 19 enables you to go from a stagnation condition to a 20 state of mach equals one for whatever kind of fluid 21 you're using.

And, in fact, that can happen anywhere, can't it? In a pipe where you take the local stagnation pressure, which may have experienced a lot of friction loss along the way and come up with a mach

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	611
1	of one, and how RELAP may do it I know how Shapiro
2	does it. He integrates over a pipe with friction
3	setting as a boundary condition the mach equals one at
4	the exit and then determining what length pipe is
5	going to take you from stagnation state to that
6	condition.
7	DR. WALLIS: But he's very lucky in that
8	the mach one is also inherent in the equations he's
9	using. So he's going to find it one way or the other.
10	Here we've got the equations that are used
11	not being consistent with the mach one Ransom-Trapp
12	model.
13	DR. RANSOM: You've got pressure
14	DR. WALLIS: Or it could be the Mood
15	model, for instance. Any model
16	DR. RANSOM: Any model.
17	DR. WALLIS: Any model which is not S-
18	RELAP5.
19	(Laughter.)
20	DR. MOODY: But you do have pressure,
21	velocity, and density varying along the pipe by
22	friction, and at some point your pressure, velocity,
23	and density are going to reach a state where the sound
24	speed which is a function of pressure and density will
25	match the velocity.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	612
1	DR. WALLIS: Then it predicts that PDZ is
2	infinite, and you can't get any further.
3	DR. MOODY: Okay. That's a standing
4	pressure
5	DR. WALLIS: I think we're concerned that
6	S-RELAP5 might predict DPDZ as infinite in a way which
7	is inconsistent with Ransom-Trapp, and which one do
8	you pick. Isn't that part of the problem being raised
9	here?
10	DR. MOODY: Excuse me?
11	(Laughter.)
12	DR. MOODY: I didn't follow your
13	DR. WALLIS: Oh.
14	DR. MOODY: Well, I think your concern was
15	real, and just piecing together some of the things
16	that have been said, it sounds to me like you're not
17	assuming isentropic (phonetic) flow through the entire
18	pipe.
19	DR. WALLIS: No, no.
20	DR. MOODY: That's the condition for sound
21	speed, is DPD rho or constant entropy, right?
22	DR. WALLIS: Right, at local condition.
23	DR. MOODY: But that local condition means
24	the local entropy, which may have been really
25	butchered up by friction all the way down the pipe.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	613
1	MR. SCHROCK: Yeah. Well, your rationale
2	is, to answer my own question, that they used the
3	Ransom-Trapp model only as a characterization of
4	choking based on local conditions.
5	DR. CHOW: That's right. That's right.
6	MR. SCHROCK: And then the code has to
7	calculate the approach to that. I think there's some
8	difficulties in the numerical work which is done in
9	approaching the critical point.
10	DR. CHOW: I think your question probably
11	is that when you do that, you have a long pipe, very
12	long pipe, and you may have a choking point, which is
13	actually before the choke
14	MR. SCHROCK: Well, you have a very long
15	node just upstream of the location where the gradient
16	is extremely strong, and so how you can establish any
17	degree of accuracy in that computation is a problem.
18	DR. CHOW: Yeah, we don't have a very,
19	very long node, and basically you have a few hundred
20	feet, you know, to adhere
21	MR. SCHROCK: Are you disagreeing, Graham?
22	DR. WALLIS: I just think they can't have
23	a long node. They must have some fine noding near the
24	critical
25	MR. SCHROCK: No, they don't.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

-4433

	614
1	DR. WALLIS: They don't?
2	MR. SCHROCK: They don't.
3	Well, what is your noding in the
4	assessment calculations? On Marviken I think you've
5	got about three nodes in the discharge pipe.
6	MR. SCHROCK: If you plot the pressure
7	profile
8	DR. CHOW: about five, I think, five or
9	six nodes under discharge pipe.
10	MR. SCHROCK: You think what?
11	DR. CHOW: Yeah, the Marviken is actually
12	choking in the throat, in the nozzle, not in the
13	discharge pipe. They have a very long discharge pipe,
14	and choking is not happening on the discharge pipe.
15	MR. SCHROCK: Well, I think you need to
16	show the Marviken geometry again if you're going to
17	talk about a throat. It goes into a section which is
18	straight, and then it goes into a section which is
19	small constriction, very small constriction, and then
20	it has a section of divergence; is that correct?
21	DR. CHOW: The vessel
22	MR. SCHROCK: And the variations are all
23	very gentle.
24	DR. CHOW: Yeah.
25	MR. SCHROCK: Very little change, very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	615
1	little change, not very different from a straight
2	pipe.
3	DR. CHOW: That's right, yeah, and in
4	this case
5	MR. SCHROCK: And if it's not very
6	different from a straight pipe, then it does mean that
7	you're calculating on the last node upstream of the
8	point of choking over a very wide range of
9	thermodynamic conditions, a very wide range of
10	thermodynamic conditions, and you're not going to
11	capture the condition at the minimum area point with
12	very satisfactory accuracy.
13	DR. CHOW: Well, it means that the
14	choking, where there is actual choke in the nozzle is
15	that's what in terms of that we don't know where is
16	actual choke in the we just basically say that
17	apply the choking criteria at another pipe. So that's
18	what, and so we did calculate from the base to the
19	discharge pipe to the nozzle. These all everything
20	is calculate at that, and you are talking about maybe
21	the choking will occur in some other place other than
22	the nozzle, but I don't think that's
23	MR. SCHROCK: I don't think I said that.
24	I haven't talked about choking occurring at some place
25	other than a nozzle. What I'm saying is that Marviken

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	616
1	geometry has very little area change from the
2	beginning to the outlet. Okay?
3	DR. CHOW: That's not the vessel is
4	quite big. Then the discharging pipe, so in thermal
5	that is not really true. You have a big vessel, then
6	you have a discharging pipe. Then the discharging
7	pipe and not the nozzle is about the same, but from
8	the base to the discharging pipe is probably different
9	area.
10	MR. SCHROCK: Okay. I think we're getting
11	nowhere with this one.
12	DR. WALLIS: Yeah, I'm puzzled, too,
13	because it mentions the Ransom-Trapp model and then
14	there's some kind of another empirical criterion in
15	this equation 520, and then there's something about
16	setting the apparent mass coefficient to infinity, and
17	then there's the homogeneous equilibrium model
18	invoked.
19	These are all different models for
20	choking.
21	MR. CARLSON: Right. It's
22	DR. WALLIS: I'm not sure which one is
23	being used.
24	MR. CARLSON: Well, we should have put in
25	the questions and then the response would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	617
1	DR. WALLIS: That's right.
2	MR. CARLSON: Yes.
3	DR. WALLIS: A bit clearer there.
4	MR. CARLSON: So I guess the special case
5	for subcooled upstream stagnation states is treated by
6	our methods developed by Abdaf, Jones and Wu
7	(phonetic) for flow converging nozzles. In this case,
8	flashing inception is thought to occur at the throat
9	and pressure below the saturation pressure.
10	Pressure is predicated by a critical
11	correlation by Alamgir and Lienhard, and modifications
12	due to Jones. The S-RELAP5 documentation is unclear.
13	Question A, how does Jones define A in
14	equation 522?
15	Well, of course, I don't have
16	MR. SCHROCK: In S-RELAP5 it appears to
17	depend upon noding choice.
18	MR. CARLSON: Right.
19	MR. SCHROCK: It's part of the question
20	actually.
21	MR. CARLSON: I can't see. I can't read
22	this.
23	Let's see. The liquid fluid at the throat
24	is calculated as 524, and I think
25	MR. SCHROCK: If you keep going down

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	618
1	MR. CARLSON: Yeah, yeah. What you're
2	referring to is the A, Jones supply.
3	MR. SCHROCK: That's right.
4	MR. CARLSON: Okay. And I think Jones
5	describes it as the upstream flow area, and we set it
6	to the volume flow area, what we refer to as the
7	volume flow area that's at the center of the volume
8	length.
9	DR. WALLIS: It's at the center of the
10	volume length?
11	MR. CARLSON: Well, it's the center. It's
12	the the area is constant throughout the volume, and
13	so whatever you define to be the volume flow area
14	is
15	MR. SCHROCK: When you say Jones defined
16	it as the upstream flow area, with reference to what?
17	The experiment of Alamgir and Lienhard?
18	MR. CARLSON: I believe it was to the
19	throat. I believe it was to the throat.
20	DR. WALLIS: Well, there's an At over
21	MR. SCHROCK: The throat is in the
22	numerator, At divided by A.
23	MR. CARLSON: Right. And so
24	MR. SCHROCK: See, Alamgir and Lienhard
25	did this in a straight pipe and used an explosive

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	619
1	charge to blow the end off a straight pipe very
2	rapidly so that they would get a very high rate of
3	decompression.
4	So I looked at your numerical work, and
5	then I looked back at this equation, and I couldn't
6	understand how you match what you're doing in your
7	numerical work with what Jones had here.
8	And then it raised the question in my mind
9	what did Jones mean by A. He's got an At, which
10	presumably means throat, and then there's an A.
11	MR. CARLSON: Well, I believe Jones
12	defined A as the upstream flow of
13	MR. SCHROCK: Upstream in what geometry?
14	MR. CARLSON: In terms of a converging or
15	the well, he assumes a converging/diverging nozzle,
16	and so the area at the the unscripted area is said
17	to be the the interest area.
18	MR. SCHROCK: So you're talking about the
19	interpretation that Jones described this in terms of
20	the geometry of the Brookhaven experiments in
21	convergent/divergent nozzles, which is different from
22	Alamgir and Lienhard.
23	DR. WALLIS: But if I have a small
24	MR. CARLSON: I wasn't aware of that.
25	DR. WALLIS: break in a big pipe, I've

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	620
1	got a 30 inch pipe and I've got a two inch hole in it.
2	Is At two inches and A 30 inches?
3	MR. CARLSON: Yes.
4	DR. WALLIS: That's a huge area change.
5	MR. CARLSON: Is that right? Is that
6	right?
7	PARTICIPANT: Yes.
8	MR. SCHROCK: Well, if you use the large
9	break guillotine break of cold leg, for example,
10	you're going to have no change in the area.
11	MR. CARLSON: That's right.
12	DR. WALLIS: So that's one.
13	MR. SCHROCK: So that term essentially
14	washes out.
15	DR. WALLIS: It's one. At over A is one.
16	MR. CARLSON: Is one.
17	MR. SCHROCK: It's one.
18	MR. CARLSON: Well, in the large break
19	LOCA there's a break spectrum that is run, and this
20	would vary from one to
21	MR. SCHROCK: But when I look at your
22	numerical solution, I conclude that what you're going
23	to substitute in there, in general, is going to depend
24	upon the noding choice
25	MR. CARLSON: That's right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	621
1	MR. SCHROCK: that you've made for the
2	application to your critical flow problem.
3	MR. CARLSON: That's right.
4	MR. SCHROCK: And so how does that relate
5	to what Jones did, and how is it justified?
6	MR. CARLSON: Well, if I was more familiar
7	with what Jones did. Dr. Chow, would you help me
8	address this, please?
9	DR. CHOW: I think the A is actually
10	upstream of the nozzle area. So basically the A is
11	the other requirement to the RELAP5, the 480 and
12	upstream, you know, nozzle, and the At is the area of
13	nozzle, lowest area of nozzle.
14	MR. SCHROCK: Well, since you've thought
15	that it's related to Jones' experiments in convergent
16	and divergent nozzles, it would seem that upstream
17	area is essentially undefined.
18	DR. CHOW: One, seventy-five is the area
19	of the upstream flow area. Why is it undefined? It's
20	just the upstream of the nozzle. Basically
21	basically, in the additive, that's the area that
22	because area of the nozzle, that's basically
23	MR. CARLSON: Well, I assume that Jones
24	wrote the area as a small distance upstream of the
25	throat as maybe an entrance effect or an entrance

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	622
1	area.
2	MR. SCHROCK: A small distance upstream of
3	the throat either puts it in the convergent part of it
4	or upstream of the
5	MR. CARLSON: Upstream of the converging
6	section would be the entrance to the nozzle. I think
7	there was a term that I thought he was looking for,
8	that VADX, which is in 5.23, and he was expecting a
9	certain range where this was the area change with
10	respect to distance from the entrance or the throat
11	entrance to actually what the throat area was, but
12	anyway, I think that was
13	DR. WALLIS: This depressurization rate
14	looks a bit odd, too.
15	MR. CARLSON: This is the depressurization
16	rate, yes.
17	DR. WALLIS: this is the rate at which a
18	given piece of fluid is changing its pressure as it
19	flows through the nozzle. It's not the rate at which
20	the system is depressurizing. You're looking at a
21	piece of fluid and saying, "How rapidly is it changing
22	its pressure?"
23	MR. CARLSON: Right.
24	MR. SCHROCK: Or how rapidly the
25	undershoot. I'm sure that's what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

623 1 DR. WALLIS: This is an approximation for 2 it. 3 MR. CARLSON: Yes. 4 DR. WALLIS: Well, where do we go from 5 here? I guess move on to the next 6 MR. SCHROCK: 7 question. What's the next question? 8 DR. WALLIS: MR. CARLSON: All right. Question A, that 9 10 was S-RELAP5 appears to begin on a noding choice,. 11 Please explain equation 5.23. Why does the text say 12 this is the use of Pascals per second rather than required the Alamgir Lienhard 13 units in and 14 correlation? 15 Note that no units are specified in terms on the right-hand side of the equation of 5.23. 16 17 Please show that S-RELAP5 uses consistent units. I think this was the term that you had in 18 19 question, and it's the units of Pascals per second, and this is just, you know, it was converted in --20 21 DR. WALLIS: Is that what Jones said it 22 should be, Pascals per second? 23 MR. SCHROCK: It's not Jones' choice. 24 It's Alamgir and Lienhard. 25 DR. WALLIS: Well, they have a funny

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	624
1	equation.
2	MR. SCHROCK: They have a dimensional
3	relationship, and it requires specific units.
4	MR. CARLSON: Yes.
5	MR. SCHROCK: And those units were not
6	Pascals per second.
7	MR. CARLSON: They were some of that mega
8	atmospheres per second.
9	MR. SCHROCK: Right.
10	MR. CARLSON: And I think that was
11	converted to Pascals per second to use from the code.
12	MR. SCHROCK: Well, that's very dangerous.
13	I don't know that you've used it consistently then
14	because, as I just said, the Alamgir/Lienhard
15	correlation is not dimensionless. It's a dimensional
16	relationship, and it requires those specific units,
17	not any others, mega Pascals per second.
18	MR. CARLSON: Mega Pascals. Oh, okay.
19	MR. SCHROCK: So I suspect then that you
20	do not use consistent units.
21	DR. WALLIS: Well, mega Pascals per second
22	is a million times Pascal per second. Have you got an
23	error of a million?
24	MR. SCHROCK: Mega atmospheres per second.
25	MR. CARLSON: Mega atmospheres.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	625
1	MR. SCHROCK: Even more than a million.
2	MR. CARLSON: Well, yeah.
3	MR. SCHROCK: Yeah.
4	MR. CARLSON: Well, actually that's a mega
5	times well, the internal units of Pascal.
6	MR. SCHROCK: Oh, come on. You can't play
7	fast and loose with
8	MR. CARLSON: I'm not trying to.
9	MR. SCHROCK: Are your units consistent in
10	the code?
11	MR. CARLSON: And the answer is yes.
12	MR. O'DELL: I think I think
13	MR. SCHROCK: Not if you've used in that
14	equation Pascals per second.
15	MR. O'DELL: No, I think what the
16	statement means about proper unit conversion has done
17	in the coding, basically it has converted to the mega
18	atmospheres per second where they've got the
19	unfortunately on the previous slide shows that that
20	term acknowledges that term was in mega atmospheres
21	per second, and the statement there on the viewgraph
22	is that the proper unit conversion is done in the
23	coding.
24	And I think if you go back to our code
25	verification where we went through that, that was one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	626
1	of the things that was being checked in the code
2	verification process, was to make sure that we were
3	using these things in the proper
4	DR. WALLIS: So you had to look at the
5	coding and see if there's a suitable factor in there.
6	MR. O'DELL: Right.
7	DR. WALLIS: With a mega atmosphere, it's
8	ten to the 11th Pascal? You get a factor of ten to
9	the 11th? Something.
10	MR. CARLSON: Everything in the code is
11	converted to Pascals.
12	DR. WALLIS: So someone has looked at the
13	actual lines in the code and found that there is
14	conversion of units in there somewhere?
15	MR. O'DELL: Yes, in the verification
16	process we went through the actual coding on these
17	models to make sure that in fact we're using them
18	properly.
19	DR. WALLIS: That's the difficulty the
20	reader has. The reader reads the documentation and
21	sees some units there and what's actually encoded
22	might be something else, but he has no way of checking
23	that without looking at the source code.
24	MR. CARLSON: That's true.
25	MR. O'DELL: That's true.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	627
1	DR. WALLIS: And this is true of many
2	correlations. Many heat transfer correlations are
3	written in weird units, and you have to convert them
4	to your code units hopefully.
5	MR. CARLSON: Well, we
6	MR. SCHROCK: So the answer is that you've
7	checked it and you assure us that the units are
8	correct.
9	MR. CARLSON: I personally have not
10	checked it, but other it has been checked.
11	MR. O'DELL: It's been checked in the
12	code verification process.
13	MR. SCHROCK: Okay.
14	DR. WALLIS: Can we move on then?
15	MR. SCHROCK: Yeah.
16	MR. CARLSON: Let's see. Equation 5.25
17	and 5.26. This factor depends on the system geometry
18	and noding choice. Explain the basis for these
19	equations, the background and reasons for arbitrary
20	choices, 5.26 and 5.27.
21	Five, twenty-six and
22	DR. WALLIS: It would really help if we
23	had Section 5. I don't know how much progress we can
24	make without knowing to what use this is put.
25	MR. CARLSON: Section 5, equation 5.26, is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	628
1	well, Section 5.25, I don't happen to have that.
2	MR. SCHROCK: It's used in the calculation
3	of sigma.
4	MR. CARLSON: Oh, there it is.
5	MR. SCHROCK: Of Alamgir and Lienhard's
6	correlation.
7	DR. WALLIS: Oh, it's used, okay, in the
8	sigma.
9	MR. CARLSON: Yeah, all right.
10	DR. WALLIS: Is this what Lienhard told
11	you to do or did you just make an assumption? This is
12	your assumption that seemed reasonable. Is that what
13	it is?
14	MR. CARLSON: Yes.
15	DR. WALLIS: It may be okay. I can't
16	really tell without looking at data or something to
17	see if it works.
18	MR. O'DELL: And in fact, you know, in
19	the process of going through the Marviken test, I
20	mean, we have gone through the Marviken test with
21	these models and determined, you know, a bias, which
22	was one as I recall, and I don't recall what the
23	uncertainty was, but in the application of these, we
24	have done comparisons, you know, to the Marviken tests
25	to determine the bias and uncertainty for the flow.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

629 1 MR. SCHROCK: Well, there is in the 2 methodology a need to determine the depressurization 3 rate in the experiment, and to do that you use an 4 equation which appears to depend upon the noding, and 5 so presumably you'd get a different depressurization rate if you used a different noding. If you used a 6 7 different depressurization rate, the criterion for the onset of flashing would be changed. 8 So it all comes out in the assessment, but 9 there are too many things involved in the assessment. 10 11 To begin with, the Marviken experiment itself has a 12 complication that there is flashing within the vessel, and you know only what RELAP tells you about what the 13 14 void fraction is entering the flow channel. 15 MR. CARLSON: Right. MR. SCHROCK: Okay, and that's determined 16 17 It's not determined by experiment. by RELAP. 18 MR. CARLSON: Right. 19 MR. SCHROCK: You have no independent 20 check on that. So there's an uncertainty there. 21 Then you need this depressurization rate, 22 which is -- well, I'm sorry I'm mixing that with the 23 later problem of saturated blowdown. 24 MR. CARLSON: Yes. 25 DR. CHOW: This is Hueiming Chow.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

I think that in terms of R-BEACON they 2 don't -- they really have measurement of the pressure 3 and the temperature at the discharge, at just in front 4 of the pipe. So you cannot say we don't have any 5 information about the step in front of the nozzle. They have mentioned. 6

1

23

24

25

7 So in our calculation, we have to compare the temperature and the pressure in the form of 8 9 nozzle. So we did have data on that. So basically it said we have to continue calculation from the base to 10 11 the -- before the nozzle that stays about the same as 12 the experiment. So they did have measurement data in So it's no say they don't have measurement 13 there. 14 data.

15 And they used the same kind of equation in the exact extent. I mean, this equation basically the 16 17 Monica (phonetic) approach mentioned. The only thing, the only choice that you have, you have the volume 18 19 area; you have junction area. That's only choice. 20 You define it in the code to get the approachment. 21 What's that? The area changing nature. 22 So this is an approach mentioned, and how

good is that compared to the experiment data?

That's all I can say.

MR. SCHROCK: Okay. Would you go ahead?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	631
1	MR. CARLSON: Moving on
2	DR. WALLIS: Are you going to answer all
3	of the questions that Dr. Schrock has here?
4	MR. CARLSON: If Dr. Schrock wants me to.
5	There's a whole string of them.
6	DR. WALLIS: Well, I'm not sure we have
7	time to do that. I think all we're going here is
8	establishing your credibility. Maybe we should look
9	at the questions which are most relevant for
10	establishing credibility of your approach rather than
11	everything. I think most of us are going to be
12	completely lost with all of these without seeing what
13	the equations actually are.
14	Well, how about something like this, using
15	HEM, which mysteriously obtained from choke but then
16	applied to slip equilibrium calculations?
17	MR. CARLSON: Pardon me?
18	DR. WALLIS: Which one of these questions
19	do you think we ought to focus on in order to get an
20	idea as to whether these folks know what they're
21	doing? Do we need to go through every one of them?
22	MR. CARLSON: No.
23	DR. WALLIS: Should we require a written
24	reply or something or what?
25	MR. CARLSON: In the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	632
1	MR. SCHROCK: Let's take the one in the
2	middle of the second page. Equation 5.28 is said to
3	be obtained from equation 2.85 with gravity and
4	friction omitted, and this is said to be done for
5	clarity and the derivation to follow, but the omitted
6	terms "friction" and "gravity" are in the code.
7	Nothing is said here about it's my
8	parenthetic note that nothing is said about the
9	flashing term which is also committed in that
10	equation.
11	DR. WALLIS: And what is equation 5.28
12	representing?
13	MR. CARLSON: Five, twenty-eight, that is
14	the simplified steady state.
15	MR. SCHROCK: Five, twenty-eight is a
16	simplified momentum equation.
17	DR. WALLIS: Oh, dear.
18	(Laughter.)
19	MR. CARLSON: Yeah, that's what I thought
20	when I first saw that.
21	MR. SCHROCK: Simplified steady state
22	momentum equation.
23	DR. BANERJEE: Bernoulli's question would
24	also be choking.
25	MR. CARLSON: Right, and

633 1 MR. SCHROCK: No phase change accounted 2 for. 3 MR. CARLSON: Well, the phase change is 4 accounted for, would probably be -- well, is accounted 5 for in the void fraction. MR. SCHROCK: I don't know. I'm looking 6 7 at equation 5.28, which is on page 5-14 --8 MR. CARLSON: Right. 9 MR. SCHROCK: -- of Rev. 4. 10 MR. CARLSON: Right. 11 MR. SCHROCK: It has none of these last 12 three terms. MR. CARLSON: That's right, and these were 13 14 just added to complete, to satisfy your question that 15 could have been in --My question is about the 16 MR. SCHROCK: 17 equation 5.28 that's in the report. 18 MR. CARLSON: Yes. 19 MR. SCHROCK: Not the equation that's on 20 the board. 21 MR. CARLSON: Right, about the flashing 22 term, and I'm assuming, you know, when you say that 23 the flashing term is not in the 5.28, I believe --24 MR. SCHROCK: Let me read the complete 25 question.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	634
1	MR. CARLSON: Simplify
2	MR. SCHROCK: Equation 5.28 is said to be
3	obtained from equation 2.85 with gravity and friction
4	omitted, and this is said to be done for clarity and
5	the derivation to follow, but the omitted terms,
6	"friction" and "gravity," are in the code.
7	So it's saying that the code contains
8	something that's not in this equation. This
9	simplified form is used to establish suitable average
10	values of rho-alpha products used in the numerical
11	integration.
12	MR. CARLSON: Right.
13	MR. SCHROCK: Okay. Please explain how
14	this works when friction and flashing are included.
15	MR. CARLSON: Explaining how
16	MR. SCHROCK: You go through this strange
17	gyration
18	MR. CARLSON: This is the question that's
19	in the code. I mean that's, I think, what part of
20	your question was.
21	DR. WALLIS: So it doesn't have a flashing
22	term?
23	MR. CARLSON: But it doesn't have a
24	flashing term on it. Okay? And what I assumed you
25	mean by flashing is that you're talking about a mass

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	635
1	transfer term.
2	DR. WALLIS: It's gamma, G, VF1, SVG term
3	which is in 2.85.
4	MR. CARLSON: Right.
5	DR. WALLIS: Except that in choking that
6	change of phase is important.
7	MR. CARLSON: And when it's equal
8	velocity, that particular term is not there.
9	DR. WALLIS: If it's homogeneous
10	equilibrium?
11	MR. CARLSON: Yeah, for a homogeneous flow
12	or homogeneous equilibrium.
13	MR. SCHROCK: Well, wait a minute. In
14	homogeneous equilibrium model, flashing occurs, mass
15	transfer.
16	DR. BANERJEE: The flashing term is very
17	important.
18	MR. CARLSON: I have a hard time I
19	don't understand what you mean by the flashing term.
20	DR. BANERJEE: Gamma.
21	MR. CARLSON: Gamma? Gamma in the
22	momentum equation is basically the mass generated, the
23	mass generation rate, and it's applied as a mass
24	transfer due to or momentum due to mass transfer, and
25	it wasn't applied in this assumption or in this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

636 1 equation because we're assuming equal velocity. So there would be no momentum transfer between the phases 2 3 if there was flashing, that is, condensation or 4 evaporation. MR. SCHROCK: Well, equal velocity simply 5 means that the liquid and vapor are moving at the same 6 7 speed. 8 MR. CARLSON: That's right. MR. SCHROCK: But both of their speeds are 9 changing, and one of the contributing factors to their 10 11 changing speed is the fact that some of the liquid may 12 be evaporating or in the high quality region may be condensing. 13 14 MR. CARLSON: Yes, but we -- but that 15 flashing term, like I say, well, it was not applied. 16 It was assumed that it wasn't needed for equal 17 velocity. Well, you've gone through 18 MR. SCHROCK: 19 some strange things to establish what you regard as 20 suitable average values of the product of alpha times 21 rho --22 MR. CARLSON: Yes. MR. SCHROCK: -- in the last half node --23 24 MR. CARLSON: Yes. 25 MR. SCHROCK: -- upstream of the point

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	637
1	of
2	MR. CARLSON: Right.
3	DR. WALLIS: The alpha-rho?
4	MR. SCHROCK: What I've asked you to do
5	here is to explain how this works. What is the
б	significance of those average values? Why are they
7	going to serve adequately when, in fact, you have
8	friction and you have flashing involved in the
9	process?
10	Friction and gravity.
11	MR. CARLSON: Is this I'm not sure what
12	terms you're referring to. I think you're referring
13	to the adjustments to density from the center to the
14	throat.
15	DR. BANERJEE: I think it's simpler than
16	that.
17	MR. SCHROCK: I guess you need to read
18	your own report because what you've done in this
19	report is to develop a rationale for how you will
20	choose average values
21	MR. CARLSON: Yes.
22	MR. SCHROCK: for integration purposes
23	of the product of rho times alpha. Okay? And to do
24	that, you've used only a part of the problem. You
25	haven't used the whole problem. My question then can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	638
1	be restated as: why do those average values serve
2	adequately when the entire problem is considered
3	rather than a part of the problem?
4	DR. WALLIS: I'm not sure that
5	MR. SCHROCK: I'm trying to figure out
6	what you're saying in this document, and I can't. I
7	can't understand what it's doing.
8	MR. CARLSON: Dr. Chow, can you get
9	DR. CHOW: I think these just momentum
10	equations. These exactly the momentum equation and
11	the sum momentum equation, except that for the mass
12	transfer term is not there. But these, they will be
13	just quasi-steady state integral from the boring
14	center to the junction.
15	MR. SCHROCK: Okay.
16	DR. CHOW: Yeah, you can't use the in
17	order to get a LOCA condition, you have to determine
18	the state, equation or state of the junction. Okay?
19	And it is just a steady state integration from the
20	boring center to the junction.
21	And during this integral part, I mean, we
22	always assumed that vaporization occurs at the end of
23	integration, not in between integration, and even in
24	our volume center, the vaporization is associated with
25	volume center. We never say that when doing all of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

639 1 this integration of mass difference. We never say 2 that in the past we have a vaporization. We say at 3 this end of the vaporization, we have so much 4 vaporization, at the other end so much vaporization. 5 So just around the past we don't consider the vaporization. That's all it says. 6 7 MR. CARLSON: But you're really just doing the integration from the south center just to the 8 9 throat. 10 DR. CHOW: To the throat. MR. CARLSON: And this is the replacement 11 12 of the momentum equation; is that correct? DR. CHOW: Yeah, yeah. 13 14 MR. CARLSON: Yes. 15 Because that RELAP5 doesn't DR. CHOW: solve the equation of state at the junction, and 16 that's why these state is needed. 17 18 MR. CARLSON: This is, again, that 19 linearization or that integration. If you get a 20 better property for alpha, rho at the throat --21 Yeah, at the throat, yeah, DR. CHOW: 22 that's it, and --23 MR. CARLSON: What we found was that when 24 we looked or compare RELAP5 to, say, homogeneous equilibrium table values generated from RELAP4 that we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

had maybe not quite the correct mass flow that, say, RELAP4 would predict for HEM. So we included a correction term for the densities so that we get exactly what HEM specifies under stagnation conditions.

We assume that there's no change in state 6 7 or from the center to the throat. We only assume that 8 there was a change in pressure going from the center, 9 cell center pressure to the throat pressure, and it 10 turns out and we assume there's no slip in that assumption or the slip didn't change, and that 11 assumption was not necessarily sufficient. So we had 12 to go in and make an adjustment to how the density 13 14 changes from the center to the throat.

DR. CHOW: I see your question about friction is explained in the next one, in the integration from the volume center to the floor, the alpha lower factor.

PARTICIPANT: No, no, no.

 20
 DR. CHOW: On approachment by the volume

 21
 center value. Okay?

22 So basically the alpha and the DF if daily 23 use of volume center value, and because we can see the 24 friction, this is very short distance. So the 25 friction and the gravitational force, the contribution

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

19

	641
1	very small. The momentum contribution is much, much
2	more dominant.
3	So that's why the different approach
4	mentioned used for the friction terms.
5	DR. WALLIS: So you're looking at the note
6	just beside the choking point where gravity and
7	friction really don't play much of a role?
8	DR. CHOW: Yeah, we just
9	DR. WALLIS: You're just accelerating
10	everything?
11	DR. CHOW: Yeah, we just only half cell,
12	only half cell, because we don't have any junction
13	property. That's why we have to do this half cell
14	integration
15	DR. MOODY: Maybe I'm not necessarily for
16	having any confusion, but I just wondered in the line
17	below the equation you say, well, certainly when you
18	add the two equations, the mass transfer term, the
19	momentum transfer from vaporization cancels. Then you
20	say the term is not present due to the assumption of
21	equal velocity.
22	I think that term cancels anyway, doesn't
23	it? And yet you've got two velocities in that
24	equation. I'm a little confused. Why are they not
25	reduced to one value like V? If they're equal, is it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	642
1	necessary to keep them separate like that?
2	MR. CARLSON: Not really. We thought for
3	clarity possibly.
4	DR. MOODY: Okay. Then you could
5	essentially factor out the D by DX or V squared from
6	the left-hand side.
7	DR. WALLIS: So you're assuming these
8	velocities are equal?
9	MR. CARLSON: Well, this is for the HEM,
10	critical flow. We would leave the two velocities
11	there if we were going to do two phase critical flow.
12	DR. MOODY: Of HEM? If it's homogeneous,
13	they are both traveling at the same velocity.
14	MR. CARLSON: Right, but the same coding
15	is used for another model option, that is, to not use
16	a
17	DR. MOODY: Okay. That's just the way the
18	code would change.
19	MR. CARLSON: That's just the way the code
20	works. We should have factored it out because they're
21	equal.
22	DR. MOODY: I just want to be sure I
23	understand what you've got, and so, yeah, they are the
24	same value velocity in the HEM model on both sides of
25	the equation. Vf is equal to Vg.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	643
1	MR. CARLSON: Yes.
2	DR. MOODY: Okay. Thank you.
3	DR. WALLIS: Well, Virgil, what did you
4	want to do? Should we I'm wondering how long we
5	should spend on these questions, if it would be
6	fruitful in our responses.
7	MR. SCHROCK: I think the documentation is
8	extremely unclear about that is done and how it's
9	justified.
10	DR. WALLIS: So it's a big like the
11	momentum story.
12	MR. SCHROCK: The questions that I raised
13	could have been answered in a more reasonable way, and
14	I don't think we're getting at
15	MR. CARLSON: I apologize.
16	MR. SCHROCK: reasonable answers to the
17	questions. So
18	DR. WALLIS: Shall we drop the
19	MR. SCHROCK: I'm willing to leave it that
20	I'm not satisfied with that section.
21	DR. WALLIS: All right. We drop the
22	critical flow thing. I would like to get to the
23	statistical matters, but I do think we should have a
24	break before we do that.
25	Can we take a break until quarter till

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	644
1	six, if everyone can stay for the statistical
2	resolution, which I notice doesn't have many
3	transparencies, but may still require some discussion?
4	What is I think very interesting and
5	before we get to that is I thought that you had a very
6	interesting graph of PCT versus percent oxidation,
7	which showed they were very closely correlated. That
8	was a useful piece of information for me. I don't
9	know if you're going to show that in the presentation,
10	but if we can find it in the break, that would be
11	useful, I think.
12	Let's come back at quarter to six.
13	(Whereupon, the foregoing matter went off
14	the record at 5:36 p.m. and went back on
15	the record at 5:47 p.m.)
16	DR. WALLIS: Let's come back into session.
17	MR. O'DELL: Okay. What I would talk
18	about quickly here was basically the statistical issue
19	that came up during the review of the methodology and
20	what the ultimate resolution of that issue was.
21	The issue came up during the review was
22	that the NRC request, report to PCT maximum nodal
23	oxidation and the total oxidation as a joint
24	probability statement.
25	In the original proposed realistic large

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

645 1 break LOCA methodology, we reported an individual 95-2 95 value for each of the criteria; PCT, maximum nodal oxidation and total oxidation, and we never made any 3 4 kind of a joint probability statement with respect to 5 the three criteria. DR. WALLIS: Now, can I get clear what 6 7 you're saying here? In order to satisfy these three 8 criteria, you need to have enough code runs so that you can get 95-95 value for all three. That's what's 9 10 meant by joint probability, not just --11 MR. O'DELL: Right. 12 -- how many do you need to DR. WALLIS: get either one or the other or the other. I mean, you 13 14 need 59 maybe to get PCT if that's all you care about, 15 and you need 59 to get total oxidation if that's all 16 you care about. 17 But if you want to get both of them with this 95 percent certainty, then you might need a 18 19 different number of runs. 20 MR. O'DELL: Exactly. 21 DR. WALLIS: That's what you mean by this 22 joint probability question. 23 The resolution of MR. O'DELL: Right. 24 this is based on Regulatory Guide 1.157, which indicates that the revised Paragraph 50.46(a)(1)(i) 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 However, since the other criteria are strongly dependent on peak cladding temperature 6 7 explicit consideration of the probability exceeding the other criteria may not be required if it can be 8 9 demonstrated that meeting the temperature criterion at level insures with an 10 the 95 percent probability 11 equal or greater probability that the other criteria 12 will not be exceeded.

So this basically allows you to report the 13 95-95 PCT and the associated oxidation with that 95-95 14 15 PCT case.

This is very different from 16 DR. WALLIS: 17 requiring you to have this 95 percent probability level with all three of the criteria, which this seems 18 to give you a way out if you can show getting the PCT 19 with 95 percent probability and assures that the other 20 21 criteria will be met with greater probability. 22 MR. O'DELL: Right.

23 In which case you have to DR. WALLIS: 24 look at how these different criteria are correlated. 25 MR. CARLSON: Exactly. And you know, we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

1 did that, and unfortunately I don't have the slides 2 for that particular one, but what has been agreed is 3 that we would change our methodology to amend proposed 4 methodology to only report the 95-95 PCT case and its 5 associated maximum total oxidation and total oxidation. 6

7 DR. KRESS: Now, how will you demonstrate 8 though that that meets the criteria of the high 9 probability to meet the other two?

Well, we've gone through and 10 MR. O'DELL: 11 looked at a series of cases, including the three loop, 12 four loop, and then we look the three loop case and ran the power up in the three loop case to drive it to 13 14 a PCT of around 2,200. So we have a series of cases, 15 and what I do have in the way of some back-up figures, this shows -- and unfortunately this one doesn't have 16 17 the high temperature ones. We ran some up to where they're a little over 2,200. 18

But what we were trying to show in this particular slide is this is the frequency distribution that we got on PCT from our cases that we ran. Okay? And if you look at --

23 DR. RANSOM: How many independent 24 variables went into this, I mean, that you varied 25 statistically?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	648
1	MR. O'DELL: I think there's 39 roughly,
2	something; somewhere around 35 to 40.
3	DR. RANSOM: Are they listed somewhere
4	where a list of all the ones and their associated
5	frequency distribution that you use?
6	MR. O'DELL: That's provided in the
7	sample problem on the four loop in EMF-2103.
8	DR. RANSOM: And that's in the
9	documentation that we have?
10	MR. O'DELL: Yes.
11	DR. RANSOM: Which volume is that?
12	MR. BOEHNERT: Larry, I notice that stuff
13	is labeled proprietary. I assume we're talking around
14	the numbers because we are in open session, and I just
15	wanted to remind everyone of that.
16	MR. O'DELL: But, anyway, what this was
17	showing is the distribution of PCTs from the cases,
18	and indicating, you know, we're up in the high
19	temperature range there, approaching the 2,200.
20	And then if you look at that in
21	conjunction and I guess that one was the three loop
22	PCT, and here's four loop PCT case
23	DR. KRESS: Are all of these with 59 runs?
24	MR. O'DELL: Yes, these cases are for
25	actually the sample problems that we've provided in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

649 1 the documentation, and it shows, aqain, the 2 temperature distribution for the PCT versus the 3 frequency of the calculation in the 59 cases. 4 DR. RANSOM: How many calculations were 5 made to establish that? The 59 calculations. 6 MR. O'DELL: 7 DR. RANSOM: Fifty-nine. So that came out of the 59 calculations? 8 9 MR. O'DELL: right. And the 59 is an assurance 10 DR. WALLIS: 11 that you've actually captured the 95th percentile. 12 Right. MR. O'DELL: Just looking at that, it 13 DR. WALLIS: 14 looks as if you're sort of in the 95th percentile, 15 just sketching out a probable distribution roughly. 16 MR. O'DELL: Right. 17 But there could be some DR. WALLIS: values in the tail up to 1850 or whatever presumably. 18 19 MR. O'DELL: Right. I mean, 95-95 is a 20 five percent probability that you --21 DR. RANSOM: Well, in your methodology, do 22 you have a way of tracing back what parameters were most influential and the change, I mean, in causing --23 24 MR. O'DELL: Yeah. We go through and 25 produce scatter plots. Okay? And one of the points

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	650
1	in some of those scatter plots is if you look at the
2	scatter plot, you can see the ones that actually show
3	a trend, and then the ones that don't show a trend.
4	The ones where you can physically see a
5	trend within those scatter plots are the dominant,
6	important parameter, and
7	DR. RANSOM: What were those dominant
8	parameters in the large break LOCA?
9	MR. O'DELL: Well, the break size is
10	important. The heat transfer is one of the important
11	parameters.
12	DR. RANSOM: Heat transfer and
13	MR. O'DELL: Heat powers and axial shapes
14	being used, particularly the axial shape.
15	MR. SCHROCK: One of the requirements is
16	that you find what is the worst break size, and so
17	once you have found what you think is the worst break
18	size, then shouldn't this statistical evaluation hold
19	that fixed and look at all of the other variations
20	instead?
21	MR. O'DELL: the way we've treated the
22	break sizes, we've treated this statistically. Okay?
23	We go through and we randomly vary the break size
24	throughout the
25	MR. SCHROCK: Yeah, but my point is that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

that seems to be inconsistent with the Appendix K requirement that you study a spectrum of break sizes and determine the worst case, and so you're sort of mixing the spectrum of break sizes with the statistics of the code prediction for a given break size based on other variations.

7 MR. O'DELL: Right, and I understand in the Appendix K the way that they've handled the break 8 spectrum issue is that they do, in fact, run a set of 9 break sizes in determining the limiting break. Okay? 10 11 They report that then as basically your limiting break 12 PCT, but they're running all of the calculations on all of the break sizes in a deterministic fashion to 13 14 find that. So once you find the limited break in an 15 Appendix K analysis, you basically have the limiting calculation. 16

17 In the statistical analysis, we're 18 treating the break size as one of the statistical 19 parameters, and we're varying that along with the 20 other parameters, but not --

21 MR. SCHROCK: But I would think that once 22 you've established what the limiting break size is, 23 that you would then look at the uncertainty in the 24 prediction at that break size.

MR. O'DELL: The problem --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

	652
1	MR. SCHROCK: And that's what you're
2	trying to address statistically now, isn't it?
3	MR. O'DELL: Well, the problem with
4	trying to do that is what exactly is the values you
5	use for the other parameters, the other strong
6	parameters. Okay?
7	I mean is it a top P taxing (phonetic)
8	shape that I run through all of that, and how do I
9	know which one I select? Okay?
10	In order to do what you're requesting, I
11	either have to be able to do a deterministic analysis
12	in some fashion where I set again, you know, basically
13	doing Appendix K type calculation to find the limiting
14	break and then vary everything around that. You know,
15	that's not as simple a calculation from a statistical
16	perspective as it first appears because what is the
17	limiting break relative to all the other parameters
18	you're varying?
19	So the only real way to treat the break
20	size in a statistical methodology is to, in fact,
21	include that as one of the statistical parameters.
22	DR. RANSOM: What was the range of break
23	sizes that you considered?
24	MR. O'DELL: I'll go through that
25	tomorrow when I go through the overall methodology,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	653
1	but we looked at both, you know, split break from a
2	ten percent up to a 1.0 and double ended guillotines
3	from the 1.0 up to a 2.0.
4	DR. KRESS: Now, you don't ascribe any
5	significance to this distribution?
6	MR. O'DELL: Not with 59 cases. Okay?
7	DR. KRESS: I mean, it just happened to be
8	the way it turned out with 59 cases, right? But you
9	probably ascribe some significance to that 1,700
10	thing.
11	MR. O'DELL: Right. I mean, what you're
12	there's basically three calculations that gave us
13	the temperatures in that 1,700 or the range here that
14	we're reporting around the 1,700.
15	DR. WALLIS: And you're binning here. So
16	it could be
17	MR. O'DELL: Exactly.
18	DR. WALLIS: a different binning might
19	put some in the 1,650, 1,750.
20	MR. O'DELL: Right.
21	DR. WALLIS: Those three points might be
22	spreading to three.
23	MR. O'DELL: Yeah.
24	DR. WALLIS: It's an interesting idea to
25	put in the break sizes the statistical problem.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	654
1	DR. KRESS: Yeah.
2	DR. WALLIS: I think that may be
3	justified.
4	MR. O'DELL: It makes an interesting
5	approach to a statistical analysis if you don't.
6	DR. WALLIS: Yes, it does.
7	DR. KRESS: That may impact the ranges and
8	distribution of the other parameters.
9	MR. O'DELL: Potentially. Potentially it
10	could, yes.
11	DR. WALLIS: I think that makes sense. We
12	can then begin to argue about whether the 95-95 is
13	good enough because it depends on if you're looking at
14	all of these things in a statistical way. How certain
15	do we really need to be?
16	There's nothing magic in my mind about 95
17	percent.
18	MR. O'DELL: Well, the 95 percent
19	obviously is the one that was picked because it shows
20	up in the reg. guide as being the
21	DR. WALLIS: How certain you want to be
22	must depend on the risk and consequence and things
23	like that, the risk of being wrong. I'm not sure that
24	the staff has really worked out a good rationale for
25	95-95. It sounded good at the time, but now it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	655
1	going to be used perhaps for a more important decision
2	making process that more thought needs to be given to
3	what it should be.
4	DR. KRESS: It depends on what you want to
5	use it for.
6	DR. WALLIS: That's right.
7	MR. O'DELL: Now, these are the same 59
8	runs.
9	MR. O'DELL: Right. These are the same
10	59 runs, again, at three peak local oxidation, and as
11	you can see, they're all clustered down here for those
12	59 cases where the criteria, 17 percent criteria,
13	they're significantly away from that criteria.
14	DR. WALLIS: And if I'm betting 1,000
15	bucks on on the outlook from RELAP, I might be
16	satisfied with a 95-95 percent certainty of not losing
17	it all or something.
18	But if I'm risking my life, I might want
19	to have a 99-99. It depends on what's at stake,
20	doesn't it?
21	DR. KRESS: That's a good question.
22	MR. O'DELL: Well, that's true.
23	DR. KRESS: But that looks like sufficient
24	justification to say that this is captured in 95 PCT.
25	MR. O'DELL: Right, and again

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

656 1 DR. KRESS: The same thing on the total 2 oxidation. MR. O'DELL: 3 Yeah, and if you look the 4 four loop again confirms the same sort of analysis. 5 DR. WALLIS: Well, what's peak local oxidation criterion in the regulation? 6 7 MR. O'DELL: Seventeen percent. 8 DR. WALLIS: Way over there. DR. KRESS: 9 Yeah. Now, I'm not sure 10 that's way over there because I don't know what your 11 scale is. 12 MR. O'DELL: Well, it basically goes from zero to 17, and we do have some --13 14 PARTICIPANT: It's a linear scale. 15 DR. KRESS: It's linear. 16 MR. O'DELL: Yeah. We have some cases, 17 you know, where we didn't get any oxidation on some of the lower temperature cases. 18 19 MR. HOLM: This is Jerry Holm. I think one of the things we looked at is 20 21 if you look at the standard deviation of that, and we 22 realize it's not normal, but just as a figure of 23 merit, that top peak there is 30 standard deviations 24 away from the criteria. Well, the 95-95 as 25 DR. WALLIS: an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	657
1	estimate here would be around one.
2	PARTICIPANTS: Yes.
3	DR. WALLIS: Whereas you're out 17.
4	You're way far away from the criteria.
5	MR. O'DELL: Right.
6	DR. WALLIS: So I think that you might
7	have a really good argument here.
8	DR. KRESS: Might have a really good
9	argument.
10	MR. O'DELL: And, again, I've got the
11	same set of slides showing for the three loop total
12	core oxidation. Again, for the total core oxidation
13	the limit is one percent, and we're back in here
14	around the .05 percent, and seeing basically a result
15	for the four loop.
16	We chose, again, the criteria of one
17	percent and back in here around .03 on this particular
18	transient.
19	DR. KRESS: Now, the only reason this
20	works out is because of the strong correlation.
21	MR. O'DELL: Because of the strong
22	correlation.
23	DR. WALLIS: But also it's more than
24	strong correlation. I mean, it also shows that no
25	matter what you have for peak clad temperature, all of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	658
1	these other parameters are so low
2	DR. KRESS: That's right
3	DR. WALLIS: that with enormous
4	certainty they're going to be way far away from the
5	criteria.
6	DR. KRESS: Yeah, it's more than just the
7	correlation.
8	MR. BOEHNERT: Larry, I'll need copies of
9	those slides for the record.
10	MR. O'DELL: Okay.
11	DR. WALLIS: Yeah, I think they're very
12	interesting. Good to end the day on a persuasive
13	argument.
14	DR. RANSOM: Mr. Chairman, I'm assigned to
15	Bill Nutt, and there were some aspects of this. He
16	made more than 59 runs. Why is that? Less
17	conservative?
18	And he said he has some slides that he
19	wouldn't mind discussing if you want to take a few
20	minutes.
21	DR. WALLIS: I would agree to that if it
22	doesn't take too long.
23	Would you like to do that?
24	MR. NUTT: Sure.
25	DR. WALLIS: It's much easier to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	659
1	understand data than it is these Als and A2s.
2	MR. NUTT: Well, it depends if you have
3	the abstract mind, right? Which, by the way, I don't.
4	Andy and I were sitting there, "What's a real good
5	concrete example of what I'm talking about here?"
6	That means can you hear me okay?
7	MR. BOEHNERT: Identify yourself for the
8	record, please.
9	MR. NUTT: This is Bill Nutt from
10	Framatome.
11	And actually I've presented these slides
12	to you before. So I guess I'd better put my glasses
13	down here because they'll get in the way.
14	DR. WALLIS: Did you present them or did
15	they come back in a
16	MR. NUTT: I think I presented them one.
17	DR. WALLIS: RAI reply to the
18	MR. NUTT: These were back-up slides once
19	for when we well, suppose someone did ask this
20	question, and I think we did at one point when Uri was
21	asking questions during a meeting, and I'm not sure it
22	was in front of the ACRS. It may have been in front
23	of the staff, and we presented this question.
24	And what I did was this. I did a little
25	sampling test. I took a normal distribution. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	660
1	actually did this with several different
2	distributions. I'll just talk about the normal.
3	I took a normal distribution that has an
4	upper 95 percent limit of 275 so I could go back and
5	say standard deviation of 167 and, you know, a mean of
6	zero.
7	Then I calculated the upper 95-95 using a
8	nonparametric approach for sample sizes from 59 to
9	410. So I take 59 and I say, you know, what's the top
10	one, and I do this 2,000 times.
11	Then I calculate the number of times that
12	that fraction was below the 95-95 limit, the
13	probability it was below the 95 limit, the ten percent
14	change, you know, that it was below the 95 percent
15	limit, and so on.
16	And I did this. Then I removed one step
17	inside, and I'd say, okay, now let me take the second
18	point in and I'll do 92 cases, and I did those 2,000
19	times. So I'm getting my frequency with which I
20	exceed my limit. Okay?
21	So that's what shows up on this picture.
22	Now, if we look at this curve, this is 59.
23	The interesting thing is all of them come to five
24	percent, right? Because it is 95-95. So they all go
25	to five percent.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	661
1	But if I had 59 points, you see, there is
2	a reasonable chance that I could be clear up there,
3	which would be at 450 rather than the 275 that we
4	said.
5	And don't take these numbers too seriously
6	because if I had used a uniform distribution, this
7	picture would look the same, but the scale would b
8	compressed. Okay? So the actual values are dependent
9	on distribution.
10	But the conclusion here, if I take 59,
11	right, if I take 93, this improves quite a bit. My
12	probability of ever getting over 400 has all of a
13	sudden gotten a lot smaller, right?
14	And by the time I get up to I think it's
15	410 points where I can take the 13th point in, the
16	chances of me getting more than 50 above my you
17	know, of having my sample that I select as my 95-95,
18	my chance of having it be over 300 are really very,
19	very slim.
20	DR. WALLIS: So what is the probability on
21	the axis there? The probability of what?
22	MR. NUTT: Oh, this is the probability
23	that the number that you pick as the 95-95 will be
24	here. Okay? So you all can take your sample and say
25	I got a sample. What's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	662
1	DR. KRESS: When in reality it's really
2	down there.
3	MR. NUTT: Here's the real one, and
4	there's a five percent change it will be here, but
5	what's the chance that I'll pick that value as my 95?
6	DR. KRESS: Which could happen.
7	MR. NUTT: Which could happen.
8	DR. KRESS: In any given run.
9	MR. NUTT: Yeah. So one basically says
10	all I get when I take more points is I don't really
11	improve the 95-95 point, right? It's still a 95-95.
12	That's all.
13	But what happens is I tend to get rid of
14	the possibility of having one of those flyers way out
15	there.
16	Now, as you saw from the data that we have
17	taken, we're not getting a lot of flyers. We took one
18	corrupt I think if we take the one at we did one
19	set of cases that went to 2274, had same sets of
20	plots, but since it wasn't QAed we didn't put it in a
21	picture.
22	DR. WALLIS: It depends a bit on the shape
23	of the tail of the distribution.
24	MR. NUTT: Yes. And when you get up and
25	you take off in the metal water reaction, it leans a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	663
1	little bit more out, and you do tend to get them
2	spread.
3	When we did the case that had 2274, there
4	was as a highest PCT there weren't any others up
5	there. It was up there by itself, but when you step
6	down, you know, in the 2100s, there was another one,
7	but in this one we had a 100 degree spread in it.
8	In these cases that we looked out where we
9	were down lower, they're all stacked in closer
10	because, you know, the upper tail on that distribution
11	is not so high.
12	Do you know what I'm thinking, what I'm
13	referring to?
14	DR. RANSOM: I think I do.
15	MR. NUTT: Yeah, if you
16	DR. RANSOM: To the fact that if you take
17	more cases and run more samples, you'll actually
18	increase your chances of getting one of the higher
19	values out in the 90 beyond the 95th percentile.
20	MR. NUTT: And if I allow myself to move
21	inside now, that scatter out there in the tail, I'm
22	moving further inside, and I have less chance of
23	getting out in that tail.
0.4	
24	But what does happen when you get up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	664
1	at these lower the tail is not too wide at these
2	lower pieces, but the tail can get larger when your
3	distribution gets really skewed, you know, because
4	some cases will hit runaway metal water, and they'll
5	pop way up here, and others won't.
6	So instead of what looks close to a normal
7	distribution, you start to lean a little bit higher,
8	but we've taken it up to 2274 on a 95-95, which is
9	probably we'll never submit anything like that, you
10	know, and it still looped. You know, the conclusions
11	that Larry presented were, you know, still valid,
12	still looked very much the same.
13	But it did also have the 2274 was
14	basically almost an outlier. Had we done more cases,
15	we might have been able to reduce that. Okay?
16	DR. KRESS: Now, as you increase the
17	number of runs, your output distribution that you
18	could plot comes closer and closer to the real.
19	MR. NUTT: Yes.
20	DR. KRESS: So you have additional
21	information you could use to say whether or not
22	that you've got a higher probability of getting
23	those numbers, but you had more information. You
24	could use that to maybe rule it out or something
25	MR. NUTT: Yes.

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	665
1	DR. KRESS: because you're getting
2	closer to the real distribution.
3	MR. NUTT: Yes. You're paying more money,
4	and you're getting a better answer. It is a very bad
5	way to get a distribution.
6	DR. KRESS: Yeah, it's not a good way.
7	MR. NUTT: If I wanted the distribution,
8	and I think I was looking at response services because
9	that's a better way to get a distribution.
10	DR. KRESS: Yeah, it would be much better.
11	MR. NUTT: You know, you have virtually
12	like a one over square root of N.
13	DR. KRESS: Yeah. So it's 10,000 runs or
14	something like that.
15	MR. NUTT: Oh, yeah. It's ridiculous.
16	DR. WALLIS: But if you had it, then you
17	could look at it and say, "Ah." The 2,200 is the
18	point is the 99.9 percent percentile
19	MR. NUTT: Right.
20	DR. WALLIS: beyond that. You could
21	actually make that.
22	MR. NUTT: but the problem with the
23	response service is the biggest error they make is out
24	on the tails, and so if you're looking out on the
25	tail, that's where the biggest error is in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	666
1	response services.
2	Response services are really good in the
3	middle. So I like to use them when I'm doing
4	statistical work; I like to use them in the middle of
5	a process where I put something else on the end to
6	finish it up and be more accurate because they're a
7	little bad on the tails. Okay?
8	DR. RANSOM: By a response surface, you
9	mean you would just do parametric runs and construct
10	a surface for the PCT as a function of all the
11	independent variables.
12	MR. NUTT: Exactly. I'd run a set of
13	constructed variations in each of the parameters
14	designed, you know, to get rid of all of the
15	designed to give me a sufficient number of points to
16	fit a polynomial of some kind. Usually it's a
17	polynomial. A polynomial of some kind over, you know,
18	say over the
19	DR. RANSOM: But would that require more
20	than the 59 runs that you're making to do this from a

21 statistical point of view?

22 MR. NUTT: If I do three variables, no. 23 But, see, we're doing 40, 39, and I think some of 24 those are multiple variables. So I think the real number is higher than 39, and we're actually treating 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	667
1	anything. We're treating anything that we could think
2	of that had any contribution to the large break LOCA.
3	DR. RANSOM: Have you looked into all
4	some people are proposing linearized methods for
5	response surface.
6	MR. NUTT: I don't like linearized
7	methods. Linearized methods are equivalent of a root
8	sum squares, and a root sum squares is okay as long as
9	two things occur: one, normal distribution; and, two,
10	you add or subtract.
11	If you don't add or subtract, they're not
12	valid, and if they're not normal distributions,
13	they're meaningless. They're still valid, but they're
14	meaningless.
15	(Laughter.)
16	MR. NUTT: No, I mean, you could still get
17	a valid calculation of the standard deviation if you
18	add or subtract, but if your distribution is not a
19	normal distribution, what do you do with the standard
20	deviation?
21	DR. KRESS: That's right.
22	MR. NUTT: Yeah, it doesn't do you any
23	good. So okay?
24	DR. KRESS: That was very interesting.
25	MR. NUTT: Mr. Ransom, does that answer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	668
1	your questions?
2	DR. RANSOM: Yeah. Can I get copies of
3	the slides?
4	MR. NUTT: Sure. I'll give them to Jerry
5	and he'll make sure.
6	DR. WALLIS: Do you have a write-up?
7	DR. BANERJEE: What are these slides?
8	DR. KRESS: Oh, that's to show how well
9	correlated the peak clad temperature is to the total
10	oxidation.
11	MR. O'DELL: This is Larry O'Dell.
12	In those particular slides there, we
13	didn't have clear ones, but what they show, as I
14	mentioned, we ran three sets, and we drove the
15	temperatures up to 23-something. That shows all of
16	those cases.
17	MR. NUTT: If you would notice, I think
18	you would notice I was about to make the same point,
19	that there is a 2,274 degree case in there, and I
20	think you can see that the local oxidations and the
21	core wide oxidations still behave very well.
22	DR. WALLIS: I think something is wrong
23	with the fit being the crosses. The fit should be a
24	curve, shouldn't it?
25	MR. NUTT: The reason that that's done

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	669
1	that way is that particular fit was a fit where I fit
2	it with the PCT and with the local oxidation, and the
3	local oxidation is a random variable.
4	So if you make a nice, neat polynomial on
5	a random variable, it doesn't plot very well as a
6	nice, straight line.
7	If I plot it purely as if I do core
8	wide oxidation purely as a function of PCT only, and
9	you can do ALMOST as well, and later on I did it to
10	get it, then you get a nice, smooth curver because
11	this is a nice, smooth function.
12	And all those really are is step-wise
13	linear segments just to show you, you know, where the
14	mean goes.
15	DR. WALLIS: So there are really two
16	arguments you use. One is that these variables are
17	correlated so that if you know one of the extremes,
18	you should know the other one.
19	And the other is that the PCT is far
20	closer to its criterion than the other one. The total
21	oxidation criterion is off the map.
22	MR. NUTT: Exactly. In fact, I think I
23	was mentioning to someone the other day that this
24	really is, too, and I think it's an important point,
25	and I'm going to repeat your point because I think it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	670
1	is important.
2	I think there's two things that we
3	demonstrate. One, that if you meet PCT, if you can
4	meet the PCT criterion, there's no possibility that
5	you'll fail either of the oxidation criteria.
б	Secondly, because they're very highly
7	correlated, if you take the highest PCT case and
8	report the oxidation from it, that those two oxidation
9	numbers are very close to being the maximum oxidation.
10	DR. WALLIS: All the 95th percentile.
11	MR. NUTT: Right, sir. They're very high
12	probability. So simply taking one case and reporting
13	both answers is quite sufficient, but again, it takes
14	the two reasons together.
15	DR. WALLIS: Now, do you want us to is
16	there a matter of debate between you and the staff or
17	are you agreed to this?
18	MR. NUTT: The staff is here.
19	MR. LANDRY: The staff accepts that
20	argument. You'll hear more about this tomorrow, but
21	I
22	DR. WALLIS: We will hear about it?
23	MR. LANDRY: As far as I know. I don't
24	have my statistical person here.
25	DR. WALLIS: We'll have a statistical

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

671
expert here tomorrow?
MR. LANDRY: But as far as I know, he
accepts this argument.
DR. WALLIS: He accepts this argument.
That is remarkable.
Okay. Anything else today? Anything else
today? The probability of our getting to dinner is
increasing.
DR. KRESS: Is that 95 percent?
DR. RANSOM: Now, what kind of statistical
method are we going to use to select where we're
going?
DR. KRESS: A random walk.
DR. WALLIS: Shall we come off the record
at this point since we're getting a little erratic?
Yes?
Thank you very much.
(Whereupon, at 6:18 p.m., the meeting was
adjourned.)