Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, November 12, 2002

Work Order No.: NRC-644 Pages 1-197 [CLOSED SESSION PAGES 198-520]

> NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
8	+ + + +
9	TUESDAY,
10	NOVEMBER 12, 2002
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittees meat the Nuclear
15	Regulatory Commission, Two White Flint, North Room
16	T2B3, 11545 Rockville Pike, Maryland, at 9:30 a.m.,
17	Dr. Graham Wallis, Chairman, presiding.
18	<u>COMMITTEE MEMBERS</u> :
19	GRAHAM B. WALLIS, Chairman
20	SANJOY BANERJEE, Consultant
21	THOMAS S. KRESS, Member
22	FREDERICK MOODY, Consultant
23	VICTOR H. RANSOM, Member
24	VIRGIL E. SCHROCK, Member
25	

	2
1	ACRS STAFF PRESENT:
2	PAUL BOEHNERT, Staff Engineer
3	ALSO PRESENT:
4	STEPHEN M. BAJOREK, NRC
5	LARRY HOCHREITER, Penn State University
6	RALPH ROSAL, Penn State, University
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	3
1	A-G-E-N-D-A
2	Page
3	Introduction - Chairman Wallis 4
4	NRC-RES Rod Bundle Heat Transfer Test Program
5	Status
6	- Dr. S. Bajorek 5
7	- Dr. L. Hochreiter
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN WALLIS: The meeting will now
4	come to order. This is a meeting of the ACRS
5	subcommittee on thermal-hydraulic phenomena. I'm
6	Graham Wallis, Chairman of the subcommittee.
7	The other ACRS members in attendance are
8	Tom Kress and Victor Ransom. ACRS consultants in
9	attendance are Sanjoy Banerjee, Fred Moody, and Virgil
10	Schrock.
11	In today's meeting the subcommittee will
12	discuss the status of the NRC Office of Nuclear
13	Regulatory Research's rod bundle heat transfer
14	program, underway at Pennsylvania State University.
15	Tomorrow, and the next day, we will
16	continue review of the Framatome ANP-Richland S-RELAP5
17	realistic code version, and its application to PWR
18	large-break LOCA analysis.
19	Portions of this meeting will be closed to
20	the public for discussion of information considered
21	proprietary in Framatome ANP-Richland, Incorporated.
22	Mr. Paul Boehnert is the cognizant ACRS
23	staff engineer for this meeting.
24	The rules for participation in today's
25	meeting have been announced as part of the notice of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	this meeting, previously published in the Federal
2	Register, on October 23rd, 2002.
3	A transcript of this meeting is being
4	kept, and the transcript will be made available, as
5	stated in the Federal Register Notice. It is
6	requested that speakers first identify themselves, and
7	speak with sufficient clarity and volume, so that they
8	can be readily heard.
9	We have received no written comments, no
10	request for time to make oral statements from members
11	of the public.
12	We will now proceed with the meeting, and
13	I will call upon Dr. Steven Bajorek, from the NRC's
14	Office of Nuclear Regulatory Research to begin.
15	DR. BAJOREK: Thank you very much. This
16	is Steve Bajorek from the Office of Research. What we
17	would like to do this afternoon is to continue on a
18	series of meetings with this subcommittee that
19	explains and gives the status of eight of our
20	experimental programs.
21	In the past we've had the tests that are
22	being run for phase separation at Oregon State. We've
23	looked at the work by V. J. Dhir at UCLA for subcooled
24	boiling model development.
25	Today we would like to give you a status

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

6 1 and review of the RBHT program being conducted at Penn 2 State University. 3 First, before I go any further, Jack 4 Rosenthal wanted me to say that he apologizes for not 5 being able to make the meeting today. He had a doctor's appointment that I guess the doctors would 6 7 not let him out of. But he wanted me to let you know that he would truly rather have been here. 8 9 The RBHT program was started, I believe, in about 1998. Gene may correct me if it was earlier. 10 11 The first two to three years of the program have been 12 tied up, primarily, with construction, calibration of the bundle. 13 14 And at this time we are very pleased to be 15 able to report that we've continued, or we've 16 completed the bundle, or Penn State has, and they've run a series of reflood experiments, and now after a 17 couple or three years, we are finally getting to the 18 19 point where we have usable data. 20 And a group of us from the NRC has been up 21 to Penn State, a couple of times, to inspect the 22 facility, to witness some of the tests. And our 23 initial reaction is we were very much impressed with 24 what they've been able to do, the quality of the data 25 we believe is quite high.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	And it is hitting the objectives that were
2	envisioned for this test program. If you take a look
3	at the existing experimental data for reflood, be it
4	from FLECHT SEASET, ACHILLES, there have been some
5	shortcomings, either in that there weren't sufficient
6	amount of instrumentation, or there weren't
7	measurements that covered all of the various
8	parameters that are believed to be important in the
9	development of a truly mechanistic model for reflood
10	heat transfer.
11	CHAIRMAN WALLIS: Could I ask you now, is
12	the objective of this work is only to get data, or is
13	it to develop models?
14	DR. BAJOREK: It is both. It is first to
15	develop the data, and then to develop the models.
16	CHAIRMAN WALLIS: Because I think it would
17	be very useful to predictions, as you do the
18	experiments, so that you learn, you don't get a
19	mountain of data, and then try to figure out what it
20	means.
21	And then as you find you are learning
22	things, you change the models, and then you maybe fine
23	tune the data, or something. But it is dangerous just
24	to take a lot of data without theory.
25	I don't see, yet, any predictions.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 DR. BAJOREK: The Staff has not made any 2 predictions of this. However, as part of 3 understanding the facility, Penn State has used 4 COBRA/TF to make predictions of the data, before they 5 run the tests, and they've also followed up with their own model development, to try to predict the data that 6 7 they were able to obtain. This is -- one, it is very important, 8 9 because you want to make sure that when you run the tests you don't impose conditions that are going to 10 11 melt the rods, or do something that you don't want to 12 happen to the facility. DR. RANSOM: Wouldn't it be better to use 13 14 TRAC-M for that purpose? 15 DR. BAJOREK: Yes, it would. DR. RANSOM: And in fact, what I found in 16 17 the past, almost invariably with the experiments that are made like this, that they create their own models, 18 19 they aren't integrated with the main objective, which 20 is to get it into the main systems code. 21 And so this creates a disparity later on, 22 that the modelers, more or less, are accused of tuning 23 the codes to try to get agreement when, in reality, 24 the heat transfer correlation, or coefficient, has 25 been derived from some model, you know, which the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

8

	9
1	experimenter used.
2	So it would be nice if these two
3	dovetailed.
4	DR. BAJOREK: No, I agree. I think that
5	it would have been a lot better if we had TRAC-M ready
6	to go, and were able to use it to make it the
7	predictions.
8	Now, using COBRA/TF, however, we don't
9	think is tremendously far off at this point. In TRAC-
10	M right now is a reflood model that was developed in
11	the late '80s, early '90.
12	And Joe Kelly, who has looked at this in
13	a lot more detail than any of us, has concluded that
14	this model just needs to be ripped out of the code,
15	and we need to go back to something else.
16	The first cut of this is going to be what
17	are calling and interim reflood model. And it is
18	going to look a lot like COBRA/TF. We are going to
19	try to take it back to that, and then start to replace
20	those models with improved ones that we can get from
21	the RBHT.
22	DR. RANSOM: One of the disadvantages of
23	that approach is sort of like, you know, the subcooled
24	V. J. Dhir's work, you create a model that doesn't fit
25	in the structure of what you are trying to put it in.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	So somebody in the end is going to have to
2	make compromises, you know, to dovetail these
3	together. And I would guess the same thing is true
4	with TRAC-M, and I don't mean TRAC-M, but the
5	COBRA/TF, that that is probably driven a lot by the
6	familiarity of the principal investigator with that
7	code.
8	But that doesn't help get it into, say,
9	TRAC-M, or get new models into TRAC-M.
10	MR. SCHROCK: I think it would be helpful
11	if there was available a brief assessment of what it
12	is about the past work that has been found inadequate,
13	and how those inadequacies motivate and define new
14	experimental requirements.
15	I don't think we have ever heard that,
16	clearly, about this program.
17	DR. BAJOREK: Actually I would have to go
18	back and look, but I believe that when this program
19	was started in '97, '98, that foundation was laid out.
20	But I would have to go back and check that.
21	Now, one thing that
22	MR. SCHROCK: Well, I don't think that is
23	getting at the intent of my comment. I think we are
24	about to go through discussion of details of
25	instrumentation on a new set of experiences that

(202) 234-4433 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-44443 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) 234-4444 (202) (202) (202) (202) (202) (202) (202) (202) (202) (202) (202

11 1 would, essentially, retilling ground that was very 2 heavily cultivated over a period of 15 years, in the 3 past. 4 And I think we need to be reminding 5 ourselves, as we go through this, what are the clear objectives that we need to keep focused on, and not 6 7 just begin again and say, well, rod bundle transfer is important in large-break LOCA analysis, and we have to 8 9 do it right, and we don't think we did it well enough 10 before. 11 I don't know why we don't think we did it 12 well enough before. I'm not arguing that it was done well enough before. But what I'm looking for is clear 13 14 explanations of how we know now that it wasn't done 15 adequately before, and what we think we can do to make it adequate in a new set of experiences. 16 17 I think you have to keep that sort of as a point of focus in these discussions. 18 19 DR. BAJOREK: Well, would it help, maybe 20 this -- I think one of the problems that I think we've 21 encountered, as we start to talk about what is in the 22 code, and what we get from the test programs, is it starts to get too much for one meeting. 23 24 Would it be a decent idea to take meeting, 25 in the future, describe what is in TRAC-M at this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	point, and how we are going to take these data and
2	chaNge the models in what order?
3	MR. BOEHNERT: Well, we have a meeting
4	scheduled in December to discuss TRAC-M, maybe you
5	want to work that into the agenda.
б	DR. BAJOREK: We can work some of that in
7	there.
8	MR. BOEHNERT: Yes.
9	CHAIRMAN WALLIS: Joe Kelly gave us a
10	presentation, I would say, a couple of years ago,
11	where he pointed out some of the anomalies in the
12	present code, which needed to be fixed. I remember
13	that.
14	But it wasn't quite clear to me how this
15	tied in with this program, and what was going to be
16	measured this time, which wasn't measured last time,
17	with flood tests, which would resolve his
18	difficulties.
19	So I think it would be useful if we could
20	do that next month. Is Joe, who is the guy who is
21	coordinating this with the model development?
22	DR. BAJOREK: Well, Joe is the guy who is
23	in charge of the code development, and I work with
24	Joe, looking at the models that are going into the
25	code, but also taking a look at the experimental

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	programs.
2	CHAIRMAN WALLIS: So you are the bridge
3	between the theory and the experience?
4	DR. BAJOREK: Yes.
5	CHAIRMAN WALLIS: So maybe you are the guy
6	who needs to come back in December.
7	DR. BAJOREK: Well, I will be here,
8	anyway.
9	CHAIRMAN WALLIS: I will ask again why it
10	is you again.
11	(Laughter.)
12	DR. BAJOREK: Maybe we will get more of
13	our management there, or get an answer for it. But,
14	no, granted that we do need to lay that out, and we
15	have not done a real good job, at this point, at
16	showing how we are going to take these data, and
17	integrate these into the code.
18	But let us take that as an action, and
19	start working that in at the next meeting.
20	DR. SANJOY: One other thing, just to
21	continue Virgil's point. With the subcooled boiling
22	work you made a clear case to us about what data was
23	missing, and why that program had to go forward.
24	What I guess is still not clear to me, at
25	least, I don't know to others, is what is the case for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 these experiments at all? I mean, at some point this 2 case was made way back in history, the anecdotal 3 evidence, that people at CSAU thought the tests were 4 needed, therefore we did it, or whatever. But I think we still need to make that 5 case, once again, and continue to make that case. 6 7 What is missing, why are we doing it, what are we 8 going to find, how is it going to improve the models. 9 And that doesn't come through, from 10 reading the material. 11 DR. BAJOREK: Okay. CHAIRMAN WALLIS: Then we should ask, are 12 we finding it, as we begin to look at the results. 13 14 DR. RANSOM: Right. 15 DR. BAJOREK: Part of the answer as to, I think, what has been missing, the earlier data, you 16 see a little bit of it. This wasn't the intent of the 17 overhead here. 18 19 But we have, overall, four major series of 20 tests which are planned. Larry is going to talk with 21 you, later this afternoon, describe the bundle, and talk about the transient forced reflood tests that 22 23 were run since about last May. 24 Penn State has managed to run on the order 25 of 32 experiments under varying conditions to cover a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

14

15 1 range of reflood rates, pressures, and subcooling. 2 This kind of gives us our base cases for the reflood 3 model. 4 The next couple of series of tests are 5 going to start to go into questions on the reflood model that we don't believe have been adequately 6 7 answered in previous test series. 8 Jumping here to the third one, the steam cooling, the droplet injection tests. 9 One of the question marks that we've run into is what is the 10 11 convective enhancement that occurs when you have 12 droplets within the steam flow. Earlier tests have been run, I believe, in 13 14 a two by two bundle at UCLA, using glass beads, show 15 that you get much better heat transfer when you have this dispersed phase in there. 16 17 But we really haven't been able to sort that out of earlier tests like FLECHT or FLECHT 18 19 SEASET, to try to get at that individual mechanism, 20 Penn State is going to be running a series of tests, 21 one with steam only, but also with a rake of droplet 22 injectors in the bottom of the facility. 23 to be able to get we are going So 24 experimental data that gives us a known droplet 25 content for a given steam flow. So we will be able to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	get that individual mechanism.
2	Larry is going to describe the
3	instrumentation for this bundle, and that goes in
4	here, here, the first, third and fourth. Some
5	questions on what are the details that go on at the
6	quench front, what is the progression of the void
7	fraction in that vicinity, as it changes with
8	subcooling and reflood rate.
9	Well, from earlier tests like FLECHT, the
10	DP cells were, I think, a foot apart. Other
11	facilities like G2, which is commonly used, I think
12	they were two feet apart. It doesn't give us anywhere
13	near the detail to try to determine what was the flow
14	like right where quench was occurring.
15	The other thing that was very difficult to
16	get out of earlier experiments, was some of the
17	droplet information. When we were trying to use the
18	FLECHT SEASET data in development for the models for
19	best estimate at Westinghouse, trying to determine
20	what was the reflood droplet size, what was that
21	initial size, and how did it chaNge as it went through
22	grid spacers.
23	It was very difficult, because in the
24	FLECHT SEASET experiences you had measurements of, I
25	think, 3, 6 and 9 feet, but very few droplets. The 3

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	foot may have half a dozen droplets, the 9 foot, for
2	a couple of tests, may have only on the order of 50 to
3	100.
4	And they weren't broken down for all of
5	the tests, there were only some very select ones.
6	Now, a lot of that had to do with the instrumentation
7	at the time, which really meant taking some good high
8	speed movies, and get somebody with a good set of
9	eyes, projecting it on a screen, and going frame by
10	frame, to look at how the droplet changed.
11	It took forever and a day to try to get
12	information for one test. With newer instrumentation
13	we are able to get that much quicker, you can get it
14	at multiple locations, and we are going to be able to
15	get better models for how does the droplet originate,
16	how does it change as it goes through an individual
17	grid, and how quickly does it evaporate away in a
18	steam of a certain temperature.
19	All of that information was there, to an
20	extent, in some of these earlier experiments, but it
21	was so sparse it made it very difficult to get models
22	that you were confident in, and get them quantified,
23	to a degree of accuracy that you could apply them,
24	then, to a PWR, or a BWR experiment.
25	So I think where you will see some of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

those questions answered is what you are going to get that is going to improve the models, and where those uncertainties are. It is in those processes that are 3 4 right now buried in the reflood models, that we can't get at, unless we get some of the better experimental information. 6

So we've got four series to try to 8 segregate that out, using the newer instrumentation. The second one, which I haven't really mentioned on here, those add almost a more basic question, as how do the flow patterns develop and transition within a 11 12 rod bundle.

How do they measure 13 CHAIRMAN WALLIS: 14 interfacial drag?

15 DR. BAJOREK: We don't measure it 16 directly. I quess I think of it more in terms of 17 using the increased number of DP cells to get at the change in void fraction, as opposed to a direct 18 19 measurement, then using carryover measurements of the 20 steam flow, and liquid flow, coming out of there to 21 deduce what should be the right interfacial drag.

22 DR. KRESS: Is that between the steam and the broad bundles? 23 24 DR. BAJOREK: Steam and the droplets or

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 the films, which were there.

1

2

5

7

9

10

	19
1	DR. SANJOY: What was done at WINFRED?
2	DR. BAJOREK: Those were the ACHILLES
3	tests. I'm trying to remember, or recall exactly what
4	was there in those tests. I don't believe they had
5	much in the way of steam probe measurements in those
6	tests.
7	I think it was more of a traditional rod
8	bundle. I want to say it was on the order of 50 or 60
9	rods. The rods were instrumented, there was
10	relatively sparse steam probe measurement, no droplet.
11	Larry, do you remember what that is?
12	DR. HOCHREITER: Larry Hochreiter, Penn
13	State. The WINFRED tests were, basically, a set of
14	reflood experiments. It had, I think, a 69 rod
15	bundle. They did have delta P cells on it, but I
16	don't remember them ever reducing that to get any void
17	fraction data.
18	And they primarily looked at temperatures,
19	and the heat transfer, itself. To my knowledge there
20	was no droplet data, there were no steam probes in
21	that facility, that I'm aware of.
22	So it is really their first shot at
23	running a reflood test. And I think what it was used
24	for was basically to confirm the types of heat
25	transfer that they would have been predicting for a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	Sizewell type plant.
2	I think it was really designed to give
3	them a basis for looking at other tests, and other
4	models.
5	DR. SANJOY: Why didn't they use the DP
6	cells to get the void fraction?
7	DR. HOCHREITER: I don't know.
8	DR. BAJOREK: Larry, I think they did get
9	void fractions out of the DP cells, just for a few of
10	the tests.
11	DR. HOCHREITER: Okay, I just never saw
12	it.
13	DR. SANJOY: Are the databases available
14	to us?
15	DR. BAJOREK: Yes, we have some of them,
16	it is hard to find. We do have a report, and some of
17	the experimental data. But, again, I forget some of
18	the details of the bundle, but it wasn't a complete
19	set of data.
20	You get the heat transfer coefficients and
21	the void fractions, but you don't have droplet sizes,
22	you don't have carryover fractions, and if you don't
23	have the steam temperature measurements, you really
24	don't have that consistent set of information.
25	DR. SANJOY: Do you remember the pressure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	range?
2	DR. HOCHREITER: I think it went up to 60
3	PSI four powers.
4	DR. BAJOREK: Yes, it is low pressure,
5	there is a lot of low pressure data with it.
6	DR. HOCHREITER: They also use it for
7	level swell, they also use it to look at the effect of
8	nitrogen injection. In fact that became the
9	International Standard Problem number 25, I think.
10	DR. KRESS: The effect of the droplets, as
11	best as I remember, was pretty sensitive to the size
12	distribution for a given amount of liquid in there.
13	Will we be able to get size distributions
14	out of the
15	DR. BAJOREK: Yes, yes.
16	DR. KRESS: Even inside of a bundle?
17	DR. BAJOREK: Yes.
18	DR. HOCHREITER: Well, I will explain
19	that.
20	DR. KRESS: Line of sight.
21	DR. HOCHREITER: That is right.
22	DR. BAJOREK: But line of sight, but you
23	get droplet sizes, and also total carryover fractions,
24	which I think are really very important to have in
25	these tests.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	I was going to save this more for the end,
2	but since a couple of the questions have kind of come
3	up along this, where does it really fit in with our
4	plans for the model development.
5	As I mentioned, some of the reflood tests
6	are complete at this point, and over the next couple
7	of years they will be moving into the interface, what
8	we re calling the interfacial drag tests, and these
9	droplet injection tests, over the next couple of
10	years.
11	Right now our plate is fairly full when it
12	comes to our ability to take all of the data that we
13	have from our experimental programs. Because of the
14	need for advance plans, our work right now is trying
15	to take the ATLATS data, and develop models for phase
16	separation that we would use in TRAC-M.
17	We did take your suggestion to heart back
18	in June or July, about trying to integrate some of the
19	subcooled boiling models in earlier. Originally we
20	weren't going to be able to get to that, but due to
21	some clever accounting we were able to start that work
22	a little bit earlier.
23	And we have a student at UCLA who is
24	taking their models, put them into a stand-alone
25	package, which I've asked at this point, so that we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	can integrate this into the code.
2	The mechanistic model development
3	MR. SCHROCK: What happened to the interim
4	reflood model?
5	DR. BAJOREK: That is ongoing right now.
6	That is the interim reflood model is where we are
7	taking out the existing package in TRAC-M, and
8	essentially replacing it with the package that had
9	been there, or very close to the one in TRAC-PF1,
10	which is about as close to COBRA/TF as you can get,
11	the way the numerics are right now in TRAC-M.
12	MR. SCHROCK: See, the trouble I have,
13	Steve, is that I'm convinced that when you do detailed
14	experimentation that is related to mechanistic model
15	development, that you have to have some idea of what
16	you mean by mechanistic reflood models, in order to
17	establish what is required of the experiences, what is
18	to be measured, where, how accurately, and so forth.
19	I don't see how you know what those things
20	are from the description that you've given here. So
21	do you learn that from old models that you've had in
22	the code, codes, that you've twitched, and done
23	different things with, to gain some insight?
24	Or what do you do to get all of that down?
25	And how can you convey that to us?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	DR. BAJOREK: I think the right way to do
2	that is to step through some of the existing models in
3	the code, show where we think there are shortcomings.
4	And, more importantly, point where we think they can
5	be improved, within the numerics of the code.
6	In answer to your question, have you done
7	that, I haven't done that with TRAC-M. But in working
8	with code like COBRA/TF, you can find that changing
9	models for interfacial heat transfer interplay with
10	steam temperature, which plays upon the droplets size,
11	which then impacts your heat transfer at the top of
12	the rod.
13	MR. SCHROCK: But what does models mean,
14	here, in this context; is that correlations, or is it
15	first principle analysis of the process, or what?
16	DR. BAJOREK: I would say it is,
17	primarily, correlations. It is those models and
18	correlations for the various processes involved in
19	reflood heat transfer. Interfacial heat transfer, the
20	droplet breakout, heat transfer coefficients from the
21	rod, as a function of the regime, and also the droplet
22	content, transition boiling near the quench front.
23	And I think entrainment, that is another
24	one that is very difficult to pin down.
25	MR. SCHROCK: So it is models meaning

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	correlations in a format compatible with the structure
2	of TRAC and RELAP type codes?
3	DR. BAJOREK: Almost. Because one reason
4	this has deliberately been delayed is in order to
5	install a third field into TRAC-M. Right now we are
6	dealing with the code numerics that does not allow us
7	to model, simultaneously, droplets and liquid films.
8	And we want to start that work early next
9	year, so that we are able to have more flexibility in
10	developing those models.
11	CHAIRMAN WALLIS: Well, does liquid films,
12	are liquid films measured in the Penn State
13	experiment?
14	DR. BAJOREK: No.
15	CHAIRMAN WALLIS: But if you need to
16	somehow coordinate the experiment with the model
17	DR. BAJOREK: Not well
18	CHAIRMAN WALLIS: You need to measure the
19	things that are in your model.
20	DR. BAJOREK: But I need to have the
21	droplet field so I can break it up as I go through
22	grids.
23	CHAIRMAN WALLIS: So there is also a
24	liquid on the wall, maybe there isn't a liquid on the
25	wall in that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	DR. BAJOREK: It depends on the regime.
2	The low temperature regimes, yes. But
3	DR. RANSOM: Steve, I think one thing you
4	just mentioned, at least in my experience has been the
5	root of the problem, is the transition boiling regime.
6	Never been able to explain the precursory cooling that
7	takes place.
8	And I'm talking about a macroscopic
9	effect, because these nodes tend to be on the order of
10	half a foot to a foot. So you've got to explain the
11	average heat transfer behavior over that kind of
12	region of the fuel, in order to explain the progress,
13	say, of a quench front, either boiling down, or
14	heating up.
15	I think boil down is easier, but the
16	reflood part has always been harder. So I guess what
17	we ought to look for is how are you going to shed
18	light on that transition boiling regime in the
19	vicinity of the quench front.
20	And while I'm talking, I guess, I would be
21	surprised if even the principal investigator wouldn't
22	prefer a separate effects experiment, where he could
23	get more detail on what is going on, right in the
24	region of that quench front, rather than, say, rod
25	bundle time.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	DR. BAJOREK: In fact, as part of the
2	Thermal-Hydraulic Institute we are proposing to do a
3	test very much like that.
4	DR. RANSOM: In this facility, or?
5	DR. BAJOREK: Not in this facility, but to
6	use a smaller, separate effects facility where you can
7	focus on some of the details, and use what you learn
8	there in conjunction with the rod bundle, to come up
9	with better models.
10	DR. RANSOM: That has a better chance of
11	finding the answer, I would think.
12	DR. BAJOREK: I mean, in a way we are
13	looking at some of the details of the quench front in
14	much the way that the program was structured at UCLA
15	for subcooled boiling, where he had small scale
16	experiments to take a look at how the bubbles form,
17	and developed, versus subcooling and flow on a flat
18	plate.
19	Very easy geometry, easy to photograph,
20	easy to measure, and then use a small rod bundle to
21	verify things. So we are thinking in terms of that.
22	DR. SANJOY: There's been an enormous
23	amount of work done at that scale in tubes and simple
24	geometries. So we don't want to, we want to make sure
25	that this is not just repeated in some sense.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Because even the inverted annular regime there has been modeling at Berkley, certainly, there has been extensive set of experiments. I would like to know, exactly, before we launch into this, what it is that we will learn, compared to what it is that we already know.

7 Because I think that the modeling efforts 8 have really not taken into account a lot of these old 9 experiments, where very detailed measurements were 10 made. I can probably give you my thesis on that.

MR. SCHROCK: So my question may be, is the past inadequacy of code predictions for this portion of transients a consequence of the structure of the code, or inherent lack of experimental basis for the fundamental processes?

16 If you've not taken the data from past 17 experiments to look at the phenomena processes that 18 are involved there, sufficiently, you may not have 19 used them adequately to know whether you need new 20 experiments, or whether you can gleam that information 21 from the old ones.

So it is unclear to me, still, how the motivation occurred originally, and what the vision is for a new set of experiments that are going to fill in the inadequacy of the past work.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	29
1	DR. BAJOREK: Let me take that as an
2	action.
3	CHAIRMAN WALLIS: Maybe you can think
4	about it. I was just going to propose that we hear
5	from Larry Hochreiter, and then you come back. You
6	were asked to come back at the end of the day, anyway,
7	and you can tell us what you've learned.
8	I mean, they've done these 32 tests in
9	reflood, what did they learn which enlightened you,
10	from those tests?
11	DR. BAJOREK: Well, I will let Larry show
12	the movie, and hopefully
13	CHAIRMAN WALLIS: Well, that is very
14	qualitative, isn't it?
15	DR. BAJOREK: Well, that part of it.
16	CHAIRMAN WALLIS: Well, I would like to
17	see, actually, since they must be far enough into the
18	program, where you could say, you know, this was the
19	state of the art before they did the tests, and this
20	is what we've learned so far, and this is an advance
21	in something.
22	DR. BAJOREK: Well, I will let Larry show
23	the movie. But I think one of the very eye opening
24	things is what are first order effects in these
25	experiments, versus what may not be as, you know, as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	important.
2	I think we will see the grid effects
3	CHAIRMAN WALLIS: Ideally we ought to have
4	some measure of uncertainty before, and uncertainty
5	after, and how you've reduced the uncertainty by
6	getting more information.
7	DR. MOODY: A minute ago the subject came
8	up separate effects test, and I was looking at the
9	abstract of this. Maybe I missed something, the
10	report describes, so on, and so on, to conduct a
11	systematic separate effects test.
12	Well, that is what has been done here, is
13	being done, right?
14	DR. BAJOREK: Right.
15	DR. MOODY: These are separate effects?
16	DR. BAJOREK: Yes.
17	DR. RANSOM: Distinguished from an entire
18	system, but still it is a rod bundle test, which
19	and you are looking at things, I think, that are
20	occurring locally.
21	So, yes, it is separate effects, and it is
22	a single bundle.
23	DR. MOODY: Would it be system boundaries?
24	DR. BAJOREK: Large separate effects test,
25	and small separate effects test.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	CHAIRMAN WALLIS: Would it be time to go
2	on to the Penn State presentation and then you can
3	come back later?
4	DR. BAJOREK: Yes.
5	CHAIRMAN WALLIS: And perhaps give us a
б	bit more wisdom on what you've learned from it all.
7	DR. SANJOY: Before you go, Steve, just a
8	question. You said three fields. And if I recall,
9	there was three fields in track way back, at some
10	point.
11	DR. BAJOREK: There was one version where
12	they did have three fields. I'm not sure whatever
13	became of that.
14	DR. SANJOY: I mean, I think Tony Hurt put
15	it in and Kenneth Sly. Oh, Ken Williams, okay.
16	What happened to that?
17	DR. HOCHREITER: It got published as a
18	thesis.
19	DR. SANJOY: It was never put in?
20	DR. BAJOREK: COBRA/TF has just the two
21	fields, but part of our vision is to get that third
22	field in there, to make it behave a lot more like
23	COBRA/TF.
24	DR. HOCHREITER: Larry Hochreiter, from
25	Penn State.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

32 1 The first thing I learned is don't go 2 second or third at an ACRS meeting. What I wanted to do was to show you some of the results that we've 3 4 gotten to date, in the program. 5 The comments that, I think, Dr. Schrock made, and Dr. Wallis made, about the program, the 6 7 genesis, the origin, the goals, and this type of 8 thing, we did present this to the committee, but it 9 has been a couple of years. 10 MR. BOEHNERT: Yes, you did make а 11 presentation. 12 DR. HOCHREITER: And I think there was, I know there was at least one, maybe two presentations 13 14 that Joe Kelly and I did to the Committee, when we 15 were designing the experiment, and basically providing the rationale for why we were going to do these types 16 17 of test, and what new information we were going to 18 what information lacking, and get, was what 19 information this facility, these tests would provide, 20 that would fill that gap. 21 So as I go through my presentation I will 22 try to point out those areas, okay? 23 This is a joint NRC Penn State program 24 that is being performed at Penn State. The contract 25 was initiated in November of '97. Again, at Penn

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 State it is a program between the	33
	College of
2 Engineering, and the Applied Research La	boratory.
3 The principal investigators	are myself,
4 Dr. Bill Cheung, and Dr. Thomas Lin. Dr.	Lin works at
5 the Applied Research Laboratory.	
6 Again, the reason for doing t	this through
7 Penn State, at the Applied Research Lab	poratory, is
8 they have a very good infrastructure for	r performing
9 experiments. They do, primarily, work for	or the Navy,
10 and this type of stuff. So they have	a very good
11 experimental infrastructure.	
12 Now, in terms of background, a	and of course
13 you have seen all this, what we are	e primarily
14 concerned about is a loss of coolant ac	ccident, and
15 primarily the reflood portion of the loss	s of coolant
16 accident.	
17And the driving force for	it was the
18 improvement in the Best Estimate models.	. When CSAU
19 came about, and was used, the types of	powers that
20 were being examined from the best estimated	ate point of
21 view, were actually fairly low.	
 21 view, were actually fairly low. 22 In the CSAU study I think 	k the peak
	_
22 In the CSAU study I thin	t now plants

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 So what has occurred, in the interim, is 2 that the margin that was identified, from the best 3 estimate analysis has basically been consumed by the 4 utility to basically broaden the operating envelope 5 for the plants. And so you are now seeing best estimate 6 7 peak cladding temperatures that are in the same range of the appendix K calculations that we were looking 8 9 at, perhaps, five years ago. So now the emphasis on the accuracy of the 10 11 best estimate method becomes much more of a critical 12 item, because you now have a reduced amount of margin because you have consumed the margin in the analysis. 13 14 Again, the reflood is usually the period 15 of interest, because this is where the peak cladding temperature occurs. The heat transfer rates are the 16 17 lowest. I think, as Dr. Ransom indicated, predicting the precursory cooling is the key item here, because 18 19 this is where the peak cladding temperature is 20 occurring. And you have several different 21 heat 22 transfer mechanisms. And I will show a figure on 23 that. The area that we are looking at, and trying to concentrate, primarily in this program, is a highly 24

dispersed non-equilibrium flow, where we have

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	35
1	superheated steam with entrained liquid droplets,
2	which are at the saturation temperature.
3	The quench front is progressing up the
4	rods, but this takes time. In the meantime the
5	cladding temperatures can continue to heat if you
6	don't predict the heat transfer rates accurately.
7	And so your peak cladding temperatures,
8	even for your best estimate models occur during
9	reflood in nearly all these situations.
10	This is just a schematic of what we are
11	talking about, for a flow regime, where we have
12	basically a quench front moving up, and typically the
13	cases we are looking at you have low injection flow,
14	or flooding rate, so there can be boiling below the
15	quench front.
16	The heat release from the rods generates
17	high steam velocities which basically shear and
18	entrain the liquid, it gets carried up in the rod
19	bundle.
20	CHAIRMAN WALLIS: That blue stuff is
21	liquid?
22	DR. HOCHREITER: Yes.
23	CHAIRMAN WALLIS: I don't see the film
24	boiling.
25	DR. HOCHREITER: Well, I tried to stay

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	within the lines when I colored it, and it is probably
2	buried behind these tons of liquid here.
3	But you are right, in this case, where low
4	flooding rate, there is a very, very short area of
5	inverted annular film boiling. In facility, you could
6	argue that it is really not even inverted annular film
7	boiling, because it depends on the void fraction that
8	is occurring in here.
9	But the point of interest is actually
10	further up in the rod bundle, where you are basically
11	being cooled by steam, with drops. And it is the
12	interaction between the steam and the drops that is
13	providing cooling.
14	DR. RANSOM: Are your experiments
15	exploring the different reflood rates?
16	DR. HOCHREITER: Yes.
17	DR. RANSOM: Are your experiments
18	simulating different reflood rates all the way from
19	the low to the
20	DR. HOCHREITER: Yes. I will show you a
21	table of conditions.
22	DR. KRESS: Are they also simulating,
23	right here, an initial temperature of the rods?
24	DR. HOCHREITER: Yes, but we have there
25	is, obviously, a range of initial temperatures.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	DR. KRESS: Yes.
2	DR. HOCHREITER: We have chosen to keep
3	the initial temperatures lower than what you might
4	find in calculations. The calculated temperatures at
5	the beginning of reflood can be as high as 1,600
6	degrees fahrenheit.
7	We have been started our tests at 14. We
8	have also can I defer that until I show you the
9	table?
10	DR. KRESS: Sure.
11	DR. HOCHREITER: The dispersed flow of
12	film boiling region is the region that we are trying
13	to focus on to get better quality data. This is one
14	region, the quench front is the other region.
15	And there are several different heat
16	transfer mechanisms that can occur in this region, and
17	looking at the different models in the computer codes,
18	the codes try to predict all of this in one area or
19	another.
20	The problem is that some of the models
21	will overpredict a particular phenomena, other models
22	will underpredict the phenomena. And so if you get
23	the right answer you are never really too sure of why
24	you got the right answer, other than you might have
25	been lucky that day, okay?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	So as Steve had indicated, what we were
2	trying to do in these experiments, we will run the
3	reflood heat transfer experiments, but then we will
4	also do steam cooling, and drop an injection
5	experiments.
6	We are really trying to decompose the
7	disperse flow of film boiling, period, experimentally,
8	and look at these different effects as best as we can.
9	CHAIRMAN WALLIS: What is disperse flow
10	film boiling?
11	DR. HOCHREITER: It is a continuous steam
12	phase which is superheated with dispersed liquid
13	droplets, which are at the situation
14	CHAIRMAN WALLIS: Why is it film boiling?
15	DR. HOCHREITER: It is film because you
16	have vapor against the wall.
17	CHAIRMAN WALLIS: The droplets don't hit
18	the wall?
19	DR. HOCHREITER: The droplets don't hit
20	the wall.
21	DR. KRESS: That is the important regime,
22	because that is what you have when you get close, most
23	of the way up to the peak clad temperature.
24	DR. HOCHREITER: Right.
25	DR. KRESS: Now, it seems to me like one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	could make some real good analytical estimates of each
2	one of these.
3	DR. HOCHREITER: That is right.
4	DR. KRESS: And, you know, the problem I
5	had with it is how many droplets do I have in there,
б	and what is their size.
7	DR. HOCHREITER: Exactly.
8	DR. KRESS: And I made some calculations
9	at one time, this is like 15 or 20 years ago, and I
10	seem to remember that what governed was just two
11	little things, the heat transfer between the vapor and
12	the wall, and the heat transfer between the liquids
13	and the vapors.
14	And I forgot, the radiation just didn't
15	enter into it very much.
16	DR. HOCHREITER: It is small.
17	DR. KRESS: And so if I could, again,
18	handle on those two things, and then basically it is
19	boil down to what is the droplet size and
20	distribution, and how much is in there, because you
21	could almost use existing correlations for that heat
22	transfer between the droplets and the vapor.
23	And almost existing correlations between
24	the vapor and the wall.
25	DR. HOCHREITER: Well, I think it is a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	little more complicated than that, because of things
2	like this.
3	DR. KRESS: Well, yes, what happened was,
4	that was you are right. The crux of it was that
5	droplet size, and size distribution, and the amount in
6	there changed every time you passed the grid.
7	DR. HOCHREITER: That is right.
8	DR. KRESS: And you never knew how to deal
9	with that.
10	DR. HOCHREITER: The test at Oakridge
11	clearly showed that
12	DR. KRESS: Yes, and that is what I was
13	looking at, the Oakridge test.
14	MR. SCHROCK: But you say that the codes
15	try to solve this problem, but then you point out that
16	the grid spacer is a complication. The calculation in
17	the code has axial nodes that are probably too large
18	to deal with the detail that you are talking about
19	here.
20	So it is unclear what one means when one
21	says that the code tries to address this level of the
22	physics, it is not possible in an axial node that has
23	a lot of variation from end of it to the other, to
24	deal at this kind of level.
25	So this is what I mean by identifying

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	where is the difficulty, is it the structure of the
2	code, is it the quality and extent of the experimental
3	information?
4	I'm convinced that it is the latter. I
5	think that it is, somehow, the code and the existing
6	data developed somewhat independently, and so they
7	don't mesh well, and it is hard to use the existing
8	data in the framework of existing codes.
9	So one can change the structure of the
10	code, one can find other experiments that might fit
11	the structure of the code better than the existing
12	ones. But I think you have to define what your
13	objective is, what are you going to do in the end.
14	I don't think you can have a successful
15	resolution of this by getting more detailed
16	experimental data that are beyond the capability of
17	the code to properly utilize those data.
18	DR. HOCHREITER: Yes, but I think you
19	could use the experimental data to tell you what the
20	code should do, and what level of detail you might
21	have to put into the code if you want to represent the
22	phenomena correctly.
23	MR. SCHROCK: I think you can judge that
24	from the data and the code that you already have.
25	DR. HOCHREITER: It depends on the data,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	okay? If there were no spacer grids in these, or the
2	spacer grid effect was very, very small, you probably
3	could survive with larger nodes.
4	But what I'm going to show you today is
5	that you are probably going to have to go to finer
6	nodes. Because the spacers you have not is
7	DR. RANSOM: Well, most of the codes do
8	have a fine mesh rezoning in the conductors, at least.
9	DR. HOCHREITER: But that is at the quench
10	front, primarily, following it.
11	DR. RANSOM: Right. And it seems like the
12	main mechanism that is missing is the bottom one that
13	you have on the slide. And I think I just heard you
14	say that one doesn't occur.
15	DR. HOCHREITER: No, I didn't say that.
16	DR. RANSOM: That the liquid can't touch
17	the wall.
18	DR. HOCHREITER: In the area where the PCT
19	is occurring the liquid does not touch the wall. AS
20	the temperature drops to the point where you can have
21	contact, that obviously does occur.
22	DR. RANSOM: Right, but it seemed to me
23	there was some mechanism in which there is enhanced
24	heat transfer near the quench front, that must be tied
25	up with liquid

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	DR. HOCHREITER: Well, I don't
2	DR. RANSOM: contacting the wall.
3	DR. HOCHREITER: disagree with you at
4	all, at all. In fact, one of the things that we tried
5	to do in the program is we have faster data sampling
6	rates so we can get the quench more accurately, when
7	the rods do quench, and we have fine zones of delta P
8	cells so we can get an estimate of the void fraction,
9	when the rods are quenching.
10	DR. KRESS: I think that is the important
11	parameter, you need to know how much liquid gets into
12	the system, and that is the importance of that quench
13	front.
14	DR. HOCHREITER: But the quench front,
15	quench front is like a boundary condition, all right?
16	Because it provides the basis for the entrainment,
17	which is swept to the upper elevations.
18	The PCT that you are concerned about is at
19	the upper elevations. So you need to know the history
20	of the generation of the entrainment. In fact, in
21	discussions with Steve, and Joe Kelly, and other
22	people, and even when we did this at Westinghouse, the
23	largest uncertainty in our calculations was the
24	entrainment.
25	Not only the amount of entrainment, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	then what it looks like in the flow. And what we've
2	tried to do in these experiments is to capture that
3	information as accurately as we can.
4	We put collection systems onto the
5	facility to give us a rapid indication of when we get
6	entrainment, how much entrainment we get, and then we
7	have very fine delta P cells across the bundle to
8	indicate what the mass storage is, in the facility, as
9	a function of time.
10	And for most of the tests we converge and
11	get about a five percent uncertainty in the mass and
12	balance. For a test that lasts 1,000 seconds, which
13	is pretty good, I think.
14	But this is a phenomena that is more
15	prevalent at the quench front, whereas just these
16	phenomena are more prevalent further up into the
17	bundle.
18	And, as I said, if you did not have spacer
19	grids, you probably could get away with coarser
20	noding. But when you put in something like this, the
21	changes dramatically, I think it is dramatic, anyways.
22	The flow behavior, the dispersed flow
23	behavior, then I think you will have to go to finer
24	axial nodes as, I think, you were suggesting. We did
25	a bunch of noding sensitivity calculations with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

45 1 COBRA/TF, at Penn State, when we were trying to 2 predict these types of tests. Because we would do pretest predictions 3 4 for every test, as the cost of the rod bundle is 5 outrageous. And we certainly don't want to burn out any rods. The program that Steve shows there goes out 6 7 for another three or four years, and there is no provisions to rebuild a rod bundle. 8 And this rod bundle costs a half a million 9 10 dollars. So we do not want to burn up any rods. So 11 we would do tests and calculations until the cows came 12 And this is part of the reason why we set a home. lower initial temperature. 13 14 But there are other reasons that make 15 these tests different, and I think, give you better information than what exists today. 16 17 This is the test facility, basically. And 18 I have to --Theron, he needs his mobile 19 DR. KRESS: 20 microphone. 21 DR. HOCHREITER: If I don't move around I 22 fall asleep. 23 This last picture doesn't MR. SCHROCK: 24 look much --25 I'm sorry? DR. HOCHREITER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	46
1	MR. SCHROCK: This las picture doesn't
2	look much like your low reflood rate cartoon on the
3	previous one.
4	DR. HOCHREITER: Well, this is a bunch of
5	pipes and tanks.
6	MR. SCHROCK: I'm not on this one yet.
7	Your mechanistic diagram, and your low reflood rate.
8	DR. HOCHREITER: This is a blowup of
9	CHAIRMAN WALLIS: Larry, don't touch the
10	screen.
11	MR. BOEHNERT: Don't mark on the screen,
12	only Tom can do that.
13	(Laughter.)
14	DR. HOCHREITER: This picture would be
15	occurring up in here.
16	MR. SCHROCK: And your focus is mainly on
17	that region, in your experiments?
18	DR. HOCHREITER: Well, we have provided
19	instrumentation to focus on this region, but we've
20	also provided more detailed instrumentation to focus
21	on this region. We tried to cover the transient.
22	Not only low flooding rates, but high
23	flooding rates.
24	MR. SCHROCK: Well, I'm recalling some
25	earlier experiments which showed, as this picture

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	suggests, a sort of tongue of liquid moving up and
2	breaking off, having enough momentum to rise some
3	distance beyond the point where it is broken off, but
4	it doesn't have enough force left acting on it to
5	carry it on up, so it falls back.
6	And so you have liquid being thrown ahead
7	and falling back, thrown ahead and falling back. It
8	has always seemed to me that that is, inevitably,
9	important in getting at entrainment rates.
10	Is that going to be studied in these
11	tests?
12	DR. HOCHREITER: Actually if you this
13	region can be between eight inches and a foot above
14	quench front. It is the low void fraction region,
15	lower void fraction region.
16	And what we did, in the experiment, and
17	you will see a picture of this, is that we have
18	pressure cells every three inches. So as the quench
19	front, and it is over about three feet, if I remember
20	correctly.
21	So as the quench front enters that region
22	we will get a finer definition of the local void
23	fraction. We also set the rod instrumentation up such
24	that within each void fraction cell range we would put
25	thermacouples in the rods that would be approximately

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	in the center of the region of where you would be
2	measuring the void fraction.
3	Because the cell is going to measure the
4	average void fraction, once you correct it for
5	pressure drop, and so forth.
6	MR. SCHROCK: So over some period of time,
7	as well as space?
8	DR. HOCHREITER: That is correct.
9	MR. SCHROCK: And time is large compared
10	to the periods of oscillation that I've described, I
11	think?
12	DR. HOCHREITER: Yes, because these
13	experiments, I might as well say this now, one of the
14	unique things we did in these experiments was we kept
15	the power constant. In nearly all the other reflood
16	experiments they simulated a K power.
17	That makes it more prototypical. Our
18	objective was not to be as prototypical as those
19	previous experiments, but rather to provide us data,
20	better quality data, that we could use for model
21	development and assessment.
22	And by keeping the power constant you
23	basically stretch out, particularly, the dispersed
24	flow film boiling period, you stretch the entire
25	experiment out, for that matter.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

49 1 So you get, basically, quasi-steady state 2 disperse flow film boiling. Now, it is not perfectly steady state because the quench front is slowly 3 4 advancing up into the bundle. 5 But you get a longer period of quasisteady state where you can make measurements of vapor 6 7 temperature, drop sizes, rod temperatures, and with the delta P cells in for a void fraction. 8 In addition to the mass that is carried 9 10 out of the facility, measure the steam flow that is 11 carried out, we measure the liquid flow that is 12 carried out. DR. SANJOY: But you have a power profile, 13 14 don't you? 15 DR. HOCHREITER: We have an axial power 16 profile, but we kept it simple. 17 DR. SANJOY: But it was sort of peaked, if I remember? 18 19 DR. HOCHREITER: Right, at about the ten 20 foot elevation. 21 SANJOY: So, in fact, you've got DR. 22 something prototypical about that? 23 DR. HOCHREITER: Yes. 24 DR. SANJOY: If you had kept it uniform, 25 that would have made more sense to --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	DR. HOCHREITER: No, we debated that, and
2	it just we looked at a bunch of profiles that were
3	being used for best estimate analysis, and the worst
4	answers you get, in the best estimate code, are for
5	profiles where the peak is above the mid plain.
6	And it is simple logic, because you are
7	just further from the quench front.
8	DR. SANJOY: But from the viewpoint of
9	what you are saying right now, which is to get data
10	which is for model building, you know, and keep the
11	quasi-steady approach, and so on, that won't give you
12	a quasi-steady approach.
13	DR. HOCHREITER: Well, we do get a quasi-
14	steady approach.
15	DR. SANJOY: Because the power is going
16	up, right?
17	DR. HOCHREITER: The local in your power
18	is going up, but the temperature response are almost
19	steady with time. I will show you some of the
20	temperatures.
21	DR. SANJOY: Well, let me get back to the
22	void fraction measurements. You said you corrected
23	for pressure drop, and so on? How do you do that?
24	DR. HOCHREITER: We do a mass energy, we
25	are doing this now, we are doing the calculations now.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	We know the exit flow rates, we measure those. We
2	know the vapor temperatures in the bundle, so we know
3	the degree of non-equilibrium.
4	We know the rod heat flux distribution
5	from the thermacouples in the heater rods. We can
6	back calculate down into the bundle the local quality,
7	real quality. So we can calculate the local steam
8	flow, the local liquid flow.
9	DR. SANJOY: Equilibrium quality?
10	DR. HOCHREITER: Non-equilibrium, because
11	we are using a measured vapor temperature. Based on
12	that we can estimate a frictional pressure drop for
13	the cells, and correct the cells.
14	Now, the correction will be the most
15	inaccurate for the highest void fractions. The
16	correction will be more accurate for lower void
17	fractions, but the effect of the correction for lower
18	void fractions is less important, because the
19	elevation then is more dominant.
20	DR. SANJOY: How much is the correction?
21	DR. HOCHREITER: We haven't gotten to that
22	point yet. We are just getting to that point now.
23	But in previous, I've done this before, in other
24	tests, but in a much, much coarser scale, and it was
25	approximately a 10 percent effect.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	DR. SANJOY: And you have accelerational
2	pressure drops, too?
3	DR. HOCHREITER: Yes, that is accounted
4	for. All three pressure drop components.
5	CHAIRMAN WALLIS: Now, in the region where
6	globes of liquid are going up and falling down again,
7	they follow F=MA, and gravity acts on them, but it
8	doesn't create any pressure drop, the acceleration and
9	deceleration of the masses of liquid is completely
10	balanced, or mostly balanced by gravity.
11	So the usual kind of decomposition into
12	gravitational and frictional doesn't work.
13	DR. HOCHREITER: Let me think about that.
14	CHAIRMAN WALLIS: If you just juggle it,
15	tossing balls in the air, they go round, and round,
16	and round, there is no pressure drop from the juggling
17	the balls.
18	DR. HOCHREITER: I understand what you are
19	saying, and I went through that argument. And somehow
20	I convinced myself that the cell would measure this.
21	Now, maybe I better go back and
22	CHAIRMAN WALLIS: acceleration terms
23	for the
24	DR. HOCHREITER: Well, there is an
25	acceleration term.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	53
1	CHAIRMAN WALLIS: But it is not the
2	average acceleration, they go up and they come down
3	again.
4	DR. HOCHREITER: If it is a no, local
5	effects like that we are, obviously, not going to get.
6	Because, first of all, the cell is going to measure
7	the average across the bundle.
8	And we have to do, like Dr. Schrock says,
9	you will have to look at that in time, in addition to
10	space.
11	CHAIRMAN WALLIS: You don't have
12	independent void fraction by means of gammas, do you
13	have some sort of a
14	DR. HOCHREITER: We talked about that in
15	the program, and because of funding constraints, that
16	was never
17	DR. SANJOY: The idea could be, at least,
18	checked against people who are using gamma
19	densitometers and bundles and see how accurate it is.
20	DR. HOCHREITER: There was a report on
21	that, I think, in the FIST program.
22	DR. SANJOY: Well, they are using it in
23	Costine, the densitometers. Franz Manger has done
24	some work, so you could probably check it out, at
25	least, to see whether it is accurate or not.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	We always felt it wasn't. We made a lot
2	of gamma densitometer measurements with tubes around
3	the reflood point, one of my students did this way
4	back in the '80s. And we never felt comfortable with
5	pressure drops.
6	But maybe you've worked out how to do it,
7	I don't know.
8	DR. HOCHREITER: Well, it depends upon the
9	sensitivity of the cell. These are actually very
10	sensitive cells.
11	DR. SANJOY: Right, very small pressure
12	differences.
13	MR. SCHROCK: In your report you describe
14	some commercial instrumentation which has outstanding
15	accuracy.
16	DR. HOCHREITER: For the cells?
17	MR. SCHROCK: No, no, for a number of
18	different kinds of instrumentation that I couldn't
19	tell you, off the top of my head, without looking back
20	at the report, which one I'm thinking of.
21	But you give a single figure for the
22	accuracy of that instrumentation, which is a
23	manufacturer's claim.
24	DR. HOCHREITER: That is right.
25	MR. SCHROCK: Do you have any independent

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	corroboration of the manufacturer's claim, and do you
2	have a reason to believe that the uncertainty is not
3	a function of the scale?
4	DR. HOCHREITER: Okay, that is four
5	questions.
6	MR. SCHROCK: That is okay, that is all
7	related.
8	DR. HOCHREITER: Actually we've discussed
9	this with the NRC. To me what you get from the
10	manufacturer would be the minimum error.
11	MR. SCHROCK: I saw that that is the way
12	you are referring to it, I don't understand why it is
13	minimum, but
14	DR. HOCHREITER: I'm sorry maybe it is a
15	maximum error, maximum error. And we just went
16	through this for the data report where this is Ralph
17	Rosal in the back, and he looked at the trace of the
18	signal from the instrument through the electronics,
19	through the DAS system, and so forth, and you get a
20	most probable error.
21	And that is based on the manufacturing
22	information. So that is absolutely the absolute best
23	it could ever, ever be. And that is an error, okay?
24	The uncertainty due to the flow of conditions, the
25	pressure, the pressure variation, these are usually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	much larger.
2	And we have to get that information by
3	looking at the experiment, and it is larger. So when
4	you design the experiment you try to design the
5	instrumentation to minimize Any errors or uncertainty
6	in the instrumentation.
7	But there is an additional component, if
8	you really want the answer, that you have to add on to
9	it, which reflects the uncertainty in the experience.
10	MR. SCHROCK: Well, I guess my comment and
11	question was motivated by a couple of things. One is
12	an inherent distrust of manufacturer's claims for the
13	accuracy of instruments that are black boxes. Buy my
14	instrument, plug it in, and get this accuracy of
15	measurement. It is not a sound engineering approach.
16	Secondly
17	DR. HOCHREITER: Wait a minute, let me
18	address that. To address that we calibrate.
19	MR. SCHROCK: Well, that is why I asked if
20	you have an independent corroboration of that level of
21	accuracy.
22	The other point is that in almost every
23	case, when one looks at the accuracy of the
24	instrument, the accuracy of a given reading, that
25	accuracy will depend upon whether it is at full scale,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	near full scale, half scale, a tenth scale, or
2	whatever.
3	And when one reads the report one has the
4	impression that you've not considered the issue of the
5	accuracy of your experimental measurement in terms of
6	where in the full scale you are operating.
7	DR. HOCHREITER: That is probably true.
8	MR. SCHROCK: We can come back to it I
9	mean, it is true you have not?
10	DR. HOCHREITER: We considered the range
11	that it has to cover, but I think when we did the
12	uncertainty assessment for estimate we did not
13	consider, as far as I remember, I don't think we
14	considered I don't think we considered where we
15	were in the range, I'm not sure, it has been so long
16	since we wrote that.
17	CHAIRMAN WALLIS: Do we need to move on to
18	your pipes and tanks?
19	DR. HOCHREITER: Pipes and tanks.
20	DR. RANSOM: May I just suggest one thing?
21	You know, as far as this void fraction question,
22	measuring with hydrostatic pressures, it can be
23	answered with your code, because it does include all
24	the forces that are involved.
25	DR. HOCHREITER: That is correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	DR. RANSOM: And
2	DR. SANJOY: Not for falling back.
3	DR. RANSOM: Pardon?
4	DR. SANJOY: Not really, because what you
5	see in these experiments, I don't know if you ever
6	DR. RANSOM: Well, I'm not saying
7	everything, but the hydrostatic pressure is affected
8	by the transfer of the body force on the liquid, to
9	the vapor, through the interfacial drag, that is the
10	mechanism that actually changes the hydrostatic
11	pressure along the tube.
12	DR. SANJOY: But the flow is oscillating,
13	remember, in this. And it is not linear with the
14	velocity difference. So when you have a non-linearity
15	like that, it doesn't balance, exactly what Graham was
16	saying.
17	DR. RANSOM: Well, my main point was that
18	it won't answer the question on your experiment. But
19	if you go look at a code, you know what the void
20	fraction is, and you know what the void fraction is
21	that you would calculate from the hydrostatic pressure
22	change.
23	CHAIRMAN WALLIS: As long as the average
24	is representative of what is happening.
25	DR. HOCHREITER: Exactly, it would have to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	be the average, and I think it would be better to look
2	at the actual pressure drop, rather than the void
3	fraction, which is inferred.
4	DR. RANSOM: Well, you have two things.
5	I mean, you take the pressure drop, you calculate,
6	convert it to a void fraction, and you can look at the
7	void fraction, which is
8	DR. SANJOY: You are trying to balance the
9	code against the experience, directly.
10	DR. RANSOM: No, I mainly want to do an
11	experiment with the code and say, okay, how does the
12	real void fraction compare with what I would calculate
13	from, say, a hydrostatic pressure change in the vapor
14	field, and how big is that difference. That can be
15	done.
16	Without knowing anything about the
17	experience, it just tells you what kind of errors you
18	might expect.
19	CHAIRMAN WALLIS: Sometimes the liquid is
20	running down the wall, and you actually have a
21	negative friction in your theory, which is
22	DR. RANSOM: That doesn't affect that
23	affects the hydrostatic pressure, also, because it
24	tends to resist the, you know, the vapor flow.
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	model.
2	DR. RANSOM: Yes.
3	DR. SANJOY: The model actually, when you
4	average the equations, the way they are done, only
5	holds if the oscillations are not large compared to
6	the mean flow.
7	You can show, in fact, that the model
8	breaks down because friction is non-linear, because of
9	the square. So these mean field models that are used
10	don't use for oscillatory flows very well. I mean,
11	this is pretty well known.
12	DR. RANSOM: Because of virtual mass
13	effects, and things like that.
14	DR. SANJOY: Well, not even that, it just
15	comes through friction, I mean, directly. It is a
16	non-linear term, right?
17	CHAIRMAN WALLIS: Well, I guess we are not
18	going to discuss the model at all, today. I think we
19	should move on to the experiment.
20	DR. SANJOY: That is why I'm saying the
21	model may not be it would be nice if you took a
22	densitometer and do it.
23	CHAIRMAN WALLIS: He is not making a
24	presentation on the model, so I guess we have to ask
25	him about his experiment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	DR. HOCHREITER: This is the test section,
2	here, these are the delta P cells that are hung off
3	the test section. And, again, there is a fine, fine
4	group of cells in this region here, to capture the
5	quench front effects, particularly in attempt to
6	correlate heat transfer with void fraction.
7	The objective was to get a set of data,
8	better data than exists right now, because most of the
9	experiments right now, these things are at least a
10	foot to two feet apart. So the objective is to get a
11	better set of data where you can correlate the as-
12	measured heat transfer, versus void fraction.
13	So you can come up with a relationship
14	between heat transfer and void fraction, particularly
15	in the region above the quench front.
16	DR. MOODY: Where on that background is
17	your peak?
18	DR. HOCHREITER: Right about here.
19	CHAIRMAN WALLIS: But the only unusual
20	feature of this system is the pressure oscillation
21	dampening time.
22	DR. HOCHREITER: Yes.
23	CHAIRMAN WALLIS: It seems to me that in
24	the real reactor you have a compliance of the system,
25	it is not clear to me that the pressure oscillation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	damping tank is prototypical of that compliance,
2	whether or not you get oscillations in reflood is
3	related to the whole system.
4	DR. HOCHREITER: Well, we weren't trying
5	to be prototypical here. What we wanted to be able to
6	do is control the pressure more accurately,
7	particularly in here.
8	CHAIRMAN WALLIS: Yes.
9	DR. HOCHREITER: Because pressure
10	variations, and we found this out because I can't
11	find where the valve is. This valve could cycle,
12	would cycle, actually. And you would drive pressure
13	oscillations in here, this result in invalidating a
14	large number of tests, because it was like an imposed
15	boundary condition on the facility.
16	DR. SANJOY: I think your point is well
17	taken, but in a real system, in a prototypical system
18	you could get oscillations, as Graham pointed out,
19	especially in some of these new concepts where the
20	reflood is gravity driven.
21	DR. HOCHREITER: All the reflood in every
22	plant is gravity driven.
23	DR. SANJOY: Right, so then you will get
24	the
25	DR. HOCHREITER: Yes, but it is the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	oscillations that come from the downcomer, because
2	that is where the head is, that is what is driving the
3	flow into the reactor.
4	DR. SANJOY: Right, but in a sense these
5	oscillations depend on the details of the system, and
6	you could get oscillations, right? And they can
7	affect entrainment.
8	DR. HOCHREITER: Oh, they will.
9	DR. SANJOY: Yes.
10	DR. HOCHREITER: I mean, we can simulate
11	that effect in this test.
12	CHAIRMAN WALLIS: Maybe you need to do
13	tests with different amounts of oscillations.
14	DR. HOCHREITER: There have been tests
15	that have been run like that. For instance, we ran
16	some in the FLECHT AND FLECHT SEASET program. We
17	didn't really have a lot of different oscillations.
18	We also ran gravity reflood tests at both
19	those programs. So, I mean, there is some data out
20	there, and you do get these surges that go into the
21	bundle. And then you are dependent upon the driving
22	head, and the resistance downstream.
23	CHAIRMAN WALLIS: I think the surges tend
24	to help your quenching?
25	DR. HOCHREITER: They do. But then the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	flow drops out. The flow reverses and drops out, and
2	you are basically heating up adiabatically.
3	CHAIRMAN WALLIS: We don't know what
4	happens in a reactor.
5	DR. HOCHREITER: No. I do remember the
6	Long Sung Tong, that reactors don't oscillate, I do
7	remember that.
8	Anyways, in our test facility we have an
9	upper plenum here, which react as a first stage space
10	separator, and we have liquid collection tanks. And
11	the idea was to quickly measure the liquid as soon as
12	it got up here.
13	So before separation we measure the liquid
14	in a small tank first, then a larger tank.
15	CHAIRMAN WALLIS: from your write-up,
16	how would the upper plenum work. You have something
17	about a weir, and trying to make sure there was no
18	back flow from the upper plenum.
19	DR. HOCHREITER: Yes.
20	CHAIRMAN WALLIS: But I couldn't see,
21	there was no detail in the
22	DR. HOCHREITER: Well, not on this figure,
23	no.
24	CHAIRMAN WALLIS: so that geometry,
25	even in your big fat report I couldn't see any detail

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	of what happened up there.
2	DR. HOCHREITER: This housing extends into
3	the upper plenum. So the liquid that gets separated
4	out here does not run back down. And then you drain
5	it very quickly, and you vent these tanks are
6	vented to the plenum.
7	This is a standard steam separator with a
8	liquid collection tank, so any liquid that gets
9	carried out by the steam is separated and measured
10	here. This says, we talked about the suppression
11	damping tank.
12	So the liquid measurements, for the liquid
13	of the bundle are here, here, and here. This is the
14	steam flow, and then these pipes are heated, and these
15	tanks are heated.
16	All this system here is heated saturation.
17	CHAIRMAN WALLIS: How do you know how to
18	slice that damping tank?
19	DR. HOCHREITER: We looked, actually, at
20	the ACHILLES program, and looked at the volume in
21	ACHILLES versus the volume in the tank, and scaled it
22	based on that. Because the ACHILLES had very, very
23	good pressure control.
24	CHAIRMAN WALLIS: The purpose is to damp
25	out oscillation not to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	66
1	DR. HOCHREITER: Really, the purpose is to
2	prevent any oscillations that come from trying to
3	control the pressure to feedback under the system. We
4	had this problem in FLECHT SEASET, and we were trying
5	to cure that problem.
6	And ACHILLES did not have that problem,
7	and the ACHILLES people came to Westinghouse and
8	picked our brains for several days. In fact Ralph
9	Rosal went over to England to go through a design
10	review on ACHILLES.
11	And the thing that the British added,
12	which was very different, was this tank. And they
13	wound up with better pressure control than we had in
14	FLECHT SEASET.
15	We also have provisions for a boiler which
16	can provide the single phase steam into the facility.
17	We have an injection port within the housing to be
18	able to inject water droplets of different sizes.
19	We've actually run tests on injection nozzles, and
20	measured the droplet sizes.
21	So we can run experiments now. Those
22	tests where you would have steam coming in here, and
23	you would inject water, would be more of a steady
24	state, or much more of a steady state from boiling
25	test.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	Because what you are doing is you are
2	getting rid of the quench front, okay? So in theory
3	you could run those tests for much, much longer period
4	of time, separate out the data.
5	And there is other instrumentation, within
6	the facility, where you can measure more details
7	within the rod bundle themselves. We have traversing
8	steam probes, which I will show you a schematic of,
9	and then pass one around.
10	And when you run a steady state test, like
11	a steam cooling test, you can traverse these steam
12	probes, and there is 13 of them.
13	CHAIRMAN WALLIS: Can you tell us what
14	they actually measure?
15	DR. HOCHREITER: Temperature.
16	CHAIRMAN WALLIS: They measure their own
17	temperature, but how is it related to what is going on
18	around them?
19	DR. HOCHREITER: Well, I'm going to show
20	you some of that.
21	CHAIRMAN WALLIS: they quench, so they
22	go down to the saturation temperature.
23	DR. HOCHREITER: And then come back up.
24	CHAIRMAN WALLIS: Come back up. Were they
25	measuring radiation from the rods?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	DR. HOCHREITER: There is a radiation
2	component that has to be factored in.
3	DR. KRESS: Now, you can run those tests
4	at a higher temperature, because you don't have to
5	worry about the burn-up.
6	DR. HOCHREITER: Well, you always have to
7	worry about burning up these rods.
8	DR. KRESS: yes, but you don't have to
9	worry about going into the departure from nucleate
10	boiling time.
11	DR. HOCHREITER: No, because you are
12	already there.
13	DR. KRESS: Yes. But you could run them
14	at higher temperatures, I think.
15	DR. HOCHREITER: I will tell you what
16	limits some of the temperatures, are going to be this
17	apparatus up in here.
18	DR. KRESS: You've got limitations on the
19	steam temperature coming in there?
20	DR. HOCHREITER: Right.
21	DR. KRESS: Okay.
22	DR. HOCHREITER: I mean, I think we went
23	to metallic seals, up here, for that very reason.
24	MR. SCHROCK: These droplets that are
25	sprayed in, are sprayed into the rod bundle, how do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	you prevent them from impinging directly on the wall?
2	DR. HOCHREITER: We've done some
3	experiments where we've positioned these, and these
4	holes are electromechanically machined, so they are
5	very precise holes. And we inject, into the
6	subchannel center.
7	CHAIRMAN WALLIS: Pointing downstream?
8	DR. HOCHREITER: Well, pointing in the
9	direction of the steam flow, okay? And so we run some
10	bench type experiments on that. Will they impact the
11	walls? I'm not sure.
12	MR. SCHROCK: But it is not directed
13	towards the wall, it is not like a
14	DR. HOCHREITER: No, no
15	MR. SCHROCK: spray head, they are
16	opposite a lot of different directions, it is one
17	little jet that
18	DR. HOCHREITER: It is like what, three
19	small holes per subchannel, if I remember correctly.
20	MR. SCHROCK: There is three small jet
21	streams axially down each
22	DR. HOCHREITER: Right, subchannel. And
23	we can, obviously, bury that. We can reduce the
24	number of holes so you reduce the amount of liquid
25	flow.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	And these are inserted tubes that slide in
2	between the rods, and with the holes pointing upward.
3	And we have not run any of those tests yet. Those are
4	tests to be run in the future.
5	This is a cross section of the bundle. It
6	is a seven by seven. These are, basically, rods which
7	are hollow tubes, these are not heated. So there is
8	45 heater rods, okay?
9	And when we look at the data we primarily
10	look at the inner 5 by 5. We do have instrumentation,
11	of course, all the way around it, and also on the
12	housing.
13	The rods are made out of inconnel, the
14	housing is made out of inconnel. The thermocouple
15	sheaths inside the heater rods are made out of
16	inconnel.
17	And the reason for this is to try to
18	prevent differential thermal expansion which can lead
19	to bowing, either of the housing, or a bowing of the
20	rods. Inconnel is a better high temperature material
21	to be used, anyways.
22	Inside the bundle we have eight of these
23	spacer grids.
24	CHAIRMAN WALLIS: Now, is there some
25	liquid that goes to the outer wall, and is very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	different from the liquid in the middle?
2	DR. HOCHREITER: Well, we try to minimize
3	this access flow area to prevent that. We also heat
4	the housing by radiation from the rods. So when you
5	start the tests, you start the tests full of steam,
6	and then you basically pulse the bundle to heat the
7	housing.
8	And we typically get the housing
9	temperature up to around 900 to 1,000 degrees
10	fahrenheit at the peak power location.
11	And I'm going to show you some housing
12	quench fronts, and some rod quench fronts.
13	DR. MOODY: Is this little flag on each
14	one of these the skin flow?
15	DR. HOCHREITER: Yes, that is a simulation
16	of a prototypical mixing vein grid.
17	Westinghouse was kind enough to send us
18	drawings without dimensions, which that was fine. And
19	then we took those drawings, and we made manufacturing
20	drawings, and we had a company make the grids for us.
21	The supports we have to use are different
22	than what are used in prototypical grids. Plus we
23	have to leave more clearances, okay? When the bundle
24	is cold the rods should rattle, all right?
25	In other words, we don't really use the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	grids for anything more than spacing of the rods. In
2	the reactor the grids are really used to support the
3	rods.
4	And the reason for this is we don't want
5	the rods to get bound up in the grids when it is hot.
6	And we don't want the rods to bow.
7	MR. SCHROCK: How do we cope with the
8	problem that the manufacturer's spacers may, probably,
9	be different than the ones that you examine in these
10	experiments?
11	How dependent will your "models" be on the
12	specifics of these spacer geometries?
13	DR. HOCHREITER: Well, what we are
14	planning on doing is we will characterize this grid
15	primarily in terms of a blockage area. Now, we may
16	have to go to a finer level than that, particularly
17	when we are looking at the veins.
18	We have to look at the fraction of the
19	flow that is swept by the veins. But the calculations
20	that I did years and years ago basically say that, you
21	know, the steam can flow around things, the drops go
22	straight through.
23	So I think to the first order of
24	magnitude, the thing that is important is the amount
25	of blockage area, because that is what is going to
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	shatter the drops.
2	MR. SCHROCK: So if there is no clear line
3	of sight through a grid spacer, the detail of the
4	geometry no longer matters, the liquid is going to
5	impact the wall?
6	DR. HOCHREITER: That is right, that is
7	what I think.
8	MR. SCHROCK: All right.
9	DR. HOCHREITER: This is the test
10	facility. These, again, are all the delta P cells.
11	One of the unique things we did in this facility,
12	which caused us much agony and grief, was to use very
13	large windows.
14	CHAIRMAN WALLIS: Why are those delta P
15	cells so enormous?
16	DR. HOCHREITER: I have no idea. But I
17	will say that we got a good deal on this.
18	DR. SANJOY: Are they Pizio?
19	DR. HOCHREITER: No, strain gauge. I'm
20	looking at Ralph. I think it is strain gauge, the
21	delta P cells, they are strain gauge, aren't they?
22	DR. ROSAL: No.
23	DR. HOCHREITER: What are they?
24	DR. ROSAL: It is a diaphragm.
25	DR. HOCHREITER: All right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

74 1 DR. SANJOY: Because it is very sensitive, 2 right? DR. ROSAL: -- the gap between the sensor 3 4 and the diaphragm, and they are very strong. 5 MR. BOEHNERT: How do they measure that 6 gap? 7 DR. ROSAL: Your question is how do you 8 measure the delta peak? 9 DR. SANJOY: So sensitively, yes. 10 DR. ROSAL: The sensor is a very large 11 diaphragm, and both sides have a, they measure, I 12 guess, the gap, the movement of the diaphragm. Is that a capacitance, or 13 DR. SANJOY: 14 optical --15 DR. ROSAL: It is like a capacitance detector, and it is very sensitive, it is very strong. 16 17 You can overload one side, 5,000 PSI, and the diaphragm doesn't disturb. 18 19 DR. SANJOY: Are you also -- this is not 20 a flash mount, little pressure -- or how is the --21 DR. ROSAL: The taps are on the housing. 22 DR. SANJOY: So it goes into the wall with 23 a little tap? 24 DR. ROSAL: There is a cavity in the DP cell where the two lines come, the high side and the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	75
1	low side come in.
2	CHAIRMAN WALLIS: How do you know what is
3	in the lines?
4	DR. HOCHREITER: You probably can't see
5	these, these are all sloped downward.
б	DR. ROSAL: THE lines are tubes, 2/8ths in
7	diameter, they come from the wall of the housing into
8	the
9	CHAIRMAN WALLIS: They have to be full of
10	liquid to work properly?
11	DR. ROSAL: Yes, there is liquid.
12	DR. HOCHREITER: in the reference leg,
13	too.
14	DR. ROSAL: It will maintain the reference
15	leg full all the time.
16	DR. SANJOY: Do you purge liquid through
17	them?
18	DR. ROSAL: Yes.
19	DR. SANJOY: Or how do you keep them full?
20	DR. ROSAL: Yes, you purge.
21	DR. SANJOY: Cold liquid?
22	DR. HOCHREITER: Yes. And the stand-off
23	keeps them cold.
24	DR. ROSAL: They are away from the
25	housing, so that the reference leg is at room

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	76
1	temperature all the time.
2	DR. SANJOY: And does this liquid actually
3	get into the test section?
4	DR. HOCHREITER: You mean the liquid in
5	here?
6	DR. SANJOY: Yes, what happens to the
7	liquid in the lines?
8	DR. HOCHREITER: Well, you start off with
9	these as full as you can get them, okay? But they are
10	sloped towards the cell.
11	DR. ROSAL: There is a slope and the
12	diameter is large enough so we don't capture gas
13	bubbles in it.
14	DR. HOCHREITER: But what you are trying
15	to do, you are trying to always make sure the
16	reference leg on the cell stays filled.
17	DR. SANJOY: Well, each of the taps have
18	to stay filled too, right?
19	DR. HOCHREITER: No.
20	DR. SANJOY: They don't?
21	DR. HOCHREITER: No.
22	DR. SANJOY: Because they are horizontal?
23	DR. HOCHREITER: Yes. Slight slope.
24	DR. SANJOY: And the hole itself is it
25	very carefully deburred, or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	77
1	DR. HOCHREITER: Yes.
2	DR. SANJOY: And you've checked it all?
3	DR. HOCHREITER: Yes.
4	DR. MOODY: What was the diameter, Larry,
5	did you say?
6	DR. HOCHREITER: The tubing is 3/8ths of
7	an inch.
8	CHAIRMAN WALLIS: How big is the hole?
9	DR. ROSAL: One-eighth of an inch. From
10	experience we determined that for two phase flow
11	CHAIRMAN WALLIS: So a bubble in the hole
12	have
13	DR. ROSAL: For a two phase flow you have
14	to have a larger tap than for a single phase flow.
15	CHAIRMAN WALLIS: Yes, otherwise you can
16	get a bubble in the hole, or a drop on the hole.
17	DR. ROSAL: And it stays there.
18	DR. HOCHREITER: As I said, one of the big
19	things that is different in this facility is the size
20	of these windows. These windows are almost a foot.
21	And we positioned the windows to be able to view
22	spacer grids.
23	We also heat the windows, just like we
24	heat the housing. In fact, are clam-on radiant
25	heaters, we use to heat the windows. And then we can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	photograph through here, we also use a digital camera,
2	laser illuminated digital camera system.
3	CHAIRMAN WALLIS: You try to keep the
4	windows dry, then?
5	DR. HOCHREITER: Yes, until the quench
6	front on the rods basically approaches, and then it
7	basically overwhelms.
8	CHAIRMAN WALLIS: So droplets that come up
9	there evaporate when they hit the window?
10	DR. HOCHREITER: Well, they probably don't
11	even hit the window because the window is so high.
12	DR. KRESS: Now, you take photographs of
13	the windows?
14	DR. HOCHREITER: Yes, I'm going to show
15	you some of the results of the data, and we will look
16	at a film clip.
17	These are traversing steam probes, okay?
18	DR. KRESS: To get the steam temperature?
19	DR. HOCHREITER: To get the vapor
20	temperature.
21	DR. MOODY: What window material do you
22	use?
23	DR. HOCHREITER: Quartz.
24	DR. MOODY: Quartz. You are not etching
25	your quartz yet?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	79
1	DR. HOCHREITER: No, it cracks first.
2	DR. MOODY: We had an awful lot of quartz
3	in our lab.
4	DR. SANJOY: We went to sapphire.
5	DR. HOCHREITER: We've had a lot of
6	problems with the windows, because just a small
7	distortion in the bundle, in the housing, and you have
8	to use a high temperature seal.
9	These seals were like 800 dollars each.
10	And then when you tighten down, because you have such
11	a large window, any distortion that you are trying to
12	compensate for, with the seal, you wind up cracking
13	the edge of the windows.
14	So, again, we lost time because we were
15	forever taking windows out, replacing windows,
16	replacing seals, and so forth. And it really became
17	a problem.
18	This is what these traversing steam probes
19	look like. We have three 15 mil thermacouples which
20	are, basically, held onto a piece of inconnel shim
21	stock, and that is what is being routed around.
22	These can move in and out between the
23	subchannels. For the majority of the tests these
24	probes were positioned at the center of subchannels.
25	But I'm going to show you data for a probe being at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	the center of a subchannel, and for a probe being at
2	a gap between two rods.
3	These, because they are so small, and
4	again these tests are sort of quasi-steady state, you
5	will measure the vapor temperature, the non-
6	equilibrium vapor temperature for a much, much longer
7	time period, than we ever achieved in FLECHT, or
8	FLECHT SEASET, okay?
9	The quench front can almost be within a
10	foot or less before these things will totally
11	completely wet. Notice totally, completely wet. You
12	will get dips down to the saturation temperature.
13	And at least I have an interpretation of
14	what you should use for the steam temperature.
15	DR. RANSOM: And what is time constant for
16	those?
17	DR. HOCHREITER: 15 mil TCs, I don't know,
18	I don't remember. Short.
19	CHAIRMAN WALLIS: So you correct for
20	radiation, you calculate the radiation heat flux, and
21	you have a correction for the
22	DR. HOCHREITER: Yes. Now, we haven't
23	done it in these thermacouples, these specific
24	thermacouples. We did those types of calculations on
25	other bare thermacouples we used, in previous

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	experiments, and on the aspirating thermacouples we
2	are using FLECHT SEASET.
3	And the temperature levels for the rods
4	are actually relatively low here. So the radiation
5	effects, I think, are going to be small. Because they
6	were small, at much higher temperature levels, for
7	previous experiments.
8	DR. RANSOM: There must be an error in
9	your report. You say here it is .813 millimeters,
10	those are much smaller than that, I believe.
11	DR. SANJOY: He says .15 inches.
12	DR. RANSOM: Well, it is written here
13	.813.
14	DR. HOCHREITER: Well, we probably screwed
15	up.
16	DR. SANJOY: Because there are two or
17	three different thermacouples.
18	DR. HOCHREITER: Oh, that is correct, I'm
19	sorry. Vic, there are different thermacouples. There
20	is another set of thermacouples, and I don't have a
21	figure for those.
22	DR. RANSOM: It says the vapor or steam
23	temperature will be measured using miniature
24	thermacouples having a diameter of 1.813 millimeters.
25	DR. HOCHREITER: I think those refer to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

NEAL R. GROSS

	82
1	the thermacouples which we attached to the spacer
2	grid.
3	DR. RANSOM: Yes, it says they are
4	attached to the spacers, and to the traversing steam
5	probe rates all having a diameter of .381.
6	DR. HOCHREITER: We put additional vapor
7	temperature measurements attached to these spacers,
8	and had them point down, brought the instrumentation
9	out across the spacer, over to the pins that were in
10	the corner of the bundle, down those pins, and out the
11	bundle.
12	We also had temperatures which were,
13	thermacouples which were brazed into the metal of the
14	spacer. And those were routed across the spacer, back
15	over to the pins that were on the outside of the
16	bundle, and brought out of the bundle.
17	So we can measure the spacer temperature,
18	the vapor temperature. Of course we had rod
19	temperatures measurements. I don't have a figure to
20	show this, but what we did, when we set up the heater
21	rod instrumentation, and maybe I should go back to
22	DR. RANSOM: The heater rods have
23	thermacouples on the inside of the
24	DR. HOCHREITER: Yes, on the inside of the
25	cladding.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	We know there is going to be a heat
2	transfer enhancement downstream of the spacers,
3	because the Oakridge data show that. Actually we
4	didn't have any data of our own that showed that. But
5	primarily looking at the Oakridge data I can't think
6	if there is another set of data we looked at.
7	And I had developed a real simple
8	exponential decay multiplier that you apply to a
9	convective heat transfer coefficient, based on single
10	phase data.
11	We use that prediction to basically pick
12	the positions for the thermacouples downstream of the
13	spacer, okay? And we would look at these inner five
14	rods, and choose different rods, and symmetrical
15	positions, where we could basically measure the
16	detailed temperatures downstream of the spacers.
17	We also set up the traversing temperature,
18	vapor temperature measurements to measure the
19	temperature of the vapor, downstream of the spacers.
20	And we would have two or three of these between spacer
21	grids.
22	So we can get an idea of what the vapor
23	temperature behavior was. Then we had vapor
24	temperature probes sticking off the grid, pointing in
25	the upstream direction to measure the vapor

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

84 1 temperature coming into the spacer grid. 2 we had a lot of instrumentation, So 3 detailed instrumentation, in and around the spacers, 4 because the feeling was that the spacer grids have a 5 first order effect on the disperse flow of film boiling, because they are going to change the drop 6 7 sizes. They are going to change the amount of 8 9 mixing that is in the flow. Now, you can't figure that all out from one reflood test. So that is why in 10 11 the program we were going to run the steam cooling 12 test, only, and look at the convective heat transfer behavior, particularly with these spacers, then do 13 14 droplet injection, and look at what happens to the 15 steam cooling behavior when you inject droplets with 16 these spacers. 17 DR. KRESS: Larry, when I was looking at the Oakridge data that effect was in there, that you 18 And I couldn't decide, at first, whether this 19 said. 20 was an enhanced turbulence, entrance reeds in effect, 21 or the effect of droplets getting broken up. 22 And I started using a Webber number 23 criteria to get the droplet size. 24 DR. HOCHREITER: Right. 25 DR. KRESS: And what I had trouble was,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	once I broke it up with the Webber number, they were
2	always that size. And I didn't get any enhancement
3	going through subsequent ones.
4	So I had to build into the model, an
5	agglomeration model of some sort, to make the droplets
6	get bigger again so I could re-break them up. And so
7	I had trouble. I finally concluded this was more a
8	breakup of the profile, velocity profile, into
9	entrance reason effect, is what I finally concluded.
10	But I don't know of
11	DR. HOCHREITER: Well, that is exactly why
12	we want to do this experimentally, but separate these
13	effects out. So we will run steam cooling tests only,
14	and get that effect. Then we will introduce drops,
15	and we will look at what the change is in the steam
16	cooling.
17	Because I think there are other effects,
18	in addition to drop breakup. Steve alluded to this
19	earlier. The drops seem to do something irregardles
20	of the grids, to enhance convection.
21	CHAIRMAN WALLIS: Don't you get bigger
22	drops after the grid because you have a film on the
23	grid, which gets re-entrained again?
24	DR. HOCHREITER: That is not what our
25	measurements show.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	CHAIRMAN WALLIS: You don't get that?
2	DR. HOCHREITER: No, it showed just the
3 opposite	2.
4	CHAIRMAN WALLIS: You think the grid is
5 dry, the	en?
6	DR. HOCHREITER: No, most of the tests the
7 grids an	re wet, because we measure it.
8	CHAIRMAN WALLIS: Usually drops which come
9 off a fi	ilm are bigger than the ones in the flow.
10	DR. HOCHREITER: I know. So 1.9 times
11 whatever	c.
12	DR. KRESS: The trouble with trying to
13 invoke :	some agglomeration of droplets to make them
14 bigger,	is that there were too few of them in there,
15 if I use	ed any ordinary agglomeration type of they
16 didn't s	see each other.
17	DR. HOCHREITER: It is a very sparse
18 populati	ion.
19	CHAIRMAN WALLIS: But, Tom, your model was
20 based or	n your imagination?
21	DR. KRESS: Yes, I was looking at the
22 Oakridge	e data and trying to imagine what was going on.
23 That is	exactly right.
24	CHAIRMAN WALLIS: He is going to have
25 reality	checks.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	87
1	MR. SCHROCK: Larry, I'd like to come back
2	with my earlier question about the grid spacer and
3	whether your grid spacer is going to provide
4	information that will be applicable to actual
5	reactors.
6	After I looked at it, then I have doubts.
7	I mean, you are convinced that the grid spacer has a
8	first order effect on the rod bundle heat transfer
9	downstream, because it dictates drop size
10	distribution.
11	DR. HOCHREITER: And turbulent mixing.
12	MR. SCHROCK: Okay, and whatever else.
13	But when I look through this thing, there is very
14	little of the cross section that is obstructed by
15	those mixing veins, very little.
16	DR. HOCHREITER: Do you know what is
17	misleading, the rods aren't in here.
18	MR. SCHROCK: I know, but the mixers don't
19	go all around.
20	DR. HOCHREITER: No, they don't.
21	MR. SCHROCK: So you've got portion of the
22	circumference has an area that is and droplets that
23	hit that are entrained, and then re-entrained.
24	DR. HOCHREITER: Or shattered.
25	MR. SCHROCK: And then the rest of it
ļ	I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	were shattered? I don't know.
2	DR. HOCHREITER: Were shattered.
3	MR. SCHROCK: Well, they are hitting at an
4	angle, and I don't know what the velocity is, they are
5	pretty small drops to shatter, I think.
6	DR. HOCHREITER: Well, let me just you
7	may be correct, but that is what we have to find out.
8	MR. SCHROCK: Well, but what I'm concerned
9	with is will it then eventually be necessary for every
10	vendor to do detailed tests on his grid spacer to
11	establish correlations, or models, or something, that
12	are in the vendor's code, to deal with this part of
13	the reflood heat transfer?
14	DR. KRESS: I was under the impression you
15	could probably do it just with the area change.
16	DR. HOCHREITER: Well, that is the first
17	approach. But your point is very well taken, okay?
18	And the real question, I think, that NRR or Research
19	would be asking a vendor is show me why your grid, or
20	the performance of your grid is captured by what we
21	have tested. If you cannot show that, for whatever
22	reason you cannot show that, then you go run a test.
23	MR. SCHROCK: But in giving them a
24	requirement they might
25	DR. HOCHREITER: Only for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	MR. SCHROCK: feel on insecure grounds,
2	unless they had hard evidence that, yes, indeed the
3	geometry of the grid spacer is important, and has
4	first order of influence on the results.
5	DR. HOCHREITER: They know that that is
6	the case. The vendors know that that is the case.
7	That is why you do DNB testing.
8	The power capability of the fuel assembly,
9	these days, is tied up in the design of the spacers.
10	CHAIRMAN WALLIS: Does that mean that
11	every vendor has to duplicate your tests with their
12	own spacers?
13	DR. HOCHREITER: If they want more margin
14	than what we would show.
15	CHAIRMAN WALLIS: Or less. I mean, how
16	would we know whether they get more or less?
17	DR. HOCHREITER: Well, they have to I
18	would think that you would require them to make an
19	argument that whatever grid they put in is bounded by
20	whatever is tested.
21	CHAIRMAN WALLIS: Then it is much better
22	to have a test than an argument for something as
23	complicated as that grid.
24	DR. HOCHREITER: Sure, we can run more
25	tests.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	CHAIRMAN WALLIS: Maybe you set yourself
2	up to do a lot of tests now.
3	DR. HOCHREITER: Well, that was one of the
4	things that we talked about in the program, when we
5	first established the program. Because one of the
6	things that you could is you could test to extremes.
7	This could represent one extreme, and
8	simple grids, like what you have in FLECHT, would
9	represent the other extreme. And if you can develop
10	a model that will predict both sets of those tests,
11	most of the grids are going to fall, should fall in
12	between, or be closer to this.
13	DR. SANJOY: What effect did FLECHT show?
14	DR. HOCHREITER: Very little, if any. And
15	I will show you a plot of that. Again, that is one of
16	the things, one of the new things that came out of
17	this program. now, we weren't looking for it.
18	CHAIRMAN WALLIS: Now, I think it would be
19	good have you finished your description of this?
20	Then we will have a break, and then you can give us
21	results after the break. Would that be appropriate?
22	DR. HOCHREITER: That would be fine. One
23	of the other pieces of instrumentation we have is this
24	laser illuminated digital camera system, which we
25	photograph through a scattering sheet, through the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	windows, into the subchannel.
2	Now, the we've calibrated this thing,
3	actually, on a milling machine, so we know exactly
4	what the focal region is. But you are shooting
5	between the rods.
б	CHAIRMAN WALLIS: So you only have a very
7	short depth of focus in that? The rest of the
8	droplets are out of focus, is that what it is?
9	DR. HOCHREITER: The other droplets are
10	out of focus because you focus it into the center of
11	the bundle.
12	MR. SCHROCK: In the shadow, or out of
13	focus?
14	DR. HOCHREITER: Both, actually. Some of
15	them are shadow, some of them are out of focus. And
16	there is a software package that comes with this
17	system. And you describe in the software package the
18	boundary that you are looking at.
19	What we don't see, and what we exclude
20	from our sampling, are drops which are hidden by the
21	rods. So you would not count this drop, you would not
22	count this drop, you won't even see this drop. You
23	will count these drops.
24	CHAIRMAN WALLIS: But it takes a very
25	small mass fraction of drops, or let's say, void

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

92 1 fraction, liquid fraction before you just have a fog, 2 and there is no direct line of sight between the laser 3 and the camera, at all. 4 DR. HOCHREITER: You don't have that many 5 drops. 6 CHAIRMAN WALLIS: You must have very, very 7 few drops, then? 8 DR. HOCHREITER: You do. 9 CHAIRMAN WALLIS: Then there is no way you 10 are going to measure your liquid fraction very accurately with delta P cells. 11 12 DR. HOCHREITER: I said that. Yes, you won't. Delta P cells are going to be most accurate at 13 14 the quench front. 15 CHAIRMAN WALLIS: Okay. So you are 16 interested in those few drops that make it way ahead 17 of all the others, and may do some cooling way downstream? 18 19 DR. HOCHREITER: Well, you know, let me 20 show you the stuff first. 21 CHAIRMAN WALLIS: Okay. 22 DR. HOCHREITER: We can talk about the 23 matrix for a minute. We did run tests over this range 24 of conditions. This was not successful, this 25 overheated, and we had to terminate the test.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	But the pressure we primarily were
2	concentrating on flooding rates around one inch a
3	second, plus a whole series of tests at six inches a
4	second, a few tests at eight inches a second.
5	The six inches a second test were
6	basically to look at inverted annulus from boiling.
7	This is where the delta P cells would be the most
8	accurate, because you have the most mass in the
9	bundle.
10	And then look at dispersed flow film
11	boiling, where the flooding rates are one inch a
12	second. We looked over this pressure range, a wide
13	range of subcoolings.
14	Our temperatures, our initial
15	temperatures, most of the tests were run at 1,400
16	degrees fahrenheit, and the power, most of the tests
17	were run with .4 kilowatts per foot, and the power was
18	held constant.
19	And, again, this was to, basically,
20	stretch the transient out in time, and give you more
21	of a quasi state of
22	MR. SCHROCK: That seems very low.
23	Earlier you were talking about eight kilowatts per
24	foot.
25	DR. HOCHREITER: That is the total power

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	of the rod.
2	CHAIRMAN WALLIS: Why don't you use
3	international units?
4	DR. HOCHREITER: Because this is America.
5	DR. BAJOREK: Larry, I think you said
6	originally that the initial steady state power is
7	15/16 kilowatt per foot.
8	DR. HOCHREITER: For the plant, that was
9	for the plant.
10	DR. BAJOREK: For the plant. What this
11	is, this is at decay power.
12	DR. HOCHREITER: Okay, thank you. I've
13	already kind of said this already, that the grids have
14	a significant effect. Maybe before we get into the
15	data we could look at this film.
16	CHAIRMAN WALLIS: Well, you said this is
17	America, but most students, our students are all told
18	international units. They get very irritated when
19	they see things like inches and they don't know what
20	to do with them.
21	DR. HOCHREITER: Yes, I know, I'm teaching
22	an undergraduate course in reactor engineering, and I
23	make them use english units, they hate it.
24	CHAIRMAN WALLIS: These are in American
25	thermal units, are they?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	DR. HOCHREITER: Well, they are British.
2	This is a spacer grid.
3	CHAIRMAN WALLIS: This is a movie, now?
4	DR. HOCHREITER: This is a movie.
5	CHAIRMAN WALLIS: Maybe we need the lights
6	down.
7	DR. HOCHREITER: This is being heated up
8	adiabatically, so this is red, this is red, and this
9	is pretty poor.
10	CHAIRMAN WALLIS: It is going to get
11	redder, is it?
12	DR. HOCHREITER: It is pretty red right
13	now.
14	CHAIRMAN WALLIS: Why are they so wiggly,
15	those rods?
16	DR. HOCHREITER: Why are they so wiggly?
17	I think it is more because the camera is
18	CHAIRMAN WALLIS: They don't look
19	straight, they've got bulges, and wiggles, and
20	DR. HOCHREITER: I think the camera is at
21	an angle here.
22	CHAIRMAN WALLIS: Is it the heat flux, is
23	it some thermal boundary layer distortion?
24	DR. HOCHREITER: No, I think it is a
25	camera. What you are seeing is reflood has started.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	This is still hot below the grid, this is dark. So
2	there is good cooling downstream on the grids.
3	CHAIRMAN WALLIS: It is not obvious to me.
4	DR. RANSOM: Is that just steam going
5	through there?
6	DR. HOCHREITER: Steam, and it is hard to
7	see with this film, but drops are going through.
8	CHAIRMAN WALLIS: The rods look bigger
9	downstream than upstream. And they don't
10	DR. HOCHREITER: That was really tricky to
11	me.
12	CHAIRMAN WALLIS: They don't look
13	continuous.
14	DR. HOCHREITER: Well, they are.
15	CHAIRMAN WALLIS: They have a jog in them.
16	Those are the rods, those things, those shiny things
17	are the rods downstream?
18	DR. HOCHREITER: Yes, these are the the
19	shiny hot things.
20	CHAIRMAN WALLIS: Why is it so dark in
21	between them?
22	DR. HOCHREITER: This is the spacer grid.
23	CHAIRMAN WALLIS: No, no, between the
24	shiny rods downstream.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 here? Because it is cooler. If you come up here you 2 can see drops zipping past her. 3 MR. SCHROCK: Yes, I can see that from 4 here, even. But what is the background there, what is 5 hot behind the lower portion? 6 DR. HOCHREITER: More rods. 7 MR. SCHROCK: Now, is there a metal back 8 behind there that is glowing red? 9 DR. HOCHREITER: I don't quite understand. 10 MR. SCHROCK: Well, the back wall of the 11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the 23 way through. <th></th> <th>97</th>		97
3 MR. SCHROCK: Yes, I can see that from 4 here, even. But what is the background there, what is 5 hot behind the lower portion? 6 DR. HOCHREITER: More rods. 7 MR. SCHROCK: Now, is there a metal back 8 behind there that is glowing red? 9 DR. HOCHREITER: I don't quite understand. 10 MR. SCHROCK: Well, the back wall of the 11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 MR. SCHROCK: You are not seeing all the	1	here? Because it is cooler. If you come up here you
 here, even. But what is the background there, what is hot behind the lower portion? DR. HOCHREITER: More rods. MR. SCHROCK: Now, is there a metal back behind there that is glowing red? DR. HOCHREITER: I don't quite understand. MR. SCHROCK: Well, the back wall of the channel is what? DR. HOCHREITER: Well, the back wall of the channel is going to be seven rows away. DR. RANSOM: So you are looking at an angle. MR. SCHROCK: In spite of that, you are looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	2	can see drops zipping past her.
 hot behind the lower portion? DR. HOCHREITER: More rods. MR. SCHROCK: Now, is there a metal back behind there that is glowing red? DR. HOCHREITER: I don't quite understand. MR. SCHROCK: Well, the back wall of the channel is what? DR. HOCHREITER: Well, the back wall of the channel is going to be seven rows away. DR. RANSOM: So you are looking at an angle. MR. SCHROCK: In spite of that, you are looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	3	MR. SCHROCK: Yes, I can see that from
 6 DR. HOCHREITER: More rods. 7 MR. SCHROCK: Now, is there a metal back 8 behind there that is glowing red? 9 DR. HOCHREITER: I don't quite understand. 10 MR. SCHROCK: Well, the back wall of the 11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 10 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the 	4	here, even. But what is the background there, what is
7MR. SCHROCK: Now, is there a metal back behind there that is glowing red?9DR. HOCHREITER: I don't quite understand.10MR. SCHROCK: Well, the back wall of the11channel is what?12DR. HOCHREITER: Well, the back wall of13the channel is going to be seven rows away.14DR. RANSOM: So you are looking at an15angle.16MR. SCHROCK: In spite of that, you are17looking at a clear shot through there, and it18DR. HOCHREITER: No, it is not a clear19shot, because you are looking at somewhat of an angle,20Lecause otherwise you would see all the way through21MR. SCHROCK: You are not seeing all the	5	hot behind the lower portion?
 behind there that is glowing red? DR. HOCHREITER: I don't quite understand. MR. SCHROCK: Well, the back wall of the channel is what? DR. HOCHREITER: Well, the back wall of the channel is going to be seven rows away. DR. RANSOM: So you are looking at an angle. MR. SCHROCK: In spite of that, you are looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	б	DR. HOCHREITER: More rods.
9 DR. HOCHREITER: I don't quite understand. 10 MR. SCHROCK: Well, the back wall of the 11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 MR. SCHROCK: You are not seeing all the	7	MR. SCHROCK: Now, is there a metal back
10 MR. SCHROCK: Well, the back wall of the 11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 MR. SCHROCK: You are not seeing all the	8	behind there that is glowing red?
11 channel is what? 12 DR. HOCHREITER: Well, the back wall of 13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the	9	DR. HOCHREITER: I don't quite understand.
12DR. HOCHREITER: Well, the back wall of13the channel is going to be seven rows away.14DR. RANSOM: So you are looking at an15angle.16MR. SCHROCK: In spite of that, you are17looking at a clear shot through there, and it18DR. HOCHREITER: No, it is not a clear19shot, because you are looking at somewhat of an angle,20because otherwise you would see all the way through21MR. SCHROCK: You are not seeing all the	10	MR. SCHROCK: Well, the back wall of the
13 the channel is going to be seven rows away. 14 DR. RANSOM: So you are looking at an 15 angle. 16 MR. SCHROCK: In spite of that, you are 17 looking at a clear shot through there, and it 18 DR. HOCHREITER: No, it is not a clear 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the	11	channel is what?
14DR. RANSOM: So you are looking at an15angle.16MR. SCHROCK: In spite of that, you are17looking at a clear shot through there, and it18DR. HOCHREITER: No, it is not a clear19shot, because you are looking at somewhat of an angle,20because otherwise you would see all the way through21these rods.22MR. SCHROCK: You are not seeing all the	12	DR. HOCHREITER: Well, the back wall of
 angle. MR. SCHROCK: In spite of that, you are looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	13	the channel is going to be seven rows away.
 MR. SCHROCK: In spite of that, you are looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	14	DR. RANSOM: So you are looking at an
 looking at a clear shot through there, and it DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the 	15	angle.
DR. HOCHREITER: No, it is not a clear shot, because you are looking at somewhat of an angle, because otherwise you would see all the way through these rods. MR. SCHROCK: You are not seeing all the	16	MR. SCHROCK: In spite of that, you are
 19 shot, because you are looking at somewhat of an angle, 20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the 	17	looking at a clear shot through there, and it
20 because otherwise you would see all the way through 21 these rods. 22 MR. SCHROCK: You are not seeing all the	18	DR. HOCHREITER: No, it is not a clear
21 these rods. 22 MR. SCHROCK: You are not seeing all the	19	shot, because you are looking at somewhat of an angle,
22 MR. SCHROCK: You are not seeing all the	20	because otherwise you would see all the way through
	21	these rods.
23 way through.	22	MR. SCHROCK: You are not seeing all the
	23	way through.
24 CHAIRMAN WALLIS: So there is a whole host	24	CHAIRMAN WALLIS: So there is a whole host
25 of droplets in between those rods down below?	25	of droplets in between those rods down below?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	DR. HOCHREITER: There are drops and steam
2	that are coming up through here.
3	CHAIRMAN WALLIS: Then they all go dark
4	downstream.
5	DR. HOCHREITER: So you can see much more
6	of the effect up here.
7	CHAIRMAN WALLIS: Why do they go dark
8	downstream?
9	DR. HOCHREITER: Because of the cooling.
10	DR. RANSOM: Does that look like the
11	entrainment on that spacer grid? I can see something
12	fluctuating off of it.
13	DR. HOCHREITER: Right here?
14	DR. RANSOM: Yes.
15	DR. HOCHREITER: Probably.
16	CHAIRMAN WALLIS: What does cooling have
17	to do with the color of the droplets?
18	DR. HOCHREITER: It is not the droplets,
19	it is the rods. Graham, these are rods.
20	CHAIRMAN WALLIS: Those shiny things are
21	rods?
22	DR. HOCHREITER: Yes.
23	CHAIRMAN WALLIS: But the dark spaces in
24	between are droplets.
25	DR. HOCHREITER: No, it could be more rods

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	99
1	behind here, which are also dark and cooled.
2	CHAIRMAN WALLIS: Oh, I thought you were
3	looking right through the rods.
4	DR. HOCHREITER: No. This is at a slight
5	angle.
6	MR. SCHROCK: In the bottom picture you
7	can almost see the outline of the edge of the next row
8	of rods?
9	DR. HOCHREITER: Right. Bottom line is,
10	hot, cold.
11	CHAIRMAN WALLIS: I guess the
12	thermacouples show that?
13	DR. HOCHREITER: Yes.
14	CHAIRMAN WALLIS: Now, there seems to be
15	some pulsations going on.
16	DR. HOCHREITER: It is not perfectly
17	steady.
18	CHAIRMAN WALLIS: It looks like a lot of
19	pulsations now have developed.
20	DR. SANJOY: The quench front is
21	approaching?
22	DR. HOCHREITER: Quench front is about ten
23	feet away.
24	CHAIRMAN WALLIS: The quench front is down
25	below somewhere?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	100
1	DR. HOCHREITER: Yes.
2	CHAIRMAN WALLIS: Are we going to see it?
3	DR. HOCHREITER: I don't think.
4	DR. SANJOY: You can see it, but it takes
5	a long time.
б	DR. HOCHREITER: If we want to go off for
7	coffee and come back.
8	CHAIRMAN WALLIS: Now, do those rods go
9	red again before the next spacer grid?
10	DR. HOCHREITER: I actually don't really
11	know because the temperature goes back, so I think it
12	does.
13	DR. KRESS: They do in the Oakridge test,
14	they get hot again at the top.
15	CHAIRMAN WALLIS: Now, what are those
16	shiny white bubbly things that are above the grid?
17	DR. HOCHREITER: These are probably the
18	veins, and you are probably seeing the liquid.
19	CHAIRMAN WALLIS: Those are veins.
20	DR. HOCHREITER: I would say the velocity
21	in the bundle is some place between and 60 feet a
22	second.
23	DR. MOODY: You are injecting a spray?
24	DR. HOCHREITER: No, this is a reflood of
25	inch a second.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	101
1	DR. MOODY: Because of the quench, all
2	right, that is sending the droplets up in the vapor,
3	then.
4	DR. HOCHREITER: Yes, it is easier to see
5	them here than it is here.
6	MR. SCHROCK: How far is the quench front
7	below this?
8	DR. HOCHREITER: I can't answer that, I
9	would have to go back and
10	MR. SCHROCK: Is it a long way, or short?
11	DR. HOCHREITER: I think so, yes.
12	MR. SCHROCK: Long ways.
13	DR. HOCHREITER: Although you are starting
14	to see this cool down now.
15	CHAIRMAN WALLIS: Why didn't that get
16	cooled before? Because when the quench front was
17	below that, it was above a spacer.
18	DR. HOCHREITER: I'm sorry?
19	CHAIRMAN WALLIS: I mean, it just seems
20	funny that you have so much cooled so well up above.
21	
	DR. HOCHREITER: That is because the
22	DR. HOCHREITER: That is because the spacer grid is mixing up this
22 23	
	spacer grid is mixing up this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	by the spacer which is below it?
2	DR. HOCHREITER: Because there is another
3	two feet before the next spacer.
4	CHAIRMAN WALLIS: Oh, it is a long way.
5	DR. HOCHREITER: There is like 40 to 45
6	DR. SANJOY: Where is the
7	DR. HOCHREITER: spacers.
8	DR. SANJOY: flux peak?
9	DR. HOCHREITER: Ralph, do you remember
10	which elevation this was?
11	DR. ROSAL: It is 105, that grid is 110.
12	DR. HOCHREITER: So the flux peaks right
13	about here.
14	DR. ROSAL: Elevation for the power, it is
15	below the grid.
16	DR. HOCHREITER: Now everything is
17	starting to get cool. So the quench front is moving
18	up.
19	MR. SCHROCK: Now, why do they look
20	different in the two zones?
21	DR. HOCHREITER: Why do they look
22	different?
23	MR. SCHROCK: Why are the rods shiny on
24	top and not
25	DR. ROSAL: Because of the light that is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	103
1	shining on the window.
2	CHAIRMAN WALLIS: Okay, so you can change
3	what you see by how you illuminate it.
4	MR. SCHROCK: Are they glowing red, is
5	that
6	DR. HOCHREITER: At the beginning of the
7	test they were glowing red.
8	MR. SCHROCK: When the test is first
9	initiated, and that top zone is all glowing red, then
10	if you can view the whole length of it, do you see the
11	precursory cooling affecting the lower part of it
12	first, and then propagating up into the upper part of
13	it?
14	DR. HOCHREITER: It is really not
15	affecting this very much at all.
16	MR. SCHROCK: No, I'm talking about this
17	upper zone now. What you showed us, you began with it
18	already cool there. But if I could see the top of
19	that?
20	DR. HOCHREITER: It would probably be red.
21	MR. SCHROCK: Still glowing red?
22	DR. HOCHREITER: Yes.
23	MR. SCHROCK: So your model is going to
24	have to take that kind of thing into account.
25	CHAIRMAN WALLIS: That thing which is up,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	there is a light just above your head there?
2	DR. HOCHREITER: You are starting to
3	this is starting to get liquid on the
4	CHAIRMAN WALLIS: The thing above your
5	head, there, is a light, that is why it is white
6	above?
7	DR. HOCHREITER: You mean right in here?
8	See, you are starting to get liquid up, now. A lot of
9	liquid.
10	CHAIRMAN WALLIS: Something is bouncing up
11	and down.
12	DR. HOCHREITER: We may have already
13	quenched this down here. It is hard to see where the
14	quench front is.
15	DR. MOODY: That is real time?
16	DR. HOCHREITER: Actually I think that
17	this is faster than real time.
18	DR. SANJOY: That is oscillatory behavior.
19	CHAIRMAN WALLIS: Yes, it does look
20	oscillatory.
21	DR. HOCHREITER: This is typical behavior
22	for a reflood test.
23	CHAIRMAN WALLIS: It doesn't look very
24	analyzable to me.
25	DR. HOCHREITER: Well, it is time average,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	105
1	your calculation is going to be averaging this over
2	time. It might be six months, a year.
3	But the if you induce system
4	oscillations they are much more pronounced. I mean,
5	they are huge oscillations that go up through the
6	entire bundle.
7	CHAIRMAN WALLIS: There are, even in your
8	tests?
9	DR. HOCHREITER: When we had poor pressure
10	control, yes.
11	CHAIRMAN WALLIS: But not in the Penn
12	State tests?
13	DR. HOCHREITER: No, in the Penn State
14	tests when we had poor pressure control you could get
15	large surges in the oscillations, and you would see it
16	on the data. You would see it in the thermacouples
17	CHAIRMAN WALLIS: Which happens in the
18	reactor, do you get these large surges, or not?
19	DR. HOCHREITER: Again, according to Long
20	Sung Tong, reactors don't oscillate.
21	MR. SCHROCK: Larry why is it heating up
22	above the spacer grid? The spacer grid at that point
23	in the transient doesn't seem to be effective in
24	inducing any cooling.
25	DR. HOCHREITER: Right now, you mean?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	106
1	MR. SCHROCK: Yes, it is hotter up there
2	than it is down below.
3	DR. HOCHREITER: I think you are seeing
4	the shine.
5	DR. BAJOREK: Larry, right above, if you
6	raise your left hand, higher, higher, over to that,
7	right there, that is the light, that is the trouble
8	light.
9	MR. SCHROCK: Well, do they keep moving
10	the light around?
11	DR. BAJOREK: No, it was the same place.
12	MR. SCHROCK: It was bright down below
13	when you started out.
14	DR. BAJOREK: That was the rods. It
15	looked like the electric burners on a stove.
16	DR. HOCHREITER: Why don't we stop and
17	back this, rewind this thing? There is a combination
18	of things going on, light and
19	CHAIRMAN WALLIS: We will take a break
20	after this movie, if that is okay with you.
21	MR. SCHROCK: They really did look like
22	they were distorted when they were red hot. What do
23	you do to prevent axial compression when they heat?
24	DR. HOCHREITER: Axial compression?
25	DR. KRESS: They are only tied at one end,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	I think.
2	DR. HOCHREITER: They are supported at the
3	top, and they go through the bottom. The rods are
4	supported at the top, they screw into a top plate.
5	And there are o-ring seals at the bottom, so the rods
6	grow downward in a thermal expansion.
7	MR. SCHROCK: But they connect to some
8	rigid piping somewhere, so
9	DR. HOCHREITER: They go into a molten
10	pool, which provides, basically, the ground to return
11	current pool.
12	MR. SCHROCK: SO they just hang there?
13	DR. HOCHREITER: Yes.
14	DR. SANJOY: What is the molten metal?
15	DR. HOCHREITER: Lead.
16	CHAIRMAN WALLIS: This is how you get the
17	electrical contact?
18	DR. HOCHREITER: Take it almost right back
19	to the beginning.
20	CHAIRMAN WALLIS: We can watch it
21	backwards.
22	DR. MOODY: Larry, that far left strip, is
23	that the other side of the
24	(Everyone speaks at the same time.)
25	DR. MOODY: It looks like a window on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1very left strip, there.2DR. HOCHREITER: Here?3DR. MOODY: No, now move over yes, up4and down there.5DR. HOCHREITER: I think this would just6be the aluminum insulation, the aluminum coating7around the8DR. MOODY: When we saw that activity in9the other, water and so forth, you could see something10in that section too. I just wondered11DR. MOODY: Yes.12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?25DR. HOCHREITER: I think you will, yes.		108
3 DR. MOODY: No, now move over yes, up 4 and down there. 5 DR. HOCHREITER: I think this would just 6 be the aluminum insulation, the aluminum coating 7 around the 8 DR. MOODY: When we saw that activity in 9 the other, water and so forth, you could see something 10 in that section too. I just wondered 11 DR. HOCHREITER: Here? 12 DR. MOODY: Yes. 13 DR. HOCHREITER: I hope not. That means 14 the window was leaking. 15 DR. MOODY: Well, it looked like looking 16 through a window. Is it angled such that we are seeing 17 some of the same activity in that strip? 18 DR. HOCHREITER: Well, I hope not. Well, 19 if the window leaks, this is hot 20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	1	very left strip, there.
 and down there. DR. HOCHREITER: I think this would just be the aluminum insulation, the aluminum coating around the B DR. MOODY: When we saw that activity in the other, water and so forth, you could see something in that section too. I just wondered DR. HOCHREITER: Here? DR. MOODY: Yes. DR. HOCHREITER: I hope not. That means the window was leaking. DR. MOODY: Well, it looked like looking through a window. Is it angled such that we are seeing some of the same activity in that strip? DR. HOCHREITER: Well, I hope not. Well, if the window leaks, this is hot CHAIRMAN WALLIS: So you want to run it again, or something? What do you want to do, Larry? DR. HOCHREITER: That is your choice. CHAIRMAN WALLIS: Are we going to see anything different the second time? 	2	DR. HOCHREITER: Here?
5DR. HOCHREITER: I think this would just6be the aluminum insulation, the aluminum coating7around the8DR. MOODY: When we saw that activity in9the other, water and so forth, you could see something10in that section too. I just wondered11DR. HOCHREITER: Here?12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	3	DR. MOODY: No, now move over yes, up
 be the aluminum insulation, the aluminum coating around the BR. MOODY: When we saw that activity in the other, water and so forth, you could see something in that section too. I just wondered DR. HOCHREITER: Here? DR. MOODY: Yes. DR. MOODY: Yes. DR. HOCHREITER: I hope not. That means the window was leaking. DR. MOODY: Well, it looked like looking through a window. Is it angled such that we are seeing some of the same activity in that strip? DR. HOCHREITER: Well, I hope not. Well, if the window leaks, this is hot CHAIRMAN WALLIS: So you want to run it again, or something? What do you want to do, Larry? DR. HOCHREITER: That is your choice. CHAIRMAN WALLIS: Are we going to see anything different the second time? 	4	and down there.
7around the8DR. MOODY: When we saw that activity in9the other, water and so forth, you could see something10in that section too. I just wondered11DR. HOCHREITER: Here?12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	5	DR. HOCHREITER: I think this would just
8DR. MOODY: When we saw that activity in9the other, water and so forth, you could see something10in that section too. I just wondered11DR. HOCHREITER: Here?12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	6	be the aluminum insulation, the aluminum coating
9 the other, water and so forth, you could see something in that section too. I just wondered DR. HOCHREITER: Here? DR. MOODY: Yes. DR. MOODY: Yes. DR. HOCHREITER: I hope not. That means the window was leaking. DR. MOODY: Well, it looked like looking through a window. Is it angled such that we are seeing some of the same activity in that strip? DR. HOCHREITER: Well, I hope not. Well, if the window leaks, this is hot CHAIRMAN WALLIS: So you want to run it again, or something? What do you want to do, Larry? DR. HOCHREITER: That is your choice. CHAIRMAN WALLIS: Are we going to see anything different the second time?	7	around the
10in that section too. I just wondered11DR. HOCHREITER: Here?12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	8	DR. MOODY: When we saw that activity in
 11 DR. HOCHREITER: Here? 12 DR. MOODY: Yes. 13 DR. HOCHREITER: I hope not. That means 14 the window was leaking. 15 DR. MOODY: Well, it looked like looking 16 through a window. Is it angled such that we are seeing 17 some of the same activity in that strip? 18 DR. HOCHREITER: Well, I hope not. Well, 19 if the window leaks, this is hot 20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time? 	9	the other, water and so forth, you could see something
12DR. MOODY: Yes.13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	10	in that section too. I just wondered
13DR. HOCHREITER: I hope not. That means14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	11	DR. HOCHREITER: Here?
14the window was leaking.15DR. MOODY: Well, it looked like looking16through a window. Is it angled such that we are seeing17some of the same activity in that strip?18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	12	DR. MOODY: Yes.
DR. MOODY: Well, it looked like looking through a window. Is it angled such that we are seeing some of the same activity in that strip? DR. HOCHREITER: Well, I hope not. Well, if the window leaks, this is hot CHAIRMAN WALLIS: So you want to run it again, or something? What do you want to do, Larry? DR. HOCHREITER: That is your choice. CHAIRMAN WALLIS: Are we going to see anything different the second time?	13	DR. HOCHREITER: I hope not. That means
16 through a window. Is it angled such that we are seeing 17 some of the same activity in that strip? 18 DR. HOCHREITER: Well, I hope not. Well, 19 if the window leaks, this is hot 20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	14	the window was leaking.
<pre>17 some of the same activity in that strip? 18 DR. HOCHREITER: Well, I hope not. Well, 19 if the window leaks, this is hot 20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?</pre>	15	DR. MOODY: Well, it looked like looking
18DR. HOCHREITER: Well, I hope not. Well,19if the window leaks, this is hot20CHAIRMAN WALLIS: So you want to run it21again, or something? What do you want to do, Larry?22DR. HOCHREITER: That is your choice.23CHAIRMAN WALLIS: Are we going to see24anything different the second time?	16	through a window. Is it angled such that we are seeing
19 if the window leaks, this is hot 20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	17	some of the same activity in that strip?
20 CHAIRMAN WALLIS: So you want to run it 21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	18	DR. HOCHREITER: Well, I hope not. Well,
21 again, or something? What do you want to do, Larry? 22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	19	if the window leaks, this is hot
22 DR. HOCHREITER: That is your choice. 23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	20	CHAIRMAN WALLIS: So you want to run it
23 CHAIRMAN WALLIS: Are we going to see 24 anything different the second time?	21	again, or something? What do you want to do, Larry?
24 anything different the second time?	22	DR. HOCHREITER: That is your choice.
	23	CHAIRMAN WALLIS: Are we going to see
25 DR. HOCHREITER: I think you will, yes.	24	anything different the second time?
	25	DR. HOCHREITER: I think you will, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	CHAIRMAN WALLIS: Well, what I suggest we
2	do is we take a break, and you run the movie during
3	the break, and if anybody wants to see it again, they
4	can see it. Then we can have an informal discussion,
5	off the record, during the break if that helps.
6	We will break for 15 minutes, come back at
7	3:25, and we will run the movie during the break for
8	those who want to see it again. But we will break
9	now.
10	(Whereupon, the above-entitled matter
11	went off the record at 3:11 p.m. and
12	went back on the record at 3:25 p.m.)
13	CHAIRMAN WALLIS: Let's come back into
14	session.
15	We are now going to hear what we've been
16	looking forward to, which is the description of some
17	of the data produced by this wonderful setup.
18	DR. HOCHREITER: Okay. What I have is
19	data for two tests, and I was going to run through
20	that. And maybe after you see the first test we can
21	go through the second test faster.
22	The main change is, primarily, the
23	pressure. So this is a 20 PSI experiment, one inch a
24	second flooding rate, 1,4000 degree initial
25	temperature, 20 degrees subcooling.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1The first thing I would point out is the2duration of the test. It is really very long. And3the reason for this is using constant power. And you4tend to, basically, be able to get longer periods of5time of dispersed flow of film boiling.6And this is the quench front from the7heater rods as the quench basically moves up. So this8is basically quench elevation versus time.9DR. KRESS: That doesn't look like one10inch per second.11DR. HOCHREITER: Why doesn't it look like12one inch a second?13DR. KRESS: Well, between 400 and 60014seconds, that is 200 seconds, and it would be 20015inches change, and I don't see 200.16CHAIRMAN WALLIS: I think is17DR. HOCHREITER: No, one inch a second is18the cold flooding rate.19CHAIRMAN WALLIS: It is the flow rate of20water.21DR. HOCHREITER: Cold flooding rate.22DR. KRESS: I see what you mean. You are23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.25DR. KRESS: Yes, I see.		110
3 the reason for this is using constant power. And you 4 tend to, basically, be able to get longer periods of 5 time of dispersed flow of film boiling. 6 And this is the quench front from the 7 heater rods as the quench basically moves up. So this 8 is basically quench elevation versus time. 9 DR. KRESS: That doesn't look like one 10 inch per second. 11 DR. HOCHREITER: Why doesn't it look like 12 one inch a second? 13 DR. KRESS: Well, between 400 and 600 14 seconds, that is 200 seconds, and it would be 200 15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	1	The first thing I would point out is the
 tend to, basically, be able to get longer periods of time of dispersed flow of film boiling. And this is the quench front from the heater rods as the quench basically moves up. So this is basically quench elevation versus time. DR. KRESS: That doesn't look like one inch per second. DR. HOCHREITER: Why doesn't it look like one inch a second? DR. KRESS: Well, between 400 and 600 seconds, that is 200 seconds, and it would be 200 inches change, and I don't see 200. CHAIRMAN WALLIS: I think is DR. HOCHREITER: No, one inch a second is the cold flooding rate. CHAIRMAN WALLIS: It is the flow rate of water. DR. HOCHREITER: Cold flooding rate. DR. KRESS: I see what you mean. You are losing that stuff with steam. DR. HOCHREITER: About 95 percent of it. 	2	duration of the test. It is really very long. And
 time of dispersed flow of film boiling. And this is the quench front from the heater rods as the quench basically moves up. So this is basically quench elevation versus time. DR. KRESS: That doesn't look like one inch per second. DR. HOCHREITER: Why doesn't it look like one inch a second? DR. KRESS: Well, between 400 and 600 seconds, that is 200 seconds, and it would be 200 inches change, and I don't see 200. CHAIRMAN WALLIS: I think is DR. HOCHREITER: No, one inch a second is the cold flooding rate. CHAIRMAN WALLIS: It is the flow rate of water. DR. HOCHREITER: Cold flooding rate. DR. KRESS: I see what you mean. You are losing that stuff with steam. DR. HOCHREITER: About 95 percent of it. 	3	the reason for this is using constant power. And you
 And this is the quench front from the heater rods as the quench basically moves up. So this is basically quench elevation versus time. DR. KRESS: That doesn't look like one inch per second. DR. HOCHREITER: Why doesn't it look like one inch a second? DR. KRESS: Well, between 400 and 600 seconds, that is 200 seconds, and it would be 200 inches change, and I don't see 200. CHAIRMAN WALLIS: I think is DR. HOCHREITER: No, one inch a second is the cold flooding rate. CHAIRMAN WALLIS: It is the flow rate of water. DR. HOCHREITER: Cold flooding rate. DR. KRESS: I see what you mean. You are losing that stuff with steam. DR. HOCHREITER: About 95 percent of it. 	4	tend to, basically, be able to get longer periods of
Pheater rods as the quench basically moves up. So this is basically quench elevation versus time. DR. KRESS: That doesn't look like one inch per second. DR. HOCHREITER: Why doesn't it look like one inch a second? DR. KRESS: Well, between 400 and 600 seconds, that is 200 seconds, and it would be 200 inches change, and I don't see 200. CHAIRMAN WALLIS: I think is DR. HOCHREITER: No, one inch a second is the cold flooding rate. CHAIRMAN WALLIS: It is the flow rate of water. DR. HOCHREITER: Cold flooding rate. DR. HOCHREITER: Cold flooding rate. DR. HOCHREITER: Cold flooding rate. DR. KRESS: I see what you mean. You are losing that stuff with steam. DR. HOCHREITER: About 95 percent of it.	5	time of dispersed flow of film boiling.
 8 is basically quench elevation versus time. 9 DR. KRESS: That doesn't look like one 10 inch per second. 11 DR. HOCHREITER: Why doesn't it look like 12 one inch a second? 13 DR. KRESS: Well, between 400 and 600 14 seconds, that is 200 seconds, and it would be 200 15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it. 	6	And this is the quench front from the
9 DR. KRESS: That doesn't look like one 10 inch per second. 11 DR. HOCHREITER: Why doesn't it look like 12 one inch a second? 13 DR. KRESS: Well, between 400 and 600 14 seconds, that is 200 seconds, and it would be 200 15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. HOCHREITER: Cold flooding rate. 23 LOSING that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	7	heater rods as the quench basically moves up. So this
10 inch per second. 11 DR. HOCHREITER: Why doesn't it look like 12 one inch a second? 13 DR. KRESS: Well, between 400 and 600 14 seconds, that is 200 seconds, and it would be 200 15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	8	is basically quench elevation versus time.
11DR. HOCHREITER: Why doesn't it look like12one inch a second?13DR. KRESS: Well, between 400 and 60014seconds, that is 200 seconds, and it would be 20015inches change, and I don't see 200.16CHAIRMAN WALLIS: I think is17DR. HOCHREITER: No, one inch a second is18the cold flooding rate.19CHAIRMAN WALLIS: It is the flow rate of20water.21DR. HOCHREITER: Cold flooding rate.22DR. KRESS: I see what you mean. You are23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.	9	DR. KRESS: That doesn't look like one
 one inch a second? DR. KRESS: Well, between 400 and 600 seconds, that is 200 seconds, and it would be 200 inches change, and I don't see 200. CHAIRMAN WALLIS: I think is DR. HOCHREITER: No, one inch a second is the cold flooding rate. CHAIRMAN WALLIS: It is the flow rate of water. DR. HOCHREITER: Cold flooding rate. DR. HOCHREITER: Cold flooding rate. DR. KRESS: I see what you mean. You are losing that stuff with steam. DR. HOCHREITER: About 95 percent of it. 	10	inch per second.
13DR. KRESS: Well, between 400 and 60014seconds, that is 200 seconds, and it would be 20015inches change, and I don't see 200.16CHAIRMAN WALLIS: I think is17DR. HOCHREITER: No, one inch a second is18the cold flooding rate.19CHAIRMAN WALLIS: It is the flow rate of20water.21DR. HOCHREITER: Cold flooding rate.22DR. HOCHREITER: Cold flooding rate.23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.	11	DR. HOCHREITER: Why doesn't it look like
14 seconds, that is 200 seconds, and it would be 200 15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	12	one inch a second?
<pre>15 inches change, and I don't see 200. 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.</pre>	13	DR. KRESS: Well, between 400 and 600
 16 CHAIRMAN WALLIS: I think is 17 DR. HOCHREITER: No, one inch a second is 18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it. 	14	seconds, that is 200 seconds, and it would be 200
17DR. HOCHREITER: No, one inch a second is18the cold flooding rate.19CHAIRMAN WALLIS: It is the flow rate of20water.21DR. HOCHREITER: Cold flooding rate.22DR. KRESS: I see what you mean. You are23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.	15	inches change, and I don't see 200.
18 the cold flooding rate. 19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	16	CHAIRMAN WALLIS: I think is
19 CHAIRMAN WALLIS: It is the flow rate of 20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.	17	DR. HOCHREITER: No, one inch a second is
<pre>20 water. 21 DR. HOCHREITER: Cold flooding rate. 22 DR. KRESS: I see what you mean. You are 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it.</pre>	18	the cold flooding rate.
21DR. HOCHREITER: Cold flooding rate.22DR. KRESS: I see what you mean. You are23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.	19	CHAIRMAN WALLIS: It is the flow rate of
22DR. KRESS: I see what you mean. You are23losing that stuff with steam.24DR. HOCHREITER: About 95 percent of it.	20	water.
 23 losing that stuff with steam. 24 DR. HOCHREITER: About 95 percent of it. 	21	DR. HOCHREITER: Cold flooding rate.
24 DR. HOCHREITER: About 95 percent of it.	22	DR. KRESS: I see what you mean. You are
	23	losing that stuff with steam.
25 DR. KRESS: Yes, I see.	24	DR. HOCHREITER: About 95 percent of it.
	25	DR. KRESS: Yes, I see.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	CHAIRMAN WALLIS: How do you define quench
2	front?
3	DR. HOCHREITER: Let me show you in a
4	figure for a minute. Can I hold that for a second?
5	The next slide is a calculation for one
6	parameter, and then the other is data. This is where
7	we calculate the saturation line to be, the bundle,
8	this is where the energy comes.
9	And, again, the power is constant, the
10	flow is constant, subcooling is constant in the test.
11	So basically you would start to boil at this point.
12	And the red line is basically the rod quench front,
13	the black line is the housing quench front. These are
14	data.
15	So this region between the red line and
16	the blue line, basically is a two phase region, where
17	you basically have nuclear boiling. And so you have
18	production of steam in this region, in addition to the
19	steam that is generated when you quench the rods from
20	the stored energy release of the rods themselves.
21	CHAIRMAN WALLIS: You have steam created
22	above the quench front too.
23	DR. HOCHREITER: You have steam created
24	above the quench front due to evaporation of the
25	droplets.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	This is something that is very different
2	than other reflood experiments, for two reasons. One,
3	most of the tests were run with higher subcoolings,
4	typically 150 degrees subcooling.
5	Two, the power was not constant. So if
6	you would plot the saturation line for those
7	experiments it basically followed the quench front,
8	and then peeled it away from the quench front at about
9	this time period here.
10	So, again, by running with a constant
11	power you basically have expanded the region boiling
12	below the quench front, but then you've expanded the
13	time duration of the test.
14	DR. KRESS: So if I look below that blue
15	line?
16	DR. HOCHREITER: It is single phase
17	liquid.
18	DR. KRESS: would be one inch per
19	second, then?
20	DR. HOCHREITER: Below this, yes.
21	DR. KRESS: It doesn't look like it.
22	DR. HOCHREITER: Well, probably because I
23	have only drawn it to here.
24	DR. KRESS: Okay.
25	DR. RANSOM: What do you mean by sat line?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	113
1	That position is where you exceed the saturation
2	temperature, is that right?
3	DR. HOCHREITER: Of the coolant, yes.
4	Just from an energy balance.
5	DR. SANJOY: It is a very low reflood
6	rate?
7	DR. HOCHREITER: Right, low reflood rate,
8	low subcooling.
9	Now, what I've got are a bunch of plots of
10	temperatures above and below spacer grids at different
11	elevations. This is for the grid that is at the 69
12	inch elevation, the black thermocouple is thermocouple
13	on the rod, and the inner five by five is located at
14	this elevation.
15	The green one, which I've colored in, is
16	a thermocouple here. You asked about where the quench
17	front is. Quench front is defined, usually, by the
18	need in this curve. Because that is where we think
19	that you start to get wetting.
20	CHAIRMAN WALLIS: Where it begins to turn
21	down rapidly?
22	DR. HOCHREITER: Very rapid, yes. And
23	we've used a criteria to look at this, so many degrees
24	per second for quenching.
25	Now the thing that is very apparent from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	this figure is that the cooling, as we saw on the
2	film, downstream, is better than the cooling upstream.
3	And that is really reflected in this temperature
4	difference.
5	CHAIRMAN WALLIS: Until the quench front
6	gets close?
7	DR. HOCHREITER: Right. And then there is
8	a difference here, because there is an elevation
9	difference between the two T cells.
10	I've got a series of these plots, and I
11	also have vapor temperature measurements. These are
12	vapor temperature measurements, again, upstream and
13	downstream of the quench front.
14	This steam probe is up here, it is black
15	I'm sorry. Can you hear me?
16	So we have a steam probe here, and a steam
17	probe here. This one is at 83 inches above the grid,
18	this one is below the grid at 16 inches. You don't
19	see a lot of difference in through here, but you see,
20	again, a continuation of the vapor superheat, really
21	out for a pretty long period of time.
22	Now, these
23	DR. SANJOY: These are the same run that
24	you
25	DR. HOCHREITER: Same run. The way, at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	least, I'm interpreting the steam probe measurements,
2	and this is open for debate, I probably shouldn't have
3	said that, is that the real steam temperature is the
4	peaks of this.
5	This is really the thermocouple seat water
6	droplets. What is unique about these measurements is
7	that you see a persistence of superheated vapor for a
8	long time.
9	In the previous reflood experiments that
10	I have looked at, in tests which I have run myself,
11	you would not get vapor superheats that would be
12	persistent for as long a period of time, and at an
13	elevated superheated temperature.
14	CHAIRMAN WALLIS: What is interesting to
15	predict is not just the peak, but what seems to be the
16	lower, which is around 200 degrees C, in your green
17	curve, there is a whole range of
18	DR. HOCHREITER: Well, or the difference.
19	CHAIRMAN WALLIS: Why is it bottoming out
20	at 200?
21	DR. HOCHREITER: In here?
22	CHAIRMAN WALLIS: Yes.
23	DR. HOCHREITER: I don't know, I don't
24	have a good answer for that. This is a saturation
25	temperature, essentially, here. The 20 PSI test,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 saturation is 228 degrees fahrenheit. 2 CHAIRMAN WALLIS: Well, maybe that is the 3 radiation from the rods. 4 DR. HOCHREITER: That is keeping it up 5 here? 6 CHAIRMAN WALLIS: Right. Because quench 7 front comes by around 500 or something? 8 DR. HOCHREITER: Well, that is what I was</pre>	
<pre>3 radiation from the rods. 4 DR. HOCHREITER: That is keeping it up 5 here? 6 CHAIRMAN WALLIS: Right. Because quench 7 front comes by around 500 or something?</pre>	
4 DR. HOCHREITER: That is keeping it up 5 here? 6 CHAIRMAN WALLIS: Right. Because quench 7 front comes by around 500 or something?	
5 here? 6 CHAIRMAN WALLIS: Right. Because quench 7 front comes by around 500 or something?	
6 CHAIRMAN WALLIS: Right. Because quench 7 front comes by around 500 or something?	1
7 front comes by around 500 or something?	
8 DR. HOCHREITER: Well, that is what I was	
9 going to show next. This is at 73 inches.	
10 CHAIRMAN WALLIS: Well, it is not the same	
11 scale of time.	
12 DR. HOCHREITER: Well, I know, so that is	
13 here. It is about 700 seconds, this thing is	
14 quenching, going to saturation at about 600 seconds	•
15 CHAIRMAN WALLIS: But the previous slide	
16 is much better, yes. So the thermocouple quenches	
17 before the rods do, before the clad does?	
18 DR. HOCHREITER: The steam probes tend to	
19 quench before the rods do, yes. This is quenching at	
20 about 600 seconds. Actually, this is pretty close.	
21 CHAIRMAN WALLIS: Your scales aren't the	
22 same, are they?	
23 DR. HOCHREITER: No, but this time and	
24 this time are the same. But, again, I have never run	
25 experiment, or seen tests where the vapor remains	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	superheated for a longer period of time, as the rods
2	start to quench.
3	CHAIRMAN WALLIS: So that is something
4	that your theory is going to explain, or model?
5	DR. HOCHREITER: Well, somebody's model,
6	yes.
7	CHAIRMAN WALLIS: Not yours?
8	DR. HOCHREITER: I don't know, maybe. So,
9	I mean, to me this is great stuff for any kind of an
10	advance code, because you have to try to predict this.
11	Now, again, I think you have to use some constructive
12	interpretation of the measurement.
13	And it is really the peaks that I think
14	you want to look at. And then it really gets fuzzy in
15	here.
16	DR. SANJOY: What is a bit surprising is
17	that the green and the black back there
18	DR. HOCHREITER: Are about the same?
19	DR. SANJOY: Yes.
20	DR. HOCHREITER: I know. You don't see
21	that in all of them. Let me run through some more.
22	This is low, this is fairly low in the bundle.
23	CHAIRMAN WALLIS: Maybe it is only steam
24	up there, there is no water at all.
25	DR. HOCHREITER: No, there is water. If

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	there is only steam you would not see this.
2	CHAIRMAN WALLIS: You wouldn't?
3	DR. HOCHREITER: No.
4	MR. SCHROCK: What is the meaning of SP
5	and CT, that is on your location up there?
6	DR. HOCHREITER: CT is clad thermocouple,
7	ST is steam probe. So these are clad thermacouples
8	inside the heater rods, these are steam probes.
9	MR. SCHROCK: They are all temperatures?
10	DR. HOCHREITER: Yes, yes. I'm going to
11	get this all in the border. Now, this is another
12	elevation that is further up.
13	CHAIRMAN WALLIS: This is now in
14	centimeters a second?
15	DR. HOCHREITER: I have a foreign student
16	doing this. And by contract we have to give the NRC
17	this stuff in metric. The only problem is I don't
18	understand it. I do understand that.
19	CHAIRMAN WALLIS: Well, centimeter is not
20	a standard unit.
21	DR. HOCHREITER: So this is at, with the
22	grid at the 89 inch elevation. Again, this is a clad
23	temperature at 91 inches, and a clad temperature at 88
24	inches.
25	And you can see the effect of the spacer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	grid is to drop this by over 200 degrees C.
2	CHAIRMAN WALLIS: Now, all these curves
3	are digitized, and recorded in electronic forms?
4	DR. HOCHREITER: Yes.
5	MR. SCHROCK: Where is the grain? Is that
б	the upper thermocouple on the plan?
7	DR. HOCHREITER: Yes. 91 inches.
8	DR. KRESS: Now, have you replotted these
9	anywhere as the temperature versus elevation?
10	DR. HOCHREITER: Yes.
11	DR. KRESS: Above the
12	DR. HOCHREITER: Yes.
13	DR. SANJOY: But the first peak is about
14	the same, right?
15	DR. HOCHREITER: Yes, and this is probably
16	because this is right at the beginning of the test,
17	and there probably is no water.
18	CHAIRMAN WALLIS: So how does the steam
19	get heated so much as it goes through the grid?
20	DR. HOCHREITER: The steam is getting
21	cooled.
22	CHAIRMAN WALLIS: No, the next curve. The
23	steam probe is the next one. In this one the steam is
24	getting heated as it goes through the grid, isn't it?
25	Am I looking at something else?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	DR. SANJOY: That was the clad
2	temperature.
3	CHAIRMAN WALLIS: No, this is the steam.
4	It is the other way around, it is getting cooled as it
5	goes through the grid?
6	DR. HOCHREITER: Right. This is the steam
7	temperature, 93 inches, again I should have drawn an
8	arrow here, but the flow is up this way.
9	CHAIRMAN WALLIS: So what cools it?
10	DR. HOCHREITER: The droplet breakup here.
11	The turbulent mixing, droplet breakup.
12	CHAIRMAN WALLIS: Now, these droplets
13	DR. HOCHREITER: Increased convection.
14	CHAIRMAN WALLIS: These droplets are
15	hitting your probe, then?
16	DR. HOCHREITER: The droplets are hitting
17	the grid.
18	CHAIRMAN WALLIS: Not hitting the probe?
19	DR. KRESS: What was bothering me is that
20	this supposes that every grid you hit the droplets get
21	smaller, and then they get smaller again. I could
22	never rationalize this.
23	DR. HOCHREITER: That may not be true,
24	because you may reach a minimum size where most of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	drops can pass through the grid.
2	DR. KRESS: But then you wouldn't see the
3	effect.
4	DR. HOCHREITER: There is still a
5	convective enhancement that is caused by the spacer,
6	particularly a spacer like this. So you are going to
7	get a higher interfacial heat transfer between the
8	vapor and the drop.
9	MR. SCHROCK: Do you have thermacouples on
10	the grids?
11	DR. HOCHREITER: Yes.
12	MR. SCHROCK: You are not showing us
13	those?
14	DR. HOCHREITER: I'm not. Most of these
15	grids will end up being quenched.
16	MR. SCHROCK: Yes, that is what I was
17	going to suggest, that your cooling occurs between the
18	grid and the steam going through and not in a change
19	in mixing conditions downstream of that.
20	DR. HOCHREITER: Well, I know there is a
21	change in the mixing conditions downstream, I know
22	that from single phase tests.
23	MR. SCHROCK: But you can't convince me
24	that the predominant effect is in the region
25	downstream of the grid, without showing me the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	temperature on the grid.
2	DR. HOCHREITER: Well, for most of these
3	tests
4	MR. SCHROCK: They are quenched.
5	DR. HOCHREITER: For most of these tests
6	the grid
7	MR. SCHROCK: But that is a lot of
8	surface area compared to the drop surface area.
9	DR. HOCHREITER: I know, I agree, I agree.
10	And that is something that we are going to have to
11	sort out from the data. And, really, we've talked
12	about this with the NRC.
13	We have purposely kept these tests at a
14	low temperature, because it is the beginning of a test
15	period, a long test period, one very large expensive
16	rod bundle.
17	What we planned to do, and Steve had it on
18	his slide, is go back after we run our separate
19	effects decomposition of disperse flow film boiling,
20	and run higher temperature tests, because there we
21	will definitely have the grids hot.
22	And we do have some data, but it is
23	limited, where the grids are hot. And I can't
24	honestly answer whether you see exactly the same
25	effect, or not, without going back and looking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	specifically at that data.
2	MR. SCHROCK: But you are convinced that
3	the predominant effect is the enhanced heat transfer
4	between drops and steam downstream from the grid, not
5	enhanced heat transfer in the grid, from wall to
6	steam?
7	DR. HOCHREITER: Well, actually, liquid
8	film is
9	MR. SCHROCK: Well, the liquid film is the
10	wall to the vapor.
11	DR. HOCHREITER: Yes. Right now, yes, I
12	am.
13	DR. KRESS: Larry, I conclude that in
14	order to get that enhanced heat transfer, that you
15	have to have more droplet surface area, which means
16	you have to break them up.
17	Actually the heat transfer of a given drop
18	between the steam and drop wasn't much, when I tried
19	to make the calculations. So that is, once again, I
20	come back to I never figured out how we kept making
21	the droplets smaller each time.
22	DR. HOCHREITER: Well, Dr. Schrock has a
23	very valid point.
24	DR. KRESS: Yes, it could have something
25	to do with that grid, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	DR. HOCHREITER: And the amount of surface
2	area. You get two benefits, if you would, in that
3	case. One, the surface area benefit, because the grid
4	does have a huge surface area.
5	The second benefit is that the relative
6	velocity is much higher for the interfacial heat
7	transfer, because the grid is not moving.
8	MR. SCHROCK: And the third is that you
9	are in a thermal entry region.
10	DR. HOCHREITER: Right.
11	MR. SCHROCK: Very close to the beginning
12	of it.
13	DR. HOCHREITER: That is right.
14	MR. SCHROCK: All at a very high heat
15	transfer coefficient.
16	DR. HOCHREITER: That is right.
17	CHAIRMAN WALLIS: What does your grid
18	thermocouple show?
19	DR. HOCHREITER: For most of the tests the
20	grid thermocouple, once you start to get water through
21	here, will quench. So it will come down
22	CHAIRMAN WALLIS: The grid thermocouple is
23	way down there.
24	DR. RANSOM: Larry, have you modeled these
25	using COBRA/TRAC, or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	125
1	DR. HOCHREITER: Yes.
2	DR. RANSOM: What does it show in terms of
3	these temperatures?
4	DR. HOCHREITER: We get a behavior like
5	this.
6	DR. RANSOM: It would be very instructive
7	to see some comparisons.
8	DR. HOCHREITER: We have done those, we do
9	get a behavior that is like this.
10	DR. RANSOM: You do get that kind of
11	superheat being predicted?
12	DR. HOCHREITER: Yes. If anything we tend
13	to overpredict the superheat.
14	DR. RANSOM: How about other NRC codes?
15	Like RELAP-5, what does it show?
16	DR. HOCHREITER: I cannot answer that, I
17	don't know. But in this case, at this higher
18	elevation, you do see more of an effect on the grid,
19	even on the vapor temperature, including the rod
20	temperatures.
21	The higher you go, of course the power
22	gets higher. This is around the peak power location.
23	Again, this is a thermocouple downstream of the grid,
24	thermocouple upstream of the grid.
25	And when I said these tests are quasi-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	steady, I mean, these temperatures are really fairly
2	steady for hundreds of seconds. And you don't see
3	that in a normal reflood test.
4	Again, the reason for it is because we've
5	been running these at a constant power. But here is
б	almost 200 degrees C difference, upstream and
7	downstream.
8	And you see the same picture for the
9	vapor. The vapor is almost constant. This is almost
10	a steady state test, that starts to drop off sooner
11	because it is at a lower elevation.
12	CHAIRMAN WALLIS: And no one has tried to
13	analyze these?
14	DR. HOCHREITER: We are analyzing these,
15	the NRC is going to be analyzing these.
16	CHAIRMAN WALLIS: I really don't think
17	that is the way to do it, they should be analyzing
18	them right now, not waiting.
19	DR. HOCHREITER: This is at the past
20	the peak power location, almost at the exit of the
21	bundle. And, again, this is the temperature
22	downstream of the grid, and this is the temperature
23	upstream.
24	The temperatures, of course, are lower now
25	because the power has dropped off.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

127 1 DR. KRESS: You have cosine type 2 distribution? 3 DR. HOCHREITER: No, it is two straight 4 lines. 5 DR. KRESS: Two straight lines? DR. HOCHREITER: From .5 to 1.5 peaking 6 7 factor, and 1.5 occurs at about 108 inches, and then from 1.5 down to .5 at 144 inches. 8 DR. KRESS: Yes, that would be easier to 9 10 analyze, anyway. 11 DR. HOCHREITER: And that is one of the 12 reasons it was chosen. DR. SANJOY: If you take the precursory 13 14 cooling into account, does the advance of the quench 15 front follow any sort of conduction quench front advance? You would have to work out the entrainment, 16 17 and all this sort of stuff. DR. HOCHREITER: We had a student that 18 19 just finished at Penn State, that made improvements to 20 the COBRA/TF inverted annular, annular, and 21 entrainment models. We had him run his calculations 22 against FLECHT test, which have a cosine power shape, 23 and these rod bundle tests. 24 And he got excellent agreement with these 25 five bundle tests. There still are issues with the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	code. One of the issues is what do you choose for T-
2	min, minimal film boiling temperature.
3	These tests indicate that it should be
4	lower than the models that are typically in the code.
5	If you make that adjustment you could match the quench
6	fronts very well.
7	So it was actually a combination of both
8	of those things.
9	CHAIRMAN WALLIS: How much water is being
10	drained out the top of the hole?
11	DR. HOCHREITER: Quite a bit. The
12	qualities, if I remember correctly, are around 50
13	percent.
14	CHAIRMAN WALLIS: So half the flow coming
15	out of the top is water?
16	DR. SANJOY: T-min would also depend on
17	the material?
18	DR. HOCHREITER: Yes.
19	DR. SANJOY: That is the problem.
20	CHAIRMAN WALLIS: It depends on the
21	velocity, too. It is not just a magic number.
22	DR. HOCHREITER: We have run experiments,
23	again, as part of the program, on different cladding
24	materials. We built a small furnace and we took
25	inconnel, built a four foot heater rods, basically,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	and basically oxidized the inconnel. And we got T-min
2	values, basically, with a dunk test.
3	And then we took zircaloy, fresh zircaloy,
4	and zircaloy with different oxidation thicknesses,
5	which we could characterize, did the same thing. Yes,
6	there is quite a bit of difference.
7	We took the inconnel samples, we roughened
8	them, and again you get a higher T-min value. So this
9	is something that is going to have to be nailed down.
10	CHAIRMAN WALLIS: Which means that all
11	fuel elements which have an oxide layer are going to
12	be different?
13	DR. HOCHREITER: That is right. But those
14	are usually low power fuel elements, not limine.
15	Again, what I'm ecstatic about with this
16	data is the steam temperature measurements that just
17	slowly, slowly come down towards saturation. We never
18	saw that in any previous test, ever, anywhere in the
19	world.
20	DR. RANSOM: Never saw what?
21	DR. HOCHREITER: Steam temperatures
22	remaining superheated and then slowly coming down to
23	a saturation temperature like this. Usually it goes
24	plunk.
25	DR. RANSOM: You don't see any quench, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	don't think?
2	DR. HOCHREITER: That is right. Now, this
3	is at the very top of the bundle, the flow is most
4	highly dispersed.
5	MR. SCHROCK: It looks almost like it sort
6	of tries to quench, and then hesitates, and then tries
7	again.
8	DR. HOCHREITER: Yes, in here.
9	MR. SCHROCK: Right, those shelves.
10	DR. HOCHREITER: Yes. And so, again, my
11	interpretation of the data is take the tops.
12	DR. RANSOM: You have the same number on
13	that 1096, is that a run number?
14	DR. HOCHREITER: Yes.
15	DR. RANSOM: But when I look at the
16	printed version it looks different out here where
17	these, near the tail end.
18	DR. HOCHREITER: I don't know what you
19	mean.
20	DR. RANSOM: I guess you've gone over it
21	with a pen, and smeared it up, that is what it looks
22	like.
23	DR. HOCHREITER: With the green, you mean?
24	DR. RANSOM: Right, the green.
25	DR. HOCHREITER: Yes, I did, to make it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	more dramatic.
2	DR. RANSOM: But when you look at the
3	printed one there are more distinct shelves.
4	DR. HOCHREITER: Yes.
5	DR. RANSOM: There, as it comes down.
6	DR. HOCHREITER: That is very true, that
7	is very true. You can see them in through here.
8	DR. RANSOM: Yes.
9	CHAIRMAN WALLIS: I don't think your model
10	is going to predict those shelves.
11	DR. HOCHREITER: I don't think so either.
12	MR. BOEHNERT: What are you attributing
13	this to, Larry?
14	DR. HOCHREITER: What am I attributing
15	what to?
16	MR. BOEHNERT: This fall off of superheat
17	cooling?
18	DR. HOCHREITER: The quench front is
19	coming up but it is so highly dispersed that there is
20	just not a lot of liquid there, okay? There is
21	obviously liquid in the flow, that is really what
22	causes this, okay?
23	MR. BOEHNERT: But you are saying you've
24	never seen these many tests before?
25	DR. HOCHREITER: But I've never seen it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	persist for as long a period of time. Because we
2	always use these aspirating steam probes and, you
3	know, so you are sucking steam, hopefully steam, into
4	the thimble, where you have a shielded thermocouple.
5	And you provide a torturous path, hopefully, to
6	separate out the liquid.
7	Well, hopefully doesn't cut it. Now, a
8	couple of reasons. One, you do get liquid in there,
9	when you get it in there, it hits the probe, it
10	quenches. These were larger thermacouples, which is
11	probably part of the problem. These are much smaller
12	thermacouples.
13	Again, the other thing is you have a decay
14	power, so the whole transient is compressed. And you
15	get a lot more liquid up there, sooner, than you do in
16	these tests.
17	CHAIRMAN WALLIS: Did you do separate
18	effects tests on your probes to see what they actually
19	measure in a controlled flow?
20	DR. HOCHREITER: We have not, no. I think
21	we did something like this in the FLECHT SEASET
22	program. We used bare thermacouples in the FLECHT
23	SEASET program, but it was at the very end of the
24	particular, in a small 21 rod bundle.
25	And we had, Ralph and I designed a lot of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

133 1 steam probes that didn't work, okay? So it is rare 2 that you find one that does. And we had shielded 3 thermacouples, we had self-aspirating thermacouples, 4 and then we had bare thermacouples. 5 Now, bare thermacouples worked the best. I think it is just a question of providing the 6 7 smallest target to the drops. 8 DR. SANJOY: There was some CARS 9 measurements made at Lehigh, John Chen made them? 10 DR. HOCHREITER: Yes. So he basically took what we had done in FLECHT and did it in a 11 smaller rod bundle where, again, he was aspirating, 12 pulling a vacuum and sucking --13 14 DR. SANJOY: No, I meant he was also using 15 random scattering to look at temperatures. 16 DR. HOCHREITER: That I'm not aware of. 17 DR. SANJOY: I don't know if he ever got 18 it to work. 19 DR. HOCHREITER: I really can't answer 20 that, I don't know. 21 DR. SANJOY: Then he had an independent 22 measurement, completely. 23 DR. HOCHREITER: Right. 24 DR. SANJOY: NRC funded it, so we should 25 be able to dig up what --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	134
1	DR. HOCHREITER: No, we have the reports,
2	and I looked at those reports, I just don't remember
3	that being reported.
4	DR. SANJOY: Okay.
5	DR. MOODY: What is the one inch per
6	second?
7	DR. HOCHREITER: It is one inch cold
8	flooding rate into the bottom of the bundle.
9	Now, we have the laser illuminated camera.
10	And this was positioned at the 93 inch elevation. And
11	this is plotting the mean diameter versus time after
12	reflood. This gives you an indication of where the
13	quench front is, okay?
14	And as the quench front is moving up along
15	these elevations, the mean diameter from the
16	distribution of the drops that we measured with the
17	camera, is slowly increasing.
18	And then as the quench front gets very
19	close to this 93 inch elevation, this basically falls
20	off. So we are measuring drops, entrained drops,
21	roughly four to six inches below the quench front,
22	with this camera system. We have never been able to
23	dot and plot it.
24	And you get a whole history of these
25	drops. When we did these, tried these types of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	measurements in the FLECHT SEASET program, as Steve
2	indicated, we would maybe get 50 drops.
3	DR. KRESS: Where would you locate a grid
4	along that?
5	DR. HOCHREITER: This is above a grid, if
б	I remember correctly.
7	CHAIRMAN WALLIS: So one location?
8	DR. HOCHREITER: Yes, one location. I'm
9	going to show you above and below in a minute.
10	DR. RANSOM: Larry, what Webber number do
11	those correspond to?
12	DR. HOCHREITER: I can't tell you that, I
13	have not calculated that.
14	DR. RANSOM: You really need to extract
15	some of that data out of this.
16	DR. HOCHREITER: Well, we will, we will.
17	We will be able to do that because we will do the $$
18	at least it is going to be a bundle average steam
19	velocity, and we can calculate that.
20	DR. KRESS: By looking at that change in
21	droplet size you could probably extract how much
22	turned into steam.
23	DR. HOCHREITER: Exactly. But you have to
24	remember
25	DR. SANJOY: There is not much change.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1DR. HOCHREITER: You have to remember2DR. KRESS: That is what I was thinking,3there is not much of a slope there.4DR. HOCHREITER: You have to remember that5these, the measuring system tends to bias you towards6smaller sizes.7DR. KRESS: It probably does, yes.8DR. HOCHREITER: Because we cannot see the9drops that are behind the rod, and we are looking10through the gap. And the gap, I think, is 122 mils.11And in the camera system you have to put boundaries,12you put into the software boundaries. So it is13actually less than 122 mils.14And then the software package with the15system basically rejects parts of drops, or any drop16that touches the boundary. So you tend to get a bias17DR. SANJOY: These are about 15 thou,19right?20DR. HOCHREITER: Right.		136
 there is not much of a slope there. DR. HOCHREITER: You have to remember that these, the measuring system tends to bias you towards smaller sizes. DR. KRESS: It probably does, yes. DR. HOCHREITER: Because we cannot see the drops that are behind the rod, and we are looking through the gap. And the gap, I think, is 122 mils. And in the camera system you have to put boundaries, you put into the software boundaries. So it is actually less than 122 mils. And then the software package with the system basically rejects parts of drops, or any drop that touches the boundary. So you tend to get a bias here, probably, of smaller drops. DR. SANJOY: These are about 15 thou, right? 	1	DR. HOCHREITER: You have to remember
 4 DR. HOCHREITER: You have to remember that 5 these, the measuring system tends to bias you towards 6 smaller sizes. 7 DR. KRESS: It probably does, yes. 8 DR. HOCHREITER: Because we cannot see the 9 drops that are behind the rod, and we are looking 10 through the gap. And the gap, I think, is 122 mils. 11 And in the camera system you have to put boundaries, 12 you put into the software boundaries. So it is 13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right? 	2	DR. KRESS: That is what I was thinking,
 these, the measuring system tends to bias you towards smaller sizes. DR. KRESS: It probably does, yes. DR. HOCHREITER: Because we cannot see the drops that are behind the rod, and we are looking through the gap. And the gap, I think, is 122 mils. And in the camera system you have to put boundaries, you put into the software boundaries. So it is actually less than 122 mils. And then the software package with the system basically rejects parts of drops, or any drop that touches the boundary. So you tend to get a bias here, probably, of smaller drops. DR. SANJOY: These are about 15 thou, right? 	3	there is not much of a slope there.
6 smaller sizes. 7 DR. KRESS: It probably does, yes. 8 DR. HOCHREITER: Because we cannot see the 9 drops that are behind the rod, and we are looking 10 through the gap. And the gap, I think, is 122 mils. 11 And in the camera system you have to put boundaries, 12 you put into the software boundaries. So it is 13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?	4	DR. HOCHREITER: You have to remember that
7DR. KRESS: It probably does, yes.8DR. HOCHREITER: Because we cannot see the9drops that are behind the rod, and we are looking10through the gap. And the gap, I think, is 122 mils.11And in the camera system you have to put boundaries,12you put into the software boundaries. So it is13actually less than 122 mils.14And then the software package with the15system basically rejects parts of drops, or any drop16that touches the boundary. So you tend to get a bias17DR. SANJOY: These are about 15 thou,19right?	5	these, the measuring system tends to bias you towards
8DR. HOCHREITER: Because we cannot see the9drops that are behind the rod, and we are looking10through the gap. And the gap, I think, is 122 mils.11And in the camera system you have to put boundaries,12you put into the software boundaries. So it is13actually less than 122 mils.14And then the software package with the15system basically rejects parts of drops, or any drop16that touches the boundary. So you tend to get a bias17here, probably, of smaller drops.18DR. SANJOY: These are about 15 thou,19right?	6	smaller sizes.
9 drops that are behind the rod, and we are looking 10 through the gap. And the gap, I think, is 122 mils. 11 And in the camera system you have to put boundaries, 12 you put into the software boundaries. So it is 13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?	7	DR. KRESS: It probably does, yes.
10 through the gap. And the gap, I think, is 122 mils. 11 And in the camera system you have to put boundaries, 12 you put into the software boundaries. So it is 13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?	8	DR. HOCHREITER: Because we cannot see the
And in the camera system you have to put boundaries, you put into the software boundaries. So it is actually less than 122 mils. And then the software package with the system basically rejects parts of drops, or any drop that touches the boundary. So you tend to get a bias here, probably, of smaller drops. DR. SANJOY: These are about 15 thou, right?	9	drops that are behind the rod, and we are looking
12 you put into the software boundaries. So it is 13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?	10	through the gap. And the gap, I think, is 122 mils.
13 actually less than 122 mils. 14 And then the software package with the 15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?	11	And in the camera system you have to put boundaries,
And then the software package with the system basically rejects parts of drops, or any drop that touches the boundary. So you tend to get a bias here, probably, of smaller drops. DR. SANJOY: These are about 15 thou, right?	12	you put into the software boundaries. So it is
<pre>15 system basically rejects parts of drops, or any drop 16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?</pre>	13	actually less than 122 mils.
<pre>16 that touches the boundary. So you tend to get a bias 17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?</pre>	14	And then the software package with the
<pre>17 here, probably, of smaller drops. 18 DR. SANJOY: These are about 15 thou, 19 right?</pre>	15	system basically rejects parts of drops, or any drop
18DR. SANJOY: These are about 15 thou,19right?	16	that touches the boundary. So you tend to get a bias
19 right?	17	here, probably, of smaller drops.
	18	DR. SANJOY: These are about 15 thou,
20 DR. HOCHREITER: Right.	19	right?
	20	DR. HOCHREITER: Right.
21 DR. SANJOY: What is 122 mils?	21	DR. SANJOY: What is 122 mils?
22 DR. HOCHREITER: Well, roughly eight times	22	DR. HOCHREITER: Well, roughly eight times
23 this.	23	this.
24 DR. SANJOY: This is a Sauter mean?	24	DR. SANJOY: This is a Sauter mean?
25 DR HOCHRETTER: This is just mean I'm	25	DR. HOCHREITER: This is just mean, I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	going to show you Sauter mean next. Sauter mean is a
2	little larger. There is more scatter, too, which I
3	cannot explain right now.
4	DR. RANSOM: Sauter mean is the diameter
5	that gibes you the same surface area?
6	DR. HOCHREITER: It is a surface area
7	CHAIRMAN WALLIS: Actually it is a volume
8	to surface.
9	DR. HOCHREITER: A volume to surface, so
10	it comes out with a D, yes.
11	These are the number of counts. This is
12	just to show you that we had a lot of counts.
13	CHAIRMAN WALLIS: This is counts per
14	second?
15	DR. HOCHREITER: This is counts for each
16	diameter size that we got, okay? And we I don't
17	have the total number of counts, but it is typically
18	like 5,000.
19	So the number, we threw anything of 20 or
20	less. So to calculate this diameter, whether it is a
21	Sauter mean, or the average diameter, where you are
22	using data that has about 51 counts.
23	CHAIRMAN WALLIS: Presumably over a period
24	of time?
25	DR. HOCHREITER: It is, but it is rather

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	short. Total counts, total, for that window.
2	DR. SANJOY: But there is seconds after
3	reflood?
4	DR. HOCHREITER: Yes, these are seconds
5	after reflood.
6	DR. SANJOY: How big are your windows?
7	DR. HOCHREITER: THE time window? I think
8	it was about, I'm guessing, 20 seconds.
9	CHAIRMAN WALLIS: So there are very few
10	counts per second.
11	DR. HOCHREITER: Yes. I don't really know
12	the exact number.
13	DR. SANJOY: But it is off that order,
14	because you go one, two, three, four, five, six, six
15	in 100 seconds, roughly, of those.
16	DR. HOCHREITER: Yes. Now, if we look at
17	the distribution, and you should correct your slide,
18	this is below the 110 inch grid, this is the
19	distribution we are getting, this was the mean, okay?
20	And the mean was 18 mils.
21	CHAIRMAN WALLIS: That is a log scale?
22	DR. HOCHREITER: Yes. Actually we found
23	most of this fits a log normal distribution.
24	CHAIRMAN WALLIS: What are these weird
25	ones which are off scale?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	DR. HOCHREITER: They are weird. They are
2	weird data, which I cannot explain at this time.
3	DR. SANJOY: So these are log normal
4	distribution, really?
5	DR. HOCHREITER: Yes.
6	CHAIRMAN WALLIS: Except for the weird
7	ones.
8	DR. HOCHREITER: Except for the weird
9	ones. This is above the grid, the one below the grid
10	was 0.18 something. This is the size above the grid,
11	the size has decreased.
12	The other thing, at least it seems to me,
13	that this distribution is tighter than the one below
14	the grid.
15	DR. SANJOY: But, you know, as you said,
16	you may be biasing your data because of the window.
17	DR. HOCHREITER: I know, I know. You have
18	to consider that.
19	MR. SCHROCK: There is a huge resonance of
20	10 to the minus 2 inches. Resonance.
21	CHAIRMAN WALLIS: Those are the weird
22	ones.
23	MR. SCHROCK: It looks like a neutron
24	scattering.
25	CHAIRMAN WALLIS: Well, it is not a log

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	scale, is it?
2	DR. SANJOY: Well, it could be that there
3	is a preferred size.
4	MR. SCHROCK: It could be.
5	DR. HOCHREITER: I don't have an
6	explanation for these points.
7	DR. SANJOY: If you look at this data set
8	there is also that little bump.
9	DR. HOCHREITER: The next plot just is
10	axial plots of the vapor temperature. So the green is
11	at the beginning of the test. The solid squares are
12	at 350 seconds. So, I mean, I just drew a colored
13	line through here, so you can see it better.
14	And this is a turn-around, so you have
15	some data here, you have point that is low here, these
16	points are high here, points in here. Some of the
17	thermacouples in the steam probes do behave
18	differently, because this one is low, these two are
19	basically together, these three are basically
20	together.
21	By and large you don't see a large radial
22	temperature gradient across the bundle, because you
23	are sampling three different subchannels here, in the
24	bundle.
25	Each one of these thermacouples is in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 center of a different subchannel. They come in 2 the side. 3 DR. SANJOY: So now this is by a 4 location? 5 DR. HOCHREITER: That is right, the</pre>	
3 DR. SANJOY: So now this is by a 4 location?	
4 location?	arial
	axiai
5 DR. HOCHREITER: That is right, the	
	is is
6 temperature versus axial position.	
7 DR. SANJOY: And the temperature	
8 DR. HOCHREITER: Or three different t	imes.
9 MR. SCHROCK: Okay.	
10 DR. HOCHREITER: This is at the begin	nning
11 of the test, this is at 350 seconds, this is at	turn-
12 around. Now, this is my drawing of	
13 MR. SCHROCK: I don't understand how	w you
14 are showing turn-around on temperature ve	ersus
15 location.	
16 DR. HOCHREITER: This is the	clad
17 temperature turn-around, this is the steam temperature	ature
18 distribution at the time that the clad temperature	ature
19 turns around.	
20 CHAIRMAN WALLIS: Where does it	turn
21 around?	
22 DR. HOCHREITER: At the upper elevat	ions,
23 up in here. And I don't remember what the time	is, I
24 would have to go back and look at the time.	
25 DR. BAJOREK: It is about 800 second	ds or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	so.
2	DR. HOCHREITER: Yes, something like that.
3	DR. SANJOY: 350 seconds, when you say
4	350, is 350 from the start of reflood?
5	DR. HOCHREITER: Right.
6	DR. SANJOY: But when you say turn-around,
7	what do you mean, is that something like 800 seconds?
8	DR. HOCHREITER: Yes, I should have put a
9	time in here.
10	Now, the plot that Dr. Kress was talking
11	about looks something like this. Again, this is
12	temperature versus elevation. These are the heater
13	rod temperatures, these are the spacer grids, these
14	are vapor temperature measurements.
15	CHAIRMAN WALLIS: So the zigzag is used as
16	spacer?
17	DR. HOCHREITER: Yes. You get cooling,
18	and then you get recovery, cooling, recovery, I'm not
19	too sure why this drops down, and then and so forth.
20	Then you have
21	DR. SANJOY: Where is your flux peak?
22	DR. HOCHREITER: It's in here, very close
23	to this. Yes, I don't know why this is
24	CHAIRMAN WALLIS: What are the
25	expectations of the code, Steve? Are you going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 model these mountains? 2 DR. BAJOREK: Yes, we think that in 3 long run this code has to be able to get the cladd</pre>	ing
	ing
3 long run this code has to be able to get the cladd	
	of
4 profile, and be able to get the dips following each	
5 these grids. And that is going to require us not o	nly
6 to get the rod to the fluid heat transfer correct,	the
7 interfacial heat transfer correct, and be able to	get
8 what I will call the delta D, or the change in	the
9 droplet sizes it encounters one grid to the next.	
10 DR. KRESS: We'll need that, because th	ere
11 is 150 degree difference there.	
12 DR. SANJOY: What time is it?	
13 DR. HOCHREITER: This is at the p	eak
14 temperature turnaround time. This is around	800
15 seconds. It is actually I can tell you that m	ore
16 accurately.	
17 DR. RANSOM: Larry, the turn-around t	ime
18 is when the peak clad temperature starts to go b	ack
19 down?	
20 DR. HOCHREITER: Yes. It is more like	400
21 seconds.	
22 DR. SANJOY: Four hundred seconds?	
23 DR. HOCHREITER: I'm just going based	on
24 this.	
25 DR. SANJOY: And where does the peak c	lad

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	temperature occur, is it at the maximum flux point?
2	DR. HOCHREITER: Yes, it is up in here.
3	DR. SANJOY: Somewhere there. So I don't
4	understand this, Larry. The peak temperature there,
5	that you are showing, is about 850, 870, or something.
6	DR. HOCHREITER: I see what you are
7	saying, yes.
8	DR. SANJOY: So wouldn't you expect that
9	unless the turn-around is just before the peak?
10	DR. HOCHREITER: Ralph, do you remember
11	the exact location of the peak power?
12	DR. ROSAL: 108.
13	DR. HOCHREITER: 108 inches?
14	DR. ROSAL: Yes, we have it.
15	DR. HOCHREITER: All right, I would have
16	to convert that to meters, because this was in I
17	don't really know, it is before this grid.
18	CHAIRMAN WALLIS: This initial
19	temperature, what is that? The initial temperature of
20	everything?
21	DR. HOCHREITER: This was the initial
22	temperature of the test.
23	CHAIRMAN WALLIS: Everything is at that
24	temperature, it must be just the peak?
25	DR. HOCHREITER: It is the peak. There

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	was a 20 PSI test, I've got a similar set of plots for
2	40. Do you want me to walk through those plots?
3	CHAIRMAN WALLIS: Is there anything new?
4	DR. HOCHREITER: Not so much, no.
5	CHAIRMAN WALLIS: So are you going to,
6	then, show us some predictions, or something?
7	DR. HOCHREITER: No.
8	CHAIRMAN WALLIS: There is a COBRA/TF
9	here, on one of these.
10	DR. HOCHREITER: I don't think so, there
11	shouldn't be. If there is, I screwed up.
12	I do want to show you, if you go ahead in
13	the package, this is the steam probe behavior. When
14	you are at the center of a subchannel, and when you
15	are in the gap.
16	This experiment has a vapor temperature
17	measured in the gap, versus this experiment, same
18	conditions as the vapor temperature measured in the
19	center of the subchannel.
20	CHAIRMAN WALLIS: So you are going to show
21	that, too, in the code? It is going to be a two
22	dimensional code, a three dimensional code?
23	DR. BAJOREK: No.
24	CHAIRMAN WALLIS: There is a big
25	difference.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	DR. SANJOY: What is the vapor velocity?
2	DR. HOCHREITER: I cannot give you an
3	accurate number on that.
4	DR. SANJOY: It is most likely, though,
5	that things are fairly well mixed, aren't they?
6	DR. HOCHREITER: Well, your vapor
7	velocities are going to be the highest in here.
8	DR. SANJOY: Right.
9	DR. HOCHREITER: Okay? Vapor velocities
10	are the highest in here, and they are going to be the
11	lowest right in here.
12	DR. SANJOY: That could be just the
13	radiation effect, or something.
14	DR. HOCHREITER: I don't think so. I
15	really don't.
16	CHAIRMAN WALLIS: So it is much more
17	readily quenched in the one position than the other?
18	DR. HOCHREITER: Well, you have more
19	liquid here than you do here.
20	CHAIRMAN WALLIS: And the one that is
21	quenched, I'm trying to figure out which is which.
22	The center line is
23	DR. HOCHREITER: The one that is quenched
24	is the one that is in the center. You have a non-
25	uniform temperature distribution within the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	subchannel.
2	The temperatures are going to be higher in
3	the gaps than they are in the center of the
4	subchannel. CFD calculations show that, because the
5	velocity distribution is highest in the center of the
6	subchannel, lowest in the gap region.
7	So if nothing else changes, the vapor in
8	here is going to be at a higher temperature than here,
9	simply because of velocity. It is lower in the gap
10	region compared to the center.
11	Now, should a computer code like TRAC-M
12	account for this? No, I don't think so.
13	CHAIRMAN WALLIS: Well, if it is
14	averaging, it is going to average over a pretty wide
15	range of
16	DR. HOCHREITER: Well, there is more area
17	here than there is here.
18	CHAIRMAN WALLIS: What is it going to say
19	the temperature is?
20	DR. HOCHREITER: What TRAC-M is going to
21	say the temperature is?
22	CHAIRMAN WALLIS: So 600 or something,
23	between
24	DR. HOCHREITER: TRAC-M is going to give
25	you a more accurate estimate of the temperature in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	here.
2	DR. SANJOY: It would be an area average.
3	CHAIRMAN WALLIS: I guess it doesn't
4	matter, there would be enough coefficients in the code
5	that it will correct for it, anyway.
6	DR. HOCHREITER: Well, I wouldn't even
7	try, but this is just something that people should
8	know about.
9	DR. BAJOREK: Larry, I think what you are
10	pointing out is, the TRAC-M, we would be shooting at
11	getting like a mass weighted average across the
12	bundle, and that is about the best we will do with
13	that.
14	What the tests are pointing out is the
15	potential need, in the future, for looking at
16	subchannel effects. In something like that we would
17	want to start looking at coupling TRAC-M with the
18	COBRA/TF, or something like a VIPER, if it is
19	important for the Staff to be able to predict the
20	differences across the bundle, like that.
21	DR. SANJOY: Are the clad temperatures
22	higher in the gaps, too?
23	DR. HOCHREITER: We don't know, because we
24	have a single thermocouple at some position. We don't
25	know the azimuthal position of the thermacouples.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	Also the interior of the rod is boron nitride-filled.
2	So you tend to smear out azimuthal differences.
3	DR. SANJOY: But you are getting the
4	inconnel temperature, right?
5	DR. HOCHREITER: The inside temperature of
6	the cladding is measured.
7	DR. SANJOY: So some of it is
8	MR. SCHROCK: Larry, how did you explain
9	this quench that occurs and persists for 20 odd
10	seconds down here?
11	DR. HOCHREITER: Big drop, big drop.
12	MR. SCHROCK: Well, I can see it is a big
13	drop, but what is going on there, how does the steam
14	suddenly go to saturation well
15	DR. HOCHREITER: The steam doesn't, the
16	steam doesn't.
17	MR. SCHROCK: What is that?
18	DR. HOCHREITER: The thermocouple does.
19	A drop hits the thermocouple and quenches it. The
20	steam temperature is up here.
21	CHAIRMAN WALLIS: Is there one drop for
22	that whole period?
23	DR. HOCHREITER: It could be more than
24	one.
25	DR. RANSOM: What it looks like is an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	150
1	inverted annular flow, almost, over the mass
2	concentration of liquids more in this channel.
3	DR. HOCHREITER: No, you just got hammered
4	by a bunch of drops.
5	DR. RANSOM: Well, that is what I said.
6	But essentially inverted annular flow, where you have
7	a higher concentration of liquid in the center of the
8	channel.
9	DR. HOCHREITER: Right, you have more
10	drops.
11	DR. RANSOM: That is right.
12	DR. SANJOY: But it could be ligaments, it
13	could be anything.
14	DR. HOCHREITER: I don't think so, not at
15	this time.
16	CHAIRMAN WALLIS: Is this just downstream
17	of a spacer?
18	DR. HOCHREITER: This is at 100 inches, so
19	this is downstream of a spacer.
20	CHAIRMAN WALLIS: So you've got drops
21	coming off the spacer, preferential streaks?
22	DR. HOCHREITER: Yes, but it is pretty far
23	downstream of the spacer.
24	MR. SCHROCK: So it looks as though there
25	is not much liquid getting to that level until a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	little bit after 200 seconds. Then all of a sudden
2	DR. HOCHREITER: Well, this I think, the
3	fine hash, here, I think is liquid.
4	DR. RANSOM: 25 seconds is a long time.
5	DR. HOCHREITER: That is liquid coming.
6	DR. RANSOM: But there is a precipitous
7	change at 210 seconds, or something like that.
8	DR. HOCHREITER: Right. Well, there is
9	one here, too.
10	DR. RANSOM: Well, that one is short.
11	DR. HOCHREITER: Yes, but this is liquid.
12	DR. RANSOM: Sure.
13	DR. HOCHREITER: All of this is liquid,
14	liquid, but whammo, you got hit, you try to recover,
15	you got hit again. You try to recover, you got hit
16	again.
17	CHAIRMAN WALLIS: It got really soaked for
18	a long time.
19	DR. HOCHREITER: Yes, try to recover, got
20	hit again, and slowly dried out, okay? Almost got
21	here, but you got hit again. And, finally, you dried
22	up.
23	Now, the steam temperature, what we are
24	concerned about is the steam temperature. This is not
25	the steam temperature. The steam temperature is up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	here.
2	That is what I said, you draw an envelope
3	over these spikes, that is about the best you can do,
4	okay? That is the best you can do.
5	So if your code comes along and predicts
б	the tops of these, down to here, you are doing a real
7	good job.
8	DR. SANJOY: But you don't even know if
9	the top is the steam temperature.
10	DR. HOCHREITER: No, but it is the closest
11	thing to the steam temperature.
12	DR. SANJOY: Yes, but the code doesn't
13	have to predict it because, in fact, it may be halfway
14	to the steam temperature, it could be the full way,
15	you don't know.
16	DR. HOCHREITER: If the code is predicting
17	a temperature down here, it is wrong.
18	DR. SANJOY: That is wrong, yes.
19	DR. HOCHREITER: But if the code is
20	predicting a temperature here, it is wrong. If it is
21	predicting a temperature up here it is wrong.
22	DR. SANJOY: Maybe.
23	DR. HOCHREITER: No, it is wrong. I mean,
24	this is probably hotter than the rods.
25	DR. SANJOY: Well, we don't want to do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	that.
2	DR. RANSOM: Larry, if I
3	DR. HOCHREITER: It has to be in the
4	vicinity of this data.
5	DR. RANSOM: Larry, other investigators
6	have used a shielded thermocouple that more or less
7	kept the liquid away from the thermocouple so you more
8	or less measure the steam temperature. Would that be
9	worth trying?
10	DR. HOCHREITER: I did try that, and what
11	happens is you have a larger target, because it is
12	shielded. So you get more liquid hitting it.
13	DR. RANSOM: In a cold shield?
14	DR. HOCHREITER: That is right. I tried
15	aspirating these things, where you cut holes in the
16	sides so the steam magically flows through, and it
17	flows out the top. The steam didn't know that, and
18	the water just hit it.
19	So, really, I really think the best thing
20	are as small as you can get them, the thermacouples.
21	CHAIRMAN WALLIS: Well, let's let the
22	radiation now, when the guy is in the gap, you've
23	actually got more rods than you show there. It is
24	looking sideways, it sees a lot more view factor of
25	rods than it does in the other cases, more heat leak

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	by radiation in the single light case.
2	DR. HOCHREITER: I think the argument
3	would be, I mean, this sees nothing but a sea of rods.
4	CHAIRMAN WALLIS: Does it? It sees the
5	outside world looking straight down, and straight up,
6	and straight sideways. More southeast and west, it
7	sees space.
8	MR. SCHROCK: But his scale is misleading,
9	because the actual clearance between the rods is quite
10	small.
11	CHAIRMAN WALLIS: At least it would
12	explain the quenching.
13	DR. HOCHREITER: This is very true, we
14	have not done that, that is one of the things that we
15	have to do with this data. Because this actually goes
16	back to I don't think I wanted to do that.
17	CHAIRMAN WALLIS: I think if you look at
18	a lot of details you are going to find so many of
19	these anomalies.
20	DR. HOCHREITER: Yes, but this goes back
21	to, I think, what Dr. Schrock was saying, in terms of
22	the accuracy of the data. You have the accuracy of the
23	instrumentation, but you have a large uncertainty,
24	which is really imposed on the data.
25	And the radiation effects in here are one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	of them. This behavior is another.
2	CHAIRMAN WALLIS: Is this consistent at
3	different locations? I mean, if you went to 125
4	inches you might find the story was reversed.
5	DR. HOCHREITER: We only ran this one
6	test. We did not run other tests. We talked about
7	this and decided the most representative place for the
8	thermacouples for these steam temperature measurements
9	was more into the center of the subchannel because you
10	are, in effect, sampling a larger fraction.
11	CHAIRMAN WALLIS: If that is true of all
12	locations of the probe.
13	DR. HOCHREITER: I can't answer that.
14	MR. SCHROCK: You've got some apparent
15	recovery times that are almost unbelievable, I think.
16	DR. HOCHREITER: Well, the scale, though,
17	is look at the scale.
18	MR. SCHROCK: Yes.
19	DR. HOCHREITER: The sampling time is
20	MR. SCHROCK: Have you calculated what the
21	recovery time ought to be?
22	CHAIRMAN WALLIS: The trouble is swept
23	away very quickly.
24	DR. HOCHREITER: Well, it is also followed
25	by a burst of superheated steam.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	CHAIRMAN WALLIS: But it is swept away,
2	right?
3	DR. HOCHREITER: Yes. Again, looking at
4	the drop I'm skipping ahead. This is the drop
5	data. Again, this is a 40 PSI test. This is below
6	the grid, and you have a mean of .025 inches.
7	DR. SANJOY: Why is there so much more
8	scatter here, than the other one?
9	DR. HOCHREITER: I don't know. And this
10	is above the grid. I think the grids are shaping the
11	drop distribution. Now, I did not think about drops
12	agglomerating downstream of a grid, okay?
13	I don't know if that is happening at all,
14	or not. But, clearly, when you are passing through a
15	grid, you are tending to, I think, to shape the
16	distribution.
17	CHAIRMAN WALLIS: That is a very big drop
18	on the right-hand tail, there.
19	DR. HOCHREITER: Over here?
20	CHAIRMAN WALLIS: Yes.
21	DR. HOCHREITER: It is probably too big.
22	DR. SANJOY: The camera didn't reject that
23	one?
24	DR. HOCHREITER: No, but it probably
25	should have.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	157
1	DR. SANJOY: Ten to the minus one inches,
2	one-tenth of an inch.
3	DR. HOCHREITER: This would still be
4	within the subchannel.
5	DR. SANJOY: I thought you said it was
6	.122 inches, your subchannel? I mean, your camera
7	would reject anything
8	DR. HOCHREITER: So this is .01, this is
9	.1.
10	DR. SANJOY: Oh, okay.
11	CHAIRMAN WALLIS: But still a .05 inch
12	drop is pretty big.
13	DR. HOCHREITER: Fifty mils, yes.
14	DR. SANJOY: How many millimeters is that?
15	DR. HOCHREITER: A little more than one,
16	one and a quarter.
17	Now, one of the questions that was asked,
18	I think by Dr. Banerjee, what are we learning that is
19	new? This is the kind of data we got in FLECHT
20	SEASET, okay?
21	This was taken with high speed movie
22	cameras, which mostly failed, because we ripped the
23	film apart. You take 400 feet of this film at 2000
24	frames a second. This was a successful test, we got
25	101 drops.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	We then paid an employee to basically go
2	frame by frame, shining this on a wall, paying for the
3	changes in his eye prescription, as he would count the
4	drop sizes, and we would get distributions that are
5	something like this.
б	CHAIRMAN WALLIS: Not so different from
7	what you got now.
8	DR. HOCHREITER: No, it is really not that
9	different. Except now we get a lot more data for a
10	long period of time. This is only for six seconds,
11	okay?
12	DR. BAJOREK: Yes, but we are also going
13	to be able to get it above and below a grid for
14	comparable flows.
15	DR. HOCHREITER: I think that was a little
16	bit out of order. But here were, again, the axial
17	profiles for this test. Again, these are the grids.
18	I have the grid wall temperatures plotted here.
19	Here is one of the grid wall temperature.
20	So this is indicating that part of the grid is still
21	hot, part of the grid is wetted. Most of the time,
22	particularly at this time, when the quench runs at
23	this elevation, the grids have wetted.
24	And then you see the saw-toothed curve
25	that you get from the heat transfer performance of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	grid.
2	CHAIRMAN WALLIS: Again, that is reversing
3	steam probe in certain locations, it is really cold.
4	DR. HOCHREITER: Yes, you have one
5	thermocouple quenched here, the other two are okay.
6	These are all together, together, together, this one
7	is quenched, this is at the end of the bundle, these
8	are all together.
9	DR. SANJOY: That is a snapshot it time,
10	right?
11	DR. HOCHREITER: That is correct.
12	DR. SANJOY: So one could be quenched.
13	CHAIRMAN WALLIS: So explaining this may
14	be harder than getting the data.
15	DR. HOCHREITER: Boy, I hope not. Now,
16	contrast that to an axial temperature distribution
17	from FLECHT SEASET. This is temperature versus
18	elevation, this is the behavior. And you don't really
19	see a spacer grid effect.
20	Now, the bundle was not instrumented
21	specifically to look for it. So it is really not too
22	surprising that you don't see it. But the spacer
23	grids that are in these tests are very simple grids.
24	Half the blockage that these grids are.
25	But you have to instrument it to find it,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	and that was not done, because it wasn't considered
2	that important.
3	CHAIRMAN WALLIS: The agency is going to
4	have to decide what kind of code assessment is
5	appropriate for this sort of data.
6	DR. HOCHREITER: Well, what would be very
7	interesting to me would be, if someone predicts these
8	tests very well, okay, with the codes. And then
9	predicts these tests very well.
10	DR. BAJOREK: And predicts FEBA Test 223
11	and 234, which were comparable tests, where they took
12	a grid in and out.
13	DR. HOCHREITER: With or without a center
14	grid. If you are going to predict this test, you are
15	going to have to have a spacer grid model in there,
16	that is going to somehow recognize this geometry.
17	And then to predict these tests, you are
18	going to have to have a spacer grid model in there
19	that somehow recognizes the FLECHT grid geometry.
20	DR. SANJOY: You'd have to do that for the
21	pressure drop, anyway, it is for some loss factor, or
22	something, right?
23	DR. HOCHREITER: Yes.
24	DR. SANJOY: So, I mean, it could be
25	related to that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	CHAIRMAN WALLIS: Who is going to do this
2	work?
3	DR. HOCHREITER: Look at all those hands
4	flying.
5	DR. BAJOREK: We will be doing that, that
6	will be the staff.
7	CHAIRMAN WALLIS: Will I still be on the
8	ACRS when you finish?
9	DR. BAJOREK: How many more years are you
10	going to be doing this?
11	(Laughter.)
12	DR. HOCHREITER: Now, what Steve
13	indicated, currently what is planned to do in the
14	program, is do some interfacial drag experiments over
15	a range of flows and powers, and pressures.
16	This is to be used to aid in the model
17	development for advance plant audits that the Staff is
18	doing right now. We are presently installing a steam
19	boiler, actually Penn State is doing this for the
20	program, and then we will run steam cooling
21	experiments with and without droplet injection, to
22	create, basically, steady state dispersed flow of film
23	boiling tests, where we can decouple the problem from
24	the quench front.
25	The steam cooling tests will also give us

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	162
1	a reference convective heat transfer.
2	CHAIRMAN WALLIS: It will be interesting
3	to see how steady your steady state is.
4	DR. HOCHREITER: Well, that is true, that
5	is true, because this is not going to be
6	straightforward.
7	Once these are done we will also be
8	looking at more severe reflood tests with variable
9	flow rates, higher temperatures. Again, the higher
10	temperatures are primarily to drive the grids to a
11	higher superheat temperature for a longer period of
12	time. Really, to address the point that Dr. Schrock
13	brought up.
14	And then there has also been talk about
15	doing top down film boiling experiences. But this
16	part of the plan is pretty much agreed upon.
17	CHAIRMAN WALLIS: What is a top down film
18	boiling experiment?
19	DR. HOCHREITER: These are tests where you
20	would actually bring the flow in from the top, and it
21	would simulate the reverse flow period at the end of
22	blowdown. It is still dispersed film flow boiling, but
23	you now have a reverse flow.
24	And this is typical of, certainly, most
25	four-loop plants, where you get a reverse flow as the
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

163 1 pressure is coming down during blowdown. Now, we 2 can't go to really high pressures, we can only go up to maybe 60, 70 feet, but at least we can capture the 3 4 effect. 5 DR. SANJOY: That is at fairly high pressure, that happens? 6 7 DR. HOCHREITER: Well, it is typically 100 8 PSI, and we are not going to be able to get to 100 9 PSI. DR. MOODY: You would do those on the same 10 geometry? 11 12 DR. HOCHREITER: Yes. DR. RANSOM: Larry, what do you expect to 13 14 get out of the droplet injection test? You want to 15 get a steady state, is that the idea? DR. HOCHREITER: Yes. And I specifically 16 17 want to get very detailed subchannel vapor temperature 18 measurements. It is doubtful that we can move the camera 19 20 around during a test, because this -- it is very, very 21 delicate. You have to set this thing up very -- I'm 22 not going to say, set it up and fix it very hard. 23 And we've observed that as you heat the 24 facility up the bundle can twist. And, remember, you 25 are only looking through the gap. So the area, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	viewing area can change.
2	So we've had to come up with an
3	arrangement, basically, lets the camera flow to move
4	with the housing as much as possible. But if we could
5	get somebody to give us some more money, we could put
6	more of these cameras in different positions.
7	But it is a very expensive system. When
8	we purchased it, it was approximately 70 to 100,000
9	dollars. But it has really given very good data.
10	DR. RANSOM: So you just have one window,
11	where you can take
12	DR. HOCHREITER: No, we have windows we
13	have a total of six
14	DR. RANSOM: You only have a camera at one
15	of the windows?
16	DR. HOCHREITER: We only have a camera at
17	one of the windows. Now, what we did in the reflood
18	test is we moved the camera, repeated the test
19	conditions, and we would do the same thing here.
20	So what you are relying on is the ability
21	to reproduce the conditions test to test, and then you
22	move the camera at different elevations.
23	MR. SCHROCK: Is your camera working full
24	frame? Is the image on the film occupying the whole
25	frame?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	DR. HOCHREITER: Yes. In fact you get two
2	subchannels, or two gaps. So you have it sees a
3	rod, and then sees a gap on either side of the rod.
4	And that is about as much as we can open it up, and
5	still get the resolution we want to get.
6	CHAIRMAN WALLIS: How many drops does it
7	see at a time, is it just one?
8	DR. HOCHREITER: No.
9	CHAIRMAN WALLIS: Several, none?
10	DR. HOCHREITER: I don't know what you
11	mean.
12	CHAIRMAN WALLIS: Well, you've got an
13	exposure, once you get an exposure and the thing zaps.
14	DR. HOCHREITER: It will take a scan. You
15	will basically put it in a thousand by a thousand
16	pixel plate, if you think about it as a plate. And
17	then it counts all the drops.
18	CHAIRMAN WALLIS: But isn't it like a
19	flash photograph in digital form?
20	DR. HOCHREITER: In a sense, yes.
21	CHAIRMAN WALLIS: But the short exposure,
22	and zap
23	DR. HOCHREITER: Yes, very short, yes.
24	CHAIRMAN WALLIS: and then you get some
25	blobs here and there?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	166
1	DR. HOCHREITER: And you count them, and
2	you reject some, and you count them, and they go into
3	a bin, you've a bunch of bins that are set up. Then
4	you just keep counting, and you keep filling the bins.
5	CHAIRMAN WALLIS: The machine can count
6	them?
7	DR. HOCHREITER: Yes.
8	DR. BAJOREK: Larry, isn't it that it
9	takes two frames very close together
10	DR. HOCHREITER: That is for velocity.
11	DR. BAJOREK: Yes, to get the velocity,
12	but it also gauges whether the droplet is coming at
13	you, because based on the blurb between the two
14	photographs, or whether you have one that is moving
15	with the stream, that is how it is screeding those
16	out?
17	DR. HOCHREITER: Well, but that is for
18	velocity mode. When you do exactly what Steve said,
19	for getting the droplet velocity, we've gotten some
20	velocity measurements, but we found that there was a
21	problem.
22	We were not getting accurate drop size
23	measurements when we put the camera into the velocity
24	mode. So we opted for getting accurate drop sizes.
25	When we looked at the droplet velocity data that we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	were getting, it was actually all over the place.
2	CHAIRMAN WALLIS: All over the place?
3	DR. HOCHREITER: Yes, there was no rhyme
4	or reason.
5	CHAIRMAN WALLIS: Velocity is an important
6	variable in the code.
7	DR. HOCHREITER: I understand that, but it
8	was a cloud. This may have been because we were
9	downstream of a grid.
10	DR. SANJOY: You weren't getting enough
11	separation?
12	DR. HOCHREITER: No, I think we were just
13	getting a wide range of velocities.
14	CHAIRMAN WALLIS: That is that true? rue.
15	DR. HOCHREITER: A very wide range of
16	velocities.
17	DR. SANJOY: Well, it would be turbulent.
18	DR. HOCHREITER: It could be. But I think
19	downstream of grid accented that problem, okay? And
20	then we had this, again, problem with the software.
21	CHAIRMAN WALLIS: It was telling you
22	something very important.
23	DR. HOCHREITER: I agree. And one of the
24	things that we are going to do is fix the system so we
25	can get better velocity data, as well as drop size

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	data.
2	MR. SCHROCK: You get kind of density
3	waves, you have wetting on the thing that sweeps the
4	batch of water off, and
5	DR. HOCHREITER: Yes.
6	MR. SCHROCK: high density two phase
7	mixture goes sweeping downstream. You see that go by
8	rather left to chance as to what you are
9	photographing.
10	Are you getting and then the drops in
11	this time period between those sweeps probably
12	smaller, and moving at lower velocity.
13	DR. HOCHREITER: That could be.
14	MR. SCHROCK: But I think that the
15	pulsating nature of it is probably important.
16	DR. HOCHREITER: Well, like I said
17	MR. SCHROCK: heat transfer
18	characteristics.
19	DR. HOCHREITER: Well, it depends on the
20	frequency. But the flow is unsteady. I mean, you
21	can, you set up steady boundary conditions, but the
22	flow is still unsteady, okay? And that is not going to
23	change.
24	Some of the problems we had was that we
25	would get oscillations that were superimposed on,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	again, this unsteady flow. And they were really due
2	to the facility. So we had to, basically, figure out
3	why. And we threw a lot of data away because of that.
4	Now, what I'm hoping here, when we do
5	these droplet injection tests, we have to be careful
6	because I don't want flashing to occur in these
7	injectors. But I also don't want condensation to
8	occur, such as the pressure takes a dive.
9	So these are going to be pretty delicate
10	to set up. You would like the water to come out of
11	these injectors saturated at the system pressure.
12	DR. MOODY: You made quite an argument
13	about that, and I thought liquid jets breaking up into
14	the range of droplet size. You also said some
15	intriguing things about this camera you used.
16	It takes pictures on a regular
17	photographic film?
18	DR. HOCHREITER: It is a digital camera.
19	DR. MOODY: It is a digital camera, I
20	mean, you are getting
21	DR. HOCHREITER: This stuff gets stored in
22	the software, and you are probably asking for more
23	detail than I can answer.
24	DR. MOODY: It was just a curiosity point.
25	So you get a really fine resolution?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	DR. HOCHREITER: It does.
2	MR. SCHROCK: It gives you a very clear
3	picture, 1000 by 1000.
4	DR. HOCHREITER: And we calibrated this,
5	like I said, on a milling machine, and we had, I think
6	they are called rectals, they are like pieces of glass
7	that have known images machined in them, of different
8	sizes, so we could get a calibration curve for the
9	camera system.
10	DR. MOODY: Which one threw the film
11	apart? You mentioned something about
12	DR. HOCHREITER: Those were high speed
13	movies that we took 20 some odd years ago, as part of
14	the FLECHT SEASET program.
15	DR. MOODY: Okay.
16	DR. HOCHREITER: And you could only put
17	400 foot roll of film into these. These are high cam
18	cameras, and most of the time you basically destroyed
19	the film.
20	DR. SANJOY: That is not always true.
21	DR. HOCHREITER: Most of the times we
22	always destroyed the films, because we didn't do a
23	very good job.
24	CHAIRMAN WALLIS: Because it is going so
25	fast, it is the mechanical forces on the film.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	DR. HOCHREITER: It rips it apart.
2	MR. SCHROCK: Well, that is the design.
3	I mean, the film is a tape that rotates the prism. I
4	mean, it is like a belt drive.
5	DR. HOCHREITER: Well
6	DR. SANJOY: If you get it up too fast it
7	rips.
8	CHAIRMAN WALLIS: So you are going to go
9	through your conclusions now?
10	DR. HOCHREITER: Yes, sorry. We think we
11	have constructed a facility which is flexible. It is
12	low pressure. We've added seven new features to the
13	facility. We've tried to take advantage of,
14	basically, the lessons learned in previous reflood and
15	other two-phased flow experiments, and enhanced the
16	instrumentation in the facility, and the data that we
17	can generate from the facility.
18	And the tests have been basically designed
19	to provide answers for code model development, as
20	opposed to address licensing questions.
21	The FLECHT SEASET program was really
22	designed to address licensing issues. So you would
23	run tests up to 2,200 degrees fahrenheit and, of
24	course, you destroyed your heater rods doing that.
25	We are not doing that in this test

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	program. We are specifically designing experiments to
2	give us data that can be used to either verify or
3	develop component models which would go into an
4	advanced code, like TRAC-M.
5	And we have been working hand in hand with
6	the NRC. In fact, the conditions for our experiments
7	basically come from the NRC. So the idea here is
8	basically to improve the models in the NRC codes, and
9	then the NRC codes will be used for audit
10	calculations.
11	And I think there really is a need for
12	this, because these days, again, the vendors are
13	pushing the envelope in terms of allowable peak
14	cladding temperatures, and kilowatts per foot.
15	CHAIRMAN WALLIS: What is the measurement
16	of improvement, reflood models?
17	DR. HOCHREITER: If they can match this
18	data and previous data.
19	CHAIRMAN WALLIS: They measure this in
20	terms of less uncertainty, or less scatter, or some
21	measure of deviation within the experiment?
22	DR. HOCHREITER: Yes, less uncertainty.
23	DR. SANJOY: The answer to the question is
24	that you are getting better droplet data, that is one
25	of the main things, compared to previous experiments?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1DR. HOCHREITER: Better steam temperature2data, better void fraction data. Well, consider what3is there. Better mass flow and mass balance data.4CHAIRMAN WALLIS: It may make you more5confused about the theory, so the theory could,6eventually, end up being7DR. HOCHREITER: Well, clearly, I don't8know if we've done it a disservice, or what, but these9have an effect, and most codes don't model it.10MR. SCHROCK: Well, I think there is no11question that you've proven that those things have an12effect. I worry about the fact that the data are13still being collected from the viewpoint of being able14to get some kind of time averaged information about15drop size and distribution.16Whereas what you see in the movie that you17showed us, is a pulsating flow. And the effect of the18pulsation is not being addressed.19DR. HOCHREITER: Not trivial.20MR. SCHROCK: And I think it is important.21DR. HOCHREITER: These flows are unsteady.22I mean, like I said, you run the tests as being steady23state, or quasi-steady state. But the flow itself is24unsteady. That is not going to change.25DR. KRESS: It doesn't look like it is		173
 is there. Better mass flow and mass balance data. CHAIRMAN WALLIS: It may make you more confused about the theory, so the theory could, eventually, end up being DR. HOCHREITER: Well, clearly, I don't know if we've done it a disservice, or what, but these have an effect, and most codes don't model it. MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. MR. SCHROCK: And I think it is important. DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	1	DR. HOCHREITER: Better steam temperature
 4 CHAIRMAN WALLIS: It may make you more 5 confused about the theory, so the theory could, 6 eventually, end up being 7 DR. HOCHREITER: Well, clearly, I don't 8 know if we've done it a disservice, or what, but these 9 have an effect, and most codes don't model it. 10 MR. SCHROCK: Well, I think there is no 11 question that you've proven that those things have an 12 effect. I worry about the fact that the data are 13 still being collected from the viewpoint of being able 14 to get some kind of time averaged information about 15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change. 	2	data, better void fraction data. Well, consider what
 confused about the theory, so the theory could, eventually, end up being DR. HOCHREITER: Well, clearly, I don't know if we've done it a disservice, or what, but these have an effect, and most codes don't model it. MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. MR. SCHROCK: And I think it is important. DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	3	is there. Better mass flow and mass balance data.
 eventually, end up being DR. HOCHREITER: Well, clearly, I don't know if we've done it a disservice, or what, but these have an effect, and most codes don't model it. MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	4	CHAIRMAN WALLIS: It may make you more
7DR. HOCHREITER: Well, clearly, I don't8know if we've done it a disservice, or what, but these9have an effect, and most codes don't model it.10MR. SCHROCK: Well, I think there is no11question that you've proven that those things have an12effect. I worry about the fact that the data are13still being collected from the viewpoint of being able14to get some kind of time averaged information about15drop size and distribution.16Whereas what you see in the movie that you17showed us, is a pulsating flow. And the effect of the18pulsation is not being addressed.19DR. HOCHREITER: Not trivial.20MR. SCHROCK: And I think it is important.21DR. HOCHREITER: These flows are unsteady.22I mean, like I said, you run the tests as being steady23state, or quasi-steady state. But the flow itself is24unsteady. That is not going to change.	5	confused about the theory, so the theory could,
 know if we've done it a disservice, or what, but these have an effect, and most codes don't model it. MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. MR. SCHROCK: And I think it is important. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	6	eventually, end up being
 have an effect, and most codes don't model it. MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	7	DR. HOCHREITER: Well, clearly, I don't
 MR. SCHROCK: Well, I think there is no question that you've proven that those things have an effect. I worry about the fact that the data are still being collected from the viewpoint of being able to get some kind of time averaged information about drop size and distribution. Whereas what you see in the movie that you showed us, is a pulsating flow. And the effect of the pulsation is not being addressed. DR. HOCHREITER: Not trivial. MR. SCHROCK: And I think it is important. DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change. 	8	know if we've done it a disservice, or what, but these
<pre>11 question that you've proven that those things have an 12 effect. I worry about the fact that the data are 13 still being collected from the viewpoint of being able 14 to get some kind of time averaged information about 15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.</pre>	9	have an effect, and most codes don't model it.
12 effect. I worry about the fact that the data are 13 still being collected from the viewpoint of being able 14 to get some kind of time averaged information about 15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	10	MR. SCHROCK: Well, I think there is no
13 still being collected from the viewpoint of being able 14 to get some kind of time averaged information about 15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	11	question that you've proven that those things have an
14 to get some kind of time averaged information about 15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	12	effect. I worry about the fact that the data are
15 drop size and distribution. 16 Whereas what you see in the movie that you 17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	13	still being collected from the viewpoint of being able
16Whereas what you see in the movie that you17showed us, is a pulsating flow. And the effect of the18pulsation is not being addressed.19DR. HOCHREITER: Not trivial.20MR. SCHROCK: And I think it is important.21DR. HOCHREITER: These flows are unsteady.22I mean, like I said, you run the tests as being steady23state, or quasi-steady state. But the flow itself is24unsteady. That is not going to change.	14	to get some kind of time averaged information about
17 showed us, is a pulsating flow. And the effect of the 18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	15	drop size and distribution.
18 pulsation is not being addressed. 19 DR. HOCHREITER: Not trivial. 20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	16	Whereas what you see in the movie that you
19DR. HOCHREITER: Not trivial.20MR. SCHROCK: And I think it is important.21DR. HOCHREITER: These flows are unsteady.22I mean, like I said, you run the tests as being steady23state, or quasi-steady state. But the flow itself is24unsteady. That is not going to change.	17	showed us, is a pulsating flow. And the effect of the
20 MR. SCHROCK: And I think it is important. 21 DR. HOCHREITER: These flows are unsteady. 22 I mean, like I said, you run the tests as being steady 23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	18	pulsation is not being addressed.
DR. HOCHREITER: These flows are unsteady. I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change.	19	DR. HOCHREITER: Not trivial.
I mean, like I said, you run the tests as being steady state, or quasi-steady state. But the flow itself is unsteady. That is not going to change.	20	MR. SCHROCK: And I think it is important.
23 state, or quasi-steady state. But the flow itself is 24 unsteady. That is not going to change.	21	DR. HOCHREITER: These flows are unsteady.
24 unsteady. That is not going to change.	22	I mean, like I said, you run the tests as being steady
	23	state, or quasi-steady state. But the flow itself is
25 DR. KRESS: It doesn't look like it is	24	unsteady. That is not going to change.
	25	DR. KRESS: It doesn't look like it is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	high, near your
2	DR. HOCHREITER: It is steadier as you go
3	up the bundle.
4	DR. KRESS: Yes.
5	DR. HOCHREITER: The most unsteady portion
6	is going to be right at the quench front, I would
7	agree with that.
8	DR. KRESS: But that would be important to
9	determine the drops.
10	DR. HOCHREITER: Because it determines the
11	liquid fractions carried up.
12	DR. MOODY: The spacers are terribly
13	significant, you mentioned. And as far as something
14	you said, several times, that the droplets really
15	break up as they go through the spacers. What is your
16	current thinking of the mechanisms, causes of breakup?
17	DR. HOCHREITER: Well, there is separate
18	effects data that we looked at. And, again, this is
19	roughly 20 years ago, because we put in droplet
20	breakup models in the COBRA/TF.
21	We did this as part of the FLECHT SEASET
22	program. And we ran little bench tests at Carnegie
23	Mellon, where we took a blow torch and heated up a
24	grid strap, and we dropped drops on it, and measured
25	the chattering of the drops, and we measured the drop

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

sizes	
51465	•

1

2

3

4

5

6

And we ran tests for different thicknesses of the strap, different diameters of the drops. And we developed, basically, a correlation for this. And it was in terms like Dr. Ransom said, the Webber number, droplet Webber number.

7 And that model went in the COBRA/TF, and 8 that was used as part of the FLECHT SEASET program 9 when we looked at evaluating the effect of full 10 blockages, and spacer grids. But these were simple 11 grids, because there was no data on this type of a 12 geometry.

DR. MOODY: That is primarily a velocity effect then, isn't it, that causes a breakup?

15 DR. HOCHREITER: If you get droplet Webber numbers, I think, greater than 80, you would start to 16 17 drops. And this shatter was consistent with measurements that people had taken where they would 18 19 drop drops on a heated surface, and then photograph 20 what would happen.

If the droplet Webber number was smaller than that, you would basically bounce, the surface tension could hold the drop together. But when you had a sufficient inertia, the drop had sufficient inertia, you would hit the surface, the drop would

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	shatter into a population of small droplets.
2	DR. MOODY: Thank you.
3	MR. SCHROCK: I would like to ask you to
4	calculate HA over MC for your thermacouples, and tell
5	us what it is, some time.
б	DR. HOCHREITER: Okay.
7	DR. RANSOM: I have a couple of quick
8	questions. What are your plans for preserving this
9	data for future use? And the reason I ask that
10	question is a lot of the reactor safety data is
11	starting to disappear because of the way it was
12	stored, and preserved in the past.
13	The second one, is this gravity-fed?
14	DR. HOCHREITER: No, these are forced flow
15	tests.
16	DR. RANSOM: Forced flow with a positive
17	displacement pump, or
18	DR. HOCHREITER: Actually what we did was
19	we had a pressurized tank that we would inject the
20	flow, using a pressurized tank.
21	DR. RANSOM: But how do you maintain a
22	constant flow rate?
23	DR. HOCHREITER: We have a flow control
24	valve.
25	DR. SANJOY: But that brings up the point

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	177
1	of
2	DR. HOCHREITER: Let me go back and answer
3	his first question. In the contract we have to
4	supply, to the NRC, this data on CDs, which they will
5	put into the data bank.
6	DR. SANJOY: But that brings up the
7	question that many situations you have, essentially,
8	gravity fed systems, where you do get strong
9	oscillations.
10	DR. HOCHREITER: Right.
11	DR. SANJOY: And a lot of the phenomena
12	change with the oscillations, because you there is
13	ligaments of liquid behind
14	DR. HOCHREITER: It goes all the way up.
15	DR. SANJOY: and then it goes whoosh,
16	out. The entrainment completely changes with the
17	oscillation.
18	DR. RANSOM: Well, I notice you have a
19	downcomer, well you have a downcomer in the diagram
20	you have in this report. I was wondering if you plan
21	to use that? Yes, short an external downcomer?
22	DR. HOCHREITER: Not at the present time.
23	DR. KRESS: These oscillations that you
24	see always tend to delay the time in which you have
25	the peak clad, and actually lower it. So if you had

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	178
1	correlations that didn't have those in it, you would
2	still be somewhat conservative, I think, in terms of
3	regulatory space.
4	So I don't know how important it is to
5	actually get those kinds of oscillations.
6	DR. HOCHREITER: I've seen mixed bag on
7	these. The oscillations can help you, the
8	oscillations can hurt you.
9	CHAIRMAN WALLIS: I can see some
10	sophisticated vendor coming in and saying, we've
11	designed our system to have oscillations at much lower
12	peak clad temperature.
13	MR. SCHROCK: Therefore we are
14	conservative, and therefore okay.
15	CHAIRMAN WALLIS: Maybe it is time to go
16	back to Steve? Thank you, Larry, that was very
17	interesting, indeed.
18	DR. SANJOY: We should really visit some
19	of why didn't we visit the facility?
20	DR. HOCHREITER: More than welcome to
21	come. I would not come on a home football weekend
22	unless you want to stay here and then drive up.
23	DR. BAJOREK: Well, originally that was
24	our plan, to have this meeting up at Penn State. But
25	the problem there was budgetary. The Staff wasn't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

179 1 able to continue the program at the end of the year. 2 There is a continuing resolution now that is preventing us from continuing some of 3 these 4 programs and initiating new ones. 5 MR. BOEHNERT: And it is also impacting our travel budget, too. 6 7 MR. SCHROCK: Well, is it planned to do it in the future? 8 9 DR. BAJOREK: I hope so, yes. I think it is a lot better to see the facility, rather than 10 11 looking at the movie, and the confusion, is that a 12 light, or is that a rod? You know, seeing it firsthand. 13 14 And also, you know, I thought it was very 15 informative to look at the output from the laser camera, and the output from an optical camera at the 16 17 same time. And what was very interesting is that the 18 19 laser camera seemed to be picking up a lot more. And 20 you can watch that, and when somebody says, the 21 carryover for action is about 75 percent, yes, you 22 almost see that in the movies itself, even though you 23 look at a meter, or Ralph can help us out with that 24 and show us, yes, you are still sitting up there well 25 above anybody's estimate of T-min, while you are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	180
1	seeing all of these droplets.
2	CHAIRMAN WALLIS: Now, if you could
3	measure velocity, as well as population, you could
4	then calculate flow rate, and compare it with the flow
5	rate, and
6	DR. BAJOREK: Right, we are getting
7	carryover, you are getting the carryover from that,
8	you know what you are putting in, you are separating
9	it, so you are getting a steam flow rate coming out.
10	Now, if you get to the droplet velocities
11	above the grid, okay, we are going to get the relative
12	velocities, and that is going to help us get at the
13	interfacial heat transfer part of this.
14	DR. HOCHREITER: We are going to try to
15	get that software fixed. But we've discovered this
16	during the testing. And the vendor said, yes, you
17	should have these upgrades, which only cost umpteen
18	dollars, which of course we did not have, and we have
19	to send back a camera, and the computer system, which
20	meant we would have to stop testing. So we opted to
21	test.
22	DR. SANJOY: Were Those Oxford lasers?
23	DR. HOCHREITER: Yes, you are familiar
24	with the same spiel?
25	DR. KRESS: As I remember the calculation,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

NEAL R. GROSS

	181
1	those droplets reached terminal velocity very fast.
2	So that if you know the steam velocity, and the
3	droplet size distribution, you could make a pretty
4	good estimate of the distribution of velocities.
5	And that may be a mechanism for
6	agglomeration. They have different velocities, the
7	droplets did.
8	DR. BAJOREK: I think the question a
9	couple of hours ago, what have I learned here today?
10	First, there is still a lot of work to do.
11	Most of this data that Larry was talking
12	about were obtained June, July, and August. And there
13	hasn't been a tremendous opportunity to compare these
14	to previous results, compare it to one test to the
15	other, and a lot of it has been sorting out are these
16	tests valid, I mean, are they good, of the type of
17	quality that we expect to get?
18	And our conclusion right now is yes. We
19	are seeing a lot of interesting things in the data
20	that we don't have an explanation for, at this point.
21	But that is where kind of the fun begins.
22	Now, I think in terms of things that we've
23	talked about today, that we need to incorporate, and
24	work into this overall project, the first one I would
25	characterize as bias and uncertainty.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 I think the questions that we've had a few 2 times now, if we change a reflood model, how do we 3 know we are getting any better? I think we owe it to 4 you to define, in much better terms, what models we 5 are focusing our attention on, and as we start to tinker with some of these knobs in the code, are we 6 7 having an effect? And I think the only way of doing that is 8 taking the models we have now, obtaining a bias and 9 uncertainty from some preliminary assessments, making 10 11 the changes, and hopefully you are going in the right 12 direction, and then bias is becoming smaller, and the uncertainty likewise dropping. 13 14 I think we --15 DR. MOODY: Can you make copies of this for us? 16 17 We think it is DR. BAJOREK: I guess. very clear that the spacer grids, their design 18 19 differences, and their effect on the transient, are 20 This is really what is dominating the vapor key. 21 temperatures, the clad temperatures. 22 And in terms of model development, my 23 suggestion is that this be given one of the top 24 priorities. TRAC-M does not have spacer grid models 25 at this time. And it is clear that we've got to take

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	183
1	this data, the egg crate data from FLECHT, where you
2	can see a little bit more of the dips downstream of
3	the rods.
4	So 318.05, I think, was too high a
5	temperature to see some of those. But that in FEBA it
6	tried to develop spacer grid models that will help
7	give us this change in droplet size, as we go up the
8	bundle.
9	CHAIRMAN WALLIS: What do the vendors have
10	for spacer grid models?
11	DR. BAJOREK: The Westinghouse model, I'm
12	just trying, I want to make sure I'm not giving away,
13	this is an open meeting, and I don't want to give away
14	proprietary models.
15	CHAIRMAN WALLIS: But they do have spacer
16	grid models?
17	DR. BAJOREK: Yes. I put that into the
18	COBRA TRAC. It was based on the Carnegie Mellon data,
19	it does take a look at the droplet size coming to the
20	grid, and how it would break up as it passes the grid.
21	But we need to get that capability in
22	TRAC-M. Now, one of the things that I also was
23	thinking about, as we went through the presentation
24	today, we are getting a lot of very good information
25	on the dispersed droplet film boiling type of regime,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	what the grids are doing to things.
2	We are going to get better information
3	down near the quench front, and that is where these
4	more detailed DP cells are going to help us quite a
5	bit.
б	We've got to think and be fairly clever,
7	as we are going through additional tests, and
8	evaluating these, on how we can identify inverted
9	annular flow, and what is the flow, excuse me, the
10	heat flux split near the quench front.
11	That has been a nagging problem in some of
12	the reflood models. Because what we need, in order to
13	get our model correct at the PCT location, we have to
14	know how quickly we eat up the vapor very close to the
15	quench front.
16	MR. SCHROCK: What does IVA mean?
17	DR. BAJOREK: Inverted annular.
18	MR. SCHROCK: And q-double-prime split,
19	you are talking about
20	DR. BAJOREK: Heat flux.
21	MR. SCHROCK: heat flux to liquid, and
22	heat flux to vapor?
23	DR. BAJOREK: Yes.
24	CHAIRMAN WALLIS: There was very little
25	that Larry said that helped me with the inverted

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	185
1	annular, he is talking about droplets and all that,
2	that has nothing to do with inverted annular,
3	supposedly the liquid is in the middle, and the film
4	is on the wall.
5	This is only a very short length of the
6	DR. HOCHREITER: Yes, but we ran tests at
7	six inches a second.
8	CHAIRMAN WALLIS: Right.
9	DR. HOCHREITER: So we do have that data.
10	CHAIRMAN WALLIS: Okay.
11	DR. BAJOREK: So that data is in there.
12	We need to think more in terms of how we
13	CHAIRMAN WALLIS: You didn't show us that
14	today?
15	DR. HOCHREITER: No.
16	CHAIRMAN WALLIS: Why?
17	DR. HOCHREITER: Why didn't I show you
18	that?
19	CHAIRMAN WALLIS: I'm assuming because it
20	wasn't any good.
21	DR. HOCHREITER: No, that is the wrong
22	assumption.
23	DR. KRESS: It was too good to be true.
24	DR. BAJOREK: Actually they are very good
25	in that you get the inverted annular flow regime, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	186
1	it is persistent over a very long period of time.
2	FLECHT 317-01, which is the one a lot of people use,
3	get crunched in the 20 seconds.
4	But I think in your test, Larry, it stayed
5	inverted annular for a couple hundred seconds?
6	DR. HOCHREITER: That is correct.
7	DR. BAJOREK: So they aren't as fun as the
8	dispersed droplet because with all that water, those
9	probes quench right away. And we haven't gotten to
10	the point of trying to evaluate the DP cells, and what
11	there might be some type of a void distribution.
12	Just, you know, to elaborate on a couple
13	of points. When, and we owe you this, I mean, we have
14	to develop this. When I say bias and uncertainty, one
15	of the things that I want to recognize is that
16	previous reflood experiments had the idea that, hey,
17	if you knew VIN, your flooding rate, you would
18	essentially be interested in what would be the heat
19	flux from the rod, because in your code assessment you
20	would look at the predicted versus measured.
21	And in some cases you see vendors say,
22	well, my bias is in terms of a delta PCT. And I think
23	as Larry mentioned, if you do it that way, you really
24	cover over all the processes. You may get the PC
25	right, but you haven't a clue whether it was because

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

there were compensating errors through your calculation.

1

2

3 As we go through the development of what 4 we are going to call these mechanistic reflood models, 5 what we need to do is to break these into as many individual components as we can, look at the models we 6 7 have now, look at the ones we intend to develop, and try to determine bias and uncertainties for things 8 9 like components of the heat flux below the quench front; components of the film boiling heat flux up 10 11 near the PCT location, how much was convective, how 12 much was due to a convected enhancement with the droplets, if there is any drop to wall impaction try 13 14 to characterize that.

I think a very, very important aspect, as Larry pointed out, is what is the entrainment rate at the quench front, and how much of that, eventually, gets carried over out of the bundle.

Very small deltas in how you predict that can have a very drastic impact on your steam temperatures higher up in the bundle. And I think as we saw from the spacer grids, we need to be able to characterize what is the variation of droplet size, as it approaches and passes through a grid.

CHAIRMAN WALLIS: It seems to me that you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

187

	188
1	need a full time analyst at NRC doing all this?
2	DR. BAJOREK: In fact we do have one
3	person right now, his mission is to start putting
4	these interim reflood models into the code. But it is
5	a full time job just putting those in.
6	And over the course of, probably, the next
7	year characterizing these in setting things up,
8	hopefully, in an automated way that we can get some
9	quantified measures.
10	CHAIRMAN WALLIS: So you are short of
11	hoping that the mechanistic model is going to be a
12	fair representation of what is going on. And that is
13	something we don't really know yet.
14	There may be mechanisms which we don't
15	know how to model yet, that should be in the code. It
16	is not just building on someone's fantasy of what
17	happened there 20 years ago. There is a lot more
18	information now. So you may have to change your
19	thinking about some of the models.
20	DR. BAJOREK: I think that is why we need
21	to look at the data, and develop some new fantasies on
22	what we see in there.
23	And I think, as I mentioned, we think in
24	terms of what we've seen, the tests that spacer grid
25	models have to be at the higher priority. I think, as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	we mentioned earlier, what do we do now if a vendor,
2	or somebody comes in with a different type of model,
3	which has different mixing veins, different blockage.
4	This may be reason, in the future, where
5	we might want to start working in some other types of
6	small scale separate effects test, to where we might
7	be able to more easily vary things like the mixing
8	vein geometry blockage, and things like that, that I
9	mentioned, the inverted annular flow split.
10	MR. SCHROCK: What is the subscript R,
11	there, radiation?
12	DR. BAJOREK: Radiation.
13	MR. SCHROCK: Radiation to what, drops, or
14	radiation to
15	DR. BAJOREK: To the film. At least in my
16	simplistic way of looking at it, right now, heat flux
17	is split between something that goes to the liquid
18	MR. SCHROCK: I see, it is just for that
19	term, there, you are talking about. Yes, inverted
20	annular.
21	DR. BAJOREK: Radiation, perhaps some
22	contact of the waves, and the rest going into the
23	vapor phase. But one, how do you characterize that,
24	and what is the split.
25	DR. SANJOY: You don't think the flow

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

190 oscillations should be taken into account during 1 2 gravity reflood? 3 DR. BAJOREK: Right now I'm not convinced 4 that the oscillations that we saw in those movies are 5 necessarily something that is an artifact of what would happen if you had a constant reflood, versus 6 7 what is going on in that facility, where you know that 8 for those early tests, the controller was trying to 9 keep up, and it was pulsating at the inlet. Larry? 10 DR. HOCHREITER: Well, I think for the movie we showed, I don't think there was strong 11 12 pulsations. No, I'm talking about the 13 DR. SANJOY: 14 real reactor situation, the code has to handle a 15 situation where everybody understands that there are 16 large oscillations. And everything you said here 17 could be of much less important than those oscillations. 18 19 So how are we going to account for that? DR. HOCHREITER: It is not clear that the 20 reactor does oscillate, it is not clear to me. There 21 22 have been some large scale tests, and you don't see a lot of oscillations. 23 24 DR. BAJOREK: I thought they did see them 25 in CCTF, Larry?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	DR. HOCHREITER: For selected tests, not
2	every test.
3	DR. SANJOY: Well, maybe there should have
4	been an assessment of that problem, then. I thought
5	that there were oscillations, but maybe there are some
6	that
7	DR. BAJOREK: I think there were in some
8	of those CCTF experiments.
9	DR. HOCHREITER: In some, not in all.
10	DR. BAJOREK: And I think in terms of how
11	we would approach that, first try to get models that
12	work good under very well established boundary
13	conditions. And I think we are getting out of this an
14	easy power shape, you know the inlet conditions.
15	If we get models that work good there, try
16	them out on CCTF, and SETF, other tests where you
17	ACHILLES would be another good one, tests with a
18	downcomer, where you can see if they are doing
19	adequately for gravity reflood.
20	DR. SANJOY: Did they see oscillations in
21	the WINFRED experiments? We will have to look at
22	those. They were done, what, about ten years ago?
23	DR. BAJOREK: About that. I guess I'm not
24	real familiar with that, except for the test that was
25	the international standard problem, where they got a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	large burst of the non-condensibles.
2	DR. SANJOY: I know that early '80s,
3	anyway, there was quite a bit of concern about these
4	oscillations, and the modeling of them. And the
5	reason was that they strongly affected entrainment.
6	And to first order the main thing that
7	matters is how much is entrained, it is the balance
8	between what is carried out, and what you put in. And
9	that depends, really, it determines how fast the front
10	goes.
11	Now, since that time the problem seems to
12	have sort of vanished, I don't know why. Whether that
13	was just neglect, or there was a reason to say it
14	wasn't important.
15	But I think it would be worthwhile, at
16	least, having an assessment as to whether it is
17	important or not. Because it could have an effect on
18	the test program, also.
19	I agree with you that first you should be
20	able to handle the steady state. But the phenomena
21	during oscillations could be quite different, because
22	you tend to leave a lot of liquid up there, where it
23	gets caught in the vapor, and it gets carried out.
24	So the entrainment correlations,
25	everything change. Maybe not, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1DR. BAJOREK: Well, let me see if I can2try to find out what3DR. SANJOY: What is known bout it.4DR. BAJOREK: why the problem has gone5away. I thought I heard, at one point, that the heat6transfer was improved when you had the gravity7reflood, and the oscillations. So maybe that8DR. SANJOY: But entrainment got worse.9At least I remember in some cases.10CHAIRMAN WALLIS: So you will have to11respond to this oscillation issue, it is not going to12go away.13DR. BAJOREK: That is all I have.14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable25thing, go back and write up comments which I can then		193
3 DR. SANJOY: What is known bout it. 4 DR. BAJOREK: why the problem has gone 5 away. I thought I heard, at one point, that the heat 6 transfer was improved when you had the gravity 7 reflood, and the oscillations. So maybe that 8 DR. SANJOY: But entrainment got worse. 9 At least I remember in some cases. 10 CHAIRMAN WALLIS: So you will have to 11 respond to this oscillation issue, it is not going to 12 go away. 13 DR. BAJOREK: That is all I have. 14 CHAIRMAN WALLIS: I think it has been very 15 good to get results from this experiment. We have 16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 10 happen here is that there won't be any letter from the 11 ACRS, or anything like that. But I will give a report 12 to the full Committee at the December meeting. 13 So I would need input, then, from you 14 folks by the end of November. Is that a re	1	DR. BAJOREK: Well, let me see if I can
4DR. BAJOREK: why the problem has gone5away. I thought I heard, at one point, that the heat6transfer was improved when you had the gravity7reflood, and the oscillations. So maybe that8DR. SANJOY: But entrainment got worse.9At least I remember in some cases.10CHAIRMAN WALLIS: So you will have to11respond to this oscillation issue, it is not going to12go away.13DR. BAJOREK: That is all I have.14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to10happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	2	try to find out what
5 away. I thought I heard, at one point, that the heat 6 transfer was improved when you had the gravity 7 reflood, and the oscillations. So maybe that 8 DR. SANJOY: But entrainment got worse. 9 At least I remember in some cases. 10 CHAIRMAN WALLIS: So you will have to 11 respond to this oscillation issue, it is not going to 12 go away. 13 DR. BAJOREK: That is all I have. 14 CHAIRMAN WALLIS: I think it has been very 15 good to get results from this experiment. We have 16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 10 happen here is that there won't be any letter from the 20 happen here is that the December meeting. 21 So I would need input, then, from you 22 folks by the end of November. Is that a reasonable	3	DR. SANJOY: What is known bout it.
 transfer was improved when you had the gravity reflood, and the oscillations. So maybe that DR. SANJOY: But entrainment got worse. At least I remember in some cases. CHAIRMAN WALLIS: So you will have to respond to this oscillation issue, it is not going to go away. DR. BAJOREK: That is all I have. CHAIRMAN WALLIS: I think it has been very good to get results from this experiment. We have been looking forward to getting some results, for some time. Also hearing that the Staff has ideas about how to use them. And I believe what is going to happen here is that there won't be any letter from the ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. So I would need input, then, from you folks by the end of November. Is that a reasonable 	4	DR. BAJOREK: why the problem has gone
 reflood, and the oscillations. So maybe that DR. SANJOY: But entrainment got worse. At least I remember in some cases. CHAIRMAN WALLIS: So you will have to respond to this oscillation issue, it is not going to go away. DR. BAJOREK: That is all I have. CHAIRMAN WALLIS: I think it has been very good to get results from this experiment. We have been looking forward to getting some results, for some time. Also hearing that the Staff has ideas about how to use them. And I believe what is going to happen here is that there won't be any letter from the ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. So I would need input, then, from you folks by the end of November. Is that a reasonable 	5	away. I thought I heard, at one point, that the heat
8 DR. SANJOY: But entrainment got worse. 9 At least I remember in some cases. 10 CHAIRMAN WALLIS: So you will have to 11 respond to this oscillation issue, it is not going to 12 go away. 13 DR. BAJOREK: That is all I have. 14 CHAIRMAN WALLIS: I think it has been very 15 good to get results from this experiment. We have 16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 10 happen here is that there won't be any letter from the 21 ACRS, or anything like that. But I will give a report 22 So I would need input, then, from you 23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	6	transfer was improved when you had the gravity
9 At least I remember in some cases. 10 CHAIRMAN WALLIS: So you will have to 11 respond to this oscillation issue, it is not going to 12 go away. 13 DR. BAJOREK: That is all I have. 14 CHAIRMAN WALLIS: I think it has been very 15 good to get results from this experiment. We have 16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 20 happen here is that there won't be any letter from the 21 ACRS, or anything like that. But I will give a report 22 So I would need input, then, from you 23 So I would need input, then, from you	7	reflood, and the oscillations. So maybe that
10CHAIRMAN WALLIS: So you will have to11respond to this oscillation issue, it is not going to12go away.13DR. BAJOREK: That is all I have.14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	8	DR. SANJOY: But entrainment got worse.
 respond to this oscillation issue, it is not going to go away. DR. BAJOREK: That is all I have. CHAIRMAN WALLIS: I think it has been very good to get results from this experiment. We have been looking forward to getting some results, for some time. Also hearing that the Staff has ideas about how to use them. And I believe what is going to happen here is that there won't be any letter from the ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. So I would need input, then, from you folks by the end of November. Is that a reasonable 	9	At least I remember in some cases.
12go away.13DR. BAJOREK: That is all I have.14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	10	CHAIRMAN WALLIS: So you will have to
13DR. BAJOREK: That is all I have.14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	11	respond to this oscillation issue, it is not going to
14CHAIRMAN WALLIS: I think it has been very15good to get results from this experiment. We have16been looking forward to getting some results, for some17time.18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	12	go away.
15 good to get results from this experiment. We have 16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 10 happen here is that there won't be any letter from the 21 ACRS, or anything like that. But I will give a report 22 to the full Committee at the December meeting. 23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	13	DR. BAJOREK: That is all I have.
16 been looking forward to getting some results, for some 17 time. 18 Also hearing that the Staff has ideas about how to use them. And I believe what is going to happen here is that there won't be any letter from the ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. 23 So I would need input, then, from you folks by the end of November. Is that a reasonable	14	CHAIRMAN WALLIS: I think it has been very
17 time. 18 Also hearing that the Staff has ideas 19 about how to use them. And I believe what is going to 20 happen here is that there won't be any letter from the 21 ACRS, or anything like that. But I will give a report 22 to the full Committee at the December meeting. 23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	15	good to get results from this experiment. We have
18Also hearing that the Staff has ideas19about how to use them. And I believe what is going to20happen here is that there won't be any letter from the21ACRS, or anything like that. But I will give a report22to the full Committee at the December meeting.23So I would need input, then, from you24folks by the end of November. Is that a reasonable	16	been looking forward to getting some results, for some
 about how to use them. And I believe what is going to happen here is that there won't be any letter from the ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. So I would need input, then, from you folks by the end of November. Is that a reasonable 	17	time.
20 happen here is that there won't be any letter from the 21 ACRS, or anything like that. But I will give a report 22 to the full Committee at the December meeting. 23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	18	Also hearing that the Staff has ideas
ACRS, or anything like that. But I will give a report to the full Committee at the December meeting. So I would need input, then, from you folks by the end of November. Is that a reasonable	19	about how to use them. And I believe what is going to
22 to the full Committee at the December meeting. 23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	20	happen here is that there won't be any letter from the
23 So I would need input, then, from you 24 folks by the end of November. Is that a reasonable	21	ACRS, or anything like that. But I will give a report
24 folks by the end of November. Is that a reasonable	22	to the full Committee at the December meeting.
	23	So I would need input, then, from you
25 thing, go back and write up comments which I can then	24	folks by the end of November. Is that a reasonable
	25	thing, go back and write up comments which I can then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	your comments will actually be handed out to the
2	full Committee. They are for publication, which I'm
3	sure they will be.
4	MR. SCHROCK: Would you ask him to give us
5	copies?
б	CHAIRMAN WALLIS: Yes, I would like copies
7	of your
8	Are there final remarks that members of
9	the subcommittee would like to make at this time,
10	before we recess?
11	DR. MOODY: I was just going to mention,
12	on page
13	CHAIRMAN WALLIS: I think you need to
14	bring your mike up.
15	DR. MOODY: This is in the PSU ARL report,
16	rod bundle heat transfer, that we all got a copy of.
17	I just want to say, I think you are a little too
18	restrictive on page 29, when you make a statement in
19	the middle of the page.
20	From this point forward temperatures must
21	be in absolute units. I don't think you have to say
22	that. I think you can take whatever units. Do you
23	recall anything like that? Okay, you have some heat
24	transfer equations, conduction and convection, getting
25	a temperature. Probably one of your students.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	DR. HOCHREITER: No, we are having an
2	endless battle on units, temps, and so forth.
3	DR. MOODY: Well, I think the thought was
4	you had to use absolute, and you don't have to.
5	DR. HOCHREITER: No, I agree.
6	CHAIRMAN WALLIS: Radiation expression?
7	DR. MOODY: There wasn't a radiation
8	expression in there.
9	DR. HOCHREITER: Let us check that out.
10	CHAIRMAN WALLIS: There is a lot to be
11	said for having agreement on units. When you come to
12	a massive code, which we have a great deal of
13	difficulty with vendors who come here with mixed
14	units, and you can never be clear on what units are
15	actually encoded in the code itself, or whether or not
16	they have mixed them up, and whether the conversion
17	factors are all right.
18	If you have a consistent set of units all
19	the way through it is much more reassuring. You will
20	get the NASA problem with Mars.
21	Anyone else?
22	DR. RANSOM: One thing I didn't hear
23	anything about today, but was the single phase
24	pressure drop analysis that they have in the report,
1	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	think ought to be resolved, in a way.
2	Why it doesn't approximate the velocity
3	situation very closely, and I know at one point they
4	talk about frictional pressure drop, but don't mention
5	entrance effects, which clearly would have an effect
6	of increasing the frictional pressure drop.
7	But I guess my conclusions, in general, I
8	sure would like to see a little more analysis, you
9	know, to go along with this data. I'm not I know
10	you've said that is what you plan, and I hope you will
11	do it.
12	DR. HOCHREITER: We've actually done some
13	more, particularly on the pressure drop. We had a
14	student that just is completing his thesis, where he
15	set up a CFD model. They modeled a fraction of the
16	model, plus the spacer. And he actually got very good
17	agreement with the measured pressure drop data.
18	He is now comparing it to some of the
19	single phase transfer data that we got from the
20	facility. He did find a pressure drop relationship
21	in, I think, Tong and Wiseman's book, that gave a
22	better agreement for the bare rod bundle pressure drop
23	than what we were seeing when we would go to the Moody
24	chart.
25	So I think I haven't had a chance to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	back and look at that particular correlation, but I
2	know it gives higher friction factors. And this is
3	really what we are seeing when we reduce the data.
4	And I do think it is due to exactly what
5	you said, which is entrance region downstream of the
6	spacer grid. Because the upstream tap is going to be
7	in that region.
8	CHAIRMAN WALLIS: Ready to recess? All
9	right, we will now recess until 8:30 tomorrow morning.
10	Thank you all very much.
11	(Whereupon, at 5:10 p.m. the above-
12	entitled matter was recessed.)
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	