Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Thermal-Hydraulic Phenomena and Probabilistic Risk Assessme Joint Subcommittees Meeting	Safeguards & Reliability ent
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Tuesday, November 5, 2002	
Work Order No.:	NRC-621	Pages 1-167
	NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433	

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	JOINT MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	SUBCOMMITTEE ON THERMAL-HYDRAULIC PHENOMENA
8	AND
9	SUBCOMMITTEE ON RELIABILITY AND PROBABILISTIC RISK
10	ASSESSMENT
11	+ + + +
12	TUESDAY,
13	NOVEMBER 5, 2002
14	+ + + +
15	ROCKVILLE, MARYLAND
16	+ + + +
17	
18	The Subcommittees met at the Nuclear Regulatory
19	Commission, Two White Flint North, Room T2B3, 11545
20	Rockville Pike, at 1:30 p.m., Dr. Thomas S. Kress,
21	Acting Chairman, presiding.
22	COMMITTEE MEMBERS:
23	THOMAS S. KRESS, Acting Chairman
24	F. PETER FORD, Member
25	GRAHAM B. WALLIS, Member

		2
1	ACRS STAFF PRESENT:	
2	MAGGALEAN W. WESTON, Staff Engineer	
3		
4	ALSO PRESENT:	
5	JACK ROSENTHAL	
6	CHARLES ADER	
7	SIDNEY FELD	
8	CHRIS GRIMES	
9	JOHN LEHNER	
10	JAMES MEYER	
11	ALLEN NOTAFRANCESCO	
12	JACK TILLS	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	<u>CONTENTS</u>
2	PAGE
3	Introductory Remarks:
4	T.S. Kress 4
5	Jack Rosenthal 6
б	NRC Staff Presentation:
7	Introduction and Overview, Allen
8	Notafrancesco 8
9	Benefits Analysis, John Lehner 13
10	Cost Analysis, James Meyer 63
11	Ice Condenser Combustion Issue, Allen
12	Notafrancesco
13	MELCOR Analysis, Jack Tills 96
14	Summary and Recommendations 137
15	Committee Comments and Discussion 144
16	
17	
18	
19	
I	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(1:33 p.m.)
3	ACTING CHAIRMAN KRESS: The meeting will
4	now please come to order.
5	This is a meeting of the ACRS
6	Subcommittees on Thermal Hydraulic Phenomena and the
7	Subcommittee on Reliability and Probabilistic Risk
8	Assessment.
9	I'm Tom Kress. I'm serving as the
10	Chairman of today's meeting mostly because the Thermal
11	Hydraulic Phenomena Subcommittee is normally chaired
12	by Graham Wallis here with me, but this appears to be
13	more of a severe accident issue. So I guess that's
14	one reason I'm doing it.
15	And the Chairman of the Reliability and
16	PRA Subcommittee is George Apostolakis, and he
17	couldn't be with us today.
18	The members that are here in attendance
19	are Graham Wallis, as I said, and Peter Ford is
20	expected to join us a little later. His plane was a
21	little late in getting here.
22	The purpose of this meeting is to discuss
23	the Office of Research's proposed recommendation for
24	resolving GSI 189, which is the susceptibility of ice
25	condenser and Mark III containments to early failure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	from hydrogen combustion during a severe accident.
2	Maggalean W. Weston is the cognizant ACRS
3	staff engineer at the meeting.
4	The rules for participation in today's
5	meeting have been announced as part of the notice of
6	this meeting, published in the Federal Register on
7	October 28th, 2002. A transcript of the meeting is
8	being kept and will be made available as stated in the
9	<u>Federal Register</u> notice.
10	It is requested that speakers use one of
11	the microphones available and first identify
12	themselves and then speak up so everybody can hear
13	you.
14	We have received no written comments from
15	members of the public regarding today's meetings.
16	By way of reminding the member that's
17	here, we had a meeting review of this issue back I
18	think it was in June 2002, and in that meeting we
19	suggested to Research that it would be helpful if they
20	had some additional considerations of uncertainties.
21	So the staff went back and did some
22	reevaluation and determined some uncertainties, and
23	today they're going to tell us about the results of
24	the look and how that factors into their
25	recommendations.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	So with that I'll proceed with the meeting
2	and ask Jack Rosenthal if he wants to introduce it.
3	MR. ROSENTHAL: Thank you.
4	I just have a few introductory remarks.
5	My name is Jack Rosenthal, and I'm the
6	Branch Chief of the Safety Margins and Systems
7	Analysis Branch in the Office of Research.
8	We received the ACRS' letter of June 17
9	where you recommended that we do additional analyses
10	and pay particular attention to uncertainty analysis,
11	and that's exactly what we've done. We went back and
12	revisited the cost side of the equation, but we also
13	looked at the benefits side, tried to do a combination
14	of uncertainty and sensitivity studies on the
15	benefits; did a fair amount of sensitivity studies to
16	hydrogen phenomenology, which we'll be hearing about;
17	and did a fair amount of our homework.
18	Based on that, we did send you reports and
19	a cover letter which indicated that we thought it
20	appropriate to move forward on ice condensers, and
21	that we thought that the igniters alone would be
22	efficacious. You'll hear more about that later.
23	And we were not as clear on Mark IIIs.
24	The Mark III cost-benefit story is not in itself
25	persuasive, and so what we would like to do at the end

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

7 1 of the meeting after we've laid out all of the information 2 technical is to discuss other considerations and ask for your advice on how we 3 4 should treat uncertainties in the decision process. 5 My last point is that, in fact, these plants are safe, and that this is not in my mind an 6 7 adequate safety issue, but rather one of a cost beneficial safety enhancement, and that's how we're 8 9 reviewing it. With that, I'd like to turn it over to 10 11 Allen Notafrancesco. MEMBER WALLIS: 12 Just before we start, I remember the last meeting we had, and we did ask for 13 14 uncertainty analysis, but I think there was also on 15 the part of several of my colleagues who had experience with real power plants some skepticism 16 about portable generators sort of wheeled into place 17 when needed. 18 19 MR. ROSENTHAL: Yes, you'll hear а 20 specific presentation --21 MEMBER WALLIS: Well, are we going to hear 22 about that? 23 MR. ROSENTHAL: -- from Jim Meyer. 24 MEMBER WALLIS: Because reading the 25 it wasn't clear to me whether you were report,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 recommending portable or in place, or there didn't 2 seem to be a clear distinction somehow. Maybe that 3 will come clear --4 MR. MEYER: We'll talk about that later. 5 MEMBER WALLIS: -- when you make your presentation. Yes, thank you. 6 7 MR. NOTAFRANCESCO: I'm Al Notafrancesco, 8 the task manager for GSI 198. 9 This is the agenda. The one provided a 10 few weeks ago, we made a change. In this version, the 11 MELCOR analysis will go before the ice condenser 12 combustion issue. 13 THE REPORTER: Excuse me, sir. It's a 14 little hard to hear you. Would you mind wearing a lap. mic? 15 MR. NOTAFRANCESCO: I can do this. 16 17 ACTING CHAIRMAN KRESS: It would probably help to use that mic anyway, I think. People tend to 18 19 turn their head, and it gets terrible. 20 Pin it up close to your throat, and it 21 comes in better. 22 MR. NOTAFRANCESCO: Is this better? 23 THE REPORTER: Yes. 24 MR. NOTAFRANCESCO: Okay. What I'm going 25 to present right now is just a quick overview. We've

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

```
(202) 234-4433
```

8

	9
1	covered a few of the aspects already, and where we
2	were, why we're here.
3	And, again, it is a team effort in trying
4	to do the technical assessment of this generic issue.
5	The various components, benefits analysis to cost
6	analysis; the plant analysis using MELCOR; and some
7	hydrogen combustion issues.
8	And at the end of the day, we're going to
9	summarize it and present our recommendations.
10	Again, the focus of this generic issue is
11	looking at susceptibility for Mark IIIs and ice
12	condenser containments, early failure due to
13	combustion, in particular, for SBO events. This issue
14	was raised and was borne out from the risk informed
15	10/50.44 rulemaking on hydrogen control.
16	As I said earlier, we met with the ACRS
17	June 6th, got a letter June 19th; go back, quantify
18	uncertainties and come back again. And that's why
19	we're here. We have a completed, refined technical
20	assessment that's on the table now, and we're going to
21	present that.
22	And, again, our plans are to try to submit
23	the technical assessment package to NRR by the end of
24	the year.
25	Again, just a little bit more background.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	The domestic plants that are affected by our analysis,
2	Mark IIIs and ice condensers. There's nine ice
3	condenser plants. There's four Mark III plants.
4	The common attributes of these plants is
5	low design pressure, relatively low or free volume,
6	and also the key issue that's related to both of
7	these plant, they have igniter systems, they were
8	retrofitted post TMI, and they're hooked up to the
9	off-site power and the diesel generators. So the
10	issue is a SBO sequences in which
11	MEMBER WALLIS: Now, these PWRs, I notice
12	there are four joule units, and in your paper there
13	was a discussion of an accident and a containment
14	breach in one affecting the viability of the other
15	plant and whether or not it would be shut down for a
16	long period of time, but that didn't seem to have been
17	taken into account. It was discussed, but then it
18	wasn't taken into account in your costs.
19	MR. LEHNER: I think we had discussion
20	I'm sorry. I'm John Lehner from Brookhaven National
21	Laboratory I think we had a discussion of the
22	benefit side, but the averted costs that talked about
23	that, and I can address that in a minute
24	MEMBER WALLIS: Well, it disappeared. It
25	didn't seem to be part of your final

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	MR. LEHNER: Right. It was not part of
2	the numerical calculation.
3	MEMBER WALLIS: In fact, it would be a
4	benefit, would it not?
5	MR. LEHNER: I'm sorry?
6	MEMBER WALLIS: It would be a benefit. I
7	mean if you're lose a containment and you irradiate
8	the whole site, then you essentially use the other
9	MR. LEHNER: Yes, but but
10	MEMBER WALLIS: for quite a period of
11	time, quite a long time.
12	MR. LEHNER: I guess there were two
13	things, well, a number of things why we didn't
14	actually include it in the numerical calculations.
15	One is that if you lose the containment late, and
16	remember we're talking here about early failures; so
17	if you lose the containment late, you're likely to
18	have the same problem.
19	So in that sense, the benefit would not be
20	the benefit would only really be there for dual
21	units if could avoid late failure as well.
22	MEMBER WALLIS: If you didn't lose it at
23	all.
24	MR. LEHNER: Well, at all. Exactly,
25	exactly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	And the scenarios are very uncertain. I
2	mean, it depends on, you know, when the second unit
3	could be brought back. There are just so many
4	uncertainties there that
5	ACTING CHAIRMAN KRESS: I guess the
6	assessment is that if you have a station blackout,
7	you're going to have a late containment failure.
8	MR. LEHNER: Yes. I mean, the igniters,
9	as Allen pointed out, they're really there to avoid
10	the early failure.
11	ACTING CHAIRMAN KRESS: Let me ask you
12	about this, one of you, about the station blackout.
13	Is the assumption in the sequence that the emergency
14	diesels actually fail to start? Is that why it's a
15	station blackout? When you lose off-site power
16	MR. LEHNER: Yes.
17	ACTING CHAIRMAN KRESS: and then the
18	so the probability of a diesel failing, the emergency
19	diesels failing to start and pick up the load is part
20	of the station blackout?
21	MR. LEHNER: That's correct, yes.
22	ACTING CHAIRMAN KRESS: It's one reason it
23	has such a low
24	MR. LEHNER: Probability, yes.
25	MR. NOTAFRANCESCO: Okay. My last slide

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	here basically, again, reiterates the objective:
2	looking at early containment failure, SBO due to
3	hydrogen combustion for SBO events. We're doing a
4	cost-benefit looking at different possible
5	enhancements to make sure the combustible gas control
6	system is working early on, looking at the cost-
7	benefits.
8	In sizing out the benefits part, we're
9	using existing risk studies, 1150, IPEs, and other
10	issues, other risk studies which we'll get into, and
11	we'll go on.
12	The next guy up is benefits analysis with
13	John Lehner.
14	MR. LEHNER: I'm John Lehner from
15	Brookhaven National Laboratory.
16	And we assisted the staff in doing the
17	benefit analysis for Generic Issue 189, and my
18	objective today is to talk to you about that benefit
19	analysis.
20	So in the benefit analysis, we did not
21	look at the means by which you would achieve
22	combustible gas control. We're just looking at the
23	averted costs that are there if you can achieve
24	combustible gas control during the station blackout
25	sequences.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	And of course, the other part of the
2	objective is to address the comments that we heard in
3	June about getting more information about the
4	uncertainties involved in these estimates.
5	So we carry out the benefit analysis in
6	accordance with the regulatory analysis guidelines and
7	the technical evaluation handbook, and the benefits
8	here consist of the averted risk, which includes the
9	reductions in public and on-site radiation exposure,
10	as well as the averted off-site property damage.
11	And as Professor Wallis pointed out, we
12	discuss in the report about the on-site property cost,
13	but we did not actually include that in the monetary
14	benefits.
15	ACTING CHAIRMAN KRESS: It might be of
16	interest to note that ACRS reviewed those documents at
17	one time and decided that they were very appropriate
18	and well done and good guidelines. So if you followed
19	those, why, you did it right.
20	MR. LEHNER: So as I said, the benefits
21	here are in terms of the averted risk as to risk
22	reduction due to the enhancement, and since we're
23	talking here about the enhancements being combustible
24	gas control during station blackout sequences, one can
25	really break down the risk reduction to using the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	station blackout core damage frequency times the
2	change in conditional containment failure probability,
3	conditional on-station blackout that the enhancement
4	brings about.
5	I mean, that's what the enhancement does.
6	It will change the conditional containment failure
7	probability.
8	ACTING CHAIRMAN KRESS: Now, the station
9	back-up frequency you have there, that includes
10	getting at this core damage frequency?
11	MR. LEHNER: I'm sorry. It includes?
12	ACTING CHAIRMAN KRESS: It includes core
13	damage.
14	MR. LEHNER: This is a core damage
15	frequency. It's not the initiating event frequency
16	but the actual core damage frequency.
17	ACTING CHAIRMAN KRESS: It's the station
18	blackout core damage.
19	MR. LEHNER: Yes. The contribution to
20	core damage
21	ACTING CHAIRMAN KRESS: It's not the
22	initial
23	MR. LEHNER: from station blackout
24	sequences.
25	ACTING CHAIRMAN KRESS: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	16
1	MR. LEHNER: That's correct.
2	And then, of course, you have to include
3	the consequences from an early failure, and the
4	consequences consist of exposure of the population,
5	persons and the surrounding property damage.
6	ACTING CHAIRMAN KRESS: Those come out of
7	max?
8	MR. LEHNER: Those come from a Level 3
9	analysis, which is max in the NRC space.
10	So since we need a Level 3 PRA to get the
11	consequences, well, we need a Level 3 PRA because we
12	need consequences in terms of person-rem and off-site
13	costs. We used previously existing studies to put the
14	story together on the benefits gained here. We did
15	not conduct a new Level 3 PRA simply to look at this
16	issue.
17	Now, if you look at the Level 3 analyses
18	that are out there, the NUREG 1150 studies, they are
19	the most comprehensive studies, and we used those to
20	get the details of the accident progression, which of
21	course is important here since we're talking about
22	changes in containment failure probability, and we
23	used the numbers from 1150 to obtain a base case
24	benefit estimate.
25	And we also used the information from 1150

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	17
1	on timing of sequences and so forth, which becomes
2	important in the cost analysis that you'll hear Jim
3	Meyer talk about later on.
4	MEMBER WALLIS: This accident progression
5	includes the effectiveness of evacuation?
б	MR. LEHNER: That's taken into account in
7	the max calculation for the consequences. There are
8	certain assumptions that go into that and basically,
9	well, you'll see later on in the different studies we
10	looked at for the uncertainty, that you get some
11	different results depending on the assumptions you
12	make for the consequences.
13	ACTING CHAIRMAN KRESS: Well, since this
14	is dealing with early containment failure, assumptions
15	for evacuation there are that they don't have time to
16	evacuate?
17	MR. LEHNER: No. I mean, early
18	containment failure doesn't necessarily mean you
19	know, it's early in terms of vessel breach. So it
20	doesn't necessarily mean early in terms of the start
21	of the accident.
22	ACTING CHAIRMAN KRESS: It doesn't
23	necessarily mean the same thing as large early release
24	frequency.
25	MR. LEHNER: Well, no, it is the part of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	the large early release frequency. I mean, the early
2	containment failure leads to a large early release
3	frequency, but it's not early in terms of starting of
4	the accident. There could be some evacuation that's
5	taking place, depending on the accident sequence.
6	I mean, for instance, we're including here
7	what's called fast station blackout and slow station
8	blackout, and the difference there would be the
9	availability of the turbine driven aux feedwater in
10	the PWRs anyway, in the ice condensers.
11	So if you have a fast station blackout,
12	then you can go to core damage in a number of hours,
13	two, three hours, whereas slow station blackout might
14	take eight or 12 hours to actually get the core down.
15	Now, we also wanted to look at the
16	uncertainties, and there's uncertainties in each part
17	of the analysis. There's uncertainties in estimating
18	the station blackout frequency. There's uncertainty
19	in estimating the conditional probability of early
20	containment failure, given station blackout, and then
21	there's uncertainty in the consequences that result
22	from the release from the accident.
23	ACTING CHAIRMAN KRESS: Did you do any
24	consequence uncertainty?
25	MR. LEHNER: We compared some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 sensitivities, but as I discuss later on, we got the 2 cooperation from Duke Power. They gave us some 3 results of their recent PRAs for McGuire and Catawba, 4 and they had some consequence numbers that were done 5 with their sets of assumptions and the map code, and 6 that, of course, is a somewhat different sensitivity 7 analysis than if you look at the NUREG 1150 source 8 term code package. 9 ACTING CHAIRMAN KRESS: I thought those 10 Duke results only dealt with different assumptions in the accident sequence itself and basically used the 11 12 same source term. No, the source terms were 13 MR. LEHNER: 14 different. We only saw parts of the results, but the 15 release fractions were quite a bit different from the release fractions that --16 17 ACTING CHAIRMAN KRESS: But once you had a release fraction, then they just had point values 18 19 for the consequences, the amount of that? 20 MR. LEHNER: Well, I believe they used max 21 to calculate the consequences once they had the 22 release fractions, yes. ACTING CHAIRMAN KRESS: That would be a 23 24 point value to make it. 25 Yes, yes. I believe that's MR. LEHNER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

19

right.

1

2 So to look at the uncertainties in these 3 various parts of the analysis, we looked at a number 4 of studies where we could get some uncertainty and 5 sensitivity information from. Again, we looked at NUREG 1150 because that had a quite comprehensive 6 7 uncertainty analysis that looked at Level 1 and Level 2 uncertainties, and so we looked there for station 8 9 blackout frequency uncertainty, for containment failure uncertainty, and as I just said, I should have 10 11 consequences here as well because we compared the 12 consequences there with the consequences from the industries that result in the last line. 13

The industry results refer to the Duke PRAs for Catawba and McGuire, where they also had an uncertainty on the station blackout frequency. They had an estimate of containment failure probability, and they had the consequences.

We also looked at the IPE station blackout frequencies, and finally we looked at station blackout frequencies from the NRC SPAR models.

ACTING CHAIRMAN KRESS: Now, let me ask you about the consequences once again. If the industry results were for Catawba and McGuire and the NUREG 1150 had neither of those plants in it --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	MR. LEHNER: No, NUREG 1150 is Sequoyah.
2	ACTING CHAIRMAN KRESS: Sequoyah?
3	MR. LEHNER: Right.
4	ACTING CHAIRMAN KRESS: How does one get
5	a consequence uncertainty out of comparing those?
6	MR. LEHNER: Well, we didn't get an
7	uncertainty. We just those are really
8	sensitivities, and I
9	ACTING CHAIRMAN KRESS: How do you even
10	get a sensitivity out of it?
11	MR. LEHNER: Well, one thing we did was we
12	grafted the Sequoyah consequences onto the Catawba
13	Level 1 and Level 2 results to compare that with the
14	results that were in the Duke information.
15	ACTING CHAIRMAN KRESS: Let me ask you.
16	The SPAR models were also used to get station blackout
17	frequencies.
18	MR. LEHNER: Yes, it turned out we really
19	didn't use those in the
20	ACTING CHAIRMAN KRESS: Did those enter
21	into the uncertainties or anything anywhere?
22	MR. LEHNER: Well, it seemed the range f
23	station blackout frequencies were really covered by
24	the other
25	ACTING CHAIRMAN KRESS: Okay. So because

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	the SPAR models may not be as representative as they'd
2	like
3	MR. LEHNER: Well, it turns out that the
4	SPAR models that include the information that we're
5	looking at were the three I models, which have been
6	QAed yet.
7	ACTING CHAIRMAN KRESS: Okay.
8	MR. LEHNER: So the reason I mention it
9	here is because later on when we talk about the Mark
10	IIIs, there there was no comparable recent industry
11	information available, and therefore, we actually
12	looked at the spar models to get some sensitivity
13	results.
14	But for the ice condensers we did not
15	consider the or we looked at it, but we did not
16	include the SPAR model results in the analysis.
17	Now, the assumptions that we made was we
18	said that the combustible gas control system is 100
19	percent effective because, as I said, we're not
20	concerned here with the means of achieving combustible
21	gas control. You know, the benefits would scale
22	directly with the effectiveness of the system. So we
23	had to make various assumptions because it's 100
24	percent effective.
25	We assumed that gas combustion was the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	principle cause of early containment failure in
2	station blackout sequences. It's a pretty good
3	assumption if you look at the
4	ACTING CHAIRMAN KRESS: I think that's a
5	pretty good assumption.
6	MR. LEHNER: And then we also said that
7	we're not assuming that late containment failures were
8	also averted by gas control, but only the early
9	containment failures.
10	Of course, you could argue that at some
11	point if you avoid the early failure, then you can get
12	the off-site power back and you will avoid late
13	failure as well, but we didn't include that in our
14	analysis.
15	We did a sensitivity case, but it's not
16	included in the figures I'm showing here.
17	So continuing with the assumptions, this
18	is in line with the guidelines in the regulatory
19	analysis that I had mentioned earlier. We looked at
20	public health and radiation exposure and the off-site
21	property damage over a 50 mile radius from the plant.
22	We used \$2,000 per person-rem to convert
23	the exposure to a dollar value. We then a present
24	worth calculation, and that present
25	MEMBER WALLIS: But that 2,000 has been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	around for some time?
2	MR. LEHNER: Yes.
3	MEMBER WALLIS: How long has it been
4	around?
5	ACTING CHAIRMAN KRESS: It used to be
6	1,000 until the ACRS complained, and then it went to
7	two.
8	MEMBER WALLIS: All right. Well,
9	MR. LEHNER: In the '80s some time I
10	think.
11	MEMBER WALLIS: So shouldn't it be up by
12	now to something bigger?
13	ACTING CHAIRMAN KRESS: They look at it
14	occasionally for reevaluation. It may be time.
15	MR. ROSENTHAL: Sid Feld, the author,
16	advises me that was 1995?
17	MR. FELD: Yes.
18	MR. LEHNER: Oh, '95?
19	MR. FELD: And the position that we took
20	was it's one significant digit. So that it would
21	require quite a movement in the inflation rate before
22	we would adjust it.
23	ACTING CHAIRMAN KRESS: Let me ask you
24	about the present worth, maybe you or somebody. You
25	assume 40 years of plant life remaining, and I presume

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	that includes the license extension.
2	MR. LEHNER: Yes, it does.
3	ACTING CHAIRMAN KRESS: And to get present
4	worth since this is a probabilistic event, you take
5	the amount of time left and divide it by two?
6	MR. ROSENTHAL: Jim, you have those
7	ACTING CHAIRMAN KRESS: Per the event?
8	When do you decide the event occurs back.
9	You know, this is not really germane to
10	the discussion, but I'm curious.
11	MR. ROSENTHAL: We integrate the risk over
12	the entire remaining life. So effectively what we're
13	doing is we're considering the probability of an
14	accident occurring in a given day, and we
15	ACTING CHAIRMAN KRESS: Is that the
16	equivalent of using the amount of remaining time
17	divided by two or back in that?
18	MR. FELD: I'm not sure if that would be
19	equivalent, but the calculation actually involves
20	looking at the risk in each year, and it's a present
21	worth calculation for occurring in that year, and then
22	doing that for each remaining year.
23	ACTING CHAIRMAN KRESS: Okay, and just
24	adding that.
25	MR. FELD: And you're looking at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

26
probability per reactor year. So that when you
calculate the sum of those things, you're integrating
an OP life.
ACTING CHAIRMAN KRESS: Okay. It sounds
like it's a reasonable way to do it.
MR. ROSENTHAL: Excuse me, Jim. You have
the numbers for 20 and 40 years.
MR. MEYER: For 40 years the multiplier is
about 13, and for 20 years the multiple is about 10.7.
MR. LEHNER: That's with a seven percent
discount.
MR. MEYER: With a seven percent discount
and start with a three percent discount. So we did
our calculation with a seven percent rate and then did
a sensitivity with a three percent.
ACTING CHAIRMAN KRESS: And that's called
for actually in the
MR. LEHNER: In the handbook, yeah.
Okay. Moving then to the ice condenser
analysis, this just shows the 1150 ranges, giving an
idea of the uncertainty ranges. The first row is the
percentile values for the station blackout core damage
frequency, showing the mean value as well as the fifth
and the 95th percentile, and the second row is the
same information for the conditional probability of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	early failure given station blackout.
2	MEMBER WALLIS: Why does that vary so
3	much, that CPEF? Such a huge range.
4	MR. LEHNER: Well, really if you look at
5	the distribution in 1150, it's the tail that's very,
6	very low.
7	ACTING CHAIRMAN KRESS: That's why the
8	mean is way up there.
9	MR. LEHNER: Yes. As a matter of fact
10	MEMBER WALLIS: Isn't it just physics?
11	ACTING CHAIRMAN KRESS: Oh, no. This was
12	expert opinion.
13	MEMBER WALLIS: Oh, it's expert opinion.
14	MR. LEHNER: There's a lot of experts. As
15	a matter of fact, I have this. This is not in the
16	handout.
17	MEMBER WALLIS: Well, why is it that they
18	claim to be experts if they vary in opinion so widely?
19	(Laughter.)
20	MR. LEHNER: This first column here is the
21	conditional probability of early containment failure.
22	This is loss of off-site power, but it's essentially
23	station blackout, and you can see that here's the mean
24	and the 95th way down here.
25	MEMBER WALLIS: It's a big, big

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	ACTING CHAIRMAN KRESS: A big range.
2	MEMBER WALLIS: Yeah, huge range. There's
3	a huge maximum at the top there.
4	MR. LEHNER: Yes.
5	ACTING CHAIRMAN KRESS: That will drive
6	the mean.
7	MEMBER WALLIS: It drives everything.
8	MR. LEHNER: Yeah.
9	MEMBER WALLIS: That's all expert opinion,
10	all of that range?
11	ACTING CHAIRMAN KRESS: Yes. Expert
12	opinion guided by some calculations that were done,
13	but just the guidance was just to reveal the type of
14	phenomenon that was involved so the experts could look
15	at them and make their own decision.
16	MEMBER WALLIS: Did people make
17	calculations then?
18	ACTING CHAIRMAN KRESS: Some of the
19	experts did, and some of them just did this. It
20	depends on the expert.
21	MR. LEHNER: There was at least one expert
22	that gave it a very, very low probability of failing.
23	ACTING CHAIRMAN KRESS: There was a
24	mixture of experts from industry and labs and
25	academia.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

29
MEMBER WALLIS: If we had computer codes
that varied as much as this, we'd despair.
MR. ROSENTHAL: Let me point out and
we'll ask for your input on this. At one time we were
considering taking the fifth percentile off the
charts, and that was because we thought that as a
regulatory agency we ought to be dealing with the mean
and the 95th in effectively a one-side decision.
We decided to leave the information on the
slides to present it to you in order to portray as
full a picture of our understanding as we could, but
if you have some thoughts on that, we would appreciate
it.
ACTING CHAIRMAN KRESS: Well, let me
express one right now. I think a one-sided look at
the distribution is probably appropriate, but I would
look at the other side instead of the high side, and
I'll tell you why.
This is an enhancement. It goes beyond
adequate protection, and under those circumstances I'd
want to be very sure that my benefits were expressed
appropriately because I'm imposing added burden in
this case, and I'm not in a case where I'm trying to
assure safety.
So under those kind of services, I would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 be on the lower side of the benefit end, and on the 2 costs, the costs I would probably just use a mean or flip it the other way, one or the other. 3 So, you 4 know, there's one opinion that's normally contrary to 5 what you might expect to come out of it, but it's only because of the safety enhancement. 6 7 MR. LEHNER: So this gives you an idea of 8 the range in the 1150 analysis. This next slide shows the range and the 9 results we received for Duke Power for their two 10 plants, and let me explain a little bit what this is. 11 12 For Catawba --ACTING CHAIRMAN KRESS: 13 Now, the 1150 14 includes thinking of external events. 15 MR. LEHNER: No. 16 ACTING CHAIRMAN KRESS: It doesn't? 17 MR. LEHNER: It does not. So far we --ACTING CHAIRMAN KRESS: It's all internal. 18 19 MR. LEHNER: It's all internal. There 20 were two 1150 plants. I believe it was Peach Bottom 21 and Surry that they did external events for, but not 22 Sequoyah or Grand Gulf. 23 Now, the results from Duke shown here 24 show, again, fifth mean and 95th, but they also 25 included a point estimate, and they had a point

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

30

31 1 estimate for external events in some cases, and those 2 external events were mainly, I believe, seismic and 3 tornadoes. 4 ACTING CHAIRMAN KRESS: And let me ask you 5 about this fifth mean and 95th. When I see those, I'm visualizing that they had to have a full distribution. 6 7 I'm not sure that was the case because I've never seen any of these results from Duke, or was this merely a 8 9 sensitivity where they estimated the fifth and 95th? Well, the results that we 10 MR. LEHNER: 11 received from them only included the fifth mean and 12 95th, but my impression is that they had a full distribution, but maybe there's somebody here from 13 14 Duke Power that could --15 ACTING CHAIRMAN KRESS: Would that not 16 help? MR. BARRETT: 17 My name is Mike Yes. Barrett from Duke. 18 We do assign probably distributions to the 19 20 basic events in the core damage frequency calculation. 21 So the distribution, the results you see there are 22 from a distribution, not just from a sensitivity 23 study. 24 ACTING CHAIRMAN KRESS: Thank you. 25 MEMBER WALLIS: So they look roughly

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	consistent with 1150, at least the first line.
2	MR. LEHNER: Yes. I mean, the Catawba
3	station blackout frequencies are in what I believe is
4	the current configuration. The next line then was a
5	new RCP seal, which brings the frequency down
6	somewhat.
7	ACTING CHAIRMAN KRESS: And what's the
8	ranges in the conditional probability? Are those five
9	to 95 or
10	MR. LEHNER: I'm talking the conditional
11	probability of containment
12	ACTING CHAIRMAN KRESS: Your first line,
13	on your first line there.
14	MEMBER WALLIS: It's on the left.
15	MR. LEHNER: On the left? No, those are
16	sorry. Yeah, I should explain that. Those ranges
17	are really ranges depending on the plant damage state
18	that's being talked about. Those are not uncertainty
19	ranges.
20	ACTING CHAIRMAN KRESS: Okay.
21	MR. LEHNER: Those are ranges, early
22	containment failure associated with particular plant
23	damages. I mean, in actuality, the station blackout
24	isn't the one sequence. It's a number of sequences,
25	and they bend into slightly different plant damage.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	MEMBER WALLIS: So they don't have the ten
2	to the minus four in the CPEF.
3	MR. LEHNER: Right. Well, I don't think
4	that Duke did an uncertainty evaluation of the
5	conditional containment failure probability. It was
6	a point estimate, but it varied depending on the plant
7	damage state that you were in.
8	So, yes, the word "range" here shouldn't
9	it's probably a little confusing with uncertainty
10	ranges. It's not meant to imply uncertainty range.
11	ACTING CHAIRMAN KRESS: Those are fairly
12	consistent with the
13	MR. LEHNER: Well, it's not that different
14	from the .15 mean value of 1150.
15	MEMBER WALLIS: Eleven, fifty was based on
16	another plant, but similar plant.
17	MR. LEHNER: Sequoyah, another ice
18	condenser, and the ice condensers are actually quite
19	similar in their features. I mean, there's very
20	little variation among the ice condenser plants.
21	ACTING CHAIRMAN KRESS: So actually if you
22	looked at McGuire, it's quite an improvement in the
23	core damage frequency.
24	MR. LEHNER: Yes. Well, if you look at
25	the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	ACTING CHAIRMAN KRESS: And have those
2	same fixes been done to Catawba also?
3	MR. LEHNER: Well, if you look at those
4	three lines for Catawba, the first one is
5	ACTING CHAIRMAN KRESS: Oh, yeah.
6	MR. LEHNER: The third one is also quite
7	low because it turns out in Catawba most of the
8	station blackout comes from flooding, and so once they
9	put in the flood wall, the frequency gets to be quite
10	low.
11	ACTING CHAIRMAN KRESS: And then it's
12	about the same as the Catawba.
13	MR. LEHNER: As McGuire, yeah. That
14	frequency
15	ACTING CHAIRMAN KRESS: Right.
16	MR. LEHNER: and the McGuire frequency
17	are quite a bit lower than the 1150 frequency.
18	MEMBER WALLIS: Has the RPC seal been
19	replaced? This is a new kind of seal, isn't it?
20	MR. LEHNER: It has been replaced; is that
21	right?
22	MEMBER WALLIS: Improved seal.
23	PARTICIPANT: Yes.
24	MR. LEHNER: But the flood wall has not
25	been installed yet.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	35
1	ACTING CHAIRMAN KRESS: So if you were
2	going to use means, it seems like it was those two
3	bottom means that would be the appropriate ones to use
4	at the current time.
5	MR. LEHNER: I guess it is for McGuire.
6	I think the flood wall has not been installed for
7	Catawba; is that correct?
8	MR. BARRETT: That's also correct. And
9	we're planning to do that in the future.
10	MEMBER WALLIS: They are planning to do
11	that anyway?
12	ACTING CHAIRMAN KRESS: That brings up an
13	interesting thought. If the plant has a current issue
14	like that, the current CDF, and your analysis is
15	supposed to account for everything going on between
16	now and the end of life and they say they're going to
17	fix it in a year, so which CDF should you use in that
18	analysis?
19	MR. LEHNER: Well, yes. I mean, you know,
20	when we looked at the risk informing 50.44, one of the
21	means of addressing the issue of igniters during
22	station blackout was obviously to drive down the
23	station blackout frequencies. So that was happening.
24	ACTING CHAIRMAN KRESS: It was happening.
25	MEMBER WALLIS: But it seems, thinking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 about your range of numbers, it may well be that with 2 the flood wall installed, the cost-benefit analysis would show it's not worthwhile having these diesel 3 4 generators. 5 MR. LEHNER: Well, you'll see on the next The next slide then shows the analysis. 6 slide. 7 MEMBER WALLIS: It does show that? 8 MR. LEHNER: Yeah. It's a very busy slide. 9 10 ACTING CHAIRMAN KRESS: A busy table, yeah. 11 12 MR. LEHNER: But essentially what we've done here is --13 14 MEMBER WALLIS: Yeah, that's right. Ιt 15 It brings it down below the cost of some of does. 16 estimated costs of installing the diesel your 17 generator. ACTING CHAIRMAN KRESS: It brings it down 18 19 to 500,000. 20 MEMBER WALLIS: It brings it down 300 --21 ACTING CHAIRMAN KRESS: Or 150,000 using 22 the mean. 23 MR. LEHNER: Yeah, let me spend some time 24 on this. The first three rows here -- can you hear me 25 okay without that?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

36

	37
1	MR. LEHNER: Yeah.
2	MEMBER WALLIS: Yeah. I'm not sure that
3	the recorder can hear you, but we can.
4	MR. LEHNER: These are the Sequoyah 1150
5	results, and what we've done here is these are the
6	converted costs, the benefits in terms of thousands of
7	dollars.
8	ACTING CHAIRMAN KRESS: That's the .97?
9	MR. LEHNER: Yes. The first row is the
10	well, these are the station blackout frequencies,
11	fifth, mean, 95th.
12	ACTING CHAIRMAN KRESS: Right.
13	MR. LEHNER: Going down here, we have
14	sensitivities with different early containment failure
15	probabilities. So this one is the mean in the NUREG
16	1150 probability. This is the 95th NUREG 1150
17	probability, and the .97 is from the NUREG/CR-6427.
18	That's the DCH study for ice condensers that was done
19	failure recently at Sandia where they assigned a very
20	high containment failure probability to hydrogen
21	combustion for Sequoyah. It was .97.
22	MEMBER WALLIS: If we use the mean, we get
23	320. Do I see that?
24	MR. LEHNER: Yes.
25	MEMBER WALLIS: And if we use the two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	means, we get 320?
2	MR. LEHNER: Yes.
3	MEMBER WALLIS: And if you go down the
4	other ones, we get even smaller numbers, like 30 or
5	something.
6	ACTING CHAIRMAN KRESS: These what, five
7	percent?
8	MEMBER WALLIS: Tiny numbers if you use
9	the means.
10	ACTING CHAIRMAN KRESS: Oh, yeah, if you
11	use the means.
12	MEMBER WALLIS: You get 30.
13	MR. LEHNER: well, if the station blackout
14	frequency is low enough.
15	MEMBER WALLIS: Well, that's just using
16	the means.
17	MR. LEHNER: It's using the means, yes.
18	MEMBER WALLIS: That's a pretty small
19	number. These are Ks?
20	MR. LEHNER: Yes, these are Ks.
21	MEMBER WALLIS: Your costs are of the
22	order of hundreds of Ks, your cost of installing
23	diesels.
24	MR. LEHNER: yes.
25	MEMBER WALLIS: So the big numbers at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	39
1	upper bound that you quote in your report is the real
2	upper bound. It's way far away from the mean.
3	MR. LEHNER: Yes, but, well, what we
4	wanted to do was we realized if you took the 90 if
5	you want to consider a combined 95th percentile as an
6	upper bound, that is, a combined Level 1/Level 2
7	uncertainty, you couldn't just take the 95th percent
8	of the Level 2 and the 95th percent of the Level 1
9	because that would drive you up beyond the 95th and
10	the combined.
11	ACTING CHAIRMAN KRESS: Yeah, that does.
12	MR. LEHNER: So you can't glean directly
13	from NUREG 1150 what the combined uncertainty would be
14	for this particular case, but for other there are
15	some numbers in 11th that show you that if you combine
16	Level 1 and Level 2 uncertainty, the 95th percentile
17	with the combined uncertainty is within one order of
18	magnitude of the mean of that combined uncertainty.
19	So that's why
20	ACTING CHAIRMAN KRESS: So that's where
21	the numbers come from.
22	MR. LEHNER: That's right. So this
23	ACTING CHAIRMAN KRESS: Multiplying the
24	mean by an order
25	MR. LEHNER: is 320, ten times, but we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	said that this would be an upper bound, meaning the
2	95th percentile of the combined uncertainty.
3	MEMBER WALLIS: The mean give you a value,
4	but you might say the expected benefit. Now, if you
5	were going to invest in something, you would invest on
6	the basis of an expected benefit, not an amount you
7	might get in some absolutely extreme case.
8	ACTING CHAIRMAN KRESS: Well, I think one
9	of the things they're asking us for guidance on is how
10	do you use these.
11	MR. ROSENTHAL: In the cost-benefit
12	guidelines, it says that you should put more weight on
13	the mean values, and then it also says that you should
14	consider the uncertainty.
15	ACTING CHAIRMAN KRESS: Yeah. That's
16	about all it tells you, too, isn't it?
17	MR. ROSENTHAL: And so if you have some
18	more guidance, we would appreciate it.
19	MEMBER WALLIS: I guess if we just looked
20	at some of these means, we might not have a
21	containment at all.
22	MR. LEHNER: Well, I mean
23	MEMBER WALLIS: I don't mean in this case.
24	I mean some reactor types argue that on the basis of
25	cost-benefit you don't need a containment, but we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	still have a containment.
2	ACTING CHAIRMAN KRESS: Yeah, that's
3	another argument.
4	MR. LEHNER: Your core damage frequency
5	blown up.
6	Okay. So the first three rows are
7	Sequoyah 1150 analysis. This next set of calculations
8	is for Catawba using the three different scenarios
9	that are in the previous slide, and what we've done
10	here is here what we've done is we've done a
11	sensitivity on the containment failure probability.
12	That's fixed here. We used the containment failure
13	probability of .29, which by the way, turns out to be
14	the containment final probability assigned in
15	NUREG/CR-6427 to Catawba, but is also similar to
16	containment failure probabilities used in the Duke
17	PRAs themselves. So we felt that was a reasonable
18	number to use here.
19	But what's varied here is we're using here
20	the results that Duke provided, and we realize that
21	one of the differences, one of the consequences, the
22	relief fractions and so we did a sensitivity where we
23	grafted on the Sequoyah source term, the Sequoyah
24	consequences, and this just the 1.8 factor here
25	because of population around Catawba is about 80

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	percent higher than around Sequoyah, we then
2	multiplied the Sequoyah consequences, at least the
3	person-rem consequences, by 1.8.
4	MEMBER WALLIS: What's the reason for
5	grafting on a Sequoyah 1150 to a Duke plant?
б	MR. LEHNER: Simply to get a sensitivity
7	on the consequence.
8	MEMBER WALLIS: So somebody can compare
9	with their figures?
10	What does Duke say about who has the
11	Sequoyah plant? Who owns the Sequoyah plant?
12	ACTING CHAIRMAN KRESS: TVA.
13	MEMBER WALLIS: Do they have an analysis
14	to compare with 1150?
15	MR. LEHNER: Not that I'm aware of.
16	ACTING CHAIRMAN KRESS: Well, Sequoyah was
17	one of the 1150 plants.
18	MEMBER WALLIS: I know it was, but you
19	see, we're sort of getting the impression that Duke's
20	numbers are significantly smaller than numbers that
21	you can get by grafting on the Sequoyah. So the
22	question is: who do you believe?
23	At least they analyze their own plant.
24	They didn't graft something on.
25	MR. LEHNER: We have no choice.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	ACTING CHAIRMAN KRESS: I think part of
2	the difference is 1150 was a lot driven by expert
3	opinion, whereas the Duke numbers, I'm sure, come
4	right out of the PRA with the uncertainties.
5	MEMBER WALLIS: They have a good PRA.
6	It's more believable to me than this expert opinion
7	which has a tremendous
8	ACTING CHAIRMAN KRESS: Well, these
9	opinions are supposed to take care of model
10	uncertainties as well as parameter uncertainties.
11	MR. LEHNER: Yeah, I mean, it's not just
12	the expert opinion here. The difference is here that
13	in 1150 the form term code package was used
14	ACTING CHAIRMAN KRESS: To get the
15	consequences because you're right. The consequences
16	weren't expert opinion. They actually they also
17	went to the Level 2 with expert opinion, and then
18	grafted the consequences onto that from a max
19	calculation
20	MR. LEHNER: Yes.
21	ACTING CHAIRMAN KRESS: You're right. I
22	forgot about that. So it is different.
23	MR. LEHNER: Whereas, you know, I think
24	these were the releases he calculated was max.
25	ACTING CHAIRMAN KRESS: Yeah, the only

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	difference would be in the source term used.
2	MR. LEHNER: Yes, and the source term, I
3	mean, it's a question of which source term you pick,
4	as well. I mean, you know, there is if you
5	remember the 1150 analysis, the source terms were
6	really well, did a lot of parametric studies. So,
7	you know, we pick the source term that was an early
8	containment failure and had some other characteristics
9	that one would expect in this kind of sequence, but
10	there are other kinds of source terms one could pick
11	with less consequences or more consequences.
12	MEMBER WALLIS: Now, they have replaced
13	the seal. So we should at least consider that.
14	MR. LEHNER: Yes.
15	MEMBER WALLIS: Now, the flood wall, I
16	wasn't quite clear. Are they working to install the
17	flood wall or do you think it's going to be done in
18	the future? What's the story?
19	ACTING CHAIRMAN KRESS: Is there a
20	commitment?
21	MR. GILL: Yes, sir. This is Bob Gill
22	with Duke Energy.
23	Both McGuire and Catawba filed letters
24	back in August with the staff, and I have copies of
25	the commitment for the committee, and Catawba

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	committed to complete it by early 2005, which is
2	roughly three years from now. There's a transform in
3	the base of the turbine building which is susceptible
4	to flooding, and for the committee, those are public
5	record letters and contain those commitments.
6	MEMBER WALLIS: So if you installed the
7	emergency diesel, it would probably only work for a
8	year and probably be valuable for a year. Then it
9	wouldn't be needed essentially based on this
10	analysis.
11	ACTING CHAIRMAN KRESS: Because you've got
12	this.
13	MEMBER WALLIS: Because you've got the
14	flood wall.
15	MR. GILL: The flood wall is a very cost
16	effective modification, cost beneficial.
17	ACTING CHAIRMAN KRESS: What are the
18	consequences if you don't meet such a commitment?
19	MR. GILL: There's a process with the
20	staff on revising commitments, and we would have to
21	negotiate with the staff on that, but as it stands
22	now, there's no intentions to change that commitment.
23	It's in the budget plan to do that.
24	It's a relatively simple mod., too. It's
25	concrete and steel and rebar. No moving parts.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	ACTING CHAIRMAN KRESS: No real
2	difficulties that
3	MR. GILL: No, sir.
4	MR. LEHNER: And here are some benefits in
5	terms of some of the point estimates for external
6	events on the very extreme right.
7	ACTING CHAIRMAN KRESS: Now, let me ask
8	you about external events, particularly seismic. Does
9	that not drive the estimated initiating event
10	frequency for loss of off-site power? I mean, isn't
11	that implicit in there or not?
12	MR. LEHNER: Well, it's not implicit in
13	those. The numbers I showed before were well, the
14	1150 numbers were internal event frequencies only.
15	ACTING CHAIRMAN KRESS: Yeah, but you
16	know, I don't understand, an internal event frequency
17	for loss of offset power, because that's an external
18	like thing, and it's a frequency that comes from
19	experience or something.
20	And I assuming that might implicitly
21	assume seismic events.
22	MR. LEHNER: No, it doesn't.
23	ACTING CHAIRMAN KRESS: It doesn't?
24	MR. LEHNER: No. I mean, that's one of
25	the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	ACTING CHAIRMAN KRESS: Okay. That was
2	one
3	MR. LEHNER: conventions, I guess,
4	that, you know, loss of off-site power is considered
5	an internal initiator.
б	ACTING CHAIRMAN KRESS: I guess that
7	seismic events are probably such low frequency
8	anything that it might not add much to the frequency,
9	do you think?
10	MR. LEHNER: Well, it depends on the
11	location of the plant. It could be comparable to the
12	internal event frequency in some cases.
13	ACTING CHAIRMAN KRESS: It might double it
14	then?
15	MR. LEHNER: It could, yes.
16	ACTING CHAIRMAN KRESS: Which in my mind
17	is no consequence in terms of this. Doubling is not
18	a big unless it increases it a factor of ten, it's
19	not a big deal in this.
20	MR. LEHNER: In terms of station blackout,
21	you know, the seismic event would usually one
22	would expect a seismic event to lead to station
23	blackout.
24	ACTING CHAIRMAN KRESS: That's right.
25	MR. LEHNER: Yeah. But, of course, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	know, from the other end, Jim Meyer will represent the
2	if you want to have combustible gas controlled
3	system that will work under seismic conditions, then
4	it will drive up the cost.
5	ACTING CHAIRMAN KRESS: Yeah, there's lots
6	of other things. Yeah, you're right. It's probably
7	not worth it.
8	MR. ROSENTHAL: Just before we leave this
9	slide and we intentionally wanted to dwell on this
10	because even though it's a busy slide, it really
11	encompasses much of what was done. You run into the
12	issue of you can always add another diesel, another
13	diesel and drive down the frequency of station
14	produced blackouts. So that's on the prevention side
15	when considering a mitigation fix.
16	And so another decision question really is
17	and it's a policy issue is should you take
18	however many preventive fixes are needed to drive the
19	numbers sufficiently low where at some point you
20	require some degree of mitigation.
21	ACTING CHAIRMAN KRESS: Kind of a defense
22	in depth indication.
23	MR. ROSENTHAL: Right, and we don't have
24	numbers for that. So again, we recognize that, and
25	that in my mind is a policy issue. We want to trade

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	here, and they'll contend ten to the minus five to ten
2	to the minus six. Well, could you drive it an order
3	of magnitude lower yet? At what point do you believe
4	it has mitigation?
5	And again, just before we leave this slide
6	because I'm sure that not everybody in the room has
7	read all of the reports, the cost of a fix is about
8	two to \$300,000. So at least in my mind, I look at
9	those numbers that are within on the order of two or
10	300,000 or greater. Some decision guidance.
11	ACTING CHAIRMAN KRESS: Right. One of the
12	gray areas where it's near the line.
13	MR. ROSENTHAL: Right. Actually, Charlie
14	Ader, my Deputy Division Director, has pointed out to
15	us that we had an opportunity when we looked at the
16	IPEs to think about this issue, and then there was the
17	containment performance improvement program, and there
18	was another opportunity to revisit the issue.
19	And when we did the DCH report, that's
20	sort of new information that. So effectively we've
21	been working these issues with low core damage
22	frequency and trying to decide if it was worthwhile or
23	not for at least 20 years.
24	ACTING CHAIRMAN KRESS: A tough decision.
25	MEMBER WALLIS: Well, maybe if it's a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	tough decision it simply means that it doesn't matter
2	too much which one you make. It's up in the air.
3	ACTING CHAIRMAN KRESS: That's sometimes
4	a characteristic of tough decisions.
5	MEMBER WALLIS: What should we think about
6	D.C. Cook?
7	ACTING CHAIRMAN KRESS: D.C. Cook?
8	MEMBER WALLIS: Yeah. You don't have
9	something like this for D.C. Cook?
10	MR. LEHNER: No.
11	MEMBER WALLIS: Should we assume it's
12	similar or very different?
13	MR. LEHNER: Well, interesting question.
14	I mean, as I said earlier, there are some differences,
15	and you always can come down through, but they are
16	very similar plants. The only information that we had
17	from D.C. Cook was based on the IPEs, and in the IPEs,
18	the Level 2 analysis for the ice condensers all
19	resulted in very low containment failure
20	probabilities, lower than large dry containments in
21	most case.
22	So I guess the answer is we don't have
23	similar information.
24	ACTING CHAIRMAN KRESS: What's the site
25	like at D.C. Cook? Where is it located? I've

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	forgotten?
2	MR. LEHNER: It's located down South,
3	right?
4	MR. MEYER: No, it's up at the Great
5	Lakes.
6	MR. LEHNER: Oh, that's the one.
7	PARTICIPANT: I think it's Lake Michigan,
8	but I'm not sure.
9	ACTING CHAIRMAN KRESS: Likely they have
10	a fairly low population.
11	MR. MEYER: One whole side would be the
12	lake.
13	ACTING CHAIRMAN KRESS: Yeah, and the wind
14	is always blowing the other way, except at night, and
15	then it goes the other way, and that's when all of the
16	accidents are.
17	MEMBER WALLIS: So we should think of Cook
18	as fitting into this same sort of pattern, roughly
19	speaking?
20	MR. LEHNER: Well, I would think so. Like
21	I said, certainly in you know, the plants are very
22	similar, and so at least from that consideration
23	MEMBER WALLIS: So why does it have a very
24	low containment failure probability?
25	MR. LEHNER: Which?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	MEMBER WALLIS: D.C. Cook. I thought you
2	said it was lower.
3	MR. LEHNER: Actually in the IPEs, all of
4	the ice condenser containments had very low failure
5	probabilities. So I wouldn't assign
6	MEMBER WALLIS: It's not unusual in this
7	class.
8	MR. LEHNER: Yes. I would not think that
9	D.C. Cook was any lower than the other plants because
10	of the IPEs. But we were fortunate to get this
11	information from Duke Power so we could get some
12	updated values for Catawba and McGuire.
13	(Pause in proceedings.)
14	MR. LEHNER: If there are no other
15	questions on this, I'll move on to the Mark III.
16	MEMBER WALLIS: That's a very useful,
17	useful diagram.
18	MR. LEHNER: For the Mark III plants,
19	there's a couple of things to consider. First of all,
20	because of the Mark III design, you need to fail both
21	the containment as well as the drywell in order to get
22	a significant release.
23	I don't know if you have a picture of the
24	Mark III containment.
25	ACTING CHAIRMAN KRESS: We have it in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	mine.
2	MR. LEHNER: Okay. So that's an important
3	factor to consider.
4	ACTING CHAIRMAN KRESS: There's little,
5	very little bypass.
6	MR. LEHNER: Yes. BWR is just
7	ACTING CHAIRMAN KRESS: And they were
8	designed to get rid of the bypass.
9	MR. LEHNER: Yes, yes.
10	The other thing is that if you look at the
11	1150 accident progression analysis, it indicates that
12	the igniters really are only effective for sequences
13	with low RCS pressure; that they're not going to
14	alleviate the containment failure with sequences of
15	high RCS pressure.
16	ACTING CHAIRMAN KRESS: That's because it
17	failed anyway or
18	MR. LEHNER: Yes, the vessel breach. They
19	fail anyway.
20	And the third thing is that the Mark IIIs
21	really don't have anything comparable to what I shoed
22	for the Duke plants. We only have the 1150 analysis,
23	and we have some IPE results, and then we have the
24	more recent SPAR models.
25	I don't think there's even any license

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	renewal SAMDA analysis from the Mark IIIs.
2	ACTING CHAIRMAN KRESS: How many Mark IIIs
3	did we say were out there?
4	MR. LEHNER: Four.
5	ACTING CHAIRMAN KRESS: Four?
6	MR. LEHNER: All single units.
7	ACTING CHAIRMAN KRESS: All single units?
8	MR. LEHNER: To return to the 1150 study
9	for Grand Gulf, we see that, again, station blackout
10	core dynamic frequency, the mean values here are lower
11	than for the ice condensers.
12	The conditional probability of early
13	containment failure is relatively high, but remember
14	that you have to fail both the containment and the
15	drywell, not just the containment here to get
16	significant release.
17	The bottom here shows the SPAR model
18	station blackout ranges.
19	ACTING CHAIRMAN KRESS: Oh, I'm not able
20	to just multiply this by the SBO CDF frequency then to
21	get the consequences?
22	MR. LEHNER: No. You mean the oh, you
23	mean
24	ACTING CHAIRMAN KRESS: The .5 times
25	MR. LEHNER: The .5? No.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	55
1	ACTING CHAIRMAN KRESS: Because that's
2	just the conditional probability of early failure
3	MR. LEHNER: Yes.
4	ACTING CHAIRMAN KRESS: of the
5	containment?
6	MR. LEHNER: Right, right, right, yeah.
7	ACTING CHAIRMAN KRESS: I didn't realize
8	that before. So actually
9	MR. LEHNER: It turns out that
10	ACTING CHAIRMAN KRESS: actually the
11	Mark IIIs are even more beyond the cost benefit
12	analysis because of this?
13	MR. LEHNER: There's lower benefit for
14	Mark IIIs in general.
15	ACTING CHAIRMAN KRESS: I mean even lower
16	than the numbers we have, do they include your
17	combined failure of the
18	MR. LEHNER: Yes, yes.
19	ACTING CHAIRMAN KRESS: Oh, the numbers
20	have already got that
21	MR. LEHNER: Yes, yes.
22	ACTING CHAIRMAN KRESS: picture in?
23	Okay. I'm sorry.
24	MEMBER WALLIS: The next one.
25	ACTING CHAIRMAN KRESS: Oh, here. Yeah,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	56
1	I see.
2	MR. LEHNER: I just want to mention again
3	that the SPAR three I models have not been QAed, and
4	so these frequencies may change quite a bit. As I
5	said, we really had very little information for the
6	Mark IIIs, and as you can see, the station blackout
7	frequency for River Bend there, one times ten to the
8	minus five is actually quite high for a Mark III BWR
9	plant.
10	And I think it's fair to say that in the
11	IPEs, that frequency was quite a bit lower, but the
12	SPAR models so far have assigned that frequency. So
13	we're using this as sort of to get a maximum estimate,
14	an estimate of what the maximum benefit could be.
15	Okay. This indicates the what I had
16	mentioned earlier, the fact that the igniters really
17	only benefit you during low pressure sequences, and if
18	you look at the 1150 study, you see that while the
19	containment failure probability is about .5 for high
20	pressure sequences across the Board, the containment
21	and drywell failure probability, that it's the
22	probability of both of them failing is about .2 across
23	the board, whereas for the low pressure sequences, the
24	containment failure and drywell failure probability
25	during station blackout sequences is still .5 and .2,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	57
1	but if you have the igniters available, then the
2	containment failure probability and the drywell
3	failure probability become very low.
4	MEMBER WALLIS: There are technical
5	analyses or are these expert judgments?
6	ACTING CHAIRMAN KRESS: An expert.
7	MR. LEHNER: There is expert judgment in
8	here because, you know, you're talking about combining
9	severe accident loads, which are very uncertain, with
10	
11	ACTING CHAIRMAN KRESS: With fragilities.
12	MR. LEHNER: Fragilities, and while the
13	fragilities
14	ACTING CHAIRMAN KRESS: And actually the
15	overlap between the two
16	MR. LEHNER: Between the two, yeah, yeah,
17	and I guess, you know, the fragilities we can get a
18	reasonable handle on, but the loads
19	ACTING CHAIRMAN KRESS: The loads are
20	what's driving uncertainty.
21	MR. LEHNER: are very uncertain.
22	ACTING CHAIRMAN KRESS: Even the
23	fragilities have a lot of uncertainty.
24	MR. LEHNER: Yes, yes. But they're
25	certainly tighter than a load part.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	ACTING CHAIRMAN KRESS: Yeah.
2	MEMBER WALLIS: Well, is there a tendency
3	to be conservative in estimating fragility?
4	ACTING CHAIRMAN KRESS: Well, the NUREG
5	1150 was supposed to get a distribution.
6	MR. LEHNER: Yes.
7	ACTING CHAIRMAN KRESS: Not to have any
8	fast
9	MEMBER WALLIS: It was supposed to be
10	realistic.
11	ACTING CHAIRMAN KRESS: Yes.
12	MR. LEHNER: Yes.
13	ACTING CHAIRMAN KRESS: That was the idea.
14	MR. LEHNER: Yes.
15	ACTING CHAIRMAN KRESS: But it was
16	supposed to incorporate model uncertainties.
17	MR. LEHNER: So given oh, sorry. This
18	slide says PWR. Obviously it should be BWR Mark III.
19	ACTING CHAIRMAN KRESS: I'd like to see
20	one those PWR Mark IIIs.
21	MR. LEHNER: So this then shows the
22	averted costs for Mark IIIs, and as you can see,
23	they're substantially less than they were for the ice
24	condensers.
25	Here we've done some sensitivity

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	calculations where the first row across for Grand Gulf
2	uses the mean NUREG 1150 probability of early
3	containment failure.
4	The second row uses the 95th NUREG 1150
5	probability of early containment failure.
6	The third row says let me assume that I
7	have half of my sequences at lower pressure and my
8	drywell always fails if the containment fails.
9	By the way, let me back up for a minute.
10	If I look at this slide, since my containment failure
11	is .5 and my combined containment and drywell failure
12	is .2, I can infer that the conditional probability of
13	the drywell failing if the containment fails is .4.
14	ACTING CHAIRMAN KRESS: Yeah. So you used
15	one.
16	MR. LEHNER: So we used one here instead
17	of .4.
18	ACTING CHAIRMAN KRESS: That lets you
19	divide the sequences in half.
20	MR. LEHNER: Well, but the first two we
21	said there's only 40 percent of the sequences are low
22	pressure. So we've actually increased the lower
23	pressure sequences.
24	ACTING CHAIRMAN KRESS: Oh, I see. The
25	first two have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	60
1	MR. LEHNER: Yeah, yeah.
2	ACTING CHAIRMAN KRESS: I didn't realize
3	that.
4	MR. LEHNER: Sorry. One of the earlier
5	slides, yeah, I should have pointed out that in
6	general it looks like 40 percent of the sequences
7	would be at low pressure. So we try to get a handle
8	on the maximum benefits by taking a relatively at
9	least from trying to maximize the benefits from a
10	conservative view of the accident progression here.
11	And then the next two that's the first
12	three rows, and then in rows four, five, and six,
13	they're just for Grand Gulf with the SPAR model
14	station blackout frequency, and then we have the last
15	three rows there at the bottom for River Bend with the
16	station blackout frequency, which is, as I pointed out
17	
18	ACTING CHAIRMAN KRESS: It's interesting.
19	MR. LEHNER: was quite a bit higher.
20	ACTING CHAIRMAN KRESS: The SPAR models
21	are not too far off from NUREG 1150.
22	MR. LEHNER: Well, the River Bend one is
23	quite a bit higher because
24	ACTING CHAIRMAN KRESS: Oh, yeah, the
25	River Bend.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	MR. LEHNER: they assigned this high
2	core damage frequency.
3	So finally, we wanted to look at some of
4	the reasons why there is such a difference between the
5	Sequoyah benefits and the Grand Gulf benefits, and
6	this slide tries to illustrate that.
7	If you look at the mean values for
8	Sequoyah from 1150 and the means values from Grand
9	Gulf for 1150, you get a factor of roughly 30 between
10	the benefits for Sequoyah and the benefits for Grand
11	Gulf.
12	And this slide tried to show where that
13	factor comes from. It's about a factor of four in the
14	station blackout frequency, and Sequoyah's value is
15	higher.
16	The averted conditional containment
17	failure, there's about a factor of two there, and then
18	there's also a big factor due to the population around
19	the different plants. Grand Gulf has a very low
20	population density around it.
21	So we also looked at population densities
22	around Mark IIIs, and I think Perry has the highest
23	population density. It's about five times higher than
24	Grand Gulf.
25	So that factor of five would be one for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	Perry. But anyway, that's how you get the factor of
2	30 between Sequoyah and Grand Gulf.
3	So that concludes my presentation.
4	MR. NOTAFRANCESCO: Okay. The next person
5	on the agenda is Jim Meyer who has done the cost
6	analysis.
7	MR. MEYER: Thank you, Allen.
8	Jim Meyer from ISL.
9	MS. WESTON: Jim, do you need the body
10	mic? Do you need the body mic?
11	MR. MEYER: I don't think so. Let's see
12	how this goes, and I'll be happy to use it if needed.
13	ACTING CHAIRMAN KRESS: Are you going to
14	tell us what ISL is?
15	MR. MEYER: I'm sorry. What?
16	ACTING CHAIRMAN KRESS: Are you going to
17	tell us what ISL is?
18	MR. MEYER: Information Systems
19	Laboratories. We do consulting work for NRC.
20	ACTING CHAIRMAN KRESS: Are you located
21	here at in Washington?
22	MR. MEYER: Yes, our office is just right
23	down the street across from Mike Flynn.
24	I'll tell you what I plan to discuss this
25	afternoon. I wanted to spend a few minutes going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

63 through the actual cost assessment process, how we get 1 2 to the final bottom line numbers, and also go over the assumptions 3 some of that went into that 4 determination, and then talk for a few minutes about 5 the actual cost analysis results themselves. It was clear from the previous discussion 6 7 that uncertainty was important. So we put an 8 uncertainty perspective on the cost estimates, and 9 then there's some comments about the implications of system reliability, an issue that also came up at the 10 previous meeting. 11 This figure was in the report that you 12 received, and it allows for an overview of the --13 14 ACTING CHAIRMAN KRESS: Now, did you 15 interface with the various licensees to get this information? 16 17 MR. MEYER: Yes, we did. We gathered information from a number of sources, from the staff, 18 19 from the licensee information, in particular, the SAMA 20 process, the severe accident mitigation alternative --21 ACTING CHAIRMAN KRESS: Oh, yes. 22 MR. MEYER: -- process as part of license 23 renewal. 24 There are, I quess, now about ten of those 25 that have been submitted that we looked at, and for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	each one, they propose severe accident mitigation
2	alternative type fixes and do a cost-benefit analysis
3	associated with that.
4	The Duke analysis, in particular, was very
5	helpful in providing us with cost estimates for the
6	back-up power.
7	And this figure does give a breakdown of
8	how we determined the total cost, and again, it is
9	completely consistent with the guidelines that we
10	referred to earlier, the regulatory analysis
11	guidelines.
12	We address four impact attributes: the
13	industry implementation, industry operation, and then
14	the counterpart for NRC, the implementation for NRC,
15	and the NRC operation.
16	On the far left, you see the breakout of
17	the industry implementation. We'll talk about that in
18	a little more detail in a minute or two, but it's the
19	actual hardware, the installation of that hardware,
20	the engineering associated with that, the dollar
21	equivalent of the worker dose when it involves
22	exposure to radiation to install the device, the
23	emergency procedures, preparation, and then the
24	licensing costs.
25	Over the 40 year assumed remaining life of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	the plant, the industry operation aspects are the
2	surveillance costs, the maintenance costs, and the
3	testing costs for the back-up power system.
4	ACTING CHAIRMAN KRESS: Would this be
5	assumed to be a safety system?
6	MR. MEYER: I'm sorry. What?
7	ACTING CHAIRMAN KRESS: Would this if
8	this were in, would it be assumed to be a safety
9	system, SSC?
10	MR. MEYER: This would not be a safety
11	system in terms of the normal, what you normally think
12	about as a safety system.
13	ACTING CHAIRMAN KRESS: Yeah, but still
14	there would be certain surveillance and testing
15	required.
16	MR. MEYER: Yeah, it would have
17	surveillance, maintenance, and testing consistent with
18	systems appropriate for accident management and for
19	beyond design basis type accident accommodation.
20	ACTING CHAIRMAN KRESS: Okay.
21	MR. MEYER: The NSC implementation costs
22	or the consideration of rulemaking and the NRC review
23	costs and
24	ACTING CHAIRMAN KRESS: We don't count
25	what's going on right now as far as that cost.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	MR. MEYER: Do you mean the rulemaking,
2	the 50.44 rulemaking?
3	ACTING CHAIRMAN KRESS: No, I mean the
4	study that research has done to produce this report.
5	MR. MEYER: No. No, that cost is not
6	included.
7	ACTING CHAIRMAN KRESS: Okay.
8	MR. MEYER: And then
9	MEMBER FORD: Of all those costs, does
10	anyone predominate or are they
11	MR. MEYER: I'd have to do you mean
12	among the various studies?
13	ACTING CHAIRMAN KRESS: I would guess the
14	installation.
15	MR. MEYER: Oh, among these costs, the
16	industry implementation is the biggest cost.
17	MEMBER FORD: By a large factor?
18	MR. MEYER: By a considerable factor, and
19	we can get into that in a few minutes.
20	MEMBER FORD: Okay.
21	MEMBER WALLIS: Well, the cost of the
22	diesel itself is
23	ACTING CHAIRMAN KRESS: Is probably not
24	even on the map.
25	MEMBER WALLIS: a few percent of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	67
1	total cost.
2	MR. MEYER: Yes, as it turns out, whether
3	you're talking about a portable diesel or a pre-stage
4	diesel, it's a small percentage of the total cost even
5	for the industry implementation.
6	MEMBER FORD: Is that because they're
7	safety related?
8	ACTING CHAIRMAN KRESS: No.
9	MEMBER FORD: No? Okay.
10	MR. MEYER: Well, there are a variety of
11	reasons for it that we'll get to in a few minutes.
12	MEMBER FORD: Okay.
13	MR. MEYER: We've already touched on a few
14	of these, but I'll go through them and answer any
15	questions relative to them.
16	We're going to be actually talking about
17	the actual costs in a few minutes, but under the
18	industry implementation, the materials and equipment
19	covers all of the hardware aspects, and in this case
20	the cost of the diesel generators, the conduit and
21	cabling, the electrical panels that are required.
22	Installation is mainly a labor matter, the
23	cost of installing the device. Engineering I think is
24	obvious. It's the cost of doing the engineering
25	preparation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	Occupational exposure we made an estimate
2	of and translate that into dollars using the 2000
3	dollars per person-rem, and then we also include
4	emergency procedure preparation and then the licensing
5	costs, for example, changes to the UFSAR.
6	For the industry operation, and again,
7	it's over 40 years consistent with the benefits
8	analysis, we include the maintenance, testing, and the
9	surveillance of the back-up power system.
10	NRC implementation and operation, as I
11	said earlier, include the items listed here.
12	MEMBER WALLIS: These four kilowatt
13	diesels, is that something like what are used on
14	construction sites?
15	MR. MEYER: The portable diesels?
16	MEMBER WALLIS: They're a standard item
17	that are used on construction sites, aren't they?
18	MR. MEYER: The portable diesels?
19	MEMBER WALLIS: Yeah, you're going to have
20	
21	MR. MEYER: Yes.
22	MEMBER WALLIS: just put this in the
23	back of your pickup truck and drive off.
24	MR. MEYER: Right.
25	MEMBER WALLIS: It's a very standard item.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	MR. MEYER: This is a very standard item.
2	There's a large variety of portable diesels available
3	with considerable power ranges. You can have portable
4	diesels to accommodate the power requirements you
5	know, for the igniters if you would choose that
6	option.
7	ACTING CHAIRMAN KRESS: There's no
8	consideration of the diesel reliability and the
9	benefits of miscalculating?
10	MR. MEYER: Yeah, the benefit analysis
11	assumes 100 percent reliable system, and I will speak
12	to that in a few minutes, but
13	ACTING CHAIRMAN KRESS: Do you have to pay
14	more for that reliability?
15	MR. MEYER: You have to pay more, and in
16	fact, we did take that into consideration based on
17	some comments from the previous meeting in terms of
18	costs, operational costs, as well as costs for
19	hardware.
20	MEMBER WALLIS: Why do they have to be
21	diesels?
22	MR. MEYER: They don't have to be diesels.
23	MEMBER WALLIS: High powered gasoline
24	powered.
25	MR. MEYER: They could be gasoline

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	powered. In fact, some licensees are considering
2	gasoline powered back-up capabilities.
3	We chose diesel for a number of reasons.
4	Their reliability, a well known commodity, and that
5	the utilities are familiar with, but there are those
6	other options.
7	I want to just touch briefly on the
8	physical modifications that we considered. As our
9	base case, we considered the pre-staged diesel to
10	power the igniters, and then as an alternative we
11	considered the portable diesel. The pre-stage diesel,
12	everything is set up ahead of time so that the only
13	thing that the operator would really have to do is go
14	to the diesel, start it up, and then make sure that
15	there was power applied to the igniters.
16	In the case of the portable, it's more
17	complicated in that the portable diesel would be
18	stored at a location probably away from the auxiliary
19	building. It would have to be physically moved to a
20	panel. We were thinking of being close to the
21	auxiliary building, and then the igniters activated
22	that way.
23	MEMBER WALLIS: The igniters all have to
24	be on at the same time? I mean your power requirement
25	is based on having all of the igniters on all of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	time?
2	MR. MEYER: Yes, that was
3	ACTING CHAIRMAN KRESS: I think that's the
4	only way.
5	MR. MEYER: that's an assumption that
6	we made, that for a variety of reasons we determined
7	that one train of igniters was a necessary and
8	sufficient condition for effective operation.
9	MEMBER WALLIS: Because the actual
10	ignition takes very little energy. It just it's
11	what takes the energy in an igniter?
12	ACTING CHAIRMAN KRESS: There's not much
13	energy involved, but
14	MR. LEHNER: The igniter energies vary.
15	The igniters that are used for Duke, for example,
16	require about five kilowatts, while the igniters for
17	TVA require about 20 kilowatts.
18	MEMBER WALLIS: Yeah, but that's not the
19	ignition problem. The ignition probably takes a very
20	small amount of energy, but it's all of the equipment.
21	ACTING CHAIRMAN KRESS: Well, they have to
22	be at the right temperature, and they have to be where
23	the hydrogen in there are.
24	MR. NOTAFRANCESCO: Each igniter is 100
25	watts.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	MR. MEYER: Right.
2	MEMBER WALLIS: And so it's the heat loss
3	from the thing which is taking most of the energy?
4	ACTING CHAIRMAN KRESS: Yeah.
5	MR. NOTAFRANCESCO: The igniter is about
6	1,700 degrees Fahrenheit.
7	MEMBER WALLIS: All right. So it's the
8	heat losses which are taking the energy. Okay. So
9	it's not just a spark. It's something which is on all
10	the time.
11	ACTING CHAIRMAN KRESS: There are spark
12	igniters, but I don't think anybody uses them.
13	MEMBER WALLIS: With a spark igniter, you
14	could probably use sort of 100 watts and just charge
15	up some condenser and go bang.
16	ACTING CHAIRMAN KRESS: Yeah, but you have
17	to know when to spark it.
18	MEMBER WALLIS: Yeah, that's right.
19	You've got to have some intelligence system.
20	MR. MEYER: Another modification that will
21	be considered was having a prestage that would
22	accommodate both the power to the igniters and the air
23	return fans, and the subject of the role of the air
24	return fans will be part of a later presentation.
25	Then we also considered passive water

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	catalytic recombiners as just another alternative to
2	the back-up power to the in place igniters.
3	The assessment was differentiated in a
4	number of respects. We considered reactor types,
5	containment types, and also balance of plant.
6	Also, it turns out that the number of
7	reactors at the site is important. With dual unit
8	sites, you can share some of the costs and keep the
9	costs down compared to the single unit sites.
10	ACTING CHAIRMAN KRESS: Is that a big
11	deal? Could you use the same portable diesel, say,
12	for both sites?
13	MR. MEYER: Well, that had more of an
14	impact for the pre-staged
15	ACTING CHAIRMAN KRESS: Oh, it did?
16	MR. MEYER: diesel, but you could share
17	in the preparation of procedures and allow the paper
18	work. There's a lot of cost cutting, you know, from
19	that standpoint.
20	And also differentiated by the power
21	requirements. I mentioned that the TVA power
22	requirements were considerably larger, 21 kilowatts
23	compared to the Duke and the D.C. Cook.
24	ACTING CHAIRMAN KRESS: Why are they so
25	much higher requirement of power?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	MR. MEYER: They just have a different
2	glow plug type.
3	ACTING CHAIRMAN KRESS: Just different
4	blow plug.
5	MR. MEYER: Finally, we
6	MEMBER WALLIS: You say in your report
7	that there's a distinction between having a prestage
8	and a portable diesel. The tables seem to be
9	independent of that.
10	MR. MEYER: I'm sorry?
11	MEMBER WALLIS: I couldn't see a
12	distinction made between the prestage an the portable
13	diesel costs. The tables that are in your report
14	don't seem to make a distinction between whether it's
15	a portable diesel or prestaged.
16	MR. MEYER: We had a separate case that
17	was
18	MEMBER WALLIS: You have a separate case?
19	MR. MEYER: dedicated to the
20	MEMBER WALLIS: Okay. So you have to go
21	all the way through, and then you find the other one.
22	MR. MEYER: Yeah, I believe it was case
23	two.
24	MEMBER WALLIS: Okay. I'm sure you'll get
25	to it. But the costs of the hitch-up and everything

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

75
and all of the cables and circuit breakers is
presumably the same whether it's portable or not.
MR. MEYER: The costs, there's a prestage
part to the portable diesel, and it's the prestage
part, the part that you're wiring into a safety grade
system, and it's those costs and the panels and the
cabling associated with that that are common to both
and
MEMBER WALLIS: They're much bigger than
the cost of the diesel.
MR. MEYER: And they're bigger than the
cost of the diesel, correct.
We also performed some sensitivity
analyses. External event qualification was one of
those. Here the external event characterization
varies from site to site, as I'm sure you're aware,
and also much of the external event is not quantified.
Seismic margins are used for most of these plants.
And so we did a rough estimate of the cost
of including external events, and it's about a
doubling of the overall costs.
We also considered the sensitivity of
extended outage, and we based this on \$300,000 per
day, cost to the utility if they would have to extend
their outage in order to install the back-up power.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	ACTING CHAIRMAN KRESS: If it about
2	doubles the cost and it about doubles the frequency,
3	is it a wash?
4	MR. MEYER: I'm sorry?
5	ACTING CHAIRMAN KRESS: If seismic
6	external events double the costs but also double the
7	frequency, then it's a wash?
8	MR. MEYER: Yeah, it would be. It
9	probably would be pretty close to a wash. That's
10	correct.
11	MEMBER WALLIS: How long does it take to
12	what is the effect on outage typically?
13	MR. MEYER: Well, the effect on outage,
14	you can assume any length of outage.
15	MEMBER WALLIS: I don't want to assume
16	anything. I want to get a real good estimate of how
17	long it takes.
18	ACTING CHAIRMAN KRESS: The outage is to
19	still this
20	MR. MEYER: Well, in this case, we're
21	assuming that you don't need any extension to the
22	outage.
23	MEMBER WALLIS: I don't see it in the
24	table, or is it part of something else in the table,
25	like installations? Is it part of the installation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	cost?
2	MR. MEYER: No, we looked at the cost of
3	an extended outage, and it's based on \$300,000 assumed
4	for a day. Our base case assumed that there would be
5	no extended outage, that it could be performed within
6	the normal
7	MEMBER WALLIS: You say it might be a day
8	or something?
9	MR. MEYER: No, for our analysis, we
10	assumed eight hours, a third of a day or \$100,000
11	addition.
12	ACTING CHAIRMAN KRESS: Okay.
13	MEMBER WALLIS: Oh, you assumed eight
14	hours.
15	MR. MEYER: Yes.
16	MEMBER WALLIS: As the sensitivity. Okay.
17	MR. MEYER: But it was only just to get an
18	idea of how that would affect the overall number.
19	MEMBER WALLIS: So the mean would be four
20	hours?
21	MR. MEYER: It could be four hours.
22	ACTING CHAIRMAN KRESS: It could be a real
23	driver.
24	MEMBER WALLIS: It could be a real driver.
25	That's right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	78
1	ACTING CHAIRMAN KRESS: Three hundred K a
2	day.
3	MR. MEYER: It could be a driver. That's
4	the main reason for raising the issue, but we did
5	assume that it could be accommodated within the normal
6	shutdown period.
7	And then consistent with the regulatory
8	analysis guidance, we did a three percent to seven
9	percent discount rate to see what the impact of that
10	would be.
11	MEMBER WALLIS: Is it ever going to go to
12	ten percent?
13	ACTING CHAIRMAN KRESS: No. Seven percent
14	is too high.
15	MR. MEYER: Well, you know, seven percent
16	is recommended as being the base percentage. Ten
17	percent would be pretty optimistic in terms of
18	economic growth.
19	Some of the key assumptions. As I said
20	before, the prestage diesel generator is located near
21	the auxiliary building. Its activation is remote.
22	That is, it would be located at the diesel generator,
23	and it would be manual. It would not be automatic.
24	All of our costs are consistent with the
25	benefit costs. They're in 2002 dollars with four

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	years of operation, and we're assuming that, like we
2	mentioned a minute ago, that the back-up power supply
3	need not be safety grade, and that one train is
4	necessary and sufficient for our purposes, for
5	mitigation of the consequences of the station
6	blackout.
7	MEMBER WALLIS: How thick are the diesel
8	generators that people buy for their houses for back-
9	up power?
10	MR. MEYER: How large are they?
11	MEMBER WALLIS: Yeah.
12	MR. MEYER: Well, the catalogues have
13	MEMBER WALLIS: A few kilowatts
14	presumably?
15	MR. MEYER: Yeah, two to 20 or 30
16	kilowatts.
17	MEMBER WALLIS: They're in the range. The
18	kind of thing that you just stick on your house in
19	case of a blackout?
20	MR. MEYER: Well, that's what people buy
21	them for.
22	MEMBER WALLIS: What do they cost?
23	MR. MEYER: What do they cost?
24	MEMBER WALLIS: What do they cost
25	installed?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	MR. MEYER: They cost \$2,000.
2	MEMBER WALLIS: Installed?
3	MR. MEYER: I don't
4	MEMBER WALLIS: Is that something you can
5	buy for your house that's 2,000 and when you put it in
6	a nuclear power plant it's 200,000?
7	MR. MEYER: Yeah, I don't know. For home
8	use, I don't know what the installation charges are.
9	MEMBER WALLIS: No, okay. I was trying to
10	get the overall costs, not just the hardware, but the
11	overall.
12	MR. MEYER: For home use I don't know what
13	they would be.
14	Another assumption, too, is that the worst
15	case scenario, we have three hours from the start of
16	the station black-out accident before these igniters
17	would have to be activated, and that was an important
18	assumption for a better understanding of what kind of
19	flexibility we had in considering the options,
20	Well, these are a summary of the results
21	for the best estimate results that we determined. The
22	first line is the
23	MEMBER FORD: Excuse me. Would you mind
24	just going back to the previous graph?
25	MR. MEYER: The key assumptions?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	MEMBER FORD: Yeah.
2	MR. MEYER: Yes.
3	MEMBER FORD: Could you explain to me why
4	it doesn't have to be safety grade? I mean, if it's
5	something that you did if you could buy it out of
6	Ace Hardware, that would not be safety grade.
7	MR. MEYER: That's correct, yes.
8	MEMBER FORD: But it's not saying anything
9	at all about its reliability on this. Doesn't it have
10	to be really reliable?
11	MR. MEYER: Yes, and that's why we've
12	steered away from the home use type of diesel
13	generators.
14	MEMBER FORD: Because it's not safety
15	grade.
16	MR. MEYER: No. We've looked at it from
17	a standpoint of the reliability of these systems.
18	MEMBER FORD: Right.
19	MR. MEYER: And for the purposes of the
20	cost-benefit analysis, we feel very confident that you
21	can have functional reliabilities in the range of 95
22	percent or better, and with those kind of
23	reliabilities, it's not going to perturb the cost-
24	benefit analysis whether you assume a perfect system
25	or a more realistic, 95 percent reliable system.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	So we
2	ACTING CHAIRMAN KRESS: Besides that, if
3	you did the Option 2, this would never show up as a
4	risk significant item.
5	MEMBER FORD: It wouldn't? Okay. It's
б	just that I seem to remember now the last meeting we
7	had on this subject, this very point came up. In
8	fact, you brought it up, Graham, this question of Ace
9	Hardware showing on the back of your truck and
10	bringing it in.
11	MEMBER WALLIS: Right.
12	MEMBER FORD: And I thought it was
13	rejected because it was not safety grade. That's why
14	it was not bringing it back.
15	MR. MEYER: That was not the reason.
16	We're talking about actions beyond the design basis,
17	and so there's a lot more flexibility in the kind of
18	systems that we can consider.
19	MEMBER FORD: Okay.
20	MR. MEYER: For the purposes of the
21	backfit analysis, we determined that these systems
22	could be made sufficiently reliable that they wouldn't
23	impact on the cost-benefit decision.
24	MEMBER FORD: Okay.
25	ACTING CHAIRMAN KRESS: Regardless,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	they're both assumed to be on site. You don't go out
2	to the hardware and buy it when you need to
3	MEMBER WALLIS: I think the hardware one
4	is 90 percent reliable, too. Otherwise people
5	wouldn't buy them.
б	MR. MEYER: The hardware one is
7	MEMBER WALLIS: So it doesn't really
8	affect your cost benefit once you get up in that kind
9	of reliability range. It doesn't matter.
10	MR. MEYER: No, diesels are very reliable,
11	and the home use ones are very reliable, too.
12	In our cost analysis, we did assume on the
13	lower end of our cost analysis a \$2,000 type home use
14	type diesel generator. However, we thought that for
15	our base case it would be more appropriate to assume
16	an industrial qualified standard diesel.
17	This viewgraph displays the cost for both
18	the ice condenser and the Mark III, and these are out
19	best estimates. We'll get into the uncertainties in
20	a minute, but they're our best estimates, and I can go
21	through all of these, but you can get a pretty good
22	feel just from looking at the various options that we
23	considered that the costs for the ice condenser back-
24	up diesels range from \$200,000 to, if you include the
25	air return fans, \$590,000.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	They're a bit larger for the Mark IIIs
2	because the Mark IIIs are single unit sites and don't
3	have some of the benefits of shared costs. The PARS
4	(phonetic) are, as you can see, considerably more
5	expensive than the back-up diesel to the igniters.
6	ACTING CHAIRMAN KRESS: When you talk
7	about PARS, did you include all of the just same
8	elements that add back here on this chart,
9	installation, engineering
10	MR. MEYER: Yes.
11	ACTING CHAIRMAN KRESS: materials and
12	equipment?
13	MR. MEYER: Yes. Yeah, well all of these
14	were analyzed with all of those cost elements
15	considered.
16	We performed an uncertainty analysis using
17	a Monte Carlo simulation software, and for each one of
18	those cost elements that went into the roll-up of the
19	total cost
20	ACTING CHAIRMAN KRESS: Yeah, now on this
21	uncertainty analysis, your input was a high, most
22	likely. Now, where did you get those numbers, those
23	values?
24	MR. MEYER: Okay. Those numbers were
25	gleaned from input from staff, from the industry, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

85 1 from engineering judgment. 2 ACTING CHAIRMAN KRESS: And you do a triangle between --3 4 MR. MEYER: We did a triangular --5 ACTING CHAIRMAN KRESS: And then did a Monte Carlo uncertainty? 6 7 MR. MEYER: And did a Monte Carlo uncertainty analysis. Some of the industry analysis 8 actually provided a minimum, maximum costs, and their 9 best estimate costs, and we tried to use those as much 10 11 as possible. 12 MEMBER WALLIS: Well, for instance, you have this engineering. I see you have estimate 13 14 engineering cost for similar modifications were 15 between 50,000 and 175,000, and you chose to use 50,000 for your estimate. 16 17 MR. MEYER: Correct. MEMBER WALLIS: You have chosen the lowest 18 19 value of the range rather than some mean. 20 MR. MEYER: We chose -- this is for the 21 engineering? 22 MEMBER WALLIS: Yeah. 23 MR. MEYER: Yeah, we chose the 50,000. 24 The input we got that it would go as high as that 100 25 _ _

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	MEMBER WALLIS: One hundred seventy-five
2	thousand.
3	MR. MEYER: That number, but we were also
4	provided input that it would be as low as \$5,000. So
5	we used that as the lowest engineering number.
6	MEMBER WALLIS: It's amazing there's such
7	a range on something that
8	MR. MEYER: It's a very large range,
9	and
10	MEMBER WALLIS: If I were building a
11	house, I wouldn't accept bids that went from a factor
12	of ten, low, to a factor of
13	MEMBER FORD: This is the as installed
14	cost; is that correct?
15	MR. MEYER: We're talking about the
16	engineering costs now.
17	MEMBER WALLIS: No, but even so
18	MEMBER FORD: Well, gosh.
19	MEMBER WALLIS: you would think they
20	could do a much better job of estimating cost than
21	5,000 to 175,000.
22	MR. MEYER: What we wanted to do was make
23	sure that we picked up the full range, and we felt
24	comfortable with the \$50,000 as being the robust
25	value.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

87
We did the uncertainty analysis for the
prestaged and the portage options, and we also did an
uncertainty analysis with and without accounting for
the air return fans.
MEMBER WALLIS: How do you know that these
guys aren't making it appear expensive because they
don't want to do it?
MR. MEYER: That was taken into
consideration. We were able to get information
independently from manufacturers. We talked to the
staff about their thoughts on these costs, and we
tried to weigh that appropriately.
This is the results of the uncertainty
analysis.
MEMBER WALLIS: There's another thing.
You said it cost you 50,000 to train people to use
this thing?
MR. MEYER: Yes. We originally had a
considerably lower number than that. Those are not
dissimilar from the assumed numbers for developing the
procedures and doing the training that we've seen for
other like fixes.
MEMBER WALLIS: So it's not something that
automatically comes on when needed so there's no
training required?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	MR. MEYER: Well, you need training. You
2	need to develop procedures, and you need to train the
3	staff in how to carry out those procedures in terms of
4	
5	MEMBER WALLIS: So you don't train the
6	homeowner on his emergency diesel generator. It just
7	comes on when required.
8	MR. MEYER: No. No, it's a manual start.
9	MEMBER WALLIS: Manual start?
10	MR. MEYER: Even the current activation of
11	the igniters is manual. It's from the control room,
12	but it's a manual operation.
13	For the prestage, the differences here is
14	that it would be manual, but it would be a local start
15	at the site of the prestage diesel.
16	MEMBER WALLIS: Someone has to go to it
17	and pull a switch?
18	MR. MEYER: And, again, these are
19	assumptions that we made. An individual utility could
20	design it differently, but we had to establish a basis
21	for the cost, and this was another way to keep the
22	cost from being excessive. To have it powered from
23	the control room would be an additional cost that we
24	felt was not necessary for this application.
25	Well, here we see the results of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	uncertainty analysis, and it shows the five percent,
2	the mean, and the 95 percent values, and I think it's
3	pretty much self-explanatory as to what that is.
4	For the
5	ACTING CHAIRMAN KRESS: Now, why isn't
6	I see. These are the same mean and the low and high
7	that you had on the previous chart, the ones on the
8	graph. They're the same ones.
9	MR. MEYER: Yes. Yeah, well, the
10	differences between the number here and the number of
11	the graph
12	ACTING CHAIRMAN KRESS: Yeah. Because,
13	for example, looking at the 95 percentile on this one,
14	there's 375, and on this one you have 460.
15	MR. MEYER: Yeah, the reason for the
16	difference is that this is for the dual unit sites,
17	Catawba, Cook, and McGuire.
18	ACTING CHAIRMAN KRESS: The previous chart
19	was sort of an average for
20	MR. MEYER: Yes, it's an average. It's a
21	weighted average for all of the
22	ACTING CHAIRMAN KRESS: I see.
23	MR. MEYER: for all of the ice
24	condensers.
25	MEMBER WALLIS: I'm really impressed with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Í	90
1	the accuracy with which you predicated your mean.
2	(Laughter.)
3	MR. MEYER: You're impressed with the
4	accuracy on
5	MEMBER WALLIS: Accuracy with which you
6	predicated the mean.
7	ACTING CHAIRMAN KRESS: He's talking
8	significant figures.
9	MR. MEYER: Oh, yeah.
10	PARTICIPANT: Go to the next slide.
11	MR. MEYER: No, you can disregard those
12	significant figures.
13	ACTING CHAIRMAN KRESS: But this just
14	reflects your triangle really.
15	MR. MEYER: Yes.
16	ACTING CHAIRMAN KRESS: Which the low was
17	this bottom one, and the high was this top one, and
18	then the mean point was in the middle.
19	MEMBER WALLIS: It looks like a Gaussian.
20	ACTING CHAIRMAN KRESS: Well, it does, but
21	it just reflects a triangular distribution of the
22	input.
23	MR. MEYER: And finally we have been
24	talking about this this afternoon. This summarizes
25	the implications of the back-up power system

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

91 1 reliability on the cost-benefit assessment, and as was 2 said earlier, the benefit assessment assumes that the systems are 100 percent reliable, that is, they're 3 4 perfect systems. 5 And obviously no system has 100 percent reliability. 6 functional So the impact of this 7 assumption on the cost-benefit assessment was 8 addressed and determined to be insignificant. Why is 9 that the case? Well, our studies indicate that we feel 10 that functional reliabilities can be achieved greater 11 12 than 95 percent for both the portable and the 13 prestaged --14 MEMBER WALLIS: That includes the operator 15 action? 16 MR. MEYER: Yes. 17 MEMBER WALLIS: And reliability? That includes the operator 18 MR. MEYER: 19 actions. And if that's the case, then it's not going 20 to have much impact on cost-benefit. 21 That doesn't mean it's not important in 22 other contexts, but for our purposes here, we've determined that it won't have an impact on the cost-23 24 benefit determination. 25 The fourth bullet points out that a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	similar back-up system has recently been evaluated
2	with the paper referenced in the footnote to have a
3	functional reliability in the range of 97 to 98
4	percent, and that's for a portable, gas powered back-
5	up system.
б	So our conclusion regarding reliability is
7	that the back-up power system functional reliabilities
8	have a negligible impact on the cost-benefit
9	assessment.
10	And also, variations in the functional
11	reliabilities between systems also have a negligible
12	impact.
13	MR. ROSENTHAL: From the presentation,
14	what I'd like you to come away with the idea is that
15	a back-up fix would be two, three, 400,000, and I
16	don't know that we know it necessarily would be
17	better. And two, three or 400,000, although it's a
18	lot of money in our normal lives, really is not a big
19	difference within the scope of the study.
20	But it does point out that if at one time
21	we were thinking of a really cheap fix because you
22	could get something off the shelf, by the time we
23	realized that you had to carry it in and have some
24	sort of procedures and put in breakers that interface
25	with safety related equipment and whatnot, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

93 1 realized that the costs would be hundreds of 2 thousands, you know, two, three, 400,000 and not 2,000, 3,000 and 4,000. 3 4 I think that that's a lesson learned from 5 this. thing is that we are not 6 The next 7 designing a system. You have to do a conceptual 8 design and go to some catalogues and look up real costs of real things in order to do some scoping 9 analysis for the purposes of coming up for the cost 10 11 compared to some benefits, but this is not the design 12 that a licensee would do. it's very likely that we 13 And would 14 recommend that NRR -- we would finish our work and 15 recommend that NRR take the next step and back the 16 process. 17 And in today's time, it's very likely that as the agency moved forward, it would probably go to 18 some sort of functional requirements. 19 So we're not 20 trying to pick here would it be portable or fixed or 21 welded in or whatnot, but rather, we would have some 22 sort of -- what we envision is that the agency would 23 come out with some sort of functional requirement, and 24 the implementation of that would be of the order of 25 the kinds of things that you've been presented today,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	but not specifically this fix.
2	So we don't have to worry about the
3	gruesome details.
4	Dr. Kress, we're about to take a major
5	shift now into phenomenology.
6	ACTING CHAIRMAN KRESS: Yeah, I think
7	maybe this might be a good time for a break. What
8	does everybody think? Why don't we take just a ten
9	minute break since we're running behind and come back
10	at 3:30?
11	MEMBER WALLIS: Could you tell us why we
12	need to know any more?
13	ACTING CHAIRMAN KRESS: Oh, well, there's
14	the question of
15	ACTING CHAIRMAN KRESS: We are now talking
16	about the business of hydrogen control and
17	calculations. I wonder if I could ask the presenter
18	to maybe save us a little more time and cover this
19	pretty briefly, if you could. I don't know what that
20	means.
21	MR. NOTAFRANCESCO: Yes, we'll try to do
22	that, but I just wanted to I took a slide out of my
23	presentation to give some background before we go into
24	MELCOR.
25	ACTING CHAIRMAN KRESS: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	MR. NOTAFRANCESCO: The thrust of why we
2	are doing this is recent positioning by several
3	licensees that, if we provide back-up power to
4	igniters, it should also go to the air return fans.
5	So we did some MELCOR analysis, and when I get up, I
6	have done other evaluations, but I am trying to give
7	you a snapshot that we believe current evaluations
8	reveal that igniters alone are sufficient and there is
9	a downside of air return fans.
10	They would tend to melt out the ice chest
11	quicker. Plus, if one includes the air return fans in
12	the cost/benefit, the cost goes up significantly, at
13	least doubles. So that is why this is pivotal in the
14	ice condenser area.
15	ACTING CHAIRMAN KRESS: Let me ask you a
16	simple question maybe one way or the other. If you
17	didn't have igniters available, would it be important
18	then to have air return fans?
19	MR. NOTAFRANCESCO: If I didn't have
20	igniters? Air return fans alone?
21	ACTING CHAIRMAN KRESS: Yes. I mean, what
22	you do, would you still mix up the hydrogen and air
23	with just natural convection processes? It is going
24	to reach detonation then. Mixed, it is going to reach
25	detonation composition, but the question is, would it

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	be early in one spot due to stratification and likely
2	be in a location where the shockwave would tell
3	containment or would it be all mixed up and occur
4	randomly in locations whether or not the igniters or
5	it might be random igniters?
6	The question is, would it be important to
7	have air return fans even if you didn't have igniters
8	or if the igniters failed for some reason?
9	MR. NOTAFRANCESCO: Well, anything is
10	better than nothing.
11	ACTING CHAIRMAN KRESS: I guess it is
12	really a non-question.
13	MR. NOTAFRANCESCO: Anything is better
14	than nothing.
15	ACTING CHAIRMAN KRESS: Yes.
16	MR. NOTAFRANCESCO: Maybe the air return
17	fans could induce some random ignition, too. I just
18	think we want to take the position of optimizing the
19	configuration the best
20	ACTING CHAIRMAN KRESS: Yes.
21	MR. NOTAFRANCESCO: have a potential
22	backfit. That is what matters.
23	MR. TILLS: My name is Jack Tills. I
24	served as a contractor on this project to Sandia
25	Laboratories for the purpose of doing the containment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	portion of the analysis.
2	Most of my time is spent as a consultant
3	to the NRC, basically, for the purposes of looking at
4	codes like lump parameter CONTAIN code, and that has
5	been for assessment purposes primarily. That means
6	that most of my time is spent in looking at
7	experiments versus lump parameter results, both
8	thermal-hydraulics and the hydrogen.
9	I have also sat on the boards of
10	international writing groups where people that have
11	represented the CFD codes have been present, and so
12	have some understanding of where the CFD people come
13	in line. So I have an understanding at least of some
14	of the issues.
15	I first wanted to talk a little bit,
16	before we get too far into this, about expectations.
17	The intent of these calculations were primarily
18	scoping in nature. We weren't reopening issues of
19	severe accident to look at absolute certainties or
20	accuracies of hydrogen distribution within the ice
21	condenser-type deal.
22	We had a number of options to look at:
23	power to igniters, power to igniters and fans, or
24	nothing. We looked in a comparative sense, a relative
25	sense, to what that means in terms of the response of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	the containment.
2	We have done experimental analysis or
3	experimental assessment of lump parameter codes for
4	ice condensers, but it is mainly for DBA, in other
5	words, strong sources for short periods of time, and
6	not for hydrogen. The data that has been gathered for
7	ice condensers reflect that. There is not any
8	concentration data in ice condensers that have been
9	measured to allow you to do an accurate validation.
10	So I just wanted to mention that because
11	I know there was a concern of the Committee about lump
12	parameter. I will discuss some of those issues, but
13	it is going to be more from the scoping analysis as
14	opposed to being a detailed analysis.
15	However, we did follow all of what we
16	consider reasonable guidelines for applying the lump
17	parameter analysis to this ice condenser.
18	MEMBER WALLIS: Does this change any of
19	the conclusions we heard earlier? We were given some
20	estimates of benefits, and so on. How does your work
21	fit in with that?
22	MR. TILLS: Well, you notice that in one
23	of the slides at the beginning the assumption was that
24	the hydrogen control was 100 percent effective. Once
25	that statement is made, anything that I do, basically,

(202) 234-4433 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-443 (202) 234-4443 (202) 234-2444 (202)

99 1 doesn't have any bearing unless it indicates or shows 2 there is a major difference between that that 3 statement and what actually could occur type deal. So 4 that would be one point. 5 The other point is that the discussion in terms of whether or not you are going to apply power 6 7 to igniters or fans, if there was a major benefit phenomenologically in terms of concentrations in the 8 9 containment that might lead you to expect a worse 10 condition, then that may, you know, it has а 11 possibility of overriding the decision that would be 12 made. There was a number of issues that were 13 14 addressed. The first one I have already really talked 15 about a little bit about the --ACTING CHAIRMAN KRESS: You didn't use the 16 17 MELCOR hydrogen generation capability? You just used this containment? 18 19 MR. TILLS: No. 20 ACTING CHAIRMAN KRESS: Is that what 21 that --22 MR. TILLS: No. 23 ACTING CHAIRMAN KRESS: That is not what 24 that first bullet means?

MR. TILLS: No, the first bullet means

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1 that the multicell analysis was done using the MELCOR 2 code for the containment. Now the MELCOR code was 3 also used for the primary system to generate the 4 hydrogen sources.

5 One of the things that is different a little bit in this analysis than previously had been 6 7 done in, say, CONTAIN analyses or other analyses that were done earlier was the disconnect that appeared 8 9 when you had SCDAP RELAP people providing input that 10 may have not been sequenced correctly for the event that you are looking at and putting it into a code 11 12 like CONTAIN, for instance.

In this case we had similar --

14ACTING CHAIRMAN KRESS:This is a15completely integrated analysis.

-- integrated-type deal. 16 MR. TILLS: 17 Although we used the sources that were generated by the MELCOR code in a separate fashion, in other words, 18 19 we decoupled it for the purposes of doing this 20 analysis because we wanted to look at a large number 21 of uncertainties and do a similar uncertainty study of 22 the containment, and the MELCOR code calculations 23 take, you know, two to three days to complete a 24 calculation on a workstation. These containment 25 calculations take about an hour to do. So that is how

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

13

	101
1	it was done.
2	But the sequencing of the sources was
3	important. MELCOR was used in the primary side to
4	generate uncertainties in the sources. So one of the
5	issues was to select representative sequences of
6	injections that were either high or low in terms of
7	what the injection total was to the containment as
8	well as the actual signature that would drive the
9	worse condition in the containment.
10	The other bullet, the third bullet here,
11	that talks about relative comparisons, that is what I
12	just mentioned in terms of how the scoping analysis
13	was done to look at three different possibilities of
14	either no power or power to various control areas.
15	The final bullet was an uncertainty
16	analysis that was done primarily just for the
17	containment. This was really for the burn parameters
18	associated with deflagrations, propagation,
19	initiations, and an inertian. Then there was some
20	uncertainty or sensitivity analysis that was done on
21	the modeling, the containment, what paths might be
22	open and what might be closed.
23	I will go quite quickly through the next
24	three slides here. This is just a sketch of what the
25	ice condenser looks like as it nodalized. There was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	102
1	a total of 26 cells nodalized in the containment.
2	Most of the time we follow the general rule, which is
3	you use a lump parameter or you use one node per room
4	and you try to minimize the number of nodes that you
5	might have in open regions that might have
6	circulation.
7	ACTING CHAIRMAN KRESS: And you used
8	Sequoyah for
9	MR. TILLS: This is Sequoyah.
10	ACTING CHAIRMAN KRESS: You figured it
11	would be representative of the other ice condensers?
12	MR. TILLS: Right.
13	ACTING CHAIRMAN KRESS: There's not that
14	much difference in their margin
15	MR. TILLS: No, there is not. The lower
16	part of a containment, where there was sources
17	injected this slide just kind of indicates that we
18	did take knowledge of where the sources were going to
19	be injected in the containment, because this is not
20	going to be a symmetric-type source that is going to
21	feed the ice chest. It is very non-symmetric because
22	of the offset of the pumps and the hot legs, and so
23	forth.
24	The next slide just shows the ice chest as
25	it is nodalized. Because of the asymmetric sources,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

to try to capture some of that in the analysis, four asymmetric cells were included for the ice bed. There 3 was not any vertical stratification for those ice beds 4 used.

The reason is a number of reasons. One is 5 that this is an accident where there are sources 6 7 continually going into the ice chest throughout the scenario. This is a pump seal failure event. 8 So we still have sizable sources going into the ice chest 9 which are, as I mentioned, asymmetric. 10

11 In addition, there is a substantial amount 12 of ice melt during this period of time. Somewhere between 40 and 60 percent ice melt, depending on 13 14 whether or not you have fans on or not, occurs. That 15 amount of ice melt with that amount of water falling down creates its own turbulence. 16

Second of all or third of all, I should 17 in an ice chest environment it is almost 18 say, 19 impossible to get a situation of no mixing because the 20 gases come in; they rise just because of the momentum 21 of carrying them in; they cool off; they're stripped 22 of steam; they become heavier. As they become 23 heavier, they circulate back down and then are 24 disturbed again by the source that is coming up 25 through them.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

So there's a number of reasons for that. The fourth reason would be relationship to if you are doing burns in an ice chest. Most or practically all our correlations are based on single-compartment or single-room propagation correlations. There is no correlations that have been developed to put in this code, the MELCOR code, to treat a series of cells that are linked together. So from consistency reasons, that seems to be appropriate to nodalize like this.

10 Now to address other situations, though, 11 we did do sensitivities. We did stacked cells with no 12 mixing. We did look at nodalizing this configuration with stacked cells, so that there was a number of 13 14 cells in the ice condenser and our best estimate as to 15 We did not get, we what the circulation would be. could not maintain any sizable density profile or 16 concentration profile in the ice chest. So that just 17 gives you a little background of what the nodalization 18 19 is, used and picked.

20 slide The next qoes to the on uncertainties of the source terms that were put in 21 22 I mentioned that we picked representative there. source terms that came out of the MELCOR RCS analysis. 23 24 What is shown up here in the dark lines 25 are the three representative curves that we picked.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

Now the failure of the containment, actually the early
failure, comes anywhere between six to seven hours.
Now this is either by a hot leg or by a vessel head
failure.

5 We are only going to do the analysis -- I 6 won't even show you the analysis today of just the 7 early failure because that is what they were mostly 8 concerned with, was early failure. So this is an 9 analysis up to and including RCS pressure boundary 10 failure, either by a hot leg or a vessel breach.

11 The variation in here is about 15 or 16 12 plus or minus percent with total injection hydrogen. 13 The average is about 450 kilograms. So it ranges plus 14 or minus 16 percent.

15 The curve in the dark line is what I used as a reference injection because it gave the highest 16 rate of injection of hydrogen at the time when the 17 actual pump seals were considered to fail. 18 So you 19 will see that as a reference case. But the other 20 cases, I will show one case which is the low case, to 21 give you an idea of what the variation might be and 22 the sensitivity.

The next table just outlines the important parameters of those three runs, both in terms of when the pressure, the RCS failed, either by lowering

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

106
another hot leg and then how much relative hydrogen
was generated in-core and where that injection came
from in terms of the containment. You see that most
all of the injection comes out through the pump seals
in these three cases.
That was the case for, I think, all the
cases. Of the 40 runs that were made by Sandia, and
this was 40 runs made to do a Latin Hypercube
analysis, all of the failures were either hot leg or
lower head failure.
The next slide gives you a little bit of
The next slide gives you a little bit of a picture of what those sources look like. What is
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when the seals start to deteriorate and fail and then drop
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when the seals start to deteriorate and fail and then drop off after that period of time.
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when the seals start to deteriorate and fail and then drop off after that period of time. So the critical point of time to do the
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when the seals start to deteriorate and fail and then drop off after that period of time. So the critical point of time to do the analysis here is that period of time when you are
The next slide gives you a little bit of a picture of what those sources look like. What is shown here is a rate profile of hydrogen that comes into the containment through the pump seals. You can see that the rates are a few tenths of a percent when the seals start to deteriorate and fail and then drop off after that period of time. So the critical point of time to do the analysis here is that period of time when you are between three-and-a-half and four hours for this

a fairly small spike increase in hydrogen.

It just shows the default ignition levels that were

used, the propagation levels that were used, as the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

The next slide is just for information.

(202) 234-4433

	107
1	default in the MELCOR code. These were then varied
2	later, and then uncertainties, you started to see what
3	sort of nonlinear effects would be picked up in the
4	uncertainty study.
5	The igniter locations are shown based on
6	general locations. You will notice that there are
7	igniters practically everywhere in the containment
8	except in the lower plenum of the ice chest and in the
9	ice chest proper.
10	ACTING CHAIRMAN KRESS: Now when you do
11	such an analysis like this, you look to see where
12	these ignition limits are reached first and then you
13	say that's where the ignition starts?
14	MR. TILLS: Yes, and so the code, I mean
15	the code doesn't predict these. The code just uses
16	them as its input. So it's input based on
17	experiments
18	ACTING CHAIRMAN KRESS: Yes, these limits
19	are just input?
20	MR. TILLS: That's right.
21	ACTING CHAIRMAN KRESS: But the code
22	calculates?
23	MR. TILLS: They do. That's right.
24	ACTING CHAIRMAN KRESS: Where the limits
25	are reached, then that's where the ignition starts.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	MR. TILLS: That's right, it burns.
2	That's right, and then it looks at adjoining cells to
3	see what the condition is there. If the condition is
4	right, it propagates
5	ACTING CHAIRMAN KRESS: It propagates
6	MR. TILLS: based on an algorithm that
7	has been checked with experiments.
8	To give you just a baseline of what we are
9	looking at in terms of pressure, if there is no power
10	to the igniters in a station blackout, what is
11	calculated here is for that reference case of Run No.
12	21, which was that high-injection case. What you are
13	looking at is a pressure profile where at the time of
14	vessel breach we assume that we can have deflagration,
15	based on these limits.
16	So at the time, basically, the code was
17	precluded from doing any burn, and we accumulated
18	hydrogen as it would mix it and turn it around in the
19	containment. Then at the time of vessel breach, when
20	we had the hot material coming out, we assumed that we
21	had ignition right there.
22	ACTING CHAIRMAN KRESS: This is like the
23	case where you have igniters?
24	MR. TILLS: No igniters. If you didn't do
25	anything, this is the best estimate of what would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	happen.
2	ACTING CHAIRMAN KRESS: This 10 percent
3	containment probability failure, that is the fragility
4	curve?
5	MR. TILLS: That's right.
6	ACTING CHAIRMAN KRESS: That's the 10
7	percent formula?
8	MR. TILLS: Right, and actually the
9	fragility curve that we looked at for seven
10	atmospheres would almost be a 95 percent failure. So,
11	I mean, it is a very steep curve. I just show it as
12	10 percent, but really here we are looking at about a
13	95 percent failure rate.
14	MEMBER WALLIS: I'm surprised it is so
15	steep, but I guess it is.
16	MR. ROSENTHAL: Jack, we brought up this
17	static or dynamic. Do you just want to flip back to
18	the slide to answer Professor Wallis' question?
19	We are looking at a hydrogen burn on a
20	scale of hours. So, in fact, that is a quasi-static.
21	ACTING CHAIRMAN KRESS: I see.
22	MR. TILLS: One of the things in doing
23	this comparative analysis is to look at different
24	regions in the containment where we predict the
25	hydrogen concentration.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 This is just showing you a comparative 2 prediction in the upper containment. Now this is a critical area where you want to burn out hydrogen 3 4 before you get into the upper containment. 5 The top curve in red is showing you that that curve is in the neighborhood of 14 percent, which 6 7 is a bad news type of concentration. But what is slide 8 interesting in this is the relative 9 insensitivity of two different options of being power to the igniters or power to the igniters and fans. 10 11 The fans bring you up a little bit quicker, but as 12 long as the igniters are operating, there isn't much sensitivity in the upper containment. Now that gets 13 14 a little bit more dicey as you move into other regions 15 that are more difficult to calculate. 16 This next slide is showing you concentrations in the ice condenser. 17 You remember there was this large injection right at the time of 18 19 pump seal, and that is what you are seeing here, is a 20 fairly large increase in the concentration of hydrogen 21 as you are in the ice condenser. 22 This is without any power to the igniter. 23 So this is, again, a baseline type of a calculation, 24 so the worse condition occurring just after you have 25 that pump seal break.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

110

	111
1	ACTING CHAIRMAN KRESS: Now you've deduced
2	that, although these are very high concentrations,
3	that this did not get into a detonable configuration?
4	MR. TILLS: Well, the case without power
5	on that previous slide here
6	ACTING CHAIRMAN KRESS: This is without
7	power, too? Okay.
8	MR. TILLS: Without power, you are again
9	in a detonable-type situation in most cases.
10	Although I think Allen is going to talk a
11	little bit about combustion, obviously, you know,
12	there's a lot of uncertainties with detonation and
13	transitions, and the ice condenser is a pretty
14	complicated deal. There is some information that
15	Allen is going to share with you on that, but to say
16	that we are in a detonable deal is also very
17	uncertain.
18	The next curve, figure, here is just
19	showing you what happens in the case when you just
20	have power to igniters. Now the propagation limit,
21	you know, there's no igniters in the ice chest. What
22	you are seeing is the maximum concentration of
23	hydrogen getting up to almost 9 percent. That 9
24	percent is the propagation limit for propagating down
25	from the upper plenum region when you have ignited up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	there and you burn down.
2	Now we could have done continuous burning,
3	but we decided to just do deflagration-type burning
4	because that would give us a higher spiking in terms
5	of what the hydrogen might get to, rather than
6	continuously starting to burn and letting it burn all
7	the way out.
8	ACTING CHAIRMAN KRESS: What are the
9	different curves?
10	MR. TILLS: The different curves are the
11	different there's four cells in the ice condenser,
12	four asymmetric cells. What you are seeing in the
13	variation is the slight variation in the
14	concentrations as a result of the source asymmetric
15	behavior.
16	ACTING CHAIRMAN KRESS: So what is
17	happening here is you build up to this downward
18	propagation
19	MR. TILLS: Right.
20	ACTING CHAIRMAN KRESS: and that's
21	already ignited?
22	MR. TILLS: That's right, it is already
23	ignited at the top.
24	ACTING CHAIRMAN KRESS: And it burns down,
25	and then you've got to build up the concentration, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	then it burns down
2	MR. TILLS: That's right. That's right.
3	Now you can compare that to another case
4	that was run where power was put to both igniters and
5	fans. In this case the concentration in the ice bed
6	is dropped. The reason is because now, once you have
7	the fans on, the burn behavior in containment is more
8	characterized as being generated or burned out by
9	areas where there are igniters, because now you have
10	put in more oxygen. You have taken the steam
11	concentration down. So most of the burn is going to
12	occur where there is an igniter, as opposed to
13	propagating. So now the concentrations go down. So
14	this is kind of a reasonable thing that you would
15	expect.
16	But the difference between the other one
17	and this one going from 9 percent to 6 percent is
18	totally controlled by the input that you put in the
19	code. The next table just kind of emphasizes that,
20	and it shows the total amount of hydrogen burned in
21	different regions of the containment up to the time of
22	vessel failure.
23	The one thing that is interesting about
24	this, and what was pursued as a result of this type of
25	an analysis, was that there's a large amount of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 hydrogen being burned in the lower compartment. Now 2 most people in the past have questioned how much 3 hydrogen would burn in an area where you have injected 4 a large amount of steam. You have evacuated a portion 5 of it, of oxygen, during the accident. And, also, if you had a burn, you exhausted a number of moles of 6 7 oxygen as a result. So you would starve off any 8 continued operation of the igniters. 9 So we looked at what was really occurring I will talk about that in the next slide or 10 here. 11 two. 12 The slide just shows next you а sensitivity based on those injected variations that we 13 14 received from the hydrogen RCS calculations. Run No. 15 35 was the low injection rate curve on that figure that showed 21 through 40 at --16 17 ACTING CHAIRMAN KRESS: Where you had those three curves? 18 MR. TILLS: 19 That's right, three curves, 20 and this is the low one, which has the lowest 21 injection rate. It was about 400-and-some kilograms. 22 Again, when you first inject, it looks 23 just about like the other one because most of the 24 falloff in the total amount of injection occurred 25 after the initial burst of hydrogen in the containment

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

114

115 1 when the pumps had failed. So you see a very similar 2 behavior. 3 So one of the conclusions out of this is 4 that, basically, the source uncertainty that is 5 generated by the primary code is not propagated in the same fashion in terms of uncertainty in what the 6 7 containment, how the containment responds. Because once you've got the igniters going, you'll burn 8 9 irrespective. The question of how much hydrogen burns 10 11 out, depending on how you model circulation in the ice 12 condenser, was a concern based on what we were seeing in terms of how much was burning out in the lower 13 14 compartments. Now normally, as I mentioned, you would 15 be starved by oxygen in the lower compartments. However, for the ice condenser, there is 16 a fairly well-defined refueling canal or drains that 17 in a station blackout we would normally expect to be 18 19 open, because they are not flooded by sprays. So that 20 path in the previous calculations was open. As a 21 result, there is a growth circulational behavior that 22 occurs during the accident, bringing in oxygen into 23 the lower compartments. 24 To look at the sensitivity of that, we 25 went ahead and shut those paths off. So what you are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	seeing in this table here on slide No. 17 is the
2	comparison again with igniters, power to igniters, and
3	igniters to fans, assuming that there is no
4	circulation that is coming back down from the upper
5	containment through the refueling drains.
6	What happens is that, when you only have
7	the igniters on in this case, it cuts the amount of
8	hydrogen being burned there by almost about half. So
9	it is a very significant amount.
10	You are still getting some burn because,
11	first of all, there was some initial hydrogen or
12	oxygen in there when you started the burn, but also it
13	is very hard to seal these doors on the ice chest. So
14	there is some circulation that is going on because of
15	the dynamic behavior of the doors.
16	Again, these are scoping calculations, but
17	it just kind of gives you
18	MEMBER WALLIS: Does it matter where it is
19	burned?
20	MR. TILLS: Well, one of the concerns was
21	that, if you don't burn in the lower compartment, it
22	shifts where you are going to burn to only two places
23	after that: the ice chest or the upper plenum
24	primarily, where the hydrogen is going to come
25	through.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	As a result of that, you get higher
2	concentrations in the ice chest potentially, because
3	you are feeding it without having the benefit of
4	burning some of that hydrogen before it has gotten
5	into the ice chest.
6	MEMBER WALLIS: But what is the
7	consequence that matters?
8	MR. TILLS: Well, it was primarily just
9	the consequence of being concerned that
10	ACTING CHAIRMAN KRESS: It was a
11	perception if you got a lot higher concentrations you
12	could detonate
13	MR. TILLS: That's right. That's right.
14	MEMBER WALLIS: So you're trying to avoid
15	detonation?
16	MR. TILLS: Right.
17	MEMBER WALLIS: But you are saying here it
18	burns anyway?
19	ACTING CHAIRMAN KRESS: Right.
20	MR. TILLS: The other concern that we had
21	when we were looking at different options like the
22	fans, for instance, was if you provide power to the
23	fans, what are you going to do to the ice melt? You
24	are going to increase the ice melt. Is it going to be
25	significant, enough significant that you may

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	jeopardize later some analysis that would occur for
2	late accident behavior?
3	ACTING CHAIRMAN KRESS: Now you burn less
4	in the ice compartment itself, but more in the lower
5	compartment? Is that where the ice melt comes from,
6	because you are burning more in the lower compartment?
7	MR. TILLS: Well, I mean, both because of
8	the energy, just of the thermal-hydraulic energy of
9	the source of the steam going through there, it is a
10	melting-off-the-ice-type deal. I did not do the
11	partitioning of how much is affected by the burning-
12	type deal, except, as you will see here, that there is
13	a sensitivity
14	ACTING CHAIRMAN KRESS: This just comes
15	right out of the MELCOR calculation is what you're
16	saying?
17	MR. TILLS: That's right. But what is
18	shown here is that there is some sensitivity,
19	obviously, to having the fans on or not having the
20	fans on. Something like about 30 percent more ice is
21	taken out at the time of vessel breach.
22	MEMBER WALLIS: So that would reduce the
23	pressure?
24	MR. TILLS: The pressure is pretty much a
25	no you know, it doesn't matter here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	MEMBER WALLIS: It doesn't matter?
2	MR. TILLS: If the thing is operating as
3	an ice condenser
4	MEMBER WALLIS: It would condense more
5	steam?
6	MR. TILLS: It is condensing more steam
7	and it is melting more out.
8	MEMBER WALLIS: You would think the
9	pressure would go down.
10	MR. TILLS: It does go down, but it is not
11	a significant
12	MEMBER WALLIS: It is not significant?
13	MR. TILLS: It is not significant.
14	The other interesting thing here, as you
15	mentioned, in terms of burn-type deal, the actual
16	injection, just due to the sensitivity of the sources
17	here, gave you almost the same type of uncertainty or
18	sensitivity as whether or not you had the fans on.
19	MEMBER FORD: Could I just ask a question?
20	All the conclusions you have made so far assume that
21	MELCOR is correct within the certainties that you are
22	talking about, the ranges that you are talking about
23	there. We are quite sure that MELCOR is correct
24	against data?
25	MR. TILLS: When you say, "against data,"

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the problem is we don't have data really that would 2 allow one to make a definitive statement on something 3 like concentration on the ice chest of hydrogen. 4 However, in terms of thermal-hydraulics, when we were 5 doing the analysis of CONTAIN, which is basically a sister code of MELCOR in terms of the lump parameter 6 7 containment models, we did analysis of ice melt based 8 on the experiments that were conducted by 9 Westinghouse.

We did them both in short term -- this is during the blowdown -- but we also did, they had a few tests that were done long term, hours, where we did complete meltout of the ice in the ice chest. In both the short term and the late time, we did very good ice melt calculations. We also matched pressures very well.

17 Now the ice melt gives you a pretty general idea of how well you are doing hydraulically 18 19 in terms of taking the ice out. The pressures also 20 give you a pretty good idea of how well you are doing 21 in terms of modeling the mixing that is going on in 22 that compartment-type deal. Because if it would not 23 have mixed, you would get excursions in the pressures 24 typically.

So there is some data. Has MELCOR been

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

121
validated directly with ice, new condenser
experiments? No, not directly. I mean in terms of
this type of detail of concentration.
MEMBER FORD: So it is almost, I was going
to say, "engineering judgment," but that's not true.
You mentioned a few tests.
MR. TILLS: It is better than engineering
judgment, and it is based on thermal-hydraulic
calculations that we have no reason to believe that
there is anything occurring here that would invalidate
completely this for a comparative purpose, scoping-
type purpose.
Obviously, if we were going to do
something more detailed in terms of absolute numbers-
type deal, we would approach this completely
different. There may be additional experiments we
either would want to have conducted or seek out more
detail.
But, again, I just wanted to kind of
mention that upfront in the presentation to just kind
of sensitize you to that, that this is scoping and it
gives you kind of a general idea.
I feel pretty good about the ice melt
calculations. I think most people would, when they
look at what the utilities have done and I haven't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	got those results with me type deal, but this is
2	well in line with what most people think how the ice
3	would melt out.
4	MEMBER FORD: So the best thing you could
5	say is that the trends are correct?
6	MR. TILLS: Yes.
7	MEMBER FORD: But the absolute values may
8	be questionable?
9	MR. TILLS: That's correct.
10	MEMBER FORD: Okay.
11	MR. TILLS: There was some interest to do
12	uncertainties of the containment analysis, and one of
13	the areas, of course, was the parameters that initiate
14	the burns and the propagation. There's a number of
15	ways of approaching the uncertainty.
16	One would be to look at the analysis and
17	try to pick the worse case and the best case in terms
18	of these parameters, but that is almost impossible
19	when you have something this complicated, where you
20	have burns occurring in all different types of
21	compartments and propagation conditions changing. So
22	the only thing that made reasonable sense was to go
23	ahead and do a Monte Carlo calculation where all the
24	parameters where varied randomly, and then you did a
25	statistical analysis. So that was what was done for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	the MELCOR and the containment part of it.
2	In this case, a direct statistical
3	analysis was made, varying the ignition limits, and
4	propagation is shown in terms of low and high. These,
5	again, were just I won't say they were pulled out
6	of the air, but they were just kind of best estimates
7	as to what those variations would be.
8	The main interest here was to see whether
9	or not there were strong nonlinearities that were
10	occurring as you varied these parameters over
11	reasonable ranges. A hundred calculations were run to
12	give a two-sided tolerance band of 95 percent
13	confidence and 95 percent probability.
14	So the results that are shown here look at
15	the two critical regions for early failure. One is
16	the period of time where the pump seal is occurring
17	MEMBER WALLIS: What do you mean by "two-
18	sided"?
19	MR. TILLS: "Two-sided" meaning we were
20	looking at minimum and the maximum
21	MEMBER WALLIS: The minimum and the
22	maximum.
23	MR. TILLS: of the hydrogen
24	concentration, and we were trying to find what that
25	bounce was.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	So the first column gives you that period
2	of time when the pumps are failing, seals, and the
3	last column is just before vessel breach.
4	The biggest uncertainty here, obviously,
5	which we expect, occurs in the ice bed because of its
6	being affected by propagation. So you see about a 5
7	percent variation in hydrogen concentration for a case
8	when you had the igniters on, as a result of varying
9	those parameters.
10	MEMBER WALLIS: Are these percents or
11	percents of
12	MR. TILLS: That is a percent of
13	hydrogen
14	MEMBER WALLIS: by mole?
15	MR. TILLS: by mole.
16	The other thing that you can do, of
17	course, with a sensitivity calculation like this is
18	try to identify what is the dominating parameter.
19	The next slide is just showing you how
20	that was done for these calculations. One has a
21	hundred calculations; you like to draw as much data or
22	as much information out of these calculations. One
23	way of doing it is calculating rank coefficients that
24	look at basically the importance of each of the
25	parameters for a certain criteria that you select. In

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	this case it was the uncertainty range that was being
2	predicted in the previous slide.
3	I don't want to go through this in too
4	much detail except to indicate that, obviously, things
5	that you expected came up fairly strong. Now the rank
б	coefficients mean that they vary between minus 1 and
7	1. As you get higher to 1, that means almost a
8	perfect correlation. As you go lower, the correlation
9	gets worse.
10	For a 95 percent confidence in this being
11	an important parameter, for a hundred runs the rank
12	coefficient would have to be .2. In other words,
13	anything .2 or greater, you begin to see a
14	correlation. Anything lower than .2, you probably
15	don't have a correlation and the information is not of
16	value.
17	So one of the things that is seen here is
18	that there is an importance well, the other thing
19	in terms of the sign of the correlation or the sign of
20	the coefficient, if you are positive, that means that
21	varying that parameter in a positive way has a
22	positive increase in the negative. So you just get
23	kind of a general idea what is dominating the
24	calculation.
25	MEMBER WALLIS: Of course, the important

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

126
thing is this last slide you are getting to that we
can take away as a message?
MR. TILLS: There were conclusions out of
this. The first one, obviously, was from that slide
that showed that, if you don't have any power, you're
in trouble.
The other one was that, whether or not you
have igniters powered or igniters and fans, you also
have an effective control mechanism. So there was no
"gotcha's," and that is what we were kind of looking
for here.
MEMBER WALLIS: So there was no incentive
to insist on having fans running?
MR. TILLS: Fans, that's right.
The only caveat on that is, obviously,
those fans provide you with more uniform burning, as
you would expect. So the burning occurs more where
the igniters are.
There is a more rapid depletion of ice,
and that is kind of indicated here. The hydrogen
source term that we received from the RCS code did not
propagate to give us large uncertainties in the
containment calculations.
Circulation of the upper air through the
refueling drains is a significant issue if it is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

127
considered that there is some uncertainty in that
input. It is our belief that there probably is not
any uncertainty in that input for a station blackout.
The statistical uncertainty analysis indicated that
there is a range of something like 5 percent over this
calculation in the ice condenser, ice bed.
So that, basically, was I think what
MEMBER WALLIS: That is a high number for
hydrogen concentration.
MR. TILLS: It is getting to be a high
number, right. I think it is approaching a high
number.
MEMBER WALLIS: Isn't 14.7 percent already
too high?
MR. TILLS: You know, the question of ice
condenser loading as a result of either burn, rapid
burning, or detonation is something we asked a number
of people to provide input, and most of them declined,
partially because it was a very difficult thing to try
to analyze.
MEMBER WALLIS: You are trying to get
detonation in a foggy, rainy atmosphere.
MR. TILLS: That's right. Allen will talk
a little bit, I think he prepared a little bit, on
what the consensus was when this was looked at in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	early eighties. These results in terms of
2	concentrations are not much different than what those
3	people had to
4	MEMBER WALLIS: Has anyone tried to burn
5	hydrogen in this sort of an atmosphere that you get in
6	the condenser?
7	MR. TILLS: I don't know. Charlie?
8	MR. ADLER: Not precisely this kind of
9	atmosphere, but we tried to initiate combustion of
10	mixtures in a condensing steam environment, where the
11	steam was condensing and it formed nucleation sites,
12	bulk condensation. It is quite difficult to get it
13	started if there are one- and two-micron-sized
14	droplets because they won't evaporate in a flame
15	front, which raises the local steam concentration,
16	which serves to quench.
17	So that is a dampening effect on the
18	flammability of these mixtures, even at the relatively
19	high concentration. That is a big heat sink that is
20	also trying to decelerate any kind of combustion
21	process.
22	MR. TILLS: I think most people don't
23	realize what the conditions are when you try to melt
24	out half of the ice within a few hours. I mean it is
25	a tremendous amount of materials draining down.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	MEMBER WALLIS: You also get a fog, don't
2	you? It is not just rain? You get a fog?
3	MR. ADLER: You would have fog, in
4	addition to the bigger droplets of drippings.
5	MR. NOTAFRANCESCO: Okay. What Jack
6	presented was an updated evaluation to MELCOR. The
7	thrust of my presentation is to go back possibly over
8	the past 20 years and see how air return fans fit in
9	this type of issue, whether it was required or is this
10	a recent event.
11	This one we have seen already. It is the
12	background.
13	What I wanted to bring up was some
14	perspectives. We are dealing with low-event
15	frequencies, and we are trying to look at a cost-
16	effective configuration. So we are trying to look at
17	performance and cost. Therefore, we are within the
18	framework of a best estimate approach. We are using
19	best engineering judgment and reasonable assurance as
20	standards.
21	The ice condenser design attributes, the
22	air return fans are part of the original design of the
23	plant. The intent is to move upper compartment air to
24	the lower compartment. There are containment sprays
25	in the upper compartment, and the ice chest

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	MEMBER WALLIS: So the purpose of these
2	fans was to make the ice condensers more effective by
3	circulating the environment through them or something?
4	MR. NOTAFRANCESCO: Correct. Promote
5	condensation and DBA issues related to the
6	MEMBER WALLIS: Which is to reduce the
7	pressure?
8	MR. NOTAFRANCESCO: Correct, and move some
9	hydrogen due to DBA hydrogen control which is
10	MEMBER WALLIS: It is really the steam
11	control that they are for, isn't it? The original
12	basis was
13	MR. NOTAFRANCESCO: That's right.
14	Here's an ice chest, just to give some
15	MEMBER WALLIS: Don't these ice arrays
16	evolve with time?
17	MR. NOTAFRANCESCO: They do.
18	MR. TILLS: They change their geometry in
19	that they're not just nice ice cubes for years?
20	MR. TILLS: They are biscuits with flakes
21	of ice in it.
22	MEMBER WALLIS: And all kinds of stuff?
23	MR. TILLS: Yes, it is a very difficult
24	thing to characterize. That is why Westinghouse ran
25	experiments that were essentially full-scale

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

experiments with dimensional, flowing through the ice,
to get an idea of the heat transfer coefficients, and
so forth.
MR. NOTAFRANCESCO: Okay, the cross-
section of an ice condenser. Slide 6, again, post-TMI
requirements in which the ice condensers were
retrofitted with AC-powered igniters had to deal with
75 percent metal-water reaction for postulated
degraded core accidents.
There are, as discussed, separate igniter
units except in the ice chest and lower plenum,
igniters to burn lean mixtures, maintain containment
integrity, and TMI sequences that were analyzed
assumed air return fans and containment sprays
available.
In my review of the past history, I looked
at some post-TMI assessments, staff SERs, treatment of
the igniters and their return fans and IPE. I looked
at relevant experiments, and we did this recent plant
analysis with MELCOR.
MEMBER WALLIS: Now this SBO frequency is
dependent on the reliability of your diesels, isn't
it?
MR. NOTAFRANCESCO: Right.
MEMBER WALLIS: Wouldn't it be possible to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	spend another \$100,000 on diesel reliability and
2	reduce that number?
3	ACTING CHAIRMAN KRESS: Some of them are
4	already at 99 percent.
5	MEMBER WALLIS: Some are at 99?
6	ACTING CHAIRMAN KRESS: From 95 to 99,
7	depending on the plant.
8	MEMBER WALLIS: It will make a difference
9	if you go from 95 to 99.
10	MR. ROSENTHAL: Pat Baranowsky did a five-
11	year study of diesel reliability at real plants. He
12	found that these were the reliabilities you have, .96.
13	What he found was that those diesels that were
14	promised to be .95 were about .96 and those diesels
15	that were promised to be about .975 were also .96.
16	(Laughter.)
17	He was at AOD at the time. That study was
18	subsequently redone about five years later because he
19	had more data; he was facing updates. He found that
20	the reliability was .96 again for the fleet of
21	diesels.
22	It is really hard to make a .96 diesel
23	into .99 diesel when it is the same
24	MEMBER WALLIS: Well, it is hard to test
25	it up to .99. In fact, it is hard to get a failure if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	it is .99.
2	MR. ROSENTHAL: Well, he had reasonably
3	low data density because what he was trying to do was
4	look for real on-demand failures where in the middle
5	of the night some bus went dead for some reason and he
6	had a legitimate, honest load. Then he added in the
7	data from normal starts.
8	But my point is that you are not changing
9	the essential design. So you essentially have a .96
10	diesel.
11	MEMBER WALLIS: But you're just working
12	with that little bit of percent where it doesn't work;
13	you're trying to alleviate. If you know why it
14	doesn't work, maybe you could improve that more than
15	doing this kind of stuff.
16	MR. NOTAFRANCESCO: Remember these are low
17	frequencies when you add them all up, 10 to the minus
18	5.
19	Okay, slide 6, I just want to quickly go
20	over the combustion behavior aspects, the different
21	combustion modes. When I talk about slow speed
22	combustion, I talk about deflagrations and diffusion
23	flames; when I talk about fast speed, I talk about
24	flame acceleration and DDT. I just give a comparison
25	of the flame fronts of a couple of meters per second

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	to a couple of thousand meters.
2	One of the post-TMI documents I drew upon
3	was the McGuire hearings which took place in February-
4	March of 1981 for about four weeks, in which the ice
5	condenser was discussed in quite detail. There were
6	notably experts that Duke provided on their team.
7	These guys Bernard Lewis and Bela Karlovitz are quite
8	famous within their field. So I try to pick some key
9	insights from the transcript.
10	Their best guess or their best judgment is
11	that the type of burning that would take place in the
12	ice condenser is a continuous diffusion flame at the
13	top of the ice condenser. We are talking about
14	standing, stable flames.
15	MEMBER WALLIS: You've really got a flame
16	inhibitor in the form of all this ice and fog and
17	stuff in the chest.
18	MR. NOTAFRANCESCO: Well, but as the
19	hydrogen exits the top of
20	MEMBER WALLIS: Well, when it comes out
21	MR. NOTAFRANCESCO: Some of the other
22	points I am trying to bring here is obviously flame
23	acceleration and DDT were one of the top of the
24	issues. The experts claimed that the geometry and
25	flow conditions inside the ice condenser are not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

135
conducive to producing a transition to detonation.
Somebody even asked, even without air
return fans nor containment sprays, one of the experts
said, then the hydrogen stream emerging from the ice
condenser will mix slower with the air under the dome
and will be ignited and will burn as a slow-burning
diffusion flame.
Again, in another place having to do with
flame acceleration, some have a strong sideways
confinement in which one needs to get a DDT, and any
expansion that takes place during a deflagration phase
of the propagation will hold back the transition to
detonation.
So these key insights were articulated at
the time, and I think it is quite germane on how we
are carrying it today.
Another aspect is the IPE treatment. Back
in the CPI Program, which was the Containment
Performance Improvement Program, a generic letter went
out, and it was evaluation of interruption of power to

igniters. Again, no air return fans were mentioned.

I surveyed some of the licensees' evaluation in

response to the generic letter or supplement; the

licensee comes back and said there's a small cost

NEAL R. GROSS

Again, there's no identification by the

benefit.

(202) 234-4433

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	licensees that air return fans are necessary.
2	Moreover, some discussion on some of the licensing
3	says, well, we will consider powering some igniters as
4	part of the accident management program.
5	I have looked at some IPE event trees.
6	Again, continuous operation of igniters seemed to be
7	sufficient. It wasn't a necessary linkage between the
8	two systems.
9	The purpose of this slide was to give an
10	overview of the data that has taken place over 20
11	years, since 1981, in which the experts gave their
12	insights. None of the experiments have exposed any
13	disagreement with those judgments.
14	As you know, RES has been an active
15	participant in hydrogen behavior programs. During the
16	eighties the focus has been on looking and pretty much
17	evaluating the efficacy of igniters and pretty much it
18	focused on slow speed combustion, which that is the
19	intent of igniters.
20	During the nineties the NRC participated
21	in a number of flame acceleration experiments. I have
22	given you a reference for that also.
23	One of the tests we discussed earlier has
24	to do with ignition in a condensing mixture in which
25	there's like 20 percent hydrogen, but it is steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

137 1 inert. The sprays are on. There's no violent 2 detonation or anything. It is a deflagration type of 3 burning. 4 So I am just saying a preponderance of the 5 evidence -- well, I've got the summary here. Α preponderance of the evidence demonstrates that 6 7 igniters reliably initiate combustion at lean mixtures, exhibit low flame speeds, and the testing 8 does confirm some of the tests were done as continuous 9 injection, and diffusion flames did exist and were 10 11 observed. 12 There's opportunity for flame no acceleration in the covered regions in the ice 13 14 condenser. There is a smooth transition in the steam-15 condensing environment, and besides burning locally and efficiently, igniters induce bulk circulation 16 currents which promotes mixing. 17 This just summarized the MELCOR. 18 MEMBER WALLIS: Now this bulk circulation 19 is modeled successfully in MELCOR, you think? 20 21 MR. NOTAFRANCESCO: I think we said bulk 22 circulation patterns were --23 MR. TILLS: Yes, bulk circulation patterns 24 are modeled well. 25 MEMBER WALLIS: Not mixing with any

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

given --

1

138

MR. TILLS: But not within a given volume, 2 3 where you would expect, either by using your own 4 judgment or because of the slow injection sources, 5 that there would be pockets of those secondary circulation areas. 6 7 MR. NOTAFRANCESCO: Again, the post-TMI requirements had a 75 percent metal-water reaction as 8 9 the upper limit. The latest MELCOR sequences pretty 10 much range between 50 and 60 percent metal-water 11 reaction. ice 12 The overall conclusion: Core condenses during populated SBO sequence. 13 Back-up 14 power igniter system alone is sufficient. to 15 Collectively, past findings on relevant combustion testing provide an adequate basis. Again, we provide 16 17 the downside of accelerating the -- utilizing the air return fans accelerates ice meltout which, delaying 18 19 ice bed, could extend fission product scrubbing and 20 containment integrity. 21 So the bottom line is, looking over an 22 overview and the preponderance of the evidence, we 23 believe it is sufficient just to back up power to

25 inclusion of air return fans.

igniters in an ice condenser plant, not promote the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

	139
1	MEMBER WALLIS: So your conclusion is you
2	don't need to power the fans?
3	MR. NOTAFRANCESCO: Yes.
4	MEMBER WALLIS: You don't need to.
5	There's no payoff.
6	MR. NOTAFRANCESCO: Yes, that's right.
7	MEMBER WALLIS: But you still want to
8	insist on diesels, mixture diesels, to power the
9	igniters in the ice condenser plants?
10	MR. ROSENTHAL: Now we are into the final
11	part of the discussion, which to summarize and get
12	some advice from you.
13	MEMBER WALLIS: It didn't seem to me that
14	you made a very good case for that.
15	MR. ROSENTHAL: Excuse me?
16	MEMBER WALLIS: It didn't seem to me you
17	made a very convincing case for insisting on these
18	diesels just for the igniters. You could look at the
19	cost/benefit numbers. You have to be very risk-averse
20	or something in order to say you must do it.
21	MR. NOTAFRANCESCO: Do you want to go back
22	to this one?
23	MEMBER WALLIS: Yes.
24	MR. ROSENTHAL: Sure. Okay. What you see
25	hashed in are those situations in which you can make

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	a cost/benefit argument. When the cost/benefit ratio
2	is less than and remember the costs are about
3	\$200,000 to \$300,000 to \$400,000. That is your
4	measure. When the cost/benefit ratio is less than .1
5	or greater than 10, it is a pretty easy decision.
6	MEMBER WALLIS: Well, I think you would
7	have trouble making a case for the 320 and 310s there.
8	So you would probably wipe out those ones.
9	MR. ROSENTHAL: What I'm saying is when
10	there's 320 on a mean value and 320 on the cost, so
11	you have a cost/benefit ratio of 1, that's the very
12	time that you ought to making your risk-informed
13	rather than a risk-based decision.
14	The cost/benefit analysis itself is
15	absolutely risk-based. So, yes, one of the questions
16	is, how risk-averse are you? How much do you believe
17	your understanding of the phenomenology? Do you
18	believe that it is adequate to suppress the initiating
19	frequency by making plant mods or do you have to have
20	some balance on mitigation?
21	These are weak containments. You know
22	that you have a reasonably high failure probability
23	due to hydrogen if you get into this SBO sequence. So
24	our judgment was and, yes, we are risk-averse
25	but our judgment was that there were more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

141 1 considerations that said it was better to err on the 2 side of requiring the igniters to be powered than not. Admittedly, that is a judgment call, based on these 3 4 other considerations. 5 MEMBER WALLIS: Look at Duke, for Duke is going to install a flood wall, 6 instance. 7 right? So the numbers you are looking at, and it is the second one up from the bottom --8 9 MR. ROSENTHAL: Thirty-two. 10 MEMBER WALLIS: -- or even the bottom one, 11 it seems to me hard to justify that because your 12 numbers which are shaded there are taking some extreme 13 cases. 14 MR. ROSENTHAL: Yes. 15 MEMBER WALLIS: So it is very hard to say, "Duke, you must do this." 16 17 MR. ROSENTHAL: If you accept that you can drive, that you are willing to take all the risk 18 19 reduction in terms of prevention, and I don't have the 20 philosophic answer. In fact, we would like your views 21 on that very question. If you want some balance with 22 mitigation, then you will go forward on it. Shall we do the ice condensers in the Mark 23 24 III separately or together? ACTING CHAIRMAN KRESS: Yes, I think we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	ought to view them separately.
2	MR. ROSENTHAL: Okay.
3	ACTING CHAIRMAN KRESS: I haven't run the
4	numbers exactly, but if I take the Duke cases with the
5	best estimates down at the bottom, I think if you ran
6	1.174, assuming that those required items were already
7	in place, that they could probably justify taking the
8	amount on the 1.174 basis based on those numbers. So
9	if that were the case, it would be silly to put them
10	in.
11	MEMBER WALLIS: This is a kind of reverse
12	1.174.
13	ACTING CHAIRMAN KRESS: Yes, a reverse
14	1.174.
15	MEMBER WALLIS: I mean, you're asking for
16	a very
17	ACTING CHAIRMAN KRESS: I don't think you
18	could make the same case for Sequoyah based on the
19	numbers I see, but, you know, just looking at the
20	delta LERF curve that you get, probably in 1.174 space
21	they could come in and say, "Look, on a risk-informed
22	basis, we could take these things out if we had them
23	in there." If that were the case, and it looks to me
24	like it would be for those, it would be silly to
25	require them to put them in.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER WALLIS: It would be kind of a Gilbert and Sullivan opera. You would be putting them in and taking them out by using different parts of the regulations.

5 MR. ADLER: I want to say that, if you go back and look at the original motivation for putting 6 7 these in, there was a defense-in-depth element to that argument. I mean people made the case that these are 8 low-probability events back then. Utilities did not 9 fail to note that they had made improvements since TMI 10 they thought all these low 11 and events were 12 probability.

But the Commission judged that, because these were small-volume containments that led to high concentrations, steel containments, many of them, not reinforced concrete but relatively thin, steel-shell containments, that the failure modes could be much larger than what you might expect for reinforced concrete, too.

I want to point out, too, that we haven't, at least I haven't, heard -- maybe it was mentioned earlier -- that the use of a mean value for NUREG-1150, my personal view on that is that those mean values are fairly strongly influenced by the random ignition assumptions in NUREG-1150, which were biased,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	144
1	frankly, to produce DDT in the ice bed. Because they
2	had to assume random ignition in order to get to the
3	problem of transition to detonation.
4	ACTING CHAIRMAN KRESS: Which means you
5	need to use some lower
6	MR. ADLER: Well, but in a station
7	blackout, in the absence of active power in the plant,
8	you might look more closely at the DCH study numbers
9	and higher percentiles from NUREG-1150, to look at how
10	important that particular assumption is. So that it
11	starts to push you up from the 300 number up to the
12	neighborhood of 1,000 for Sequoyah pretty quickly.
13	ACTING CHAIRMAN KRESS: Well, you know,
14	this might come down to a question of defense-in-
15	depth. Let's examine that just a minute.
16	You already have defense-in-depth because
17	these meet adequate protection and are already at
18	acceptable risk level, which is where you normally
19	expect defense-in-depth to be playing a role. Now we
20	are dealing with enhancements, and the question is, do
21	you want the same kind of defense-in-depth
22	considerations for enhancements, cost/benefit-type
23	things, when you have already had your defense-in-
24	depth philosophy put into achieving acceptable risks
25	in the first place?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	My own personal opinion is that is not a
2	good place to invoke defense-in-depth when you are
3	talking about enhancements and that you ought to be
4	more concerned about being sure you have the right
5	benefit/cost ratio and err on the side of not being
6	err on the wrong side that a regulator normally
7	doesn't err on, because here you are talking adding
8	burden at an already acceptable risk plant. So you
9	need to err on the side of, well, I'd better be darn
10	sure of my cost/benefits, which tells me, instead of
11	using the 95 percentile, I ought to be using the 5
12	percentile.
13	It is a strange look at it, but it is
14	because I am in a different regime in the regulatory
15	sense. If I did use that philosophy, then none of
16	these, including the ice condenser, passes my test for
17	a backfit requirement.
18	MR. ADLER: Well, I will take one last go
19	at it, and that is that defense-in-depth was meant to
20	apply to the containment function and not invoke
21	reliance on initiating events, initiating event
22	frequencies.
23	It is also true that in some of these risk
24	studies some of the early failure mechanisms still are
25	associated with relatively low release fractions to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

146 1 the environment. Some rather favorable assumptions 2 are made with respect to scrubbing, even for the early 3 failures. 4 So that is one of the reasons why fifth 5 percentile numbers are as low as they are. But I guess immediately after TMI the focus was on defense-6 7 in-depth but with the perspective of containment 8 function more specifically. 9 ACTING CHAIRMAN KRESS: Well, that's why 10 the igniter is in there. 11 Dr. Kress, this is Chris MR. GRIMES: 12 Grimes. Ι would also like little 13 to put а 14 perspective on this: that this is a cost/benefit 15 study that concludes a decade or so of research into this question, but we still have an obligation in 16 17 implementing a recommendation to go out to seek public involvement 18 and comment the values, the on uncertainties, the desirability of establishing a new 19 20 requirement. 21 I share your view primarily because my 22 experience in containment analysis tended to show that 23 most of the experimenters had a real hard time getting 24 hydrogen to burn when they want it to. But there is 25 also the aspect that we see in the present public

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	comments on the risk-informed changes to 50.44 in
2	terms of a measure of public confidence in having the
3	added capability to protect the containment.
4	I will point out Jack characterized these
5	as small, fragile I don't think he called them
6	"fragile" weakest, but the owners of pressure
7	suppression containments are fairly proud of them and
8	don't like to consider them weak. But there was a
9	reason why they were smaller. It was you put in these
10	pressure suppression capabilities in order to reduce
11	construction costs, but they are weaker containments
12	and they are the last boundary to radiological
13	release.
14	So there is a defense-in-depth aspect to
15	establishing the regulatory standard of performance,
16	and it will be incumbent upon us, as the implementers
17	of this research study, to go out and seek the
18	broadest public views about those values. If the
19	prevailing view is that the analysis was too
20	conservative for the purpose of trying to make a
21	cost/benefit argument, then this requirement might be
22	rejected by the Commission. On the other hand, if
23	there's a prevailing public confidence issue
24	associated with protecting the containment, then we

could see value being added to this close call.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	ACTING CHAIRMAN KRESS: My experience
2	being on this Committee with the public comment
3	version of things like this is that you will get
4	significant comments from utilities, plus significant
5	comments from NEI, possibly some from EPRI, and two of
6	the intervenor organizations will comment and maybe
7	one private citizen. I don't know how you incorporate
8	all that because all the utilities are going to say
9	this is not worth it; at least I think they will. NEI
10	will say it's not worth it.
11	MR. GRIMES: Of course, NEI will say that.
12	ACTING CHAIRMAN KRESS: But the two
13	intervenors will say, "For heaven's sakes, put these
14	things in." That's what they will say. So you pretty
15	well know what is going to come out of the public.
16	MEMBER WALLIS: You need a real public
17	comment by a real public.
18	ACTING CHAIRMAN KRESS: Yes, but I don't
19	know you get that really. I don't know how you get
20	that.
21	MR. GRIMES: Well, we are working on
22	trying to come up with more performance measures for
23	the regulatory analysis. I will tell you right now I
24	face that challenge in terms of trying to determine
25	what are good ways to provide measures of common

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	defense and security issues for all of the work that
2	NSIR is doing for security requirements.
3	But we did get substantial public comment
4	on 50.44 changes relative to the reliance on
5	commercial-grade equipment. So we normally only get
6	one or two members of the public to comment, but if we
7	continue to try to offer a broader view, perhaps we
8	can get some more feedback on the public confidence
9	aspect.
10	But I am not going to presume a priori
11	that in this case of a close call that we would
12	naturally construct the circumstance as you describe,
13	where we are going to propose that we want to go out
14	and impose a requirement to add a feature that a Reg.
15	Guide 1.174 application would turn around and remove.
16	We would want to construct a regulatory
17	analysis in such a way that we would prevent that kind
18	of bureaucratic
19	ACTING CHAIRMAN KRESS: Nightmare.
20	MR. GRIMES: Yes, circle. I'm sure
21	there's a much better term for it, but the only ones
22	that come to mind are not publicly expressible.
23	MEMBER WALLIS: Well, you could call it an
24	"absurdity." You could call it an "absurdity."
25	MR. GRIMES: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ACTING CHAIRMAN KRESS: Well, once again, though, we always beat our head on the wall when it comes to how much defense-in-depth is sufficient and how do we decide. It comes down almost to always being a judgment call.

MR. GRIMES: In this circumstance I share 6 7 of some Charlie's sentiments, having been а I can tell you that I have a 8 containment analyst. 9 simple view that the defense-in-depth feature is that we err on the side of protecting containment. 10 I am 11 more concerned about, if the cost/benefit analysis is 12 the predominant decision factor in this, we could end in some cases with some plants having this 13 up 14 auxiliary power capability and others not, and having 15 to explain to Congress why you ended up in that 16 circumstance.

I find that as the defense-in-depth feature, as protecting ourselves from getting into a circumstance where it --

ACTING CHAIRMAN KRESS: Under that kind of thinking, though, you would require it for both ice condensers and Mark IIIs.

23 MR. GRIMES: That's correct, and you would 24 do so by saying that you're going to provide more 25 weight to the defense-in-depth interests of protecting

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	151
1	the containment than you are even a risk-informed
2	cost/benefit analysis about the relative value of
3	auxiliary power.
4	ACTING CHAIRMAN KRESS: But you've already
5	got two diesels and sometimes three and four in
6	plants, which is defense-in-depth.
7	MR. ROSENTHAL: Beyond three, you get into
8	common-cause failure things. You really don't buy
9	more with four or five.
10	ACTING CHAIRMAN KRESS: But that's already
11	the level of defense-in-depth for this thing. So, you
12	know, the question is, how much defense-in-depth do I
13	need?
14	MR. ROSENTHAL: Or, alternately, am I
15	averse to early failure, conditional containment
16	failure probabilities of .15, no less than .65
17	ACTING CHAIRMAN KRESS: When I have an
18	assured leak containment failure.
19	MR. ROSENTHAL: Excuse me?
20	ACTING CHAIRMAN KRESS: When you have a
21	for-sure leak containment failure anyway.
22	MR. ROSENTHAL: Due to the core
23	concrete
24	ACTING CHAIRMAN KRESS: It's going to
25	fail. These things are going to fail late anyway.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	152
1	MR. ROSENTHAL: Yes, due to MCCI.
2	ACTING CHAIRMAN KRESS: It's a tough call.
3	I don't know how the the question is there's two
4	questions: How should we use these uncertainties, and
5	then how should we invoke defense-in-depth? It's two
6	separate questions altogether, to my mind.
7	MEMBER WALLIS: I think that's what you
8	need to bring to the full Committee. You need to
9	forget about all these technical arguments and
10	summarize them very quickly. Then say, "These are the
11	decisions we face. Which way should we make our
12	decision? Here are the various bases that we could
13	base our decision upon."
14	ACTING CHAIRMAN KRESS: You might show
15	this thing here and explain how you got it, and also
16	show the bottom line of the cost estimates because I
17	think those are pretty reliable and pretty
18	straightforward. Then just say, "We're faced with the
19	question of how do we use these uncertainties, and do
20	they pass the cost/benefit test? And how do we invoke
21	defense-in-depth?" I think that's the questions.
22	MR. ROSENTHAL: Well, I would solicit your
23	views.
24	ACTING CHAIRMAN KRESS: I think my views
25	don't matter a lot because it's the Committee views

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	that prevail, and I don't know, you may have 10
2	different views.
3	MEMBER WALLIS: But when I look at the
4	decisions made by the agency in the last five years
5	and then this 1.174-type, I don't think this would
6	fly. I think this would have flown very well in the
7	eighties.
8	ACTING CHAIRMAN KRESS: Yes, I think if
9	you take a risk-informed view of this, it would
10	probably make it not fly.
11	MEMBER WALLIS: Yes, make it not fly,
12	right.
13	ACTING CHAIRMAN KRESS: That's my current
14	view.
15	MEMBER WALLIS: Then, because we have said
16	that risk-informed decisions will always come up
17	again, someone will say, "But you must have more
18	defense-in-depth; therefore, you can't do it." We've
19	said that before. We have raised that flag many
20	times. If this turns out to be that way with this
21	decision, people will wonder if any risk-informed
22	decision will fly because someone will bring in
23	defense-in-depth.
24	I am not sure the present climate is
25	conducive to accepting your arguments.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	MR. GRIMES: Well, this is Chris Grimes.
2	What I want to make sure is clear is you
3	have two opportunities to comment on this. The first
4	opportunity is relative to the robustness of the
5	analysis supporting the research conclusions and
6	recommendations. But then you will have another
7	opportunity to discuss it in a broader regulatory
8	coherence way as we come back to the ACRS with a
9	recommendation in terms of the implementation, and
10	whether or not we would proceed with rulemaking or
11	whether or not we would try to do this within the
12	context of the existing regulations.
13	ACTING CHAIRMAN KRESS: Let's comment on
14	the robustness.
15	MR. GRIMES: Right.
16	ACTING CHAIRMAN KRESS: We can do that.
17	I think the cost side of the thing was extremely
18	robust and very believable and a good analysis. The
19	benefits are driving the uncertainties. I mean, if
20	you take the benefits minus the cost, it's the
21	benefits that's driving all the uncertainty for most
22	of it.
23	It is about as robust as it can be,
24	relying on existing information. To go out and do a
25	full, integrated uncertainty analysis on the benefits,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	it is just, I think, asking way too much for this
2	issue. I don't think it is worth that at all. It is
3	a huge undertaking, I think.
4	So I think in terms of doing what you
5	could to assess the uncertainties, I think you have
6	done about all you can. I can't think of anything
7	else I would ask you to do.
8	So, as far as whether it is robust or not,
9	it's not very robust, but it is the best you can do.
10	The question is now how to make use of that
11	information. Then that comes down to the second
12	question: How to use the uncertainties and how to use
13	defense-in-depth?
14	MR. GRIMES: In such a way that we don't
15	damage the credibility of the regulatory process.
16	MEMBER WALLIS: I think we might say that
17	the technical analysis in terms of the physics, and so
18	on, sounds believable.
19	ACTING CHAIRMAN KRESS: Yes.
20	MEMBER WALLIS: It is a pretty thorough
21	investigation.
22	ACTING CHAIRMAN KRESS: For example, I
23	think I would buy off completely on the MELCOR stuff
24	that says you don't need the air return fan. I think
25	that is pretty robust.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	I think we just take the PARs out of this
2	altogether. They just don't pass the test at all. So
3	we are just dealing with the igniters.
4	I think you've got about as much
5	information as you are going to be able to get. I
6	can't see where you can get more. So you have to make
7	your decision based on this information you have.
8	MEMBER WALLIS: Well, I'm not sure I agree
9	with my colleague that it is only the benefits that
10	are subject to uncertainty. These costs, as if \$5,000
11	or \$175,000 let's take \$50,000; that sounds to me
12	to be full of a lot of uncertainty.
13	MR. GRIMES: But that is one area where we
14	can definitely get a substantial amount of public
15	comment with more precise
16	MEMBER WALLIS: What is the elasticity
17	here? If you force the utilities to do it, they might
18	find a way to do it cheaper. I'm not at all sure we
19	have to make it so expensive.
20	MR. GRIMES: And if we are able to
21	articulate it in a way that it becomes a performance-
22	based rule as a feature of 50.44, they might find even
23	further ways to reduce the cost. But I can tell you
24	through some of our experience that \$50,000 for
25	training is not unusual for some of the most simple

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	procedural changes.
2	ACTING CHAIRMAN KRESS: Yes, that wouldn't
3	surprise me at all.
4	MR. ROSENTHAL: When you're all said and
5	done, I truly don't believe that polishing the numbers
6	is going to resolve the issue.
7	ACTING CHAIRMAN KRESS: I think you're
8	right. That is basically what I was saying. You've
9	got the numbers that you need, and polishing them is
10	not going to help. You have to make a decision based
11	on them, and it is a matter of philosophy and how you
12	feel about it almost.
13	I might ask if any of the members of the
14	public or the utilities want to make any comments.
15	MR. BARRETT: Yes, this is Mike Barrett
16	from Duke. I guess I would offer just a couple of
17	thoughts.
18	As one of the, I guess, holdouts, I have
19	always been rather skeptical that powering just the
20	igniters alone was adequate. Now it is clear the
21	staff has done a lot of work here, and they have done
22	some now seasoned, done some research into what has
23	been said. I think they have made some progress into
24	allaying my concerns somewhat on that.
25	But I still am a little bit concerned

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

about using the lump parameter codes for this type of 2 analysis. I am also a little concerned, while the 3 analyses address several different amounts of hydrogen 4 released, it appeared to be a single accident sequence, a reactor coolant pump seal LOCA, core uncovery somewhere around two hours or so. 6 So it appeared to be a fairly large reactor coolant pump 8 seal LOCA.

9 The sequence that was analyzed may not be probablistically the most significant sequence for 10 11 which we ought to be trying to deal with these issues. 12 At least for the Duke plants, use of generator run failures dominate the station blackout frequency. You 13 14 would be looking at being five, six, seven, eight 15 hours on your decay heat curve by the time you were 16 looking to having core uncovery, or longer.

17 Maybe that doesn't change the behavior of what we saw here; maybe it does. I really don't know. 18 But it seems to me there are other issues that are of 19 20 various levels of importance that may or may not 21 impact the overall conclusions of the analysis.

22 But I guess just one thing, just a point 23 If the recommendation is to go for some thought: 24 ahead and power igniters, if a utility chose to want to do fans and igniters, would you be dissuading them 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

1 from doing so? I mean, you have this negative 2 consequence in your slides about the ice melting 3 faster. That is certainly true, but at the same time, 4 for those of us maybe that are a little not yet 5 convinced, I don't want to have my fans there; that may not be enough of a negative for us to want to 6 7 change the way we would implement it. 8 ACTING CHAIRMAN KRESS: That's a good 9 point. 10 MR. BARRETT: A point for thought there. MR. ROSENTHAL: We agree, but, Dr. Kress, 11 I am compelled to make some comments about Mark III. 12 ACTING CHAIRMAN KRESS: Okay, please do. 13 14 MR. ROSENTHAL: Can we? I'll be fast. 15 From a strictly cost/benefit standpoint, we are even an order of magnitude farther away from 16 making a decision that you should go forward. 17 But there are other considerations. 18 19 One is regulatory coherence. If you strip 20 out everything that you think you know and you say, 21 "Well, I've got these steel containments and they're 22 roughly the same volumes, and one's got ice wrapped around it and another one's got water in the bottom, 23 24 but you can morph one into the other; they really 25 aren't that different, " of all the containment types,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

159

	160
1	you rely on pressure suppressions that are this big
2	chunk of concrete. They are the weaker of the
3	containments.
4	You have a high conditional containment
5	failure probability for this sequence for Mark III.
6	For some, but not all, Mark IIIs, station blackout is
7	95 percent of the core damage frequency. So you are
8	not providing containment protection for the sequences
9	that you want the most.
10	You have a lot of hydrogen in the Mark III
11	because you've got a lot of zirc. So you've got to
12	really believe that you understand the phenomenology.
13	So for those reasons, we would go forward
14	on the Mark III. Now one could argue it just plain
15	isn't cost/beneficial. You have a process called the
16	backfit process and it doesn't make it.
17	Prevention is preferred over mitigation
18	for a dollar spent. The CDFs of these plants are
19	quite low. You have pool scrubbing, which we know
20	works, but there's a question of, under what
21	circumstances will you bypass the pool?
22	ACTING CHAIRMAN KRESS: See, the backfit
23	rule guidance, does it say anything about defense-in-
24	depth in there? I've forgotten what exactly it does
25	say. I know it has a safety

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	MR. ROSENTHAL: My savior.
2	MR. GRIMES: Not with specificity. It
3	says defense-in-depth is a consideration.
4	ACTING CHAIRMAN KRESS: Oh, it's a
5	decision.
6	MR. GRIMES: And I would hope that we're
7	now going to extend the regulatory analysis guidelines
8	to include an explanation about how public confidence
9	should be considered. We don't have measures for that
10	yet, either.
11	But defense-in-depth
12	ACTING CHAIRMAN KRESS: But as a good
13	regulator, you need to think about those things.
14	MR. GRIMES: Right.
15	MR. ROSENTHAL: Okay. So if you could
16	provide us some guidance on Thursday?
17	ACTING CHAIRMAN KRESS: Well, that will be
18	my charge to the Committee, if that's what you want,
19	is guidance. I think, one, we have about an hour-and-
20	a-half on Thursday. I would abbreviate a lot of these
21	discussions and get to the bottom lines. I think I
22	would tend to leave out most of the MELCOR stuff and
23	just give the bottom line on that, unless you get
24	asked for more.
25	I would concentrate on this kind of curve

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

162
for the averted costs on the cost side of the equation
and give those two and show how they compare, and then
just say, "Our issues are this," and they are pretty
much what you spelled out, and say, "We're seeking
guidance from you guys."
This is more, I think, a question of
philosophy and regulatory coherence than it is the
bottom line of the numbers. So I think that is what
I would do.
MEMBER WALLIS: Could I bring in another
thought here?
ACTING CHAIRMAN KRESS: Yes.
MEMBER WALLIS: I'm thinking about all of
these things in some sort of context. We mentioned
1.174. If you go ahead with this, which looks like
kind of a marginal decision, but if you come down on
the side of being more conservative and that
containment is something you want to protect and it is
good for public confidence perhaps, and so on, and you
recommend this, then how about the efforts which are
underway to legislate that we don't have to worry
about large-break LOCA?
I mean that seems to me a much bigger
decision going the other direction, saying, instead of
being conservative, we are going to use risk to do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

away with something which the public has regarded, I 2 think for a long time, as a sort of keystone of defense-in-depth. It seems very strange if we go so 3 4 incrementally this way and then come back with 5 something which is a huge step in the other direction in terms of large-break LOCA. 6 MR. **GRIMES:** That is why I mentioned

7 before that, from the standpoint of trying to develop 8 a framework for risk-informed regulation, we need 9 decision criteria that are going to inform us not only 10 11 about risks and benefits, but also ways to put 12 defense-in-depth into measures and to provide more guidance about what truly contributes to public 13 14 confidence.

15 Containments contribute public to The details of the interworkings of an 16 confidence. ECCS calculation do not necessarily contribute to 17 public confidence. 18

(Laughter.)

20 MEMBER WALLIS: No, you don't need to know 21 the interworkings to realize that you've been told for 22 40 years that we are considering the biggest break and now we are going to step back from it. You don't need 23 24 to know anything about the details.

> We stepped back from large MR. GRIMES:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

19

25

delatine breaks 20 years ago, and we have been backing away from it ever since. But we have recommendations on trying to risk-inform 50.46 and Appendix K that move them in the direction of being more performancebased.

We don't necessarily need to frighten the 6 7 public by telling them that we're taking out all kinds 8 of protections in the vessel and the fuel, but I do 9 agree that there's got to be an explanation about how all of these initiatives are coherent, are consistent, 10 are achieving some demonstrably simple explanation, 11 12 that is, an explanation that can be articulated to a Congressman in seven minutes or less. That is sort of 13 14 the performance standard in terms of how we would be able to develop simple explanations about regulatory 15 16 analysis for changes that go either way.

I noticed with some chagrin that in the 17 feedback from the Nuclear Safety Research Conference 18 19 that Mr. Lochbaum has developed a new sound bite that 20 just chilled me, and that is that the one edge of this 21 sword is razor-sharp and the other edge of this sword 22 If that is the image of the riskis Nerf-like. 23 informed cuts both ways, then we've got a lot to do to 24 work on public confidence.

MEMBER WALLIS: Well, it seems to me, to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

	165
1	go back to what we said a little while ago, that you
2	want to get in the representative public, because
3	eventually that is really where the decision should be
4	made, not made by Mr. Lochbaum and not made by some
5	self-interested utilities.
6	ACTING CHAIRMAN KRESS: Yes, but I don't
7	know how you do that.
8	MR. GRIMES: It's been a real challenge to
9	try to get a representative cross-section of the
10	public involved in rulemaking activities. Despite his
11	creative use of the English language, Dave Lochbaum is
12	still one of the best bellwethers that we have in
13	terms of public reaction to regulatory initiatives.
14	ACTING CHAIRMAN KRESS: He is worth
15	listening to from that standpoint.
16	MR. GRIMES: Yes, and I take that comment
17	about the two-edged sword as a measure of how the
18	public views risk-informed initiatives.
19	MR. ROSENTHAL: Okay, we will have the
20	benefit analysis. We will have the cost analysis. We
21	will introduce the policy decisions and ask for your
22	guidance. We will say that we don't intend to go into
23	the details of the MELCOR or the hydrogen DDT. We
24	will have staff there prepared to answer questions.
25	ACTING CHAIRMAN KRESS: Yes, that's right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	I thought your little discussion on just looking at
2	the face value of Mark IIIs with respect to ice
3	condensers was a good perspective to give here.
4	MR. ROSENTHAL: I'll beef that up.
5	ACTING CHAIRMAN KRESS: Yes.
6	MEMBER WALLIS: I think you should have
7	the bottom line for the MELCOR study, the final page.
8	ACTING CHAIRMAN KRESS: Yes, I think get
9	to the bottom page.
10	MEMBER WALLIS: But you don't need to look
11	into the noding and all the curves and all the wiggles
12	and squiggles and graphs and all that. Keep that in
13	reserve.
14	MR. ROSENTHAL: There is one graph in
15	there that says, if you don't have it, you blow it
16	apart, while if you have the igniters with or without
17	the fans
18	MEMBER WALLIS: That's a useful one.
19	That's a good one.
20	ACTING CHAIRMAN KRESS: That would be a
21	good one to have.
22	So I guess it will be an interesting
23	discussion. We will have Dana and Bill Shack, and
24	George will be here. That will be interesting.
25	George is not going to be here? Oh, darn. It will be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	interesting, I think.
2	MR. ROSENTHAL: Thank you.
3	ACTING CHAIRMAN KRESS: We appreciate this
4	very nice discussion, very nice presentations.
5	So I will now adjourn this meeting.
6	(Whereupon, the foregoing matter was
7	concluded at 5:19 p.m.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	