Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, June 26, 2002

Work Order No.: NRC-453

Pages 1-341

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	THERMAL-HYDRAULIC PHENOMENA
8	SUBCOMMITTEE MEETING
9	+ + + + +
10	WEDNESDAY
11	JUNE 26, 2002
12	+ + + + +
13	ROCKVILLE, MARYLAND
14	+ + + + +
15	The Subcommittee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B3, 11545 Rockville Pike, at 8:30 a.m., Graham B.
18	Wallis, Chairman, presiding.
19	SUBCOMMITTEE MEMBERS:
20	GRAHAM B. WALLIS, Chairman
21	VICTOR H. RANSON, ACRS Member
22	SANJOY BANERJEE, ACRS Consultant
23	VIRGIL SCHROCK, ACRS Consultant
24	
25	

		2
1	STAFF PRESENT:	
2	PAUL BOEHNERT	
3		
4	ALSO PRESENT:	
5	STEVE BAJOREK – RES	
6	DAVID DIAMOND - BNL	
7	JAMES HAN – RES	
8	JOSEPH M. KELLY - RES	
9	CHRIS MURRAY - RES	
10	RALPH MYER - RES	
11	FRANK ODAR – RES	
12	JACK ROSENTHOL - RES	
13	HAROLD SCOTT - RES	
14	AKIRA TOKUHIN - RES	
15	HAROLD VANDERMOLEN - RES	
16	QIAO WU - Oregon State University	
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	C-O-N-T-E-N-T-S
2	PAGE
3	I. Introduction by Chairman G. Wallis 4
4	II. NRC-REC Presentations
5	Status of T/H Research Programs
6	A. "ATLATS" Phase Separation Test Progam
7	1. Overview by S. Bajorek 5
8	2. ATLATS Facility Description &
9	Recent Experimental Results by Q. Wu 24
10	3. Entrainment Onset Modeling by Q. Wu 26
11	4. Model for Entrainment Rate by Q. Wu 143
12	B. TRAC-M Code Development Status by J. Kelly 173
13	C. TRAC-M Documentatin by F. Odar 207
14	D. PSU-RBHT Program Status by S. Bajorek 219
15	III. Resolution of GSI-185: Recriticality Control for
16	SBLOCAs in PWRs
17	A. Scenario Description/Issue Summary
18	by H. Scott 228
19	B. Boron Mixing & Concentration by M. diMarzo 236
20	C. Neutronics Analysis by D. Diamond 287
21	IV. Subcommittee Caucus 331
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIRMAN WALLIS: This is the Subcommittee
4	on Thermal-Hydraulic Phenomena. I am Graham Wallis,
5	Chairman of the Subcommittee. The other ACRS member
6	in attendance is Victor Ransom. The ACRS consultants
7	in attendance are Sanjoy Banerjee and Virgil Schrock.
8	For today's meeting the Subcommittee with review
9	portions of the Office of Nuclear Regulatory
10	Research's Thermal-Hydraulic Research Program.
11	Specific topics to be discussed include:
12	The Phase Separation Test Program being conducted in
13	the Air/Water Test Loop for Advanced Thermal-Hydraulic
14	Studies Experimental Facility located at Oregon State
15	University; and the status of the TRAC-M Code
16	consolidation and documentation effort; and the Rod
17	Bundle Heat Transfer test program being conducted at
18	the Pennsylvania State University. The Subcommittee
19	will also review the proposed Resolution of Generic
20	Safety Issue 185, Control of Reactivity following
21	small break, loss of coolant accidents in pressurized
22	water reactors.
23	The Subcommittee will gather information,
24	analyze relevant issues and facts and formulate
25	proposed positions and actions as appropriate for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

deliberation by the full committee. Mr. Paul Bennett is the cognizant ACRS Staff Engineer for this meeting.

The rules for participation in today's 4 meeting have been announced as part of the notice of this meeting previously published in the Federal A transcript of this Register on June 11, 2002. 6 meeting will be kept. At the present moment it is being recorded and the transcript will be made available as stated in the Federal Register Notice. 10 Ιt is requested that speakers first identify 11 themselves and speak with sufficient clarity and 12 volume so that they can be readily heard. We have 13 received no written comments or requests for time to 14 make oral statements from members of the public.

We are now eager to proceed with meeting. I will call upon Steve Bajorek from the NRC's Office of Nuclear Regulatory Research to begin.

18 DR. BAJOREK: Thank you very much and good 19 morning. My name is Steve Bajorek from the Office of 20 Research. In the past we have typically talked about the test programs all at once, looking at several 21 22 programs all within the same morning, all within the 23 same day.

24 Today what we would like to start doing is 25 focus on each of these test programs one at a time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

5

7

8

9

15

16

17

Today we will take a look at the ATLATS facility, the test program that's being conducted at Oregon State University. In future meetings we hope to focus on some of the other test programs that are being done to develop models for TRAC-M and to resolve other issues for research namely being important the subcoolant boiling project at UCLA.

I think we will be looking at that next month and in the future the rod bundle heat transfer program. Like we started some work at Penn State, we've received some test results. That's why we want talk briefly about that this afternoon in to anticipation of a future meeting.

What we would like to accomplish this morning is to update you on efforts over the last year to develop improved models, refine the test data, to look at entrainment in a horizontal pipe where we have an upward oriented branch line. Some of this committee was at Oregon State last year. We looked at the test apparatus. We had a number of comments on We are going to try to resolve some of those that. 22 today.

In addition I would like to outline some 23 24 of our other confirmatory work that we're looking at 25 We anticipate starting in the fall and through now.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(202) 234-4433

	7
1	the early parts of 2003. These are also very much
2	related to the problem that we will be looking at with
3	ATLATS.
4	In the format that we hope to get out of
5	these meetings is we want to get your feedback. What
6	do you think of the models? What do you think of
7	data? What are your suggestions for refining the
8	program and coming up with models that would be of
9	more value when we put them into a code like TRAC-M or
10	RBHT.
11	Now the air/water test loop for advanced
12	thermal hydraulic studies also know ATLATS was
13	constructed in about 1999 and was intended as a
14	facility to look generically of the problem of phase
15	separation when you have a horizontal pipe with a
16	branch line.
17	In general the problems of most importance
18	for small break where you have a relatively small
19	orifice connected to a large pipe and the question is
20	how much of one or the other phase is swept along with
21	either the gas or the liquid depending on whether that
22	branch line is at the top, the bottom or at the side
23	of the pipe.
24	One thing I would venture to state is that
25	the interest has been probably been directed most at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	the bottom oriented break because that's of the most
2	critical importance for a small break accident. At
3	least in evaluation models that's the orientation you
4	would get your highest peak cladding temperature
5	because it drains system to the lowest level.
6	However in the AP600 design certification
7	it was noted that correlations and models and relap
8	had a very difficult time trying to predict the phase
9	separation for this upward oriented branch. Therefore
10	the initial test that were run in the ATLATS facility
11	focused in on this upward facing branch and was trying
12	to get test data and improved models for getting the
13	carry-over into the branch line which would represent
14	the 80 as for system in the AP600.
15	This is of critical importance to an
16	advanced plant because high rates of liquid carry-over
17	into this line one depletes inventory from the primary
18	system but also increases the two-phase pressure drop
19	through the ADS and lengthens the duration of time
20	that you would have to wait before the IRWST would
21	come on and bring additional coolant into the system.
22	So most of the work has been directed towards that.
23	Now most recently the same issues have
24	come back again in the design certification for the
25	AP1000. As we reviewed the test programs and we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 looked at scaling for tests that were used to 2 benchmark the Westinghouse codes for AP1000 two things stood out. First it was very difficult one even to do 3 4 the scaling analysis from a bottom up point of view 5 because of the lack of information for phase separation for this upward oriented branch and the 6 7 complications that we see by having a branch line in the horizontal pipe. Typical flow pattern maps like 8 Titel Ducler (PH) don't adequately represent what 9 10 we've observed in facility. 11 But making use of what we could at that 12 time a couple of things were very clear. The higher 13 superficial velocities that we would expect in AP1000, 14 75, 76 percent uprating in power compared to AP600 15 would give us onset at much lower levels of water in the horizontal pipe. We would expect that the 16 17 entrainment to occur over longer periods of time and 18 to have higher entrainment rates in to the branch line 19 of ADS-four system. This is very important for the 20 AP1000 because of the uprated power for operating much 21 closer to the conditions where we may get some core 22 uncovering. 23 Secondly, one of the parameters that's

23 important for sizing and scaling of the branch line is 24 the ratio of the branch line diameter (d) to the hot

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	10
1	leg diameter (D). One of the motivations for ATLATS
2	with respect to AP600 is that ratio was significantly
3	larger with that which had been typically investigated
4	in other facilities. Most of the previous work had
5	looked at branch lines to main pipe diameters on the
6	order of 0.1. In AP600 that ratio is 0.34. If I
7	remember correctly for AP1000 it's 0.46.
8	So if we had trouble in AP600 justifying
9	these correlations for branch line entrainment and
10	carryover the situation becomes a little bit worse for
11	AP1000 because we're even further away from the
12	initial database.
13	The other issue that was identified in the
14	AP1000 scaling was the upper plenum pool entrainment
15	and carryover, a very related phenomena. We also
16	found that it was improperly scaled and that the test
17	data didn't adequately cover the range of conditions
18	for the AP1000. The reason I bring this up is we're
19	looking at ATLATS as being a test facility to help us
20	look at that problem in the future. As Dr. Wu will
21	show everyone in a little bit, the ATLATS facility
22	takes the vessel scaled one to one with APEX, the hot
23	leg scaled one to one with APEX and then the branch
24	line and does a good representation of the vessel to
25	hot leg to ADS format.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

11
We think we may be able to use ATLATS
because it's low pressure, low temperature, air/water
to look at some phenomena for pool entrainment with
some proper modifications of the facility to help us
address this.
CHAIRMAN WALLIS: It's actually more
important because the most that entrainment from the
hot leg can do by itself is empty the hot leg. But
if you get a carryover from the vessel and you
emptying the vessel as well.
DR. BAJOREK: In some regards it comes to
a matter of timing. Early in the transient maybe
right after ADS-1, 2, 3 or early in the ADS-4 the
situation we would look at and where Dr. Wu's
investigation would help is getting entrainment when
we have very high levels over in the hot leg. Well,
but at that point you're really not worried about
uncovering the core. You're worried about getting to
that condition. So how quickly things are entrained
and how they are entrained are very important.
The ATLATS should help us get at
entrainment which we've noted occurs due to
intermittency in this part of the hot leg and due to
a coherent plug that forms when the levels are high
moving back and forth between the steam generator

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	inlet plenum and the branch line. Most of your
2	entrainment is localized over in this region.
3	(Indicating.)
4	CHAIRMAN WALLIS: Wholly coherent plug
5	because there's no steam flow in that steam generator
6	side.
7	DR. BAJOREK: Yes, this side is
8	effectively plugged and at least there's a high
9	CHAIRMAN WALLIS: Fluid is being pumped to
10	the right and there's nowhere to go.
11	DR. BAJOREK: I think what we saw in the
12	facility we get momentum in part of this plug. It
13	goes up. It comes back. It covers the plug up and
14	back. It's trading off kinetic energy and potential
15	energy in this plug.
16	CHAIRMAN WALLIS: It's very different.
17	DR. SCHROCK: And the two-phase slug as
18	you've described passing the ADS-4 involves an
19	entrainment process that has nothing to do with the
20	level for incipient entrainment with the quiescent
21	stratified surface present. So the point I'd like to
22	make at this stage is that there should be a lesson
23	learned here about how the models and the codes are
24	examined when they are applied to a new situation.
25	It goes back to AP600. We didn't ask hard

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

enough questions there about the physics of what's happening in this hot leg. It was simply presumed that that correlations that attempted to take care of this kind of thing and had been developed in the past would serve reasonably for this purpose. The fact is they don't.

There should have been in the AP600 a program to get experimental data that would answer these questions. It didn't happen then under DOE's sponsorship and it didn't happen again under Westinghouse sponsorship for AP1000.

It's really a little ridiculous that NRC should be paying for this when the beneficiary of the activity is making these absurd arguments over and over again that everything fits nicely and we have creditable calculations. Indeed they do not exist.

17 CHAIRMAN WALLIS: How do you use Tidel 18 Dougler (PH) for right-hand side of your picture with 19 this? There's no flow or the flow is solitary.

20 DR. BAJOREK: I think the lesson is you 21 shouldn't. It may apply over a year and maybe the 22 misconception that started with AP600 is that you can 23 just go ahead and use that. It's a horizontal pipe. 24 Missed maybe in that initial review is that the 25 phenomena were just completely different. It may

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

	14
1	work if you had your classic large break where they
2	was co-current all the way through the steam
3	generator. You still have some questions. But this
4	is completely different from what that had been.
5	DR. BANERJEE: If I recall in the AP600,
6	we presumed as I was involved in the scaling that the
7	flow in the ADS-4 system was homogeneously equilibrium
8	even upper bound.
9	DR. BAJOREK: Yes.
10	DR. BANERJEE: That at least got the
11	inventory down fastest and the pressure down slower.
12	In fact it will improve because of the phase
13	separation here. So I think we did a bounding scaling
14	calculation there. I don't know how good that was.
15	DR. SCHROCK: I wasn't criticizing the
16	scaling.
17	MR. BOEHNERT: Maybe we should. The
18	examination of applicability of correlations that are
19	in the codes.
20	DR. BAJOREK: There are two avenues to the
21	scaling and we did follow your methodology for what we
22	would call a top-bottom scaling approach. It
23	globalizes many of the things that you may miss if you
24	start looking at the details. Where this started to
25	show up is when we did the so-called bottom-up scaling

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	approach. When you start looking at flow patterns and
2	entrainment and you need those correlations for
3	specific phenomena, that's where things like this
4	start to crop up and you can see the uncertainty.
5	CHAIRMAN WALLIS: I see in oscillations
6	there's a system effect that this plug goes up ADS-4
7	and gets ADS-4 involved and there's a drop and then it
8	changes this vapor flow rate. Maybe if we don't model
9	this part right you won't model the oscillations
10	right.
11	DR. BAJOREK: That's true.
12	DR. SCHROCK: Let me make a comment at
13	this point that maybe you could address as the
14	presentations go on. The problem I generally had or
15	have seen in the past with a lot of this work on
16	separate effects, correlations and what not, there's
17	never any plan on how you are going to actually
18	incorporate that into the code.
19	In other words, are the parameters you're
20	actually using in the correlation available in the
21	code? How are they going to fit in the framework of
22	the code? If you can't put it into the code or leave
23	it to somebody else, then there are always gaps
24	between say the investigation and the actual
25	application in the end.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We have fallen down on that point I think repeatedly so that it's very necessary to benchmark it against what you have at the current time and also develop a framework for how it's actually going to be utilized in that code. In fact, that should be done first. Then the experiment should be planned.

7 DR. BAJOREK: After Dr. Wu's done, I will talk a little bit about that. Yes, one of the things 8 we are trying to do in the branch is as we do the test 9 10 programs, begin to make those modifications to the 11 code, do the validation on the models then so that you 12 know if they work or they don't work or what needs to 13 be refined while the test program is active and not do 14 so a couple of years hence after you may have even 15 torn down the facility or the people have disappeared. We're attempting to do that. 16

17 From our meeting last year, there were 18 several issues raised. One had been around based on 19 Dr. Schrock's comments in looking at some of the early 20 literature project reports that we had. They weren't 21 focused on the problem at hand which was looking at 22 the upward facing branch line. It was difficult to 23 segregate out what we really hoped to gain from this 24 series of tests because it was mixed in with work for side-oriented branches and down-oriented branches. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	17
1	In addition, how some of the works were
2	referenced and described were confusing. So we asked
3	that this part of the report be revised. We've gone
4	through there. We've reformatted it. We think we've
5	made it more accurate at this point.
6	MR. BOEHNERT: I'd like to make another
7	comment along those lines that you might want to think
8	about. It's along the lines I think what Virgil was
9	talking about. This is oriented only towards the top
10	rig. Now there are bottom rig problems where you have
11	vapor pull-through which is the analogous situation
12	with the entrainment phenomena. Side branches were a
13	combination of the two.
14	If this is to be generally useful to the
15	NRC I would think you would want to address all of
16	these because the same model or type of model is used
17	in the codes for each one of these processes. So it
18	would seem to be good to have a program which is going
19	to address maybe tomorrow it might be a bottom break
20	you might want to look, an instrumental line break or
21	something. So you would improve those as well.
22	DR. BAJOREK: The long term scope of the
23	project as I mentioned at the facility was to look at
24	other orientations. It's more the concerns with
25	advanced plants in the upperward phasing branches

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	deriving those tests be first. But in the long term
2	plan, it would be to look at these other orientations.
3	Right now we wanted to try to focus on that.
4	Two of the other issues that stem from
5	last year's meeting is that one the flow plans were
6	very highly oscillatory, intermittent. Nowhere near
7	the classic horizontal stratified smooth interface
8	that has been the starting point for many of the
9	models for onset and for entrainment.
10	As we noted previously the typical Titel
11	Duclar (PH) flow patterns descriptions based on co-
12	current flow really don't help out the type of
13	oscillations that we see in the ATLATS facility which
14	we expect in APEX and to an extent in the AP Advanced
15	Plant Designs.
16	Likewise the model development that last
17	year was preliminary, it was based on again
18	assumptions that the flow was going to be horizontal
19	stratified. We learned that it's not really the case
20	and that the flow was significantly more oscillatory.
21	So in changing the direction of the program since last
22	year we've asked OSU to go back, redo the literature
23	survey, make sure that the database was directed more
24	towards the problem at hand, and that the modeling
25	efforts should try to capture more of the correct

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	physics for the situation. Don't necessarily tie
2	ourselves to the idea that this is a horizontal
3	stratified flow. Assume there is intermittency, some
4	type of an oscillating plug in this hot leg that we
5	have to incorporate into the model.
6	In addition we had data from the pipes
7	being capped off at the end, return lines from that
8	side, no steam generator, with steam generator. We
9	said let's focus on the data that's closest to the
10	physical situation of the entrance which was where we
11	had the steam generator and an inlet plenum
12	essentially blocked off from the rest of the loop but
13	we would have the situation where we induce these
14	oscillations and have the steam generator at least
15	interacting with that part of the leg.
16	So we've asked them to go back and do
17	that. But we didn't change the overall objection
18	however which is to develop models for a relap or a
19	TRAC-M that can be used with the primary quantities
20	that the code predicts. We need to try to get at
21	things that the code can use and not try to track a
22	plug going in the hot leg because the code numerics
23	are not set up to do that but rather come up with
24	models then you would get the global integrated mass

flow out the branch line or the ADS system over dozens

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	20
1	of seconds, maybe hundreds of seconds. That's the
2	time scale that's of importance to AP600 and AP1000.
3	We don't hope to try to capture the
4	individual blips and spikes that occur from the
5	oscillations but rather get something that can capture
6	the integrated effect of this over a much longer
7	period of time.
8	CHAIRMAN WALLIS: So you're really
9	developing a correlation or a method for predicting
10	what happens in AP600 and AP1000. One shouldn't then
11	take the resulting correlation and apply to a lone
12	type without a steam generator.
13	DR. BAJOREK: No, I don't think so.
14	CHAIRMAN WALLIS: So you are not providing
15	a general tool for a code with any kind of branch like
16	this. You are doing something very specific for the
17	particular geometry of AP600 and AP1000.
18	DR. BAJOREK: One of the things that Dr.
19	Wu is going to describe is in his model he's going to
20	come up with a method for looking at the wave length
21	in the pipe relative to that pipe diameter. He's
22	found that this model does an adequate job of not only
23	the ATLATS data but also for the situations where you
24	would have co-current flow in the pipe.
25	Now extending the model beyond AP600 and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	AP1000, I think still is going to need some additional
2	model development. We should probably look at some of
3	the earlier data where we didn't have the steam
4	generator.
5	MR. BOEHNERT: How do you reach a
6	conclusion concerning cocurrent flow with that
7	experimental facility? Are you doing some new
8	experiments?
9	DR. BAJOREK: No, some of the older
10	experiments had it either capped off or in some of
11	them it was open over on that other side. So we would
12	have to look more closely at those types of
13	experiments. But, no, you're right. At this point we
14	are looking at this model as being something that's
15	applicable when you have a steam generator on that
16	side and you have intermittency in that region between
17	the branch line and the steam generator.
18	MR. BOEHNERT: One of the things that you
19	haven't mentioned that I had commented on while we
20	were at the facility is the fact that the construction
21	gives rise to these relevantly sharp corners that the
22	flow has to pass through. Going out of the vessel
23	into the hot leg you have a cylindrical surface which
24	intersects another cylindrical surface with a
25	different access orientation. The edge is sharp.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	It's not a smooth pattern as in the reactor.
2	I'm not so sure but what that plays a role
3	in that development of these slugs. To the extent
4	that it's a typical then the information that you'll
5	get from the experiments involving any kind of
6	intermittent flow seems to me remains suspect as to
7	whether this would still be suitable for the nicely
8	rounded entrance that you have in the reactor
9	geometry.
10	DR. BAJOREK: I can't say that we've
11	really taken a harder look at that. One of the things
12	that we did do and Dr. Wu will show you some of the
13	results as we did look at tests where the injection
14	was different into the vessels rather than bubbling
15	everything through the porous columns. It was
16	injected toward the top at least trying to affect that
17	interface and how things got into the hot leg. I
18	think it will show that there wasn't a whole lot of
19	differing.
20	Now that still doesn't get at whether the
21	sharp edge was affecting there but it's a little bit
22	of an indication of how things were coming from this
23	vessel into this hot leg which were a bit robust. But
24	no, we really haven't address that.
25	MR. BOEHNERT: You're still using or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

attempting to use the level for incipient pull-through in the correlation scheme as I read these documents. One of the things that I wanted to point out that we hadn't discussed before is that the technique for observing that in the previous experiments differed from one to another.

7 For example, KFK used an acoustical method to indicate incipient pull-through. 8 Whereas in our 9 experiments, it was observed visually. There was a 10 noticeable difference, a coherent difference between 11 the Ι don't find this mentioned in the two. 12 documentation that I've read on this so far. It may 13 be a relatively minor point but it's something that 14 ought to be examined anyway.

DR. BAJOREK: Okay. I'll look into that. DR. SCHROCK: On the literature survey and the material that was provided I noticed that missing was whatever was in the codes that you are trying to fix. It would have been very interesting to have benchmarked what the correlations are predicting relative to what the codes are currently predicting to know more where the inadequacies are. I like to suggest that you do that.

24 DR. BAJOREK: I hope we can do that once 25 we get this model and we can start doing a cross

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

15

16

17

18

19

20

21

22

23

	24
1	comparison in the codes.
2	DR. SCHROCK: The secondary advantage of
3	that of course is that it would make the people more
4	familiar with what is in the codes and then they might
5	have a better idea of how to fix this.
6	DR. BAJOREK: It's the Rothe correlation
7	that I don't think you have that on some of that.
8	DR. WU: This is Qiao Wu from Oregon State
9	University. It was Dr. Schrock's correlation inside
10	and we spend three months trying to moderate the user
11	five and try to address it the problem you
12	mentioned.
13	DR. SCHROCK: It would be nice if the
14	result was in the report.
15	DR. WU: Yes.
16	CHAIRMAN WALLIS: I think whatever
17	Westinghouse uses, they can tweak it. When they tweek
18	it, they can simply we have more entrainment and the
19	hot leg level just goes down a bit. That's no big
20	deal because you're not emptying the vessel.
21	DR. BAJOREK: They are supposed to come
22	back with a report where they are going to be looking
23	at those types of things. The end of July is when
24	we're expecting that. We have one where they compared
25	two codes, one without an entrainment model in the hot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	leg and the other one I believe is Dr. Schrock's.
2	You get significantly more entrainment in
3	that. You see a big difference in the codes but we
4	still need the sensitivity I think to other models and
5	then something that says whether those models are
6	bounded or at least reasonably represented by
7	hopefully this type of experimental data. With that
8	I'm going to turn it over to Dr. Wu who is going to
9	through the models and the latest work.
10	CHAIRMAN WALLIS: Thank you very much.
11	DR. BAJOREK: Thank you.
12	CHAIRMAN WALLIS: And you want a final
13	word before lunch?
14	DR. BAJOREK: Yes, I have about three
15	overheads to talk about the integral tests that we are
16	planning for, the APEX facility and just a couple of
17	brief comments on actually
18	CHAIRMAN WALLIS: Could I ask the
19	transcriber are you ready for the transcript now or
20	you still setting up?
21	COURT REPORTER: I'm still setting up.
22	DR. WU: Good morning. My name is Qiao
23	Wu, Assistant Professor at Oregon State University.
24	My presentation today is "Phase Separation at an
25	Upward Oriented Vertical Branch in a Horizontal Pipe."

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	The focus will be mostly about the progress after the
2	last year or two July 16 ACRS meeting at Oregon State
3	University.
4	The progress covers four parts. The first
5	is on a database review update. The second one will
6	be the facility introduction and just a review a
7	little bit. We will deal with some instrumentation,
8	evaluation according to the ACRS suggestion. Next I'm
9	going to talk about the entrainment onset study and
10	the entrainment rate study and also the experiment and
11	modeling approach.
12	So the database review update was in
13	response to ACRS's comments. Originally the database
14	largely included the side branch vertical main pipe,
15	all these different mechanisms mixed together. It's
16	too large compared with what we are studying right now
17	on the upward horizontal branch. So we narrowed it
18	down and put more efforts on the description.
19	Of the tester facility, it tests the test
20	conditions, instrumentation, model development of each
21	investigation. Also it did a cross comparison. The
22	cross comparisons were mainly just for the
23	correlations since each correlation presumably matches
24	their own data. So that's also our
25	We didn't mention the measurement the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

difference which was constantly consistent because of the shift of ten different investigations. That was Dr. Schrock's investigation and we're going to look into that and add it to the summary and the comparison.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

25

The database currently included these six investigations. The first one was originated by Dr. Zuber. It doesn't have an experiment and modeling efforts but it does have a scaling analysis and also recommended a correlation for the scaling analysis.

Afterward Crowley did an entrainment onset experiment that it tested the data. I only found one point in the platform in a graphic form. It's not tabulated for the entrainment. Also the KFK has extensive work. They had two reports, one by Reimann and the other one Smoglie, her thesis. The model appeared in Smoglie thesis so their testor were correlative for air/water and a main pipe diameter which is much greater than the branch diameter.

In Berkeley under the leadership of Dr. Schrock, they did an air-water and steam-water test. Again the branch sizes are very small. It's 3.96 millimeter for the steam-water tests. For the airwater test it goes to about 2 centimeter.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

In 1989 Maciaszek and Micaelli (CEA) did

(202) 234-4433

steam-water test but they presented it in a graph form and a non-dimensional form so it's very hard to get a meaningful result for the cross comparison. They recommended that their own entrainment onset correlation and entrainment rate of correlation. Finally JAERI did an air-water test and they have heir own entrainment onset of correlation. So this is six investigations that were covered by the database review.

You two of the five here 10 DR. SCHROCK: 11 that involve steam-water as opposed to air-water 12 In the experiments that we did we found simulation. 13 that the air-water and steam-water data agreed quite 14 well when the break was in the steam volume. But when 15 it was submerged, it appeared that there was а viscosity liquid, viscosity effect. 16

17 I know that is still As far as an 18 unresolved issue. It seems to me that we're the only 19 that have reported that in this context. ones 20 Although in studies of draining of liquids from tanks 21 and low gravity, Catton (PH) had also suggested a 22 liquid viscosity effect for that problem.

If you are going to extend this eventually to look at the submerged breaks I think that's an issue that ought be reexamine because it seemed to be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	29
1	a clear effect in our experiments. It's a mystery to
2	me as to why it was not observed in the French
3	experiments for example.
4	DR. WU: Yes sir.
5	DR. SCHROCK: Maybe it's because they
6	didn't do air-water I guess is the answer.
7	DR. WU: The action is we're documenting
8	the data for the steam-water only the KFK data is well
9	documented. You can find the CIGGRF for the rate
10	of pressure but
11	DR. SCHROCK: But there's a specific
12	recommendation in our report that it was an
13	unresoluted issue that needed to be looked at.
14	Another one was that we thought we saw a roll for the
15	liquid axial velocity past the break which of course
16	modifies the flow pattern for the liquid being sucked
17	in to the break in the steam volume. That one I think
18	in my mind remains unsolved.
19	In this particular application it appears
20	there is no steam flow past the break. All of the
21	steam going into the hot leg goes out the break. But
22	in other applications and certainly in all the
23	experiments there was a flow past the break that has
24	an influence whether it's small or large depends on
25	the circumstances.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	DR. BANERJEE: Can I ask you a couple of
2	questions please? When you have ADS-4 initiation
3	what's the pressure and what are the temperatures in
4	the system?
5	DR. WU: The full pressure automatic. My
6	understanding of the pressurization is at full
7	pressure you open it to pressurize the system.
8	DR. BAJOREK: This is Steve Bajorek from
9	Research. At the initiation of ADS-4 you're up at a
10	pressure that corresponds to T-Hot. I think you're
11	around 1100 or 1200 psi. This rapidly vents down to
12	atmospheric. I think you spend most of the transient
13	around 50 or 60 psi towards the end of it. So it is
14	a transient.
15	DR. BANERJEE: And the physical
16	properties, how much do they vary in terms of surface
17	tensions and densities compared to air-water tests?
18	DR. WU: There's a range. Density for air-
19	water you are talking about the process.
20	DR. BANERJEE: Sort of take a few points
21	along it and give us an idea.
22	DR. WU: Say maybe 200 to about 800.
23	Initially maybe 200 the density ratio and you create
24	it to vapor and then finally it goes up until about
25	800. Thus the increase to 800.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	DR. BANERJEE: So 50 or 60 psi is where
2	you spend most of your time and your air-water
3	experiments are at similar conditions.
4	DR. WU: Our full capacity is 110 psi.
5	That's our compressor.
6	DR. BANERJEE: And what about the surface
7	tension? How does that simulate? It would be nice to
8	see a comparison of thermal-physical properties
9	between what you are doing in terms of a simulation
10	with air-water and the range of conditions that you
11	would get with the steam-water system to understand at
12	least what the variables in this process are and what
13	the relevant nondimensional numbers might be.
14	DR. WU: I agree but when we did the
15	facility design basically according to the original
16	Zuber scaling approach
17	DR. BANERJEE: Who's scaling approach?
18	DR. WU: Dr. Zuber. It's basically a
19	Froude number similarity in the hot leg. To my
20	understanding it's basically the pressure of the fluid
21	in or fluid condition in the hot leg. Under the
22	entrainment, the process mostly for the previous
23	research found it to be like a Bernoulli effect. In
24	entrainment you create the foam free surface and
25	didn't consider the surface tension there. When we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	designed our test facility and designed our test
2	matrix we didn't factor that viscosity and surface
3	tension effects into it.
4	DR. BANERJEE: Surely entrainment must
5	involve something other than the Froude number.
6	DR. WU: Yes.
7	DR. BANERJEE: So what is the logic behind
8	not having a weather number or some sort of capillary
9	number or something there?
10	DR. WU: It's like It's the stability
11	if you consider both the gravity and the surface
12	tension as the stable force then you have to consider
13	surface tension effect. There is a previous study by
14	Dr. Schrock and Dr. Zuber suggesting and also the CEA
15	correlation and they all throughout the surface
16	tension effect that only using the gravity effect as
17	the stable force examines the way we didn't test it so
18	we decided we didn't need to go further to investigate
19	the surface tension effect when we design our
20	experiment.
21	DR. BANERJEE: Is there not surface
22	tension effect?
23	DR. WU: I can't say.
24	DR. BANERJEE: Very similar problems occur

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	33
1	DR. WU: Yes.
2	DR. BANERJEE: Onset of entrainment is
3	very governed by surface tension what goes into the
4	emergency relief pipes.
5	DR. WU: Yes. I'm aware of that.
6	DR. BANERJEE: So it's strange that
7	surface tension doesn't play a role here. If you have
8	air-water and steam-water surface tensions more or
9	less the same you would get similar phenomena. But if
10	you are trying to capture something where there's a
11	wide variation in surface tension because of the wide
12	variation in pressure and temperature, one would
13	surely want to inform the correlation about surface
14	tension effects.
15	DR. WU: I think I'm going to look into
16	that to see what's around here for the prototype
17	condition. But for my air-water test facility, I
18	don't think I can vary the surface tension. It's a
19	room temperature and atmospheric.
20	DR. BANERJEE: It's fairly sure that
21	there's no surfactant effects here at all?
22	DR. WU: I'm not sure because we didn't
23	put the time on that so we didn't look into the
24	surface tension effect on this entrainment effect.
25	That's later. Next please.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	CHAIRMAN WALLIS: While we're looking at
2	the figure there, the database, I looked at the
3	diagrams that you had of these various facilities in
4	one of your papers or some other that came through.
5	It looked to me as though the Crowley-Rothe experiment
6	had a side break. It looked as if the KFK figure
7	2.3.4 showed a slight on the side and on the top. But
8	the Rothe figure shows it on the bottom of pipe.
9	DR. WU: Because these investigations are
10	not only for the upward branch.
11	CHAIRMAN WALLIS: If you are only going to
12	compare with upward oriented options.
13	DR. WU: Yes.
14	CHAIRMAN WALLIS: So it seems very
15	confusing having these diagrams of Crowley-Rothe and
16	KFK and Schrock which showed something else. But you
17	are only going to select data where they had the pipe
18	orientation like your pipe orientation.
19	DR. WU: The ways we copied their figures
20	into the view. Since they did several combinations
21	like a vertical side and vertical up and the bottom,
22	they only show the one system plotted. Otherwise we
23	need to replot it.
24	CHAIRMAN WALLIS: But it is clear then
25	that you only selected the data from an upward

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	oriented branch.
2	DR. WU: Yes, that's in the report.
3	CHAIRMAN WALLIS: It's misleading if you
4	just look at the figures that you have there. For
5	JAERI I couldn't figure out the break at all.
6	DR. WU: They actually concatenated their
7	branch.
8	CHAIRMAN WALLIS: I think it's important
9	because I think we realize from your experiments that
10	the system matters. It's not just the break
11	orientation I worry about looking at those figures.
12	I look how long was the pipe and what was at the end
13	of it and was there a chance of slugs forming and all
14	that. It's hard to tell. Maybe your final report
15	needs a better description of what these other people
16	actually did.
17	DR. SCHROCK: Those past experiments we
18	were charged with getting data for entrainment from a
19	stratified upstream region. So the experiments are
20	designed to produce a stratified upstream region.
21	That takes some doing. It doesn't just happen all
22	that easily.
23	The description of the experiment involves
24	a lot of detail which is swept under the rug in your
25	description of the background. If the literature

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	survey has a purpose it's to understand all the
2	information that can be gleaned from that assortment
3	of experiments which have differences, maybe important
4	differences, and you're not going to find any
5	important differences if you don't pick up the rocks
6	and look for them. When you read your report it
7	doesn't look like you picked up very many rocks.
8	DR. WU: I'll put more effort on the
9	comparison of the tester facility to modify it.
10	MEMBER RANSOM: One thing maybe you can
11	clear up for me. From all the diagrams and everything
12	it looks like the steam generator is voided and you
13	would have steam flowing up. Unless there is no heat
14	sink there maybe somebody could help me on why there
15	is no through flow.
16	DR. WU: It's so the loop's The cold
17	leg is looped back into the reactor vessel.
18	MEMBER RANSOM: You still have the
19	possibility of condensation in the steam generator I
20	would assume.
21	DR. WU: That compared with the ADS-4 line
22	beneath. We need to connect it up some more.
23	MEMBER RANSOM: So is secondary side
24	voided under these conditions?
25	DR. WU: Yes, it's a nonreserved

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	37
1	condition. It's the
2	DR. BANERJEE: Until it clears the loop
3	seal if I remember now.
4	MEMBER RANSOM: But normally you would
5	think you would have steam going up, down and
6	condensing in the tube.
7	DR. BANERJEE: Yes, it doesn't act as a
8	heat sink under these conditions.
9	CHAIRMAN WALLIS: Heat source, isn't it.
10	DR. BANERJEE: It's a heat source in fact.
11	MEMBER RANSOM: To the secondary side.
12	DR. BANERJEE: Yes, if there is
13	MEMBER RANSOM: Okay.
14	DR. BANERJEE: I'm just thinking back five
15	or six years now. Joe is sitting there. He knows
16	this stuff. What's happens there exactly?
17	DR. BAJOREK: This is Steve Bajorek. At
18	this point, the steam generator, ADS-4, has become
19	largely ineffective. It is full of water. It's a
20	heat source but because there is no loop seal in the
21	AP600 or the AP1000 and there's enough water in the
22	cold legs and the down comer you don't have much flow
23	going through there. So after I think it's the ADS
24	1,2,3 initiate and you're getting to this ADS-4 the
25	steam generators are pretty much out of the picture.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	MEMBER RANSOM: Okay.
2	DR. WU: It further has a volume cushion
3	to affect this oscillation. Without that the steam
4	generator is totally ineffective.
5	CHAIRMAN WALLIS: To follow up on my
6	question, are you going to show us what Crowley and
7	Rothe did so that we can get an idea of how relevant
8	it is to your work? Or are you just going to take
9	some data points and put them on a graph? I don't
10	understand what these various people did from looking
11	at your report.
12	DR. WU: Do you mean the correlation wise
13	or experiment wise?
14	CHAIRMAN WALLIS: What did they do
15	physically? What was the Crowley-Rothe experiment
16	physically for example? I don't understand enough
17	about it from your report to know how to judge how it
18	fits into your work.
19	DR. WU: I didn't plan to go through that.
20	CHAIRMAN WALLIS: You're not going to show
21	us a picture of their experiment.
22	DR. WU: No. I tried to present what we
23	did and I thought that it was
24	CHAIRMAN WALLIS: At least Dr. Schrock
25	knows what he did.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	39
1	DR. SCHROCK: Almost. (Laughter.)
2	CHAIRMAN WALLIS: This is a test to
3	recall.
4	DR. SCHROCK: It's almost 20 years ago.
5	DR. BANERJEE: See if you remember.
6	CHAIRMAN WALLIS: I ought to remember the
7	Crowley-Rothe.
8	DR. BANERJEE: I guess the more general
9	question is are you going to be using data selected
10	for upward facing takes or whatever from any of these
11	two shore up your correlation.
12	DR. WU: We are going to use this one,
13	Berkeley data and the KFK data. They are well
14	documented. For the CEA and JAERI their data was
15	published in nondimensional form and we couldn't
16	reprocess it. We sent a letter to JAERI, Yonomoto,
17	and he said he doesn't have motivation to send us the
18	raw data. So we only have these two data sets
19	available.
20	DR. BANERJEE: But do they also have
21	upward facing?
22	DR. WU: Yes.
23	DR. BANERJEE: JAERI and the French.
24	DR. WU: Yes.
25	DR. BANERJEE: They do?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	40
1	DR. WU: They have their experiment there.
2	They are also proposing that the correlation and we
3	compared with their correlation instead of their data
4	because we couldn't get their data.
5	DR. BANERJEE: Because the ratios are
6	closer to your conditions than some of the other data.
7	DR. WU: That's right. So we assumed
8	their correlation fits their own data so we compared
9	with their correlation because we couldn't get at
10	their data.
11	DR. BAJOREK: Dr. Wu, I think the point
12	that we really want to make is that out of dozens of
13	studies that have looked at offtakes relatively few
14	have taken a look at the upward facing branch. These
15	are the ones that we think are closest to what you're
16	looking at. However in no case do they have a steam
17	generator or something on the other side of this pipe
18	that would induce this oscillating plug that we see in
19	the ATLATS facility.
20	Now the unique differences from each one
21	of those, you really have to dig into the test report.
22	JAERI had the fixture that could be rotated around and
23	go through a separate orifice to get out. Maciaszek
24	I think built a little weir on the end of his pipe to
25	try to force a level. I think in the Berkeley

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	experiments I think the pipe is open so that all the
2	flow left. I'm not sure about the other two.
3	DR. SCHROCK: The liquid was pumped out of
4	the vertical section at the end to maintain the level.
5	DR. BAJOREK: While these help to give us
6	some data none of them are really representative of
7	what goes on in the advanced plan. So we use these as
8	a point of reference.
9	DR. SCHROCK: That's what I meant when I
10	said the experiments were charged with an objective of
11	understanding entrainment from a stratified surface.
12	The experiments had to be done in a way that they
13	produced a stratified surface. Those circumstances
14	don't happen to correspond to what's happening in
15	AP600 and AP1000. So the approach of using those
16	experiments as I said a year ago doesn't make very
17	much sense.
18	CHAIRMAN WALLIS: Well it might apply over
19	a range. It might apply over the range where the
20	level is low in entrainment onset and haven't
21	developed the slug.
22	DR. SCHROCK: It may not be irrelevant.
23	There might be a time when it is significant but they
24	haven't found what that is.
25	CHAIRMAN WALLIS: But you can't just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	blindly take the data and try to correlate it.
2	DR. SCHROCK: Yes. But what they did find
3	is a situation which seems to be clearly very
4	different from the physics of those experiments. So
5	continuing to try to make the code regurgitate an
6	answer based on the physics of the stratified upstream
7	region in my mind is just asking for trouble.
8	CHAIRMAN WALLIS: Well, I noticed that the
9	correlation developed in the ATLATS data better than
10	anybody else's so maybe that's what we should focus
11	on.
12	DR. WU: Thank you. We also tried to fit
13	in Dr. Schrock and KFK data because they represented
14	two kinds of extreme conditions. We hoped that this
15	correlation will develop not just only for the ATLATS
16	testing facility. That was our initial objective. We
17	tried to figure out some mechanism behind it. Next
18	please.
19	So the summary of these available
20	investigations, publications was that Dr. Bajorek
21	already summarized it. The ratio of the branch size
22	versus the main pipe size for the prototypic
23	conditions advanced plan is in the region of 0.3, 0.4.
24	AP1000 is 0.47 actually going up. For the testing
25	facility previous investigations mostly using small

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	force, small branch.
2	CHAIRMAN WALLIS: So one could really
3	conclude that you are in a different world altogether.
4	DR. WU: That's what is my intent.
5	CHAIRMAN WALLIS: You might learn a little
6	bit from the thoughts that the other people had.
7	DR. WU: Yes.
8	CHAIRMAN WALLIS: But physically you're in
9	a different world.
10	DR. WU: Yes, and we tried to figure out
11	what the difference is. In the modern development
12	especially for the entrainment the onset model we
13	tried
14	CHAIRMAN WALLIS: Something like a point
15	source model might work for a very small little d/D
16	but it's not going to work well for prototypic
17	condition. Point sink I mean it would be.
18	DR. WU: The CEA test has a relatively
19	larger branch so their correlation actually for larger
20	branch using the lower correlation later I'm going
21	to mention.
22	CHAIRMAN WALLIS: Actually I think Steve
23	Bajorek the d/D was 0.46 or something.
24	DR. WU: 0.47, 0.48.
25	CHAIRMAN WALLIS: It's off your scale

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	even. It's even worse.
2	DR. WU: This is originally AP600.
3	MEMBER RANSOM: This red circle is the
4	typical conditions you're saying.
5	DR. WU: Yes, originally I put about there
6	0.33 and I remember when we published the paper it
7	said that's the proprietary information so I'm
8	positive of those red dots.
9	DR. SCHROCK: Is that AP600 or AP1000 or
10	both?
11	DR. WU: AP600, the 0.33.
12	DR. SCHROCK: And where is AP1000?
13	DR. WU: 0.47. Next please.
14	CHAIRMAN WALLIS: the L to steam
15	generator over D.
16	DR. WU: It's for the branches.
17	CHAIRMAN WALLIS: I know.
18	DR. SCHROCK: A thought occurred to me
19	that when you look at that process it's not unlike a
20	manometer effect and a model which attacks it from
21	that point of view might give you a better result than
22	you are going to get by trying to put it in terms of
23	entrainment from quiescent interface. It's the
24	fraction of the time that a slug covers up the break
25	and it's sucking in a lot of liquid then. Some other

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	fraction of the time there's very little liquid
2	getting entrainment.
3	DR. WU: Exactly. We tried to use the
4	average parameters.
5	DR. SCHROCK: But your modeling doesn't do
6	anything at all with the periodicity of that motion.
7	DR. WU: No, we used the average height,
8	the average for all tests, the average void fraction
9	in the downstream side.
10	CHAIRMAN WALLIS: This is meters per
11	second you are showing here.
12	DR. WU: Yes.
13	CHAIRMAN WALLIS: D/fg is in meters per
14	second.
15	DR. WU: Yes.
16	CHAIRMAN WALLIS: So KFK did experiments
17	in the range of centimeters per second gas flow.
18	DR. WU: Yes.
19	CHAIRMAN WALLIS: That's not even a
20	breeze.
21	DR. WU: You have a very big horizontal
22	branch so it's a 200 and 0.6 millimeters.
23	CHAIRMAN WALLIS: But in Europe in AP600
24	it's much higher.
25	DR. WU: Yes. AP600 in this range.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	46
1	CHAIRMAN WALLIS: And there's higher
2	pressure so it will be squared.
3	DR. BAJOREK: Yes, for AP1000 during the
4	ADS 1,2, 3 and 4 you are actually up with superficial
5	gas velocities 10 sometimes 20 meters per second. You
6	are very high. However if you compare that to ROSA,
7	SPES and APEX in terms of a Froude number the
8	agreement isn't all that bad. You're within about 50
9	percent.
10	DR. WU: This figure shows
11	CHAIRMAN WALLIS: Excuse me. Once you get
12	that sort of velocity I think you have to worry about
13	other mechanisms of entrainment as Sanjoy mentioned.
14	That's a range of velocity that you worry about
15	ripping off droplets where surface tension is the
16	restoring force and not gravity.
17	DR. BAJOREK: We looked at that in the
18	scaling. When you start to do it with that it's
19	almost like an annularized type of flow. You can see
20	that yes they are very far apart in AP1000 and typical
21	test velocities.
22	DR. SCHROCK: Am I wrong or isn't this JF
23	the JF in the horizontal pipe?
24	DR. WU: JF is here.
25	DR. SCHROCK: The horizontal pipe, yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	47
1	DR. WU: This is the horizontal pipe.
2	DR. SCHROCK: So JF would be zero in the
3	AP600 and AP1000.
4	CHAIRMAN WALLIS: You never get to it on
5	a long scale. It would be zero if there were
6	entrainment and carryover.
7	DR. BANERJEE: But the average of zero.
8	It would be very live locally.
9	DR. WU: It depends on the entrainment
10	rate.
11	DR. SCHROCK: Yes.
12	DR. WU: So like Dr. Schrock mentioned
13	their superb investigation is very focused to the
14	stratified case as to their objective. They did a
15	very wide range test and the data was well documented
16	with the steam-water and air-water.
17	This figure doesn't necessarily show in
18	the hot leg fluid region for all these far reaching
19	map. We would like to say that we want to extend our
20	JG to higher range I think recover the WAVY range and
21	it also goes to the slug plug range. That's our
22	objective to extend our database to a wider range and
23	the inner scaling vicinity. However we couldn't get
24	it to the annular flow for the bigger hot leg that we
25	have.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Next please. So a summary of the previous 2 two figures for the advanced plants as the branch size versus the hot leg size for AP1000 it's 0.47 and the 3 4 ratio for AP600 is 0.34. These parameters are 5 significant to the equation and those of previous investigations. So that's our motivation. 6 We would 7 like to run a test with a lot larger branch. Also the gas superficial velocity range in the previous tests 8 9 is much lower than that in the advanced plant 10 generally is greater than one meter per second. 11 So we want to extend our database to higher JG range. Also 12 in the previous experiment 13 investigations applicable were to co-current 14 stratified flow. Traditional flow regime map in our 15 test we showed was not adequate for this investigation because they showed that in that length that map we 16 17 used just to represent where we are going to get our 18 data. This reminds me of what 19 DR. BANERJEE: 20 they call slop catchers in the oil-gas business where 21 they have these horizontal pipes and vertical pipes 22 which are almost the same size. They could go in one 23 direction and the gas goes up. That's how they 24 separated it out. There's a lot of data on that type 25 of a situation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

48

	49
1	See what happens is that you fill up the
2	horizontal pipe with liquid and the gas gets thrown
3	off. It's like a separator. Their velocities must
4	be fairly similar. So leaving aside the nuclear
5	literature you might look at the oil-gas.
6	DR. WU: Okay, I'll do that.
7	DR. BANERJEE: Slop catchers they're
8	called.
9	DR. WU: They're called slop catchers.
10	DR. BANERJEE: You should talk to a guy
11	named Jeff Hewitt about that.
12	MR. BOEHNERT: He's expensive.
13	DR. BANERJEE: He's expensive but he knows
14	a lot about it.
15	DR. WU: Okay, I will work on that and see
16	if I can find some data. For the correlation
17	approach, the investigation focused mostly on two
18	parts. First there is the onset of entrainment. All
19	of them did as basically the Froude numbers are
20	correlated to the onset height of this gas chamber
21	height.
22	CHAIRMAN WALLIS: Which is d?
23	DR. WU: D is the branch size.
24	CHAIRMAN WALLIS: Branch size.
25	DR. WU: The lower case d is the branch

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	size. The upper case D is the horizontal pipe size.
2	CHAIRMAN WALLIS: So upper case D doesn't
3	come into this.
4	DR. WU: No. None of the correlation has
5	the
6	CHAIRMAN WALLIS: It's just a pool.
7	DR. WU: Just a pool. Then when the
8	liquid level is above the entrainment the onset level
9	all of them using the actual gas spacing height versus
10	the entrainment onset height and correlates the branch
11	quality with this parameter and did a reasonably good
12	job. We are going to follow this same approach
13	because in the model unit to accurately predict this
14	entrainment onset level and afterwards the liquid
15	entrainment rate. So the logic would be the same. We
16	don't do anything different. Next please.
17	CHAIRMAN WALLIS: So the argument is that
18	once the liquid is lifted up against gravity it has to
19	be entrained once you get it lifted up enough. It's
20	gone. You don't worry about it.
21	DR. WU: If the level is above it you have
22	to be entrained sooner or later.
23	CHAIRMAN WALLIS: A mechanism of the break
24	up of the liquid is irrelevant.
25	DR. SCHROCK: I'm disappointed that I'm so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	lacking in ability to persuade you but I just don't
2	think h_b has any relevance to how much liquid gets
3	entrained out of those slugs.
4	DR. BANERJEE: We should go back to the
5	previous slide.
6	DR. WU: Please you mean the attribute of
7	the entrainment onset now.
8	DR. SCHROCK: The physics of that are so
9	different from what's happening then.
10	CHAIRMAN WALLIS: He's reviewing the
11	database. He's telling you what he did.
12	DR. SCHROCK: No, he's telling me he's
13	going to continue to do it in the correlation that
14	he's going to propose.
15	CHAIRMAN WALLIS: He's just saying this is
16	what exists. What he has to propose you have to let
17	him get that far. He hasn't proposed anything yet so
18	maybe we should let him go ahead and see what happens.
19	DR. SCHROCK: I thought he just told us
20	that he's going to do that.
21	CHAIRMAN WALLIS: This is what the other
22	guys did.
23	DR. BANERJEE: The Froude number density
24	ratio.
25	MEMBER RANSOM: Dr. Wu.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	52
1	DR. WU: Yes.
2	MEMBER RANSOM: Didn't you just say that
3	you were going to stick with this same framework?
4	DR. WU: No, a similar approach but the
5	correlation is different.
6	MEMBER RANSOM: How about the parameters,
7	h over h _b ?
8	DR. WU: This one cannot correlate our
9	qualities. So we have some other parameters like on
10	the branch size and on the main pipe size.
11	CHAIRMAN WALLIS: Okay so you are going to
12	do something different. I think we need to move on
13	and see what you did.
14	DR. WU: I didn't make it clear. I
15	followed the logic but we didn't follow this approach
16	because we couldn't correlate it. We found this data
17	cannot correlate by h over h_b . We added an energy
18	balance equation for that later.
19	DR. SCHROCK: I'm glad Graham is able to
20	distinguish this. I couldn't.
21	CHAIRMAN WALLIS: I didn't say I could
22	distinguish anything. He's talking about what other
23	people did and I want to go and find out what he did.
24	DR. WU: The summary of the cross
25	comparison of these entrainment onset correlations

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	you'll see the Smoglie correlation and the Berkeley
2	correlation by Dr. Schrock are very similar for the
3	small branch size.
4	CHAIRMAN WALLIS: I don't understand the
5	ordinate there.
6	DR. WU: This is for the Froude number
7	like we defined on the previous pages the gas velocity
8	branch under the Smoglie.
9	CHAIRMAN WALLIS: I see. This is really
10	a Froude number. What you call a Froude number V^2/gd .
11	DR. WU: Yes.
12	CHAIRMAN WALLIS: That number is really
13	(V^2/gd) of \triangle I understand. The whole thing is a
14	Froude number.
15	DR. WU: Yes.
16	CHAIRMAN WALLIS: Now I understand. The
17	Froude number must Ap multiplied by gd.
18	DR. BANERJEE: Can you go back?
19	DR. WU: Go back please.
20	DR. BANERJEE: The length scale there is
21	d for the Froude number so it's
22	DR. WU: It's a branch of.
23	DR. BANERJEE: It's a very strange Froude
24	number because normally it would the height of the
25	liquid that would enter into the Froude number. There

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

54
is not a Froude number which has any physical
significance that I can see.
DR. WU: That's based on
DR. BANERJEE: The number is based on the
speed of a gravity wave versus the speed of the flow
right.
DR. WU: In fact there's a rate enforced
there rating it this way. Actually this parameter
basically, if we go back to the derivation of what
Smoglie is actually you say the Bernoulli effect on
the interface and they just rearranged the form to
this kind of Froude number form. That wasn't there.
DR. BANERJEE: So the original Froude
number involved the liquid level and then they had a
novel thing and then it simplified into this form
somehow.
DR. WU: Yes, they arranged it to this
nondimensional form. It was originally the form of
the analysis investigations so everybody followed the
convention. Next please.
CHAIRMAN WALLIS: It's a funny plot you
have here. Froude number.
DR. WU: It's like the gas velocity.
CHAIRMAN WALLIS: But you put it over six
orders of manager. The range of data must be a very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	small part of the graph.
2	DR. WU: Now we select the plot of these.
3	The data ranges was in this range.
4	CHAIRMAN WALLIS: Very small.
5	DR. WU: I just extended this to 10
6	because when I put h_b/d you go to one that is too
7	small. I had do to two decades.
8	DR. SCHROCK: For the downflow case there
9	was an experiment done at high pressure at INEL using
10	hardware out of the Loft experiment. It was a very
11	complex discharge geometry but it showed the extreme
12	range of conditions that you get compared to the other
13	experiments.
14	In order to put that on the same graph
15	paper you had to have two or three decades, I've
16	forgotten. But it's way off from the other data
17	because it was at high pressure. In your report you
18	say that the Schrock and Smoglie data don't agree but
19	here is your graph that by all normal NRC standards of
20	agreement is exemplary.
21	DR. WU: I think I need to make a comment
22	here. This is entrainment onset. Basically your data
23	and KFK data agree. For the entrainment to read
24	along, KFK data has very high quantity 95 percent to
25	1.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	DR. SCHROCK: So it was the entrainment
2	rate.
3	DR. WU: That's two sets of data does not
4	agree. But the summary of this figure, the KFK and
5	the Berkeley correlation for a relatively small break
6	group very well. Maciaszek correlation is for a
7	relatively larger break has a different return. And
8	the original correlation that's irrelevant because
9	it's a pipe over a pool of water. But that gives the
10	foundation as to how we correlated the data is the
11	Froude number because it doesn't have the confinement.
12	With the confinement, I changed to the Maciaszek
13	correlation for a larger break and for KFK and
14	Berkeley correlation for smaller break. Please.
15	MEMBER RANSOM: Before we go on what is
16	the definition of the Froude number that you are using
17	there. The codes don't seem to be defined in the
18	report.
19	DR. WU: Go back please. One more.
20	MEMBER RANSOM: Now right there. What is
21	the Froude number?
22	DR. WU: It's the V_{g3}/gd .
23	DR. SCHROCK: You're calling that the
24	Froude number.
25	DR. WU: Yes. Without the density

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	57
1	modification.
2	CHAIRMAN WALLIS: What I said is the
3	Froude number should include the density ratio as part
4	of its definition. The restoring force is Ap gd.
5	DR. BAJOREK: I've seen it used a lot of
6	different ways.
7	DR. WU: Go back.
8	DR. BAJOREK: The Froude number with the
9	V/dg but the modified Froude including all of the
10	density you're talking about there.
11	DR. WU: This is a single phase of fluid
12	mechanics. You are usually using this one.
13	CHAIRMAN WALLIS: There is no Froude
14	number if there's no ${}_{\Delta p}$. The mechanism is gd ${}_{\Delta p}$
15	versus p V^2 . That's what comes out of your
16	dimensional analysis of the equations. That whole
17	thing is a Froude number not the separate factor.
18	DR. WU: This whole set.
19	CHAIRMAN WALLIS: That's what comes out of
20	our dimensional analysis of the equation.
21	DR. WU: I grabbed that one from a single
22	phase of fluid mechanics book. They treated this as
23	a Froude number squared.
24	DR. BANERJEE: And V is the velocity in
25	the off-take, right?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	DR. WU: Yes.
2	CHAIRMAN WALLIS: So the uptake is minute
3	and I think this cannot be very good, can it, because
4	Vg would be immense.
5	DR. WU: It would be to there.
6	DR. BANERJEE: That's the ultimate limit.
7	DR. WU: Can not be good to
8	CHAIRMAN WALLIS: It's very strange that
9	the surface knows what the small part diameter is.
10	DR. BANERJEE: It's seems that it's way up
11	there.
12	CHAIRMAN WALLIS: It doesn't make an
13	sense.
14	DR. BAJOREK: Now wait a second. Dr Wu,
15	doesn't that come from treating it as a point source
16	following the streamline and conserving mass in the
17	pipe?
18	DR. WU: Yes.
19	DR. BAJOREK: That formulation originated
20	by taking a look at the large quiescent pool with the
21	pipe sitting above it.
22	DR. WU: Yes.
23	CHAIRMAN WALLIS: It actually it does.
24	DR. BAJOREK: So you need that area for
25	continuity because he didn't know the size of this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

59
very conical region. Which is why in the early
figures last week well why do we have what looks to be
concentric ring. That was the initial formulation.
Now engineers being engineers had taken that and
applied it now to a pipe or a T type of geometry. But
the formula or that format has remained.
DR. BANERJEE: I think Smoglie in her
thesis did this. If I recall.
DR. BAJOREK: Yes.
DR. BANERJEE: At a point sink.
CHAIRMAN WALLIS: You cited Bharathan too.
DR. WU: Yes, those actually just did a
nondimensional analysis. Smoglie did a point source
with this streamline cursory interface. So we
produced the result by adding a mirror source on the
other side to preserve there is no flow goes through
the interface.
Next please. For the entrainment rate
correlation the KFK data is in this range. It's 95
percent to 1 so they correlated their data in this
curve. Berkeley, Dr. Schrock's data, actually falls
very low in this range to the 85 to 90 percent. So
it's covered well the range of quality. They
correlated their data with this curve. The Yonomoto
and Maciaszek had a relative larger break size and I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	60
1	just changed these two parameters to see how the
2	correlations work. It goes on a curve like this. So
3	it's spread three different ways.
4	CHAIRMAN WALLIS: It's about as big a
5	spread as you could ever find.
6	DR. WU: Yes. So we think there are some
7	other parameters other than h over h_{b} like Dr. Schrock
8	mentioned. So we have to pick up that one to really
9	group these together.
10	CHAIRMAN WALLIS: So maybe quality isn't
11	the right variable. It is a mass flow rate ratio.
12	Maybe that's not the right variable.
13	DR. BANERJEE: Quality is defined as
14	homogenous quality.
15	DR. WU: That the flow quality.
16	DR. BANERJEE: Is it flow quality?
17	DR. WU: Yes, flow quality.
18	CHAIRMAN WALLIS: Qualities of flow.
19	DR. WU: So the gas mass flow rate over
20	the total mass flow rate.
21	CHAIRMAN WALLIS: I'm always doubtful of
22	that when you do air-water. Air has such a low
23	density that I don't think the mass flow rate ratio is
24	the appropriate quality to use.
25	DR. WU: We used the kinetic energy like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	61
1	half of mv^2 and later forcefully convert it to the
2	quality case. The mechanism is basically a kinetic
3	case.
4	CHAIRMAN WALLIS: If you were entraining
5	in for instance the Schrock's model of a slug coming
6	by you just take off a great chunk of liquid and then
7	you have all gas and a chunk of liquid. If the gas
8	had no density at all, you would still be taking off
9	the same amount of liquid. So it's not clear that the
10	mass flow rate of the gas
11	DR. WU: That density ratio has to be in
12	the
13	DR. BANERJEE: H by H _b equal to one means
14	that the level is always at the onset of entrainment.
15	DR. WU: Yes. It's like the level by
16	entrainment is going to go up. Go up to somewhere no
17	entrainment occurred. That's the onset of
18	entrainment.
19	DR. BANERJEE: I'm trying to understand
20	the physics of this. H by H_b equal to one for the
21	mass data
22	CHAIRMAN WALLIS: That point there.
23	DR. WU: Should be here. You have only
24	single phase gas goes through the branch. You don't
25	have liquid there.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	DR. BANERJEE: Right but you have the d by
2	D equal to 3.0 goes to one at 0.2.
3	DR. WU: That's their correlation's
4	program. They cannot go beyond so they stopped here.
5	Their correlation
6	DR. BANERJEE: From a physical viewpoint
7	you are getting a quality of 0.3 at the onset.
8	DR. WU: No, this is the branch size. The
9	nature of main pipe to the branch size has nothing to
10	do with the level.
11	DR. BANERJEE: H by H _{b.} If I look at your
12	graph I mean your picture h is the level of the gas
13	that is measured downwards during entrainment.
14	DR. WU: Yes.
15	DR. BANERJEE: H _b is at the onset of
16	entrainment.
17	DR. WU: Yes.
18	DR. BANERJEE: So h by h_b equal to one is
19	the level at the onset of entrainment.
20	DR. WU: Exactly.
21	DR. BANERJEE: So you are getting in fact
22	that data shows that you get a wide If it was true
23	that d by D 3.4 should be one. The quality should be
24	one, right, at the point entrainment stops?
25	DR. WU: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	DR. BANERJEE: But the other one is
2	showing that it's one at 0.3 or something. That data.
3	DR. WU: By the work.
4	DR. BANERJEE: Is it that data or is it
5	DR. WU: No this is a correlation. I used
6	as our real parameter. The real size ratio of our hot
7	leg to the branch and we applied their correlation.
8	It goes here and it cannot go further because it's
9	already reached one.
10	PARTICIPANT: Obviously there are other
11	things going on.
12	DR. WU: So that correlation cannot be
13	applied.
14	DR. BANERJEE: Even the other one shows
15	that very rapidly you get this high and low quality.
16	DR. WU: So in entrainment the most we
17	have is this right here.
18	CHAIRMAN WALLIS: I guess we can conclude
19	that this old work is no good and move along.
20	DR. SCHROCK: Yes, right.
21	CHAIRMAN WALLIS: See what you did.
22	DR. WU: Let's see the test. The
23	summaries are scattered.
24	CHAIRMAN WALLIS: It's more than a
25	scatter. There is a vast disagreement.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	64
1	DR. SCHROCK: The flow in the branch line
2	is a critical flow so there is a good deal of flashing
3	going on between the entrance to the branch line and
4	the point where the flow is critical. It's always a
5	little bit of a surprise to me that it has no impact
6	on these determinations of how much enters the branch
7	line and especially comparing air-water versus steam-
8	water.
9	CHAIRMAN WALLIS: There's a feedback in
10	the real reactor this critical flow at the valve.
11	DR. SCHROCK: And these experiments that
12	there's critical flow out that path too.
13	CHAIRMAN WALLIS: That determines the back
14	pressure and that puts to some extent what goes out
15	this branch line because if you have a slug of water
16	going up there that changes the whole flow rate and
17	the pressure and everything else in the system because
18	of the critical flow. There's force.
19	DR. BANERJEE: All the experiments showed
20	exactly what you are saying which is that if you have
21	a slug of water going through that one thing. Which
22	is why we have the difficulties with this. That was
23	pretty good actually.
24	MEMBER RANSOM: Act of desperation.
25	DR. BANERJEE: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	MEMBER RANSOM: Just a little
2	clarification, Dr. Schrock. All of the data is for
3	that kind of case where the break line is choked?
4	DR. SCHROCK: There's a small fraction of
5	the data that gets at such low upstream pressures that
6	you don't get critical flow. But the majority of the
7	data is critical flow in the branch line.
8	MEMBER RANSOM: Is that true in these
9	experiments also?
10	DR. SCHROCK: Yes. They have about three
11	or four atmosphere upstream pressure so they get
12	critical.
13	DR. WU: So our test mostly here for
14	the vicinity. This is the vessel. Inside it has
15	seven spargers stainless steel porous rods. The air
16	injection through these pipes goes through and sparge
17	it out of these spargers. The water goes through this
18	side in that and sheer off these bubbles from a pool
19	boil (PH) simulating a pool boil (PH) in the inside of
20	the vessel.
21	The hot leg is made of PVC. We actually
22	welded the PVC by ourselves at a significantly reduced
23	cost. We bought a welder for \$400 so that we can make
24	as many Ts as we want versus the casted acrylic.
25	It's like a fraction of the cost.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	MEMBER RANSOM: Do you have a scaled
2	drawing? How close are those tops of those porous
3	rods to the off-take line?
4	DR. WU: It's scaled to the fuel rods or
5	the top
6	MEMBER RANSOM: So they are almost up to
7	the Why did you choose that geometry versus just
8	using a porous plate?
9	DR. WU: At the beginning we had a kind of
10	ambition. We put several valves there. We said if we
11	shut down the center we might generate some kinds of
12	profile and see what's the effect of that. We were
13	trying to say we can't have control over this part and
14	that was the origin of that kind of thinking.
15	MEMBER RANSOM: This way you have seven
16	plumes that obviously you're going to get more flow
17	out the top of the rod than you will out the lower
18	parts just because of hydrostatic head effects.
19	DR. WU: It's kind of low GIG so it
20	because the vessel is fairly large so it has pool boil
21	(PH) characteristics. You don't see these kinds of
22	vapor column coming out of the surface. In fact Dr.
23	Wallis and Dr. Schrock were there and you didn't see
24	this shooting out gas for the surface because there
25	was low GIG. Please.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

67 1 So we had another problem about two d 2 upstream and the two d downstream to measure the hot 3 leg level. It's a kind of conductivity probe. Two 4 types of tests were performed. The first one is the 5 entrainment onset tests. Basically we filled the water above the hot leg elevation and then opened the 6 7 gas valve and blow the entrained liquid out until it settled. No more entrainment. That's our entrainment 8 9 onset level. 10 Then we tried to go upward. We fixed the 11 flow rate and increase in liquid level to qas 12 somewhere where it started to entrain. Each time you 13 have to overshoot it so you can't observe the 14 entrainment. Then finally it settled down SO 15 basically the approach is the same. We didn't see much difference. 16 17 I said that the type of test this is 18 steady state entrainment. We inject fixed gas flow 19 rate and liquid flow rate so we know the quality out 20 of the branch. Now we go back to measure the level, 21 downstream and --22 CHAIRMAN WALLIS: H becomes the thing you 23 measure to force the entrainment. 24 DR. WU: Yes. So we force the 25 entrainment. We go back from the quality to find the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	edge. But in reality in the code you need the edge to
2	really predict the entrainment so it's a backward
3	CHAIRMAN WALLIS: You need to tell us how
4	you measure h.
5	DR. WU: Let's go to the next page and I
6	will show that. We correlate half ring type
7	conductivity probe. It's a flush mounted side of this
8	PVC material originally and sandwich it into two
9	flanges. This tube or electrode that we're pulling
10	out and then the level will be reflected in the
11	nonlinear form. This is the output voltage. This is
12	the actual height inside that.
13	CHAIRMAN WALLIS: What's the principle?
14	DR. WU: It's the conductivity.
15	CHAIRMAN WALLIS: Resistance.
16	Conductivity.
17	DR. WU: Yes, resistance.
18	CHAIRMAN WALLIS: So you have to monitor
19	the conductivity of the liquid all the time.
20	DR. WU: We actually ran this at 80
21	kilohertz so it's like an impedance probe. It has
22	capacitancy factor. So it's an alternated current.
23	So each time we ran the test we calibrated. After
24	that we calibrated to avoid
25	DR. SCHROCK: You have two rings and they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	are separated by a couple of feet.
2	DR. WU: No, it's one half ring. It's two
3	electrodes to make this switch.
4	DR. SCHROCK: You have two flanges on this
5	instrumentation. It's only the one that closest to
6	the test vessel that has the impedance probe.
7	DR. WU: Both sides have it.
8	DR. SCHROCK: Both sides. That's what I
9	said. So you have two different locations. It isn't
10	clear to me yet how the data from those sensors ends
11	up giving you a height. How do you translate the
12	experimental data from that instrumentation into the
13	height of liquid?
14	DR. WU: Using the voltage output the
15	impedance between this because the water level changes
16	between these two electrodes. It's reflected of the
17	water level because there are changes of conductivity.
18	DR. SCHROCK: As I visualize this slushing
19	going on, you have one thing at one set of sensors and
20	another thing at the other one at any given instance.
21	They're both time dependent. So it isn't obvious to
22	me how you extract a single height.
23	DR. WU: No, it's not a single height.
24	It's two heights.
25	DR. SCHROCK: Two heights.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	70
1	DR. WU: We use the downstream because
2	it will make you observe the slug appearance down in
3	the steam generator section. The average height of
4	the downstream is greater than the upstream side.
5	It's different.
6	DR. SCHROCK: But the entrance to the
7	branch line is between the two. What sense does it
8	make to attribute it to one or the other?
9	DR. WU: Because right under the branch
10	here, it's hard to instrumentate there to get the
11	level. Also you see that there's a conical shape of
12	liquid always being put there. So we are trying to
13	either use the upstream or downstream level to build
14	our model. We found actually and later I will show
15	the movie entrainment mostly coming from the slug
16	backward from the steam generator side being pulled
17	out.
18	CHAIRMAN WALLIS: You measure the vessel
19	level too.
20	DR. WU: I measured the vessel
21	CHAIRMAN WALLIS: I would think the low
22	flow rates, the vessel level and the hot leg are all
23	the same. Everything's pretty horizontal.
24	DR. WU: It's not the same.
25	CHAIRMAN WALLIS: It's not the same.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	DR. WU: We found like Dr. Schrock
2	mentioned from a vertical vessel is like a cylinder to
3	the side branch. There is also an issue of surface
4	separation. The mixture level in the steady
5	entrainment test in the vessel is higher than in the
6	hot leg level.
7	CHAIRMAN WALLIS: The mixture level that
8	is.
9	DR. WU: Yes, the mixture level is higher.
10	CHAIRMAN WALLIS: I keep thinking of how
11	the code is going to work. Is the code going to
12	predict these levels?
13	DR. WU: To my understanding the code
14	actually says in the mixture level and the hot leg
15	level is the same. When we used the five to model
16	our facility we found that the level is the same. So
17	I think maybe the work sponsored by NRC right now is
18	performing in Milwaukee, Wisconsin they have some kind
19	of about the form of vessel to the side branches as
20	phase separation. Maybe that can give us some input
21	to modify the code a little bit.
22	CHAIRMAN WALLIS: So it's at this
23	separation process
24	DR. BAJOREK: The results that you have
25	seen, the idea that the mixture level was higher in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
the vessel than it is in the hot leg, is consistent with Cojasoy's (PH) work in Milwaukee which shows that most of what occurs in that hot leg is set up early in the hot legs. It's not a development all the way down the hot leg. But it occurs near the inlet nozzle and whether it's intermittent or stratified occurs over on that side.

CHAIRMAN WALLIS: The bubbly mixture in the vessel then you have a stratified from the hot leg you're going to have flow into the hot leg from the top and back out the bottom. There's going to be something that happens near that through the hot leg that has to be analyzed by itself somehow.

14 MEMBER RANSOM: You have to remember that 15 the codes have a one dimensional view of the pipe. So there's only a center line. 16 This is a limitation. 17 And you have the void fraction which would tell you 18 the level in the pipe but nevertheless the off-take 19 from the vessel is a point. It's not a distributed 20 area like you would have in a real situation. So you 21 have to realize that the models have these limitations 22 and it has to fit in that framework.

While I'm at it, would there be any value in actually feeding the gas flow from the upper part of the vessel and so you do have a stratified level in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

	73
1	the vessel itself? I know some of the other
2	experiments like Creare were run that way. So that
3	you did not bother bubbling the vapor or the gas
4	through the liquid and creating a rather messy mixture
5	level in the vessel in effect. I realize the real
6	situation is different than that. Then at least you
7	can interpret the experiments more easily.
8	DR. BAJOREK: Go to your next one.
9	DR. WU: Next please. Also in response to
10	NRC's comments that figure is actually later.
11	DR. BAJOREK: Okay.
12	DR. WU: We did some blow down from the
13	top port. That's not from the side.
14	DR. BANERJEE: And there is a separated
15	level. It's not churned up mixture coming back and
16	forth.
17	DR. WU: Yes. There is a working
18	condition where there is no slug.
19	DR. BANERJEE: But there is a level that
20	is not full of bubbles and things, the liquid, in
21	this.
22	DR. WU: Generally in this, no. You don't
23	see much air bubbles being changed in the hot leg
24	liquid.
25	DR. BANERJEE: You can see this visually.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	DR. WU: We have two movies that show it.
2	It's quite clear separation.
3	CHAIRMAN WALLIS: Do you have an analysis
4	of what the hot leg level should be based on some
5	analysis of how it goes from this bubbly mixture to
6	stratified? Do you have an analysis of what happens
7	at the junction between the vessel and the hot leg?
8	DR. WU: No.
9	CHAIRMAN WALLIS: That would seem to be
10	important.
11	DR. WU: I treat the level out of that
12	range as the parameter I would be interested.
13	Otherwise I will follow the logic and say I'm going to
14	use the vessel mixture level to correlate the
15	entrainment rate. That really makes this model just
16	work for an ATLATS facility.
17	CHAIRMAN WALLIS: Froude has to do
18	something to predict that level on that hot leg.
19	DR. WU: Yes.
20	CHAIRMAN WALLIS: You don't have an
21	analysis of what's going on. You were just going to
22	use some blind general method.
23	DR. WU: I agree with you. I actually
24	played with that and decided to correlate it but
25	that's not our task order.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	CHAIRMAN WALLIS: If h_L is the thing that
2	matters in all this work you ought to be able to
3	predict it somehow.
4	DR. WU: I can go back to all the data.
5	We have all the data. We can look into that.
6	DR. SCHROCK: In the previous slide you
7	showed what I guess is really a calibration curve.
8	DR. WU: Yes.
9	DR. SCHROCK: That is an excellent fit of
10	the data to a curve based on a liquid level which is
11	measured optically or some other way.
12	DR. WU: It's measure by DP.
13	CHAIRMAN WALLIS: If it's a flat
14	interface.
15	DR. SCHROCK: Just a flat interface.
16	DR. WU: Yes.
17	MEMBER RANSOM: But then when you go to
18	the use of the instrument with the kind of flow that
19	actually exists there, you get this extreme scatter.
20	DR. WU: Yes.
21	DR. SCHROCK: Sorry. I'm still unclear on
22	how one interprets an h_{L} from this kind of scatter.
23	DR. WU: Let me finish this one.
24	DR. SCHROCK: Okay.
25	DR. WU: What's the response to this. It

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 was last year ACS meeting mentioned our data sampling 2 rate is like 1 Hz because we had like 20 channels and 3 then we need to run 20 minutes. So we couldn't afford 4 to getting a higher data acquisition read. Dr. 5 Schrock and Dr. Wallis said you have oscillation like one second. You have a data sample in a rate of one 6 7 second and maybe you're missing something. So that required us to evaluate the data 8 acquisition reading effect especially for the slugging 9 10 For the entrainment onset level when the effect. 11 level doesn't have a slug it doesn't have that much 12 scattering. We have reported to Dr. Bajorek. These 13 are used when slug appears. When sluq appears you 14 have these scattering, the physical scattering to this 15 flow. It's not as a measurement scattering. So my conclusion is the scattering due to 16 17 actual liquid level fluctuations because the slug. So 18 the rate about this is the downstream steam generator 19 site. You can clearly see this scatter getting worse 20 because of the slug here going back and forth. 21 CHAIRMAN WALLIS: Tell me what's being 22 plotted here. 23 DR. WU: This is standard deviation of the 24 liquid level over the liquid level and this is the average of the liquid level. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

76

	77
1	CHAIRMAN WALLIS: What is the sigma?
2	DR. WU: Sigma is a standard deviation of
3	the liquid level. This is a fluctuation term.
4	CHAIRMAN WALLIS: The standard deviation
5	of 0.4 would be pretty significant.
6	DR. WU: Because the new created slug
7	coming up you have this
8	DR. BANERJEE: Do you have a time plot?
9	DR. WU: We have time clock?
10	DR. BANERJEE: Time plot of the level.
11	DR. WU: Yes, I didn't put it in the
12	presentation. Yes, for the 50 Hz, we're
13	DR. BANERJEE: I mean it's not scattered.
14	It's actually a wave or something.
15	DR. WU: Yes. It's a wave. So when you
16	average it, then you see the standard deviation.
17	CHAIRMAN WALLIS: I'm not concerned about
18	averaging because maybe the entrainment comes from the
19	top of the waves and the bottom is irrelevant.
20	DR. WU: For the code you can only see the
21	average. So that's our approach. We only put this
22	log of frequency on the inside. I don't think it's
23	compatible with our approach for this.
24	CHAIRMAN WALLIS: But clearly if you had
25	a level which was smooth and you had a wave on it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	which went up to the branch pipe then you get some
2	entrainment.
3	DR. WU: Yes.
4	CHAIRMAN WALLIS: And just using the
5	average wouldn't reflect the physics.
6	MEMBER RANSOM: Is h_{L} the average?
7	DR. WU: The average in the liquid level.
8	MEMBER RANSOM: And average on the other
9	side too? Sigma divided by average.
10	DR. WU: Yes.
11	MEMBER RANSOM: So each one is the average.
12	DR. WU: This is the average and this is
13	the standard.
14	MEMBER RANSOM: And each data point is an
15	experiment?
16	DR. WU: It's an experiment for the
17	comparison, the open symbol and the solid symbol is
18	the one Hz and the 50 Hz sampling read. You have a
19	similar scattering. The 50 Hz doesn't make it better.
20	So what we think is the one Hz is kind of slow but
21	since we have at least a four minute duration so that
22	average behavior is about the same. So we caught some
23	slugs there.
24	DR. BANERJEE: But this is under different
25	conditions or is this at one condition? I'm a little

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	confused by this.
2	DR. WU: These are different conditions.
3	DR. BANERJEE: So many different
4	conditions.
5	DR. WU: Yes, this is the average level.
6	Each point is equivalent to four minutes average.
7	CHAIRMAN WALLIS: How big is the pipe?
8	DR. WU: The pipe is 6 inches ID.
9	CHAIRMAN WALLIS: Sixty or six?
10	DR. WU: Six inch.
11	CHAIRMAN WALLIS: So if we have an average
12	of four and we have a sigma of range of 0.3 does that
13	mean that the pipe is sometimes full of liquid? It
14	probably does.
15	DR. WU: Yes. That's right because of the
16	coming outpour. The slug.
17	DR. SCHROCK: But the data seem to show
18	that you have a higher average level next to the steam
19	generator than you have next to the reactor vessel.
20	Isn't that puzzling?
21	DR. WU: I think it should be like that
22	and this is what we expected the difference between
23	the stratified and what we have right now. Since you
24	only have this branch going there you have liquid
25	momentum and gas momentum stop there and turn around.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	So you have to have a certain kind of gravity here to
2	stop the liquid.
3	DR. SCHROCK: So it's pushed some liquid
4	up in the cold leg and on average it holds it up there
5	as other stuff is exiting through the break and
6	upstream the average level is lower.
7	DR. WU: Yes, amazingly we found the
8	five actually has a momentum balanced model if we turn
9	that some and the action with your entrainment
10	correlation can actually predict this difference.
11	DR. SCHROCK: But it just aggravates the
12	situation further in trying to use $\boldsymbol{h}_{\!\scriptscriptstyle L}$ as a parameter
13	that has significance for the quality in the break
14	flow. I mean $h_{_{\rm L}}$ where. You have two different $h_{_{\rm L}}$
15	neither one of which are at the entrance to the branch
16	line.
17	DR. WU: That's a very good question which
18	bothers us. We tried the upstream. We tried the
19	average. We tried the downstream. We found the
20	downstream correlated very well because we think the
21	downstream washing the slug back is closer to the
22	branch and the entrainment mostly happens governed by
23	the downstream height. That's later in the
24	correlation development.
25	DR. BANERJEE: I'm still puzzled by the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	slide on the right. Each of those points is an
2	experiment of four minutes duration.
3	DR. WU: Yes.
4	DR. BANERJEE: And what has been varied in
5	these experiments?
6	DR. WU: We ran the tests like that way.
7	Usually it is a fixed gas flow rate and inject a
8	liquid for example four gallons per minute for five to
9	six minutes. We increased the liquid again so it was
10	step up so they never were changed. We went through
11	that process. Then we go back to run the second
12	series by changing the gas flow rate and repeating the
13	change of liquid flow rate.
14	DR. BANERJEE: So let's take the average
15	liquid level up the steam generator side as being
16	four. The points which are in this vertical line if
17	you have the same experiment exactly, the same gas
18	flow rate, the same liquid flow rate, do those four
19	minute duration segments actually change the standard
20	deviation then? Sigma by $h_{\scriptscriptstyle\! \rm L}$ for exactly the same
21	experiments, does it change? So let's say that $h_{\!\scriptscriptstyle \rm L}$ is
22	fixed at four.
23	DR. WU: When slug appears this is
24	scattered. It can be here. It can be there. There's
25	no systematic shift that way as the gas flow rate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	DR. BANERJEE: No, I'm saying doing the
2	same experiments do you get a scatter if I asked you
3	to plot
4	DR. WU: Yes.
5	DR. BANERJEE: So the four minute duration
6	is not a sufficiently long average. Is that it? If
7	you took an average for a long period of time. I'm
8	missing something.
9	DR. WU: The average could be the same but
10	the standard deviation may change a little bit.
11	DR. BANERJEE: Well, it's changing by how
12	much? I mean does it go from say 0.15 to 0.35, the
13	standard deviation?
14	DR. WU: It's 10 percent to 34 percent.
15	DR. BANERJEE: So for the same experiment
16	you will get different standard deviations in this
17	four minute segment.
18	DR. WU: Let me see. It's the same
19	experiment.
20	DR. BANERJEE: That's what I'm asking. Is
21	it that?
22	CHAIRMAN WALLIS: I think it's different
23	experiments.
24	DR. BANERJEE: That's the question I'm
25	asking you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	83
1	DR. WU: It's a different experiment but
2	each time it changes.
3	DR. BANERJEE: So what is changing? If $h_{_{ m L}}$
4	is four Let's fix it at four h_{L} .
5	DR. WU: You cannot fix it. Since you
6	change the fixed gas flow rate, you change the liquid
7	flow rate.
8	CHAIRMAN WALLIS: It's a combination of
9	liquids and gases.
10	DR. WU: So then you will have changes in
11	the liquid average.
12	MR. KELLY: Excuse me. This is Joe Kelly
13	from Research. Correct if I'm wrong, Dr. Wu, but I
14	think sitting on this side I think I'm hearing it
15	differently. I think what he has as a standard
16	deviation is really the wave height. So each point is
17	from one experiment, one combination of superficial
18	gas and vapor velocity. So averaged over four minutes
19	there's a height in the hot leg at this two different
20	elevations.
21	What you see in the figure there's a
22	difference in that average height between whether
23	you're upstream or downstream of the T. What you also
24	see if for that four minute duration the difference in
25	the standard deviation of the measurements which were

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	taken at either a one Hz or 50 Hz sampling rate. So
2	you're seeing in effect the wave height processed
3	through a standard deviation.
4	DR. BANERJEE: So each of those points
5	represents a different combination of gas and liquid
6	flow rates. That's not clear. What happens if you
7	repeat the same experiment do you get a different
8	sigma by h_{L} ?
9	DR. WU: I expect the same average level
10	and standard deviation.
11	DR. BAJOREK: That's a good question.
12	DR. WU: I don't know. If you repeated
13	the standard deviation or not but the average level is
14	the same because
15	DR. BANERJEE: I know. But I'm asking you
16	whether you get sigma by $h_{_{ m L}}$ the same.
17	DR. WU: I can look into that. I think it
18	should be the same according your logic.
19	CHAIRMAN WALLIS: Not too different.
20	DR. BANERJEE: Within experimental error.
21	CHAIRMAN WALLIS: It depends on the
22	frequency of the slugs. If the frequency of the slugs
23	is eight minutes then
24	DR. BANERJEE: Then it's wrong. The
25	reason I'm asking you this question is whether there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	is very low frequency sloshing though I imaging four
2	minutes is long enough.
3	CHAIRMAN WALLIS: You really need to look
4	at a trace of height versus
5	DR. WU: I can do that. I will look into
6	that by just moving average and moving standard
7	deviation to see when it converges.
8	CHAIRMAN WALLIS: I guess we can spend a
9	lot of time on this figure but I don't think it's
10	going to be used for anything else. We might as well
11	move on. It's not going to be used for developing a
12	model. It's just evidence that there's a lot of
13	waviness going on. Now we are due to take a break at
14	10:30 a.m. and you're going to start a new part of
15	your presentation and we're an hour late.
16	I think the reason it's late is because
17	we've asked all the questions which was anticipating
18	what you were going to say later. So probably you've
19	answered the questions I hope which we won't have to
20	ask later. So we can go faster if we take a break
21	now.
22	DR. WU: Take break now.
23	CHAIRMAN WALLIS: I'd like to come back at
24	10:40 a.m. It's actually going to be a 11 or 12
25	minute break. We will start at 20 minutes before the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	hour. Give you a break. Off the record.
2	(Whereupon, the foregoing matter went off
3	the record at 10:30 a.m. and went back on
4	the record at 10:40 a.m.)
5	CHAIRMAN WALLIS: Back on the record.
6	We'll continue with the presentation by Dr. Wu. Since
7	we asked so many questions earlier maybe we can move
8	along quicker and try to catch up so we can get lunch
9	probably around 12:30 p.m. if we're lucky.
10	DR. WU: Thank you. This is Qiao Wu.
11	First I'm going to talk about Entrainment Onset Study.
12	So starting from the experiment the addition part
13	that's in response to the ACS suggestion. Last year
14	when Dr. Schrock and Dr. Wallis saw the interface and
15	what the interface effect on the entrainment onset
16	correlation. They suggested if we could inject gas on
17	the air from the top.
18	So we did that but the gas flow rate was
19	not that high compared with the main pipe injection
20	because we put a hose to the top and we put a T inside
21	so the air is not directly blown to the surface. It's
22	blown to the side in such a way to suppress a little
23	bit of an interface.
24	Next please. We found it does have for
25	this figure it's $\boldsymbol{h}_{\!_{b}}$ over the main pipe diameter and I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	correlated it with our new correlation as later I'm
2	going to introduce. I found that the open symbol is
3	the data obtained from the air blow injection from the
4	top. It doesn't have an effect but consider the
5	scattering of the data we could not differentiate it.
6	So the conclusion here is it's not significant. It
7	does have a little bit of an effect on that.
8	CHAIRMAN WALLIS: But it does tend to be
9	bigger. The h_b tends to be bigger when you have top
10	air injection.
11	DR. WU: Yes.
12	CHAIRMAN WALLIS: So that means that it's
13	a more stable situation with the top air injection
14	which would make sense when you're not shaking
15	interface so much.
16	DR. WU: Yes.
17	CHAIRMAN WALLIS: But the deviation is
18	getting worse as you go down to lower values perhaps
19	so maybe if you are really worried about low values of
20	h_b and I don't know what the range of your incident
21	predicting, you might have to worry about the error
22	just looking at the trend of the data points there.
23	If you take those circles they're on a straight line
24	pretty well if you extended that down. We would have
25	a much bigger deviation towards the origin.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	DR. BANERJEE: Maybe you should do a run
2	at 0.2.
3	CHAIRMAN WALLIS: 0.2, yes.
4	DR. BANERJEE: h_b by d. See what happens.
5	CHAIRMAN WALLIS: That's a pretty full
6	pipe, isn't it?
7	DR. WU: Yes, it has some difficulty to
8	range from the top. I remember the run. I will see
9	if we can get to this range here.
10	DR. SCHROCK: You only have five data
11	points guiding you.
12	DR. BANERJEE: With a distinct trend
13	though. You could put a line through them and
14	probably go through all of those circles.
15	DR. BANERJEE: Different correlation.
16	DR. WU: Here you worry about going
17	further here. It's a stretching out.
18	CHAIRMAN WALLIS: I don't know if I should
19	worry or not but I think there would be a much bigger
20	deviation if you went to lower h.
21	DR. WU: Yes.
22	CHAIRMAN WALLIS: Because when the pipes
23	are almost full a little wave makes a big difference.
24	MEMBER RANSOM: Is the correlation
25	developed based on the data or the air injection from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	below?
2	DR. WU: Below. It won't stay that way
3	actually.
4	CHAIRMAN WALLIS: Yes, let's find out what
5	this correlation is.
6	DR. WU: Okay. Let's go to the next page.
7	So the entrainment onset correlation developed and was
8	actually based on Maciaszek's work. And Maciaszek's
9	work was based on the Bharathan's work for the lower
10	parameter voiding. So that work basically assumes you
11	have a gas, air goes into the branch, and at the
12	interface there is a maximum velocity position and
13	that maximum velocity for potential flow. So maximum
14	velocity position actually corresponded to the lower
15	pressures so your entrainment should occur here.
16	Based on these kinds of physical argument
17	the first equation is the continuity equation. Just
18	to say here is a cylinder with the diameter of the
19	break. It is represented by the wave spacing. The
20	gas goes into the cylinder from the periphery so the
21	correlation actually says it's like a pipe on the
22	and the liquid that goes the gas goes into this break.
23	Based on this argument the height of this wave height
24	should be equal to the kinetic energy because of the
25	infinite side the velocity is zero based on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	potential flow.
2	That option is one option. Later we are
3	going to modify it. We think our pipe is one
4	dimensional and you go to infinite you still have a
5	velocity. So we will modify this term a little bit.
6	DR. BANERJEE: One is the gas
7	DR. WU: At this position.
8	DR. BANERJEE: Subscript 1 is gas.
9	DR. WU: Yes, gas.
10	DR. BANERJEE: And V_1 is the velocity in
11	the horizontal leg.
12	DR. WU: Horizontal leg and this entrance
13	position.
14	DR. BANERJEE: It's the average velocity.
15	DR. WU: It's the average velocity. They
16	didn't consider the local velocity.
17	DR. SCHROCK: Just to the 2-d model, it
18	imagines that there's a source on both sides.
19	DR. WU: This original approach for the
20	interface stability didn't consider that.
21	DR. SCHROCK: I'm just contrasting it to
22	the situation that you had in your experiment. You
23	have gas flow from the right and gas flow from the
24	left in this model. It's a 2-d model.
25	DR. WU: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	DR. SCHROCK: And in the experiment you
2	have gas flow from one side and not from the other
3	side.
4	DR. WU: Yes.
5	MEMBER RANSOM: In fact that wasn't quite
6	so clear. This model is actually an axisymmetric
7	model about that center line that he has there.
8	CHAIRMAN WALLIS: I think it's 2-d in a
9	plane, isn't it?
10	DR. WU: Yes, 2-d in a plane.
11	CHAIRMAN WALLIS: Which is you're
12	multiplying V_1 by the area of that cylinder.
13	MEMBER RANSOM: So in other words he gets
14	the velocity solution for the gas from the 2-d
15	CHAIRMAN WALLIS: The velocity from the
16	top of the wave is very different from the velocity at
17	the side.
18	DR. WU: So this correlation didn't
19	consider the confinement of the side wall of the pipe.
20	It didn't consider the flow from one direction like
21	Dr. Schrock.
22	DR. BANERJEE: What is ρ_z there? Can you
23	walk us through the equations so that we can
24	understand?
25	CHAIRMAN WALLIS: That's going to take us

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	forever.
2	DR. WU: $\rho_1 \mathbf{v}_1$ is the gas for the velocity
3	at this cross section. And the number is the diameter
4	of this wave ring right under the break. The third
5	is the wave height h_b so it's basically this term is
6	the surface error of the cylinder under the break. So
7	modified by that's the gas flow rate that goes through
8	the
9	DR. BANERJEE: And what is ρ_2 or ρ_z ?
10	DR. WU: That should be 3.
11	DR. BANERJEE: Is that one?
12	DR. WU: That should be 3.
13	DR. BANERJEE: Is that for the gas?
14	DR. WU: Yes.
15	DR. BANERJEE: It's a continuity equation
16	you have there.
17	DR. WU: Yes, it's continuity.
18	DR. BANERJEE: It should be $\rho_1 v_{3.}$
19	DR. SCHROCK: Rho(3).
20	DR. WU: This should be ρ_3 .
21	DR. BANERJEE: But $ ho_3$ is what?
22	DR. WU: In that location.
23	DR. SCHROCK: It's potential flow so I
24	guess it's the same as ρ_1 .
25	DR. BANERJEE: It's the same as ρ_1 , right?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	DR. WU: Well it could be different.
2	DR. BANERJEE: How?
3	DR. WU: Because if you just have a break
4	here the choking conditions are different. It can be
5	as big as -0.6 for a choking condition.
6	DR. BANERJEE: So the pressure is
7	different?
8	DR. WU: From here to here it could be if
9	you have a high gas flow rate to the choking
10	condition. (Indicating.)
11	DR. SCHROCK: Isn't a potential flow
12	solutions?
13	DR. WU: This one didn't reach there yet.
14	This one doesn't have that
15	DR. BANERJEE: So let's call it $ ho_3$ but
16	still the density of the gas.
17	DR. WU: Yes, this is mass flow rate.
18	Forget about this one. Just say the mass goes through
19	this branch. So the equation is the third
20	change from infinite to this wave bump here is the
21	kinetic energy converted the potential energy. That's
22	the third edge.
23	CHAIRMAN WALLIS: And the reason that it's
24	a depression is that you get a sination (PH) pressure
25	again in the middle.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	DR. SCHROCK: Yes.
2	DR. BANERJEE: But shouldn't it be $\frac{1}{2} \rho_1 {v_1}^2$
3	$-\frac{1}{2} \rho_0 {v_0}^2$.
4	DR. SCHROCK: That's zero.
5	DR. WU: It's a huge pool. That's
6	infinite. This original approach, that's what we are
7	going to modify. It's not the pipe. So it's physics
8	like this. I want to follow the physics.
9	DR. BANERJEE: And what's the next one?
10	DR. WU: The next is you'll
11	DR. BANERJEE: I got that. The next one?
12	DR. WU: It's a combination of these two
13	equations. You get an automatic in there. It's just
14	to replace the $ ho_1 \mathbf{v}_1$ with the gas flow rate. You have
15	an automatic
16	CHAIRMAN WALLIS: Where does this magic ${}_{\vartriangle}$
17	as $1/3 h_{\rm b}$ come from?
18	DR. WU: That was Bharathan's work and
19	you. What it did
20	MR. BAJOREK: We found the paper too.
21	DR. WU: This is basically the difference
22	of the third with respect to h_{b} .
23	CHAIRMAN WALLIS: So it differentiated
24	something. Did it derived of a third?
25	DR. WU: When this goes to infinite

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	CHAIRMAN WALLIS: You said that there's a
2	maximum value of that thing as a function of delta.
3	Once it goes over the top it gets sucked up.
4	DR. WU: Yes.
5	CHAIRMAN WALLIS: So there is a
6	mathematics to it.
7	DR. WU: There is a mathematics it's just
8	that
9	CHAIRMAN WALLIS: It differentiates that.
10	DR. WU: It differentiates the third
11	with respect to h_b . That derivative goes to infinity.
12	That meaning a little bit of change of this h_b the
13	wave bump is going to hit the top.
14	DR. BANERJEE: But is dad h_b equal to
15	infinity?
16	DR. WU: dad, yes. That's right.
17	Exactly. When the derivative of this dad over d \boldsymbol{h}_{b}
18	goes to infinity leading to this
19	CHAIRMAN WALLIS: There's another way to
20	look at it. When w_g is big enough there are no more
21	solutions for \vartriangle . So it's the maximum value of the
22	lefthand side gives you the maximum value of the
23	right-hand side.
24	DR. BANERJEE: But d h_b the \land is equal to
25	zero.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	CHAIRMAN WALLIS: It's a maximum. So it's
2	not that absurd, is it?
3	DR. WU: Thank you.
4	DR. BANERJEE: Let me ask you a question.
5	When you have a hole like that, don't you get a
6	vortex, a swirl flow occurring in the air? I mean
7	this is what happens in a bath tub. Or is this
8	different from a bath tub?
9	CHAIRMAN WALLIS: Not if it didn't have
10	fortes of the infinity.
11	DR. WU: No.
12	DR. SCHROCK: But on bottom breaks you do
13	see the
14	DR. WU: This is an average approach.
15	DR. BANERJEE: But you get a very
16	different pattern. You get a cyclone otherwise.
17	DR. WU: If you use the average approach
18	you don't see the cyclone. So you treat this as an
19	average velocity.
20	DR. BAJOREK: Qiao, you see a little bit
21	of that in some of your films.
22	DR. WU: Yes.
23	DR. BAJOREK: If you watch the wisps
24	there's a vortical motion to it.
25	CHAIRMAN WALLIS: The voracity has to come

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	from somewhere.
2	DR. BANERJEE: Yes, but they were option
3	close.
4	CHAIRMAN WALLIS: So I think we will
5	accept that you are doing some math and you can get
6	that equation down there.
7	DR. WU: Yes.
8	CHAIRMAN WALLIS: You have to say
9	something about lambda so you say it's approximately
10	d.
11	DR. WU: That was Maciaszek's approach.
12	For lambda, you go to d and then he got his
13	correlation. There's one power. So they replaced
14	lambda with d. This parameter is theoretically 0.7
15	and his experiment result is 0.88.
16	CHAIRMAN WALLIS: Now is the experiment
17	for a pool in a pipe or is it a pipe in a pool?
18	DR. WU: No, it's a pipe with a branch on
19	the pipe.
20	CHAIRMAN WALLIS: It's a branch.
21	DR. WU: So all of these combine to part
22	of this adjustable parameter.
23	CHAIRMAN WALLIS: So if you just took a
24	vacuum cleaner and lower it down on top of a pool of
25	water this is what you could also do as another

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	experiment.
2	DR. WU: That was the results of
3	experiment.
4	MEMBER RANSOM: There's one limitation you
5	have to have in mind. The gas flow field is for a
6	flat interface. The interface never deforms. So that
7	as the bump forms in reality you get increased
8	velocity across the bump and it will grow even more
9	rapidly.
10	CHAIRMAN WALLIS: That's in his math here.
11	MEMBER RANSOM: No.
12	CHAIRMAN WALLIS: Yes it is. It's in the
13	potential flow He hasn't used potential flow here.
14	MEMBER RANSOM: Yes, he has.
15	CHAIRMAN WALLIS: He's using $h_{b} - A$.
16	MEMBER RANSOM: He uses it to get v1 and
17	the ${}_{AP}$ relationship.
18	CHAIRMAN WALLIS: I don't think so.
19	Anyway we can argue about this forever. I don't think
20	he ever used potential flow in this model here.
21	DR. BANERJEE: You don't need it for the
22	equations you've written.
23	MEMBER RANSOM: infinity to replace \triangle
24	
25	DR. WU: For this one, no. You have to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

bear in mind that here is the number over d when physics is if this surface is far from this opening you don't expect this low pressure on the high pressure low pressure is -- section. The high velocity still located right under the branch. It could be go this way (Indicating) is going further away so we think if we modify this number we perhaps can get a better case.

In fact later we found a -- if this point 9 10 of source number is proportional to h_b. And if we put 11 $h_{\rm b}$ here with parameter and move that $h_{\rm b}$ here then we 12 have 1/5 power here. That's the correlation of KFK 13 and also Dr. Schrock's correlation. So that means 14 it's a two asymptotic condition. When you go to d it 15 is the surface very close to the break or the break is fairly big. And when it's going away or the break is 16 17 very small, then it's going to another asymtotic 18 solution as proportion to h. So this kind of --19 motivated us to say let's see can we find the number. 20 Next page please. Let's go back.

DR. SCHROCK: Before you do that, I want to remind you of my problem with the fact that the flow is all coming from one direction in your experiment, in your practical problem but this idealization has it coming equally from both sides.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	100
1	DR. WU: Yes, that's the wall approach.
2	The second modification will be here (indicating)
3	where the subtract of the v_0
4	DR. SCHROCK: Are you eventually going to
5	account for that?
6	DR. WU: Yes, we have factor count on that
7	in the correlation.
8	DR. SCHROCK: I'll wait.
9	DR. WU: Next please. The Maciaszek
10	correlation for the relatively larger d branch size to
11	the main pipe size. It correlated our data reasonably
12	well. However for Berkeley data and the KFK data it
13	doesn't work. So Maciaszek's correlation seems only
14	applicable for the larger break side.
15	On the other hand, the Smoglie and the
16	Schrock correlation correlated this solid assembly for
17	the Berkeley data and these open symbols for KFK data.
18	They group very well. The correlation of Berkeley and
19	the KFK for this small break side however it missed
20	our data. So that supported our argument that these
21	two correlations may be too ptotic (PH) condition.
22	There are two approaches for me to do.
23	One is I guess superimpose this two correlations, put
24	a parameter before the two correlations. That depends
25	on the d over d, the branch size. Now I just feed it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	I tried that and it was very successful. But I was
2	not satisfied. I think I can do better than that.
3	The second one was more mechanistic
4	approach but it's not rigorous. Let's go to the next
5	page please. So what I did I think the velocity
6	distribution along the interface can be found to form
7	a potential for approach. So I want to see where this
8	bump's right location is. I expect for the potential
9	for the approach when the interface approach to the
10	branch then the number should be equal to d. Then the
11	way it's going away should approach to the point
12	source.
13	CHAIRMAN WALLIS: I'm sorry. I have to
14	ask. Have anyone ever seen this ring wave?
15	DR. WU: No.
16	CHAIRMAN WALLIS: So it's very
17	interesting. All these theories based on something no
18	one has ever seen.
19	DR. SCHROCK: More than that we did see
20	that the liquid is sucked up as one more or less
21	symmetric bump. Just before the first time
22	DR. BANERJEE: Is there a little cyclone?
23	DR. SCHROCK: There is in the liquid for
24	the downflow but we couldn't see any such thing in the
25	upflow case.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	CHAIRMAN WALLIS: Any voracity when it's
2	dragged in and stretched is more visible. But it's
3	not really a very significant part of the mechanics.
4	DR. WU: In fact this bump was artificial.
5	I think it just say we'll predict the location of this
6	lower pressure reading.
7	CHAIRMAN WALLIS: I think someone would do
8	this experiment. It's simply taking the vacuum
9	cleaner and bringing it down on the pool and seeing if
10	you get this ring. It's very simple to do.
11	DR. BANERJEE: Let's do it.
12	CHAIRMAN WALLIS: Just go home and do it.
13	DR. WU: To see the ring. I did. I
14	couldn't see it because of the instability where a
15	break at one location. It's just coming from
16	somewhere weak point and then lashing in. So you can
17	not see a ring coming out uniformly homogeneously
18	coming up. That's what my argument is. So if you
19	consider this v_d effect.
20	DR. BANERJEE: So what happens? You see
21	also some weird stuff.
22	DR. WU: It's like Dr. Schrock said. When
23	that entrainment outcome forms somewhere there's a
24	common chunk or cone shape and going upward like that.
25	Or it has some dispersion.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 CHAIRMAN WALLIS: That's because you don't get that stagnation point in the bottom. You have a 2 3 point then the velocity continues to increase and you 4 get lower and lower pressure. You have one wave then 5 you no longer get that stagnation region in the 6 bottom. 7 DR. WU: So you go and form here then this side is ceded. So what are we did -- Next slide. 8 9 DR. SCHROCK: I've never seen this 10 solution for this distributed source sink combination 11 in terms of the 2-d velocity profile. That would be 12 I'm puzzled by how you select interesting to see. 13 that source sink geometry to get simulation of the 14 flow into that branch. 15 DR. WU: What I did is --DR. SCHROCK: You have flow into that wall 16 17 at that source but flow out of the wall in that source 18 flow into the sink in the bottom. What I did is 19 DR. WU: this is а distributed source for each finite element I treated 20 21 it as a point source. That potential flow is -- you 22 can superimpose all these together. That's your 23 integration. Together the velocity long term of this 24 point. What I did with mirror source is exactly one

to -- this boundary condition without the crossing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	104
1	flow. So that's the wall. You don't have the gas go
2	through
3	DR. SCHROCK: That's fine but I'm talking
4	about the flow pattern in the vicinity of the corner
5	on the branch line. It looks to me like it's coming
6	out of those surfaces and converging on the axis of z
7	somehow.
8	DR. WU: So you mean it's going this way?
9	(Indicating.) It's merging to that.
10	DR. SCHROCK: I could put it more simply.
11	I would just like to see the velocity profile that
12	predicted by that potential flow solution.
13	DR. WU: Next please.
14	CHAIRMAN WALLIS: I think you ought to
15	show that in your report.
16	DR. WU: You mean this one? This is the
17	velocity profile on the interface.
18	CHAIRMAN WALLIS: On the interface. But
19	I mean on the top of the pipe or the corner. It's not
20	going to match the pipe very well.
21	DR. SCHROCK: The 2-d velocity
22	distribution in the view that was shown in the
23	previous slide is what I'm asking for.
24	DR. WU: Okay.
25	CHAIRMAN WALLIS: I think one could accept

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	that if the model is reasonable this is not too far
2	from
3	MEMBER RANSOM: The one problem you have
4	though this is potential flow and that won't actually
5	exist. There will actually be a flow separation zone
6	right in the center under this pipe which basically is
7	a recirculation zone that quite changes the flow
8	field. Outside of that region is probably fairly
9	decent.
10	CHAIRMAN WALLIS: I think for the
11	initiation the first picking up liquid is not so bad.
12	But once you get a significant wave it's quite
13	different.
14	MEMBER RANSOM: Even for a flat interface
15	you still get this separation zone. Flow doesn't like
16	to turn 90 degree angles actually.
17	CHAIRMAN WALLIS: Okay, so it doesn't like
18	to recover pressure to the sination (PH) point. Okay,
19	I think we're going to have to move on or we'll never
20	get out of here.
21	DR. WU: So we focused on the velocity at
22	the interface. Then the maximum point you see of the
23	distance of moving away from the center the maximum
24	velocity location is moving away from this. That's
25	what we expected. I just have taken the position of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	this maximum line and the product with respect
2	CHAIRMAN WALLIS: This giving you your
3	lambda.
4	DR. WU: That's giving me my lambda. So
5	the number you see clear as they were approaching to
6	this dotted line formed this maximum clearly say it's
7	when the surface approach to the break you can never
8	go into the branch so the maximum should be lambda
9	equal to d. That's Maciaszek's approach.
10	Asymptotically (PH) if you go that way
11	then the surface goes far away from the break. The
12	surface sees the break as a point source. So it's
13	merges into asymptotic (PH) solution. This is the
14	dashed line. It's easy together with other
15	integration. So lambda is proportional to the
16	distance, the h_b . We think this is the reason why the
17	KFK and the Berkeley correlations this power
18	dependence. For the Maciaszek, it's the correlation
19	that uses lambda equal to d.
20	What I can do is if I can get the exact
21	function of this curve, I put into the number there
22	and I can expect the correlation function better than
23	previous investigations. However since we cannot get
24	analytical solution out of that integration so we
25	first tried just this curve. Last year when I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	presented this I used the exponential function, that
2	created a lot of trouble. This year we just
3	simplified it to a linear. Next please.
4	CHAIRMAN WALLIS: I would have been lazy
5	and just sketched in a curve and fit it in with the
6	simplest math I could. So you've done a really simple
7	function.
8	DR. WU: Yes. It's a linear function.
9	And this modification is the velocity crest and the
10	faraway velocity. It's not zero. We put this here
11	and simplify.
12	CHAIRMAN WALLIS: So this is an
13	achievement about bringing in this other parameter.
14	You have brought together the data from these wide-
15	ranging experiments. Big d over d ratio.
16	DR. WU: Yes. And as the capital D and
17	lower case d so it's all the branch size effects
18	considered. Then we can collapse all the data
19	originally scattered.
20	DR. BANERJEE: But is k the same for all
21	it?
22	DR. WU: K is about 1. It's 1.02 and a is
23	0.22.
24	DR. BANERJEE: But why does this work
25	because the physics is all wrong, right?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	CHAIRMAN WALLIS: No, this is only on
2	entrainment. We haven't gotten to slug. This is just
3	the glassy interface and then it leaps up into the
4	hole.
5	DR. BANERJEE: So you are sucking from
6	both sides.
7	CHAIRMAN WALLIS: Yes.
8	DR. BANERJEE: But not from the sides.
9	CHAIRMAN WALLIS: Not from the steam
10	generator. You're not sucking really from the steam
11	generator, are you?
12	DR. WU: This is a modification. We have
13	only one side coming from one side this is $\boldsymbol{v}_1,$ the
14	exact velocity in the hot leg. This is crested
15	CHAIRMAN WALLIS: So you do a bunch from
16	coming from one side.
17	DR. BANERJEE: He's taken not v equals
18	DR. WU: If it's a two side I think this
19	factor should have a two or something like that.
20	CHAIRMAN WALLIS: So you have to do
21	something about that.
22	DR. WU: Yes. I think that's the case.
23	DR. BANERJEE: So what is this? You lost
24	me.
25	DR. WU: Originally this equation I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	presented
2	DR. BANERJEE: I remember v_1 is equal is
3	zero to begin with.
4	DR. WU: Because faraway, it's a plane.
5	DR. BANERJEE: So now you have put v_1
6	equal to some finite value.
7	DR. WU: Exactly.
8	DR. BANERJEE: But how does that You
9	phrase that into that equation as h_b over d.
10	DR. WU: Yes.
11	CHAIRMAN WALLIS: When you do the math,
12	that's what happens. The continuity.
13	DR. WU: Yes, the continuity equation.
14	Also consider the asymptotic (PH) condition. You see
15	when h_{b} equal to d the pipe is completely dry. You
16	need infinite gas for rate to entrain.
17	CHAIRMAN WALLIS: There's nothing to
18	entrain.
19	DR. WU: So your velocity has to go.
20	That's one of the thinking there too. Both CEA
21	Maciaszek correlation and the KFK-Berkeley correlation
22	were right for their beta test conditions.
23	CHAIRMAN WALLIS: Even Bharathan was
24	probably not too far wrong. He was the early worker.
25	DR. WU: The KFK data like Dr. Schrock

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	mentioned it had a weird wall there and they blew the
2	excess into the vertical pipe drain and it's quite a
3	different mechanism. It had scattering and registered
4	on level with different gas velocity or with the same
5	gas velocity but registered different level. So if we
6	kick that out and use Berkeley's data and our data I
7	think I'm very satisfied. In reality we should
8	consider their data but this is just to show how well
9	when these experiments technically improves. Next
10	please.
11	That closes our entrainment onset
12	correlation and now we're going to entrainment rate
13	studies. That's a little bit different. Next please.
14	For the entrainment study the experiment
15	after last year's ACS meeting we focused this The
16	entrainment is just a steady entrainment that goes
17	through separator and and steady. With the steam
18	generator there's a gas volume there and of course
19	that's
20	CHAIRMAN WALLIS: I think we had some
21	concerns about the compressibility of the gas since
22	you have a transient going on. Actually as the slug
23	moves around it compresses the gas in the steam
24	generator.
25	DR. WU: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	111
1	CHAIRMAN WALLIS: So the compliance of
2	that makes a difference.
3	DR. WU: One of the reasons I think is
4	Let's go to the next page. So again like last year,
5	Dr. Wallis and Dr. Schrock said this side is the steam
6	generator side. This side is the vessel side. We
7	showed three kinds of patterns on the steam generator
8	side. One is the oscillator rate. It has a slug back
9	and forth from the steam generator lower head to the
10	branch. The certain region we equate a transition
11	region because that slug is not persistent and the
12	frequency is unpredicted occasionally have. Finally
13	if the qualities are really high you get a relatively
14	stratified wavy condition without touching the top.
15	So these are the three different flow patterns.
16	DR. SCHROCK: And the top one is much more
17	oscillatory than the others.
18	CHAIRMAN WALLIS: Now we have a video. It
19	doesn't look like potential flow. (Laughter.)
20	DR. BANERJEE: Also pretty frothy, you
21	know.
22	DR. WU: Here is clear liquid. This part
23	is very frothy.
24	DR. BAJOREK: Dr. Wu, do you have the film
25	on here where it slowed down? Have we been able to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	play that one?
2	DR. WU: I think he didn't grab into the
3	computer. Do you have a CD that can play? I have a
4	few files inside that has a large movie. It's a high
5	speed movie so you see it clearly. We have to close
6	it.
7	DR. BAJOREK: In the high speed
8	visualizations I think you can start to see a little
9	bit of voracity. If you watch very closely it almost
10	gives the appearance that when that slug is going up
11	into the branch line there is flow coming from two
12	sides as if it has shock around and it's coming up
13	behind the slug. So it may not be so far fetched to
14	look at this slug as having a velocity field on both
15	sides of it.
16	DR. WU: I have it in my computer.
17	Because of the CD I gave to him seems it doesn't work
18	on the computer. He actually tried very hard
19	yesterday afternoon to put my powerpoint here. I have
20	my movie in my computer and later I will show you the
21	high speed one.
22	CHAIRMAN WALLIS: Well the entrainment out
23	from the slug you have a model that predicts the
24	velocity of that liquid going up the branch pipes.
25	DR. WU: No.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	113
1	CHAIRMAN WALLIS: You just have a
2	correlation or something.
3	DR. WU: I have a correlation. Because of
4	the entrainment coming from the downstream side, it
5	makes sense because of the average level is closer to
6	the branch so it will pull from the later side. So I
7	used an average level of gas space height downstream
8	to correlate. I found it's reasonably well. Let's go
9	to the next slide.
10	Before I go to the modeling last time I
11	plotted this into the flow region map because the ACS
12	has some members that suggested that doesn't apply
13	because the traditional fluid region map is for co-
14	current situation. The downstream of the branch is
15	virtually average gas flow rate is zero. The liquid
16	that goes It's not a good representation.
17	This time we tried Dr. Bajorek and I over
18	15 kinds of combinations to how to represent it.
19	Eventually I could predict it. We found this is the
20	best figure. Quality versus the ${}_{\Lambda}h$ is the height
21	difference downstream and the upstream level
22	difference. Then this is divided by the upstream
23	liquid level height. I can do it divided by
24	downstream. So it correlated some
25	CHAIRMAN WALLIS: So when the quality is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	zero we have no gas flow at all and yet the h is 0.6.
2	DR. WU: That's the problem
3	CHAIRMAN WALLIS: Then why is up there?
4	DR. WU: We wanted it coming down because
5	when the complete failure you shouldn't see any
6	difference. Now we tried the hydraulic jump case.
7	The hydraulic jump case is keep on going here and then
8	it goes to infinite because it doesn't say the upper
9	wall of the pipe, the hydraulic jump correlation. So
10	right now we are trying to To these bracket symbol
11	is stratified wavy. This should be the steam
12	generator side.
13	DR. SCHROCK: Using this Ah for the two
14	different locations seems like it's the problem that
15	depends on the chance location that the designer built
16	into the equipment if he shows a different spacing for
17	the instrumentation you get a different result.
18	DR. WU: We tried the Froude number in the
19	main pipe for both gas and liquid. We tried the mass
20	flow rate for in the branch here. Things don't really
21	represent this kind of slugs.
22	DR. SCHROCK: You don't have any data for
23	any spacing other than the one that you have in the
24	experiment.
25	CHAIRMAN WALLIS: Are you going to use it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	for something?
2	DR. WU: No.
3	CHAIRMAN WALLIS: You're not going to use
4	it for anything.
5	DR. WU: This one is just to say the
6	difference of
7	CHAIRMAN WALLIS: But you're not going to
8	use it in any correlation.
9	DR. WU: No. Dr. Bajorek is thinking
10	about for the AP1000, the for we can predict when
11	the oscillation occurs. That would be nice because
12	the facility is subjected to these kinds of water
13	impact. We are trying and that's not our task goal
14	for the entrainment.
15	DR. BANERJEE: AH is the difference in
16	height between the two sides?
17	DR. WU: Yes.
18	DR. BANERJEE: And what is the hrx there?
19	DR. WU: It's the gas chamber height
20	offstream on the reactor vessel side.
21	CHAIRMAN WALLIS: I thought Ah would be
22	held up by the stagnation pressure of the gas or
23	something.
24	DR. WU: That's right.
25	CHAIRMAN WALLIS: Not by x. What is x?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	DR. WU: This is the momentum of liquid
2	flow and the gas flow. So I used the combination and
3	the single of them but it doesn't occur Then I
4	found a quality case action is greater than this.
5	It's just 1, 2 transition ranging, this is a
6	ranging at a lower liquid quality.
7	DR. BAJOREK: Dr. Wallis, I think the
8	point is that what we are trying to do here is to come
9	up with a different scheme to predict when we're
10	getting these oscillations so that if we see them in
11	something like an ATLATS or an APEX we can come up
12	with a way of predicting whether they occur then in a
13	large pipe such as AP600 or AP1000. We've looked at
14	several different ways of looking at it.
15	I think by in large with the idea that if
16	you have a level and the wave is large enough to
17	strike the top of the pipe you have a change from the
18	stratified regime to intermit tenancy or some type of
19	an oscillating plug. It's work in progress at this
20	point. We see some trends but nothing at this point
21	that would really give us nice sharp boundaries so
22	that we could use the parameters of either an
23	equilibrium level in the pipe and a superficial
24	velocity to try to estimate using code parameters what
25	type of a pattern we're seeing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	CHAIRMAN WALLIS: I just don't like X as
2	a variable because it gives us no flow at all with an
3	X. It's obvious that momentum has to come into it
4	physically. So it has to have something related to
5	the flow rate. So an X by itself can't be the right
6	parameters.
7	DR. BAJOREK: It's showing the trend with
8	everything but not something we can really hang our
9	hats on.
10	DR. WU: The model actually entrainment of
11	the real model development based on our approach is
12	when X should be the actual gas chamber height is
13	smaller than the entrainment onset then you have a
14	entrainment. Then you have to predicate entrainment
15	rate. One of the basic options is the kinetic energy
16	of the gas should overcome the gravity head at this
17	part is for the and also the entrainment onset
18	condition. The excess of that goes to the liquid
19	kinetic energy entrained into the branch. That's
20	basic option.

21 DR. BANERJEE: What is this? Of energy 22 balance? 23 DR. WU: It's not balance. It's just to 24 say that the gas kinetic energy over the entrainment 25 onset condition should go to the liquid --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	CHAIRMAN WALLIS: It's a kind of Bernoulli
2	equation for flow side by side. If you take the
3	right-hand side and put it on the lefthand side you
4	have the Bernoulli equation on both sides.
5	DR. BANERJEE: Stream 2 containing liquid
6	
7	CHAIRMAN WALLIS: Equal pressures at the
8	interface. It's parallel stream with equal pressures.
9	I think that's what you're doing.
10	DR. BANERJEE: Right. And CA that's the
11	potential energy.
12	CHAIRMAN WALLIS: C should be one.
13	DR. WU: C is because you take a certain
14	gas flow rate to entrainment. You have to go over a
15	curve to start the entrainment. So that represented
16	the entrainment onset condition. You have to go
17	through that curve and then start to entrain because
18	it's not any gas velocity you can transfer the kinetic
19	energy to liquid entrainment. That's easy because of
20	that consideration.
21	DR. BANERJEE: It's sort of a Bernoulli
22	equation, I guess.
23	CHAIRMAN WALLIS: The next one is more
24	mysterious.
25	DR. WU: The next one is actually just a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	modification continuity equation modification. I
2	replaced the velocity with the mass flow rate by the
3	water fraction. There's no mystery.
4	CHAIRMAN WALLIS: Alpha 3 is a void
5	DR. WU: If you move this to here and
6	that's actually this rho v right?
7	CHAIRMAN WALLIS: Okay.
8	DR. WU: So you square root it that's
9	because the velocity has a square and you have a
10	density Later we will show that. Here I would like
11	to say how we decided this same parameter because here
12	I already moved it to the gas side. What I said is
13	this h if it the gas flow rate, if it approaches to
14	the entrainment onset level height, the determination
15	inside should be zero because you don't have liquid
16	flow. So that actually plug our entrainment onset
17	condition into this equation. I got asymptotically
18	(PH) they said it should be expressed like this way.
19	So the h should be
20	The other option here is alpha 3. There
21	are several approaches. Yonomoto has shown for alpha
22	3 there's a conical shape of liquid and then put a
23	to correlate an alpha 3. What we did here
24	CHAIRMAN WALLIS: Let's go back here.
25	This bottom equation is strange. What's in the square

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	root there should be the same as your onset of
2	entrainment correlation for predicting w_g^3 .
3	DR. WU: Yes.
4	CHAIRMAN WALLIS: So you just take your
5	onset of entrainment correlation and use C^1 . I think
6	that's what you are doing.
7	DR. WU: Yes.
8	CHAIRMAN WALLIS: But it's misleading at
9	the bottom because that w_g^3
10	DR. WU: You do have this under a real
11	condition. I got it under the h_b condition.
12	CHAIRMAN WALLIS: And the w_g^3 is under the
13	h _b condition too.
14	DR. WU: Yes.
15	CHAIRMAN WALLIS: That what's confusing.
16	DR. SCHROCK: Could you point out where on
17	the design where station 1 and station 3 are located.
18	DR. WU: Station one is in the horizontal
19	pipe. Station three is in the branches.
20	DR. SCHROCK: Where on the horizontal
21	pipe?
22	DR. WU: It's at the inflow.
23	DR. SCHROCK: So it's implicit in the
24	model. It's symmetric half of the gas flow comes from
25	each side.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	DR. WU: For our case we just did it from
2	the one side. From this side. (Indicating.)
3	DR. SCHROCK: The picture shows it both
4	sides. Are you sure you're doing it on one side?
5	DR. WU: Yes, because that comes through
6	here when you use the continuity equation. We use the
7	two arrow. If you use the one side arrow that's just
8	the one side. But the figures are right there. (Tape
9	stops.) Same from both sides.
10	DR. SCHROCK: That also is splitting the
11	flows in the station 3. Station 3 is at the mouth of
12	the break.
13	DR. WU: Yes.
14	DR. SCHROCK: So a3 is half of that or all
15	of that?
16	DR. WU: A3 is the rate. It's the
17	arrow of this pipe. Al is one side of the arrow of
18	this pipe. It's one. If both sides are moving the
19	lines here should be two A1.
20	DR. SCHROCK: Well, it's misleading at
21	least.
22	DR. WU: That figure.
23	DR. SCHROCK: Maybe not right at the
24	worst. I'm not sure which it is.
25	CHAIRMAN WALLIS: At least we see what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	he's doing.
2	DR. WU: Let's go to the next please. So
3	since we have w_{f}^{3} then the quality is supposed to be
4	like that (indicating) and the $w_f^{\ 3}$ and the $w_g^{\ 3}$ should
5	equal to the whole thing (Tape stopped) putting into
6	the same There is nothing strange here. It's just
7	the entrainment onset correlation.
8	So this correlation is a function of the
9	main pipe size, the onset level and the actual level
10	and the branch size is also a function of the density
11	ratio. The thing I need to mention is the on the
12	accurate estimation of \mathbf{h}_{b} that means we have to use
13	the $h_{_{\rm b}}$ we developed. If we use the $h_{_{\rm b}}$ of some other
14	then you make trouble with working under the different
15	conditions. Next page.
16	If we see this data this is the calculated
17	level because that's the experiment that we measured
18	and this is the measured level. The Berkeley data,
19	use the bracket symbol is the KFK data.
20	CHAIRMAN WALLIS: Excuse me. This is a
21	model based on stratified flow type of entrainment
22	rather than the slug oscillating entrainment.
23	DR. WU: Exactly. The average level.
24	CHAIRMAN WALLIS: This is only for the
25	regime where you don't have slugs, is that right?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	DR. WU: This data was gotten from slug
2	too.
3	DR. BANERJEE: You use the average
4	DR. WU: We used the average.
5	CHAIRMAN WALLIS: Your model says nothing
6	about slugs. Your model has the liquid and gas
7	flowing together as in Bernoulli equation.
8	DR. WU: That was the reason I said the
9	code cannot see the slug. It can only see the
10	average.
11	CHAIRMAN WALLIS: The model is based on
12	co-current flow of liquid and gas using the Bernoulli
13	type equation.
14	DR. WU: Yes.
15	CHAIRMAN WALLIS: And it's not modeling
16	any slugs.
17	DR. WU: No.
18	CHAIRMAN WALLIS: But the data here
19	actually includes the slugs.
20	DR. WU: Yes.
21	CHAIRMAN WALLIS: Does it correlate the
22	slugs better than the
23	DR. WU: No.
24	CHAIRMAN WALLIS: Which of the slugs?
25	DR. WU: Slug is coming out there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	124
1	(indicating.).
2	CHAIRMAN WALLIS: Okay.
3	DR. WU: It doesn't correlate that well
4	here for the slug but everything together. You see
5	the KFK data correlation different upon Dr. Schrock's
6	Berkeley data. You cannot mix them together. But
7	this correlation is doing some work about that to
8	group all the data together. If we see in the JAERI,
9	the Yonomoto correlation it seems they can do similar
10	work but shifted.
11	CHAIRMAN WALLIS: This is funny. You're
12	not predicting entrainment rate. You're predicting h
13	over d.
14	DR. WU: Using the quality.
15	DR. BANERJEE: The quality which you know
16	you're working back towards h over d must have been.
17	DR. WU: Yes. Because that's the reverse
18	way when we were doing the experiment.
19	DR. BANERJEE: This is the process
20	DR. WU: Yes, we get the quality working
21	back to the level.
22	DR. BANERJEE: This h is what h?
23	DR. WU: It's actually the downstream but
24	if all the data KFK and the Berkeley because there is
25	no difference. They had a very stratified. Berkeley

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	data is right under the branch their window really.
2	DR. SCHROCK: I don't think that's true.
3	There are three windows, one at the break, one
4	upstream and one downstream. You could in fact see a
5	difference between the levels upstream and downstream.
6	That's not a part of the correlation, the data that
7	was presented, but it was evident in the data.
8	I'm still troubled with this (Tape
9	stopped) seeing of different things here. In our
10	experiments both the gas and the liquid flowed through
11	the apparatus (Tape stopped) just at the end. Then
12	we're looking for a branch flow which begins to
13	entrain the liquid. The through flow never stops when
14	you begin taking if off the branch line.
15	But you have a model here which is
16	different conceptually from the flow pattern that
17	existed in our experiment and the KFK experiment.
18	Putting it all together and it comes out looking like
19	one shoe fits all. It's troubling to me. I don't
20	understand the definitions of the terms in the
21	equation. I don't understand presenting engineering
22	data where the variables in the equation are not
23	clearly identified in terms of the diagram that the
24	equation purports to represent.
25	CHAIRMAN WALLIS: So you have to begin at

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	the beginning. What do each of these things mean?
2	Where do you imagine them in that diagram? Then make
3	the argument from there and there has to be some
4	continuity in the flow patterns that are put together
5	in one correlation. I don't think you can just take
6	any assortment of flows from both directions, flows
7	from one direction, through flow, with the linkage off
8	the branch line and whatever and expect that they are
9	all going to make sense when you amalgamate into some
10	kind of a correlation. Why don't you tell us what h
11	is?
12	DR. WU: Let's start from here if I can.
13	Remember when we talked about the third action (PH) we
14	say that the velocity under the crest that is
15	responsible from there to entrain liquid out of the
16	wave. So that actually is supposed to be the velocity
17	under the interface of where is the maximum.
18	CHAIRMAN WALLIS: But then which is the h
19	from your experiment that you used?
20	DR. WU: The h in our experiment is the
21	downstream case.
22	CHAIRMAN WALLIS: Downstream of
23	DR. WU: It's on each end or at the side
24	because it's closer to the break.
25	CHAIRMAN WALLIS: Of course over there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	127
1	(Indicating) there isn't any v_f^3 or v_g^1 .
2	DR. WU: No.
3	CHAIRMAN WALLIS: So first thing you're
4	doing is particular. You're taking the velocity as
5	oxygen coming in and going out but then the h you are
6	using is in the dead leg where there isn't any flow.
7	Is that right?
8	DR. WU: Yes. The way the wash back
9	because that level is actually closer to the branch so
10	that entrainment would occur at the level where it's
11	closer to it.
12	CHAIRMAN WALLIS: So the h you put in
13	virtual plot and then you compare data is the steam
14	generator side h.
15	DR. WU: Yes.
16	CHAIRMAN WALLIS: Which sometimes is the
17	whole pipe, isn't it? Sometimes it's d.
18	DR. WU: No. Well on average.
19	CHAIRMAN WALLIS: On average sometimes it
20	goes back and forth.
21	DR. BANERJEE: Why don't you redraw this
22	figure because it's very confusing? I mean it's hard
23	to follow what you are doing.
24	CHAIRMAN WALLIS: You mean draw it to look
25	like the reality.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Í	128
1	DR. BANERJEE: Yes.
2	CHAIRMAN WALLIS: That's the object of
3	writing equations. If you don't draw a figure you
4	could say well this is Bernoulli equation and can't
5	figure out where all the terms come from.
6	DR. SCHROCK: When you grade the homework
7	what do you do with the paper that gives equations
8	with a lot of subscripts and a diagram that doesn't
9	show the quantities that are in the equation? I don't
10	spend too much time with that myself.
11	CHAIRMAN WALLIS: The students say you are
12	unfair.
13	DR. SCHROCK: It may be.
14	DR. BANERJEE: But I think you should
15	explain plane 3 and plane 1. Because if you
16	understand you plane 1 is to the right-hand side here,
17	right?
18	DR. WU: Yes.
19	DR. BANERJEE: Then plane 3 is crossing
20	the entrance to the pipe facing vertically, right?
21	DR. WU: Yes.
22	DR. BANERJEE: Now that first equation is
23	really the crux of everything. Everything else
24	follows from that.
25	DR. WU: Exactly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	129
1	DR. BANERJEE: So one must justify writing
2	that equation in terms of some form of a balance. You
3	can't just pull it out of your hat.
4	DR. WU: Yes.
5	DR. BANERJEE: It's not clear. If you
6	wrote it like a Bernoulli equation you still need to
7	put down all the terms and say which ones you are
8	going to neglect and stuff like that. At the moment
9	there seems like there is Bernoulli term which would
10	be $\rho_1 v_1 d_{g3}^2$ that you are getting rid of as I see it.
11	CHAIRMAN WALLIS: But you can't deduce it
12	from the figure.
13	DR. BANERJEE: What?
14	CHAIRMAN WALLIS: I think you have to do
15	it by hand waving. I can't imagine a figure
16	DR. BANERJEE: Then you can throw out
17	something.
18	CHAIRMAN WALLIS: His argument was a
19	qualitative one in saying here is the $ ho \mathbf{v}^2$ which is
20	available to b gravity and therefore it provides
21	another $ ho v^2$. That was a qualitative argument.
22	DR. BANERJEE: But you then have to say
23	okay I'm going to neglect the gas phase going into
24	that pipe or something. It has to be done properly.
25	CHAIRMAN WALLIS: I think your assignment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	for after lunch is to come back with a figure which
2	shows how Bernoulli's equation for a particular shape
3	of interface is related to that equation you have
4	there. That is the problem we have is. We don't see
5	how it's related to any kind of a flow situation or an
6	interface geometry.
7	DR. WU: I'll try.
8	CHAIRMAN WALLIS: Do you think you can do
9	it?
10	DR. WU: I don't think I can do the
11	reverse one because this is the political argument to
12	say the existence of the kinetic energy of the gas
13	partially goes into the liquid because the air pointed
14	to it and partially goes to the gas itself too because
15	it's still moving.
16	I don't know what the factor is there I
17	put proportional constant is there so that's my
18	argument there. The equation of kinetic energy has to
19	be for the gas kinetic energy.
20	CHAIRMAN WALLIS: Vg_1 is the velocity in
21	the main pipe.
22	DR. WU: Yes.
23	CHAIRMAN WALLIS: So if I had the original
24	experiment model you had with the pool with an
25	infinite space there would be no Vg_1 . But I could

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	still get a Vf_3 .
2	DR. WU: All this is compiled
3	CHAIRMAN WALLIS: This wouldn't work
4	though for
5	DR. WU: For an infinite
6	CHAIRMAN WALLIS: For the picture you
7	drew.
8	DR. BANERJEE: Yes, you neglected Vg_3 ,
9	rule 3 Vg_3 and maybe it makes no difference. But I
10	think you should do as an energy analysis.
11	CHAIRMAN WALLIS: I think it's much bigger
12	than Vg ₁ .
13	DR. BANERJEE: I would be greater than
14	Vg ₁ .
15	DR. WU: If there is gas going out here,
16	it still carries some kinetic energy but part of it is
17	being transferred to liquid and I don't know what it
18	is.
19	CHAIRMAN WALLIS: I think if you had a Vg_3
20	in that equation then you could justify Bernoulli's
21	equation because they both come from sedation (PH)
22	conditions in this parallel flow and I think you could
23	justify that equation. But there's no way you could
24	justify with a Vg_1 with Bernoulli.
25	DR. WU: The reason why I did this is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	because of the original entrainment onset is based on
2	this. That's the blow over surface velocity certainly
3	start to entrain. So if I put it this side as
4	zero, that's the entrainment onset.
5	CHAIRMAN WALLIS: So your initial model is
6	based on the Vg_3 lifting up.
7	DR. WU: I can work it that to the
8	CHAIRMAN WALLIS: If you put a Vg_3 in
9	there you could justify that equation on the basis of
10	2 parallel Bernoulli equations.
11	DR. WU: I tried. So then here it doesn't
12	work.
13	CHAIRMAN WALLIS: But Vg_3 is inside the
14	square root.
15	DR. WU: Because of the continuity
16	equation.
17	CHAIRMAN WALLIS: Yes.
18	DR. BANERJEE: But Vg_3 is related to Vg_1 .
19	DR. WU: Yes.
20	CHAIRMAN WALLIS: I think you should have
21	Vg_3 there and then it will work out and you can
22	satisfy everybody with a picture. You will still get
23	the same equation.
24	DR. WU: But here will be entirely
25	different.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	DR. BANERJEE: Use the ratio h_b to
2	whatever.
3	CHAIRMAN WALLIS: I think the way out of
4	your problem is to use Vg_3 in that first equation and
5	justify it by drawing a picture and I think if I were
6	hired as a consultant I could tell you how to do.
7	(Laughter.)
8	DR. WU: Dr. Wallis, I did that. Down
9	here would be
10	(Discussion off microphone.)
11	CHAIRMAN WALLIS: Okay, we have to move
12	along.
13	MEMBER RANSOM: There's something about
14	this that bothers me though. In the picture you've
15	shown of the periodic slide moving back and forth and
16	entrainment occurs each time the slug filled up the
17	pipe, entrained up the pipe, there's no relationship
18	to the model. Again it's like getting the right
19	answer for the wrong reason.
20	So I think you really have to address some
21	of these other problems I would think when you observe
22	it. If this model does fit in the end and it does
23	satisfactorily explain once you take into account the
24	real physics of what is going on in the process then
25	it would be okay. But I don't see that I guess.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

134 1 CHAIRMAN WALLIS: Well, I think he's 2 telling us that the data points which agrees most with the theory are the ones where you have stratified 3 4 flow. You go to the next figure. I think you told us that the points that are most on the line are the ones 5 where you had a stratified flow, right? 6 7 DR. WU: Yes. 8 CHAIRMAN WALLIS: Next one. So you said 9 that the red points on the right there are the high Those are the slug points. And the theory 10 points. 11 does best on the red points up there which are 12 stratified. Is that right? 13 DR. WU: Yes. 14 CHAIRMAN WALLIS: So it's just some luck 15 that it was more or less stratified but it was best for regime which is most like the math. 16 17 DR. WU: Yes. I have made an explanation 18 for that. (Discussion off microphone.) 19 20 DR. WU: The ways like you mentioned when 21 slug come actually entrainment starts and when slug is 22 down then there's no entrainment. We tried to average 23 it with the average level represented in this process. 24 Definitely you can average the level but the nature 25 between the quality is not -- superimposed on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	level.
2	You cannot just say that's the average of
3	that. So my dilemma is that to develop a correlation
4	without conducting these slug authenticated
5	frequencies that's the code not permitting these
6	parameters just to say the average. We do that. This
7	is the choice I have. Unless if you give me the
8	permission to really put the slug inside. I think
9	I can do much better job.
10	DR. BANERJEE: But you would have to
11	calculate that frequency as part of the problem. It
12	probably can be done but you would have to
13	CHAIRMAN WALLIS: It would be system
14	dependent.
15	DR. BANERJEE: It would depend on the
16	whole system. Because you can imagine if you have now
17	the ADS valve or something that the back pressure
18	which is set up and also some feedback. So if as Vic
19	says the slant is oscillating back and forth that
20	frequency might depend on a whole lot of system
21	parameters that are really quite different from yours.
22	DR. SCHROCK: You also have to have a
23	model which more or less ad hoc and it seems to work
24	and it's satisfying because it seems to work. It
25	leaves you with the problem of just finding its

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	scalability to the reactor geometry. How are you
2	going to deal with that?
3	DR. WU: My argument is because the KFK
4	data and the Berkeley data is very different geometry.
5	And also for Dr. Schrock's data it has air-water and
6	steam-water data. If the correlation can do a
7	reasonable good job for all this data I guess that's
8	how you evaluate and check on the scaling capability.
9	DR. BANERJEE: But in the case that let's
10	say h/d is of the order of 0.1 or 0.2 or whatever
11	there then your slug data is run by a factor of 2 or
12	more.
13	DR. WU: Yes.
14	DR. BANERJEE: That's evident.
15	DR. SCHROCK: In the scaling argument I
16	think you brush over to
17	DR. WU: If you go through the other
18	correlation maybe you will start to appreciate this
19	work. The other correlation Next page please.
20	CHAIRMAN WALLIS: I think the more
21	fundamental question here is that you take your flow
22	rates and then you measure h and compare with a
23	calculated h.
24	DR. WU: Yes.
25	CHAIRMAN WALLIS: What the code is going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	to do is you're going to calculate some h's and
2	predict flow rates.
3	DR. WU: Yes.
4	CHAIRMAN WALLIS: It's not clear to me
5	that when you ask the code to that it's going to do a
6	good job of predicting flow rate.
7	DR. WU: In fact this correlation is using
8	calculated X and we actually tried to go back
9	because our quality expressed in our experiment and
10	downward measure to h. So it's better doing it that
11	way than what we are doing. We need interaction to
12	find that h but for the real case using h is straight
13	forward explanation.
14	CHAIRMAN WALLIS: But nobody is trying to
15	predict the flow out the break out the ADS line.
16	DR. WU: Yes.
17	CHAIRMAN WALLIS: I think you have to ask
18	how good a job it does of that using whatever method
19	you eventually come up with.
20	MEMBER RANSOM: One other aspect that Dr.
21	Banerjee brought up a while back and Dr. Schrock again
22	with the scaling issue is that clearly under the
23	stratified case the mechanism is one of entrainment
24	where droplets are formed and entrained in the outflow
25	so you think there should be some Weber number effects

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	in this. It would be more satisfying if that were
2	included or shown to be small.
3	DR. BANERJEE: You know I don't know
4	because if I recall the data what was happening was
5	that you were getting these slugs and liquid coming
6	out of the I'm trying to remember the data of ROSA
7	or whatever those facilities were. It was chugging
8	along. So there was obviously quite a lot importance
9	to these slugs and they must be somehow dependent on
10	the dynamics of the system and the lines.
11	In the regime where you don't have slugs
12	your model seems to be more dependable. Where you
13	have slugs it may still be dependable but you have
14	work a little harder to do it.
15	CHAIRMAN WALLIS: Whatever the model is
16	it's better than anything else. It's better than
17	these guys here.
18	DR. SCHROCK: But now in turn you have to
19	have the data to fit of the justifying the scaling
20	problem on the basis that you've compared all of these
21	available things. All of them have upstream pipes
22	that are on the order of six inches in diameter, every
23	one. What's varied is the branch line diameter.
24	There's nothing in the database that tells you
25	anything about the physics of this sort of entrainment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	out of the big pipe.
2	CHAIRMAN WALLIS: But your Weber number
3	is going to be much higher.
4	DR. SCHROCK: Right.
5	CHAIRMAN WALLIS: Surface tension is
6	lower. Velocity is higher versus density's higher
7	Weber numbers. Much higher.
8	DR. SCHROCK: I think you do need a
9	reasonably physically based methodology the strengthen
10	the scaling arguments that you have to provide in the
11	end I don't see how you get them out of this
12	especially with these differences one directional
13	flow, two directional flow, through-put of the gas in
14	some of the experiments, not in others. But then all
15	of the data being pulled together.
16	CHAIRMAN WALLIS: All we need is a
17	perception that relates this work to the real problem.
18	DR. SCHROCK: Yes.
19	CHAIRMAN WALLIS: Up front. It shows what
20	the differences could well be in the real system. But
21	you've obviously made some progress. Your model
22	whatever it is is much better than these other ones
23	here.
24	DR. WU: Yes, it's simple model. It's
25	just excessive kinetic energy of the gas probably goes

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	to liquid. Dr. Banerjee's comments about the system
2	dependent oscillation, we did some identifiable
3	calculations and they did not find caused actually
4	caused some of this oscillation. It's actually we
5	didn't present this part because it's not part of our
6	work yet to want to save this code. How we can use
7	our correlation later with the code.
8	Then the code is duly time step very short
9	actually predicted this two Hz to four Hz oscillation
10	down stream side. So obviously they pick up
11	instantaneous height and entrainment. The downside
12	of the cushion of the gas compressor benefit didn't
13	find it or could pick up. Before our experiment we
14	had to rely on the average measurement. We could not
15	get an instantaneous
16	CHAIRMAN WALLIS: I think the frequency in
17	the experiment, It was just an experiment, is related
18	to the transient time of the slug in the ADS line.
19	DR. WU: Yes. So maybe the quality of the
20	entrainment model if it's correct then it can match
21	this oscillation by the code itself.
22	DR. BANERJEE: You're able to measure the
23	frequency.
24	DR. WU: Sure. We did the step analysis.
25	DR. BANERJEE: It's just that the way you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	141
1	are doing your experiment, you find the average
2	entrainment rate because you run it essentially to
3	steady state. Right?
4	DR. WU: Yes sir.
5	DR. BANERJEE: But if you wanted to you
6	could actually find all the rate velocity because it's
7	coming out into the chamber, right?
8	DR. WU: Yes.
9	DR. BANERJEE: Out of a relatively short
10	pipe. If I remember your diagram.
11	DR. WU: Yes. The oscillation for
12	downstream and the quality there's a real time I
13	assume it's also oscillating.
14	DR. BANERJEE: But you don't look at the
15	quality in that particular pipe?
16	DR. WU: Because it's not the average
17	actually here.
18	DR. BANERJEE: But if you look at that,
19	then find the oscillation.
20	DR. WU: So you mean measure the
21	instantaneous gas line the liquid flow rate through
22	the liquid that flows in the branch.
23	DR. BANERJEE: I'm not even saying measure
24	the instantaneous gas. You could probably measure the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	out as a function of time.
2	DR. WU: If you use catch time it's
3	going to settle down and we use a
4	DR. BANERJEE: Think about it.
5	DR. WU: Think about how you can get an
6	instant
7	CHAIRMAN WALLIS: It's not trivial. You
8	have actually a hydrostatic head in that pipe and when
9	it's full of liquid you have a higher pressure so it
10	has to come from somewhere. So you have to compress
11	your gas in reactor vessel.
12	DR. WU: So you mean the injection.
13	CHAIRMAN WALLIS: It depends upon the
14	compliance of that
15	DR. BANERJEE: It's a system effect.
16	CHAIRMAN WALLIS: I think we should move
17	away from this. We're not going to get anywhere with
18	it today because there are many parts of the system
19	that are affect it.
20	DR. BANERJEE: But the whole systems
21	affects that.
22	CHAIRMAN WALLIS: Of course. I think we
23	ought to finish up with your presentation of
24	entrainment rate model. We'll go to lunch and then
25	your assignment is to come back with a believable

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	duration of Bernoulli's equation.
2	DR. BANERJEE: Then you can write that
3	equation as a transient model.
4	CHAIRMAN WALLIS: So can we move on?
5	DR. WU: Next page please. This shows you
6	we put all the available data in the originally
7	different equations to make that. That gives you more
8	appreciated to the work we did.
9	DR. BANERJEE: How does h over h _d one
10	there?
11	DR. WU: That's the only correlation is
12	like that. Although we don't mix it because that's
13	unfair to do the comparison.
14	DR. SCHROCK: Historically people got
15	started this data with the coordinates flipped from
16	the general practice if you want the independent
17	variable on X axis and dependent on the ordinate.
18	This is the other way so it's not as though h over ${f h}_d$
19	is dependent on quality. It's quite the opposite. So
20	getting numbers up there
21	CHAIRMAN WALLIS: That's a really good
22	experiment.
23	DR. SCHROCK: What?
24	CHAIRMAN WALLIS: They fixed the quality
25	and they made it h.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701
	144
1	DR. WU: In the variable it's evaluating
2	to the correlation they presented it another way so we
3	followed that. I will change it back.
4	CHAIRMAN WALLIS: Would they just be h _d
5	because you're using the h downstream near the down
6	generator side?
7	DR. WU: No we used the upstream side as
8	getting worse because the level is lower so the gas h
9	is even worse.
10	CHAIRMAN WALLIS: Which is h then? Which
11	h are you using?
12	DR. WU: This is the same on the steam
13	generator side downstream side.
14	CHAIRMAN WALLIS: It's just getting
15	higher.
16	DR. WU: Actually it's the gas chamber.
17	So the level is higher and h is smaller.
18	CHAIRMAN WALLIS: Smaller.
19	DR. BANERJEE: I guess this is a very
20	confusing slide because what you've put as
21	measurements right. The red dots are measurements.
22	And the h_d you're using there is actually predicted by
23	some correlation.
24	DR. WU: Yes.
25	DR. BANERJEE: Not your measured h_d .

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	Because if you measure h_d , h over h_d can never be more
2	than one. So it's not a measured value of h over $\boldsymbol{h}_{d}.$
3	h _d is a correlation.
4	DR. SCHROCK: That's right. And the
5	question is is it the same for all these data points?
6	DR. BANERJEE: I don't want you plotted.
7	CHAIRMAN WALLIS: So maybe we can just
8	move on. There's not much to this figure.
9	DR. BAJOREK: Now wait a minute.
10	CHAIRMAN WALLIS: I don't think he's
11	talking about this figure anymore. Let's move on.
12	DR. WU: Now the summary database
13	improvement, the new database focused solely on the
14	previous investigation of liquid entrainment in upward
15	or vertical branch of the horizontal pipe. We do have
16	all the branches's orientation data and we digitized
17	it in case later as we needed that we could sort it
18	out for each mechanism as Dr. Schrock mentioned. They
19	have to be categorized into different mechanisms.
20	The second entrainment onset experiment
21	the injection from the vessel top did not have much
22	effect on entrainment onset correlation but it does
23	show a systematic shift on kinetic differentiated
24	results. Under the data sample rate for the liquid
25	level probe was appropriate for the duration to an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	error greater than four minutes.
2	Next please. In the entrainment onset
3	model development, it simplified the correlation from
4	the and considered gas velocity effect in the main
5	pipe. The new model agreed with available test data
6	of different geometry, scale and Floude properties
7	within 20 percent of the It's a linear scale. If
8	you go back to the other presentations that are
9	public, they use log scale and this is a linear scale.
10	They thought the log scale could be even better
11	In terms of rate we tested with a steam
12	generator. They found oscillatory and transition and
13	stratified way to flow downstream there. We tried to
14	predict the onset but that's extra work though.
15	CHAIRMAN WALLIS: You don't change
16	anything downstream. You just took your scaled pipe
17	and scaled steam generator and say what happens if we
18	make that pipe twice as long or anything.
19	DR. WU: No, we did for entrainment onset
20	we did the variation but we didn't vary on the
21	it's the scaled to
22	DR. BANERJEE: It's scaled to APEX right?
23	It's not scaled to AP600 in any sense.
24	DR. WU: It's the same on the APEX.
25	DR. BANERJEE: But based on some idea of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	scaling.
2	DR. WU: Yes, so the Froude number that
3	Dr. Zuber originally proposed that was under the boil
4	fraction in the vessel and all this. And entrainment
5	rate model development
6	CHAIRMAN WALLIS: The simplest thing to do
7	is to close off the pipe and throw away the steam
8	generator and close the end of the pipe and see if it
9	makes any difference. But you haven't done anything
10	like that. You take off the bend and then everything
11	and left it.
12	DR. WU: I did it.
13	CHAIRMAN WALLIS: You did it?
14	DR. WU: I did it a year before. That's
15	the year I presented all these combinations.
16	CHAIRMAN WALLIS: What happens then? Does
17	that give us correlation or something different?
18	There is nothing in your theory that says that this is
19	steam generated. Nothing in your theory that says
20	what's downstream of the vessel or the break. There
21	is nothing that says what's on the steam generator
22	side.
23	DR. WU: At that time distorted the
24	scaling. There were a thousand totally different
25	CHAIRMAN WALLIS: It would interesting

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	though to see if that data from the distorted scale
2	fits your theory or not. Because your theory says
3	nothing about what's on the right-hand side or the
4	steam generator side.
5	DR. WU: I will look in that.
6	DR. BANERJEE: The slug frequency will
7	change because the compliances will change.
8	DR. WU: Yes.
9	DR. BANERJEE: And you find the slug
10	frequency changes?
11	DR. WU: Yes.
12	CHAIRMAN WALLIS: There would be no slugs
13	if you closed the pipe. They have nowhere to go. The
14	sloshing. But it wouldn't be up and down in the steam
15	generator.
16	DR. WU: No. That's because of the
17	cushion space and we don't have the cushion space I'm
18	sure. The proposed model based on the kinetic energy
19	balance approach basically is the excess of kinetic
20	energy over the entrainment onset condition partly
21	goes to liquid. That's my basic option there. The
22	option is not a rigorous derivation.
23	DR. SCHROCK: You're defining the excess
24	as the total kinetic energy of the gas upstream.
25	CHAIRMAN WALLIS: B ₁ .

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	DR. SCHROCK: B_1 .
2	DR. WU: Yes.
3	DR. SCHROCK: And as Dr. Wallis pointed
4	out, B_3 is in fact going to be higher so there's
5	really a deficit of kinetic energy not an excess.
6	CHAIRMAN WALLIS: B ₃ is really much
7	higher. I think something has to be done about that
8	model.
9	DR. BANERJEE: You have to write it
10	properly.
11	DR. WU: Okay. I'll think about it over
12	lunch and see what I can do. Under the mechanism,
13	the model predicted a trend of different data sets
14	with reasonable accuracy improved compared with other
15	correlations. However it has higher scattering under
16	the slug oscillation.
17	CHAIRMAN WALLIS: Is it your job to
18	consider whether or not the model is adequate for
19	representing pressurized water reactors? Is that part
20	of your job description?
21	PARTICIPANT: That's us.
22	CHAIRMAN WALLIS: That's you. So we need
23	a whole new presentation that says the vapor numbers
24	and the mechanisms described here are appropriate and
25	everything. System effects are like that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	DR. BAJOREK: One of the next things that
2	we are going to have to do with this is to take this
3	and this scaling which is one for one with paybacks
4	and show why this model, these models and these
5	effects would not present in something like the
6	AP1000. The l over d between the branch line and the
7	steam generator was preserved in your facility and
8	also in APEX so that link is still in there in the
9	data but we have a larger diameter of course which the
10	AP1000. It is not clear that you are necessarily
11	going to get the same flow patterns developing in the
12	AP1000 and the ATLATS type facility. We still have to
13	make that branch.
14	CHAIRMAN WALLIS: So that's another story
15	we're going to hear some other day.
16	DR. BAJOREK: Yes.
17	DR. BANERJEE: But APEX if I recall was
18	the most poorly scaled from the viewpoint of the
19	scaling study we did. We found that it wasn't, the
20	heights were not correct. It was a disaster in some
21	cases. I have to go back and look at it. But scaling
22	it to APEX is not really telling you too much about
23	AP600 or AP1000. If these tests give you some
24	information which is more general, you can also show
25	that you can predict what happened in ROSA in terms of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	this or whatever it was called.
2	DR. BAJOREK: ROSA and SPES were the other
3	two.
4	DR. BANERJEE: Yes, SPES was maybe also a
5	little atypical because the lines were too small.
6	DR. BAJOREK: It's good for the early
7	parts
8	DR. BANERJEE: Yes.
9	DR. BAJOREK: Not really where this one
10	lies.
11	DR. BANERJEE: ROSA was good. That was
12	really very good. So it predicted what was happening
13	in ROSA then you got something a little bit more
14	general. You have to structure some more.
15	DR. BAJOREK: That's a good point because
16	those diameters were larger than ROSA so there might
17	be something to gain there.
18	CHAIRMAN WALLIS: Are we ready for your
19	presentation, Steve?
20	DR. BAJOREK: Yes.
21	CHAIRMAN WALLIS: Thank you very much.
22	That was very interesting. I think we have to have
23	lunch and then come back and say how we respond
24	because our job here is to add value to the work in
25	some way. So I think we should probably do it after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	lunch or do you want us to do it before we go to
2	lunch?
3	MR. ROSENTHOL: I would like Steve to get
4	his comments out while it's still fresh in our heads.
5	Having done that we can squeeze out this afternoon's
6	work by maybe an hour where I'd like to not squeeze
7	the rest of the afternoon by more than an hour. So if
8	we could let Steve speak, go to lunch, put your
9	thoughts together, discuss these issues for no more
10	than an hour and then
11	CHAIRMAN WALLIS: It might be briefer I
12	think based on what we heard today hear certain things
13	that we found acceptable, certain things we think need
14	to be improved or fixed.
15	MR. ROSENTHOL: So we'll just pick up a
16	half hour.
17	CHAIRMAN WALLIS: I think this might just
18	be a list of five or six things. I think that in the
19	long run the consultants on this committee may want to
20	go back, read the reports and see what the basis of
21	some of this work is that we did come across today and
22	give you some critique. That won't happen today. Of
23	course you have a lot of our response from the
24	transcript that we don't need to repeat. Okay, Steve.
25	Why don't you go ahead?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 DR. BAJOREK: What I wanted to talk 2 briefly on and this will take me about 10 or 15 minutes is where we go from here. What are our plans 3 4 over the next six to a year? It's very clear that 5 there's a whole heck of a lot of things that are going on in this data. 6 We see that the model development and 7

analysis of this data continue to try to come up with better models as we saw the models that Dr. Wu has come with seem to do a better job for things which are horizontal stratified, where the slugging, the basis is at least weak at this point. But we see this as a significant step in the right direction.

It seems to do a better job than other correlations that we might want to apply for this horizontal stratified branch line type of geometry. Whether it's luck or not, the model and correlations seem to do a good job not only for the ATLATS data but for other data sets. We don't understand exactly how at this point but it seems though this is an improvement.

22 CHAIRMAN WALLIS: Did you compare it with
23 APEX data?
24 DR. BAJOREK: No, not yet.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

CHAIRMAN WALLIS: Isn't there other data

(202) 234-4433

8

9

10

11

12

13

14

15

16

17

18

19

20

21

25

154
from SPES or something else? Is there any other data
beside APEX?
DR. BANERJEE: There is other data from
ROSA and others.
DR. BAJOREK: You would have to get that
out of the ADS. I think it would be here.
DR. BANERJEE: We had everything in
detail. We had all the data.
DR. BAJOREK: ROSA however I think would
be the most interesting one because of the larger
diameter. That would be closer to AP600, AP1000.
CHAIRMAN WALLIS: This is going to be
coordinated with OSU.
DR. BAJOREK: No.
CHAIRMAN WALLIS: I think the problem I
would have would be if all this work stops and you're
left with the correlation in its present form. Then
you start doing comparison with ROSA and SPES and you
say gee whiz it doesn't work. Maybe that could be fed
into the APEX work, ATLATS work now so that Dr. Wu is
also thinking about this other source of data sets.
We don't understand exactly how at this point, but it
seems that this is an improvement.
DR. BAJOREK: We're not going to
completely give up on that. There are some question

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 marks in the model development, what would happen if 2 we made the diameter larger, what would happen if we 3 changed the length between the branch pipe and the 4 steam generators or we change the slugging frequency. 5 The model is still applicable to that. There's a lot of things that we could look at. But we think there's 6 7 a couple of things that might be of higher priority. 8 I'll talk about that in just a second. We are at the point now where OSU has 9 10 developed a RELAP model. We think that the next step 11 is to take that model, turn this into a TRAC-M model 12 at this point think of TRAC-M and RELAP as being 13 almost one and the same, put these models into TRAC-M, 14 try to test these out to see if we can predicate the 15 types of things that we saw in ATLATS, put those models and use those for simulations of APEX to see 16 17 are we getting the desired effect from these models or 18 are they washed out. 19 CHAIRMAN WALLIS: So you haven't tried yet 20 to use his theory in RELAP to predict the break flow. 21 DR. BAJOREK: No. Not yet. 22 CHAIRMAN WALLIS: It's conceivable that a 23 solution might not converge or something. 24 DR. BAJOREK: It may not. 25 CHAIRMAN WALLIS: We don't know.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

155

	156
1	DR. BAJOREK: The first time we put it in
2	the code we'd expect it not to work.
3	CHAIRMAN WALLIS: When you try and do it
4	backwards because he put in flow rates and then
5	measured the height. If you try and predict the flow
6	rate, you might find you get multiple values or
7	something.
8	DR. BAJOREK: Everything he has in that
9	model I think we can relate to what I call those
10	primary variables, those things which occur in the
11	main pipe to predict that quality. That's the way
12	that it has to be for the code. But that's the next
13	step. It is to put that in there. It's a near term
14	need. We're supporting NRR in their Phase III
15	evaluation for the AP1000. We'd like to use these
16	models to help us make some of those decisions.
17	Now, the work that has been done in ATLATS
18	also is in conjunction and compatible with where we
19	see the work at OSU going next. That is to make more
20	use of the APEX facility to perform some confirmatory
21	tests that are directed towards AP1000. As I think
22	you may have heard in the past, Jose Reyes was awarded
23	a NERI grant to take the facility, modify it by
24	increasing the core power, change the branch line
25	size, change the ADS to make it look a lot more like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	the AP1000.
2	DOE is sponsoring a series of tests.
3	We're watching what they're doing. We've worked with
4	DOE. We've talked with Professor Reyes about what
5	tests they would perform and what we see as being the
6	open questions in AP1000 as to the carry over and
7	performance of the ADS and giving them our two cents
8	worth on what types of tests they should run.
9	They've gone out and formed their test
10	series. We've augmented tests around that. We've
11	planned a test series that would assume that the DOE-
12	NERI tests have been run. Theirs are oriented more
13	for design basis tests. That gives us the liberty to
14	look at things which are directed more towards model
15	development, code validation, and some beyond design
16	basis. At the beginning
17	DR. SCHROCK: These NERI tests will be
18	done in this next fiscal year.
19	DR. BAJOREK: They're scheduled to start
20	in October of this year. So most of those would be
21	done starting in October and about a one year
22	calendar. When we started the meeting, we talked
23	about the entrainment processes and the effect, the
24	advanced plans. We can group them to two different
25	areas.

areas.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	158
1	What Dr. Wu has been looking at has been
2	the entrainment up here in the hot leg where slugging
3	occurs when that h/d was very large, where we had that
4	level up very close to the top of the pipe. But very
5	important in the most critical accident scenarios in
6	the AP1000 is the entrainment that occurs from the
7	upper plenum pool and how that liquid gets carried
8	over to the ADS during the very late stages of ADS for
9	a blow down and throughout the IRWST injection.
10	Predictions made with RELAP and with
11	Westinghouse codes shows that this minimum level above
12	the top of the core is pretty small. Predicting how
13	entrainment occurs in this region is also a bit of a
14	black art. As we look at correlations and models
15	which were available, we saw some very good work that
16	had been done by Ishii and Kataoka back in the mid-
17	80s. They made use of mainly information from the
18	chemical industry for large pots and how much liquid
19	was carried over. But the question that really wasn't
20	asked when we presented that was how applicable was
21	that to an AP advanced plant vessel. What happens
22	with the de-entrainment?
23	So, in planning these test matrixes, we'll
24	see them broken into two different categories. This

is the ones that DOE is tentatively planning. These

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	159
1	would look at DVI line breaks which are the most
2	critical accident of interest for the AP1000, a couple
3	of smaller breaks, and another one to characterize the
4	natural circulation through the system, some no
5	reserve tests which are examining the transient
6	effects of the ADS-4 system as it blows down.
7	But it would also look at some what we're
8	calling steady state entrainment tests to try to get
9	at this type of an entrainment process so that we can
10	take models that are perhaps similar to the Ishii-
11	Kataoka entrainment model which says you get very high
12	entrainment as the level is very close to the top of
13	the pot but decreases in an inverse cubic fashion as
14	that level gets lower and lower. We don't know
15	whether for a plant it's going to be up here or down
16	here. (Indicating.)
17	CHAIRMAN WALLIS: I have questions about
18	that because it's still going to be carried to the
19	hole there.
20	DR. BAJOREK: That's right, yes.
21	CHAIRMAN WALLIS: This is not just the
22	dimension of the hole that matters.
23	DR. BAJOREK: Well, this E_{fg} which is the
24	entrain flux to the total gas flux is how much of that
25	liquid is actually carried up and out.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

159

	160
1	CHAIRMAN WALLIS: Yes, but I would think
2	that this high attenuation with is the spitting of
3	the drops. They spit out and then they fall back
4	again. The stuff that's spat out from the far side
5	isn't going to get to the hot leg by any means.
6	DR. BAJOREK: Well, the idea is to try to
7	predict how much gets up into the hot leg.
8	CHAIRMAN WALLIS: Yes, but how they got
9	from one side. So you have to be careful just blindly
10	using an Ishii.
11	DR. BANERJEE: Are these low pressures
12	also one sees quite a lot of fluctuation in the level?
13	I don't now with these very low powers whether you get
14	these slugs or not. You see eruptions and the level
15	goes up and then down. I don't know what you see.
16	Have there been experiments that have shown the
17	behavior of the surface at low pressures?
18	DR. BAJOREK: I'm not aware of any. But
19	that's one of the areas that we're at least thinking
20	about at this point and planning ahead, that perhaps
21	the next use of the ATLATS facility might be to try to
22	get at this problem. In the APEX facility of course
23	with the instrumentation and it's a heated facility,
24	steam-water, it's more difficult to make changes.
25	ATLATS was scaled including the vessel one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	to one to APEX. It would give us a relatively easy
2	means of putting in an upper core plate, something
3	that looks like internals, taking them in, taking them
4	out, doing tests in a more rapid fashion in order to
5	try to evaluate how much of that liquid is actually
6	entrained out of the vessel and then into the hot leg.
7	CHAIRMAN WALLIS: Then runs back from the
8	hot leg into the vessel in the bottom. I wonder if
9	your codes can handle that.
10	DR. BAJOREK: Are you referring to the
11	horizontal CCFL?
12	CHAIRMAN WALLIS: I say that the droplets
13	are entrained from the vessel and spat up. Some of
14	the trajectory will to lead to them settling out in
15	the hot leg and they run back in the stratified layer
16	of liquid into the vessel. I'm not sure the codes can
17	handle that several region model.
18	DR. BAJOREK: At this point, we would
19	probably doubt they could handle that. In terms of
20	developing the data to either validate what's in there
21	or develop new models, we think we can get some of
22	that out of the confirmatory tests in APEX but with
23	the ATLATS facility given that it's easy to make
24	changes and perform visualizations. We see using that
25	facility to try to attack that problem in the future.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	CHAIRMAN WALLIS: So the conservative
2	thing to do would probably to be to assume if it's
3	entrained in the vessel then it all goes out the ADS-
4	4.
5	DR. BAJOREK: Right.
6	CHAIRMAN WALLIS: That may not fit at all
7	when you compare with experimental data.
8	DR. BAJOREK: Thinking about the codes
9	that I've been used to using, my expectation with most
10	of that droplets that were entrained would in fact go
11	out the ADS. Accounting for the de-entrainment either
12	on the upper plenum structures or in that transition
13	of the hot leg is not
14	CHAIRMAN WALLIS: They're entrained on the
15	far side of the vessel from the outlet.
16	DR. BAJOREK: I'm not sure the code would
17	try to de-entrain them.
18	CHAIRMAN WALLIS: Well, the code wouldn't.
19	Physically they probably
20	DR. BAJOREK: Physically they would.
21	Dallman and Kirchner ran some experiments back in the
22	early 80s. They showed that after about two or three
23	rows of guide tubes and stuff in the way 90 plus
24	percent was de-entrained. That's from the far side.
25	CHAIRMAN WALLIS: Well, what's the time

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	schedule here? I thought AP1000 was going to come to
2	the ACRS for approval pretty quickly. Here we're
3	going to have a whole set of experiments which haven't
4	even started yet trying to answer questions.
5	DR. BAJOREK: Well, these are answering
6	Research's questions to confirm the behavior of
7	AP1000, helping NRR come to their conclusions, but
8	also to develop models for our codes. In order for us
9	to get TRAC-M in order to confidently evaluate
10	something like an AP1000, we need some of this data as
11	well.
12	CHAIRMAN WALLIS: How about AP1000
13	approval? Can we wait for the results?
14	DR. BAJOREK: If I were a licensing plant,
15	I would want this and feel I needed this data now.
16	The strategy that is being pursued right now between
17	Westinghouse and NRR Well, they're hoping to get an
18	SER written I think by March 2003. They may see some
19	of this data but certainly not enough time that you
20	would want to sit and think about it and make some
21	sense out of it.
22	I believe that their argument is going to
23	be that if you bound it reasonably high there's still
24	plenty of water in the system. Now, that might be an
25	argument that would work for licensing. Is it safe?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	But it's not one that would be very satisfying to say
2	that you have the right models and you can actually
3	predict it reasonably well. I'm not sure how
4	successful that will be, their approach in the
5	licensing. That remains to be seen I guess.
6	DR. BANERJEE: In the AP600, there was a
7	period I think maybe quite briefly when the core did
8	uncover if I remember or very close to.
9	DR. BAJOREK: It uncovered in a couple of
10	the no reserve tests. But those were pretty extreme
11	in terms of what the transient was. For AP1000 the
12	simulations that have been run shows that it's close.
13	There is a level that's maintained which causes us a
14	lot of uncertainty that if this curve were a little
15	bit steeper or less steep that might be enough to
16	start getting a heat up in the core. We still think
17	that there's plenty of water in the AP1000 and that
18	you're not going to have a deep uncovery. But is it
19	
20	DR. BANERJEE: It was sort of a balance
21	between what was going out of the ADS systems. When
22	the IRWST came on, there was a time that I remember it
23	went down and then it recovers. It drops really fast.
24	DR. BAJOREK: It's a race because you're
25	at high pressure. The IRWST can't come on. During

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	that period you're doing a lot of entrainment and a
2	lot of flashing.
3	DR. BANERJEE: Right.
4	DR. BAJOREK: That's why this and what Dr.
5	Wu has been looking at is very important. If there's
6	sufficient entrainment and that pressure drop in the
7	ADS is sufficiently large that the period of time is
8	larger than what we expect, then IRWST isn't going to
9	come on in time and that level will drop in the core.
10	DR. BANERJEE: It's crucially dependent on
11	how much liquid goes out of the ADS system.
12	DR. BAJOREK: Yes. That's it. So looking
13	at our plans right now, we're looking at continuing
14	work at ATLATS, looking at the data, potentially doing
15	tests to look at other entrainment mechanisms, but
16	also using APEX now in its new configuration for
17	AP1000 to primarily look at entrainment from the upper
18	plenum and scenarios that really examine this ADS-4
19	system and how much liquid gets tossed out during that
20	blow down period.
21	MR. BOEHNERT: When would these tests
22	start, Steve?
23	DR. BAJOREK: They're scheduled to start
24	in October of this year.
25	MR. BOEHNERT: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	166
1	DR. BAJOREK: I know that they're actively
2	modifying the facility right now. They'll hopefully
3	get everything ready at that time. First would be
4	some facility characterization tests to make sure the
5	pressure drops, things have changed. We have asked
6	Dr. Reyes to look at a schedule that benefits
7	everybody. If you set it up for a DVI line break,
8	we'll do some of the NERI tests and put ours in there
9	
10	MR. BOEHNERT: Yes. You're running
11	concurrently with the NERI tests.
12	DR. BAJOREK: Yes. That way everybody
13	gets a bit of cost saving.
14	MR. BOEHNERT: So is yours supposed to
15	conclude in about the same time, a year?
16	DR. BAJOREK: About that. Because it is
17	a DOE project, we're the second tier on this.
18	MR. BOEHNERT: Yes. They have first dibs.
19	DR. BAJOREK: So some of ours waits
20	towards the end. As we get farther into the project,
21	some of our tests are going to be at the end so that
22	DOE can get theirs.
23	CHAIRMAN WALLIS: So what questions is
24	NERI trying to answer?
25	DR. BAJOREK: They're looking more at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

confirming the overall safety performance of the plant. They're looking at design basis tests and if you run a DVI-like case or a small break, the argument or what has been told to the staff is true. You don't have core uncovering. There's lots of water. There's plenty of margin. Most of our tests are looking at is there

8 a cliff. If you fail one other thing or if you do 9 something small suddenly you get a big uncovery. So we're starting from the DOE matrix, making changes to 10 11 that, making it more severe, and adding on some of 12 these tests which are using it in almost a separate 13 effects fashion to help us come up with the models for 14 this upper plenum entrainment.

MEMBER RANSOM: Steve, you mentioned the simulations have been done for AP1000. Are those with TRAC-M?

DR. BAJOREK: No. Right now those havebeen done with RELAP.

20 MEMBER RANSOM: Do you know what model is 21 used in TRAC-M for this entrainment type phenomenon? 22 DR. BAJOREK: Yes. That was the Berkeley 23 model, coefficient to the 5.7 and 1.8. 24 MEMBER RANSOM: So it would have the same

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

problems that RELAP5 has I guess.

1

2

3

4

5

6

7

15

16

17

25

	168
1	DR. BAJOREK: Yes. That's all I have.
2	CHAIRMAN WALLIS: Thank you very much.
3	DR. BAJOREK: Okay. Thank you.
4	CHAIRMAN WALLIS: Now it is 12:30 p.m. I
5	think we're all due for a break. Can we take 45
6	minutes for lunch? Would that be okay with the
7	Committee? That's 45 minutes for lunch. So we come
8	back at 1:15 p.m.
9	Then I hope we would spend about five
10	minutes maybe just summing up what we heard, a
11	reaction to this morning which will be I think
12	preliminary because I certainly would like to dig a
13	little deeper into the reports. And then we can move
14	on with the rest of the program. For the point of the
15	ACRS schedule, the most pressing thing is actually the
16	resolution of GSI-185 because we're going to be asked
17	to write a letter on that.
18	MR. BOEHNERT: Not until the September
19	meeting.
20	CHAIRMAN WALLIS: That's September.
21	September is not very far away.
22	MR. BOEHNERT: No.
23	CHAIRMAN WALLIS: Whereas we're not going
24	to be asked to write a letter I understand except in
25	so much as what we heard today affects what we say

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	about the research program report, the big fat
2	research report. We are not writing a separate letter
3	based on what we heard this morning.
4	DR. BAJOREK: Joe, I'm not sure about what
5	you have on the TRAC-M work. I know when I talk about
6	the rod bundle heat transfer, I'm not going to need a
7	whole half hour. I think I can contract
8	CHAIRMAN WALLIS: I think our main concern
9	with the TRAC-M development is why hasn't this baby
10	been born.
11	MR. ROSENTHOL: It's very big.
12	(Laughter.)
13	PARTICIPANT: I think what might work out
14	well is we're scheduled to do 185 at 2:00 p.m. Let's
15	do that. Steve and Frank and Joe will just talk a
16	little bit faster. We'll make up the time.
17	CHAIRMAN WALLIS: If we have to start at
18	2:15 p.m., there's no big problem with that. Okay.
19	So we will take a break for 45 minutes and come back.
20	Thank you very much. Off the record.
21	(Whereupon, at 12:33 p.m., the above-
22	entitled matter recessed to reconvene at
23	1:18 p.m. the same day.)
24	
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:18 p.m.
3	CHAIRMAN WALLIS: On the record. What I
4	wanted to do is very briefly go over how we should
5	respond to what we heard this morning. Since we're
6	not writing an ACRS letter, we could presumably
7	provide useful feedback. We provided a lot of
8	comments which are on the transcript. I think the
9	best way to give thoughtful feedback is probably in
10	written form.
11	We all have comments on the modelling and
12	the appropriateness and the various equations and so
13	on. It seems to me that's best done by the
14	consultants and the members who are here writing
15	individual critiques which can then be passed on to
16	the staff and OSU. Unless there are some points which
17	must be made orally now, then I propose that's what we
18	do. Sanjoy was saying that we each write a written
19	critique of what we heard this morning in a form that
20	is most helpful for the staff and to Dr. Wu rather
21	than trying to say it all orally now unless there's
22	something you want to raise.
23	DR. BANERJEE: When do you need them?
24	Will we do them together, Graham, or what?
25	CHAIRMAN WALLIS: Well, I was just going

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	to take your comments and pass them on unless they're
2	so that they're edited. I think that's the most
3	effective thing that we can do rather than trying to
4	summarize it orally now unless there are some points
5	which you want to make which you didn't make this
6	morning. Virgil, is there anything
7	DR. SCHROCK: In terms of timing, we have
8	a holiday next week so we don't need this
9	CHAIRMAN WALLIS: That's right. I would
10	say the middle of July or something. Don't forget it
11	though. The sooner the better.
12	DR. BANERJEE: I'll do it.
13	CHAIRMAN WALLIS: I think this is just to
14	summarize. Probably none of us would say that
15	everything is so complete and solid that we don't need
16	to do anymore work unless someone disagrees with that
17	conclusion. That's my feeling from what I heard this
18	morning. Does the Staff wish to say anything more?
19	DR. BAJOREK: No. I think that about
20	covers it.
21	CHAIRMAN WALLIS: Dr. Wu is here, so if we
22	individually want to meet him on the break or
23	something if we have anything which would help right
24	away, feel free to talk with him. Let's go on with
25	the original agenda. Joe Kelly. It's always a great

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	pleasure to hear from Joe especially if he has some
2	technical achievements to tell us.
3	MR. KELLY: I need a microphone.
4	MR. BOEHNERT: Over here, Joe.
5	MR. KELLY: Thank you. Okay. I'll be
6	talking about the TRAC-M code consolidation and
7	development, just a quick status. When we started, we
8	had basically five objectives. They were to modernize
9	the architecture, to affect the code consolidation, to
10	prove ease of use, accuracy, and numerics.
11	Improving the accuracy and numerics were
12	basically going to be future activities. We've done
13	very little on that to date. The ease of use is
14	mainly being addressed through the development of a
15	graphical user interface. I won't be talking about
16	that today.
17	Our first efforts were in modernizing the
18	architecture and that was to make it possible to make
19	it do the development we felt we needed to do now and
20	also in the future. That has been completed. But of
21	course as we go through time and the occasion offers
22	itself, we will continue to make some improvements.
23	CHAIRMAN WALLIS: Does that mean that
24	something Maybe I'm on the second bullet. Does
25	that mean the new code could behave like a RELAP5 if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	you asked it to or have you lost something which means
2	that you could never go back and be like RELAP5? It's
3	always going to be itself, a new breed.
4	MR. KELLY: Well, it will behave a lot
5	like RELAP5. Let me go ahead because that's what I'm
6	going to talk about some. Code consolidation
7	affecting this has really been the major activity over
8	the last few years. The initial objective was simply
9	to recover the modelling capabilities of the
10	predecessor codes.
11	Ramona is basically coupled from
12	hydraulics and reactor kinetics. TRAC-P was PWR large
13	break LOCA. TRAC-B was boiling water reactor of what
14	was in transients. RELAP5's primary mission was small
15	break LOCA for pressurized water reactors.
16	So what we wanted to do was to be able to
17	have the same modelling capabilities, not the same
18	physical models but be able to handle those types of
19	transients. As we went along it was decided that we
20	need to retain the investment that we had in legacy
21	input models, basically and especially models for
22	RELAP5. That's important really for two reasons. One
23	is to keep our user base because most of the existing
24	input decks out there are the electronic models. The
25	other reason is to aid our own assessment.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	The success metric that we gave ourselves
2	was that the simulation fidelity must be equal to or
3	better than each of the predecessor codes for their
4	targeted application. What that means is for example
5	if we're doing a PWR small break, say either a
6	separate effects assessment or an integral effects
7	assessment, we're going to compare TRAC-M versus
8	RELAP5 for that test and do a code to code to data
9	comparison. TRAC-M has to be at least as good as
10	RELAP5 or we have not met the success metric. When
11	Dr. Wallis asked why we haven't delivered this product
12	yet, this really is the answer and trying to retain
13	the investment in the legacy input models.
14	CHAIRMAN WALLIS: Now, does that mean that
15	you have RELAP5 here and you have TRAC-M there?
16	Compare them. What does it mean that you can say
17	TRAC-M behave like RELAP5 and give me a prediction?
18	Now, behave like TRAC-M and give me a RELAP quotation.
19	So that it essentially still can do RELAP5 if you want
20	it to.
21	MR. KELLY: No.
22	CHAIRMAN WALLIS: You cannot make it
23	entirely RELAP5.
24	MR. KELLY: No. I'll try to go through
25	the process in the next couple of slides to explain

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

175
what we meant by consolidation. We didn't simply take
three or four codes and glue them together because
that would defeat the purpose of having one code that
we have to maintain and learn and be able to do
development in.
To process the legacy input models, this
is the process. The large boxes represent SNAP which

is the process. The lat h is the acronym for the graphic we use in interface and the TRAC-M code. For the moment, let's just focus on Traditionally an input deck is an the bottom box. asking text file. We still talk about cards and ASCII columns and so on.

This is read by the TRAC code. 13 So you 14 read the input. You process it. You initialize it. 15 Then you can do the calculation and dump a graphics file which can be done in X and Y plottings using what 16 17 we always call XMGR. When we incorporated the TRAC-B 18 component models into TRAC-M and what I mean now is 19 things like jet pumps or the fuel channel, they were 20 built on top of pre-existing TRAC components.

21 For example, the jet pump is build on top 22 So it's the T that has been specialized to be of a T. 23 able to work as a jet pump. That's the way TRAC-B was 24 developed anyway. So now if you want to model a 25 boiling water reactor, you can use the TRAC-P or

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	176
1	basically TRAC-M input and describe it all that way.
2	We also included the from TRAC-B to read their
3	input and in effect convert that to TRAC-M and go
4	through the same path.
5	Now when you have five input decks, that
6	was a little bit more complicated. The reason is
7	there are just some fairly fundamental philosophical
8	differences in the way things are modeled. They sound
9	really simple.
10	For example, if you take a pipe and TRAC
11	and you divide it into a certain number of nodes,
12	where you obviously have junctions where you compute
13	the momentum equations internally to the pipe, the
14	TRAC also assumes that it has those junctions on the
15	outside of the pipe. When you have five for a pipe
16	model, you only get the internal junctions. Then when
17	you go to hook that pipe up to other things you either
18	have to use single junctions or branch components or
19	valves which also work as a single junction. So there
20	were some fundamental differences in the way the
21	components hooked together.
22	We couldn't just simply read in a RELAP5
23	input deck the way we can a TRAC-B. But we had
24	already started the graphical user interface. The
25	first thing we did to that was make it work for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	RELAP5. That was done because of our existing user
2	base. So you can read in and ask the input deck for
3	RELAP5 into what's called the RELAP5 model editor.
4	That can display it. Then you can go in and edit each
5	different component and change the input.
6	This is the new part. The RELAP5 model
7	editor can now export what's known as a RELAP5 TPR
8	file where TPR is an acronym for TRAC portable
9	restart. That's something we're going to be using and
10	you'll hear more and more in the future. It's a
11	platform independent binary file that contains all of
12	the geometry and fluid condition information to
13	describe each of the components in this RELAP5 model.
14	Then inside of TRAC-M, we build on this
15	part which will map the RELAP5 components to TRAC
16	components. So typically a RELAP5 pipe will then also
17	be mapped to a TRAC pipe. Then whatever it connects
18	to will have to come to a new TRAC component which
19	we've created called the single junction component.
20	It's very much like what's in RELAP5. So we had to
21	add some components to TRAC just so we could do this
22	mapping.
23	This is in red which means it's an ongoing
24	effort. But it's almost finished. It's somewhere in
25	the order of 90 to 95 percent complete. We can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	actually take a RELAP5 input deck like a stripped down
2	version of the typical PWR problem, read it in from an
3	ASCII input file, input it to TRAC using the TPR file,
4	map it to TRAC components, and execute it.
5	So basically all of the 1-D components
6	and the heat structures have now been mapped. The
7	part that we haven't finished is the control system.
8	That's well underway. It should be finished in a
9	little bit more than a month.
10	Now, once you've done this, you now have
11	the RELAP5 components represented within the TRAC
12	database structures. Then we have something called
13	the TRAC TPR file which is the TRAC version of that.
14	That provides the communication between SNAP and TRAC.
15	So now we can take this back, read it into SNAP, and
16	it will display it as the TRAC components. You can go
17	in and edit it and so forth and then come back and run
18	it.
19	This also is almost complete. It's
20	probably more like 80 percent complete. The TRAC-M
21	post-processing some of that's been done. This is
22	more the visualization and making it easy to work your
23	way through a transient calculation and see what's
24	going on.
25	PARTICIPANT: (Away from microphone.) What

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	does TPR mean again?
2	MR. KELLY: TRAC portable restart. It's
3	one of these things. I won't spend anymore time on it
4	because it's not that important to this. But what I
5	did forget to say is RELAP5 is basically a 1-D code.
6	It can simulate multi-dimensional by these cross flow
7	junctions.
8	When you do this translation of 1-D
9	components into TRAC even if RELAP5 is a modeling of
10	reactor vessel with a down-comer and a core when it's
11	mapped to TRAC components, you're not all of a sudden
12	going to get a three-dimensional vessel model because
13	there's not enough information built into the RELAP5
14	geometry to do that. So one-dimensional core channels
15	with cross flow junctions and RELAP are going to be
16	mapped to one-dimensional flow channels in TRAC with
17	these single junction serving as cross flow.
18	What we're doing in the latter part of
19	this year and this is going to be part of the SNAP
20	development is building in Wizards to SNAP. When you
21	read in the RELAP5 input deck and you're going to do
22	this conversion process, you can tag certain one of
23	the channels as what's your PWR core. You tag these
24	channels and say I want this to be a 3-D vessel with
25	so many radial rings, so many sectors. It will

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
help automate that process so the user doesn't have to do it from scratch.

The other thing I wanted to say before I take this slide off is at the present in TRAC we still have the capability of reading these types of input decks, doing initialization, as well as all this component mapping. What we want to do in the future and this is how we're going to work going forward is move all of that up to the graphical user's interface.

So the TRAC itself will be streamlined. It will only be a computational colonel. So it will have numerics and the physical models but not all this input-output stuff. It just makes the code much larger and harder to work with.

15 So where are we? This is what we're doing in calendar year 2000. The project started in October 16 17 These colors look great on this. 1997. They look 18 great on my computer screen but they don't work to 19 well here. So most of the effort over the past year 20 implementing has been on this line RELAP5 21 functionality. What we mean here is not the physical 22 models from RELAP but the components that we needed, 23 for example, this single junction, in order to be able 24 to use a RELAP5 input deck and then the component Again, this is about 90 percent complete. 25 mapping.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

	181
1	The main path is along this way.
2	(Indicating.) Once we're able to do the component
3	mapping, we're going to start doing the development of
4	simulations. Actually we've already started doing
5	some of this. This again is going to be code to code
6	to data comparisons. If you're doing a simulation for
7	a boiling water reactor, you're going to run it with
8	TRAC-M, TRAC-B, and then compare both of those to the
9	data and use some sort of quantitative metric for each
10	case.
11	If it's an axial profile void fraction at
12	a steady state, a simple RMS is fine. But when it's
13	a transient, it's going to have to be more
14	complicated. How do you judge quality over the course
15	of a transient? Each person that is doing an
16	assessment is going to have to come up with the key
17	variables they want to compare and what kind of
18	quantitative metric they're going to use. That's
19	something we're going to work at improving as we go
20	along.
21	So this is the path when we get the
22	developmental assessment done. We're planning on
23	having that done by the end of this calendar year.
24	We'll do the initial alpha release of the consolidated
25	code. Alpha in this context means it's an internal

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	release. So it will be used by our immediate
2	contractors and anyone at the NRC.
3	There are two develop activities going on
4	which I'll touch on briefly later. That's rod bundle
5	interfacial drag and an interim reflood model.
6	MR. BOEHNERT: Virgil, do you want to use
7	your microphone? She can't hear you.
8	DR. SCHROCK: What does that mean, the
9	Ramona in parenthesis there?
10	MR. KELLY: Okay. Ramona was a 3-D
11	kinetics
12	DR. SCHROCK: I know Ramona much better
13	than I do PARCS.
14	MR. KELLY: Okay. PARCS is the 3-D
15	reactor kinetics module that we use in TRAC-M. So it
16	couples the TRAC-M.
17	DR. SCHROCK: Is it derived from Ramona or
18	is it something separate?
19	MR. KELLY: No. It's completely separate.
20	It's the 3-D reactor kinetics module which was
21	developed at Purdue University primarily by Tom Downer
22	and his students. That's something that we can put on
23	the agenda and have him come and give you a
24	presentation on sometime.
25	DR. SCHROCK: What do you mean by what's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	written in that box?
2	MR. KELLY: What's here is that we are now
3	able to do a coupled thermal-hydraulics 3-D reactor
4	kinetic simulation whether it's for a main steamline
5	break or some type of boiling water reactoring
6	stability by coupling TRAC-M with PARCS. That's done.
7	It works. We've actually showed some results here in
8	the past.
9	DR. SCHROCK: What you said didn't make
10	any use of Ramona.
11	MR. KELLY: No. It's to replace the
12	functionality of Ramona like this is going to replace
13	TRAC-B and this is going to replace RELAP5.
14	DR. SCHROCK: Right.
15	MR. KELLY: So, we're moving towards
16	having just one code that we maintain and improve.
17	CHAIRMAN WALLIS: When you prove that your
18	physiology is equal or better than that of predecessor
19	codes, doesn't this mean an enormous amount of
20	comparison for a whole host of situations?
21	MR. KELLY: Well, that's what we're doing
22	here.
23	CHAIRMAN WALLIS: Probably it's not going
24	to work the first time.
25	MR. KELLY: You're exactly right. We're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	not going to be able to do as much developmental
2	assessment as we'd like. We're mainly just resource
3	limited. What we've done is take the assessment
4	matrixes of both TRACs and RELAP5 and taken a
5	selection of test cases from all of those.
6	CHAIRMAN WALLIS: Did you show us that
7	last time? You showed us more detail of those.
8	MR. KELLY: Yes. This is something that
9	Steve is overseeing and again something we can come
10	back to you on and show you in more detail. We would
11	just prefer to have some of the assessments done when
12	we come and show them.
13	So 2002 is not the end of it. We have an
14	alpha release. But we've done the developmental
15	assessment. The next step is to go through that
16	assessment, identify the code deficiencies and there
17	are going to be some where we need to improve either
18	the physical models or the numerics. The numerics in
19	this standpoint are from robustness and also
20	computational efficiency. When you do that, repeat
21	the developmental assessment, check to make sure the
22	assessments are okay if not, go back through this
23	loop.
24	CHAIRMAN WALLIS: This is all done
25	internally. There's no public comment period where

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	you put out a preliminary version and people outside
2	NRC run it and come back with experiences.
3	MR. KELLY: Well, some of the assessments
4	are going to be done by our contractors.
5	CHAIRMAN WALLIS: Okay.
6	MR. KELLY: Whether you call them internal
7	or external.
8	MR. ROSENTHOL: Joe, and we're going to do
9	a beta version to the CAMP members.
10	MR. KELLY: The beta version to the CAMP
11	members will be in spring 2003. Then we'll start
12	getting feedback from them. This will be the first
13	official code release at the end of 2003.
14	CHAIRMAN WALLIS: That's the beta version.
15	MR. KELLY: The beta version will go to
16	the CAMP members. That will be in spring 2003 at the
17	spring CAMP meeting.
18	CHAIRMAN WALLIS: Okay. So there will be
19	other people working on it.
20	MR. KELLY: Yes. That's one of the
21	reasons we spent so much time trying to retain these
22	legacy input models. It was so we could keep our user
23	base so we can keep getting feedback from them.
24	DR. SCHROCK: These are sort of like
25	heritage tomatoes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	(Laughter.)
2	MR. KELLY: And then also during this
3	period of time as Frank Odar will tell you, we'll be
4	updating the documentation. To make this feedback
5	group work one of the things we're doing is spending
6	some time automating the assessment process, making it
7	easier to run if you will in a batch mode or a large
8	number of assessments and get the plots out and do
9	some of the quantitative metrics. That is one of
10	Chris Murray of our group's many activities.
11	I mentioned that there were two ongoing
12	development efforts. These were necessitated because
13	of code deficiencies that became all too apparent.
14	The first one was rod bundle interfacial drag. Tony
15	Ulses of the staff went to do the Peach Bottom Turbine
16	Trip. This is coupled neutronics thermal-hydraulics.
17	He couldn't predict the steady state profile in a
18	boiling water reactor accurately enough for the
19	kinetics to work properly and proceed with the
20	benchmark.
21	So kind of on his own, he bootlegged the
22	TRAC-B interfacial drag and heat transfer correlations
23	into the code only for the channel components in the
24	BWR core. It worked so well that we took a step back
25	and said obviously the TRAC and physical models aren't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	good enough for rod bundles. Let's go ahead and start
2	with the TRAC-B models. So we're implementing them
3	now. They're going to be applied only to the CHAN
4	component which is the BWR fuel assemblies and to the
5	3-D vessel core region.
6	DR. BANERJEE: What's different about this
7	model compared to the other model that was there?
8	MR. KELLY: There's two things. It's
9	basically interfacial drag but also interfacial heat
10	transfer for this application to subcool boil.
11	Interfacial friction models in TRAC, we're talking
12	about bubbly flow, bubbly slug, TRAC-B was primarily
13	for large break LOCA. So they never paid a whole lot
14	of attention to steady state profiles in the reactor
15	core because
16	DR. BANERJEE: Do you have drift flux
17	model built in as well or what?
18	MR. KELLY: No. It's pure fluid.
19	DR. BANERJEE: It's pure fluid.
20	MR. KELLY: So you need an interfacial
21	drag correlation. Now, TRAC-B derives an interfacial
22	drag coefficient from a drift flux model. So it's a
23	little bit more accurate for rod bundle type
24	geometries. Basically you're saying that the bubble
25	sizes that TRAC picked for slug flow were wrong. Then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	also the subcool boiling model wasn't as good. It was
2	basically the people that worked on TRAC-B spent more
3	time worrying about it because it was something that
4	was important to them.
5	DR. SCHROCK: This 3-D vessel core region,
6	I don't know what you get there that gives you what
7	you need for the calculation in a PWR. I mean,
8	transfer, mass, minimum energy exchanges are not in
9	the BWR CHAN.
10	MR. KELLY: That's true. Interfacial drag
11	in a lateral direction is something that is basically
12	a black hole that people have not spent much time
13	worrying about. It's done with different ways in all
14	of the codes. It's something we need to pay more
15	attention to.
16	DR. SCHROCK: I agree with that, but how
17	one gets a 3-D calculation in the vessel core region
18	is what I'm questioning.
19	MR. KELLY: Well, from my standpoint it's
20	3-D but only 3-D in the sense of very large regions.
21	It's not 3-D in a CFD kind of sense. Here our
22	computational volumes are quite often half a meter
23	long. They may have between 1 and 10,000 fuel rods.
24	So they're very large chunks of a reactor vessel. And
25	3-D momentum fluxes and so on in the core are really

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	not terribly important. It's more just a radial and
2	axial distribution avoid caused by the different power
3	generations.
4	CHAIRMAN WALLIS: If you get them wrong,
5	you can get some unstable behavior. You just permit
6	them to exchange between parallel channel.
7	MR. KELLY: Yes. As we've seen in some of
8	the AP600 calculations we did earlier.
9	DR. SCHROCK: I looked at some of that
10	documentation that came on these CDs that were
11	distributed. I gather from what you told me at lunch
12	that it's not for TRAC-M, but it's documentation for
13	TRAC code. Did I get that right?
14	MR. KELLY: Well, I probably didn't make
15	it quite right. It's the TRAC-M version minus the BWR
16	models. Remember, we just took TRAC-P and changed the
17	architecture. We didn't change the answer. That was
18	one of the things for better or for worse we tried to
19	do was keep the answer the same as we updated.
20	DR. SCHROCK: I guess where I'm coming
21	from is that I've been critical of the TRAC being
22	represented as a full thermal-hydraulics 3-D
23	computation. Those words, maybe not in that exact
24	order, are used to describe what the code is. I don't
25	believe it. I don't think you're going to have that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	in TRAC-M.
2	All I'm concerned with in this comment is
3	that I think it's been oversold. I don't want to see
4	you continue to oversell it as something that it
5	really is not with arguments that some things are less
6	important than other things and so forth. It's not a
7	"3-D computation" in my view. If I'm wrong then I'd
8	like to see how it's justified.
9	MR. KELLY: Well, I don't want to spend
10	too much time here.
11	DR. SCHROCK: No I agree.
12	MR. KELLY: But you're certainly right in
13	some senses. In other senses from a different view
14	point, it does use a cylindrical core system. It does
15	have a momentum flux tenser. It doesn't make the
16	assumptions that a sub-channel analysis does that some
17	of the momentum flux terms are negligible and leave
18	them out. It has them there. But the finite
19	differences are taken over very large control
20	problems. It certainly doesn't resolve any kind of
21	small scale 3-D flows and not turbulence, et cetera.
22	That's not there at all. This because shear stress is
23	not there.
24	DR. SCHROCK: But if you couple it to a
25	nodal ertronics (PH) code, you need more detail then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	that void distribution. So how do you get that?
2	MR. KELLY: For the Peach Bottom Turban
3	Trip, Tony Ulses
4	MR. ROSENTHOL: He isn't here. I think we
5	used three to five rings, I don't remember, and a
6	dozen or 16 axial elevations.
7	MR. KELLY: I think Tom said something
8	like 36 or 35 fuel assemblies and as Jack was saying
9	something like 16 axial levels.
10	CHAIRMAN WALLIS: Many more axial than
11	MR. ROSENTHOL: Yes. 16 times 3 free
12	radial rings.
13	MR. KELLY: I mean, 35 independent fuel
14	symbols.
15	MR. ROSENTHOL: Yes.
16	CHAIRMAN WALLIS: Joe, Jack I think
17	promised that you guys would be so quick that we would
18	catch up time. My experience is that Joe always
19	speaks with three times as long as its allowed. It
20	seems to be what's going to happen.
21	MR. KELLY: Okay. Well, I'm actually
22	almost finished. I said all the important stuff. So
23	I'll just go ahead and hurry up and finish.
24	MR. ROSENTHOL: Let me chime in then if I
25	may. That is that there's an ISP-46 which is this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	International Standard Problem on this Peach Bottom
2	Turbine Trip where we have real data for real core,
3	admittedly the Turbine Trip is not as challenging a
4	transient or an accident as a LOCA but it's a real one
5	that took place. We're hinting that distributions
6	and kinetics went on very well as a function in time.
7	So to whatever degree, it's a good thing. It's
8	encouraging.
9	MR. KELLY: And I would propose that we
10	have Tony come back and present the details on that.
11	CHAIRMAN WALLIS: It would be wonderful
12	someday to have a success story like that. There's a
13	lot of stories. We get all this overview of what's
14	going wrong. It's good to see some real results.
15	MR. KELLY: And you'll be seeing more and
16	more of that as the assessment goes on.
17	DR. BANERJEE: But that was after the
18	I mean, you had to adjust the hood to make it work.
19	Right? It wasn't
20	MR. KELLY: The adjustment as far as I
21	know because I didn't do the work was implementing the
22	TRAC-B interfacial drag. That was an adjustment.
23	That was just for the steady state.
24	CHAIRMAN WALLIS: It wasn't tuning it to
25	the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	MR. KELLY: No knobs. Right.
2	DR. BANERJEE: It would be nice if it was
3	just the cold that did it.
4	MR. KELLY: I agree. But that's why we
5	made the decision to implement those models because
6	our philosophy before was do all the assessments, see
7	where there are deficiencies, and then change the
8	models. But we decided to go ahead and make this
9	change now because of that.
10	We started looking at some of the TRAC-P
11	reflood. They updated the reflood model six or seven
12	years ago. They really never did much assessment on
13	it just because the focus changed. When we started
14	looking at it, it turned out it wasn't very good at
15	all. In fact, it had unacceptably large oscillations
16	and was highly conservative when you looked at
17	separate effects tests.
18	So we're basically redoing the reflood
19	model and putting in a much more simple interim model
20	that we're going to use for the AP1000. Likewise,
21	later this fall, you'll see that effort and I'll see
22	the assessment of it.
23	DR. BANERJEE: How was it highly
24	conservative? Was it pre-cooling or what?
25	MR. KELLY: We're talking about separate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

194 effects tests, things like FLECHT-SEASET. 1 So they're 2 one-dimensional. The oscillations are like vapor 3 explosions. They just throw all of the water out of 4 the bundle. In FLECHT-SEASET, the upper plenum works 5 as a phase separator. So once you throw the water up there, it's gone. One inch per second reflood tests 6 documented more like a tenth of a second which means 7 it takes forever to flood the core. 8 9 All right. So that's everything that 10 we're doing now. This is what the future looks like 11 as best we can forecast it now. I really only want to say a few things about this. Once again the colors 12 13 don't quite come out. 14 What we're working on now, and this is 15 supposed to be blue, are these areas. (Indicating.) Those will go into the first release at the end of 16 17 calendar year 2002, the alpha release. What I really 18 want to say on this is you'll have planned development 19 or planned PARC releases on one year intervals. But 20 we plan always try to stop the development about six

months before a code release so that we have some time to go through the developmental assessment and make sure we've made things better and not worse.

The only other thing I want to say is along the top block, the development assessment is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21

22

23

1 what we're doing right now for the metric of success 2 in code consolidation. From that point on, we're 3 going to be doing PIRT based assessments. What I mean 4 here is for each of the applications whether it's BWR 5 transients, PWR small break, PWR large break, qo through for the highly ranked phenomenon and you'll 6 7 find separate effects tests for the right conditions, the right geometries, et cetera, and then also 8 integral effects tests for each of those applications. 9 10 Only after we do the assessment, then we'll find the 11 model improvements we need to make. That's what's 12 really going to drive the program in the future. 13 The next to the last slide is the 14 incorporation of the experimental results. We 15 presently have four experimental programs: a subcool 16 boiling at low pressure at UCLA; a phase separation at 17 T's at Oregon State which you heard about this 18 morning; a rod bundle heat transfer program at Penn 19 State University which Steve is going to talk about 20 after me; and the interfacial area transport at Purdue 21 and University of Wisconsin. 22 the code consolidation As approaches 23 closure, this has become more and more one of my

Steve Bajorek. As Professor Ransom said, in the past

principal jobs. It's working on this together with

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

(202) 234-4433

195

1 there's always been this separation between 2 experimentalists and code developers. Quite often that led to models that didn't work in codes or 3 4 improperably understood things. 5 So Steve and I are going to be working very closely with the experimenters and actually doing 6 7

some of the model development in-house in an effort to try to make the codes better and make these experiments fit the code needs. For the future, this program is basically over. It will be by the end of this year. All of these are starting to reach maturity with the exception of this one which is more an exploratory research program.

So in the future, it will be the code assessment results or new applications such as AP1000 which will drive the initiation of future experimental programs. We'd like to keep our experimental programs about the same level.

DR. BANERJEE: Are you going to tell us at 19 some point more details about the reflood heat 20 21 transfer and stuff? 22 MR. KELLY: Yes. 23 DR. BANERJEE: How are you getting rid of 24 these vapor explosions? Ι quess they happen

25 naturally. Right?

8

9

10

11

12

13

14

15

16

17

18

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

196

	197
1	MR. KELLY: Well, there are those. But
2	what happens when the TRAC-P reflood model is not
3	natural ones?
4	DR. BANERJEE: I see.
5	MR. KELLY: Let me try to sum it up in a
6	few words. The development work that was done took a
7	very academic-type experiment that was performed by
8	Professor Ishii at Purdue and the development work was
9	very well intentioned. It tried to do things from a
10	very I don't want to say academic again. But in
11	effect, they correlated things in terms of parameters
12	that are ill-suited for inclusion in a numerical
13	framework.
14	Briefly, they broke the region ahead of
15	the quench front and included seven different regimes;
16	smooth, inverted, angular, wavy, et cetera. The
17	length of each of these regimes is a function of a
18	capellary (PH) number which is the velocity of a
19	liquid jet at the quench front. If you look at any of
20	code calculations, liquid verocity is especially in
21	quasi-static wiggle. So all these lengths did crazy
22	things. Your wall heat transfer just went nuts.
23	DR. BANERJEE: I remember that RELAP5 was
24	giving big problems in the low pressure reflood of the
25	AP600.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	MR. KELLY: We actually didn't do reflood
2	framing. It was just sitting still, yes.
3	DR. BANERJEE: Yes. Sitting still it was
4	having problems. How did you get rid of that?
5	MR. KELLY: Well, there were a number of
6	problems with relapse from the AP600. The worst ones
7	were momentum fluxes that were referred to earlier.
8	That was basically just the way the numerical scheme
9	tried to do momentum fluxes.
10	DR. BANERJEE: That doesn't happen in
11	TRAC.
12	MR. KELLY: We haven't seen those kinds of
13	momentum flux loops, no. But if you get to low enough
14	pressure, yes things are going to oscillate. As we do
15	correlation development on model replacement by
16	selection of the models, it always will help if you
17	have a thought as to what's going to work well in the
18	numerical framework.
19	I'll give you one quick example. It's the
20	CHAN nuclear boiling correlation in which there was
21	much were used. It does things in terms of the
22	Martinelli-Nelson parameter which makes a lot of
23	sense. If you're doing a steady state boiling
24	experiment, you can always get the quality from an
25	energy balance. That's very nice.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

199 1 In a code calculation especially under 2 almost zero flow conditions, what's the quality? Ιt 3 all of a sudden has no meaning. If you're a 4 stratified layer and you have vapor above it, what are 5 the qualities? You have the liquid come up and the quality is almost zero. So if you have X over 1 minus 6 7 X and those are varying between zero and one, you've made a great amplifier of noise. 8 But if on the other hand you can do that 9 10 as a function of void fraction, then you're much 11 better off because void fraction takes some amount of 12 time to change. That's one of the reasons for doing 13 this work. Instead of having a static flow regime map 14 where you can cross a regime boundary, a J_{E} J_E plot, 15 instead you're solving a transport equation for the interfacial area. 16 17 If you go from one regime to another, you 18 have to evolve in either time or space. So that's 19 part of the rationale for doing this. It's to try to 20 rid of work to get some of the unphysical 21 oscillations. 22 DR. SCHROCK: This interfacial area of 23 transport seems to have gotten a pretty firm hold. It 24 seems to me without a clear consensus in the technical 25 community that it has a fundamental basis. I don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	know a fundamental basis for it. Are you at all
2	concerned that you're getting into something built
3	into the code that won't survive or are you confident
4	it will survive?
5	MR. KELLY: Well, you'll notice that I
6	refer to it as an exploratory research program. I
7	have it down to the 2005-2007 timeframe. The reasons
8	for that are that it needs to mature more. If you
9	look at some of the two phased CFD work that's going
10	on, they use something equivalent to interfacial area
11	transport.
12	What you mean is that in order to get an
13	interfacial area like bubble sizes, you model the
14	processes that destroy and create bubbles. If you
15	model those sub-processes whether it's turbulent break
16	up for bubbles, Webber (PH) number driven break up, or
17	more importantly for us bubble coalescence, larger
18	bubbles over taking smaller bubbles, et cetera, if you
19	could model those processes well enough, then you
20	could model the physics behind what causes the flow
21	regime changes.
22	At present and Jennifer Uhle was here
23	probably a year or so ago and showed a calculation in
24	TRAC-M. It's a side version. She had implemented it.
25	It handled bubbly transition very well for those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 particular conditions. But to go from something more 2 like slug to churn turbulent to annular, we're not 3 there yet. Those are just the normal flow regimes in 4 a vertical pipe.

You have to consider a rod bundle. You have to consider the hardware that's in a type of reactor. What happens when you go around a corner to the interface? There's a lot more work that has to be done before we could consider it.

10 MR. ROSENTHOL: Can I try to follow up? 11 At the beginning of the meeting Steve Bajorek said in 12 a discussion with Dr. Wallis, we went from these overview presentations into more of an indepth mode 13 14 with the Subcommittee. So we tried to do that with 15 subcool boiling today. In the fall, Steve will touch 16 on it more.

17 We'd like to spend a fair amount of time 18 on rod bundle heat transfer. In fact, it would be 19 good to have a meeting there. Then maybe six months 20 from now or so we would get Ishii and company in. 21 Then we could take a good day to go over this thing. 22 That would probably be a better way to answer your 23 question. 24

CHAIRMAN WALLIS: Yes.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Well, I'd just like to DR. SCHROCK:

(202) 234-4433

5

6

7

8

9

25

	202
1	mention that my concern at the outset of this research
2	program which I guess is in it's second five year
3	period or something like that was that there wasn't a
4	sufficiently broad view taken on what the root cause
5	problems are in these codes. Specifically, I talked
6	about the fact that structure the code has the premise
7	that you have flow regimes that can characterize in
8	some relatively simple way and that they have abrupt
9	starts and stops or you use some numerical blending of
10	them to bridge transitions.
11	In any case, the physics of the transition
12	in flow regimes is simply absent there. I think
13	that's one of the ongoing difficulties that the code
14	has. I think in the OSU problem that's very clear.
15	That is at the root of the problem.
16	What I'm concerned about it that we go on
17	and on and on with the same approach to doing it, and
18	we're putting more band-aids on difficult aspects of
19	the problem. But we're not really getting at the fact
20	that the structure of the code itself ought to be re-
21	examined in the sense that you have this flow regime
22	dependance. Then the flow regime map itself is overly
23	simplistic. I think there is a major problem there,
24	and it's not getting any attention yet at the research
25	level that I see.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	203
1	CHAIRMAN WALLIS: I think by now we've
2	read the summary slide.
3	MR. KELLY: Okay.
4	CHAIRMAN WALLIS: So what I'm really
5	looking forward to is seeing that this works.
6	MR. KELLY: And all through the next year
7	of finding out where it doesn't work.
8	CHAIRMAN WALLIS: That's right.
9	MR. KELLY: Professor Schrock's comments
10	are
11	MEMBER RANSOM: There are a couple
12	comments. One is along with Virgil's comment. Really
13	a pilot code demonstration of this interfacial area
14	transport modeling would be quite helpful I would
15	think in trying to decide what potential it offers.
16	I think that would be a good first step to take. It
17	does offer some benefits I believe. Although it will
18	also introduce some new problems.
19	The other comment that I had in attempting
20	to write a paper on uncertainty in code calculations
21	with regard to a risk-informed regulation has to do
22	with common failures. One of the advantages that the
23	NRC has had over the years although some people might
24	argue a disadvantage is they had more than one code
25	development. As a result of that they were actually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

204 able to discover things that are wrong with one of the 1 2 versions of the code. 3 One thing that you seem to be headed for 4 is one single giant code which of course could have an 5 error in it which would mean that all your calculations are in error. So I think there does need 6 7 to be some thought put into what is the check and 8 balance system here to avoid that sort of problem. 9 MR. KELLY: Obviously we're doing this for resource reasons. We have to make the best use of our 10 11 resources that we can. One good code would be better 12 than two poor codes. But we have to make it a good 13 code. 14 Now, what we can do for a check is there 15 is one other large ongoing code development in the 16 reactor safety area. It's the Katar (PH) Code in 17 France. We have the right to use that code. It's 18 just that we'll have to have users trained to use that 19 as well. So we could do our code comparisons against 20 that. 21 DR. BANERJEE: Another thing. I agree 22 completely about the interfacial area business. Ι 23 think it would be worth bringing that meeting up as 24 much as possible because the flow interfacial area is 25 a vector. Even in a 1-D code, there's area normal to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	the flow, area parallel to the flow.
2	Secondly, the interfacial area for
3	momentum transfer is not the same as interfacial area
4	for scaler transfer in some sense as we chemical
5	engineers know extremely well. They're not even the
6	same thing almost because it depends on the renewal
7	frequencies. So before we go ten years down the road
8	with this, it would be good to have this peer reviewed
9	or at least reviewed by this Committee as quickly as
10	possible.
11	MR. KELLY: I agree.
12	DR. BANERJEE: It's already five years
13	down the road.
14	MR. KELLY: Most of what's being done to
15	date is gather experimental data that can be used one
16	way or another to improve whatever kind of model.
17	Even if we went that way, we would still gain
18	something.
19	DR. BANERJEE: Right. But even then
20	there's a question of what is that data. Data, for
21	example, if you were looking at heat and mass
22	transfer, there's a different type of data than if you
23	were just looking at momentum transfer. This is
24	actually a point that we can discuss in great depth.
25	It's been going on for a long time, this business.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	MR. KELLY: Yes.
2	MR. ROSENTHOL: Why don't we try to do
3	that this winter?
4	CHAIRMAN WALLIS: We are working through
5	these programs. I would expect to see the first.
6	Is that right?
7	MR. ROSENTHOL: Yes. And I'd like you to
8	see the
9	CHAIRMAN WALLIS: We haven't seen them for
10	a long time. We also haven't seen Ishii for a long
11	time.
12	DR. BAJOREK: We would anticipate next
13	month looking at the subcool boiling, spending a day.
14	I'll talk about the rod bundle. Maybe we could spend
15	a day on that in October or November. Then follow it
16	with Ishii in maybe January.
17	MR. ODAR: I'm Frank Odar. I heard that
18	you have a favorite topic of discussion, TRAC
19	documentation.
20	CHAIRMAN WALLIS: If I'm not mistaken, I
21	think about 40 years or so ago we were both in Malibu,
22	New Hampshire.
23	MR. ODAR: Oh, yes. We were. It's nice
24	to see you again. I'm going to address the status of
25	the documentation first, what we have now, and also

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	the future plans.
2	This is the list of the documentation we
3	have applicable to TRAC-M, not TRAC-P, not TRAC-B, but
4	TRAC-M. That's the modernized version. The first two
5	documents address version 3.0 where the modernization
6	effort was completed and the code was converted to
7	Fortran 90. The Theory Manual and that NUREG/CR
8	document represents the old correlations and old
9	methods. So it's nothing from that point of view it's
10	not really new. But what is new is that the code has
11	been modernized.
12	DR. SCHROCK: Is this a part of that set
13	of CDs that we received?
14	MR. ODAR: Right. You received that CD.
15	DR. SCHROCK: I did spend many hours
16	trying to dig threw it. But it's first of all
17	difficult to do that on the screen.
18	MR. ODAR: Right.
19	DR. SCHROCK: You can't look back and
20	forth or at least I can't.
21	MR. ODAR: I can't either.
22	DR. SCHROCK: I found sections of what was
23	listed in the contents were not present on the CD that
24	I got. Is it incomplete?
25	MR. ODAR: I better send you a hard copy.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	DR. SCHROCK: Specifically I was looking
2	for the models of correlations. I couldn't find them
3	on the CD.
4	MR. ODAR: They were presented in
5	different sections.
6	MEMBER RANSOM: Dr. Schrock, along that
7	line, you didn't put any bookmarks on those CDs, so
8	they're extremely difficult to use. The pages are
9	numbers sequentially on the CD but in the table of
10	contents of course you have them numbered by section.
11	So there's no way from a bookmark or an index to find
12	what exists on the CD. I would almost refuse to read
13	that without that. I think you have to correct that.
14	MR. ODAR: All right. I will do that. I
15	personally read the hard copy because of the changes
16	on the screen.
17	MEMBER RANSOM: The problem with hard
18	copies is it's a stack of paper.
19	MR. ODAR: It's about four inches thick.
20	We do have the User's Manual corresponding to that.
21	Actually the version 3.0 remember that it's applicable
22	for PWRs. So therefore, it's almost like the old TRAC
23	is more modernized.
24	The third manual, the Developmental
25	Assessment Manual is about halfway modernized. It's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

209
the F77 code. Before we did the F90 conversion and
the complete modernization first we made the step of
F77. That means removal of some that uses So
the code became almost platform independent. That
shows the developmental assessment of the code. We
think that the results are going to be the same as for
the Fortran 90 version.
We do have also a Programmer's Manual for
the same version which is version 3.0 that the
programmers can use. The other three documents there
really pertain to a little bit later versions. One of
the documents that we prepared is an Assessment of
Modernization and Integration of BWR Components and
Spacial Kinetics in TRAC-M. That's a much later
version. It's version 3690.
Surprisingly certain we have found quite
a bit of errors in that assessment work. But those
errors were found and corrected. It turns out that
the modernization effort was successful because when
we compared a good number of tests next to each other
the results were quite accurate.
We repeated also the developmental
assessment cases. There's the third report. They
were also reasonable. By that I mean, the results
that we would obtain from the assessment of version

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5.5 were about the same as you would obtain from version 3690. So we have done I think -- story and we've also shown an inter application of spacial kinetics for the BWRKs. That turned out to be quite reasonable too. The bottom tests were connected. We have them in combination of all those two or three things.

The next document is the assessment 8 document which is reflood. Assessment of the reflood 9 model is used today in TRAC. We found that quite 10 11 inadequate. It was expelling too much water. One of 12 the main reasons that I found was that flow regime 13 problems were not applicable. Because the problem was 14 expelling more water than needed, the results were 15 conservative.

The last document is the quality assurance document which we are applying to NRC Thermal Hydraulic Codes. It shows the type of documentation needed and also the type of review and independent assessment that's needed basically.

21 MEMBER RANSOM: I have one other comment. 22 About a year ago I received a number of these in the 23 mail while I happened to be working in a company that 24 was doing some work on TRAC-M. I ran into the 25 developers and said I got a manual on TRAC-M. They

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

16

17

18

19

20

	211
1	said that's not TRAC-M. It's TRAC-P. In other words,
2	all of this documentation is about past versions of
3	the code. It didn't seem to be current with what
4	they're working on. Do you have any comment on that?
5	MR. ODAR: Yes. TRAC-M in the sense that
6	it's the early TRAC-M versions require that the
7	modernization is completed and for our qualities to
8	change to convert it to Fortran 90 independent. So
9	these documents you have benchmarked that version.
10	I think it's true some of that information from the
11	other. Particularly on the Theory Manual you can get
12	similar information from older documents.
13	MEMBER RANSOM: Well, in these CDs that we
14	have, will we eventually be getting current
15	information on what the current TRAC-M formulation is
16	or is it the older TRAC-P?
17	MR. ODAR: You will get the most current
18	information. But remember that we don't intend to
19	change the physics too much in the near term.
20	Therefore, the correlations are going to be about the
21	same. For example the facial shear model, that could
22	be different. But the rest of the correlations would
23	remain the same until further improvements are made.
24	MEMBER RANSOM: Let me ask the Chairman.
25	For this next meeting, we will be reviewing these or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	will be reviewing the current formulations?
2	CHAIRMAN WALLIS: I don't know. You have
3	to ask the Staff.
4	MR. ODAR: The next slide shows the
5	planned documentation for different versions which are
6	forthcoming. The alpha version of the code will come
7	out at the end of the year. We need to produce a new
8	User Guideline because we have lots of BWR components
9	added. There is also interface with the parts code
10	which is a spacial kinetics code. The User Guidelines
11	changed quite a bit. The Theory Manual will be
12	expanded to include again the BWR components. Some of
13	the framework may not be in at that time.
14	Next spring we'll have expanded user
15	guidelines including the capability. The Theory
16	Manual which is probably close to draft one and draft
17	two whatever the improvements that are made during
18	those three months will be added.
19	CHAIRMAN WALLIS: Is this Theory Manual
20	written for external consumption? Let's say a flow
21	mechanisist from Cambridge University who knows
22	nothing about nuclear reactors but knows a great deal
23	about flow mechanics. Would he pick it up and read it
24	and believe it as a good professional document? Is
25	that the audience or is it the audience that's already

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	to imbued with the assumptions and short cuts and
2	methods which have been used in this field in the
3	past?
4	MR. ODAR: This is a difficult question to
5	answer. But I can tell the truth. The audience is
6	the TRAC developers.
7	CHAIRMAN WALLIS: That's the problem.
8	It's this inbreeding.
9	MR. ODAR: That's the problem. And we
10	realize it. But there are lots of shortcuts written
11	in TRACese.
12	CHAIRMAN WALLIS: One thing that the ACRS
13	has tried to get across is that there's a public out
14	there and there's a professional public. If
15	everything is written in TRACese, then you have a hard
16	time convincing an independent professional public who
17	are really quite knowledgeable that this whole thing
18	is a good structure.
19	MR. ODAR: I agree. We have changed the
20	structure quite a bit. It has come a long way from
21	the old TRACese documentation. But I realize that we
22	do have much more work to do to explain the
23	fundamentals, the physics of the correlations that are
24	used. Hopefully, we'll provide it at the very end in
25	2003 when all development work is completed.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

CHAIRMAN WALLIS: Well, let's look at the correlation. How deeply do you go into the correlation? Do you just say this is a correlation from so-and-so or do you look at the database behind the correlation and the range of parameters of which it should be valid and compare that with range of parameters in the applications? Is this part of the documentation?

MR. ODAR: This is partially adhered to, but not all correlations have the same basis, in other words, the same kind of analysis of a particular applicable of the range and validity. Do you remember these correlations were selected about 20 years ago?

CHAIRMAN WALLIS: I believe so.

15 MR. ODAR: You realize that there ought to be some improvements in selection correlation. 16 Т 17 guess what I'm saying is as the time goes on we intend 18 to make the improvements and the -- document really 19 spells out what kind of detail we need in this 20 documentation. That includes full interim equations 21 applicable for the studies, scaleability studies, and 22 everything should be included in the reactor analysis. 23 MEMBER RANSOM: Along this line, are there 24 any peer review efforts that are ongoing in the TRAC-M 25 development? One example would be years ago under

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

8

9

10

11

12

13

14

	215
1	Favic and Tong, they put together a blue ribbon
2	committee that I think met once or twice a year. They
3	really took the developers to task in terms of what
4	they were doing.
5	MR. ODAR: Right.
6	MEMBER RANSOM: Actually a lot of benefit
7	came out of that. I think some kind of peer review
8	process really would be beneficial unless we are the
9	peer review.
10	MR. ODAR: You are all a part of the peer
11	review.
12	DR. BANERJEE: Some of us belong to other
13	committees.
14	MR. ODAR: In the process, we do have
15	extensive peer review.
16	MEMBER RANSOM: You do?
17	MR. ODAR: Extensive peer review at every
18	stage on the documentation. The documentation
19	includes a requirements document
20	MEMBER RANSOM: I'm thinking more of the
21	development. You may be the wrong person to ask this.
22	I think Joe Kelly would be the better one.
23	MR. ODAR: which is development. The
24	final document is a development document. Because all
25	of the engineering equations applicable to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	216
1	capability equations ought to be answered in the
2	requirements documents. I could tell you what is to
3	be coded. All limitations ought to be right there.
4	We're going to apply that. This is much later of
5	course. We have a long ways to catch up.
6	CHAIRMAN WALLIS: I suspect then there are
7	still areas where you take formulation of a momentum
8	equation for a junction or something. There's still
9	some question about how valid the formulation is.
10	MR. ODAR: That's true.
11	CHAIRMAN WALLIS: The last thing you want
12	is to go through this great big structure and come to
13	ACRS and we say we don't believe equation 1196.
14	MR. ODAR: Well, I think there have always
15	been questions equations.
16	CHAIRMAN WALLIS: That's because no one is
17	taking the time to work it out properly.
18	MR. ODAR: Well, it is also a very
19	difficult question. It's a combination of a momentum
20	equation and the mechanical
21	(Discussion away from the microphones.)
22	DR. BANERJEE: One is a vector and one is
23	a scaler.
24	CHAIRMAN WALLIS: That's right. We've
25	seen that before.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	217
1	MR. ODAR: Well, I think you know it's
2	true.
3	CHAIRMAN WALLIS: Yes. I've seen some of
4	that.
5	MR. ROSENTHOL: Steve tells me that his
6	presentation is about five minutes.
7	CHAIRMAN WALLIS: We better go on because
8	we're going to be here all night.
9	MR. BOEHNERT: Just as a response to
10	Virgil. Take a look at that first list that Frank
11	provided. There are NUREG/CR numbers. If you guys
12	want paper copies, let me know and I'll work with
13	research to get the paper copies of those documents if
14	you need them.
15	MEMBER RANSOM: Are they working on CDS
16	with bookmarks?
17	MR. ROSENTHOL: I can't answer that. Now
18	we are.
19	DR. SCHROCK: I'd like for us to look at
20	what he has there, not make us discover. Was it just
21	my error in finding those correlations or were they
22	really not there?
23	MR. ODAR: Well, it's not
24	DR. SCHROCK: I'll just leave you with
25	that thought.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	MR. ODAR: It's not a separate
2	DR. SCHROCK: I don't want to discover it
3	again myself.
4	MR. ODAR: It was supposed to be including
5	that.
6	DR. BAJOREK: Okay. I will be brief
7	because I know we're over the time allotted here.
8	There's a package coming around. You can refer to it
9	and see some of these for yourself.
10	We heard the comment earlier that we
11	really want to see some real results. With the rod
12	bundle heat transfer program, we've been waiting for
13	this as well for the last couple of years. In
14	previous times when we've talked to you about the rod
15	bundle program, we would say it's still being put
16	together. It's still in pieces in the lab.
17	Last month Joe Kelly, Gene Rhee and myself
18	went up to Penn State to witness one of the first
19	tests that had been done. Our purpose was to take a
20	look at the facility, review the initial results, and
21	try to just make an overall estimate as whether the
22	data that we're seeing is consistent with each other,
23	whether there are any problems in the measurements,
24	and whether the data appears to be consistent with
25	what we had requested.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The RBHT just forgot to have an overview for the facility itself. It's a full height bundle. It's a seven by seven assembly of electrically heated rods. The difference between it and previous reflood tests is that this has а complete set of instrumentation, meaning when we want to look at grid spacer effect. FEBA did a nice job of taking a look at that.

In the rod bundle heat transfer tests, there will be thermocouples on the grids. There will be fluid temperatures. There is a very detailed array of DP cells. There are thermocouple regs by which to get the steam temperatures. So we can get the whole package of information on reflood and not have to sift through FLECHT and FLECHT-SEASET and FEBA and G2 to get bits and pieces.

17 In the next several figures, it shows some 18 of the examples of the data that's coming out. I just 19 want to make a few comments. One is it appears to us 20 that the results are consistent. When we look at 21 what's coming out of the test results and compare it 22 to what we would expect from FLECHT and previous 23 tests, we're seeing those things. It's a relatively 24 long transient for in this case a one inch per second 25 That's good because this is intended to help us test.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

	220
1	with the model development.
2	We looked at the steam probe behaviors.
3	The steam probes were a concern in FLECHT because they
4	quenched up at around 900 degrees Fahrenheit which
5	would put us up in here. (Indicating.) In the Penn
6	State bundle the traversing probes are giving
7	meaningful measurements to at least 600 degrees and in
8	some cases lower than that. It means we can get
9	meaningful vapor temperatures relatively close to the
10	quench front where we didn't always have that
11	previously.
12	A couple of comments on the results. You
13	can see it in this figure where it shows an axial
14	temperature distribution. There are also steam
15	temperatures and grid temperatures. The grids are a
16	first order effect. They truly dominate what is going
17	on in the bundle. That's somewhat expected in a Y in
18	the facility make up there are windows up and down
19	this facility so that they can use a laser camera and
20	digitally image the droplet field. They focus this on
21	the inside of the bundle.
22	We found and it's amazing that you could
23	run a reflood test and within minutes of completing
24	the test, you get a droplet distribution. Now, the
25	test matrix moves the camera around in some cases so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	221
1	that we see the effects above the grid and below the
2	grid. We're getting droplet information and a
3	distribution that makes sense. The size tends to
4	match up.
5	DR. BANERJEE: These even look normal.
6	DR. BAJOREK: Yes.
7	DR. BANERJEE: Amazing.
8	DR. BAJOREK: And the size is very typical
9	of what we had expected from previous experiments.
10	This is a bit confusing but the software that goes
11	along with the camera will give you those
12	distributions as a function of time. Now, in this
13	case, there are enough droplets in this particular
14	test to get a nice smooth curve. This gives us a way
15	to look at different periods of the test and seeing
16	how potentially the droplet distribution may change as
17	the quench front moves in the bundle.
18	The traversing steam probes. First by way
19	of the bundle itself it's a relatively uniform planer
20	rod for a temperature profile, meaning the housing is
21	not having a very strong effect on the interior rods
22	as we would hope. We are seeing with the steam probes
23	a gradient in the steam profile as we move from the
24	center of the bundle closer to the housing.
25	We're also able to pick up what I refer to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	as the subchannel effects where you see higher
2	temperatures when you have the steam probe immediately
3	between two rods as opposed to somewhere out further
4	in the subchannel of the flow. So we're getting what
5	we think is a fairly detailed picture of the vapor
6	temperature distribution across the bundle.
7	DR. SCHROCK: I don't understand. If this
8	is on the distribution and time, how do you see that?
9	DR. BAJOREK: This shows two different
10	tests. The only difference is where the traversing
11	steam probes were positioned. This one was in the
12	subchannel, the middle of four rods. For this upper
13	curve, the steam probe was immediately between two
14	rods. So we're able to see the difference in steam
15	temperatures in where the bulk mixing part of the
16	fluid is versus where it is between the rods. As we
17	go from the center of the bundle out to those rows
18	closer to the housing, we would see this pair drop in
19	temperature as you would expect.
20	MEMBER RANSOM: Are those the droplets
21	hitting the probe?
22	DR. BAJOREK: Probably.
23	MEMBER RANSOM: A shoot up in temperature
24	and then down. Although that's kind of a long time.
25	DR. BAJOREK: That's a fairly long time

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	223
1	and there's a lot of droplets.
2	MEMBER RANSOM: What explains the
3	scilitory (PH) (PH) nature of the temperature
4	measurements?
5	DR. BAJOREK: There are some oscillations
6	in the itself.
7	MEMBER RANSOM: Pardon?
8	DR. BANERJEE: It's quite regular.
9	MEMBER RANSOM: Are they slugs or drops?
10	I mean, they're actually bubbles I guess because
11	they're higher temperatures so it must be steam and
12	then go down to the liquid temperature.
13	DR. BAJOREK: These are bare thermocouples
14	so they do occasionally get wet. There's a lot of
15	liquid. I think when they do get wet there is a time
16	period by which it takes to
17	MEMBER RANSOM: Just one quick
18	clarification. You have percent numbers on the
19	droplets. Are they all normalized to 100 percent?
20	DR. BAJOREK: They are eventually, yes.
21	MEMBER RANSOM: Okay.
22	DR. BAJOREK: I guess our point at this
23	point testing is moving along. They've been able to
24	run on the order of seven or eight valid tests at this
25	point. We're taking a look at the data as it's being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	produced. We're using this to modify the test matrix
2	so these things make sense. The long run moving the
3	camera around to positions of interest.
4	They're going to do the initial phase of
5	reflood tests consisting of a group of 33. They
6	should have those done in about September. Our
7	proposal to the Committee is that potentially October,
8	maybe November would be an appropriate time to spend
9	a day looking at the reflood test program where we
10	could go through in detail and show you the bundle,
11	show you the results, show you the trends. We
12	probably won't be at the point of developing models at
13	that point, but explaining what's going on.
14	We think it would be worth having that
15	meeting at Penn State so you could see a test, look at
16	the instrumentation, see how it's done, and look at
17	the facility that's been put together. It's an
18	impressive facility and I think represents a very
19	strong commitment on the part of research to continue
20	advanced model development.
21	DR. SCHROCK: Could we have the benefit of
22	some documentation on the instrumentation in advance
23	of that meeting?
24	DR. BAJOREK: Yes.
25	DR. SCHROCK: I think that would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	helpful.
2	DR. BAJOREK: It's not bookmarked.
3	MR. ROSENTHOL: We'll give you what we
4	have.
5	DR. BAJOREK: This is all on paper at this
6	point.
7	DR. SCHROCK: We've seen some. But I
8	don't know that it's enough.
9	CHAIRMAN WALLIS: This is near
10	Philadelphia?
11	DR. BAJOREK: State College, Pennsylvania.
12	CHAIRMAN WALLIS: Where's State College?
13	It's out in the boonies somewhere?
14	DR. BAJOREK: Yes. It's across the state.
15	It's easier to get to than New Hampshire.
16	(Laughter.)
17	MEMBER RANSOM: Quick question. Is
18	somebody thinking about how you're going to use this
19	information to improve the TRAC code?
20	DR. BAJOREK: Yes. Really the entire test
21	matrix which was designed by Joe Kelly is set up in
22	such a way that we get information to develop
23	mechanistic models for dispersed or off the heat
24	transfer, interfacial drag, and inverted annular flow;
25	those areas of the code where we have particular

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	question marks.
2	MEMBER RANSOM: Precursory cooling out of
3	that?
4	DR. BAJOREK: In what way?
5	MEMBER RANSOM: If you have reliable
6	models that calculating precursory cooling for the
7	bundles, I think that's what you had earlier.
8	DR. BAJOREK: Do we have them now?
9	MEMBER RANSOM: You will have them.
10	DR. BAJOREK: We will have them. We need
11	to have them, yes.
12	CHAIRMAN WALLIS: So, thank you.
13	MEMBER RANSOM: I'm still puzzled. It's
14	not a reasonable question.
15	DR. BAJOREK: What? I'm not sure whether
16	your question is whether we have good precursory
17	cooling models now or that's our intention to use this
18	data to develop them.
19	MEMBER RANSOM: Are there new models of
20	precursory cooling which I think has been a problem
21	for these reflow reductions?
22	DR. BAJOREK: We would hope to be able to
23	develop them out of this data because we're going to
24	have a much better handle on the development of axial
25	steam temperatures.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	227
1	MEMBER RANSOM: That's basically part of
2	Joe Kelly's contribution then.
3	DR. BAJOREK: Yes.
4	MEMBER RANSOM: Okay.
5	CHAIRMAN WALLIS: Anything else?
6	DR. BAJOREK: Okay. Thank you.
7	CHAIRMAN WALLIS: Thank you. Can we move
8	on before we take a break? Then we'll take a break
9	somewhere after the next presentation or maybe after
10	Marino diMarzo's presentation depending on how things
11	go. We are changing gears completely.
12	(Discussion away from the microphones.)
13	CHAIRMAN WALLIS: This is a new play all
14	together.
15	MR. SCOTT: Yes. In fact you probably
16	thought about alpha all morning, the void fraction
17	creation. This afternoon we're going to be thinking
18	about beta, the reactivity parameter.
19	I'm going to start off here and give you
20	an overview of the Generic Safety Issue. Then next
21	Dr. DiMarzo who is actually a part time NRC employee
22	in addition to being from Maryland is going to talk a
23	little bit about thermal-hydraulics. Then it sounded
24	like you wanted to take a break. Then Dr. Diamond has
25	a longer presentation in which they've used the PARCS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	code to make some calculations.
2	This slide is just for the benefit of
3	people that are going to read a transcript later. So
4	let me put up a diagram of a steam generator coolant
5	and just talk a little bit. This event starts with a
6	small break LOCA. For example, a two inch break is
7	about the right size. That's about 20 square
8	centimeters.
9	CHAIRMAN WALLIS: Does it matter where it
10	is?
11	MR. SCOTT: It doesn't seem to. Well, it
12	may matter where it is. Some scenarios would not
13	result in boron dilution and some would. We didn't
14	look into exactly which scenarios resulted in this.
15	MEMBER RANSOM: It looks like it would be
16	pretty important whether liquid is leaving out the
17	break or steam is leaving out the break. If it's
18	steam leaving, no boron is leaving. If liquid is
19	leaving, boron is leaving.
20	MR. SCOTT: Well, but the steam has to go
21	over the candy cane and then condense here to put
22	unborated water down where this green is.
23	(Indicating.)
24	MEMBER RANSOM: No. The question is what
25	leaves the system? Where is the break?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	MR. SCOTT: I guess I don't know for sure
2	in which calculation that BNW did where the break was.
3	MEMBER RANSOM: I know in the
4	documentation I couldn't find out where the break was.
5	MR. SCOTT: Well, we don't say exactly
6	where the break is.
7	MEMBER RANSOM: What do they assume, the
8	liquid leaves or paper leaves? The importance of this
9	question is you're trying to figure out if boron is
10	leaving the system I think.
11	MR. SCOTT: No. What we're trying to find
12	out
13	MEMBER RANSOM: As well as dilution. I
14	understand that.
15	MR. SCOTT: How much water that does not
16	have boron in it can accumulate in the steam
17	generator.
18	CHAIRMAN WALLIS: This thing is looking
19	like a still.
20	MEMBER RANSOM: Yes. My point is that the
21	boron inventory is also important if it all stays in
22	the core.
23	DR. DIMARZO: Right. The scenario which
24	is depicted here is a situation that occurs late in
25	the transient where basically the inventor is being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	230
1	reduced.
2	MEMBER RANSOM: By liquid draining out.
3	DR. DIAMOND: By liquid draining out. You
4	have lost most of the liquid at this point. All you
5	have is liquid in the core because you have to clear
6	the hot leg in order to have an installation process
7	if you wish or at BCN type process. So it is
8	necessary for that hot leg to be substantially empty.
9	If you have 20 percent collapse liquid
10	leveling in the hot leg, you are bound to have now and
11	then presumption of natural circulation. That would
12	basically foul up the deborate water that you have
13	accumulated because it would put borated water on top
14	of it and it's mixing. So it's a very tight scenario
15	in order to generate a slug of this magnitude.
16	That inventory cannot be too high
17	otherwise you start getting two-phase natural
18	circulation. It doesn't have to be too low otherwise
19	your transitions is a severe accident. That's a very
20	narrow bend. It has to be maintained long enough,
21	that interval of
22	MEMBER RANSOM: So you gather the worst
23	case is a small break, like two inches in the liquid
24	at some point. So you're losing boron as well as
25	liquid.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	DR. DIMARZO: You have some HBI
2	capability.
3	MR. SCOTT: And it also has to be early in
4	the core life because at the end of it's cycle the
5	boron concentration normally is down.
6	MEMBER RANSOM: Right.
7	MR. SCOTT: So therefore if you could get
8	a little bit of boron in, you'll be okay. Dr.
9	Schrock, ten years ago when we did the CSAU with
10	RELAP, I don't think this issue ever came up. We did
11	assume only one HBI pump. We did BCN phase. I don't
12	recall that there was any discussion. A little bit
13	later I'll mention some of these scenarios and say
14	about what time people brought them up if you want to
15	talk about that.
16	At some point the natural circulation had
17	stopped. You developed this as I showed unborated
18	water in the tubes and in these legs. Just before the
19	circulation is done, this may move up and then come
20	back down. (Indicating.) We're assuming that the
21	pumps don't start. Once you've refilled the system,
22	the natural circulation starts again and now this slug
23	of unborated water moves into the core. That's the
24	assumption. You also get this same scenario in a
25	steam generator plant. I don't know if I have a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	figure of that or not.
2	Also I should point out that the vent
3	valves in the BNW reactor as long as there's no
4	natural circulation flow that they are doing some
5	mixing. There is some mixing going on in the core
6	itself.
7	DR. BANERJEE: Are you going to show us a
8	little diagram where there's vent valves?
9	MR. SCOTT: I don't have one with me. I
10	can dig one out later.
11	DR. BANERJEE: Yes. It would be useful
12	because there's a lot of appeal to the vent valves
13	here.
14	MR. SCOTT: And as I recall from the write
15	up it depends where the level is. If the level is up
16	either at the vent valve level or higher, they may be
17	more or less affected. But this was one of the things
18	that BNW did later on to show that the transient is
19	more benign as they get more effectiveness from the
20	vent valves.
21	DR. BANERJEE: So it would be worth seeing
22	the geometry of this.
23	MR. ROSENTHOL: But it isn't
24	quintessential to the larger that we will be
25	explaining to hopefully resolve the issue.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	DR. BANERJEE: Right.
2	DR. DIMARZO: There's a lot of stuff in
3	the BNW report that we don't pretty much subscribe as
4	you'll see later on.
5	MR. SCOTT: Okay. I'm just going to
6	summarize here what Brookhaven has found now with
7	several calculations. We did go above prompt-
8	critical. We did reach its power of 80 percent. I
9	think the only thing that we changed was 37 calories
10	per gram. So the total was about 50. BNW in their
11	report calculated about 90.
12	That's part of the reason this scenario
13	came onto the scene. Harold Vander Molen was asked to
14	prioritize it because 90 or 100 calorie per gram is in
15	the range where we think now about fuel damage for
16	irradiated fuel. With this level of 37 calories per
17	gram, we do not expect any fuel damage.
18	DR. SCHROCK: You don't give any
19	information on the length of time this reactivity gain
20	required.
21	MR. SCOTT: Dr. Diamond will cover all
22	that.
23	CHAIRMAN WALLIS: It doesn't last very
24	long at all.
25	MR. SCOTT: It's five or ten seconds. I'm

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	sorry. The pulse itself?
2	DR. SCHROCK: The rise in reactivity to
3	\$1.02 happens over some period of time during which a
4	lot of negative feedback occurs as well.
5	MR. SCOTT: Yes. But that would be real
6	short.
7	DR. SCHROCK: But one of the things as I
8	read the material sent to us, it occurred to me that
9	there's never mentioned that maybe something like the
10	SL1 accident could occur in a BNW system to this boron
11	dilution. If the reactivity could be inserted rapidly
12	enough, I don't think it could. You know what I'm
13	referring to.
14	MR. SCOTT: Yes.
15	DR. SCHROCK: SL1 blew its lid essentially
16	because it was half full when it received a prompt
17	reactivity dose in a matter milliseconds.
18	MR. SCOTT: There is another aspect of the
19	scenario which is you run the pumps. You pump the
20	primary pumps.
21	DR. SCHROCK: That's what I'm getting at.
22	When you use that
23	MR. SCOTT: At which point
24	(Inaudible.)
25	DR. SCHROCK: Reactivity insertion passed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	235
1	enough to give you that kind of phenomenon. If so, it
2	should be considered.
3	DR. DIMARZO: Okay. The history of this
4	particular issue. The BNW owners group essentially
5	claim that pump restart would be a problem. So they
6	decided to take the pump out. That's fuzzy at this
7	point. But the idea would be that if you enter BCM or
8	if you have the probability of generating such a slug
9	your variant would be prevented from turning the pump
10	on. That's where they are.
11	That's okay. But we are not happy with
12	just leaving it at that. So we have concocted a slug
13	that would be pumped. We passed this information to
14	Brookhaven. They are going to run that calculation
15	just to see what that would entail.
16	DR. SCHROCK: That's something to be done
17	in the future.
18	DR. DIMARZO: That's something to be done
19	between now and September.
20	DR. SCHROCK: So would it be looking at
21	the possibility of an SL1 type?
22	DR. DIAMOND: It's still in the orders of
23	magnitude slower now.
24	DR. SCHROCK: I think it's too slow.
25	DR. DIAMOND: Right. We're in a different

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	236
1	regime here.
2	MR. SCOTT: I'm going to now mention some
3	other scenarios just to give you some perspective.
4	You may have heard these before or not. Let me just
5	this put up. (Indicating.) Let me say this is a 22,
6	the first one up here. The second one is the french.
7	Let's say this one here is the french. This one is
8	the GSI-185. Let's say this is the Swedish one here.
9	(Indicating.) This is just pictorially.
10	What I can do now if you want to or maybe
11	you want to save time, I can go down and describe a
12	little bit about these. Would you like me to skip
13	that?
14	CHAIRMAN WALLIS: Do they help us
15	understand GSI-185?
16	MR. SCOTT: Not particularly.
17	CHAIRMAN WALLIS: Maybe we should just
18	move right on then.
19	MR. SCOTT: All of them result in
20	unborated water which eventually goes into the
21	CHAIRMAN WALLIS: But we're trying to
22	resolve GSI-185.
23	CHAIRMAN WALLIS: Right. Let me now jump
24	into the process that we used in trying to do this.
25	This little diamond here is acceptable. (Indicating.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	If we assume and calculate some ex-vessel mixing, do
2	the neutronics, if we get a small pulse, no fuel
3	damage, then we can show issue closure. We expect to
4	go down this path. We've been going down this path.
5	If in fact at this point you got a high
6	value of fuel enthalpy or fuel high temperatures then
7	you could proceed over here and say let's see if we
8	can get more mixing in the vessel between the down
9	cover inlet and the core inlet which would make the
10	pulse be broader or slower. Then you could do some
11	calculations. Other people are doing this in Europe.
12	Then you could come around here and get this one.
13	(Indicating.)
14	Now I'm going to put up a graph that's
15	from the report that you saw. When Dr. Diamond gets
16	up here, he'll give you more details about this
17	scenario and some other scenarios. Here's one note
18	that I had. When Dr. Vander Molen did the
19	prioritization he got two times ten to the minus five
20	per reactor year for this GSI-185. That's the level
21	that we're talking about as why it was considered to
22	be worth further study.
23	CHAIRMAN WALLIS: Now, you're not showing
24	here the reactor power.
25	MR. SCOTT: No. This is the reactivity

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	238
1	and the boron concentration.
2	CHAIRMAN WALLIS: The reactor power is a
3	more dramatic figure presumably.
4	MR. SCOTT: So in this case now this blue
5	line and on your handout it's black and white but it
6	has circles is an input guide to the code. The code
7	doesn't calculate that. We didn't take RELAP and
8	calculate the whole scenario. We just have a core
9	that has the PARCS and the kinetics and you drive it
10	with the RELAP boundary conditions. Correct?
11	DR. DIAMOND: Sort of. Something like
12	that.
13	MR. SCOTT: Okay.
14	DR. SCHROCK: So it's a burst of boiling
15	that causes that precipitous drop in reactivity.
16	MR. SCOTT: This would be the Doppler
17	comes on and takes you down. You still have positive
18	reactivity so you can get another pulse. At this
19	point I guess you're getting heating and it can take
20	you down. You'll describe this.
21	DR. DIAMOND: Yes.
22	CHAIRMAN WALLIS: Boron concentration
23	doesn't look like a slug. You're saying this is some
24	kind of an average or something.
25	MR. SCOTT: Well, it's going to diffuse as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	it starts in because it's mixed as it starts out
2	before the pump. It has to come in through the pump,
3	come down a leg, come down again. We didn't assume
4	any further mixing in the down-comer. So it doesn't
5	have a sharp edge on it and in the tail of it.
6	DR. BANERJEE: Why is it mixed in the
7	pump?
8	DR. DIMARZO: Let me go and explain what's
9	going on here. This particular curve I think is
10	MR. SCOTT: Very benign.
11	DR. DIMARZO: Benign and is the original
12	claimed curve by the owners group. This was based on
13	some mixing that was happening between the steam
14	generator and the core inlet.
15	DR. BANERJEE: The by-process.
16	DR. DIMARZO: No. Basically the slug was
17	coming from a steam generator, coming out the cold
18	leg, going through the pump, and then flowing into the
19	down-comer, mixing in the down-comer, mixing in the
20	low head and then entering the core. What you get
21	there is the core. So initially the slug was
22	characterized as pretty shot. By the time you went
23	through all these geometries, it was pretty diffused.
24	That's what they claim.
25	When you see the slide of the approach

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	that we have taken, we have taken no credit for any
2	mixing happening into the down-comer or into the lower
3	head of the vessel which is a pretty substantial
4	amount of mixing. But the problem is that in order to
5	know how much that is you would have to do a full
6	blown calculation and scale it to plant. That's a
7	route that we did not decide to take. What we did was
8	just simply consider the movement of the slug from the
9	steam generator to the entrance of the down-comer
10	which basically involved the steam generator, the cold
11	leg, the pump, and the remaining part of the cold leg
12	to the vessel.
13	MR. SCOTT: You also have the borated
14	ECCSs coming in and mixing with that as it flows.
15	DR. DIMARZO: Yes. But we didn't take
16	credit for that either.
17	MR. SCOTT: Also we should say that this
18	curve assumes that it's symmetric at the core inlet.
19	In other words, the left half of the core is exactly
20	the same as the right half of the core. Some of these
21	experiments have shown that if you're just getting one
22	LOOP to start up that has the unborated water it
23	wouldn't be symmetrical. But we didn't try to make
24	any assumptions about that.
25	The velocity into the core is around two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 percent of rated core flow. The size of this sluq is 2 1000 cubic feet or about 28 cubic meters. We think 3 that there are several scenarios where you may have 4 less cubic meters than some other scenarios. So you 5 can figure out here knowing the densities and the volumes it runs for about 100 seconds given these 6 7 velocities. As I said, Dr. Diamond will tell you some more about the intricacies about the red curve. 8 9 Okay. Now I think I'm going to go to my 10 last slide. Closing the issue. Let me say first a 11 few words about my personal bullet here. It's 12 additional calculation that we want to do. As we said 13 earlier, we've already assumed natural circulation. 14 But we will do a calculation where we've assumed pump 15 bumping. This was considered in the prioritization 16 17 report. So for completeness, we need to do both these 18 But we did the one first just to see calculations. 19 where we were at. If we get a large pulse, then we'll 20 show that these emergency operating procedures that 21 say leave the pump off, that should be continued. The 22 other possibility is that even with this scenario the 23 enthalpy will be such it fuel that could be 24 interpreted as giving fuel damage no worse then that 25 from the rod ejection accident. In that case if they

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

241

	242
1	make the mistake of starting the pumps, it wouldn't be
2	the end of the world.
3	Warren Lyon from NRR is the person that's
4	been following this issue for a number of years. In
5	fact, this scenario and I skipped over that before was
6	identified in `91 or `92. So the scenario has been
7	around a long time. It just didn't come up for a
8	relook until a couple of years ago.
9	If we're done here with these items, then
10	in September we can come to the full committee. Then
11	the process is that we prepare a closeout memo to EDO
12	assuming that there's no action that we're going to
13	recommend to NRR. Okay. Thank you.
14	CHAIRMAN WALLIS: I thought you were
15	recommending for the work. Maybe I missed this.
16	MR. SCOTT: We're going to do one more
17	calculation.
18	CHAIRMAN WALLIS: That's all. I thought
19	it was more than that. Maybe I got the wrong
20	impression from what I read.
21	MR. ROSENTHOL: If I could make a couple
22	of comments. Dr. Wallis, you were absolutely right.
23	We're trying to sell GSI-185 and not all boron
24	dilution events. So your earlier comment was right on
25	and very important.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

In the course of preparing to go we thought to the full committee, now we decided to go to the subcommittee first, we were briefing our office director. He said what happens if they turn the pumps on. We said that's a different scenario. He said for completeness, you really ought to understand that one also with its commensurate frequency.

Then there was a discussion about how many 8 other scenarios we should do. 9 We said no, this is 10 Boron dilution at cold shut down or GSI-185. 11 something else is some other GSI. So it was only 12 really the recognition and preparation from meeting 13 with you that we recognize that for completeness we 14 really ought to do the assumed operators don't follow 15 their emergency procedures and turn the pumps on. That's the stuff of the additional work. 16

17 I want to make one other comment because 18 I think that Marino would be too modest. That is that 19 a lot of people around the world are doing a lot of 20 thermal-hydraulic calculations looking at the 21 distribution of boron water in the system as а 22 function of time. He's the one who said wait a 23 minute, let me come up with some sort of bounding 24 slug, and let's take advantage of this new physics 25 tool that we have to do 3-D space kinetics. If we can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

244
show that the results for the pessimistic slug are
okay, then we don't have to get into all the detail.
So at the very same time we're trying to
resolve this reasonable narrow generic issue. There
are people around the world doing lots of fancy calcs
which is good stuff but maybe more applicable to other
scenarios.
CHAIRMAN WALLIS: Maybe I misread, I
thought I read a tough action plan which calls for
more experiments and OSU, those sorts of things.
MR. SCOTT: Let me tell you about that.
Those other tasks in there all had a prerequisite that
said if
DR. DIMARZO: No. He's referring to a
correct one. As you will see, I have two slides.
It's not going to be much. But basically I have
formulated a simple model to characterize the mixing
ex-vessel, in other words, from the steam generator to
the vessel.
Then I add some LOOP data, some Maryland
data which were repeatable and reliable at least to me
at that point. I used that to validate against.
That's inbreeding. So at that particular point I said
maybe we ought to run a couple of tests blind and
check whether the same model is able to predicate that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	245
1	in a blind fashion. In other words, it would be me
2	running the calculation data and they are doing the
3	experiment and then match.
4	Unfortunately AP1000 came on the scene at
5	that point. We lost the window of opportunity to run
6	those tests in OSU. So the only validation we have is
7	data from Maryland basically which were obtained three
8	or four years before. That basically is the base for
9	the validation on the model which I'll describe to you
10	all if you want right away.
11	CHAIRMAN WALLIS: Maybe I just didn't
12	spend enough time reading it. I got the impression
13	that you folks were not closing the issue, but you
14	were asking for more work. They've had a task action
15	plan that specified all this work to be done. That is
16	not the case. You're actually proposing to close the
17	issue with what you know now.
18	DR. DIMARZO: Yes. If we put through the
19	pump a slug and we don't get anything dramatic, there
20	is no point in trying to finagle the thermal-hydraulic
21	to get the same answer.
22	CHAIRMAN WALLIS: Okay. We never fanagle
23	thermal-hydraulic.
24	(Laughter.)
25	DR. DIMARZO: Okay. What I'm talking

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	246
1	about here is reported in a paper that came out on
2	engineering and design. I have a few copies of it.
3	MR. BOEHNERT: They got copies.
4	DR. DIMARZO: So the idea here is to
5	characterize the mixing that occurs between the steam
6	generator and the entrance of the down-comer. The
7	geometry that you are looking at is the steam
8	generator, the steam generator upper plenum, the cold
9	leg in the suction portion leading to the pump, the
10	cold leg in the discharged section. That's it.
11	So basically this is nothing strange. I
12	took something that is old and very well known. I
13	went to Levenspiel back there. I said there are two
14	possibilities.
15	CHAIRMAN WALLIS: Other OSU work.
16	DR. DIMARZO: Yes. There are two
17	possibilities here. Either we have volumes that are
18	completely mixed or there are volumes that are
19	completely unmixed. So either we go to a plug flow or
20	we go to a backmixed flow.
21	CHAIRMAN WALLIS: I suspect that plug flow
22	is the worst condition.
23	DR. DIMARZO: Plug flow is the worst
24	condition.
25	DR. BANERJEE: You are saying some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

247
components
DR. DIMARZO: Some components will be one
way. Some components will be the other way. The
reason why I elected to do that is that if you do
anything modeling wise more complex then the question
becomes how much mixing do you allow in a component.
That's subjected to scaling problem. I didn't want to
touch that.
So I said we have two volumes which I
believe are fully mixed. One is the pump because
basically you have veins in there. Even at fixed flow
you have enough turbulence generated that which would
cause mixing in that volume. Then you have the steam
generator of the plenum which is also subjected to
mixing because you feed it from all the tubes which

s which basically are like little jets in that particular volume.

I made the assumption that those two volumes were completely mixed and everything else was completely unmixed. It was just a transfer.

21 DR. BANERJEE: Including the down-comer. The down-comer I didn't 22 DR. DIMARZO: 23 touch. This is fed directly to the core. CHAIRMAN WALLIS: This is ex-vessel. 24

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

DR. DIMARZO: The ex-vessel is fed into

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

(202) 234-4433

	248
1	the core. There is no down-comer. There is no lower
2	head which has a substantial amount of mixing. So it
3	was a very conservative position. It wasn't a top hat
4	type thing. But it was next to that, the most
5	conservative thing that you could do.
6	CHAIRMAN WALLIS: Is it conservative to
7	assume backmixed volumes say in the steam generator at
8	that plan?
9	DR. DIMARZO: Right.
10	CHAIRMAN WALLIS: And maybe it's not
11	perfectly
12	DR. DIMARZO: Right. So I had the test in
13	Maryland that was conceived like this. The slug was
14	filling the steam generator, the steam generator upper
15	plenum, and was somewhere in the leg filling to the
16	pump. So when that slug moved, the front of the slug
17	would go to the pump only and the back of the slug
18	would go to the steam generator upper plenum and to
19	the pump.
20	CHAIRMAN WALLIS: But it's already a pure
21	water slug, so it doesn't really matter.
22	DR. DIMARZO: No. Two interfaces. In
23	other words, in the middle I have this water which has
24	two interfaces; the front and the back. The front
25	goes through the pump only. The back has to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	through the steam generator upper plenum and through
2	the pump.
3	CHAIRMAN WALLIS: Because there's borated
4	water following it. Is that right?
5	DR. DIMARZO: Right. In our case, it
6	wasn't borated. It was a temperature type situation.
7	CHAIRMAN WALLIS: Okay.
8	DR. BANERJEE: But in this case the slug
9	is just pure water with borated water in front. Do
10	you have any at the back?
11	DR. DIMARZO: Yes. Again, you have the
12	same situation that you have at the front at the back.
13	DR. BANERJEE: Can you put that diagram
14	up?
15	CHAIRMAN WALLIS: How does it get to the
16	back?
17	DR. DIMARZO: No. We constructed a slug
18	which was based on temperature in the Maryland
19	facility.
20	DR. BANERJEE: Yes. I know what you did.
21	DR. DIMARZO: Okay. So basically we had
22	salt and temperature. So the temperature is the
23	tracer. The salt is such that it enables you to keep
24	stuff where you want it initially.
25	DR. BANERJEE: Yes. Just to clarify the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	geometry.
2	DR. DIMARZO: Okay.
3	MR. SCOTT: I'm looking for the
4	CHAIRMAN WALLIS: The back of the slide is
5	much less important.
6	MEMBER RANSOM: The event's over by the
7	back of the slide probably.
8	CHAIRMAN WALLIS: So you've put borated
9	water on top of the green.
10	DR. DIMARZO: Okay. So in the Maryland
11	test, the green stops right here at the beginning and
12	you have water which is cold back up here again.
13	(Indicating.)
14	CHAIRMAN WALLIS: But in the real thing
15	you have borated water way up
16	DR. DIMARZO: In this scenario when you go
17	in natural circulation what happens is this, you
18	reseal the system. All these things are moved up
19	here. (Indicating.) When finally the water fills up
20	completely, the system natural circulation can resume.
21	In other words, your generate your slug and it looks
22	like this. (Indicating.)
23	DR. BANERJEE: But in natural circulation
24	or just
25	DR. DIMARZO: No. In order to generate a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	slug, you are in BCM. There is no natural
2	circulation. You're boiling the core. You're
3	condensing the
4	CHAIRMAN WALLIS: The slug doesn't move
5	until you but in enough borated water from ECCS.
6	DR. DIMARZO: When you put the water in
7	from ECCS, you basically push it up in the steam
8	generator and you put borated water on the other side.
9	At some point they meet on top and that's a condition
10	required for single phase natural circulation which is
11	what we're talking about. At that point the slug
12	starts to move.
13	DR. BANERJEE: You're not talking about
14	starting the pumps.
15	DR. DIMARZO: That's what the assumption
16	is if they take the pumps out. If you imagine to
17	start the pump, then basically you keep filling the
18	pump at this point. They don't need to do all this
19	business. You just turn on the pump. What happens is
20	that now you pump water on top of the candy cane which
21	joins the slug as it's being pumped out and the
22	process happens similarly.
23	CHAIRMAN WALLIS: The worst thing you
24	could do presumably is to bump the pump, put the slug
25	into the reactor, and then turn it off.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	252
1	DR. DIMARZO: And then stop. Right.
2	Okay.
3	CHAIRMAN WALLIS: Because you get scared.
4	DR. DIMARZO: Right. What we did at
5	Maryland was this. We had data on the front of the
6	slug and data on the back of the slug. I had an
7	assumption that says the two mixing volume are those
8	two. I know those two volumes. Basically what I did
9	is to generate a curve based on those two volumes and
10	along that theory. That is the validation shown here
11	which is pretty good. The Tao, τ , is the slug
12	transient time. It's the ration between the volume of
13	the slug.
14	DR. BANERJEE: It's space time.
15	DR. DIMARZO: Yes. Basically it's how
16	long it takes for the slug to go through one section
17	if it's totally unmixed. So the formulation is very
18	simple because it's not relying on the dispersion
19	factor which is what makes it very amenable to
20	calculation. Clearly you can use any type of input in
21	the function C of lambda, $C(\lambda)$ that you want and
22	basically you get your output that way.
23	So I took this approach and I applied it
24	to the initial condition that was supplied by the BNW
25	owner group. That is what Diamond will refer to in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	his presentation here as the second case or third
2	case. Right?
3	DR. DIAMOND: The second case.
4	DR. DIMARZO: The second case. So you'll
5	have a comparison between this artificially mixed
6	thing that the owners group came up with and this type
7	of curve fed directly into the core. That's what
8	you're going to see.
9	The next thing would be to pump. So what
10	happens? First of all the slug that was proposed by
11	the BNW owner group is a 22.3 meter cubed slug. The
12	maximum amount of water that you can physically store
13	there unmixed is 28 meters cubed. So I took 28 meters
14	cubed and pumped.
15	CHAIRMAN WALLIS: So the only place it's
16	mixing in your model is in the pump.
17	DR. DIMARZO: And in the steam generator
18	upper plenum.
19	CHAIRMAN WALLIS: Upper plenum.
20	DR. DIMARZO: If it was mixing only in the
21	pump, the back of the slug would look identical to the
22	front.
23	DR. BANERJEE: He's made a very simple
24	reactor model.
25	CHAIRMAN WALLIS: But the back of the slug

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	doesn't come in until after you get to the right hand
2	side.
3	DR. DIMARZO: Yes. After one transient
4	time, the back starts to show up.
5	CHAIRMAN WALLIS: Right. I'm trying to
6	think why you have such a gradual increase in the
7	beginning there.
8	DR. DIMARZO: Because the first one is
9	going through the pump which is a mixing volume.
10	CHAIRMAN WALLIS: It can only mix with the
11	boron which is left in the pump. It only flushes it
12	out.
13	DR. DIMARZO: Yes. Basically what it
14	means is that the slug comes in and mixes with
15	whatever is in there and comes out. That's the model.
16	DR. BANERJEE: What's the volume of the
17	pump relative to the volume of the
18	DR. DIMARZO: The volume of the pump is,
19	let's see in that particular calculation
20	DR. BANERJEE: Compared to the volume in
21	the pipe.
22	DR. DIMARZO: Yes. That's the
23	characteristic N that you're talking about.
24	CHAIRMAN WALLIS: Yes. Or the volume of
25	the 1000 cubic feet.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	255
1	DR. DIMARZO: No. In Maryland, it's not
2	1000 cubic feet. But the transient time for the pump
3	is the volume of the slug divided by the volume of the
4	pump is about seven.
5	CHAIRMAN WALLIS: Seven.
6	DR. BANERJEE: Transient time through the
7	pump.
8	DR. DIMARZO: Transient time is very small
9	because that transient
10	DR. BANERJEE: This is natural
11	circulation.
12	DR. DIMARZO: No. The point is this. In
13	this model it doesn't matter how fast it goes. The
14	model is formulated in terms of just one dimensional
15	type. The time is essentially scaled by the flow rate
16	as in the transient time. So you don't really need to
17	know that.
18	To put this in perspective, the owners
19	group made 22.3 meters cubed have a transient time of
20	110 seconds. If you take the transient time that they
21	should have taken at steady state natural circulation,
22	it would have gone through in 77 seconds. They took
23	and increased that time, in other words, they made the
24	flow slightly slower because they said this is going
25	to be the start up of natural circulation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	256
1	What we are doing as a bounding slug as I
2	said to you before is 28 meters cubed and it goes
3	through in ten seconds as opposed to 110 seconds. So
4	we basically bound that by volume and we bound that by
5	flow rate pretty substantially. It's 11 times faster.
6	CHAIRMAN WALLIS: Why is it so much
7	faster?
8	DR. DIMARZO: Because now we are pumping.
9	CHAIRMAN WALLIS: Now you have the pump
10	running.
11	DR. DIMARZO: Yes. I mean, in the
12	bounding slug.
13	CHAIRMAN WALLIS: I thought you weren't
14	running the pump.
15	DR. DIMARZO: Let me put it this way. We
16	have two cases; one that you see today which is
17	natural circulation and the transient time is 110
18	seconds. The one that we will do is pumped 28 meters
19	cubed so it's a slightly larger slug going through in
20	ten seconds.
21	CHAIRMAN WALLIS: Yes.
22	DR. DIMARZO: Okay.
23	DR. BANERJEE: What difference does that
24	backmixing in the pump do for you? Does it help at
25	all?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	257
1	DR. DIMARZO: Yes because the front of the
2	slug is what is most important here. To put it
3	through that volume softens it up enough to make a
4	difference. If you put through the vessel a square
5	wave that is completely different.
6	DR. BANERJEE: Will you get the Doppler
7	feedback?
8	DR. DIMARZO: I don't know exactly what
9	the neutronic impact of that is. That's very
10	important what you do at that slug.
11	DR. BANERJEE: That's the smoothing.
12	DR. DIMARZO: That's the smoothing there.
13	Right. The tail it doesn't really matter what you do
14	in a way. It's there for completion. Now obviously
15	you could start doing over-speculation of what mixing
16	should occur in vessels, but we are trying to stay out
17	of that at this point.
18	CHAIRMAN WALLIS: Well, if a pump is
19	what's saving you, I think you may need to be more
20	cautious about your assumption that the pump is well
21	mixed.
22	DR. DIMARZO: Yes. But I got a
23	substantial amount of data from Maryland that when I
24	passed a lot of slugs through there that tells me that
25	it does do something. That I can use and validate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	against. The scaling that comes out of it is based on
2	the volume of the pump and the volume of the slug. So
3	it's portable. You don't have to make too much
4	argument of scaling with that type of an assumption.
5	CHAIRMAN WALLIS: So the down-comer floor
6	is not just one dimensional either.
7	DR. DIMARZO: No. Since you asked, the
8	down-comer floor is of this kind. We have an
9	experiment. You mentioned about an experiment. I
10	just brought it so that you could get an idea. But
11	that's how misleading a computation could be versus an
12	experiment. For example, this is a CFD of the down-
13	comer done by the owners group in their report. As
14	you can see the slug comes in the cold leg and
15	basically goes straight through down.
16	CHAIRMAN WALLIS: It makes a and goes
17	straight down.
18	DR. DIMARZO: Yes. That's what they say.
19	These are experiments. They're from Maryland. Here
20	is the first slide where the cold leg is the blue
21	spot.
22	CHAIRMAN WALLIS: The blue stuff is
23	DR. DIMARZO: Where the cold water is
24	going to start to come in. Now the first upper
25	portion of the down-comer has been flooded. As you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	259
1	can see, there is a significant amount of uncirculated
2	region below that cold leg which indicates that the
3	slug is going anywhere but down. Even later in the
4	transient, everything happens except for that thing to
5	go down in that direction. It goes around and down
6	and then even pops up from the bottom up again.
7	These are obviously just information
8	because you can't scale it to the real thing. But
9	what I'm trying to say here is that to touch the CFD
10	in the vessel is a very complex enterprise.
11	CHAIRMAN WALLIS: But it may well be that
12	it'll never go pump critical at all.
13	DR. DIMARZO: Absolutely.
14	DR. BANERJEE: All you are doing is you're
15	getting a residence time distribution. You could do
16	this without any
17	DR. DIMARZO: Yes. But the problem is I
18	could take the experiments in Maryland and say scale
19	them, in other words, get an idea of how much mixed
20	region there is in that. You could translate this
21	into saying for example that if you take the volume of
22	the down-comer and lower head and you imagine that 20
23	percent of that is fully mixed and run some simple
24	model, get the curve out of there and plot it.
25	We did all these exercises at Maryland.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	260
1	That's been put in our reports. The problem is that
2	I don't know how to answer the question what does it
3	mean to prototype. That's basically where I think if
4	you go down that road you have to have a validation of
5	a CFD model against Maryland perhaps and then at that
6	point scale it up with that code once you're convinced
7	that what you see is what you get. That is not a
8	simple enterprise.
9	DR. BANERJEE: But a level is always below
10	the pump in the pipe
11	DR. DIMARZO: The level?
12	DR. BANERJEE: Of the deborated water.
13	DR. DIMARZO: When you form the deborated
14	
15	DR. BANERJEE: It never reaches into the
16	
17	DR. DIMARZO: No. It might come into that
18	pipe. But the problem is that this is a slow process,
19	this formation of the deborated. The deborated is
20	somewhat lighter. Being the same temperature of the
21	borated water that it displaces, it's lighter. So as
22	it enters the vertical portion of the pipe towards the
23	pump it would tend to mix with it. What's in that
24	particular leg is not really deborated. At best, it's
25	some kind of a smooth mixed type thing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	CHAIRMAN WALLIS: Isn't there a slow flow
2	because of the condensation that comes through and
3	keeps washing out that borated?
4	DR. DIMARZO: Right. Exactly.
5	CHAIRMAN WALLIS: So you get some dilution
6	before the slug actually gets in.
7	DR. DIMARZO: Exactly. In the front of
8	the slug, there's not even that chance because of that
9	effect. To that you add the fact that there is some
10	limited amount of HPI injection too which borated the
11	slug as it goes back.
12	CHAIRMAN WALLIS: I'm saying that the
13	deborated water actually flushes out some of the boron
14	from the pump.
15	DR. DIMARZO: No. The deborated at best
16	can come to the level of the pump really. It can also
17	trickle through the pump. But you have an HPI
18	injection that you haven't considered here. So it's
19	a wash. In one way, your pump could be more deborated
20	then what I anticipated, yes. But on the other hand,
21	all the water between the water and the steam
22	generator will be far more borated than what I
23	guessed.
24	CHAIRMAN WALLIS: How do you know about
25	that?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	DR. DIMARZO: That's because it mixes.
2	CHAIRMAN WALLIS: Does it? If you have
3	enough low trickle flow you called it or enough flow
4	of deborated water because of condensation and flow
5	around so that it keeps on flushing out some boron,
6	then you could have less boron.
7	MR. SCOTT: I think it depends on how long
8	that BCM went on.
9	DR. DIMARZO: Right.
10	MR. SCOTT: If it just goes on forever and
11	ever, then it's really clean water.
12	DR. DIMARZO: Yes. Then you have clean
13	water coming through to your core from that.
14	CHAIRMAN WALLIS: Right.
15	DR. DIMARZO: But you would be very slow.
16	CHAIRMAN WALLIS: Well, very slow. I
17	guess you would have to have an analysis that shows
18	it.
19	DR. DIMARZO: I mean, by deboration alone
20	you have basically If you imagine the condensation
21	process to go on indefinitely and to have the deborate
22	come through the core with that kind of a rate, I
23	don't think we'll get anything.
24	CHAIRMAN WALLIS: That's not a problem.
25	The problem is if the condensation builds enough

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	263
1	deborated water that it actually flushes out the pump
2	then you can't take credit for the boron.
3	DR. DIMARZO: I can't take credit for the
4	boron in the pump. But the pump remember is a
5	minuscule volume compared to down-comer and lower
6	head.
7	CHAIRMAN WALLIS: You're assumption is
8	that you get mixing in the pump. If there's no boron
9	left
10	DR. DIMARZO: I see your point. The
11	realization here is that's what you take credit for.
12	The practice of the fact is that you are a down-comer
13	and a lower head of which you don't take credit at
14	all which is a tremendously conservative assumption.
15	So I understand your point and it's well taken. The
16	problem is that I'm not taking credit of a potentially
17	mixing volume which is enormous compared to the pump
18	itself.
19	CHAIRMAN WALLIS: But I'm saying you could
20	be more conservative and not take credit for that
21	boron in the pump because it's being trickled out by
22	condensation.
23	DR. DIMARZO: Right. I'm not an expert.
24	I'll let Diamond discuss that. I think that the
25	leading edge of that slug is very important in what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	you're saying too. So if you're saying to a square
2	wave which is virtually impossible considering all the
3	mixing volume, he has a problem with it. The results
4	would change dramatically.
5	DR. BANERJEE: For a thermal shock
6	situation, what happened in the down-comer? There
7	were a lot of studies done. Weren't there?
8	DR. DIMARZO: You mean in the PTS.
9	DR. BANERJEE: Yes.
10	DR. DIMARZO: We didn't look at that.
11	DR. BANERJEE: Well mix ups or
12	(Inaudible.)
13	MR. ROSENTHOL: (Away from the
14	microphone.) We had the OSU experiments.
15	DR. DIMARZO: The down-comer what appears
16	to happen is that there isn't even a plume. In other
17	words, by the time you are five or six diameters of
18	the cold leg down you can't find anything anymore.
19	DR. BANERJEE: Why wouldn't you expect
20	something like that here?
21	DR. DIMARZO: Absolutely. But what I'm
22	saying is that I cannot come here and quantify how
23	much mixing occurs in the down-comer. I can simply
24	say there will be a tremendous amount of mixing in the
25	down-comer. But I cannot say exactly how much. In

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. 3 WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	other words, I do not have a scalable transfer
2	function from the flow coming into the down-comer to
3	the entrance of the core. All experiments that have
4	been done do show that there is a significant amount
5	of mixing there.
6	DR. BANERJEE: There's not been any
7	quantitative experiments.
8	DR. DIMARZO: Not scalable.
9	CHAIRMAN WALLIS: Why not scalable?
10	DR. DIMARZO: In the sense that you have
11	to come here and tell me that I've seen in experiments
12	one through ten how does it relate to prototype.
13	Nobody has ever done that kind of a study in detail.
14	There is the problem of a small item in the geometry
15	which alters tremendously what you see. For example,
16	the enlargement of the down-comer. For example, the
17	equipment that's in the lower head and all of that.
18	MR. SCOTT: The Germans are trying to do
19	that at Wasendorf (PH) in Dresden. They have a big
20	glass see through type device.
21	DR. DIMARZO: Right.
22	DR. BANERJEE: You would think that scale
23	effects can be very important.
24	DR. DIMARZO: Oh, yes. This is decided on
25	a smaller scale.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	266
1	DR. BANERJEE: So you cannot quantitate.
2	DR. DIMARZO: It's not that you cannot.
3	You can definitely do it. The problem is that
4	relative to these issues if you can close it with this
5	very lasting assumption, that's it.
6	MR. SCOTT: The point that Jack Rosenthol
7	made earlier was the 3-D kinetics thing is sort of
8	washing all these things out. It's so benign.
9	CHAIRMAN WALLIS: Okay. So you're going
10	to close it with worst assumptions about the flow
11	mechanics.
12	DR. DIMARZO: Exactly.
13	CHAIRMAN WALLIS: Otherwise you would
14	think that all of those experiments at University of
15	Maryland must be good for something. They should give
16	you a handle on mixing.
17	DR. DIMARZO: I mean, we could definitely
18	go down that route. The route would be very simple.
19	You have to take a CFD code and try to duplicate it as
20	an experiment and go from there.
21	CHAIRMAN WALLIS: That would allow you to
22	continue. You're going to show that even if you make
23	very bad assumptions, the kinetics saves you.
24	DR. DIMARZO: Right. That's my point.
25	CHAIRMAN WALLIS: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	MR. ROSENTHOL: And we did use the
2	Maryland because without the Maryland we would have to
3	have square wave. But now we can have what I call
4	diMarzo rounded edges.
5	CHAIRMAN WALLIS: Well, I was thinking
6	about the diMarzo rounded. It seems to be related to
7	this mixing in the pump.
8	DR. DIMARZO: No. In the what you are
9	saying is that in a real scenario that situation may
10	not occur which is okay. But there is a lot of mixing
11	going on anyway in the real scenario.
12	CHAIRMAN WALLIS: No. I understand that if
13	you don't have the diMarzo mixing in the pump you get
14	a square wave and you're still in trouble.
15	DR. DIMARZO: Yes.
16	CHAIRMAN WALLIS: So you better be pretty
17	clear that the diMarzo mixing in the pump is real and
18	that you don't get flushing out of that.
19	DR. DIMARZO: Yes. But remember that
20	you're not taking credit for what happens in the down-
21	comer.
22	CHAIRMAN WALLIS: You're taking the
23	credit.
24	DR. DIMARZO: No. We are not taking
25	credit for that mixing which is pretty substantial.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	268
1	DR. BANERJEE: Yes. But you're trying to
2	close the issue. And you either say okay we are not
3	going to consider this mixing but we are sure that
4	there's going to be mixing in the pump.
5	DR. DIMARZO: Right.
6	DR. BANERJEE: So I'm not going to do a
7	CDF calculation. I'm just going to do this backmixing
8	in the pump.
9	DR. DIMARZO: Right.
10	DR. BANERJEE: And then if the pump itself
11	would be full of deborated water by any stretch of the
12	imagination.
13	DR. DIMARZO: Full it's not going to be
14	because the rate at which it goes the best you're
15	going to have is a trickle.
16	CHAIRMAN WALLIS: So you're going to
17	quantify that trickle and do an analysis.
18	DR. DIMARZO: Yes. We could do that.
19	CHAIRMAN WALLIS: Yes. I think you have
20	to.
21	DR. DIMARZO: Yes. It makes sense.
22	Basically that amount is to a reduction in the volume
23	of the pump.
24	CHAIRMAN WALLIS: I have no idea what you
25	mean by "trickle."

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	DR. DIMARZO: We know what the power is.
2	We know basically the condensation rate. So we can
3	quantify exactly what the trickle is.
4	CHAIRMAN WALLIS: The other thing is how
5	long does that trickle take to wash the boron out of
6	the pump. Is it days or months?
7	DR. DIMARZO: You are bringing up an
8	interface. First of all you have to deborate all the
9	legs. Then you're bringing up an interface of
10	deborated water which can flow out of the pump.
11	CHAIRMAN WALLIS: If you're going to
12	deborate all that volume down here, why can't I
13	deborate the pump as well?
14	DR. DIMARZO: In order to pass through the
15	pump, you have to deborate, you have to pass only
16	through the level that sees the exit of the pump. You
17	don't have to go through the whole volume of the pump.
18	CHAIRMAN WALLIS: See what I mean. If
19	you've created all that deborated water by
20	condensation, you fill all this 1000 cubic feet. Why
21	can't you make a little bit more and deborate the pump
22	as well?
23	DR. DIMARZO: The whole pump you can't
24	because at some point you start to get out of the
25	pump.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	CHAIRMAN WALLIS: Well, I guess
2	DR. DIMARZO: But I see your point and
3	we'll make an argument of this type. We compared the
4	volume of the pump with the volume of down-comer and
5	lower head.
6	DR. BANERJEE: What about the pipe? You
7	are saying that deborated water should rise through
8	borated water. Right?
9	DR. DIMARZO: It should push borated water
10	ahead of itself. There is a G.I. Taylor paper
11	DR. BANERJEE: Taylor and stability.
12	DR. DIMARZO: Yes.
13	DR. BANERJEE: So why would the pipe be
14	full of deborated water.
15	DR. DIMARZO: No. The point initially
16	you're absolutely right. Initially the deborated
17	won't stay together. It would start bubbling through
18	the back. That's fine. We went through that.
19	DR. BANERJEE: (Inaudible.)
20	DR. DIMARZO: You well it up in the pump.
21	That's okay. And it will flush out on the other side
22	and drain out. So through all that process what
23	Graham is saying that we fill the whole pipe with
24	deborated completely, flush the pump completely with
25	deborated.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	CHAIRMAN WALLIS: It keeps bubbling
2	through the pump as you described it.
3	DR. DIMARZO: As you completely flush it
4	out. Right. The argument that I would like to make
5	is that the volume of the pump is a certain amount and
6	then compare that to down-comer and lower head volume.
7	Then we can make a claim to that effect.
8	CHAIRMAN WALLIS: (Away from microphone.)
9	DR. DIMARZO: Yes. But assuming that you
10	have a mixing volume which is equivalent to the volume
11	of that pump.
12	CHAIRMAN WALLIS: Yes. But it depends on
13	what's in that pump when you start to move the slug.
14	DR. DIMARZO: Absolutely.
15	CHAIRMAN WALLIS: We are not convinced
16	that there is boron left in the water in the pump.
17	DR. DIMARZO: Right.
18	CHAIRMAN WALLIS: I think that has to be
19	shown.
20	DR. DIMARZO: Well, that cannot be shown.
21	What can be shown then we'll still have to go to the
22	vessel at some point.
23	CHAIRMAN WALLIS: But your whole analysis
24	I thought depended on there being borated water left
25	in the pump.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	DR. DIMARZO: Yes. I understand that.
2	CHAIRMAN WALLIS: We are not convinced
3	that there is borated water left in the pump.
4	DR. DIMARZO: That's a good point. The
5	point is that in order to show that you have to
б	basically say that the deboration takes place over a
7	very long period of time and so forth.
8	CHAIRMAN WALLIS: I don't know. How long?
9	DR. DIMARZO: We can calculate that. It's
10	clear.
11	DR. BANERJEE: But if it's bubbling
12	through so you're talking about having deborated water
13	bubbling up through up borated water, of course as it
14	bubbles up, it mixes.
15	DR. DIMARZO: It mixes. There is no way
16	of keeping it
17	DR. BANERJEE: This seems to me something
18	which is ameanable to calculation by hand.
19	DR. DIMARZO: Yes. I'm sure of it.
20	That's fine. There's no question about that.
21	DR. BANERJEE: I mean, you know the
22	wavelength of the
23	DR. DIMARZO: Yes. But I can do another
24	calculation too. I can basically say once finally we
25	start moving the slug by natural circulation the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	assumption that Graham is putting forward is that the
2	whole system is basically deborated ahead of the slug
3	because of this very extensive
4	DR. BANERJEE: It won't flush out. It
5	will mix because it's too
6	DR. DIMARZO: Right. That's the point.
7	There is a paper by G.I. Taylor that I didn't touch
8	which basically says that as soon as you move this
9	thing it's going to start mixing within the pipe just
10	because at the wall the water drags.
11	DR. BANERJEE: Forget that complexity. If
12	you had a straight vertical pipe full of salt water
13	and you put fresh water in it
14	DR. DIMARZO: It's going to mix before it
15	gets up there. There's no question about it.
16	DR. BANERJEE: You can calculate the
17	concentration.
18	DR. DIMARZO: Yes. There's no question
19	about that. If you keep putting fresh water which is
20	what he suggests, at some point you'll have it all
21	fresh water. That is what he's saying.
22	DR. BANERJEE: If you put in enough.
23	DR. DIMARZO: Yes. That's what he's
24	saying. That's the question. How ultimately is
25	ultimately. That's the whole point. So I can push

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	this and resolve it that way. What he's saying is if
2	we sit in that predicament for
3	DR. BANERJEE: Days.
4	DR. DIMARZO: Right. Then eventually you
5	have the square wave.
6	MR. ROSENTHOL: But the scenario doesn't
7	go like that.
8	DR. DIMARZO: Right.
9	MR. ROSENTHOL: Here's a small break LOCA
10	which is going to be over in a couple of hours one way
11	or the other.
12	DR. DIMARZO: I don't think there is the
13	time to do what is predicating. But I can calculate
14	that. That's the way I'm going to get out of this.
15	CHAIRMAN WALLIS: I'm not sure you can
16	calculate this flushing out of
17	DR. DIMARZO: Yes. You need a certain
18	amount of time and volume of water to do it.
19	CHAIRMAN WALLIS: The vertical part of
20	this pipe by the bubbling water.
21	DR. BANERJEE: It's not bubbles.
22	DR. DIMARZO: It will mix. So that volume
23	becomes like another mixed volume.
24	CHAIRMAN WALLIS: It depends a lot on how
25	big the entities are that come around the bend and are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	275
1	released. If there's some kind of a oscillation and
2	big hunks of water come through, they probably
3	DR. DIMARZO: There aren't any big hunks
4	of water coming through. The condensation process is
5	a very slow process.
6	CHAIRMAN WALLIS: So it comes oozing
7	across the top of the bend and up the walls.
8	DR. DIMARZO: Exactly. And it's fully
9	mixed by the time it goes up there.
10	CHAIRMAN WALLIS: I don't know.
11	DR. DIMARZO: You're dealing with a very
12	long pipe. But I'll show that.
13	DR. DIAMOND: It mixes with water that has
14	become more highly borated than before because the
15	DR. DIMARZO: Now remember one thing
16	though. The scenario without the pump calls now that
17	the system is refueled. So you are now taking borated
18	water and you fill the pump with borated water. You
19	push the borated back down. You lift the deborated
20	all the way to the top of the steam generator. At
21	that point, natural circulation starts. At that
22	point, you basically have the slug totally in the
23	steam generator.
24	CHAIRMAN WALLIS: So you say when you fill
25	with borated water you know the level in the pump by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	which it comes to.
2	DR. DIMARZO: What I'm saying is this is
3	a two-phased scenario. Scenario part one you generate
4	the slug.
5	CHAIRMAN WALLIS: Because there is a free
6	surface.
7	DR. DIMARZO: Yes. Let's imagine the pump
8	by then is totally deborated. Now you have to resume
9	natural circulation. In order to do that somehow HPI
10	flow starts to be larger than break flow so that the
11	system refills. So the bottom of the system now is
12	being filled by HPI water. Right? This is at full
13	system right now. You start putting HPI system in and
14	it trickles over also from the pump side because it
15	fills the system on both sides. At which point
16	everything in that leg is full of HPI water which is
17	borated.
18	DR. BANERJEE: Where is the HPI coming in
19	exactly on that diagram?
20	DR. DIMARZO: In the incline portion of
21	the cold leg.
22	CHAIRMAN WALLIS: Well, I guess it's hard
23	to follow this description which is all verbal.
24	DR. DIMARZO: I don't have a mic. That
25	makes my life complicated. But initially you are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	277
1	filling this with deborated. (Indicating.) Then
2	imagine the trickle over here and makes this deborated
3	completely. There's no question. There's no problem.
4	Now the water is deborated up to this level. I have
5	to refill the system. HPI comes through here.
6	(Indicating.) So HPI starts to flow on this side.
7	CHAIRMAN WALLIS: It goes up to the candy
8	cane. Doesn't it? It fills up that pipe there.
9	DR. DIMARZO: In order to fill up this
10	pipe, it has to fill up also this pipe.
11	CHAIRMAN WALLIS: But it can't get there.
12	DR. DIMARZO: The deborated
13	CHAIRMAN WALLIS: It has to push the slug
14	back into the steam generator.
15	DR. DIMARZO: Right. So the slug is all
16	the way up there. (Indicating.) By the time the slug
17	is all the way up there, all these regions are full of
18	HPI water which is deborated.
19	CHAIRMAN WALLIS: Oh. You have to tell us
20	all that.
21	(Inaudible.)
22	DR. DIMARZO: Which is totally borated.
23	When the slug starts to move down, it will go to
24	CHAIRMAN WALLIS: You told us about Act I
25	and Act V and missed out Acts II, III, and IV.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	278
1	MR. ROSENTHOL: Okay. We'll write it up
2	that way for the final.
3	DR. DIMARZO: The point is this. There is
4	a confusion here between the paper and what you are
5	talking about here as a scenario. So that's probably
6	what the problem is. The issue that you move being a
7	situation of natural circulation is not really there.
8	In the situation where we pump, it could be
9	potentially there.
10	DR. BANERJEE: You are saying that the HPI
11	will tend to keep the pump full of borated water. Is
12	that it?
13	DR. DIMARZO: Not really.
14	DR. BANERJEE: I mean that's
15	DR. DIMARZO: (Away from microphone.)
16	CHAIRMAN WALLIS: Yes.
17	DR. BANERJEE: The HPI. Where does the
18	HPI come in?
19	DR. DIMARZO: Right there. (Indicating.)
20	DR. BANERJEE: Okay. Does it tend to go
21	into the pump?
22	DR. DIMARZO: It will fill both sides.
23	DR. BANERJEE: Both sides.
24	DR. DIMARZO: Correct. So you have now a
25	flush of HPI water in here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	279
1	CHAIRMAN WALLIS: It also pushes the green
2	stuff back up.
3	DR. DIMARZO: Yes.
4	DR. BANERJEE: Okay. That makes more
5	sense.
6	CHAIRMAN WALLIS: So when the green stuff
7	comes to the pump, it has borated water in it.
8	DR. BANERJEE: Okay.
9	CHAIRMAN WALLIS: That's much more
10	believable. Why didn't you tell us that an hour ago?
11	DR. DIMARZO: I tried.
12	CHAIRMAN WALLIS: I think this is the
13	Italian sense of drama. You get the audience totally
14	confused and then tell them the answer.
15	(Laughter.)
16	MR. ROSENTHOL: If you make him put his
17	hands in his pockets, he can't talk so much.
18	DR. DIMARZO: I couldn't stand and just
19	talk.
20	CHAIRMAN WALLIS: So when this whole thing
21	comes to the full committee, this story is going to be
22	clear.
23	DR. DIMARZO: Yes.
24	MR. BOEHNERT: Well, we also have the
25	option of inviting him back in late August at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	subcommittee meeting if we think we need to hear this.
2	DR. DIMARZO: The pump part.
3	MR. BOEHNERT: This pump part which we may
4	need to do.
5	CHAIRMAN WALLIS: I think it would be very
6	good that before anything goes to the full committee
7	we make sure that the story is clear.
8	MR. BOEHNERT: I think so too.
9	MR. ROSENTHOL: At one time we thought
10	that we would go to the subcommittee and then the full
11	committee a week later. Then we recognized that we
12	needed to satisfy the
13	CHAIRMAN WALLIS: So I will tell the full
14	committee in July. I guess I probably have to make
15	some report that we had a presentation which needs to
16	be worked on and we will hear it again before it comes
17	to the full committee.
18	MR. ROSENTHOL: If you desire.
19	CHAIRMAN WALLIS: I think it has to be.
20	This was not clear. If you get into this kind of
21	confusion with the full committee, they won't accept
22	it.
23	MR. BOEHNERT: It will be fatal.
24	MR. ROSENTHOL: Agreed.
25	CHAIRMAN WALLIS: I think this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	presentation has to have a proper description of the
2	scenario. You have green water and blue water or
3	something. You show where it goes and how it comes
4	back and there's interface here and the worst possible
5	assumption. But it must mix in the pump anyway. Give
6	us a proper story.
7	DR. DIMARZO: So we need to provide you
8	with a much better description of the scenario which
9	we didn't include this time at all.
10	CHAIRMAN WALLIS: Right.
11	DR. DIMARZO: We just simply said this is
12	the slug that gets through.
13	CHAIRMAN WALLIS: Are we going to hear
14	with this mixing in the pump the neutronics save us,
15	but without the mixing in the pump, they don't? Are
16	we going to hear after the break?
17	DR. DIAMOND: With or without the mixing
18	in the pump the neutronics are probably going to
19	supply feedback so that it's not a
20	CHAIRMAN WALLIS: The calories per gram or
21	whatever the figure of merit is are low enough.
22	DR. DIMARZO: Even with a square wave.
23	DR. DIAMOND: But we don't have a square
24	wave.
25	DR. DIMARZO: With or without mixing in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	282
1	the pump, you said the neutronics can save you.
2	DR. DIAMOND: No. You can't have a square
3	wave.
4	CHAIRMAN WALLIS: A square wave is bad?
5	DR. DIAMOND: A square wave is bad.
6	DR. DIMARZO: So you need mixing in this.
7	CHAIRMAN WALLIS: So you need to have a
8	good argument that there is mixing.
9	DR. DIMARZO: In the natural circulation
10	scenario.
11	CHAIRMAN WALLIS: The fact that Marino
12	feels there's mixing in the pump is not good enough.
13	DR. DIMARZO: No. That's not the correct
14	view. I said this. I have data. I made a model.
15	CHAIRMAN WALLIS: Show us the data.
16	DR. DIMARZO: The data is in the paper.
17	CHAIRMAN WALLIS: Show us the evidence of
18	mixing in the pump. Show us the evidence.
19	DR. DIMARZO: No. I have data of what the
20	front looks like. Then I said if mixing occurs in
21	this volume I get that.
22	CHAIRMAN WALLIS: Show that your model for
23	mixing in the pump correlates with the data from the
24	experiment.
25	DR. DIMARZO: Right. That's what is here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	283
1	You have it in front of you.
2	CHAIRMAN WALLIS: In this?
3	DR. DIMARZO: Yes.
4	DR. BANERJEE: Is that a measurement of
5	the pump outlet?
6	DR. DIMARZO: Yes.
7	DR. BANERJEE: It's not
8	DR. DIMARZO: No. That's the slug.
9	DR. BANERJEE: I think I would buy the
10	fact that you get backmixing in the pump if the pump
11	was full of borated water.
12	DR. DIMARZO: Right. That's the argument.
13	DR. BANERJEE: Deborated water too.
14	DR. DIMARZO: Absolutely. There's no
15	question. But in this particular scenario it must be
16	full with borated water in the natural circulation
17	part. The question that keeps lingering in my mind is
18	how do I show you that it's full of borated water
19	under the hypothesis that you start the pump. That
20	becomes a more complicated thing to do.
21	CHAIRMAN WALLIS: It also gets mixed in
22	the region downstream of the veins.
23	DR. DIMARZO: Yes.
24	CHAIRMAN WALLIS: The veins that create
25	DR. DIMARZO: Yes. What I'm basically

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

284 1 saying is if you consider the volume of the pump as a 2 representation of both you get the data to correlate. 3 CHAIRMAN WALLIS: That has to be clear too 4 somehow. 5 DR. DIMARZO: Right. One issue remains If I pump, I cannot in any way state that the 6 open. 7 pump will be full of borated water. You understand 8 that. 9 DR. BANERJEE: If you start --10 CHAIRMAN WALLIS: Because it's already 11 been deborated and you --12 DR. DIMARZO: If you presume that, 13 exactly. 14 CHAIRMAN WALLIS: All right. 15 DR. DIMARZO: That is the part that I cannot show but it's not really part of this scenario. 16 17 CHAIRMAN WALLIS: All right. 18 Some of these pumps you see MR. SCOTT: did have higher borated water. 19 20 CHAIRMAN WALLIS: All the way through the 21 pump. 22 MR. SCOTT: (Away from microphone.) It's 23 not always very deborated --24 CHAIRMAN WALLIS: The green is slightly 25 borated.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	285
1	MR. SCOTT: (Away from microphone.) This
2	one seems to have higher than This one's an
3	intermediate. This one has low. This was just before
4	we started the circulation which now you would be
5	injecting this unborated water. This is a PKL
6	experiment.
7	CHAIRMAN WALLIS: So each LOOP is
8	different too.
9	MR. SCOTT: It's a PKL.
10	DR. BANERJEE: But this is a once through
11	scenario.
12	MR. SCOTT: No.
13	(Inaudible.)
14	CHAIRMAN WALLIS: This is a Westinghouse.
15	MR. ROSENTHOL: That's a Westinghouse full
16	LOOP. PKL is the experiment facility. That's an
17	interpretation of what PKL would be to the
18	Westinghouse four looper.
19	CHAIRMAN WALLIS: Okay. So we're now
20	going to take a break. At 4:00 p.m., we will hear the
21	end of this story. Thank you. At 4:00 p.m., we will
22	resume. Off the record.
23	(Whereupon, the foregoing matter went off
24	the record at 3:48 p.m. and went back on
25	the record at 4:03 p.m.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	286
1	CHAIRMAN WALLIS: On the record. We will
2	hear the final part of this story of GSI-185.
3	DR. DIAMOND: All right. I'm going to
4	talk about the consequences in the core of having this
5	diluted slug.
6	MR. BOEHNERT: Could you introduce
7	yourself, sir?
8	DR. DIAMOND: Yes, sure. David Diamond
9	from Brookhaven National Laboratory. The background
10	for this is that there was a study done by Framatome.
11	It's been mentioned before. That was supposedly a
12	conservative study.
13	They estimated the boron concentration as
14	a function of time at the inlet to the core and also
15	at the lower plenum. Then they used a lump thermal-
16	hydraulic/point kinetics model. This was a RELAP5
17	calculation to assess the consequences. We had looked
18	at that and noted that because of this rather
19	simplistic model which didn't take care of the
20	significant spatial effects that go on during this
21	event that it would be worthwhile to consider the
22	event with a much more rigorous model.
23	So we said to ourselves what can a three-
24	dimensional coupled neutronic and thermal-hydraulic
25	analysis tell us. One thing is that it can contract

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the radial and axial distribution of the boron changes. Those are significant as I will demonstrate.

It can also take into account the fact that when this reactor goes critical again the other situation where all of the control rods are inserted and so we have a checkerboard pattern of control rods in the reactor which means that the neutron flux in the reactor is non-uniform. So we know that the radial and axial power distribution are complicated. Therefore, it makes sense to treat this problem using a three-dimensional calculation or at least address the neutronics with a three-dimensional model.

CHAIRMAN WALLIS: Now, you're assuming uniform fuel or do you know something about the burn up patterns?

This is a real DR. DIAMOND: Yes. reactor. So that's one part of the problem that I'm going to address today. I'm going to show you some results which demonstrate the physical phenomenon that takes place in the core and show that the spatial effects are important and what the differences are 22 between the detailed neutronics calculation and the simplistic calculation that Framatome did.

24 Then of course at the end of the day we're 25 interested in the consequences. So I'm also going to

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23
	288
1	show a result to explain what sort of fuel enthalpy
2	increase one gets during this event. There are
3	essentially two different calculations that I want to
4	leave you with today.
5	We've discussed this. I don't think that
6	we have to go any further here except to say that of
7	course the reactor is going to go critical because
8	there is a considerable amount of deborated water.
9	CHAIRMAN WALLIS: How much does the level
10	of deborated water have to rise before it does go
11	clear? How far does it have to go into the core?
12	DR. DIAMOND: I will show that to you
13	specifically, quantitatively what that looks like.
14	Let me tell you a little bit about the core model that
15	we used. We modeled a BNW reactor, specifically TMI-
16	1. It was a beginning of cycle model because in that
17	case the reactor starts off with a need for boron in
18	the core. Therefore, the deboration has a much larger
19	effect than say an end of cycle.
20	This is a core with 177 fuel assemblies.
21	It's very much like the core but not exactly equal to
22	the core that the Framatome people used when they did
23	their analysis. There's a starting point for these
24	calculations. I won't get into the details of this.

The only reason that I mention this here is because

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

289
our boron dilution accident will begin at 200 seconds
into the transient that I'm going to show.
So we have some sort of starting point.
After 200 seconds, we get to reactor condition which
emulate the identical conditions that Framatome said
would occur after several hours of this small break
LOCA scenario when natural circulation has just
started again and the boron dilution even can take
place. So at that time as I said all banks are
inserted. The fuel and the moderator have cooled down
considerably or at least a little bit. They're down
to 500 Kelvin. In this first case that I will show
you the boron ppm is at 1165. The reactivity is at
zero.
CHAIRMAN WALLIS: Why has it gone down to
that?
DR. DIAMOND: Well, this first case that
I'm going to show you is an attempt to make a
comparison with the BNW calculation. So we tried to
duplicate the reactivity insertion that BNW applied in
their calculation. This is a detailed calculation
preserving the same reactivity insertion and rate of
reactivity insertion as in the BNW calculation. After
I explain the physical phenomenon that take place
during this event, I'm going to show you a calculation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	in which we apply our best estimate of the inlet
2	conditions and show you what the consequences are of
3	that particular event.
4	CHAIRMAN WALLIS: This starting point is
5	the reactor is full of boron at 1165 ppm.
6	DR. DIAMOND: Yes.
7	CHAIRMAN WALLIS: It's gone down from 1700
8	in some way.
9	DR. DIAMOND: Yes. In this case,
10	artificially.
11	CHAIRMAN WALLIS: Why hasn't it gone up?
12	DR. DIAMOND: It has. That's correct. In
13	the actual scenario, it has gone up to 2500 ppm.
14	MR. BOEHNERT: Are you accounting for the
15	Xenon growth?
16	DR. DIAMOND: No. We're neglecting that.
17	MR. BOEHNERT: So that's a conservative
18	assumption.
19	DR. DIAMOND: Yes.
20	MR. BOEHNERT: Okay.
21	MEMBER RANSOM: How does it get down to
22	1165 ppm?
23	DR. DIAMOND: The realistic reactor
24	conditions would be at 2500 ppm.
25	MEMBER RANSOM: So why did you take this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	lower number?
2	DR. DIAMOND: Because we were trying to
3	emulate the Framatome calculation. They did a point
4	kinetics calculation. Well, it was a RELAP5
5	calculation which uses point kinetics. In that point
6	kinetics calculation, they start from zero reactivity
7	and add three and a half dollars worth of boron
8	positive reactivity. So we wanted to go through the
9	same point in order to emulate that. In reality, you
10	would be starting at 2500 ppm of boron and you would
11	be considerably subcooled. You would have to come up
12	to zero reactivity and then go some.
13	CHAIRMAN WALLIS: So they're assuming
14	boron ppm in order to make the reactivity zero
15	essentially.
16	DR. DIAMOND: Yes. No, we are. In their
17	calculations, they don't do a boron transport
18	calculation. They just insert a certain amount of
19	reactivity based on what they would expect in the
20	core.
21	This first calculation is a little bit
22	contrived. As I say it's to get you to understand
23	that the physical phenomenon that are taking place.
24	Then I'll show you something that's a little bit more
25	realistic.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

292
The layout of the core is shown here.
This is 177 fuel assemblies. Because we assume
uniform inlet conditions across the core, we can focus
on one-eighth of the core. This is that one-eighth of
the core. The numbers at the top of the boxes are the
top of each fuel assembly just as the number of
thermal-hydraulic channel. There are 29 fuel
assemblies in this one-eighth core and 29 thermal-
hydraulic channels in our model.
The burn up for each fuel assembly is the
lower number. We see that there are yellow and white
fuel assemblies. The yellow assemblies are assemblies
that have a control rod in there because one of the
first things that happens is all of the rods are
SCRAMed into the core. So you can see this
checkerboard pattern. Rod in. Rod out. Rod in. Rod
out. If you look at the burn up numbers, you see that
these fuel assemblies along here without control rod
have the lowest burn up. (Indicating.)
CHAIRMAN WALLIS: They're all new
essentially.
DR. DIAMOND: Those are new. Right.
These that are shaded here are going to be the
assemblies where the fuel enthalpy is going to be the
highest in this particular scenario.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	293
1	To do the calculation, we used PARCS. You
2	heard Joe Kelly mention PARCS a little bit earlier
3	today. It was a code that was originally developed at
4	Purdue and is now incorporated as part of TRAC-M. The
5	code models the neutronics and three-dimensions. It
6	is able to break up the core fuel assembly-by-fuel
7	assembly and axial node-by-axial node. There are 24
8	axial nodes in a neutronics calculation and actually
9	four neutronic nodes in each assembly in these
10	calculations.
11	The code takes into account the neutron
12	kinetics. So it takes into account the effect of
13	delayed neutrons. It uses two neutron energy groups.
14	It uses diffusion theory. The diffusion equation is
15	solved based on a nodal method. I think that you're
16	going to learn more about this code when you learn
17	more about the models within TRAC-M because this is a
18	part of TRAC-M.
19	The code has feedback from the appropriate
20	feedback mechanisms; fuel temperature, moderator
21	density, the boron concentration, the change in
22	position of control rods. Of course, the thermal-
23	hydraulic conditions here need to be calculated from
24	a thermal-hydraulic model. In this particular case,
25	PARCS is coupled with RELAP5. So this is really

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	294
1	PARCS-RELAP5 or RELAP5-PARCS.
2	The cross sections are generated with a
3	different code. These are the cross sections which
4	enable you to solve the two neutron energy group
5	diffusion theory equations. Those cross sections are
6	obtained for each of the fuel assemblies, again for
7	the TMI-1 reactor's beginning of cycle.
8	There was one problem with the cross
9	sections. They're not good to below 500 K. That's
10	why our calculations started at 500 K. The actual
11	reactor conditions would ger you down to about 425 or
12	450 K. Since we were not able to go down that far, we
13	made sure that we preserved the same subcooling as
14	would be expected in the actual plant.
15	The RELAP5 calculation took advantage of
16	this octant symmetry. As I explained there were 29
17	channels to represent the 29 fuel assemblies. There's
18	one channel to represent the reflector regions. These
19	of course are parallel channels. There's no mixing.
20	CHAIRMAN WALLIS: Now, voids are formed in
21	the core.
22	DR. DIAMOND: Yes.
23	CHAIRMAN WALLIS: So you need to have some
24	regions for the thermal-hydraulic analysis.
25	DR. DIAMOND: Yes. But the thermal-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	hydraulic analysis proceeds as multiple parallel
2	channels rather than with any mixing.
3	CHAIRMAN WALLIS: It doesn't analyze each
4	channel separately. Does it?
5	DR. DIAMOND: Yes it does.
6	CHAIRMAN WALLIS: It does.
7	DR. BANERJEE: 29 channels.
8	CHAIRMAN WALLIS: 29 channels.
9	DR. BANERJEE: And one reflector.
10	CHAIRMAN WALLIS: All RELAP5. That's
11	quite a lot.
12	DR. DIAMOND: 29, yes. The reason we're
13	able to do this is again as I explained because of
14	this octant symmetry.
15	DR. SCHROCK: Is the symmetry really that
16	good?
17	MR. BOEHNERT: Virgil, use the mic please.
18	DR. SCHROCK: I asked is the symmetry
19	really that good. You have previously burned bundles
20	mixed with new bundles and so forth. Are the burn ups
21	really that close to preserve this symmetry?
22	DR. DIAMOND: Yes. They certainly are.
23	I will mention something later where there is a
24	problem in symmetry of course. That is that there is
25	always this question of the flow into the core inlet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	296
1	and how uniform that flow is. But of course we would
2	have to have additional knowledge to really
3	understand.
4	CHAIRMAN WALLIS: From what we saw, the
5	pictures of the down-come are where it's probably not
6	very uniformed in terms of boron concentration.
7	DR. DIAMOND: Yes. Okay. So this first
8	calculation that I'm going to show as I said it has
9	about three and a half dollars worth of boron
10	reactivity as the maximum value. That's why I say we
11	can't have a square wave coming in here. That's an
12	awful lot of reactivity to come in instantaneously.
13	When we talk about the rod ejection
14	accident, generally we're talking about one and two
15	dollars worth of reactivity. So if we have a maximum
16	of three and a half dollars and put it in the square
17	wave, I don't think that anybody would accept that.
18	DR. SCHROCK: In your previous statements,
19	you said you were trying to replicate the BNW owners
20	group calculation. Their reactivity assertion only
21	goes to one dollar.
22	DR. DIAMOND: That's the total reactivity.
23	So the total reactivity is of course the boron
24	reactivity less the feedback.
25	DR. SCHROCK: Oh, yes. I see.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	DR. DIAMOND: All right. The mass flow
2	rate at the lower inlet plenum was about three
3	percent. As I said, we had about 200 seconds of
4	simulation to bring the core to the same conditions
5	before the boron dilution accident.
6	CHAIRMAN WALLIS: Are you going to show us
7	far the boron front goes up before the core goes
8	critical?
9	DR. DIAMOND: Yes. We can infer that. I
10	won't show that exactly. This just gives you the
11	boron concentration versus time. As I said we're
12	starting really from 200 seconds and going through
13	this particular transient which is a transient from
14	almost 200 to almost 600 ppm of boron concentration in
15	this slug of water.
16	CHAIRMAN WALLIS: Why doesn't it go to
17	zero?
18	DR. DIAMOND: This is based on Framatome.
19	CHAIRMAN WALLIS: Oh, this is Framatome.
20	DR. DIAMOND: Yes. This is based on the
21	Framatome analysis.
22	CHAIRMAN WALLIS: I put diMarzo on that
23	fuel.
24	DR. DIAMOND: Well, we have another curve
25	which is a little bit more severe than this but it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	still doesn't go to zero.
2	MR. ROSENTHOL: This is the concentration
3	in the core.
4	DR. DIAMOND: This is the concentration at
5	the inlet plenum.
6	CHAIRMAN WALLIS: I thought he had a
7	dilution of 100 percent.
8	DR. DIMARZO: Graham, what you are looking
9	at is a paper from Maryland. It's contained in the
10	paper from Maryland that the concentration does go to
11	zero. What we're talking about here is a scenario
12	which is defined differently. You don't have zero.
13	CHAIRMAN WALLIS: What's conservative?
14	DR. DIMARZO: It's not a question of
15	conservative. It's a question of where the slug is
16	initially. Remember the slug is confined completely
17	in the steam generator before this process starts.
18	Therefore, that slug has to go to the steam generator
19	out of plenum and mix. Then it has to go to the pump
20	and mix. That's the front of the slug.
21	DR. BANERJEE: This is Framatome.
22	DR. DIMARZO: Right.
23	DR. BANERJEE: That's why it's so mild.
24	DR. DIAMOND: Okay. So that curve shows
25	you that we start to get some dilution around 230

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 seconds. It's about another 20 seconds of dilution 2 and one sees a large increase in the power. The power 3 goes up to between 70 and 80 percent of nominal power. 4 Then as it typical in power excursions 5 like this, the power turns over because of Doppler That's the nice thing about low uranium 6 feedback. 7 cores. They have a very strong Doppler feedback. The power turns over but the core is still being diluted. 8 9 Therefore, there's this pull. There's this positive reactivity being put in. There is this pull from the 10 11 Doppler trying to hold it back. Then with time, the 12 moderator heats up and you have moderator density 13 feedback. 14 Another nice thing about a PWR is that it 15 has a negative feedback coefficient from the moderator 16 temperature or the moderator density. So this 17 competition between the boron and the feedback results 18 in the power coming down and then up and then down and 19 then up a little bit and then it settles down as the 20 boron slug moves off. What this means in terms of 21 fuel enthalpy and this is fuel enthalpy at the node in 22 the core that has the highest fuel enthalpy is that 23 the fuel enthalphy starts from about 14 and goes up 24 initially only to about 34. So initially there's only

about a 20 calorie increment in fuel enthalpy.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

299

	300
1	If you look at the peak change in fuel
2	enthalpy, you see that it goes up maybe a total of 37
3	calories per gram from here to here. (Indicating.)
4	But if there was going to be any fuel failure, it
5	would probably be the result of this initial increase
6	in enthalpy. So that's fairly low.
7	DR. SCHROCK: So what is the cause of the
8	second peak?
9	DR. DIAMOND: Again, it's the competition
10	between the positive boron reactivity which is still
11	coming into the core and the feedback effects from
12	Doppler and from the moderator temperature.
13	CHAIRMAN WALLIS: But it's the second
14	power peak that puts more
15	DR. SCHROCK: There's no boiling in this
16	case.
17	DR. DIAMOND: There is a little bit. I'll
18	show that momentarily. There is some boiling.
19	MR. BOEHNERT: Localized?
20	DR. DIAMOND: Yes. Localized. The
21	behavior here will become clearer as we go through a
22	few more of these curves. This curve shows the power
23	versus time but on a logarithmic scale. I just wanted
24	to point out that when we looked over here, we saw
25	that it looks as though the power doesn't increase

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 until close to 250 seconds. (Indicating.) But in 2 reality, the power begins to rise soon after 200 3 seconds and then goes up to as I say about 80 percent 4 nominal power.

5 This curve is the curve that Harold Scott earlier. showed This the 6 curve shows boron 7 concentration during the period from 230 to 330 seconds. You can see that the boron concentration is 8 decreasing during this first roughly 50 seconds. 9 So 10 the reactivity change is a result of this positive 11 reactivity insertion due to the boron concentration 12 down, this is the scale for the qoinq boron 13 concentration, and also the negative effects from fuel 14 temperature and moderator temperature feedback. This 15 erratic behavior as a result of the competition between those feedback effects accounts for the 16 17 corresponding curve of power versus time.

18 This gives you an idea of how the Okav. 19 front moves through the reactor. This is the relative 20 power along a channel. This is the bottom of the 21 This is the top of the core. (Indicating.) If core. 22 we look at say 240 seconds, we see that initially the 23 power is quite flat. Then if we look at later times, 24 this is 249 seconds, we see that of course the power 25 is no longer flat.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

302
The power is quite peaked at the bottom of
the core because that's where the slug has entered.
So at the bottom of the core, it's becoming critical
and where the power is increasing rather than
uniformly through the game. This is enother reason
uniformity through the core. This is another reason
why you need a spatial representation in your
neutronics model.
If we look now at the radial power
distribution, this happens to be at 260 seconds.
These numbers are the relative power in each assembly.
DR. BANERJEE: So this is the second peak,
not the first.
DR. DIAMOND: Yes. Right. This is at the
second peak. It doesn't matter. You would see the
same effect at other times. The effect that I wanted
to show is that these bundles, these fuel assemblies
that have the low burn up are the ones that have the
relatively high power. Again, you see the importance
of having to have that gratially dependent
of naving to nave that spatially dependent
calculation. You can see how the power is down, up,
down, up depending on which
DR. BANERJEE: What are the units for the

23 power here?

24DR. DIAMOND: This is just relative units.25DR. BANERJEE: In terms of, are they twice

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	303
1	normal operating power or what does that mean?
2	DR. DIAMOND: No. The average here is
3	1.0.
4	DR. BANERJEE: Okay.
5	DR. DIAMOND: Here is a graph of void
6	fraction versus axial position at different times.
7	Again, if we look at one particular time here, 289
8	seconds, we see in this particular channel that we
9	have a little bit of void formation at the bottom of
10	the core. That's the hot spot. If we look at later
11	times, for example 291 seconds, we see that the void
12	has shifted further down and has increased in this
13	particular case. But these void fractions in this
14	case are quite low.
15	CHAIRMAN WALLIS: But still doesn't that
16	have quite an effect on the neutron balance?
17	DR. DIAMOND: Yes. It certainly does.
18	It's also the result of the fact that we have a very
19	low flow in the reactor.
20	DR. BANERJEE: But this is much later than
21	the power peaks.
22	DR. DIAMOND: Yes.
23	DR. BANERJEE: So they are just giving you
24	negative reactivity later on, shortly after that.
25	DR. DIAMOND: Right. But again this is in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	304
1	a very small fraction of the core.
2	DR. BANERJEE: Did you use the negative
3	void co-efficient here, or is it negative?
4	DR. DIAMOND: Yes. The void co-efficient
5	is negative. So any void formation is
6	DR. BANERJEE: It will shut it down.
7	DR. DIAMOND: Yes. This shows you the
8	average boron concentration in each of the assemblies.
9	DR. SCHROCK: It doesn't mean axial
10	average.
11	DR. DIAMOND: It is averaged axially. So
12	it is for a particular radial position.
13	CHAIRMAN WALLIS: This is in the liquid
14	phase or it takes care of the voids.
15	DR. DIAMOND: It's in the liquid phase.
16	DR. BANERJEE: There is no void at this
17	time.
18	DR. DIAMOND: Right. There is very little
19	void in this particular case. But what it shows is of
20	course that there is a radial distribution of boron
21	concentration. The reason for that is that if you
22	look for example at these three fuel assemblies here
23	that have the highest power level, we see that it has
24	the lowest boron concentration. What's happening is
25	that where you have more power you're sucking up the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	305
1	diluted water faster. So what you have is an
2	autocatalytic type of reaction here. That tends to
3	feed the power.
4	CHAIRMAN WALLIS: So if you avoid
5	formation rapid enough, you'd be expelling the boron
6	at the bottom.
7	DR. DIAMOND: Yes. Well, in this
8	particular case, you don't get void in these
9	assemblies because the flow rate is a little bit
10	higher. You get the void in the assemblies where the
11	flow rate is lowest.
12	DR. BANERJEE: This is natural
13	circulation.
14	DR. DIAMOND: Yes. But we imposed a flow
15	rate at the
16	DR. BANERJEE: At the boundary conditions.
17	DR. DIAMOND: At the inlet plenum.
18	DR. BANERJEE: So this is a distribution
19	effect.
20	DR. DIAMOND: This is a distribution
21	effect. Okay. So that gives you an idea of the
22	complex physical phenomenon that are taking place
23	there. As I said, this first calculation that I
24	wanted to show you was really to compared the detailed
25	three-dimensional calculation with the lumped point

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	306
1	kinetics calculation.
2	In that calculation, the Framatome
3	calculation and remember this is not apples and apples
4	because they're model was actually Crystal River which
5	was very similar but it's a different core than
6	whatever cycle of TMI we were using. So it's not
7	exactly apples and apples. Anyway, the peak
8	reactivity in their calculation was about \$1.2. In
9	our case it was about \$1.02. This is a typo here. It
10	should be \$1.02.
11	Peak power in their case was about 83
12	percent occurring about six seconds after dilution.
13	In our case it was a little bit lower. Similarly,
14	their peak enthalpy was 69 calories per gram. Of
15	course it's difficult to estimate that when you're
16	doing a lumped parameter calculation. When you're
17	treating the entire core as a single unit, it's hard
18	to say what the peak is within the core. Anyway,
19	their estimate was 69. Our calculation was 37. That
20	was the peak enthalpy.
21	DR. BANERJEE: That's the hottest channel.
22	DR. DIAMOND: The hottest axial position
23	in the hottest channel.
24	DR. BANERJEE: Hottest axial.
25	DR. DIAMOND: Yes. So it's the hottest

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	307
1	node over the entire reactor. Whereas as I said,
2	there are 24 axial nodes and one radial node per fuel
3	assembly.
4	DR. BANERJEE: What time does that occur
5	actually? 13 seconds is after the dilution starts.
6	Is that right?
7	DR. DIAMOND: No. That's the peak power.
8	The peak enthalpy occurs much later than that. If you
9	recall that the peak enthalpy occurred at that second
10	enthalpy peak.
11	DR. BANERJEE: Why does that happen?
12	CHAIRMAN WALLIS: To integrate.
13	DR. DIAMOND: Yes. Because enthalphy is
14	an integral. So even though the power came down after
15	the first power pulse, enthalpy is an integral. There
16	is some heat transfer out of the fuel. So it's a
17	question of the energy deposition less the heat
18	transfer out of the pellet. The net result is that it
19	occurs not after the first peak but later in the
20	event.
21	DR. BANERJEE: So the power pulse is so
22	sharp in the first case that when it is integrated it
23	doesn't
24	DR. DIAMOND: Right. Remember that when
25	we examined that curve it was an increase of only

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	308
1	about 20 calories per gram after the first peak and
2	then 37 calories per gram after the second peak.
3	Sporadic voids. And here the core return subcritical
4	45 seconds after prompt. In our case it was 24
5	seconds after prompt. So the calculation generally
6	with the point kinetics model seem to be more
7	conservative then our calculation.
8	DR. SCHROCK: You have a small difference
9	in beta shown between those two calculations.
10	DR. DIAMOND: Yes.
11	DR. SCHROCK: I presume that's because
12	you've weighted the beta in your calculation
13	somehow to reflect some plutonium.
14	DR. SCHROCK: No. The beta that we
15	calculate is the beta for that beginning of cycle
16	condition at TMI. So it's based on the fuel in that
17	particular reactor.
18	DR. SCHROCK: Which has some pleutonium.
19	DR. DIAMOND: Yes. It has a considerable
20	amount of burn up.
21	DR. SCHROCK: Right.
22	DR. DIAMOND: The average burn up in that
23	core at beginning of cycle is probably around average.
24	DR. SCHROCK: If anything it's
25	surprisingly high, that value of beta.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	309
1	DR. DIAMOND: No. I wouldn't say it's
2	surprisingly high. I'm not surprised.
3	DR. SCHROCK: Well, if you had much
4	pleutonium.
5	DR. DIAMOND: Well, if you go back to
6	here, you have a burn up of 30 gigawatt days per ton.
7	So you do have pleutonium here. But here you have
8	essentially fresh fuel. So you have a mix.
9	DR. SCHROCK: Yes. You have a mix.
10	Somehow you're weighting beta. You get a beta core
11	wide.
12	DR. DIAMOND: Yes. And it's weighted,
13	DR. SCHROCK: What's the weighting at
14	joint flux?
15	DR. DIAMOND: The weighting in this case
16	is a volumetric weighting.
17	DR. SCHROCK: Volumetric weighting. So I
18	guess we'll get another look at that when we review
19	PARCS. That's a feature of PARCS that's used.
20	DR. DIAMOND: The PARCS calculation can
21	put in a different beta for each fuel assembly. In
22	this case, we used an average beta. But it can have
23	a different beta for each assembly. That's not a
24	problem.
25	DR. BANERJEE: So remind me beta is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	310
1	related to the kinetics.
2	DR. DIAMOND: Yes. Beta is the delayed
3	neutron fraction. A smaller beta as you get with
4	pleutonium means that you have less delayed neutrons.
5	Therefore, the control is a little bit more sketchy.
6	DR. BANERJEE: Right.
7	CHAIRMAN WALLIS: Within a rapid transient
8	I thought it was the You have to look at the
9	distribution of the beta among the different
10	precursors. It's a really good answer.
11	DR. DIAMOND: Well, as I said, PARCS
12	enables you to put in the appropriate beta for each
13	fuel assembly which takes into account the burn up in
14	that fuel assembly and therefore the distribution of
15	material.
16	CHAIRMAN WALLIS: What I'm saying is today
17	neutron fraction is an average over a lot of different
18	precursors each with a different time.
19	DR. DIAMOND: Yes.
20	CHAIRMAN WALLIS: There's a rapid
21	transient. It's the ones with the long time that
22	matter most to something. You don't just take the
23	average. Do you? I'm trying to remember how this
24	works.
25	DR. DIAMOND: There are actually six

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	311
1	groups of delayed neutrons. The beta that we show
2	there is actually the sum of those six groups of
3	delayed neutrons.
4	CHAIRMAN WALLIS: Rapid transient, it's
5	the slowest group or something. It eventually ends up
6	dominating. Doesn't it?
7	DR. DIAMOND: Well, in addition to the
8	delayed neutron fraction you have to specify the delay
9	time for the delayed neutron to come out.
10	CHAIRMAN WALLIS: That's right.
11	DR. DIAMOND: Of course those with the
12	shortest delay times are most important for fast
13	transients, and those with the longest delay time are
14	more important when you're looking at a LOCA for
15	example.
16	CHAIRMAN WALLIS: Yes.
17	DR. DIAMOND: Okay. So this is now the
18	second type of transient that I want to present to
19	you. This is a calculation based on our best estimate
20	of what the inlet plenum boron concentration would be
21	based on Professor diMarzo's model of mixing.
22	CHAIRMAN WALLIS: Why doesn't it go to
23	zero?
24	DR. BANERJEE: The front meets that back.
25	DR. DIMARZO: No. Because the regional

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	312
1	slug here proposed by Framatome which generates those
2	two curves, it doesn't go to zero.
3	CHAIRMAN WALLIS: I'm just saying that in
4	your spiel you talked about percent dilution 100
5	percent, you had this pure water
6	DR. DIMARZO: Okay. In the Maryland
7	experiment, we go to zero.
8	CHAIRMAN WALLIS: Why?
9	DR. DIMARZO: The Framatome experiment
10	does not go to zero. I have an overhead here.
11	CHAIRMAN WALLIS: Okay. I guess I'm
12	confusing the two. There has been mixing in the real
13	phase.
14	DR. DIMARZO: Yes. Framatome gives you an
15	initial slug in the steam generator.
16	CHAIRMAN WALLIS: Okay.
17	DR. DIMARZO: Then they proceed to mix it
18	that way. I proceeded to mix it my way along that
19	model.
20	DR. BANERJEE: But you have only two
21	mixing mechanisms. One is at the front and one is at
22	the back. Right?
23	DR. DIMARZO: The mixing depends on
24	DR. BANERJEE: How does it not go to zero?
25	Otherwise you get some smoothing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	313
1	CHAIRMAN WALLIS: I think it never was
2	there or anywhere except in Maryland.
3	DR. DIMARZO: (Away from microphone.) This
4	is what the initial slug looks like.
5	CHAIRMAN WALLIS: It never went to zero.
6	DR. DIMARZO: (Away from microphone.) It
7	never went to zero, no. Framatome mixed it somehow
8	and got this dashed line. If you take this slug
9	considering what it is in the scenario and you move it
10	appropriately to the steam generator upper plenum and
11	through the pump according to where it is you get
12	this. (Indicating.)
13	DR. BANERJEE: So that time is actually
14	space. The distribution of the slug in space. Moving
15	at some velocity. Right?
16	DR. DIMARZO: Exactly. This is the
17	original slug in space.
18	DR. BANERJEE: So why is that sloped to
19	begin with?
20	DR. DIMARZO: That's because the scenario
21	prepares the slug in a certain way that results in
22	that.
23	DR. BANERJEE: How does the scenario
24	prepare it?
25	DR. DIMARZO: It's very complicated.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	314
1	That's the part that we didn't present here.
2	DR. BANERJEE: I see. So you are already
3	assuming part of it is mixed and so on.
4	DR. DIMARZO: Yes.
5	DR. BANERJEE: What part of it is mixed
6	already in front? Is that in the pipe rising up?
7	DR. DIMARZO: That is the pipe rising up
8	to the pump. The steam generator upper plenum is
9	around here and then all this is in the steam
10	generator. That's the slug that you can see there.
11	DR. BANERJEE: It would be interesting to
12	see how you arrive at that.
13	CHAIRMAN WALLIS: It would be interesting
14	to see how certain you are about that.
15	DR. DIMARZO: (Away from microphone.) And
16	the pump is totally borated in this particular So
17	now you remove this from the pump and move all this
18	through the steam generator upper plenum and the pump.
19	CHAIRMAN WALLIS: It's really suspicious
20	to me that it has all these sharp corners.
21	DR. DIMARZO: The sharp corners are
22	DR. BANERJEE: Component changes.
23	DR. DIMARZO: (Away from microphone.)
24	That's the way drops initially. That scenario we
25	did not It's the result of hours of operation but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	315
1	we didn't do that scenario. We could simply find it
2	and say we have a slug in the steam generator.
3	CHAIRMAN WALLIS: Right. You wouldn't
4	like that.
5	DR. BANERJEE: Right. It seems that
6	there's already a lot of credit taken for various
7	things in generating that.
8	DR. DIMARZO: (Away from microphone.) One
9	case that we can easily do and that we don't have any
10	problem is to start with causing a LOOP like this.
11	That's not a very major difference
12	DR. BANERJEE: The reactor would probably
13	go back.
14	DR. DIAMOND: No. He means start that in
15	the steam generator. You can't have that in the core.
16	You're correct.
17	DR. DIMARZO: Exactly. Absolutely. But
18	we should take a square wave in the steam generator
19	and move it along. You could probably take the one
20	that you have there without the Marino diMarzo thing
21	and because the front end is sloped that would
22	probably help you. Wouldn't it?
23	DR. BANERJEE: But you
24	DR. DIAMOND: Yes.
25	CHAIRMAN WALLIS: Well, I guess when you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	316
1	do the whole story you're going to have to say where
2	this curve came from and why.
3	DR. BANERJEE: The critical part is that
4	front slope I guess.
5	DR. DIAMOND: Yes.
6	DR. DIMARZO: And since you have
7	established by now that in the natural circulation the
8	pump isn't deborated if we passed a step through the
9	pump
10	DR. BANERJEE: Well, even if we don't take
11	credit for the pump, what's happening is you've
12	already got a slope there. That would be interesting
13	to know.
14	DR. DIMARZO: Yes. Because this slug is
15	sitting. There's a little bit of that vertical leg
16	like we discussed before.
17	DR. BANERJEE: So you've already taken
18	credit for that.
19	DR. DIMARZO: That's what he said. I
20	didn't take credit for it. That's what we were given.
21	DR. BANERJEE: Who gave you that?
22	DR. DIMARZO: This is the owners group.
23	CHAIRMAN WALLIS: Well, you ought to do it
24	yourself.
25	DR. BANERJEE: Are you going believe the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	owners group?
2	DR. DIMARZO: That's the point. We could
3	do a curved slug which I was just thinking about
4	CHAIRMAN WALLIS: I think you should.
5	DR. DIMARZO: To the steam generator and
6	pass it through. The question is this. If I go for
7	a scenario of a square slug in a natural circulation
8	scenario, it would have to be pushed up into the steam
9	generator before I start.
10	CHAIRMAN WALLIS: Yes.
11	DR. DIMARZO: That slug will go through
12	the steam generator upper plenum and through the pump
13	before reaching. That's no problem.
14	DR. BANERJEE: Whatever it takes.
15	DR. DIMARZO: It will look more like
16	probably going much slower in here and then going up
17	again like that. (Indicating.) It would be
18	CHAIRMAN WALLIS: But for regulatory
19	purposes, you might want to make some conservative
20	assumptions about that slug. That might lead you to
21	conclusions that you didn't particularly like.
22	DR. DIMARZO: I was just trying to make
23	that case.
24	CHAIRMAN WALLIS: Well, I think that when
25	you make a presentation eventually to the full

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	318
1	committee you're going to see what was the origin of
2	that curve you just showed us and how secure it is,
3	that one with the shape of the slug, the distribution
4	of boron in the slug.
5	DR. DIMARZO: I think for simplicity it
6	would be much more practical to start with the square
7	slug.
8	CHAIRMAN WALLIS: Well, then that might
9	not be tolerable though in terms of the transient.
10	DR. BANERJEE: No. He's saying it would
11	be if you allowed him mixing in the plenum and in the
12	pump.
13	CHAIRMAN WALLIS: In the steam generator
14	pump.
15	DR. DIMARZO: Yes.
16	CHAIRMAN WALLIS: Okay. Well, maybe you
17	need to do that too.
18	DR. DIMARZO: That would be more like
19	another case bounding this.
20	CHAIRMAN WALLIS: Okay. So you have some
21	more work to do.
22	DR. SCHROCK: Could I bring up one point
23	here? The power distribution in the core is quite
24	interesting. Could you compare it to the power
25	distribution in the steady state operating condition?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	319
1	DR. DIAMOND: You're talking about this
2	particular curve.
3	DR. SCHROCK: Yes.
4	DR. DIAMOND: Let's see.
5	DR. BANERJEE: Is it a factor due to less
6	boron in those channels that you get such high powers?
7	DR. DIAMOND: First of all, let me explain
8	that this is the axial average.
9	DR. SCHROCK: Yes. You said that before.
10	DR. DIAMOND: So this number may be higher
11	at some particular axial position. This is higher
12	than one would expect during normal operation. But
13	it's not a crazy number.
14	DR. SCHROCK: No, no.
15	DR. DIAMOND: It's only three times the
16	average.
17	DR. SCHROCK: I'm not saying it's crazy at
18	all. I'm just interested in seeing how much
19	distortion spatially occurs in the power distribution
20	as a result of this kind of transient. It's pretty
21	large.
22	DR. DIAMOND: But this core already has a
23	power distribution distortion because of the presence
24	of control rods. Look at this. 0.246. I mean that's
25	only because there's a control rod there. Even in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	320
1	center of the core, 0.51 is a distortion.
2	DR. SCHROCK: Well, it's on the edge of
3	the core too.
4	DR. DIAMOND: No. Even at the edge it's
5	much too low.
6	DR. SCHROCK: It's too low. I agree.
7	DR. DIAMOND: So this entire core is
8	already distorted by virtue of the control rods.
9	DR. SCHROCK: Down here you have one
10	that's near the edge that's 2.1.
11	DR. DIAMOND: That's right.
12	DR. SCHROCK: What would that be in the
13	operating steady state?
14	DR. DIAMOND: In the steady state, it
15	might be 1.5. But in the steady state you wouldn't
16	have 1.5 here and 0.2 here. You wouldn't have such a
17	severe gradients.
18	DR. SCHROCK: But when you're looking for
19	potential core damage, are you looking at that element
20	or are you looking at some average?
21	DR. DIAMOND: You're looking at all of the
22	axial positions within this fuel assembly.
23	DR. SCHROCK: That particular fuel
24	assembly.
25	DR. DIAMOND: As it turns out, yes, this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	321
1	assembly and this assembly. I don't know which of
2	these two assemblies and which axial level has the
3	highest pellet temperature and therefore enthalpy.
4	But it's somewhere at the bottom of the core, maybe
5	about a foot above the bottom of the core and it's in
6	one of these two assemblies.
7	But that's what this calculation does for
8	you. It looks throughout the core at where you have
9	the hottest fuel rod. I should also say
10	DR. SCHROCK: And it's important that it
11	gives you something quite different than the picture
12	you would have if you made the assumption that the
13	power distribution in the transient is the same as the
14	power distribution in the operating study state.
15	DR. DIAMOND: Correct.
16	DR. SCHROCK: It might be much worse.
17	DR. DIAMOND: Yes. Primarily by virtue of
18	the axial distortion but also because of the radial
19	distortion.
20	DR. SCHROCK: Yes. Thank you.
21	DR. DIAMOND: Okay. So this next
22	calculation that I wanted to show was again with our
23	diMarzo curve which we're saying is our best estimate
24	at the moment of what the boron concentration would
25	look like based on a restart of natural circulation.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

In this particular calculation that I'm going to show, 1 2 the dilution starts at 100 seconds rather than 200 As you can see the change in boron 3 seconds. 4 concentration is from about 2500 to below 500 ppm. 5 It's a dramatic change in boron concentration, an 6 enormous change. 7 But in this particular case, we're starting from whatever the shut down condition of the 8 9 reactor is. We're not starting from zero reactivity as I described for the previous calculation. In this 10 11 particular case, the power peak is between 300 and 350 12 In the previous case if you remember the percent. 13 power peak was down here at about 70 or 80 percent. 14 So that initial power spike now is quite a bit larger. 15 It's also narrower. But it's quite a bit higher. 16 DR. BANERJEE: That's also because you 17 started from a much lower, I mean, the thing is 18 completely shut down and you have to bring it back up. 19 Right? 20 DR. DIAMOND: Yes. 21 DR. BANERJEE: If you start from zero 22 reactivity this would just go. 23 Well, starting from zero DR. DIAMOND: 24 that would be different. 25

DR. BANERJEE: That would be a big bang.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

322

	323
1	DR. DIAMOND: That would be different.
2	The point is that this is now our best estimate
3	calculation.
4	DR. BANERJEE: So the conditions are
5	different between the two rods.
6	DR. DIAMOND: Yes. But this is meant to
7	be the more realistic condition now, starting from the
8	shut down condition and using the diMarzo curve.
9	DR. BANERJEE: What was the logic for the
10	other one, zero reactivity?
11	DR. DIAMOND: Because the other one we
12	wanted to see the differences between the Framatome
13	point kinetics calculation and a spatially dependent
14	calculation.
15	DR. BANERJEE: What was their logic to
16	start from zero?
17	DR. DIAMOND: Because when you're using
18	point kinetics that's how you're going to, the code
19	easily starts from zero reactivity.
20	DR. BANERJEE: I see. It was a matter of
21	convenience.
22	DR. DIAMOND: Yes. A matter of
23	convenience, right.
24	MR. SCOTT: This is what I mentioned.
25	When BNW got 90 calories per gram, that was in a range

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	324
1	where there was some concern particularly for a high
2	burn up fuel. So we wanted to see for a very similar
3	case what we would get with 3-D PARCS.
4	DR. DIAMOND: So this is the power trace.
5	Again, here we're starting from very low power. This
6	is what it looks like on a logarithmic scale. Now, if
7	we focus on a shortened time scale from 130 to 190
8	seconds, this is the power pulse here. (Indicating.)
9	It actually goes up to about 330 percent and
10	oscillates. This is what the peak fuel enthalpy looks
11	like.
12	Again, we have a situation where the
13	enthalpy rises due to that initial power pulse. It
14	goes from about 14 to 37. It's about a 23 or 25
15	calorie per gram increment during this initial time.
16	Then eventually it goes to its peak value of about 70
17	calories per gram.
18	DR. BANERJEE: And that's because your
19	power pulse is so sharp. That's really the reason
20	because you're not getting much enthalpy in the power
21	pulse.
22	DR. DIAMOND: That's right. The pulse is
23	very sharp.
24	DR. SCHROCK: The second peak is not has
25	high but it's a broad peak.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	325
1	DR. DIAMOND: Yes. It's a broad peak.
2	This initial increment here is the integral of that
3	power trace essentially. Of course there is heat
4	transfer because this is taking place over about a
5	second. If you want to look at fractions of a second
6	you can look at
7	DR. BANERJEE: How much credit does that
8	heat transfer out at that point? Suppose your gap
9	conductors were wrong or something. What would
10	happen? Is there 150 percent of the heat being lost
11	or ten percent or one percent? What's the number?
12	DR. DIAMOND: That's a good question.
13	MR. ROSENTHOL: Your fuel rod time
14	constant is eight, nine, ten seconds.
15	DR. DIAMOND: There is. In other words,
16	if we assumed an reaction would this be 40 or would
17	it be 50?
18	DR. BANERJEE: Right.
19	DR. DIAMOND: And I think that it would be
20	closer to 40 here. There is some heat transfer but
21	since the time constant for heat transfer is on the
22	order of a couple of seconds it isn't that much.
23	Okay. So if we're looking at this first
24	peak as I say it's an increment of about 25 calories
25	per gram. This really shows the consequences that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	326
1	we're interested in.
2	DR. BANERJEE: So because there are so
3	full power seconds in the pulse that you're getting
4	away with this very low amount of energy deposition.
5	DR. DIAMOND: Yes. This is the basic
6	physics of a light water reactor. That is when you
7	give it a jolt, you get the Doppler that pulls it
8	back. In this case, you're not only giving it a jolt,
9	you're still pulling on it because the boron
10	concentration is continuing to go down during this
11	period here but you have not only the fuel temperature
12	contributing to the negative feedback but also the
13	moderator temperature and density.
14	DR. BANERJEE: And the void.
15	DR. DIAMOND: Yes.
16	MR. ROSENTHOL: Let me just add that when
17	you did ejected rod calculations over the decades you
18	again saw that it wasn't the initial pulse turned
19	around by Doppler that gave you the enthalpy rise. It
20	contributed to it. But it was the tail of the
21	distribution that when added up gave you the enthalpy.
22	So I'm not surprised at all by that.
23	DR. DIAMOND: Yes. That's right. This is
24	still sensible power over here. (Indicating.) So
25	after that initial rise the fuel temperature is still

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	increasing, so the enthalpy is still increasing.
2	This is the maximum local void fraction in
3	this particular event. So in this particular event we
4	get some higher void fractions. But again it's only
5	in very isolated parts of the reactor where the flow
6	is particularly low and it is not sustainable. But it
7	contributes to the overall
8	DR. BANERJEE: Now, in that power pulse
9	there must be very high local temperatures within the
10	fuel. Right? I mean, if you get 1000 percent power
11	pulse, it's going to vaporize some piece of the fuel
12	somewhere.
13	DR. DIAMOND: There is a distribution of
14	temperature within the fuel. We know that the
15	distribution is skewed toward the outside of the fuel.
16	As you burn up the fuel, it becomes skewed even more
17	towards the outside of the fuel because there are more
18	and more plutonium builds up at the rim of the fuel.
19	DR. BANERJEE: So you're taking the fact
20	that there is a flux depression within the fuel in
21	itself.
22	DR. DIAMOND: The fuel enthalpy numbers
23	that I show you are average. In regulatory space, we
24	always talk about the pellet average fuel enthalpy.
25	DR. BANERJEE: What's the highest

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	328
1	temperatures the fuel gets to?
2	DR. DIAMOND: Well, the average
3	temperature here is still not that high.
4	DR. BANERJEE: The average temperature.
5	But local.
6	MR. SCOTT: In the report, there are some
7	numbers. This scenario is not in the report that we
8	gave you because these are just new results. The
9	number I was going to say was at high burn up the
10	calories per gram that would cause some melting at the
11	edge of the fuel pellet is 170 calories per gram,
12	maybe 160 calories per gram. It's way up there. I
13	don't know that the temperature here is
14	DR. DIAMOND: Yes. But we're not talking
15	about peaking factors that would get you up to those
16	high fuel enthalpies. Certainly not in this case.
17	DR. SCHROCK: So, how expensive an effort
18	is this? What is the cost of doing this for the
19	calculation?
20	DR. DIAMOND: For doing this calculation?
21	Well, the incremental costs. Harold has just given me
22	a curve of inlet boron concentration versus time which
23	includes assumptions about the one pump starting. I
24	have a post-doc working with me who's name is on the
25	cover page. I would say if he's around tomorrow he'll

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	329
1	probably give me the results on Friday.
2	DR. SCHROCK: So, it's not a terribly
3	expensive proposition to do this these days.
4	DR. DIAMOND: That's the incremental cost
5	is not expensive. To get set up and have a beginning
6	of cycle model
7	DR. SCHROCK: That doesn't include cross
8	section evaluation preparation and all that.
9	DR. DIAMOND: Right. That's another
10	matter.
11	CHAIRMAN WALLIS: You've run a whole lot
12	of scenarios. If Marino came up with different slugs
13	and so on, you could run a whole lot more.
14	DR. DIAMOND: Not a problem, no.
15	CHAIRMAN WALLIS: You might think about
16	what you need to do to complete the story.
17	DR. DIAMOND: As I say these are coupled
18	RELAP calculations. I mean, even with the RELAP
19	CHAIRMAN WALLIS: Are you going to
20	complete the story or is everyone going to say that
21	risk analysis makes it not a problem?
22	DR. DIAMOND: Well
23	MR. ROSENTHOL: I would say we're trying
24	to run the scenario that corresponded to the BNW
25	postulate transient. In the preparation for doing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	330
1	that we said events that involve let's say cold
2	shutdown really have nothing to do with GSI-185. We
3	thought that inadvertently starting with pumps was so
4	close to the transient at interest it's just one more
5	operator error that we ought to include.
6	So then Marino and I are whispering at
7	each other well should we run the pump start or we
8	should do some square wave that is even a little bit
9	worse than that or maybe we'll run both. Yes. The
10	promise is that we'll do the one, two, three more
11	mechanistic calculations to bring back to you.
12	DR. BANERJEE: What's the physical reason
13	that you get such a change between the point kinetics
14	and the distributed calculation?
15	DR. DIAMOND: Well, there are so many
16	spatial effects here that are not taken into account
17	in the point kinetics calculation. Point kinetics
18	calculation assumes a certain average boron
19	concentration versus time in the core. Whereas in the
20	spatial calculation we're assuming that the boron slug
21	moves in and the bottom of the core feels that effect
22	of the diluted water first. Then the whole thing
23	evolves.
24	DR. BANERJEE: So that's the reason.
25	DR. DIAMOND: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	331
1	DR. BANERJEE: It smooths it.
2	DR. DIAMOND: Right.
3	DR. BANERJEE: The transient time of the
4	boron. It's going to start going and then it just
5	DR. DIAMOND: Right. The point kinetics
6	calculation is meant to be somehow bounding. At least
7	in the best of all worlds you would justify the point
8	kinetics calculation by saying that it's bounding or
9	conservative in some fashion. I think Framatome's
10	rationale was that they claimed that their inlet boron
11	concentration versus time was already bounding.
12	Therefore, they could just apply that in the core and
13	assume that the results for power and enthalpy would
14	be bounding. But it's not only the axial effect as I
15	explained. The core is so radially non-uniform that
16	it's important to take into account that variation as
17	well.
18	DR. SCHROCK: Does the RELAP5 calculation
19	beta of 0.0065 come because that's the default number
20	in RELAP5?
21	DR. DIAMOND: I have no idea where that
22	came from.
23	DR. SCHROCK: I'll bet that's where it is.
24	DR. DIAMOND: It could be.
25	DR. SCHROCK: You get your 35 numbers.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	332
1	DR. DIAMOND: Yes it is. You're right.
2	I know what you're saying. All right. Let me just
3	analyze this presentation. I said that 3-D analysis
4	gives a lower energy deposition relative to the point
5	kinetics. It's very important to observe that here
6	the evolution of the energy deposition is much slower
7	than in a rod ejection accident. In a rod ejection
8	accident, the reactivity is inserted in 100
9	milliseconds, essentially the square wave which we're
10	avoiding in this scenario.
11	Thermal-hydraulic feedback limits the fuel
12	enthalpy during the boron dilution accident. The
13	calculation that I showed shows an initial enthalpy
14	increase of less than 25 calories per gram. There is
15	some void formation sporadic. We haven't looked at
16	the possibility of DNB. It may be possible in more
17	severe cases however. That's not really the problem
18	here. This core has already boiled. What we're
19	really concerned about here is energy deposition.
20	I should also mention that we have some
21	preliminary comparisons with a completely different
22	code system. It's called BARS/RELAP5 which is
23	Russian. Well, the BARS part anyway is a Russian
24	code, totally different methodology. It models the
25	entire reactor on a pin-by-pin basis. I didn't show

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

any comparisons. It's one example of what we have done to try and understand the validity of our model. We've done a lot more than that. I think as you learn more about TRAC-M, you'll be learning more about the validity of the three-dimensional neutron kinetics within it.

A couple of items where when I generated this slide I thought there could be additional refinement and extension. One is mixing in the core. I think someone already mentioned that we don't have that of course. I think that would tend to smooth things out and make things less severe.

The non-uniform boron concentration at the inlet would be nice to have but of course that's a difficult problem. When I put this on the slide here "the effect of turning on pump" I didn't realize that I would be making a commitment to have a result by Friday.

19 CHAIRMAN WALLIS: I think this non-uniform 20 boron concentration would be worth while to try 21 something on it. Try half of it here. Instead of 22 putting uniform, try some sort of a distribution 23 because you've already shown that there's a lot of 24 variation between challenges. If you have much less 25 boron in some place, you know that's a much more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

	334
1	reactive place.
2	DR. DIAMOND: Right.
3	CHAIRMAN WALLIS: The critical reactor is
4	here and the rest of it is like a reflector or
5	something. There's a certain region which is So if
6	you have a certain region that has much less boron
7	than other regions, you know that's a critical thing.
8	I would suspect that non-uniform boron concentration
9	would give you higher powers. And there will be
10	deposition in that particular area which might make
11	things look worse. The question is what the
12	regulators do with that assuming uniform boron
13	concentration may be non-conservative.
14	DR. DIAMOND: Well, certainly with the
15	pump on.
16	CHAIRMAN WALLIS: That may reunify things.
17	DR. DIAMOND: Then one could argue that
18	it's conservative.
19	CHAIRMAN WALLIS: We showed from Maryland
20	that there's a lot of variation in the down-comer in
21	the boron concentration. So I would think that you
22	could just run a calculation and instead of taking
23	uniform concentration take an extreme case where half
24	of it is zero and the other half is the rest or
25	something.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	335
1	DR. DIAMOND: Okay. Then I have to change
2	my answer to the question asked of me before of how
3	easy is it to do these calculations. In order to do
4	that calculation, then I would have to represent half
5	of the core rather than an octant so that I could have
6	half of it at zero.
7	CHAIRMAN WALLIS: Okay. So there's a
8	problem.
9	DR. DIAMOND: If that's the change.
10	CHAIRMAN WALLIS: Maybe what you can do is
11	a symmetrical non-uniform distribution.
12	MR. ROSENTHOL: Let's think about it.
13	(Inaudible.)
14	MR. ROSENTHOL: We also know that there's
15	very effective mixing in the lower plenum. Right?
16	DR. DIAMOND: Yes.
17	MR. ROSENTHOL: Surely very effective when
18	the this would be a natural circulation case.
19	There's supposed to be very good mixing in the lower
20	plenum by design. It's one thing to do a variant and
21	another one a
22	CHAIRMAN WALLIS: It would be how
23	sensitive your results are to the mixing in the lower
24	plenum. So think about how you might do it and don't
25	just not do this because it might give you an answer

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	336
1	you might not want to see.
2	MR. ROSENTHOL: No. But we should do
3	something that's reasonable.
4	MR. SCOTT: But, Jack, is Froude going to
5	give me money to spend on ten to the minus six
6	accidents?
7	MR. ROSENTHOL: Yes.
8	DR. BANERJEE: Is it a ten to the minus
9	six accident?
10	MR. ROSENTHOL: It was estimated that the
11	scenario that we're talking about is of the order of
12	ten to the minus five.
13	MR. SCOTT: But that was for all small
14	breaks. If we get it down to the small breaks that
15	can produce these kind of boron slugs, it's going to
16	be lower. If you turn on the pump, it's going to be
17	lower.
18	CHAIRMAN WALLIS: You're going to make the
19	whole thing go away by means of risk analysis.
20	DR. BANERJEE: This break is not too big
21	so it's much more likely than a large break.
22	MR. ROSENTHOL: Yes.
23	MR. SCOTT: But I think Vander Molen
24	already assumed he knew what the percentage of S-2
25	size breaks were. That's part of the risk numbers to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	337
1	see the core damage function frequency.
2	DR. BANERJEE: Ten to the minus five is
3	the number that comes out of this.
4	MR. SCOTT: Yes. Assuming that size
5	break, yes.
6	MR. ROSENTHOL: Well, the way I see it is
7	we've been guided to do a modest amount of additional
8	sensitivity studies that could put this to bed
9	deterministically and somehow would be more satisfying
10	than appealing to risk numbers. I think that we're
11	close enough to it that we need to do some more work.
12	MR. MYER: This is Ralph Myer from NRC
13	Research. I just wanted to comment on what you would
14	need to do to the fuel to start getting into trouble.
15	You're going to have to roughly triple that fuel
16	enthalpy number and get that fuel enthalpy in within
17	20 milliseconds before you're going to have a
18	situation where you crack the cladding and disburse
19	any fuel. So if you can't get 60 or 100 calories per
20	gram in there in under about 20 milliseconds, you'll
21	have benign fuel damage.
22	CHAIRMAN WALLIS: So, you're not concerned
23	about the eventual peak. You're only concerned about
24	the initial rise right in the beginning there.
25	MR. MYER: That's correct. The eventual

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	338
1	peak may in fact cause the cladding to crack. But
2	unless you can insert energy quickly in high burn up
3	fuel, it won't even happen at all in low burn up fuel,
4	you need the energy in there quickly so that the
5	fission gas bubbles on the grain boundaries will blow
6	the fuel out the crack.
7	DR. DIAMOND: Steady state fuel enthalpy
8	on average for the reactor is about 45.
9	DR. BANERJEE: This is based on ppm.
10	MR. MYER: No. It's based on test data
11	from CABRI in France and NSRR in Japan, both of them.
12	MR. BOEHNERT: Did you say 200
13	milliseconds? What was the time?
14	MR. MYER: 20.
15	MR. BOEHNERT: 20?
16	MR. MYER: 20.
17	MR. BOEHNERT: Thank you.
18	CHAIRMAN WALLIS: So you have a huge
19	margin it looks like.
20	MR. MYER: Right.
21	MR. ROSENTHOL: Well, that was the reason
22	that I wanted to make the comment because with small
23	changes you're not going to get that.
24	CHAIRMAN WALLIS: I think if you assume
25	something about very poor mixing in the lower plenum

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	339
1	and you actually allowed it to be a very diluted piece
2	of slug as a constant part of the course. You might
3	be able to get a much more extreme initial rise.
4	MR. ROSENTHOL: Right.
5	DR. DIMARZO: If I may make a comment.
6	The reason why we didn't go to the extent of making
7	square slugs and so forth was because our
8	understanding was exactly of that nature, in other
9	words, whether we tweak that scenario a little bit
10	isn't going to make that kind of a change.
11	CHAIRMAN WALLIS: I don't think we were
12	just talking about tweaking it.
13	DR. DIMARZO: If you start making a front
14	that's very sharp, yes.
15	CHAIRMAN WALLIS: Then I think you may
16	well get into trouble. You should. You should go
17	there and then figure out why that's not a good
18	assumption or something. You should go there. You
19	shouldn't just not go there because you might get an
20	answer you don't want.
21	DR. DIAMOND: Actually a square wave at
22	the bottom is really not a square wave to the core.
23	It's a square wave to the first node.
24	CHAIRMAN WALLIS: Right.
25	DR. BANERJEE: There's a smearing effect.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	340
1	DR. DIAMOND: Yes.
2	DR. BANERJEE: There's always going to be
3	some smearing effect because it's not like a rod
4	ejection which was a bang.
5	DR. DIAMOND: That's right.
6	CHAIRMAN WALLIS: Well, Jack, do you have
7	enough to know where you're going from here and what
8	you should come back with in a month or two?
9	MR. ROSENTHOL: Yes. Thank you for
10	hearing the side on the subcommittee level because it
11	will help us when we come back to you again. Then we
12	will go to the committee.
13	CHAIRMAN WALLIS: I expect you'll get the
14	usual comments from the consultants too which should
15	be helpful.
16	MR. ROSENTHOL: Right. But what I'm also
17	hearing and actually it was Marino's idea again and
18	that is that rather than suffering through years of
19	thermal-hydraulic analysis the idea was let's do
20	something fancier on the physics side and see where we
21	stand. It looks like we have a fair amount of margin.
22	I mean, whatever the answer is I think we've done good
23	work. What you're saying is (1) we ought to do some
24	more pessimistic cases to make sure that we've bounded
25	this situation and (2) when we come in to tell the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	341
1	story we should tell the story of the scenario, the
2	evolution and tell the story better.
3	CHAIRMAN WALLIS: Yes.
4	MR. ROSENTHOL: But conceptually if it all
5	bares out, it seems like a satisfactory way to go to
6	you. Yes?
7	CHAIRMAN WALLIS: Yes.
8	MR. BOEHNERT: Yes. I think so.
9	CHAIRMAN WALLIS: So are we ready to
10	adjourn? Does anyone have a burning desire to
11	MR. BOEHNERT: I was just going to say
12	you're going to report to the committee about this
13	issue.
14	CHAIRMAN WALLIS: It will be pretty short.
15	MR. BOEHNERT: Pretty short, yes.
16	CHAIRMAN WALLIS: Okay. Thank you. Off
17	the record.
18	(Whereupon, the above-entitled matter
19	concluded at 5:23 p.m.)
20	
21	
22	
23	
24	
25	