Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Thermal-Hydraulic Phenomena Subcommittee OPEN SESSION

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Tuesday, January 16, 2001

Work Order No.: NRC-031

Pages 1-34/294-312

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	THERMAL-HYDRAULIC PHENOMENA SUBCOMMITTEE
6	+ + + +
7	MEETING
8	+ + + +
9	EPRI WATERHAMMER STUDY/S-REALP5 SBLOCA CODE
10	+ + + +
11	TUESDAY,
12	JANUARY 16, 2001
13	+ + + +
14	
15	The meeting was held in Room T2-B1 of the
16	NRC White Flint Building 2 at 11545 Rockville Pike,
17	Rockville, Maryland before the HONORABLE DR. GRAHAM B.
18	WALLIS, Chairman.
19	<u>PRESENT</u> :
20	HONORABLE DR. GRAHAM B. WALLIS, Chairman
21	DR. THOMAS S. KRESS, ACRS Member
22	DR. NOVAK ZUBER, ACRS Consultant
23	MR. PAUL A. BOEHNERT, ACRS Staff
24	
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

				2
1			A-G-E-N-D-A	
2			AGENDA ITEM PAG	<u>;E</u>
3	I.	Intro	oduction	3
4		G. Wa	allis, Chairman	
5	II.	<u>Resol</u>	ution of GL 96-06 Waterhammer Issues .	5
6		A.	NRC/Industry Resolution Approach	5
7			(EPRI Study) - Summary	
8			J. Tatum	5
9			NRR/DSSA/SPLB	
10		в.	Revised EPRI Report - Evaluation . 1	.2
11			of GL 96-06 Waterhammer Issues and	
12			Resolution of Comments from	
13			11/17/99 Subcommittee Meeting	
14			V. Wagoner (CP&L)	
15			T. Esselman (Altran)	
16			A. Singh (EPRI)	
17		C.	NRC Review of EPRI Report 29	4
18			Results, Open Issues, and	
19			Conclusions	
20			J. Tatum	
21		D.	Concluding Remarks	4
22			EPRI/NRC	
23				
24				
25				

	3
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:35 a.m.)
3	I. INTRODUCTION
4	CHAIRMAN WALLIS: The meeting will now
5	come to order. This is a meeting of the ACRS
6	Subcommittee on Thermal-Hydraulic Phenomena. I am
7	Graham Wallis, the Chairman.
8	The ACRS member in attendance is Dr.
9	Thomas Kress. The ACRS consultant in attendance is
10	Novak Zuber. We expect Professor Schrock to be with
11	us tomorrow intending to explain why he is not here.
12	The purpose of this meeting is for the
13	Subcommittee to continue its review of both the
14	revised Electric Power Research Institute report,
15	TR-113594, "Resolution of Generic Letter 96-06
16	Waterhammer Issues" and Siemens Power Corporation's
17	S-RELAP5 thermal-hydraulic code and its application to
18	Appendix K small break LOCA analyses.
19	The Subcommittee will gather information,
20	analyze relevant issues and facts, and formulate
21	proposed positions and actions, as appropriate, I
22	will add that we will also ask a lot of questions
23	for deliberation by the full Committee. Mr. Paul
24	Boehnert is the cognizant ACRS staff engineer for this
25	meeting.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	4
1	The rules for participation in today's
2	meeting have been announced as part of the notices of
3	this meeting previously published in the Federal
4	Register on December 28, 2000 and January 9, 2001.
5	Portions of both today's and tomorrow's
6	meeting sessions will be closed to the public to
7	discuss information considered proprietary to the
8	Electric Power Research Institute and Siemens Power
9	Corporation, respectively.
10	A transcript of this meeting is being kept
11	and the open portions of this transcript will be made
12	available as stated in the Federal Register notice.
13	It is requested that speakers first identify
14	themselves and speak with sufficient clarity and
15	volume so that they can be readily heard.
16	We have received no written comments or
17	requests for time to make oral statements from members
18	of the public.
19	Now we are looking forward to winding up
20	this matter we heard about about a year ago, I
21	believe. So we hope that that will happen today. So
22	I will call upon Jim Tatum of NRC's Office of Nuclear
23	Reactor Regulation to begin.
24	MR. TATUM: Good morning. Can everyone
25	see this okay?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	CHAIRMAN WALLIS: It looks good.
2	MR. TATUM: Okay. Good. Good morning.
3	II. RESOLUTION OF GL 96-06 WATERHAMMER ISSUES
4	A. NRC/INDUSTRY RESOLUTION APPROACH
5	<u>(EPRI STUDY) – SUMMARY</u>
6	MR. TATUM: First of all, are there any
7	members of the public present here today? I just want
8	to check just so if we talk about proprietary
9	information, we will know who hears it.
10	As Dr. Wallis mentioned, we had come
11	together a little over a year ago now to discuss the
12	work that had been done by the industry. I basically
13	wanted to just provide a couple of introductory
14	comments to kick the meeting off and turn it over to
15	EPRI and the working group to make their presentation.
16	First of all, the Generic Letter 96-06
17	waterhammer issue endorsed the analytical approach
18	that is discussed in NUREG TR-5220. We had accepted
19	that as a bounding approach for doing the analysis for
20	waterhammer and asked that if licensees want to use a
21	different approach, that they let us know what that
22	approach is and give us an opportunity to review and
23	approve it.
24	EPRI took the option of going ahead and
25	establishing the best conservative methodology,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

recognizing that the NUREG approach tended to be very conservative and could cost industry quite a lot of money for modifications and whatnot to address the conservative analysis that would be required.

So EPRI established with the industry -and from what I understand, there are about 12 utilities involved with this initiative in establishing a methodology, somewhat less conservative but conservative enough to address the waterhammer concerns that are discussed in Generic Letter 96-06. The methodology was initially presented to

12 the Subcommittee in November of '99, a little over a 13 year ago. The Subcommittee had a number of questions, 14 as did the staff. EPRI and the working group went 15 back, did some additional testing, reviewed additional 16 data, reformatted the report to make it a little more 17 user-friendly. And they're back with us here today to present the additional information and try to address 18 19 the concerns that were raised previously.

20 NRC staff has been involved with the 21 review from the beginning. And we have been in touch 22 with the industry trying to keep on top of the 23 direction they are going so that we could provide a 24 timely review when they make their submittal. They 25 recently provided the report for our review on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

(202) 234-4433

6

	7
1	December 20th, and we had an opportunity to look at it
2	in some detail at this point.
3	The individual reviewers involved, myself,
4	Jim Tatum from Plant Systems Branch; Walt Jensen from
5	Reactor Systems Branch; Gary Hammer from Mechanical
6	Engineering Branch; and Dr. Hossein Nourbakhsh, our
7	contractor, are all present here today for the
8	meeting. I would also like to indicate my Branch
9	Chief, John Hannon, is here also for the meeting
10	presentation as well.
11	Now, the event scenario of interest here
12	I think that you all appreciate was discussed last
13	time. It's very focused, very plant-specific in
14	nature, where we're looking at a large break LOCA or
15	mainstream line break, something that will generate a
16	lot of heat in a very short period of time and cause
17	a very rapid heat addition to the containment fan
18	coolers.
19	It was an issue that was raised initially
20	with the review that was done at Diablo. Westinghouse
21	issued a sealer, I believe, on that. So we're trying
22	to make sure that the industry is adequately
23	addressing the subject.
24	The plants involved with this particular
25	initiative are the ones that typically will have steam

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

formation in the fan coolers during the event. And so analysis to address the waterhammer is necessary for them.

4 Other plants that we have looked at to 5 this point typically do not have the situation where 6 steam will form. Either they have enough dynamic head 7 on the system where steam doesn't form for the given 8 conditions in containment or the fan coolers are not 9 relied upon for accident mitigation and they take 10 measures to make sure that they will not be used.

So we're talking about a certain select group of plants. They have determined for the most part that they will have steam formation. And they're trying to make sure that in the analysis that they do that it's not going to be ultra conservative such that they have to make mods that may be not cost-effective in the final analysis.

So, having said that, let me turn this over to the EPRI working group and --

20 CHAIRMAN WALLIS: Is the concern just that the fan coolers will be inoperative or that a break 21 22 would cause a pass for release of radioactivity? 23 MR. TATUM: Yes. It's a multiple First of all, the break could cause 24 issue/concern. the fan coolers to become inoperative. 25 And these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

8

	9
1	plants typically credit the for containment cooling.
2	So that's one issue.
3	Another potential problem that you could
4	have is loss of containment integrity. So depending
5	on how the break scenario works, you could have a
6	leakage pathway through the cooling water system
7	outside the containment.
8	The other potential problem you could have
9	is if you have a break inside containment, it could
10	affect the containment analysis in that you could have
11	additional water added to the containment during the
12	event scenario.
13	The service water system could be pumping
14	water into the containment. And, in addition to that,
15	you could have water, service water cooling that is
16	needed for other components to mitigate the event
17	being robbed from those systems and pumped into
18	containment. So there's a number of potential
19	problems you could have as a result of this.
20	CHAIRMAN WALLIS: Which is why I asked
21	because you said some pumps don't rely on the fan
22	coolers that we don't have to worry about waterhammer,
23	but there are other effects of losing the pumping to
24	the fan cooler.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

10 1 MR. TATUM: Right, yes. To clarify that, 2 what I mean by that is they don't rely on the fan 3 coolers during the event. They remain isolated. So they don't have potential. Even though they may have 4 5 steam form, they don't have the potential for 6 waterhammer occurring and for starving the other 7 systems, the service water and whatnot. 8 Any other questions on --9 DR. ZUBER: Are you going to develop the 10 end of this report? We will give you at 11 MR. TATUM: Yes. 12 least our preliminary views coming into the review. 13 We are going to -- we have discussed our preliminary 14 comments with the working group, and we would like to hear their presentation and see what they have to say 15 16 to address the comments that we have made. Towards 17 the end of the presentation, we do plan to give you 18 our perspective. 19 CHAIRMAN WALLIS: Is this report supposed 20 to resolve an issue or be a contribution to the resolution of an issue? 21 It's a contribution to the 22 MR. TATUM: 23 resolution of the issue for the plants that are 24 involved with this initiative.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	CHAIRMAN WALLIS: But then the plants
2	themselves have to do a lot of work as well.
3	MR. TATUM: That's correct. They have to
4	apply the methodology to the extent we approve it and
5	address some additional questions we will ask.
6	DR. ZUBER: What I would appreciate, at
7	the end of the meeting when you present your
8	assessment, to address this questions, process
9	information in this report, "How would you feel a
10	utility can respond in a responsive way to our
11	concerns?" but that there is enough specific
12	information for a utility to use or the thing is so
13	diffuse that you can pick and read whatever you want.
14	MR. TATUM: Well, hopefully EPRI and the
15	working
16	DR. ZUBER: No, no.
17	MR. TATUM: group address that.
18	DR. ZUBER: They will. They will. But,
19	I mean, you as the regulator and experienced with the
20	capability of the utilities, how do you feel they will
21	be able to use this information in a responsive way
22	which would meet your requirements of safety?
23	MR. TATUM: I understand. That is one of
24	our concerns going into the meeting, but I am hopeful
25	that the working group will be able to address our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	concerns and after their presentation is over, we will
2	be in a better position, I guess, to give you our
3	opinion on it.
4	CHAIRMAN WALLIS: The working group may be
5	able to explain to us how these results fit into
6	plant analyses or even show that they have been used
7	for some plant analyses.
8	MR. TATUM: I guess I would want to defer.
9	I don't want to speak for
10	CHAIRMAN WALLIS: It would be nice to make
11	that connection, I think. Thank you.
12	<u>B. REVISED EPRI REPORT - EVALUATION OF GL 96-06</u>
13	WATERHAMMER ISSUES AND RESOLUTION OF COMMENTS
14	FROM 11/17/99 SUBCOMMITTEE MEETING
15	MR. WAGONER: Good morning. I'm Vaughan
16	Wagoner, the Carolina Power and Light Company and
17	Chairman of the Utility Advisory Group for this effort
18	that we have contracted with EPRI and others to
19	provide for us.
20	First, I guess I'd like to introduce the
21	folks on our team, if you will. I think you know most
22	of them. Going down through the list here: Dr. Peter
23	Griffith. Let's see. Fred Moody. I don't need to
24	look at the list: Dr. Fred Moody; Dr. Ben Wylie; Dr.
25	Tom Esselman from Altran Corporation; Greg Zysk from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	Altran Corporation; and Dr. Avtar Singh, our Project
2	Manager, with EPRI. They let me say a few words
3	because we provided the money for this effort.
4	(Laughter.)
5	MR. WAGONER: I've given you a handout.
6	Frankly, I'm going to blow through the first four or
7	five slides because you have seen this stuff before.
8	Just for the record, the background, we know where
9	we've been and what we have done. We came here about
10	a year ago, talked with you. You asked us to go back
11	and address some issues. We think we have done that.
12	We are prepared to talk with you about that today.
13	Mr. Tatum mentioned the number of
14	utilities that participated, about 14 utilities,
15	representing somewhere between 25 and 30 plants
16	depending on which day of the week it is.
17	CHAIRMAN WALLIS: Can I also ask how they
18	participated? Did they define the problem or did they
19	just provide money?
20	MR. WAGONER: No, sir. First we find the
21	problem because
22	CHAIRMAN WALLIS: He said, "These are the
23	things we need to know"?
24	MR. WAGONER: Yes.

14 1 CHAIRMAN WALLIS: Is that stated 2 Can we see what the problem is that this somewhere? 3 addresses? MR. WAGONER: I think it was stated in 4 5 terms of the original generic letter that came out. 6 Plants individually provided specific responses and then from that came around, as I recall, a request for 7 additional information. 8 9 CHAIRMAN WALLIS: For example, there were 10 problems with, say, face separation in the fan coolers. It has to be addressed by the utility. 11 Ιt 12 doesn't seem to appear in the report at all. Are 13 there things like that which were laid out as to be 14 addressed by EPRI that are not addressed by EPRI? In terms of the original 15 MR. WAGONER: 16 scope of work, yes, sir. 17 CHAIRMAN WALLIS: They were? Okay. MR. TATUM: We recognize that --18 19 CHAIRMAN WALLIS: It might be interesting 20 to see what that was. 21 MR. TATUM: We may be able to do that. I 22 don't think we can do it today, but --23 DR. ZUBER: Well, let me say my problem, 24 in addition to what Graham said, I don't see much 25 relation between what you have in this report and a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	real reactor. I think you have a discussion and there
2	is a big gap which must be done on faith.
3	For example, in one place in Section 7.3,
4	I guess, you say that the utility should make it for
5	a balance, equation to balance, presumably momentum to
6	manage, where you don't know what equation and how to
7	do it. I think this is an important question.
8	Twenty-six years ago I reviewed the work
9	of INEL, and I found that RELAP4 had the wrong
10	momentum equation. That was 26 years ago. Last year
11	Graham found that RETRAN, a product of EPRI, had the
12	wrong momentum equation. That's a balance equation.
13	This year I found that G.E. had a wrong mass balance
14	and energy balances.
15	So, even these large institutions, which
16	presumably should have the know-how and knowledge,
17	cannot even write these balance equations correctly
18	for courts. And now here I'm reading these reports
19	and you are delegating these to a utility how to do
20	it.
21	I think this is too loose a way. It's too
22	descriptive. I think if you give it to a utility, you
23	should have more prescriptive descriptions, "Thou
24	shalt use" this and that. I think it will be easier

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	for the utility and it will be easier for NRR to
2	review it. As it is, it's an awkward question.
3	There are all kinds of questions like it
4	in this report, which are really left open from an
5	experiment to an application reactor. I hope that you
6	and EPRI will really address these questions, how this
7	information from this report can be used by a utility
8	to answer safety issues.
9	CHAIRMAN WALLIS: Maybe that would fit in
10	at the end, after we have heard the report. Then we
11	could go back and say, "Well, does this really solve
12	the problem?"
13	MR. WAGONER: Okay.
14	DR. GRIFFITH: I think the flow chart here
15	will help a lot to clarify what the utility is
16	expected to do and what the report has provided.
17	DR. ZUBER: Peter, you should not expect
18	something if they don't have the capability. One
19	would have expected EPRI had the capability to write
20	the momentum equations. One would have expected that
21	G.E. would have the capability to write an energy
22	balance equation, a mass balance. And they did not.
23	And now you are really passing the buck to
24	even a smaller entity to perform something. I think
25	it should be more prescriptive.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	CHAIRMAN WALLIS: Okay. You know our
2	expert panel. They have reviewed the report and are
3	here to talk with you about that. You know
4	DR. ZUBER: I have got a question just on
5	this.
6	CHAIRMAN WALLIS: Okay.
7	DR. ZUBER: How did you use this panel?
8	How often did they meet? What was their input? What
9	was their participation and how it functioned?
10	CHAIRMAN WALLIS: Would you like it
11	directly from the Chairman or would you like it
12	DR. ZUBER: I don't care. I mean either
13	one.
14	MR. WAGONER: I can certainly give you my
15	perspective. We hired the expert panel to provide an
16	independent assessment of the experimental work that
17	was being done because there were some areas in
18	low-pressure waterhammers that there was not a large
19	amount of technical data, especially low-pressure
20	waterhammers in open systems where they are the kinds
21	of things that we have looked at in terms of
22	cushioning and air training, et cetera, that we did
23	not have the experience or data. And so we hired the
24	panel to help us work with our contractor to evolve
25	the steps, to look at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	DR. ZUBER: Which contractor?
2	MR. WAGONER: With Altran Corporation.
3	DR. ZUBER: Altran? Okay.
4	MR. WAGONER: Yes.
5	DR. ZUBER: How often did you meet?
6	MR. WAGONER: We met at least three times
7	formally and a number of times independently in direct
8	consultation with a contractor.
9	Peter, would
10	DR. GRIFFITH: Yes. I don't think a month
11	went by that I didn't either go over to Altran or talk
12	to them on the phone. And we had something like four
13	or five formal meetings where all of the sponsors were
14	present. We individually reviewed well, we all
15	reviewed the whole report, but we spent most of the
16	time on the parts that we were most familiar with. So
17	the report was reviewed any number of times, probably
18	five or six times, one way or another.
19	CHAIRMAN WALLIS: You folks signed off to
20	this as a useful report to the utilities. Did you
21	look at P&IDs for plants? Did you look at the real
22	scenario in the event of these accidents to figure out
23	what were the problems that needed to be addressed?
24	DR. GRIFFITH: We looked at some real
25	scenarios, as a matter of fact. When the utility

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	representatives were present, those were the questions
2	that were raised. We had a number of things they were
3	concerned with.
4	CHAIRMAN WALLIS: So did you ask questions
5	like "Is it one void or many voids?" and things like
6	that and "Where are the voids?" and "Why are they
7	there?"
8	DR. GRIFFITH: Well, some of the problems,
9	they were so plant-specific we didn't think we could
10	address them in a categorical way and a lot of details
11	which are different well, practically every plant
12	is different.
13	CHAIRMAN WALLIS: That's right. That's
14	right. So there is a lot of work for the plant to do.
15	DR. GRIFFITH: There is. There is no
16	question about it. And when you see the flow chart,
17	I think you will see what items we identified for the
18	utilities to provide the information.
19	MR. WAGONER: Okay. I think we have been
20	over these. We know what the system can do for us.
21	CHAIRMAN WALLIS: With the PIRT complete,
22	you have this wonderful part which says, "These are
23	the things we need to do." Does someone at the end of
24	the project go back and say, "We did all of those
25	things"?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	20
1	MR. WAGONER: Tom?
2	DR. ESSELMAN: The PIRT was done at the
3	beginning of the problem. At the beginning of the
4	problem, we checked the plan against the PIRT. And we
5	did go back and rereviewed that as a part of PIRT
6	preparing the list to see that had done everything
7	that we had identified in
8	DR. ZUBER: Let me also ask: How do you
9	feel about the PIRT?
10	DR. ESSELMAN: How do I feel about the
11	PIRT?
12	DR. ZUBER: Yes.
13	DR. ESSELMAN: I think the PIRT was very
14	useful. I think we sat down and really looked broadly
15	and asked with Peter and Ben and Fred what things
16	could be affecting this or that. And I think they
17	were doing something very useful.
18	DR. ZUBER: Let me go back. Especially
19	after I read your blessing of this report, that you
20	agree with the PIRT, I started to read the PIRT. I
21	found geometry, and you rate it high. What kind of
22	geometry? What do you look at in the geometry? This
23	is not addressed.
24	It's so vague it's almost to my
25	assessment, it's almost useless to tell you the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	geometry is important for this program. I have known
2	this before. How would the utility know what to look,
3	what kind of geometry, what to look in the geometry,
4	what is the most important thing? I don't find it.
5	So this is the weakness I found in this
6	report, which is the buck is being passed to the
7	utility. And I don't think that they have the
8	capability of doing it.
9	DR. ESSELMAN: Let me say that a part of
10	what we will present is the specific actions related
11	to the flow chart and what the utilities need to do.
12	I believe that what the utilities need to do the
13	utilities are capable of doing, number one.
14	And, number two, those are going to have
15	to be specific analyses. They are going to have to be
16	submitted to NRR and be specifically reviewed.
17	DR. ZUBER: Well, the question is not what
18	they need to do it. You cite look at the voids.
19	Voids are important. So what? I know that how to
20	look at these voids, prescriptive, do this and do
21	that.
22	Then they can do it. And if they don't
23	want to do that, they can justify not to do it but to
24	say, "Look at the geometry. Look at the voids. Look

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	at the subcooling." We have known this. This is so
2	descriptive it's useless.
3	DR. GRIFFITH: Well, I don't think we
4	could make a general statement that would cover most
5	of the plants. When you look at the details, they are
6	so different.
7	DR. ZUBER: Well, the point is there is a
8	you cannot do everything, but you should at least
9	give the broad outline. Thou shalt use this and take
10	a look at it, not necessarily look at a void fraction.
11	So what?
12	MR. ROCHINO: Can I make a comment?
13	MR. BOEHNERT: Yes, if you identify
14	yourself.
15	MR. ROCHINO: My name is Lee Rochino. I'm
16	from Rochester Gaart Electric. At one point in time,
17	the utilities that send ultra V configurations of
18	every plant and out plant otherwise and Tom and the
19	external, they look at the configurations of the
20	participating plant. And then they went ahead and
21	took that into consideration in considering the
22	DR. ZUBER: You see, the thing with that,
23	the geometry is important depending on what property.
24	Then you say, "What aspect of geometry do you have to
25	look at?" I think this is more in detail.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	Maybe ten plants will not have it. Maybe
2	about two will have it. So you have to be
3	appreciated. You should look at this and this and
4	that. And then you have the utility that helps NRR.
5	MR. WAGONER: It's in there.
6	DR. ZUBER: Where? I cannot find it.
7	MR. ROCHINO: Let me make another point
8	that as far as the utilities are concerned, we do have
9	stuff to look at, a whole page. We've got these. And
10	people are experiencing in this. So given the proper
11	items, utilities can use it to
12	DR. ZUBER: Well, as I said, I like to
13	give you the benefit of the doubt. I said after 30
14	years in this business, I have seen G.E. fall on its
15	nose a few months ago. I saw EPRI fall on its nose a
16	year ago. I saw INEL with all of their Ph.D.'s and
17	experts make really basic mistakes. And you should
18	really try to avoid this in this industry.
19	DR. KRESS: One way to put our mind at
20	ease might be to tell us what geometry is important.
21	CHAIRMAN WALLIS: That's why we are
22	waiting for the presentations.
23	MR. WAGONER: I guess the point is from a
24	utility perspective, I feel that in the report, the
25	things that we need to look at from a geometry

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24 perspective are addressed. We told them to look for 1 2 dead legs that are in the void here. We told them to 3 look for changes in the sizes. We told them to look for partially open or closed valves. We told them to 4 look for orifice plates. 5 6 DR. KRESS: But then you said dead legs 7 weren't important later on in the report. We didn't say dead legs 8 DR. ESSELMAN: 9 weren't important. We said that if you voided dead 10 legs, they needed to be addressed on a plant-specific basis. 11 12 In general, our review of the P&IDs and 13 the drawings show that it was not a predominant 14 configuration that existed in the plants. But, yet, we did not take care of that generic -- we did not 15 16 provide a method and said that if you had that, you 17 needed to do it. If your void passed an orifice plate, you 18 19 needed to do a plant-specific analysis or a partially closed valve you said you needed to do from a specific 20 21 analysis. 22 DR. KRESS: So these are the geometry 23 things that you say were important?

	25
1	DR. ESSELMAN: Yes. The whole
2	condensation, this waterhammer evaluation is related
3	to a vertical line
4	DR. KRESS: And a horizontal line.
5	DR. ESSELMAN: transitioning into a
6	horizontal line and what can happen when you get
7	there. From a geometry point of view, the utility
8	from a standard steady state flow transient basis can
9	use a number of codes that they use all the time to
10	model every change in direction and every pipe length
11	to see what are the flows, what happens when you start
12	the pipe.
13	We don't say, "Evaluate the void." We say
14	specifically, "Calculate" during the 35 seconds or so
15	where the void goes based upon drainage and gravity,
16	number one; based upon pressure in the void; and based
17	upon what your fan cooler is doing. And, as you
18	transition, as your void goes, you need to know where
19	it ends up because that's where the closure will
20	occur. And if it passes an orifice on a partially
21	closed valve, you need to do a specific plant
22	evaluation.
23	We don't expect that to happen based upon
24	our review of these plants. But we also say that when
25	you uncover a horizontal leg, record from the analyses

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

what your system pressure is because that is going to 2 be your driving pressure for your condensation-induced 3 waterhammer. We have a criteria that says if it is greater than or less than, you are either okay or not 4 5 okay.

6 The analyses that have been left to the 7 utility are the analyses that require them to look at the great detail in the configuration, in the pipe 8 9 layout, in the vertical drop as you go from a 10 containment location.

What we have dealt with is what was the 11 12 most difficult to deal with. And that is: How does 13 final closure occur? What is happening in the void? 14 And how does final closure occur?

15 I believe we have left for the utilities 16 to do: number one, the part of this that is very 17 plant-specific because the fan coolers are different. Where the water is and how the drainage will occur is 18 19 different. But that is also the easy part of this 20 analysis, and that is what the utilities know how to 21 do because they're doing steady state, generally 22 steady state, pump start, pump stop analyses every 23 day.

24 DR. Well, ZUBER: that is with 25 condensation.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

DR. ESSELMAN: Not condensation. That is what we have addressed specifically. And we have said we have asked them. And we will cover this again. So let me just jump ahead to address this specific question.

6 We have asked them to calculate the 7 closure velocity up to the point where you haven't 8 closed your void but you have nearly closed your void. 9 We then have said once you know that velocity, we have 10 given them the tables with instructions, with example problems so that they could enter the graphs and see 11 12 how much cushioning they're going to get based upon 13 how much air, how much space.

We have told them how to --

DR. ZUBER: This you got from your experiments?

17 DR. ESSELMAN: No. From experiments -analyses mostly 18 well, from with most of the 19 parameters, steam condensation rate being the primary parameter developed from experiment. Other than that, 20 derived from a method of characteristics 21 it's 22 analysis.

And we use the rigid body model only once we have proved it was conservative, number one, and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

14

	28
1	because we needed to do all of these parameters so
2	that we didn't leave that to a utility.
3	We said, "All that you need to do is
4	figure out what your lights are, how much gas you have
5	in the void, where your steam is, and just enter this
6	table and say that my final velocity is 82 percent of"
7	
8	CHAIRMAN WALLIS: We thank you for your
9	contribution. I guess we are just indicating that we
10	feel there are other parts to the problems. And we'll
11	probably come back to them during the presentation.
12	I would like to move on to that.
13	DR. ESSELMAN: What we plan to do is just
14	to walk through a brief overview of the analyses
15	beginning to end to hit the high points. But the
16	first thing that I would propose that we present is:
17	What is the process, and what does a user have to do?
18	We have a flow chart. We have taken the
19	flow chart, and we have broken it down step by step.
20	And we will describe what a utility has to do because
21	it is plant-specific and NRR is going to have to do
22	that review. But then where they get guidance, number
23	one, the single active failure criteria, the final
24	closure, how to deal with condensation-induced
25	waterhammer, how to form a loading function with pulse

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	time, all of those things that are in the report but,
2	frankly, are the difficult things to do.
3	I believe we have left the utilities to do
4	the things that they are very capable of doing and
5	those things that are difficult, challenging, related
6	to condensation and related to some of the specific
7	geometry issues and what is the heat transfer, where
8	is the air, and how do you get your air. Those are
9	the things that are addressed in the report.
10	We will go through that in detail because
11	I think it is very important. And I think that we
12	have come a long way in the past year putting the user
13	manual together, trying to strip out of that the
14	science and leaving the instructions. And we have
15	worked on sample problems that I know utilities have
16	reviewed and have found very useful also.
17	We will go through all of that in detail.
18	I appreciate all
19	CHAIRMAN WALLIS: I think when we go
20	through the detail, we may be able to answer some of
21	these questions.
22	DR. ESSELMAN: I think so, too.
23	MR. WAGONER: That is the slide I thought
24	I was going to blow through.
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	30
1	MR. WAGONER: From my perspective, the
2	utility perspective, after spending about a million
3	and a half dollars and looking at this thing for
4	nearly two years, the bottom line is, first off, it's
5	a low rise event.
6	If we had to stretch this simultaneous
7	loop LOCA to a 24-hour period, even to get to 10^{-6} , we
8	take it down to an hour or 10 minutes, 30 minutes, and
9	the numbers are even smaller. So we've got an
10	extremely low probability of event. And there is no
11	challenge to the safety function.
12	CHAIRMAN WALLIS: Can I ask you: In the
13	report, we get pressures of 1,000 psi and so on, which
14	seems like that you could get in the plant under some
15	circumstances. Is that not a challenge of any sort?
16	MR. WAGONER: Well, it looks like to me
17	there's not based on, one, bursting a pipe. That's
18	the bottom line. If we don't break that pipe or tube,
19	cooler tube I should say, we don't have a problem.
20	CHAIRMAN WALLIS: So these systems are
21	designed for orders of 1,000 psi pressure?
22	MR. WAGONER: Impulses? After you look at
23	an impulse and look at the ultimate strength of the
24	tubes and pipes, and we'll go through that I
25	don't believe that there is a safety challenge there.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	DR. GRIFFITH: I think we made a good case
2	on that. We'll get to it.
3	MR. WAGONER: Yes.
4	CHAIRMAN WALLIS: The cooler is designed
5	for 1,000 psi internal pressure?
6	DR. GRIFFITH: There is a chart we'll get
7	to.
8	CHAIRMAN WALLIS: Okay.
9	MR. WAGONER: And the truth of the matter
10	is these systems have been banged up hundreds of times
11	in the real world.
12	CHAIRMAN WALLIS: We noticed that.
13	MR. WAGONER: Yes, for loop-only events.
14	And, to the best of our knowledge, there has never
15	been a failure. We have never ruptured a tube. We
16	have never even deformed a piece of pipe, maybe shaken
17	a concrete allowing some anchor bolts a couple of
18	times.
19	CHAIRMAN WALLIS: Maybe shaken a few
20	people's confidence or nerves.
21	MR. WAGONER: Well, that's okay. Back in
22	my start-up days, I happened to be standing beside the
23	main steam stop valves when operators hit the test
24	button, young kids just out of college. I've never
25	seen anything like that one before.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	CHAIRMAN WALLIS: We had the NRC down to
2	our lab when we were doing waterhammer tests. They
3	ran for the door.
4	MR. WAGONER: The point is from our
5	perspective that's a lot of real world experience that
6	we think we are going to share that is worse than any
7	postulated thing that we might get, and nothing
8	happens. So what this really boils down to is a
9	reasonable approach for figuring out hangar loads.
10	And the truth of the matter is the classic
11	way we do this, we take that 1,000 peak pressure,
12	stick it into our system, and run that through as the
13	static load on the hangars, and do a p times 8. And
14	you end up putting a whole bunch of steel, more steel
15	in the pipe. And I think we all know that adding to
16	steel to handle impulse loads is the wrong thing to
17	do.
18	I've been there in balancing the plant
19	systems when we had feedwater heaters moving. We
20	thought, "Man, let's put more steel." And we tore up
21	more things. When we started taking steel away and
22	the feedwater heater had been running for ten years,
23	we'd dance around a little bit, a couple of times
24	during start-up. And that's the end of the problem.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	I think that's where we are, frankly, in
2	this process. As we go through this thing, is every
3	step of it rigorously defended at the F = MA level?
4	No, it's not.
5	When we step back and look at it from an
6	engineering approach to figuring out what's the right
7	load to put on these hangars from these impulses, I
8	think we have a reasonable engineering approach.
9	Frankly, I would ask you to look at it from that
10	perspective.
11	CHAIRMAN WALLIS: I guess the sensitivity
12	comes because there have been incidents where
13	waterhammers have broken pipes which mattered, not in
14	this particular system.
15	MR. WAGONER: Yes, sir.
16	CHAIRMAN WALLIS: Waterhammer does happen.
17	It continues to happen. Since the
18	DR. GRIFFITH: I guess the key on this
19	system is the pressure is low
20	CHAIRMAN WALLIS: Right.
21	DR. GRIFFITH: and there is air in the
22	water. Those two things mitigate the waterhammers.
23	There is no question about they have had waterhammers
24	that are busted pipes, but it has been deairated water
25	and high pressure. All right? And we have airated

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	water and low pressure. And that makes a big
2	difference.
3	CHAIRMAN WALLIS: Well, they have had
4	waterhammers in fire suppression systems which have
5	entered in the water which were not pleasant in
6	consequence.
7	So it's not just a question of
8	low-pressure system with air. You've got to look at
9	the loads. I agree it's a lower load.
10	DR. GRIFFITH: Yes.
11	MR. WAGONER: But that was what I wanted
12	to get to. It's our perspective. And I would ask you
13	to consider that as we go through some of the details
14	of this thing. With that, I would like to turn over
15	to Dr. Esselman.
16	CHAIRMAN WALLIS: Thank you very much.
17	Thank you for your patience.
18	MR. BOEHNERT: Now, is this going to be
19	open session? We're not going to get into closed
20	session?
21	MR. WAGONER: I'm sorry. I needed to say
22	that. From this point on, we are at a point where the
23	proprietary material is pretty much interwoven with
24	the rest of the presentation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	MR. BOEHNERT: Okay. So we need to go
2	into closed session?
3	MR. WAGONER: Yes, sir.
4	MR. BOEHNERT: Okay. Transcriber, we need
5	to go to closed session in the transcript.
6	(Whereupon, the proceedings went
7	immediately into Closed Session.)
8	
9	
10	

	294
1	P-R-O-C-E-E-D-I-N-G-S
2	CHAIRMAN WALLIS: Now I think we would
3	like to hear from Mr. Tatum.
4	MR. TATUM: I guess I would like to give
5	you the NRC's staff perspective on this going into the
6	presentation today, which we have heard a lot. We
7	have a lot to think about here based on the
8	discussion, also from the Subcommittee members.
9	First of all, we view this as a good
10	effort by the industry in trying to address the
11	problem and come up with an analytical methodology,
12	something different from what is provided in NUREG
13	5220. It's a possible solution for utilities to use,
14	something that we may be able to accept, for
15	addressing the waterhammer issue, specifically
16	low-pressure service water systems.
17	Notable strengths based on our review and
18	working with the industry on this, I think the PIRT
19	was a good exercise for the group to go through to
20	help I think focus their attention on what needed to
21	be looked at and help to focus their testing.
22	We think the testing and data collection
23	were also a strength to actually go out and get data
24	where they didn't have the information, although I do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

understand there are some reservations from the Subcommittee on that point. I think a very notable strength is the endorsement by the expert panel members. Obviously the industry took a look at what was available to help

6 them out on this issue. And I think they came up with 7 some real experts. I think we can place a lot of 8 credibility in the work that was done based on the 9 people that are involved.

10 So those are the strengths that I would 11 mention on this. Let me get into some of the 12 weaknesses. First of all, I guess looking at the 13 thermal hydraulics end of it, we also shared some of 14 the similar views that were experienced here by the 15 Subcommittee looking at the scaling.

16 Some of the things that we were interested 17 in and we will be discussing after the meeting I think is for the condensate-induced waterhammer, 18 the 19 applicability of small test data to the plant so the 20 configuration -- water to pipe size, we have spent 21 quite a bit of discussion here today on that point. 22 For the column closure waterhammer, 23 condensing heat transfer and compressibility, how well 24 those would apply to the plant-specific situations, 25 larger pipe sizes, the NUREG TR-6519 screening

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

295

	296
1	criteria for the condensate-induced waterhammer,
2	specifically the length over diameter ratio and the
3	subcooling temperatures, to what extent they would
4	apply for larger pipe sizes.
5	Not to belabor this, but we also had
6	questions with regard to the deletion non-condensible
7	gas. And we look forward to hearing back on what the
8	resolution of that is.
9	Also, we note that there is no guidance
10	for condensate-induced waterhammer analysis for
11	pressures greater than 20 pounds. So we understand
12	based on your survey of the industry, you don't expect
13	that to be a problem in that the plants don't have
14	that situation where the pressures would be greater
15	than 20 pounds.
16	And also, finally, applicability of models
17	to the plant, actual plant conditions, that was raised
18	here. This is something we'll think about a little
19	more, I think.
20	The other area I wanted to talk about as
21	far as potential weaknesses has to do with the
22	mechanical/structural area. See, in this area,
23	looking at the different analytical approaches and
24	whatnot, we were questioning the termination of the
25	pulse rise time and duration.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We understand how that was determined by 1 2 Altran. And we just questioned whether or not they're 3 really conservative enough using the ten percent figure versus maybe some other figure going into the 4 5 pulse rate, not that I would say that it's definitely 6 a problem but something we need to think about to 7 satisfy ourselves on; use of the single waterhammer pulse versus several cycles in the analysis and 8 9 whether or not that would make any difference in the 10 outcome and the pressure that you would see. Were you concerned with 11 DR. GRIFFITH: 12 sort of exciting your resonance? 13 MR. TATUM: Yes. How if you had several 14 cycles playing into it, how that would affect the 15 overall outcome and the resonance. 16 DR. GRIFFITH: But the period is around 17 two seconds. So I think if it was a resonance, it would have died out. The oscillation would have died 18 19 out. 20 MR. TATUM: Did the data pretty much 21 capture, Gary, on the 22 MR. HAMMER: I didn't really hear the 23 Basically, the number -- Gary Hammer. comment. 24 talked to them about Basically we the single

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

297

	298
1	waterhammer pulse versus several cycles. I think we
2	were talking about resonance on that.
3	MR. TATUM: Yes. And, Peter, I go back to
4	the figure that Tom presented, where he showed that
5	most of these lobes are founded by the analyzed values
6	when you use this method. But there were a few points
7	that were below that curve. Those were the ones that
8	we think we may have seen some resonance on or
9	something like that.
10	You can see that on some of these traces,
11	there are multiple cycles. There is a big peak, but
12	there is follow-up by smaller ones. And we're worried
13	about that additional energy that could go into this
14	system from a smaller process.
15	DR. GRIFFITH: That's what I just wanted
16	to know, what categories you were concerned about.
17	MR. TATUM: The next item, attenuation due
18	to fluid-structure interaction. We understand the
19	concept and the information that is presented in the
20	report. However, it is a fairly simplistic model that
21	you are referring to. And I don't know that we are
22	really comfortable accepting the attenuation concept.
23	I think it would require plant-specific
24	analysis, rather than accepting that a licensee would
25	apply the methodology and just come back to us and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	tell us that they had a certain amount of attenuation.
2	We would like to see probably on a plant-specific
3	basis how it is a credited attenuation.
4	I think we will be more comfortable just
5	not getting the fluid-structure interaction,
6	recognizing I think the general conclusion that
7	attenuation would be overriding any amplification.
8	Structural damping value using comparison,
9	comparing the analog versus the measured loads, is not
10	identified. We thought that would be important for
11	user application. We discussed that, I think. You're
12	going to rectify that.
13	DR. ESSELMAN: He used a half of a percent
14	damping in the analyses. We'll note that report in
15	the revision.
16	MR. ZYSK: A tenth of a percent.
17	DR. ESSELMAN: A tenth of a percent. It
18	was essentially zero.
19	MR. TATUM: A tenth of a percent, yes.
20	DR. ESSELMAN: We are not advocating in
21	the user manuals how the plants should structurally
22	run their analysis code for piping. That is certainly
23	beyond the scope of what we are doing. We can
24	describe what we used in our code, but, again,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

300
identified for user application ins not within our
scope of work.
MR. TATUM: Right. We understand that.
We just want to make sure that recognizing the
information that is in the manual is going to make
sure there's no misapplication.
DR. ESSELMAN: We'll make sure that that's
in there.
MR. BROWN: Tim Brown, Duke Power.
We've been using the damping ratios that
we use for seismic. Now let's just led by our SAAR.
MR. HAMMER: This is Gary Hammer again.
I consider damping. Whatever value you use in your
licensing basis for any other piping is okay. We just
wanted to make sure that for making a comparison and
demonstrating that they were showing that analog loans
versus measured loans, just to understand what the
basis was.
DR. ESSELMAN: He'll look into that.
MR. TATUM: Just one final point I think
I'd like to make that's not reflected on the slides.
The conclusion here that you all have come to is that
the loop-only waterhammer would be bounding.
I think that's a very significant
conclusion on your part and one that if it stands,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

301 then if we can accept that, I think it goes a long way 1 2 to resolving the issue, at least for NRR, recognizing, 3 as Vaughan had stated, many plants have already had the occurrence of loop without LOCA obviously, but I 4 5 mean during pump casts, ESM testing and whatnot. 6 That has been a very common occurrence in 7 Plants have had problems based on the past. waterhammer from just the loop scenario. 8 And where 9 they have had problems, they have gone in and made 10 modifications. They have installed vacuum breakers and whatnot to correct the problem. 11 12 I think that if the conclusion is valid 13 that the loop is a bounding situation, for those 14 plants that can credit that, I think that would go a 15 long way to resolving the issue because at NRR, that 16 is something we have had experience with. We are 17 comfortable with the plants being able to deal with that scenario. 18 19 That may leave the closed loop plants with a little more analysis to do, however, because in a 20 21 loop scenario, they would not have had that kind of 22 experience. So that would be a remaining issue that 23 we would have to credit the analytical methodology, 24 then, for those plants.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

302
Let me ask John Hannon, my branch chief,
to give the management perspective on this.
MR. HANNON: Thank you, Jim. This is John
Hannon, the Branch Chief of the Plant Systems Branch.
Just to start out, it's been a very
interesting experience for me. It's the first time I
have had an opportunity to get some technical material
in quite a while. I appreciate all the good dialogue
that I heard today.
There is a historical perspective I wanted
to remind everybody about. This issue has been
cooking for quite a while. Originally we were
thinking when we generated the original generic letter
that all of the SEs would be completed, the safety
evaluations for all of the plants would be completed
around August of 1998 with the expectation that was
the majority and then residuals would be finished
sometime during 1999. So we had extended the time
period for which we thought this generic activity
would be completed.
Joe mentioned earlier this morning I think

nk that the complexion of the environment that we are all working in now has changed over that last couple of years.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 We're trying to become more risk-informed 2 in our regulatory decisions. And we are also being 3 held to some different standards with regard to our management decisions from the standpoint of what we 4 5 call the four pillars now with maintaining safety 6 being the primary one and also enhancing public 7 confidence and being realistic in more our decision-making and trying to be more effective and 8 9 efficient.

10 Then there is the one about reducing 11 unnecessary regulatory burden. So I think all of 12 those new criteria have to come into play as we move 13 forward on this particular topic.

So from a management perspective, I can tell you that that I am interested in seeing this item wrapped up. I would like to treat it as an industry initiative with EPRI taking the voluntary action here to come up with a solution that can be applied to the remaining plants generically.

20 What we are looking to the ACRS to provide 21 is their considered opinion as to what we need to do 22 to provide constraints in our safety evaluations, 23 otherwise restrictions that would need to be applied 24 on a plant-specific basis because we really do need to 25 start moving this into the end game.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	304
1	DR. ZUBER: I have a question.
2	MR. HANNON: Yes?
3	DR. ZUBER: How can the NRC make
4	plant-specific data information when the ACRS doesn't
5	have this information?
6	MR. HANNON: That's a challenge for us.
7	We think the industry has made a good faith effort, as
8	Jim pointed out, to try to wrap up the technical
9	issues here.
10	So the challenge is for us to now see if
11	we can move it into a round where we could take a
12	plant-specific application against this methodology to
13	see if it can be considered appropriate or acceptable
14	for regulatory purposes.
15	Again, we have to take into effect all of
16	these considerations, regulatory burden, and ways.
17	Are we able to say that we are maintaining safety?
18	So that is a challenge. But I think that
19	from hearing the line of questions that I heard today
20	through the ACRS, I think we are all on the path of
21	coming to a leasable closure on this issue. That is
22	the challenge I think we all have in front of us now.
23	Any other questions or comments?
24	(No response.)
25	MR. HANNON: Thank you, Jim.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

CHAIRMAN WALLIS: I think Jim Tatum has reminded me of the loop versus loop LOCA. This report is mostly about loop LOCA. In the earlier draft, there was simply a statement that loops are worse than loop LOCAs, I mean, without much justification at all. I still don't quite grasp the rationale of why the loop is worse, to we say there is less air

analysis or something that shows why it's worse. I'm not sure that it's here. It seems to be more of a --

produced and so on. But there has to be a technical

MR. HANNON: We added a section in the PBR on loop versus loop LOCA. The conclusion that we have drawn and provided in the PBR is that if in the loop LOCA case there is no gas given off and no steam in the void, they will be the same because the same number of pumps will start.

There will be no cushioning or the same amount of cushioning with any gas given off, which we believe there will be. With any steam in the void that is pressurized, that final closure has to be cushioned. That cushioning will give you a lower velocity and a lower waterhammer.

23 CHAIRMAN WALLIS: So there is no air given 24 off in the loop only?

NEAL R. GROSS

1

2

3

4

5

6

7

8

9

10

	306
1	DR. ESSELMAN: We think that whatever air
2	is we do think that there is air given off in the
3	loop only. We don't think that it will be less in the
4	loop LOCA. We think that it will be more.
5	CHAIRMAN WALLIS: I think I know in this
6	thing. Originally I looked at this curve, and it's
7	ground for a cubic meter; whereas, the other one is
8	ground for a liter. It's confusing, different scales.
9	MR. ZYSK: We've got roughly three orders
10	of magnitude.
11	CHAIRMAN WALLIS: Right. That's where the
12	orders of magnitude come from. I didn't realize that
13	in the first slides. Maybe it is clearer, but it sort
14	of needs to be clear.
15	Do you have a question, Tom? Do you want
16	to raise your question or do you need some help? Is
17	it important?
18	DR. KRESS: Yes. It may or may not be.
19	I was looking at Figure 10-8 in the technical basis
20	document. I don't know if you have a viewgraph of it
21	or not, but it appears to me when you're plotting
22	under these conditions, rise time as defined versus
23	closure velocity, that you're basically plotting two
24	independent variables versus each other, which would
25	be thrown out by the scatter of the data in the first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	307
1	20 feet per second of closure velocity. I'm not even
2	sure why you get a correlation above that.
3	If I had questions about the relevance of
4	this particular plot and whether or not indeed those
5	are variables you could correlate with each other
6	because they look to me like independent variables.
7	They have no relationship to each other.
8	MR. ZYSK: If I could touch on that? The
9	idea is that that rise of pressure over a time period
10	is proportional to the velocity of closure to some
11	extent. In other words, if you have a fairly
12	slow-moving mass of water, then that rise in pressure
13	as you squeeze that final closure would be spread out
14	fairly long. And if you have a rapid closure, the net
15	rise is fairly abrupt. So they're not truly
16	independent in that aspect.
17	We looked at Configuration 1, which was
18	essentially a cold water on steam closure. So it
19	should be as abrupt as we can get compared to, say,
20	the Configuration 2A or 2B data.
21	CHAIRMAN WALLIS: There are
22	non-condensibles in there except when they come out of
23	the water.
24	MR. ZYSK: That's correct. That's
25	correct. So the rise

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	308
1	CHAIRMAN WALLIS: So they are not voided
2	off or anything, then.
3	MR. ZYSK: Right. There should be
4	virtually no non-condensibles there. So that should
5	be as abrupt a rise as possible.
6	We also looked at if you can look at
7	CHAIRMAN WALLIS: Well, you could argue it
8	had something to do with the shape of the interface
9	and that the interface
10	MR. ZYSK: It could be, but our
11	CHAIRMAN WALLIS: is tilted because of
12	a certain time to close
13	MR. ZYSK: Yes. Our guidance on that from
14	our experts was that that was kind of a secondary
15	effect and that the shape of the interface wouldn't
16	influence the rise time as much as the compression of
17	the wood would.
18	If you look at also Figure 9-10, which is
19	the same data looking at rise time versus impact
20	velocity, this is model results. This is from our
21	rigid body model prediction, where we actually put a
22	gas concentration. It's on Page 9-13.
23	We actually put a gas volume or mass of
24	gas in the void. We did tend to see a relationship

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	309
1	between the you look at the exponent on our curve
2	there. It's essentially a polytropic gas impression.
3	So based on how we enveloped pretty well
4	all of that theoretical data. We also compared in the
5	Figure 10-8 how we matched up with the most
6	conservative of the test configurations that we ran.
7	It kind of slices through the data in the 10 to 20
8	feet per second but matches up very well in the higher
9	closure velocities, 25, 30, 40, 17 percent.
10	CHAIRMAN WALLIS: Looking at 9-10, there
11	are all of these points up above the curve.
12	MR. ZYSK: Yes.
13	CHAIRMAN WALLIS: So you could argue, like
14	my colleague was saying here, that these are really
15	two variables. They just don't correlate with each
16	other. It's just that because of limitations on the
17	experiment or something, there is a limit to them,
18	which is what you have got here.
19	MR. ZYSK: Yes. And I think, again, from
20	an engineering approach, this is a reasonable way to
21	characterize what the rise time is doing. It's
22	conservatively bound what our model
23	CHAIRMAN WALLIS: But it doesn't mean to
24	say that in some other facility, there wouldn't be
25	some other limit.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	310
1	MR. ZYSK: Looking at the column closure
2	event in a pump system as essentially a
3	one-dimensional problem, no, I don't think that the
4	chance of this being vastly different at other
5	facilities was really that big of a risk.
6	This particular set of model predictions
7	at Figure 9-10 is for 4-inch, 10-inch, and 16-inch
8	data. So it's not
9	CHAIRMAN WALLIS: If something were really
10	one-dimensional, there would be no air in there at
11	all. The rise time would be zero.
12	MR. ZYSK: If there were no air, yes, the
13	rise time would be zero if you didn't get any steam
14	cushion or anything like that. The importance I think
15	is in some of the existing publications. Without any
16	basis to go on, the recommended rise time is one
17	millisecond.
18	Assume a square width. We think that is
19	wildly conservative. And I think there is a basis for
20	showing that it is 10, 15, 20 milliseconds as a
21	reasonable number for a rise time of a pressure
22	possibility.
23	CHAIRMAN WALLIS: Now, when something
24	closes in a bigger pipe with the same velocity, if you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	311
1	had, say, a slope to the front, it would take longer
2	to close the front, wouldn't it?
3	MR. ZYSK: I would guess so.
4	CHAIRMAN WALLIS: So the rise time may
5	scale in some way with diameter.
6	DR. ESSELMAN: A slower closing, though,
7	would generally, as shown here, also a slower closing
8	will give you lower loads in a piping system. So
9	using a more rapid closure, even though we know that
10	with cushioning and in larger pipes, it will be
11	slower, bounding it with a curve here is conservative
12	relative to the loads in the piping
13	CHAIRMAN WALLIS: So your arguments about
14	scaling seem to be that all the ways you can imagine
15	to scale seem to indicate that it's conservative to
16	assume that the two-inch pipe data is representative.
17	So although in the one place where you
18	compare experiment there with the two-inch and
19	four-inch pipes in the configuration, which is a
20	variation of one. It's actually the four-inch data
21	which are higher.
22	DR. ESSELMAN: I guess I don't believe
23	that our conclusion is that two-inch data is always
24	conservative. I think that two-inch data is
25	representative. And by doing things like this when

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2 rise times, for instance, when we know that has a big 3 impact in the structural loading, that gives you support loads doing things like this. Bounding the 4 data this way I think gives us what we feel are 5 conservative applications for the parameter into the 6 7 structural loading. Again, as we started this morning talking 8 9 about supports and the kind of differential loads and 10 rise times in the -- rise times will give you support loads being important. We think in areas like this, 11 12 for instance, we have taken a conservative approach.

CHAIRMAN WALLIS: Is there anything else?

(No response.)

15 CHAIRMAN WALLIS: So we will see him 16 again, I guess. Do you have any idea of the time 17 scale?

DR. GRIFFITH: I think we've got to decide 18 19 what we need to do before we give you a deadline.

20 CHAIRMAN WALLIS: Okay. My hope would be it would take less time than the last interval between 21 22 I think we are ready to adjourn for the meetings. 23 day. Anything else we have to do?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

13

14

	313
1	Actually, what we will do, we will come
2	off the record. Then we'll discuss among ourselves.
3	So we'll adjourn. Thank you very much.
4	(Whereupon, the foregoing matter was
5	concluded at 4:05 p.m.)
6	
7	
8	
9	
10	