Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION		
Title:	Advisory Committee on Reactor Safeguards 539th Meeting	
Docket Number:	(not applicable)	
Location:	Rockville, Maryland	
Date:	Thursday, February 2, 2007	

Work Order No.: NRC-1422

Pages 1-193

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
4	539TH MEETING
5	+ + + +
6	THURSDAY, FEBRUARY 2, 2007
7	VOLUME II
8	+ + + +
9	The meeting was convened in Room T-2B3 of
10	Two White Flint North, 11545 Rockville Pike,
11	Rockville, Maryland, at 8:30 a.m., DR. WILLIAM J.
12	SHACK, Chairman, presiding.
13	MEMBERS PRESENT:
14	WILLIAM J. SHACK, Chairman
15	JOHN D. SIEBER, Vice Chairman
16	SAID ABDEL-KHALIK, Member
17	GEORGE E. APOSTOLAKIS, Member
18	J. SAM ARMIJO, Member
19	SANJOY BANERJEE, Member
20	MARIO V. BONACA, Member
21	MICHAEL L. CORRADINI, Member
22	THOMAS S. KRESS, Member
23	OTTO L. MAYNARD, Member
24	DANA A. POWERS, Member
25	GRAHAM B. WALLIS, Member
	I

		2
1	STAFF PRESENT:	
2	ZENA ABDUALLY	
3	WILLIAM H. BATEMAN	
4	GARY HAMMER	
5	CORNELIUS HOLDEN	
6	MICHAEL JUNGE	
7	RALPH LANDRY	
8	TIMOTHY R. LUPOLD	
9	RALPH MEYER	
10	BOB RADLINSKI	
11	TANEY SANTOS	
12	TED SULLIVAN	
13	JENNIFER L. UHLE	
14	SUNIL WEERAKKODY	
15	ALSO PRESENT:	
16	JOHN ALVIS	
17	MICHAEL C. BILLONE	
18	BERTRAND DUNNE	
19	NAYEM JAHINGIR	
20	CHRISTINE KING	
21	ALEX MARION	
22	ODELLI OZER	
23	JIM RILEY	
24	MIKE ROBINSON	
25	GLENN WHITE	
ļ	I	

			3
1		I-N-D-E-X	
2	AGEN	DA ITEM PA	AGE
3	6)	Opening Remarks by the ACRS Chairman	4
4	7)	Proposed Revision to 10 CFR 50.46 LOCA	5
5		Criteria for Fuel Cladding Materials	
6		7.1) Remarks by the Subcommittee Chairman	6
7		7.2) Briefing by and discussions with	7
8		representatives of the NRC staff	
9	8)	Draft Final Revision 1 to Reg Guide 1.189	89
10		(DG-1170), "Fire Protection for Nuclear	
11		Power Plants," and SRP Section	
12		9.5.1, "Fire Protection Program"	
13		8.1) Remarks by the Subcommittee Chairman	90
14		8.2) Briefing by and discussions with	91
15		representatives of the NRC staff	
16	9)	Subcommittee Report	135
17	10)	Wolf Creek Pressurizer Weld Flaws	136
18		10.1) Remarks by the Subcommittee Chairman	136
19		10.2) Briefing by and discussions with	137
20		representatives of the NRC staff	
21			
22			
23			
24			
25			
	I		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:33 a.m.)
3	6) OPENING REMARKS BY THE ACRS CHAIRMAN
4	CHAIRMAN SHACK: The meeting will now come
5	to order. This is the second day of the 539th meeting
б	of the Advisory Committee on Reactor Safeguards.
7	During today's meeting, the Committee will consider
8	the following: Proposed revision to 10 CFR 50.46 LOCA
9	criteria for fuel cladding materials; draft final
10	revision 1 to regulatory guide 1.189 (DG-1170), "Fire
11	Protection for Nuclear Power Plants," and SRP section
12	9.5.1, "Fire Protection Program"; subcommittee report
13	on ESBWR PRA; Wolf Creek pressurizer weld flaws;
14	proposed revisions to regulatory guides and SRP
15	sections in support of new reactor licensing; future
16	ACRS activities and report of the Planning and
17	Procedures Subcommittee; reconciliation of ACRS
18	comments and recommendations; and preparation of ACRS
19	reports.
20	This meeting is being conducted in
21	accordance with the provisions of the Federal Advisory
22	Committee Act. Mr. Taney Santos is the designated
23	federal official for the initial portion of the
24	meeting.
25	A transcript of portions of the meeting is
ļ	

(202) 234-4433

	5
1	being kept. And it is requested that speakers use one
2	of the microphones, identify themselves, and speak
3	with sufficient clarity and volume so they can be
4	readily heard.
5	I remind members that we are scheduled to
б	interview two candidates during lunchtime today.
7	Hopefully we'll stay on schedule and actually be able
8	to eat lunch also.
9	Our initial item this morning is the work
10	on the 50.46 fuel clad criteria. And since I have a
11	conflict of interest on that, Jack Sieber will be
12	running this portion of the meeting.
13	VICE CHAIRMAN SIEBER: Okay. Thank you,
14	Mr. Chairman.
15	7) PROPOSED REVISION TO 10 CFR 50.46 LOCA CRITERIA
16	FOR FUEL CLADDING MATERIALS
17	VICE CHAIRMAN SIEBER: And, without
18	further ado, I would like to introduce Jennifer Uhle
19	to provide the staff's introduction to the
20	presentation on 50.46 this morning.
21	Jennifer?
22	MS. UHLE: Thank you. Good morning.
23	MEMBER ARMIJO: Mr Chairman, we did have
24	a subcommittee meeting earlier. And maybe I could
25	give you a little bit of a briefing.
I	I

(202) 234-4433

	6
1	VICE CHAIRMAN SIEBER: Why don't you take
2	charge of this session?
3	MEMBER ARMIJO: It's okay with me.
4	(Laughter.)
5	VICE CHAIRMAN SIEBER: Okay.
6	7.1) REMARKS BY THE SUBCOMMITTEE CHAIRMAN
7	MEMBER ARMIJO: I just wanted to say that
8	we did have a full day of subcommittee meeting on the
9	19th. Several members of the Committee were present.
10	And we covered this topic in some depth.
11	We had presentations, of course, from the
12	staff and from Argonne National Laboratory as well as
13	presentations from Westinghouse, AREVA, and G&F on the
14	issue of the phenomenon. As we have learned at the
15	Committee meeting, it's complicated. It's a complex
16	phenomenon going on.
17	The staff has done and research people
18	done an admirable job in the research to try and
19	understand these various components. There has been
20	generally very good support from industry to this
21	program, but the industry people have been reluctant
22	to support use of the embrittlement criteria at this
23	point because they believe the research is not yet
24	complete. And the way to incorporate those research
25	results into a rule is still not settled.
Į	

(202) 234-4433

	7
1	So we will be hearing today from both the
2	staff and industry. And I think the time was
3	allocated roughly about 50/50 to give everybody a
4	chance to make their points.
5	With that
б	CHAIRMAN SHACK: Go ahead.
7	MS. UHLE: Thank you. Good morning.
8	7.2) BRIEFING BY AND DISCUSSIONS WITH
9	REPRESENTATIVES OF THE NRC STAFF
10	MS. UHLE: My name is Jennifer Uhle. I am
11	the Deputy Division Director for Materials Engineering
12	in the Office of Nuclear Regulatory Research.
13	I would like to thank the Committee for
14	taking the time to meet with us today to talk about
15	our research program dedicated to the development of
16	revised fuel clad acceptance criteria for postulated
17	loss-of-coolant accidents. Of course, these famous
18	criteria of 2,200 degrees Fahrenheit and 70 percent
19	local clad oxidation are contained in 10 CFR 50.46.
20	Today we will try to describe to you our
21	understanding of these complex phenomena that
22	contribute to the embrittlement of fuel clad under
23	these conditions.
24	This understanding has been developed over
25	a period of ten years. And we will do our best to

(202) 234-4433

	8
1	summarize it in the time allowed. To facilitate our
2	communication, we will be providing a set of proposed
3	acceptance criteria. But I want to stress that today
4	we are not presenting to you rule language. And that
5	will be developed at a later date in NRR along with
6	research support as well as stakeholder involvement.
7	We feel there is a great need for a
8	revision to the present rule for a variety of reasons.
9	First, the current criteria are non-conservative. The
10	NRC has managed this issue of ensuring plants are
11	taking voluntary measures to ensure safety in the
12	event of a LOCA.
13	Second, we have shown that the criteria
14	are affected strongly by burnup as well as a choice of
15	alloy and even fabrication process.
16	Third, the current rule is written to be
17	clad-specific. And licensees are required to get
18	exemptions from 50.46 to be able to use the new and
19	better-performing clads. We find this to be
20	unnecessarily burdensome to the licensees and, more
21	importantly, to the staff because we're spending our
22	time reviewing these submittals. And, of course, the
23	need for exemptions may also be hampering the
24	introduction of superior clad materials.
25	So research believes this program has
l	I

(202) 234-4433

generated a sufficient amount of data to proceed with the rulemaking in one presentation. In Ralph Meyer's presentation, you will see that there is one prominent area deemed the F factor, some of it citing, where we have data but we have also used some judgment to provide the basis for our proposal.

Our research believes that proposed criteria will ensure safety. And it's important to go forward with the rulemaking, one of the concerns I previously mentioned, although you will hear from the industry. I think other stakeholders desire to postpone the rulemaking to provide more of a database.

Our goal today is to try to convince you to support our decision and our goal to move forward with the rulemaking. We look forward to hearing your views. If there are no other questions about what we're trying to accomplish --

18 MEMBER ARMIJO: Real quick one. If you 19 went ahead with this, what is your time frame in which 20 you would actually have wording that would go into the 21 rule?

MS. UHLE: Well, we have a NUREG. Research has the NUREG. And we're writing them. And it's hoping to finish it and transfer it over to NRR the end of March time frame. Then the NRR has, of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(202) 234-4433

9

	10
1	course, a rulemaking schedule developed that involves
2	certainly the legalities of rulemaking, which is
3	stakeholder involvement.
4	The current rulemaking, at one point the
5	rulemaking plan that was developed a year ago
6	indicated that the final rule would be out on the
7	street January 2009, so early January 2009, so a few
8	years from now.
9	Right now the Commission, of course,
10	requested the staff to prioritize the rulemaking
11	activities. And with this realization of the
12	non-conservatism of the current rule, the staff is
13	questioning whether or not we need to prioritize this
14	higher and perhaps expedite.
15	Ralph Landry, do you want to add anything
16	to that? Ralph Landry is NRR. He would be in charge
17	of the rulemaking activities.
18	MR. LANDRY: Ralph Landry, NRR. I'm not
19	in charge of rulemaking activities.
20	MS. UHLE: You're in charge of the
21	technical aspects of rulemaking activities.
22	MR. LANDRY: The point of what Jennifer
23	said is very accurate. We have not initiated the
24	rulemaking at this point. We are following very
25	closely. We have been very involved in this work with
I	

(202) 234-4433

	11
1	the Office of Research. We would like to proceed in
2	a very orderly fashion to a new rulemaking, to
3	changing the acceptance criteria.
4	We have had acceptance criteria in 50.46
5	that have withstood 30-plus years of use. And as we
6	move forward, I want to make sure that we proceed to
7	criteria that would withstand another extended period
8	of time that we would not need to go back and change
9	in a very short time.
10	And we're looking at it a couple of
11	different ways. This was brought up at the
12	subcommittee meeting. Could we put performance-based
13	words into the rule and details in a regulatory guide
14	or do we have to put some details into the rule? We
15	haven't pursued exactly the legalities of which
16	approach to take at this point, but it is very
17	appealing to have performance-based words in the rule
18	itself and the details left to a regulatory guide.
19	MEMBER ARMIJO: Thank you.
20	MS. UHLE: Okay. So if that is all, then,
21	I would like to introduce Dr. Ralph Meyer from the
22	Office of Research, who is the lead technical staff
23	member in charge of the research program.
24	In addition, Dr. Billone, who is the
25	principal investigator from Argonne. He is also here
ļ	1

(202) 234-4433

	12
1	if you have any particular questions you'd like to
2	ask.
3	DR. MEYER: Good morning. We've been
4	working on cladding and fuel response to
5	loss-of-coolant accident conditions for almost ten
6	years now and have had a fair amount of cooperation
7	that I want to mention. The industry has had us in
8	this program.
9	(Pause.)
10	MEMBER ARMIJO: Okay. We're ready to go.
11	Ralph, our apologies.
12	MEMBER APOSTOLAKIS: Who is the person on
13	the other side?
14	DR. MEYER: That will cost you five
15	minutes.
16	PARTICIPANT: Can we ask who else is on
17	the bridge right now?
18	PARTICIPANT: Westinghouse. I'm going on
19	mute now. Thank you.
20	PARTICIPANT: Thank you. Sorry about
21	that.
22	DR. MEYER: Okay. We've had cooperation
23	from the industry. I want to mention quickly that
24	EPRI has been involved with us from the beginning.
25	Global Nuclear Fuel, AREVA, its preceding companies,
I	

```
(202) 234-4433
```

and Westinghouse have all provided fuel rods and fuel cladding materials for testing in the program. And they have been very free to give us their opinions as well. In addition to that, I want to mention

another program that I sometimes forget to mention in doing this work. And that's a program that we have had with the Kurchatov Institute in Moscow.

The French IRSN and the NRC for almost the same number of years had been providing some support to Kurchatov to do related work. And they have done almost a parallel study to what we have done up at Argonne National Laboratory and documented that in a NUREG IA report that we issued almost two years ago.

This is very extensive and unraveled some of the pieces of the puzzle that we will talk about today. So I want to mention the Kurchatov work and IRSN support work. And I also want to mention the Russian fuel manufacturer, Tivel, is also a sponsor of this work and, in fact, probably paid the lion's share of the cost, although we ran the content of the program from this little international arrangement that we had.

24 Now, the work at Argonne has been 25 documented in a draft NUREG CR report, which I think

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	14
1	the Committee has. We sent it to the Committee. It's
2	a fairly lengthy report. And we spent a lot of time
3	talking about that at the subcommittee.
4	So there are a lot of things that happen
5	to the fuel during a loss-of-coolant accident. And
6	our research has looked into a number of them but has
7	focused primarily on the loss of ductility that takes
8	place in a process that we just generally refer to as
9	embrittlement.
10	During a loss-of-coolant accident, the
11	cladding temperature goes up. And somewhere in the
12	vicinity of 800 degrees Centigrade, the cladding
13	softens. It balloons. It pops. It ruptures. It
14	relieves the pressure. It also goes through a phase
15	change just about at the same temperature. They're
16	not totally related to each other, but they do happen
17	at about the same time.
18	Now, only above that temperature, starting
19	at around 900 degrees Centigrade does the oxidation
20	rate on the surface because it's in steam, the surface
21	oxidation rate, picks up enough that you will
22	accumulate a lot of oxidation during the period of the
23	transient.
24	And at the same time, the oxygen that is
25	laid on the surface begins to diffuse into the metal.
ļ	I

(202) 234-4433

	15
1	Then eventually the cooling water from the emergency
2	cooling systems comes in, cools, and quenches the
3	material. Then it goes back through the phase change.
4	The low-temperature phase change we refer
5	to as the alpha. The high-temperature one is the beta
б	phase. And I'll come back to that in just a second.
7	Now, the current embrittlement criteria
8	you're probably all familiar with this. It's in 10
9	CFR 50.46, part B. In paragraph 1, there's a
10	temperature limit of 2,200 degrees Fahrenheit. That's
11	1,204 degrees Centigrade. And we will just glibly
12	speak of 1,200 degrees Centigrade in the presentation.
13	There is an oxidation limit of 17 percent.
14	This is really a time limit because it was understood
15	at the beginning and we know it now that the
16	embrittling process does not take place on the surface
17	where the oxide is accumulating. It is related to the
18	diffusion of oxygen in the metal.
19	The diffusion process and the oxidation
20	process run at about the same speed. And so an
21	oxidation limit was used. It's very convenient. I
22	won't go into the details, but it turns out to be a
23	very convenient thing to do. It gives you a nearly
24	constant number that you can use as a limit.
25	In running a LOCA calculation, you
I	

(202) 234-4433

(202) 234-4433

1 calculate well, your basic LOCA transient _ _ 2 calculation is just time and temperature. And then 3 you run along with that some equation for oxidation 4 and get a calculated oxidation amount during the 5 transient. And you keep that less than 17 percent, less than or equal to 17 percent. 6 pickup 7 One-sided oxygen is assumed everywhere along the cladding except in the balloon. 8 And in the balloon, you recognize that you have hit a 9 10 rupture. And the steam can get into the inside of the 11 balloon and lay oxide on the inside. And then oxygen 12 will diffuse in from the inside simultaneously with the diffusion in from the outside. So you use a 13 14 two-sided assumption within the balloon. 15 In 1998, after we became concerned about the effects of burnup on these criteria, NRC issued an 16 17 information notice that clarified the 17 percent 18 And we said at that time the 17 percent was number. 19 total oxidation, meaning the transient oxidation plus 20 any corrosion that accumulated on the fuel rod during 21 normal power operation. 22 Now, in the next ten slides, I want to 23 just give you a brief overview of the type of work that's been done to support the criteria that we're 24 25 going to describe to you later on.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

16

	17
1	This is work that Mike Billone spent three
2	hours describing to the subcommittee. I'm going to
3	spend about three minutes on it literally. I just
4	want to give you a feeling for the magnitude of the
5	experimental program that has been undertaken.
6	So, first of all, here is a list of all of
7	the cladding materials that we have tested,
8	Zircaloy-2, 4, ZIRLO, M5, and a Russian EllO. And in
9	some cases, we have had multiple subsets of these.
10	Zircaloy-4, for example, we have three distinct
11	varieties of Zircaloy-4. We have some older vintage
12	15 by 15 Zircaloy-4, some modern 15 by 15 Zircaloy-4,
13	and some modern 17 by 17 Zircaloy-4, in addition to
14	having the high burnup Zircaloy-4 of the older
15	variety.
16	MEMBER BANERJEE: What do you mean by "15
17	by 15," "17 by 17"?
18	DR. MEYER: The fuel geometry, the
19	MEMBER BANERJEE: Oh, the bundles, yes.
20	DR. MEYER: bundle size. And the
21	geometry turns out to be important because the more
22	rods in the array, the thinner the cladding. And
23	you're going to see that cladding thickness shows up
24	in one of the equations. And so it has a direct
25	effect on embrittlement.
ļ	I

(202) 234-4433

	18
1	So we have looked at all of those
2	materials. We have a furnace that is radiant-heated.
3	It has reflectors and a central tube going down
4	through there with a specimen. We can use short
5	specimens. We can use long specimens. We can pass
6	steam over the outside only. We can pass it up
7	through the middle and the outside. All of those
8	kinds of tests are done in this apparatus.
9	MEMBER POWERS: Ralph, you indicated in
10	your introductory comments that most of the period of
11	time you're interested in, rapid oxidation is not
12	taking place. Did you have to get up to above some
13	critical temperature before you get rapid steam
14	oxidation in the cladding?
15	DR. MEYER: Yes.
16	MEMBER POWERS: That means in the real
17	reactor accident, the heat is coming from the inside
18	out to the clad. But in your experiments, you're
19	going from the outside in on the clad. Does that make
20	a difference?
21	DR. MEYER: Actually, most of the testing
22	that we have done has been two-sided. And so there
23	was a time when we were concerned that by doing so
24	much of the work with two-sided oxidation, that we
25	were not setting the test up right. And we did then

(202) 234-4433

	19
1	do some one-sided oxidation tests.
2	In the end, as you saw and the rest will
3	see, we're going to suggest that the two-sided
4	analysis be done everywhere on the run so the tests
5	are exactly the right ones for that.
б	MEMBER POWERS: Thank you.
7	MEMBER BANERJEE: So typically in a
8	bundle, at these temperatures, some portion of the
9	heat is coming from radiation onto the surface in some
10	form inside. What is that fraction?
11	DR. MEYER: The heat source is
12	MEMBER BANERJEE: Inside, but it's
13	radiating, right, as well?
14	DR. MEYER: Well, but, I mean, you just
15	have similar rods all around. So they're all
16	MS. UHLE: This is Jennifer Uhle from the
17	staff. I mean, that's hard to say. It depends on the
18	transient. It depends on exactly the view factors,
19	the peaking factors because obviously you need the
20	strong delta-T to provide the driving force.
21	I think being from NRR, when I was in NRR,
22	review maybe at most 20 percent, I think is from
23	radiation at the real high temperatures. But that's
24	when you're up at the
25	DR. MEYER: The two main heat sources are
I	

(202) 234-4433

	20
1	the heat from the inside coming from decay heat and
2	stored heat from the beginning of the transient and
3	then the heat from the metal-water reaction. And
4	those are all accounted for in the analysis.
5	So temperature is a very important. This
6	metal-water heat affects the temperature rise during
7	the transient. So in setting up the experimental
8	apparatus, a lot of effort is put into calibrating the
9	furnace and the temperatures on the rods to be tested.
10	That picture looks so good on the file.
11	Anyway, the main test that we do is a
12	ring-compression test. You can hardly see it here,
13	but there is an Instron machine that's squeezing a
14	MEMBER POWERS: It is much better in the
15	handout.
16	PARTICIPANT: The handout is good.
17	DR. MEYER: the ring of the cladding
18	that's about eight millimeters long. We have a couple
19	of Instron machines doing this. One is in a glove box
20	where we can squeeze irradiated pieces. And one is
21	just sitting out in a laboratory where it's easier to
22	get to.
23	The ring-compression test results have to
24	be interpreted. Our techniques for doing this are
25	much more sophisticated than they were back in 1972
I	I

(202) 234-4433

	21
1	and 1973, where the same ring compression, general
2	ring compression, technique was used. And so we know
3	how to do this quite well now.
4	The furnaces are generally programmed in
5	a way that more or less represents the temperature
6	rise during a postulated accident.
7	MEMBER APOSTOLAKIS: Ralph?
8	DR. MEYER: Yes?
9	MEMBER APOSTOLAKIS: It may be obvious to
10	a lot of people here, but where are you going with
11	this? What are you trying to get out of these
12	experiments?
13	DR. MEYER: All I want to do at what
14	we're trying to get at are criteria that can be used
15	to identify when the cladding loses ductility during
16	this transient so you can use that as a limit and then
17	with that limit show that the emergency core cooling
18	systems have been adequate to protect the ductility of
19	the material.
20	MEMBER APOSTOLAKIS: So when do you mean
21	the time? How long it will take to lose ductility?
22	DR. MEYER: Well, that's basically what we
23	determine experimentally.
24	MEMBER APOSTOLAKIS: Right.
25	DR. MEYER: And then that information is
I	I

(202) 234-4433

	22
1	contained in the temperature limit and the oxidation
2	limit and applied in the analysis, the safety
3	analysis, when you analyze the thing.
4	VICE CHAIRMAN SIEBER: Those limits are
5	surrogates for the loss-of-coolable geometry, which is
6	the endpoint. You want to maintain coolable geometry.
7	DR. MEYER: Endpoint is loss-of-coolable
8	geometry. There were big discussions about this
9	during the hearing in 1972 and 1973. It came down to
10	a position of maintaining ductility in the cladding as
11	the way to ensure a coolable geometry.
12	And we have not tried to change any of the
13	underlying philosophy or the basic experimental
14	approach to it but just do it in such a way that we
15	can see the effects of burnup and manufacturing
16	variables and update the criteria.
17	We were able to do four what we call
18	integral tests on high burnup rods before we lost
19	access to the alpha-gamma hotcell at Argonne. And
20	these are pictures of those four. All four of these
21	fuel rods were BWR fuel rods with low corrosion. And
22	you can see the single balloon and ruptured area in
23	each of those.
24	We analyzed those in detail.
25	MEMBER ARMIJO: Ralph, I'm sorry. You
I	

(202) 234-4433

	23
1	didn't do the H. B. Robinson? Didn't you do an H. B.
2	Robinson?
3	DR. MEYER: We didn't get to the H. B.
4	Robinson before the
5	MEMBER ARMIJO: Before they shut down?
6	DR. MEYER: hotcell was shut down. So
7	we have the specimens. And we want to test them. But
8	we have had no ability to do that since July 26, 2005.
9	MEMBER ARMIJO: Okay.
10	DR. MEYER: We remember the day.
11	MEMBER ARMIJO: And you also have the M5
12	fueled rods and the ZIRLO?
13	DR. MEYER: No, no. It's a very painful
14	process to get fuel rods from a power plant for
15	testing. And over the years, we have been able to get
16	a set of BWR rods from the Limerick plant and a set of
17	PWR rods from the Robinson plant. These are
18	relatively older fuel types.
19	We have plans to get ZIRLO-clad rods and
20	M5-clad rods with high burnup for this program. Those
21	rods have not been provided yet. So those are not in
22	the current test program.
23	What we were able to get were some small
24	pieces of M5 and ZIRLO cladding from high burnup rods,
25	getting those pieces from the Skuzda Laboratory, where
I	I

(202) 234-4433

	24
1	they had such fuel rods for testing and we made
2	arrangements to get those pieces. Those pieces have
3	not been tested yet either but will be tested
4	hopefully in the next two months.
5	DR. BILLONE: Excuse me. This is Mike
б	Billone from Argonne. Just for clarification, the
7	high burnup M5 rods that we and EPRI have agreed to
8	put into the program are in transit to Argonne. They
9	have been in transit for six months, but they're in
10	transit.
11	PARTICIPANT: Slow truck.
12	DR. BILLONE: Slow truck.
13	MEMBER ARMIJO: But you physically have
14	the H. B. Robinson rods,
15	DR. BILLONE: Yes, yes.
16	MEMBER ARMIJO: even though that's an
17	old vintage
18	DR. BILLONE: Correct.
19	MEMBER ARMIJO: Okay.
20	DR. OZER: Excuse. This is Odelli Ozer,
21	EPRI. The M5 rods have been shipped. They're at the
22	Idaho National Laboratory. They're just awaiting
23	shipment from Idaho hotcell over to wherever Argonne
24	wants them.
25	And we are in discussions with
I	

(202) 234-4433

	25
1	Westinghouse for ZIRLO rods.
2	DR. MEYER: Well, since we've gotten onto
3	this subject, let me say that we have had a program
4	plan for this program since 1998. It was updated in
5	2003. It has been reviewed by the subcommittee and by
6	the full Committee several times.
7	In that program plan, we always knew that
8	we would not have the high burnup ZIRLO and M5 rods in
9	time in the time that we wanted to try and revise the
10	embrittlement criteria.
11	And so the plan for the beginning was to
12	examine unirradiated rods of Zircaloy-2, Zircaloy-4,
13	M5, and ZIRLO and irradiated Zircaloy rods. With this
14	cut of the variables to make an assumption that the
15	burnup effects that you saw in the Zircaloy would
16	apply to M5 and ZIRLO because we realize that we
17	wouldn't have those rods in any timely way to make the
18	test. And that turned out to be the case.
19	So what we're going on here are burnup
20	effects measured on Zircaloy and, by assumption,
21	carried over to M5 and ZIRLO with the alloy and
22	manufacturing properties measured on the unirradiated
23	material.
24	I think we understand enough of what is
25	going on that this is a reasonable approach. And I
ļ	

(202) 234-4433

	26
1	hope that I can convince you of that. Sometimes if we
2	want to do a mechanical test in the balloon, instead
3	of cutting a ring and compressing it because of the
4	deformation, we do a bending test.
5	And we do a lot of microscopy to look at
6	the details of metallurgical phases in the oxide
7	layers that build up on the rod. This happens to be
8	a scanning electron microscope picture. We do a lot
9	of optical microscopy also.
10	Okay. So that was my three-minute sweep
11	through the experimental program. Now what I want to
12	do is to slow down and talk about what is really
13	happening and what we have learned from the results
14	and then how we propose to use those results.
15	So imagine that a fuel rod has been
16	through a temperature transient such as the one that
17	I showed and has now been cooled back down to near
18	room temperature and you look to see if it's brittle
19	or ductile.
20	So what you see when you look at the
21	sample is that there is O_2 on the surface, oxide on
22	the surface, and then you see material that when it
23	went up in temperature had all transformed to the beta
24	phase. But as oxygen diffused into the metal from the
25	oxide that's lying on the surface, the oxygen
I	I

(202) 234-4433

	27
1	concentration in the beta phase got above the
2	solubility limit and caused it to go back to the alpha
3	phase, which had a lot of oxygen in it.
4	And so when you take it all back down to
5	room temperature, what you see is a region that was in
6	the beta phase at high temperature. You clearly see
7	this oxygen-stabilized alpha layer. And, of course,
8	you see the oxide layer.
9	Among these phases, the only one that has
10	any ductility is a portion of the prior beta phase.
11	It's the portion of that phase that has a low oxygen
12	content, a content lower than about six-tenths of a
13	percent of oxygen.
14	VICE CHAIRMAN SIEBER: Could you tell us
15	which phase is body-centered cubic and which is
16	DR. MEYER: Yes.
17	VICE CHAIRMAN SIEBER: phase-centered?
18	DR. MEYER: Yes, I can. The
19	low-temperature alpha phase is a hexagonal close-pack
20	structure. And the high-temperature beta phase is a
21	body-centered cubic.
22	When the original work was done in the
23	late '60s and early '70s and the rule was first
24	written, there was this Appendix K that you are
25	probably all familiar with. Appendix K required that
Į	

(202) 234-4433

1you use the Baker-Just oxidation equation.2And that was because the data that Hobson3had taken, which were used as the basis for the 174percent number, had been reduced with the Baker-Just5equation. Hobson did not measure the amount of6oxidation. He calculated it with Baker-Just. So he7used Baker-Just going in. He used Baker-Just coming8out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they25don't. So would you use a different equation for each		28
3had taken, which were used as the basis for the 174percent number, had been reduced with the Baker-Just5equation. Hobson did not measure the amount of6oxidation. He calculated it with Baker-Just. So he7used Baker-Just going in. He used Baker-Just coming8out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	1	you use the Baker-Just oxidation equation.
4percent number, had been reduced with the Baker-Just5equation. Hobson did not measure the amount of6oxidation. He calculated it with Baker-Just. So he7used Baker-Just going in. He used Baker-Just coming8out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	2	And that was because the data that Hobson
 equation. Hobson did not measure the amount of oxidation. He calculated it with Baker-Just. So he used Baker-Just going in. He used Baker-Just coming out. And it worked. We're switching from the Baker-Just correlation to the Cathcart-Pawel correlation because it's a much more accurate correlation. And I just wanted to put in your handout the equations that we're using so that they would be for reference. I don't think I need to talk about those in any detail. MEMBER ARMIJO: Ralph, I just want to ask one question and just to be sure. Have you confirmed or is it well-known that the oxidation kinetics for the, let's say, various types of zirconium alloys, Zircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family? DR. MEYER: Yes. We have confirmed that they don't. 	3	had taken, which were used as the basis for the 17
6oxidation. He calculated it with Baker-Just. So he7used Baker-Just going in. He used Baker-Just coming8out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,20Eircaloy-2, 4, M5, and ZIRLO, have the same activation21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	4	percent number, had been reduced with the Baker-Just
7used Baker-Just going in. He used Baker-Just coming out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're using so that they would be for reference. I don't think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask one question and just to be sure. Have you confirmed or is it well-known that the oxidation kinetics for the, let's say, various types of zirconium alloys, Zircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family?22DR. MEYER: Yes. We have confirmed that they don't.24MEMBER ARMIJO: Okay. Confirmed that they	5	equation. Hobson did not measure the amount of
8out. And it worked.9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	б	oxidation. He calculated it with Baker-Just. So he
9We're switching from the Baker-Just10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	7	used Baker-Just going in. He used Baker-Just coming
10correlation to the Cathcart-Pawel correlation because11it's a much more accurate correlation. And I just12wanted to put in your handout the equations that we're13using so that they would be for reference. I don't14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	8	out. And it worked.
11 it's a much more accurate correlation. And I just 12 wanted to put in your handout the equations that we're 13 using so that they would be for reference. I don't 14 think I need to talk about those in any detail. 15 MEMBER ARMIJO: Ralph, I just want to ask 16 one question and just to be sure. Have you confirmed 17 or is it well-known that the oxidation kinetics for 18 the, let's say, various types of zirconium alloys, 19 Zircaloy-2, 4, M5, and ZIRLO, have the same activation 20 energies and pre-exponentials so that this one 21 equation represents the whole family? 22 DR. MEYER: Yes. We have confirmed that 23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they	9	We're switching from the Baker-Just
 wanted to put in your handout the equations that we're using so that they would be for reference. I don't think I need to talk about those in any detail. MEMBER ARMIJO: Ralph, I just want to ask one question and just to be sure. Have you confirmed or is it well-known that the oxidation kinetics for the, let's say, various types of zirconium alloys, Zircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family? DR. MEYER: Yes. We have confirmed that they don't. MEMBER ARMIJO: Okay. Confirmed that they 	10	correlation to the Cathcart-Pawel correlation because
 using so that they would be for reference. I don't think I need to talk about those in any detail. MEMBER ARMIJO: Ralph, I just want to ask one question and just to be sure. Have you confirmed or is it well-known that the oxidation kinetics for the, let's say, various types of zirconium alloys, Zircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family? DR. MEYER: Yes. We have confirmed that they don't. MEMBER ARMIJO: Okay. Confirmed that they 	11	it's a much more accurate correlation. And I just
14think I need to talk about those in any detail.15MEMBER ARMIJO: Ralph, I just want to ask16one question and just to be sure. Have you confirmed17or is it well-known that the oxidation kinetics for18the, let's say, various types of zirconium alloys,19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	12	wanted to put in your handout the equations that we're
 MEMBER ARMIJO: Ralph, I just want to ask one question and just to be sure. Have you confirmed or is it well-known that the oxidation kinetics for the, let's say, various types of zirconium alloys, Zircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family? DR. MEYER: Yes. We have confirmed that they don't. MEMBER ARMIJO: Okay. Confirmed that they 	13	using so that they would be for reference. I don't
16 one question and just to be sure. Have you confirmed 17 or is it well-known that the oxidation kinetics for 18 the, let's say, various types of zirconium alloys, 19 Zircaloy-2, 4, M5, and ZIRLO, have the same activation 20 energies and pre-exponentials so that this one 21 equation represents the whole family? 22 DR. MEYER: Yes. We have confirmed that 23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they	14	think I need to talk about those in any detail.
<pre>17 or is it well-known that the oxidation kinetics for 18 the, let's say, various types of zirconium alloys, 19 Zircaloy-2, 4, M5, and ZIRLO, have the same activation 20 energies and pre-exponentials so that this one 21 equation represents the whole family? 22 DR. MEYER: Yes. We have confirmed that 23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they</pre>	15	MEMBER ARMIJO: Ralph, I just want to ask
18 the, let's say, various types of zirconium alloys, 2ircaloy-2, 4, M5, and ZIRLO, have the same activation energies and pre-exponentials so that this one equation represents the whole family? DR. MEYER: Yes. We have confirmed that they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they	16	one question and just to be sure. Have you confirmed
19Zircaloy-2, 4, M5, and ZIRLO, have the same activation20energies and pre-exponentials so that this one21equation represents the whole family?22DR. MEYER: Yes. We have confirmed that23they don't.24MEMBER ARMIJO: Okay. Confirmed that they	17	or is it well-known that the oxidation kinetics for
<pre>20 energies and pre-exponentials so that this one 21 equation represents the whole family? 22 DR. MEYER: Yes. We have confirmed that 23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they</pre>	18	the, let's say, various types of zirconium alloys,
21 equation represents the whole family? 22 DR. MEYER: Yes. We have confirmed that 23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they	19	Zircaloy-2, 4, M5, and ZIRLO, have the same activation
DR. MEYER: Yes. We have confirmed that they don't. MEMBER ARMIJO: Okay. Confirmed that they	20	energies and pre-exponentials so that this one
<pre>23 they don't. 24 MEMBER ARMIJO: Okay. Confirmed that they</pre>	21	equation represents the whole family?
24 MEMBER ARMIJO: Okay. Confirmed that they	22	DR. MEYER: Yes. We have confirmed that
	23	they don't.
25 don't. So would you use a different equation for each	24	MEMBER ARMIJO: Okay. Confirmed that they
	25	don't. So would you use a different equation for each

(202) 234-4433

	29
1	if you're
2	DR. MEYER: Okay. I really need to
3	explain this. And I know I ought to do this. The
4	Cathcart-Pawel equation works very well for all of the
5	alloys we have tested, the ones you have mentioned:
6	Zirc-2, Zirc-4, M5, and ZIRLO, at the high temperature
7	end of the range of interests. At 1,200 degrees
8	Centigrade, a Cathcart-Pawel works quite well for all
9	of them.
10	As you go down in temperature,
11	particularly the M5 alloy, which has no tin in it,
12	it's just zirconium-1 niobium, it has slower oxidation
13	kinetics, say, around 1,000 degrees Centigrade. It's
14	much slower.
15	Now, by using the Cathcart-Pawel equation,
16	even for M5, we're not introducing any error into the
17	situation because it's just the parameter that we
18	correlate against. It's our surrogate for time. So
19	it does not represent the true oxidation rate for M5
20	at lower temperatures, but it is still a good time
21	yardstick.
22	MS. UHLE: This is Jennifer Uhle.
23	MEMBER POWERS: Couldn't you just stick
24	with Baker-Just, then?
25	DR. MEYER: We could have used Baker-Just.
I	

(202) 234-4433

	30
1	MS. UHLE: This is Jennifer Uhle from the
2	staff. We just want to point out that in the
3	regulatory guide or perhaps in the ruling, which when
4	it gets worked out will be the guidance to make sure
5	that whatever correlation or whatever equation,
б	oxidation equation, you're using to reduce your data
7	to show when you lost ductility, you have to use that
8	in your system analysis code that will tell you what
9	your fuel rods would be, how brittle they would be
10	during a loss-of-coolant accident.
11	So right now there is a disconnect because
12	in the 17 percent limit currently, that was derived
13	using Baker-Just. However, in best estimate methods
14	that the licensees have and vendors have been using
15	for they have NRR approval to use, they're free to use
16	whatever correlation is acceptable for the oxidation
17	equation.
18	So there is currently a disconnect. Now,
19	thankfully it's not that much in error, but in the
20	future, we need to make sure that those two are
21	consistent.
22	MEMBER CORRADINI: Just to clarify because
23	you tried to explain it. I thought I got it, but now
24	I don't have it. So let's just stick with
25	Cathcart-Pawel. And you were to take a set of data.
	I

(202) 234-4433

	31
1	So you said this is just a surrogate for
2	time. So what you're using this for is to compute a
3	percent reaction given the protocol, which is if it's
4	not ballooned, it's one-sided. If it's ballooned,
5	it's two-sided and then with that percentage, then
б	come back to a time.
7	I'm still not clear about that because
8	what you said about M5, I remember being the case.
9	I'm not exactly sure how it still sounds to me like
10	using Cathcart-Pawel. With a range of temperatures as
11	you cook the fuel, you're going to overestimate
12	oxidation.
13	DR. MEYER: You will overestimate
14	oxidation for M5, for example, because it spent some
15	time at a lower temperature. But, as it turns out,
16	the oxidation process doesn't control the
17	embrittlement process. It's diffusion into the metal
18	that controls the embrittlement process. So we're
19	just using oxidation rate as sort of a surrogate for
20	diffusion rate because we can measure it.
21	MEMBER CORRADINI: I understand. May I
22	just ask, then, the obvious question? So if I
23	overestimate oxidation and it's a surrogate for
24	diffusion, why am I not also overestimating the
25	diffusion time and, therefore, overestimating the
ļ	I

(202) 234-4433

	32
1	embrittlement?
2	DR. BILLONE: Ralph, can I
3	DR. MEYER: Help me out, Mike.
4	DR. BILLONE: No. Let's look at it a
5	different way. If I test M5 at 1,200 degrees C. and
6	Zirc-4 at 1,200 degrees C. or 1,000 degrees C
7	let's go to the 1,000, where they're very different
8	they pick up weight, oxygen, at different rates, but
9	they embrittle at about the same rate because what's
10	controlling is a diffusion process of oxygen into the
11	metal and through the metal.
12	So M5 forms a thin oxide layer. Zirc-4
13	will form a thick oxide layer, which doesn't
14	contribute at all as long as you have an oxygen source
15	there to drive your diffusion.
16	The simple fact is when you plot M5
17	ductility goes down like that with time versus Zirc-4
18	ductility, which goes down. They go down at the same
19	level.
20	MEMBER CORRADINI: So one last question,
21	and then I'll be quiet, which is then the oxidation
22	kinetics is nothing. You are using the A and the Q
23	and the R essentially as a solid diffusivity model,
24	which is approximately right, regardless of the
25	oxidation.
ļ	

(202) 234-4433

	33
1	MEMBER BONACA: Right.
2	MEMBER CORRADINI: Okay. Fine.
3	DR. MEYER: Now, I want to point out that
4	you would not want to do this in calculating the
5	metal-water heat, the separate matter. The
6	metal-water heat you would want to use a best estimate
7	oxidation correlation. But for us it turned out to be
8	convenient just to use this same calculation, plot all
9	of our data not as a function of time but as a
10	function of what we call CPECR, Cathcart-Pawel
11	Equivalent Clad and Reactive.
12	MEMBER ABDEL-KHALIK: Would you expect
13	this to work for any and all yet-to-be-developed
14	alloys?
15	DR. MEYER: I expect this to work for any
16	and all zirconium-based alloys that are in the tin
17	niobium family at the concentrations of around one
18	percent; in other words, the range of things we
19	MEMBER ABDEL-KHALIK: And this is
20	DR. MEYER: We tested all the way from
21	zirconium-tin to zirconium-niobium. Anything in that
22	range I believe these results will be applicable.
23	MEMBER ABDEL-KHALIK: And this expectation
24	is based on what? Intuition?
25	DR. MEYER: It's based on testing that

(202) 234-4433

	34
1	wide variety of materials that are in this range which
2	have not only differences in composition but also
3	differences in fabrication and understanding which
4	differences cause some change in the ductility
5	behavior and arranging the criteria in such a way that
6	it would catch all of them.
7	MEMBER BANERJEE: A couple of questions.
8	What is that 87.8 there?
9	DR. MEYER: It's just a geometric factor.
10	Let me define equivalent cladding. There are four
11	hours of details involved in this subject at least.
12	Equivalent cladding reacted is where you can do a
13	calculation and you assume that all of the oxygen that
14	is consumed goes into ZrO_2 at the surface. And none
15	is lost by diffusion into the metal.
16	That's what ECR is. It's a concept that
17	was used 35 years. There's nothing wrong with the
18	concept. And we stick with it, with the concept.
19	MEMBER BANERJEE: What is it? It says
20	it's 20 percent oxidized or something, 17 percent?
21	What does that sort of pertain to?
22	DR. BILLONE: It pertains to the fraction
23	of the wall thickness that you consume.
24	DR. MEYER: The temperature of the time
25	and the wall thickness, yes.
	I

(202) 234-4433

(202) 234-4433

	35
1	MEMBER BANERJEE: Thank you.
2	MEMBER ARMIJO: Okay.
3	MEMBER APOSTOLAKIS: Now, this
4	temperature, Ralph, which temperature is this peak?
5	Is that time-dependent as well?
6	DR. MEYER: Yes.
7	MEMBER APOSTOLAKIS: Big T. That's
8	time-dependent?
9	DR. MEYER: Yes.
10	MEMBER APOSTOLAKIS: So time is varied in
11	T as well?
12	DR. MEYER: Yes, yes.
13	MEMBER APOSTOLAKIS: Okay.
14	DR. MEYER: So you do the calculation.
15	And you, just like that first slide that I showed you,
16	have temperature running along with time and changing.
17	And you can in the models integrate the amount of
18	oxidation that takes place, which is a good surrogate
19	for integrating the amount of diffusion that takes
20	place because they have the same kinetics and roughly
21	the same coefficients.
22	Okay. The first and main result that we
23	see is that, sure enough, the high burnup material
24	embrittles in less time; that is, at a lower
25	calculated oxidation level, than the fresh material.
l	

(202) 234-4433
	36
1	So what you have here is irradiated H. B.
2	Robinson Zircaloy-4. It's 15 by 15. It's old
3	vintage. It has a rough surface. And it is
4	embrittling at around eight percent ECR, which is well
5	below the 17 percent number that we have talked about.
6	Now, if you take very similar unirradiated
7	material I'm not quite sure it deserves to be
8	called archive material, but it's as close as we could
9	get to archive material. So here we have this same
10	vintage unirradiated 15 by 15 Zircaloy-4. And we test
11	that. And it tests out at about 14 percent.
12	Now, just as a little matter of interest,
13	this is with the Cathcart-Pawel model. If we had been
14	using the Baker-Just report, Baker-Just equation,
15	there's a 3 percent difference. It would be 17
16	percent. This is exactly what was tested, the result
17	that was obtained in the early 1970s, on which the
18	original rule was based.
19	MEMBER ARMIJO: Ralph, just so everybody
20	knows, your ductility reference is two percent
21	ductility. That's your target that you want to
22	achieve.
23	DR. MEYER: Yes.
24	MEMBER APOSTOLAKIS: Okay.
25	DR. MEYER: Sorry. Sorry about that. I
ļ	I

(202) 234-4433

	37
1	have glibly used the word "ductility" here. We
2	actually have two techniques that we use. One of them
3	comes directly from the Instron machine, where we look
4	at the displacement versus time and can get something
5	we call an offset strain.
б	And the other method is actually simpler.
7	You just measure the diameter of the ring with
8	micrometers before you squeeze it and after you
9	squeeze it, right at the point where you develop the
10	first through-wall crack.
11	And in one case because of bending and
12	other things that I don't understand but I hope Mike
13	understands, in one case the zero is at one percent
14	when you use micrometers and it's two percent when
15	you're using this offset strained value that we
16	measure.
17	MEMBER APOSTOLAKIS: So when you say,
18	"high burnup" roughly
19	DR. MEYER: High burnup. This had a
20	burnup of
21	DR. BILLONE: Sixty-seven.
22	DR. MEYER: 67 gigawatt days per ton.
23	You can see that the specimen that was tested here had
24	a corrosion thickness of about 80 microns. If you run
25	the numbers and take 14 percent, convert 80 microns to
I	

(202) 234-4433

	38
1	equivalent cladding reacted as a percentage, multiply
2	that by 1.2, which is the F factor, and subtract it
3	from 14, you get 8.
4	So this is where the so-called F factor
5	comes in. The reason that we didn't just say 1.2
6	right off the bat was before we made the measurement,
7	we didn't know what the number was going to be. And
8	so we just put a factor in the equation.
9	After we measured it, we found some
10	sensitivity to heat-up rates and cool-down rates,
11	which could cause this F factor to have several
12	values.
13	So we have, in fact, explored the possible
14	range of those values and, as a matter of judgment,
15	selected 1.2 as the most appropriate value to use.
16	This is the point where judgment has entered into the
17	final result and where there can be some difference of
18	opinion on what the F factor should be.
19	MEMBER BANERJEE: Could you just repeat
20	what the F factor is?
21	MEMBER ARMIJO: He hasn't gotten there
22	yet.
23	DR. MEYER: Wait for a couple of slides
24	and let
25	MEMBER BANERJEE: You keep saying "F

(202) 234-4433

	39
1	factor." And I don't know where it is. All right.
2	DR. MEYER: F is for factor. It's just a
3	factor. Look, this is an empirical correlation. And
4	what we're doing is we know that the main effect
5	and I forgot to say it here is a result of hydrogen
6	that gets absorbed into the cladding during normal
7	operation as a consequence of the corrosion process.
8	We know that about 15 percent of the released hydrogen
9	gets absorbed into the cladding.
10	But I said before that oxygen was the
11	embrittling agent in the material. And so what we
12	believe is going on here is that the hydrogen is
13	controlling both the solubility limits or it's
14	altering the solubility limits and the diffusion
15	rates.
16	So it's not necessarily doing any
17	embrittling on its own because it's all in solution at
18	the high temperature, but it is affecting the oxygen
19	diffusion into the metal.
20	And on this slide, I simply show that we
21	have confirmed that hydrogen is having this effect by
22	taking unirradiated Zircaloy-4 and other materials,
23	pre-hydriding them in the laboratory, and then testing
24	them in the same way. And you can reproduce the
25	effect by doing that.
I	I

(202) 234-4433

40 1 MEMBER ARMIJO: Ralph, there is a contention that I want to give you a shot of answering 2 3 before the industry folks talk that by virtue of 4 quenching these materials from high temperature, you 5 introduce a hydrogen embrittlement, in addition to the oxidation embrittlement, because that's an issue that 6 7 is going to come up we'll have to wrestle with. Have you confirmed that the hydrogen effect is strictly 8 9 oxygen or is it oxygen embrittlement plus hydrogen 10 embrittlement? DR. MEYER: Well, now, I think that there 11 12 is a component of direct hydrogen embrittlement in the samples that have been -- is it the quenched ones or 13 14 the slow-cooled ones? I get confused on this. But 15 all of this is wrapped up in the cooling rate --16 MEMBER ARMIJO: Right. MEYER: -- effect, which we have 17 DR. 18 looked at and made some judgments about. Mike, do you 19 want to --20 DR. BILLONE: Yes. I would say most of 21 that loss of ductility that you see is due to increase 22 There's a small but significant -- in in oxygen. 23 other words, if you're setting two percent as the 24 limit, if you slow-cool the sample, you might get 25 three percent ductility where you expect less than

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	three.
2	And so essentially quenching freezes in
3	hydrogen in solution in places where it causes
4	embrittlement. So if you quench at 800 degrees C.,
5	your sample is going to be more brittle than if you
6	just cool to room temperature with no quench.
7	MEMBER ARMIJO: Okay.
8	DR. MEYER: Okay. Now, the next big
9	effect that we found in this study was actually noted
10	first in some Eastern European tests that were done in
11	the '90s. And we learned from what we did that this
12	breakaway oxidation process had it been seen earlier,
13	in fact, affects the embrittlement process.
14	So what happens with the zirconium alloys?
15	And it can happen to all of them. It turns out that
16	the old E110 Russian cladding was the most susceptible
17	to this and provided the most dramatic pictures of it.
18	But what happens is that as you enter this
19	high temperature region and you start laying down the
20	oxide on the surface, that the type of oxide that we
21	normally see is black and shiny. It's a tetragonal
22	form. And it's rather protective and doesn't allow
23	the hydrogen to enter in any significant amount during
24	the period of the high temperature transient.
25	Under some conditions, this oxide can
ļ	I

(202) 234-4433

	42
1	switch from a tetragonal to a mono-clinic form. A
2	mono-clinic form is not black and shiny. It's dull
3	looking. It's full of micro cracks. And it lets
4	hydrogen in.
5	And so as soon as you get into this
6	break-away process, hydrogen starts getting sucked
7	into the cladding and has the same effect as it had
8	before. So you have to be careful with all of these
9	alloys to make sure that you don't have the conditions
10	that promote the bad oxide to grow.
11	VICE CHAIRMAN SIEBER: Is that flakes of
12	oxide?
13	DR. MEYER: Yes, those were flakes. That
14	was a very advanced case of stuff. I like that
15	picture because of its dramatic effect.
16	MEMBER ARMIJO: Ralph, to be sure that
17	everyone has some time, it might be a good idea to get
18	to your proposed.
19	DR. MEYER: Okay.
20	MEMBER ARMIJO: It's 9:27. And we're
21	supposed to wrap up at 10:00.
22	DR. MEYER: Okay.
23	MEMBER ARMIJO: Is that right, Mr.
24	Chairman? So I think it's important that people
25	understand your proposal.
ļ	

(202) 234-4433

	43
1	DR. MEYER: Okay. Let me skip over these,
2	then.
3	MS. UHLE: Why don't you talk about that
4	one there?
5	DR. MEYER: I do need to talk about this
6	one.
7	MEMBER ARMIJO: Yes. Okay.
8	DR. MEYER: Okay. So the concept is that
9	diffusion of oxygen into the metal is the embrittling
10	factor, not laying down the oxide on the surface. It
11	turns out that you have a big source of oxygen on the
12	inside of all cladding materials, UO_2 fuel full of
13	oxygen.
14	And we know from our present work and from
15	some historic work that we looked up that as soon as
16	the cladding and the fuel stick together, that source
17	of oxygen then becomes available for diffusion into
18	the cladding.
19	I think we have incontrovertible is
20	that the right word? evidence that this effect is
21	real and it is at least when you have a bonded fuel
22	layer, which you generally would have at high burnups,
23	there is ample oxygen on the ID. So that you get
24	diffusion from both directions, whether you're in a
25	balloon or not in a balloon.
I	

(202) 234-4433

	44
1	VICE CHAIRMAN SIEBER: That ample oxygen
2	comes from the UO_2 ?
3	DR. MEYER: It comes from the UO $_2$. It
4	comes from
5	VICE CHAIRMAN SIEBER: I thought that was
6	pretty tightly bound.
7	DR. MEYER: It comes from the UO $_2$. One
8	other thing I need to point out and then I'll get
9	right to the criteria is that within about an inch
10	of the center of the rupture, you also have hydrogen
11	absorption on the ID. You had steam getting in,
12	oxidizing the inner surface of the cladding, where it
13	can get in the balloon.
14	And, again, the oxidation process frees up
15	hydrogen. And the hydrogen isn't swept away very
16	readily. It's trapped inside. And so you get high
17	hydrogen absorption in the vicinity of the balloon.
18	MEMBER BANERJEE: So does the oxygen
19	diffuse through the oxide layers, oxide layer crack,
20	and get through the reaction zone?
21	DR. BILLONE: No, no. What happens is you
22	are getting oxidation in the opening, the balloon
23	opening region.
24	MEMBER BANERJEE: I'm saying imagine
25	you've got this bonded fuel or whatever.
Į	

(202) 234-4433

	45
1	DR. BILLONE: Right.
2	MEMBER BANERJEE: Oxygen is now diffusing
3	through the oxide or are there cracks in the oxide and
4	allows oxygen in?
5	DR. BILLONE: The steam oxygen is creating
6	an oxide layer. And oxygen is also diffusing through
7	that layer.
8	VICE CHAIRMAN SIEBER: Right.
9	MEMBER BANERJEE: From the inside?
10	DR. BILLONE: From the inside.
11	MEMBER BANERJEE: But when it's just
12	bonded.
13	DR. BILLONE: Well, in the balloon, you
14	have expanded 50 percent.
15	MEMBER BANERJEE: Right, right. Yes, we
16	understand that.
17	DR. BILLONE: I'm trying to answer about
18	the ID. I'm missing the point.
19	DR. MEYER: It is present on the surface,
20	and it just diffuses in.
21	MEMBER BANERJEE: It diffuses in. It's
22	not cracked.
23	DR. MEYER: No. It diffuses in.
24	MEMBER BANERJEE: Aren't there kinetics
25	associated with that diffusion?
I	I

	46
1	DR. BILLONE: That's the same kinetics.
2	MEMBER BANERJEE: It goes to teach us how?
3	DR. MEYER: I need to go through this.
4	And then I think I'm where you want to be. So we get
5	these high hydrogen concentrations, very high hydrogen
6	concentrations, 3,000 ppm, the vicinity of the
7	balloon.
8	The balloon does not stay ductile. It has
9	some strength left, but in spite of the fact that the
10	current regulation has detailed prescription on how to
11	analyze the balloon, it really doesn't work because
12	the balloon has hydrogen in it that wasn't realized
13	when the rule was put together that causes the balloon
14	to be let me go right to here. And I'll come back
15	if I have to.
16	So here is what we are proposing to do.
17	We're proposing to keep the temperature limit right
18	where it is with no change. There's a lot of history
19	with this. And there's also an effect that we see in
20	the present work.
21	Once you get above about 1,200 degrees
22	Centigrade, the oxygen diffusion rate picks up. And
23	the oxidation limits would then be lower. And so you
24	basically have more parameters here than you need.
25	And you can just fix this temperature
I	I

(202) 234-4433

	47
1	right where it has always been at 2,200 degrees
2	Fahrenheit and then work the rest of the problem from
3	there. So that is what we have done.
4	And now what we are looking for here is a
5	replacement for 17 percent, which accounts for the
6	effect of burnup. And so we will start with a
7	measurement on unirradiated cladding at 1,200 degrees.
8	And there's a reason for choosing the 1,200 degrees.
9	This is the analogue of 17 percent. I'll
10	show you some values. And we subtract from that the
11	corrosion thickness multiplied by a scaling factor,
12	just an empirical factor, to fit the data.
13	MEMBER ARMIJO: Now, currently that factor
14	is one, right?
15	DR. MEYER: Yes. If you were to use the
16	information notice recommendation, that factor would
17	be one. I have to tell you that at the time the
18	information notice was written, we did not understand
19	this process. It was a guess. We expected that there
20	would be an effect, and it was a logical guess to
21	make.
22	MEMBER ARMIJO: You have incorporated all
23	burnup effects into that 1.2 times
24	DR. MEYER: Well, not quite all because
25	there is the matter of break-away
I	1

(202) 234-4433

	48
1	MEMBER ARMIJO: Right. Okay.
2	DR. MEYER: that is accommodated by a
3	separate limit. And then there is the matter of the
4	two-sided oxygen penetration. All of these are
5	accommodated by everything that is on this page, but
6	the first line takes account of the basic burnup
7	effect that is a consequence of corrosion and hydrogen
8	absorption during normal operations.
9	MEMBER APOSTOLAKIS: This factor of one,
10	formerly one, ECR corrosion
11	DR. MEYER: Yes.
12	MEMBER APOSTOLAKIS: was that in the
13	information notice?
14	DR. MEYER: Yes. In the information
15	notice, we simply said, "Interpret the limit to be the
16	sum of the transient and the corrosion thickness."
17	So, in effect, you're subtracting the corrosion
18	thickness from 17 percent.
19	And we didn't say multiply it by an F
20	factor. We just said
21	MEMBER APOSTOLAKIS: So F is 1.2?
22	DR. MEYER: F is 1.2 based on our current
23	data and some judgment about the appropriate
24	adjustments to make to account for these cooling rate
25	effects.
I	I

(202) 234-4433

	49
1	Okay. Now what we're suggesting here is
2	that we assume two-sided oxygen pickup everywhere on
3	the run and simply not do a calculation in the
4	balloon. And if you'll let me, I'll show you how I
5	get to that point on the next slide.
6	And then, finally, we measure the minimum
7	break-away time and use that time as a time limit for
8	the period in the transient above 650 degrees
9	Centigrade. The reasons for all of these choices of
10	numbers
11	MEMBER ARMIJO: That time is the same as
12	the time allowable for the entire transient, that you
13	can't get break-away during that transient?
14	DR. MEYER: The period above 650. Below
15	650, you're not susceptible to creating this
16	break-away oxide, but above 650, you can get the
17	break-away oxide. And once it starts developing, it
18	may persist, even if you change and move to a
19	different temperature in the transient. So we look
20	for the minimum. And I'll show you some numerical
21	examples.
22	MEMBER CORRADINI: Just for clarification,
23	Ralph, I just wanted to so the ECR is using the
24	Cathcart-Pawel model at 1,200 C.?
25	DR. MEYER: The ECR unirradiated is the
	I

(202) 234-4433

	50
1	experimentally observed.
2	MEMBER CORRADINI: I'm just trying to
3	understand what you just said. So if I were to do a
4	computation, what am I computing? So the ECR
5	unirradiated is using the 1,200 C.?
б	DR. MEYER: This is a measured result.
7	You do test. And you find the transition from ductile
8	to brittle behavior, just like we showed on those
9	slides. And you do that with Cathcart-Pawel ECR on
10	the x-axis, instead of time.
11	MEMBER CORRADINI: Right. I understand.
12	DR. MEYER: And you take that number. And
13	that's what you have right here.
14	MEMBER CORRADINI: Okay. But I am going
15	to say it back to you so I get it right. You don't
16	have a stylized time history for the temperature. So
17	you're using that $ECR_{unirradiated}$ at a constant 1,200 C.?
18	DR. MEYER: That's correct.
19	MEMBER CORRADINI: And then the second ECR
20	corrosion is what again? What is that ECR _{corrosion} ?
21	MS. UHLE: That's the preexisting
22	corrosion that occurs when the rods are just burned at
23	normal temperatures.
24	MEMBER CORRADINI: Calculated how?
25	DR. MEYER: Again, it's measured. The H.
ļ	

(202) 234-4433

	51
1	B. Robinson rods had 80 microns of oxide on the
2	surface of them.
3	MS. UHLE: The licensees
4	DR. MEYER: The vendors know what their
5	corrosion rates are so they can tell you
6	approximately.
7	MEMBER CORRADINI: So this is allowable by
8	the way you're doing this that this is allowable
9	relative to some predetermined corrosion rate buildup
10	as a function of burnup?
11	DR. MEYER: Correct.
12	MEMBER APOSTOLAKIS: So for a given
13	burnup, given kind of fuel, the right-hand side of the
14	inequality is a number?
15	DR. MEYER: Yes.
16	MEMBER APOSTOLAKIS: On the left, you go
17	to the equation, right?
18	DR. MEYER: On the left is your
19	MEMBER APOSTOLAKIS: Calculation.
20	DR. MEYER: calculation, your
21	MEMBER BANERJEE: But you used
22	Cathcart-Pawel first, too.
23	MEMBER APOSTOLAKIS: Yes. And then the
24	result of that is? Time.
25	MEMBER CORRADINI: So my last question is
I	

```
(202) 234-4433
```

	52
1	to get to the
2	MEMBER BANERJEE: It's whatever ECR is the
3	result. It has to be less than the right-hand side.
4	MEMBER APOSTOLAKIS: Right. But that
5	determines what?
6	MEMBER BANERJEE: Time and temperature.
7	MEMBER KRESS: But in making that
8	calculation, you use the area of the clad on both
9	sides?
10	MEMBER CORRADINI: It doesn't matter.
11	It's the thickness.
12	DR. MEYER: We're using
13	DR. BILLONE: Two-sided oxidation.
14	DR. MEYER: two-sided equations.
15	MEMBER KRESS: And it's a function of
16	temperature. So you have to do it along the whole wad
17	at different temperatures?
18	DR. MEYER: Well, you do it just at the
19	peak, like you do now at the peak temperature node.
20	MEMBER KRESS: You're looking at the peak
21	only?
22	DR. MEYER: Yes. In this case now, the
23	peak maximum oxidation would always occur at the peak
24	node, peak temperature.
25	MEMBER KRESS: Okay. So you do it at the
I	I

(202) 234-4433

	53
1	peak. But the temperature is a function of time?
2	DR. MEYER: Yes.
3	MEMBER CORRADINI: One last clarification.
4	So Sam asked you about t in the last arrow. So that
5	t always has to be less than the actual transient time
б	because you're going to be much below 650 for a lot of
7	the transient.
8	I know you don't want to do this, but just
9	to ask it theoretically, so you have gone through all
10	of this effort in the first arrow to take time and
11	wrap it into an ECR. But, yet, you come back to a
12	time measure. So why not just simply have two time
13	measures?
14	DR. MEYER: Well, that is basically the
15	way I look at it
16	MS. UHLE: Well, because we also have to
17	
18	DR. MEYER: for both of them.
19	MS. UHLE: We have to subtract off the
20	preexisting corrosion from the ECR calculated. So you
21	need it to be in some sort of format that's
22	consistent.
23	MEMBER CORRADINI: Okay. But I'm just a
24	crazy academic. So I'll
25	DR. BILLONE: No. I understand. I'll
	I

(202) 234-4433

	54
1	answer your questions.
2	MEMBER CORRADINI: I know how much the
3	fuel is inside the core. It's in so much time. So
4	I'm got cooking time at one temperature. I've got
5	cooking time during a transient. I have time.
б	So if you're going through all of the
7	effort to get an ECR and have a stylized thing to be
8	a surrogate for time, then you come back to a second
9	requirement that's time. Why not just simply use
10	time?
11	DR. MEYER: Well, in most cases, hopefully
12	
13	MEMBER CORRADINI: But you know it's the
14	real time of how you have the fuel in the core.
15	DR. BILLONE: May I try something?
16	DR. MEYER: The time is the time during
17	the transient.
18	DR. BILLONE: Time is a simplistic way of
19	presenting this to you. In his first viewgraph he
20	showed you of temperature versus time, you're going to
21	be integrating ECR over that and you
22	MEMBER CORRADINI: On the left-hand side?
23	DR. BILLONE: On the left-hand side. It's
24	not pure time. It's time and temperature, which is a
25	measure of oxidation. And it relates to
I	

(202) 234-4433

	55
1	embrittlement. So if you only go up to 1,000 degrees
2	C., you're going to have the same time period. You're
3	going to get a low ECR calculation.
4	MEMBER CORRADINI: I'll stop now, but I'm
5	still getting that you have a correction and the
6	correction factor is time of operation time. So I can
7	rearrange the thinking process and take the right-hand
8	side negative, put it over there, and operation
9	MS. UHLE: But there's still a temperature
10	issue there because the different rods are at
11	different temperatures. Okay? So we don't know what
12	the we can't just say this rod is going to be the
13	limiting rod and we know it's operating temperature
14	throughout the entire life span of that rod.
15	MEMBER POWERS: It would be a difference
16	between a small break and a large break LOCA.
17	MS. UHLE: Yes. So you still have a
18	time-temperature type couple there that you need to
19	factor in.
20	MEMBER CORRADINI: That's a good point.
21	That's true. I understand. Thank you.
22	So, then, last question about the arrow on
23	the little t. So the history of how any individual
24	rod is sitting inside the core is not going to affect
25	that? That is, I can have a hot rod

(202) 234-4433

	56
1	MS. UHLE: That's right. It does not have
2	a burnup effect.
3	DR. MEYER: So far as we know, that's
4	correct.
5	MS. UHLE: It's just the time in the
6	transient that exists above the 650 has to be and
7	the calculated transient that the licensees provide
8	would have to make sure that the time above that was
9	less than the minimum time.
10	MEMBER CORRADINI: Thank you.
11	DR. MEYER: If you let me do one numerical
12	example
13	MEMBER ABDEL-KHALIK: Before you take this
14	
15	MEMBER ARMIJO: I think we should let
16	Ralph give his thing. I think it's a little bit
17	complicated, but that second criteria is just to
18	prevent really crummy alloys from getting into your
19	reactor. And that's a real simple thing. The real
20	meat of the issue is the ECR during the LOCA
21	transient.
22	And so there are really two things that
23	they are trying to protect. And I think belaboring
24	that break-away thing isn't worth much, but Ralph
25	should give an example of how he would apply this to
I	I

(202) 234-4433

	57
1	a real material.
2	So I think with that, I am going to have
3	to
4	DR. MEYER: Let me show you a good one and
5	a bad one.
6	MEMBER ARMIJO: Okay.
7	DR. MEYER: And I'll skip over the five in
8	between.
9	MEMBER ARMIJO: Okay. Thank you, Ralph.
10	DR. MEYER: Okay. So here is M5. And if
11	we take a fresh piece of M5 tubing and find the point
12	at which it loses its ductility, it's about 20 percent
13	in this ECR definition. This is a typical value.
14	At end of life, M5 might have 40 microns
15	of corrosion. And you not make a geometric conversion
16	of 40 microns to the ECR unit. And it happens to be
17	four percent.
18	MEMBER APOSTOLAKIS: I thought the ECR
19	unirradiated was 17 percent. It's not.
20	DR. MEYER: It's not. That's part of the
21	problem. One size doesn't fit all.
22	MEMBER APOSTOLAKIS: Okay. Okay.
23	MEMBER BANERJEE: It depends on the alloy,
24	I guess.
25	DR. MEYER: It depends on the alloy. It
l	I

(202) 234-4433

	58
1	probably depends more on a couple of fabrication steps
2	than on the alloy composition. So now if you take 1.2
3	times 4 and subtract it from 20, you get 15.2 percent.
4	The current limit would be 17 percent minus 4 percent
5	or 13 percent. So, actually, you have a higher limit
6	with this material.
7	And the measured time at which break-away
8	occurs at the worst temperature is on the order of
9	5,000 seconds. A typical LOCA is what, 1,800 seconds.
10	So you have no problem with break-away on this
11	material. And you would use in your calculation 15.2,
12	instead of 17. Everything else would run the same way
13	that the current analysis is done.
14	This is going to ensure you that you have
15	covered the effects of manufacturing variables, alloy,
16	burnup, everything that we have found.
17	MEMBER BANERJEE: The first number is a
18	measured number
19	DR. MEYER: Yes.
20	MEMBER BANERJEE: or a calculated
21	number?
22	DR. MEYER: Measured. The second one is
23	also measured, but it will come from the vendor's
24	correlation from measurements in the plant.
25	MEMBER CORRADINI: We know the bad one
ļ	1

(202) 234-4433

	59
1	already.
2	DR. MEYER: You know the bad one already
3	is the old style Russian E110, where we measure with
4	the fresh cladding of transition of about 12 percent,
5	not 17 percent.
6	Now, this cladding is very resistant to
7	corrosion. It has low oxygen content and it's also
8	like the M5 is Zirconium-1 niobium. And so the
9	material, we had some 50-gigawatt day per ton cladding
10	in the Russian program. And that converts to only .5
11	percent.
12	So you get a limit of 11.4 percent for
13	this material. If you were using the current rule, it
14	would be 17 percent minus the .5 or 16 and a half.
15	But look at this. The break-away process
16	starts in about 500 seconds. So after 500 seconds,
17	these limits no longer apply. Very quickly, it will
18	embrittle. And so if you had a LOCA transient with
19	this fuel that spent more than 500 seconds above 650
20	degrees Centigrade, it probably would not retain
21	ductility after that transient.
22	Do you want me to quit now?
23	MEMBER ARMIJO: Yes. We are going to have
24	Dr. Ozer. Dr. Odelli Ozer from EPRI is going to speak
25	for the industry people, although there are some here
Į	

(202) 234-4433

	60
1	available to answer questions.
2	Dr. Ozer?
3	MEMBER ARMIJO: Do we have handouts of
4	your presentation?
5	DR. OZER: Ralph?
6	MEMBER ARMIJO: The blue folder?
7	DR. OZER: Yes. Thank you very much.
8	I would like to thank the Committee for
9	giving me the opportunity to express the industry's
10	position on this. I know we are kind of short on
11	time. So I am going to try to be rather concise.
12	First of all, let me state that we are
13	fully in support of the overall objective of NRC in
14	trying to develop performance-based criteria because
15	such criteria will allow the introduction of new
16	materials without the concern about getting exemptions
17	so the licensing process will be much smoother, will
18	go much faster.
19	We are also very much in support of the
20	excellent work that is being done at Argonne, the work
21	that Ralph covered in three minutes. You know, we're
22	very much in support of that.
23	Our concern is primarily with the
24	interpretation of that work and with the proposed
25	changes, the changes that are being proposed to the
I	

(202) 234-4433

	61
1	current criteria.
2	First of all, I think we all agree that
3	the data has not shown the presence of any public
4	safety issues.
5	MEMBER POWERS: I guess I just don't
6	understand that statement at all. Do you mean to tell
7	me that it's perfectly okay to embrittle a clad during
8	a transient so that when it shatters during cooling
9	DR. OZER: If you let me go
10	MEMBER POWERS: No. I want to understand
11	this sentence.
12	DR. OZER: I will address it. I would
13	like to address that to some greater extent. As I
14	said, we do have concerns about the interpretation of
15	the rules and, in particular, the use of the F factor,
16	which has been discussed at length, and the fact that
17	we may be getting oxygen ingress from the ID, how to
18	address that, whether to address it by assuming
19	double-sided oxidation. We are concerned about that
20	as well.
21	And, you know, the main concern is that we
22	feel that a rather bounding approach will have a
23	rather significant negative impact on the industry.
24	Again
25	MEMBER POWERS: I am still coming back to
I	I

(202) 234-4433

	62
1	your first sentence. You've got to explain that
2	better to me. It seems to me that it is really a bad
3	idea to embrittle a clad.
4	DR. OZER: One more slide. We think that
5	the current criteria are conservative. The
6	embrittlement issue was set up some 33 years ago
7	because at that time the concern was that we really
8	didn't know what kind of forces would be exerted on
9	fuel during a LOCA event.
10	Since then, a lot of experiments have been
11	done, both in Japan and in the U.S., that show that
12	even zero ductility fuel has enough strength to
13	withstand the stresses and strains that result from
14	the quench operation as well as a wide range of impact
15	loads that may be expected following the LOCA. So we
16	feel that there is conservatism in there.
17	We also feel that there is conservatism in
18	trying to determine when you will lose ductility from
19	ring-compression tests done on de-fueled cladding. We
20	think that those are tests that are very localized;
21	whereas, the response of fuel in the reactor will be
22	more of an integral nature and will be affected by the
23	fuel column that should be present there. So, you
24	know, we feel that those are conservatisms that are
25	present right now.
l	I

(202) 234-4433

	63
1	We also feel that we have margin,
2	considerable margin, today, particularly with regards
3	to high burnup fuel. And this is from a presentation
4	that was made by Westinghouse to the subcommittee a
5	couple of weeks ago which shows the power levels of
6	different fuel as a function of burnup. And we can
7	see that the higher-burnup fuel is way down compared
8	to fresh fuel or even once-burned fuel.
9	What we have over on the right-hand side
10	is the calculated response of either high-power fuel
11	or the lower-power high burnup fuel, the temperatures
12	that fuel will experience during a LOCA event.
13	What we can see is that the high burnup
14	fuel is in the 200-degree range. It's nowhere near
15	the limit. And the only way you can get this high
16	burnup fuel to reach the limit of temperatures is by
17	exceeding the limit everywhere else. So, you know, if
18	we're putting a cap on the fresh fuel, we're also de
19	facto putting a cap on the high burnup fuel.
20	MEMBER ARMIJO: So you are saying that the
21	high burnup effects that are the primary issue related
22	to the 1.2 factor occur only in fuel that cannot reach
23	these temperatures if that's what I heard you say.
24	DR. OZER: What I am saying is that

MEMBER ARMIJO: Reach the 1,200, can't

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	64
1	reach 1,100.
2	DR. OZER: That's right.
3	MEMBER ARMIJO: There is not enough
4	DR. OZER: There is not enough power in
5	the fuel to reach those temperatures. And we are
6	arguing about F factors that will apply for that kind
7	of a fuel.
8	MEMBER CORRADINI: Why is that? I missed
9	that. I apologize. Why is that?
10	DR. OZER: Because the higher burnup fuel
11	operates at much lower powers. This is in the
12	reactor, the power distribution in the reactor, fresh
13	fuel, once-burned fuel and second-burned fuel.
14	MEMBER CORRADINI: So it's strictly a
15	stored energy effect? It's not a decay heat effect?
16	Heat is not going to matter. It's just the opposite
17	then. If it's a decay heat effect, that's irrelevant.
18	If it's a stored energy effect, that's relevant.
19	I mean, if you're telling me it's power at
20	the moment I have the event I essentially redistribute
21	the stored energy, I accept that, but if it's a decay
22	heat effect, that's not the case.
23	DR. OZER: Well, again, the decay heat and
24	the power, stored power, produce these lines. This is
25	the response during a LOCA.
I	I

(202) 234-4433

	65
1	VICE CHAIRMAN SIEBER: Near term decay
2	heat is much shorter. Long-term is higher.
3	MEMBER ARMIJO: But it's all over by that
4	time.
5	MEMBER APOSTOLAKIS: What are the axes on
6	the first?
7	DR. OZER: The first one is burnup.
8	MEMBER APOSTOLAKIS: Burnup?
9	DR. OZER: Yes.
10	MR. DUNNE: This is Bert Dunne from Areva.
11	What you are looking at is the peaking factor. And
12	the cladding temperature transient is determined by a
13	normalized decay heat rate times the peaking factor.
14	So your peaking factor carries through into your decay
15	heat as well with time, at least for the time period
16	of a LOCA. So we find that the stuff out here in the
17	third cycle is operating about half of the decay heat
18	that the fresh fuel would be.
19	MEMBER CORRADINI: So it's mainly stored
20	energy effect?
21	MR. DUNNE: No. I think it's mainly decay
22	heat and partly stored energy.
23	VICE CHAIRMAN SIEBER: But those are
24	pretty, on that graph, that shows to me pretty, wide
25	power deviations, which I don't recall power
l	

(202) 234-4433

	66
1	deviations as severe as that.
2	MEMBER ARMIJO: You mean differences from
3	cycle to cycle?
4	VICE CHAIRMAN SIEBER: No. Differences
5	from fresh fuel to twice-burned fuel. Well, it runs
б	between about 70 percent and 130 percent, as opposed
7	to I see assemblies there running less than 50
8	percent.
9	MEMBER ARMIJO: Yes. They're pretty dead.
10	VICE CHAIRMAN SIEBER: They're pretty low.
11	MEMBER ARMIJO: They're pretty dead, but,
12	you know, you get a lot of burnup in one cycle
13	nowadays, so two cycles of burnup.
14	VICE CHAIRMAN SIEBER: Well, modern fuel
15	designs try to flatten the core as best we can to
16	DR. OZER: Well, we tried to reduce
17	leakage as well so that the high burnup assemblies
18	will be on the periphery.
19	MEMBER ARMIJO: But, you know, I want to
20	make sure that everybody understands that that is what
21	they're saying, that the temperatures achievable as a
22	function of burnup are defined by curves like this.
23	It may be different for BWRs and some kind of PWRs.
24	So the real risk is limited by the achievable
25	temperature during the LOCA.
I	I

(202) 234-4433

	67
1	DR. OZER: Exactly. Thank you.
2	So, again, we do feel that it is
3	conservative. And now we feel that there are some
4	additional conservatives that are being added on. And
5	that is the use of a single F factor, the requirement
6	of assuming double-sided oxidation, not only in the
7	balloon but everywhere throughout the rod, and, of
8	course, the assumption that the high burnup furl will
9	also oxidize at the limit temperature.
10	MEMBER POWERS: Let me ask you a question
11	about it. In bright red, you have "Experimental
12	evidence supports the view that embrittled material."
13	That experimental evidence on the forces or is it on
14	the material?
15	And if it's on the forces, gee, I'd like
16	to know where that information comes from because I
17	have searched in vain for some idea of what kinds of
18	impulses and forces you get during an ECCS recovery.
19	DR. OZER: This is based on experiments
20	that were done in Japan where fuel was passed through
21	a LOCA heat-up coolant scenario and then quenched.
22	John, would you?
23	MR. ALVIS: Yes. This is John Alvis from
24	Anatech. The Japanese run their integral samples
25	through a large-break LOCA heat-up. They hold an
I	

(202) 234-4433

	68
1	oxidation period. And then they cool down and quench.
2	But what the Japanese do with their tests,
3	their requirements are that they hold their tests with
4	axial constraint. So they apply a load to their
5	integral samples during the quench process. And they
б	have discovered that, even with high burnup interval
7	rodlets, that they can reach ECRs out to 20 percent
8	without losing the coolable geometry.
9	MEMBER ARMIJO: What kind of loads? Are
10	these minuscule? Are they significant loads?
11	MR. ALVIS: I think they hold their
12	what was it? Five newtons?
13	DR. BILLONE: Five hundred seventy.
14	PARTICIPANT: The quench assembly.
15	MR. ALVIS: Right. Their hypothesis is
16	that the grids would lock up or the rods would lock up
17	at the grid spans
18	MEMBER ARMIJO: So they put these things
19	in bending or some way that would
20	DR. BILLONE: Intention, intention.
21	DR. OZER: What they do is they heat it
22	up. They hold it. You know, they clamp it.
23	MEMBER ARMIJO: And then they quench.
24	DR. OZER: And then they quench it. And
25	they see whether it will break or not. And what they
I	I

(202) 234-4433

	69
1	see is that even the 17 percent ECR fuel will not
2	break, that you need much higher ECRs to break it.
3	MEMBER ARMIJO: Based on strength, not on
4	ductility?
5	DR. OZER: That's correct, yes.
6	MR. ALVIS: Correct.
7	DR. OZER: So that's why I'm saying even
8	zero ductility material has enough strength to
9	withstand stresses resulting from quench.
10	MEMBER ARMIJO: But you are not arguing
11	against a ductility limit, though, right? You accept
12	
13	DR. OZER: Not at this point, no. No.
14	But I'm trying to say that there is conservatism in
15	using ductility as a surrogate for what the fuel
16	you know, what we are concerned about is coolable
17	geometry. And we're trying to make sure that the fuel
18	will survive a LOCA event.
19	And ductility was used as a surrogate for
20	anything that may be happening in the reactor during
21	a LOCA event.
22	MEMBER POWERS: That's exactly what
23	happened, is that nobody knew what kind of forces were
24	going to be placed in the fuel. This seemed to say
25	that you do know. And I'm asking, how do you know
I	

(202) 234-4433

	70
1	that?
2	DR. OZER: Yes. The only thing that we
3	can say here is that it will withstand the quench, the
4	stresses resulting from quench.
5	MEMBER POWERS: It's the stresses
6	resulting from quench in a particular experimental
7	apparatus
8	DR. OZER: Yes, correct.
9	MEMBER POWERS: with a particular kind
10	of configuration.
11	DR. OZER: Yes, with a particular load.
12	MEMBER POWERS: What I'm asking about is
13	now how do I take that and then imply that it's
14	conservative in the reactor? It may be, for all I
15	know, but I just don't know how to do that because I
16	don't know what the forces are.
17	DR. OZER: Again, I am only using this as
18	an indication that there is some reason to feel that
19	the sky is not falling exactly.
20	MEMBER POWERS: Well, I mean, when the
21	original rule was developed, people said, "Yes. The
22	ductility criteria will be conservative criteria."
23	DR. OZER: Yes.
24	MEMBER POWERS: And they knew it from the
25	get-go.
ļ	1

(202) 234-4433

	71
1	DR. OZER: Yes. I'm trying to
2	MEMBER POWERS: The question we have now
3	is, what do we do about all of these new fuels that
4	are coming along? And how do we keep bad fuels that
5	look compositionally the same as good fuels out of the
б	system?
7	MEMBER ARMIJO: And how do we account for
8	high burnup effects? I think that's a fundamental
9	issue, how much emphasis is on the high burnup effect,
10	because that's where the F factor is and the 1.2.
11	And that's where I think the focus of the
12	industry issue is. And we've got to understand that.
13	DR. OZER: That's right.
14	MEMBER CORRADINI: May I ask a question at
15	this point? Sam, I think, characterized it. So,
16	really, if I understand your original slide, you have
17	done some calculations. And going from the notice
18	effect, which is in the '98 notice, essentially
19	correcting for it at a factor of one, correcting for
20	it as a factor of 1.2 is going to cause, your point
21	is, undue conservatisms, because already you are
22	correcting for the high burnup using the factor of one
23	if I understood what we were told?
24	DR. OZER: Yes. Our concern is that a
25	single F factor to account for all of these heat-up,

(202) 234-4433
	72
1	cool-down, quench temperature, material property,
2	material fabrication effects is not going to be
3	defensible in a licensing environment.
4	MEMBER ARMIJO: So to repeat it
5	differently, you would rather go on a case-by-case
6	basis with separate fuel to the staff?
7	DR. OZER: No. I think our argument is
8	that, really, we are not ready to, we don't have
9	sufficient data to defend the 1.2.
10	MS. UHLE: Can I interrupt at this point
11	because I think the conversation is getting a little
12	off base in the sense that we're not talking about
13	rule language. It may be the option that NRR decides
14	that a licensee or a vendor getting a fuel design
15	certified would come up with the F factor. So I think
16	we're getting a little off base.
17	DR. OZER: Yes. I
18	DR. MEYER: Could I also make a comment
19	here. I'm trying to restrain myself, but for these
20	modern alloys, the 1.2 factor has very little effect
21	because, as you saw in the numerical example, the
22	corrosion thickness is low. And the only time that
23	this really is going to have a big effect is when
24	you're dealing with one of the older claddings. There
25	is still some in the plants, like Zircaloy, where the
ļ	I

(202) 234-4433

	73
1	corrosion is high.
2	DR. OZER: And Ralph gave some nice
3	examples, where we indeed seem to be gaining some
4	margin. So why are we complaining?
5	MEMBER CORRADINI: That's kind of what I
б	was thinking.
7	DR. OZER: Right. Well
8	MR. DUNNE: This is Bert Dunne from AREVA.
9	One of the things that AREVA wants is for the criteria
10	to be on well-established scientific grounds because
11	we think that is the location at which we can have a
12	long-living criteria. And what I look at is a
13	learning curve to tell me whether or not I am on
14	well-established scientific grounds.
15	I think we are still learning. Two years
16	ago we had two new effects that we needed to consider.
17	This time we're back up here. We again have two
18	relatively newly discovered or realized effects: the
19	potential for quench temperature cooling rate to have
20	an effect and the ID oxidation.
21	So we're just kind of saying go slow if
22	you go or we would rather have a period of time when
23	we didn't discover a new effect tomorrow.
24	DR. OZER: Let me mention the concerns
25	that we have with the F factor. The F factor is
I	I

(202) 234-4433

	74
1	trying to cover a lot of territory. It's going to be
2	a function, a very complicated function, of hydrogen
3	content, cladding design actually on time, and
4	temperature history.
5	We have information that the cooling rate
6	and the temperature at which quench is introduced does
7	have a significant effect on the F factor. Would low
8	quench temperatures, temperatures below 600 degrees,
9	give us a much better F factor, even an F factor less
10	than one?
11	You know, the impact of these variables
12	cannot be addressed to a single factor. Plus, the F
13	factor is really not appropriate for BWRs because F
14	factor is a multiplier on oxide thickness. And for
15	BWRs, really, the parameter that should be used is the
16	hydrogen content in the cladding.
17	There is a larger variety or uncertainty
18	about the oxide thickness that would have to be
19	accounted for. And this was penalized at better
20	performing BWR cladding alloys. And this fact was
21	recognized, in fact, by NRR in preparing the proposing
22	interim RIA criteria, which for BWRs are based on
23	hydrogen content, rather than oxide thickness.
24	There are other problems as well. You
25	know, how do you determine the F factor a priori from
1	·

(202) 234-4433

prehydrided data? We tried to do an exercise where we took the experiments that were conducted by Argonne on unirradiated matching pairs of experiments, on unirradiated cladding material and hydrided cladding material, and tried to derive an F factor from that. And we see that the F factor is all over the map, going from almost two down to, again, less than one, .7, .8.

What is interesting to note here is that 9 10 when you go to slower-cooled cases, what we have here 11 is cases that were quenched at 800 degrees because all 12 the quenches, most of the quenches that Argonne has 13 done are done at 800 degrees. And when you either 14 don't cool it or cool it at lower or quench it at 15 lower -- I'm sorry. If you quench it at lower temperatures or slow-cool without quench, you get much 16 17 better F factors.

18 We are concerned that the use of 800 19 degrees for quench temperature is inappropriate or 20 it's overly conservative. Again -- and I'm basing 21 this on this time a calculation or evaluation provided 22 by AREVA for different scenarios. These are two 23 large-break LOCA scenarios. And they estimate the 24 quench to occur below 600 degrees. This one is a 25 small-break LOCA. And the quench here is around 250

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	76
1	degrees.
2	Now, we have similar results reported from
3	our BWR colleagues that indicate that most of the
4	quench they expect to be occurring around 600 degrees
5	or less. And, again, when you quench at 600, you get
6	a better response. So that's another uncertainty.
7	MEMBER ARMIJO: Dr. Ozer, before you leave
8	the BWR situation, what is your argument on that? You
9	say the oxidation is not the right parameter to use.
10	Why do you say that?
11	DR. OZER: Because in a licensing
12	environment, you have to account for all the
13	uncertainties, the uncertainty that you will expect in
14	predicting the oxide thickness. And the BWR people
15	can predict the hydrogen content with less uncertainty
16	than they can predict the oxide thickness. So if it's
17	based on oxide thickness, they would have to take a
18	higher penalty.
19	MEMBER ARMIJO: Currently aren't they
20	doing that?
21	DR. OZER: I'm sorry?
22	MEMBER ARMIJO: Currently they are doing
23	that through the information notice. They're
24	including the oxidation, external oxidation.
25	DR. OZER: Yes. And now we are applying
I	I

(202) 234-4433

	77
1	a factor on top of that. And we are questioning the
2	adequacy of that factor for BWRs.
3	DR. MEYER: If you will look at my slide
4	27, you will see that there wouldn't be any penalty
5	for the BWRs.
6	MR. JAHINGIR: This is Nayem Jahingir from
7	G&F. Just to clarify Sam's point, we have the
8	ductility loss. And ductility loss is more related to
9	hydrogen than oxidation. And there is some indication
10	that at higher exposure, hydrogen uptake is much
11	higher for like same oxidation for BWR cladding, too.
12	That's why for RIA, we are kind of weighing to the
13	hydrogen space, rather than an oxidation space,
14	because that's actually more related to the ductility.
15	MEMBER BANERJEE: I just want to ask you
16	a question. If you go back to the previous slide, the
17	pre-cooling phase, before quench, is a fairly rapid
18	cool-down anyway you can see.
19	DR. OZER: It says here.
20	MEMBER BANERJEE: Yes. So quench is only
21	a calculation for when the surface rewets. There's
22	extensive heat transfer, which brings the surface
23	down. So why do we put so much emphasis on the quench
24	per se, compared to a process which might be dropping
25	the temperature fairly rapidly?
I	I

(202) 234-4433

	78
1	DR. OZER: The easy answer is that
2	experiments showed that there is an effect. And the
3	effect tends to give better results when the
4	experiments are quenched at 600, as compared to 800.
5	MEMBER BANERJEE: It doesn't matter how
6	you cool them down?
7	DR. BILLONE: Yes, it does.
8	DR. OZER: I'm sure it does.
9	DR. BILLONE: May I clarify one point?
10	You're talking about CEA experiments. In the Argonne
11	experiments, we found no difference between quenching
12	at 800, 700, and 600 degrees C.
13	And getting back to the F factor, we can
14	analyze our data and say conservatively we want
15	conservative numbers, 1.6 for the F factor. If you
16	want to take into account that our experimental
17	cooling rates are faster than what you see there and
18	our quench temperatures are higher, then we can
19	justify moving the F factor down.
20	But 1.2 really applies to quench
21	temperatures below 600 degrees C. and cooling rates 5
22	degrees C. per second or less on the cooling part
23	before you get to the quench.
24	MS. UHLE: Again, this is Jennifer Uhle.
25	This is rule language we're talking about

(202) 234-4433

	79
1	DR. BILLONE: Right.
2	MS. UHLE: because it may be decided
3	that the licensee is it's up to the licensee to
4	determine the appropriate F factor.
5	MEMBER ARMIJO: Well, the guidance would
6	be in a NUREG somewhere.
7	MS. UHLE: Right. So the guidance would
8	say that this is the type of test that you need to run
9	and here is the value you need to come up with. But
10	then it could be such that the vendor would then be
11	responsible for coming up with the F factor.
12	That could be a possible approach if we're
13	talking about the concern I think here is that the
14	1.2 doesn't apply to all different clads.
15	MEMBER BANERJEE: I guess the question was
16	that the cool-down rate affects this F in terms of
17	whether it's 5 degrees per second, 10 degrees per
18	second, or 15 degrees per second, correct?
19	MS. UHLE: Well, Argonne has indicated
20	that the temperatures of what was it? 800, 700,
21	600 didn't make we didn't see that much of a
22	difference.
23	But, again, if this is something that
24	could be incorporated into the testing program
25	associated with coming up with this F factor, if
ļ	I

(202) 234-4433

	80
1	that's, in fact, the way NRR wants to go, then that's
2	up for debate. And that would be discussed in the
3	stakeholder involvement period.
4	I think the question is whether or not the
5	phenomena is applicable.
б	MEMBER ARMIJO: Right. Right. I think
7	you're right. I think how much emphasis you put on ID
8	oxidation due to bonded fuel, you know, how much of an
9	effect that is, the effect of hydrogen and the
10	those are the fundamental issues. And you're still
11	arguing how important those things are.
12	DR. MEYER: This is Ralph Meyer. With
13	regard to the F factor, keep in mind that there is
14	only one set of data in the world. The industry
15	doesn't have another set of data with high burnup fuel
16	rods than those one.
17	So, you know, you can speculate about how
18	many variables are involved, but it's very tough to go
19	out and measure it for another cladding type when you
20	don't have the data.
21	MEMBER ARMIJO: But we will have the data
22	in a year or so, won't we, if you get your program
23	going? You know, you get your new hotcell access.
24	DR. BILLONE: Yes. You will have data for
25	M5. And you will have data for high burnup ZIRLO.
l	I

(202) 234-4433

	81
1	MEMBER ARMIJO: And that's committed R&D?
2	I mean, you've got
3	DR. BILLONE: Yes. We don't need new
4	hotcells for that. That's what we're working on right
5	now.
6	MR. DUNNE: Mike, this is Bert Dunne
7	again. You're talking about the Skuzda examples now?
8	DR. BILLONE: Right.
9	MR. DUNNE: What we really want to do is
10	wait for the Oak Ridge program, where we're talking
11	about fuel that cladding that has fuel inferior to
12	it so we can learn something about the ID oxygen
13	source and the relative merits of testing irradiated
14	fuel with simulated cladding that's been preloaded
15	with hydrogen.
16	DR. BILLONE: That's correct. That will
17	be F.Y. 2008 for the fuel tests, but for the cladding
18	tests with the modern alloys
19	MR. DUNNE: Still within the time frame
20	that was just mentioned of a couple of years, I hope,
21	if we could stay on schedule.
22	MEMBER ARMIJO: Okay. Well, Dr. Ozer, are
23	you finished?
24	DR. OZER: Let me just say a few words
25	about our concern about the oxygen pickup on the ID.
Į	

(202) 234-4433

	82
1	We are not disputing that that may occur. It's just
2	the assumption, again, the recommendation that we
3	assume. We account for it by assuming double-sided
4	oxidation.
5	We don't you know, for this to occur,
6	you have to have strong, either very strong, contact
7	or bonding. And we think that the results, the
8	experimental results, are inconclusive. This can only
9	be or can best be demonstrated from integral tests.
10	So far there have been no integral tests
11	on PWR fuel. The only integral tests we have are on
12	BWR fuel. And those are you know, I'm taking this
13	graph from the draft NUREG. And this is cladding that
14	has been irradiated. The burnup of the fuel rod was
15	52. We estimate that at this elevation, the burnup
16	here is 57, where bonding should have been rather
17	significant.
18	We see a clear alpha layer on the outside.
19	On the inside, there are some regions where it is said
20	there is no alpha and other regions where it is said
21	there is alpha.
22	I think one has to be really quite a
23	metallurgy expert to differentiate any kind of an
24	alpha layer here, much less differences between A and
25	в.
l	

(202) 234-4433

	83
1	So we feel that this is a question that
2	has to be resolved with additional experiments. And
3	there have been some statements made that additional
4	experiments, integral experiments, will not be
5	available for years.
6	MEMBER ARMIJO: But you know that in high
7	burnup BWR fuel, there is fuel clad bonding.
8	DR. OZER: That's right.
9	MEMBER ARMIJO: You've seen it. It's not
10	100 percent uniform. And it's a function of burnup
11	and some clad designs. Is it the same in PWR fuel?
12	It has higher external pressure, maybe tighter
13	contact. I don't know.
14	DR. OZER: We don't know.
15	MEMBER ARMIJO: I think that can be
16	explained by doing integral experiments. Argonne has
17	
18	MEMBER POWERS: Can we do this with I
19	mean, isn't this just a matter of looking at
20	irradiated fuel? I mean, I'm trying to think about
21	how you would do it experimentally. I don't think you
22	can do a persuasive experiment here.
23	DR. OZER: You would have to run it
24	through a local scenario, the heat-up scenario, to see
25	how.
ļ	I

(202) 234-4433

	84
1	MEMBER POWERS: I thought that
2	DR. OZER: Again, we're not disputing the
3	fact that it occurs. It's just how to account for it
4	and how important is it. And also we are concerned
5	that if we assume double-sided oxidation, this may be
6	interpreted, assuming you're calculated double-sided
7	oxidation. And we may have to take, may be required
8	to take, into consideration the energy of oxidation,
9	which at high temperatures could be quite significant
10	and would result in a penalty in the
11	DR. BILLONE: No, no. That was never
12	proposed. You're not forming any oxide in this event
13	on the idea of the
14	DR. OZER: I think you have to be clear
15	about that because
16	DR. BILLONE: No. We were very clear
17	about what you use for the
18	MEMBER POWERS: You're heat of dissolution
19	is going to be so close to the heat of oxidation that
20	I don't think you have gained anything here.
21	DR. BILLONE: Very clever, actually. You
22	know that. Very clever.
23	MEMBER POWERS: I mean, it's hard to
24	imagine how you would keep up here on the inner
25	surface uniformly. I think you get mass transport
I	

(202) 234-4433

	85
1	limited on the oxidation.
2	DR. OZER: As far as experimental data is
3	concerned, I would like to say that we don't think
4	that Argonne is an island of information in itself.
5	I think Argonne has worked closely with other
6	laboratories and has benefitted a lot from
7	interactions with other labs in trying to resolve
8	discrepancies. And I think work at these other labs
9	is ongoing.
10	And I think probably the most relevant
11	work is being done at the Halden Lab, where, indeed,
12	high burnup fuel rods are being subjected to LOCA-like
13	scenarios in reactors.
14	So, you know, these questions about
15	heat-up, heating up from the inside, as opposed to
16	heating up from the outside, you know, the Halden
17	results will not be as sensitive a results being done
18	in laboratories like ANL.
19	These results are expected later this
20	year.
21	MEMBER ARMIJO: That is part of the NRC
22	confirmatory research?
23	DR. OZER: NRC participates in the Halden
24	program. I mean, they send representatives. And so
25	do we. But, you know, it's a Halden program.
l	

(202) 234-4433

	86
1	DR. MEYER: Yes. We're in the Halden
2	project. They're not doing any embrittlement
3	measurements. They're looking at ballooning and axial
4	fuel relocation.
5	DR. OZER: And they should be able to
б	provide us with metallurgy information about away from
7	the balloon, extent of oxidation.
8	MEMBER ARMIJO: But they will take it to
9	rupture.
10	DR. OZER: Yes.
11	MEMBER ARMIJO: And so if there was
12	oxidation from the ID when they do their
13	metallography, they should confirm or correct
14	DR. MEYER: Yes, this is true.
15	DR. OZER: I don't know whether I should
16	go into this. I think we're out of time, but
17	MEMBER ARMIJO: I think we got your
18	message.
19	DR. OZER: with respect to that it's
20	going to be quite costly for the industry to implement
21	this, in conclusion, again, we don't feel that there
22	is a public safety, urgent public safety, issue at
23	this point. And we feel that the bonding approach
24	that is being proposed is premature.
25	MEMBER ARMIJO: Well, you know I have a
ļ	

(202) 234-4433

	87
1	dilemma. And I'm just going to make my little speech.
2	And that's to both parties: industry and the staff.
3	I hear that there is no urgency. And I
4	hear that there is urgency. I hear that there is
5	going to be a big impact to the industry. Yet,
6	Ralph's calculations show there is no impact. But if
7	there is no impact, why is there urgency?
8	So I can't get around all of these claims.
9	MS. UHLE: The urgency primarily stems
10	from what is required in the regulation and what is
11	voluntarily done by the licensees. For instance, the
12	break-away oxidation metric, that is not in the
13	regulation.
14	If a new cladding were to be submitted for
15	approval, there is nothing in the regs that would
16	require any concern about the break-away oxidation.
17	Yet, you can see with the fabrication process of the
18	E110 that that was a strong effect. Okay. So
19	MEMBER ARMIJO: Right now you have no
20	guidance or no regulations that require the
21	MS. UHLE: Break-away.
22	MEMBER ARMIJO: suppliers to even think
23	about break-away.
24	MS. UHLE: That's right.
25	MEMBER ARMIJO: Okay. So that's a
	I

	88
1	deficiency.
2	MS. UHLE: And so when we say there is no
3	urgency, that is because we have talked to NRR about
4	this. And NRR has gone out voluntarily and done a
5	spot check to see "Okay. Is there a safety issue
6	looking at how the licensees are currently operating,
7	voluntarily operating that way?" That doesn't
8	preclude them from changing the way they operate.
9	So with that, we can say
10	MEMBER ARMIJO: They're not likely to do
11	that.
12	MS. UHLE: Well, again, that would come in
13	from introduction of a new clad design. That could be
14	a change in the way they operate within the regs as
15	written. And they are free to do so. They don't have
16	to tell us exactly what they're doing on a day-to-day
17	basis.
18	DR. OZER: But couldn't that be addressed
19	through a reg guide?
20	MS. UHLE: There is no regulatory
21	requirement that would force anybody to take this into
22	consideration.
23	MEMBER ARMIJO: Unless there are some
24	other questions, I think I am probably way out of
25	time, Mr. Chairman. And I would like to end this part

(202) 234-4433

	89
1	of the session.
2	Okay. Thanks, everybody. I think we got
3	the issues on the table. Okay. Dr. Shack, it's all
4	yours.
5	CHAIRMAN SHACK: Yes. It's time for a
6	break. We would like to make it a short break since
7	we are a little bit behind. If we could come back in
8	ten minutes?
9	(Whereupon, the foregoing matter went off
10	the record at 10:29 a.m. and went back on
11	the record at 10:43 a.m.)
12	CHAIRMAN SHACK: I would like to come back
13	into session, everybody. Yesterday I read the
14	qualifications and experience of our new senior staff
15	engineer, Ms. Zena Abdually. And she will be helpful
16	in the Committee's review of power uprate
17	applications, thermal hydraulic issues, and TWR sump
18	performance issues.
19	What I neglected to do yesterday was to
20	welcome her aboard. And I would like to do that
21	today.
22	MS. ABDUALLY: Thank you.
23	(Applause.)
24	8) DRAFT FINAL REVISION 1 TO REG GUIDE 1.189
25	(DG-1170), "FIRE PROTECTION FOR NUCLEAR POWER
Į	

	90
1	PLANTS, " AND SRP SECTION
2	9.5.1, "FIRE PROTECTION PROGRAM"
3	CHAIRMAN SHACK: Next up on our agenda is
4	a presentation on reg guide for fire protection and
5	the SRP 9.5.1. And we'll be lead through that by Jack
6	Sieber, our Fire Protection Subcommittee Chairman.
7	VICE CHAIRMAN SIEBER: Thank you very
8	much, Mr. Chairman.
9	8.1) REMARKS BY THE SUBCOMMITTEE CHAIRMAN
10	VICE CHAIRMAN SIEBER: this is a major
11	effort by the staff, the revision of reg guide 1.189,
12	which was draft guide 1170 in its earlier days. It is
13	sort of a companion to the 805 risk-informed fire
14	protection effort.
15	And the purpose of reissuing this, among
16	others, is to consolidate all the references, of which
17	there are over 100, to preexisting documents and
18	consolidate those into a document that is easier to
19	read and easier to follow. The latest document does
20	not introduce or break new ground in the fire
21	protection area, but it is more a consolidation.
22	We mentioned SRP section 9.5.1. That has
23	now been incorporated into the draft reg guide, which
24	we're reviewing. And so because of that
25	consolidation, we need not conduct a review of a
	I

(202) 234-4433

	91
1	separate document.
2	What I would like to do now is introduce
3	Cornelius Holden, who is responsible for the overall
4	effort in this guide, to introduce to us the staff
5	personnel who worked on this and are responsible for
6	it.
7	MR. HOLDEN: Thank you very much.
8	8.2) BRIEFING BY AND DISCUSSIONS WITH
9	REPRESENTATIVES OF THE NRC STAFF
10	MR. HOLDEN: I am Cornelius Holden,
11	Division Director, Risk Assessment. With me today is
12	Sunil Weerakkody, who is our Branch Chief for Fire
13	Protection; and Bob Radlinski, who is our senior
14	person on this effort, will be conducting the briefing
15	today. With that, Bob?
16	MR. RADLINSKI: Good morning. everybody.
17	Dr. Sieber, you covered my introduction
18	pretty well.
19	VICE CHAIRMAN SIEBER: Okay.
20	MR. RADLINSKI: So move on to the next
21	slide.
22	VICE CHAIRMAN SIEBER: Yes. Just so the
23	Committee recognizes it, a couple of months ago, we
24	wrote a letter on this draft guide for public comment,
25	suggesting that the staff issue it. And now the
I	

(202) 234-4433

	92
1	comments are back and we're revisiting the subject
2	again.
3	MEMBER APOSTOLAKIS: So our letter just
4	said to issue it?
5	VICE CHAIRMAN SIEBER: Issue it for public
6	comment.
7	MEMBER APOSTOLAKIS: Comment on
8	VICE CHAIRMAN SIEBER: Well, there were a
9	lot of comments that came back. We did not have any
10	comments.
11	MEMBER APOSTOLAKIS: So we are allowed to
12	make comments today?
13	VICE CHAIRMAN SIEBER: You could have made
14	them even better two months ago.
15	(Laughter.)
16	VICE CHAIRMAN SIEBER: Okay.
17	MR. RADLINSKI: Okay. The objective, as
18	we have mentioned, is that we are going to describe
19	how the NRC staff addressed the public comments that
20	were received on the reg guide and also, of course, to
21	obtain ACRS permission to issue the reg guide.
22	Just to summarize the comments and the
23	responses, the NRC received 95 what are called new
24	comments on the draft guide. All of those comments
25	were from NEI. The reason I say "new comments" is

(202) 234-4433

	93
1	because they also included 16 additional selected
2	comments that were made on the previous draft guide of
3	the original version of draft reg guide 1.189 when it
4	was issued the first time.
5	There were excellent comments, very
6	constructive. We incorporated or agreed with 67 of
7	the 95 comments. It's over 70 percent. And the final
8	draft will reflect those comments.
9	Also, earlier this week we had a public
10	meeting to summarize what our resolution was of those
11	comments, an opportunity for additional discussion.
12	And that went very well.
13	Also, in the interest of time, my
14	presentation today is only going to talk about the
15	comments that we did not agree with and/or significant
16	issues.
17	MEMBER APOSTOLAKIS: Can you give us some
18	idea of what kinds of comments you agreed with? I
19	mean, were they editorial or substantive or
20	MR. RADLINSKI: Combination, nothing that
21	would change positions or anything. It just added
22	clarifications. They were very helpful in identifying
23	areas where we may have assumed or we had thought that
24	the regulatory requirements were clear. But obviously
25	because of the comment, they were not. So we added

(202) 234-4433

	94
1	some additional clarification.
2	Okay. There were basically seven
3	categories of comments that we did not agree with.
4	The first was that some of the guidance in the revised
5	reg guide is a backfit.
6	Now, the second is that we should not
7	issue the reg guide at this time because of the
8	comments that the Commission had with respect to the
9	generic letter that we recently submitted for
10	publication on spurious actuations.
11	The third is that we should endorse
12	industry standards in lieu of issuing the reg guide.
13	Next is that the guidance that is provided
14	in generic letter 81-12 should be applicable to
15	III.G.2 areas, the appendix R III.G.2, as well as
16	III.G.3 areas. Of course, I'll be getting into more
17	detail in each of these issues.
18	The next one is that detection and
19	suppression are not necessarily required with operator
20	manual actions when they are accredited for a III.G.2
21	area.
22	MEMBER APOSTOLAKIS: What does that mean,
23	by the way?
24	MR. RADLINSKI: There has been quite a bit
25	of discussion about this. With all of the actions and
1	

(202) 234-4433

	95
1	discussions that have gone on over accrediting of
2	operator manual actions for III.G.2 areas, we issued
3	a RIS, 2006-10, that talked about this.
4	The industry contends that if they are
5	able to credit an operator manual action in lieu of
6	the protection requirements of III.G.2, then
7	detection/suppression, which is generally required by
8	III.G.2 or portions of III.G.2 and III.G.3, are not
9	necessarily part of that design. They would not
10	necessarily be required.
11	VICE CHAIRMAN SIEBER: It has been the
12	staff's position that they are required.
13	MR. RADLINSKI: Yes. We have been
14	steadfast in that position. Let's see. Item 6, some
15	of the new reactor guidance that we have added to the
16	reg guide.
17	Actually, the reg guide did not have any
18	new reactor guidance in it before. A lot of it was
19	there had been some in the previous version of the
20	SRP. And we rolled that over into the reg guide and
21	also added some new guidance. The comment is that
22	some of that new guidance is not a specific
23	requirement of the regulation.
24	And, finally, I think we mentioned this in
25	our last meeting before we sent the reg guide out,

(202) 234-4433

	96
1	that we would like to revert to 50.59 as a basis for
2	evaluating plant changes for fire protection.
3	Okay. The details. On the backfit,
4	again, the gist of the comment was that some of the
5	new and revised guidance in the draft guide would be
6	a backfit for existing plants.
7	We went back to the process with the
8	original issuance of reg guide 1.189. We looked at
9	the CRGR meeting minutes. And the full Committee
10	reviewed that document. And they reach a conclusion
11	that it was not a backfit, that a backfit analysis was
12	not required. That was essentially based on the fact
13	that compliance with the reg guide is not required,
14	it's not imposed compliance, and that compliance
15	should be assessed against a plant-specific licensing
16	basis, not against the reg guide. And licensees
17	performing their own self-assessments should also do
18	those assessments against their licensing basis and
19	not the reg guide.
20	Although we added some guidance and
21	changed some of the existing guidance in the original
22	version, the same basis for a no-backfit conclusion
23	would also apply to the current revisions of the reg
24	guide.

And, in addition to that, we did review

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	97
1	the latest version with the CRGR chairman. It was
2	agreed that the update is likewise not a backfit and
3	does not require a backfit analysis.
4	MEMBER MAYNARD: Just from a practical
5	standpoint, I understand your bullets, your points
б	there relative to the backfit. But that would almost
7	be saying that the reg guide basically is not going to
8	be used in any assessment or evaluation or anything.
9	It's saying that compliance is going to be
10	based against the licensing basis, not the reg guide.
11	So what's the purpose of the reg guide if it's not
12	going to be used in any assessment?
13	MR. RADLINSKI: Okay. Of course, any reg
14	guide is one acceptable approach to regulations. To
15	my mind, it will be used as a baseline for a licensee
16	who has a configuration that isn't addressed in his
17	plant licensing basis, isn't addressed even in the
18	regulations.
19	This would be the baseline for an
20	inspector to say, "Okay. This is one approach that
21	will work. This is one approach that would be
22	acceptable to the staff for meeting the regulations in
23	general. If you are not doing it this way, then you
24	can propose something else and explain to us why
25	that's acceptable and why it meets the regulations."

(202) 234-4433

	98
1	So this is kind of a starting point. It
2	gives the inspectors, gives the licensees a baseline
3	for what would be considered by the staff to be an
4	acceptable approach. So that's kind of how it will be
5	used.
6	MEMBER MAYNARD: So if they propose an
7	alternative approach, you would be assessing that
8	against the licensing basis, not starting with the reg
9	guide 1.189 as a minimum level of effort?
10	VICE CHAIRMAN SIEBER: Correct.
11	MR. RADLINSKI: Correct.
12	VICE CHAIRMAN SIEBER: In fact, the
13	starting point, reg guides are issued to licensees as
14	well as internal use by the agency. And my experience
15	in licensing is that's where you go first because it's
16	the easiest amount of work.
17	If you do the things in the reg guide,
18	then you don't have to come up with an alternative
19	solution. If you can't do them because of
20	configuration in your plant or you have a better idea,
21	that becomes an exception which you identified to an
22	inspector when he comes to inspect you for compliance.
23	MEMBER MAYNARD: But it's also been my
24	experience that these tend to become more or less
25	minimum acceptable requirements. You may propose
I	

(202) 234-4433

	99
1	alternatives, but a reg guide does set kind of a
2	threshold level there. I understand your point.
3	MR. RADLINSKI: It still can't be waived
4	by the inspector saying, "You're not complying with
5	this." Okay? It's not a basis for compliance.
б	VICE CHAIRMAN SIEBER: There is a
7	statement right in the preamble to the reg guide that
8	explains what its legal purpose is.
9	CHAIRMAN SHACK: You all sort of know the
10	legal purpose.
11	VICE CHAIRMAN SIEBER: Yes. Well, I mean,
12	if you want to interpret it in your own way, that's up
13	to you, but I read what is written down.
14	MEMBER MAYNARD: There's also a practical
15	side of how this actually gets implemented. So I
16	think we need to move on.
17	VICE CHAIRMAN SIEBER: Right.
18	MR. RADLINSKI: Okay. Another favorite
19	topic: multiple spurious actuations. You are
20	probably all familiar with the generic letter that was
21	prepared on this issue, particularly with the respect
22	to the approach of one at a time is an assumption that
23	would provide a basis for post-fire safe shutdown
24	circuit analyses.
25	The comment was that you shouldn't be
I	I

(202) 234-4433

issuing this reg guide because of Commission comments on that generic letter. Our response is that we did revise the wording in the draft guide, which was from the public comment version, that we did basically water down the language.

We are now no providing any specific guidance on what approach to use for circuit analyses with respect to one at a time. However, we do include a note and continue to include that that based on the industry cable fire tests, a one-at-a-time assumption for spurious actuations may not adequately address the potential risks due to fire, so just kind of a flag to licensees that there may be a problem if you use that assumption as a basis for your circuit analysis.

We also note or the Commission comments on the generic letter based on our changes that we made to the design guide that really don't warrant not issuing the reg guide. It's one issue. And we have kind of watered it down or softened it quite a bit.

20 VICE CHAIRMAN SIEBER: So the generic 21 letter now still rests as a draft and the issue is 22 still out there. If the Commission changes its mind 23 about the staff's approach to the generic letter, 24 would that warrant the change to this reg guide? 25 MR. RADLINSKI: A future revision to the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	101
1	reg guide probably will incorporate the guidance that
2	we plan to put into the ultimate generic letter that
3	is issued.
4	One of the main comments the Commission
5	had was that we basically said, "Hey, industry, you
б	have a problem," but we didn't tell them how to fix
7	it.
8	VICE CHAIRMAN SIEBER: Okay.
9	MR. RADLINSKI: And they want us to work
10	with the industry to come up with the methodology and
11	the acceptance criteria to address the potential
12	problem.
13	VICE CHAIRMAN SIEBER: So we should stay
14	tuned?
15	MR. RADLINSKI: Yes, yes.
16	VICE CHAIRMAN SIEBER: Okay. Thank you.
17	MR. RADLINSKI: Any more questions on
18	that?
19	(No response.)
20	MR. RADLINSKI: Okay. One of the comments
21	referred to some public law that basically said that
22	the government agencies should use industry consensus
23	standards if they were available as a replacement for
24	things like reg guides.
25	They specifically mentioned NFPA 804. For
	I

(202) 234-4433

	102
1	those of you not familiar with 804, it is strictly for
2	new reactors. And it is a deterministic approach to
3	fire protection. Okay?
4	There's another version, 806, that's
5	coming out that's for new reactors, which is a
б	risk-informed, performance-based approach. And I
7	might note that AP-1000, also the SBWR have referred
8	to 804.
9	Now, 804, like any other NFPA standard,
10	is, you know, an appropriate standard to be referred
11	to and provide guidance for the design of the fire
12	protection program, however porous. It must be done
13	in accordance with the regulations.
14	Also, 804 was just reissued, revised and
15	reissued, in 2006. I think the first version was
16	2001, but that was a previous version. And there were
17	a lot of changes. And we're reviewing it, but we
18	haven't completed our review yet.
19	And by issuing reg guide 1.189 now that
20	does not preclude a possible future endorsement of
21	804, you're
22	CHAIRMAN SHACK: I was sort of left with
23	the question of what would a new plant use for
24	guidance.
25	MR. RADLINSKI: For performance-based?
I	

(202) 234-4433

	103
1	CHAIRMAN SHACK: Well, performance-based
2	and even deterministic.
3	MR. RADLINSKI: Well, deterministic, as I
4	say, they haven't
5	CHAIRMAN SHACK: This is complete enough?
6	VICE CHAIRMAN SIEBER: Yes.
7	MR. RADLINSKI: When you say, "this," the
8	reg guide?
9	CHAIRMAN SHACK: The reg guide, yes.
10	MR. RADLINSKI: The reg guide is fine.
11	And, like I say, they are also referring to 804, just
12	like they would refer to NFP 13 for sprinkler systems
13	and 15 for water spray, it provides some additional
14	guidance.
15	But I would also like to point out that
16	there are some things in 804 that we don't agree with
17	that we don't consider them to be meeting the
18	regulatory requirements.
19	The comments in this regard also mentioned
20	NEI-0001, which is the industry guidance for
21	performing post-RSA shutdown analyses. That's not
22	really a consensus standard.
23	And also we have already not endorsed
24	necessarily, but we have provided statements of staff
25	acceptance of NEI-001 in a RIS and also in reg guide

(202) 234-4433

	104
1	1.205 for the
2	CHAIRMAN SHACK: On the performance base,
3	they still have the problem, right, because that
4	guidance is not out yet for new reactors?
5	MR. RADLINSKI: For new, yes, that's a
6	good point. There is an 806 coming out, NFPA 806.
7	That will be the industry consensus standard for new
8	reactors using a performance-based environment.
9	CHAIRMAN SHACK: Now, will you have a very
10	high priority on reviewing that when you
11	MR. RADLINSKI: We are. We have already
12	submitted two sets of comments. We reviewed it in
13	great detail, submitted a lot of comments the first
14	time around. Most of those were incorporated. Maybe
15	80 percent were incorporated. It's back now again for
16	the final review by the staff.
17	MEMBER APOSTOLAKIS: When will we see
18	this? Is the ACRS going to see that, 806?
19	MR. RADLINSKI: Sunil, I don't know if you
20	have
21	MR. WEERAKKODY: Yes. This is Sunil
22	Weerakkody. We have no plans to bring 806 to SRS on
23	this unless you request. It's still in the works.
24	MEMBER APOSTOLAKIS: It's still what?
25	MR. WEERAKKODY: It's still being
I	

(202) 234-4433

	105
1	delivered by the Code Committee.
2	MEMBER APOSTOLAKIS: I understand. But at
3	some point, you will have to issue a regulatory guide,
4	whether you agree or not, and accept 806 with
5	exemptions and so on. And we get involved at that
6	stage?
7	MR. WEERAKKODY: We don't plan to because
8	we believe what's in the updated reg guide that you
9	see today, which incorporates the high-level guidance
10	on new reactors is sufficient.
11	Now, in our review process, what we are
12	trying to do is make sure that 806 or 805 is in that
13	plan. So we have no initiative to endorse 804 or 806
14	at
15	CHAIRMAN SHACK: From performance-based?
16	MR. WEERAKKODY: Right now we don't have
17	a plan to go in and endorse 806 for new reactors.
18	CHAIRMAN SHACK: So you're saying you
19	don't plan to have guidance for a performance-based
20	approach for new reactors?
21	MR. WEERAKKODY: At this point we don't
22	think that's necessary. That's correct. I think if
23	you look at the advanced rectors, if you look at the
24	advanced rectors, what we have really done is
25	risk-informed the design itself. Okay? You don't
I	·

(202) 234-4433

	106
1	need a deterministic indicator. You basically have
2	every area fully supported.
3	MEMBER APOSTOLAKIS: We'll come to the
4	advanced reactors on slide 11. And I had some
5	problems with the appendix. Is it an appendix?
б	Whatever it is. Yes, I think it's an appendix. But
7	I'm a bit surprised. I mean, this is, yes, appendix
8	в.
9	Don't we typically, I mean, following this
10	public law, look at these industry standards and then
11	express a view as to how much of those standards is
12	applicable? You will do that sometime in the
13	MR. WEERAKKODY: Yes, if there should be
14	a need. That's what I'm saying, Dr. Shack, saying.
15	Now, if there is a need, if somebody said, any
16	stakeholder said, "Look, why don't you consider
17	endorsing 806 in the rule," we definitely would look
18	at it at that state. Okay?
19	But if nobody wants it, why would we want
20	to spend the time? But in the meantime, though, like
21	Bob said, we are very closely wording the review. But
22	I have two people in my staff in that code committee.
23	MEMBER APOSTOLAKIS: It is just a matter
24	of timing and need.
25	MR. WEERAKKODY: Yes, sir.
ļ	

(202) 234-4433

	107
1	MR. RADLINSKI: We will look at it in the
2	future, but it's just not time yet. I mean, they
3	haven't even issued 806 yet.
4	MEMBER APOSTOLAKIS: I understand.
5	VICE CHAIRMAN SIEBER: The reason for
6	issuing this reg guide as a draft at this time is
7	because of the potential for new reactors. And this
8	goes along with a whole suite that the staff has been
9	working on the last few months.
10	MR. RADLINSKI: And the new reactors will
11	have fire PRAs.
12	VICE CHAIRMAN SIEBER: Right.
13	MEMBER APOSTOLAKIS: Well, I don't know
14	about that, but I am waiting until your slide 11.
15	MR. RADLINSKI: All right.
16	MEMBER APOSTOLAKIS: See how well I
17	control myself, Bob.
18	VICE CHAIRMAN SIEBER: Moving right along.
19	MEMBER APOSTOLAKIS: Discipline.
20	MR. RADLINSKI: Okay. We are on slide 8
21	now, generic letter 81-12 and appendix RIII.G.2. The
22	comment was that the guidance in generic letter 81-12,
23	which has a very general title of "Fire Protection
24	Rule," should apply to appendix R, section III.G.2
25	areas as well as III.G.3 areas.

(202) 234-4433
	108
1	Our response to this is that this was
2	covered extensively in a RIS that we published in
3	2005. It's RIS 2005-30. It addresses the issue.
4	That RIS was issued for public comment because of the
5	controversial nature of it.
6	We received public comments, numerous
7	public comments. We even had a follow-up public
8	meeting to address each and every one of those
9	comments. That RIS was also reviewed by CRGR for
10	backfit. And it was issued final in December, on
11	December 20th in 2005.
12	And essentially what it says is that
13	generic letter 81-12, the guidance provided by the
14	generic letter. And there was a follow-up memorandum
15	that provided additional guidance.
16	All of that is clearly applicable to
17	alternative dedicated shutdown capability and not to
18	III.G.2. I mean, it's related to the III.G.2
19	indirectly in the sense that some of these associated
20	circuits of concern could cause damage or prevent a
21	redundant train from shutting down the plant.
22	But other than that, I think the industry
23	they haven't said it specifically, but I think
24	they're focused on the fact that one of the mitigating
25	components or one of the options for mitigation of a
I	I

(202) 234-4433

109 1 spurious actuation of an associated circuit of concern 2 is an operator manual action. And they would like to 3 apply that to III.G.2. Of course, that's not the 4 case. 5 Okay. Operator manual actions and detection/suppression. As I mentioned before, the 6 7 comment is that we have inappropriately implied that 8 if you credit an operator manual action in the III.G.2 9 area, then you don't necessarily have to provide 10 detection and suppression. That may be true, but as 11 baseline, it should be assumed that that а is 12 fire protection fundamental to the that you're 13 providing in that area. 14 As we all know, there are three components 15 to fire protection defense-in-depth. You prevent the If you do have a fire, then you detect it. 16 fire. And you suppress it. And then, finally, you assure safe 17 18 shutdown in the event of that fire. 19 Operator manual actions typically support 20 the third component. They serve as a substitute for 21 the electrical raceway fire barrier system or 22 They do not eliminate the need for the separation.

24 MEMBER APOSTOLAKIS: They also support it,25 though, don't they?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

other components. Okay?

23

	110
1	MR. RADLINSKI: They support?
2	MEMBER APOSTOLAKIS: The operators detect
3	the fire and alert the fire brigade.
4	MR. RADLINSKI: Right.
5	MEMBER APOSTOLAKIS: Is it just the
б	sub-bullet? When we say, "Operator manual actions,"
7	I guess we mean a specific set of manual actions."
8	MR. RADLINSKI: Well, we're talking about
9	a situation where you have a III.G.2 area. We have
10	redundant trains in the same fire area. And you have
11	removed your electrical raceway fire barrier system,
12	thermal lag, or whatever and you have replaced it with
13	an operator manual action to mitigate the failure of
14	that circuit that's no longer protected.
15	MEMBER APOSTOLAKIS: So it's that specific
16	set of manual actions that OMA refers to?
17	MR. RADLINSKI: Right. And the industry
18	
19	MEMBER APOSTOLAKIS: The industry
20	MR. RADLINSKI: Okay. If I do that, if I
21	take that approach, then I don't have to have
22	detection suppression in the area of consideration.
23	MEMBER MAYNARD: If you have detection and
24	suppression, why do you have to rely on operator
25	actions?
ļ	I

(202) 234-4433

	111
1	MR. RADLINSKI: Defense-in-depth.
2	VICE CHAIRMAN SIEBER: Detection and
3	suppression are not a substitute for the fire barrier.
4	MEMBER APOSTOLAKIS: It's for the fire
5	barrier.
б	VICE CHAIRMAN SIEBER: There's a
7	separation requirement, which can be achieved by
8	barriers or distance.
9	MEMBER APOSTOLAKIS: Because I guess some
10	of the plants could not meet the appendix R separation
11	criteria or is that the idea?
12	MR. RADLINSKI: In a number of cases, it
13	was because of the thermal lag issue, where they just
14	took the thermal lag off or just didn't credit it any
15	longer and said, "Okay. We'll assume that that cable
16	tray is going to burn up." Okay? Since that cable
17	trap is going to burn up, I'm going to have to take
18	some operator manual action to mitigate the
19	VICE CHAIRMAN SIEBER: Spurious
20	operations.
21	MR. RADLINSKI: spurious actuations
22	that could prevent safe shutdown.
23	MEMBER BANERJEE: But the new plants will
24	be able to meet the separational requirements.
25	MEMBER APOSTOLAKIS: They should.
I	I

(202) 234-4433

	112
1	MR. RADLINSKI: Yes. That's part of the
2	enhanced fire protection. We'll talk about that
3	later. But they won't be able to do that 100 percent
4	on the cases. It's not
5	MEMBER BANERJEE: Well, why not?
6	MR. RADLINSKI: It's just not physically
7	possible. I mean, you just have areas of the plant
8	where things come together.
9	VICE CHAIRMAN SIEBER: Like the control
10	room cable spreading.
11	MR. RADLINSKI: Right, obviously the
12	control room but under the reactor vessel and areas
13	like that.
14	VICE CHAIRMAN SIEBER: You have two
15	reactors.
16	MEMBER APOSTOLAKIS: With different
17	manufacturers for the
18	VICE CHAIRMAN SIEBER: A reactor and B
19	reactor.
20	MEMBER APOSTOLAKIS: diverse vessels.
21	VICE CHAIRMAN SIEBER: Moving on.
22	MEMBER APOSTOLAKIS: Dr. Kress will tell
23	us that the
24	VICE CHAIRMAN SIEBER: You have to add
25	them, right. Moving on.
I	

	113
1	MR. RADLINSKI: Okay. The main control
2	room complex fire protection. The comment was that
3	"The following should be deleted from the guidance
4	that's in the reg guide."
5	One is to provide suppression for
б	peripheral rooms that are adjacent to the main control
7	room. The other is that the industry does not believe
8	that smoke detection in the individual cabinets within
9	the main control room is necessary.
10	First of all, the auto suppression in the
11	peripheral rooms may be required by appendix R,
12	section III.G.3. Okay? Obviously the control room is
13	a III.G.3 area. You have alternative shutdown and in
14	the
15	VICE CHAIRMAN SIEBER: It depends on the
16	strength of the barrier.
17	MR. RADLINSKI: Right.
18	VICE CHAIRMAN SIEBER: That's a natural
19	place for a fire, computer rooms, offices.
20	MR. RADLINSKI: Right, offices with paper.
21	MEMBER BANERJEE: Are these suppression
22	systems primarily sort of rapid system?
23	MR. RADLINSKI: No, no. Water.
24	MEMBER BANERJEE: Water sprays?
25	MR. RADLINSKI: Just like an office. And
I	1

(202) 234-4433

	114
1	with respect to cabinet detectors, they made the
2	argument that control rooms continually man. The
3	operators are there. But products of combustion
4	detectors, inside cabinets may detect the fire more
5	quickly than an operator's eyes or nose since they're
6	detecting visible products of combustion.
7	But, more importantly, the detectors in
8	the cabinets tell you exactly where that fire is.
9	Okay? If you're an operator and you smell smoke or
10	the ceiling detectors set off the alarm, you may not
11	know where that fire is. You may have to go around
12	opening cabinet doors to try to find it.
13	MEMBER ARMIJO: What's the logic for
14	saying, "Don't do that"? I mean, why would they say
15	
16	VICE CHAIRMAN SIEBER: It costs money.
17	MR. RADLINSKI: It costs money and
18	MEMBER ARMIJO: It can't cost that much.
19	MR. RADLINSKI: To be honest, the NRC has
20	allowed them to not do that in a number of cases.
21	They've submitted exemption requests. And we have
22	approved them.
23	MEMBER ARMIJO: It can't cost that much.
24	VICE CHAIRMAN SIEBER: Everything costs a
25	lot.
I	I

(202) 234-4433

	115
1	MR. RADLINSKI: But, interestingly enough,
2	and the 804 actually required cabinet detection. And
3	that's the industry standard that they would like to
4	adopt.
5	MEMBER APOSTOLAKIS: Is that the standard
6	that we have approved, the agency has approved?
7	MR. RADLINSKI: No.
8	VICE CHAIRMAN SIEBER: No.
9	MEMBER APOSTOLAKIS: No?
10	MR. RADLINSKI: Okay. Now we're on
11	VICE CHAIRMAN SIEBER: Is there an error
12	on page 10? Is there an error? On page 10, is there
13	an error on that slide?
14	MR. RADLINSKI: Oh, yes. On the handout?
15	Did I mention that? For some reason, the handout
16	didn't get the correction. It's correct in mine. It
17	should be III.G.3, not III.G.2.
18	VICE CHAIRMAN SIEBER: Okay. So for the
19	members who would make that
20	MR. RADLINSKI: Thank you for bringing
21	that to my attention.
22	All right. The comment with respect to
23	new reactors, one of the comments, was that the
24	guidance that we've added is not specifically required
25	by the regulations. And specifically we made comments
l	I

(202) 234-4433

	116
1	to the effect that new reactors should have minimal
2	reliance on operator manual actions and alternative
3	shutdown and also that operator manual actions should
4	be avoided.
5	Furthermore, we said that reliance on
6	electrical raceway fire barrier systems should be
7	minimized. They objected to the use of these terms.
8	And the comment was that those terms and that guidance
9	is not in the regulations anywhere.
10	This is guidance. The reg guide provides
11	guidance. And these are considered to be appropriate
12	goals for new plants, where the fire protection
13	protection program can be integrated into the planning
14	and design phase of the plant.
15	Furthermore, it supports the Commission's
16	concept of enhanced fire protection for new reactors,
17	although, again, it's not in the words or the
18	description of the enhanced fire protection. But it's
19	also consistent with GD-C3.
20	MEMBER APOSTOLAKIS: Yes. The issue of
21	new reactors in fire protection, all the risk-informed
22	initiatives we have undertaken the last eight, nine
23	years have been voluntary.
24	And the argument has been, you know, we
25	have already licensed the existing reactors using

(202) 234-4433

	117
1	separate criteria. So we can't really go back and
2	impose now that they become risk-informed. So they're
3	voluntary.
4	And that has led to situations where we
5	are really dancing around an issue. If you do this,
6	you do that. If you do this, you do that. But for
7	new reactors, why don't we demand that they be
8	risk-informed? In other words, it seems to me that
9	there is a general consensus that NFPA 805 is a good
10	thing to have. And we like plants to follow NFPA 805,
11	assess the risk.
12	And then if they want to change later, you
13	know, they can do a risk evaluation and go to the
14	regulatory guide and so on and so on because it gives
15	an integrated view of the plant.
16	Why can't we say that new reactors should
17	follow the NFPA 805?
18	MR. RADLINSKI: I wish Ray Galucci were
19	here to hear you say that. I'm sure he would
20	appreciate it.
21	MEMBER APOSTOLAKIS: Is there anything in
22	the regulations that forbids that?
23	VICE CHAIRMAN SIEBER: I think you have to
24	do it by rulemaking
25	MR. RADLINSKI: Right.
I	

(202) 234-4433

	118
1	VICE CHAIRMAN SIEBER: if you want to
2	impose it as an absolute requirement.
3	MR. RADLINSKI: Okay. That's a legalistic
4	argument, I mean. Then you go to appendix B, which
5	refers to fire probablistic risk assessments. And you
6	see things like a detailed fire PRA is not necessarily
7	required for a new reactor fire protection program.
8	And then later on it says, however, if an
9	applicant for a combined operating licenses references
10	a certified design and if that certified design
11	developed a fire PRA, then we impose additional
12	requirements that the PRA has to be reviewed, right,
13	and all that stuff, which I don't see here right now.
14	But, I mean, we put all these "ifs." And
15	we rely on the good will of the applicant to do the
16	PRA. So if somebody doesn't do a fire PRA, then they
17	don't have to do all these things and they go back to
18	being deterministic and all of that.
19	In other words, we are perpetuating this
20	situation of having two parallel regulatory systems,
21	I mean. And at the same time, we see major utilities
22	right now switching to NFPA 805 because they believe
23	it's to their advantage.
24	MR. RADLINSKI: Right.
25	MEMBER APOSTOLAKIS: Why have all of these
I	I

(202) 234-4433

	119
1	ifs that a detailed fire PRA is not necessarily
2	required but if their certified design developed a
3	fire PRA
4	VICE CHAIRMAN SIEBER: Where are you
5	reading from, George?
6	MEMBER APOSTOLAKIS: Appendix B of this.
7	MR. RADLINSKI: I believe the "ifs" are
8	there because we don't have the regulatory rule in
9	place for that. But it's very important to note that
10	AP1000 and ESBWR, both DCDs, both have fire PRAs,
11	MEMBER APOSTOLAKIS: Yes, but where
12	MR. RADLINSKI: which means that the
13	COL applicants must adopt that fire PRA and maintain
14	it.
15	MEMBER APOSTOLAKIS: Yes. It says, "Then
16	the COL applicant is to use that PRA and update it to
17	reflect site and plant-specific information that may
18	not have been available at the design stage. In
19	addition, the licensee that has a risk-informed
20	performance-based FPP similar to NFPA 805 or that
21	plans to evaluate plant changes using a risk-informed
22	approach must have a detailed fire PRA."
23	And you look at all of this and say,
24	"Well, gee, they're asking me to do all of these
25	things if there is a fire PRA in the certified design.
I	I

(202) 234-4433

	120
1	And if there isn't, then what do I do? I go back to
2	appendix R?"
3	MR. RADLINSKI: The reality of the
4	situation is that you are going to get what you want.
5	They do have fire PRAs.
6	MEMBER APOSTOLAKIS: But how do you know
7	that in the future they will also have fire PRAs?
8	MEMBER BANERJEE: Well, it will be EPR,
9	right?
10	MEMBER APOSTOLAKIS: Does EPR have a fire
11	PRA?
12	MEMBER BANERJEE: Well, it hasn't come
13	yet, but I presumed it would.
14	MEMBER APOSTOLAKIS: Is that a good way to
15	regulate?
16	MEMBER BANERJEE: Well, you can not
17	reference the design if you don't want to reference.
18	MEMBER APOSTOLAKIS: It seems to me,
19	though, that the NFPA 805 appears to be the way to go.
20	MR. RADLINSKI: But it's not for new
21	reactors. It's specifically for
22	MEMBER APOSTOLAKIS: No. It's doesn't say
23	anything, right? I mean, there is
24	MR. RADLINSKI: No, no. It says
25	specifically for existing operating reactors.
I	I

(202) 234-4433

	121
1	MEMBER APOSTOLAKIS: Well, but since we
2	like it for existing reactors, why don't we like it
3	for future reactors?
4	MR. RADLINSKI: We do.
5	MEMBER APOSTOLAKIS: Yes.
б	VICE CHAIRMAN SIEBER: All you need is a
7	rulemaking.
8	MEMBER APOSTOLAKIS: And that's such a
9	major problem.
10	MR. RADLINSKI: It takes two years to
11	wait. Then we can do that.
12	VICE CHAIRMAN SIEBER: Two years. You
13	need an SMR to start one.
14	MEMBER APOSTOLAKIS: Well, but then,
15	again, it seems that two designs we have certified
16	already have a fire PRA that wouldn't upset anybody
17	because
18	VICE CHAIRMAN SIEBER: They wouldn't be
19	upset.
20	MEMBER APOSTOLAKIS: Yes. It wouldn't
21	upset anybody. And it would be the good way of doing
22	business.
23	VICE CHAIRMAN SIEBER: Pretty easygoing.
24	MR. WEERAKKODY: Yes. I can't give you a
25	complete full answer on this issue, but I know I
I	

(202) 234-4433

	122
1	suspect we are kind of talking about is this a policy
2	issue that's under consideration in the new reactor
3	space?
4	I know the ACRS has its what I'm saying
5	is like Bob is up there. And we are kind of parroting
6	what the current policy is as we know it from the new
7	reactor folks. So I don't know whether we can solve
8	it in fire protection.
9	For example, even if we agree with you
10	that we should require fire PRAs for all new reactors,
11	it's not under the purview of the Fire Protection
12	Branch. But I have heard from the grapevine that you
13	are interested in this issue in other forums.
14	MEMBER APOSTOLAKIS: Who is raising the
15	issue?
16	MR. WEERAKKODY: This is just on new
17	reactors. Yes.
18	MEMBER APOSTOLAKIS: We are raising it?
19	MR. WEERAKKODY: That's what I
20	CHAIRMAN SHACK: In PRA in general.
21	MR. WEERAKKODY: In PRA in general. So
22	what we are doing, Dr. Apostolakis, is we are
23	following, as opposed to leading, that policy in the
24	fire protection area.
25	But in the meantime I think what Bob is

(202) 234-4433

	123
1	saying is he is also the lead for his ESBWR. And he
2	knows 805. He knows the new reactors. From a safety
3	standpoint, the new designs are taking care of the
4	safety business by keeping things in separate rooms.
5	The only place they bring things together,
6	the cable is using the control room and in the
7	containment. So we are looking at core damage
8	frequencies like 100 times lower than our current
9	operating plants.
10	MEMBER APOSTOLAKIS: But even if the
11	vendor had included a fire PRA in the design
12	certification application, this implies that the
13	utility that will have a new reactor doesn't
14	necessarily have to go to NFPA 805. That's what it
15	says. It can if they want, but they don't have to.
16	CHAIRMAN SHACK: It's performance-based.
17	MEMBER APOSTOLAKIS: My problem with this
18	is that and maybe you're right, Sunil, that it's
19	not your business to do these things, but we have
20	lived with a very strange situation so far since 1998
21	for existing reactors because of the license issue.
22	But to perpetuate this for new reactors
23	and have these parallel systems forever doesn't sound
24	to me like it's a rational way to proceed. And maybe
25	it's not your job to do that but certainly I think the
I	I

(202) 234-4433

	124
1	Committee's job.
2	VICE CHAIRMAN SIEBER: But that becomes a
3	policy issue. And I think that it's fair for us if we
4	believe it to recommend to the staff that they
5	consider developing a policy issue. But that's the
6	way a rulemaking would start.
7	MR. WEERAKKODY: If I may, one thing with
8	respect to 805, we specifically excluded new reactors
9	from 805 because, even though concept-wise, you know,
10	risk-informed, performance-based is okay for new
11	plants as well, it's kind of like the get-by rule, so
12	to speak.
13	We build a plant. And we want to fix the
14	plant using risk-informed because if you think of the
15	reg guide and the thresholds we applied in the core
16	damage frequency changes that allows self-approval,
17	for the new reactor, it's way too liberal in a sense
18	because they start with a much advanced, much lower
19	core damage frequencies.
20	Now then you run into another policy
21	issue. Should we be holding new reactors to higher
22	safety standards? So if there is a need to
23	risk-inform new reactors, we should be looking at 806,
24	not 805.
25	MEMBER APOSTOLAKIS: Well, yes. That's a

(202) 234-4433

	125
1	detail as far as I'm concerned. And I suspect the
2	reason why 805 did not refer to new reactors is this
3	fear of not putting something there that you don't
4	have to when you approve a document. It's always, you
5	know, focus on the immediate problem and don't say
6	anything about 20 years from now.
7	As a philosophical issue, though, it seems
8	to me that this is a good opportunity to go with a new
9	system, which a lot of the utilities with existing
10	reactors acknowledge is a good system, right?
11	MR. WEERAKKODY: Yes.
12	MEMBER APOSTOLAKIS: In fact, how many
13	plants now, units?
14	MR. WEERAKKODY: Forty-two.
15	MEMBER APOSTOLAKIS: Forty-two out of
16	MR. WEERAKKODY: A hundred and three, 104
17	when Browns Ferry starts.
18	MEMBER APOSTOLAKIS: So that is really my
19	comment on this.
20	VICE CHAIRMAN SIEBER: Why don't we
21	continue on with your remaining slides?
22	MR. RADLINSKI: Okay.
23	MEMBER APOSTOLAKIS: But, again, a fire
24	PRA should receive a peer review to the extent that
25	adequate industry guidance is available. So if I
	I

(202) 234-4433

	126
1	don't have a fire PRA, what do I do? Do I get a peer
2	review or something else?
3	VICE CHAIRMAN SIEBER: There is nothing to
4	review if you don't have it.
5	MEMBER APOSTOLAKIS: What?
6	VICE CHAIRMAN SIEBER: There is nothing to
7	review if you don't have one.
8	MEMBER APOSTOLAKIS: You don't review the
9	fire PRA. But then I'm doing something in lieu of
10	that. And I would like to know, would there be a peer
11	review for that alternative? In other words, this
12	sends a message that if you dare go into a fire PRA,
13	we're going to hit you with 100 requirements to try to
14	discourage you from doing it.
15	VICE CHAIRMAN SIEBER: I think it is far
16	easier to do a PRA of any set and get it peer-reviewed
17	than it is to build architectural features into your
18	plant. And that's really the choice you have.
19	You know, you have to do all of your
20	thinking up front in the design stage if you want to
21	avoid having to take the route of risk-based fire
22	protection. It's still a policy issue.
23	MEMBER APOSTOLAKIS: It is. It is. But
24	we are sending the wrong message, it seems to me,
25	here.
I	

(202) 234-4433

	127
1	CHAIRMAN SHACK: There's no other to send,
2	George. You wouldn't have a PRA without a peer
3	review. A peer review of a deterministic program
4	makes a whole lot less sense. I mean, it's perfectly
5	sensible.
б	VICE CHAIRMAN SIEBER: And that's true
7	probably for all PRAs. I still would like to move on
8	
9	CHAIRMAN SHACK: We had better move on.
10	VICE CHAIRMAN SIEBER: and be no later
11	than the fuel folks left us.
12	CHAIRMAN SHACK: We're taking up George's
13	subcommittee report.
14	MEMBER APOSTOLAKIS: What?
15	CHAIRMAN SHACK: Onward.
16	MR. RADLINSKI: Right. The next comment
17	had to do with new reactors and the guidance that we
18	have provided that they should be maintained safe for
19	all modes of operation.
20	This entire slide is a summary of their
21	comment, basically to say to delete the guidance that
22	addresses fire protection for non-power operation.
23	Their basis is that the staff has already
24	approved new designs without disposition, that passive
25	shutdown plants would have to evaluate fire effects on
I	

(202) 234-4433

	128
1	active systems that are used when the plant is too
2	cold for passive cooling.
3	VICE CHAIRMAN SIEBER: If you don't do
4	anything, the plant will become warm enough for
5	passive cooling.
б	MR. RADLINSKI: You are getting ahead of
7	me here.
8	VICE CHAIRMAN SIEBER: Okay. And if there
9	is a requirement or guidance by the NRC, the comment
10	is that the NRC should provide the specific method of
11	analysis that the industry should use to address this.
12	And, finally, they made the comment that
13	the staff was directed to cease activity on the
14	shutdown rule in 1997. I still haven't figured out
15	what that has to do with this, but so our response
16	is basically plants have to have a fire protection
17	program that maintains plant safety in the event of
18	fire in all modes of operation. That's fundamental.
19	Okay?
20	If you want to find bases in the
21	regulations, 50.48(a)(2)(iii) requires that the means
22	to limit fire damage to structures, systems, and
23	components is important to safety so that the
24	capability to shut down the plant safely is ensured.
25	That means keeping a safe shutdown.
I	I

(202) 234-4433

	129
1	Last, but not least, 50.59. We talked
2	about this in the last meeting. Again, we believe
3	that it would be appropriate to put fire protection
4	back under 50.59.
5	The Commission has said they do not like
6	the idea of a separate license condition for fire
7	protection, no adverse effect approach to evaluating
8	changes. 50.59 is good for the rest of the planet.
9	It should be good enough for fire protection. So we
10	are proposing to do that.
11	Okay.
12	VICE CHAIRMAN SIEBER: Is that it?
13	MR. RADLINSKI: Yes.
14	MEMBER APOSTOLAKIS: I have one.
15	VICE CHAIRMAN SIEBER: George?
16	MEMBER APOSTOLAKIS: Yes. Again, there is
17	a statement. There is a discussion of the
18	self-imposed station blackout somewhere there on page
19	19. And there is speculation.
20	The risk of self-imposed station blackout
21	may greatly exceed the actual risk posed by the fire.
22	And the licensee should consider the risk carefully
23	when evaluating the plant safe shutdown design and
24	procedures. How are they going to do this if they
25	don't have an estimate of the risk?
I	I

(202) 234-4433

	130
1	And that, in fact, we go on and say,
2	"However, acceptable operator manual actions that are
3	implemented in accordance with" such and such and such
4	and such may present a lower risk than the
5	self-imposed station blackout approach. And I'm
6	trying to understand how in a deterministic world a
7	utility may decide that one or the other represents a
8	lower risk.
9	MR. RADLINSKI: First of all, we did water
10	that down a bit. We took out the word "greatly." I
11	don't imagine that answers your question.
12	(Laughter.)
13	MR. WEERAKKODY: This is Sunil Weerakkody
14	again.
15	VICE CHAIRMAN SIEBER: That solved that
16	problem. I think maybe I can address this a little
17	bit. You know, some of these things in the absence of
18	a PRA, which probably aren't going to do as you
19	discover a fire in certain areas made by engineering
20	judgment or operator judgment as to "Do I want to cope
21	with a self-induced station blackout or do I want to
22	go and put out a fire the size of a wastebasket?" And
23	so it becomes a judgment call in those clear-cut
24	cases.
25	Beyond that, I think that you are right,
I	I

(202) 234-4433

	131
1	George. You would have to do some kind of analysis
2	for the big events where the risk is not well-defined.
3	But just undergoing a station blackout is an
4	operator's challenge.
5	MEMBER APOSTOLAKIS: And then there is
б	another statement. New reactor design should not rely
7	on self-imposed station blackout to mitigate potential
8	fire damage to safe shutdown systems. Is that a
9	policy issue or is it a technical issue or
10	MR. WEERAKKODY: Even though you don't
11	have numerical calculations to show that inducing a
12	station blackout is not a good thing, there is
13	overwhelming knowledge that that is not a good thing
14	to do. I mean, it is kind of almost like common
15	sense.
16	Why would you want to take out your
17	operating equipment intentionally because you want to
18	be in the licensing basis. We have had to limit that
19	because the regulation does not, the current
20	regulation does not, prohibit that.
21	In some of the cases, such as this, what
22	we have done is we have basically told the new plants,
23	"Please don't design your plants to rely on that kind
24	of mitigation. It just doesn't make sense."
25	VICE CHAIRMAN SIEBER: You are blacking
ļ	

(202) 234-4433

	132
1	out the plant to avoid some spurious operation, which
2	is pretty drastic.
3	MR. WEERAKKODY: I mean, you could confirm
4	with risk verification that that is, in fact, the case
5	and say how big it is, but just to say that I'm going
6	to kill these or I'm going to turn all of these off so
7	that they don't get damaged by a spurious actuation
8	VICE CHAIRMAN SIEBER: It is my
9	understanding that few plants have that as a provision
10	
11	MR. WEERAKKODY: That's correct because
12	that
13	VICE CHAIRMAN SIEBER: in some fire
14	scenarios.
15	MEMBER ARMIJO: Has anybody ever done it?
16	VICE CHAIRMAN SIEBER: No.
17	MR. WEERAKKODY: Do you mean in actual
18	situation?
19	MEMBER ARMIJO: In real.
20	MR. WEERAKKODY: I don't know the answer,
21	but we do know that in some plant procedures, they
22	rely on it. Whether they actually have had a fire to
23	do it I do not know.
24	MEMBER POWERS: I think, in fact, it has
25	been done, Jack.
	I

```
(202) 234-4433
```

	133
1	VICE CHAIRMAN SIEBER: Where? In the
2	United States?
3	MEMBER POWERS: Yes, in some U.S. plant.
4	For some reason, Pilgrim comes to mind, but I don't
5	know that for a fact.
6	VICE CHAIRMAN SIEBER: I don't know. I
7	think it would be a good thing to find out.
8	MEMBER APOSTOLAKIS: So for a
9	clarification question, for new reactors, if they
10	don't go the risk-informed approach, appendix R
11	applies?
12	MR. RADLINSKI: No, no. Appendix R
13	doesn't apply to plants licensed after '79
14	technically. But the guidance is very I mean, it's
15	like appendix R. It's
16	VICE CHAIRMAN SIEBER: I think that we
17	have pretty much come to a conclusion of the formal
18	presentation part of the meeting. My personal opinion
19	is I read through all of these documents and
20	particularly the questions and answers. I think both
21	the industry, including NEI and other licensees, did
22	a pretty good job of supplying comments. And the
23	staff did a pretty good job of responding to those.
24	I understand there is an NEI member here.
25	And if anyone would want to make a statement, they can
I	

(202) 234-4433

	134
1	do that now. If not, Mr. Chairman, I turn it back to
2	you.
3	CHAIRMAN SHACK: The next item in our
4	agenda is a subcommittee report from George on our
5	ESBWR Subcommittee. If you would like to say a few
6	words?
7	VICE CHAIRMAN SIEBER: Does he know that?
8	CHAIRMAN SHACK: He does.
9	MEMBER APOSTOLAKIS: Are we writing a
10	letter on this, by the way?
11	CHAIRMAN SHACK: No.
12	VICE CHAIRMAN SIEBER: You can have added
13	comments if you'd like.
14	MEMBER APOSTOLAKIS: Thank you, Jack. I
15	know I can.
16	MR. RADLINSKI: Is there a take-away that
17	we assume you're going to approve the
18	MEMBER APOSTOLAKIS: What?
19	MR. RADLINSKI: Is there a take-away that
20	we assume you're going to approve the issuance of the
21	reg guide or
22	MEMBER APOSTOLAKIS: There is a question
23	for you.
24	CHAIRMAN SHACK: That's a Committee
25	decision.
I	•

	135
1	MR. RADLINSKI: May I conclude from your
2	comments that the Committee will approve the issuance
3	of the reg guide?
4	VICE CHAIRMAN SIEBER: Watch your mail.
5	(Laughter.)
6	MEMBER APOSTOLAKIS: You will get some
7	sort of a letter.
8	VICE CHAIRMAN SIEBER: I can only tell you
9	what I think right now.
10	9) SUBCOMMITTEE REPORT
11	MEMBER APOSTOLAKIS: Okay. We had a
12	meeting on December 14 and 15.
13	CHAIRMAN SHACK: We can go off the record
14	for this.
15	MEMBER APOSTOLAKIS: Pardon me?
16	CHAIRMAN SHACK: Yes. We can go off the
17	record for this.
18	(Whereupon, a luncheon recess was taken
19	at 11:38 p.m.)
20	
21	
22	
23	
24	
25	
ļ	1

	136
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:06 p.m.)
3	10) WOLF CREEK PRESSURIZER WELD FLAWS
4	CHAIRMAN SHACK: Our first presentation
5	this afternoon is on the Wolf Creek pressurizer weld
6	flaws. And our cognizant member for that is Sam
7	Armijo. Sam, I'll turn it over to you.
8	10.1) REMARKS BY THE SUBCOMMITTEE CHAIRMAN
9	MEMBER ARMIJO: Okay. Mr. Chairman, we're
10	going to have an informational briefing this afternoon
11	related to the October 2006 indications of potential
12	cracking at Wolf Creek.
13	We will hear from representatives of the
14	staff as well as from Duke Energy and NEI. We're not
15	expected to write a letter or make any decisions, but
16	we are free to ask as many questions as we think we
17	need to understand this.
18	With that, I would like to turn it over to
19	I think it's Mr. Sullivan who will start out for
20	NRR.
21	MR. SULLIVAN: Thank you very much.
22	MR. BATEMAN: Excuse me. Ted, before you
23	get started, I would just like to add one more thing.
24	This is Bill Bateman from the staff. We do have a
25	subcommittee meeting scheduled for February 21st, at
I	I

(202) 234-4433

	137
1	which point we will have a lot more time to talk about
2	details here I know you have only got an hour for
3	us now and then a full Committee meeting subsequent
4	to that in March.
5	MEMBER ARMIJO: And also I think we have
6	someone on the phone, but I'm not positive. Is there?
7	CHAIRMAN SHACK: I don't know.
8	MR. LUPOLD: Our understanding is that our
9	contractor, Dave Rudlin called.
10	MR. RUDLIN: I'm here.
11	MEMBER APOSTOLAKIS: Who are these people?
12	MR. LUPOLD: Dave Rudlin is a contractor
13	that we have utilized to evaluate some of the flaws
14	that we discovered at Wolf Creek.
15	MEMBER APOSTOLAKIS: Are you NRC yourself?
16	MR. LUPOLD: I am Tim Lupold. I'm with
17	the NRC.
18	MEMBER APOSTOLAKIS: You have to speak to
19	the microphone, though, because
20	MEMBER ARMIJO: Okay. Well, just as long
21	as the folks on the phone just please put their phones
22	on mute so we don't hear any kind of background.
23	With that, Ted, it's all yours.
24	10.2) BRIEFING BY AND DISCUSSIONS WITH
25	REPRESENTATIVES OF THE NRC STAFF
l	I

(202) 234-4433

	138
1	MR. SULLIVAN: My name is Ted Sullivan.
2	And I work in the Division of Component Integrity.
3	And I've been working on this Wolf Creek law issue
4	since about November time frame.
5	I wanted to set out some very brief
6	background. I know this is kind of industry stuff,
7	but I thought it would be appropriate to help put the
8	Wolf Creek information in a little bit of context.
9	And at the subsequent meeting, I expect that either
10	industry or ourselves will talk about this more.
11	The context for these inspections is an
12	industry "mandatory program" under some guidelines
13	that were issued by NEI. This particular program is
14	very customarily referred to as MRP-139. And it deals
15	with inspection and mitigation of dissimilar metal
16	butt welds and reactor coolant system of PWRs. It
17	provides, among other things, guidance for volumetric
18	and visual inspection of alloy-82/182 butt welds.
19	It is over and above what is required by
20	the ASME code in that it requires in the industry
21	context, I'm using the word "require" inspections
22	that are more frequent than those required by the ASME
23	code. And the whole program is somewhat oriented
24	around temperature in that, for example, the
25	pressurizer weld locations need to be inspected first
I	I

(202) 234-4433

	139
1	and most frequently.
2	So it was in that context that these
3	indications or flaws at Wolf Creek were found. This
4	licensee was performing inspections of the dissimilar
5	metal butt welds in the nozzles of the pressurizer.
6	And these indications were found as part
7	of inspections that were done prior to applying weld
8	overlays, which was their plan all along. And I'm
9	going to talk about that more in subsequent slides.
10	We were notified of it in mid October by an event
11	notification.
12	So flaws were found in three of I guess
13	six nozzles. And I'll get into them one by one. In
14	the surge line, there were three flaws found. They
15	were circumferential in orientation.
16	They are of varying sizes. One, the first
17	one, has an arc of about 38 degrees; the second about
18	21-degree arc; and the third one is a much smaller,
19	about 7 and a half-degree, arc.
20	This weld was last examined in 1993 using
21	techniques that predated the performance demonstration
22	initiative qualification program. I want to say a
23	little bit about the qualification of the procedure
24	and the examiner. The procedure that was used was a
25	manual procedure. It was qualified for flaw detection
Į	

(202) 234-4433

	140
1	and length sizing.
2	The examiner was qualified for detection.
3	He had apparently not gone through or passed I
4	don't know which the qualification for length
5	sizing. Notwithstanding, readings were taken for
6	informational purposes on length and depth and all the
7	readings were confirmed by a person from EPRI. And
8	that note, which will appear on some subsequent
9	viewgraphs, is true for all of the welds examined.
10	MEMBER ARMIJO: Was the EPRI person an
11	expert or did you
12	MR. SULLIVAN: The EPRI person was a
13	person who administers the PDI qualification exams.
14	MEMBER ARMIJO: But he's experienced?
15	MR. SULLIVAN: I would say he was very
16	experienced, and he was an expert. I just can't call
17	him qualified because EPRI doesn't qualify its own
18	people. They administer the exams.
19	MEMBER BONACA: The 13 years between the
20	last volumetric examination, is normal, the long
21	period of time?
22	MR. SULLIVAN: I'm not sure why there was
23	such a long period of time. It does seem like a long
24	time. It's more than an interval.
25	MEMBER BONACA: Yes.
I	I

(202) 234-4433

	141
1	MR. SULLIVAN: That's a good question.
2	That's not something we asked. Do you know?
3	MEMBER CORRADINI: Well, if I could
4	address that, the requirement would be to inspect it
5	once every interval. And the ASME section 11 gives
6	latitude to defer some exams from one period to a
7	next. So it's ten years plus or minus is what the
8	exams would be. So it's not unheard of to have 13
9	years between subsequent exams.
10	MR. SULLIVAN: Okay. On the relief
11	nozzle, there was a very large flaw. It was a
12	170-degree arc. And on the safety nozzle, there was
13	one flaw also. It had about a 55-degree arc.
14	MEMBER ARMIJO: I've seen prior
15	presentation material that the staff has issued, maybe
16	a month or so ago. And I've seen numbers that are
17	higher, like 11-inch cracks or indications, as opposed
18	to 7.7. What is going on?
19	MR. LUPOLD: The numbers that you're
20	referring to would be the lengths of the flaws, as
21	projected on the OD of the pipe. This is these
22	numbers that you're seeing right here
23	MEMBER ARMIJO: ID.
24	MR. LUPOLD: would be the length of the
25	flaws on the ID.
I	I

(202) 234-4433

	142
1	MR. SULLIVAN: When we initially got the
2	data, it was over the telephone. And we weren't clear
3	where these links were. We thought they were on the
4	ID. They subsequently clarified it was on the ODs.
5	So we had to do a little conversion.
б	Okay. Our concerns with these inspection
7	results were that they were the first large multiple
8	circumferential flaws identified. Previous
9	circumferential flaws have been identified, but these
10	were large. We found a very large flaw. And we found
11	multiple indications in one of the nozzles.
12	The expectation was to see smaller flaws
13	and see axial flaws. Predominantly the inspection
14	data shows more often you get axial flaws than
15	circumferential. And, of course, the concern with
16	circumferential flaws is it can lead to rupture, as
17	opposed to the concern you have with the axial is that
18	it's much more likely to just lead to leakage.
19	And our concern with the large flaws and
20	the multiple flaws was that it seemed to us to
21	increase the need to complete the baseline inspections
22	on a timely basis.
23	So we did fracture mechanics evaluations
24	of this data. We took it as though it was axial,
25	actual, even though we couldn't confirm it. We didn't
ļ	1

(202) 234-4433

	143
1	change the sizes. We just used the information data
2	to do analysis.
3	The analyses were done in such a way as to
4	basically work the problem backwards to try to get an
5	estimate of when the cracks might have initiated. And
б	then we worked the problem forward to get an estimate
7	of when the flaws could lead to leakage if they were
8	left in service, if they had been left in service.
9	And we estimated times to reach critical flaw size,
10	again, if they had been left in service.
11	We analyzed the flaws in all three
12	nozzles. We didn't assume that the flaws in the surge
13	line interacted. We just picked the largest of those
14	three flaws. We calculated time ranges based on three
15	different residual stress profiles, two different
16	fracture mechanics models, and two different
17	through-wall flaw models.
18	And I think we can talk about that a lot
19	more in the meeting on the 21st of February, but the
20	reason I'm bringing it up now is that 2 times 3 times
21	2 turns out to be 12 different cases that were
22	analyzed. And that will come up on a subsequent
23	slide.
24	These were not best estimate calculations.
25	And they're not considered bounding. They were just
	I

(202) 234-4433
	144
1	calculations we did to try to scope the problem.
2	VICE CHAIRMAN SIEBER: Did you get any
3	clue as to the validity of the leak before a break
4	assumption?
5	MR. SULLIVAN: Yes. That's where we are
6	going with this.
7	VICE CHAIRMAN SIEBER: Okay. It breaks
8	first and then leaks.
9	MR. SULLIVAN: Well, this will come up on
10	the next slide. On this slide, which talks about the
11	results for the surge line, in all 12 cases we
12	analyzed, we saw some time between leakage and
13	rupture. And you can see that in the rows of this
14	particular table on this viewgraph.
15	So that is the salient point, I think, of
16	this viewgraph other than the fact that the times
17	could be fairly short, less than two refueling cycles.
18	MEMBER MAYNARD: One thing to be pointed
19	out, Wolf Creek did not take credit for leak before
20	break. This was analyzed without taking credit for
21	leak before break for this particular line. So they
22	were not outside their design basis. I think that's
23	important to note.
24	MR. SULLIVAN: That's true. On this
25	plant, the surge line was not a leak before break,
	1

(202) 234-4433

	145
1	pipe that had not been requested of the staff nor
2	reviewed. And, as with other plants, the smaller
3	nozzles, the safety and the relief lines were never
4	submitted to the staff as candidates for leak before
5	break.
6	CHAIRMAN SHACK: I mean, those ranges of
7	times don't pass my sanity check, actually. I mean,
8	you know, I would say measured size to leak could be
9	one year to infinity. Initiation to measured size
10	could be I would be astounded if it were .3 years.
11	It could well be 16 years.
12	MEMBER CORRADINI: Which one did you say
13	astounds you?
14	MR. SULLIVAN: The first one.
15	CHAIRMAN SHACK: What were the
16	assumptions? Well, maybe that's something we can just
17	wait. I'll just make that comment. We'll wait until
18	we get to the subcommittee meeting.
19	MEMBER ARMIJO: Even though there was no
20	claim on leak before break, those are pretty big
21	pipes, 15-inch, 16-inch pipes. That's a pretty hefty
22	piece of metal there.
23	MEMBER MAYNARD: The surge line is a
24	15-inch line. And then those nozzles are 8-inch
25	lines.

(202) 234-4433

	146
1	MR. SULLIVAN: In our evaluation of this
2	information, we didn't really give any particular
3	credence to the time. And I think the results of this
4	analysis as I'll get into it really are not
5	surprising. It's not surprising that on the surge
6	line, you would see leak before break behavior.
7	On the smaller lines, which are not as
8	flaw-tolerant, it's not surprising that you would see
9	rupture turnout in the calculations before leakage.
10	And that really is pretty much how we used the
11	information.
12	MEMBER BONACA: It still troubles me when
13	I think about what we're saying in license renewal,
14	that a 10-year inspection was good when the plant was
15	10 years old. Then it's good when the plant is 50
16	years old. And this is confirming otherwise.
17	MR. SULLIVAN: Well, I guess the reason we
18	are pretty comfortable with this is that industry has
19	put together a reasonably aggressive program to
20	mitigate these welds. And so in license renewal
21	space, we think that that's really what license
22	renewal is relying on, is the program to mitigate
23	these welds and address PWSCC.
24	MEMBER BONACA: Yes. This is the problem
25	of the day.
I	1

(202) 234-4433

	147
1	MR. SULLIVAN: That's right.
2	MEMBER BONACA: Then tomorrow there is
3	going to be some other component. I mean, there has
4	to be a recognition that aging is going to create new
5	flaws. It just is inevitable.
6	MR. SULLIVAN: Right.
7	MEMBER BONACA: And I'm just saying that
8	we'll have to reflect on the inspection intervals.
9	CHAIRMAN SHACK: Yes. Let me ask another
10	question about the inspections. I mean, every section
11	XI inspection now of a welded pipe is going to be done
12	with a PDI-qualified inspector?
13	MR. SULLIVAN: That's correct.
14	CHAIRMAN SHACK: Okay. So there will be
15	no more inspections that will be done by anybody
16	that's not through the qualification process?
17	MR. SULLIVAN: That's true. I mean, you
18	have to recognize, though, that there are PDI
19	supplements to address, at least the cast stainless
20	steel. That problem is still being worked.
21	CHAIRMAN SHACK: Right.
22	MR. SULLIVAN: And I think one of the
23	points of this and industry will probably make this
24	point on the 21st, but there are a lot of these welds
25	that can't be inspected because you don't have access
I	

(202) 234-4433

	148
1	or you've got materials that are not inspectable. But
2	one of the thrusts of the MRP-139 program is to make
3	the configuration inspectable, even if you have to put
4	a weld overlay, a full-structure weld overlay, on the
5	weld to accomplish that.
6	CHAIRMAN SHACK: So you can inspect the
7	overlay? You still can't inspect the pipe?
8	MR. SULLIVAN: Depending on the material,
9	underneath it, you can inspect into the original weld,
10	at least some distance, again, depending on what the
11	adjacent materials are.
12	Okay. We have kind of covered the point
13	here already, but I'll just get into it briefly. In
14	the leak to rupture row, the fourth row on this table,
15	the important information is in the note. And what it
16	shows is that in 8 of the 12 cases we analyzed, there
17	wasn't any time between leak and rupture.
18	And, contrasting that with the safety
19	nozzle, we found something similar, although not quite
20	as dramatic, which is that in 4 cases, 4 out of the 12
21	cases, there was no time between leak and rupture.
22	And I think that we can discuss this
23	further on the 21st. We're trying to make
24	arrangements to send over to the ACRS the report that
25	our contractor put together that will discuss this in
ļ	I

(202) 234-4433

	149
1	a lot more detail. You can see exactly which
2	assumptions led to which results.
3	MEMBER ARMIJO: Is your primary assumption
4	that this was PWSCC and that the crack growth rates,
5	you had crack growth rate data that you could use in
6	the analysis?
7	MR. SULLIVAN: Yes. In this analysis, we
8	treated the flaws as PWSCC, which was the most
9	probable causae that was identified by the licensee.
10	And we used the MRP-115 crack growth rates, which were
11	generated by the industry using a lot of data, both
12	industry data, probably some NRC data, and some Navy
13	data.
14	MEMBER ARMIJO: Okay. So then you worked
15	back from the time to you worked backwards from
16	those. So that left a long period of time for
17	initiation, right?
18	MR. SULLIVAN: Well, basically this is
19	what
20	MEMBER ARMIJO: That's Bill's issue, isn't
21	it?
22	MR. SULLIVAN: Dr. Shack was commenting
23	on, that it shows the possibility that these flaws
24	generated in a non-credibly short period of time.
25	CHAIRMAN SHACK: I mean, even to do these
I	

(202) 234-4433

	150
1	things, you have to make all sorts of assumptions
2	about how many cracks initiated, you know, whether
3	these cracks are 11 inches long because you initiated
4	100 short cracks that linked up or there is this one
5	crack that grew that arrested itself going through the
6	wall and then grew around the thing. So you pick a
7	number. I can come through here and give you an
8	analysis that can be just about any number you want.
9	MEMBER ARMIJO: Or the state of stress.
10	What's the stress where these things are growing?
11	MR. SULLIVAN: Well, we had to make
12	assumptions about part of that. We used the design
13	loads that came from the licensee and maybe ultimately
14	from Westinghouse. And we used three different
15	residual stress models. So that's where the stress
16	assumptions came from.
17	Okay. Moving on into some less numerical
18	material, some general observations are that long circ
19	flaws decreased time between leak and rupture. Your
20	flaw tolerance goes down if you start out assuming
21	that you've got long circ flaws to begin with.
22	And the second observation is basically
23	that smaller diameter welds are less well-tolerant
24	than large diameter welds. And then specifically I
25	think the rest of this slide just kind of reiterates
	I

(202) 234-4433

(202) 234-4433

	151
1	what we just talked about, that the relief line had
2	the least margin based on our analysis, with 8 of 12
3	cases showing no time between leak and rupture.
4	The safety line analysis had a shorter
5	flaw. It showed that 4 out of the 12 cases analyzed
6	didn't produce any evidence of leakage prior to
7	rupture. And the surge line, I think in part because
8	of the way we analyzed it, not linking up any of the
9	flaws, we sold it in all cases with some time between
10	leak and rupture. And the shortest time on all of
11	these analyses or most of them, not every single one,
12	or most of them was less than two operating cycles, I
13	think between initiation and failure.
14	I've got a little treatment here of
15	conservatisms, non-conservatisms, and uncertainties.
16	And it's kind of difficult in this case to try to
17	figure out which box to put some of these aspects in.
18	Residual stress relaxation is a problem
19	that was worked by industry prior to our last meeting.
20	That's a potential conservatism. The only reason I
21	say "potential" is I think it could vary depending on
22	what residual stress models are used.
23	The axisymmetric residual stress
24	distribution is generally thought of as a
25	conservatism. That's something I haven't mentioned up
I	

(202) 234-4433

(202) 234-4433

	152
1	until now, but the way the residual stresses are
2	modeled for practicality and possibly also because of
3	lack of better information, they're modeled as
4	axisymmetric. And that's generally viewed as a
5	conservatism, although I don't think it would
6	necessarily be.
7	There are some potential non-conservatisms
8	in the analysis. Not to overwork this, but we have
9	talked about some of these already. The first one
10	certainly I have talked about.
11	The pipe loads that we used were not
12	necessarily bounding. We got Wolf Creek-specific
13	numbers. And we're aware they aren't bounding for the
14	industry. The indication sizes may not be bounding.
15	We really don't know what is out in the fleet. The
16	indications we use may be bounding, but they may not
17	be.
18	The industry recommends and uses the 75th
19	percentile crack growth rate. That's what we used in
20	this analysis. That's not necessarily bounding.
21	And in terms of uncertainties, I think we
22	have hit on some of these. The residual stress
23	distribution is certainly an uncertainty, no pun
24	intended.
25	MEMBER APOSTOLAKIS: I don't understand
	I

(202) 234-4433

	153
1	the statement of the 75th percentile is not
2	necessarily bounding. What does that mean?
3	MR. SULLIVAN: Well, a 95th percentile
4	crack growth rate would be more conservative. I'm
5	just pointing out that what was used in the analysis
6	was the 75th percentile.
7	MEMBER CORRADINI: Growth rate?
8	MR. SULLIVAN: Growth rate, yes.
9	MEMBER APOSTOLAKIS: But neither one is
10	bounding.
11	MR. SULLIVAN: That's true. One would be
12	more conservative.
13	As I think we may get into later, there
14	are 37 units that have not been addressed under
15	MRP-139. That's a little bit just slightly bigger
16	than half the units.
17	And flaw depth is another uncertainty. As
18	I pointed out before, the flaw depths were measured,
19	but they weren't measured with qualified techniques.
20	The position that the staff has been
21	developing is based on the thinking that the
22	inspections or mitigations need to be accelerated from
23	the current industry schedule for some plants. I know
24	that statement is a little bit in a vacuum, but if we
25	have time, I'll talk more about what that means.
I	

(202) 234-4433

	154
1	CHAIRMAN SHACK: You aren't going to give
2	us a hint as to what some plants are?
3	MR. SULLIVAN: Okay. I'll get into that
4	right now. I said that 37 plants haven't completed
5	their MRP-139 evaluations. There were 19 plants that
б	don't even have dissimilar metal welds.
7	There are something like 13 plants that up
8	to now have already implemented the MRP-139
9	inspections or mitigations. Most of them have
10	mitigated. Some have just inspected with an augmented
11	inspection frequency requirement in MRP-139 over that
12	in the code.
13	There are 26 or 27 plants that are
14	scheduled to do the inspections in 2007. Two thousand
15	and seven is the schedule that was originally in
16	MRP-139 for completing the baseline program. That
17	leaves 9, 10, 11 plants somewhere in there.
18	The reason I'm being a little bit vague is
19	that it hasn't happened yet. We just have information
20	on what is planned. But somewhere around ten plants
21	are slatted to do the examination after the original
22	schedule in MRP-139, namely in 2008. And they're
23	really the target of this first bullet.
24	MEMBER ARMIJO: The plants that don't have
25	dissimilar metal welds, are they exempt from this
I	

(202) 234-4433

	155
1	inspection?
2	MR. SULLIVAN: Yes.
3	MEMBER ARMIJO: Is there a reason for
4	that?
5	MR. SULLIVAN: The program is designed to
6	address PWSCC. And PWSCC has only been found to date
7	in alloy 82, 182 welds and alloy 600 products.
8	MEMBER ARMIJO: And what are these
9	materials? Are those
10	MR. SULLIVAN: This program and the Wolf
11	Creek welds only applies to 82, 182
12	MEMBER ARMIJO: Right. No. I'm talking
13	about the 11 that
14	CHAIRMAN SHACK: They would be stainless
15	with 308 in all likelihood.
16	MR. SULLIVAN: No. The 11 plants are 11
17	plants who have planned to do the inspections in 2008
18	that all have alloy 82 or 182 welds.
19	MEMBER ARMIJO: Yes. I got that. I'm
20	going back to the ones that are exempt from this
21	issue.
22	MR. LUPOLD: Okay. We are referring to
23	the plants that we said don't have materials that are
24	susceptible. And those materials typically are
25	stainless steel materials. Some of those materials
Į	

(202) 234-4433

	156
1	could be alloy 52 or alloy 152 also.
2	Now, MRP-139 actually talked about those
3	type materials. They're considered to be resistant
4	materials. And all MRP-139 would do is have you go
5	back and inspect in accordance with the ASME section
6	11 program.
7	MEMBER ARMIJO: Okay. So there is some
8	basis for those materials to be viewed as lower risk
9	or no risk?
10	MR. LUPOLD: That's correct.
11	MEMBER ARMIJO: And at the subcommittee
12	meeting, I would like to get more information on why
13	that is true.
14	MEMBER POWERS: I am not familiar with
15	152.
16	MR. LUPOLD: Alloy 152 is a nickel-based
17	alloy which has a much higher chromium content in it
18	than alloy 82 or alloy 182. And having the higher
19	chromium content has demonstrated it is more resistant
20	to primary water stress corrosion cracking and testing
21	that is being conducted on the material.
22	CHAIRMAN SHACK: It's sort of the weld
23	equivalent of 690.
24	MEMBER CORRADINI: Yes. That's a very
25	good statement.
	I

(202) 234-4433

157
MR. SULLIVAN: Okay. Returning to this
viewgraph, the second part of our developing position
is that we view that enhanced RCS leakage monitoring
with action levels to shut down and visually inspect
welds would be a very desirable thing to do until
inspections or mitigations are completed. And in
developing this position, we considered a number of
factors.
I think we talked about most of these
already. So I think I will just move on to the next
viewgraph.
Now, I don't want to in any way
shortchange the industry, but we put together a
listing of bullets of the industry position. We have
lifted these strictly out of their documents. They're
going to have time to explain their position more, but
I just wanted to lay out a couple of things.

18 Industry has stated they believe the inspection findings are an anomaly. 19 We don't think 20 we're in the position to treat it as such. And 21 anomalies have been -- inspection findings have 22 occurred in the past that have been ascribed to 23 anomalous behavior. And most of the time they don't 24 turn out to be anomalous.

Industry agrees with an enhanced leakage

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

б

7

8

9

10

11

12

13

14

15

16

17

25

	158
1	detection program. I think our differences at this
2	point have to do with action levels and specific time
3	lines for completing action levels and shutting down
4	the plant if that's what it comes to. They have a
5	very good program, but it's not as prescriptive as we
6	would like to see.
7	Industry is undertaking some non-linear
8	finite element analyses to try to address some
9	differences between industry results and what they
10	think is a more realistic outcome. I'll comment on
11	that in the next slide.
12	And I think that's probably enough for
13	now. Industry is going to have time to talk about it
14	some more.
15	MEMBER BONACA: Sorry. The issue, you had
16	some bullets about bounded by plant design basis
17	accident analysis, existing safety analysis
18	conclusions remaining valid. Of course, frequently of
19	the breaks is an element of those analyses. And so
20	somebody will explain why these would be acceptable.
21	MR. SULLIVAN: I think industry is going
22	to be up in a few minutes. So maybe they can
23	MEMBER BANERJEE: I have a question about
24	the finite element analysis. This has to assume some
25	sort of a residual stress distribution, right, when
	I

(202) 234-4433

(202) 234-4433

	159
1	you do this? So what sort of assumptions would be
2	made there?
3	MR. SULLIVAN: In the analyses that have
4	been done so far, we used three different residual
5	stress assumptions. One of them was an ASME model.
б	It appears in the ASME code. It was pegged to a
7	higher yield stress than the one in the code because
8	the materials have a different yield stress.
9	The second model is one that was developed
10	by our contractor based on finite element analyses of
11	weld deposition.
12	MEMBER BANERJEE: When the weld was done?
13	MR. SULLIVAN: Right. That's my
14	understanding. And the third assumption was no
15	residual stress at all.
16	MEMBER ARMIJO: Just applied loads?
17	MR. SULLIVAN: Just applied loads,
18	correct.
19	MEMBER ARMIJO: That was your longest
20	time, right? And it should have been if it wasn't
21	something
22	MR. SULLIVAN: I think it was.
23	MEMBER BANERJEE: But do these actually
24	bound the situation?
25	MR. SULLIVAN: No, we don't think they
I	

(202) 234-4433

	160
1	bound it. That's why I made the statements earlier
2	that these analyses are just scoping analyses in our
3	view. They're not bounding or best estimate. We just
4	tried to do some analyses to show what could happen.
5	MEMBER BANERJEE: What will industry do to
6	improve this situation or are they going to tell us?
7	MEMBER ARMIJO: They are going to tell us.
8	MR. SULLIVAN: Well, I think they are
9	available to answer in more detail, but I think the
10	main thing is that these analyses will remove the
11	constraint that the flaws remain elliptical.
12	MR. LUPOLD: We should just go right to
13	the next slide.
14	MR. SULLIVAN: We have some skepticism.
15	This isn't about the analyses. We certainly think it
16	will be interesting. We think it's important work.
17	We're interested in understanding what's going to
18	happen from these analyses. And the NRC is interested
19	in doing some similar work itself.
20	But in terms of using this for regulatory
21	decision-making, that's kind of another matter. We
22	think that these analyses will basically turn out to
23	just be another scoping study. And they may come up
24	with different results. They may show that you get
25	leak before a break.
ļ	I

(202) 234-4433

	161
1	But I think the end result would be what
2	we already know. You may or may not get leak before
3	a break. I think that unless these analyses could
4	rule out rupture prior to leakage, I don't think
5	they're going to help us in regulatory
6	decision-making.
7	So that's kind of the point of the first
8	bullet. I already made the second bullet. We talked
9	about that. We don't consider these results
10	anomalous. We don't think that's a position that
11	experience proves out with previous inspection
12	results. And, you know, that's not something we would
13	ever do.
14	I previously kind of alluded to our
15	concern with industry's leak-monitoring program. It's
16	an excellent program, but it doesn't have time
17	constraints for implementing actions. And it doesn't
18	require shutdown depending on what could be found.
19	MEMBER BANERJEE: How do they monitor
20	these leaks?
21	MEMBER CORRADINI: Typically RCS leakage
22	is measured just through a mass balance for the
23	reactor coolant system.
24	MEMBER BANERJEE: In the system itself,
25	right.
	I

(202) 234-4433

	162
1	MEMBER CORRADINI: Yes, in the system.
2	It's measured at every plant at least every 72 hours.
3	Some plants will do it 48 hours. Some plants will do
4	it every 24 hours.
5	MEMBER BANERJEE: Well, what are the
6	thresholds of detection here?
7	MEMBER CORRADINI: Industry may be able to
8	answer this question a little bit better, but
9	typically you could measure into the hundredths of a
10	gallon per minute leakage.
11	MEMBER BANERJEE: Hundreds of gallons.
12	MEMBER CORRADINI: Hundredths, .01.
13	MEMBER BANERJEE: Hundredths?
14	MEMBER CORRADINI: .01 galloon per minute.
15	MEMBER BANERJEE: So you can actually
16	monitor all the inflows and outflows and everything
17	down to .01 of a gallon?
18	MEMBER CORRADINI: It's monitored over a
19	time period. So you collect how much leakage you have
20	over like a 24-hour period. And then you do the mass
21	balance. And you can come up with changes of a couple
22	of hundredths of a gpm, you know, from one day to the
23	next. You can see that in the calculations. And
24	typically, though
25	MEMBER BANERJEE: It depends on the
I	I

(202) 234-4433

	163
1	accuracy with which you can measure various
2	MEMBER CORRADINI: Yes, it does. It
3	depends on the accuracy of your measuring instruments
4	and, you know
5	MEMBER MAYNARD: This has tech specs
6	associated with it, not only the instrumentation but
7	the requirements to do it. In addition to being able
8	to do the mass balance and leakage that way, if you
9	get a leak in this part of the system, you also have
10	radiation monitors and you have containment
11	temperature, containment pressure. You have a number
12	of other things that are going to alert you to a leak
13	from an area like this.
14	MEMBER CORRADINI: Right. You also have
15	your
16	MEMBER BANERJEE: So just to go back to
17	this mass balance thing, when we had these leaks in
18	alloy 600 and alloy 600 welds, were such
19	leak-monitoring programs underway to do a mass balance
20	and detect the leaks?
21	MEMBER CORRADINI: Yes. Utilities have
22	used the mass balance for some time period. A very,
23	very small leak from an alloy 600 weld or an alloy 82
24	weld will probably not be detected in a mass balance.
25	MEMBER BANERJEE: So with Davis-Besse,
I	I

(202) 234-4433

	164
1	would this have been detected or not?
2	MEMBER CORRADINI: I hate to speculate on
3	that because I don't really have the background
4	information on Davis-Besse to really answer that
5	question.
б	MR. SULLIVAN: We've done some
7	calculations of situations where a flaw goes from just
8	a pinhole. A circ flaw, for example, goes from a
9	pinhole to a longer flaw assuming that the overall
10	length is short enough to remain stable.
11	And we believe you get enough flow out of
12	a long, stable well, not a long a short can
13	anybody help me here? Dave?
14	MR. RUDLIN: Yes?
15	MR. SULLIVAN: You did some calculations
16	of leakage.
17	MR. RUDLIN: Right.
18	MR. SULLIVAN: Do you have some idea of
19	how long the flaw might have to be before you would
20	see something on the order of, say, .1 gpm?
21	MR. RUDLIN: It depends on the load and
22	monitoring factors.
23	MR. SULLIVAN: Did we do these
24	calculations assuming the Wolf Creek loads?
25	MR. RUDLIN: Yes, yes, but we didn't do
I	I

(202) 234-4433

	165
1	any calculations from obtainable type loads. We did
2	them for ideas like through-wall crack types.
3	MEMBER CORRADINI: Dave, I was going to
4	ask you. Is it safe to say that a leak rate would be
5	a high enough volume to detect before we encroached
6	rupture of a pipe?
7	MR. RUDLIN: The problem is that when you
8	have just the flaw just breaking through, the time
9	between the first pinhole to the time it becomes an
10	idea like a through-wall crack, it's probably going to
11	be very small. The growth in that little ligament
12	area is going to happen very, very quickly.
13	In the relief line type of calculation, a
14	surface crack was actually unstable. And so before
15	even leakage, the surface crack would have failed,
16	creating a large opening that would have been longer
17	than the critical through-wall crack size.
18	That was a specific unique case, I think,
19	with the relief line. I think in most of the other
20	cases, where the surface crack was stable until
21	leakage, there probably would be enough time for
22	detection before you can get the critical through-wall
23	cracks stopped.
24	MEMBER ARMIJO: Yes. Well, those kind of
25	details I think we have to address in the subcommittee
<u> </u>	

(202) 234-4433

	166
1	meeting. But I just want to ask one question. I'm
2	going to ask industry the same thing. Are you
3	convinced that these are cracks it's as simple as
4	that these are cracks and not just some other
5	anomaly, bad NDT signals or
6	MR. SULLIVAN: I don't think we can say
7	that we are convinced because there is no destructive
8	examination data.
9	MEMBER ARMIJO: Right.
10	MR. SULLIVAN: But the analysts called it
11	as a multi-faceted indication, which this is the sort
12	of indication you can get from stress corrosion
13	cracking, although you don't necessarily only get it
14	from stress corrosion cracking.
15	I think the position of the regulatory
16	agency is we have to treat it as stress corrosion
17	cracking. It's the only sensible position for us to
18	take. We cannot be in a position of saying, "Well, we
19	don't know for sure. So we're going to treat it as
20	though it's not cracking."
21	MEMBER ARMIJO: I know that Wolf Creek did
22	not take a sample for metallographic examination.
23	Does anyone in the industry intend to do that if they
24	find something so you can put it to bed that this is
25	really PWSCC and not something else?
I	

(202) 234-4433

	167
1	MR. SULLIVAN: I think that maybe Alex or
2	someone
3	MEMBER ARMIJO: Okay. Fine.
4	MR. SULLIVAN: can answer that question
5	in the next segment.
б	MEMBER ARMIJO: Any other questions?
7	(No response.)
8	MEMBER ARMIJO: Okay. Well, I think the
9	next speaker is where did we have our little who
10	is the next speaker? Is it Alex Marion? Yes. NEI.
11	MR. HAMMER: Sam, I understand that Duke,
12	the Duke representative is not here but that Alex
13	Marion is going to make the presentation.
14	MEMBER ARMIJO: Okay.
15	MR. HAMMER: NEI.
16	MR. MARION: Good afternoon. My name is
17	Alex Marion. I'm the Executive Director for Nuclear
18	Operations and Engineering at NEI. Mike Robinson was
19	scheduled to give this presentation, but he was unable
20	to attend because of weather conditions in the south.
21	I have with me Glenn White from Dominion
22	Engineering, one of the technical consultants that the
23	industry is using; and also Jim Riley, who is the
24	Director of Engineering of NEI. Hopefully Mike
25	Robinson is on the telephone. Mike, are you there?
I	

(202) 234-4433

	168
1	MR. ROBINSON: I am here, Alex.
2	MR. MARION: Good. And we also have
3	Christine King from EPRI on the phone as well.
4	MS. KING: That's right. I am here.
5	MR. MARION: So I have a team of four
6	people to keep me out of trouble.
7	MEMBER ARMIJO: Well, these are EPRI logo
8	charts.
9	MR. MARION: Yes.
10	MEMBER ARMIJO: But you are presenting for
11	everybody.
12	MR. MARION: Yes. The EPRI program, as
13	Ted Sullivan indicated, comes under the auspices of an
14	industry-wide initiative that was undertaken by the
15	Nuclear Energy Institute. And the EPRI materials
16	reliability project is one of the issued programs that
17	come within that program or within that initiative.
18	And their primary focus is on pressurized water
19	reactor piping systems and components relative to
20	degradation.
21	What I would like to do is offer the
22	industry perspective relative to this question of the
23	generic implications of the Wolf Creek inspection
24	findings. Let me just say that our position is that
25	the industry has put forth a very proactive management
I	I

(202) 234-4433

	169
1	program to assess the condition of alloy 82, 182 butt
2	welds and PWR primary systems. And we have developed
3	that with a focus on the more susceptible areas.
4	Basically the first phase involves the
5	welds located in the vicinity of the pressurizer. And
б	we have reevaluated the schedule and the focus of our
7	program, which is documented in MRP-139. And we do
8	not believe that we need to accelerate the schedule.
9	So fundamentally our first principle is
10	that we feel that the bases for MRP-139 inspection
11	program as well as the safety analysis that was
12	developed to support that inspection program remain
13	valid in light of the findings at Wolf Creek.
14	MEMBER ARMIJO: When that program was set
15	up, were you basing that on the existence of axial
16	cracking or did you have circumferential cracking also
17	in mind when you came up with these?
18	MR. MARION: I believe predominantly axial
19	cracking based upon the available information from
20	laboratory data as well as field experience on the
21	kind of cracking phenomena we have been experiencing
22	on an international basis. And all of that was
23	factored into the program that we have developed thus
24	far.
25	I don't know if Mike or Christine want to
Į	

(202) 234-4433

	170
1	elaborate on that at all.
2	MR. ROBINSON: Just a quick comment, Alex.
3	When we put 139 together, we did assume axial cracks,
4	but we also went back and accounted for the fact that
5	certain cracks were very much a possibility. So 139
6	considers the possibility of both and circ cracks.
7	MR. MARION: Okay.
8	MEMBER ABDEL-KHALIK: Just to ask a
9	question about this enhanced leakage monitoring
10	program, what is being proposed here? Tightening tech
11	spec limits on unidentified leaks or
12	MR. MARION: I will speak to that in a
13	little more detail later in the presentation if I can
14	defer that question.
15	MEMBER ABDEL-KHALIK: All right.
16	MR. MARION: Basically, as we indicated,
17	the pressurizer locations were the more susceptible
18	locations based upon the knowledge that was available
19	at the time that we put the program together. And
20	clearly they have our highest priority.
21	Fundamentally with regard to the Wolf
22	Creek findings, we think they're anomalous because
23	they're not validated or confirmed by any of the
24	previous findings in basically the worldwide
25	experience to date.
I	

(202) 234-4433

	171
1	I will elaborate a little bit more on the
2	leakage monitoring programs, as I indicated
3	previously, but we think this is very important
4	because we as an industry believe safety needs to be
5	maintained and it is being maintained. And one of the
6	key aspects of doing that is to have an effective
7	responsive leakage monitoring program.
8	MEMBER ARMIJO: Just to make sure I
9	understand, you said you don't think these are valid.
10	Does that mean you still have doubts whether these are
11	cracks, that there may be just some NDT anomaly?
12	MR. MARION: Yes. Hindsight being 20/20,
13	we wish we had taken a boat sample at the time, but we
14	didn't.
15	MEMBER ARMIJO: Me, too.
16	MR. MARION: And so, as the staff
17	indicated, they feel that they're in the position
18	where they have no choice but to take a very
19	conservative stance relative to the inspection
20	findings of Wolf Creek. And because of their
21	uniqueness, we don't feel that we have to take the
22	same position.
23	There are discussions going on
24	CHAIRMAN SHACK: That doesn't inspire
25	confidence in your inspection program, though, if you
ļ	

(202) 234-4433

	172
1	are that skeptical about the results.
2	MR. MARION: Well, the reason we're
3	skeptical about the results is because there wasn't a
4	sufficiently comprehensive NDE conducted to really
5	determine the depth size, et cetera. And that's a big
6	question that remains.
7	And the uniqueness of the indications on
8	was it five indications? basically averaged
9	anywhere from 22 to 33, 35 percent through all going
10	circumferentially around the pipe. And that has never
11	been seen before at all.
12	CHAIRMAN SHACK: But, I mean, that is
13	fairly typical of a crack in a weld. You know, we
14	have core shrouds cracked partway through by the foot.
15	You know, there must be well, make it the
16	kilometer.
17	MEMBER ARMIJO: Yes. In BWR pipe cracks,
18	we have had multiple indications and
19	MR. RILEY: This is Jim Riley, NEI. A
20	couple of the reasons that we felt this was unusual is
21	that there was no axial component to these. And where
22	we have been predicting axial all along kind of being
23	inspected degradation pipe, there was no axial
24	component here.
25	And, in addition, we found all of these
I	

(202) 234-4433

	173
1	indications at basically the same place, through-wall,
2	which is a little curious also because if they are
3	cracks and if they are growing rapidly, to find this
4	many at basically 20-some percent through-wall, all at
5	a snapshot in time, is unusual.
б	MEMBER ARMIJO: Not for BWR piping. We
7	have certainly seen that kind of circumferential
8	cracking, that depth, also hard sizes on BWR pipe
9	cracking and
10	MR. RILEY: Did you find them all about
11	the same depth at the same time?
12	MEMBER ARMIJO: Sure, sure.
13	CHAIRMAN SHACK: That is exactly what I
14	would expect, actually, from stress corrosion cracks
15	in a pipe weld.
16	MR. RILEY: They would all be growing on
17	a basis we started at the same time growing at the
18	same
19	CHAIRMAN SHACK: No. That they slow down
20	as they go through the weld. And now the guess is,
21	have they stopped or have they just slowed down?
22	PARTICIPANT: They're growing laterally.
23	CHAIRMAN SHACK: So they're going to
24	around and spread and initiate around. So you're
25	going to get long cracks growing slowly through the
ļ	

(202) 234-4433

	174
1	wall. But now the question is, how slow is slow and
2	how long?
3	MR. MARION: Well, if I am not mistaken,
4	we're talking about different materials and different
5	forms of degradation.
б	MEMBER ARMIJO: I don't think so. They're
7	definitely different materials.
8	CHAIRMAN SHACK: It is a residual stress,
9	and it is a stress corrosion crack.
10	MEMBER ARMIJO: Unless you're sure it's
11	not a stress corrosion crack by virtue of that you
12	don't have confidence in your NDT methods, then you've
13	got to assume that it is, I guess.
14	Go ahead.
15	MS. KING: This is Christine King. I
16	would like to offer one other point relative to this
17	being an anomalous indication. We have recently taken
18	samples out of the North Anna Unit 2 reactor vessel
19	head and cut into them.
20	And those were indications that were
21	called large circumferential flaws as well. When we
22	actually cut into those flaws, what we found was a
23	repair that had intruded into the nozzle. And that's
24	what was actually found and called by the NDE.
25	We had similar it had facets and things
	I

(202) 234-4433

	175
1	like that. So it's not that we don't have confidence
2	in our NDE, but sometimes you do get a repair that by
3	a UT method looks as if it is a PWSCC flaw.
4	MEMBER ARMIJO: Well, let me tell you I
5	was involved in BWR pipe cracking at the very
б	beginning of that problem. And I can't tell you how
7	many times people said we had an anomalous finding,
8	one of a kind, and it turned out to be a major problem
9	for the industry. So I think the prudent thing to do
10	is assume they're real until you prove that they're
11	not real cracks. And you're going to save yourself a
12	lot of money in the long run.
13	MR. ROBINSON: Alex, just one other
14	comment. You know, the cracks at the indication at
15	Wolf Creek aren't the first indications of cracking in
16	these pressurizer nozzle locations.
17	There are, I think, if memory serves me
18	correctly, about 20 worldwide other occurrences where
19	cracking has been found in these locations. And when
20	you go back and look at the indications that were
21	reported from the other 20 or 17 locations, you find
22	that most of those were axial in orientation.
23	You also find that where there were other
24	circ cracks, they were much smaller in scale. But
25	they also had an accompanying axial component, which,
ļ	

(202) 234-4433

	176
1	again, there were other reasons why we believe that
2	part of what we're seeing here at Wolf Creek really
3	doesn't fit the model of what we have seen elsewhere.
4	MEMBER ARMIJO: Yes, but nature doesn't
5	feel it has to fit your model. It does what it wants.
6	And then your model has to fit the data. Anyway, go
7	on.
8	MR. MARION: That's a point well-taken.
9	Thank you. I would like to move on with the
10	presentation material because I only have 40 more
11	slides to go in the next 5 minutes.
12	All pressurized water reactors will have
13	inspected or mitigated pressurizer locations by their
14	next normally scheduled refueling outage, which is
15	less than 16 months away. Let me offer another
16	perspective. And we'll get into details on this when
17	we have the subcommittee meeting.
18	If you look at the timeline of activity
19	and when MRP-139 was issued where plants were in their
20	outage cycles, regardless of whether 18-month or
21	24-month cycle, and you look at the timeline and you
22	could see clearly that not everybody was going to
23	complete the inspections by the end of 2007, we
24	recognize that on the front end. And the December 31,
25	2007 was from the industry perspective a reasonable
I	I

(202) 234-4433

	177
1	date to basically put on the table as a goal to be
2	achieved, but we recognize everyone couldn't meet that
3	gaol.
4	CHAIRMAN SHACK: When will everybody meet
5	that goal under your plan?
б	MR. MARION: The utilities that have
7	planned to do inspections in 2008 have evaluated their
8	justification and rationale for not meeting the goal.
9	And that evaluation has been reviewed independently by
10	the utilities.
11	MR. ROBINSON: Alex, a more direct answer,
12	right now there are nine plants that are planning to
13	do either inspection or litigation in the spring, in
14	the Spring 2008. There is one plant that has an
15	outage scheduled the first week of February 2008,
16	three plants that have outages scheduled for the first
17	week of March of 2008, a fourth plant that has outages
18	scheduled in April of 2008. And the last plant that
19	has an outage to do with this particular material and
20	this issue occurs in early June 2008.
21	CHAIRMAN SHACK: Thank you.
22	MR. MARION: All right. One other thing
23	that had come up is the NRC was concerned about not
24	having specific information on what utilities have
25	completed relative to this inspection program, nor do
Į	I

(202) 234-4433

	178
1	they have complete information relative to what
2	utilities were planning to do under this program.
3	And so all the utilities have agreed to
4	submit letters to the NRC. And those letters were to
5	be in by the 31st of January articulating the status
б	of their inspection results or mitigation results to
7	date as well as their plans going forward.
8	And to date all plants have completed bare
9	metal visual examinations. And a number of them have
10	already completed volumetric examinations.
11	This graphic represents the inspection
12	mitigation plans by plant. We already talked about
13	the utilities that do not have the susceptible
14	material. There are four plants that have replaced
15	their pressurizer. And the material that they're
16	using in the weld is nonsusceptible material.
17	Inspections have been completed at two
18	plants thus far. Mitigation has been completed at 11.
19	And I'm not going to go through all the statistics
20	because of lack of time. You have that information.
21	But I think this represents a very
22	disciplined, balanced approach to executing this
23	inspection program.
24	MEMBER ARMIJO: If any of these people
25	find circumferential cracking of a reasonable size, is
I	I

(202) 234-4433

	179
1	there any new requirement to get a bolt sample so you
2	can confirm what the mechanism is?
3	MR. MARION: That's an excellent question.
4	One of the things that we're doing with this program
5	is conducting lessons learned after each of the outage
6	campaigns.
7	And we just completed evaluating potential
8	lessons learned from the Fall 2006 outages. We're
9	going to do the same thing in the spring of this year
10	as well as possibly in the fall of this year.
11	And we clearly recognize that we needed to
12	improve on the communication, the communication from
13	the individual utility at the time that they find an
14	inspection indication or inspection result that calls
15	into question some of the fundamental assumptions we
16	have already made.
17	And we have positioned the industry
18	resources to be responsive to that particular utility
19	so they can do an evaluation and provide some
20	recommendations on what the utility should do going
21	forward. And we're trying to set that up so it's very
22	timely.
23	There were communications that were
24	conducted as a result of the Wolf Creek inspection
25	findings. But, quite frankly, we feel that we can

(202) 234-4433
	180
1	improve on that process. And so we have that in
2	place.
3	I will never say never, but I can tell you
4	that we're putting whatever checks and balances we
5	need going forward so that we can identify these
6	findings right away, communicate them to the right
7	technical resources within industry, and then provide
8	some guidance to utility in the middle of an outage so
9	they can make an informed decision.
10	CHAIRMAN SHACK: How about a standby team
11	ready to
12	MEMBER BONACA: One question I have, I
13	think one important element in the timing of
14	inspection would be in my judgment how long has it
15	been since a utility has done volumetric inspection of
16	its own pressurizer flaws? I mean, are you
17	considering that?
18	MR. MARION: Yes.
19	MEMBER BONACA: Okay.
20	MR. MARION: Yes. We've asked the
21	utilities to look at the documentation they may have
22	relative to the fabrication of the original welds as
23	well as the results of inspections that were conducted
24	previously. And we talked about a little bit during
25	Ted Sullivan's presentation on the ten-year ISI.
l	I

(202) 234-4433

	181
1	As I mentioned before and I am going to
2	go through these quickly because I want to try to
3	MEMBER ABDEL-KHALIK: Excuse me. Would
4	you, then, have a modified graph like the one you have
5	on this previous slide that shows time between the
6	planned inspection and the last inspection?
7	MR. MARION: We can provide that
8	information. We'll make that a slide for the
9	subcommittee meeting later this month if that's okay.
10	MR. ROBINSON: Alex, just a point along
11	that line also. Part of the reason most are going
12	straight to mitigation, as opposed to trying to do
13	inspection, is simply because many configurations that
14	currently exist in the plants are not inspectable.
15	The current PDI, you know, your protocol,
16	we may have I'm sure also have done inspections, but
17	the question remains how many have done? You have the
18	PDI-qualified inspections, which is the rules we're
19	playing by.
20	MEMBER MAYNARD: We didn't hang up on him.
21	CHAIRMAN SHACK: You are right. The
22	conference lasts an hour, right.
23	MR. MARION: Okay. So I'll move on.
24	Enhanced leakage monitoring. There are a couple of
25	things in place. What the utilities had communicated

(202) 234-4433

	182
1	to the NRC was their current enhanced leakage
2	monitoring program.
3	Now, that program goes well beyond what's
4	in the tech specs primarily because of lessons learned
5	from the Davis-Besse experience. And I have a graphic
6	that will speak to that in a little more detail.
7	Additionally, INPO was conducting review
8	visits of the utility programs relative to managing
9	degradation of primary system components. And one key
10	aspect of that is an effective leakage monitoring
11	program.
12	The data we have collected thus far for
13	the 2007 and 2008 plants indicating that the utilities
14	are taking action up to around .3 gpm, that's .3
15	gallons per minute unidentified leakage.
16	CHAIRMAN SHACK: But Davis-Besse was like
17	.1 to .2, right?
18	MR. MARION: No. I think it was like .6.
19	Wasn't that the average? I'm sure the NRC can speak
20	to that at the meeting, the next meeting of the
21	subcommittee.
22	The Westinghouse Owners' Group has
23	developed some guidance on an enhanced leakage
24	monitoring program. And that guidance is currently
25	being evaluated by the Pressurized Water Reactor
I	

(202) 234-4433

	183
1	Owners' Group. And they understand quite well what
2	the NRC staff expectations are relative to the action
3	levels, specifically taking shutdown action at certain
4	thresholds.
5	The way our program is set up, we allow
б	the issue programs the opportunity to determine what
7	positions they want to take that become mandatory for
8	all of the utilities that are affected by that
9	particular program. That's something that's in play.
10	And we expect that to be resolved within the next
11	month or so. But that group is taking a serious look
12	at these programs.
13	This represents the results of a quick and
14	dirty survey we took based upon responses from 44 of
15	the 69 plants. It gives you a range of the thresholds
16	that they have in their programs to date.
17	When we refer to the baseline, each
18	well, not each one, but there are different baselines
19	that people are using based upon the current
20	conditions or leak rates from the last inspection, et
21	cetera. So it is a little bit of a variable. But
22	these are the action thresholds, if you will. And we
23	will hopefully have more data on this as we prepare
24	for the subcommittee meeting on the 21st.
25	The real big issue between the industry
I	I

(202) 234-4433

	184
1	and the NRC is the fact that we think there is
2	adequate time between leakage and failure of the pipe
3	such that appropriate corrective action can be taken
4	by the utility.
5	We did duplicate, if you will, for lack of
6	a better term, and if I'm saying an incorrect term
7	from an analyst's point of view, I expect to be
8	corrected. We did duplicate the NRC analysis and came
9	up with relatively similar conclusions.
10	But we feel that a more detailed analysis
11	would be warranted. And we, quite frankly, believe
12	that it may indicate that there is additional margin
13	between leakage and rupture.
14	Now, the industry is prepared to deal with
15	the results of this analysis. And if the results show
16	there is additional margin, then that information will
17	be provided to the NRC, but if the results show that
18	nothing has changed from what we have already
19	concluded, then the utilities will take appropriate
20	action.
21	The point of doing this analysis is to
22	make sure that we have the best information available
23	to the utilities so they can make the best decision
24	they possibly can as to whether or not they should
25	continue with their current plans to do inspections in
I	I

(202) 234-4433

	185
1	2008 or possibly expedite those inspections by doing
2	some in 2007.
3	I can tell you right now my own personal
4	opinion, for what it's worth, I don't think all nine
5	plans can do inspections in 2007. I don't believe we
6	have the infrastructure. I don't believe the good
7	conditions will allow it above and beyond what's
8	currently planned for 2007, but that's a personal
9	opinion at this point.
10	I don't know if Glenn wants to add
11	anything relative to this non-linear finite element
12	analysis. We just started the work. We had already
13	indicated to the staff that as we go through this
14	technical work, we will be engaging them and keeping
15	them apprised of what assumptions we're making, what
16	load conditions we're considering, et cetera.
17	And our objective is to try to get this
18	analysis completed midsummer so that we can
19	communicate the results to the utilities again so they
20	can make an informed decision on what their actions
21	ought to be going forward.
22	MEMBER ABDEL-KHALIK: I guess that my
23	understanding is that the time period that the
24	unidentified leak remains unidentified in tech spec is
25	relatively short before the operator if the leak

(202) 234-4433

	186
1	remains unidentified for a relatively short period of
2	time, meaning a day or so, then the operator has to
3	take some action.
4	So that time period seems to be
5	significantly shorter than the accuracy of any
6	modeling that you come up with. So I am not sure what
7	are you gaining by sort of sharpening your pencils as
8	far as the models are concerned?
9	MR. WHITE: The main question at issue is
10	whether you're going to have a through-wall flaw that
11	can leak at all before there is a rupture of the weld.
12	If one has a large enough crack that does not
13	penetrate through the entire thickness, that could
14	still cause a rupture directly with no opportunity at
15	all for detection of leakage.
16	MR. ROBINSON: This again is Mike. But I
17	think it's important to point out if you look back up
18	on slide 8, there's a reference to a Palisades and a
19	Tsaruga 2 event. And both of those are in these small
20	bore lines that we're talking about.
21	And what the experience there showed us is
22	we had small leaks that were identified on plant
23	instrumentation and plant walk-downs. And these are
24	the same lines that we're talking about. There's
25	essentially being a very small increment of time

(202) 234-4433

	187
1	between leakage and pipe failure.
2	So here are two clear examples where that
3	is not the case.
4	MR. WHITE: I would add a few comments to
5	follow up on Alex. The program that we are in now
б	Alex mentioned we just started. It's a five-month
7	program, but within the first month, we will have
8	results. The whole five-month period is to allow time
9	for reaching consensus on assumptions to look at
10	sensitivity cases, to look closely at the conditions
11	for the nine plants that are most at issue that are
12	planning to do mitigation in Spring of '08.
13	So it's a program that is intended to
14	bring in experts within the industry on the NRC side,
15	outside the industry together to look towards bounding
16	calculations and towards consensus. It's not intended
17	to be another scoping calculation.
18	MEMBER ARMIJO: Exactly what is this
19	analysis is expected to change, for example, the
20	geometry of the growing track?
21	MR. WHITE: There are two main things that
22	we are looking at. The first item is the shape of the
23	crack. Previous calculations have assumed it stays as
24	a semi-ellipse and driven by crack growth at the
25	deepest point and the surface point, which were
I	

(202) 234-4433

	188
1	assumed to have relatively high stresses in comparison
2	to the stresses at other points along the crack front.
3	So, in reality, the crack shape is going
4	to change. And preliminary work indicates it can be
5	a significantly smaller cross-sectional area of that
6	crack when it reaches through-wall penetration versus
7	this semi-ellipse assumption. So it's a technical
8	assumption.
9	CHAIRMAN SHACK: But how are you going to
10	handle the range of residual stresses that you
11	MR. WHITE: That's the second part that
12	we're looking at. That is to a multi-prong approach.
13	We have done many calculations simulating welding
14	residual stress in the past. We're going to build on
15	that to look specifically at these nine plants at
16	issue.
17	On top of that, we're going to look at
18	more sensitivity cases and then use that as the basis
19	for sensitivity cases, different magnitude, residual
20	stresses, different profiles through the wall,
21	different profiles around their circumference, and to
22	look at enough cases to build consensus that we have
23	sufficient assurance about how these cracks should
24	grow.
25	CHAIRMAN SHACK: I can understand you
I	I

(202) 234-4433

	189
1	getting probablistic results. I have a hard time
2	believing you'll get a bounding result that you can
3	live with.
4	MR. WHITE: Well, we want to have
5	sufficient confidence in our result in order to
6	CHAIRMAN SHACK: It will be interesting.
7	MR. MARION: Okay. In conclusion, we
8	fully understand NRC concerns with regard to recent
9	inspection results and their basis for extending those
10	concerns to the remainder of the fleet. But we
11	fundamentally think that the NRC's position is
12	extremely conservative.
13	I talked about the letters that utilities
14	have submitted to the NRC. So the NRC now has
15	docketed commitments, if you will, of what the plans
16	are for those utilities to conduct inspection
17	mitigation in 2007 and 2008.
18	As I mentioned before, the program we have
19	laid out in MRP-139 we continue to believe is valid,
20	reasonable, and is responsive to our understanding of
21	this important degradation mechanism.
22	And, lastly, we believe that the plants
23	are still in a position where they can continue to
24	operate safely until the next refueling outage when
25	the inspection and mitigation activity is completed.
l	I

(202) 234-4433

	190
1	And that concludes my presentation. I
2	would like to speak to the one question that was
3	raised about opportunities to conduct destructive
4	examination of the Wolf Creek.
5	We have had some discussions with the
6	management of Wolf Creek along those lines. And the
7	discussions are still in play. I am not at liberty to
8	suggest any conclusion.
9	I think Wolf Creek's next rescheduled
10	outage is the Fall of 2008 if my memory serves me
11	right. And, as we progress, once a decision is made
12	relative to what Wolf Creek may do or may not do, we
13	will be more than happy to communicate that with this
14	Committee and the NRC staff. The decision at this
15	point rests with Wolf Creek management.
16	Okay. That completes my presentation. I
17	will be more than happy to answer any
18	MEMBER MAYNARD: One other thing I think
19	needs to be factored into this if we look at
20	accelerating schedules is there are limited resources
21	that can do a quality job in both the inspection and
22	especially in the mitigation of these.
23	And I think we need to be careful we don't
24	overstretch the resources. I think it's important to
25	get these things mitigated correctly, rather than just
I	

(202) 234-4433

	191
1	toss a whole bunch of money or something.
2	MR. MARION: I would just add, speak to
3	Mr. Maynard's comments. We have spoken with key
4	vendors who support these inspections. One can always
5	conclude that you could squeeze another inspection or
6	mitigation activity in in the middle of summer, but
7	the question is whether you can implement that outage
8	in the middle of the summer, when you need the
9	electricity. And so that's one of the
10	MR. ROBINSON: This is Mike. What we're
11	talking about, to do a typical overlay of these
12	nozzles on a pressurizer, you're talking about a
13	minimum of roughly 30 days from the time you shut the
14	plant down, get it into a condition where you can do
15	the overlay, perform the overlay, perform the work,
16	demode the area, and then put the unit backbone,
17	you're talking about roughly a good 30-day period.
18	And that assumes you don't have any rework or other
19	issues that you encounter as you're going through the
20	project itself.
21	MR. RILEY: There's a myriad of other
22	considerations that come to play here. The dose
23	considerations are one. You can fit so many of these
24	in based on the resources of being able to do the
25	overlay. But these overlays actually hold quite a bit
I	I

(202) 234-4433

	192
1	of dose. And the people who are the folks who do the
2	overlay are
3	MEMBER ARMIJO: Plant to plant.
4	MR. RILEY: limited from that
5	perspective. And it can be pretty significant.
б	Another thing that
7	MEMBER ARMIJO: I just want to make clear
8	basically everybody who is doing the inspection is
9	going to be prepared or plan to do an overlay anyway.
10	MR. MARION: The majority of utilities are
11	planning to do overlays. There are only two that
12	we're aware of who are planning to do inspections.
13	And those are going to be conducted this year, in
14	2007.
15	MEMBER ARMIJO: So they go in. They do an
16	inspection hoping or anticipating there would be no
17	findings of concern.
18	MR. ROBINSON: I think what you would find
19	is that the smart way to plan these if you just plan
20	to do the inspection is you do have a contingency to
21	bring in a vendor should your inspection results find
22	something. So I don't think anybody would plan to do
23	an inspection without having a pretty well-thought-out
24	and planned overlay as a backup.
25	MEMBER ARMIJO: That's what I expected.
I	

(202) 234-4433

	193
1	I just want to make sure.
2	MEMBER MAYNARD: I know at Wolf Creek, the
3	original plan had been to inspect and have a
4	contingency plan. Actually, the cost of having
5	resources standing by turned out to be about as much
6	as going ahead and planning the mitigation. So I
7	believe they made the decision to go straight to
8	mitigation because it didn't cost that much more.
9	MEMBER ARMIJO: Okay. If there aren't any
10	other questions, Mr. Chairman, it's all yours.
11	CHAIRMAN SHACK: Thank you very much for
12	a good presentation. Let's see where we're at. It's
13	back to you, Otto, for our work on the reg guides and
14	SRP sections, our favorite topic.
15	MEMBER MAYNARD: Our favorite topic here.
16	I'm sorry. Do we need the recorder?
17	CHAIRMAN SHACK: We don't need the
18	recorder any more this afternoon.
19	(Whereupon, the foregoing matter was
20	concluded at 2:19 p.m.)
21	
22	
23	
24	
25	
I	I