Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards 522nd Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Friday, May 6, 2005

Work Order No.: NRC-353

Pages 1-192

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	522 nd MEETING
7	+ + + +
8	FRIDAY,
9	MAY 6, 2005
10	+ + + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	The Subcommittee met at the Nuclear Regulatory
14	Commission, Two White Flint North, Room T2B3, 11545
15	Rockville Pike, at 8:30 a.m., Graham B. Wallis,
16	Chairman, presiding.
17	COMMITTEE MEMBERS:
18	GRAHAM B. WALLIS, Chairman
19	WILLIAM J. SHACK, Vice Chairman
20	GEORGE E. APOSTOLAKIS, Member
21	MARIO V. BONACA, Member
22	RICHARD S. DENNING, Member
23	THOMAS S. KRESS, Member
24	DANA A. POWERS, Member
25	VICTOR H. RANSOM, Member
l	I

		2
1	<u>COMMITTEE MEMBERS:</u> (cont.)	
2	STEPHEN L. ROSEN, Member	
3	JOHN D. SIEBER, Member	
4		
5	ACRS STAFF PRESENT:	
6	JOHN T. LARKINS, Executive Director	
7	ASHOK C. THADANI, Deputy Executive Director	
8	THERON BROWN	
9	SAM DURAISWAMY	
10	JENNY M. GALLO	
11	NOBLE GREEN, JR.	
12	MICHAEL L. SCOTT	
13		
14	NRC STAFF PRESENT:	
15	RICH BARRETT, RES	
16	JAMES A. DAVIS, RES	
17	WILLIAM E. KEMPER, RES	
18	MICHAEL MAYFIELD, RES	
19	MICHAEL E. WATERMAN, RES	
20		
21		
22		
23		
24		
25		
ļ	1	

	3
1	A-G-E-N-D-A
2	Opening Remarks 4
3	Steam Generator Tube Integrity Program 5
4	Digital Instrumentation & Control 92
5	(I&C) Systems Research Plan
6	Adjourn
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	9:10 a.m.
3	CHAIRMAN WALLIS: The meeting will now
4	come to order. This is the second day of the 522nd
5	meeting of the Advisory Committee on Reactor
6	Safeguards. During today's meeting the Committee
7	will consider the following, the Steam Generator
8	Tube Integrity Program, Digital Instrumentation and
9	Control Systems research plan, reconciliation of
10	ACRS comments and recommendations, future ACRS
11	activities, report of the Planning and Procedures
12	Subcommittee, and the preparation of ACRS reports.
13	This meeting is being conducted in
14	accordance with the provisions of the Federal
15	Advisory Committee Act. Mr. Sam Duraiswamy is the
16	designated Federal Official for the initial portion
17	of the meeting.
18	We have received no written comment, nor
19	request, for time to make oral statements from
20	members of the public regarding today's sessions. A
21	transcript of portions of the meeting is being kept,
22	and it is requested that the speakers use one of the
23	microphones, identify themselves, and speak with
24	sufficient clarity and volume so that they can be
25	readily heard.
I	I

(202) 234-4433

	5
1	I'll remind you that we are having our
2	annual ethics training over lunch today. John Szabo
3	will be here at 12:15, and you may have been told
4	that it will be in the small room, but it will
5	actually be held here.
6	Without more ado, I'd like to proceed
7	with the meeting, and I'd ask my colleague Dana
8	Powers to lead us through the first item.
9	MEMBER POWERS: Thank you, sir. We're
10	going to discuss the Steam Generator Tube Integrity
11	Program, most of which is, many aspects of which are
12	being done at Argonne National Laboratory.
13	It's part of it's one of the topics
14	that we're going to address in our ACRS quality
15	research review. And so maybe we should look upon
16	this as background for the presentation on that
17	quality review.
18	We're going to try to do this over the
19	course of an hour and 25 minutes, James, so we need
20	to move right along.
21	MR. DAVIS: Okay.
22	MEMBER POWERS: I'll introduce James
23	Davis from the Office of Nuclear Regulatory Research
24	to at least get us started here. I don't I have
25	no idea who the goat sitting next to him is. I'm
	I

(202) 234-4433

	6
1	sure you will introduce that.
2	MR. DAVIS: It's Bill Shack. He's a
3	program manager for this program at Argonne National
4	Lab.
5	MEMBER POWERS: Oh, he's just a manager.
6	I thought he was a technical pursuance
7	MR. DAVIS: Yes, but he also does a lot
8	of the other. Okay. We're doing research in quite
9	a few areas on steam generators. I've specifically
10	been asked to cover Task 3, which is tube integrity.
11	The reason that we're doing this work in
12	tube integrity is user needs from NRR are related to
13	the in-service inspection capabilities, reliability
14	of in-service inspection. And then models for
15	rupture burst and leak of steam generator tubes.
16	And NRR plans to use this information to
17	review licensee submittals. In addition to the work
18	that we're doing for the user needs, we're also
19	doing work on crevice chemistry, tube support
20	plates.
21	ACRS told us that they didn't feel that
22	we had a anybody has a good enough understanding
23	of what causes degradation of steam generator tubes
24	at the tube support plates.
25	So we're doing a pretty good study in
I	I

(202) 234-4433

	7
1	that area.
2	MEMBER POWERS: Is this destined to be
3	an anachronism? I mean as people go through and
4	change out steam generators, aren't they eliminating
5	the crevices?
6	MR. DAVIS: No, they're not. They still
7	have the tube support plates.
8	MEMBER POWERS: But I mean
9	MR. DAVIS: They have a different
10	design.
11	MEMBER POWERS: isn't that a broached
12	hole kind of design so you don't have narrow
13	crevices anymore?
14	MR. DAVIS: Well they still have
15	crevices, and we feel it's very important that we
16	understand what's going to happen with 690 over the
17	long-term, and these crevices.
18	And that's what the real objective of
19	that work is, is with these new stainless steel tube
20	support plates and with the different design. We
21	feel it's very important to know what's going to
22	happen over the long-term.
23	MEMBER POWERS: What's the potential
24	difference between the stainless steel and the 690?
25	MR. DAVIS: I'm not exactly sure. I
	I

(202) 234-4433

	8
1	know I don't think it's very big because of the low
2	conductivity of the solution, but we haven't
3	physically measured it at this point.
4	We're working on that. What I'm going
5	to present today, I'm going to emphasize Task 3,
6	which is tube integrity and integrity and
7	predictions. I'll give you the objective.
8	I'm going to go through some of the leak
9	rate models. I'm also going to discuss
10	pressurization rate testing because there are some
11	questions about the effect of pressurization rate on
12	testing when you actually pull tubes in the field.
13	I'm going to discuss the main steam line
14	break, study what we did where you have a
15	depressurization on the secondary side. We've done
16	some very interesting work recently on constant
17	pressure crack growth, and I'll get into that.
18	Okay. And then I'm going to tell you
19	how we statistically treat the models and then I'll
20	summarize the results. And I'll mention some of the
21	future work that we have planned.
22	I'm not sure we're really going to have
23	time to discuss Task 1, 2, and 3, which are
24	assessment of inspection reliability, ISI technology
25	and degradation modes, but I put it in the package
	1

(202) 234-4433

	9
1	just so just for reference material.
2	The objective of Task 3 is to evaluate
3	and validate models for leak and rupture behavior,
4	failure pressures, and leak rates for degraded
5	tubes.
6	And this is under normal and accident
7	conditions.
8	MEMBER POWERS: Can you give us, maybe
9	not immediately but in the course of the
10	presentation, can you give us an idea when you say
11	you want to evaluate and validate these models, what
12	kinds of levels of precision of accuracy you're
13	looking for from these models?
14	Plus or minus one percent sort of
15	things, or plus or minus factors of two?
16	MR. DAVIS: We're not to that point with
17	real cracks yet because part of the problem is the
18	assumption that we know exactly what the crack looks
19	like and we don't always know that.
20	That's one of the problems. With the
21	idealized cracks we do a very good job with the EDM
22	notch notches and we just don't do quite as good
23	a job with real cracks because
24	MEMBER POWERS: Wait a minute. The
25	question I'm driving at is you can take these
ļ	I

(202) 234-4433

	10
1	notches that you prepared, that you know very well,
2	and you can model those, and then you try to apply
3	them to these cracks that have ligaments and whatnot
4	running through them. How do you know when you're
5	good enough?
6	MR. DAVIS: Good enough?
7	MEMBER POWERS: Yes. I mean you're
8	never going to get it exactly because there's
9	stochastic component and what the crack looks like,
10	but there's a point where continued refinement of
11	the model's not going to do you any good.
12	MR. DAVIS: Yes.
13	MEMBER POWERS: You're not going to get
14	over that, so how good is good enough here?
15	MR. DAVIS: I don't know if I actually
16	know the answer to that.
17	VICE CHAIRMAN SHACK: Well, you know,
18	that's almost a question for NRR to answer. But our
19	with essentially a well a good geometry, we're
20	typically, you know, somewhere on the order of ten
21	to 15 percent.
22	So when we know the geometry as Jim
23	says, the difficulty with the real crack is that you
24	don't know the geometry. You can be very
25	conservative, you know.
I	

(202) 234-4433

	11
1	The typical response now is to take a
2	complex crack, shape, and bound it with a
3	rectangular crack that's, you know, as long as the
4	real crack, and as deep as the deepest portion of
5	the real crack.
6	And that can be very conservative by
7	factors of two. So you're looking for something to
8	get you closer to the 15 percent or so.
9	MEMBER POWERS: I guess I'm still
10	struggling. Okay. I mean what's important here, how
11	fast you depressurize, how fast you put liquid out?
12	VICE CHAIRMAN SHACK: Well again, I
13	think in many cases it's a question of whether
14	you've met your you know, when you do your
15	operational assessment, like most of these rules,
16	you know, if you've made the limit you're golden and
17	if you haven't made the limit
18	MEMBER SIEBER: You're brown.
19	VICE CHAIRMAN SHACK: you have a
20	problem. And so you'd like to avoid access
21	conservatism, but you'd like to understand whether
22	you really do have the margins that you intend to
23	have.
24	You know, I can't give you a risk number
25	for what happens if you don't meet the ASME margin
	I

(202) 234-4433

	12
1	on your condition assessment, but that is what the
2	regulations require. So it is a compliance problem.
3	MEMBER DENNING: Now is it a question of
4	plug-in criteria? Is that what it is? I mean it's
5	how confident you want to be that you'll detect a
б	crack and it'll be a certain size, and then you'll
7	decide to plug? Is that what it comes down to?
8	VICE CHAIRMAN SHACK: Well, I mean
9	certainly you want to be able to do that, but I
10	think the bigger problems is when you're doing the
11	operational assessment at the end of the cycle and
12	the you know, you have to demonstrate that you
13	have the required margins, that, you know, you know
14	you're operating with cracks.
15	You know, in most of these alloy 600
16	steam generators there's not much question about
17	that. The question is whether you've really got the
18	required margins when you're done, and
19	MEMBER POWERS: But doesn't that again
20	come down to the question of plugging criteria and
21	the degree of confidence you want to have that in
22	the next cycle you're not going to
23	VICE CHAIRMAN SHACK: No, it's I
24	think you mean that's an important question, but
25	the question that you're immediately answering is
l	I

(202) 234-4433

	13
1	you've come to the end of the cycle and you're
2	looking at all the cracks that are in the steam
3	generator, making sure that you have enough margin,
4	that is you know, you predicted that you would go
5	through the cycle and always have tubes that met all
6	the ASME requirements.
7	When you get to the end of the cycle you
8	have to find out whether that prediction was in fact
9	true. And if you haven't made that then you've
10	essentially violated your condition, which is to
11	always operate within the proper margins.
12	So you then look at your worst cracks
13	and you try to determine whether you've had enough
14	margin or not.
15	CHAIRMAN WALLIS: Now you inspect every
16	tube?
17	VICE CHAIRMAN SHACK: That's a in
18	many alloy 600, it's close it's basically 100
19	percent. You know, most of them have enough.
20	They meet all the expansion rules that
21	you're ever going to have.
22	MEMBER KRESS: What purpose does it
23	serve to find out after the fact that you violated
24	your condition?
25	VICE CHAIRMAN SHACK: Well I think it
I	I

(202) 234-4433

14 1 you know, because you're going -- you're going to 2 make an assessment now for the next cycle. You, you 3 know, --4 MEMBER KRESS: Then change your model, 5 or --VICE CHAIRMAN SHACK: Well, yes, you may 6 7 add conservatism. I think, you know, that's, you 8 know, 9 MEMBER KRESS: So it's for the next 10 assessment? VICE CHAIRMAN SHACK: I mean it's 11 12 basically --MEMBER KRESS: You want to know how good 13 14 your model is, then? 15 VICE CHAIRMAN SHACK: It's a verification of your prediction method --16 17 MEMBER KRESS: I see. VICE CHAIRMAN SHACK: -- you know, for 18 19 all the uncertainties that we have. And we, you 20 know, we have uncertainties in crack sizing, 21 uncertainties in growth rate, you know. 22 So you've made those predictions. You 23 now find out whether your -- you've met all your 24 requirements or you haven't. If you haven't, 25 obviously you have to justify what you're going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	15
1	be doing for the next cycle.
2	MEMBER KRESS: So you're going to change
3	the model?
4	VICE CHAIRMAN SHACK: Which typically is
5	to presumable assessment conservatism.
6	MEMBER DENNING: Now wait a second, I
7	don't understand. But the safety concern or
8	consideration is if in the next cycle you're going
9	to have a tube rupture which has safety concerns
10	associated with it, right?
11	So I mean there's all these questions
12	about models, but isn't the real issue am I going to
13	plug tubes or am I not going to plug tubes. Isn't
14	that what it comes down to? I'm missing
15	MEMBER APOSTOLAKIS: Or change the
16	models.
17	MEMBER DENNING: No, no, no. I mean the
18	you can change the model but that's secondary.
19	The real question is are you going to burst the next
20	time, and if you have to make more conservatism that
21	means that you have to plug more tubes, right, or
22	plug at a lower level?
23	VICE CHAIRMAN SHACK: Well I think the
24	answer you certainly don't want to burst any
25	tubes in the next cycle but you also don't want to
I	I

(202) 234-4433

	16
1	run the tubes even with less margin that you intend
2	to have.
3	I mean you're not only supposed to get
4	through the cycle without bursting tubes, that's,
5	you know, that's
б	MEMBER DENNING: Sure, sure.
7	VICE CHAIRMAN SHACK: requirement
8	number one.
9	MEMBER DENNING: No, no, no. I agree.
10	I agree, but I think getting back to Dana's
11	question, how accurate to we have to be, the
12	question is what risk are we willing to take that we
13	will not have a sufficiently conservative plugging
14	criterion that you'll have a too large of a
15	probability of another break.
16	MEMBER APOSTOLAKIS: Which is I mean
17	in a broader sense, the question is at which point
18	reducing the uncertainties doesn't change the
19	decision. And that's where Rich is going.
20	What is the decision that they have to
21	make, and you know, if I have uncertainty say that's
22	only five percent, I reduce it from ten to 15
23	percent to five percent.
24	Would the decision change? If it
25	doesn't change then I can tolerate it, right? I
I	I

(202) 234-4433

	17
1	don't care about reducing it anymore. And that's
2	where Rich is going.
3	I mean what decision is that, plugging
4	the tubes or what?
5	MEMBER DENNING: And I think that the
6	decision is do I plug or don't I plug.
7	MEMBER APOSTOLAKIS: Yes, yes.
8	MEMBER DENNING: Right? Am I
9	simplifying it too much?
10	MR. KARWOSKI: This is Ken Karwoski from
11	the NRR Staff. I think it's important to recognize
12	what plant procedures are what type of safety
13	factors are built in to all these plugging criteria
14	and plant practices because, you know, one, it's
15	important to know the uncertainty in predicting the
16	burst pressure of the flaws, but lets look at a
17	typical plant with mill anneal tubing who has
18	cracking.
19	Most plants, unless they have an
20	alternate repair criteria approved, plug all flaws
21	on detection. And as Bill was pointing out, so when
22	they find these flaws they want to make sure that
23	they had the margins that they thought they did.
24	And so when you look at a given plant
25	with mill anneal tubing, if you just look at
ļ	I

(202) 234-4433

	18
1	pressure loading, they're trying to maintain a
2	safety factor of 3 against burst during normal
3	operation.
4	So the key consideration is are they
5	meeting that. And so it's tolerable not to meet it.
6	It's not something that the plant wants to exceed,
7	but it is tolerable for the plant to have a reduced
8	safety factor of let's just throw out 2.9, because
9	the tubes still won't burst during normal operation,
10	nor during accident conditions.
11	So there's a lot of margin built into
12	the acceptance criteria for these inspections. In
13	addition, when we're talking about probability of
14	burst we're in assessing degradation, we're not
15	using the mean value.
16	We tend to use like a 95 percent
17	confidence value. So the real consideration is do
18	we have enough confidence in the uncertainty
19	associated with those burst pressure predictions.
20	And so it is tolerable to exceed this
21	performance criteria. It's not something that we
22	want plants to do, but when they do exceed, or if
23	they do, because it doesn't occur that frequently,
24	but if they do then they take prompt corrective
25	action.

(202) 234-4433

	19
1	MEMBER DENNING: Well, you're
2	MEMBER POWERS: We've probably spent
3	enough on this question. But when you tell me that
4	you're developing a model and validating it, I
5	really feel like I need to have some sense if when
б	you can say QED, and I don't have that sense here.
7	MEMBER ROSEN: On another point, I think
8	you were correct when you said that most mill anneal
9	600 plants will inspect 100 percent but I don't
10	think that's the picture that's really out there
11	now.
12	I mean so many of those plants have
13	replaced their steam generators. I don't know how
14	many are left in operation, but the new 690 plants,
15	after the first cycle where they do do 100 percent,
16	the baseline I don't think they're doing a full
17	100 percent anymore.
18	MR. DAVIS: No, they don't.
19	MEMBER ROSEN: There's much the
20	amount of inspection after the first baseline is
21	much reduced. And that picture will continue to come
22	into focus as more and more mill anneal 600 alloy
23	plants go out of service.
24	So we're dealing really with a future
25	that looks like less inspection typically.
	I

(202) 234-4433

	20
1	MEMBER DENNING: Yes.
2	MEMBER ROSEN: Unless, you know, unless
3	the 690 plants behave badly. I mean if you don't
4	get into what is it (C)(1), you know, where you
5	have more than one percent and have to go into one
6	of these expansions, you're going to do a fairly
7	limited inspection.
8	MR. DAVIS: That's right.
9	MR. KARWOSKI: This is Ken Karwoski from
10	the NRR Staff. I just wanted to clarify all plants
11	that replace their steam generator, the industry
12	guidelines, and to my knowledge, all plants who
13	currently replace, they do 100 percent inspection in
14	the first outage after replacement to identify the
15	condition of the tubes.
16	MR. DAVIS: Right.
17	MR. KARWOSKI: After that they may do
18	less inspections, and that's frequently what we see,
19	but
20	MEMBER ROSEN: I'm aware of that. Now
21	after that what is it typically?
22	MR. KARWOSKI: It varies from plant to
23	plant. For the 600 thermally treated plants, they
24	typically inspect two of their four steam
25	generators, you know, in a four-loop plant, every
I	

(202) 234-4433

	21
1	other outage.
2	They'll inspect two steam generators one
3	outage. The next outage they'll inspect the other
4	two, and they'll go on. But those practices evolved
5	with time, and it's difficult to
6	CHAIRMAN WALLIS: How many tubes in
7	those SGs?
8	MR. KARWOSKI: Five thousand.
9	MEMBER POWERS: We're really getting off
10	the track here. I failed to see
11	CHAIRMAN WALLIS: And how many do they
12	test?
13	MEMBER POWERS: I mean one of the
14	problems I'm running into here is I don't understand
15	how these models relate to all of this regulatory
16	inspection and things like that.
17	MEMBER ROSEN: Could I ask Graham
18	asked the final question which we never quite got
19	to, which was the ones they inspect, what's the
20	percentage?
21	MR. KARWOSKI: It varies from plant to
22	plant, but we can provide you tables of historic
23	practices for like thermally treated 600, but
24	plants, some plants do 100 percent when they look
25	at those two steam generators, others do 50 percent.
	I

(202) 234-4433

	22
1	MEMBER ROSEN: That much?
2	MR. KARWOSKI: Yes, yes.
3	MEMBER ROSEN: On a new steam generator?
4	VICE CHAIRMAN SHACK: It's a thermally
5	treated 600. Six ninety would typically be
б	MR. KARWOSKI: Be even less.
7	VICE CHAIRMAN SHACK: less.
8	MEMBER POWERS: You can go ahead.
9	MR. DAVIS: The steam generator tube
10	materials are very ductile, and so in the models
11	what we consider is that the failure under design
12	basis conditions is by plastic instability.
13	Under severe accident conditions where
14	you're at higher temperature it's more likely at
15	creep or at plastic instability. Now the real
16	cracks have complex shapes, and as Bill said, we use
17	a rectangular equivalent rectangular crack method
18	to give conservative results.
19	And we're developing methods to give
20	more realistic predictions of the ligament rupture.
21	An efforts ongoing to develop more realistic
22	predictions for burst.
23	We don't do as well on bursts as we do
24	on ligament rupture. The first model I'm going to
25	discuss is for an axial flaw that's through wall and
I	I

(202) 234-4433

	23
1	it's idealized.
2	And Erdogen came up with a model for
3	predicting the rupture, and it's the critical
4	pressure is sigma H, where H is the wall thickness
5	over the mean radius, and factor M, which comes out
6	of linear elastic fracture mechanics modeling.
7	MEMBER KRESS: What's a flow stress?
8	MR. DAVIS: Right.
9	MEMBER KRESS: What is a flow stress?
10	I've never heard that term.
11	MR. DAVIS: Flow stress is the average
12	of the yield in the tensile.
13	MEMBER KRESS: Why do you call it a flow
14	stress?
15	MR. DAVIS: That's just what they call
16	it in fracture mechanics.
17	VICE CHAIRMAN SHACK: It's a way of
18	accounting for work hardening with an elastically
19	perfectly plastic model. It's just a
20	simplification. It turns out to work quite well for
21	ductile materials.
22	But if you use the yield stress you're
23	being extremely conservative because the materials
24	can work hard in a great deal.
25	MEMBER KRESS: Right.
I	1

	24
1	VICE CHAIRMAN SHACK: Use the ultimate
2	stress, you're non-conservative,
3	MEMBER KRESS: So it's a
4	VICE CHAIRMAN SHACK: realistically.
5	MEMBER KRESS: somewhere in between
6	those two?
7	VICE CHAIRMAN SHACK: It's the average
8	of the two, and that turns out to be quite good for
9	ductile and work hardening materials.
10	CHAIRMAN WALLIS: So you're misusing a
11	word from thermal hydraulics to make it more
12	respectable?
13	MEMBER KRESS: Yes, that must be it.
14	VICE CHAIRMAN SHACK: Well actually it
15	comes from GI Taylor, so we know it's got to be
16	right.
17	MEMBER KRESS: Oh, it has to be good
18	then.
19	MR. DAVIS: Another case that we have a
20	model for is where you have a ligament where you
21	part-through crack. And here you come up with a
22	instead of M an M sub-p.
23	And this is related to the crack size
24	and the wall thickness and the M factor, which is
25	the linear elastic fracture mechanics. Once you do
	1

(202) 234-4433

	25
1	rupture a ligament, now if the critical pressure is
2	higher than the ligament pressure then you're not
3	going to burst the tube you're just going to leak.
4	And what we found in our work at Argonne
5	in that the this model works well for long cracks
6	but it doesn't work so well for short, deep cracks.
7	So Argonne modified this expression and included the
8	term alpha, which is a geometric factor as well.
9	And it turns out that the modification
10	that Argonne did gives us much better results on
11	short, deep cracks.
12	CHAIRMAN WALLIS: What do you mean by
13	short, deep cracks?
14	MR. DAVIS: Like a quarter inch crack
15	that's 80 percent through wall.
16	CHAIRMAN WALLIS: A quarter inch wide,
17	or what's the
18	CHAIRMAN WALLIS: Well then long and
19	deep sound to me seem to be the same thing.
20	MR. DAVIS: It's a short, deep crack
21	is like a quarter inch crack that's 80 percent
22	through wall. A long crack is like maybe a half
23	inch or an inch long and
24	CHAIRMAN WALLIS: It's long this way and
25	then it goes through the wall that way.
ļ	I

(202) 234-4433

	26
1	MR. DAVIS: Yes. But if it's
2	CHAIRMAN WALLIS: Tangentially is
3	length?
4	MR. DAVIS: If it's short and deep
5	VICE CHAIRMAN SHACK: Length is axial or
6	circumferential.
7	CHAIRMAN WALLIS: Well I would say wide
8	and deep, not
9	MR. DAVIS: No.
10	MEMBER POWERS: It matters not what you
11	would say it only matters what they say.
12	CHAIRMAN WALLIS: Okay, but
13	MR. DAVIS: What we've done with the
14	actual stress corrosion cracks is we've or
15	irregular cracks is we've come up with this
16	rectangular crack method.
17	The problem that we run into with this
18	model is that it sometimes we don't account for
19	ligaments.
20	CHAIRMAN WALLIS: Now rectangular crack
21	means that this shortness and this depth are sides
22	of a rectangle?
23	MR. DAVIS: Yes.
24	CHAIRMAN WALLIS: Is that what you mean?
25	MR. DAVIS: Yes. And you take a rough
I	

(202) 234-4433

27 1 crack and you take the best rectangle that you can find. 2 CHAIRMAN WALLIS: And it has sharp 3 4 corners, does it? 5 MR. DAVIS: Yes. It has sharp corners. 6 For our model that's what you use. 7 CHAIRMAN WALLIS: Does it make the 8 computation more difficult when there's sharp 9 corners? 10 MR. DAVIS: No. 11 CHAIRMAN WALLIS: No? 12 It simplifies it MR. DAVIS: No. actually. 13 14 CHAIRMAN WALLIS: Okay, okay. 15 MR. DAVIS: But what we do is we take a series of these rectangular cracks and we calculate 16 M sub-p and we take the one with the highest M sub-p 17 for conservatism and use that in the model. 18 19 The problem that you have is if you have 20 ligaments or you have a meandering crack, the -- you 21 have an -- when you calculate it with the equivalent 22 crack method you don't account for the entire length 23 of the -- of what's going on. 24 And that's why you sometimes don't get 25 very good results.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

28 1 MEMBER ROSEN: Can you be a little more 2 expressive when you talk about ligaments? I know 3 what they are in my leg. What, exactly, what do you 4 mean when you say ligament? 5 MR. DAVIS: So you have an inch long crack but it consists of a series of short cracks 6 7 with metal in between them. And so to rupture that 8 you have to rupture those ligaments. 9 It's not really an inch long crack it's 10 a series --11 MEMBER ROSEN: So you think of it as a -12 MR. DAVIS: -- of short --13 14 MEMBER ROSEN: Look at my hands and the 15 two branches are cracks. 16 MR. DAVIS: Right. 17 MEMBER ROSEN: And the space in between is the ligament? 18 19 MR. DAVIS: That's a ligament and that's 20 solid material. 21 CHAIRMAN WALLIS: The ligaments are 22 still hanging on. 23 MR. DAVIS: They're still there and 24 they're holding it together. And part of the 25 problem is --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	29
1	MEMBER ROSEN: It's quite strong.
2	MR. DAVIS: You're assuming you know
3	what the length is using, say, eddy current to
4	determine the length. But sometimes eddy current
5	won't see the ligaments. And so
6	MEMBER SIEBER: Volumetric.
7	MR. DAVIS: results will tell you
8	that the crack's longer than it is. Or you'll
9	assume it's longer than it really is and that's why
10	you don't get really good results sometimes.
11	VICE CHAIRMAN SHACK: Ligaments just
12	make life very they make it complicated for your
13	inspection because they fool the eddy current. They
14	provide a conductive path, and so
15	MEMBER SIEBER: Right.
16	VICE CHAIRMAN SHACK: You know, it makes
17	it difficult to detect because you're, you know, you
18	want a high impedance for the detection so it makes
19	it difficult to detect.
20	It screws up your burst calculation
21	because although these ligaments are very narrow
22	they add a surprising amount to the strength of the
23	whole crack.
24	So you tend to be overly conservative
25	with these bounding crack models. And you end up

(202) 234-4433

	30
1	greatly over-predicting leak rates because again the
2	crack turns out to be very, very sensitive to how
3	wide the and this we use wide to say how much
4	the crack opens up.
5	So it's long, wide, and deep. And so a
6	ligament greatly reduces the width of the crack
7	opening and greatly reduces the flow through the
8	flaw, and so you're almost all the time our
9	simplified crack type models over-predict the leak
10	rate.
11	They essentially over-predict the burst
12	pressure.
13	MEMBER ROSEN: So coming back to my
14	hands model where my hands are the cracks, the
15	material in between is still intact.
16	VICE CHAIRMAN SHACK: Yes, there's
17	MEMBER ROSEN: And you're measuring this
18	crack as being the width of to the back of my hands
19	
20	VICE CHAIRMAN SHACK: Your hand, right.
21	MEMBER ROSEN: whereas really it's
22	got a lot other material in between those facing the
23	cracks.
24	VICE CHAIRMAN SHACK: It doesn't take
25	much material, you know. You have a half inch crack
I	1

(202) 234-4433

ĺ	31
1	and you put a sort of a 32nd inch ligament in the
2	middle of it and it makes a tremendous difference in
3	the leak rate through that crack. A little ligament
4	goes a long way.
5	MEMBER SIEBER: With enough ligaments
6	you can actually be through wall and have it not
7	burst.
8	VICE CHAIRMAN SHACK: Oh, yes. Now in
9	the fact when we talk about ligament rupture
10	that's the whole point, that we can predict when the
11	crack goes through wall quite well even for a
12	complex crack shape.
13	But the margin that you then have to
14	actual bursts where you get an unstable tearing, you
15	know, it's one thing to pot through and have a very
16	small, tiny crack that's popped through in just a
17	small portion of it.
18	It's another one to rip the whole length
19	of the crack and to have an unstable burst that
20	keeps on going. And again, we can predict the
21	ligament rupture to go through wall quite
22	accurately.
23	What we can't tell you is the margin you
24	then have to the unstable burst.
25	CHAIRMAN WALLIS: The ligament must be
ļ	

(202) 234-4433

	32
1	very material dependent, brittle material. I
2	presume you don't have ligaments in certain
3	materials. You have lots of ligaments because of
4	the structure of the material.
5	VICE CHAIRMAN SHACK: In our gooey,
6	rubbery alloy 600 we have lots of ligaments.
7	CHAIRMAN WALLIS: And so the flow is
8	like a sticky stuff
9	VICE CHAIRMAN SHACK: Right.
10	CHAIRMAN WALLIS: and pulls these
11	bits of glue out.
12	VICE CHAIRMAN SHACK: And the stress
13	corrosion cracks grow that way. They kind of
14	meander through various grain boundaries rather than
15	cleanly rupturing grains so that you get this
16	complex
17	MEMBER POWERS: Even in brittle ceramics
18	they talk about ligaments.
19	VICE CHAIRMAN SHACK: But there it tends
20	to be more a big bang kind of a failure.
21	MR. DAVIS: This is what Bill just
22	covered, so we also have developed models for
23	circumferential cracks. And there we didn't use the
24	plastic instability as much as we used a fracture
25	mechanics approach because it's a little more

(202) 234-4433

	33
1	complicated to deal with.
2	CHAIRMAN WALLIS: I would think the
3	ligaments would be subject to creep, that they would
4	actually creep away because of the high stresses on
5	them. Don't they?
6	VICE CHAIRMAN SHACK: Yes, we'll get to
7	that.
8	CHAIRMAN WALLIS: Okay.
9	MR. DAVIS: We also develop models for
10	severe accidents where you're at a higher
11	temperature. At lower temperature you wouldn't
12	expect a lot of creep, but at the higher temperature
13	a creep rupture model has been developed.
14	And it and also it predicts a lot
15	better than the flow stress model. To move on to
16	the leak models, we developed a leak model based on
17	simple orifice flow through a crack.
18	MEMBER KRESS: Is the area, the opening
19	area you know, the crack has areas at front end
20	and back end, a small area at the back end?
21	VICE CHAIRMAN SHACK: Yes, that also
22	turns out to be an interesting question, but it's
23	the smallest area which is typically at the OD.
24	MEMBER KRESS: At the OD?
25	VICE CHAIRMAN SHACK: Yes. And
	I

(202) 234-4433

	34
1	MEMBER KRESS: So the .6 is discharged
2	from an orifice into a reservoir?
3	VICE CHAIRMAN SHACK: Right.
4	CHAIRMAN WALLIS: Sharp-edged orifice?
5	MEMBER KRESS: Sharp-edged orifice into
б	a reservoir.
7	CHAIRMAN WALLIS: There's no friction or
8	anything in all this crack?
9	VICE CHAIRMAN SHACK: Again
10	CHAIRMAN WALLIS: If you're being
11	conservative, you're saying.
12	VICE CHAIRMAN SHACK: Well, with leak
13	rates it's hard to know when you're being
14	conservative. If you're looking at if you want
15	to do leak-before-break then every time you over-
16	predict the leak you're being non-conservative.
17	If you're looking at how much fluid
18	you're loosing from the reactor then it's
19	conservative to over-predict the volume of leak. So
20	conservative is a kind of a dangerous thing.
21	But what is surprising here is that
22	everybody sort of thinks of this as clearly a two
23	phase situation. The flow is going to go
24	through.
25	MEMBER KRESS: Right.
	I

(202) 234-4433

	35
1	VICE CHAIRMAN SHACK: You're going to
2	have flashing, you know. You would expect these
3	flows to always be choked. What was surprising to
4	us was that many of the much of the time the
5	crack acts as an orifice of a single phase fluid.
6	I mean this is just an orifice flow for
7	a single phase fluid. You know, you really are
8	looking at the time it takes to flash. And by the
9	time it gets through the wall it hasn't flashed yet
10	and so the fluid acts as though it's a single phase
11	fluid.
12	And this becomes important under
13	accident situations when you have the 2,500 and the
14	crack opens fairly wide. So
15	CHAIRMAN WALLIS: This is true of small
16	dimensions, it takes a small time to go through.
17	VICE CHAIRMAN SHACK: A small time to go
18	through.
19	CHAIRMAN WALLIS: If you go to Marviken
20	everything is homogeneous because the length is so
21	long.
22	VICE CHAIRMAN SHACK: And so for these
23	kinds of accident flows the crack tends to be open
24	and you get this single phase behavior, this orifice
25	type behavior.

(202) 234-4433

	36
1	Now in the normal operation when, you
2	know, the leak rate is 150 gallons per day and
3	you're dealing with very tight cracks, then clearly
4	you have very large fluid losses.
5	Frictional losses are very important.
6	Getting the transition between when you have this
7	orifice flow and when you have this much more
8	restricted frictional flow is one of the things that
9	we're still working on.
10	We have some explanations of when that
11	happens and under the conditions in which you switch
12	from one flow to the other.
13	MEMBER BONACA: I have a question. This
14	is a response to a need from NRR, okay. Now the
15	licensees must have similar models that they use to
16	predict a fact from cycle to cycle, what's going to
17	happen? Okay.
18	VICE CHAIRMAN SHACK: Yes. Well one of
19	the differences is the licensee models up until now
20	have always assumed that the flow has been choked.
21	MEMBER KRESS: Okay.
22	VICE CHAIRMAN SHACK: And that's not the
23	case for these, you know. A crack that's larger
24	than about five millimeters under a main steam line
25	break condition that's not the case.
I	I

(202) 234-4433

	37
1	A crack that size, that open acts like a
2	single phase fluid with no choking, and a simple
3	orifice flow model.
4	MEMBER KRESS: So you're going to get a
5	lot more flow?
б	MEMBER POWERS: Bill,
7	VICE CHAIRMAN SHACK: You're going to
8	get more flow.
9	MEMBER POWERS: Bill, in this equation,
10	or this model or maybe Jim, I'm not sure who to
11	ask on this. When they do a drill plate for an
12	orifice flow meter, anything like that, I have to go
13	calibrate it, okay, because this equation never
14	exactly works.
15	Okay, what do you adjust, your discharge
16	coefficient or the area?
17	VICE CHAIRMAN SHACK: The uncertainty is
18	generally really with the area. You know, you're
19	right, I mean there is a variability in the orifice
20	coefficient.
21	MEMBER POWERS: Yes.
22	VICE CHAIRMAN SHACK: And if I was
23	dealing with a drilled hole I would adjust the
24	orifice coefficient. It turns out in dealing with a
25	real crack, my difficulty is always in computing the
	I

(202) 234-4433

	38
1	crack opening area, because if I take, as I usually
2	do, my sort of rectangular bounding crack, I'm going
3	to over-predict the crack opening area.
4	So I have a very strong tendency over-
5	predict leak rates. I sort of ignore ligaments.
6	And again, I don't know whether Jim will have it
7	come up here, you know, sooner or later when we do
8	the fraction mechanics prediction you find that this
9	area varies to about the fifth power of the length
10	of the crack.
11	So if I put a ligament in the middle of
12	that crack, I've suddenly changed the thing by a
13	factor of about 30.
14	MEMBER POWERS: I mean the discharge
15	coefficient used there is very simple.
16	VICE CHAIRMAN SHACK: Is very
17	MEMBER POWERS: But it doesn't make any
18	difference because all your problem is in the area.
19	VICE CHAIRMAN SHACK: All my problem is
20	in the area.
21	MR. DAVIS: For an axial crack this is
22	the expression that we use, and where V0 is a
23	function of the Ce in the
24	CHAIRMAN WALLIS: What shape is this
25	area?
I	1

(202) 234-4433

	39
1	MR. DAVIS: It's a crack.
2	VICE CHAIRMAN SHACK: It's an ellipse.
3	CHAIRMAN WALLIS: It is?
4	VICE CHAIRMAN SHACK: Well,
5	CHAIRMAN WALLIS: It's idealized to be
6	an ellipse.
7	VICE CHAIRMAN SHACK: It's idealized to
8	be an ellipse.
9	CHAIRMAN WALLIS: But really it isn't.
10	VICE CHAIRMAN SHACK: Well if you told
11	me the shape of the crack I would tell you the shape
12	of the opening.
13	CHAIRMAN WALLIS: That's part of the
14	uncertainty.
15	VICE CHAIRMAN SHACK: That's part of the
16	uncertainty. But when I bound everything with an
17	equivalent rectangular crack it idealizes as an
18	ellipse.
19	MR. DAVIS: I think we've discussed most
20	of this, but the test show that due to short transit
21	time across the steam generator tube wall leaks over
22	a range of crack sizes can be described by a single
23	phase orifice flow model with an opening based on
24	the crack opening area.
25	The leak rate's a function of L over D,
	I

(202) 234-4433

	40
1	where L is the length and D is two times the crack
2	opening. Now we get a very good agreement, as Bill
3	said, for slits, orifices, and open cracks.
4	CHAIRMAN WALLIS: Wait a minute, this
5	crack is going in both directions. Doesn't that
6	make a difference which way it's growing, whether
7	it's growing wide-wise, or I mean
8	VICE CHAIRMAN SHACK: Lengthwise?
9	CHAIRMAN WALLIS: Lengthwise or whatever
10	the other thing you call it.
11	VICE CHAIRMAN SHACK: Oh, you mean axial
12	or circumferential?
13	CHAIRMAN WALLIS: Right, it makes a
14	difference which way it's growing.
15	VICE CHAIRMAN SHACK: Oh, yes. It's
16	makes a very large difference.
17	MR. DAVIS: Very big difference.
18	CHAIRMAN WALLIS: Yes, so
19	VICE CHAIRMAN SHACK: We're dealing with
20	axial cracks here, not
21	MR. DAVIS: Axials here.
22	VICE CHAIRMAN SHACK: We have equivalent
23	models.
24	CHAIRMAN WALLIS: It's not growing any
25	other way. It's already grown as much as it wants
I	I

	41
1	to the way and then it's just going that axial way,
2	is that it?
3	VICE CHAIRMAN SHACK: Yes, the length of
4	the crack increases either axially or
5	circumferentially.
6	CHAIRMAN WALLIS: Right.
7	VICE CHAIRMAN SHACK: The width is not
8	really a growth, it's
9	CHAIRMAN WALLIS: No, no, no, that's
10	right. The length
11	VICE CHAIRMAN SHACK: That's an opening.
12	CHAIRMAN WALLIS: What do you call
13	the other one is the depth? Length or the depth?
14	VICE CHAIRMAN SHACK: Yes, the length is
15	how long the crack is either axially or
16	circumferentially.
17	CHAIRMAN WALLIS: But is the length
18	growing or is the depth growing or is just the
19	length fixed and the depth is growing or what's
20	happening here?
21	VICE CHAIRMAN SHACK: No, they're both
22	growing.
23	CHAIRMAN WALLIS: They're both growing?
24	VICE CHAIRMAN SHACK: They're both
25	growing. It's growing longer and it's growing
I	I

(202) 234-4433

42 1 deeper. 2 CHAIRMAN WALLIS: But it's still 3 elliptical when it gets to the --4 VICE CHAIRMAN SHACK: Well, --CHAIRMAN WALLIS: -- other side? 5 VICE CHAIRMAN SHACK: The elliptical is 6 7 the width if you're looking head on at the crack. 8 CHAIRMAN WALLIS: Yes. 9 VICE CHAIRMAN SHACK: You know, the 10 mouth of the crack opens up into an elliptical shape. 11 12 They'll be bigger on the MR. DAVIS: side they initiate. 13 CHAIRMAN WALLIS: Right. 14 That's from 15 the theory, and it has this concentration into the ellipse, and --16 17 VICE CHAIRMAN SHACK: By the time we get to the fish mouth the game is over. 18 19 CHAIRMAN WALLIS: Okay. MR. DAVIS: As Bill mentioned with 20 21 actual cracks, because of ligaments --22 CHAIRMAN WALLIS: What if some of these 23 things grew like a smile instead of an ellipse? MEMBER POWERS: That's fish mouth and 24 25 that's when the game is over. Please continue.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. DAVIS: But the ligaments do tend to
2	cause us to overestimate the leak rates. Real
3	stress corrosion cracks tend to undergo incremental
4	ligament rupture with increasing pressure before the
5	cracks become unstable.
б	And this causes the leakage to occur at
7	lower pressures than predicted. The equivalent
8	crack method has been generalized to predict
9	incremental ligament rupture after initial ligament
10	rupture.
11	CHAIRMAN WALLIS: Doesn't this
12	incremental ligament rupture even occur at fixed
13	pressure because of creeping of the ligament?
14	VICE CHAIRMAN SHACK: That
15	MR. DAVIS: It appears that it does,
16	yes.
17	VICE CHAIRMAN SHACK: We will be
18	discussing that in more detail.
19	MR. DAVIS: What we found, one of the
20	assumptions of course, you know, what the crack
21	looks like. And we found that when you
22	destructively examine the cracks that you get
23	better, more accurate results than when you use eddy
24	current, which is not surprising.
25	MEMBER BONACA: At some point though, I
I	I

(202) 234-4433

	44
1	would like to understand, these are models that
2	you're using to predict.
3	MR. DAVIS: Yes.
4	MEMBER BONACA: Okay. Now a number of
5	the inputs of the model is the size of the crack,
6	the length, the depth,
7	MR. DAVIS: Depth.
8	MEMBER BONACA: what you measure.
9	How accurate are the measurements? You know, how
10	accurately can you measure the length of the crack,
11	the depth of the crack? Try to understand that,
12	because you're using them as inputs to predict.
13	MR. DAVIS: Yes.
14	MEMBER BONACA: And depending on how
15	well you can measure you can get different answers.
16	MR. DAVIS: That's something that we've
17	looked at in a great deal of detail, and we
18	developed this Argonne's expert system
19	MEMBER BONACA: Okay.
20	MR. DAVIS: with the rotating pancake
21	coil in order to try to get a better prediction than
22	using a bobbin coil does.
23	MEMBER BONACA: Yes.
24	MR. DAVIS: And what we're found is that
25	you do get much better results with the rotating
l	I

(202) 234-4433

	45
1	pancake coil than you do with just a bobbin coil.
2	But what we do is we verify it by doing destructive
3	analysis and looking at the actual crack profile to
4	see how well we predicted the shape.
5	And that's one of the biggest
б	assumptions in this whole thing. And we spend a lot
7	of effort on that.
8	MEMBER BONACA: If you want to verify
9	what the licensee is telling you, or the predictions
10	that he's making,
11	MR. DAVIS: Right.
12	MEMBER BONACA: you will need to have
13	from the licensee sentence predictions of well,
14	measurements.
15	MR. DAVIS: Yes.
16	MEMBER BONACA: Okay.
17	MR. DAVIS: Okay. I'm going to describe
18	briefly. We have two facilities that we use for
19	doing this testing. You know, one's a room-
20	temperature, high-pressure facility.
21	And this has a maximum pressure of 7,500
22	psi. We use a pump to provide the pressure, and
23	we're limited to 12.8 gallons per minute in this
24	facility.
25	We have it hooked up to a water supply
ļ	

(202) 234-4433

	46
1	so we can test forever in this basically. We don't
2	run out of water. We have a high-temperature and
3	pressure leak rate test facility, also called a
4	blowdown facility.
5	And there we have a maximum temperature
6	of 650 F. We have a maximum pressure of 3,000 psi.
7	And we thought the leak rate was going to be a
8	little lower than it turned out to be, but we can
9	actually have a leak rate of 400 gallons per minute.
10	But we have a storage tank that holds
11	200 gallons, so if we have a 400 gallon per minute
12	leak rate we only have 30 seconds for testing. And
13	so further limitations we have on the high-pressure
14	facility, we've done a lot of our testing on the
15	room temperature facility.
16	It's a lot easier to use and we think
17	we're getting similar results. To verify things
18	though, we do run test on the high-pressure, high-
19	temperature facility.
20	MEMBER POWERS: Is there a reason for
21	retaining the English set of units?
22	MR. DAVIS: Not really.
23	MEMBER POWERS: Just curious.
24	VICE CHAIRMAN SHACK: The reports are
25	always written in scientific units, the discussion
ļ	I

(202) 234-4433

	47
1	is always carried out in English units.
2	MR. DAVIS: Yes.
3	CHAIRMAN WALLIS: Gallons are horrible
4	units because you never know what pressure
5	MEMBER POWERS: These are godless
6	creatures, or
7	CHAIRMAN WALLIS: Mass glow should be
8	mass flow, not gallons per minute. A gallon is an
9	undefined quantity.
10	MR. DAVIS: We really do pounds per
11	minute.
12	CHAIRMAN WALLIS: It's not dependent
13	the mass depends upon the temperature and pressure
14	and so on. A gallon in this sort of context is not
15	defined until you add something to it, you see,
16	gallons at room-temperature and pressure, or so on.
17	MR. DAVIS: That's right.
18	MEMBER POWERS: Well you have the same
19	problem with mass.
20	CHAIRMAN WALLIS: No you don't. Mass is
21	the same at room temperature as at other
22	temperatures, I think.
23	MR. DAVIS: That's how we measure it for
24	those.
25	MEMBER POWERS: It depends on which
I	I

(202) 234-4433

	48
1	planet you're on.
2	CHAIRMAN WALLIS: That's weight, that's
3	not mass.
4	MR. DAVIS: We don't measure gallons per
5	minute. We convert to gallons per minute.
6	MEMBER POWERS: Go ahead.
7	MR. DAVIS: Okay, the
8	CHAIRMAN WALLIS: Why? Why convert to
9	something bizarre when you've got the good unit
10	already?
11	MEMBER POWERS: Because they like it.
12	CHAIRMAN WALLIS: Because the NRC likes
13	it? Is that the NRC standard?
14	MEMBER POWERS: Mr. Chairman, if you
15	continue to slow me down I will ask you to leave.
16	CHAIRMAN WALLIS: I'm sorry, I thought I
17	was debating with you, but okay. Let's move on.
18	MR. DAVIS: Okay, the industry actually
19	conducted some tests and what they found was they
20	found an effect of pressurization rate on burst
21	pressure.
22	And to NRR asked us to look into this
23	and see if there was a pressurization rate effect on
24	burst. When we looked into what the industry was
25	doing it was actually Westinghouse did this
	I

(202) 234-4433

	49
1	testing.
2	And they used two different protocols
3	for the slow and the fast test rates. And we
4	thought that that could have a big effect on what
5	they were saying looked like a pressurization rate
6	effect.
7	And also, when we looked at their
8	results we felt we could explain the differences in
9	pressurization rate just by geometry of the
10	specimens that they were testing.
11	And so we weren't convinced that there's
12	a pressurization rate effect.
13	CHAIRMAN WALLIS: Does foil and bladder
14	mean anything to anybody in this room?
15	MEMBER KRESS: Pardon?
16	CHAIRMAN WALLIS: Does foil and bladder
17	mean anything to anybody in this room except the
18	presenter?
19	MR. DAVIS: Okay. What happens is if
20	you have a through wall crack and you try to burst
21	it, somehow you have to keep the pressure in there.
22	You have to be able to put the pressure in. So what
23	you do is you put a foil in
24	CHAIRMAN WALLIS: A bladder.
25	MR. DAVIS: and then a bladder, which
I	·

(202) 234-4433

	50
1	is like a piece of Tygon tubing, inside so that
2	you're not loosing all you're
3	VICE CHAIRMAN SHACK: Fluid.
4	MR. DAVIS: fluid and loosing your
5	pressure so that you can actually burst the
6	specimen. And if you have a large crack it's
7	difficult to make it burst if you have a large leak
8	rate. It depends on your
9	VICE CHAIRMAN SHACK: The leak rate is
10	limited to 12.8 gallons. Your through wall crack
11	size that you can deal with is
12	MEMBER SIEBER: It's the capacity.
13	VICE CHAIRMAN SHACK: pretty small.
14	MEMBER KRESS: Is there any reason
15	theoretically to expect a rate effect such as give
16	you time for work hardening if your doing it slow or
17	having something to do with the time to reach its
18	strain limit, or
19	MR. DAVIS: Well, I think it's pretty
20	common when you're mechanically testing materials
21	that you have to control the pressurization rate.
22	For like a stress-strain curve you do it at a
23	certain rate
24	MEMBER KRESS: At a certain rate.
25	MR. DAVIS: because if you change
I	I

(202) 234-4433

	51
1	your strain rate you're going to change you can
2	change your yield strength.
3	MEMBER KRESS: These are not momentum
4	effects, because
5	VICE CHAIRMAN SHACK: No, no, no.
6	MEMBER KRESS: they're strictly
7	something like work hardening or
8	VICE CHAIRMAN SHACK: Yes, this you
9	know, you could eventually get to something like a
10	momentum effect but
11	MEMBER KRESS: Yes.
12	VICE CHAIRMAN SHACK: that's with
13	rates that are
14	MEMBER KRESS: Really
15	VICE CHAIRMAN SHACK: phenomenal
16	here. But we are talking about changing things like
17	work hardening.
18	MEMBER KRESS: You're actually changing
19	properties of the material?
20	VICE CHAIRMAN SHACK: You're changing
21	the properties of the material.
22	MR. DAVIS: What we did was we took
23	different shaped flaws and we also had ligaments
24	that we put in, which is shown at the bottom. You
25	know, we had an axial ligament and a circumferential
	I

(202) 234-4433

	52
1	ligament.
2	And it's kind of hard to explain so I
3	showed you the diagram. And what we did was we
4	tested these at quasi-static, where you pressurize
5	and then you increase the pressure in steps.
6	And then we did 1,000, 2,000, 6,000, and
7	10,000 psi per second pressurization rates. And
8	what we found was there's no real pressurization
9	effect up to 6,000 psi.
10	MEMBER KRESS: Now if you did this in
11	steps, how would you see a pressurization rate
12	effect?
13	MR. DAVIS: Okay, we did the first, the
14	quasi-static in steps, but then
15	MEMBER KRESS: Then you went back.
16	MR. DAVIS: And then we went and we went
17	1,000 psi per second, 2,000 psi per second.
18	MEMBER KRESS: Okay, I'm sorry. So you
19	did two times, the test.
20	MR. DAVIS: And we didn't see any
21	pressurization effect up to 6,000 psi per second.
22	We talked to the industry and what they say is the
23	maximum they ever use is 2,000 psi per second for
24	their industry tests.
25	So we feel that under the actual field
ļ	1

(202) 234-4433

	53
1	testing condition there is no pressurization rate.
2	CHAIRMAN WALLIS: If you had a water
3	hammer or something you'd get pressure rate rises
4	which would be much more rapid than that.
5	MR. DAVIS: Right.
6	MEMBER SIEBER: You could, yes.
7	MEMBER KRESS: But if there is a
8	pressurization rate it means you need higher
9	pressure first.
10	MR. DAVIS: Right.
11	MEMBER KRESS: So by neglecting
12	conditions like that you're probably being
13	conservative, and once again you have this
14	conservative word.
15	VICE CHAIRMAN SHACK: Right. And I
16	don't think water hammer is generally a concern in
17	the steam generator tube.
18	MR. DAVIS: We were concerned about
19	or I think what NRR requested us was if they used
20	different pressurization rates on their field
21	samples are they getting good results. And that was
22	a question we wanted to ask
23	VICE CHAIRMAN SHACK: One-way to get
24	your margin is to
25	MEMBER POWERS: And then so you were
I	I

(202) 234-4433

	54
1	attributing the Westinghouse observation and to some
2	differences in their protocols?
3	MR. DAVIS: Yes. It was two things. It
4	was the different ways they tested and the shape of
5	the actually curves that they were I mean the
6	cracks that they were testing.
7	VICE CHAIRMAN SHACK: Actually in their
8	test it was probably most the shape, because they
9	were trying to deal with complex shapes and
10	reproducing those complex shapes even when they were
11	reproducing them as EDM notches.
12	You know, the geometry variations were
13	essentially on the order of what you might expect
14	from a rate effect.
15	MEMBER POWERS: I understand.
16	MR. DAVIS: Another study that we
17	conducted was secondary side depressurization study.
18	And what this was was to simulate a main steam line
19	break where you have a larger you lose pressure
20	on the secondary side.
21	And the typical analysis of
22	depressurization events did not
23	CHAIRMAN WALLIS: We heard about this
24	six months ago or something.
25	MR. DAVIS: Yes, you did. You heard
	I

Í	55
1	this in detail. So the ACRS had raised some
2	concerns several years ago about dynamic loads on
3	the steam generator tubes.
4	So what we did, we calculated the
5	dynamic loads using RELAP5 and benchmarked it
б	against experiments. What we found was a large a
7	main steam a large main steam line break creates
8	a much greater pressure than a small steam line
9	break or a feedwater line break.
10	And it was quite a big difference. And
11	the pressure loading acting on the tube support
12	plates is transferred to the tubes which are locked
13	by corrosion products and deposits.
14	And we conducted a detailed finite
15	element analysis and a fracture mechanics analysis
16	for and we used the Model 51 Westinghouse steam
17	generator, tube support plates, and tubes.
18	What we found out, the loads are
19	primarily axial so then the dynamic loads have no
20	effect, virtually no effect on axial cracks because
21	the loads are axial.
22	Now if only one or two tubes are locked
23	for circumferential cracks, the stress exceeds the
24	ultimate tensile strength. But what you have to
25	understand is it's very unlikely that only one or
I	1

(202) 234-4433

	56
1	two tubes would be locked.
2	Also because the tubes are because
3	the displacements are limited, unflawed tubes would
4	not rupture, but the tolerance for circumferential
5	cracks would be severely limited if you just had a
6	few.
7	If greater than one and a half percent
8	of the tubes are locked then the loads are very low,
9	and cracks less than 180 degrees are stable. And
10	these are through wall cracks.
11	So if you had cracks greater than 180
12	degrees through wall, you would they would be
13	plugged and that would not be a problem.
14	MEMBER KRESS: What finite element
15	analysis code do you use, ABACUS?
16	VICE CHAIRMAN SHACK: ABACUS.
17	MR. DAVIS: And then one of the more
18	recent studies that we've done is constant pressure
19	crack growth studies. A couple years ago we ran a
20	limited number of specimens in the high-temperature
21	facility and we noticed that we were getting some
22	constant pressure crack growth.
23	So what the objective of this program
24	was to determine the influence of flaw geometry on
25	flaw tearing and the subsequent leak rate behavior.
	1

(202) 234-4433

And then determine the mechanism for flaw growth, and increase leak rates at constant pressure. And since I made this slide up we've actually done a high-temperature verification of this, but most of the testing was conducted in th room-temperature facility.	Ð
And since I made this slide up we've actually done a high-temperature verification of this, but most of the testing was conducted in th room-temperature facility.	0)
4 actually done a high-temperature verification of 5 this, but most of the testing was conducted in th 6 room-temperature facility.	e
5 this, but most of the testing was conducted in th 6 room-temperature facility.	9
6 room-temperature facility.	e
7 We've run one test in the high-	
8 temperature facility. So as I said, the early wo	rk
9 that we had done showed that there was some time	
10 dependence on the leak rate.	
11 And we attributed this to ligament	
12 tearing and opening of the crack due to some type	of
13 limited time-dependent deformation. We had a num	ber
14 of theories on what was causing it.	
15 What we found in some recent tests is	
16 that at room-temperature the crack grows at a fai	rly
17 high rate. What we did was we took alloy 600. I	t
18 was seven eighth inch diameter and it was 50 mil	
19 wall thickness.	
20 We had trapezoidal cracks that were .	2
21 inches on the OD and one inch on the ID. And the	n
22 we had the reverse case where the ID was one inch	
23 and the I mean the OD was one inch and the ID	was
24 .2 inches.	
25 And then we had, just to further look	at

(202) 234-4433

	58
1	it, we had rectangular cracks that were .2, .4, and
2	.6 inches. We tested with and without a foil and
3	bladder.
4	We tested them open to air. And then to
5	simulate an actual steam generator what we did was
б	we put shrouds around the cracks to see what effect
7	that had, so like the adjacent tubes se tried to
8	simulate.
9	The trapezoidal flaw design was just to
10	is to show you what it looked like. And it's
11	this is of course not to scale. It's 50 mils thick.
12	It's a very thin ligament almost.
13	And one of the things we looked at was
14	if you have a we thought if you have a jet that
15	contributes. You know, you have large leakage in
16	the jet, causes some of the problem.
17	So what we did was we tested jet-free to
18	see what would happen, where we used a foil and a
19	bladder. And then we have some pump oscillations
20	when we test normally, and we thought that might be
21	contributing.
22	So what we did was we pressurized with
23	nitrogen. And we were wondering if there was some
24	type of a corrosion effect. So we actually put
25	moisture on the outside with the foil and bladder to
I	I

(202) 234-4433

	59
1	see if that had any effect.
2	And what we saw was no crack growth with
3	the using the pressurized nitrogen. When we
4	tested with the pump on at the same pressure, this
5	was at 1,300 psi, what we found was we get smaller,
6	slight crack growth.
7	The pump gives you about a 30 psi
8	oscillation just in the way the pump operates, and
9	that's why we ran these tests. Then we started
10	running tests with active jets.
11	And what happened was with an active
12	leak the crack increased with from the original
13	.2 inches to one inch in just a number of hours. It
14	was like eight hours we went from the OD crack
15	from .2 to one inch.
16	CHAIRMAN WALLIS: So does the crack
17	growth rate change much when you have the flow
18	rather than not having the flow?
19	MR. DAVIS: Yes, dramatically.
20	CHAIRMAN WALLIS: It does? So flow
21	changes the crack growth rate?
22	MR. DAVIS: Right.
23	CHAIRMAN WALLIS: That's not in the
24	fracture mechanics than is it?
25	MR. DAVIS: Well, we're looking into
I	1

	60
1	that, but
2	CHAIRMAN WALLIS: Some kind of fluid-
3	structure interactions?
4	MR. DAVIS: There's some fluid-structure
5	interaction, definitely.
6	VICE CHAIRMAN SHACK: I mean that's what
7	we try to do with the bladder tests, you know.
8	CHAIRMAN WALLIS: Right.
9	VICE CHAIRMAN SHACK: We've sort of
10	eliminated the possibility there was an
11	environmental effect. We showed that any fatigue
12	growth from the pump was very small.
13	So you're sort of left with the jet as
14	being the mechanism
15	CHAIRMAN WALLIS: There's a water-
16	cutting phenomenon, is it?
17	VICE CHAIRMAN SHACK: No, it's Jim
18	doesn't have a picture. You know, it's not as
19	though it's cutting. I mean it really looks like a
20	very tight fatigue crack so that the the thought
21	is that it is a jet structure interaction leading to
22	low amplitude, very high frequency fatigue crack
23	growth.
24	So you get these very tight fatigue
25	cracks coming out of the notch growing
1	1

(202) 234-4433

	61
1	CHAIRMAN WALLIS: So the water is
2	creating stresses rather than removing the
3	VICE CHAIRMAN SHACK: The water is
4	creating stresses. And the crack growth rates are,
5	you know, two to three orders of magnitude higher
6	than you would expect from stress corrosion.
7	MEMBER RANSOM: Well when you have a
8	bladder don't you omit the forces that are being
9	due to the pressure in the crack itself, tending to
10	open the crack?
11	VICE CHAIRMAN SHACK: No, no. The
12	bladder doesn't really reduce the stress on the
13	crack tip. You know, the if you're thinking of
14	the pressure acting on the crack face that's a very,
15	very small part of the load acting on the crack,
16	that when you have the bladder in you know,
17	that's why we can do the burst tests with the
18	bladder and it really doesn't make much effect.
19	In this particular case, that kept the
20	load on the crack, but we what we missed of
21	course was the you know, we had the static load
22	was equivalent, but wed miss the whole dynamic load
23	due to the jet action.
24	CHAIRMAN WALLIS: So I guess it's
25	reasonable because, you know, the jet has the whole
ļ	I

(202) 234-4433

	62
1	pressure imposed on it so the velocity is your
2	square root of P over O.
3	That goes back into P if you stop the
4	jet somewhere. So the jet is going around or has
5	velocity fluctuations, pressure fluctuations could
6	be comparable with the applied pressure.
7	So they're significant, they could be
8	significant.
9	VICE CHAIRMAN SHACK: Yes. Measuring
10	those is very difficult, and even detecting just
11	what frequency range we're interested in is kind of
12	a difficult question.
13	What we sort of settle on at the moment
14	is that we can get very high crack growth rates.
15	What was a little surprising to us, we did the first
16	tests with a a kind of an eighteen inch
17	confinement so that it was a truly free jet.
18	And we actually thought that well, when
19	we muffled this jet if we sort of, you know, in a
20	steam generator the tubes are only a quarter inch
21	apart and so the jet isn't free, it's really much
22	more muffled by the surrounding
23	CHAIRMAN WALLIS: I think with ligaments
24	I can see how the wake of the flow around the
25	ligament could easily shake the ligament and break
I	I

(202) 234-4433

	63
1	it.
2	MEMBER KRESS: Yes. But
3	VICE CHAIRMAN SHACK: Vortex shedding,
4	you know, simpleminded dynamic effects are
5	MEMBER KRESS: Well can you back out.
6	Looking at your fatigue assuming some fatigue
7	rate growth, can you back out of frequency and
8	pressure to give you that rate and then see if it
9	corresponds to anything you might guess?
10	VICE CHAIRMAN SHACK: At the moment,
11	what we do since we don't know the delta p or the
12	frequency, what we have we select frequencies and
13	then we compute the delta p that have to have in
14	order to get the crack growth rate that we observe.
15	MEMBER KRESS: Okay, you do it
16	VICE CHAIRMAN SHACK: But we don't know
17	
18	MEMBER KRESS: Both of those are
19	variables.
20	VICE CHAIRMAN SHACK: We need to know
21	one of those.
22	MEMBER KRESS: Yes.
23	VICE CHAIRMAN SHACK: And so the thought
24	might be is that we can actually probably
25	determine something about the frequency from
I	

(202) 234-4433

	б4
1	accelerometers to so that when we do if we do
2	when we do subsequent testing we will probably try
3	to determine the frequency
4	MEMBER KRESS: That's probably too small
5	of an amplitude for an accelerometer to pick it up.
6	CHAIRMAN WALLIS: I don't know,
7	microphone, I mean this thing could sing if it's
8	really got that characteristic frequency.
9	MEMBER KRESS: Microphone might do it,
10	yes.
11	VICE CHAIRMAN SHACK: Well
12	CHAIRMAN WALLIS: You've got a musical
13	instrument.
14	VICE CHAIRMAN SHACK: We don't think the
15	frequencies, if they're audible, are high enough,
16	that we it depends on how large you think the
17	delta p has to be.
18	When we look at this we think the delta
19	ps, to get the delta ps we think are reasonable we
20	have to get the frequencies that are not in the
21	audible range.
22	CHAIRMAN WALLIS: Not by you.
23	VICE CHAIRMAN SHACK: Well, coming back
24	to my thing, when we put the surrounding tube on to
25	essentially muffle the jet, of course the crack

(202) 234-4433

	65
1	growth rate increased by a factor of three or four.
2	CHAIRMAN WALLIS: Well that's
3	interesting too.
4	VICE CHAIRMAN SHACK: Then again, we did
5	that with two kind of muffled jets, you know. And
6	again the first tests were done with the jet off in
7	air. And the thought was well if we put the jet
8	into water that would dampen the vibrations in some
9	sense.
10	CHAIRMAN WALLIS: It might make them
11	worse.
12	VICE CHAIRMAN SHACK: Well it did.
13	MR. DAVIS: We tried looking with a
14	scanning electron microscope at the fracture surface
15	to see if we could see striations and we couldn't
16	CHAIRMAN WALLIS: If a jet got into
17	water it usually produces vortex rings around the
18	jet.
19	MR. DAVIS: Here are the results
20	graphically. What the muffled jet is is we just
21	laid a plate over the crack and still allowed it to
22	leak. But it was that was the slowest rate that
23	we got other than the
24	CHAIRMAN WALLIS: It's interesting that
25	you cannot explain what's happening entirely by
I	I

(202) 234-4433

	66
1	material's behavior.
2	MEMBER POWERS: The thermal-
3	hydraulicists start to salivate. I am strictly
4	reminded of the sage advice that came from Ivan
5	Catton who pointed out that there was the big bang
6	and everything else was thermal-hydraulics.
7	MR. DAVIS: Well we've sort of discussed
8	this but the mechanisms that we're looking at are
9	jet erosion of the crack faces, rapid lock erosion
10	at room-temperature, which I think we can eliminate,
11	jet-flaw structural dynamic interaction resulting in
12	fatigue crack growth, which is what we think is the
13	major contributor here, and then pressure
14	oscillation from the pump causing crack growth.
15	And we think that's only a very minor
16	part of this overall phenomenon.
17	CHAIRMAN WALLIS: Those are small
18	fluctuations compared with the overall pressure.
19	MR. DAVIS: That's right. And we've
20	actually hired a consultant to help us look into
21	this.
22	VICE CHAIRMAN SHACK: And as Jim
23	mentioned, you know, the next thought, the non-
24	prototypical situation was we were dealing with a
25	single phase fluid at room-temperature, would we
I	I

(202) 234-4433

	67
1	still see this same phenomenon at high-temperature
2	when we did have the two phase situation.
3	We ran the high-temperature test and we
4	haven't finished the analysis but what it appears is
5	that the crack growth rates, if not exactly the
6	same, are really quite comparable to those we see in
7	the room-temperature situation.
8	So the, you know, the flashing is not
9	going to save your, you know, the locally it's
10	still everything happens on a timescale for the
11	flashing.
12	CHAIRMAN WALLIS: Is that true when you
13	have a shroud around it as well?
14	VICE CHAIRMAN SHACK: We were shrouded -
15	- I have to go back the look at the exact you
16	know, we did we can't run the high-temperature
17	test without a shroud because it
18	CHAIRMAN WALLIS: It goes everywhere.
19	VICE CHAIRMAN SHACK: It's in a you
20	know, it has to be in a confinement. And the
21	confinement, you know so we it's probably the
22	confinement we have is sort of equivalent to our
23	medium size shroud in the room-temperature test.
24	And so that's the kind of baseline to
25	compare against.
Į	1

(202) 234-4433

	68
1	MR. DAVIS: The last area I'm going to
2	discuss is the statistical treatment of our models.
3	And what we've done Dominion Engineering
4	developed CANTIA model which is a CANDU Tube
5	Inspection Assessment model for the Canadian Nuclear
6	Safety Commission.
7	And we obtained that code. What it
8	does, it determines the probabilities of failure in
9	leak rate from primary to secondary side during
10	normal operation and during design basis accidents.
11	The models in the CANDU code are
12	intended for the CANDU reactors the CANTIA code I
13	mean, for integrity leak rate and degradation
14	models. What Argonne did was they modified the
15	CANTIA code maintaining the basic Monte Carlo
16	structure but incorporating the Argonne models for
17	predicting ligament rupture, unstable burst, and
18	crack opening area, and leak rate for of flawed
19	600 tubes.
20	The source language was updated from
21	Visual Basic 3.0 to Visual Basic 6.0, and the big
22	advantage in doing that is that Visual Basic 3.0
23	limited you to 30,000 iterations for your simulation
24	whereas the Visual Basic 6 has unlimited iterations.
25	MEMBER POWERS: The problem with it is
I	

(202) 234-4433

	69
1	that your random number generator on the Monte Carlo
2	system is flawed, and you add in the additional
3	iterations. You're not doing any variance
4	reduction.
5	VICE CHAIRMAN SHACK: We are at the
6	moment using the built in Monte Carlo in Visual
7	Basic.
8	MEMBER POWERS: Yes.
9	VICE CHAIRMAN SHACK: We sort of know
10	there's a problem with that.
11	MEMBER POWERS: Yes, it only after
12	about 32,000 you're just repeating the cycle again.
13	It's a flawed random number generator in that code.
14	You need to use something like a Mersenne Twister or
15	something like that.
16	VICE CHAIRMAN SHACK: Yes. We're sort
17	of aware that, you know, we're still worried about
18	incorporating the models rather than actually
19	exercising the Monte Carlo thing, so we're not
20	MEMBER POWERS: Yes.
21	VICE CHAIRMAN SHACK: going to address
22	that, but
23	MEMBER POWERS: I agree with you but
24	you've got an inherent flaw in that Monte Carlo mess
25	there. I mean it's just not increasing the number
l	I

(202) 234-4433

	70
1	of iterations is not going to do you any good at
2	all.
3	CHAIRMAN WALLIS: If it's above your
4	32,000.
5	MEMBER POWERS: Yes, I think that's the
6	cycle frequency on that particular random number
7	generator. It's a linear congruential generator
8	that's been floating around in the literature for
9	dozens of years.
10	People write theses about how bad it is
11	but it never goes away.
12	MR. DAVIS: The other change that we
13	made is we went from a 1-D flaw model to a 2-D. And
14	then we've added two crack growth rate models. One
15	is the Scott model and the other is the Ford and
16	Andresen model.
17	MEMBER POWERS: I think I don't get rid
18	of that. We got rid of it.
19	MEMBER RANSOM: These models have
20	uncertainties associated with them so when you do
21	the Monte Carlo you're getting a distribution of
22	I'm wondering why you don't only need like 69
23	iterations if you want a 95/95 result.
24	MEMBER POWERS: Well if you want to get
25	the entire distribution with some precision you need
I	I

(202) 234-4433

	71
1	to go up substantially beyond 69.
2	CHAIRMAN WALLIS: Sixty-nine is just for
3	your one thing. If you want a distribution you need
4	a tremendous amount more.
5	VICE CHAIRMAN SHACK: Gazillions.
6	MEMBER POWERS: Well, you don't need
7	gazillions, but
8	CHAIRMAN WALLIS: To find distribution
9	you need an infinite amount of stuff.
10	MEMBER POWERS: You need I mean you
11	need to know how precisely you want that
12	distribution. If you just want to know a point
13	value, yes. With 69 you know that you have samples
14	about 90 percent of the distribution so you take
15	you're highest value in that.
16	You can be reasonable confident that
17	that's your 90th percentile value. But if you want
18	to know the whole distribution with some accuracy
19	the accuracy increases as only the square root of N
20	so it takes a lot.
21	MEMBER RANSOM: When you say accuracy
22	though, aren't the models themselves you know,
23	have high degrees of uncertainty, presumably?
24	MEMBER POWERS: Yes, and what he's
25	getting is a distribution of a result. And the
I	I

(202) 234-4433

	72
1	problem is he's taking he's getting that
2	distribution from finite sample, so the distribution
3	itself is uncertain just because he's taking a
4	finite number.
5	And to refine that distribution down, go
6	slowly.
7	MR. DAVIS: Well, to summarize I
8	presented models for plastic collapse of a tube with
9	a through wall axial crack and a part-through wall
10	axial crack.
11	And the also I presented the
12	equivalent rectangular crack method. The original
13	model underestimated ligament rupture pressures for
14	short, deep cracks.
15	The Argonne modification provided much
16	better results. The equivalent crack method was
17	presented. It gives very good results for initial
18	ligament rupture but not as good for subsequent
19	tearing.
20	And then I presented the simple orifice
21	model. It gets very good agreement for slits,
22	orifices, and open cracks.
23	CHAIRMAN WALLIS: Now what's very good
24	agreement? We've seen somebody's results of
25	materials, research, and orders of magnitude here
I	

(202) 234-4433

	73
1	and there. Presumably you're not talking about
2	that.
3	MR. DAVIS: No.
4	CHAIRMAN WALLIS: Five or ten percent
5	agreement?
б	MR. DAVIS: Yes.
7	VICE CHAIRMAN SHACK: Give us 15.
8	CHAIRMAN WALLIS: You haven't shown us
9	any data. If Peter Ford were here he'd say show me
10	the data. Show me the data.
11	MEMBER POWERS: But we got rid of him.
12	VICE CHAIRMAN SHACK: We don't care
13	about data now.
14	MR. DAVIS: I also presented the
15	pressurization rate effects that we've discovered.
16	And we're still not quite sure what the implications
17	of that are, but it may be that the one industry is
18	doing leak rate tests.
19	They may have to do them for a longer
20	time. I presented the results of the results of the
21	secondary side depressurization study, which you
22	presented in much greater detail last February.
23	And basically what we've found is one
24	and a half percent of the tubes are locked. Most
25	likely they'll all be locked. It's very unlikely
	l

(202) 234-4433

	74
1	that only a couple would be locked.
2	CHAIRMAN WALLIS: When they're new
3	they're not locked are they?
4	MR. DAVIS: They lock very quickly, the
5	drilled hole.
6	CHAIRMAN WALLIS: But there must
7	presumably be an instant when there's one locked if
8	they're starting with none locked.
9	MR. DAVIS: You're absolutely right.
10	And the thing that you have going for you in that
11	case is that you don't have any degradation at that
12	point.
13	So by the time you start getting
14	degradation the tubes are locked.
15	CHAIRMAN WALLIS: Assuming you didn't
16	put flaws in when you made the thing.
17	MR. DAVIS: You do a baseline and you
18	hope that there's not
19	CHAIRMAN WALLIS: Yes, you've inspected
20	them all.
21	MR. DAVIS: And then
22	CHAIRMAN WALLIS: And then putting the
23	thing together you don't produce dents and
24	MEMBER POWERS: You used to.
25	CHAIRMAN WALLIS: I bet they do.
Į	1

```
(202) 234-4433
```

	75
1	MR. DAVIS: At Palo Verde the actually -
2	- they drilled a hole in one of the tubes that was
3	degrading that they put in.
4	CHAIRMAN WALLIS: Hammer it in because
5	it didn't fit and things like that.
6	MR. DAVIS: Actually Westinghouse came
7	to us and asked us about the orifice model for that
8	case. And then I presented the constant pressure
9	crack growth studies, and the active jets appear to
10	be causing increased growth rate with time.
11	I think we have more work to do in that
12	area. And then I presented the statistical
13	treatment of the models that were presented. The
14	future work that we're going to do is conduct tests
15	on complex morphology cracks and develop predictive
16	models for leak and rupture pressure.
17	CHAIRMAN WALLIS: There's no evidence of
18	erosion of these walls? I mean there's pretty high
19	velocity coming out there, isn't it? And water jets
20	do erode nozzles pretty effectively.
21	You try to make a high pressure water
22	jet, you've got to make it out of pretty hard and
23	robust material otherwise it disappears after
24	awhile.
25	MR. DAVIS: We did something similar
I	

(202) 234-4433

	76
1	where we looked at the jets impacting adjacent
2	tubes.
3	CHAIRMAN WALLIS: And it depends how
4	clean the water is. If you have small particles in
5	this water you can erode that the wall.
6	VICE CHAIRMAN SHACK: We see no signs of
7	that in these jet tests. I mean when you look at
8	the crack, you know, it's clearly a very fine type
9	extension going out.
10	It's kind of a, you know, it's a low
11	amplitude. You know, it's since you've
12	eliminated stress corrosion as the mechanism you're
13	really forced to conclude it's a low amplitude
14	fatigue crack growth kind of thing that leaves you
15	with very tight cracks, no evidence of any kind of
16	the rounding that one would expect to see in an
17	erosion type situation.
18	What, you know, what we haven't
19	discussed here is okay, you get this jet driven
20	crack growth. Obviously you don't get jet driven
21	crack growth at 150 gallons per day.
22	That doesn't give you much of a jet. So
23	the thresholds for this kind of behavior, you know,
24	between the regulatory limits that you place on
25	leakage and the kind of leaks that produce this jet
I	I

(202) 234-4433

	77
1	drive crack growth are difficult to understand.
2	CHAIRMAN WALLIS: If you have a shape-
3	edge orifice model for your flow, but shape-edge
4	orifices are the ones that I'm familiar with that
5	erode very that sharp edge doesn't last you very
6	long.
7	VICE CHAIRMAN SHACK: You know, the long
8	in the operation of equipment, you know, it may
9	happen relatively rapidly. In the long that we're
10	worried about, you know, we don't see any effect.
11	Now what we do need to understand, as
12	Jim mentioned, you know, there's time-dependent leak
13	growth in addition to this fatigue driven growth,
14	that we really do see this notion that ligaments
15	fail under creep or some kind of time-dependent
16	deformation cracks open up, and to understand this
17	whole scale over which we could go from a low leak
18	rate to this, you know, once we get to this jet
19	drive crack growth, you know, the jig is up.
20	You know, this all happens very quickly.
21	But to understand the thresholds for that growth are
22	sort of the problem we have at the moment. And you
23	can't do that with an EDM notch because that's, you
24	know, a three millimeter EDM notch gives you a far
25	greater jet than a 3 millimeter crack would.
I	I

(202) 234-4433

	78
1	And so using our EDM notches is okay to
2	demonstrate phenomena and to kind of sort things
3	out, but it doesn't really give you quantitative
4	results that you can use.
5	MEMBER ROSEN: So what I'm taking away
6	from that discussion is that the typical operational
7	behavior that you see of a crack is that it tends to
8	the leak rate tends to increase gradually, and
9	that you're saying that that is not erosion of the
10	crack, it's typically crack growth that's causing
11	that.
12	VICE CHAIRMAN SHACK: It could be a
13	number of things. I mean it could be crack growth
14	in the sense of stress corrosion crack growth, which
15	proceeds, you know, at eight millimeters per year,
16	you know.
17	That's that kind of a rate. It could
18	them begin to open up and ligaments fail by creep
19	which gives you increases in crack growth rate that
20	take place over days.
21	And eventually that could lead to this
22	jet driven crack growth which gives you crack growth
23	rates on the order of a millimeter per hour.
24	MEMBER ROSEN: Well, yes. Plants don't
25	monitor that. That's just the day it cracked.
ļ	I

(202) 234-4433

	79
1	VICE CHAIRMAN SHACK: Right, but it does
2	sort of suggest that the margin we thought we had is
3	smaller than it really was, that is you know, you're
4	always computing well, you know, 150 gallons per day
5	has to be a crack less than if it's going to grow
6	to failure by stress corrosion, you know, it gives
7	me essentially a year's worth of growth or more, you
8	know.
9	But in fact I'm going to get to say, 6
10	millimeters, and you know, the game is going to be
11	over. And I'm not sure that it's so inconsistent,
12	you know, what always surprises me is how quickly
13	steam generator tube ruptures develop in the field,
14	that is that, you know, in theory I'm a leak-
15	before-break kind of guy.
16	You should never get a rupture, you
17	know. I should if I go from 150 gallons a day I
18	should see impending leak rate increases that give
19	me plenty of warning before I ever get to rupture.
20	Well we get ruptures. And, you know
21	CHAIRMAN WALLIS: Is this because of the
22	liquid interaction with the
23	VICE CHAIRMAN SHACK: Well, I'm not sure
24	why.
25	CHAIRMAN WALLIS: It seems to be.
	I

(202) 234-4433

	80
1	VICE CHAIRMAN SHACK: But things happen
2	much more quickly now you can either argue that,
3	you know, the growth and the degradation is
4	occurring and you get a sudden pop-through.
5	But this to me provides another
6	mechanism for how you go from relatively innocuous
7	leak rates to rupture in timeframes that seem very
8	short compared to our sort of classical leak-before-
9	break arguments based on SCC crack growth rates.
10	So that, again, at 150 gallons per day
11	it's not a problem, it's just that your margin
12	between the 150 gallons and rupture, I don't think,
13	is as large as you thought it was.
14	That's my takeaway from this situation.
15	Now exactly how big that margin is we don't
16	understand very well, but it's a lot smaller than
17	you think it is if you're basing it on a kind of a
18	stress corrosion crack growth picture.
19	CHAIRMAN WALLIS: You have flow, but you
20	have rapid decrease in pressure near the hole, so
21	you're actually imposing a stress gradient near that
22	hole just because of the flow itself, no
23	fluctuations at all.
24	That's in your that appears in your
25	model too, does it?
	I

(202) 234-4433

	81
1	VICE CHAIRMAN SHACK: No, it doesn't.
2	CHAIRMAN WALLIS: The fluid, if you've
3	got a sharp orifice, is going from 3,000 psi to
4	nothing in that tiny little length
5	VICE CHAIRMAN SHACK: Yes, but
6	CHAIRMAN WALLIS: which is imposed on
7	the wall
8	VICE CHAIRMAN SHACK: But for fatigue,
9	you know, I don't the 3,000 to nothing, you know,
10	that doesn't grow anything by fatigue, you know.
11	What I need
12	CHAIRMAN WALLIS: No, no, no. But it's
13	an imposed stress. It's a steady stress.
14	VICE CHAIRMAN SHACK: It's an imposed
15	stress.
16	CHAIRMAN WALLIS: Yes, a steady stress
17	field.
18	VICE CHAIRMAN SHACK: But you know, what
19	I need to account for is the fact that this can
20	fluctuate at a rapid rate at some unknown amplitude.
21	MEMBER POWERS: Bill, lithium niobate
22	detectors won't do that for you?
23	VICE CHAIRMAN SHACK: Pardon me?
24	MEMBER POWERS: Lithium niobate kid of
25	piezo electric detectors won't do that for you?
I	1

```
(202) 234-4433
```

	82
1	VICE CHAIRMAN SHACK: Oh, they probably
2	will. We're sort of at this point, you know, we had
3	a number of questions. One, was it fatigue drive,
4	jet driven, you know.
5	And we think we settled that we
6	settled that for the single phase room-temperature
7	condition. Then the next question was is this an
8	artifact of a room-temperature test or does it
9	really exist under the more prototypical conditions.
10	We think our last test has settled that
11	issue. Now it's time to go back and sort of think
12	about
13	MEMBER POWERS: Instrumenting
14	VICE CHAIRMAN SHACK: Well, and we have
15	to come up with tests that are more prototypical,
16	that is we EDM notches won't tell you I mean
17	we could do EDM notches to study frequency effects,
18	but I think we really need to get, you know, if
19	we're going to look at threshold crack sizes for
20	which this takes over we need geometries that give
21	us prototypical leak rates for lengths.
22	And EDM notches don't do that. They
23	give us far too much leak rate for a given length.
24	MEMBER POWERS: I understand.
25	VICE CHAIRMAN SHACK: So they're very
I	

(202) 234-4433

	83
1	conservative. And so we need to essentially do this
2	with cracks, either fatigue cracks or growth stress
3	corrosion cracks. And that's something that
4	MR. DAVIS: That's something that we've
5	been discussing a lot.
6	VICE CHAIRMAN SHACK: We're discussing
7	at the moment.
8	MR. DAVIS: On how to produce the
9	cracks.
10	MEMBER POWERS: I understand what the
11	situation is.
12	MR. DAVIS: Yes, we talk about putting -
13	- drilling a very small hole, and then use a 2 point
14	or three point bending. But then you're got the
15	hole there and that you don't really want.
16	So we're looking at other options.
17	Maybe a surface scratch and then produce a fatigue
18	crack. But we haven't decided yet. Or we could do
19	the room-temperature stress corrosion cracks.
20	CHAIRMAN WALLIS: We have to speed up
21	now.
22	MR. DAVIS: The other area we're working
23	on is using other shapes than the rectangular crack
24	method to model the cracks. And that might be like
25	a trapezoidal crack or something like that.
I	I

(202) 234-4433

	84
1	And then we're as we develop and
2	improve these models we're going to incorporate
3	those into the CANTIA code as well. That's all I
4	was planning on presenting.
5	CHAIRMAN WALLIS: That's what you're
6	planning? I thought you were going to present the
7	rest of it.
8	MR. DAVIS: I can present it if you'd
9	like. Or
10	MEMBER POWERS: We're only covering
11	really Task 3.
12	MR. DAVIS: Task 3 is all you asked to
13	cover.
14	CHAIRMAN WALLIS: You planned it very
15	well, I'm sorry. I thought you were going to have
16	another ten slides or so.
17	MR. DAVIS: Well I put those in
18	CHAIRMAN WALLIS: Just in case.
19	MR. DAVIS: just in case there were
20	no questions.
21	MEMBER POWERS: In the embarrassing case
22	of no questions. Are there any other questions for
23	the speaker?
24	MEMBER SIEBER: I'm curious about one
25	thing. You know, they have a tech spec on it of 150
I	I

```
(202) 234-4433
```

	85
1	gallons a day, and it seems to me that if you had a
2	single tube with a crack in it that was leaking 150
3	gallons a day is sort of a meaningless number as far
4	as using it as a way to predict that that tube is
5	going to fail.
6	You can measure down to a couple of
7	gallons a day using radiological techniques, and I
8	wonder why that number is so high. Is the
9	presumption that you've got 50 tubes that are
10	leaking?
11	You know, what is the assumptions behind
12	that number?
13	VICE CHAIRMAN SHACK: Well I think if
14	you look if you took the conservative assumption
15	that it was all coming from a single crack
16	MEMBER SIEBER: Yes.
17	VICE CHAIRMAN SHACK: but it was a
18	stress corrosion crack, that would give you a large
19	margin between I mean that's, you know the
20	intent was to make it quite conservative.
21	And based on a single crack, which is a
22	conservative assumption itself, and a stress
23	corrosion crack growth rate, there is a quite large
24	margin between that failure and burst.
25	CHAIRMAN WALLIS: That's with 150
ļ	

(202) 234-4433

	86
1	gallons a day?
2	VICE CHAIRMAN SHACK: A hundred and 50
3	gallons a day.
4	MEMBER SIEBER: That's a lot of leakage
5	from a single tube.
6	VICE CHAIRMAN SHACK: It's a small
7	crack, you know.
8	MEMBER SIEBER: That's what I say.
9	VICE CHAIRMAN SHACK: If it's, you know,
10	a few millimeters long and it takes you roughly a 25
11	millimeter crack to fail and it's growing by stress
12	corrosion crack growth rates which are eight to ten
13	millimeters per year, you nominally have, you know,
14	a large margin to failure, which is you know, I
15	think why that was selected as a
16	CHAIRMAN WALLIS: Does fluid fluctuation
17	effect this growth rate of these other cracks, these
18	stress corrosion cracks? And once they get loaded
19	with the fluid fluctuation
20	VICE CHAIRMAN SHACK: Yes, some you
21	know, this argument would tell you that at some
22	point it's not going to grow from 3 millimeters to
23	25 millimeters by stress corrosion.
24	It's going to grow from 3 millimeters to
25	X millimeters by stress corrosion. Then it's going
ļ	I

(202) 234-4433

	87
1	to grow to 25 millimeters by
2	CHAIRMAN WALLIS: By this fatigue.
3	VICE CHAIRMAN SHACK: this mechanism.
4	MEMBER SIEBER: Right.
5	VICE CHAIRMAN SHACK: And it's going to
6	grow much faster. So if we knew what X was we'd
7	know what your true margin was for the 150 gallons
8	per day. At the moment all I would argue is that
9	it's substantially smaller than you thought it was.
10	CHAIRMAN WALLIS: That's the thing
11	that's striking to me is that if you were only doing
12	materials analysis and you did it perfectly, you
13	would miss an effect that you seem to have
14	discovered experimentally, which is that the flow
15	through the crack enhances the crack growth in a way
16	which is quite
17	MEMBER SIEBER: Dramatic.
18	CHAIRMAN WALLIS: And remarkable and
19	VICE CHAIRMAN SHACK: And what Jim
20	didn't tell you of course is that we didn't set out
21	to study that problem.
22	CHAIRMAN WALLIS: You found it, you
23	found it. I mean that's what happens.
24	VICE CHAIRMAN SHACK: We set up the test
25	we were going to do a fracture mechanics tearing
I	I

(202) 234-4433

	88
1	analysis where we would slowly grow this crack under
2	increasing pressure.
3	CHAIRMAN WALLIS: Now let me ask you
4	something.
5	VICE CHAIRMAN SHACK: It never got to a
6	steady pressure.
7	CHAIRMAN WALLIS: You have discovered a
8	mechanism for growing cracks more rapidly as a
9	result of fluid structure interaction, which the
10	experts who did the elicitation didn't know about
11	perhaps when they were making their study of
12	frequency of pipe break.
13	You've discovered a mechanism where by
14	cracks can grow more rapidly than I think was known
15	to most of those experts. Is that true?
16	VICE CHAIRMAN SHACK: You know, whether
17	it's at all applicable to a pipe
18	CHAIRMAN WALLIS: Well, the thing that
19	concerns me is that, you know, if there's always
20	this new mechanism that the experts didn't know
21	about
22	MR. MUSCARA: Joe Muscara with the
23	Research staff. I think the thing we need to
24	emphasize again is we found this phenomenon for a
25	well developed jet that we get from a notch.
I	1

(202) 234-4433

	89
1	And we're trying to get more and more
2	realistic in our testing. And then next step is to
3	see what happens with cracks. We can have very long
4	tight cracks that don't give the kinds of flows that
5	we see with the EDM notch.
6	So it would still be a nice curiosity,
7	but not really applying to real life.
8	CHAIRMAN WALLIS: We don't know.
9	MR. MUSCARA: We don't know.
10	CHAIRMAN WALLIS: It might be more
11	important for a crack, a real crack.
12	MR. MUSCARA: No, I we've done work
13	on real cracks and we have seen this magnitude of
14	the phenomenon before. What we need to establish
15	now is for a tight, long crack when do we get the
16	kind of flow that leads through the fatigue crack
17	route?
18	My personal view at this point is that's
19	a pretty long through wall crack. But we need to
20	see what happens in the testing.
21	MEMBER SIEBER: Well I think that you
22	folks are sort of getting to my point. I think that
23	when you use a number like 150 gallons a day you're
24	already in the regime where you're into rapid crack
25	growth rates now.
l	I

(202) 234-4433

	90
1	VICE CHAIRMAN SHACK: No, no, no.
2	MEMBER SIEBER: No, okay.
3	VICE CHAIRMAN SHACK: No, you know,
4	we're seeing these rapid crack growths at two
5	gallons per minute, but there is this whole problem
6	of, as I say, there's a number of time-dependent
7	phenomena that occur here that are not stress
8	corrosion crack growth.
9	MEMBER SIEBER: Yes, right.
10	VICE CHAIRMAN SHACK: You know, the old
11	models that we did never really considered the
12	possibility of creep failure, and you know, failure
13	of the ligaments increasing, you know.
14	So we get this increase in leak rate
15	initially from other mechanisms that are probably
16	more closely related to this ligament creep kind of
17	behavior.
18	Then we get this jet driven thing. And
19	I'll agree with Joe, you know, we don't all I
20	would argue is that we get this jet driven thing
21	long before we get to the 25 millimeter failure
22	under static loading kind of condition.
23	So as I say, the growth from 3
24	millimeters to 25 millimeters by stress corrosion
25	overestimates our margin. Now if it turns out that
Į	I

(202) 234-4433

	91
1	we don't see this until we get to ten millimeters
2	you may well decide you still have enough margin and
3	your, you know, your 150 gallons per day is fine.
4	All you want to do is just understand
5	your margin, I think, at this point.
б	CHAIRMAN WALLIS: But it's in the
7	direction of loosing margin.
8	VICE CHAIRMAN SHACK: You're clearly
9	loosing margin.
10	CHAIRMAN WALLIS: It's something which I
11	think you've discovered. It wasn't known before?
12	So this is the sort of thing you have to guard
13	against in asking experts when there are phenomena
14	that they don't know about.
15	MEMBER SIEBER: Okay, thanks.
16	VICE CHAIRMAN SHACK: Well I mean we've
17	looked increasing leak rates for quite awhile before
18	we, you know, we were determined that it was due
19	to time-dependent deformation and failure of
20	ligaments because that was the model that we had in
21	our head.
22	CHAIRMAN WALLIS: Right. And now you
23	have another one in your head which might also be
24	wrong. It's very interesting.
25	MEMBER SIEBER: Thank you.

	92
1	MEMBER POWERS: Any other questions?
2	Seeing none I turn it back to you, Mr. Chairman.
3	CHAIRMAN WALLIS: Being ten o'clock,
4	we're always operating on time, we will have a 15
5	minute break until 10:15.
6	(Whereupon, the above-entitled matter
7	went off the record at 10:01 a.m. and
8	went back on the record at 10:17 a.m.)
9	VICE CHAIRMAN SHACK: Let's come back
10	into session. Our next presentation is on Digital
11	Instrumentation and Control Systems Research Plan.
12	And Dr. Apostolakis will lead us through this
13	discussion.
14	MEMBER APOSTOLAKIS: Thank you, Bill.
15	The Office of Research has developed a plan, the NRC
16	Digital System Research Plan for the fiscal years
17	2005 through 2009.
18	And this is the subject of today's
19	meeting of the ACRS. But there is an unusual
20	situation here. There are memos from NRR that
21	well, there is a memo from Mr. Dyer, the Director of
22	NRR, to Mr. Paperiello, the Director of the Office
23	of Research which sends a mixed message there.
24	On the one hand he says we believe that
25	the SRP presently is adequate to provide guidance to
I	I

(202) 234-4433

	93
1	the Staff in performing safety reviews. But at the
2	same time it says we generally support an active
3	research program in this area.
4	But then there is a memorandum from the
5	Electrical Instrumentation and Controls Branch of
6	NRR that is very unusual. Essentially it looks at
7	each project, almost all the projects that are in
8	the research plan.
9	And there is a constant theme where they
10	end by saying for example, there is no aspect of
11	this project which will assist in risk assessment of
12	digital systems and therefore is not justified on a
13	risk basis.
14	There is no aspect of this project which
15	will assist in risk assessment of digital systems
16	and therefore is not justified on a risk basis.
17	Constantly they dismiss all of them, except three
18	which they feel may have some merit.
19	So here we have now the user
20	organization saying we don't need it. And I don't
21	know what to do. This is a briefing for information
22	purposes today.
23	The idea was to select particular
24	projects for more detailed review of the
25	Subcommittee meeting which is coming up in June.
ļ	I

(202) 234-4433

	94
1	Obviously it seems to me we have to have somebody
2	from that branch of NRR to explain to us their
3	position.
4	And then we expect the stuff to come
5	back to the full committee in July for a more formal
6	review of the plan. So, with these
7	MR. MAYFIELD: Dr. Apostolakis?
8	MEMBER APOSTOLAKIS: Yes?
9	MR. MAYFIELD: If I might. This is Mike
10	Mayfield. I'm the Director of Division of
11	Engineering at NRR. The memorandum from Mr. Dyer to
12	Dr. Paperiello is a draft that had not yet been
13	signed and had not as of this as of half an hour
14	ago we were cleaning up some final issues.
15	The sentiments expressed in the non-
16	concurrence memorandum from Mr. Calvo were those of
17	Mr. Calvo. And while we, the Office, will be
18	providing some recommendations and we believe
19	constructive comments that address some of the
20	technical issues raised in Mr. Calvo's memorandum,
21	the Office has comments that will be provided.
22	It's my understanding the comments that
23	will be provided in the formal memorandum for Mr.
24	Dyer to Dr. Paperiello did not reach the same
25	conclusion as the comments reflected in Mr. Calvo's

(202) 234-4433

	95
1	memorandum.
2	The technical substance, much of that
3	will be reflected in recommendations and suggestions
4	to research for their consideration in the plan.
5	But the sentiments that you were reading are not
6	reflected in the comments that are being passed at
7	the office level.
8	MEMBER APOSTOLAKIS: Okay.
9	CHAIRMAN WALLIS: Well, Mike, didn't NRR
10	ask for this work in the first place?
11	MR. MAYFIELD: There have been
12	variations on the user need memoranda and where
13	those go. The notion that's in the Dyer, at least
14	the draft Dyer to Paperiello memorandum, today we
15	believe the standard review plan is adequate for the
16	work that's in the plate today and in the relatively
17	near term.
18	However, we do recognize that there's a
19	lot of interest in new designs, some of this being
20	somewhat into the future. And as a matter of policy
21	we think that an active research program in this
22	general area is useful.
23	There are, however, recommendations and
24	some suggestions that we will be providing back, and
25	it was just unfortunate we couldn't get the
ļ	1

(202) 234-4433

	96
1	memorandum finally signed.
2	CHAIRMAN WALLIS: So this isn't in
3	response to a user need memo, this plan that we see?
4	MR. MAYFIELD: Not the whole plan, no
5	sir, which I am assuming that Research will explain
6	how that fits. But I did since Dr. Apostolakis had
7	this information.
8	MEMBER APOSTOLAKIS: So I was not
9	supposed to
10	MR. MAYFIELD: It's fine. I mean it's
11	where it is. It's just the memorandum from Mr. Dyer
12	to Dr. Paperiello has not been signed
13	MEMBER APOSTOLAKIS: Okay.
14	MR. MAYFIELD: or hadn't been, simply
15	just getting
16	MEMBER APOSTOLAKIS: But it was much
17	softer than the actual comments from
18	MR. MAYFIELD: Yes.
19	MEMBER APOSTOLAKIS: that branch,
20	which
21	MR. MAYFIELD: Yes, sir.
22	MEMBER APOSTOLAKIS: were overboard,
23	in my view. But there's one other thing here that,
24	I don't know, it says in that memo from Mr. Calvo,
25	it is recommended that in the future Research
ļ	I

(202) 234-4433

	97
1	discuss these proposed research activities with
2	individual NRR branches and sections prior to
3	issuing their research plan.
4	I would expect that to happen. Doesn't
5	it happen?
6	MR. MAYFIELD: We will be working as we
7	go forward with and as we pass the comments from
8	Mr. Dyer back to Dr. Paperiello, we will expect to
9	have engaged with Research at the division branch
10	and section levels as we need to, to make sure
11	everyone understands the basis for the comments and
12	the recommendations and how they may or may not be
13	accommodated in the research plan.
14	And that's a dialog that we look forward
15	to having.
16	MEMBER APOSTOLAKIS: Okay.
17	MR. MAYFIELD: Okay.
18	MEMBER APOSTOLAKIS: Rich?
19	MR. BARRETT: Yes.
20	MEMBER APOSTOLAKIS: I understand you
21	will step up.
22	MR. BARRETT: Yes, just briefly. Mike
23	already said a good bit of what I was hoping to say.
24	But I do want to point out that the Instrumentation
25	and Control Research Plan is a significant
I	I

(202) 234-4433

	98
1	initiative for the Office of Research.
2	It's an area where we anticipate
3	innovation in the future within the industry. And
4	it's an area where safety and security challenges
5	can be anticipated, especially as we go into follow-
б	up licensing.
7	We have been discussing this plan with
8	NRR for sometime, and also with NMSS and NSIR. And
9	we look forward to getting feedback from all of the
10	user offices on this end, and to interacting with
11	them on an ongoing basis.
12	To support this effort, we in the past
13	year have created a new section within the
14	Engineering Research and Applications branch. And
15	we've selected Bill Kemper to be the Section Chief
16	who comes to us with considerable industry
17	experience.
18	Bill is here today in spite of the fact
19	that his daughter is graduating from college tonight
20	in Florida, so if we run a little long this morning
21	you're going to see go Bill get up and leave.
22	It's not please be aware he has good
23	reason. We also note that the ACRS has now has
24	an I&C Subcommittee. And that we think that's a
25	very important step.
ļ	I

(202) 234-4433

	99
1	We look forward to interacting with you
2	early and often, and we look forward to your input
3	on this plan.
4	MEMBER APOSTOLAKIS: After I read that
5	memo I thought maybe we had asked him to form a
6	subcommittee. Nothing is needed. This is great.
7	MR. BARRETT: I think that the way we
8	view it is that this is an area where we can
9	anticipate a great deal of need. So with that brief
10	introduction let me turn it over to Bill Kemper.
11	MR. KEMPER: Thank you, Rich. Again,
12	I'm Bill Kemper.
13	MEMBER APOSTOLAKIS: Again, I don't know
14	how I got this memo by the way, but what I do is I
15	just go back to my computer and download and print
16	it before I come here. So some
17	MR. MAYFIELD: The memorandum isn't a
18	great secret. It's part of an internal process.
19	MEMBER APOSTOLAKIS: Okay, all right.
20	MR. MAYFIELD: And
21	MEMBER APOSTOLAKIS: I just didn't know
22	and also of course when you get something on the
23	computer I don't think the signature is on it.
24	MR. MAYFIELD: We see, you know, this is
25	something where the office welcomes views, and that
l	I

(202) 234-4433

	100
1	informs
2	MEMBER APOSTOLAKIS: So it wasn't
3	anything inappropriate?
4	MR. MAYFIELD: It was nothing
5	inappropriate, and the information will inform Mr.
6	Dyer,
7	MEMBER APOSTOLAKIS: Okay.
8	MR. MAYFIELD: as he moves forward.
9	MEMBER APOSTOLAKIS: Thank you.
10	MR. MAYFIELD: Thank you.
11	MEMBER APOSTOLAKIS: Please
12	MR. KEMPER: Again, thank you.
13	MEMBER APOSTOLAKIS: Who me?
14	MR. KEMPER: Closer to me? Okay, can
15	you hear now? Well again, I'm Bill Kemper. Thanks
16	for having us and it's nice to meet you all. I am
17	relatively new to the Agency, as Rich eluded to.
18	Most of my experience has been in the
19	nuclear power industry. I have worked at three
20	different utilities in three different power plants
21	with a lot of experience in operations and also in
22	instrumentation and control engineering from a
23	commercial standpoint.
24	This committee has reviewed the previous
25	research plan, I believe in 2001, and that covered
I	I

(202) 234-4433

	101
1	from 2001 to 2004. We're here to present the draft
2	Digital Safety Digital System Research Plan which
3	covers the next five years basically, up through
4	2009.
5	Some of the projects we discuss are
6	carryover items from the previous plan so you may be
7	familiar with them. And I know that we've been
8	before this committee on various occasions talking
9	about selected projects, but there's also many new
10	projects that we're going to discuss as well.
11	This briefing really is intended to
12	provide the Committee with the information needed to
13	determine what further interactions are needed from
14	us with you all regarding individual programs and
15	projects.
16	Also we have a lot of material to cover,
17	you'll see when Mike gets into his presentation, and
18	a relatively short time to do it, so we're going to
19	try our very best to stay on schedule.
20	And so really with that, I'd like to
21	introduce Mike Waterman. He's a Senior I&C Engineer
22	in our section. He's going to provide the overview.
23	MR. WATERMAN: Good morning. My name is
24	Mike Waterman. As Bill told you, I work for him in
25	the instrumentation and control section. I started
	I

(202) 234-4433

	102
1	to work for the NRC in 1990, and for the first 14
2	years I was in what is now the Instrumentation and
3	Control Section of the Electrical and
4	Instrumentation Controls branch in NRR.
5	During that period of time I reviewed
6	quite a few safety systems. Approximately 20 of
7	those have been digital safety systems ranging in
8	complexity from systems as such simple as aux
9	feedwater systems, load sequencers, up through all
10	of the oscillation power range monitoring systems
11	used in BWRs today.
12	I also reviewed the Teleperm XS, so I
13	came to the Office of Research with kind of a
14	regulator perspective on the things that I thought I
15	needed to get my job done as a regulator.
16	For the past ten years I've been on two
17	working groups, IEEE working groups, the IEEE 10-12
18	Verification and Validation working group, and the
19	IEEE 7-432 working group.
20	I was secretary on that group. In
21	addition to that, in the past year by invitation I
22	served as a member of the management board of the
23	IEEE Software and Systems Engineering Standards
24	Committee.
25	That management board oversees the
I	I

(202) 234-4433

103 1 development of all software and systems engineering 2 standards for IEEE. So with no further ado, that's 3 just some of my background, I'd like to get into the presentation first with an overview that the 4 5 research plan as we wrote it provides a flexible, adaptable framework for identifying NRR, NMSS, and 6 7 NSIR research initiatives. The original research plan, the 2001 to 8 2004 plan simply addressed the NRR research 9 initiatives. We felt that for safety related 10 systems we should write a plan that also supported 11 12 the other offices. The research plan is oriented toward 13 14 providing a more consistent process for regulating 15 nuclear applications. My perspective as a regulator was that I was getting a lot of technical guidance 16 17 but sometimes I wasn't getting a lot of regulatory based acceptance criteria. 18 19 So when our -- so in the process of 20 writing this plan we decided that what we would do 21 is expand the plan's responsibilities such that in 22 addition to regulatory guidance we would also 23 develop a regulatory based acceptance criteria that 24 we're objective, that a person can say either yes or 25 no on the acceptance criteria.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	Additionally, sometimes we needed
2	assessment tools and methodologies that I did not
3	have available to me as a regulator. I felt that
4	including, acquiring if at all possible instead of
5	developing assessment tolls to help the regulator
б	evaluate the licensee submittals against the
7	regulatory based acceptance criteria consistent with
8	the technical guidance.
9	CHAIRMAN WALLIS: Can I ask, are these -
10	- are objective acceptance criteria and assessment
11	tools that things that the author of this memo
12	thinks are not needed?
13	MR. WATERMAN: Yes, I suspect
14	CHAIRMAN WALLIS: It seems to me they're
15	very desirable things to have.
16	MEMBER APOSTOLAKIS: No, but the point
17	is that maybe it's also a matter of language. I
18	mean when you say more consistent processes, you're
19	implying the current processes are not consistent.
20	And the guy who's implementing them may
21	get offended by that. You're saying that you're
22	going to have more objective acceptance criteria and
23	the guy who's doing it now thinks that his criteria
24	are objective.
25	So is it a matter of communication,
	1

(202) 234-4433

	105
1	really?
2	MR. WATERMAN: Well, as I
3	MEMBER APOSTOLAKIS: You're cutting them
4	off?
5	MR. WATERMAN: Well, sir, as I recall
6	the phrase was that the standard review plan had
7	acceptance criteria.
8	MEMBER APOSTOLAKIS: Yes.
9	MR. WATERMAN: It doesn't mean it's all
10	objective. Some of the acceptance criteria could be
11	subjective. For example, take Branch Technical
12	Position HICB-14 on software quality assurance.
13	I went through that Branch technical
14	position, identified something like 183 different
15	attributes with associated acceptance criteria.
16	About half of those acceptance criteria for those
17	attributes were subjective.
18	For example, I just happened to have the
19	report here on style. Where you're supposed to
20	check the style you're supposed to check the style
21	against this NUREG-6463 which is review guidelines
22	for software languages in nuclear power plant safety
23	systems.
24	That's one acceptance criteria, right?
25	Make sure that the style is in conformance with this
	I

(202) 234-4433

	106
1	but there was no way to really assess that. It's
2	fairly subjective, do you use the book, what parts
3	of the book do you use, etcetera.
4	I consider that to be kind of a
5	subjective acceptance criteria about what parts of
6	the book would go into particular review. And part
7	of that is the way it's structures right now in my
8	experience was that depending upon the impressions
9	of the person doing the review you could come out
10	with different results of the review simply because
11	some of the acceptance criteria were not objective
12	enough.
13	And it seemed to me that when a licensee
14	has somebody show up at the site, it shouldn't
15	really matter which regulator shows up at the site,
16	or which regulator reviews their products, the
17	results should always be the same.
18	The licensee should be able to expect a
19	consistent review process. And what I found was
20	that even with one person doing all of the reviews,
21	the process wasn't always consistent because a lot
22	of times I just didn't have assessment tools or
23	detailed enough methodologies to keep myself
24	consistent, especially when you think that over 20
25	over 14 years I reviewed only 20 projects, so it
I	1

(202) 234-4433

	107
1	wasn't like I was going from project to project to
2	project doing reviews.
3	I had other duties in between so
4	consequently sometimes I lose the focus a little
5	bit. You know, come into the next review and I'd
6	have new anecdotal evidence to think about
7	reviewing.
8	So I was sort of frustrated as a
9	regulator by the fact that I did not have all of the
10	objective acceptance criteria I thought I needed to
11	be either justified putting my thumb down or putting
12	my thumb up and saying this system is safe enough.
13	I reviewed a lot of systems. I approved
14	those systems on the basis of the information I had
15	available to me at the time, which was mainly I
16	reviewed for quality.
17	And if the quality was high, and I did a
18	couple thread audits to look at a couple safety
19	functions and if those were okay, then I inferred
20	the safety of the system from the quality of the
21	development process.
22	Well it seems to me that I need
23	something more than just quality to acceptance
24	criteria when I do that. So that's where I'm coming
25	from as formal regulator.
I	1

(202) 234-4433

	108
1	And I came over to research with the
2	intent, really, of trying to improve that regulatory
3	process to make it easier for the next regulator to
4	come along to do his job.
5	Additionally, we don't have any formal
б	training right now for bringing along new staff.
7	When I was asked to train a new staff person my
8	training involved taking that person with me on a
9	software review at a licensee site and giving him on
10	the job training while I was trying to do reviews.
11	It seemed to me that on the job training
12	is really not the way we want to go. We want a
13	systematic training process where when we bring in
14	new staff they're actually trained in a consistent
15	to review things in a consistent manner.
16	So I'm on a soap box now and I'm getting
17	way off of the review right here. I think we really
18	need to move on. I would like to say that in
19	addition to their assessment tools and
20	methodologies, I think we need to develop review
21	procedures, and in some cases inspection procedures,
22	so that we can codify exactly how a review is to be
23	conducted.
24	And then also in the play you'll notice
25	that we say we should develop curricula for each one

(202) 234-4433

	109
1	of these projects, not a onetime training shot, but
2	an actual training program so that when people come
3	in as a regulator they can go through that training
4	program and understand the technical guidance,
5	understand what the objective acceptance criteria
6	mean, and know how to use the tools.
7	So with that in mind I just want to say
8	the plan is in draft mode right now. I expect it to
9	change. There's things in there I can't believe I
10	wrote to tell you the truth.
11	And those things will come out. And I
12	really look forward to addressing all of the
13	comments, whether they be on a non-concurrence or
14	whatever to make this plan a better plan.
15	And obviously you're an important part
16	of that.
17	MEMBER ROSEN: It seems to me your
18	training program should be based on a task analysis,
19	what you expect the person to do, just as we do task
20	analysis for operators or engineers in the industry.
21	It seems like you have the same, start
22	by figuring out what it is you want them to do, and
23	then proceed from there to a program design.
24	MR. WATERMAN: Yes, sir. That's a good
25	point. I've got a note here. I'll be sure to
I	I

(202) 234-4433

	110
1	incorporate that.
2	MEMBER APOSTOLAKIS: All right, let's
3	move on to three.
4	MR. WATERMAN: So what's the current
5	situation? The issues facing NRC is that licensees
6	are replacing, I've got up here analog systems with
7	digital systems.
8	Well hey, we must be in the second
9	generation because they're now starting to replace
10	digital systems with digital systems. Take the core
11	protection calculators at Palo Verde that's just
12	gone in.
13	And licensing these digital systems
14	presents some challenges to the NRC because of the
15	increased complexity and the increasing complexity
16	because we're seeing larger systems coming down the
17	pipe.
18	There are rapid changes in the digital
19	technology, and these may introduce new failure
20	modes. So we believe that the licensing processes,
21	while they've been serving their function, they
22	ought to be kept current.
23	The standard review plan, latest
24	revision 1997. A lot of things have changed since
25	1997. So we believe that we need to keep updating
Į	1

(202) 234-4433

	111
1	that standard review plan for the new issues.
2	We want to go to a risk-informed,
3	performance-based safety assessment process for
4	licensing digital systems, 1997 we weren't talking
5	risk informed, I believe.
6	MEMBER APOSTOLAKIS: Now this is an
7	important slide, I think, which in my mind should be
8	expanded. And in general, this committee in the past
9	when we were reviewing research plans, most notably
10	the Human Performance Research Plan, we asked two
11	questions.
12	What is the current situation? Where
13	are we now? You're addressing some of it here, but
14	maybe we should have a little bit more detail maybe
15	at the Subcommittee meeting.
16	And were to we want to be say three,
17	five years from now? I think that would be a good
18	guidance, and also a nice framework within each of
19	the projects can be evaluated.
20	And, you know, there may be specific
21	issues, and say, you know, the SRP now has this
22	deficiency, it was developed at some other time, and
23	now we have new information, you know, and this is
24	what we want to do.
25	And I, myself, am also all for expanding
I	I

(202) 234-4433

	112
1	our state of knowledge and thinking about things. I
2	mean we don't have to have a specific tool in mind,
3	but we should not meet that this particular project
4	will seek to, you know, broaden our horizons or
5	whatever.
6	I think this is very important for we
7	found it very important in the past for research
8	programs. So I would encourage you, maybe by the
9	Subcommittee time to think a little more about this
10	and expand it a little bit. And then we'll take it
11	from there.
12	MR. KEMPER: We do have a specific
13	section in here we're going to talk about in some
14	detail about the risk aspect of this, so hopefully
15	we can answer some of that
16	MEMBER APOSTOLAKIS: Yes
17	MR. KEMPER: as we go through.
18	MEMBER APOSTOLAKIS: Now another thing I
19	want to say, and the last one, risk-informed
20	performance-based should be developed. I would say
21	that your research really should explore whether it
22	can be developed because there are situations right
23	now where we are not sure, like safety culture is
24	one.
25	But this can be in a PRA in the
ļ	I

(202) 234-4433

	113
1	foreseeable future. And maybe this thing, the
2	digital I&C, I don't know, fundamentally it's
3	requirements are specification errors, right, which
4	are really in the broader class of design errors.
5	And nobody knows how to bring these
6	things into a PRA. Design errors in hardware are
7	not in the PRA, yes or no. The answer is no.
8	CHAIRMAN WALLIS: Well, I was just
9	wondering, I have no idea how reliable digital stuff
10	is going to be compared with pipes and pumps.
11	MEMBER APOSTOLAKIS: That's true, that's
12	true. But we should
13	CHAIRMAN WALLIS: Or people.
14	MEMBER APOSTOLAKIS: I mean I think the
15	
16	MEMBER POWERS: I know relative to
17	people.
18	CHAIRMAN WALLIS: All right.
19	MEMBER APOSTOLAKIS: The last one is
20	stronger really than the current state of the art
21	allows I mean you can't really claim I will
22	spend, you know, five million dollars and two years
23	from now I'll have digital I&C in the PRA because
24	there are fundamental questions there that need to
25	be addressed.

(202) 234-4433

	114
1	I'm not saying don't to it, I'm just
2	saying change the words.
3	MEMBER BONACA: One question I have. I
4	would like to just, you know, I always here about
5	increased complexity. Do you view the complexity as
6	necessary or it just as an offspring of the
7	capability of the digital system to give you a lot
8	of more information so you can use it for
9	everything?
10	I mean we have seen what's happening in
11	the automotive industry where there are some cars
12	with such complex digital systems, not necessarily
13	important to run the car, just simply they give you
14	so many options, and then they don't run.
15	They are even, you know, the taking
16	them back. Is it a similar situation, or is the
17	complexity necessary?
18	MR. WATERMAN: Well, yes, I think it's a
19	little bit of both, Dr. Bonaca. First, the systems
20	are getting bigger. I think Oconee has come in,
21	Paul Loeser is back there.
22	He's lead reviewer on the Oconee system.
23	That's a full reactor protection system, engineered
24	safety feature system changeout. Much more
25	complexity involved in that system.
ļ	

(202) 234-4433

	115
1	From the other perspective, part of the
2	reason digital systems are being used is because
3	they do provide additional capabilities, such as
4	self-testing, allowing you to monitor processes more
5	closely, voting logic and things like that.
6	So it's a little bit of both really.
7	You know, it's just something we're going to have to
8	face in the near future here. With regard to your
9	comment, Dr. Apostolakis, my original draft which my
10	boss would not allow me to bring in here slides,
11	it had 122 slide in them so they wouldn't allow me
12	to bring that in here, so now we're down to 29. So
13	we do have a lot more detail
14	MEMBER APOSTOLAKIS: At the Subcommittee
15	you can bring 200 slides.
16	MR. WATERMAN: Thank you.
17	MEMBER POWERS: You'll only use 25 of
18	them but you can bring 200.
19	MEMBER APOSTOLAKIS: One other thing
20	that is of general interest and just occurred to me,
21	because we were discussing it yesterday I think it
22	was, it seems to me and in fact yesterday in that
23	context we said that belongs to the digital I&C
24	subcommittee.
25	What is the increasing use of digital
I	

(202) 234-4433

	116
1	I&C doing to operator performance? Okay, somehow
2	this has to be addressed by somebody. Okay. Are
3	they bored to death or are they doing something
4	else?
5	You know, because okay that's enough,
6	let's move on.
7	MR. WATERMAN: The research focus in the
8	plan is structured to develop better methods and to
9	understand new technologies. First we know we need
10	to consider going to risk-informed.
11	For example, by looking at risk
12	assessment capabilities we want it to be more
13	performance based. And for that we'd like to take a
14	look at some methodologies for doing dependability
15	assessments.
16	And we want it to be objective and
17	repeatable, which is sort of my area.
18	CHAIRMAN WALLIS: It's not just
19	dependability, it's whatever the measures of
20	performance need to be.
21	MR. WATERMAN: Yes, sir. And we want it
22	to be objective and repeatable, for example,
23	measuring the software quality with some for of a
24	methodology.
25	The focus is broad based, and it focuses
I	I

	117
1	on improving traditional review methods, not
2	replacing. All we're trying to do is augment the
3	traditional methods because there are certain
4	necessary functions that have to be carried out in
5	our traditional reviews now.
б	We do that, for looking at new
7	applications, advanced applications, and looking at
8	new issues and regulatory requirements. And we've
9	had some new issues coming up since 9-11, haven't
10	we?
11	The research plan is broken down into
12	six basic programs shown here on this slide here.
13	And I'll discuss each of these programs as we go.
14	I'm just going to give you a high-level view of the
15	various projects in these programs or the programs
16	themselves.
17	MEMBER APOSTOLAKIS: So if I look at
18	this figure now, which boxes are of immediately
19	interest to NRR?
20	MR. WATERMAN: Well, system aspects of
21	digital technology deals with a lot of things that
22	are going on right now, for example, in the
23	environmental stressors.
24	So obviously ongoing projects are
25	immediately concern, right? Now the risk assessment

(202) 234-4433

	118
1	of digital systems, we've been doing that research
2	for some time, so that's fairly high priority
3	because it's ongoing and we're trying to get to an
4	answer on that.
5	MEMBER APOSTOLAKIS: But is NRR
6	interested? Probably not. I mean right now they
7	don't have a need for that. They have to I mean
8	they have to understand the system aspects.
9	They have to say something about the
10	quality of the software, but rather it contributes
11	to risk probably is of no interest to them. That
12	doesn't mean
13	MR. WATERMAN: Well
14	MEMBER APOSTOLAKIS: it's not
15	important.
16	MR. WATERMAN: Well
17	MEMBER APOSTOLAKIS: I'm just trying to
18	understand where they're coming from.
19	MR. WATERMAN: Well the PRA branch in
20	NRR may have a different perspective on it.
21	MEMBER APOSTOLAKIS: The PRA branch may
22	have a dir perspective. That's very true.
23	MR. KEMPER: We really have not had a
24	chance to talk with NRR about this at all, so I
25	apologize, I just we really can't answer any
I	I

(202) 234-4433

	119
1	questions about NRR's perspective, if you will, in
2	terms of that memo that you read there, so
3	MEMBER APOSTOLAKIS: Okay.
4	MR. KEMPER: But as Mike said, we are
5	talking with various portions of NRR, and the risk
6	branch, particularly. Cliff Dowd, we've been in
7	communication with him, is interested in
8	participating with us on this risk aspect of this
9	project.
10	MEMBER APOSTOLAKIS: Well maybe I should
11	have put it in a different way. Not which boxes are
12	of interest to them, which boxes are relevant to
13	regulatory decisions that are being made now.
14	That's a different way, but it's more
15	accurate.
16	MR. WATERMAN: Well I think when we get
17	into the projects area, you know, we'll be able
18	to
19	MEMBER APOSTOLAKIS: Okay.
20	MR. WATERMAN: you know, maybe touch
21	on that in a little bit more detail.
22	MEMBER APOSTOLAKIS: But in the future
23	maybe we should have an answer at this level as
24	well.
25	MR. WATERMAN: For example, our advanced
	I

(202) 234-4433

	120
1	nuclear power plant
2	MR. KEMPER: I think they all do.
3	MR. WATERMAN: digital systems
4	project we're kind of on hold right now. Plans that
5	have been submitted have been differed for further
6	review.
7	Other designs are potentially being
8	submitted, so let's get into the system aspects of
9	digital technology, and we'll start right in. This
10	seven projects in this particular program and let
11	me talk about what we've done in environmental
12	stressors.
13	The environmental stressor stuff is
14	pretty much wrapping up now. We actually had three
15	subprojects in environmental stressors that dealt
16	with EMI/RFI.
17	There's one particular area on fast
18	transient response that we needed to address. And
19	we've updated Regulatory Guide 1.180 that endorses a
20	couple of different standards on that.
21	CHAIRMAN WALLIS: Isn't this a moving
22	target though, digital systems? As you get smaller
23	and smaller spacings in the memories and so on
24	MR. WATERMAN: Your IC circuit density.
25	CHAIRMAN WALLIS: and the Moore's law
I	I

(202) 234-4433

	121
1	and all that, then the breakdown that comes easier
2	from lightning strikes and so on.
3	MR. WATERMAN: Yes, sir.
4	CHAIRMAN WALLIS: What you may have okay
5	today may be no good at all next year because if you
6	update, upgrade your electronics it's more
7	susceptible to something just shorting out from
8	lightning.
9	MR. KEMPER: Well, I think what
10	CHAIRMAN WALLIS: It's going to be
11	performance-based then.
12	MR. KEMPER: Sure. But as vendors seek
13	to qualify these platforms, they know they have to
14	comply with the standards and guides that we have
15	now.
16	CHAIRMAN WALLIS: So you have to have
17	some standard tests or criteria or something.
18	MR. KEMPER: Exactly. So as they see
19	the need to upgrade those they'll invoke changes in
20	industry standards, you know, I triple E standards,
21	and therefore we'll follow that with regulatory
22	guidance.
23	MR. WATERMAN: Additionally part of this
24	guidance there is on how to harden the installation
25	more so maybe than hardening the chips is what do
I	1

(202) 234-4433

	122
1	you do for shielding, things like that.
2	For example, in the lightning we really
3	haven't had any comprehensive guidance on lightning.
4	We've got a draft guide out there now for public
5	comment DOING-1137 that looks at several standards.
б	And most of that is addressed not toward
7	so much, you know, how do you keep a micro
8	electronics safe when lightning strikes it, but how
9	you make the station absorb the lightning strike
10	without it effecting your microelectronic.
11	In the area of environmental
12	qualification we have a draft guide that's still in
13	house on DG1077 that endorses a couple of new
14	standards. IEEE 232 (2003), I think the last
15	version of that was 1983, 2003, and then there's an
16	IEC standard 60780 I think, something like that.
17	And Christine Antonesca can talk to that
18	in more detail. So we're circulating that EQ draft
19	guide right now through NRR and we've been working
20	back and forth with them to come to some resolution
21	on it.
22	I believe the Committee here has
23	addressed the IEEE standard 323 endorsement in the
24	past. I've only been in research for a year so I
25	haven't really been involved in that project.
ļ	1

(202) 234-4433

	123
1	With regard to systems communications,
2	the trend in digital safety systems, as you know, it
3	toward networked intrasystem architectures using
4	dedicated communication.
5	MEMBER APOSTOLAKIS: Is that also in the
б	nuclear industry?
7	MR. WATERMAN: Yes, sir. If you take a
8	look at the Teleperm XS the safety systems they're
9	anticipating developing out of that are all, you
10	know, internally networked, not networked to the
11	outside word, but it's a network where you have two
12	by four voters in every channel sharing information
13	between channels.
14	You have micro processors that are
15	dedicated to communicating data back and forth.
16	MEMBER APOSTOLAKIS: Now when you say
17	intrasystem, what do you mean?
18	MR. WATERMAN: Now within our
19	philosophy with digital safety systems is if there
20	is a network that network cannot be interfaced with
21	non-safety networks in such a way that a non-safety
22	network could adversely affect the safety network.
23	MEMBER APOSTOLAKIS: But all the safety
24	related systems will belong to the network?
25	MR. KEMPER: Well, you know, I don't
I	I

(202) 234-4433

	124
1	know.
2	MEMBER APOSTOLAKIS: Is there separation
3	between the safety systems?
4	MR. WATERMAN: I beg your pardon?
5	MEMBER APOSTOLAKIS: The digital.
6	MR. KEMPER: There a common data
7	acquisition, you know, if you will, protocol between
8	the information busses, if you will. Many of the
9	safety systems draw information from the same
10	sensors out in the plant, for example.
11	So that's the type of what we're talking
12	about as far as the intrasystem architecture so it's
13	important that we understand these things and make
14	sure that the communication protocols are
15	established correctly so that, you know, problems
16	won't result inadvertently.
17	MR. WATERMAN: And I use the word
18	intrasystem because the NRC is very sensitive to
19	having safety related networks connected to non-
20	safety related networks.
21	MEMBER APOSTOLAKIS: That's a no-no, I
22	understand.
23	MR. WATERMAN: Absolutely.
24	MEMBER APOSTOLAKIS: That's fine.
25	MR. WATERMAN: But within the network

	125
1	itself it's all safety related. There are certain
2	issues that need to be addressed. For example, what
3	are the safety related aspects of proprietary
4	communication protocol?
5	What things should a protocol do that
6	are safe and what things ought a protocol not do
7	that could adversely affect safety? To tell you the
8	truth, we really don't review protocol right now.
9	MEMBER APOSTOLAKIS: Wait, if it's
10	proprietary, you mean to the company that developed
11	it, right?
12	MR. WATERMAN: It may be to the company
13	that developed it. I believe that Siemens Teleperm
14	XS, that's the one I have most experience with,
15	developed their own communication protocols.
16	So while they're proprietary to the
17	outside world, we can still for the most part get in
18	and review the protocols.
19	MEMBER APOSTOLAKIS: Yes.
20	MR. WATERMAN: But you have to ask
21	what's the acceptance criteria for a good protocol.
22	I don't know. To tell you the truth I really don't
23	know.
24	I guess I'm not smart enough to know
25	that. So we need to provide the Staff with some
	I

(202) 234-4433

126 1 guidance so that when they're reviewing a communication system that's safety related they 2 understand what they have to look at when they're 3 4 looking at a protocol. 5 MEMBER ROSEN: Let me pursue this separation idea for a -- if you have a process 6 7 parameter in the plant that's used for both safety 8 related purposes and non-safety related purposes, 9 can you use the same sensor or must you have two 10 separate sensors? 11 MR. WATERMAN: You can use the same 12 sensor, but you have to isolate the non-safety component of that signal from the safety component. 13 14 So generally what you do, you have sensor that comes 15 down. The sensor transmits off to the plant 16 17 computer, which is a non-safety system, right? And that transmission link from the sensor to the plant 18 19 computer is an isolated link. 20 Perhaps it's fiber optic, or photo 21 isolator or something like that. And another 22 connection goes to your safety system such that 23 you're non-safety system can't feed back in and 24 corrupt your safety system. 25 But you can use the same processor. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	I think that's fairly common.
2	MR. KEMPER: Commonly done, right? TF
3	control, rod control systems, they are often the
4	same temperature indications, for example, as the
5	RPS does.
6	MR. WATERMAN: Where we were really
7	concerned with isolation on safety systems is I
8	know the plant computer is non-safety and it's
9	receiving a lot of inputs.
10	And if you don't have one-way
11	communication to that plant computer that there's
12	a potential that some by some means the plant
13	computer could corrupt your safety system.
14	Obviously we have two-way communication
15	with safety systems with sort of non-safety systems
16	with you put up a maintenance and test panel to go
17	in and do an update to your safety system.
18	And then the maintenance and test panel
19	is disconnected. And that's those are some
20	security concerns there we're also going to address.
21	MEMBER APOSTOLAKIS: Okay.
22	MR. WATERMAN: With regard to COTS
23	digital safety systems, we have already in house a
24	ton, if you will, of guidance on how to review COTS
25	safety systems.
I	I

(202) 234-4433

	128
1	The way the industry dedicates a piece
2	of commercial off-the-shelf equipment is they use
3	one or more of a combination of four basic
4	processes. They do test and special inspections,
5	source verification, supplier surveys, or use
6	historical data.
7	But the historical data has to be used
8	in combination with one of those other processes.
9	Two of those processes are fairly qualitative when
10	you think about it, the source verification where
11	you go out and watch your equipment being made, and
12	a supplier verification which is sort of like an
13	Appendix B auditing process that a licensee or a
14	vendor would use on somebody who's not an Appendix B
15	programmer.
16	What we do when we review the COTS
17	equipment is we use the qualitative process to
18	review a qualitative result. It seems to me that
19	maybe we need some independent way of assessing, you
20	know, how well a COTS dedication was done.
21	For example, maybe by using the fault
22	injection method that's been developed for
23	estimating digital system dependability in COTS, and
24	when I say system I don't mean you know, when I
25	think of system I think of the hardware integrated
l	I

(202) 234-4433

	129
1	with the software, the hardware and the software.
2	So you got three components that make up
3	a system. And that whenever I say system just
4	try to keep that in mind. It's hardware, it's
5	software, and it's the integration of hardware and
б	software.
7	MEMBER RANSOM: I guess you include the
8	communication system or the
9	MR. WATERMAN: Well, whatever system it
10	is
11	MEMBER RANSOM: fiber optic or hardwire
12	
13	MR. WATERMAN: if it's digital it has
14	they're major components that you have to evaluate,
15	hardware alone, software alone, and how those two
16	integrate together.
17	Sometimes the integration is where all
18	the problems are.
19	MEMBER RANSOM: Yes.
20	MR. WATERMAN: Without what we're
21	looking at is a way of refining our methods for
22	reviewing COTS equipment such that we may have an
23	independent process, which I believe is what
24	we're supposed to be is reviewing things
25	independently, independent from what the licensee of
ļ	I

(202) 234-4433

	130
1	the vendor did.
2	MEMBER APOSTOLAKIS: How are we doing it
3	now?
4	MR. WATERMAN: Well, the way we do it
5	now is we go to the licensee or the vendor and we
6	take a look at their COTS dedication, we review what
7	criteria characteristics they felt that they had to
8	match up with the manufacturing process.
9	We take a look at the documentation that
10	shows what process they went through and is that
11	process consistent with an Appendix B process. Take
12	a look at the results of their special tests and
13	inspections, for example, or look at their source
14	verification and look at the scope of that and come
15	to a conclusion about whether or not they followed a
16	good process in dedicating that equipment.
17	EPRI has done a pretty good job of
18	addressing COTS. This goes back to the, as you
19	recall, the early `90s counterfeit parts issue. And
20	we've reviewed that COTS or that EPRI COTS
21	technical report and have endorsed it with a safety
22	evaluation report.
23	I believe Paul Loeser had a lot to do
24	with that. And that provides some pretty good
25	guidance, but right now what we're doing is
l	I

(202) 234-4433

	131
1	reviewing what the licensee wrote down.
2	And there's we haven't had a lot a
3	lot more independence than that. And sometimes that
4	kind of made me nervous because a lot of times the
5	licensee writes down what he wants you to see.
6	So with regard to electrical power
7	distribution systems interactions, this is actually
8	an internal research project. We're anticipating
9	supporting our division of safety analysis and
10	regulatory effectiveness.
11	What they have found is that there's
12	been a lot of nuclear power plant digital-controlled
13	power equipment that has reflected sensitivities and
14	changes to grid voltage.
15	Grid stability goes down, your voltages
16	fluctuate, and normally we would say well that's not
17	a big deal because we have uninterruptible power
18	supplies.
19	We can address that. What they have
20	found is that sometimes the uninterruptible power
21	supplies haven't responded as expected. At other
22	times the plant has been requested to try to make up
23	for the power and couldn't do it because it's
24	voltage regulators weren't set correctly.
25	At other times the voltage would
Į	I

(202) 234-4433

	132
1	fluctuate enough to drop down to the 80 percent
2	threshold level, which you know, most of you know
3	nuclear power plants.
4	Eighty percent drop in voltage is a
5	reason to trip your reactor coolant pumps. It
б	challenges your safety system. So there's been like
7	over 100 licensee event reports that have been
8	identified of grid fluctuations, of challenging
9	nuclear power plant safety systems.
10	And so we've been requested by the
11	Office of Research to go ahead and assist them in
12	the evaluation of this, and kind of come up with
13	some way of determining the effects of grid voltage
14	fluctuations on electronic equipment.
15	Now let's take a look at our voltage.
16	Our voltage and power characteristics, or voltage
17	and current characteristics inside the plant, which
18	is taking a look at the total harmonic distortion,
19	which is all the harmonics in a typical sine wave,
20	all the extra harmonics divided by the
21	characteristic wave.
22	And they usually represent that some
23	percentage of total harmonic distortion. Now when
24	you talk to most people they'll, you know, say well
25	what's your sources of total harmonic distortion.
ļ	I

(202) 234-4433

	133
1	And the obvious answer is well, power supplies,
2	motor control centers.
3	But actually any non-linear load will
4	introduce additional harmonic distortion into your
5	power and into your current and into your voltage.
6	And what's one of your big non-linear loads that are
7	coming in?
8	Digital equipment. Microelectronics are
9	all non-linear loads. Right now we've got fairly
10	simple systems with a few microprocessors involved
11	in them.
12	Well they all contribute to total
13	harmonic distortion, but the contribution isn't very
14	much right now. What happens when we bring in a
15	full-blown reactor protection system engineered
16	safety features actuation system where you may have
17	a couple hundred microprocessors and all the
18	supporting chips.
19	What is that going to do to your total
20	harmonic distortion? IEEE stated in IEEE Standard
21	519 that you ought not to get your total harmonic
22	distortion above about five percent because if you
23	do your electronics can start having adverse
24	effects.
25	You know, back to Dr. Sieber's comment

(202) 234-4433

	134
1	about the chips are getting smaller and bigger,
2	right, smaller distances between your adjacent
3	circuits.
4	And they're also getting lower voltage
5	requirements for changing memory states. It used to
6	be what, five volts was the threshold voltage for
7	changing and memory state.
8	It's down to like three or three and a
9	half volts now. What happens when total harmonic
10	distortion starts playing around with that? You can
11	start losing memory states, perhaps with an over-
12	voltage or an over-current.
13	You start getting migration between
14	adjacent circuits and things like that. So we feel
15	that that's something that's worthy of a little bit
16	more investigation with regard to safety systems.
17	MEMBER SIEBER: But that's covered by
18	the standards, right?
19	MR. WATERMAN: Well, it's covered by the
20	standards, but how it's implemented, you know, the
21	devil is in the details, you know.
22	MEMBER SIEBER: Well the specification
23	is in the standards. The question is how do you
24	test to assure yourself that the specifications are
25	being met?
l	I

(202) 234-4433

	135
1	For example, things like opening and
2	closing the circuit breakers, particularly opening
3	of them
4	MR. WATERMAN: Yes,
5	MEMBER SIEBER: which impulses on the
6	RFI and all kinds of things on your power supplies
7	that go right to the CPUs. And you can end up
8	resetting or restarting CPUs where it looses scads
9	of data during the interval when it's down, even
10	though it will recover and restore itself.
11	It can really mess up the way things are
12	being sequenced.
13	MR. WATERMAN: It certainly can. And
14	one of the areas is, you know, the conception is
15	that well if I have great power supplies I don't
16	have to worry about THD because they'll clean the
17	power up.
18	This is all stuff downstream of the
19	power supply. You got good power coming in and you
20	got your microelectronics screwing everything up.
21	So how much does it mess up?
22	What can we do to prevent that? Those
23	issues, I think, need to be addressed.
24	MEMBER SIEBER: How to you deal with
25	questions like system overloads? You know, if you
ļ	I

(202) 234-4433

	136
1	get into a fast moving plant transient where you're
2	exercising a lot of actuators and signals are
3	changing, that puts large additional computational
4	loads on the computing system which could cause it
5	to fall behind. How do you test for that?
6	MR. WATERMAN: Well I think most of the
7	computing systems anymore assume that you have a
8	certain amount of time to respond and they just
9	cyclically calculate and pick up the conditions as
10	when they come around to their next cycle to
11	calculate.
12	So it's not like an interrupt driven
13	type system that looks for something to happen and
14	then responds. It simply continues to calculate
15	should I trip, wait 50 milliseconds, should I trip,
16	wait 50 milliseconds, should I.
17	MEMBER SIEBER: So what you're saying
18	MR. WATERMAN: That type of sequence
19	there. So when a lot of things are happening in the
20	plant your design basis will tell you how fast
21	systems have to respond, and then you just do your
22	the system just continues to run. And instead of
23	calculating zero for don't trip it calculates a one
24	for trip, so it's
25	MEMBER SIEBER: So what you're saying
I	I

(202) 234-4433

	137
1	MR. WATERMAN: I think that's pretty
2	similar.
3	MEMBER SIEBER: is the computational
4	load really doesn't change.
5	MR. WATERMAN: So, not in safety
6	systems. That's been my experience with the systems
7	I reviewed is they pretty well addressed that one
8	because of that very concern.
9	You just can't interrupt processes and
10	try to jump on something right away. Just take
11	things slow and steady. You got plenty of time, as
12	you know.
13	In a control room when you get a trip
14	you got plenty of time to address it. Let's not get
15	in a hurry here, let's just do things right. That's
16	the way the systems are being developed now.
17	MEMBER SIEBER: Okay, thank you.
18	MEMBER POWERS: Could I understand
19	something philosophical a little bit in your
20	approach to defining a research program here? You
21	posed the question what's the effect of total
22	harmonic distortion on digital system components,
23	for instance, okay.
24	Isn't that enough? Can't you say you,
25	applicant, please answer this question?
I	I

(202) 234-4433

	138
1	MR. WATERMAN: Well, yes. We can but
2	after the answer to the question how do we evaluate
3	it if we don't have some kind of guidance to say
4	well is that a good answer.
5	MR. KEMPER: Yes, we feel as though it's
6	important in some of these areas to have our own
7	independent confirmatory research to validate some
8	of these issues.
9	MEMBER POWERS: So you want to be able
10	to go in and say okay, he's told me this is a great
11	system and it will do just fine, but I want to now
12	use my tool which I suspect is different from his,
13	and of course one of the natural evolutions is that
14	the applicant will quickly evolve to using your
15	tool, okay. Is that okay? I mean in
16	MR. KEMPER: Well as long as it's a
17	viable process and it satisfies our regulatory
18	concerns and criteria. I mean what we do, we're
19	public utility. So you know, if they choose to
20	follow our path, if you will, I don't see any way to
21	
22	MEMBER POWERS: But it seems to me that
23	it puts a different spin on the way you design your
24	research program. If I'm doing if I have an
25	individual tool here that nobody knows about except
I	1

(202) 234-4433

	139
1	me, and I go through and I look at the system that's
2	supposed to be great and I say yes, it's great.
3	I mean it's better than any system I've
4	ever seen before. And you just accept the
5	licensee's assessment, and the SER gets written with
6	his assessment in there.
7	If you come back and you say gee, it's
8	just not quite right. I've got some questions here.
9	You pose those questions. The licensee
10	satisfactorily answers them and you write the SER,
11	okay?
12	So you don't have to your tool
13	doesn't have to be the state of the art or anything
14	like that. I mean it just has to be adequate for
15	you to pose questions and assess the answers when
16	they come back.
17	Now if a licensee is designing his
18	system using your tool, then you suddenly have an
19	obligation to say, yes, this is as good as I
20	possibly want to be.
21	I mean it has to be maybe not next to
22	the industry state of the art, but it has to be my
23	state of the art, okay, because I've got no
24	independent way to check it because he's designed
25	based with my tool.
I	

(202) 234-4433

	140
1	It seems to me you design your research
2	programs a little differently in those two cases,
3	don't you?
4	MR. KEMPER: Yes, I agree with that, but
5	let's take, for example, fault injection. You know,
6	we're putting effort into fault injection testing as
7	a way of providing
8	MEMBER POWERS: Yes, sure. It's a great
9	example, yes.
10	MR. KEMPER: reliability, right?
11	Well there's a number of ways to do that. We're
12	going to pick one or two. It would be nice, in my
13	personal opinion, if we successful at this the
14	vendors pick up on this and they start doing their
15	own fault injection testing so therefore when they
16	make the submittals to us, now that issue has
17	already been addressed, if you will.
18	Now we may come back with our own tool
19	and independently validate that to a certain extent,
20	but this can only help promote a safer and more
21	reliable process controls industry in nuclear
22	industry by sharing this information and
23	methodology.
24	But that's kind of where I'm coming
25	from, I guess.
I	I

(202) 234-4433

	141
1	MEMBER POWERS: Sure, sure. I mean it's
2	just a question of philosophy and approach. Now let
3	me ask you just a little more on philosophy. There
4	are lots of people in this world that have the same
5	problem you do.
б	They want to see digital systems used in
7	nuclear power plants. I mean they're going to see
8	them. It's not a question they may see them, they
9	will see them.
10	What else is going on in the world in
11	this same area? I mean how does your plan compare
12	to what else is going on in the rest of the world?
13	MR. KEMPER: Well we are on selected
14	projects. We're trying to interface with NASA. The
15	train, the rail system in some cases, you know, some
16	of the testing builds off some of that work.
17	Military, so we are looking at other
18	agencies and other interests.
19	MEMBER APOSTOLAKIS: How about
20	international activities?
21	MEMBER POWERS: What I see in the agenda
22	for the next American Nuclear Society meeting,
23	simply because I just happen to look at it, is there
24	must be 20 papers from the Koreans
25	MEMBER APOSTOLAKIS: Yes.
l	I

(202) 234-4433

	142
1	MEMBER POWERS: dealing with some
2	aspect of digital systems. And they look like
3	they're universally assessment types of things. I
4	mean they come in and they do something on this
5	digital system and they get a characteristic out of
6	it.
7	I don't see anything that comes in and
8	says okay this is the characteristic and I know
9	that's good because. I mean they're just deriving a
10	number.
11	But like I say, it must be 20 papers on
12	that of some sort.
13	MR. KEMPER: Hopefully we've got some
14	more projects we're going to get into here.
15	MEMBER APOSTOLAKIS: But you are you
16	are abreast of what's happening internationally?
17	MR. KEMPER: Yes.
18	MEMBER APOSTOLAKIS: You are keeping up?
19	MR. KEMPER: Yes, we are. Yes, we
20	attend international conferences.
21	MEMBER APOSTOLAKIS: Okay.
22	MR. KEMPER: We
23	MEMBER APOSTOLAKIS: Let me tell you
24	this back to the fault injection thing. I know that
25	in other industries I mean you have to be careful
I	

```
(202) 234-4433
```

	143
1	when you say I'm going to look at what other people
2	are doing because other people don't always have the
3	perspective of a nuclear regulatory agency.
4	And we had in fact a presentation here
5	last time by a very well known professor who has
6	been practicing this for awhile. But you know,
7	coming from the nuclear perspective, you know, and
8	looking at this fault injection method and, you
9	know, they're injecting faults and this and that,
10	but they when they start using Markov models and
11	transition rates to estimate reliability from that
12	they lose me because I want to understand what the
13	failure rates mean.
14	And apparently that's not important to
15	these people, okay. So this is where you come in
16	and say yes, we're going to look at this from the
17	nuclear power perspective, and we tend to question
18	things like that.
19	When somebody says the transition rate
20	lambda from state five to state eight is this, you
21	have to ask him where did you get that from, and how
22	do you know there is a constant rate of transition.
23	This seems to me to be a very
24	significant assumption on their part. And then of
25	course, you have a nice formula in terms of those

(202) 234-4433

	144
1	failure rates, which excites people.
2	They say well now I got the reliability.
3	I don't think so. So this is where you come in and
4	evaluate these methods and question them because
5	there's a lot of stuff out there, you know.
6	Just because something has been
7	published doesn't mean that
8	MEMBER POWERS: Oh, my goodness. A
9	professor's saying something published is not
10	sainted.
11	MEMBER APOSTOLAKIS: Unless it's my
12	journal.
13	MEMBER POWERS: Oh, yes, that's right.
14	I'd forgotten that.
15	MR. WATERMAN: Moving right along now.
16	With regard to operating systems
17	MEMBER APOSTOLAKIS: Well, by the way
18	the Koreans are publishing a lot. I get lots of
19	papers on digital
20	MR. WATERMAN: Oh, yes, I mean it's
21	MEMBER APOSTOLAKIS: They are really
22	doing a lot.
23	MR. WATERMAN: It's a bunch of stuff.
24	MEMBER APOSTOLAKIS: The Korean Advanced
25	Institute for Science and Technology. Okay, great.
I	I

	145
1	So we are what, three quarters of the time?
2	MEMBER POWERS: Yes.
3	MEMBER APOSTOLAKIS: And we are only at
4	one third done with the presentation? So now you
5	appreciate why your management reduce your number of
б	slides from 120 to 29.
7	MR. WATERMAN: Hell, if I had 193 slides
8	I'd be on slide 12, wouldn't I?
9	MR. KEMPER: Well we've talked about
10	many of these issues, quite honestly, that are on
11	subsequent slides.
12	MR. WATERMAN: That would just broaden
13	it.
14	MR. KEMPER: So if you will we'll move
15	on through them quickly.
16	MEMBER APOSTOLAKIS: Yes, you can
17	actually accelerate the process.
18	MR. KEMPER: Okay, thank you.
19	MR. WATERMAN: In the past we really
20	haven't been able to assess proprietary operating
21	COTS operating system characteristics mainly because
22	we couldn't get into the code.
23	But there is another class of operating
24	systems where we have been able to review. And
25	that's typically on the platforms where the vendor
Į	I

(202) 234-4433

	146
1	of the platform, the developer of the platform has
2	developed his own, if you will, 64K kernel operating
3	system, the stripped down operating system that
4	handles just specific processes.
5	We, you know, I have difficulty
6	reviewing those systems because they're usually
7	written in machine language and I haven't had any
8	guidance that actually told me the operating system
9	ought to do these functions and ought not to do
10	theses functions.
11	So some time ago research initiated a
12	study to look at operating system characteristics,
13	and that study was sort of inconclusive and so it
14	was dropped.
15	And so was the user need requesting it.
16	But what we found it I believe we need further
17	research to identify safety critical design aspects
18	of operating systems. I think we're seeing more and
19	more kernel type operating systems coming along that
20	we can actually get into.
21	And we need to develop processes for
22	performing safety assessments of those operating
23	systems. Right now, even though we have a lot of
24	acceptance criteria in the standard review plan,
25	when it comes to operating systems it's just wow,
ļ	I

(202) 234-4433

	147
1	it's sometimes it's hard to apply.
2	Now with regard to diversity and
3	defense-in-depth, as you know, we already have
4	Branch Technical Position 19. I helped Matt write
5	that technical position back in the mid `90s.
6	And we have that's sort of a
7	deterministic approach to looking at diversity and
8	defense-in-depth. Now the nuclear power industry
9	conversely has proposed using risk insights from
10	PRAs, for example, using their leak-before-break
11	analysis to justify not putting in a diverse system,
12	or arguing that a PRA shows the probability of a
13	common mode failure is low enough that you don't
14	need to consider it in severe accidents.
15	So what we propose to do with this
16	project is actually several things. First, we want
17	to verify deterministically that existing guidance -
18	_
19	CHAIRMAN WALLIS: You mean leak-before-
20	break, you mean they show some symptom that things
21	aren't right before they completely go wrong? Is
22	that what you mean?
23	MR. WATERMAN: Well as you recall in the
24	early to mid `80s plants were required to put in jet
25	impingement barriers and pipe whip restraints on
ļ	I

(202) 234-4433

	148
1	their plant unless they could analyze their way out
2	of it.
3	The way they did that was they analyzed
4	that a small leak would grow into a large break over
5	time. The operator would have enough time to
б	respond.
7	And therefore they really didn't need to
8	put in the pipe whip restraints. So what they've
9	tried to do is to shoestring into this position off
10	of that analysis of leak-before-break.
11	And I think that was Oconee's original
12	approach. And I don't know what they're doing now.
13	Paul Loeser can speak to that. What we want to do
14	it determine whether or not the criteria in the
15	Branch Technical Position are realistically
16	conservative.
17	I mean you can have things that are
18	really conservative that nobody can live up to. We
19	want to determine whether that's realistically
20	conservative.
21	MEMBER APOSTOLAKIS: We don't have a
22	realistic
23	CHAIRMAN WALLIS: We don't have a
24	definition of realistically conservative.
25	MEMBER APOSTOLAKIS: It's something that
	I

	149
1	Agency is using now.
2	MR. WATERMAN: Right.
3	CHAIRMAN WALLIS: It's an invocation,
4	isn't it?
5	VICE CHAIRMAN SHACK: Yes.
6	MEMBER SIEBER: A chant.
7	MR. WATERMAN: Back in the mid `90s we
8	contract, I believe, Lawrence Livermore to develop a
9	NUREG/CR on how to implement diverse systems. And
10	they identified something like seven different
11	characteristics that have to be diverse.
12	And each one of those had a whole bunch
13	of bullets under them that ranked various diversity
14	aspects. For example, software languages was not
15	considered as diverse as some of the other features
16	in that category.
17	What we'd like to do and those were
18	called coping strategies. What we'd like to do is
19	take a look and see if there's on optimal mix of
20	coping strategies that licensees can actually live
21	up to.
22	Bill in his experience in the industry,
23	they've tried to apply it and said it's a fairly
24	onerous process. And it doesn't appear to be
25	anything that's really applicable.
ļ	I

(202) 234-4433

	150
1	And what we'd like to do is figure out a
2	way to make that more reasonable.
3	MEMBER APOSTOLAKIS: I'm listening to
4	you and I think it's fine what you're saying. I'm
5	just wondering though, how did you come up with
6	this? Obviously NRR did not request this, I mean
7	judging from the memo I read.
8	So did you have a group of people
9	sitting around a table and saying this sounds like a
10	good idea, or how did you decide that this is
11	something that's worth supporting as a research
12	project?
13	MR. KEMPER: Well, it seems to be a
14	it's a major industry initiative right now.
15	Basically, you know, the proliferation of digital
16	processes in the American industry is far behind the
17	foreign many of our foreign or international
18	countries.
19	Complying with diversity and defense-in-
20	depth is one of the key issues here that is the big
21	struggle, quite honestly. So based on that, since
22	it is such a difficult issue between the industry
23	and the Agency, it seemed prudent to do this
24	research in an anticipatory basis, quite frankly.
25	MEMBER APOSTOLAKIS: So has there been a
	I

(202) 234-4433

	151
1	situation where the industry and the Agency
2	disagreed on some defense-in-depth measures, or
3	MR. KEMPER: I believe that the
4	MEMBER APOSTOLAKIS: Apparently there is
5	an NUREG/CR already.
6	MR. KEMPER: Right.
7	MEMBER APOSTOLAKIS: So somebody must
8	have decided that the guidance there is not good
9	enough.
10	MR. KEMPER: Yes. Applications have
11	been submitted to the Agency for review and then
12	withdrawn based on, you know, their strategy that
13	they prescribed for complying with this versus our
14	push-back to them.
15	So it's not to say that our process is
16	wrong or bad or anything, we're just we just feel
17	as though it bears some resources to look closer at
18	this to see if there is some optimum conservatism
19	that should be applied using this process.
20	MEMBER DENNING: But I think weren't
21	you asking a process question? That's a little bit
22	different from that specific answer for this
23	particular thing.
24	And that is in putting together this
25	research program, how do you actually decide which
	I

(202) 234-4433

	152
1	of these activities are the ones to undertake? Was
2	that something that your group just got together and
3	did?
4	MR. KEMPER: Yes, for the most part,
5	that's right.
6	MEMBER DENNING: That the way you did?
7	And so you came up with a list them and you
8	prioritized them
9	MR. KEMPER: That's right.
10	MEMBER DENNING: within their groups.
11	MR. KEMPER: Right. And out intent was
12	
13	MEMBER APOSTOLAKIS: But you
14	MR. KEMPER: And our intent was to
15	engage out clients, you know, NRR, NSIR, and NMSS.
16	MEMBER APOSTOLAKIS: But you have not
17	done this yet.
18	MEMBER DENNING: But you haven't done
19	that yes.
20	MR. KEMPER: Well we have with some.
21	MEMBER APOSTOLAKIS: With some.
22	MR. KEMPER: NSIR and NMSS. We did not
23	engage anybody else.
24	MR. WATERMAN: But part of that
25	engagement is writing a draft research plan for them
ļ	1

	153
1	to review. I guess we did.
2	MEMBER APOSTOLAKIS: I would expect,
3	though, that you would interact with them before you
4	wrote anything.
5	MEMBER DENNING: Well, particularly NRR.
6	MEMBER APOSTOLAKIS: Particularly NRR,
7	yes. Then you wouldn't get this kind of reaction.
8	Anyway, oh there is I'm sorry.
9	MR. CHIRAMAL: I'm Matt Chiramal from
10	NRR. And
11	MEMBER APOSTOLAKIS: The infamous
12	branch?
13	MR. CHIRAMAL: Yes.
14	MEMBER APOSTOLAKIS: Okay.
15	MR. CHIRAMAL: The subject we were just
16	talking about is something that was reviewed by the
17	National Academy of Sciences and it was determined
18	that you had in defense-in-depth is okay.
19	MEMBER APOSTOLAKIS: You need what? I'm
20	sorry?
21	MR. CHIRAMAL: That defense-in-depth and
22	diversity is a requirement that will apply to
23	nuclear plants is a good idea.
24	MEMBER APOSTOLAKIS: No, but I'm not
25	questioning the value of defense-in-depth, I'm
I	I

(202) 234-4433

	154
1	asking why this particular project. I know that the
2	Agency has been implementing defense-in-depth and
3	diversity for awhile.
4	MR. CHIRAMAL: That's correct.
5	MEMBER APOSTOLAKIS: So but what it
6	is that this particular project I mean is there
7	something wrong with the way we're doing it, or is
8	it something that sounds like a good idea to some
9	people based on their experience, which is fine?
10	I mean we've been making decisions like
11	that for a long time.
12	MR. CHIRAMAL: That's correct.
13	MEMBER APOSTOLAKIS: There's nothing
14	wrong with that. I just want to understand.
15	MR. CHIRAMAL: Yes. And the other point
16	is that
17	MEMBER APOSTOLAKIS: Do you agree with
18	me?
19	MR. CHIRAMAL: The SRP Chapter 7 is
20	based upon IEEE $7.4-3.2$, and the new version of
21	this, 2003, came out. And mike worked on it and it
22	adapted all the requirements that we had in the SRP
23	into the standard.
24	And that's up to date already and none
25	of these subjects that you're looking at they're
I	

(202) 234-4433

	155
1	all covered by that communications qualification,
2	and all the requirements that the research is doing
3	is already covered by the new standard, which is
4	being endorsed by a researcher's going to be
5	putting out pretty soon.
6	And it includes the requirements for
7	security added to it.
8	MEMBER APOSTOLAKIS: So what you're
9	saying is that the objectives of these projects have
10	already been met by a standard that is about to be
11	approved?
12	MR. CHIRAMAL: Yes, and that's something
13	we'll discuss with research when we this is
14	something we'll discussed with research when we get
15	together on this project.
16	MEMBER APOSTOLAKIS: I assume you would.
17	Okay.
18	MR. CHIRAMAL: I'm trying to digest all
19	this, but
20	MEMBER APOSTOLAKIS: Yes, please, go
21	ahead.
22	MR. SHAFFER: Can I just say something?
23	MEMBER APOSTOLAKIS: I'm sorry.
24	CHAIRMAN WALLIS: Are we going to be
25	asked to referee this contest?
ļ	1

	156
1	MEMBER APOSTOLAKIS: I don't know.
2	MR. SHAFFER: I'm Roman Shaffer, I'm on
3	I&C section.
4	MEMBER APOSTOLAKIS: From which?
5	MR. SHAFFER: Roman Shaffer, I'm in
6	Bills section.
7	MEMBER APOSTOLAKIS: Okay.
8	MR. SHAFFER: I was involved in the
9	early stages of revising the research plan. I get
10	the impression here that maybe the Committee thinks
11	that we just sat in a room and operated in a vacuum
12	and came up with these activities.
13	We actually continued some of the
14	projects from the previous plan, and through
15	interactions with licensees and the vendors and
16	other colleagues within the Agency we same up with
17	these activities.
18	These are areas of research we think we
19	need to continue or start based on the state of the
20	industry as well as where we see them going. And
21	defense-in-depth project is one we think is
22	particularly important.
23	I mean we don't operate in a vacuum, we
24	engage various people in groups. So I just wanted
25	to make that clear.
Į	I

	157
1	MEMBER APOSTOLAKIS: I understand what
2	you're saying, but I mean this memo that we've been
3	discussing, and maybe we shouldn't, but it says
4	it actually preaches here, it says it is recommended
5	that in the future research discuss these proposed
6	research activities with individual NRR branches in
7	sections prior to answering the research plan to
8	gain a better understanding of actual regulatory
9	needs and practices?
10	Wow, that's pretty strong. And one
11	would expect that this, you know, would have
12	happened already. But anyway that's why the issues
13	are coming up today, not even stronger statements
14	in other places.
15	Let's go on, though. I think we have
16	exhausted this particular aspect.
17	MR. WATERMAN: With regard to software
18	quality assurance we have three projects identified.
19	That's assessment of software quality, digital
20	system dependability, and self-testing methods.
21	And if I can get through those fairly
22	quickly here we can still get Bill down to Florida.
23	On the assessment software project quality, NRC
24	evaluates digital systems development processes
25	manually.
	1

(202) 234-4433

	158
1	And that doesn't sound too bad until you
2	sit in a conference room with a vendor site and you
3	ask him to bring in all the documentation for his
4	system and realize that you've got about a week to
5	do thread audits across about 10,000 pages of
6	documentation, which is about what it is.
7	I usually don't call it pages I call it
8	feet, because you look at it and say it's about
9	three feet of documentation. That's about right.
10	CHAIRMAN WALLIS: We're used to that
11	experience too.
12	MR. WATERMAN: So what we're looking for
13	in this research project here is to develop a more
14	effective and through supporting process. You still
15	have to go through the documentation, believe it or
16	not, because there are interfaces in those phases
17	that only the human eye can pick up the errors on.
18	But we need some way of supporting that
19	process to come up with some more objective
20	assessments of the quality of the development
21	process.
22	And what really kind of perked up my
23	ears, to tell you the truth, was the University of
24	Maryland project, which is using metrics to assess
25	software quality.
ļ	

(202) 234-4433

	159
1	That looks to me like a tool that we can
2	adapt to be a verification tool, or a testing tool
3	to see the quality of the verification development
4	process.
5	So I look at that tool as the tool that
6	you would use to assess everything from the concepts
7	phase through the implementation phase. How well
8	did the vendor put that product together?
9	He used a tool so that their assessments
10	come out consistent. And then you also do the
11	manual reviews to pick up the little interface
12	problems that I don't think any tool
13	MEMBER APOSTOLAKIS: But again, before
14	you jump into any of these methods you would
15	scrutinize the assumptions, right and behind
16	them?
17	MR. KEMPER: Yes, you would, of course.
18	MR. WATERMAN: And that tool complements
19	the fault injection test assessment methodology
20	already developed for digital system dependability
21	testing.
22	I look at the and I'll talk about
23	that in another minute here. Additionally we're
24	taking a look at what Halden Reactor Program is
25	doing on evaluating software engineering practices
I	I

(202) 234-4433

	160
1	used by other countries.
2	We're paying the money already so why
3	shouldn't we use some of that data and see if it can
4	be useful.
5	MEMBER APOSTOLAKIS: I wonder if well
6	Dr. Powers is not here, but is there such a thing as
7	Swedish operators working on Finnish computers?
8	That's an inside joke.
9	MEMBER SIEBER: AS long as it's
10	Microsoft you're okay.
11	MEMBER APOSTOLAKIS: What?
12	MEMBER SIEBER: As long as it's
13	Microsoft and Windows-based, you're okay.
14	MR. WATERMAN: With regard to digital
15	system dependability, not all safety significant
16	errors in digital systems may be detected by V and V
17	processes.
18	That goes without saying. And so I
19	think we need an independent method of evaluating
20	licensee's and vendor's digital systems. And the
21	fault injection methodology shows some promise in
22	allowing us to do that.
23	And it's already been developed and they
24	use it to assess dependability. It's been this
25	particular fault injection tool was used on the Los
	I

(202) 234-4433

	161
1	Angeles Green Line metro system.
2	And they did the equivalent of ten
3	billion tests on the system. They found three
4	safety-significant errors, and I'll get into that on
5	the next project.
6	So what this project will do is produce
7	a process for using the tool to determine the
8	dependability safety systems. I look at this tool
9	as a validation tool.
10	What do you do after implementation?
11	You've integrated it into your system. How can you
12	test the system? So that's the validation part.
13	The toll, this tool by itself isn't going to tell
14	you everything you know about the system any more
15	than the University of Maryland tool, or some tool
16	like that they use in metrics, could tell you
17	everything you needed to know about the system.
18	But the two tools working together can
19	give you a better feeling for the quality of the
20	system, which is really important in the out years,
21	right, when you have to maintain it, and how well
22	the system works right now.
23	So I look at those two tools as a
24	possible adjunct to help the regulators regulate the
25	systems appropriately.
ļ	

(202) 234-4433

	162
1	MEMBER APOSTOLAKIS: When you say
2	evaluate dependability, are you going to get the
3	number, or is it something that is a concept, you
4	know, that now I feel better about?
5	MR. WATERMAN: Well, to tell you the
6	truth, if I was using this tool I wouldn't care
7	about if the dependability number came out. I
8	don't want the tool to tell me whether or not after
9	ten billion tests it found any errors in the system.
10	MEMBER APOSTOLAKIS: So it's not the
11	number?
12	MR. WATERMAN: Well, it produces a
13	dependability number and Steve Arndt can talk more
14	to this project than I can, Dr. Apostolakis.
15	MR. KEMPER: Yes, they can be used in
16	both ways.
17	MR. WATERMAN: And I'm looking at a
18	validation methodology.
19	MEMBER APOSTOLAKIS: If he comes to
20	number and I see these Markov results again, I'm
21	telling you I'm not going to be friendly. I don't
22	think people have really scrutinized the assumptions
23	behind those things.
24	Although if you tell me that you did it
25	ten billion times and you found three faults, I
I	I

(202) 234-4433

	163
1	think that's great.
2	MR. WATERMAN: Can we tunnel down into
3	this?
4	MEMBER APOSTOLAKIS: That really adds to
5	my confidence, but when people jump into those
б	Markov models I have a problem with that.
7	MEMBER SIEBER: How confident are you
8	that the University of Maryland metrics method of
9	evaluating software really tells you important
10	things, characteristics about the quality of the
11	software?
12	MR. WATERMAN: Well, I haven't really
13	had a chance to look at the whole tool yet. I've
14	been sort of a strong advocate for metrics. And it
15	looks like right now it's a stripped down metrics
16	tool as opposed to using a lot of metrics.
17	So I've seen all of their integrals and
18	all that other stuff, but what I'd really like to
19	see is how the whole thing pans out. But if we
20	don't do the research we'll never know that answer.
21	MEMBER SIEBER: Yes, I was surprised at
22	the accuracy that they claim to have in that. But
23	the link between those metrics and the actual
24	quality of the product to me somehow escapes me a
25	little bit.
I	

(202) 234-4433

	164
1	MR. WATERMAN: It's sort of like us
2	linking the quality of a product with safety, isn't
3	it?
4	MEMBER SIEBER: That's right.
5	MR. KEMPER: Well it's still a work in
б	progress, clearly. You know, this is the first
7	crack now. As we speak they're in the middle of
8	trying a sophisticated reaction protection system
9	type of a platform in software.
10	MEMBER SIEBER: Well if they hadn't
11	achieved remarkable accuracy I would probably
12	comment that you ought to look as to whether you
13	ought to finish or not.
14	But some of that work was impressive in
15	my opinion.
16	MEMBER APOSTOLAKIS: Do you have any
17	criteria? I mean a lot of this is exploratory,
18	right?
19	MR. WATERMAN: Yes.
20	MEMBER APOSTOLAKIS: Do you have any
21	criteria that you would use, objective criteria that
22	yes, we've done enough and this is going to lead
23	us anywhere.
24	MR. WATERMAN: Well, obviously we need
25	to shake these projects out, right?
I	I

(202) 234-4433

	165
1	MEMBER APOSTOLAKIS: Because not all of
2	these projects will actually produce
3	MEMBER SIEBER: Something.
4	MEMBER APOSTOLAKIS: But they're
5	claiming they will produce because, you know, a lot
6	of it is exploratory.
7	MR. WATERMAN: That's true, but you
8	know, the only way we'll know that answer is to go
9	ahead and do the work, it seems to me. And so, you
10	know
11	MEMBER APOSTOLAKIS: What does
12	MR. WATERMAN: We've just got to go down
13	that road until we get what we want.
14	MEMBER APOSTOLAKIS: What does the work
15	mean? I mean there could be a phase approach where
16	you're exploring first the feasibility of something
17	and you get encouraging results you say okay, I'll
18	go to the next phase, or something like that.
19	MR. KEMPER: Well that's precisely
20	well I don't know how we got on that project. We're
21	kind of ahead of ourselves. But at any rate, that's
22	precisely what the metrics project is doing, right?
23	It's a three phase process. The first
24	two phases really were proof of concept. We've gone
25	far enough. We believe that to be true. We believe
	I

(202) 234-4433

	166
1	it's a viable concept so now we're trying to invoke
2	that process on a STAR module system.
3	I think it's we got it from Oconee,
4	right Steve? For a safety related system and
5	application software. So that really will be the
6	proof in the pudding, as we say.
7	We can get meaningful results from that
8	test.
9	CHAIRMAN WALLIS: Well I think this
10	applies to the whole plan.
11	MEMBER APOSTOLAKIS: Yes.
12	CHAIRMAN WALLIS: I mean the problem I
13	have with the whole plan was you've laid out all
14	these things which you want to get done but there's
15	no indication for me about the likelihood of success
16	in getting these things done.
17	MEMBER SIEBER: Or even to know when
18	you're successful.
19	CHAIRMAN WALLIS: Or the competence of
20	the people or whatever, or the methods you need to
21	have some phasing or something with all of these
22	projects.
23	MEMBER APOSTOLAKIS: Yes, that would be
24	useful because a lot of this stuff is really still
25	in its infancy.
	I

(202) 234-4433

	167
1	CHAIRMAN WALLIS: So it's a hope?
2	MEMBER APOSTOLAKIS: Well not the plan,
3	I mean the state of the art out there. And the
4	other thing that is amazing, I mean I guess it
5	happens in all field when they're new it reminds
6	me of the `70s and risk benefit analysis, which was
7	new at the time. People publish something, they
8	issue a report or a paper or present a paper and so
9	on that is not really scrutinized by experts because
10	thee are no experts in the field.
11	Or if there are they're biased and so
12	on, so a lot of the stuff that's out there not, I'm
13	not sure how applicable it would be, or it would
14	to what extent it would survive a scrutiny from the
15	nuclear regulatory respect. So we always have to
16	be
17	CHAIRMAN WALLIS: But then how do you
18	get something new started, George? It's
19	MEMBER APOSTOLAKIS: No, I mean all
20	these things are elements here that the decision
21	makers need to take into account. Now we're still
22	on 17 and we're going project after project.
23	I mean do we really need to continue
24	doing this? We got an idea.
25	MR. KEMPER: We skim over two or three
	I

(202) 234-4433

	168
1	of those projects.
2	MEMBER APOSTOLAKIS: Are there any
3	projects that you really feel you ought to talk
4	about? Like this data on 19 for example, I think
5	that's an interesting unless you disagree.
6	MR. WATERMAN: Okay. Well with regard
7	to self-testing why are we looking at self-testing?
8	MEMBER APOSTOLAKIS: No, no, no.
9	MR. WATERMAN: It's been my experience
10	that errors that fail systems are self-testing
11	errors.
12	MEMBER APOSTOLAKIS: I'm not questioning
13	why you're doing this. I'm just saying that since
14	we're running out of time there may be
15	MR. WATERMAN: Ten minutes.
16	MEMBER APOSTOLAKIS: a few that you
17	want the to point out.
18	MR. WATERMAN: Well, we're continuing
19	our work on risk assessment digital systems,
20	obviously.
21	MEMBER APOSTOLAKIS: Okay.
22	MR. WATERMAN: And since we've already
23	had several meetings with you all I don't know that
24	we really need to get into great details on that.
25	We're continuing to move down that road.
I	I

(202) 234-4433

	169
1	MEMBER APOSTOLAKIS: We'll probably
2	review this during the Subcommittee meeting, so
3	MR. WATERMAN: Exactly. So into
4	security aspects of digital systems. We've attended
5	different conferences and different universities and
6	things like that to get input on what aspects of
7	secure systems we probably ought to address.
8	And we identified four projects, cyber
9	vulnerabilities, electromagnetic attack
10	vulnerabilities, wireless network security, and
11	firewall security.
12	Cyber security, as you know, it's always
13	been a concern of ours. If you look in standard
14	review plan back in '97 we were talking about cyber
15	security.
16	Now ever since 9-11 it's kind of become
17	a heightened issue.
18	MEMBER APOSTOLAKIS: But what can they
19	do? I mean I don't understand that. I mean what
20	can they do?
21	MR. KEMPER: It depends on the
22	connectivity of your system.
23	CHAIRMAN WALLIS: There was one plant
24	which had a worm in it wasn't there?
25	MR. WATERMAN: Davis-Besse got his with
ļ	I

(202) 234-4433

	170
1	the Slammer worm
2	MR. KEMPER: We just took a trip out to
3	one of the labs and they gave us a demonstration on
4	some of their cyber attack capabilities and it was
5	phenomenal.
6	I mean though the system that they had
7	set up they were able to just through an e-mail, if
8	you will, they simulated you acknowledge, you answer
9	your e-mail, and as soon as that happens they take
10	control of your PC, and because of it's connectivity
11	they actually get into the control system and the
12	process controls the whole application they had,
13	so
14	MR. WATERMAN: But that's not the only
15	security concern we have to concern ourselves with.
16	It's not just the safety system that we have to
17	worry about.
18	We're talking about security of our
19	country and our critical infrastructure. So you
20	know, if you take a look at the grayouts in
21	California last year, can you imagine what would
22	have happened if somebody had attacked the switch
23	yard?
24	It's way outside the protected area.
25	You cause the plant the trip. You don't have to
I	1

(202) 234-4433

	171
1	destroy a plant for critical infrastructure. All
2	you got to do is make the thing shutdown.
3	You don't even have to shut it down
4	permanently. If you're in a grayout situation
5	you've already got a blackout on your hands. Now
6	how many people are going to die from that?
7	And remember one of our missions in the
8	NRC, besides protecting the health and safety of the
9	public, protecting the environment, is to ensure
10	national security.
11	MEMBER APOSTOLAKIS: In the nuclear
12	arena.
13	MR. WATERMAN: From a security
14	perspective we have to consider, you know, what are
15	we doing
16	MEMBER APOSTOLAKIS: Wait, wait, wait.
17	MR. WATERMAN: for critical
18	infrastructure.
19	MEMBER APOSTOLAKIS: The common defense
20	and security, I think, refers to nuclear matters.
21	MR. WATERMAN: Well
22	MEMBER APOSTOLAKIS: We're not going to
23	stop protecting infrastructures are we?
24	MR. WATERMAN: Critical infrastructure
25	is a concern for the Department of Homeland
I	

(202) 234-4433

	172
1	Security.
2	MEMBER APOSTOLAKIS: Yes, and they
3	should pay for this, not us.
4	MR. WATERMAN: And nuclear power plants
5	are part of that critical infrastructure.
6	MR. KEMPER: Well I guess more
7	specifically to us, these cyber attacks have the
8	ability to challenge
9	MEMBER APOSTOLAKIS: Yes, I understand
10	that, and I agree with that.
11	MR. KEMPER: So that's the real
12	that's where it really comes home.
13	MEMBER APOSTOLAKIS: But we should limit
14	ourselves to the nuclear part of it.
15	MR. KEMPER: But at any rate we worked
16	pretty intensely
17	MEMBER APOSTOLAKIS: And this will be
18	classified?
19	MR. KEMPER: Some of the results of this
20	may very well be classified, or at least SGI.
21	MEMBER SIEBER: I think there's one
22	thing for sure. The people who write malicious
23	software are working just as hard or harder than the
24	ones who write defenses and firewalls against it.
25	MR. WATERMAN: As a matter of fact it's
I	1

(202) 234-4433

	173
1	not just the garage hacker either.
2	MEMBER SIEBER: No.
3	MR. WATERMAN: It's hostile nation
4	states like well I won't name any countries right
5	now, but we have hostile nation states who
6	essentially have an unlimited budget and who are
7	attacking our critical infrastructure on a daily
8	basis.
9	MEMBER APOSTOLAKIS: There is a lone
10	forming over there.
11	MR. MORRIS: Hi, I'm Scott Morris. I'm
12	the Chief of the Reactor Security Section in NSIR.
13	And Bill and I have worked together on various
14	aspects of cyber security.
15	In fact we've met with the industry and
16	we could go I could go on fro quite a bit, but
17	suffice it say that we have interacted. My staff's
18	interacted with Mike and Roman and even NRR, Matt
19	Chiramal, and
20	MEMBER APOSTOLAKIS: Even them.
21	MR. MORRIS: Even OIC, even OIS, the
22	Agencies own IT security people. There's no
23	question this Agency needs, in my view and I think
24	in the collective view of the Staff, a more
25	comprehensive cyber security policy, because we
	I

(202) 234-4433

	174
1	really don't have one to be quite frank.
2	We all have a common interest in cyber
3	security. We know it's a big issue. We know the
4	threats out there. We haven't quantified the
5	threat.
6	It's certainly not part of out design
7	basis, threat document to any great degree. So
8	we're wrestling with these issues right now, and I
9	think some of the projects that Bill and his staff
10	have proposed are valid.
11	Or I shouldn't say some, they all
12	have some validity. But they all have a varying
13	degree of validity to us right now. We have some
14	urgent needs.
15	We as a staff have generated some
16	documents to help the existing fleet of reactors
17	understand the cyber threat, or the cyber
18	vulnerability of their sites.
19	We've provided them a tool that they can
20	use to systematically assess the digital system
21	security. But they're under there's no
22	compulsory means they're under no obligation to
23	employ it right now.
24	So again, we are working on that as a
25	policy. And I think that some of the projects that
I	I

(202) 234-4433

	175
1	Bill has laid out, some are, you know, some are more
2	forward looking.
3	They're trying to examine, you know,
4	some of the newer systems that are coming out that
5	aren't necessarily in place now. My immediately
б	focus, quite frankly, from a user needs standpoint,
7	is to examine what's out there right now.
8	Let's understand the vulnerability of
9	those systems right now to the existing threat as we
10	have defined it. And again, the cyber threat isn't
11	very well defined.
12	So but suffice it to say that there
13	has been a sufficient level of interoffice
14	interaction on the projects that Bill is proposing.
15	I understand the issues about switchyards and SCADA
16	systems and wireless controls, and they're all very
17	relevant and important.
18	And the industry is very concerned that
19	they not get more than they don't want to be
20	overregulated and multiply regulated by DHS now, and
21	FERN and NRC all on relatively the same sorts of
22	control systems.
23	There's a lot of very difficult issues.
24	We're interacting closely with the North American
25	Electrical Liability Council and development of
ļ	I

(202) 234-4433

	176
1	their cyber security standards.
2	So like I said, as I said, I could go on
3	for a long time, but there has been quite a bit of
4	interaction between my staff, Bill's staff, and even
5	NRR and OIS on this.
6	And to a limited degree we support what
7	they're proposing here.
8	MEMBER APOSTOLAKIS: I wish you hadn't
9	said to a limited degree, but
10	MR. MORRIS: Well it's a matter of
11	what's more important right now.
12	MEMBER APOSTOLAKIS: And we'll probably
13	review these things at another meeting but
14	MR. KEMPER: Yes, I hope so.
15	MEMBER APOSTOLAKIS: Yes. Okay, so we
16	are convinced that this is important. Next.
17	MR. WATERMAN: Emerging digital
18	technology and applications. It's the things that
19	we've been doing all along. It think most of you
20	we're wrapping up the wireless technologies.
21	We've got a long term project to look at
22	new technologies that are coming along to give the
23	Staff a heads up on those technologies. On the
24	advanced nuclear power plant digital systems we
25	broke it down into advanced instrumentation,
Į	1

(202) 234-4433

	177
1	advanced control, and
2	MEMBER APOSTOLAKIS: So who's going to
3	worry about the operators here? I mean advances
4	nuclear power plants, advanced instrumentation. Is
5	somebody else worried about it, or you will worry
6	about it, or it will be joint project?
7	MR. KEMPER: Well it's lead by primarily
8	Human Factors but we will support that as needed.
9	MEMBER APOSTOLAKIS: Okay, so you're
10	supporting them?
11	MR. WATERMAN: Yes, sir. We're just
12	this is yes, somebody wants us to take a look at
13	something, maybe the robotics on the refueling on
14	the fueling machine bracers, okay we'll take a look
15	at it.
16	We don't have any research in place
17	right now, we're just this is a placeholder.
18	Remember it's a flexible, adaptable program. As
19	things come down the road we'll go ahead and take a
20	look at them.
21	MEMBER APOSTOLAKIS: Fuzzy logic
22	controls. All right.
23	MR. WATERMAN: Seimens trip systems.
24	MR. KEMPER: That wraps us up. I
25	apologize for
Į	

(202) 234-4433

	178
1	MEMBER APOSTOLAKIS: No problem, no
2	problem.
3	MR. KEMPER: going over, but it was
4	lots of very good energetic discussion.
5	MEMBER APOSTOLAKIS: So I'd like to
6	first of all do the members have any questions of
7	these two gentlemen? Anybody else with to say
8	anything? Yes, sir, please come to the microphone
9	and identify yourself.
10	MR. CALVO: Yes, my name is Jose Calvo.
11	I'm the author of the memo that you're all reading.
12	I hope you enjoy it. But let me tell you something
13	about myself.
14	I was hired by the NRC years ago because
15	I was a computer systems specialist, okay. I had
16	as a matter of fact my first system, I went around
17	the country doing applications of computer and
18	nuclear processes.
19	As a matter of fact the first computer
20	is in the Smithsonian as the one as it was used.
21	But I did work for Westinghouse, and I did work with
22	the facility.
23	And what I was to do, I just analyze
24	these systems and try to make recommendations what
25	to do with it, okay. I'm the Plant Chief now. I've
I	I

(202) 234-4433

	179
1	been Plant Chief for about five years in the area of
2	computer systems.
3	We had to review a lot of systems. WE
4	had to review the Siemens. We reviewed the
5	Techtronics, and the Common Q. Let me tell you
6	something. I was the one who reviewed those
7	systems, because some kind of way I've still got a
8	hang-up that I want to get involved with those
9	systems, all right.
10	So I feel that the emphasis here today
11	it was talking about tools. When I first analyze
12	these systems I used to go inside the system and
13	find out how the system will make it work.
14	So when I became the Plant Chief, I
15	asked everybody else how do you review with the
16	system, how to you know. They say we'll you're
17	following a process.
18	What do you mean you're following a
19	process? Do you know if the system that you what
20	kind of a system do you have? They say well we
21	don't have the talent, we don't have the expertise.
22	It takes too long. So then they show me
23	the standard review plan. It follows a process.
24	They're looking about the life cycle. And then I
25	say how do you know that you have some problems in
Į	1

(202) 234-4433

	180
1	there?
2	They say well, we're following a
3	process. If the process is done correctly then the -
4	- and we verify what the vendors has done, then we
5	got some reasonable assurance everything is going to
6	be fine.
7	Tools, I said why do you want the tools.
8	I couldn't convince Mike and I couldn't convince the
9	other much. They want to have a tool, okay. All
10	right, so let's buy a tool.
11	So we buy a tool. It costs about 50,000
12	dollars, all right. Well given that they have to
13	review one of the systems it takes something like
14	800 to 1,000 hours.
15	When that tool comes in we almost double
16	that number because we spend all the time trying to
17	figure out what the tool does. So we have to throw
18	the tool away, all right.
19	Say I knew that was going to fail
20	because I had used tools, I have developed tools
21	before, and you spend all your time with the tool.
22	And the question is if you've got a tool with
23	Siemens, Siemens might say no, my tool is better
24	than you're tool, okay.
25	What your tool does, what their tool
	I

(202) 234-4433

	181
1	does is do different things. So the tool is a nice
2	thing to have, but you got to perfect it, you got to
3	make it accommodate.
4	And you keep in mind the technology is
5	moving so fast these days that in three years all
6	those tools are going to be obsolete as well as the
7	computers being obsolete.
8	Look, the computer systems that we have,
9	all the platform has been done. All we do, we're
10	trying to implement the plain and specific. I need
11	research help in this area.
12	I want to look at what we have done
13	today, and tell me today if we have done the right
14	kind of a thing because that's what we need. I
15	don't want what we do 20 years from now.
16	That's fine. I won't be here 20 years
17	from now. But just I want to know the Agency, we're
18	marching along this area and the appropriate manner.
19	So that's what we do, that's the purpose of the
20	memo, tell you that all the things that are being
21	asked in this are looking to the future.
22	I want to know what we can do today.
23	And let me tell you something else. We value the
24	ACRS. You provide a good forum for us to discuss
25	these things and seek some advice so we know how to
I	

(202) 234-4433

	182
1	proceed.
2	Because some kind of way, you can see,
3	we don't get together.
4	MEMBER APOSTOLAKIS: Are you willing to
5	come to the meeting? We will invite you to come to
6	our Subcommittee meeting.
7	MR. CALVO: Yes. As a matter of fact I
8	was going to make that request. I like to be here
9	next time so you hear the other side of the story,
10	and maybe together the four of us, we can do
11	something here to help the Agency to move forward.
12	MEMBER APOSTOLAKIS: Mr. Calvo, I just
13	say that some of the statements you wrote down were
14	pretty strong. Were you upset at the time?
15	MR. CALVO: Well, my staff was upset.
16	MEMBER APOSTOLAKIS: Or
17	MR. CALVO: In some kind of way, yes,
18	they was strong.
19	MEMBER APOSTOLAKIS: Your staff was
20	upset?
21	MR. CALVO: Keep in mind that we've been
22	making those statements for five years. For five
23	years we keep saying please don't proceed this way.
24	Help us with this one.
25	But again, I know you got some new
I	I

(202) 234-4433

	183
1	people working the research. For the last five
2	years we were not successful in getting anybody else
3	to help us out.
4	I'm concerned that we're moving ahead
5	with 103 plans, we're going to be implementing these
6	platforms, and we don't have the kind of support
7	that I needed to find out that we did it the right
8	way, okay.
9	And again, I don't have the talent
10	either. And neither does research has the talent
11	either. Mike is there because I sent him there. He
12	used to work for me.
13	And they needed some regulatory flavor,
14	so I say Mike go and help research, and he did. And
15	that's almost less than a year. So what we got to
16	do is get together and talk.
17	And we need you guys as the forum so we
18	can add these things up in here in front of you.
19	MEMBER APOSTOLAKIS: Yes, this is a kind
20	of an unusual role that you're asking us to play.
21	MR. CALVO: Well
22	MEMBER APOSTOLAKIS: But we'll be happy
23	to have a subcommittee meeting and listen to both
24	sides. And fundamentally do you have anything else
25	to add?
I	I

(202) 234-4433

	184
1	MR. CALVO: Well, keep in mind the UFM
2	work the same way. We use you as a forum. It was
3	very soothing. It helped the Staff to get together.
4	MEMBER APOSTOLAKIS: What was soothing?
5	MR. CALVO: The UFM, the ultrasonic flow
6	meter. That was another one that we had some
7	problems. This one can be solved the same way. We
8	need to bring the third party to play a role of
9	facilitating while he's advising.
10	CHAIRMAN WALLIS: The Agency has no
11	mechanism apart from the ACRS to do this?
12	MR. CALVO: Well, anyway that's all I
13	have to say. I think that we need to communicate in
14	a selected communication situation.
15	MEMBER APOSTOLAKIS: Thank you very
16	much, and I do appreciate your willingness to come
17	in June.
18	MR. CALVO: We'll be happy. June we'll
19	be here.
20	MEMBER APOSTOLAKIS: Thank you very
21	much.
22	MR. BARRETT: I'd like to answer that
23	there are a lot of things on the table right now,
24	but I'd like to start by answering the Chairman's
25	question.
	I

(202) 234-4433

	185
1	We do have a process for deciding what
2	research will be pursued by the office of research
3	in this area and every other area. It's a user need
4	process, and we also have alternatives to that,
5	including technical advisory groups.
6	And what we're pursuing right now is
7	that we have this plan in front of the Office of
8	NRR, and in front of the other offices, and they're
9	in the process of deciding what their response will
10	be.
11	My understanding is that the response
12	will be supportive to a great extent. And Mike can
13	discuss that in greater detail. Clearly we've come
14	to you today at a time when this area is undergoing
15	a great deal of debate.
16	We're not coming to you and to your
17	subcommittee for you to decide where the Agency will
18	go. I mean you have an advisory role, and we look
19	forward very much to the kind of advice you can give
20	us.
21	But ultimately it's a management
22	decision involving the Office of Research and the
23	and our user offices which way we'll go. But I
24	think that given the level of the number of
25	different perspectives that you see throughout the
I	I

(202) 234-4433

	186
1	Agency, I think that this is one case where the
2	advice of the ACRS will be particularly useful to
3	us.
4	I feel that the Office of Research has
5	played perhaps a somewhat unusual role here in terms
6	of defining a plan and putting that plan up for
7	discussion as opposed to waiting for user need.
8	I think that ultimately that will prove
9	to have been a wise choice of a wise course of
10	action for the Office or Research to take.
11	CHAIRMAN WALLIS: I think you might find
12	precedence where this has happened. I'm trying to
13	remember them. And we used to know some precedence
14	where an Office of Research pursued research and
15	then persuaded NRR that it was necessary although
16	originally they didn't think it was.
17	And it turned out to be a crucial
18	element in some later decision. And I forget just
19	what the issues were, but it might help you if you
20	could quote some of those.
21	MR. BARRETT: You may find that aging
22	management was one of those.
23	DR. LARKINS: Yes, I think
24	MEMBER APOSTOLAKIS: Ultimately I think
25	the we have provided advice, not in context like

```
(202) 234-4433
```

	187
1	this, but within professional opinions, right, that
2	ultimately came to us?
3	CHAIRMAN WALLIS: I think an awful lot
4	is going to be sorted out by the Staff themselves
5	MEMBER APOSTOLAKIS: But anyway, let's
б	listen to the Executive Director.
7	CHAIRMAN WALLIS:before we hear about
8	this again.
9	DR. LARKINS: Yes, well George, the DPO
10	thing is a different process. And that's outside of
11	the normal role of the ACRS. But the ACRS has
12	several situations, cases over the past several
13	years made strong recommendations on some
14	research activities.
15	Sometimes it wasn't always clear to the
16	user office the value of those, but a lot of times
17	they were very influential in getting those programs
18	started.
19	And it turned out to be a value. I can
20	think of some things, some PRA, license plan again,
21	and other areas.
22	MEMBER APOSTOLAKIS: So there's nothing
23	in our charter that prevents us from doing this,
24	it's just something that we don't do very often.
25	MR. BARRETT: Let me say we're not here
	I

(202) 234-4433

	188
1	to ask you to resolve a DPL or to resolve this
2	management issue. We come to you under your with
3	your normal charter, which is to give us independent
4	technical advice on this plan.
5	CHAIRMAN WALLIS: We're going to have
6	subcommittee meeting on this, and I think I
7	suspect that by then a lot of these internal matters
8	will have been sorted out.
9	MR. MAYFIELD: Yes.
10	CHAIRMAN WALLIS: We will not be asked
11	to be a referee in some sort of kindergarten fight.
12	Actually it will be a mature presentation by you
13	guys, and there will be some the issues will be
14	clearly stated, and so on.
15	MR. MAYFIELD: If I could, this is Mike
16	Mayfield from NRR. I would say that the Office nor
17	my division, neither have asked the Committee to
18	engage in this role that was just discussed.
19	We will take this on, as Rich says, as a
20	management matter. And we will come back with the
21	committee. We historically there have been a
22	number of issues where the offices have not agreed,
23	and then as a management matter the Office of
24	Research engages in a research program they feel is
25	appropriate.

(202) 234-4433

	189
1	And I'm sure that's how this will move
2	forward. If at some point at we go forward that
3	offices feel there is value to the Committee to
4	present the two views on a matter and to ask for
5	your advice, we will do so, but we will do so
6	through Dr. Larkins and through the Committee
7	management.
8	MEMBER APOSTOLAKIS: Well the thing
9	that's not clear to me is how to we should we
10	structure the Subcommittee meeting? I mean as I
11	said at the beginning, whenever we look at the
12	research plan, we have a couple of questions that I
13	think are important questions, like what is the
14	current state of the practice within the Agency.
15	Where does Agency management feel that
16	there are needs, that there are holes that we need
17	to improve things, without necessarily implying that
18	the way things are now are bad.
19	I mean there's always room, you know,
20	or maybe due to external reasons there is a need now
21	to get into a particular area and do something about
22	it.
23	So where are we now? And why is this
24	where is this plan taking us?
25	CHAIRMAN WALLIS: Well I think, George,
Į	I

(202) 234-4433

	190
1	we rely
2	MEMBER APOSTOLAKIS: Five years, ten
3	years down the line. Some of it is anticipatory.
4	Some of it is answering immediate needs. I mean
5	these are important questions that help.
6	And the thing that's confusing this time
7	is that on the one hand there is a memo that
8	everything is fine. And on the other hand there is
9	all these research projects that say well good
10	enough, you know, we can improve here and there and
11	there.
12	And I what I would not like to see
13	next time is to have again one person presenting and
14	saying we don't need anything, and another person
15	saying no, we needed.
16	MR. MAYFIELD: Dr. Apostolakis, I
17	started by saying that Mr. Dyer will be signing out
18	a memorandum. And he speaks for NRR. And I would
19	encourage you to wait until you get the signed
20	memorandum.
21	We will make sure that Dr. Larkins
22	receives a copy as soon as it is signed that he
23	MEMBER APOSTOLAKIS: Now what you say
24	wait, what do you mean wait?
25	MR. MAYFIELD: can distribute to the
I	1

(202) 234-4433

	191
1	Committee.
2	MEMBER APOSTOLAKIS: Should we postpone
3	the Subcommittee meeting?
4	MR. MAYFIELD: No, sir. I think but
5	rather than assuming what Mr. Dyer may say based on
6	a draft memorandum and a response to that draft I
7	would urge you to wait until you get the signed
8	memorandum and see where the office has come down.
9	CHAIRMAN WALLIS: George
10	MR. MAYFIELD: And I think that's the
11	appropriate
12	CHAIRMAN WALLIS: We rely on your wisdom
13	and skill to work with Mike and Rich and the other
14	people to construct a good subcommittee meeting.
15	MEMBER APOSTOLAKIS: Yes, but at some
16	point I want to get the members views, this
17	afternoon perhaps.
18	CHAIRMAN WALLIS: We can talk this
19	afternoon. Now we're going to break. And the break
20	we're not going to have the reconciliation
21	because we're late, but we'll have it after lunch.
22	We'll have a lunch break for an hour,
23	and please be back in 15 minutes to be trained in
24	ethics, in 15 minutes, 12:15, right here. Break.
25	And we don't need the transcript, you know very
I	I

(202) 234-4433

			192
1	much, after	lunch.	
2		(Whereupon, at 11:59 a.m. the above-	
3		entitled matter was concluded.)	
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
I	Ι		