Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards 522nd Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, May 5, 2005

Work Order No.: NRC-353

Pages 1-247

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	522 nd MEETING
7	+ + + +
8	THURSDAY,
9	MAY 5, 2005
10	+ + + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B3, 11545 Rockville Pike, at 8:30 a.m., Graham B.
17	Wallis, Chairman, presiding.
18	
19	<u>COMMITTEE MEMBERS PRESENT</u> :
20	GRAHAM B. WALLIS, Chairman
21	WILLIAM J. SHACK, Vice Chairman
22	GEORGE E. APOSTOLAKIS, Member
23	MARIO V. BONACA, Member
24	RICHARD S. DENNING, Member
25	THOMAS S. KRESS, Member
I	I

		2
1	<u>COMMITTEE MEMBERS PRESENT (Continued)</u> :	
2	DANA A. POWERS, Member	
3	VICTOR H. RANSOM, Member	
4	STEPHEN L. ROSEN, Member	
5	JOHN D. SIEBER, Member	
6	<u>ACRS STAFF PRESENT</u> :	
7	JOHN T. LARKINS, Executive Director	
8	ASHOK C. THADANI, Deputy Executive Director	
9	THERON BROWN	
10	SAM DURAISWAMY	
11	JENNY M. GALLO	
12	NOBLE GREEN, JR.	
13	MICHAEL L. SCOTT	
14	NRC STAFF PRESENT:	
15	JAMES BONGARRA, NRR	
16	PAT HILAND, NRR	
17	P.T. KUO, NRR	
18	J. PERSENSKY, RES	
19	GREG SUBER, NRR	
20	DAVE TRIMBLE, NRR	
21	AUTUMN SZABO, RES	
22	ALSO PRESENT:	
23	REZA AHRABLI, Entergy	
24	JOHN F. GROSS, DOE	
25	A. DAVID HENDERSON, DOE	
I	1	

		3
1	ALSO PRESENT (Continued):	
2	TED IVY, Entergy	
3	DAVE LACH, Entergy	
4	NATALIE MOSHER, Entergy	
5	PAUL S. PICKARD, Sandia National Laboratories	
6	MARK RINCKEL, AREVA Framatome	
7	ROGER RUCKER, Entergy	
8	MIKE STROUD, Entergy	
9	ROBERT M. VERSLUIS	
10	GARRY G. YOUNG, Entergy	
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I	I	

	4
1	<u>CONTENTS</u>
2	PAGE
3	Introduction, Chairman Wallis 5
4	License Renewal Application, Arkansas Nuclear
5	One, Unit 2 6
6	Presentation of Entergy, Garry Young 8
7	Presentation of Staff, Greg Suber 39
8	Standard Review Plan, Chapter 13
9	Presentation of Staff, Jim Bongarra 78
10	Discussion of NUREG-1791, Autumn Szabo 104
11	Advanced Reactor Designs for Hydrogen
12	Production
13	Presentation of DOE, John Gross 158
14	Presentation of DOE, Paul Pickard 170
15	Presentation of DOE, Rob Versluis 231
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	5
1	<u>PROCEEDINGS</u>
2	(8:30 a.m.)
3	CHAIRMAN WALLIS: The meeting will now
4	come to order.
5	Good morning. This is the first day of
6	the 522nd meeting of the Advisory Committee on Reactor
7	Safeguards. During today's meeting the Committee will
8	consider the following:
9	Final review of the license renewal
10	application for Arkansas Nuclear One, Unit 2;
11	Draft final revisions to standard review
12	plan, Chapter 13, entitled "Conduct of Operations";
13	Advanced reactor designs for hydrogen
14	production;
15	Significant recent operating events
16	Proposed options for addressing ACRS
17	proactive initiatives on safety management;
18	And the preparation of ACRS reports.
19	This meeting is being conducted in
20	accordance with the provisions of the Federal Advisory
21	Committee Act. Dr. John T. Larkins is the Designated
22	Federal Official for the initial portion of the
23	meeting.
24	We have received no written comments, no
25	requests for time to make oral statements from members
ļ	I

(202) 234-4433

	6
1	of the public regarding today's sessions.
2	A transcript of portions of the meeting is
3	being kept, and it is requested that the speakers use
4	one of the microphones, identify themselves, and speak
5	with sufficient clarity and volume so that they can be
6	readily heard.
7	I will begin with some items of current
8	interest. In the handout that you have, you'll notice
9	that there are three SRMs. There's a speech by
10	Commissioner Lyons, and there's testimony by Chairman
11	Diaz before the United States Senate.
12	On behalf of the committee, I would say it
13	gives me personally great pleasure. I would like to
14	congratulate Dr. Larkins, the ACRS Executive Director
15	who has been selected to receive the NRC Honorary
16	Meritorious Service Award.
17	Congratulations.
18	(Applause.)
19	CHAIRMAN WALLIS: We will now proceed with
20	the meeting. I will call upon my esteemed colleague,
21	Mario Bonaca, to lead us through the first item, which
22	is the license renewal for Arkansas Nuclear One, Unit
23	2.
24	DR. BONACA: Thank you, Mr. Chairman.
25	We're here now to do a final review of the

(202) 234-4433

	7
1	license renewal application for Arkansas Nuclear One,
2	Unit Two. We met as a subcommittee on December 1st,
3	2004, to review this matter.
4	At the time we had an interim SER that
5	already contained no open items so that it went along
6	towards closure of the commitments for license
7	renewal. We are here now with a completed SER and
8	final SER, and so I turn to Dr. Kuo for going into the
9	presentations.
10	DR. KUO: Thank you, Dr. Bonaca.
11	This is P.T. Kuo for the record. I'm the
12	Program Director for the license renewal and the
13	environmental impacts program. To my right is the
14	team leader for the audit review at the ANO-2 and at
15	my far right, Greg Suber. He's the Project Manager
16	for the staff review for this project.
17	And Greg is going to lead the presentation
18	today with the support with all the staff that are
19	sitting in the audience.
20	As, Dr. Bonaca, you pointed out, in the
21	draft SER they contend no open items for this review.
22	In Greg's presentation, he's going to go through some
23	of the highlights of the review, and he's going to
24	discuss some of the issues that may particularly
25	interest you.
Į	I

(202) 234-4433

	8
1	So with that I would like to turn the
2	presentation first over to the applicant, and then it
3	will be followed by the staff presentation. Any
4	questions?
5	(No response.)
6	MR. YOUNG: Good morning. I'm Garry Young
7	with Entergy, and I'll be making the presentation for
8	the licensee in regard to the application for Arkansas
9	Nuclear One, Unit 2.
10	First of all, I'd like to introduce some
11	of the team members that are here that were involved
12	in helping prepare the material that was in the
13	application.
14	Mike Stroud, who is our Project Manager
15	over here.
16	Natalie Mosher, who was our licensing lead
17	for the project.
18	Ted Ivy, who is our mechanical lead.
19	Reza Ahrabli, who is our civil structural
20	lead.
21	Roger Rucker, who is our electrical and
22	I&C lead.
23	Also we have Dave Lach here, who's a
24	Project Manager with our license renewal group.
25	And Mark Rinckel with AREVA Framatome, who
	I

(202) 234-4433

	9
1	was our Class 1 lead for the mechanical.
2	With that I'd like to go on into the
3	presentation. I'm going to go through each one of
4	these topics and provide a little additional
5	information, kind of a summary of some of the
6	information that was presented in the subcommittee as
7	well as some additional information that was requested
8	by the subcommittee at the last meeting.
9	And at any point if there's any questions
10	or additional information, please stop me, which I'm
11	sure you will, and we'll discuss it right then.
12	For a general description of the unit,
13	it's located in west central Arkansas near Lake
14	Dardanelle. Lake Dardanelle is the source of the
15	makeup water for the cooling tower on Unit 2.
16	It's a Combustion Engineering pressurized
17	water reactor. Bechtel was the architect-engineer.
18	The construction permit was issued in 1972, and we
19	went into initial operation in 1978.
20	We have about 27 years of operating
21	experience at this point. We have a 3,026 megawatt
22	thermal capacity and 1,023 megawatts electric.
23	And Arkansas Nuclear One, the two units
24	together provide over 30 percent of the electricity
25	needs of Arkansas. And this is just a map to show
	1

(202) 234-4433

10 1 physically where we're located, pretty well the middle 2 of the country and the southern part of the middle of 3 the country. 4 A brief summary of our operating history. 5 We did a power uprate in 2002. It was a 7.5 percent uprate, which increased our capacity by 210 megawatts 6 7 thermal. We also replaced our steam generators in 8 2000, which was part of a prerequisite for doing a 9 power uprate. In addition, we were having a lot of 10 problems with tube plugging on the steam generators. So there were several reasons that they were replaced, 11 and were placed them with Westinghouse units. 12 A question. 13 DR. SHACK: 14 MR. YOUNG: Yes. 15 Is this really a Westinghouse DR. SHACK: 16 steam generator or is it a CE steam generator relabeled? 17 It is actually Westinghouse, 18 MR. YOUNG: 19 I mean, they're all the same company now, but -yes. 20 DR. SHACK: Right. 21 MR. YOUNG: -- this was a Westinghouse 22 design, not the Combustion Engineering. That's my 23 understanding at least. This is not a lattice bar? 24 DR. SHACK: 25 This is a quatrefoil or something?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	11
1	MR. YOUNG: Do we have anybody that knows
2	that detail? I'm not certain. Worry.
3	CHAIRMAN WALLIS: So you made a hole in
4	containment?
5	MR. YOUNG: Yes.
6	CHAIRMAN WALLIS: And took out the old one
7	and put in new ones?
8	MR. YOUNG: Yes, yes, right. It was a
9	major, major job for us, but, yes, we had to cut a
10	hole in containment and put them in. Okay?
11	Some performance trends over the last few
12	years. The capacity factors have increased from about
13	71 percent in 1992 to about 97 percent in 2004. The
14	trend was a steady increase during that period of
15	time, typical for the nuclear power plants during that
16	time period.
17	We've also achieved some dose reductions
18	at the plant due to some activities that were
19	targeted. Our outage doses were reduced from about
20	175 rem in 1995 down to 93 in 2003. Obviously when we
21	did the steam generator replacement, we actually had
22	an increase that year.
23	CHAIRMAN WALLIS: Have you been reducing
24	your time of outage as well?
25	MR. YOUNG: Yes, sir.
	I

	12
1	CHAIRMAN WALLIS: By how much?
2	MR. YOUNG: Well, right now we're down
3	into the 20-30 day range typically unless we're doing
4	something major like a steam generator or vessel head
5	or some other, you know, special change, but a typical
6	outage is between 20 and 30 days now.
7	Also, our non-outage dose has been reduced
8	over the time from about 49 rem in 1996 to about nine
9	rem in 2004. Again, somewhat typical for the industry
10	based on some targeted activities to reduce overall
11	dose from the operation of the plant.
12	And I've got a number of initiatives.
13	These are things that have been done to the plant to
14	upgrade or improve the plant either due to issues
15	related to aging or obsolescence. For example, we've
16	replaced our feedwater control system in 1997 with a
17	digital control system. In 1999 we replaced the
18	condenser tube bundle. It was a copper-nickel alloy
19	and we replaced it with titanium.
20	We replaced the moisture separator
21	reheater tube bundle in 1999. It was a copper-nickel
22	alloy and was replaced with stainless steel.
23	Also, again, we replaced the steam
24	generators. They were Alloy 600 and we replaced with
25	Alloy 690 tube material.
I	1

(202) 234-4433

13 1 We also did a high pressure and low 2 pressure turbine upgrade in 2000 to improve steam flow 3 path and other efficiency improvements. We replaced 4 some electrical penetration modules in 2000. This was 5 an upgrade to improve the leak tightness of these particular electrical penetrations. 6 7 The containment operates at a slightly higher pressure with the power uprate, and this was 8 one of the needed improvements to allow for that 9 10 higher design pressure. 11 Our flow accelerated corrosion piping 12 included includes program has and still piping replacements. As we go through time and do our 13 14 inspections, we replace piping that has been eroded or 15 corroded with a chrome moly or a FAC resistent material, and not only have we been doing that, but 16 we're continuing to do that. 17 18 We have --19 CHAIRMAN WALLIS: What's the criterion for 20 Is there a certain percent of wall replacement? 21 thickness or something? 22 MR. YOUNG: There is a criteria for when 23 we have to replace it, but we're periodically going 24 through and replacing some of it preemptively before 25 we get to the point of reaching the limits for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	continued operation.
2	DR. RANSOM: What are some of the typical
3	places where you had to replace piping?
4	MR. YOUNG: Extraction steam lines, for
5	example. I don't know. There's several other. It's
6	all associated with one of the flow paths associated
7	with the steam, especially the
8	DR. RANSOM: Where you have droplets or
9	MR. YOUNG: Yes.
10	DR. RANSOM: condensate down?
11	MR. YOUNG: Yes, yes.
12	DR. BONACA: When did you last inspect the
13	reactor vessel head?
14	MR. YOUNG: At the last outage, which was
15	let's see. That was earlier this year. A couple
16	of months ago, yes.
17	DR. BONACA: Okay, and you had no
18	indications?
19	MR. YOUNG: Right. We did a full bare
20	metal inspection on the vessel head, and there were no
21	leaks, no indications of leaks.
22	DR. BONACA: Okay. Now, if I remember
23	doing the presentation during the subcommittee, you
24	told us that the insulation is going to be modified.
25	MR. YOUNG: Yes.
I	

	15
1	DR. BONACA: Although you're going to
2	replace the head in 2006?
3	MR. YOUNG: Well, yeah, the head, right
4	now we're in the process of procuring the head in
5	2006. It will be on site, ready for installation.
б	The actual installation may be as late as 2008 or in
7	that time frame.
8	DR. BONACA: What's happening on Unit 1?
9	I mean, I noticed just yesterday there was an
10	announcement that Unit 1 had been a nozzle was
11	leaking at the vessel head. Unit 1 has had a number
12	of leaking problems, right?
13	MR. YOUNG: Yes, yes, and on Unit 1 the
14	vessel head is on site and is scheduled for
15	installation at the next outage, which is this fall.
16	DR. BONACA: All right.
17	MR. YOUNG: Okay. We talked about the
18	vessel head. The service water piping, we're
19	replacing that piping or continuing I should say to
20	replace it. We have been replacing sections of
21	piping. Some of it we're replacing the carbon steel
22	with stainless steel especially on the smaller
23	diameter piping due to well, we've had problems
24	with service water piping since the plant went into
25	operation, and we've been replacing that piping, and
I	1

(202) 234-4433

	16
1	we will continue to as part of an overall replacement
2	in upgrade programs.
3	And as I mentioned before, we're
4	continuing to replace the flow accelerated corrosion
5	susceptible piping, and that will continue as long as
6	there is piping that's subject to flow accelerated
7	corrosion.
8	DR. SHACK: Your service water piping
9	problem is MIC?
10	MR. YOUNG: The original problems were
11	MIC, especially in the small bore piping, and since
12	the initial identification of those problems, we've
13	changed our chemistry program to add additives to
14	address the MIC problem. So we're continuing to
15	refine and revise our chemistry control to deal with
16	both MIC and other corrosion.
17	We use lake water for our service water,
18	and it's not very pure water. So there's a lot of
19	issues with that.
20	DR. SHACK: And the replacement piping is
21	a conventional 300 series austenitic?
22	MR. YOUNG: Yes, it's conventional carbon
23	steel. For the large
24	DR. SHACK: Oh, carbon steel?
25	MR. YOUNG: For the large diameter piping
I	I

```
(202) 234-4433
```

	17
1	and then for some of the smaller piping, stainless
2	steel, and we've got
3	DR. SHACK: Three hundred stainless?
4	MR. SIEBER: That's a once through system?
5	Service water?
6	MR. YOUNG: Yes, service water is.
7	MR. SIEBER: And so the chemical treatment
8	that you're using is just chlorination?
9	MR. YOUNG: Chlorination and Ted Ivy is
10	here. He's very familiar with that.
11	MR. SIEBER: Otherwise you're going to use
12	a lot of chemicals, and they're going to end up in
13	that lake.
14	MR. YOUNG: Yes, that's one of the
15	problems we have with the chemistry, but Ted.
16	MR. IVY: My name is Ted Ivy. I'm with
17	Entergy.
18	The service water system, the chemical
19	treatment we use in addition to chlorination, we also
20	use a dispersant and also a corrosion inhibitor, and
21	you're right. It is once through, but with our
22	corrosion inhibitor the amount of chemicals we use,
23	yes, is rather large, and it's rather expensive, but
24	it's required because of the aggressive nature of the
25	lake water, and that's why we've had this continuing
ļ	I

(202) 234-4433

	18
1	program of pipe replacement.
2	And we've essentially replaced all of the
3	small bore stuff less than six inch with stainless
4	steel, 300 series, and over the years since that point
5	in time when that was finished in late and mid-'90s,
6	we've been going actively after the large bore piping
7	which we're replacing like with carbon steel, but the
8	big gain we think we're getting from the corrosion
9	inhibitor we're use now is with the existing carbon
10	steel because we are using this now, which in the
11	early '80s there was very little treatment for the
12	existing carbon steel piping. So they experienced a
13	lot of degradation at that point in time.
14	So our expectation is that the life of the
15	replacement pipe will be a lot better than it was
16	before.
17	MR. SIEBER: Now, the large pore piping is
18	buried piping, right?
19	MR. IVY: Not all of it. We have a lot of
20	large bore that's actually inside the building that is
21	accessible to where we could do UTs to identify the
22	condition of the internal as representative of that.
23	MR. SIEBER: The bulk of it is buried in
24	the ground, right?
25	MR. IVY: The largest majority of the very
I	1

(202) 234-4433

	19
1	large bore is, yes. I think we had ECP.
2	MR. SIEBER: How can you tell if it's
3	leaking? I mean, you don't measure. You don't hydro
4	it because there always has to be flow through it.
5	MR. IVY: In most cases what we found and
6	even on the buried piping that if we have a leak
7	usually it will show up as it percolates up through
8	the ground, and we've had several instances that we've
9	been able to find it with that method, and that's
10	usually about the only way we can do it.
11	We do
12	MR. SIEBER: So your detection system is
13	when your hip boots get wet all the way up to the seat
14	of your pants that it's probably leaking.
15	MR. IVY: Yeah, and as with the current
16	industry standards with all buried piping, that's
17	about the best anybody can do.
18	MR. YOUNG: Yeah, we do have a program
19	underway right now because of some of those concerns
20	with the current operating condition to study the
21	buried piping and look at options for improvement,
22	such things as coating the pipe. I guess in situ form
23	is a product that's available to actually coat in
24	place the large piping, but there's a number of
25	options being studied, and that's underway right now
I	I

(202) 234-4433

	20
1	as part of our overall concern, you know, about the
2	buried piping, particularly the service water piping,
3	which is subject to the aggressive service water.
4	MR. IVY: And I might add that the overall
5	wall thickness of the buried piping is not
6	significantly degraded. The biggest concern we have
7	is with small pits.
8	MR. SIEBER: Pits. Well, you know, these
9	problems are not unique to Arkansas. Almost every
10	plant that has a service water system that's fed from
11	anything other than the ocean has this kind of a
12	problem. And to me its significant as related to
13	license renewal that the problem is addressed because
14	detection by looking for wet spots on the ground is
15	not a good method.
16	MR. IVY: No, and that's why we're doing
17	the studies with our buried piping at the whole plant
18	for both units actually to determine what actions we
19	needed to take for long term because of license
20	renewal, yes.
21	MR. SIEBER: Yes. Some licensees have
22	service water piping that's big enough to put a person
23	that's in there, and so they do crawl throughs, and if
24	you can't get a person in there, you might want to put
25	a TV camera in there and run it through. You can't do
ļ	I

(202) 234-4433

	21
1	any surface prep on the inside. So any kind of
2	volumetric exam is sort of out of the question, and
3	it's a serious problem and cannot be ignored.
4	MR. IVY: Yeah, we have sent cameras on
5	our emergency cooling pond return header line because
6	we have done periodic cleaning and have gone in and
7	looked at the overall condition of the pipe.
8	The largest portion of the buried is the
9	stuff that goes to our emergency cooling pond supply
10	and returns, and we have done visual inspections on
11	those because you can't get access to them.
12	The ones that actually come from the
13	discharge at the pumps are very difficult to access
14	except during outages because we always have to have
15	at least one loop in service all the time.
16	MR. SIEBER: That's right.
17	DR. BONACA: Well, are or can lead-down
18	tests be performed on those components? Are they
19	isolated, pressurized, and then observed, the leak-
20	down rate observed?
21	MR. SIEBER: Well, you can't isolate the
22	main headers, you know. You need service water all
23	the time. Once you irradiate the fuel, you've got a
24	heat load and you've got to deal with it.
25	And leak-down is sort of tough because the
	I

(202) 234-4433

	22
1	valves in that system
2	MR. IVY: Are not water.
3	MR. SIEBER: Well, they're typically fire
4	header valves.
5	MR. IVY: Well, ours are
6	MR. SIEBER: They just slow things down.
7	They don't reach
8	MR. IVY: But their not leak tights. So
9	you would get leakage, and you couldn't tell whether
10	it was coming through the valves or necessarily from
11	the piping.
12	MR. SIEBER: If you had shut the valves
13	and pressurized it, the pressure would die off just
14	like that.
15	MR. IVY: But most of our valves on the
16	system, there are several of them that do have leakage
17	criteria limits, and we actually have to test those,
18	but we don't actually pressurize the whole header.
19	DR. RANSOM: Are these safety related
20	components?
21	MR. SIEBER: The service water system is
22	safety related components.
23	MR. IVY: Yes, it is.
24	MR. YOUNG: Yeah, this is obviously an
25	issue that we're trying to deal with under our current
ļ	1

```
(202) 234-4433
```

	23
1	term to get things, you know, addressed before there's
2	a leak, and we have had some historical problems with
3	leakage in the page, and now through our corrective
4	action process, we're developing some new approaches.
5	We brought in the structural integrity to
6	help us do some studies. They're piping experts and,
7	you know, to provide recommendations, and again there
8	are some options that we're looking into to further
9	improve the piping and improve the reliability of the
10	piping.
11	MR. IVY: And we have done some coating on
12	Unit 1. We actually coated one of the lines back in
13	the late '80s, early '90s, a return header, and it has
14	held up very well for the last 12 years.
15	MR. SIEBER: As far as you can tell.
16	MR. IVY: No, we inspect it every
17	refueling outage. Send a camera up to make sure the
18	coating has not come loose.
19	MR. YOUNG: Okay?
20	MR. SIEBER: Thank you.
21	MR. YOUNG: Okay. The next topic is our
22	commitment implementation for license renewal, and we
23	talked about this a little bit at the subcommittee
24	meeting, but we provide a little more information in
25	this presentation.

(202) 234-4433

1 We have 34 aging management programs that 2 committed to associated with license renewal. we 3 Nineteen of those 34 programs are already in place, 4 and that represents 56 percent of the total, but I 5 wanted to add in here that that's actually much greater than 56 percent of the activities that we do 6 7 associated with our commitments for license renewal. And what I mean by that is some of these 8 9 19 programs that are currently in place include such 10 things as our preventive maintenance program, our inservice inspection program, and our chemistry program, 11 12 which include a very large number of components and structures in the plant. 13 And the new programs or the enhanced 14 15 programs generally tend to be focused on a very few So if you look at it on a component for 16 components. structure basis, we have much greater than 56 percent 17 of the activities already in place and working. 18 19 We do have 15 new or enhanced aging 20 management programs that are part of the commitment 21 that are yet to be done. 22 Let me ask a question. DR. BONACA: 23 During the subcommittee, one of the inspectors told us 24 that when they were looking at the structure, 25 monitoring a masonry wall problem which is already

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

24

	25
1	implemented
2	MR. YOUNG: Yes.
3	DR. BONACA: they found that the
4	initial baseline examinations were not documented
5	properly. The first five-year examination was not
6	performed, and qualification for personnel responsible
7	for walk-downs were not established.
8	Could you explain to me? I mean, because
9	we only heard the view of the inspector, and I think
10	it would be good for the committee to hear your view.
11	MR. YOUNG: Okay. Yes, we wrote a
12	condition report on that item and took some corrective
13	action. It turns out that there was a
14	misunderstanding about when to start. This was
15	associated with a program that has just started about
16	a little more than five years ago, and at that time,
17	the engineers that were involved thought a baseline
18	had been done, and they were waiting to do the five-
19	year inspection, but as it turns out when they went
20	back to pull the records that there were no records of
21	the baseline.
22	There has been some inspections, but not
23	a full baseline. So we wrote a condition report to
24	get that taken care of.
25	The qualification issue dealt with the
I	I

(202) 234-4433

ĺ	26
1	fact that we were requiring that a civil engineer do
2	the walk-downs, but we hadn't documented that in our
3	procedure to say that there was an actual requirement
4	for that person. It just said an inspection would be
5	done.
б	So, again, we revised the corrective
7	action was to revise the instruction to specifically
8	say what the qualification was for the person doing
9	the inspection.
10	DR. BONACA: Yeah. Now, this problem is
11	identified by the inspector.
12	MR. YOUNG: Yes.
13	DR. BONACA: Okay.
14	MR. YOUNG: Yes, during the audit, I
15	believe. I think that's
16	DR. BONACA: The reason why I asked is
17	that although now has been, you know, they did the
18	2004 report on the ROP, identified what they call a
19	substantive cross-cutting issue concerning problem
20	identification or resolution, and I was wondering if
21	this was one of the problems there
22	MR. YOUNG: I don't believe this
23	particular one was because that issue had to do with
24	some other corrective action. You know, I think one,
25	in particular, that hadn't been even documented in the
	I

(202) 234-4433

	27
1	corrective action program.
2	DR. BONACA: Yeah.
3	MR. YOUNG: I don't believe this was one
4	of those, although it certainly could have been.
5	DR. BONACA: Yeah. We asked these
6	questions about PI&R because I think it's a critical
7	program
8	MR. YOUNG: Yes.
9	DR. BONACA: to report to the extended
10	operation.
11	MR. YOUNG: Absolutely.
12	DR. BONACA: It is not one of the license
13	renewal programs, but is really the backbone of all
14	license renewals.
15	MR. YOUNG: Well, actually we included the
16	corrective action program as one of our aging
17	management programs. So we do take credit for it, and
18	you're right. It's probably the most important
19	because it's the one that catches new things that
20	might come up that we don't specifically already have
21	targeted, and things like service water, if we find a
22	leak that's outside the bounds of our existing
23	inspection program, then it becomes part of our
24	corrective action program.
25	DR. BONACA: Thank you.
ļ	I

(202) 234-4433

	28
1	DR. POWERS: You've explained how you
2	corrected the specific issues, but the genesis of
3	these issues are things like you said:
4	miscommunications, confusion, inadequate records,
5	things like that. How do you make sure this sort of
6	thing doesn't happen other places?
7	MR. YOUNG: Well, the overall corrective
8	action program includes a lot of independent
9	assessment of the trending and tracking, as well as
10	looking at other areas of record keeping in the plant,
11	and in fact, that was part of this issue that was
12	mentioned earlier.
13	And the resolution of that or the current
14	activities to address that have been to provide some
15	additional training to the people at the plant to
16	specifically call out these examples where the
17	corrective action process was not used correctly, and
18	basically to apply the lessons learned from the past.
19	Where did we make our mistakes and why, and what can
20	we do to improve that?
21	In addition, the plant management now has
22	regular meetings. I think it's on a weekly basis, to
23	look at the trending of the corrective actions, to
24	reinforce the expectation that any sort of issue at
25	the plant that's identified should be written up as a
I	I

(202) 234-4433

29 1 condition report so that we can then track and trend 2 and determine if there's an overall problem. 3 And then our QA department, in addition, 4 does periodic independent assessments to see if 5 there's some issues. So it's mostly just improving the visibility of the program to the plant personnel, 6 7 and then the management continuing to reinforce the expectations for writing condition reports. 8 9 And I think the region may have some 10 additional comments on that based on their inspections. 11 12 I hope so. DR. POWERS: They will. 13 DR. BONACA: 14 DR. POWERS: I'd like to hear what you have to say when the opportunity arises. 15 16 MR. YOUNG: Okay. 17 DR. SHACK: Just on the aging management program, one of the sort of unusual features that you 18 19 have is a nickel alloy cladding on your bottom head, 20 and I didn't really see any particular inspection 21 program for that. How is that actually treated? 22 Mark Rinckel from AREVA MR. YOUNG: Okay. 23 Framatome is our Class 1 mechanical expert. I hope 24 he's got an answer for us. 25 MR. RINCKEL: Yes. Mark Rinckel from

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	AREVA.
2	That was identified as nickel based alloy
3	that would be placed in the Alloy 600 inspection
4	program. So that's one of the items. Right now it
5	does receive visual examination when you pull the
6	internals out. So that's, you know, what you're doing
7	now.
8	DR. SHACK: But that's with VT-1, right?
9	MR. RINCKEL: VT-1, yes.
10	DR. SHACK: That isn't an enhanced VT-1 or
11	anything?
12	MR. RINCKEL: No, huh-un. That would be
13	a fallout of the Alloy 600 program and looking at that
14	particular item and seeing if it has high
15	susceptibility and risk and so on and so forth.
16	DR. SHACK: So that's a kind of remains to
17	be determined.
18	MR. RINCKEL: That remains to be
19	determined, un-huh.
20	CHAIRMAN WALLIS: And we also talk about
21	some other inspection commitments. There's the matter
22	of the shutdown heat exchanger tubes. There seemed to
23	be some problem. You can't use traditional eddy
24	current methods or there's some other method which
25	wasn't clear to me that's going to be used. What is
I	

(202) 234-4433

31 the method that's going to be used to inspect those 1 2 tubes? 3 MR. IVY: It's called remote field 4 testing. 5 CHAIRMAN WALLIS: Yeah, what does that mean? 6 7 MR. IVY: I'm not an expert on UT. The problem is that these tubes are made out of an E-BRITE 8 9 They're ferritic stainless. So traditional material. 10 eddy current techniques don't work. The FRT has been used in the industry, and I'm not real familiar with 11 12 exactly how they do it. This remote field 13 CHAIRMAN WALLIS: 14 testing? 15 It's a type of eddy MR. IVY: Yes. current, but it compensates somehow for the ferritic 16 17 portion of the stainless to where it doesn't throw the signal off. 18 19 CHAIRMAN WALLIS: And there's plenty of 20 experience with it? 21 Yes, there is. It has been used MR. IVY: 22 for quite a few years. 23 CHAIRMAN WALLIS: And then the other thing 24 is how do you inspect these flexible hoses that you 25 are going to inspect internally?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	32
1	MR. IVY: What we'll do with the hoses
2	besides doing a visual inspection externally and
3	internally is
4	CHAIRMAN WALLIS: How do you inspect them
5	internally?
6	MR. IVY: Depending on the size of the
7	hose and if it's fairly long you can either use a
8	probe to look down the inside of the hole to look for
9	any cracking. At the same time we'll also take the
10	hose loose and physically manipulate it to make sure
11	that it's still flexible and doesn't crack when we
12	move it. That's what our plan is right now. We may
13	end up doing some additional things besides that.
14	CHAIRMAN WALLIS: So you stick a probe up
15	in there, and if it's a very long hose, you have to
16	disconnect it and do something else?
17	MR. IVY: Yes, we would have to disconnect
18	it from the line, yes.
19	DR. POWERS: I'm dying to see the training
20	for somebody flexing the hose to see if it cracks.
21	MR. IVY: Well, as far as manipulation is
22	to make sure that it's flexible and that if you do
23	because most of the hoses, they sit there for a long
24	period of time, and they don't ever get moved around.
25	After you flex it, you would do the inspection to make
ļ	I

(202) 234-4433

	33
1	sure it did not crack as a result of that, which would
2	be an indication that
3	CHAIRMAN WALLIS: The aging process is a
4	sort of cracking of the outside or something?
5	MR. IVY: Or the outside or the inside.
6	CHAIRMAN WALLIS: Well, it will be
7	interesting to see if the calibrated works. And just
8	looking at it, too, I'm not sure how that's going to
9	work.
10	MR. IVY: Well, and the reason we put that
11	in there is because if you just pull the hose off and
12	look at it and if it hasn't been moved or touched for
13	years, you're probably not going to see anything, but
14	if you do if it has become brittle and you do flex
15	it, it is much more likely to crack at that point in
16	time to where you can actually visibly see the cracks.
17	DR. POWERS: One would think the
18	degradation would be very substantial by the time it
19	cracked in your hands.
20	DR. RANSOM: Are these periodic
21	inspections or are they one-time?
22	MR. IVY: These will be periodic.
23	DR. RANSOM: What kind of time interval?
24	MR. IVY: I don't think we haven't
25	specifically set one at the present time. What we'll
I	

(202) 234-4433

1 probably do is do these initial inspection, and based 2 on the overall condition if we do, of course, find 3 them cracked at that point in time, if we replace 4 them, we will have to do it much more either -- we may 5 actually even commit based on what we find or go ahead and decide to replace them periodically instead of 6 7 doing a visual inspection. If we find damage to them, 8 it's probably just easier to replace them on some 9 five-year frequency or eight or ten years, depending 10 on the age of the hose. Okay. And regarding the 15 11 MR. YOUNG: 12 programs that are still to be implemented, five of

them are enhancements, and we have draft procedure changes currently underway for those five. We have ten that are to be created prior to entering the period of extended operation, which is 2018, and our current schedule is to complete the implementation of these ten new programs prior to 2013, which is five years before the period of extended operation.

20 We have a work-off schedule in which we're 21 doing, you know, roughly one or two programs per year. 22 So it's kind of a linear progression between now and 23 2013, and the only programs that we're holding to the 24 end of that period are the ones that we're waiting for 25 results from such programs as the MRP to provide

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

34

	35
1	guidance or EPRI, which is working on some inspection
2	techniques for some of these programs which currently
3	we don't have as an industry. But all of the others
4	will be done earlier than the 2013 date.
5	Regarding the tracking of these
6	commitments, we have or have had, I should say, 1,500
7	commitments for ANO-2 tracked in our commitment
8	management system over the past ten years, which is an
9	average of about 150 commitments per year that we
10	normally deal with.
11	These 15 new commitments for ANO-2 will be
12	added to that program, and of course, using the raw
13	numbers here means there's slightly more than one per
14	year between now and the period of extended operation,
15	although we're actually working them off at a faster
16	or planning to work them off at a faster rate than
17	that.
18	But this was just to show that in our
19	commitment management system, we already have a very
20	large number of commitments that we routinely handle,
21	and we will just add these to that system.
22	The system itself, the commitment
23	management system, is routinely inspected by the NRC.
24	They have a procedure or guidance document, LIC-105,
25	which is where the inspection is done. The most
ļ	I

(202) 234-4433

	36
1	recent inspection and the only inspection that's been
2	done so far was in May of 2003, and the NRC came in
3	and audited our commitment management system and
4	concluded that it was working as expected, and the
5	commitments were being implemented on a timely basis.
6	So these commitments, these 15 will be
7	added to that system and will be subject to continuing
8	inspection, and I believe LIC-105 shows an inspection
9	frequency of every three years or something on that
10	order, and of course
11	DR. BONACA: A programmatic commitment may
12	include many different commitments.
13	MR. YOUNG: Oh, yes.
14	DR. BONACA: At the beginning I was
15	thinking, you know, in terms of individually 15, but
16	you'll have quite a workload.
17	MR. YOUNG: Well, the way we've got it
18	worked out because each one of the program owners is
19	responsible for implementing these new programs and
20	changes, and the workload on each individual owner is
21	fairly low. It's only like one or two program
22	changes, you know, over the next few years.
23	DR. BONACA: True, true.
24	MR. YOUNG: So at least from our view, and
25	I'm just talking about from the licensee viewpoint,
	I

(202) 234-4433

the workload is not very significant, and we've already given them all of the criteria that was committed to in the application and then has been revised and agreed to through the safety evaluation. So they have a pretty good handle on what needs to be done and when, and now they're in the process of working through that.

Okay, and in summary, I'd just like to say 8 9 that we're taking the appropriate actions for the safe, long-term operation of ANO-2 through both our 10 equipment upgrade efforts and through our aging 11 management programs, and regarding the commitment 12 management system, I think we're confident that we'll 13 14 insure the timely implementation of these new and 15 enhanced programs, and of course, as I mentioned, it will be subject to routine inspection as part of our 16 17 normal inspection process. So that's all I had on the presentation. 18

Are there any other questions or comments?

Okay. Thank you.

DR. BONACA: No question.

MR. YOUNG: Thank you very much.

DR. KUO: Thank you, and Greg Suber willbe making the staff presentation.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. SUBER: Good morning, everyone. Good

1

2

3

4

5

6

7

19

20

21

22

25

	38
1	morning, Chairman Wallis and members of the ACRS. I'd
2	like to thank you for this opportunity to speak on
3	license renewal for ANO-2.
4	My name is Gregory Suber, and I am the
5	Project Manager for the ANO-2 license renewal
6	application review.
7	I would like to briefly outline my
8	presentation so that you'll know where I'm heading.
9	I will begin with an overview of the major highlights
10	of the review.
11	The second portion of my presentation will
12	include a discussion of the regional inspections
13	followed by an overview of the safety review.
14	In the third portion, I will discuss
15	several current operating issues that are of interest
16	to the committee.
17	And I will end with a statement of the
18	staff's overall conclusion.
19	In a letter dated October 14th, 2003,
20	Entergy Operations, Incorporated, submitted an
21	application to review the operating license for the
22	ANO-1 Unit 2 reactor. The NRC staff performed a
23	safety evaluation in accordance with the rule and
24	issued an SER with no open items or confirmatory items
25	on November the 5th of 2004.
I	1

(202) 234-4433

	39
1	The staff issued the final SER on April
2	8th of 2005, and concluded that ANO-2 has met the
3	requirements of the rule.
4	As a result of the staff's review of the
5	LRA, the inspections performed by the region, several
6	components were brought into scope for license renewal
7	and some components that did not state aging effects
8	in the application the staff found aging effects
9	requiring management for those components. A few of
10	these components were added after the SER was issued
11	in November and will be discussed later.
12	CHAIRMAN WALLIS: Can I ask you about
13	scoping?
14	MR. SUBER: Yes, sir.
15	CHAIRMAN WALLIS: I noticed that the
16	primary and secondary moisture separation equipment of
17	the steam generator are called consumable items do not
18	support an intended function of the steam generator.
19	This must mean a safety function. I mean obviously
20	they have a function.
21	So PWRs have steam dryers and BWRs have
22	steam dryers, which have recently become in scope, the
23	cause of events with them, and it was concluded that
24	pieces of them might have some safety effect. Would
25	these PWR steam dryers come in scope some day if
ļ	

(202) 234-4433

	40
1	something were noticed about them? If there were
2	cracks in them or something? What's the difference?
3	MR. SUBER: Linda, can you address that
4	question, please? Okay. Excuse me. Mr. John Tsao is
5	going to come and address that question, please.
6	MR. TSAO: this is John Tsao from
7	Materials and Chemical Engineer Branch.
8	I review the steam generator portion of
9	the license renewal. So far the industry experience
10	has not shown any steam dryer in the PWR have any
11	cracking problem. So as of now it's not a part of the
12	license renewal.
13	DR. BONACA: Well, I think also, I mean,
14	we haven't seen yet very large power uprates in PWRs.
15	We have seen those in BWRs, and that's why, you know,
16	that justified our views that for Dresden and Quad
17	Cities, because of the large power up-rate and the new
18	behavior, I mean, then we have the event of the
19	cracking. And so we may see similar behavior if you
20	have power uprates of 20 percent.
21	CHAIRMAN WALLIS: With the Waterford power
22	uprate, we spent some time talking about these steam
23	dryers and what was the basis for the calculation and
24	so on.
25	Maybe this is a thing to watch in the
I	I

(202) 234-4433

	41
1	future.
2	MR. SIEBER: Well, I don't think it has
3	quite the same importance in a PWR as it does in a
4	BWR. You know, a boiler, for example, main steam
5	isolation is very important because that's isolating
б	whatever is going on in the reactor, including the
7	production of radionuclides from the environment.
8	In a PWR, the steam generators perform
9	that isolating function, and so the main steam
10	isolation valves are a back-up function, which is a
11	second barrier. So in my mind that's why PWR valves
12	are liable to close slower. They don't have the leak
13	tightness requirements that boilers have, and so
14	damage to a main steam isolation valve is not
15	necessarily a catastrophic event from a safety
16	standpoint.
17	DR. BONACA: But it still could. I mean,
18	if you had, you know, a failure of a steam dryer with
19	pieces blowing down the line, then maybe we will see
20	at that time, but
21	MR. SIEBER: Yeah.
22	DR. BONACA: I think you will have to
23	have a significant power uprate to see some effects of
24	that nature.
25	MR. SIEBER: Yeah.
ļ	I

	42
1	MR. ROSEN: Are the main steam isolation
2	valves in PWRs safety related components?
3	CHAIRMAN WALLIS: Yes, they are.
4	MR. SIEBER: Yes, they are.
5	MR. ROSEN: Well, then I think it's
6	premature to judge the degree to which it's important.
7	I mean, if they're safety related, interfered with as
8	the BWR valves, we'll have to be careful.
9	CHAIRMAN WALLIS: So should we conclude
10	that this is all right for the moment, but as soon as
11	someone finds cracks
12	DR. BONACA: They'll have to look at it.
13	CHAIRMAN WALLIS: in these devices,
14	then suddenly they will become safety related?
15	MR. ROSEN: They're already safety
16	related. That was the point.
17	CHAIRMAN WALLIS: The dryers are not.
18	MR. SIEBER: The dryers are not.
19	MR. ROSEN: So the dryers are not, but the
20	valves are.
21	CHAIRMAN WALLIS: As soon as there's any
22	evidence that they might break it will become safety
23	related?
24	MR. SIEBER: No, they won't.
25	CHAIRMAN WALLIS: They won't?
I	I

(202) 234-4433

	43
1	MR. SIEBER: No, but you may pay much more
2	attention to them.
3	CHAIRMAN WALLIS: Well, they did become
4	safety related in the BWR.
5	MR. SIEBER: No, they became within scope.
6	CHAIRMAN WALLIS: They come within scope.
7	I'm sorry. I'm sorry. Okay. So these dryers might
8	become in scope as soon as anything happened or was
9	noticed about them. Okay.
10	MR. SUBER: Which is why we monitor
11	operating experience.
12	DR. KUO: Well, Mr. Chairman, as a matter
13	of a process, in our response to HR's letter on
14	addressing the Quad Cities, if you all recall, we have
15	put in place a process that will require the power
16	uprate review later on. Any time we review power
17	uprate, we will review anything that is related to the
18	aging management program. It will be on top of
19	license renewal. Whatever will be affected will be
20	subject to aging management.
21	DR. BONACA: Yeah, that's the catchall,
22	and that's the important thing we did at that time,
23	was to ask them to perform an evaluation before
24	entering the license renewal period to determine
25	whether or not the experience at the uprate level

(202) 234-4433

	44
1	would justify some modifications to the commitments
2	for license renewal in May and depending on what we
3	see. So there is that opportunity.
4	MR. SUBER: Thank you.
5	To continue with the overview, one aging
6	management program was added as a result of the
7	staff's review. A one-time inspection will be used to
8	inspect the internal surfaces of A-2 components in
9	several auxiliary systems.
10	DR. BONACA: Before you move on, let me
11	ask you a question. You have the previous slide, and
12	you had a number of components added by different
13	means by the inspection.
14	MR. SUBER: Yes, sir.
15	DR. BONACA: What does it say about the
16	scoping process implemented by the licensee? I mean,
17	how were the components missed?
18	MR. SUBER: Right.
19	DR. BONACA: Because the reason I am
20	asking the question is that the staff only audits
21	you know, even the scoping doesn't look at everything.
22	So the question I would like to remind is that this is
23	the floor in the scoping methodology or is it purely
24	that some items were missed or is it lack of
25	understanding on some issues?
I	

(202) 234-4433

	45
1	I point out the power transmission
2	conductors. I mean that has to do with station
3	blackout.
4	MR. SUBER: Well, yes, it does. It has to
5	do with the alternate path for a station blackout.
6	What we concluded
7	DR. BONACA: I thought that issue was
8	already closed. I mean insofar as ISG being very
9	clear.
10	MR. SUBER: Yes, sir. Yes, sir, and what
11	we concluded was that some items were missed, but it
12	was not indicative of a flaw in their methodology as
13	stated in a license renewal application. Most of the
14	items that were added to scope were actually added
15	during the walk-down processes, and they were just
16	simply missed.
17	But the methodology that they described
18	and the methodology as it was implemented by the
19	applicant the staff approved of.
20	DR. BONACA: Okay.
21	MR. SUBER: So there were just simple
22	errors.
23	DR. BONACA: The question is when the
24	inspectors find a number of discrepancies and they
25	catch additional items to be put in scope, do they
	I

(202) 234-4433

	46
1	expand their inspection or do they simply stay, you
2	know, within the same or is the inspection
3	remaining the same as they have planned before?
4	Is there some criterion that you use?
5	MR. SUBER: I'll go ahead and let Rebecca
6	Nease or Mr. Jim Drake address that particular
7	concern.
8	MS. NEASE: My name is Rebecca Nease, and
9	I was a team leader for all three inspections, and Jim
10	Drake was a co-team leader for the first two.
11	This would be part of the scoping and
12	screening inspection, and when we choose what we're
13	going to inspect, we look at the performance of the
14	plant. We also look at the risk significance of the
15	systems we're going to walk down, and we choose the
16	scope of the inspection at that time.
17	Again, what Greg stated, I agree with what
18	Greg stated in that it looks like when we walked these
19	systems down, the process was right. It was there
20	were isolated human errors in that they just missed
21	some system interactions or when they walked something
22	down, they missed a little piece of it.
23	But we did not think that the scoping and
24	screening process was flawed.
25	DR. POWERS: Rebecca, we have this poor
I	1

	47
1	communication, human errors. I mean, it's sloppy.
2	MS. NEASE: Perhaps, perhaps. But, again,
3	the process, we didn't find anything in the scope that
4	we didn't put anything in the scope that was
5	DR. POWERS: What they need is something
6	to do things right.
7	MS. NEASE: Yes, sir.
8	DR. POWERS: I mean, what you're saying is
9	that they've got a good strategy. They just don't
10	carry it out well, and they seem to have a history
11	here.
12	MS. NEASE: Yes, sir, and again, isolated
13	human error though.
14	DR. POWERS: I mean, it's not. We've got
15	a history here. I've had a litany of these things all
16	morning.
17	MS. NEASE: Do you want to talk about your
18	QA program when you did your walk-down?
19	MR. YOUNG: Yes. The scoping that we did,
20	you k now, was very comprehensive and thorough. Some
21	of these items were issues where there was some
22	disagreement on the application of the methodology,
23	and in the discussions with the NRC staff, we agreed
24	with their position to make these changes.
25	But these are minor and relatively small
	I

(202) 234-4433

	48
1	number compared to the overall scope of the program.
2	DR. BONACA: Okay. So this was more like
3	different views on how the methodology should or
4	should not include
5	MR. YOUNG: Some of these some of these
6	there were a couple of these that were oversights
7	where we actually had a component that we had not
8	included in our application, that when we looked at it
9	again, we realized that it should have been.
10	There were a few though that were just
11	disagreements on the application of the methodology.
12	They were very isolated.
13	MR. SUBER: And if I could interject, the
14	components that were brought into scope were A-2
15	components. So they were not, you know, safety
16	related components. They were components, and there
17	probably is a gray area where we, the staff and the
18	applicant, may disagree as to whether that component
19	actually could affect the safety related component and
20	be brought into scope.
21	And what we did is we looked at their
22	methodology, and we had a discussion about making that
23	judgment, and the applicant agreed with our argument
24	in many cases. I'm sure in other cases they didn't,
25	but in many cases they agreed with the staff's
I	1

(202) 234-4433

	49
1	argument and the components were brought into scope.
2	DR. BONACA: The reason why I'm asking the
3	question is it's human that when you have thousands of
4	components and drawings and so on and so forth, you
5	may have something where you debate whether or not it
6	should be captured or not. I was asking about does
7	the stuff maintain a flexibility in its inspection
8	process to expand the process if there are doubts
9	about the thoroughness of the process.
10	MR. SUBER: Most definitely. In fact, in
11	our schedule we have usually allowed a spot for an
12	optional inspection in case during the inspection
13	things arise or open items arise and the staff feels
14	that they need to spend more time on a particular
15	issue.
16	We always have the option to conduct a
17	third inspection, and actually in the case of ANO-2
18	there was a third inspection conducted.
19	DR. APOSTOLAKIS: I understand how as a
20	result of a review an item can be brought into scope.
21	Can you explain to me how a regional inspection would
22	do that? What does the inspector see? What does the
23	inspection find that brings an item in scope?
24	MS. NEASE: This is Rebecca Nease again.
25	And in the scoping and screening
I	

(202) 234-4433

1 inspection, like I told you, we chose the scope of the 2 inspection, and most of what we found was maybe some 3 interaction issues in that you had a system whose 4 failure could affect a safety related component, and 5 in walking down the system, see those we can interactions very readily. 6 7 DR. APOSTOLAKIS: So these were primarily common locations of components or --8 9 MS. NEASE: Well, we walked down every --10 when we chose the system to walk down, we walked down the entire accessible portion of that system. 11 So anything that was accessible we did walk down. 12 DR. APOSTOLAKIS: No, but you were looking 13 14 for possible interactions. 15 We were looking for MS. NEASE: Yes. 16 possible interactions. We were also looking for age 17 related degradation, maybe some leaking and some corrosion, things of such nature. 18 19 SUBER: The big advantage to the MR. 20 regional inspections is that when the staff does a 21 technical review in house, everything is on the 22 drawing or stated in the license renewal application, 23 and it's hard to tell how -- make judgments on these 24 spatial interactions. 25 So it's really spatial DR. APOSTOLAKIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

50

51 1 interactions of your review? 2 SUBER: It's mostly spatial MR. 3 interactions, and in fact, the actual inspection 4 procedure has been revised to emphasize inspecting and 5 walking down special interactions for non-safety related components that may affect safety related 6 7 components. That's usually the emphasis of the 8 regional inspections. 9 DR. APOSTOLAKIS: Now, you mentioned 10 earlier, Rebecca, that you're looking at the risk important components, significant? 11 12 That's one of the inputs when MS. NEASE: choosing the systems we'd like to walk down. 13 14 DR. APOSTOLAKIS: And you do that by 15 choosing the PRA for the unit? MS. NEASE: Yes, sir, and there are a 16 17 number of things that we can use. We also look at the performance of the plant, and for instance we chose 18 19 fire protection system as one of our systems to walk 20 down because at the time they did have, you know, a 21 white finding from fire protection. 22 take into account So do current we 23 operating performance. 24 DR. APOSTOLAKIS: What is the core damage 25 frequency for this unit?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	52
1	(Pause.)
2	DR. APOSTOLAKIS: Come on. Don't tell me
3	you didn't expect this question.
4	MR. SUBER: Yes, we did.
5	DR. APOSTOLAKIS: You seem to be shocked.
6	MR. SUBER: No.
7	MR. YOUNG: The core damage frequency is
8	7.2 times ten to the minus six per year.
9	DR. APOSTOLAKIS: Six?
10	MR. YOUNG: yes.
11	CHAIRMAN WALLIS: Are you shocked now,
12	George?
13	DR. APOSTOLAKIS: Yes, I am.
14	(Laughter.)
15	DR. POWERS: Well, have no fear, George.
16	You did not get the total core damage frequency for
17	this plant.
18	DR. APOSTOLAKIS: You don't what?
19	DR. POWERS: You did not get the total
20	core damage frequency for this plant.
21	DR. APOSTOLAKIS: Is it internal events?
22	CHAIRMAN WALLIS: I don't know what it is.
23	Is it internal events only?
24	MR. YOUNG: Yes, I'm sorry. That was
25	internal events, yes.
ļ	1

	53
1	DR. POWERS: What about all of the other
2	ways you can damage cores?
3	MR. YOUNG: Yes, there's a number of other
4	ways, but those are the numbers that we have for
5	our
6	DR. APOSTOLAKIS: Well, the interesting
7	question is since the staff is focusing on spatial
8	interactions, I'm wondering whether the PRA itself has
9	those.
10	MR. YOUNG: Has spatial interactions?
11	DR. APOSTOLAKIS: Spatial interactions,
12	yeah. That would be the sign of a good quality PRA.
13	MR. YOUNG: I don't know the details of
14	our model. Sorry.
15	MR. ROSEN: Has the PRA been peer
16	reviewed?
17	MR. YOUNG: Yes.
18	DR. APOSTOLAKIS: Has gone through the NEI
19	process?
20	MR. YOUNG: Yes.
21	DR. POWERS: Still let me ask you a
22	question. This plant has got a white finding in fire
23	protection, which their fire CDF?
24	MR. YOUNG: This is the information I
25	have. The fire CDF is a factor of 12 higher than the
I	1

```
(202) 234-4433
```

	54
1	internal events CDF.
2	DR. POWERS: There you go, George.
3	MR. SIEBER: There you go.
4	DR. APOSTOLAKIS: Almost ten to the minus
5	five then, huh?
6	DR. SHACK: No, no, ten to the minus four.
7	DR. POWERS: Almost ten to the minus four.
8	DR. APOSTOLAKIS: Six was it?
9	DR. SHACK: Seven times ten to the
10	minus eight times ten to the minus six.
11	PARTICIPANT: It's almost ten to the minus
12	five with internal.
13	DR. SHACK: Twelve, eight.
14	DR. APOSTOLAKIS: Still below the goal.
15	CHAIRMAN WALLIS: Okay. On this subject,
16	I'm sorry to bring it up, but the words "isolated
17	human errors are not indicative of a full methodology"
18	are right from page 252 of your review, but in there
19	it doesn't state that this was corrected. I mean here
20	on your slide it says these components were added.
21	MR. SUBER: yes, sir.
22	CHAIRMAN WALLIS: But in reading your SER,
23	I didn't see that this was corrected. So maybe you
24	need to add a sentence that the error was corrected by
25	adding this into scope.
I	

	55
1	MR. SUBER: Okay. Yeah, it was discussed
2	in another place in the SER.
3	CHAIRMAN WALLIS: Another place?
4	MR. SUBER: Yes.
5	CHAIRMAN WALLIS: Oh, okay, but then how
6	would I know that I looked in the other place?
7	MR. SUBER: Okay. Maybe we can try to
8	clarify that.
9	DR. KUO: Just the one additional comment
10	on the spatial interaction. Because of lessons
11	learned, we realize the difficulties and the
12	challenges of the special interaction between systems.
13	In our recent self-assessment for the scoping and
14	screening, actually we have changed the other process,
15	and that we are now asking the region to do all the A-
16	2 review basically, for them to walk down the plant
17	and look at the spatial system interactions.
18	DR. APOSTOLAKIS: Does the licensee, as
19	part of the application, address this issue?
20	DR. KUO: No.
21	DR. APOSTOLAKIS: Spatial interactions?
22	No?
23	DR. KUO: Well, we realize that the we
24	learn from our lessons in the previous reviews, okay?
25	We made this assessment, and the industry as a whole
	I

(202) 234-4433

	56
1	agreed to that.
2	DR. APOSTOLAKIS: I think I'm a little
3	confused now.
4	MR. SUBER: I think Mr. Bill Rogers wants
5	to clarify.
6	MR. ROGERS: Hi. I'm Bill Rogers from
7	Division of Inspection Program Management.
8	I just want to address the question about
9	his A-2 addressed in the application, the spatial
10	interaction portion. Yes, it is. I led the scoping
11	and screening methodology audit, and during that audit
12	we discuss the various attributes of A-2, and one of
13	those is spatial interaction. It's a lengthy
14	discussion, and it is addressed during that portion.
15	So it's addressed in the methodology audit. It's also
16	addressed in the regional inspections. So it is
17	covered by
18	DR. APOSTOLAKIS: So you're just doing it
19	to confirm what the licensee is saying and maybe find
20	additional issues that you may want to debate with
21	them. That's really what happens.
22	MR. ROGERS: What we do, sir, is we look
23	at the methodology, what's written in the application.
24	We go further than that. We look at the implementing
25	procedures and have a fairly lengthy discussions on
I	1

(202) 234-4433

	57
1	this topic with the applicant during the audit. Often
2	this is an area where there as you know, this is
3	an area that's been developing over the years. You
4	know, our position has been one of interacting with
5	the applicants to determine what we feel is, you know,
б	the adequate scope in this area.
7	So during the audit we have our
8	interaction. We will occasionally have RAIs in these
9	areas, and the applicant has let me speak in
10	general for the moment.
11	The applicants have, in general, in the
12	past have done some additional reviews in the area of
13	A-2, as you have seen, you know, with the RAIs that
14	we've issued and they've responded to. This is a very
15	active area that we follow up in.
16	DR. APOSTOLAKIS: Okay. Thank you.
17	MR. ROGERS: You're welcome.
18	DR. APOSTOLAKIS: The first report on
19	system interactions, by the way, was issued what, in
20	1978 by a group at Sandia? It was the pioneering
21	group. Remember Jack who had the
22	PARTICIPANT: Hickman?
23	DR. APOSTOLAKIS: Hickman, Jack Hickman,
24	yeah. And I think it was because of the ACRS that he
25	did.
l	

(202) 234-4433

	58
1	MR. SUBER: And listed on these slides are
2	the dates for the regional inspections.
3	Next slide, please.
4	CHAIRMAN WALLIS: How did the inspectors
5	satisfy themselves that this method of looking at a
6	flexible hose and flexing it was an adequate way to
7	figure out if it required replacement or not?
8	This is number 11 of the commitments in
9	the Appendix A, and I just was curious about why the
10	staff accepted this method of inspection of flexible
11	hoses. Maybe it just went right by you.
12	MR. SUBER: I believe Rebecca Nease.
13	MS. NEASE: This is Rebecca Nease again.
14	We did not choose that inspection for our to
15	inspect. We have to inspect on a sampling basis, and
16	we didn't choose that. I can't speak for the staff.
17	MR. SUBER: Is Mr. McNally?
18	MR. McNALLY: This is Rich McNally from
19	EMEB.
20	And we felt that the flexing of hoses
21	externally and looking for cracks at a frequency of
22	every five years would be appropriate for that.
23	There's not really an established industry criteria
24	for inspection of flex hoses. Primarily you'd get
25	degradation externally that would be detected by a
ļ	I

(202) 234-4433

	59
1	close visual inspection.
2	If the internal had a different
3	environment, then removing the flex hose and looking
4	at it internally would be appropriate. We also felt
5	like flex hoses would probably be a component that
6	would be periodically replaced, you know, once it was
7	removed.
8	CHAIRMAN WALLIS: So you felt this. This
9	means it was essentially a judgment.
10	MR. McNALLY: Yes.
11	DR. POWERS: Were the flexible hoses made
12	with a Dupont plastic?
13	MR. McNALLY: It's made from various
14	elastomers. Could be rubber, could be neoprene, could
15	be other elastomer materials. Some of those are
16	susceptible to degradation through UV exposure or
17	exposure
18	DR. POWERS: Oxidation.
19	MR. McNALLY: to oxidation from ozone.
20	MR. SIEBER: That's like cobalt.
21	DR. POWERS: These things thermally
22	degrade exposed to oxygen whether there's ozone
23	present or not.
24	MR. McNALLY: Right.
25	DR. POWERS: I just wondered what the

	60
1	manufacturer would say about inspecting his hoses by
2	the "flex and look" method.
3	MR. McNALLY: Well, i think there are some
4	manufacturer recommendations in that regard to do
5	inspections. This is common in the aircraft industry
б	as well, but traditionally these hoses are not going
7	to last for 60 years.
8	DR. DENNING: I don't have a feeling for
9	the safety significance of hoses. Are there places
10	where there's a high safety significance that we ought
11	to be worrying about?
12	MR. McNALLY: Well, I would say if the
13	hose failed entirely that would be highly safety
14	significant. If it's a crack that would be developed
15	where you could detect the leakage or weepage through
16	it, through a walk-down, then that would not be highly
17	safety significant.
18	There are some that's used in fuel oil
19	systems. They're used in diesel generator air
20	intakes, wherever you have vibration you'd use a flex
21	hose.
22	DR. DENNING: Now, wouldn't these things
23	be part of a preventive maintenance program or not?
24	MR. McNALLY: That's true as well, and
25	that's why traditionally a five-year inspection
l	I

(202) 234-4433

	61
1	program based on preventive maintenance should be
2	adequate to detect degradation in hoses.
3	DR. BONACA: But it's interesting that by
4	definition you're looking at long-lived passive
5	components. Would you consider a hose a long-lived
6	passive component?
7	MR. McNALLY: I would not, but the
8	applicant has an option of including these into their
9	program and doing appropriate inspections and
10	replacing them as the need arises.
11	MR. SIEBER: It could be long-lived.
12	DR. BONACA: So unless you have a plan to
13	well, I guess I understand what they're doing.
14	Okay.
15	MR. McNALLY: Yeah, I mean, I would urge
16	industry to consider these for periodic replacement
17	and not consider them long-lived passive components.
18	DR. POWERS: Let me come back to the five-
19	year interval. It seems to me that the agency spent
20	a substantial amount of money to look at the
21	degradation of polymeric materials in a variety of
22	environments and found there was a synergism between
23	the temperatures and the oxygen in the atmosphere, and
24	even the radiation dose that they were subjected to.
25	There was nothing linear about this, that it was, in
	I

(202) 234-4433

	62
1	fact, nonlinear.
2	When you set your five-year interval, did
3	you consider that synergistic effect.
4	MR. McNALLY: Well, in general, these are
5	not used in the high radiation areas. They'd be used
6	where oxidation could be a concern or where chemical
7	for the particular application would be a concern, and
8	we didn't look at the specific materials that were
9	used in each of these applications. That would be
10	something that would be more likely done at the site
11	review.
12	But we felt that in general these hoses
13	are good for a minimum of five years. Usually the
14	shelf life for these things are ten to 15.
15	DR. POWERS: Maybe you don't understand
16	what I'm asking here. What I'm asking you is did you
17	look at anything quantitative to set this five-year
18	limit, including the fact the aging effects may not be
19	linear, because of synergism between the various aging
20	processes, or was this just a wild guess or one based
21	on the shelf life, which I can't imagine has any
22	relationship to the aging rate in service at all.
23	MR. McNALLY: Well, shelf life is just a
24	demonstration that the material in an air environment
25	would be expected to last ten to 15 years, but that's
	I

(202) 234-4433

	63
1	under controlled conditions. We didn't look at any
2	nonlinear relationships. We just felt like in general
3	experience for various elastomers, five years would be
4	a reasonable amount of time to expect their life.
5	DR. POWERS: It's pretty clear that the
6	agency probably wastes its money on the research
7	because we can avoid getting involved in these
8	complicated synergistic studies by just asking people
9	what's reasonable
10	MR. SIEBER: There you go.
11	CHAIRMAN WALLIS: Well, you could put it
12	the other way around, that just asking people what's
13	reasonable is the inappropriate approach, that one
14	should use the results of the study.
15	DR. POWERS: One might think that.
16	MR. McNALLY: I mean staff is collecting
17	industry data on elastomers that we will use.
18	DR. POWERS: This is research that the
19	agency sponsored itself as part of the aging program.
20	MR. SUBER: Thanks, Mr. McNally.
21	Here we have the results of the
22	inspections. Any item that remained open for the
23	scoping and screening and the AMR inspection was
24	closed on the final inspection that we called an open
25	item inspection that was performed on February the
I	I

(202) 234-4433

	64
1	17th.
2	And as a result of that inspection, all
3	unresolved inspection issues were dispositioned.
4	Okay. Now I'll give an overview of the
5	SER. As previously stated, components were added to
6	the scope of license renewal by the staff's review and
7	as a result of regional inspections.
8	Subsequent to the issuance of the SER in
9	November of 2004, two groups of components were added.
10	The first was a group of A-2 components that were
11	added to the review as a result of the clarified
12	response to a question on the applicant's scoping and
13	screening methodology.
14	The second was a number of spare parts
15	that were stored in a warehouse and used for hot
16	shutdown repair after fire in a fire protection
17	scenario.
18	On to the overview for Section 3. Also in
19	response to the regional inspection, the applicant
20	added a commitment for the non-EQ inaccessible medium
21	voltage cables, to include testing of all inaccessible
22	cables, in addition to any measures taken to prevent
23	exposure to significant moisture.
24	The applicant expanded its commitment for
25	buried piping to include an inspection within ten
I	1

(202) 234-4433

ĺ	65
1	years after entering the period of extended operation
2	and took an option to credit any opportunistic
3	inspection occurring within that time frame.
4	DR. APOSTOLAKIS: Okay. So they have
5	agreed to the change.
6	MR. SUBER: Yes, sir, they've agreed to
7	the new change involved.
8	DR. BONACA: Looking at the previous
9	statement you made of a non-EQ, inaccessible, medium
10	voltage cables.
11	MR. SUBER: Yes, sir.
12	DR. BONACA: Have they specified? They
13	haven't specified yet the way they're going to test
14	these cables, right?
15	MR. SUBER: No, I don't believe they've
16	actually developed the methodology for testing the
17	cables.
18	DR. BONACA: But that's good. They
19	committed to test them all.
20	MR. SUBER: Test them all, yes, sir.
21	CHAIRMAN WALLIS: I'm a bit puzzled by
22	this. I'm sorry. This business of excavating varied
23	components, what you said doesn't seem consistent with
24	the SER where it stated that excavating such
25	components solely to perform inspections could pose
I	1

(202) 234-4433

	66
1	undue risk of damage to protective coatings.
2	And so it's not proposed to excavate
3	components to perform inspections.
4	MR. SUBER: Yes. Their commitment, they
5	initially had a commitment only to perform
6	opportunistic inspections. They subsequently expanded
7	that commitment to inspect within ten years of the
8	extended period of operations.
9	CHAIRMAN WALLIS: So maybe I misunderstood
10	the SER. Maybe there was something in there which has
11	been superseded by something later?
12	MR. SUBER: Yes, it's superseded by the
13	commitment that was added.
14	DR. BONACA: Yeah, that statement is
15	identical to the one we had in December where they
16	essentially said, "We're not going to do any
17	inspection unless we have an opportunistic."
18	And now they have accepted to do a ten-
19	year inspection in case they have not performed before
20	some opportunistic, but my understanding is that there
21	is frequent digging down there. I mean, these
22	opportunistic inspections occur.
23	MR. SUBER: Yes, and during the review,
24	that was one of the reasons the staff accepted their
25	position initially is because they did have a history
Į	I

(202) 234-4433

1 of excavating this piping, and they also had good 2 documentation for when those opportunistic inspections 3 occurred and the state of the coating during those 4 digs.

5 Okay. As demonstrated by the data on this slide, the below ground environment at ANO-2 is not 6 7 aggressive. However, the applicant uses a combination of opportunistic inspections and periodic inspections 8 9 concrete in the service bay to monitor of the 10 condition of inaccessible concrete exposed to groundwater, and that's also a commitment. 11

12 For an overview of Section 4, during the December 1 meeting an issue was raised concerning the 13 14 applicant's of 48 EFPY for the reactor vessel TLAAs. 15 The staff performed an additional calculation using 54 EFPY and found that the applicant met the acceptance 16 17 criteria for the upper shelf energy -- the next slide -- and the applicant also met the screening criteria 18 19 for PTS.

20 MR. ROSEN: And it's my understanding that 21 all future applicants will use the 54 EFPY. 22 DR. KUO: That is correct, Dr. Rosen. 23 DR. BONACA: Although I believe the next 24 one coming, which is D.C. Cook, also used 48, right? 25 DR. KUO: I'm sure they will have the data

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	for 54, too.
2	DR. BONACA: Okay. The option they have
3	is also, you know, rather than just to come down in
4	capacity factor, which they
5	(Laughter.)
6	DR. BONACA: which they won't do, but
7	you know, that's why I think it's important to stay
8	with 54 in all these plants.
9	MR. SIEBER: That are running at 80
10	percent power.
11	MR. SUBER: For the Alloy 600 nozzle
12	repair TLAA, the applicant stated in the staff's
13	review determined that fatigue
14	MR. ROSEN: Did you skip the prior slide?
15	MR. SUBER: No, sir. The prior slide was
16	just a statement of the PTS.
17	MR. ROSEN: All right.
18	MR. SUBER: Which also showed that the
19	applicant met the screening criteria.
20	CHAIRMAN WALLIS: By a huge margin for 54.
21	MR. SUBER: Yes, sir.
22	MR. ROSEN: But they also did it at 54.
23	MR. SUBER: Yes.
24	DR. BONACA: Now, this is the repair that
25	took place in 2000.
I	

```
(202) 234-4433
```

	69
1	MR. SUBER: Yes, sir.
2	DR. BONACA: Okay. There were several
3	nozzles that had to be repaired.
4	MR. SUBER: Yes, sir.
5	DR. BONACA: And they did the half
6	MR. SUBER: They did the half nozzle
7	repair, yes, sir.
8	DR. BONACA: And so the concern here is
9	for those incipient cracks that may remain under the
10	repair.
11	MR. SUBER: Yes, sir.
12	DR. BONACA: Okay. And so this is very
13	plant specific.
14	MR. SUBER: It is very plant specific,
15	correct, and as I stated, the staff determined the
16	same as the applicant that the fatigue crack growth
17	analysis remains valid through the period of extended
18	operation.
19	DR. BONACA: Have we seen this similar
20	cracking issues for other Combustion Engineering
21	pressurizers?
22	MR. SUBER: Mr. Medoff?
23	DR. KUO: Let me ask some of the Material
24	staff.
25	MR. MEDOFF: This is Jim Medoff with the
l	

(202) 234-4433

	70
1	Material staff.
2	There are a number of occurrences of CE
3	facilities having cracks in their nickel alloy partial
4	penetration valves, and they've been submitting relief
5	requests for mechanical nozzle seal assembles or half
6	nozzle repairs.
7	There have been topical reports submitted
8	on behalf of the industry, and the staff just issued
9	its SE on the latest advise report, which I think is
10	WCAP-15673. So the aging mechanisms are addressed in
11	the staff's SE of the topical report.
12	DR. KUO: Okay. Thank you.
13	MR. SUBER: Now I'll move on to the third
14	part of my presentation, which deals with the
15	performance summary. I would like to take a moment to
16	touch on a few issues that are of interest to the
17	committee.
18	In March of 2004, at the end of cycle
19	assessment, a substantive cross-cutting issue was
20	identified in the area of problem identification and
21	resolution. Inspection findings were indicative of
22	implementation problems in the following areas:
23	identifying and entering problems in the corrective
24	action program; prioritizing and evaluating
25	conditions; and implementing effective corrective
I	

(202) 234-4433

	71
1	actions.
2	In March of 2004, a significant
3	determination of white was made for a finding that was
4	identified during the triennial fire protection
5	inspection in June of 2001. The finding involved the
6	use of manual actions to operate equipment necessary
7	to achieve and maintain hot shutdown in the event of
8	fire in selective fire zones.
9	As a result, ANO-2, well, actually the
10	entire ANO facility entered the regulatory response
11	column of the action matrix.
12	In March of 2005, the substantive cross-
13	cutting issue was closed and the applicant returned to
14	the license response column of the action matrix.
15	DR. BONACA: So this is just yeah,
16	okay. I haven't seen the document that reports this
17	closure, but it has been closed?
18	MR. SUBER: Yes, sir. It was closed at
19	the end of cycle assessment.
20	DR. BONACA: So an inspection has been
21	conducted focused on this issue.
22	MR. SUBER: Yes, sir.
23	DR. BONACA: And they have determined that
24	the corrective actions implemented to correct the PI&R
25	have been effective?
l	I

(202) 234-4433

	72
1	MR. SUBER: Yes, they have. In fact, if
2	you go to the next slide
3	MR. ROSEN: One moment. They closed both
4	the fire protection one or not?
5	MR. SUBER: yes. The white finding
6	associated with the fire protection issue was closed,
7	and the substantive cross-cutting issue was also
8	closed as a result of the supplemental inspection, the
9	IP-95001, and I think Ms. Linda Smith will give you a
10	little bit more information on that.
11	MS. SMITH: Good morning. I'm Linda
12	Smith. I'm the Branch Chief from Region IV. I'm here
13	really kind of for two reasons. One is my group is
14	responsible for the inspections of the license
15	renewal, and I also have programmatic responsibility
16	for the region, for implementation of the problem
17	identification and resolution inspections.
18	Okay. If we could go back a slide, Greg.
19	Okay. I'm going to separate them out and
20	talk about the substantive cross-cutting issue first,
21	and then I'll talk about the white finding.
22	The substantive cross-cutting issue was
23	opened in March of 2004. There were problems with
24	identification and also for prioritization and
25	evaluation, and it was fairly substantial problems,
	I

(202) 234-4433

	73
1	well, from a QA point of view.
2	One of the things, that they had done is
3	they had changed their definition of what type of
4	corrective actions needed to be in the program. So
5	they weren't identifying everything they really needed
б	to.
7	So what happened was they put in some good
8	corrective actions in place, and we've even verified
9	that now. We've had two things happen. We've had an
10	end of cycle meeting where we've reviewed the results,
11	the current performance, and what they do in the end
12	of cycle meetings in the current performance is they
13	look at all of the different issues that have come up
14	during the cycle and if they start to see trends where
15	people aren't following through and doing all of the
16	problem identification and resolution, they would
17	identify one, and they use that same system to close
18	a substantive cross-cutting issue.
19	What they say is, "We no longer meet the
20	entry conditions for a substantive cross-cutting issue
21	because now the performance is improved, and so they
22	close it, and that's how you close a substantive
23	cross-cutting issue.
24	DR. BONACA: Would you have a follow-up
25	inspection later on to verify that the cure has been
I	I

(202) 234-4433

	74
1	effective in the long term?
2	MS. SMITH: Yes. We have a routine
3	inspection that's done every two years, and not really
4	so much by design but by how it just turned out. We
5	just recently completed that inspection, and the
6	results were much better. They had on the order of
7	7,000 condition reports had been identified, and it
8	was like 30 or 40 percent more than the year before.
9	DR. BONACA: That is for both units?
10	MS. SMITH: Yes. It's a common
11	inspection.
12	MR. ROSEN: Is that a per year number?
13	MS. SMITH: Pardon?
14	MR. ROSEN: Is that a per year number,
15	7,000?
16	MS. SMITH: Yes, and so what they're
17	really
18	MR. ROSEN: Excuse me. For two units,
19	7,000 for two units?
20	MS. SMITH: Right, right. And so that's
21	a high number. That means they're really doing a good
22	job of putting things into the system now and working
23	through things. They still had some problems with
24	prioritization and evaluation, but not so much as to
25	not be able to say it was an improvement. I mean,
	I

(202) 234-4433

	75
1	there's work to be done, you know, but I think you can
2	say that of most facilities.
3	Any more questions about the substantive
4	cross-cutting issue?
5	Okay, and the fire protection issue, the
6	second one, we had this where we entered the response
7	band because of the white finding. Then we did do the
8	follow-up inspection that Gregory was talking about,
9	the 95001 to confirm that they were okay there.
10	We did confirm their immediate and their
11	intermediate corrective actions were good, and we
12	reviewed their plan for doing pretty much a reanalysis
13	of their program, and it looks like they're on track
14	to do that.
15	Any other questions?
16	Okay. Thanks.
17	MR. SUBER: All right, and if I could,
18	I'll close with some excerpts from the biennial PI&R
19	inspection, which as you see was just completed and
20	released.
21	The inspection noted that the overall
22	effectiveness of the applicant's corrective action
23	program had shown significant progress and improvement
24	in the last six to nine months. Specifically, the
25	report concluded that the applicant's processes to
I	1

(202) 234-4433

	76
1	identify, prioritize, evaluate, and correct problems
2	were effective, and that an adequate safety conscious
3	work environment existed at the facility.
4	DR. BONACA: You know, I don't question.
5	I'm pleased to hear this because clearly PI&R is so
б	important to license renewal, but six to nine months
7	seems to be a very short time to assess such a change,
8	you know, when you have a statement of substantive
9	problems.
10	So I imagine that you will have some
11	follow-up inspection as I was talking about to verify
12	that, in fact.
13	MS. SMITH: Yes, we actually are always
14	following up every six months. We either have an end
15	of cycle or a middle of cycle, depending on which it
16	is, reassessment of what the performance is. So
17	that's a continuing, ongoing program.
18	And in addition to that, we have every two
19	years the problem identification and resolution
20	inspection. So we feel like it's bounded.
21	DR. BONACA: Thank you.
22	MR. SUBER: So in conclusion, the staff
23	has determined that ANO-2 has met the NRC requirements
24	for license renewal.
25	This concludes the staff's formal
I	I

(202) 234-4433

	77
1	presentation, and I thank you for your attention.
2	DR. BONACA: I thank you for your
3	presentation. I think it was well organized.
4	Any questions from members?
5	If none, thank you again for your
6	presentation, and I'll turn it over to you, Mr.
7	Chairman.
8	CHAIRMAN WALLIS: Thank you very much.
9	I'd like to thank the presenters and the
10	committee for keeping us almost exactly on time.
11	Doubtless we will continue this throughout the day.
12	We will take a break until 10:15.
13	(Whereupon, the foregoing matter went off
14	the record at 9:58 a.m. and went back on
15	the record at 10:17 a.m.)
16	CHAIRMAN WALLIS: Let's come back into
17	session.
18	We're now going to hear about revisions to
19	the standard review plan. I'd ask my colleague, Steve
20	Rosen, to lead us through this one, please.
21	MR. ROSEN: Sure. Thank you, Dr. Wallis.
22	The current requirements for control room
23	staffing are contained primarily in Title 10 CFR
24	5054(m), the introduction of advanced reactor designs,
25	and the increased use of advanced automation
ļ	I

(202) 234-4433

technologies in existing nuclear power plants will 2 likely change the roles and responsibilities and 3 composition and sizes of the crews required to control 4 plant operations.

5 The current regulations regarding control room staffing which are based on the concept of 6 7 operations for existing lightwater reactors may no 8 longer apply. So applicants for an operating license for an advanced reactor and current licensees who have 9 made significant changes to existing control rooms 10 will need to submit applications for exemptions to the 11 current staffing requirements, which are in 10 CFR 12 5054(m), as I've said. 13

14 To prepare for this, the staff has drafted a revision to the standard review plan, Chapter 13.1.2 15 to 13.1.3, which is called "Operating Organization," 16 and that revision to the SRP refers to guidance in the 17 new NUREG, NUREG-1791, for guidance for assessing 18 19 exemption requests.

And the staff is here to talk to us about 20 21 that NUREG-1791, which is really where the substance 22 is, and I'll turn it over to Jim Bongarra to lead the 23 discussion.

24 MR. BONGARRA: Before I begin, Mr. Rosen, 25 I think my Branch Chief Pat Hiland has a word or two

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	79
1	that he would like to make, if that's
2	MR. ROSEN: Please.
3	MR. HILAND: Thank you, Jim.
4	My name is Pat Hiland, and by way of
5	introduction, this is my first ACRS presentation I've
6	attended. I just moved here in November. I have
7	spent the last 21 years in Region III in various
8	positions until I took over my new job as a Branch
9	Chief here in headquarters.
10	First of all, I'd like to thank the
11	committee for the time that they've set aside this
12	morning to listen to this presentation. I think
13	you'll find the topic very interesting.
14	This has been a joint effort by the part
15	of both NRR as well as research, and the main
16	presenters are Jim Bongarra, as you already have met,
17	as well as Ms. Autumn Szabo from the Office of
18	Research.
19	Sitting to my left is Mr. David Trimble.
20	He is the Section Chief within my branch over the
21	operator licensing who Mr. Bongarra works for, as well
22	as to my far left is Mr. J. Persensky, who is a human
23	factors specialist out of the Office of Research.
24	As you've heard
25	DR. APOSTOLAKIS: Who is not here for the
I	I

(202) 234-4433

	80
1	first time.
2	MR. HILAND: Okay. They may not be. I
3	saw a lot of handshaking, and everybody was probably
4	wondering who I was.
5	But anyway, I think you'll find the topic
6	interesting. The staff has gone through and done a
7	good job at revising the standard review plan, as well
8	as the associated guidance contained in the NUREG, and
9	our end result here is we're seeking the endorsement
10	of the committee for those revisions.
11	And thank you. with that I'll turn it
12	back to Jim.
13	MR. BONGARRA: Well, thank you, Pat.
14	Before I begin, I would just like to
15	briefly acknowledge several people really who have
16	contributed to this project in addition to Autumn
17	Szabo, who has been the Project Manager for this
18	effort.
19	We had three principal investigators for
20	this effort: Mr. Chris Plott, who is also in the
21	audience, from Micro Analysis and Design, and his
22	colleague, Tom Eng; and Dr. Valerie Barnes, who is
23	with the Performance, Safety and Health Associates.
24	These were the three principal investigators for
25	developing the newer reg.
	I

(202) 234-4433

81 1 And in addition, I'd also like to 2 acknowledge two other folks from my section who essentially participated in some early reviews off 3 4 drafts of 1791 and the standard review plan: Mr. Rick 5 Pelton and Ms. Clare Goodman. And also of course, J. Persensky, who is the senior advisor in Human Factors 6 7 in the Office of Research contributed as well. I hope 8 I haven't left anybody out. 9 MR. TRIMBLE: Jimi Yerokun. 10 MR. BONGARRA: And Jimi. Thank you. Jimi Yerokun, who is the Section Chief in Research. 11 12 Thanks, Dave. 13 Meeting purpose. 14 DR. APOSTOLAKIS: It sounds like a pretty 15 big project, isn't it? All of these people involved. 16 MR. BONGARRA: A lot of management 17 oversight. DR. APOSTOLAKIS: What's the result? You 18 19 should have five -- anyway. 20 MR. BONGARRA: Okay. 21 DR. APOSTOLAKIS: Why is it so big? There were a number of project 22 MS. SZABO: 23 products that actually were generated as a result of this effort. 24 25 DR. APOSTOLAKIS: I'm sure they were.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	MR. PERSENSKY: Plus this has also taken
2	some time. So some of the people had roles earlier
3	on, but no longer have a role.
4	Actually Dick Eckenrode, you should have
5	mentioned him, too.
6	MR. BONGARRA: Well, I didn't want to go
7	through the whole list of people, but they're in
8	the several acknowledgements, of course, are in the
9	NUREG itself.
10	But moving on here, we're here today to
11	ask the committee to endorse two documents basically
12	as Pat said. The first is a revision to Section
13	13.1.2 and 1.3, the operating organization of Chapter
14	13, Conduct of Operations of the standard review plan
15	for NRR, and a companion guidance document, NUREG-
16	1791, which is titled "Guidance for Assessing
17	Exemption Request from Nuclear Power Plants," licensed
18	operator staffing requirements that are specified in
19	10 CFR 5054(m).
20	I just mention that this NUREG is, indeed,
21	referenced by the revision to the standard review
22	plan. Dr. Apostolakis?
23	DR. APOSTOLAKIS: Why is it the NUREG?
24	Isn't guidance usually a reg. guide or something?
25	Still part of the standard review plan?
Į	I

(202) 234-4433

	83
1	MR. BONGARRA: Well, we're starting at
2	sort of a ground level, if you will, with developing
3	this guidance document, and typically what we have
4	done in Human Factors is to essentially develop our
5	guidance in the form of NUREGs as opposed to reg.
6	guides. That's just been a kind of mode of operation
7	that I think we've had over the past number of years.
8	I'm not saying that it's necessarily the
9	best one, and we've actually been talking about as an
10	aside possibly looking at elevating, if you will, the
11	guidance that we have in several of our NUREGs that
12	we've been using over the years into reg. guides or
13	some other document.
14	But for the moment, because of the nature
15	of this particular effort, we're looking at this as a
16	NUREG.
17	DR. APOSTOLAKIS: That's fine.
18	MR. BONGARRA: And as I say, it is
19	referenced in our standard review plan as guidance.
20	With regard to the agenda, we've got four
21	topics we'd like to cover this morning, and I'm going
22	to briefly cover the first three, and Autumn will
23	discuss essentially in detail NUREG 1791.
24	Let me just begin by providing a little
25	bit of background here in the form of defining
	I

(202) 234-4433

	84
1	essentially what we mean by staffing. As the slide
2	indicates, staffing in a broad sense refers to roles,
3	responsibilities, composition, and size of crews to
4	control the plant under all modes of operation.
5	Now, for purposes of our discussion today,
6	we're going to limit
7	DR. APOSTOLAKIS: I'm wondering really
8	I mean, obviously this is something that the agency
9	has been doing for a long time, right? Documenting
10	all these things. Is this really consistent with a
11	performance based regulatory system? I mean us
12	getting involved into what the roles should be, the
13	responsibilities, the qualifications?
14	What happened to performance based
15	regulation? Let them do it the best way they can, and
16	if the plant is functioning okay, why should I care
17	about the qualifications of the control room operator?
18	MR. BONGARRA: Well, I think we're at a
19	crossroads to some degree here. What I'm referring to
20	at the moment is essentially what the current
21	regulations are, essentially identifying for the
22	requirements, and it's certainly a possibility that
23	in the future that we may very well and that's
24	really what this whole issue is addressing, is the
25	case where applicants or licensees may very well be
ļ	1

(202) 234-4433

	85
1	taking exemptions to what essentially are very
2	prescriptive at the moment qualifications or
3	statements regarding staffing for controls rooms.
4	And I don't, you know, differ with you, I
5	guess, in that regard, but when you ask the question
6	why, I guess my answer is that's what we have had in
7	the regulation. The future will determine how we
8	proceed.
9	DR. APOSTOLAKIS: Another point. About 15
10	years ago, there was a study going on on safety
11	management, safety culture, all of that stuff,
12	organizational factors, and a former member of this
13	committee raised the issue of the qualifications of
14	senior management, and he was told in no uncertain
15	terms that this was something the agency would never
16	do, would never address.
17	Why are we addressing it for lower level
18	people, like the control room operators? So the vice
19	president is beyond regulation, whereas the control
20	room operator is?
21	MR. BONGARRA: I think this
22	DR. APOSTOLAKIS: Are we taking advantage
23	of the weak?
24	CHAIRMAN WALLIS: Well, George, the same
25	thing on this committee. You don't have to have any
ļ	I

(202) 234-4433

	86
1	real qualifications to be an ACRS member.
2	(Laughter.)
3	DR. APOSTOLAKIS: This is a true
4	observation for the time, but let's address this.
5	MR. ROSEN: Let's let them go on and we'll
6	keep those
7	DR. APOSTOLAKIS: No, I'm really curious.
8	MR. ROSEN: keep those questions in
9	mind.
10	DR. APOSTOLAKIS: Why is it a no-no
11	talking about the qualifications of a senior manager,
12	but it's okay to talk about the qualifications of
13	control room operators?
14	MR. ROSEN: We're looking at a regulatory
15	feature. It's in 10 CFR. What we're trying to deal
16	with is what's in 10 C
17	DR. APOSTOLAKIS: Ours is not to ask you
18	why.
19	MR. ROSEN: Well, I think we are about to
20	ask why, but we thought we might let them give them
21	a chance to give their
22	CHAIRMAN WALLIS: But it's kind of
23	improved, George.
24	MR. ROSEN: give their discussion.
25	DR. APOSTOLAKIS: This is what this
I	I

```
(202) 234-4433
```

	87
1	committee is all about.
2	CHAIRMAN WALLIS: It's going to improve,
3	George, because they're going to replace five
4	operators by four and one computer, and asking the
5	qualifications of the computer is not a very good
6	question. So they're going to replace it by a better
7	system.
8	DR. APOSTOLAKIS: I think it's unfair, but
9	anyway.
10	MR. BONGARRA: Well, I would be hard-
11	pressed, too, to follow up with Dr. Wallis' response,
12	too, about qualifications. So I'm just going to go
13	back into my
14	DR. POWERS: It's also useful to remind
15	Professor Apostolakis that life is unfair.
16	DR. APOSTOLAKIS: Yes. Now, this is the
17	best explanation that I've heard today.
18	(Laughter.)
19	MR. TRIMBLE: This is Dave Trimble, too,
20	Operator Licensing Section Chief.
21	And while we are talking about some
22	historical, you know, how we got here and questioning
23	whether it was perhaps the way we would go if we had
24	to do it all over again, there is a special interest,
25	too, in the operators in that they are licensed by the
l	I

(202) 234-4433

	88
1	staff and, therefore, going through that licensing
2	process, we have to have criteria and qualifications.
3	DR. POWERS: It is also true that on
4	occasions the agency has found upper management unfit
5	to serve in the operation of a nuclear facility, and
6	so it's not that they ignore them.
7	DR. APOSTOLAKIS: But it's not as formal
8	as this.
9	DR. POWERS: Well, I think if you get
10	banned, it seems pretty formal.
11	MR. PERSENSKY: J. Persensky from
12	Research.
13	The issue of other people, this project is
14	aimed particularly at the licensed operator. Fifty,
15	fifty-four (m) only talks about licensed operators.
16	As far as other people are concerned, there are other
17	ways of addressing them, and management is primarily
18	addressed right now in ANS 3.2, which is endorsed by
19	Reg. Guide 1.8.
20	So that there are some issues that we do
21	look at when it comes to other than the licensed
22	operators.
23	MR. BONGARRA: And that's, I think, a good
24	lead-in, if I may, to continue here stressing the fact
25	that, indeed, what we are looking at here are our
I	I

(202) 234-4433

	89
1	focus is on licensed operators, and again, that's not
2	to say that we're not concerned with the roles and
3	responsibilities and qualifications and composition
4	for plant staff, for example, outside the control
5	room. We're not saying that they're not important.
6	However, the focus of this particular
7	project and where we see the immediate needs being is
8	to essentially provide the staff with guidance with
9	regard to licensed operators and control room
10	staffing.
11	As we mentioned, I guess, earlier here,
12	the current regulation that governs control room
13	staffing is 10 CFR 5054(m), which specifies the
14	minimum requirements for on shift operators and senior
15	operators, and that's in the form of the table in the
16	regulation.
17	Essentially the regulation does, indeed,
18	prescribe the number of operators and senior operators
19	based on the number of units that are operating, the
20	number of units in a plant configuration, and the
21	number of control rooms per unit. As the slide
22	indicates, the current regulation is, indeed, as we've
23	said here, prescriptive in nature for both the numbers
24	and qualifications of licensed staff that are required
25	to be on shift.
I	I

(202) 234-4433

90 1 We also mention that the regulation does, 2 indeed, reflect essentially the philosophy we have had 3 over the years for lightwater reactors. Needless to 4 say, with the advent of new reactors and the NRC's 5 design certification process under 10 CFR 5052, I think the industry has made it very clear to us, the 6 7 staff, that the staffing requirements in 5054(m) may 8 very well not be applicable to new reactors. 9 For the staff's --10 DR. APOSTOLAKIS: By "new" you mean --11 MR. BONGARRA: Advanced plants --12 DR. APOSTOLAKIS: -- Gen IV? MR. BONGARRA: Well, Gen IV and --13 14 DR. APOSTOLAKIS: AP 1000? 15 MR. BONGARRA: -- the revolutionary or the 16 evolutionary and the revolutionary or passive 17 reactors. DR. APOSTOLAKIS: So even AP 1000? I see. 18 19 MR. BONGARRA: That entire group, if you 20 will, of what we used to call advanced reactors and 21 now I think the term is new reactors. 22 DR. APOSTOLAKIS: So from the staff's 23 experience with new plant design certification 24 reviews, essentially applicants for new plants are 25 considering various alternatives to especially

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	staffing of control rooms for these plants. We've
2	seen proposals that indicate control rooms for new
3	plants will quite likely be modular in design and
4	certainly highly automated.
5	The whole concept of control boards and
6	back panels as we know them today and analog
7	instrumentation and chart recorders that spew out
8	paper tables is a thing of the past essentially.
9	Digital instrumentation and compact work stations
10	essentially will become
11	CHAIRMAN WALLIS: You're talking about new
12	control rooms really rather than new reactors.
13	MR. BONGARRA: Well, in this case, we're
14	talking about new control rooms that would be
15	essentially a component of a new reactor.
16	CHAIRMAN WALLIS: Could your new
17	regulations apply to existing rectors with quite
18	different control rooms?
19	MR. BONGARRA: Yes, sir.
20	CHAIRMAN WALLIS: It could?
21	MR. BONGARRA: It could, indeed, and I
22	will make reference to that as well, but by all means.
23	As a matter of fact, I was going to mention that in
24	the sense that not only new plants, but there are
25	human system interfaces that are essentially changing
I	I

(202) 234-4433

	92
1	for current plants as well.
2	Back to your question, Dr. Wallis, in the
3	recent few years we've seen several operating reactors
4	who have been upgrading essentially their
5	instrumentation and controls from analog to digital
6	controls and displays. Now, in my opinion, anyway, I
7	don't think it's as likely to happen with an operating
8	reactor as it would be for a new reactor that a
9	licensee versus an applicant might come into the NRC
10	for essentially an exemption to 10 CFR 5054(m).
11	However, as you mention, that's certainly
12	not out of the realm of possibility. I might also
13	just mention as an aside here with regard to operating
14	plants and the upgrades that have been going on, there
15	has been a project as well, and I think well, I
16	know that Research and NRR have been involved to some
17	degree with it. It was a joint project between DOE
18	and EPRI to develop industry guidelines to essentially
19	help the industry to develop standards for and
20	criteria for upgrading their control rooms.
21	So that effort is certainly an ongoing
22	effort and something that has the industry's attention
23	as well as ours.
24	Well, with the advent of new technologies
25	and nuclear plant system design, incorporating passive
I	I

(202) 234-4433

(202) 234-4433

	93
1	safety features and in the use of digital
2	instrumentation and controls, the role of the nuclear
3	power plant operator will also undoubtedly change.
4	We've talked to the committee on several other
5	occasions, I think, about some of the possible ways
6	that the control room operator's function might
7	change, for example, from essentially a hands-on doer,
8	if you will, to more of a supervisor and a monitor of
9	plant critical safety parameters, for example, and how
10	it might also be possible in the future for perhaps
11	only one or two individuals to have responsibility for
12	operating more than one nuclear unit.
13	So these are some of the ideas, if you
14	will, that have been proposed, and I'm sure that there
15	are many others that might be proposed as well.
16	So with these influences in mind, the
17	staff several years ago realized that it will be
18	likely faced with challenges to current regulation in
19	10 CFR 5054, that is, to the staffing requirements for
20	control room operators.
21	So to that end, NRR asked research to
22	assist in helping the technical staff to address these
23	anticipated challenges to 5054(m). Essentially we
24	needed a regulatory tool that would be flexible enough
25	to allow us to effectively address a variety of
l	I

(202) 234-4433

	94
1	potential staffing configurations.
2	Now, I said anticipated challenges
3	because, and I want to make a point of that, because
4	essentially to date the staff has only seen
5	preliminary proposals for changes to control room
6	staffing from the experience we've had with design
7	certification reviews for new plants.
8	I might also add that in our design
9	certification of these new plants, AP 1000, AP 600, et
10	cetera, all of the applicants have essentially
11	committed to the current requirements in 10 CFR
12	5054(m).
13	The staffing requirement for certified
14	plant designs has been treated for all the
15	applications we've received as essentially a COL
16	action item. Basically, it's the decision of the
17	combined operating licensee or applicant to follow or
18	not the regulation in 10 CFR 5054, the requirements in
19	10 CFR 5054(m).
20	So that's why I'm emphasizing the fact
21	that it's anticipated. We have yet to receive any
22	real request for modifying to staffing requirements.
23	MR. ROSEN: I guess I don't understand
24	what you just said. You said it was a decision of the
25	licensee to follow or not 5054(m)?
I	

(202) 234-4433

	95
1	MR. BONGARRA: Yes.
2	MR. ROSEN: Well, what do you mean by the
3	"not"?
4	DR. POWERS: You know, you can always seek
5	an exemption.
6	MR. ROSEN: Oh, seek an exemption at some
7	point.
8	MR. BONGARRA: Seek an exemption, that's
9	right. I'm sorry. They have
10	MR. ROSEN: Either file or seek an
11	exemption.
12	MR. BONGARRA: Yes, exactly. I appreciate
13	the clarification.
14	With this said, and I guess kind of in
15	anticipation of a question that may come up later, and
16	I think Dr. Apostolakis already kind of hinted at it,
17	why did we choose to essentially revise the standard
18	review plan and develop a NUREG and not perhaps go to
19	a proposed rulemaking, and I think that's exactly it.
20	It's, wow, we felt basically that we're a little early
21	in this process to do that.
22	So this is really a first step, and if,
23	indeed, things change over time, I would assume that
24	the possibility is always there for perhaps modifying
25	the current regulation, but it's much too premature to
I	I

(202) 234-4433

	96
1	do that, at least in our thinking.
2	MR. ROSEN: "Supplement" I would choose to
3	use, would be the word rather than "modify," because
4	the existing regulation still applies to the whole
5	fleet, the existing fleet.
6	MR. BONGARRA: It does.
7	MR. ROSEN: So you'd have to supplement it
8	with something that says in case of something
9	different than what we have, then do this.
10	MR. BONGARRA: That's true.
11	MR. ROSEN: But you have to leave the
12	existing structure in place for the existing fleet.
13	MR. BONGARRA: That's correct.
14	This slide basically shows the NRC
15	references there are particularly relevant to the
16	topic of staffing. I'll just quickly mention the fact
17	that the last two documents that are displayed on this
18	slide, the NUREG CR-6838 and NUREG IA-137, are really
19	predecessor reports to NUREG 1791, and the project
20	team used these two documents really to build on on
21	preparing 1791.
22	NUREG-137, the study of control room
23	staffing levels, I believe, too, was briefed back in
24	2000 to the committee.
25	CHAIRMAN WALLIS: I'm intrigued by the
I	1

(202) 234-4433

	97
1	title. I'm sorry. It says here, "Technical Basis for
2	Regulatory Guidance." Because in reading your
3	regulatory guidance, it seemed to me it was almost
4	entirely qualitative, sort of a checklist of
5	qualitative questions, and I don't know how that
6	becomes a technical basis.
7	What do you mean by "technical basis"? A
8	"technical basis" to me means you've got some
9	quantitative evidence and some sort of analysis and so
10	on.
11	MR. ROSEN: Well, that's the 6838 document
12	and not
13	CHAIRMAN WALLIS: But that's referred to
14	in 391. I just wonder what you mean by a "technical
15	basis" because it seemed to me it was all sort of
16	qualitative questioning, checklist type stuff, and in
17	1791 I didn't see any technical stuff.
18	MR. BONGARRA: Well, I guess my
19	interpretation of "technical basis" in this case is
20	the fact that we did research to support the
21	fundamental criteria that we have in 1791. There are
22	bases, if you will, for the criteria.
23	For example, and I'll mention this again,
24	the criteria that are incorporated in 1791 are not
25	very much different from criteria that we've been
	I

(202) 234-4433

using right along for several years and that appear in our NUREG-0711, which is the human factors engineering program review model.

4 The concepts, the overall process has a 5 literature supported base to it, and in my opinion, that's what we're meaning by technical basis. 6 There's 7 also some evidence and more from the standpoint, I 8 think, of what was done in the study for NUREG-137 9 that actually had some case studies and experiments, 10 if you will, done to look at different staffing configurations and to determine what kinds of impacts 11 12 there would be in varying these staffing configurations on the control of a plant. 13

So that's my interpretation, sir, of what we mean by "technical basis." If anyone else has a comment that they would like to add onto that.

DR. POWERS: The fact that J. is sitting at your table here suggests I know the answer to this, but do you derive any benefit in establishing your technical bases from the studies that are done at the Halden reactor

22 MR. PERSENSKY: Well, if you look to IA-23 0137, you will find that, in fact, it was developed 24 based on studies at the Halden reactor where we, as 25 Jim mentioned, literally varied the number of staff.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

99 1 We varied the control room configuration. We varied 2 amount of automation and passivity of the the 3 responses. So --4 DR. POWERS: I wonder if that isn't the 5 technical basis that Professor Wallis was looking for. MR. PERSENSKY: That may be in part in the 6 7 sense that that did help to drive us towards the fact 8 that we should be using a more flexible approach 9 because of the results that we received. In NUREG CR-10 6838, part of what we were looking at, if you look at two very broad areas, one was to look at what is 11 12 coming downstream as far as what would we expect the various new reactors to look like. How would they 13 14 perform? What are the kinds of changes we should 15 expect? 16 So the basis there, though it is 17 qualitative, it was based on what should we be expecting and what are the kinds of changes from what 18 19 we have now on the street and what we would expect in 20 the future so we could be prepared for what's coming 21 downstream. 22 The other part of it how have other people 23 looked at staffing. From a human factors perspective, 24 there are many other industries and applications where 25 the issue of staffing has been addressed using various

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	techniques. So we were looking at techniques and
2	methods for addressing the issue of staffing.
3	For instance, the Navy has been looking at
4	reducing the number of people necessary to run a naval
5	ship by huge amounts, like 70 to 80 percent cuts in
6	staffing. So we looked at that as an analogy to
7	determine what methods they were using, what
8	approaches they were using.
9	So that's why though it may be more
10	qualitative, those were the bases for why we took the
11	approach we did.
12	DR. POWERS: J., I actually can't resist
13	asking this question, and you'd probably be
14	disappointed if I didn't. In your studies at the
15	Halden reactor, how does a Finnish operating crew on
16	a Norwegian reactor apply to the U.S.?
17	MR. PERSENSKY: Okay. This is deja vu all
18	over again, as we say.
19	(Laughter.)
20	MR. PERSENSKY: Let's get it straight
21	though again. They were Finnish operators operating
22	a simulator in Norway that is based on their own
23	Finnish plant. So the model for that particular
24	simulator is the Loviisa plant. The operators
25	DR. POWERS: Which is a Russian plant,
	I

(202) 234-4433

	101
1	right?
2	MR. PERSENSKY: Yeah. The operators were
3	Loviisa operators, and we collected data both at the
4	site from their on-site simulator, as well as at
5	Halden, because their on-site simulator is much more
6	like a standard plant, whereas the Halden simulator is
7	much more like what we might consider as an advanced
8	control room because it's a glass cockpit control
9	room.
10	And as far as their reactions, their
11	responses, the way they respond to an accident, I
12	would say is not a whole lot different than our
13	operators would in a U.S. situation, given many years
14	of observation of these types of experiments, we don't
15	see great differences in the way the operators
16	actually respond to the same kind of incident.
17	DR. POWERS: Have you ever done the one-
18	to-one comparison? Take the same accident at the
19	Halden simulator, look at your Finnish operators
20	working on it, then come do it at a comparable I
21	guess it would probably be like an ice condenser
22	plant, if anything else, and do the same there and see
23	if you see anything that's at all different.
24	MR. PERSENSKY: We've never done a formal
25	study to look at those differences.

(202) 234-4433

	102
1	DR. POWERS: Well, you and I have had this
2	debate before.
3	MR. PERSENSKY: Deja vu all over again.
4	CHAIRMAN WALLIS: Well, I asked this
5	question because when we get to the meat of this in
6	sort of Section 10 and 11, where you're actually
7	trying to apply criteria and make judgments and
8	decisions and determine acceptability, what I see is
9	criteria which very often say the methods should be
10	appropriate or reasonable or valid methods have been
11	identified.
12	But there's no indication of how a
13	reviewer would decide that something is appropriate or
14	reasonable or valid. Maybe there's a technical basis
15	for those decisions, but I didn't see it. That's why
16	I asked this question.
17	Maybe we'll get to it later on.
18	MS. SZABO: Actually, we plan on
19	discussing Step 10 much later in the presentation. So
20	you will. I can try to address that question then.
21	MR. BONGARRA: Okay. Let me then just go
22	to the next slide here, and I'm simply trying to
23	emphasize here how this particular NUREG relates to
24	other human factors engineering guidance that's
25	available to the staff.
ļ	I

(202) 234-4433

Essentially as you can see, this NUREG is on a par with other recognizable guidance for the staff, such as NUREG-700 and NUREG-1764, which we briefed to the committee last year. That has to do with reviewing crediting of human actions in licensee amendment requests.

7 Each of these guidance documents, as the visual shows, is subordinates to NUREG-800, the SRP, 8 9 and NUREG-0711, which is the human factors program review model, and indeed, as Autumn will discuss 10 shortly, NUREG-1791, and I think I mentioned this 11 12 earlier, applies several fundamental steps to address staffing exemptions, and truly, I don't believe it 13 14 really applies anything that's significantly different from what the staff has been doing for, as I said 15 earlier, the last good number of years. 16

And lastly, before I turn things over to Autumn, I just want to mention to the committee that both the SRP sections and NUREG-1791 were sent out for public comment in 2004. There are only minor edits essentially to the standard review plan sections, as the slide indicates.

And I might also add that OGC has, indeed, reviewed both the SRP and the 1791 guidance document. They had a few, once again, relatively minor comments,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	104
1	and essentially we are going to incorporate those
2	comments into the NUREG, and they indicated to us that
3	with those comments being incorporated, that they
4	would have no legal objection to either of the
5	documents.
6	With that said, let me just turn this over
7	to Autumn.
8	MS. SZABO: I'm now going to talk to you
9	NUREG-1791 in more detail. As you can see here in the
10	slide, I'm not going to go through every single step.
11	This is really the list of steps that we're looking to
12	discuss in NUREG-1791.
13	I'd like to stress that this is a logical
14	process, and it follows NUREG-0711, the human factors
15	engineering program review model, which is a much more
16	higher level document as shown in the previous slide.
17	The actual audience for this document was
18	NRR reviewers when they get an exemption request to 10
19	CFR 5054(m). The guidance in this document is really
20	intended for them to go through and do a comprehensive
21	review.
22	To add a little bit more to Jim's prior
23	discussion, if we have a newer plant, it might make
24	more sense for them to follow through every single
25	step in detail versus if they get a plant which only
	I

(202) 234-4433

	105
1	requires, I guess, portions. They might not
2	necessarily have to review every single step in this
3	process.
4	So really the intent behind NUREG-1791 was
5	to allow some flexibility when reviewing an exemption
6	request. Jim has done a really great job of trying to
7	provide the basis. So again, I'll entertain questions
8	as I discuss this.
9	DR. KRESS: How are you going to tell us
10	what a functional analysis and a task analysis is?
11	MS. SZABO: Sure, absolutely. As a matter
12	of fact, the functional requirements analysis and
13	allocation will be coming on later in the discussion.
14	If you don't mind, could I delay that question until
15	then?
16	DR. KRESS: Sure.
17	MS. SZABO: And then we can talk more
18	about task analysis as well. So we'll make a note of
19	that.
20	Each review step contained in NUREG-1791
21	actually includes kind of an overview and
22	introduction, a discussion of that review step, and
23	why it needs to be addressed. It talks to data and
24	information that would be required to support the
25	review step. Again, maybe not all pieces might be
	I

(202) 234-4433

	106
1	required, depending upon the level of exemption
2	they're asking for. This is intended to be a flexible
3	process. So there is still some level of subjectivity
4	with the NRR reviewer.
5	The review criteria is also included,
6	which provides basic criteria, things that we would
7	expect to see in order to provide a more comprehensive
8	overview of what the licensee has done.
9	In addition, there's also additional
10	information that typically includes other references
11	and resources that would talk to previous research
12	studies that we've done, other NUREGs that have been
13	published that support a lot of the steps that we have
14	in here.
15	Some of the specific examples that I'm
16	going to point out now, as I stated previously, we're
17	not really going to talk in detail to every single
18	step. Step 2, one example, is the review of the
19	concept of operations.
20	Really the intent behind the concept of
21	operations is a description of how the design systems
22	and operational characteristics relate to a licensee's
23	organizational structure, staffing, and management
24	framework. This really is intended to try to provide
25	an overview and provide some context really to the
Į	I

(202) 234-4433

1 reviewer when they begin the review to understand 2 what's the point behind the plant design, some of the 3 systems' interactions, as well as operator 4 interactions and how all of the systems really operate 5 as a cohesive unit.

As you note in here, there's a new term 6 7 we've coined, the role of control personnel. Control 8 personnel was selected not to forego current licensed 9 operator staffing, reactor operators and senior First, to describe what we term as 10 reactor operators. personnel, individuals licensed 11 а control to manipulate controls that affect reactivity of a power 12 a reactor, manipulate fuel, or direct 13 level of 14 activities for individuals who are licensed as such.

15 The reason why we decided to use control personnel is because, again, we're not sure what kind 16 17 of exemption requests that we're going to be getting It's quite likely that there's a lot of I want to 18 it. 19 paradiqms that are associated with reactor sav 20 operators and senior reactor operators and that 21 terminology. It's quite likely that there could be 22 some things that come into question under Part 55. Ιt 23 could come in as an exemption request.

Again, we're not addressing that specifically in this guidance, but we aren't ignoring

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	the act that they're quite heavily relying upon one
2	another.
3	DR. APOSTOLAKIS: Who are the reviewers in
4	this case, Autumn? Are the reviewers engineers or
5	human factors people?
6	MS. SZABO: The reviewers would be human
7	factors.
8	DR. APOSTOLAKIS: Human factors.
9	Engineers don't get involved at all?
10	MS. SZABO: Well, I'm going to kind of
11	defer that one to Jim. Jim?
12	MR. BONGARRA: Indeed, the principal
13	reviewers are the human factors staff. I mean, if we
14	have questions that are of a technical nature that we
15	feel as though we need some assistance with, we would
16	go to other technical review branches for that
17	information, but this is principally guidance for our
18	folks in human factors, and again, it's part of
19	Chapter 18 sorry Chapter 13 on staffing, which
20	is our responsibility.
21	DR. APOSTOLAKIS: So these are human
22	factors experts in the Office of
23	MR. BONGARRA: NRR.
24	DR. APOSTOLAKIS: Regulations.
25	MR. BONGARRA: Yes.
	I

	109
1	DR. APOSTOLAKIS: So you will not be
2	involved in this because you are research.
3	MS. SZABO: At some point, you never know
4	what can happen, George. I mean, they may call me to
5	try to assist with some license interviews at some
б	point.
7	Generally this step would tend to include
8	design operating characteristics of a plant, control
9	personnel number and staffing levels across shift.
10	Again, very general, high level things to try to get
11	a comprehensive overview of the intent behind the
12	exemption request.
13	Rules and responsibilities on control
14	personnel, and again, including automation
15	interactions, which would be pretty key.
16	DR. APOSTOLAKIS: So these scenarios that
17	you have there, these are accident scenarios, right?
18	"Defines and evaluates scenarios impacted by exemption
19	request," that's what it says. These are accident
20	scenarios?
21	MS. SZABO: Actually, you're prompting my
22	next question. So if I may let me start to
23	DR. APOSTOLAKIS: That's what I am asking,
24	yeah.
25	MS. SZABO: Absolutely. Let me start
	I

(202) 234-4433

	110
1	answering that question for you.
2	DR. APOSTOLAKIS: Okay.
3	MS. SZABO: And if I don't answer that,
4	please bring that up again.
5	DR. APOSTOLAKIS: All right.
6	MS. SZABO: Step 5 actually is the review
7	of the requirements analysis and function allocation.
8	Ultimately when we do a function requirements
9	DR. POWERS: Let me interrupt you because
10	I'm struggling here just a little bit with Step 2.
11	MS. SZABO: Okay.
12	DR. POWERS: If we anticipate getting
13	exemption requests because we're making greater use of
14	digital technologies in the control operations, our
15	difficulty we have in control in digital operations is
16	we don't know how to anticipate the things that can go
17	wrong in that control technology. If we can't
18	anticipate that, how can we anticipate what the role
19	and responsibilities of the control room operator will
20	be?
21	MS. SZABO: When you say "we anticipate,"
22	I assume you're talking about NRR.
23	DR. POWERS: It's the collective "we."
24	MS. SZABO: Or us as NRC? Okay.
25	DR. POWERS: It is not the royal "we." It
I	1

(202) 234-4433

	111
1	is the collective "we."
2	MR. BONGARRA: I think that certainly is
3	a very important question, and I think what we're
4	trying to do is position ourselves to have, again, a
5	tool to determine the effectiveness, the adequacy of
6	any exemption to this staffing requirements.
7	Now, with regard to what you just asked in
8	terms of how do you anticipate what staff is going to
9	be required if you can't truly anticipate what the
10	accident
11	DR. POWERS: What goes wrong.
12	MR. BONGARRA: what can go wrong. I
13	think this is truly tied up in the whole issue of
14	verifying and validating the use of the digital
15	technology to begin with, and what we would expect is
16	that there would be an analysis done by the applicant.
17	For example, to look at the effect of
18	potential software common mode failures, we would
19	expect that that type of an analysis would be part of
20	a design submittal, to begin with, to support
21	DR. POWERS: But this is predicated on
22	understanding that engineering will not do the human
23	factors stuff is what you're saying.
24	MR. BONGARRA: Correct. We don't do this
25	review in a total vacuum. We're just the principal
I	I

(202) 234-4433

	112
1	implementers of this particular aspect of the review.
2	But certainly we would expect that there would be
3	support from, for instance, the INC to insure that
4	these systems work the way that they're supposed to
5	work.
6	CHAIRMAN WALLIS: This will be part of the
7	technical basis presumably. If you're going to
8	replace some of the operators by computers, then you
9	have to understand how computers behave just as you
10	have to understand how operators behave, to perform
11	the functions that you're trying to perform.
12	And if you are replacing the operators by
13	robots, you'd have to do the same things, but then you
14	would have much more of a technical basis presumably
15	because
16	DR. APOSTOLAKIS: I'm not sure that
17	anybody is replacing the operators. Are they
18	replacing operators?
19	CHAIRMAN WALLIS: If you have fewer
20	operators.
21	DR. KRESS: They're reducing them.
22	CHAIRMAN WALLIS: If you have fewer
23	operators.
24	DR. APOSTOLAKIS: That's too strong a
25	word.
I	

(202) 234-4433

113
DR. KRESS: Yeah, that's too strong, but
the question I have is what role does the PRA play in
this. You know, I could envision a plant coming in
with the 1.174 process and say we can reduce our
operators to this level, and it only increases their
CDF this much, and we fall within the 1.174
guidelines.
But I don't see where PRA is showing up in
your review process at all. Is it not part of it?
MS. SZABO: We actually didn't include
probabilistic risk assessment in the human factors
engineering review. Later, I believe it's under Step
9. We eventually talk to human reliability analysis,
but, again, we talk to that because it winds up
becoming more or less an artifact, if you will, of the
staffing design.
DR. SHACK: So your scenario are your
design basis accidents. Is that what you're really
looking at?
DR. KRESS: Yeah, I'm still struggling
with what the scenarios are.
MS. SZABO: Oh, on the functional

requirements and function allocation?

DR. KRESS: Yes.

MS. SZABO: I'll start the presentation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	114
1	again. No problem.
2	CHAIRMAN WALLIS: Can I say that Dr. Kress
3	has hit on the same sort of thing that I was asking
4	earlier? If I go to Section 11 I know you're not
5	there yet but the bottom line is the reviewer has
6	to determine that the new system has at least the same
7	level of assurance that public health and safety are
8	maintained as the current regulations require.
9	Now, how is he going to make that
10	measurement? If it's a CSF measurement, then we have
11	something quantitative we can look at. We can say
12	that the new system is just as good in terms of risk
13	as the old system.
14	But lacking some measure, I just don't
15	know how this reviewer is going to decide that we have
16	the same public health and safety as we had before.
17	MR. BONGARRA: I think this would be a
18	case where we would, indeed, be evaluating or not
19	evaluating; we would be assessing to some degree with
20	other review groups input for this particular design.
21	Again, we're not doing this in a vacuum.
22	So, for example, if a licensee came in or
23	an applicant came in and was justifying the reduction
24	of their staff for their particular design, they very
25	well may refer to either risk information specifically
	I

(202) 234-4433

	115
1	or some risk insights that they've already gathered by
2	doing these analyses.
3	And that would prompt us, for example, if
4	it was information that we felt was insufficient
5	enough to give us the information that we need to make
6	a determination, we go to the risk folks and ask them:
7	does this make sense to you? Have they actually
8	achieved a reduction in core damage frequency or LERF
9	or what have you based on what they've said, or do we
10	need more information from them to give us a better
11	understanding of that?
12	DR. APOSTOLAKIS: I'm not sure that there
13	is a human reliability model that will give you
14	answers like that. I don't think that this is
15	probably a judgment, Graham. I mean, it's, you know,
16	the traditional regulations.
17	DR. BONACA: Well, I envision there will
18	be I mean, I envision simply for them a new concept
19	where you would have certain requirements for the
20	operator to step back and not to do anything in
21	response to anything because everything happens in an
22	automatic fashion and so that could be a justification
23	for saying, "I don't need to have a contingent of
24	three individuals or four individuals in the control
25	room because, in fact, under high stress situation in
ļ	1

(202) 234-4433

	116
1	response to events, we're asking them to step back
2	rather than to take action.
3	You know, that kind of thing, it seems to
4	me, you never know how risk informed information would
5	help, but maybe.
6	MR. BONGARRA: Well, again, it's risk
7	information, but it's also combined with, and I think
8	one of the steps that we have in here is essentially
9	a very important one, is the verification and
10	validation. We need evidence from them to demonstrate
11	or that demonstrates essentially that under various
12	conditions that we're talking about here, accident
13	scenarios, normal, abnormal operations, et cetera,
14	that these changes to the staffing requirements can,
15	indeed, handle those conditions.
16	So we're not just making a
17	DR. APOSTOLAKIS: Can you explain this
18	"evaluate scenarios"?
19	MS. SZABO: Yes.
20	DR. APOSTOLAKIS: What's the purpose of
21	these?
22	MS. SZABO: Functional requirements
23	analysis and functional allocation, ultimately what
24	the intent behind functional analysis is we'll
25	start with that is to identify processes and
	1

(202) 234-4433

	117
1	activities to achieve a goal of prevention or
2	mitigation of safety related consequences, if you
3	will, that safety related consequences.
4	DR. KRESS: Does this involve emergency
5	operating procedures?
6	MS. SZABO: It potentially could, yes, in
7	addition to just normal operating scenarios, as well,
8	both.
9	DR. DENNING: Yes, but isn't that really
10	where the rubber meets the road, is whether the staff
11	is able to address really the most difficult things,
12	which are the design basis accidents, but also into
13	the beyond design basis space where you have to go to
14	emergency operating procedures and things like that?
15	And I think one of the things we've been
16	struggling for here is the question are there any
17	quantitative measures that you have, and it seems that
18	the most logical quantitative measures would relate to
19	simulator demonstration where you go into a simulator
20	and you have a crew of five or a crew of four, and you
21	demonstrate that they have the same capability to
22	respond to the entire spectrum.
23	Now, that gets difficult with future
24	plants that aren't there, and you don't really have
25	the simulators, but it would seem that that's the type
ļ	I

(202) 234-4433

	118
1	of thing that would give you a real quantitative basis
2	for these judgments, whereas everything that I'm
3	seeing here is very qualitative.
4	MS. SZABO: We actually talk to a little
5	bit of quantitative evaluation, if you will, in Step
6	10. There is qualitative evaluation as well as
7	quantitative, both. So I think, again, I know I keep
8	pushing this back, but I do believe that some of these
9	questions might get answered as we progress through
10	the presentation.
11	DR. APOSTOLAKIS: Can you give me an
12	explanation of what scenarios are? Because these guys
13	here assume that you're going beyond design basis. Is
14	that correct?
15	MS. SZABO: Oh, we're using normal
16	operating conditions as well as
17	DR. APOSTOLAKIS: Accident.
18	MS. SZABO: as well as the accident
19	scenarios.
20	DR. APOSTOLAKIS: Is that design basis
21	accidents or beyond design basis? Are you moving into
22	PRA space, in other words? Was there all sorts of
23	scenarios, or are you limiting yourself to design
24	basis accidents?
25	MR. BONGARRA: Yeah, we're not doing
	I

(202) 234-4433

	119
1	anything to change the way we handle Chapter 15
2	related issues here.
3	DR. APOSTOLAKIS: So that's design basis.
4	MR. BONGARRA: That's design basis.
5	There's nothing that's
6	CHAIRMAN WALLIS: I don't understand this
7	because these new reactors may well not have design
8	basis accidents.
9	DR. APOSTOLAKIS: But this is not only for
10	new. I mean, what reactors I mean, this is
11	lightwater reactors, isn't it?
12	MR. BONGARRA: Well, it's both.
13	MS. SZABO: This is for upgrades to
14	well, we're calling it significant upgrades to
15	current lightwater control rooms, lightwater reactor
16	control rooms as well as advanced reactors.
17	DR. APOSTOLAKIS: I mean, you are probably
18	covering Gen III. I mean AP 1000, ABWR. I don't
19	think the intent here is to talk about IRSI and the
20	gas cooled fast reactor, which is way into the future.
21	MS. SZABO: Well, really the intent
22	overall of this procedure in the first place is so
23	that we would have a very flexible process to cover a
24	wide scope and range. So ultimately this process
25	really could eventually be applied to some of the Gen
I	

(202) 234-4433

	120
1	IV exempt requests that would
2	DR. APOSTOLAKIS: Yeah, but the Gen III
3	reactors will have design basis. They do have design
4	basis. So, you know, let's not get into that.
5	But the important point is that you are
6	limiting yourselves to DBAs, design basis. You're not
7	going beyond that. You're not going to proceed to a
8	small LOCA with all sorts of components failing, and
9	the question then is why not.
10	DR. BONACA: Well, no, I'm sure that they
11	have to.
12	DR. APOSTOLAKIS: They say no.
13	DR. BONACA: But the applicant, typically
14	an applicant right now relies on EOPs and SAMGs, for
15	example for whatever is being done in the control
16	room. Now, behind those you do have PRAs that have
17	been used to identify the scenarios and all that kind
18	of stuff.
19	So a departure from those, I mean, an
20	applicant would have to come in and say, "Well, you
21	know, I'm not going to have any more of this."
22	It seems to me
23	DR. APOSTOLAKIS: Well, I'm confused now.
24	I mean, the ACRS says, no, they go beyond design basis
25	and the staff says, no, we don't. So what is the
I	1

(202) 234-4433

	121
1	answer?
2	DR. DENNING: Well, let's hear what the
3	staff has to say.
4	DR. APOSTOLAKIS: The staff says DBAs.
5	DR. DENNING: Did you really mean it?
6	DR. APOSTOLAKIS: Do you want to
7	(Laughter.)
8	DR. APOSTOLAKIS: Do you really mean that
9	or I'm going beyond?
10	DR. BONACA: I'm looking at page 252.
11	DR. APOSTOLAKIS: Say that again.
12	DR. BONACA: I'm referring to page 5252.
13	DR. SHACK: Five, two, five?
14	DR. BONACA: This is as broad as it can
15	be. I mean, it's a catchall. I mean, I don't expect
16	that this thing is
17	DR. APOSTOLAKIS: I tend to agree with
18	you, Mario, but I mean, if they say this isn't, then
19	you have
20	DR. BONACA: This looks like everything
21	is
22	MR. ROSEN: I don't understand how you can
23	do a function allocation and not consider beyond
24	design basis space. I mean, there are functions for
25	the operators to take in beyond design basis space.
l	1

(202) 234-4433

	122
1	So if you're doing a true complete function
2	allocation, you're going to go all the way from normal
3	operation through beyond design basis.
4	DR. BONACA: And in fact, that is so broad
5	that it involves equipment operators. I mean, I would
б	have to address those, too, here because, you know
7	DR. APOSTOLAKIS: There are two issues
8	here. One is the rational thinking, which is what you
9	and Steve just expressed, and the other is what the
10	staff is saying. Can we not necessarily rational.
11	I mean, all I'm saying is can we have a
12	clear statement from the staff as to what scenarios
13	are being evaluated?
14	DR. SHACK: If you look on page 60.
15	DR. KRESS: Of what?
16	DR. SHACK: Three, three, one of NUREG-
17	1791.
18	MR. ROSEN: Give me a chance to get there.
19	Three, three, one.
20	DR. SHACK: "The NUREG should confirm that
21	the following operational conditions were analyzed or
22	that adequate rationale for not analyzing the
23	conditions was provided. Normal operational events,
24	including plant, should start up, shut down, and
25	refueling of significant changes in operation power.

(202) 234-4433

	123
1	Failure events, including instrument failures and HSI
2	failures; transient accidents; reasonable risk
3	significant and beyond design basis events derived
4	from the plant specific PRA."
5	MR. ROSEN: Well, that's the answer.
6	DR. SHACK: "Conditions to challenge plant
7	safety functions as a result of interconnections and
8	interactions among systems.
9	DR. APOSTOLAKIS: That's the answer.
10	MR. BONGARRA: It sounds like I stand
11	corrected then.
12	DR. APOSTOLAKIS: I've never seen such
13	willingness on the part of some ACRS members to help
14	the staff.
15	(Laughter.)
16	MS. SZABO: Thank you very much.
17	DR. APOSTOLAKIS: Everybody is jumping in
18	trying to help. Okay. Now we know.
19	Now, allocates tasks appropriately.
20	MS. SZABO: Yes.
21	DR. APOSTOLAKIS: Wow.
22	MS. SZABO: Well, let me go back into a
23	little bit more about the functional requirements
24	analysis. Ultimately the intent is to gain a high
25	level understanding, again, of the objectives. Now,
	I

```
(202) 234-4433
```

	124
1	granted it's not as high as the concept of operations
2	has assessed previously. This is more focused
3	primarily on the control functions, if you will.
4	Again, this is going to be impacted also
5	by the performance requirements and constraints of
6	design.
7	It also provides a framework for
8	understanding the control of the plant.
9	Now, I'm going to talk a little bit more
10	about allocation. Ultimately what that does is once
11	you've done an overarcing review, a function
12	requirements analysis, you defined the various
13	functions that are responsible. That's when you start
14	assigning. You start assigning to control personnel,
15	as we've defined here, or you start assigning it to
16	automation, as the case may be.
17	Ultimately, when we say "allocates tasks
18	appropriately," we took this a little step beyond.
19	The function allocation would be performed first,
20	where we talk about the high level overview again,
21	that particular control function assigned to, say, for
22	example, the control personnel.
23	When you allocate tasks appropriately, you
24	basically wind up going into a detailed task analysis,
25	if you will, which is actually talked about under Step
ļ	I

(202) 234-4433

	125
1	6. A detailed task analysis is extraordinarily
2	thorough. It is very granular in a sense where it
3	picks apart every little piece, part, various
4	equipment, time and timing requirements.
5	This actually to some degree might talk to
6	some of the qualitative things that you were
7	interested in previously.
8	DR. APOSTOLAKIS: So this is detailed
9	because somebody has tried it on a simulator or is it
10	because people look at it and say, you know, this is
11	what the operator is going to do and this is
12	reasonable?
13	Why do you say "extraordinarily detailed"?
14	I mean, how do you know?
15	MS. SZABO: I've done one before.
16	Well, typically in function requirements
17	and function allocation, again, that's the general
18	function. We provide what the scope of the control
19	function is.
20	When you go the next level down the task
21	analysis would look at the sheer function of what a
22	task analysis is about and what it does. Is it
23	actually it breaks down into those functions in
24	extraordinary detail. Often task analyses winds up
25	being the basis for procedures, training, various
	I

(202) 234-4433

	126
1	human system interface design.
2	DR. APOSTOLAKIS: But at which point are
3	you asking the question, if you're asking the
4	question, physically how are you going to do this?
5	Are you going to walk there and push a button or
6	you're going to stand here?
7	Is that happening at any point in time?
8	MS. SZABO: Actually we are going to be
9	talking about that in Step 11 where we talk about
10	staffing plan validations.
11	DR. APOSTOLAKIS: Boy, Step 11 is really
12	something, huh?
13	MR. ROSEN: That's what they do. They
14	work through the actual detail of what someone does.
15	and where.
16	MR. PERSENSKY: If I may
17	MS. SZABO: Well, and actually if I can
18	point very quickly to something in NUREG-1791 that
19	will talk to the level of detail, there's a table in
20	here that really does extremely explicit, I guess,
21	criteria, 262, Table 2, task performance criteria.
22	J., you can add detail at this point here
23	if you'd like.
24	MR. PERSENSKY: I understand that this is
25	in here, but you know, currently and ever since post
ļ	I

(202) 234-4433

1 TMI human factors requirements went out, the plants 2 have been developing task analyses for current plants 3 in order to develop their training, and it's part of 4 the INPO accreditation requirements, in order to do 5 procedures, in order to do control room upgrades, and actually I know that there's a process going on right 6 7 now for the licensing, operator licensing. This was all a whole basis for a lot of 8 9 the human factors changes that came about, was 10 function task analysis. So this is not really anything new. 11 The difficulty in this situation is when 12 we're applying it to new plants where you may not have 13 14 everything on the ground yet. So you have to make certain assumptions, and that's where we're trying to 15 drive them, is to not lose that effort in terms of 16 17 doing function task analysis because that's how you decide who does what and whether it's done by people 18 19 or it's done by machines. 20 MR. ROSEN: And how you train the people. 21 MR. PERSENSKY: And how you train them, 22 how you write the procedures for them, how you decide 23 on what qualifications. 24 DR. APOSTOLAKIS: Wouldn't there be a 25 difference though, J., between a review of an existing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

127

	128
1	LWR and saying AP 1000 where you don't have a control
2	room?
3	MR. PERSENSKY: Yes, there would, and you
4	have to make certain assumptions. One of the things
5	is this is laid out in a nice step-wise fashion. In
6	fact, there's a lot of iteration that goes through if
7	you look to the IEEE standard that's referenced, 1023.
8	There's a process, but there's a lot of iteration
9	depending on where you are in the design process.
10	So if you're in an early design process,
11	you're making certain assumptions, and you're taking
12	sort of big blocks. That's where we're talking more
13	about functions. As we get closer to either mock-ups,
14	simulators, or in some cases using human performance
15	simulators, that's when you get into the more detailed
16	tasks.
17	Until you have something to test and to
18	run these tasks on, it is hard to get to the detailed
19	tasks, but there are certain assumptions that you
20	make, certain assumptions that engineers make in the
21	design process. During design I think, "I'm going to
22	design this for a two-person operation," or I'm going
23	to design it for a four-person operation.
24	So we have to look at this as an
25	iterative, long-term process. It's not bang, here it
ļ	1

(202) 234-4433

	129
1	is.
2	MR. TRIMBLE: Yeah, this is Dave Trimble,
3	Chief, Operator Licensing.
4	It could be that this exemption process
5	could end up being a driver to cause would-be
6	applicants to think all this thing out in advance so
7	that they could get the exemption approved at the time
8	of COL and avoid any legal potential challenges later
9	on.
10	And so it could be a driver to think it
11	all through and actually develop and build the
12	simulators before embarking much further on the
13	process, construction.
14	MS. SZABO: Okay.
15	DR. SHACK: In the sequence of things, I
16	mean, the buy is going to have the control room at the
17	plant all built when he walks in and asks for this
18	exemption, right? He doesn't ask for this when
19	does he ask for the exemption in the process?
20	MR. BONGARRA: I think the answer is we're
21	still developing it, but I hear and I have to confirm
22	this, but I think the idea is to get the exemptions
23	done at the beginning of the process.
24	DR. SHACK: So even before he has a
25	control room in place, he's going to come in and ask
ļ	1

(202) 234-4433

	130
1	for an exemption.
2	MR. ROSEN: As part of the COL?
3	DR. APOSTOLAKIS: Yeah, otherwise it would
4	be too expensive, would it not?
5	MR. PERSENSKY: Yeah, one of the drivers
6	for this work, in fact, was a letter from Exelon when
7	they were considering the PBMR. In one of their white
8	papers, they indicated at that point that they
9	anticipated seeking an exemption.
10	So whereas Jim indicated most of the
11	evolutionary reactors, the vendors who were selling
12	those reactors have not asked for an exemption, but
13	have left that to the stage at which a potential
14	licensee would come and say, "Okay. I really want to
15	run it with fewer people than 10 CFR 5054(m) calls
16	for," because of these reasons, and actually what
17	we're trying to do is to give them the basis for
18	coming in and saying, "This is why I'm asking for that
19	exemption."
20	MR. BONGARRA: As the committee may be
21	aware, NEI is in the process of engaging the staff on
22	the review of a document that's NEI 04-01, which
23	essentially is a guidance document to the industry to
24	assist them in preparing COL applications, and as I
25	say, this is a draft document. It's something that

(202) 234-4433

	131
1	we're working with the industry on. At the moment,
2	the industry is making the assumption that by the time
3	an applicant, a COL applicant, is ready to submit
4	their application, they will have, indeed, identified
5	the scope and responsibilities of each or the main
6	control room positions considering and I'm reading
7	from this document "considering the assumptions and
8	results of their task analysis."
9	So that's what the industry is proposing
10	at the moment.
11	MR. ROSEN: So they're going to do it up
12	front. They're going to do their task function
13	allocation and task analysis up front, and that way
14	they're going to have to have a basis upon which to
15	apply for an exemption, and some reasonable likelihood
16	that they'll have whether they could get it or not.
17	That won't make sense to me.
18	MS. SZABO: Moving ahead, getting into
19	Step 10
20	CHAIRMAN WALLIS: I'm sorry. This we have
21	here is not the same as the one I reviewed, and it
22	says it was completed in June 2005.
23	MR. ROSEN: That's next month.
24	CHAIRMAN WALLIS: It seems a little
25	miraculous. I'm sorry because some of the quotes I've

(202) 234-4433

	132
1	given you from the document that aren't in this one
2	here.
3	MS. SZABO: Well, did you request our hard
4	copy early on?
5	CHAIRMAN WALLIS: I got something on a CD,
6	which I read and studied, and it's not the same as
7	what I've got here in some the details.
8	MR. ROSEN: Yeah, this one says date
9	published, June 2005.
10	CHAIRMAN WALLIS: It says manuscript
11	completed June 2005.
12	MR. ROSEN: Yeah, right, and date
13	published
14	CHAIRMAN WALLIS: Yeah, okay.
15	MR. ROSEN: The electronic copy says the
16	same thing though.
17	MS. SZABO: That's why I'm confused.
18	CHAIRMAN WALLIS: There are some words
19	that I took out of my copy which are not the same.
20	It's just I'm sort of saying it in passing.
21	And one of the things that was taken out
22	was this same level of assurance of public health and
23	safety and maintained as the current regulations
24	require. That has now disappeared from your document.
25	So that's the whole basis of my asking what's the
	I

(202) 234-4433

	133
1	measure of public safety so that if someone has
2	decided that's too dangerous a thing to say and it has
3	been excised from the document.
4	MS. SZABO: Actually what page are you
5	referring to?
6	CHAIRMAN WALLIS: Section 11.
7	MS. SZABO: What's that?
8	CHAIRMAN WALLIS: I don't want to distract
9	you. You've got to finish your presentation.
10	MS. SZABO: Well, and I'd like to
11	determine whatever that error is. So
12	CHAIRMAN WALLIS: I don't know that it's
13	an error. It just seems to me that someone has
14	decided that facing up to what's the measure of health
15	and safety was too tricky. So we'll cut it out of the
16	document.
17	Okay. Anyway, where is it? Did I miss
18	it?
19	DR. DENNING: It's here. It's the last
20	bullet on
21	CHAIRMAN WALLIS: Is it hidden somewhere?
22	DR. DENNING: 11.11.1.
23	CHAIRMAN WALLIS: Oh, it is there, but the
24	words are slightly different. Okay. Okay. That's
25	all right. That's all right. I'm sorry.
I	I

(202) 234-4433

	134
1	DR. KUO: Continue.
2	MR. SIEBER: Well, you solved that
3	problem.
4	CHAIRMAN WALLIS: Again, my apologies.
5	Straighten me out.
б	(Laughter.)
7	MS. SZABO: Thanks. Thank you, by the
8	way, for your assistance in trying to help me resolve
9	some of these issues.
10	To get into more detail about Step 10,
11	reviewing the staffing plan validation, again, the
12	staffing plan validation we're anticipating would be
13	submitted by the licensee. Ultimately we would want
14	to evaluate their staffing plan and what they're
15	proposing on the exemption request, using what we call
16	performance based tests to determine whether the
17	staffing plan actually meets performance requirements
18	and supports safe operations.
19	As it states here in the bullet, we
20	actually were hoping that they would give appropriate
21	consideration to dynamic interactions between the
22	staff print and various other systems saying computer
23	automated systems and such.
24	CHAIRMAN WALLIS: I think that's very
25	important. The applicant, it's on the top to the
I	

(202) 234-4433

	135
1	applicant to make these performance based tests.
2	MS. SZABO: That's correct.
3	CHAIRMAN WALLIS: And to determine the
4	measures and criteria, and then to submit these in a
5	logical way. You're not going to tell him what the
6	measures and criteria should be apparently. It's up
7	to the applicant to determine those things.
8	MS. SZABO: That is correct. We're
9	anticipating that the applicant would come in with
10	whatever measures they decide to use. In the guidance
11	document itself, we actually talk about more or less
12	things that, I guess, would be considered acceptable
13	in our current state of knowledge, if you will.
14	CHAIRMAN WALLIS: As far as you haven't
15	given more guidance on what these measure and criteria
16	should be?
17	MS. SZABO: We actually gave a little bit
18	of guidance in here where we talked to what we call
19	situational awareness and cognitive workload. The
20	technical basis document, NUREG CR-6838, actually
21	talks in a little bit more detail in the appendices
22	operation. So some of that literature searching and,
23	I guess, the qualitative element of the technical
24	basis is actually talking 6838 in more detail.
25	We talk about that at a high level here
	I

(202) 234-4433

	136
1	just to do it for posterity's sake, if you will.
2	MR. ROSEN: But the bottom line, the big
3	picture statement has got to be confirm this, if
4	you will that adequate numbers of qualified people
5	are available to take action in a timely manner.
6	MS. SZABO: Absolutely, and accurately
7	without omitting any actions. Qualify that
8	temporarily.
9	MR. ROSEN: That's the global statement of
10	what's adequate.
11	MS. SZABO: That's correct, and of course,
12	that's going to be, as you know, conditioned, plant
13	dependent.
14	MR. ROSEN: Of course. And because of a
15	timely manner, plants with very slowly developing
16	scenarios are designed, in fact, to have very slowly
17	developing scenarios have more time to bring in
18	adequate numbers of people to take action in a timely
19	manner.
20	MS. SZABO: Absolutely.
21	MR. SIEBER: So that they could have
22	different staffing plan and different concepts of
23	operation.
24	MS. SZABO: Absolutely. We actually asked
25	the staff to look at the operational condition

(202) 234-4433

sampling, the measures and criteria proposed by the licensee. Again, we talked to time, accuracy, and omission of actions per se as potential measures, if you will, observable actions, if you want to call that quantitative, as close as we can get it when you raise two measures.

7 And actually we were also proposing that 8 the assessment should include a range of operational 9 Typically that, of course, would conditions. 10 challenge the operator, as well as the behavior of the plant human 11 and the systems and show, again, 12 performance variability.

Now, talking in more specifics under the 13 14 human performance variability, and I'm just going to 15 mention this very briefly, we actually talked to cognitive workload, and cognitive workload is the 16 degree to which cognitive and perceptual capabilities 17 are taxed. Cognitive workload has been studied for a 18 19 very long time, and there's a significant amount of 20 literature discussing it. So we're actually looking 21 to if they could submit something to the effect that 22 if this taxed operator load, it would only be in their 23 favor.

24 Situational awareness, again, another 25 common human performance tool. Situational awareness,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	for those of you who are not aware of that, is
2	individual's mental model of what has happened, what
3	the current status of the system is, and what will
4	happen in the future, mental model being, I guess,
5	more or less the understanding of the personnel, if
6	you will.
7	CHAIRMAN WALLIS: Can you measure
8	cognitive awareness?
9	MS. SZABO: I'm sorry. What?
10	CHAIRMAN WALLIS: Can you measure
11	cognitive awareness?
12	MS. SZABO: Cognitive workload or
13	situational awareness?
14	CHAIRMAN WALLIS: Cognitive awareness did
15	you say?
16	MS. SZABO: Cognitive workload or
17	situational awareness. We actually have a number of
18	subjective measures that have been developed under
19	subjective.
20	CHAIRMAN WALLIS: Can you measure what's
21	in the mind of this operator?
22	MS. SZABO: Through various means,
23	absolutely. Interviews and things of that sort, yeah.
24	Again, there's a significant body of literature.
25	Actually there's a discussion focus,a
l	I

(202) 234-4433

	139
1	gain, as I stated in NUREG-6838, and again, if anyone
2	is interested and they'd like a copy, I can get you a
3	copy of that.
4	We recommend that you cover these
5	information, these measures through potentially as we
6	know it now four different methodologies. A tabletop
7	analysis, which is generally where experts gather and
8	then try to do estimation of times and such. Data
9	from operational experience, other plants that may
10	have similar control rooms, similar configurations or
11	even the same plan.
12	CHAIRMAN WALLIS: It's got to be difficult
13	with the first one.
14	MS. SZABO: Tabletop?
15	CHAIRMAN WALLIS: The first one. It's
16	going to be difficult to get an operational experience
17	with the first prototype.
18	MS. SZABO: Absolutely, and that was
19	actually a concern, is that there isn't a lot of
20	operational experience available, but it's a good
21	point.
22	Of course, what we call human in the loop
23	simulation studies where we actually have the operator
24	go and perform some of the tasks and such to validate,
25	again, the staffing plans as well as human performance
l	

(202) 234-4433

	140
1	modeling where they basically construct models based
2	off of various task analyses or task analyses based
3	methods, such as task network modeling to explore the
4	staffing plan and challenge the operator.
5	Those are the only examples I planned on
6	talking about. So I hope I've answered everyone's
7	questions here.
8	NUREG-1791 actually went out for public
9	comment along with the standard review plan, 13.1.2
10	and 13.1.3. We had one public comment that we
11	received actually from somebody of a foreign nature,
12	which was interesting.
13	The three, I guess, major things that came
14	out of the one comment was they requested some
15	clarification on the terminology that was used in the
16	NUREG. They also asked for the clarification on
17	intent, and there was a concern about the exemption
18	request review process specified in 10 CFR 50.12 and
19	how that coincides with potential issues with a
20	failure of the proposal/exemption, which I believe
21	we've discussed at some level here previously.
22	MR. ROSEN: I don't understand what you
23	men by given the failure of the exemption.
24	MS. SZABO: Well, the comment pretty much
25	talked to the fact that there's a lot of design effort
ļ	

(202) 234-4433

	141
1	that winds up going in in the front end, as you're
2	aware of the bathtub curve in terms of cost and such,
3	where there's going to be a lot of systems engineering
4	processes, a lot of iteration and such.
5	The original, I guess, interpretation from
6	the person that sent the comment was that the design
7	would be completed; we'd go through all of these
8	detailed analyses and reviews and such, and then we'd
9	throw, you know, the exemption request to the NRC.
10	What happens if, you know, we've gone
11	through all of this design analysis; we've gone
12	through all of these justifications; we've gone
13	through this process, for example, and now all of a
14	sudden, you know, we don't have 5012 any longer, you
15	know; we can't meeting 5012 or the NRC decides not to
16	grant our waiver; what then?
17	We've wasted all of this money and all of
18	this time only to potentially have to go back and
19	review, you know, everything all over again and
20	potentially redesign the whole system.
21	The answer to that is we actually have a
22	pre-application process that the Commission has
23	encouraged where if there are questions that a
24	licensee or vendor may have, they could actually come
25	in and meet up with the staff and list some of their
I	I

(202) 234-4433

	142
1	proposals and such and we basically would sit there
2	and work with them and try to figure out what some of
3	their basis for their decisions were.
4	CHAIRMAN WALLIS: I'm thinking about AP
5	1000, and we approved a design and there's a design
6	certification that's now out for public comment or
7	something. It seems to me that the control room and
8	how it's operated and all of that was not really a
9	part of our review.
10	DR. KRESS: No, and it was one of the
11	exemptions to put out to the COL.
12	CHAIRMAN WALLIS: And yet it is something
13	which is really going to be perhaps key to the
14	operation of this reactor. I mean, they do have to
15	have a really good control room. They do have to have
16	adequate people in it and so on, and yet it is not
17	something that we
18	DR. KRESS: That was one of the high tech
19	items put on the COL.
20	CHAIRMAN WALLIS: not something that we
21	considered.
22	MR. BONGARRA: That's, indeed, correct.
23	It's a COL action item and hence the fulfillment of it
24	was deferred to the COL.
25	MR. THADANI: The control room staffing

(202) 234-4433

	143
1	for the AP 1000 was one of the items, the DECS item
2	which would be handled the COL. So right now is the
3	design certification. It does not have it.
4	MS. SZABO: So in summary, there's been
5	very minor changes to the standard review plan, as Jim
6	discussed previously, that really just reference
7	NUREG-1791. There were a few changes to NUREG-1791
8	based off of the one public comment that we received,
9	and ultimately NUREG-1791 provides regulatory staff
10	with guidance to review exemption requests to 10 CFR
11	5054(m), staffing requirements.
12	If there's any questions.
13	DR. DENNING: I have a few concerns, and
14	those are related to the degree of subjectivity of the
15	evaluations as I see it, and it seems to me that here
16	we have a regulation. You have to have a pretty
17	strong case to provide exemption to that regulation,
18	and I think that you want some real objective
19	demonstration that you have a similar level of risk to
20	what we have now.
21	And I think that it would be very
22	difficult to do it on a purely PRA based method
23	because PRA doesn't do a very good job of this
24	particular type of thing, but I think simulators do,
25	and so were it in an existing plant that wanted to
I	I

(202) 234-4433

	144
1	make a change, I could see how they could develop a
2	case where they ran the simulator with X number of
3	people and then they changed what the task assignments
4	were, reduced the number of people, ran that through
5	the simulator over the full spectrum of these
6	challenges and demonstrated that they're just as good
7	with the one as with the other, perhaps with an
8	improved INC system and like that.
9	I would like to see things of that nature
10	as clearly for future plant designs. It becomes more
11	difficult there, but I see a problem at the conceptual
12	design level certainly. I mean, the problem is that
13	these plants will not have the simulator, I fear, at
14	the COL time.
15	So can you get the same level of
16	assurance, and I don't know whether you can or can't,b
17	ut I'd certainly rather see I'd like to see some
18	guidance that expects that degree of demonstration
19	whether it's a full scope simulator or whether it's an
20	analytic simulator. You know, certainly you'd like to
21	see a full scope simulator and have them demonstrate
22	it like that.
23	So I have concerns that it's so
24	subjective. Even though you go through all of the
25	task analyses and that type of thing, which I think is
1	

(202) 234-4433

	145
1	a minimum requirement that you have to do, but I'd
2	like to see something a little more objective that
3	demonstrates that they really can operate the real
4	system with a reduced staff.
5	Whether you can provide more guidance than
6	that I don't know, but I certainly see how you could
7	do that for an existing plant that changes its INC
8	system.
9	MS. SZABO: Well, if I may, I just wanted
10	to talk to that very quickly. I mentioned very
11	briefly earlier about one of the things that we
12	recommend actually is human computer simulation.
13	There's actually a number of human computer simulation
14	tools that are available out there that are based off
15	of task networks, task analyses, if you will, and task
16	network modeling.
17	That could very well provide some level of
18	objective insurance, of course, depending upon how
19	well you model and some of the assumptions that you
20	use when you build those task network models, but that
21	could reasonably be considered to be an objective
22	measure.
23	We actually have done a number of studies
24	here at the NRC where we've looked at human
25	performance simulation directly actually in concert
ļ	I

(202) 234-4433

	146
1	with the staffing studies that we've done sine the
2	early '90s.
3	I'm not sure if that really talks to your
4	concern.
5	DR. DENNING: Well, that's certainly the
6	direction that I'd like to see it. I'd just like to
7	see it more obvious here in guidance that we expect
8	that type of thing to be done, and it's not just paper
9	studies or task analyses without some objective
10	demonstration against some kind of a tool that they
11	really can do it.
12	CHAIRMAN WALLIS: So you'd like it spelled
13	out in Sections 10 and 11 a bit more clearly.
14	DR. DENNING: Yes.
15	MR. PERSENSKY: Section 10 goes into some
16	detail on that. It may not get to the detail of
17	specifying. In fact, we purposely tried to keep this
18	as flexible as possible, but Section 10 does talk
19	about the use of various types of simulation, both as
20	Autumn mentioned, the human performance simulation,
21	but there are other ways of doing it as well.
22	In fact, I just returned from a Halden
23	meeting where they have been using virtual reality to
24	simulate the control room and are collecting a great
25	deal of information in some of the changes that they

(202) 234-4433

5 So we were trying to be as open in this 6 process to allow for the technologies that are coming 7 downstream without specifying specifically that you 8 have to have a full scope hardware simulator, so that 9 there are elements here, and again, as I mentioned 10 earlier, some of this is going to have to be iterative 11 in terms of where they are in the design process.

I guess that's my confusion. 12 DR. SHACK: You know if I can see the iterative process for them 13 as a designer, you know, I mean, if I was a designer 14 of a control room, I'd have this document in front of 15 16 I'd know what my target is. This is what I have me. 17 to be able to demonstrate to you, and then I go off and I go through my design until I'm confident that I 18 19 can meet it.

You know, so I go through that. I'm not sure why you have to accept his conclusion that he's going to meet it before he actually builds the plant and the simulator and can demonstrate in a more concrete way that he can really do it. But, I mean, i can understand how he has to do this all up front

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	iteratively.
2	But you're not going to be going through
3	iterations. He's going to bring you the case and you
4	either accept it or you don't, or he has to go back
5	and do some redesign or requalification.
6	MR. PERSENSKY: Well, the process here as
7	with the entire licensing process is we allow for
8	RAIs. If they don't provide the information that we
9	feel is necessary, we go back to them and ask for more
10	information.
11	So that becomes part of the iteration.
12	MR. BONGARRA: I think it's also possible
13	that an applicant realizing what it is we are
14	expecting them to have and what they're basically
15	telling us at least in this draft NEI document that
16	they will have, they'll realize perhaps that they need
17	to come in and discuss things, as Autumn was saying on
18	a preliminary basis.
19	I mean, we encourage that kind of
20	dialogue.
21	DR. SHACK: Well, I guess what makes me
22	feel better is that, in fact, when you license the
23	operator, he is going to be on the simulator, and he's
24	going to have to pass a whole batch of tests that look
25	a whole lot like what he's going to have to do to
	l

(202) 234-4433

	149
1	qualify this thing, and if the operator can't pass
2	those tests, then, you know, you're going to have a
3	problem qualifying an operator for this thing.
4	So there is, I guess, a back-up that will
5	actually work on the real simulator and provide some
6	sort of more quantitative, to me, confidence that this
7	is going to actually work.
8	MR. SIEBER: I think it's sort of
9	interesting if you take a today plant and a single
10	operator and put a design basis accident or beyond
11	design basis accident on that plant. That single
12	operator is likely able to handle it, and so the
13	requirement typically is for a single unit you have
14	two in case one of them drops over dead. You still
15	have another operator there, plus a supervisor
16	basically to read the procedures to them.
17	The real question is when you talk about
18	modular reactors where you might have two, three,
19	four, five reactors. How many people do you need
20	then? What assumptions do you make about one reactor
21	having an accident? What's happening to the other
22	ones?
23	You know, I worked in a coal plant at one
24	time, and if one of the boilers got in trouble, all
25	the operators would go to that boiler and the rest of
	I

(202) 234-4433

	150
1	the plant would go winging off into the distance, you
2	know, and if you had two of them, you couldn't handle
3	it, too confusing.
4	And so the tricky question is how are you
5	going to deal with modular reactors where you may have
6	two or three or four of them undergoing different
7	accidents at the same time. And I didn't see that
8	addressed.
9	CHAIRMAN WALLIS: It's so unlikely in the
10	PRA. You don't have to respond to it.
11	MR. SIEBER: Yeah, right.
12	MR. ROSEN: Yeah, i think having multiple
13	different accidents in different plants is unlikely,
14	but having an accident in one plant, a trip and
15	transient on the other resulting from the accident
16	because of a disturbance on the electrical system due
17	to the loss of the output of the first plant perhaps
18	while another plant is going through refueling
19	operations perhaps is quite likely.
20	MR. SIEBER: I don't think so.
21	DR. APOSTOLAKIS: I don't think I mean,
22	modular reactors, we'll revisit that in the future.
23	Nobody is going to build AP 1000s as
24	MR. SIEBER: Well, that's one way to get
25	rid of the problem.
	I

	151
1	MR. ROSEN: Well, I don't think we're
2	going to revisit this part in the future. This is the
3	basis for the future.
4	MR. SIEBER: This sets the ground rules.
5	DR. APOSTOLAKIS: When somebody proposes
б	to build modular reactors, I think there's going to be
7	a major rethinking of everything.
8	MR. ROSEN: But this definitely will be on
9	the table presumably.
10	DR. APOSTOLAKIS: I know. This document,
11	by the way, you're asking us to write a letter, right?
12	MR. ROSEN: Yes.
13	MS. SZABO: Correct.
14	DR. APOSTOLAKIS: Is this document being
15	reviewed by anybody else right now? Is it subject to
16	change?
17	MS. SZABO: Ah-ha.
18	DR. APOSTOLAKIS: Well, I'm tired of
19	reviewing things that are subject to change.
20	MS. SZABO: Actually the Office of General
21	Counsel might be providing their comments.
22	DR. APOSTOLAKIS: Yeah, but they are
23	looking at other things. How about the committee to
24	review CRGR, whatever it is?
25	MS. SZABO: CRGR has not yet reviewed this
l	I

(202) 234-4433

	152
1	yet, but we are currently requesting a waiver for that
2	review because this is not considered a backfit.
3	DR. APOSTOLAKIS: I think we have to do
4	something about it, Mr. Chairman. We cannot review
5	documents that are subject to somebody else's review
6	and change, and this has happened in the past. You
7	know, the final document was not the one we reviewed.
8	Anyway, that's not your problem, of
9	course.
10	MR. BONGARRA: Well, we did anticipate.
11	We did send a letter out to CRGR. We actually sent
12	two letters out to CRGR. The first one asked for a
13	waiver up front before we actually sent this material
14	out for public comment, and they accepted that.
15	And we sent out another letter to them a
16	few weeks ago, requesting a response from them as to
17	whether they would want to review this or not, and we
18	have not heard at the moment back from them.
19	DR. APOSTOLAKIS: What I don't understand
20	is not just today, but very often the staff comes
21	before the ACRS before the CRGR, and I don't
22	understand that. Is the CRGR much more difficult to
23	put stuff on their agenda, or what? Why are they the
24	last ones? Aren't we supposed to be the last ones?
25	DR. KRESS: No.
ļ	I

(202) 234-4433

	153
1	DR. APOSTOLAKIS: Well, when you approve
2	something, Tom, I mean, you have a reasonable
3	expectation that that's what's going to be published.
4	DR. KRESS: We approve what we have before
5	us.
б	DR. APOSTOLAKIS: Now.
7	DR. KRESS: If it gets changed, why, then
8	there's a decision whether it's a substantial change
9	or not, and then it will come back to you.
10	DR. APOSTOLAKIS: Because then it would
11	come back to us because it was a substantial change.
12	I don't recall a single case.
13	CHAIRMAN WALLIS: This is something that's
14	a generic problem.
15	DR. APOSTOLAKIS: It's a generic problem.
16	DR. KRESS: It's an issue.
17	CHAIRMAN WALLIS: This one is going to be
18	so perfect that it's not going to get changed.
19	DR. KRESS: Yeah, I, for one, don't want
20	to wait till everything is perfect and not done
21	subject to any change.
22	CHAIRMAN WALLIS: We've got the June
23	version here anyway. So it has already
24	DR. APOSTOLAKIS: But you would expect it
25	to have come through the reviews of the staff.
	I

(202) 234-4433

	154
1	MR. ROSEN: Yes, we have next month's
2	version of it.
3	CHAIRMAN WALLIS: Are we ready?
4	MR. ROSEN: I think so, Mr. Chairman.
5	Unless there are any other burning comments here that
6	have to be dealt with, I will turn it back to you. I
7	don't see any.
8	CHAIRMAN WALLIS: Thank you very much.
9	I'd like to thank our presenters for
10	putting up with our questions and sometimes our
11	uncertainties or confusions. Thank you very much for
12	that.
13	MS. SZABO: Thank you for the opportunity
14	to present to you and for all of your comments and
15	questions.
16	CHAIRMAN WALLIS: We'll take a break for
17	lunch, and we will return at one quarter to one.
18	DR. APOSTOLAKIS: No, 1:50.
19	CHAIRMAN WALLIS: No, no. I think we're -
20	- to meet the schedule, people are going to be here
21	expecting us to meet.
22	MR. ROSEN: Twelve, forty-five?
23	CHAIRMAN WALLIS: I think we ought to meet
24	at 12:45.
25	(Whereupon, at 11:51 a.m., the meeting was
I	

										155
1	rec	essed	for	lunch,	to	reconvene	at	12:45	p.m.,	the
2	sam	e day.	.)							
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
ļ	I									

	156
1	AFTERNOON SESSION
2	(12:48 p.m.)
3	CHAIRMAN WALLIS: Let's come back into
4	session.
5	We're going to hear about advanced reactor
б	designs for hydrogen production, and Dr. Kress is
7	going to lead us through this one.
8	DR. KRESS: Yes. I was asked by some
9	members why we're doing this. It's one of our
10	proactive type of initiatives to keep the Commission
11	informed for technology advancements in this area.
12	Eventually I think this country will, in my opinion,
13	go to a hydrogen to replace in the transportation
14	sector anyway, and to me that means we're going to
15	have to make a lot of hydrogen, and the most
16	environmentally friendly way to make hydrogen is to
17	make it out of water.
18	If you make it out of anything else
19	besides water and then you subsequently burn it in the
20	using area, you're going to deplete the air of oxygen.
21	And so if you make it out of water and put the oxygen
22	back into the area, you get a net zero change. So if
23	you're going to make it out of water, it's going to
24	require a lot of energy and it's going to require high
25	temperatures. It sounds like a ready made for nuclear
l	I

(202) 234-4433

	157
1	power to me, and I think DOE has the same feeling.
2	They've looked at some of their Gen IV
3	concepts and I think at least an independent technical
4	review group decided that there's less uncertainty and
5	less risk in terms of technological risk if you do
6	this with a gas cooled reactor.
7	Now, I think they underestimated the risk
8	overestimated the risk due to the molten salt type
9	reactors, but of course, I'm biased there as you guys
10	know, but anyway
11	DR. POWERS: Well, I mean, the issues of
12	high pressures, the issues of large pumps and things
13	like that.
14	DR. KRESS: Exactly. They were worried
15	about materials issues, but I think they
16	underestimated how far advanced that is, but in terms
17	of us, what we should be thinking about is if you're
18	going to use a nuclear power plant to generate maybe
19	both power and hydrogen, that's an unusual situation,
20	and we need to start thinking about what the
21	regulatory requirements might be and what the safety
22	implications are, and I think at this particular point
23	in time what DOE would like out of us is some sort of
24	initial feedback on what we think these regulatory
25	issues and safety issues might be and whether or not
	I

(202) 234-4433

	158
1	new research is needed or new analytical tools or new
2	regulations.
3	So those are the kind of things I think we
4	want to start thinking about when we listen to this,
5	but with that semi-introduction, I'll turn it over to
6	John Gross to get us better oriented.
7	MR. GROSS: Hello. I'm John Gross, the
8	current acting
9	DR. KRESS: We will need you to either
10	speak into a microphone or wear one if you'd like to
11	wear one.
12	MR. GROSS: Sorry.
13	DR. KRESS: Thank you. That's for the
14	benefit of our transcriber.
15	DR. POWERS: For the benefit of those that
16	don't speak Tennessee, "war" means "wear," for the
17	rest of us.
18	DR. KRESS: Yes. Thank you for that.
19	MR. GROSS: I'm John Gross, the Acting
20	Associate Director for the Office of Advanced Nuclear
21	Research for the United States Department of Energy.
22	I'm about to speak to speak to you
23	regarding the hydrogen initiative that we have going
24	in DOE. I have with me three individuals, Rob
25	Versluis, Dave Henderson and Paul Pickard to whom I'm
I	

(202) 234-4433

	159
1	going to do two things: one, direct the presentation
2	after I do a brief introduction of how we're
3	organized; and, second, field your questions.
4	I won't dwell on this slide. I'm going to
5	address program and personnel. Paul Pickard from
6	Sandia National Lab will address hydrogen production
7	technologies, and the coupling interface between the
8	reactor and hydrogen production system.
9	Rob Versluis will then follow up with the
10	discussion.
11	I'd like to address how we're organized.
12	This is for your future reference. Hopefully it helps
13	paint a picture of how we do things within the Office
14	of Advanced Nuclear Research.
15	Above the dotted line is DOE's
16	organization. We have three programs in the Office of
17	Advanced Nuclear Research. The Advanced Fuel Cycle
18	Initiative, which addresses fuel element design, fuel
19	mixtures, interface to the reactor through the core.
20	Generation IV initiative is directed by
21	Rob Versluis and covers the Generation IV reactor
22	system design.
23	The third program Dave Henderson is our
24	program manager, and here's your area of interest
25	today, which is our nuclear hydrogen initiative.
ļ	I

(202) 234-4433

	160
1	Our mandate in the Office of Advanced
2	Nuclear Research is to prudently and appropriately
3	spend appropriated congressional funds at the same
4	time that we implement the President's nuclear agenda.
5	We're doing that for Generation IV and
6	nuclear hydrogen by performing partly R&D necessary to
7	develop reactor systems for the future. Below the
8	dotted line is where the work actually occurs. We're
9	forming work at the national labs in consortiums of
10	the national labs, universities, and industry I'm
11	sorry?
12	CHAIRMAN WALLIS: Below the dotted line
13	you have what looks like management people all from
14	different labs from the people who are doing the work
15	under them.
16	MR. GROSS: Correct.
17	CHAIRMAN WALLIS: Is that deliberate?
18	MR. GROSS: Yes, and I'm about to address
19	what that layer is.
20	CHAIRMAN WALLIS: Okay.
21	MR. GROSS: So the work actually happens
22	at the labs where they manage it. Between the labs
23	and DOE is the layer that you see on the screen. This
24	layer represents our interface to the labs. It's
25	composed of national technology directors and
I	

(202) 234-4433

161 1 technology directors. To your right you'll see the nuclear hydrogen initiative. 2 3 Paul Pickard serves a dual role, and he'll 4 be speaking to you shortly. He's our technology 5 integrator for the nuclear hydrogen initiative, as well as national technology director for energy 6 7 conversion systems under Generation IV. Therefore, he has a foot in both doors of Generation IV and nuclear 8 9 hydrogen, which, in fact, is where we need to have system interface. 10 The role of the technology directors is 11 basically they're in the center of developing the R&D 12 programs, coordinating the interface between us and 13 14 the labs, DOE and the labs, and they're effectively the people intimately involved with the research. 15 We have a whole series of directors, and 16 our next slide -- I'll jump probably between these two 17 -- shows your our vision of how the three programs 18 19 within advanced nuclear research interface. 20 Generation IV has categories of interest for us, which 21 is the very high temperature reactor, fast reactors of 22 a few designs, as well as the super critical water 23 reactor. 24 Under AFCI, fuel cycles looks at 25 separations, reactor transmutation and accelerated

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

162 1 driven systems. The nuclear hydrogen initiative is 2 currently performing research in thermochemical 3 systems, electrolysis systems. In fact, there's a 4 hybrid version of the two, and it also looks at system 5 interface, which is how do we get heat, energy 6 basically, from the reactor system to the hydrogen 7 production process. 8 Some of the research there, a lot of the 9 research is focused on piping interface, the heat 10 exchanger. Materials is the key area for us in all of these programs. 11 DR. APOSTOLAKIS: Now, you call this NHI. 12 Nuclear hydrogen initiative. 13 MR. GROSS: 14 DR. APOSTOLAKIS: Yeah. Presumably there 15 are other hydrogen initiatives within the department that are not nuclear. 16 Within the 17 MR. GROSS: Correct. Department of Energy there's a higher level program. 18 19 This is strictly nuclear oriented. Fossil energy is 20 involved. 21 DR. APOSTOLAKIS: And they're considered 22 in fossil energy and all. 23 MR. GROSS: Yes. 24 DR. APOSTOLAKIS: And there is no need to 25 talk to each other there?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	163
1	MR. GROSS: In fact we do speak with each
2	other. Dave is constantly in touch with the higher
3	level DOE program.
4	So to come back here momentarily, there
5	is, in fact, interaction, information exchange, and
б	great cooperation between the three programs within
7	the Office of Advanced Nuclear Research: AFCI,
8	Generation IV, and nuclear hydrogen.
9	We coordinate with the labs through
10	various national technology directors, and the work
11	moves forward.
12	This slide shows our vision, our current
13	concept of two parallel processes. One, Generation IV
14	and nuclear hydrogen initiative is shown at the top.
15	This is nuclear energy production.
16	The lower graph shows our perception of
17	how waste and how it's handled will proceed with time.
18	Today we're basically near 2000. By 2010 we hope to
19	have coming on line a decision to select a fast
20	reactor technology.
21	Somewhere between 2010 and 2020, we would
22	hope that the United States deploys its first advanced
23	lightwater reactor system. By about 2017, 2020, right
24	in there, we hope to have a demonstration, very high
25	temperature reactor system come on line.
ļ	I

(202) 234-4433

	164
1	Generation IV is essentially targeted to
2	systems that can come on line roughly in the years
3	2025 and beyond to replace the phaseout of existing
4	reactor systems in the United States. That's
5	coincident with the lower graph which shows the
6	Secretary of Energy is required by Congress to make a
7	decision by about the year 2010 regarding the need for
8	the U.S. and a second repository for waste. He's free
9	to make that decision earlier. The decision has not
10	yet been made.
11	Hopefully Yucca Mountain will open about
12	2010 and become a repository, a national repository
13	for waste. It would begin to take on waste from
14	ultra high burn-up fuel cycles developed by our AICI
15	program. Those are once through cycles.
16	As we approach 2017, we would like to
17	bring on line alternative fuel cycles which become
18	more proliferation resistent and are being used in
19	thermal reactors.
20	Finally, near the end of this graph we've
21	converted fully to a closed fuel cycle in which fast
22	reactors are processing transuranic elements producing
23	very little waste in self-sustaining
24	DR. APOSTOLAKIS: Let me understand this
25	a little bit.
ļ	I

(202) 234-4433

	165
1	MR. GROSS: Sure.
2	DR. APOSTOLAKIS: When you say select fast
3	reactor technology, one of the criteria, maybe the
4	major criteria will be how that technology can help
5	you with a nuclear hydrogen initiative or are they two
6	separate things?
7	MR. GROSS: It's related. Part of our
8	decision is to incorporate how well this part of
9	the decision to select which reactor technology is
10	related to the hydrogen program.
11	DR. APOSTOLAKIS: The selection
12	MR. VERSLUIS: May I jump in on this one?
13	MR. GROSS: Yes.
14	MR. VERSLUIS: The PHDR is dedicated to
15	the hydrogen program. The fast reactors, their
16	primary mission is to be able to close the fuel cycle
17	and go to a fully sustainable, self-sustaining closed
18	fuel cycle, and also in a transition period to
19	transmute lightwater reactor fuel for spent fuel.
20	So the fast reactors, they may have a role
21	as well in hydrogen generation, but that's not their
22	primary role.
23	DR. KRESS: Right now we should be
24	focusing on the VHTR, I presume.
25	MR. GROSS: Yes.
	1

(202) 234-4433

	166
1	DR. POWERS: Can I ask you an ancillary
2	question, somewhat off the mainstream here, but one
3	that's kind of important to us? When you talk about
4	ultra high burnup fuels, could you give us an idea of
5	what you mean by "ultra high"?
6	MR. GROSS: Sure. I'll let Rob address
7	that.
8	MR. VERSLUIS: Yeah, we have a program
9	underway to develop lightwater reactor fuel that goes
10	to a higher burnup, and we are looking at between 60
11	and 80
12	DR. POWERS: Okay. So not too far beyond
13	what we're thinking about. We're looking at like 75
14	for that, but we've heard about German work claiming
15	that with new clads they can get up to 100.
16	MR. VERSLUIS: We are not particularly
17	involved in what the industry is already doing.
18	DR. APOSTOLAKIS: Dana, when you say "we,"
19	you mean the agency?
20	DR. POWERS: Well, the Reactor Fuels
21	Subcommittee has an active interest in high burnup
22	fuels and fuel clad interactions and their
23	susceptibility to reactivity transience and thermal
24	transience. In fact, in October we have a
25	subcommittee meeting scheduled on just exactly that
I	I

(202) 234-4433

167 1 stuff and has an impact on 5046 revisions through the 2 acceptance criteria, which I'm told will be different. 3 MR. VERSLUIS: May I add that our interest 4 in the high burnup, lightwater reactor fuel is 5 primarily in the area of transportation fuel, in other words, MOX plus other actinides, and of course, that's 6 7 a way to transmute some of those nasty isotopes, and 8 the higher burnup we can reach the better. 9 We're certainly getting an DR. POWERS: 10 introduction into MOX and whatnot for your operations at Catawba. 11 MR. GROSS: Finally, for this introduction 12 I'm presenting, again, our current vision of the 13 14 evolution of the hydrogen economy. There isn't a lot 15 that I could really say about this. R&D begins. It's 16 going on for about 15 years or so, followed by 17 transition to the marketplace, expansion of markets and infrastructure. 18 19 DR. APOSTOLAKIS: Hydrogen economy means 20 What is a hydrogen economy? what? 21 MR. GROSS: It means that the economy of 22 the United States has initially begun to convert to an 23 energy source based upon hydrogen and move away from 24 energy sources based upon fossil fuels. 25 But this energy will be DR. APOSTOLAKIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	primarily for transportation? Are you talking about
2	electric? Not electric.
3	MR. GROSS: No, no. It would be hopefully
4	in the long term, it would be across the board,
5	but
6	DR. APOSTOLAKIS: Really?
7	MR. GROSS: Yeah. Regarding the time it
8	would take for this to happen, that's not something
9	that I could actually realistically address.
10	DR. APOSTOLAKIS: Dr. Kress mentioned
11	transportation. Is this the primary mover?
12	DR. KRESS: I can't imagine it being used
13	for much else. Now, of course, there's fuel cells
14	that can be used for all sorts of little things, but
15	I don't envision. I think the big use and the place
16	where it's needed most is in transportation. That's
17	where we get all of the greenhouse gases and
18	DR. APOSTOLAKIS: And oil. We use a lot
19	of oil.
20	DR. KRESS: We use a lot of oil, burn a
21	lot of oil.
22	MR. VERSLUIS: Gentlemen, this is an area
23	that will be covered in the presentation that will
24	follow.
25	DR. APOSTOLAKIS: Fine, fine.
	I

(202) 234-4433

	169
1	MR. GROSS: At this point I'm going to
2	pass the presentation to Paul Pickard, who is with
3	Sandia and is our technology director for the Nuclear
4	Technology Integrator for the nuclear hydrogen
5	initiative, as well as the national technology
6	director for
7	DR. POWERS: Mr. Chairman, before the
8	speaker starts, I point out that I have worked with
9	Dr. Pickard for the last 30 years and including on
10	that I have consulted with him on some of the hydrogen
11	programs, and so member should bear that relationship
12	in mind as they evaluate any of my comments that I
13	make.
14	(Laughter.)
15	DR. APOSTOLAKIS: Which you will still
16	make.
17	DR. POWERS: I promise to give him just as
18	hard a time here as I do at Sandia.
19	MR. PICKARD: I'm not sure whether that
20	was good or bad.
21	CHAIRMAN WALLIS: You will not be allowed
22	to enter into a friendly discussion.
23	DR. POWERS: We've never had one of those.
24	DR. APOSTOLAKIS: That's not going to be
25	very difficult.
I	

(202) 234-4433

	170
1	MR. PICKARD: Thank you.
2	As John and Rob had mentioned, the
3	Department of Energy is looking at a range of reactors
4	for the next generation. The kind of goals that we
5	had in mind for these things included several,
б	including sustainability, the preservation of the
7	resource, safety goals, performance and economic
8	goals.
9	And among these goals was the desire to
10	look at the energy products that you can make with
11	these advanced reactors, and clearly one of these is
12	the higher temperatures that are available from these
13	reactors allow you to generate energy more
14	efficiently, generate electricity more efficiently.
15	You can use higher temperatures, and you simply do a
16	more efficient job.
17	These higher temperatures though also
18	allow you to consider some hydrogen production
19	technologies that would not be allowable with water
20	reactors. Thermochemical cycles generally require
21	temperatures in the neighborhood of hundreds of
22	degrees. Five hundred is a minimum, but generally in
23	the range of 1,000 degrees.
24	The most common cycles we look at today
25	are sulfur based cycles. They require the
I	

(202) 234-4433

171 1 decomposition of sulfuric acid, and that starts 2 becoming effective in the eight or 900 C. range. So some of these cycles require new 3 4 generation of reactors for that, and that is why the 5 VHTR is a high priority, looking at how we would couple to these potentially more efficient 6 and 7 potentially more cost effective hydrogen production 8 technologies. 9 Also, high temperature electrolysis is a The electrolysis of steam rather than 10 possibility. water, where you use part of the energy for steam 11 generation, and then the electrical requirement goes 12 down so the overall efficiency can go up. 13 14 So the goal of the current program is to 15 look at how you most effectively take advantage of 16 this higher range of outlet temperatures that are 17 represented by the Gen IV reactors. Their ranges I have showed here are not hard and fast. 18 They are 19 notional ranges that are the ranges that the DOE as 20 well as their international partners have considered 21 for these reactors. 22 clearly The VHDR is the highest 23 temperature system considered in the range of 900 to 24 1,000 degrees. An extension of gas cooled reactor 25 technology, high temperature gas reactors.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

172 1 The gas fast reactor which is of 2 significant interest to the French CEA, they are looking at systems in the seven or 800 degree range. 3 4 Clearly that is a concept that is still being 5 formulated. The fuels and the temperatures for that are still being considered. 6 7 The molten salt reactor is on this list. is not being actively pursued within the 8 Ιt international or the DOE --9 10 DR. KRESS: When you say molten salt reactor, you're talking about molten salt cooled or is 11 12 this a true molten salt reactor? MR. PICKARD: This is actually molten 13 14 salt. A Gen IV reactor is a molten salt. 15 DR. KRESS: It's a Class A (phonetic) fuel, but molten salt. 16 This would be the fuel 17 MR. PICKARD: dissolved in salt. 18 19 DR. KRESS: Okay. 20 MR. PICKARD: But there is significant 21 interest alternative cooling in an or as an 22 alternative coolant for a graphite cooled graphite 23 reactor with the salt cooled, allowing you to maybe go 24 to a much higher temperatures or -- excuse me -- much 25 higher powers.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	DR. KRESS: Is that on this list?
2	MR. PICKARD: That's not one of the
3	current Gen IV concepts as such, but it is one of the
4	concepts being considered for the VHTR. The VHTR can
5	consider both gas cooled and molten salt cooled
6	concepts, and Rob has current activities going on to
7	evaluate the advantages and disadvantages of those.
8	The lead fast reactor currently is looking
9	at lower temperature designs. This is a very small
10	reactor, kind of the nuclear battery concept looking
11	at lower temperatures, but very small, convectively
12	cooled, passive systems that would be a market for
13	developing countries, systems that would run on the
14	same core loading for 20 or 25 years, require no
15	involvement of that nation, essentially fast reactors
16	with very low power densities.
17	MR. ROSEN: What is the peak extension of
18	your bar on this chart, meaning on lead fast reactors?
19	MR. PICKARD: I'm sorry?
20	MR. ROSEN: What is the extension of your
21	bar on lead fast reactors to the right?
22	MR. PICKARD: Oh, currently the materials
23	issues limit that to temperatures down in this five to
24	600 degree range, but they are talking about
25	alternative concepts and materials that could extend
Į	I

(202) 234-4433

	174
1	that.
2	So of the range of things that are being
3	considered by investigators, I include that because
4	that's what they're hoping to get to, not because they
5	have a means to get there right now.
6	The sodium fast reactor is not being
7	actively pursued in this country because that is
8	considered much more a developed technology the
9	Japanese and French are still interested in. We are
10	as well, but the temperature range and the technology
11	there is better established.
12	The super critical water reactor is still
13	an active concept looking at very high temperature
14	water reactors in the range of 500 or 600 degrees.
15	The kind of conversion technologies we're
16	looking at for hydrogen, thermochemical cycles range
17	in the neighborhood of a minimum of 500, and many of
18	them go up much beyond 1,000 degrees. The ones we are
19	interested in are those that are compatible with the
20	reactors that are being considered.
21	Calcium bromine is a cycle developed in
22	Japan in the last ten or 15 years that can actually
23	operate in the 750 range.
24	DR. SHACK: Now, are the fossil people
25	looking at even higher temperature conversion cycles?
1	

(202) 234-4433

	175
1	MR. PICKARD: I will get to that, but
2	really the fossil people are primarily looking at
3	conversion of steam methane reforming or using that as
4	a feedstock, as well as the heat source, and that's
5	one of the aspects that nuclear could consider
б	supporting.
7	The high temperature electrolysis,
8	basically this is your steam electrolysis. You use
9	some thermal energy to generate steam, and that
10	provides part of the energy to associate the water
11	and, therefore, it can be and we estimate roughly ten
12	to 15 percent overall more efficient. Clearly an
13	advantage.
14	It also requires though high temperatures.
15	DR. POWERS: Well, do you not have the
16	potential problem with steam that you do with water?
17	MR. PICKARD: You have less.
18	DR. POWERS: Less?
19	MR. PICKARD: The advantage of high
20	temperature electrolysis includes both the fact that
21	you generate part of it thermally and, therefore,
22	don't have the conversion losses, but to sell the
23	losses, the Ohmic losses and polarization losses are
24	lower.
25	On the electrical side, we will not talk
I	I

(202) 234-4433

	176
1	about this today, but the use of high temperature
2	Brayton cycles, closed Brayton cycles is being
3	considered. Helium Brayton cycles for the VHTR is
4	being looked at. Clearly materials problems are less
5	with the helium.
6	This is a technology that we know about in
7	terms of turbine compressor designs, and for the very
8	high temperatures the helium closed systems are what
9	we're looking at.
10	When you look at the intermediate
11	temperature ranges though, there are other systems
12	that look to optimize at somewhat lower temperatures,
13	and the super critical CO_2 system is one we're looking
14	at. It's a recuperated Brayton cycle, but because of
15	the properties of CO_2 down near the critical point,
16	you can actually get more efficient cycle because
17	you're coming closer to compressing this as a liquid.
18	DR. POWERS: You would go unstable, too.
19	MR. PICKARD: Say again.
20	DR. POWERS: You can go unstable, too.
21	MR. PICKARD: There are challenges with
22	that cycle nevertheless.
23	DR. POWERS: I mean, there's a bifurcation
24	across the phase boundary.
25	MR. PICKARD: You've got to be very
I	

(202) 234-4433

177 1 careful. That is a challenge. Control and stability 2 of this cycle are what we're looking at. 3 On the other hand, it also allows you to 4 consider something in the neighborhood of 45 percent 5 net efficiencies of plants in the neighborhood of 550 or 600 degrees. So it is a cycle that is at least 6 7 conceptually quite simple that allows you to take 8 better advantage of these middle temperature reactors. 9 In the hydrogen production DR. KRESS: 10 concepts, are you giving any thought to this thing I 11 mentioned in the introduction, that if you're not 12 putting oxygen back into the air when you burn hydrogen that you're slowing depleting the atmosphere 13 14 of oxygen? Is that a consideration in deciding which 15 one of these production techniques you use? Well, everything we're 16 MR. PICKARD: 17 looking at is splitting water. Splitting water. 18 DR. KRESS: So it's a 19 net zero change in reality. 20 MR. PICKARD: The research program for the 21 nuclear side is looking at water. I mean, obviously the --22 23 DR. KRESS: Well, some splitting of water 24 though sequesters the oxygen in a solid form as an 25 You're not looking at those, I hope. oxide.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	MR. PICKARD: In every case we're looking
2	at, the oxygen is a gaseous product that's either
3	going to be used somewhere or dispersed.
4	DR. KRESS: Or you're going to use it
5	somewhere.
6	MR. PICKARD: Right.
7	DR. KRESS: I worry about using it because
8	using oxygen generally puts it in a sequestered form.
9	DR. POWERS: If the entire mankind's
10	production of fuel could change the oxygen
11	concentration by a detectable amount.
12	DR. KRESS: Yeah, I think it could, and
13	you'd only have to change it a little bit for lots of
14	things not to be viable anymore. You know, how well
15	do things survive on the top of certain amounts where
16	the oxygen is not very much lower?
17	I think it's a consideration that probably
18	nobody is thinking about, and that's why I brought it
19	up.
20	DR. APOSTOLAKIS: But I'm trying to
21	understand what your point is, Tom. Are you making a
22	sustainability argument here?
23	DR. KRESS: Yeah, over a long-term
24	sustainability.
25	DR. APOSTOLAKIS: So you're saying that we
ļ	I

```
(202) 234-4433
```

	179
1	will be losing oxygen?
2	DR. KRESS: Instead of curing the CO $_{ m _2}$
3	problem and the acid rain problem, we're just
4	depleting the atmosphere out of oxygen, and at some
5	point people can't live and other things can't live if
6	the oxygen gets much lower than it is now. And if
7	you're using hydrogen
8	DR. POWERS: You're going to depopulate
9	Nepal.
10	DR. KRESS: Well, that's where you're
11	going to start.
12	But anyway, that's my concern in life, the
13	sustainability in the long term, and you know, maybe
14	now is the time to think about when you're making this
15	hydrogen how you make it.
16	DR. APOSTOLAKIS: According to Paul, all
17	of the technologies they are considering have the
18	same
19	DR. KRESS: But you may end up with oxygen
20	that what I want to do is release it back to the
21	atmosphere and, you know, they want to use it
22	probably for something, and that's the thing I worry
23	about.
24	DR. POWERS: One of the biggest headaches,
25	you don't have a market for the oxygen product out of
I	

(202) 234-4433

	180
1	these things.
2	DR. KRESS: Yeah, that's true.
3	MR. PICKARD: This overwhelms the
4	potential oxygen market. If hydrogen production were
5	really to work, we overwhelm the oxygen market.
6	DR. KRESS: You know, just turn it loose
7	back to the atmosphere.
8	CHAIRMAN WALLIS: Tell him some places
9	where it can do some good, such as an ACRS meeting
10	room.
11	DR. KRESS: Oh, that's an idea.
12	DR. APOSTOLAKIS: Unless the ACRS itself
13	is sequestered.
14	MR. ROSEN: I think it would keep these
15	old ACRS members alive.
16	MR. PICKARD: I think I'd better move on.
17	PARTICIPANTS: Yes.
18	DR. APOSTOLAKIS: Because we have reached
19	that point.
20	MR. PICKARD: I did want to just say
21	something about the hydrogen market. I do realize
22	we're talking about a hydrogen economy some time in
23	the future that uses hydrogen for fuel cell that's an
24	environmentally benign fuel, but the current hydrogen
25	market is already large. We make a lot of hydrogen.
I	

(202) 234-4433

	181
1	It is a role for nuclear power that even today would
2	be comparable to our nuclear fraction. Tomorrow it
3	could be much larger.
4	The U.S. demand is like ten million tons
5	a year. The world demand is about 50 million tons.
6	That's mostly used in ammonia production, but the
7	increasing component of those hydrogen usage,
8	independent of any hydrogen for fuel cells, is in oil
9	refining.
10	The petrochemical industry, we don't see
11	this because it's internal to that industry, but as
12	the grade of crude continues to sour, there's more and
13	more hydrogen needed to refine that into a gasoline
14	that's usable, and that has been a rapidly expanding
15	market.
16	And if you extrapolate that to the
17	Canadian oil sands where the grade of oil coming out
18	is very low, the requirement for hydrogen, at least
19	the Canadians have mentioned numbers like the entire
20	North American supply of natural gas could be used to
21	refine that very large resource of Canadian oil sands
22	if we were to exploit that, if it were to be
23	exploitable.
24	So the expansion of the hydrogen market is
25	really I mean these other things will also clearly
ļ	1

(202) 234-4433

increase in use, but oil refining and the lowered rate of oil that's going to be refined in the future is one key market.

And I point that out because the kind of market we're talking about here is not a distributed market. It's a large, centralized plant, much like a nuclear plant could be appropriate for it. So the department has considered the nuclear option a good one for these applications that are probably going to come along earlier.

It does not require the hydrogen economy 11 12 or infrastructure to say that this hydrogen is going To give you an idea, somebody mentioned 13 to be there. 14 the transportation issue, and the numbers are out of 15 date, but they give you an example. If you assume that hydrogen is going to be the source of fuel for 16 transportation for the miles we drive, based on the 17 current alkaline electrolyzers, it takes about 50-18 19 plus, 53 or four kilowatt hours per kilogram of 20 hydrogen.

Kilogram of hydrogen is just a little more than a gallon of gasoline, but the energy content is roughly the same. So it takes about 50 kilowatt hours to make a kilogram of hydrogen like a gallon of gas in terms of energy.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

	183
1	CHAIRMAN WALLIS: You're talking about in
2	terms of efficiency?
3	MR. PICKARD: Say again?
4	CHAIRMAN WALLIS: What's that in terms of
5	efficiency, energy efficiency?
б	MR. PICKARD: Well, that assumes that the
7	higher heating value hydrogens like 39 kilowatt hours
8	and 73 percent for the alkaline electrolyzers, which
9	is about the best you see quoted. So the use of
10	electricity is fairly efficient. To make the
11	electricity, obviously, you've lost something.
12	CHAIRMAN WALLIS: Right.
13	MR. PICKARD: That says that if you took
14	the miles we drove and this is now almost ten years
15	old. It's a bigger number than this now and you
16	assume you were going to get 50 miles per gallon as
17	the average and you made this with the highest
18	efficiency you can think of, that looks like 300
19	gigawatts of electric if you made that by conventional
20	electrolysis.
21	If you dropped down to at least the
22	mileage my car seems to get, I mean, this is starting
23	to look like 1,000 nuclear plants of gigawatt size to
24	make the hydrogen for today's market if we were to use
25	all of that for transportation.

(202) 234-4433

	184
1	It is a large potential area of
2	application, and when you do it with hydrogen there,
3	or whether you use that hydrogen in petrochemicals to
4	augment liquid fuels, which we have the infrastructure
5	for, either way you're going to end up with a lot
6	of
7	CHAIRMAN WALLIS: Well, a gigawatt is
8	1,000 megawatts; is that right?
9	MR. PICKARD: Say again?
10	CHAIRMAN WALLIS: A gigawatt is
11	MR. PICKARD: A gigawatt is 1,000
12	megawatts, correct.
13	MR. ROSEN: Typical big plant.
14	MR. PICKARD: Yeah. The 100 plants we
15	have, we're talking about something large compared to
16	that to do this job.
17	The amount of hydrogen we make in the U.S.
18	today primarily from steam methane reforming would
19	still require something on the order of 50 gigawatts
20	of electric energy to make if we made it by
21	conventional electrolysis. There's a lot of natural
22	gas, a significant fraction of our natural gas. I've
23	heard as low as five, but I think it's more like seven
24	percent goes into making hydrogen for refining
25	petrochemicals.
	1

(202) 234-4433

	185
1	So I think from the nuclear side we look
2	at the applications as evolving in the future, but
3	there will be a near term application, and the goal of
4	the nuclear hydrogen issue then is to look at could
5	you use nuclear as the prime source for that. What is
6	the benefit of that?
7	DR. KRESS: The nuclear plants producing
8	electricity nowadays do pretty well at about 33
9	percent efficiency cycle. Do you really think you
10	have to get up to 60 percent or thereabouts?
11	I'm concerned about these high
12	temperatures. If you backed up off, I presume you
13	have to have these high temperatures for the
14	conversion of hydrogen.
15	MR. PICKARD: If you use the
16	thermochemical cycles or high temperature
17	electrolysis.
18	DR. KRESS: So it's not the efficiency
19	that you're worried about there. It's the conversion.
20	MR. PICKARD: We use the efficiency simply
21	as an indicator of the cost impacts here. Some that's
22	more efficient requires less energy, less plant to get
23	there. And for things we don't quite know how to do
24	yet, that's one good early indicator, is where the
25	process is efficient.
ļ	I

(202) 234-4433

	186
1	I mean, alkaline cells are 70-some percent
2	with 35 percent. That looks like an overall
3	efficiency of 25 percent. In the high temperature
4	electrolysis, assuming you had a next generation
5	reactors that did 40 or 50 percent, you can make that
6	50 percent better.
7	So I don't think it's a fundamental issue,
8	but it's a matter of how good can you do this.
9	I did want to mention that this is part of
10	the overall DOE hydrogen program. Any component of
11	the hydrogen program is just one of the ways that DOE
12	is looking to make energy. The hydrogen economy looks
13	good except for it's hard to make it. We don't know
14	how to store it and we don't know how to distribute
15	it, but
16	DR. POWERS: The best way to transport
17	hydrogen, put it on the back of a carbon atom.
18	(Laughter.)
19	MR. PICKARD: And that's what we're
20	currently doing, and we pump it around or haul it
21	around that way.
22	So DOE is looking at the renewables. I
23	mean, they're looking at everything they can do with
24	the renewables, including biomass, solar, wind, wind
25	probably being an electrolyzer kind of concept.
ļ	

(202) 234-4433

	187
1	The fossil program is also looking at
2	those things, but they're looking at for carbon free
3	or carbon neutral schemes, looking at sequestration
4	technologies.
5	Currently most hydrogen is made by steam
6	methane reforming, a high temperature reaction where
7	you use part of the gas to provide the heat and the
8	other 70 percent or so is the feedstock.
9	It is conceivable that nuclear could
10	support that by providing the heat source, the high
11	temperature heat source for that, but it's still a
12	fossil dependent technology, and therefore, the
13	nuclear program is not addressing that.
14	Conventional reactors today could also
15	support conventional electrolysis in just the mode we
16	talked about, an alkaline electrolyzer at a 33 percent
17	efficiency, and of course, it really does come down to
18	cost. Whatever the cheapest electricity dominates the
19	cost there.
20	I mentioned a number. It's probably good
21	to just keep that in mind. If you need 50 kilowatt
22	hours of electricity to make a kilogram of hydrogen,
23	which is about a gallon of gasoline, five cent a
24	kilowatt hour electricity means you spent it is
25	about 270 in terms of energy just for the electricity
	I

(202) 234-4433

1

2

3

4

5

6

There is also a cost, of course, to capitalize that plant, but generally we talk about current hydrogen being on the order of three dollars a kilogram if you wanted to make it by conventional means now with conventional electrolyzers.

7 And that's three dollars a kilogram at the 8 plant, not distributed or involved in something, which 9 used to sound more pricey than it does now when you talk about a gallon of gasoline, but it kind of gives 10 11 you an idea that the ways we could do it now are in 12 several dollars per kilogram equivalent the of gasoline at the source. 13

14 What we're looking at is advanced methods, 15 better efficiency methods that might make that better, 16 and the kind of things we're looking at are 17 thermochemical cycles and hiqh temperature electrolysis, and these are really the elements of the 18 19 current nuclear hydrogen initiative program.

20 CHAIRMAN WALLIS: So if you take this 21 hydrogen and make methanol that you make now, do you 22 lose a lot of the available energy or heating value or 23 whatever you want to call it? Because methanol is a 24 lot easier to transport than hydrogen.

MR. PICKARD: Yes or even ammonia or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	189
1	something else, right.
2	CHAIRMAN WALLIS: Well, you can burn
3	methanol in a car.
4	MR. PICKARD: Yes, and, well, currently
5	what we do is put the hydrogen in gasoline. I mean,
6	that's almost half of the hydrogen we make goes into
7	gasoline.
8	CHAIRMAN WALLIS: That seems to be the
9	sensible thing to do.
10	MR. PICKARD: And because of the value of
11	the gasoline, the value of the hydrogen is I mean,
12	you're not burning that directly, but it is a high
13	value product that you're using to make another high
14	value product, and what we're trying to do is look at
15	can you make it out of a relatively low value product.
16	The technologies we're looking at in the
17	hydrogen program, on the nuclear energy side looking
18	at high temperature electrolysis, basically using a
19	cell very much like a fuel cell operating in reverse
20	where you apply a voltage rather than generate a
21	voltage, because of its efficiency obviously high
22	temperature electrolysis would be a modular scaling
23	system if you're going to build an industrial size
24	plant.
25	Typically right now we're limited to ten

(202) 234-4433

190 1 or tens of centimeters kind of per facility because of 2 differential expansion so that you had envisioned an 3 electrolysis hydrogen plant on a commercial scale 4 being made up of modules of stacks of these individual 5 cells and those modules being repeated over and over again, literally a million of these cells would be 6 7 So the economies of scale would be a mass made. 8 manufacture rather than scaling. Thermochemical cycles, these are simply a 9 chemical reactions that 10 series of end up with something you can decompose the hydrogen at a lower 11 12 temperature than direct association. There are lots of these cycles. 13 The ones 14 that we're looking at are the ones that have been 15 generally focused on in the past because they have Many of these are difficult to make work. 16 worked. The reason you look at that is because at 17 least the fewer thermochemical cycles are things that 18 19 are purely thermochemical. There is no electrical --20 CHAIRMAN WALLIS: Sulfuric acid at 900 21 degrees C. with water around? 22 MR. PICKARD: Yes. CHAIRMAN WALLIS: Does this corrode 23 24 things? 25 (Laughter.)

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	191
1	MR. PICKARD: That's the kind of statement
2	I've heard.
3	DR. POWERS: Well, I mean, to give you
4	precision on the sulfuric acid, it's so pure it's not
5	a special
6	CHAIRMAN WALLIS: Well, you've got some
7	water there, too.
8	DR. POWERS: It's the diluter forms that
9	act bad.
10	MR. PICKARD: I'll mention this a little
11	bit, but yes, I think when you look at the challenges
12	of thermochemical cycles, it seems like we always end
13	up with a series of species that are very corrosive,
14	and you have to deal with very high temperatures. So
15	there are significant materials challenges in making
16	thermochemical cycles. They have been demonstrated,
17	but in glassware in very small scales.
18	Either one of these technologies that
19	we're looking at, both require high temperatures and,
20	therefore, a high temperature interface with the
21	reactor. So the materials of construction, the heat
22	exchanger materials, the heat exchanger effectiveness
23	is an important area.
24	So the three primary areas include this
25	systems interface area, and we'll talk a little bit
I	

(202) 234-4433

	192
1	more about that.
2	I want to just take two or three
3	viewgraphs and tell you about what we're doing in each
4	of these areas. The high temperature electrolysis, as
5	I said, we're looking at this because it does have
б	potential for a higher efficiency than conventional
7	electrolysis.
8	You do use part of the energy. Maybe at
9	eight or 900 degrees about a quarter of the energy is
10	thermal. That fraction of the energy did not have to
11	convert to electricity and lose the conversion losses.
12	The cells are also somewhat more
13	efficient. The resistance is lower. They still have
14	the same kind of Ohmic and polarization issues, but
15	they are lower.
16	I think typically people like to quote
17	numbers at 90 percent or better in terms of those
18	Ohmic and polarization losses, some of which can be
19	reused.
20	CHAIRMAN WALLIS: this picture, is that a
21	picture of something that operates at 950 degrees C.?
22	MR. PICKARD: Close to that, yes. These
23	are the materials here are basically the same kinds
24	of materials being developed in the fuel cell program.
25	Solid oxide electrolytes primarily, yttria stabilized
ļ	

(202) 234-4433

193

zirconia,	some	rare	earth	porous	electrodes.
-----------	------	------	-------	--------	-------------

1

2

3

4

5

6

7

The NE side is, although we do have some different requirements, primarily on our side, we're looking to the fuel cell program, the much larger program to look at the development of materials and fabrication techniques, all of which are difficult here, but have been done.

8 And because of that leverage, we do have 9 cells that are currently working both in single cells 10 and in stacks.

11 The issue with the high temperature 12 electrolysis, we do know that technology works. There was not a question of that. It's a matter of can you 13 14 engineer it and provide a cost effective solution, 15 much like the fuel cell program. The device sounds longevity of that and cost of 16 good, but that. Currently these are nominally order of magnitude or 17 more expensive than you'd like to see, and the 18 19 question is as you develop them and mass manufacture 20 them, do those costs come down?

And the fuel cell program with DOE does have very, very visible guidelines and targets for what they want to get. One of the advantages for us is that it does allow a somewhat wider temperature range. Temperature ranges are bounded, but

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	nevertheless, it's not as important to have extremely
2	high temperatures here. At least there's a wider
3	range of possible temperatures.
4	And it also is basically a steam process.
5	There is no hazardous chemicals, no acids or halogens
6	to deal with.
7	CHAIRMAN WALLIS: Now, where it says
8	"air," is the air just a way of carrying the oxygen
9	away or something?
10	MR. PICKARD: Yes. In this case, that's
11	what is going on. I just wanted to give you a feeling
12	for the magnitude of the energy. On the right side of
13	this curve, on the left side, is the energy
14	requirement, the total energy requirement for
15	electrolysis, as well as the changing electrical
16	versus thermal demands here.
17	So as you get towards these eight or 900
18	degree temperature ranges, maybe 25 percent, and
19	that's a significant part of the efficiency
20	improvement.
21	If you map that into where these cells
22	might operate, at the low end where there's
23	essentially no throughput of hydrogen, those are the
24	idea efficiencies you can get to. By the time you add
25	enough over voltage to drive reasonable production
	I

(202) 234-4433

	195
1	from the cells you've invested in, we're talking about
2	for energy conversions of something like 40 percent in
3	the middle of this curve, and you're out in one and a
4	quarter volts or something like that.
5	You're talking about overall percentage
6	efficiencies on the order of 40 percent, which are
7	substantial improvements in overall efficiency, but
8	the issue here is how much does that cost you. The
9	cells are more expensive, and the high temperature
10	management is going to be more difficult.
11	In terms of how you would configure this,
12	there are many configurations you could consider, and
13	one of the activities on the nuclear energy side is to
14	look at how would this be coupled to the reactor.
15	CHAIRMAN WALLIS: Very funny units. A
16	cubic meter of hydrogen, that means at atmospheric
17	conditions?
18	MR. PICKARD: Yeah, those are SVP. I had
19	to work those out, too. Sorry. Yeah, the
20	configurations that could be considered, this one
21	shows a combined plant, a high temperature reactor
22	that uses part of its energy in parallel to generate
23	efficient electricity, and at 850 at least the numbers
24	are in the upper 40s as targets, mid to upper 40s.]
25	But part of the energy then goes into the

(202) 234-4433

1 thermal component to generate steam for the steam 2 electrolysis. Clearly you do not have to use the same 3 reactor to do that. The high temperatures are really 4 only needed for the steam. One can buy electricity 5 off the grid at whatever the lowest cost is and configure these as dedicated rather than multi-purpose 6 7 plans, but this is one configuration that was considered for NGNP. 8 9 Basically steam is a source to the high 10 temperature electrolysis. The hydrogen generator is recuperated. That energy is recuperated into the 11 incoming waters that make up --12 CHAIRMAN WALLIS: May we use this on an 13 14 exam for a thermal dynamics course? 15 MR. PICKARD: I was going to say we have 16 started looking at what these configurations would look like. 17 CHAIRMAN WALLIS: I can take this home and 18 19 use it as an exam on a course? 20 MR. PICKARD: Okay. The two elements of 21 our program really, one is looking at what kind of 22 system would you do. How do you manifold and manage 23 the thermal energy here? Because that is a non-24 trivial exercise. We're talking about a steam 25 generator now at 800 or 850 degrees C.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

196

	197
1	Significant issues there materials-wise,
2	but nevertheless also looking at how do you use this
3	electrolyzer. The DOE program is focused on the fuel
4	cell application and the nuclear energy effort is
5	focused on the electrolyzer application.
6	DR. POWERS: You're not focused really on
7	the materials for the electrolyzer at all.
8	MR. PICKARD: It hasn't been as much of an
9	issue. There are significant issues. The steam is a
10	steam-hydrogen mixture. So it stays in a reducing
11	environment, but there are still issues in
12	recuperating the heat exchangers that they have shown
13	there, recuperating oxygen energy. At these
14	temperatures you still have issues, not the dramatic
15	issues you have with thermal chemical cycles.
16	DR. POWERS: What kind of separation
17	between the hydrogen-oxygen mixture that you're
18	producing here? It may not be mixed by design, but by
19	accident it can be.
20	MR. PICKARD: It introduces a scenario
21	that we
22	DR. POWERS: In this vulnerable little
23	reactor that you've got.
24	MR. PICKARD: Yeah, it introduces
25	scenarios like that that you've got to consider. I
ļ	I

(202) 234-4433

	198
1	think the stack that's shown on the right, this is
2	actually an Idaho National Laboratory experimental
3	stack that shows these are kind of seen closing
4	through on one set of channels. Air sweeping the
5	oxygen flows through on the other set of channels.
6	So as you can see on the bottom here,
7	seals, interconnects are important issues here, and
8	those are challenges. You're operating at very high
9	temperatures in steam environments, and I think many
10	of the cell configurations are looking at it to try to
11	solve those sealing and materials issues here.
12	Idaho is currently looking at a variety of
13	small scale experiments to just understand the physics
14	of the cell, but obviously the goal here on our side
15	is to engineer this into a stack, into a module that
16	can be a building block either for a much larger
17	plant.
18	So the thermal management, the manifolding
19	sealing as well as the cell operation is a key issue.
20	Currently, I think these experiments have
21	been running for the past year at Idaho. This cells
22	that's shown there, these are ten centimeter nominal
23	dimensions for that stack, and this cells produces
24	about I think the experiment produced about 50
25	liters an hour for a period of time.
	I

(202) 234-4433

199 1 The same stack with the right operating 2 voltage is going to be run at nominally 100 liters per 3 hour. Very small scale, but these experiments are in 4 progress. 5 I also wanted to say just a few words about thermochemical cycles. Obviously the desire 6 7 here, many of the thermochemical cycles have been looked at in the literature, and in large measure 8

these are things that have been looked at at low 9 This has not been a focused 10 levels in the analysis. program. A lot of work done in the '70s. As soon as 11 12 gas prices dropped, almost every program in the U.s. also terminated. 13

14 The Japanese continued to work and have 15 been working continuously since then so in many cases, are well ahead of us in the thermochemical cycle area. 16

The reason you look at these things is 17 because many of them do project to 50 percent 18 19 efficiency, meaning thermal energy can be used 20 directly to produce hydrogen at а 50 percent 21 efficiency without any electrical conversion.

22 Now, some of these are hybrid cycles that 23 use one thermochemical step and then electrolysis 24 step, and the goal of those is the electrolysis step 25 generally is a much lower energy requirement than

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	water electrolysis. So you still are dominating the
2	efficiency of the process by the thermal step.
3	Generally at least chemical engineers like
4	fluid processes. They scale with volumes, and when
5	you think of very large scaling, this is different
6	than the modular scaling, and I think one of the
7	advantages of taking both of these to develop is that
8	it gives you a chance to examine the modular scaling
9	economics as well as the volume scaling economics.
10	I think that's something we have
11	advocates on both side, but I don't think we know what
12	the best approach is yet. You can find a lot of ways
13	to add a chemical equation so that they sum to water
14	equals oxygen and hydrogen. Most of those don't work.
15	There are kinetics issues and there are side reactions
16	or they take just too high temperature.
17	Of the hundreds of cycles that are out
18	there, only a few have been demonstrated and
19	integrated, and the sulfur cycles have been the
20	leading ones of those. Sulfur cycles include sulfur
21	iodine, which I'll describe in a minute, and hybrid
22	sulfur, combination thermal electric, but all of them
23	seem to require very high temperatures, six, 700
24	degrees as a minimum, generally more like eight or
25	900, and they all seem to involve fairly corrosive
I	I

(202) 234-4433

	201
1	species. So they are all challenge for materials as
2	well as the chemical process.
3	MR. ROSEN: You know, Paul, one of the
4	things we worry about a lot here is the effect of
5	toxic gases on operating crews.
6	MR. PICKARD: Yes.
7	MR. ROSEN: So you might want to keep that
8	in mind.
9	MR. PICKARD: Yes. I will show you at
10	least what we anticipate inventories to be, but, yeah,
11	those are among the key concerns here, and it's going
12	to be one of the issues we want to understand when you
13	pick technologies to move forward with.
14	The safety issues, the implications of
15	those safety issue down the road are things you want
16	to know about going in, not after the fact.
17	There are some cycles out there not
18	demonstrated that at least have been analyzed, have
19	either better efficiencies or less toxicity or in some
20	cases simpler, but they have not really been
21	demonstrated to a level that we could try to engineer
22	at this point.
23	And so there is a part of the program that
24	looks at alternative cycles, and this is the part that
25	we would like to involve the universities in. It's
l	

(202) 234-4433

	202
1	looking at thermochemical cycles, flow sheet analysis,
2	basic thermophysical property measurements and so
3	forth. There are things that universities could
4	support.
5	There's no commitment to experiments in
6	those areas, but you want to look at them and make
7	sure you have picked the ones that are most likely to
8	succeed.
9	So the sequence of things we go through
10	here, obviously all of these start with flow sheet
11	analysis, trying to understand where the data
12	deficiencies are and doing the basic energy balances
13	on looking at what the projected efficiencies could be
14	and the complications.
15	We are currently in the phase of starting
16	to do experiments on individual component reactions
17	that we hope to do integrated lab scale experiments in
18	the next couple of years, and those would be at kind
19	of a basis for a go or no go decision on whether the
20	performance of that and the practicality of that
21	warranted a larger scale demonstration, a pilot scale
22	demonstration.
23	Lab scale experiments are benchtop. They
24	involve kilowatts of energy. We would consider a
25	pilot scale experiment to be more in the neighborhood
	I

(202) 234-4433

	203
1	of a megawatt kind of demonstration, something that
2	you would allow the so that the engineering could
3	be evaluated.
4	And obviously for those that successfully
5	go through pilot scale experiments, then there's a
6	follow-on stage of more commercial prototype kinds of
7	demonstrations, and obviously there could be many
8	stages of this, depending on the experiment results.
9	I want to just describe briefly the two
10	that we are working on as the baseline cycles is the
11	kind of highest priority cycles, sulfur iodine on the
12	left and hybrid sulfur on the right. Both of these
13	cycles start with the decomposition of sulfuric acid.
14	Since either of the base reactions are relatively low
15	temperature, you need eight or 900 degree energy to
16	decompose the acid.
17	The acid is actually decomposed in stages.
18	You form SO_3 first in the five or 600 degree range.
19	Then you catalyze that reaction to form SO $_2$. So
20	there's kind of a sequence of reactions you go
21	through.
22	As you go up in concentrations and
23	temperatures, the materials issues do change. If you
24	look at the best materials at the lower concentrations
25	or lower temperatures are not the materials you'd use
l	I

(202) 234-4433

	204
1	at the higher temperatures.
2	So both of these start with the
3	decomposition of the acid to basically for SO $_{\scriptscriptstyle 2}.$ In
4	sulfur iodine, which is shown in this middle section
5	of the sulfur iodine, that SO_2 has reacted with water
6	and iodine, and that then forms two acids, sulfuric
7	acid again and then HI.
8	The HI is then sent the HI forms as a
9	heavy phase, and I've shown the ideal equations, of
10	course, and they're not this pretty in reality to
11	form that separation you need an excess of iodine.
12	there are almost nine moles of iodine in this for each
13	mole of HI that's actually formed.
14	There's also an excess of water. So
15	there's quite a bit of fluid in this process as you
16	might expect, but the separation of this and an excess
17	of iodine allows you to separate the HI to go to a
18	decomposition section, and the sulfuric acid then back
19	to the sulfuric acid section to be recycled again.
20	So the net input here is water and heat.
21	The net output is hydrogen oxygen if everything works.
22	Obviously, in the non-idea world there are corrosion
23	products and other things that you are going to have
24	to
25	CHAIRMAN WALLIS: There's no water that
I	1

(202) 234-4433

	205
1	goes with the H_2SO_4 ?
2	MR. PICKARD: Say again?
3	CHAIRMAN WALLIS: There's no water that
4	goes with the
5	MR. PICKARD: Yes, there is. Yeah, the
6	current flow sheets have significant water on both
7	sides of this, and that's a significant issue. This
8	middle reaction occurs at about 120 degrees. It's
9	called the Bunsen reaction, this primary reaction. So
10	for what you put into that reaction you've now got to
11	heat back up again.
12	If you carry water along with it, there's
13	a big inefficiency. So thermal management and water
14	control here is very important to the efficiency of
15	these things.
16	The HI can be decomposed thermally at
17	five, six, 700 degrees, depending on the efficiency.
18	It can be catalyzed, and that's another issue, the
19	catalyst for this reaction, as low as 300 or 350, and
20	the current experiments are looking at that using a
21	platinum catalyst.
22	Both of the end reactions on sulfur iodine
23	are catalyzed in the long run and, therefore, you need
24	a catalyst that survives these environments and these
25	temperatures for the duration to do that.
I	I

(202) 234-4433

	206
1	The alternative cycle we're looking at has
2	the same front end, the same sulfuric acid, but
3	basically it takes the SO_2 , mixes that with water, and
4	with an excess of water, and then that is electrolyzed
5	to form hydrogen directly.
6	The sulfuric acid that's formed from that
7	is then returned. A much simpler cycle, it does
8	require an electrolytic step. You do have
9	electrolysis to form the acid and the hydrogen.
10	We're looking at both of those. These
11	programs are cooperative, collaborative with the
12	French CEA. This will be the most interactive
13	collaborative project I think we've had. We're
14	actually looking at examining these three component
15	cycles in separate locations, bringing them together
16	at one location in the future, and forming an
17	integrated demonstration.
18	Obviously, we'll have challenges in making
19	sure these things integrate.
20	The work that's going on in the U.S. is
21	the high temperature reactions for the sulfuric acid
22	and the electrolyzer and the HI sections. The French
23	are working on the Bunsen reaction.
24	These things are also undergoing
25	experiments. I just give you one example of the SI
ļ	I

(202) 234-4433

	207
1	component reaction section experiments. This is the
2	sulfuric acid decomposition. Obviously there are some
3	long-term materials issues that we're going to have to
4	address. We want to start experiments. So we're
5	simply using the best materials we knew of for these
6	temperature ranges and conditions.
7	In this case, we built boilers out of
8	Hastelloys. These are primarily super alloys.
9	Incolloys; Ceramid is a 6-10-6-11 kind of alloy with
10	high silicon.
11	The things that really look good in these
12	applications are what we all would like to get to, and
13	of course, the ceramics look best for long durations
14	here.
15	The Japanese who are maybe ten years into
16	this program are focusing most of their effort on
17	ceramic heat exchangers, silicon carbide base heat
18	exchangers. Primarily a silicon carbide heat
19	exchanger well, let me show that briefly here.
20	Where the reactor actually touches the
21	process cycle shown over there on the right of the
22	yellow boxes here in the very high temperature
23	section, they are looking at silicon carbide heat
24	exchangers for that, counterflow heat exchangers,
25	helium, or high temperature fluid in one side, and the

(202) 234-4433

208 process fluids, the sulfuric acid and its composition 1 2 products in the other side. 3 Those would be a direct heat exchanger. 4 Those would be insulated and then put in a high 5 pressure boundary so that it would be a fairly 6 corrosion resistent, but still not а metallic 7 structure device. So this kind of shows where the reactor 8 9 heat has to be input to the SI cycle or to the hybrid 10 sulfur cycle, and the reason for selecting this particular version is because it is limited to just 11 one set of heat exchangers that have to be -- that 12 contact the intermediate heat exchanger. 13 14 The kind of things we're starting to look 15 include metallic at within the program heat 16 At MIT they're looking at metallic exchangers. 17 structures that actually the catalyst is built in very corrosion resistent, a platinum imbedded 617 kind of 18 19 alloy. 20 But we're also looking at silicon carbide 21 or composite silicon carbide kinds of materials as 22 being the most corrosion resistent and likely to be 23 the most successful over the very long run. 24 Obviously those things are going to take 25 We are doing the experiments that are modular time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	so that you can replace components when you have
2	something better to use.
3	I also want to just briefly mention the
4	alternative cycles. One of the things you do worry
5	about is the thermochemical cycles, and we don't know
б	what temperatures they require, but generally ones
7	that are most developed are very high temperature.
8	Nine hundred degrees C. or more is what you'd like to
9	have.
10	And so there is interest in identifying
11	the range of cycles that could be applied to the full
12	range of Gen IV reactors. So although those are not
13	under active development, they are going to be
14	analyzed.
15	I will just give you a list of some of the
16	ones we identified when we first surveyed this that
17	could possibly be used and that we will be doing
18	analysis on to examine whether those lower
19	temperatures or higher efficiencies can be taken
20	advantage of.
21	Copper chlorine cycle could theoretically
22	operate as low as 550, making it a candidate for any
23	of the intermediate temperature range fast reactors.
24	Obviously that cycle has not been demonstrated.
25	There are issues with all of these that we
ļ	I

(202) 234-4433

	210
1	need to look at before we decide to do any work on
2	them.
3	The chlorine cycles, the copper and iron
4	chlorine both in the 650-550 range are of interest.
5	There are others, and we have seen literature values
б	as high as nearly 70 percent. When you do the energy
7	balances, it could be there.
8	Actually, our expectation is you probably
9	have issues there that keep those from being
10	practical, but you do want to know if there are any
11	cycles out there that are either higher efficiency or
12	lower operating temperatures, and the one that we have
13	settled on is the most likely near term candidates.
14	This is just an example of the kind of
15	cycles we came out with. There is an activity at
16	Argonne National Laboratory that is coordinating a
17	look at a wide range of cycles in somewhat more detail
18	to understand whether any should be actively pursued
19	in the program.
20	All of the things I have discussed so far
21	in terms of technologies do require high temperature
22	heat exchanger with a reactor at some point. There's
23	900 degrees C. for the thermochemical reactions. We
24	may be able to lower that with some other
25	technologies, including membrane applications, but
	1

(202) 234-4433

	211
1	generally we have a very high temperature loop.
2	And for the hydrogen system you generally
3	are looking at intermediate heat transfer loop as the
4	interface between the reactor and this.
5	For the electricity, clearly you can
6	consider direct cycles. For the hydrogen there will
7	be an indirect cycle here. That will be an
8	intermediate heat transfer loop that isolates the
9	hydrogen process to some degree from the nuclear
10	plant.
11	The configurations that are being
12	considered, I think down the road one would consider
13	dedicated options as the most likely. You would
14	either have a hydrogen thermochemical plant or an
15	electrical plant or a process heat plant for the
16	hydrogen. But one could consider combinations as I
17	showed in the diagram earlier. Those could be used to
18	trade off electricity demand versus hydrogen
19	production, but right now the issues are technical
20	issues that we have to address are largely the same
21	for both.
22	And when you do think about these things,
23	you do have a combined plant. The safety technical
24	issues for those plants, you have to consider the
25	effect of one on the other, and we are just starting
	I

(202) 234-4433

	212
1	to start looking at those implications.
2	It is clearly less of an issue for the
3	high temperature electrolysis, but it still has a very
4	high temperature interface. A significant issue for
5	the thermochemical cycles, these potentially more
б	efficient and lower cost, but more difficult cycles.
7	The goal here, of course, in our view was
8	to identify the approach you'd have to take to be able
9	to regulate these plants separately, to consider them
10	separately. The chemical and nuclear plants would be
11	regulated under their appropriate or applicable
12	framework, and what we're doing is now starting to do
13	the process of what do you have to do to make that
14	happen.
15	You have to understand what could happen
16	in this chemical plant, you know, how bad could that
17	be. How could it affect the nuclear plant? What
18	criteria do you use?
19	And so this process of starting to
20	understand this kind of map of impacts of one on the
21	other, and then what do you have to do to provide that
22	isolation in terms of either separation distances or
23	engineered features or other features? It's trying to
24	understand that landscape that is currently being
25	started up in the program.
	I

(202) 234-4433

	213
1	DR. POWERS: You certainly have nuclear
2	plants located adjacent to large chemical facilities.
3	Waterford comes to mind.
4	MR. PICKARD: Yes.
5	DR. POWERS: I mean, it's surrounded
б	within yard. In fact, its emergency response area and
7	the chemical plant response areas are coincident.
8	They work together. I mean, there's nothing in the
9	regulations that precludes that.
10	MR. PICKARD: right.
11	DR. POWERS: It's just additional work on
12	the plant operator.
13	MR. PICKARD: It is, and clearly you have
14	to do additional work on these kind of cycles to do
15	that. So I think our approach, and I'll get to that
16	in a minute, is to start looking at the chemical
17	industry database. What kind of safety experiences
18	are out there that could kind of give us a clue as to
19	what kinds of accidents, both initiators and
20	consequence.
21	We might have a plant like a
22	thermochemical plant or a high temperature
23	electrolysis plant. So that is at least the approach
24	we're trying to take. The kind of issues that come up
25	clearly, especially when you
	I

(202) 234-4433

214 1 DR. POWERS: One of the problem I'm sure 2 that you're going to encounter is the safety analysis 3 that the chemical industry likes to do is not exactly 4 aligned with the probabilistic risk assessment that we 5 like to do for the nuclear power plants. We do the chemical process when we do nuclear facilities, and 6 7 then we got to PRA over the nuclear plant and we can 8 keep them nicely separated. 9 But here you're going to have to make a 10 mesh, and they don't mesh very well. The problem is summation over sequences, that the chemical 11 the 12 industry doesn't sum and we do sum. MR. PICKARD: Yeah, and I think that's a 13 14 real important issue. I think we're also aware of the 15 combination of these plants. There are different approaches, methodologies, and you've got to make sure 16 what we come up with accounts for that bridge. 17 Bridging that gap is important, but it's, 18 19 I think, where you start at least. You start with --20 you know, separation distance is one of the ways you 21 can provide some barrier here, and you know, when you

think of transporting 900 degrees C. heat, that's a

aren't engineering studies, but you do take a quick

look at whether you can separate these significantly

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

little different, not a trivial issue, and these

(202) 234-4433

22

23

24

25

	215
1	and what kind of impact
2	DR. POWERS: I don't think you get any
3	I mean, the separation where you don't have to worry
4	is five miles. Okay? I mean, the way it's written in
5	to the regulation, at a nuclear plant you don[t have
6	to worry about a chemical facility that's beyond five
7	miles. That means separation is just not going to buy
8	you anything.
9	MR. PICKARD: And we're probably not going
10	to go that far. So right. I think what you do is the
11	analysis you have to do, if you can find these in the
12	curve where that analysis gets easier as you are
13	farther away, not five miles, that's what you're
14	trying to discovery. Are there sensitivities that you
15	can leverage by being a certain distance?
16	I did want to show you a couple of curves.
17	The heat losses that you have to take would clearly be
18	a direct impact on efficiency if you had to transport
19	a long distance. At least from the early scoping
20	analysis, it really doesn't look like those are
21	fundamental issues.
22	We just looked at a model of a concentric
23	pipe where you use the central pipe as the hot leg
24	going down to the process plant and that process heat
25	exchanger, and the return outer leg is at some lower
I	I

(202) 234-4433

	216
1	temperature on the order of 500 C., and you just look
2	at what kind of insulation in terms of conventional
3	insulator you have to invoke to minimize the percent
4	power loss. In terms of the energy you're
5	transporting, what percentage of that could be lost?
6	And this just shows that percent versus
7	the transport distance in meters, and by the way, this
8	parameter over on the left-hand corner, the thickness
9	to the diameter, all they're saying is .1 or one or 10
10	percent of the thickness of that diameter pipe in
11	terms of the surface area, in terms of the thickness
12	of insulation, and the assumption here is something
13	like low density zirconia.
14	And in this case, they did model stand-
15	offs for the inner pipe and they did model a structure
16	every 20 meters or so, but you can see that if you're
17	willing to put reasonable insulation on this, you can
18	transport that energy quite a ways without too much
19	loss.
20	I don't know if the costs by the time you
21	engineer all of this are in line. We haven't really
22	done that, but you do think that the issue of
23	separating this by some substantial distance is not
24	going to be a significant energy loss mechanism.
25	You've still got to consider that, but it's not a
ļ	I

(202) 234-4433

	217
1	fundamental flaw.
2	MR. ROSEN: That's an interesting model,
3	but the plant guy in me says, "Well, how do I inspect
4	that inner pipe?"
5	MR. PICKARD: Yeah, that's right.
6	MR. ROSEN: You meet the in-service
7	inspection requirements that are in there.
8	MR. PICKARD: There's a big issue there.
9	Of course, the reason for doing it this way was so you
10	could minimize the pressure drop across that boundary.
11	You can have the outer temperature colder and so the
12	pressure boundary is colder and the inner pressure
13	boundary is hot, but not a big delta P.
14	And this is not the only way to do that,
15	of course. We just wanted to kind of give you an idea
16	that you can separate these things in terms of an
17	energy loss by a significant amount.
18	This is a little more dramatic than it
19	needs to be. If you looked at the pumping power
20	losses, that's a little bit of a different situation.
21	If you looked at the same transport distance and how
22	much pumping power it takes to move that energy, if
23	you're going to use helium, and helium, of course, is
24	one of the candidates for this, it's not out of the
25	question, but if you want to keep losses very low for
Į	I

(202) 234-4433

218 1 600 megawatts being transported, this looks like a 3.-2 something meter pipe to do that in this model. 3 Whereas if you used a molten salt, and, 4 Tom, you're probably aware of the issues here, but 5 obviously the heat capacities and the pumping powers are much smaller so that it looks like if you want to 6 7 get a long distance away from a pumping power aspect, the molten salt or liquid coolant is going to be a lot 8 9 easier. 10 On the other hand, that at these temperatures does introduce some materials issues and 11 12 other issues you've got to deal with, but it does show that it's not out of the question to do either of 13 14 these in terms of sizes, and whether you do it as one single pipe or multiple, you'll know, but if you're 15 16 going to transport this energy a long way with very 17 minimal losses, you do have a significant size pipe to minimize the pumping power losses. 18 19 Nobody has set a criteria for how low that 20 needs to be, but obviously you'd like this not to 21 be -- you['d like to be less than a percent kind of number. 22 23 DR. POWERS: One thing that has always 24 bothered me if you're going to hydrogen production 25 because you don't think you have enough natural gas,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	where are you going to get the helium?
2	MR. PICKARD: Where are you going to get
3	the what, Dana?
4	DR. POWERS: Helium.
5	MR. PICKARD: Oh, the helium. I will
6	admit to not having looked at the economics of either
7	the piping system or the helium inventory that would
8	be required for a structure of that size, and
9	obviously those are the two kinds of candidates people
10	are looking at right now to do that.
11	DR. POWERS: I think natural gas is our
12	primary source of helium.
13	MR. PICKARD: Yes.
14	DR. POWERS: And if you don't have enough
15	of it, we going to get
16	DR. KRESS: I suspect since you're not
17	throwing away the helium, you're just recirculating
18	it, it's not a big inventory.
19	DR. POWERS: The helium throws itself
20	away. That's the problem.
21	DR. KRESS: Yeah, you would have some
22	losses, but it's not like you're using it all up like
23	you are the hydrogen.
24	MR. PICKARD: Well, I think the only point
25	here was neither of these look necessarily
I	

```
(202) 234-4433
```

straightforward, but both of them look possible with 2 appropriate engineering. So the fact that you can 3 separate these plants by some distance, you have some 4 control over that.

5 When you look at the safety issues, what can the chemical plant, the hydrogen plant do to the 6 7 reactor? When you think of first the hydrogen, and we don't really know what kind of inventories you would 8 have to have associated with these things, you would 9 10 obviously try to minimize that.

But 600 megawatt plant producing 11 а 12 hydrogen at 50 percent efficiency, whether that was electrolysis or thermochemical, that makes a couple of 13 14 kilograms of hydrogen per second, and therefore, the 15 inventory of this, regardless of how you configure this, is a large number of kilograms of hydrogen, and 16 17 the appropriate amount of oxygen goes with that.

So you do have to think about how this is 18 19 temporarily stored, the pipeline, the handling of this 20 as a major factor in this overall process and not just 21 the chemicals that make it up, but the storage of this 22 large volume of gases that you've got to deal with. 23 Obviously the oxygen issues are different, got unprecedented amounts 24 but you've of oxygen 25 potentially available if these kind of things come to

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

220

1

	221
1	pass, and the issues are different. It's not
2	detonation, but you can burn a lot of stuff with an
3	oxygen cloud hanging the ground here.
4	MR. ROSEN: Plus PWRs today operate with
5	a hydrogen over pressure. So it's not an unknown
6	MR. PICKARD: It is not an unknown thing.
7	MR. ROSEN: But of course these
8	inventories are much larger.
9	DR. POWERS: Isn't the transient
10	overcooling a problem for your gas reactor? Because
11	or your temperature coefficient of reactivity?
12	MR. PICKARD: Transient overcooling?
13	DR. POWERS: Yeah, transient overcooling.
14	MR. PICKARD: I think those stabilities
15	have to the power densities are low enough. You
16	know, the time constants are so forgiving and the
17	thermal capacity is so large I think those kind of
18	things are I mean, I haven't done that, but I would
19	be reasonably sure that would be manageable.
20	DR. POWERS: I mean, we certainly may run
21	into problems with things like the pebble bed because
22	of transient overcooling.
23	MR. PICKARD: Well, prismatic pebble bed,
24	they will have similar issues.
25	DR. POWERS: Yeah, you cool the coolant
ļ	I

(202) 234-4433

	222
1	down, suck the heat out of the coolant, and your
2	reactivity goes up so high that you have your control
3	problem.
4	MR. PICKARD: Yeah, the loss of load is
5	not such a concern with these power densities and heat
6	capacities, but I don't know if Rob has a comment on
7	that or not, but the issue needs to be looked at
8	clearly. A strong negative temperature and you do
9	have that.
10	Of course the other obvious thing,
11	particularly for the thermochemicals, is the chemical
12	hazard from these things. There's lots of iodine and
13	SO_2 and SO_3 . I mean, it's an obvious point, but for
14	a plant even of a 600 megawatt thermal size, there's
15	no question you end up with large quantities of these
16	things.
17	The configurations here are very
18	preliminary. We don't have any engineering designs,
19	but if you just look at what current flow sheets have
20	and the inventory and the residence times that might
21	be implied by the flow rates we're considering, even
22	for those size plants, the 600 megawatt thermal, you
23	do end up with ton of these materials you've got to
24	deal with.
25	It's not so overwhelming. I mean, eight

(202) 234-4433

	223
1	tons of sulfuric acid is still only a few cubic
2	meters, but this number is kind of the bottom end of
3	what we would consider for these plants. By the time
4	you get the configured and controlled, there could be
5	a lot more.
б	It just says you've got to pay attention
7	to this kind of a threat. You've got to be aware of
8	that and analyze those differences.
9	As I said, the processes or early stage of
10	design, we know a lot more about what the
11	configuration of the high temperature electrolysis
12	might look like than the thermochemical cycles, but as
13	research progresses, you'd like to use the early look
14	at these factors to give you an indication about how
15	these things weigh on ultimate technology choices.
16	I mean there are lots of options we could
17	be doing research on. You'd like to have this
18	information available as well as performance and cost
19	information.
20	I just wanted in summary here. The
21	process is in place now. We have started looking at
22	these things. The current activity is starting to
23	look at what the current chemical industry experience
24	can tell us about these things in terms of what goes
25	wrong in plants that have at least relevance to our
ļ	I

(202) 234-4433

	224
1	situation, and how bad can it be and what kind of
2	mitigation and consequences do they expect.
3	Somebody mentioned the methodology here
4	that has to be looked at. You do have to start
5	developing this methodology in terms of the criteria
6	framework requirements we have in front of us, as well
7	as the methodology used to do that.
8	And obviously coming from the nuclear
9	regulator side, we tend to look at the PRA as a
10	valuable tool here in combining this, but there's a
11	lot of work to do to establish this kind of combined
12	technology that we've got to apply here.
13	We are starting this process, starting to
14	do scoping analysis with very preliminary models,
15	looking at the consequence models, not so much on
16	initiation frequencies, but just looking at what kinds
17	of tools do we need to develop to do that.
18	This work is being focused at INEEL, but
19	this work will be going on for quite a while.
20	I think this was already mentioned. We do
21	think it's extremely important to involve the chemical
22	industry, the people with relevant experience in this
23	area, in the safety analysis and work we're doing.
24	I think another one that we haven't
25	thought much about but need to consider is the
	1

(202) 234-4433

3 4 configure this plant or the accidents we've got to 5 consider.

And this kind of scoping analysis that was 6 7 started, trying to get a feel for the landscape, just how bad could it be. What could it do to the nuclear 8 9 plant? What's the benefit of being either farther 10 away or separating these by more than the usual few hundred yards here? Or what is the benefit of 11 12 engineered features here? Are there things we can do to help mitigate some of these consequences? 13

14 I think we do the scoping analysis, and 15 then we look at these assumptions we've been making, 16 the approach we're taking to see if that needs to be 17 changed.

Well, this is just a summary. We've said 18 19 all of this. This approach we're on, those studies 20 are really going to go on in FY '05 and '06. We've 21 started them this year. We hope to have a lot of work 22 done in the next year and a half or two.

23 We do want to make this inclusive. We do 24 want to start incorporating the chemical industry 25 viewpoint into this, but the methodology has to be

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	226
1	something that we can use to project at this stage
2	what kind of technologies have hurdles that we need to
3	know about.
4	I think the goals are by the end of '06 to
5	have a better handle on this and process we can
6	discuss as an approach, the cost, economics and
7	performance of these kind of strategies.
8	That was all I had. Any questions?
9	DR. SHACK: Yeah, I had a question about
10	the relationship with the next generation nuclear
11	plant, and I know that there has been a lot of
12	uncertainty as to funding for that, although I mean
13	here that perhaps the funding will be available, and
14	how that relates to this time frame in that at some
15	point you have to go out with specs. for the next
16	generation nuclear plant. There are implications to
17	control room design, to maybe confinement/containment
18	concepts.
19	How does that all fit together from a time
20	schedule with your advancement of selection of
21	MR. PICKARD: And obviously I'll leave it
22	for Rob to talk about the Gen. IV program.
23	DR. POWERS: It seems to me that we're
24	focusing a lot of attention on the separation distance
25	between chemical process and reactor process. I mean,

(202) 234-4433

	227
1	the regulatory system is not set up for this. So
2	you're going to have to mess with the regulations here
3	for these things, but as it's configured now, I don't
4	think you're getting any mileage on separation. I
5	think it's things like control room design and
6	mitigation systems that are going
7	MR. PICKARD: Engineering features or
8	design features.
9	DR. POWERS: Engineering features that are
10	going to get you something.
11	Because I think as the regulations are
12	written now, the separation to the "no never mind"
13	distance is so far, and that's all there is. there's
14	no never mind and mind a lot. There's no gradation
15	there.
16	DR. KRESS: I guess the question would be
17	if you had an explosion, a hydrogen thing, what could
18	it be and how would you determine the effect on the
19	reactor?
20	DR. POWERS: I think the things that I
21	would focus more on would be the control room
22	survivability in the event of a release of all that
23	sulfur dioxide or something like that.
24	DR. KRESS: Yeah, that would be the other
25	issue.
	I

(202) 234-4433

	228
1	DR. POWERS: And the way that thing is
2	written right now is SO_2 shows up in the control room
3	reg. guide, but they're thinking in terms of pounds,
4	not tons. I mean, they do have rail car transport,
5	and that you have to consider that mass and frequency
6	out to five miles. You don't have to consider
7	anything beyond five miles on the theory there would
8	be sufficient warning.
9	Okay? Now, I mean five miles is just
10	intractable here. It's just too far.
11	DR. KRESS: One thing separation doesn't
12	help you on is if you have a loss of heat sink
13	scenario. It doesn't matter how far away you are.
14	DR. POWERS: I think for the gas cooled
15	reactor, I think it's overcooling not undercooling
16	that's a problem.
17	DR. KRESS: Yeah.
18	MR. ROSEN: The control room environmental
19	design right now in current lightwater reactors is
20	very, very limited. It's taking air, filter it, and
21	give it to the operators and isolate the air and go
22	into recirc. when you have a threat.
23	Now, that doesn't mean all control rooms
24	have to be designed that way. I mean one could side
25	with a different concept, some kind of a two-stage
ļ	I

(202) 234-4433

	229
1	design or a double isolation or control room around
2	the controllers or environment around the control room
3	and basically depart from the existing design if
4	you're going to have a big threat like these tons of
5	materials.
6	I don't see that conceptually as a very
7	difficult enterprise.
8	MR. PICKARD: You know, I think the
9	approach that we're trying to take is understand what
10	the features or impacts of those things are because
11	the mitigation approach to a hydrogen may be Quite
12	different than you'd want to do for the SM-2.
13	We just don't know where the knees in
14	those curves are yet.
15	DR. POWERS: Well, I mean, in some cases
16	you're going to have to invent because the regulations
17	right now, they don't have knees. I mean, they're not
18	continuous functions. They're step functions. I mean
19	that's simply because nobody has ever had to confront
20	it. And so you have to come in and say, "Well, yeah.
21	I've analyzed this, and here's what you've got."
22	And the staff is accepting them, those
23	kinds of arguments. They just don't exist, right?
24	DR. DENNING: I had a question and maybe
25	Dana is the best one to answer it, and that is if you
Į	

(202) 234-4433

	230
1	look at BLEVE type of situations, can you really get
2	that with hydrogen or is it so BLEVE type of concerns
3	where you have a gas cloud that goes out and then you
4	get ignition?
5	DR. POWERS: No.
6	DR. DENNING: Because the hydrogen is
7	SO
8	DR. POWERS: So diffuse that it just
9	doesn't do anything, yeah.
10	DR. KRESS: You have to confine it and mix
11	it with
12	DR. POWERS: Hydrogen, hydrogen is really
13	tough to get to. The SO_2 is the one that bothers you
14	a lot more here because it's heavy and it's train
15	following and everything else on that, and it's not
16	only combustible, but it's poisonous as all get-out.
17	MR. ROSEN: Well, again, that goes back to
18	control room design, including where you put the
19	intakes. If you put them down low, you're in trouble.
20	If you put them up high you get an advantage.
21	DR. POWERS: Yeah, there would be an
22	advantage to high intakes.
23	DR. DENNING: Maybe it's a good use for
24	the oxygen.
25	DR. POWERS: Yeah.
I	I

	231
1	MR. VERSLUIS: Well, gentlemen, good
2	afternoon. My name is Rob Versluis, and I entered
3	here into the firing zone because I heard NGNP and
4	threats. So I'm here to try to answer any questions
5	that you might have.
6	Although just sitting here listening I
7	think maybe you give it another 15 minutes and we've
8	got a control room design that
9	(Laughter.)
10	MR. VERSLUIS: that will get us out of
11	this problem.
12	But anyway, I haven't actually really
13	prepared any presentation. I have some slides in case
14	questions come up, but let me give a little bit of an
15	overview of where we are with the NGNP.
16	It is one of the six concepts from the
17	road map, and so there is an R&D plan. The U.S. has
18	adopted some of that R&D plan and works together with
19	other countries to achieve the R&D, and we are in the
20	middle of working out with other countries how we do
21	that so we can get the benefit of using each other's
22	facilities and joint expertise.
23	We have a notional schedule for the NGNP
24	which says that we'd like to have a demonstration
25	plant built and operated somewhere between 2017 and
	1

(202) 234-4433

	232
1	2020, and it's good to have a notional schedule so
2	that we can at least do some planning, but I have to
3	say that the signals that we are receiving both from
4	the administration and from Congress are somewhat
5	confusing. So I'm not entirely sure that that is not
6	going to change the plan.
7	DR. DENNING: In which direction?
8	MR. VERSLUIS: Well, up, down? Up or
9	down, right? It's not likely to be a lot sooner I
10	don't think even though there is pressure for building
11	something faster.
12	Well, I don't want to particularly
13	speculate on that.
14	But we have an R&D program underway today,
15	and we are coordinating
16	CHAIRMAN WALLIS: I want to ask you. Is
17	there any precedent for DOE plans 20 years in the
18	future ever having been fulfilled in the past?
19	MR. VERSLUIS: Well, you're asking the
20	wrong guy. I haven't been with DOE long enough, but
21	I guess the answer is that 20 years is a long time.
22	CHAIRMAN WALLIS: I just wonder if there's
23	any precedent for you guys having planned that sort of
24	thing over the past 50 years and the plan having
25	succeeded.
ļ	I

(202) 234-4433

	233
1	MR. VERSLUIS: Well, we have built,
2	successfully built back many
3	CHAIRMAN WALLIS: Yes, but was it
4	according to the plan or something else happened?
5	DR. POWERS: I think you're referring to
б	DOE's nuclear weapons programs probably, has a pretty
7	good track record.
8	CHAIRMAN WALLIS: That's because they're
9	not interfered with by committees like this?
10	(Laughter.)
11	DR. POWERS: They have their own set.
12	MR. VERSLUIS: Well, we couldn't do
13	anything without a plan. We have a plan.
14	(Laughter.)
15	MR. VERSLUIS: And we actually have a
16	quite well defined plan for fuel development, and we
17	are getting underway with materials development. We
18	have not made any final selection. We have done
19	trade studies on what the design concept could be.
20	For example, lately the liquid salt cooled version of
21	it has been kind of popping up, and we're doing
22	preconceptual studies to see what the issues are.
23	There are clearly strong tradeoffs there.
24	I mean, we start with having to the
25	salt freezes at some high temperatures. So that is a

(202) 234-4433

	234
1	big inconvenience, to say the least.
2	At the same time, you don't have to go to
3	high pressure. You have ambient pressure. The whole
4	system can be the reactor itself, the transport
5	system, and the hydrogen plant are all at ambient
6	pressure or at least some
7	DR. POWERS: I've got a business.
8	MR. VERSLUIS: The heat transfer
9	characteristics are very much more favorable for
10	liquid salt. So there are a number of tradeoffs that
11	we'd like to study before deciding where to put that
12	money, so to speak.
13	So that's at a 40,000 feet level what we
14	are currently doing. We have an R&D program. We are
15	spending, I would say, close to \$25 million a year on
16	it. It's a significant program.
17	We have other countries like Japan and
18	France that are also seriously looking at materials
19	and fuels issues. So we are very much in need of a
20	decision, if you will, as to what the way forward
21	should be.
22	And when I say "we," I mean the
23	administration. That's not just the Office or Nuclear
24	Energy that drives that.
25	That is more or less what I wanted to say
	I

```
(202) 234-4433
```

	235
1	about where we are. Are there any other questions?
2	DR. DENNING: Well, what about specific
3	things like contractor and this kind of stuff for GNP.
4	Are those things going to happen in the near future,
5	I mean, other than INEEL?
6	You know, we hear about a contractor
7	that's going to be award of a contractor.
8	MR. VERSLUIS: We expect to be using
9	contractors to help us select the concept or design
10	concept that we will be dealing with, and of course,
11	down the line, down the road we will be working with
12	design and construction contractors.
13	The exact acquisition strategy is still
14	under consideration within DOE. We have defined
15	several potential strategies, and they are being
16	evaluated.
17	DR. DENNING: It strikes me that we have
18	a major energy crisis, and yet there hasn't been the
19	commitment by the government because of other things,
20	the commitment of resources to really make it happen,
21	and it seems to me like, you know, we have gas cooled
22	reactor technology. I mean, we could really do this
23	program much quicker than 2017, I think, if the
24	dollars were there. And a large reason that the
25	program is such a long-term research program is that
ļ	I

(202) 234-4433

	236
1	the country is not ready to make that commitment.
2	Is that true? Particularly if you look at
3	the electricity generation part of it versus the
4	hydrogen production, is that true or not true?
5	MR. VERSLUIS: Well, I guess I'd like to
б	answer that in two ways. The first way is that we
7	have been speaking here only about Generation IV
8	program and the hydrogen program because that was the
9	subject of today's meeting, but in fact, there is a
10	very high priority within NE, but also within DOE and
11	the administration to get new advanced lightwater
12	reactors built because that is step one. You know,
13	whatever we are looking at if we don't get that step
14	done, I don't know that there is going to be a step
15	two.
16	So let's not lose sight of the fact that
17	there is at least in terms of statements and support
18	from the administration and increasingly also by other
19	means financial support and our NP 2010 program.
20	There's clearly a commitment by the administration to
21	make that happen, to help a revival of the nuclear
22	industry.
23	In terms of the next generation, and we
24	have, in fact, clearly two needs here. The
25	intermediate term need that we have been talking about
I	I

(202) 234-4433

237 1 today is being prepared for an energy system that uses 2 electricity and hydrogen as the main electricity 3 energy carriers, and nuclear could play a good role in 4 that, and that's what we've been talking about. 5 For that the gas cooled or the very high temperature reactor would be the best candidate, but 6 7 there is also a second activity, which is I would say taking place at a lower level, which is the fast 8 9 reactor activity, which is actually going to be more important in the future, in the long term future. 10 So those two legs we have for our program. 11 12 The gas reactor, while there has been a lot of technology development, to build a commercially 13 14 viable, licensable, high temperature reactor today, 15 there is a lot of things that still have to happen, 16 things that have not actually been happening to today's standards, and that includes the development 17 qualification fuel, manufacturable 18 and of fuel 19 according to the standards that are acceptable; fuel 20 that can go to high burnups and higher temperatures. 21 We don't have the codification of the 22 materials that we see and we will be using. We have made a selection of materials that we think would be 23 24 required, but even if you look at the designs that are 25 today being named as near being built in the United

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	States, you'll still have big codification issues, for
2	example, the pebble bed reactor, the PBMR from South
3	Africa that could not be just built in seven or eight
4	years either.
5	So there are still a number of things, and
6	you know there are other things, too, the helium
7	turbine; there are a number of things that still have
8	to happen before you can actually get one that is a
9	commercial demonstration and it is licensable by the
10	NRC.
11	DR. KRESS: Let me give you a couple of
12	initial reactions. Number one, I think it
13	overcomplicates things to generate electricity and
14	hydrogen together. I think you ought to have a
15	dedicated reactor to produce hydrogen.
16	MR. VERSLUIS: I agree.
17	DR. KRESS: Okay. Number tow
18	DR. APOSTOLAKIS: In what way?
19	DR. KRESS: Don't worry about producing
20	electricity with it. Just use it for heat.
21	DR. APOSTOLAKIS: I understand, but why
22	does it complicate it in any way?
23	DR. KRESS: Well, you have to have
24	turbines and you have to have electrical powers going
25	in and out, and you have to have all sorts of extra
I	I

(202) 234-4433

	239
1	things with a reactor that makes electricity. You
2	have to have a different class of people running the
3	thing, a different set of maintenance.
4	DR. POWERS: I don't know of any chemical
5	process, continuous chemical process that likes to
6	start and stop and start and stop.
7	DR. KRESS: Yeah, that
8	DR. POWERS: This idea of you make
9	hydrogen at night and electricity during the day, the
10	chemical process just is not going like that at all.
11	DR. KRESS: It's not going to like that at
12	all. So that would be
13	DR. DENNING: Tom, could I raise an issue
14	though or a question? And that is as far as the next
15	generation nuclear plant, the demonstration plant
16	that's built, I absolutely agree with you in general,
17	but as far as if you're going to build a demonstration
18	plant, then it seems that you might build it dual
19	purpose so that you can use it for both of those
20	things to check out the turbines and
21	DR. KRESS: If you're just checking out
22	things, that's all right.
23	MR. PICKARD: I think we agree with
24	your
25	DR. KRESS: That would have been fine.

	240
1	Another impression is I get the impression
2	that all of your hydrogen side, production side,
3	you're thinking about collocating it on site of the
4	reactor. I don't know. I'm not a chemist, but are
5	there systems that one could use the reactor to
6	produce something not quite as hazardous to hydrogen
7	and take that off line and use it to produce hydrogen?
8	A question I might have is how do they
9	make aluminum. Don't they use aluminum oxide an
10	Al203, a bauxite?
11	MR. SIEBER: Yeah, they dig it out of the
12	ground.
13	DR. KRESS: They dig it out of the ground.
14	It's an oxide.
15	MR. ROSEN: It's a big carbon electrode.
16	DR. DENNING: Yes, it's a big electricity
17	generator.
18	DR. KRESS: Well, you could do that off
19	site and make aluminum say out of this and bring the
20	aluminum I mean, you could use the nuclear plant to
21	do this conversion of the oxide to aluminum, and I
22	think you would have a less hazardous system there.
23	Then you take aluminum off and use it to
24	combine it with steam at high temperatures and made
25	hydrogen and the oxide again, and bring the oxide
	I

(202) 234-4433

	241
1	back.
2	But you know, I didn't see any concept.
3	I don't even know anything about these concepts
4	because I haven't thought them out, but if you could
5	figure out a way not to have the hydrogen production
6	system right there with the reactor, I think you
7	simplify your risk analysis.
8	CHAIRMAN WALLIS: Well, the easiest way to
9	do it is to make electricity of course, and send
10	the
11	DR. KRESS: That may be it.
12	MR. VERSLUIS: Well, if such a material
13	existed, it would be an important energy carrier. I
14	mean that's what you're talking about. You're talking
15	about carrying energy from one place to another, and
16	as far as I know there aren't very many good
17	candidates, and electricity and hydrogen are the best
18	ones.
19	DR. KRESS: The other impression is I do
20	think you have to have a you're talking about
21	separating the regulations. I don't think NRC will
22	allow you to separate out completely the hydrogen
23	production if it's on site. You're going to have to
24	factor it into some sort or risk assessment, and it's
25	not going to be separate from the NRC side. It may be
I	I

(202) 234-4433

	242
1	separate from other parts, but NRC will want you to do
2	them together. I don't think that's
3	MR. ROSEN: A chemical plant may be happy
4	to have a nuclear plant next door and not care too
5	much about it, but the converse will not
6	DR. KRESS: The other way is that's
7	exactly what I meant to say, yeah.
8	MR. SIEBER: Think of the happiness of the
9	terrorists.
10	MR. VERSLUIS: But you're not saying that
11	the chemical plant would need to, let's say let me
12	put it the other way. The chemical plant has its own
13	set of regulations from the chemical industry under
14	which that is going to have to be regulated.
15	DR. KRESS: Yeah, NRC won't care.
16	MR. VERSLUIS: The NRC will want to know
17	a full statement of the potential impacts of anything
18	that goes wrong in that chemical plant, and I think we
19	certainly are aware of that.
20	DR. KRESS: But other than that, does
21	anybody else before we close out?
22	MR. VERSLUIS: I wanted to come back for
23	a minute to your earlier statement about losing oxygen
24	in the atmosphere. This has come up actually in the
25	context of
	1

(202) 234-4433

	243
1	DR. KRESS: It has come up?
2	MR. VERSLUIS: It has come up not in our
3	arena so much as it is in sequestration of carbon
4	dioxide because that's where you lose oxygen. You
5	take it out of the atmosphere. You stick it in the
6	ground. If you do that on a really, really big scale,
7	I guess it could people have said, yeah, you've got
8	to worry about it, but it doesn't come into play in
9	our system.
10	MR. ROSEN: But you don't have greenhouse
11	gases anymore.
12	MR. VERSLUIS: that's right.
13	MR. ROSEN: But you don't have any oxygen.
14	MR. SIEBER: We're all going to freeze.
15	DR. POWERS: My Canadian buddies like this
16	global warming business a lot. They may want those
17	greenhouse bases.
18	DR. KRESS: Thank you. this was extremely
19	interesting.
20	DR. SHACK: That's very much.
21	DR. KRESS: I think useful to us, and so
22	we look forward to further iteration.
23	DR. SHACK: Are they doing tradeoffs
24	versus batteries, for example? This whole process
25	makes a battery kind of attractive.

(202) 234-4433

Í	244
1	MR. VERSLUIS: We haven't talked a lot
2	about economics here, but it's very important in our
3	considerations, and you know, that is really the
4	answer to your question. How do all of these various
5	technologies stack up in terms of a large production
6	and compare that with
7	DR. SHACK: There's a whole infrastructure
8	that has to go with this.
9	MR. VERSLUIS: The energy distribution
10	infrastructure that we have today is optimized for
11	fossil fuels, and so that's the first question. You
12	know, it would have to be changed. How does that
13	happen.
14	But it is now optimized now for hydrogen.
15	MR. SIEBER: I take it that if you could
16	solve all of these engineering and materials problems
17	and build the process, that it would not be economic
18	in today's marketplace, right?
19	DR. DENNING: Did you say "would" or
20	"would not"?
21	MR. SIEBER: Would not.
22	DR. SHACK: It depends on how successful
23	you are.
24	MR. VERSLUIS: I think it's probably fair
25	to say, but the Generation IV program is, in fact, a
	I

(202) 234-4433

	245
1	program that has a very long view. We try to place
2	ourselves in 2015 and kind of imagine what the world
3	will look like then because those are the time scales
4	we're really dealing with.
5	MR. SIEBER: Well, electricity production,
б	I think, is economic. Going to a hydrogen economy as
7	a replacement for petroleum products right now doesn't
8	appear to be economic.
9	MR. VERSLUIS: Because we don't have the
10	technology right now.
11	MR. SIEBER: right.
12	DR. POWERS: It seems to me that I
13	wouldn't jump immediately to the transportation aspect
14	of it. I think the point that was made earlier, there
15	is a huge and a growing demand for station sources of
16	hydrogen and a good, capable petroleum refinery size
17	that we have in the United States is about one nuclear
18	plant's worth of hydrogen. So you know, a static
19	source of hydrogen, it's very impressive.
20	The crude that we get from Venezuela just
21	almost doesn't pour.
22	MR. SIEBER: That's right.
23	DR. POWERS: I mean it's the best
24	approximation of coal.
25	MR. SIEBER: Well, the interesting thing
I	1

(202) 234-4433

	246
1	is you can expand the current petroleum resources by
2	using hydrogen as an additive to that, and that could
3	add hundreds of years of supply onto that resource.
4	MR. ROSEN: But you have to get the
5	hydrogen somewhere.
6	MR. SIEBER: That's right, and so this is
7	where this kind of process would fit in in an economic
8	sense, as I see it.
9	CHAIRMAN WALLIS: I think in order to work
10	out the economics, you have to look at the economic
11	costs of the environmental effects of all of these
12	processes, once you can get to that stage with
13	producing so much energy.
14	DR. POWERS: Just locate it in Vermont.
15	There are no consequences there.
16	CHAIRMAN WALLIS: Anything else?
17	We're going to take a break. I'd like to
18	ask my cognizant federal official whether we need the
19	transcript after this. I think we're doing
20	internal aren't we doing internal ACRS things after
21	this?
22	We have Jack Sieber and we have this
23	corrective initiative. We don't need the transcript.
24	DR. LARKINS: I don't think so.
25	CHAIRMAN WALLIS: So we do not need the
	I

(202) 234-4433

	247
1	transcript. I'm going to take a break, and since the
2	members love to take breaks longer than 15 minutes
3	we'll break until three o'clock.
4	(Whereupon, at 2:39 p.m., the meeting was
5	concluded.)
б	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	