Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, May 6, 2004

Work Order No.: NRC-1465

Pages 1-304

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	512 th FULL COMMITTEE MEETING
7	+ + + +
8	THURSDAY,
9	MAY 6, 2004
10	+ + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	
14	The Committee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B3, 11545 Rockville Pike, at 8:30 a.m., Dr. Mario V.
17	Bonaca, Chairman, presiding.
18	
19	<u>COMMITTEE MEMBERS PRESENT</u> :
20	MARIO V. BONACA, Chairman
21	STEPHEN L. ROSEN, At-Large
22	GEORGE E. APOSTOLAKIS, Member
23	F. PETER FORD, Member
24	THOMAS S. KRESS, Member
25	GRAHAM M. LEITCH, Member

1	<u>COMMITTEE MEMBERS PRESENT (Continued)</u> :
2	DANA A. POWERS, Member
3	VICTOR H. RANSOM, Member
4	WILLIAM J. SHACK, Member
5	JOHN D. SIEBER, Member
6	
7	<u>NRC STAFF PRESENT</u> :
8	DAVID ALBERSTEIN
9	TONY ATTARD
10	TOM BOYCE
11	CINDI CARPENTER
12	MIKE CASH
13	STEPHANIE COFFIN
14	ANNE COTTINGHAM
15	JOHN CRAIG
16	A. EL-BASSIONI
17	P.J. HABIGHORSE
18	DONNIE HARRISON
19	WAYNE HARRISON
20	JIANG HONG
21	BILL KEMPER
22	FELIX KILLAR
23	STEPHEN KLEMENTOWICZ
24	RALPH LANDRY
25	KEVIN LAVIE

2

1	NRC STAFF PRESENT (Continued):
2	ALAN LEVIN
3	ERASMIA LOIS
4	STU MAGRUDER
5	BOB MARTIN
6	KEVIN McCOY
7	GEORGE MEYER
8	RALPH MEYER
9	CARL PAPERIELLO
10	GARETH PARRY
11	MARK REINHART
12	STACIE SAKAI
13	N.T. SALTOS
14	UNDINE SHOOP
15	WILKINS SMITH
16	BILL STILLWELL
17	T.R. TJADER
18	JARED WERMIEL
19	
20	
21	
22	
23	
24	
25	

	4
1	<u>CONTENTS</u>
2	PAGE
3	Introduction, Chairman Bonaca 6
4	Use of Mixed Oxide Lead Test Assemblies at
5	the Catawba Nuclear Station:
6	Dr. Dana Powers 9
7	Steve Nesbit, Duke Power 11
8	Robert Martin, NRC
9	Undine Shoop 61
10	Ralph Landry
11	Steve LaVie
12	Dr. Edwin Lyman
13	Felix Killar
14	Rish Management Technical Specifications:
15	Dr. George E. Apostolakis 110
16	Tom Boyce
17	Bob Tjader
18	Biff Bradley
19	Wayne Harrison
20	Trial/Pilot Implementation of Regulatory Guide
21	1.200:
22	Dr. George E. Apostolakis 193
23	Mary Drouin
24	Donnie Harrison
25	Biff Bradley

	5
1	<u>CONTENTS (Continued)</u>
2	PAGE
3	Good Practices for Implementing Human
4	Reliability Analysis:
5	Dr. George E. Apostolakis 232
6	Erasmia Lois
7	John Forester
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	6
1	<u>PROCEEDINGS</u>
2	(8:29 a.m.)
3	CHAIRMAN BONACA: Good morning. The
4	meeting will now come to order.
5	This is the second day of the 512th
6	meeting of the Advisory Committee on Reactor
7	Safeguards.
8	During today's meeting, the committee will
9	consider the following:
10	Use of mixed oxide lead test assemblies at
11	the Catawba Nuclear Station;
12	Risk management technical specifications;
13	Trial and pilot implementation of
14	Regulatory Guide 1.200, "An Approach for Determining
15	the Technical Adequacy of Probabilistic Risk
16	Assessment Results for Risk-informed Activities";
17	Good practices for implementing human
18	reliability analysis;
19	And then preparation of ACRS reports.
20	Dr. John Larkins is the Designated Federal
21	Official for the initial portion of the meeting.
22	We have received no written comments from
23	members of the public regarding today's session. We
24	have received a request from NEI for time to make oral
25	statements regarding Regulatory Guide 1.200, and from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	NEI and Dr. Lyman of Union of Concerned Scientists
2	regarding the use of MOX fuel lead test assemblies at
3	the Catawba Nuclear Station.
4	A transcript of portions of the meeting is
5	being kept, and it is requested that the speakers use
б	one of the microphones, identify themselves, and speak
7	with sufficient clarity and volume so that they can be
8	readily heard.
9	Also, I want to remind you that during
10	lunchtime today, between 12:45 and 1:15 p.m., Mr.
11	Paperiello, who is the new RES Director, will meet
12	with the members informally to discuss his vision for
13	the Office of Research. So I think you'll essentially
14	have half an hour for lunch and then half an hour is
15	indicated to Mr. Paperiello.
16	I will begin with some items of current
17	interest. You have in front of you, in fact, this
18	package, items of interest and in it you'll find
19	speeches from the Commissioners.
20	You'll find also an NRC announcement, mid-
21	page, Office of Public Affairs, "NRC provides update
22	or review process for Vermont Yankee operator
23	request," where it is indicated that there will be a
24	special review of Vermont Yankee power up-rate and
25	also the ACRS will be involved in that review.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	There is also an interesting article at
2	the end of the package regarding MSPI. We have shown
3	for the level of interest in MSPI, and there is
4	information there regarding that indicator.
5	Before we start with the first item on the
6	agenda, I would like to recognize Mr. Jain. Mr. Jain
7	has been with ACRS staff for a year and will be
8	leaving on May 28th, 2004 to join Research. We
9	appreciate the outstanding technical support that he
10	has provided us in several matters, including license
11	renewal applications and recently the resolution of
12	the ACRS recommendations related to the DPO on steam
13	generator tube integrity. Hopefully we will finalize
14	that report today so that it will be done while you're
15	still here with us, and also the support he has
16	provided on good practices for human reliability
17	analysis.
18	Thank you very much and good luck.
19	(Applause.)
20	CHAIRMAN BONACA: With that we can move to
21	the first item on the agenda. Dr. Powers, if you
22	could.
23	All right. I know from good memory
24	that
25	DR. POWERS: Agendas are precious items.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	CHAIRMAN BONACA: It was mine and I lent
2	it to you.
3	DR. POWERS: Well, that was your mistake.
4	CHAIRMAN BONACA: The first item on the
5	agenda is the MOX fuel LTA, and Dr. Powers will lead
б	us through that presentation.
7	DR. POWERS: Right. It's titled "Use of
8	Mixed Oxide Lead Test Assemblies at the Catawba
9	Nuclear Station."
10	CHAIRMAN BONACA: Very good.
11	DR. POWERS: I think most of the members
12	are aware there's a national policy to dispose of
13	excess weapons grade plutonium as mixed oxide fuel in
14	commercial nuclear power reactors. This is, of
15	course, the first time that we made a conscious effort
16	to use mixed oxide or MOX fuel in nuclear power
17	stations.
18	And it is true that there is some
19	significant experience with mixed oxide fuel in power
20	reactors in Europe especially. But that experience is
21	with reactor grade plutonium that does not have the
22	enrichment of the 239 isotope, the weapons grade
23	plutonium has.
24	As a consequence, we don't know as much
25	about mixed oxide fuel as we would like to know, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	the way we obtain some of that information that we
2	need to have to use mixed oxide, of course, is to use
3	lead test assemblies, and that's what we're
4	considering, is the safety of using some mixed oxide
5	lead test assemblies in the Catawba reactor.
6	Our interest is can this be done with
7	adequate assurances of the public health and safety.
8	The Fuel Subcommittee met with the folks
9	from Catawba, the staff, and the Union of Concerned
10	Scientists to discuss this use of mixed oxide lead
11	test assemblies to some detail, and of course, we have
12	asked those various institutions to present to the
13	committee far more material than the time slot allows.
14	And, indeed, we're going to go through
15	this with some dispatch in order to transmit all of
16	the information that we've accumulated on this issue.
17	Before the committee, of course, is a
18	safety evaluation report you've all seen and read in
19	some detail. There is an administrative difficulty in
20	that the core that was analyzed did not recognize that
21	some other lead test assemblies not connected with the
22	MOX will be in the core, and that particular issue has
23	to be sorted out before we can actually proceed to
24	communicate to the Commission our findings on the lead
25	test assemblies.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	11
1	But at this stage, I think what it is is
2	to try to summarize what the status is on the use of
3	lead test assemblies in the Catawba reactors at this
4	point.
5	So I think we'll start by asking Mr.
6	Steven Nesbit of Duke Power to present the applicant's
7	case for these lead test assemblies.
8	MR. NESBIT: Shall I do it from up there
9	or over here?
10	DR. POWERS: It's strictly up to you, but
11	up here is probably easier for all concerned. They'll
12	even give you a chair if you're nice.
13	Sometimes people sit; sometimes they
14	stand. It's pretty much up to you.
15	MR. NESBIT: No, this will be fine.
16	DR. POWERS: And, Steve, I want to try to
17	hold you to about 45 minutes or less on this.
18	MR. NESBIT: I did a run-through. Just
19	hit that button for now. I did a run-through, and I
20	got through it in 45 minutes. Of course, that's
21	assuming no questions. Some people would say that's
22	a low probability event.
23	DR. POWERS: That is a silly assumption.
24	(Laughter.)
25	MR. NESBIT: But what I'm going to do is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	take you at your word before that people can actually
2	read on their own. So I'm not going to read all of
3	the slides. I'll be very quick about as much of this
4	as I can, and hopefully we'll get through it in about
5	45 minutes.
6	Good morning. I'm Steve Nesbit. I'm the
7	mixed oxide fuel manager for Duke Power.
8	Duke Power is the utility that will be
9	using mixed oxide fuel in its reactors as part of the
10	plutonium disposition program, and we have put forward
11	a license amendment request to the Nuclear Regulatory
12	Commission to let us use four MOX fuel lead assemblies
13	at Catawba.
14	I have a brief introduction, and then
15	we'll talk about some general MOX fuel
16	characteristics, our safety evaluation, our
17	environmental evaluation, and a summary.
18	I think Dr. Powers has covered the
19	disposition program sufficiently. I'm not going to
20	belabor this. I'll make one point. The MOX fuel
21	lead assembly program at Catawba is an essential part
22	of the program. Without that the MOX fuel project
23	doesn't go forward, and the plutonium disposition
24	program doesn't go forward.
25	Here's an outline of what we're going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	do or, in some cases, what we're actually doing.
2	Polishing plutonium oxide powder at Los Alamos
3	National Laboratory.
4	DR. POWERS: You might want to just for
5	clarification purposes explain what you mean by
6	"polishing."
7	MR. NESBIT: Okay. What we're doing or
8	what LANL is doing and has essentially wrapped up now
9	is they have put the plutonium oxide that's derived
10	from weapons material through an aqueous process in
11	which it's dissolved and then precipitated out, and
12	the result of that process is the removal of
13	impurities, such as gallium that you may have heard
14	something about, and the production of a plutonium
15	oxide powder that meets the spec and is consistent
16	with the powder that's used in the European programs.
17	That work is essentially done. The
18	plutonium oxide paddle will be transported over to
19	Europe to a facility called Cadarache, which is
20	operated by COGEMA, and there it will be fabricated
21	into mixed oxide fuel pellets, and the pellets will be
22	loaded into rods. The rods will be welded shut.
23	The rods will then be transported to
24	another facility operated by COGEMA in France. That's
25	the Melox facility, and there the rods will be bundled

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	into fuel assemblies. The completed fuel assemblies
2	will be transported back to the United States, to the
3	Catawba Nuclear Station, where they'll be loaded into
4	the reactor in the spring of next year, about a year
5	from now.
6	And then ultimately after the fuels are
7	irradiated, we will have in addition to pool-side post
8	irradiation examination, some hot cell post
9	irradiation examination as planned for Oak Ridge
10	National Lab.
11	DR. APOSTOLAKIS: How is this
12	transportation done from the U.S. to France and back?
13	MR. NESBIT: Inside the U.S. the
14	transportation will be done by Department of Energy
15	safeguards transporters. It's the same approach that
16	they use to transport sensitive nuclear material in
17	the DOE complex.
18	The material will be transferred to Europe
19	by ship using PNTL special purpose ships that have
20	been used in past shipments of sensitive nuclear
21	material between Europe and Japan.
22	Within Europe the plutonium oxide will be
23	transferred in the same manner that it's typically
24	done, by truck in France as part of commercial
25	reprocessing. And then going backwards it's just the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	reverse.
2	Catawba Nuclear Station is where the MOX
3	fuel will be used. It's located in South Carolina.
4	It's 3,411 megawatt standard Westinghouse four-loop,
5	pressurized water reactor operated by Duke Power.
6	I will note there's 193 fuel assemblies in
7	the core. So we're talking about four assemblies out
8	of that number. It is a plant that has ice condenser
9	containment design, and the Catawba and McGuire
10	reactors all share a common primary system and reactor
11	core design. Those are the reactors that the MOX fuel
12	will ultimately be used at in larger quantity.
13	The irradiation plans. We plan to
14	irradiate at least some of the fuel three cycles. The
15	first cycle will start up in the spring, will load the
16	assemblies in positions that have typical power for
17	first burn fuel, but not limiting power. It won't be
18	the peak assemblies in the core. We'll do pool-side
19	post irradiation examination after the first cycle.
20	Similarly, in the second cycle, we'll load
21	it in a similar location for second burn fuel. By the
22	end of the second cycle, we expect a peak burn-up of
23	approximately 48 gigawatt days per ton on the peak rod
24	in the MOX assembly.
25	So that's a pretty heavy duty to put on a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	lead test assembly program, but again, they won't be
2	limiting.
3	We'll discharge some of the assemblies
4	after two cycles and prepare rods for shipment to the
5	lab for hot cell PIE. We'll also load one or more of
6	the assemblies back for a third cycle of irradiation
7	to take the burn-up up close to 60,000 gigawatt days
8	per ton.
9	DR. SIEBER: That cycle three burn-up
10	there is incorrect, right?
11	MR. NESBIT: I hope not. Sixty thousand,
12	that would be a high burn-up for gigawatt days per
13	ton.
14	DR. SIEBER: It certainly would.
15	MR. NESBIT: That's 60 gigawatt days per
16	ton or 60,000 megawatt days per ton.
17	Here's a schematic diagram of the core
18	design that we have in mind right now. I will point
19	out a couple of things in this diagram. This is a
20	core-to-core representation. These are the axes of
21	symmetry.
22	This is the MOX fuel, the magenta or
23	purple, and it's located in a location, core location
24	C8 that's instrumented fully, which means each MOX
25	assembly will have the ability to send an in-core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	17
1	instrument up and get a detection signal on the flux
2	there.
3	Oh, great.
4	So that's the MOX assemblies. The feed
5	for resident fuel, which is Westinghouse RFA fuel, is
б	shown in the yellow, and then the once burned and
7	twice burned are in the white.
8	This assembly here, which is supposed to
9	be aqua it may not come through is the next
10	generation fuel retest assembly from the Westinghouse
11	program, and we've defined an area around the MOX
12	assembly so that we won't load the two right next to
13	each other to preclude any interactions between the
14	two lead test assemblies.
15	This is the current loading pattern as the
16	final fuel cycle design was approved. However, I will
17	note that as cycle operations go forward, sometimes
18	these things change a little bit. We tweak the
19	enrichments and things like that.
20	Required regulatory approvals. This
21	license amendment request is related to a number of
22	other regulatory approvals, and I won't go through
23	them in detail, but there's a number of things in
24	front of the Commission.
25	Now I'd like to move on and talk about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	some of the characteristics and attributes of mixed
2	oxide fuel that pertain to this license amendment
3	request. The fuel is going to be manufactured using
4	the MIMAS process. I believe the ACRS has looked at
5	this through the MOX fuel fabrication facility, and so
6	I'm not going to belabor the MIMAS process.
7	I'll note a couple of things. There's a
8	lot of experience with this in Europe. That's with
9	reactor grade material versus we're using weapons
10	grade material with more Plutonium-239 and less
11	Plutonium-240.
12	The pellet structure that comes out of
13	this manufacturing process is uniform on a macroscopic
14	scale. However, when you get to the microscopic
15	scale, it becomes heterogeneous, and we'll show some
16	pictures of that in a minute.
17	There's plutonium-rich particles,
18	agglomerates, and there's the depleted uranium oxide
19	that the powder is blended with, and then there's a
20	coating phase of intermediate plutonium concentration.
21	Here's the process, and I'll just point
22	out one or two things. The first step is a primary
23	blend of plutonium oxide powder, uranium oxide powder.
24	We're going to blend this for the weapons grade
25	material in a 20-80 ratio plutonium to uranium, and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	19
1	that's what produces the plutonium rich particles,
2	which are subsequently blended in a second process
3	with depleted uranium oxide powder.
4	DR. SIEBER: Why did you choose tails
5	material as opposed to natural uranium as the carrier?
6	MR. NESBIT: Well, tails is what's
7	predominantly used in Europe. So we're maintaining
8	the greatest level of consistency with the European
9	experience that way. That's the primary reason.
10	Also, I mean
11	DR. SIEBER: It has some disadvantages,
12	too, right? For example, you know that the plutonium
13	grains create hot spots in the fuel, and those spots
14	are hotter if the surrounding matrix is depleted in U-
15	235, and so you have greater fission gas release. You
16	have a more pronounced fueling effect. You have a
17	greater potential in some accident scenarios for clad
18	perforation.
19	So I'm curious as to why that decision was
20	made.
21	MR. NESBIT: Well, I guess I don't agree
22	that there's a significant effect there between the
23	depleted versus the natural uranium in the matrix.
24	Either way the predominant number of fissions are
25	going to be in the plutonium, not in the uranium.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	DR. SIEBER: That's true.
2	MR. NESBIT: And, you know, again, as I
3	said, the experience base in Europe has been
4	predominantly with uranium oxide, and I think
5	DR. SIEBER: Well, there is a U.S.
6	experience base that came out of Hanford in the '70s
7	in the plutonium utilization project there that really
8	concentrated on the effect of grain size, and I'm sure
9	that you folks have looked at that.
10	MR. NESBIT: We have, and there is some
11	experience in Europe using natural uranium instead of
12	depleted uranium, but again
13	DR. SIEBER: Well, that's not the key
14	issue. The key issue is how big are the grains.
15	DR. POWERS: It seems to me that the
16	difference here between what comes out of the MIMAS
17	process and what was looked at at Hanford is you have
18	a great deal more of the plutonium actually dissolved
19	in the uranium matrix than they did, which can
20	ameliorate some of the thermal gradient between the
21	particle and the matrix itself.
22	MR. NESBIT: And we're going to see some
23	pictures of that in just a minute
24	DR. SIEBER: Well, the specs on the
25	milling process that goes on here comes out with a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21
pretty fine material. So the concern is not
overwhelming.
MR. NESBIT: Yeah. They actually put this
slide in the right place for a change.
Here's a picture, an EPMA image of an
unirradiated MOX pellet produced by MIMAS, and this is
the unvarnished picture up here, and these are the
computer enhanced versions down here.
I'm going to concentrate on this lower
picture, and what you see here in the red, these are
the plutonium rich particles, also referred to as
agglomerates, with significant fraction of the
material being plutonium.
Then in the blue phase here, this is the
material that's essentially all uranium, and then the
intermediate phase, the green shows what's called the
coating phase where there's an intermediate quantity
of plutonium that's commensurate with the overall
average in the pellet.
So the point I guess I'm trying to make
with this picture is that while the characterization
of plutonium rich particles surrounded by a sea of
uranium is not entirely accurate here. The actual
structure on the micronic scale, while it is
heterogeneous, is not as completely discrete as you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	might think.
2	Here's a picture of the plot, a plot of
3	the percent of the plutonium total versus the size of
4	the agglomerates, and all of the agglomerates add up
5	in this case to about 25 percent of the overall
6	plutonium. So the majority is actually in the coating
7	phase, not in the plutonium rich particle phase.
8	And as you can see, as the size of the
9	particle goes up, there's less and less of the
10	plutonium actually there. In the largest particles,
11	there's relatively little of the total plutonium
12	there.
13	Some of the characteristics of the fuel.
14	We're talking about sintered oxide pellets,
15	predominantly uranium. In our case it's going to be
16	at least 95 percent uranium and the remainder
17	plutonium.
18	Material properties are similar to LEU
19	fuel because of the fact that the uranium controls
20	that.
21	There's lower decay heat from MOX fuel
22	during the time frame of interest for transient
23	accident analyses, and for these four lead assemblies,
24	there's a relatively small impact on global physics
25	parameters. I'm going to show a little bit more about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	that.
2	Now, here's a plot of thermal conductivity
3	versus temperature. This is unirradiated, but as you
4	can see, the top line is uranium oxide, and the bottom
5	is MOX at a six percent plutonium concentration. So
б	there is a difference, but it has the same shape, and
7	it's very close.
8	Heat capacity. We had some discussion of
9	this slide in the subcommittee meeting. Actually it
10	was a different slide. I changed slides because of
11	that discussion.
12	The other slide showed that when you get
13	to higher and higher plutonium concentrations you can
14	get a significant difference in heat capacity. In this
15	case, we've looked at it with about 4.37 percent
16	plutonium, which is nominal for what we're doing, and
17	the two curves, MOX and UO2 are virtually an overlay.
18	These don't reflect the discontinuity
19	associated with the phase change at about 2,600
20	degrees that we talked about some. We went back and
21	looked at the literature. The most recent literature
22	does acknowledge that discontinuity exists, but it
23	recommends using a smooth curve because the magnitude
24	is not significant. So that's what this curve
25	reflects.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	In terms of decay heat, what I plotted
2	here is the ratio of the MOX decay heat over LEU decay
3	heat for a nominal fuel assembly at I think a burn-up
4	of 40 or 45,000 megawatt days per ton. Let me see if
5	I get the units right this time.
6	And so at one they're equal, and that
7	crossover point comes at about three days after
8	shutdown. Before then MOX has less decay heat than
9	LEU.
10	DR. ROSEN: I only see one line on that
11	curve.
12	MR. NESBIT: There is only one line. It's
13	a ratio plotted. So, for example, at 40, it's about
14	.99, say.
15	DR. ROSEN: Oh, I see.
16	MR. NESBIT: So the MOX is one percent
17	lower than LEU there.
18	DR. ROSEN: It's a ratio.
19	MR. NESBIT: Core physics parameters. We
20	looked at a core and substituted four MOX assemblies
21	for four LEU assemblies and looked at some of the key
22	parameters that affect the accident analyses, like
23	delayed neutron fraction, feedback coefficients, et
24	cetera.
25	The differences in terms of these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25 1 coefficients are three percent or less, and as a 2 result, these are the same kind of variations that you see typically in cycle-to-cycle reload design. 3 So 4 there's really no impact of the MOX assemblies on the 5 global core physics parameters. The lead assemblies. This would be 6 7 different for batches of fuel with significant 8 quantities. 9 Delayed neutron fraction DR. SIEBER: 10 though is different than the equivalent energy of LEU 11 fuel, right? It's smaller? 12 Plutonium has a smaller MR. NESBIT: delayed neutron fraction, significantly smaller than 13 14 uranium, but when you look at it on a core-wide basis, 15 the impact of the four assemblies is relatively minor. Yeah, but some days you're 16 DR. SIEBER: 17 going to have more than four assemblies. 18 MR. NESBIT: Right. So that will effectively 19 DR. SIEBER: change the transient characteristics of the core. 20 21 MR. NESBIT: Yes, it will. Yes, it will. 22 And I quess for lead test DR. SIEBER: 23 assemblies it really doesn't make a lot of difference, 24 these little changes. On the other hand, you wouldn't 25 be putting them in if you didn't anticipate full core

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	loads.
2	MR. NESBIT: And we're in the process of
3	doing the safety analyses right now for the full core
4	case. Of course, European reactors have operated with
5	core fractions up to 36 percent mixed oxide fuel and
6	accommodated within the base reactor design.
7	DR. SIEBER: The current European fuel
8	experience is not weapons grade plutonium.
9	MR. NESBIT: It is not. That's correct.
10	Let's talk about the MOX fuel lead
11	assembly description for a second. What we've done is
12	we've taken mixed oxide fuel pellets and put them into
13	an existing United States uranium oxide fuel design,
14	which is the Advanced Mark-BW design, and there's
15	information presented in Framatome topical reports on
16	this and also on the impact of putting the mixed oxide
17	fuel in there.
18	Here's a picture. This is the Advanced
19	Mark-BW design with the MOX pellets. You can't tell.
20	There's a couple of things I'll point out about this.
21	This does use M5 cladding for the fuel
22	rods and also for the intermediate grids, and it
23	contains standard state-of-the-art fuel assembly
24	design features like bottom nozzle to trap debris,
25	reconstitutable, et cetera.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	DR. ROSEN: Has M5 been used in this
2	country before?
3	MR. NESBIT: Yes, it has. It's been used
4	pretty significantly in this country. For example,
5	our Oconee units are using M5 cladding right now, and
6	TMI, a number of plants have been using M5, and of
7	course, it has been used over in Europe as well.
8	DR. SIEBER: It's approved here.
9	MR. NESBIT: Well, it's approved on a
10	plant-by-plant basis.
11	DR. SIEBER: Right.
12	DR. POWERS: I mean, to be clear, that's
13	only because the regulation is written for zero.
14	MR. NESBIT: Right.
15	DR. POWERS: So you have to do a plant-by-
16	plant application on it.
17	MR. NESBIT: That's right, and in fact,
18	part of our application has been an exemption request
19	to go out with the use of M5 here.
20	Concerning a comparison of the fuel
21	assembly designs, this is the MOX assembly in this
22	column. This is the Advanced Mark-BW assembly in this
23	column, and I'm just going to talk about a couple of
24	differences.
25	We have a slightly longer rod for the MOX

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

28
assembly, and this allows to accommodate for greater
fission gas release, and our design for batch burn-up
is going to be 50,000 rather than the current LEU
design is 62,000, and there's actually been lead test
assemblies in the UO2 space that have gone up to, I
think, 72,000.
But we are planning to take the lead
assembly up higher than that.
DR. ROSEN: Higher than 72?
MR. NESBIT: Excuse me. Higher than 50,
which is the anticipated batch limit, but we'll take
it up to about 57,000.
CHAIRMAN BONACA: You said before that up
to 36 percent of European cores have had plutonium MOX
fuel. You don't mean just a batch. I mean, it means
that also when you get the twice burn, the three times
burn
MR. NESBIT: Looking at the table core
CHAIRMAN BONACA: the maximum number is
going to be 36 percent?
MR. NESBIT: 36 percent of the
assemblies in the total core have been MOX fuel
assemblies.
CHAIRMAN BONACA: Okay. And when you load
it that way, I mean, do you have to have special

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	planning on how you load it?
2	I mean, the concern must be probably more
3	limiting fuel?
4	MR. NESBIT: Well, the information we've
5	gotten from France and Germany it's actually German
6	plant that went 36 percent. The French plants go to
7	30 is that there's really no major impact from a
8	plant perspective.
9	Now, the French did add some control rods.
10	The Germans did not. Our analyses indicate that we're
11	not going to need to.
12	CHAIRMAN BONACA: Yeah, okay.
13	MR. NESBIT: I want to talk for a
14	minute
15	DR. LEITCH: Steve, before you move on,
16	this right-hand column, is this your more or less
17	standard fuel now, or is this the NGF fuel?
18	MR. NESBIT: No, this is the Framatome
19	Advanced Mark-BW design. We do not have any fuel this
20	design in our reactors right now. There's some fuel
21	of this design in the North Anna Reactors.
22	We did use a substantial amount of Mark-BW
23	fuel, which is similar, but did not have a couple of
24	intermediate mixing vein (phonetic) grids, "we" at
25	McGuire and Catawba. So we have substantial

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	experience with a similar fuel design, but the co-
2	resident fuel, I didn't put any information up on
3	that. It's the Westinghouse RFA design.
4	It is also very similar. I'll point out
5	that the pressure drop difference between the two, the
6	MOX assembly and the RFA assembly, is less than four
7	percent overall. So very similar hydraulically.
8	DR. LEITCH: And the NGF lead test
9	assemblies?
10	MR. NESBIT: I didn't provide information
11	on that specifically. The NGF assemblies are similar
12	to the RFA assemblies. They have additional grids and
13	a couple of other design features that really don't
14	affect the hydraulics that much. They have a greater
15	pressure drop than the RFA assemblies, but it's still
16	reasonably close to the RFA and to the mod.
17	DR. LEITCH: Okay.
18	DR. SIEBER: I'd like to ask a real quick
19	question about Catawba. Each fuel assembly at Catawba
20	either has a control rod in it, a source rod, or a
21	flow limiting device. Do you have any assemblies that
22	don't have one or those three things?
23	MR. NESBIT: Actually we load burnable
24	poison rod assemblies in a lot of our assemblies.
25	DR. SIEBER: Okay, but you have something

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	in every assembly.
2	MR. NESBIT: Actually, you know, I know
3	that's true of Oconee. I think that's true at McGuire
4	and Catawba, too.
5	DR. SIEBER: Okay. Because if you don't
6	sometimes folks either break them or they're stuck or
7	they don't feel like putting them in. What it does is
8	it short circuits the flood.
9	MR. NESBIT: Right. You have to account
10	for any
11	DR. SIEBER: So I would feel more
12	comfortable if you had a good balance flow there as
13	opposed to some open holes where you don't have
14	anything inserted.
15	MR. NESBIT: I believe that's the case,
16	and the MOX assemblies, we're going to put a burnable
17	poison rod assembly in for the first cycle at least,
18	possibly even the second.
19	DR. SIEBER: Okay.
20	MR. NESBIT: I'll talk briefly about the
21	MOX fuel experience base. There's been more than
22	3,700 fuel assemblies delivered by Framatome, both the
23	France part and the part that's formerly Sieman's in
24	Germany by the end of 2003. So there's been a lot of
25	MOX fuel used in Europe, and there's currently more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	than 30 reactors, easy mixed oxide fuel.
2	There's a couple of plants currently
3	making MIMAS MOX fuel and one making SBR MOX fuel, are
4	staring up in Britain.
5	There's been a lot of test programs as
6	well in Europe, hot cell examinations, test reactor
7	radiations, et cetera, looking at some of these things
8	that you might expect, pellet cladding interaction,
9	fission gas release, et cetera.
10	The result of the test programs in very
11	high level summary is that in many characteristics,
12	the behavior is exactly the same as LEU fuel. As you
13	might expect, the cladding corrosion is not affected
14	by the fuel pellet material. It's the same.
15	It has been observed there's higher
16	fission gas release than LEU fuel. I'll talk a little
17	bit about that in a minute.
18	There's a better pellet cladding
19	mechanical interaction reports fuel due to the
20	different characteristics of the fuel pellet, and a
21	lot of this information is summarized in a recent IAEA
22	Technical Document No. 415 if you care to look at
23	that.
24	Here's a picture, a radial cut of a MOX
25	pellet at 50 gigawatt days per ton, and there's really

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	not anything too remarkable to say about this. It's
2	standard appearance that you might get for, I guess,
3	used fuel.
4	Fission gas release is primarily
5	attributed to a couple of factors. One is the MOX
б	fuel in Europe tends to run at higher powers and,
7	therefore, higher temperatures towards the end of its
8	burn-up range, and that promotes fission gas release,
9	and there's also the impact of the lower thermal
10	conductivity.
11	And there's also the fact that, as we
12	talked about before, the micro structure has plutonium
13	rich particles, and there tends to be local high burn-
14	up zones which can lead to the formation of voids with
15	fission gas there.
16	The differences really manifest themselves
17	medium to high burn-up as indicated by this next
18	slide, which shows some French data for MOX and LEU.
19	MOX is in the green. LEU is in the red, and as you
20	can see, the increase starts at an earlier burn-up,
21	and this is probably due primarily to the difference
22	in the linear power of the rods that are being
23	irradiated and then the MOX is generally higher at the
24	higher burn-ups.
25	Again, that's something we've tried to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	take into account in the fuel assembly design.
2	Concerning the safety evaluations that
3	we've performed, before I get on with this, I guess I
4	probably ought to address in just a couple of minutes
5	the weapons grade versus reactor grade because I don't
6	have a slide that really goes over that, but let me
7	address what we see as the impact of weapons grade
8	versus reactor grade.
9	The primary impact is that because you're
10	using weapons grade plutonium with less parasitic
11	Plutonium 240 and more of the good stuff, 239, you
12	have to put less plutonium in the fuel rod to get the
13	same energy out.
14	As a result, the characteristics of the
15	weapons grade fuel are closer to the characteristics
16	of uranium fuel than would be reactor grade MOX fuel.
17	Similarly, I didn't bring the slide, but
18	if you look at a plot of reactivity versus burn-up,
19	the performance of the weapons grade fuel is closer to
20	low enriched uranium fuel in terms of how the
21	reactivity let-down curve with burn-up goes than is
22	reactor grade MOX fuel.
23	So as far as we've been able to tell,
24	every difference between the two is beneficial if you
25	view beneficial as being more like uranium fuel.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	Our bases for saying that we can operate
2	safely with MOX fuel I should have said lead
3	assemblies up here the similarity between the two
4	fuel types, LEU and MOX. There's an extensive
5	European experience base which we've discussed with
6	greater quantities of mixed oxide fuel. We've had
7	U.S. MOX test programs and lead assembly programs here
8	in the United States in the past, as we discussed
9	earlier.
10	We're using a proven fuel assembly design,
11	and we've done specific analyses and evaluations for
12	the use of the fuel, like Catawba, to be sure we
13	remain within our regulatory limits.
14	Let's talk about LOCAL analyses. Before
15	I get into what we did, let me just say right off the
16	bat LOCA analyses are primarily about the reactor
17	coolant system and the cladding, and the fuel pellet
18	really doesn't play a big role in the LOCA analysis.
19	When you see what we changed to account for the MOX in
20	the model, that becomes apparent.
21	We started with Framatome's Appendix K
22	large break LOCA evaluation model, and Framatome did
23	this work, or AREVA, if you prefer. That's based on
24	RELAP 5, Mod 2. We looked at what the MOX impacts
25	ought to be and where appropriate we modified the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433
	36
1	evaluation model to address them.
2	We did an apples-to-apples, MOX-to-LEU
3	comparison, and then we did some specific analyses to
4	develop MOX specific lead assembly LOCA limits.
5	These are the areas that we looked at in
6	terms of does the evaluation model need to be changed
7	to address the thermal conductivity. A small effect,
8	but we're going to use the MOX we did use the MOX
9	specific properties. Volumetric heat capacity was
10	essentially no effect. We continued using LEU.
11	Decay heat, again, we talked earlier about
12	MOX. It's conservative to use the LEU. That's what
13	we did. We used the standard Framatome evaluation
14	model. Again, this is Appendix K, not best estimate.
15	So it has the 120 percent conservatism factor.
16	Void reactivity and delayed neutron
17	fractions, clear characteristics which for MOX would
18	tend to shut the power down quickly, more quickly than
19	LEU field. So we just assumed the same
20	characteristics for LEU overall.
21	And then the initial fuel temperature can
22	be different. We used MOX specific fuel temperatures
23	out of the approved Copernic code to get the right
24	initial conditions there.
25	DR. SIEBER: The delayed neutron fraction

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	is conservative for LOCA, but not for all
2	MR. NESBIT: That's correct. I'm only
3	talking LOCA here.
4	We did a stylized comparison where we just
5	took the same conditions and ran it with the MOX and
6	then ran it next door with the LEU, and what we came
7	out with was a difference of less than 40 degrees in
8	terms of peak cladding temperature for this case.
9	The next slide shows the peak cladding
10	temperature plot versus time. As you can see, it's a
11	virtual overlay. In LOCA analysis space, this is the
12	same result.
13	DR. SIEBER: That's a calculated number.
14	MR. NESBIT: That is calculated.
15	DR. SIEBER: Does that take into account
16	particles? Particles run hotter than the surrounding.
17	So you're going to get a couple of degrees of
18	temperature.
19	MR. NESBIT: Well, the particles are in
20	the fuel pellet, and this is a cladding temperature.
21	DR. SIEBER: That's right, and the pellet
22	is right next to the clad. So if you heat up if
23	the pellets themselves are not homogeneous
24	MR. NESBIT: That's right.
25	DR. SIEBER: then that will be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	reflected in local spots on the clad.
2	MR. NESBIT: Well, I think you still get
3	a homogeneous temperature distribution within the
4	pellet, despite the fact that they're are very
5	localized. You know, we're talking micron distances
6	here. When you look at the profile across the
7	pellet
8	DR. SIEBER: Fifty to 150 microns.
9	MR. NESBIT: most of the plutonium rich
10	particles are less than 50 microns in dimension. So,
11	you know when you talk about the actual pellet
12	temperature profile, despite the inhomogeneities on
13	the very micronic scale, on an overall scale the
14	temperature is going to be smooth.
15	DR. RANSOM: Certainly the average
16	temperature is what, about six inches to a foot that
17	you've averaged over the
18	DR. SIEBER: Right.
19	DR. RANSOM: that's the node length and
20	the core?
21	DR. SIEBER: Yeah.
22	MR. NESBIT: Axially.
23	DR. RANSOM: So this has to be regarded as
24	an average behavior.
25	DR. SIEBER: That's right.

	39
1	DR. RANSOM: Or could be.
2	DR. SIEBER: This is not a LOCA analysis.
3	DR. RANSOM: Right.
4	MR. NESBIT: We looked at the other
5	criteria in 10 CFR 5046 beside the peak cladding
6	temperature, and they were all met easily. The small
7	break LOCA is not a limiting transient for our plant,
8	and there's no impact of MOX on this anyway, and then
9	there's no impact of the MOX, adverse impact on the
10	LEU field because the hydraulics of the fuel are so
11	similar, the two field types.
12	In summary, we did specific evaluations
13	for the MOX assemblies and I'll remind you that mostly
14	the assembly programs don't do specific LOCA
15	calculations, but we did.
16	Analysis results are fundamentally
17	similar. We did sensitivity studies on plant
18	operating conditions, and these were used to establish
19	peaking criteria for our core designers to make sure
20	that the core designs keep the peaking below what's
21	required to meet the acceptance criteria.
22	Non-LOCA evaluations, I'm going to be real
23	fast here because I am about to exceed my time.
24	DR. POWERS: You're actually in pretty
25	good shape.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. NESBIT: The non-LOCA evaluations, we 2 looked at all of the Chapter 15 accidents. Most of 3 them are driven by things that are completely 4 insensitivity to the fuel pellet, global core, physics 5 parameters, system thermal hydraulics, stored energy. Now that's affected by the pellet, but we use 6 7 generally bounding numbers that bound the core stored energy there anyway, and decay heat. 8

We looked at some events in more detail 9 because they had the potential for localized effects 10 11 that could require further evaluation. We looked at 12 the control rod withdrawal or drop transient. We looked at the steam line break transient. In both of 13 14 those cases typically the limiting assembly is a 15 rodded location, and we are not going to load the MOX fuel in control rod locations for the first couple of 16 17 cycles. So there's no real impact there on the overall accident analysis. 18

19 DR. SIEBER: But sooner or later you will 20 When we got to batch, MR. NESBIT: Yes. 21 we intend to load them in control rod locations. 22 So you're going to address DR. SIEBER: 23 this again. 24 MR. NESBIT: The guys that are doing those analyses are currently performing those with the 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	41
1	assumption that the MOX will be in rodded locations.
2	DR. ROSEN: So what is the licensing
3	process when you go to batch? Do you come back?
4	MR. NESBIT: Yes, we'll come back to the
5	Nuclear Regulatory Commission with a license amendment
б	request for authorization to use Batch 1.
7	DR. ROSEN: And you get a reading on what
8	you saw here and when you used the lead test?
9	MR. NESBIT: We're listening as hard as we
10	can, yes, and we'll factor in what we hear here.
11	We'll factor in our experience with lead assembly
12	programs.
13	DR. ROSEN: Well, I'm more interested in
14	what you'll tell us when you come back about batch,
15	about what you saw in the plants rather than what you
16	heard here. That's the main thing.
17	MR. NESBIT: Yeah.
18	DR. ROSEN: With the pool-side inspections
19	and so on.
20	MR. NESBIT: The timing, our current plans
21	are such that we may not have the first cycle PIE back
22	by the time we come back with a batch license
23	amendment request. The NRC licensing process takes a
24	long time. We're living proof of that.
25	We can't wait until we have all of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 data from the PIE programs to turn in a batch license 2 amendment request because it will never get done. 3 What we anticipate is that that information will be 4 made available and will be factored in by the NRC 5 during their review. DR. SIEBER: And I thought we were moving 6 7 at break neck speed. 8 MR. NESBIT: No comment. 9 (Laughter.) 10 DR. POWERS: The committee is, but we're 11 on the tail end of this process. 12 Another thing we look at in MR. NESBIT: more detail is control rod ejection. 13 Aqain, not 14 loading the fuel under a rodded location makes that 15 relatively benign. actually did specific We calculations though for MOX in the core near a rodded 16 location, used 3D kinetics to eject the rod and see 17 what the power response is. 18 We got peak calorie per gram numbers that 19 were well below 100 calories per gram, which was the 20 21 conservative criterion that we chose to use. 22 fuel assembly misloading Last, is something that's localized, but the same measures that 23 24 are in place for LEU fuel are equally effective for MOX fuel in this area. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

42

	43
1	In summary, for most of the Chapter 15
2	accidents, four MOX lead assemblies clearly has a
3	negligible impact, and those with potential local
4	effects were evaluated in more detail, and they also
5	have no significant impact.
6	Radiological consequences, dose analyses,
7	if you will. First we did some scale analyses to see
8	the different inventories produced by MOX versus LEU.
9	Plutonium fissions have a different production or
10	different quantities, relative quantities, of fission
11	products, et cetera.
12	The most important one from a typical
13	Chapter 15 accident analysis is Iodine-131. For MOX
14	it can be as much as nine percent higher for a MOX
15	assembly than an LEU assembly, and this is the isotope
16	that drives a lot of off-site dose consequences.
17	DR. SIEBER: That's Iodine-131 in any
18	form, as opposed to gaseous form, a release form?
19	MR. NESBIT: Well, the dose calculations
20	we did address the form of the isotope, but this
21	calculation is purely how much is produced in the fuel
22	pellet of any form.
23	DR. SIEBER: In any form, right. Okay.
24	Because the release fraction is higher than nine
25	percent.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	MR. NESBIT: Right, right. This is
2	just
3	DR. SIEBER: May be double.
4	MR. NESBIT: What this means is that for
5	a MOX assembly at a given burn-up, you would have nine
6	percent more Iodine-131 produced than a uranium
7	assembly in the same burn-up, and actually it's less
8	than that for most cases. Nine percent is a bounding
9	number. It's a burn-up dependent quantity.
10	For accidents that involve a lot of fuel
11	assemblies failing, postulated accidents like LOCA,
12	like rod ejection, like locked rotor, the effects of
13	the MOX assemblies is essentially swamped by the
14	predominant failures in the LEU assemblies.
15	We looked at that and assessed it and
16	showed that in the application.
17	For actions that involved one or a few
18	assemblies, there's no dilution effect of LEU. So we
19	looked at those explicitly, and that's the fuel
20	handling accident and the weir gate drop for Catawba.
21	We performed calculations using the
22	alternate source term methodology, which is the
23	licensing base for Catawba for those particular
24	accidents, and we also did a sensitivity study by
25	increasing the Reg. Guide 1183 gap fractions by 50

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

percent to account for the possibility the MOX assemblies would have higher fission gas released. As you might expect, the result of this 50 percent and that nine percent I talked about earlier is to increase the amount of iodine that would reach a receptor off site or in the control room, and

although the doses did go up, they're still well within the regulatory limits, which is shown on the next slide.

To summarize, there's a potential for impact on calculated doses, and we talked about why. We did explicit analyses of the ones that had the greatest potential for an impact, and we did a conservative treatment of the MOX LEU differences, and we showed that the results are still well within regulatory limits.

17 The last part of the presentation is about the environmental evaluation. We submitted an 18 environmental report along with our license amendment 19 20 request to assess the potential impact of using four 21 lead assemblies on the environment. In normal 22 operations we found there's no impact on effluents and 23 there's a slight, very slight increase in fuel 24 handling occupational dose because the fresh MOX fuel 25 is slightly higher in dose than unirradiated uranium

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	46
1	fuel, although the fact that it's weapons grade means
2	that it's much, much lower in dose than it would be if
3	it was reactor grade and had quantities, substantial
4	quantities of americium. So there's another example
5	of how weapons grade works to our benefit.
6	The accident analyses we've already talked
7	about. We looked at severe accidents as well because
8	that's one of the issues of discussion I guess I would
9	say related to MOX fuel.
10	In 1999, DOE did an environmental impact
11	statement on the use of batch quantities up to 40
12	percent cores of MOX fuel, and they did an evaluation
13	of that impact on several severe accident sequences
14	for McGuire, Catawba and North Anna.
15	We took those results, which were based on
16	the difference in the radionucliide inventories and
17	assuming that everything else about the severe
18	accident stayed the same, and scaled those results by
19	the amount of MOX fuel we were loading, four
20	assemblies versus 76, and the results of that scaled
21	analysis shows that the consequences for the DOE
22	analyses would change. Some of them would go down a
23	little bit. Some would go up a little bit. The
24	maximum change would be less than one percent.
25	Ed Lyman did an analysis which was

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 published in 2000 in which he did a similar analysis 2 for the use of batch quantities of MOX fuel. He used 3 different assumptions with respect to release fractions, et cetera from a NUREG versus the IPE that 4 5 the DOE analyses were based on. He goes somewhat higher impacts, but again, scaled the same way back to 6 7 four lead assemblies. The overall impact is about 1.6 percent maximum higher impact from before MOX fuel 8 9 lead assemblies, and that's assuming, as he did in his sensitivity study, that there's a much higher overall 10 11 actinide release from the core. In summary, we think that the severe 12

accident behavior is going to be driven by the LEU 13 14 field, which is a predominant fuel in the core. We 15 note that there's a lot of uncertainties when you're calculating severe accident behavior in light water 16 17 reactors, to begin with, and to think you're going to it within one percent is kind of fooling 18 qet 19 yourselves a little bit to start with.

20 CHAIRMAN BONACA: So what you're saying 21 here is that when you calculate your global core 22 physics parameter, you expect them to be mostly driven 23 by the LEU fuel?

24 MR. NESBIT: Absolutely they are. We did 25 that calculation, and they are.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	CHAIRMAN BONACA: And so you inspect your
2	Doppler coefficient, moderator temperature coefficient
3	to be reasonably close to the LEU.
4	MR. NESBIT: That's correct, and in an
5	earlier slide, I actually showed that on a percentage
6	basis, and they were all within three percent.
7	CHAIRMAN BONACA: Well, that was only for
8	the lead.
9	MR. NESBIT: That was for lead assemblies.
10	CHAIRMAN BONACA: For the assemblies. I'm
11	asking about when you're going to go to a full batch
12	loading. What's the experience from the European
13	reactor?
14	I mean, we know already that they are
15	loading MOX fuel or some type of MOX fuel.
16	MR. NESBIT: Right.
17	CHAIRMAN BONACA: Are the characteristics
18	of the core pretty much driven still by the LEU fuel
19	or by the low batch?
20	MR. NESBIT: The characteristics change
21	somewhat in certain parameters, particularly the
22	effective delayed neutron fraction.
23	CHAIRMAN BONACA: That's right.
24	MR. NESBIT: The moderated temperature
25	coefficients get a little more negative.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	CHAIRMAN BONACA: Yeah.
2	MR. NESBIT: The biggest impact is on the
3	delayed neutron fraction. Again, I didn't bring any
4	info on batch. We've done the analysis for batch, and
5	that was actually included in one of our REI
6	responses.
7	DR. POWERS: To be fair to you, you didn't
8	bring any because we explicitly instructed you not to.
9	MR. NESBIT: Well, that's true, and
10	occasionally I do listen to instructions, but the
11	impacts, Dr. Bonaca are not extreme, but in terms of
12	delayed neutron fraction, it's kind of interesting.
13	What you see is that the biggest at the beginning of
14	cycle, and at end of cycle there's a relatively small
15	impact because that's when all of the uranium fuel has
16	built up a lot of plutonium.
17	And, in fact, it actually makes the core
18	much more uniform in terms of physics characteristics
19	over the whole cycle to load MOX in.
20	To sum up on the severe accidents, we've
21	looked at some other things that people have done with
22	their reactors that have the potential to change
23	severe accident consequences like changing cycle
24	length, power up rates, et cetera, and as far as we
25	can tell, nobody has ever addressed in an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

50 1 environmental report the change on severe accident 2 consequences. 3 But if you take a power up rate of 17 4 percent or so, which there has been one, that's a 17 5 percent change in severe accident consequences. We're in the noise compared to things like that. 6 7 DR. RANSOM: Is the implication of this 8 that if you have an entire MOX core and you only get 9 1.6 percent increase in actinides from a two percent 10 MOX core, that an entire loading would be much 11 greater? 12 The actinide MR. NESBIT: Oh, yes. substantially with 13 concentrations go up MOX, 14 absolutely. 15 Is there a reason for that? DR. RANSOM: MR. NESBIT: Well, you start higher on the 16 isotopic ladder, starting at 239 instead of 238, and 17 18 so you --19 DR. RANSOM: It's just one. 20 MR. NESBIT: It's a big one. It's qot 21 1,000 born cross-sections. 22 So the particles that are DR. RANSOM: 23 produced then, the actinides that are produced as a result of that fission are --24 25 DR. I'm going POWERS: to have to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	interrupt because we're focusing on the LTAs here, and
2	to go into the full accident analysis gets us into a
3	range of great controversy right now.
4	MR. NESBIT: But it does make a
5	substantial difference on a per assembly basis if you
6	start with a substantial amount of plutonium in the
7	fuel assembly. You will get more actinides.
8	Let me rephrase that and then I will move
9	on. You will get substantially higher percentages of
10	the higher actinides, like americium and curium and
11	stuff. There are still very small amounts in an
12	overall basis, but relative to an LEU assembly, you'll
13	see a big percentage increase.
14	I went the wrong way, didn't I? That's
15	not where we need to go. I"m going to wrap up.
16	Big picture. I'm going to say this again
17	anyway. I just want to remind people
18	DR. POWERS: You're just going to get Dr.
19	Apostolakis histrionic if you say that.
20	DR. APOSTOLAKIS: What was that?
21	MR. NESBIT: You woke him up.
22	DR. POWERS: He will tell you that this
23	has been labeled by at least one commissioner as a
24	canard.
25	MR. NESBIT: This is a canard. Let me

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	talk very briefly about my canard.
2	At Catawba at the end of cycle, we have
3	about 850 kilograms of plutonium in our reactor core,
4	and it's producing about half of the power. Now,
5	we're talking about loading four lead assemblies,
6	which will have about 80 kilograms of plutonium.
7	The point I'm trying to make here is this
8	is not some unprecedented perturbation and novel use
9	of plutonium we're using it now.
10	There has been a number of lead assembly
11	programs, most recently one at Ginna, and it's not all
12	that recent, but in the early 1980s, in which they
13	loaded four MOX fuel lead assemblies in a 121-fuel
14	assembly course. They had a higher core fraction of
15	MOX there with their program, and they had no reported
16	problems from that.
17	DR. SIEBER: That's B.C., before Carter?
18	MR. NESBIT: It's actually A.C., but not
19	too long after that.
20	European reactors have demonstrated safety
21	using mixed oxide fuel in higher quantities and for
22	decades. Again, what we're proposing to do and what
23	we're asking regulatory approval for is to use four
24	MOX assemblies out of 193 in our core.
25	DR. LEITCH: Just a question here. What

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	we're requesting is four lead test assemblies in
2	either Catawba unit, not both, right?
3	DR. POWERS: The license application is
4	for either Catawba unit. Our plans are to insert them
5	in Catawba 1 in the spring of 2005.
6	DR. LEITCH: Now, I guess my question
7	really is: will that be completely transparent to the
8	operator or will there be different operating
9	procedures, emergency procedures, abnormal procedures
10	for the unit with the lead test assemblies versus the
11	unit without lead test assemblies?
12	MR. NESBIT: Well, we routinely update our
13	simulators to reflect the as built core configuration
14	characteristics. So it will be consistent there, but
15	from a realistic
16	DR. LEITCH: That will be consistent with
17	one of the units, but the other unit
18	MR. NESBIT: It's Catawba 1.
19	DR. LEITCH: Yeah, but there will still be
20	training going on for the other units which will be
21	different, if there was a difference.
22	MR. NESBIT: But in terms of what the
23	operator sees at the console, there is no difference.
24	Once you've got the assemblies loaded in the reactor,
25	the only difference you can see is when you do a flex

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	map, and you look at the in-core entrance. We do that
2	once a month, and the operators don't even do that.
3	The reactor engineers do it.
4	So from an operations perspective, it's
5	transparent. There are a number of plant preparations
6	we have to put into place and are putting into place
7	with respect to fuel receipt, handling, radiation
8	protection, et cetera. That work is ongoing.
9	But once the fuel is in the core, it's
10	transparent.
11	DR. ROSEN: Now, this is a request for
12	loading four MOX assemblies in either Catawba 1 or 2,
13	but not both?
14	MR. NESBIT: That's correct, either/or,
15	either but not both.
16	As you're certainly aware, there's some
17	intervenor issues that have been raised. In the
18	interest of time, I haven't tried to address those
19	issues on a point-by-point basis in this presentation.
20	I will note the contentions that have been admitted
21	outside of the security realm address the impact of
22	MOX and LEU differences on LOCA and severe accidents.
23	There's one related to the failure on our
24	part to fully evaluate the use of MOX fuel at Oconee
25	as an alternative, and then, of course, there's some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	contentions related to security. We've addressed
2	these contentions in our filings with the Board and in
3	our license amendment request. There's hearings
4	scheduled in June for the non-security contentions,
5	and in September for the security contentions.
6	I think the fundamental issue at play is
7	how much alleged uncertainty is acceptable to go
8	forward with the lead assembly program. I will
9	absolutely say with no doubt in my mind that people
10	can ask questions faster than I can answer questions,
11	and what we have attempted to do is to show that for
12	this lead assembly program, the four fuel assemblies
13	out of 193, we've bounded the impacts to the safety
14	and health of the public, and they're acceptable.
15	I guess I'd also add my little commercial
16	here. I think we've done a lot of progress in the
17	last 20 years or so in the nuclear industry in terms
18	of fuel performance and fuel behavior, and a very
19	important part of that is the ability to conduct lead
20	assembly programs, lead test assembly programs at the
21	plants and verify that design changes are appropriate
22	and safe and beneficial and things like that.
23	And I'd hate to see a situation arise
24	where we're constrained on a lead assembly program by

a standard of perfect certainty that we know

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	56
1	everything that's going to happen because by
2	definition on a lead assembly program you're doing the
3	program to gather information whether of a
4	confirmatory nature or otherwise.
5	DR. APOSTOLAKIS: So the challenge is that
6	your calculations are not bounding, right? Is that
7	correct?
8	MR. NESBIT: I think they are.
9	DR. APOSTOLAKIS: No, I know that you
10	think they are, but they are challenging you on that.
11	MR. NESBIT: And they're not even saying
12	that they're wrong. They're saying that we haven't
13	proven sufficiently that they're right.
14	DR. APOSTOLAKIS: Okay.
15	MR. NESBIT: And I think that's the wrong
16	standard to apply to a lead assembly program.
17	The conclusion is what I've been saying
18	for the last 45 minutes or so. We've addressed the
19	impact of MOX fuel on normal ops, design basis
20	accidents, and we've even looked at severe accidents
21	and shown that we've met the regulatory limits, and
22	there's no significant hazard to the health and safety
23	of the public.
24	That concludes the presentation, and I've
25	had a lot of questions already. If there's any more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	at this time, I'd be glad
2	DR. ROSEN: Just one quick one on
3	characterizing the dose to the handles of new fuel.
4	You said it was going to be higher or different. Can
5	you do better than that?
6	MR. NESBIT: Yeah, I can. It's about 25
7	millirem per hour on contact. About half of that is
8	neutron and about half is gamma, whereas for a typical
9	LEU assembly you're less than five MR per hour on
10	contact, and we did a very bounding evaluation of what
11	that would mean for the entire receipt and inspection
12	procedure, and we came out with a total 42 person-
13	millirem for the four assemblies. We think that's
14	grossly conservative as well, but that's the kind
15	of
16	DR. ROSEN: With the same inspection
17	standards and so on.
18	MR. NESBIT: Right, right. So that's the
19	kind of impacts we'd be looking at there.
20	DR. ROSEN: thank you.
21	DR. POWERS: If there are no other
22	questions, thank you, Mr. Nesbit.
23	I'll turn to the staff and Mr. Martin.
24	MR. MARTIN: Good morning. I'm Bob
25	Martin. I'm the NRR project manager for the review of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	58
1	the use of mixed oxide fuel at Catawba.
2	We have with us today staff in the
3	principal areas of interest from Reactor Systems
4	Branch and from our folks doing the dose consequences
5	review.
6	The review also covered several other
7	areas, such as routine effluent releases, reactor
8	vessel materials, and quality assurance as discussed
9	in our safety evaluation.
10	The licensee's application was submitted
11	about 14 months ago, February 27, 2003. It has been
12	followed by numerous supplements from the licensee,
13	which are detailed in the safety evaluation. We
14	issued the safety evaluation on April 5th of this
15	year. In that safety evaluation the NRC staff found
16	the use of the MOX lead test assemblies to be
17	acceptable on the basis of the evaluations that are
18	included in to.
19	We made clear that the issuance of that
20	safety evaluation did not constitute the formal
21	licensing approval. Other things will take place,
22	including the issuance of the results of our
23	environmental evaluation and so forth.
24	A complicating issue which was mentioned
25	at the beginning of the meeting is that shortly after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

59 the issuance of that safety evaluation we learned that 1 the licensee's plans for that core, which would 2 3 contain the MOX fuel assemblies, would also include 4 eight lead test assemblies of what is called a 5 Westinghouse next generation fuel design. Sine that time a number of actions have 6 7 taken place. The licensee addressed the issue in a letter dated April 16. We have met with the licensee 8 in a very brief meeting on April 23rd. We've taken a 9 tab at indicating our general areas of interest in 10 11 this subject in a letter that we just issued last 12 Friday. We plan to communicate with the licensee 13 further until we understand this issue, and we'll 14 15 document that supplement the in а to safety evaluation. 16 17 A quick question. DR. SIEBER: There is a MOX fuel design report which was referenced in the 18 19 previous speaker's slides as VAW-10238. Is that part 20 of the application or is that a stand-alone? 21 I notice it has its own safety evaluation. 22 MR. MARTIN: It's a topical report similar 23 to quite a number of other topical reports that 24 support the application. So in order to review the 25 DR. SIEBER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	60
1	application, you have to review that, too?
2	MR. MARTIN: We reviewed that topical
3	report. That's a report on the Framatome MOX fuel
4	assembly design, and we reviewed that and produced a
5	safety evaluation on it.
6	DR. SIEBER: Right.
7	MR. MARTIN: There are some details that
8	need to be cleaned up as a result of the licensee's
9	comments on the safety evaluation which we produced,
10	and those will be taken care of in the near future.
11	DR. SIEBER: Okay.
12	DR. LEITCH: Are these other lead test
13	assemblies are scheduled for installation into Catawba
14	No. 1, not both units.
15	MR. MARTIN: The other lead test assembly?
16	The NGS, as we call them?
17	DR. LEITCH: Yeah.
18	MR. MARTIN: My understanding is they were
19	loaded into Catawba 1, cycle 15.
20	DR. LEITCH: Oh, they were already in
21	there.
22	MR. MARTIN: I believe they started up
23	last fall or early this year with them.
24	DR. LEITCH: Okay.
25	MR. MARTIN: In Cycle 15, which does not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	61
1	include the MOX assemblies. Cycle 16 is the cycle
2	that Duke anticipates putting the MOX fuel assemblies
3	in.
4	DR. LEITCH: So if perchance the schedule
5	were to slip and MOX assemblies were going to go in
6	Unit 2, this would not be an issue, right?
7	MR. MARTIN: If the schedule slipped and
8	the core that Duke proposes to put the MOX assemblies
9	in is basically a Westinghouse robust fuel assembly
10	design, plus the four MOX lead test assemblies, then,
11	yes, that's the core design that we reviewed.
12	DR. LEITCH: Okay. Thanks.
13	MR. MARTIN: Okay. I think there is a
14	significance to the NGS with respect to Catawba Unit
15	1 in that it represents something that the staff has
16	not evaluated and was not reflected in our safety
17	evaluation. Whether when we get into that review
18	we're in the midst of it now. As we continue it,
19	whether we have concerns about whether we should
20	approve it or not, I simply can't say today. We have
21	not progressed that far into the review.
22	So that completes my introductory
23	comments. If there are no further comments, I would
24	turn it over to Undine Shoop of our Reactor Systems
25	Branch staff, and she'll discuss Reactor Systems

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Branch's review.

1

MS. SHOOP: Good morning, gentlemen. 2 I'm 3 here today to talk about the SRXB review that we 4 performed as part of this licensing application. As we've alluded to previously, this will not touch in 5 any way upon the NGF fuel assemblies, lead test 6 7 assemblies, that are currently in the core. We are only going to discuss the review that we performed 8 because that's all we're able to talk to today. 9

And I'm going to skip around. I'm not actually sure. I've provided a lot of information in the handout. I'm not sure there's actually time to go through that many slides. So I may omit them, some of the slides, but I did want to provide that information to you. That way you have it as you are deliberating this action.

The purpose for us to come here today is to talk about the thermal mechanical design of the fuel assembly, the data collection program that's proposed by the licensee, the nuclear design, the non-LOCA transient analysis, and then I'm actually going to ask Ralph Landry to come up and talk about the actual LOCA analysis that was performed.

And one of th things we always have to discuss is what is the purpose of an LTA. To keep it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	into perspective, what are we actually doing here?
2	Recognize that the purpose of an LTA is,
3	first and foremost, to collect data. That is the
4	number one reason that we use LTAs, because in order
5	for us to license something for batch loading, you
6	have to have data that shows that you can use it, and
7	what you say about it is actually behaving.
8	But the only way to collect data is to
9	allow a limited number of test assemblies, and that's
10	what this application is for. The purpose of it is to
11	collect data to support the behavior of MOX fuel.
12	And now I'm going to go into the thermal
13	mechanical design. As we've talked about, the fuel
14	assembly design, the lead test assemblies, was
15	licensed using SRP 4.2. SRP 4.2 was originally
16	developed for low enriched uranium fuel, but we do
17	believe that those parameters are equally important
18	for MOX fuel.
19	The design evaluation was provided in BAW-
20	1023, which is the MOX fuel design report, which Jack
21	has already alluded to. In that report, that provided
22	the analysis, the thermal mechanical design analysis
23	that we require for any new fuel product, and it
24	provided those parameters that were specific to MOX
25	fuel.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	Because the parameters were specific to
2	MOX fuel, they labeled that fuel assembly the Mark
3	BW/MOX 1 fuel assembly design. It is the structural
4	equivalent of the Advanced Mark-BW design, but we do
5	differentiate them because they do have some slightly
6	different characteristics that they were approved for,
7	and we wanted to note those differences.

And I'm sure you guys have seen the SRP enough times that I don't actually need to go into what's in the SRP.

11 Just to give you a really slight touch on what is the difference between the Advanced Mark-BW 12 fuel design, which is proposed for low enriched 13 14 uranium fuel and the Mark-BW MOX 1 fuel design, the 15 Mark-BW MOX 1 has a longer fuel rod which is to accommodate the fission gas. It has the European dish 16 17 and chamfer design. What that is because is because for these LTA assemblies, they're going to be produced 18 in Europe and the machines are already designed to 19 produce a certain dish and chamfer, and that's a basis 20 21 of the machine itself.

22 And actually using that machine, having 23 the dish and chamfer of the European design will 24 actually make the pellets more consistent with the European experience. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

8

9

10

	65
1	They're also going to use a 95 percent
2	theoretical density. The Advanced Mark-BW is going to
3	use a 96 percent theoretical density. However the 95
4	percent is currently what everyone is using for MOX.
5	So there, again, the lower theoretical density, which
б	is consistent with current uranium theoretical density
7	is to be consistent with the uranium database.
8	And of course, the most specific is that
9	it uses MOX fuel instead of uranium.
10	DR. SIEBER: Now, do you expect these
11	characteristics of dish and chamfer and density to
12	remain the European standard when the process becomes
13	a full batch process in the United States or will we
14	adopt a dish and chamber that we use?
15	MS. SHOOP: That would actually be part of
16	an application for batch loading because we have I
17	should actually back up. One, oh, two, three eight
18	requested approval for both batch and LTA. We're
19	approving it for LTA only because we believe that the
20	information contained in there was more specific to
21	the LTA, and we have enough information to approve
22	LTA. The jury is kind of out on some of the things
23	for batch loading, and so that's the purpose of the
24	LTA, is to collect the data to be able to demonstrate
25	that it's good for batch.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	At this point I can't really project out
2	what they'll do for batch because I do believe that
3	that is a decision that Framatome will be making as
4	they
5	DR. SIEBER: But you are suggesting that
6	I would just wait and see.
7	MS. SHOOP: Yeah.
8	DR. SIEBER: Okay. Thank you.
9	CHAIRMAN BONACA: But since you're
10	collecting mechanical performance, if you change dish
11	and chamfer design, wouldn't that upset the results of
12	the lead test assemblies?
13	MS. SHOOP: Actually the dish and chamfer
14	primarily is just to take down the hourglassing of the
15	pellet, and so actually I don't believe that even
16	because it's a very, very slight change, the European
17	to the U.S., anyway. And I do believe and
18	Framatome can correct me if I'm wrong but I do
19	believe that the dish and chamfer for the MOX is the
20	same one that they use over there for their uranium.
21	CHAIRMAN BONACA: Yeah, right.
22	MS. SHOOP: So it's everything that they
23	use.
24	MR. NESBIT: If I can interject, we plan
25	to keep it the same for batch.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	DR. SIEBER: But the only purpose for that
2	is to keep it from chipping around the edge of the
3	pellet.
4	MS. SHOOP: Well, to keep it from chipping
5	and then that's for the chamfer, but the dish is
6	actually to reduce the hourglassing.
7	DR. SIEBER: Make it look like a cylinder
8	when it's
9	MS. SHOOP: Yeah, which of course, you
10	know, reduces the stress on the cladding during
11	irradiation.
12	DR. SIEBER: Right.
13	MS. SHOOP: Okay. Mixed oxide fuel. You
14	know, it's depleted uranium matrix with weapons grade
15	plutonium fissile material. The significance, of
16	course, is that you have fewer absorber isotopes, and
17	you have increased fissile isotopes.
18	As Duke has already presented, what
19	they're doing between the MOX and the uranium fuel,
20	they're doing a reactivity equivalence because they
21	know that in order to be able to have this much
22	reactivity in this part of the core, you need this
23	much reactivity.
24	So then when they went back and calculated
25	what type of plutonium enrichment they would need in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	order to get that equivalent reactivity.
2	Okay. One of the topics that has come up
3	a lot when you talk about weapons grade MOX fuel is
4	the use of gallium. Gallium primary is part of the
5	plutonium in order to stabilize the weapons grade
6	plutonium.
7	People have hypothesized that it has the
8	ability to migrate to the cladding and to embrittle
9	the cladding material. Because of this, DOE has
10	sponsored two tests which are being performed out in
11	the advanced test reactor in INEL, and they tested two
12	fuel compositions, one of which was treated to remove
13	some of the gallium, and that was removed to a 1.3 ppm
14	level, and then they used an untreated pellet which
15	was 2.97 ppm.
16	The irradiations have gone up to 40,000
17	gigawatt days per metric ton, and so far they have
18	shown that the gallium does not migrate at those
19	levels.
20	Duke has proposed using a 300 ppb limit,
21	which is much lower, and so we do not expect that that
22	will migrate to the cladding in any respect either.
23	We will get results from the ATR at 50,000
24	gigawatt days before the LTAs go in. Of course, if
25	there is any difference seen between the 40,000 to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	50,000, the staff will have to reevaluate that.
2	Okay. Now, I would like to quickly
3	discuss the data collection program. The purpose of
4	the data collection program is basically because these
5	are tests. You want to check both the neutronic and
6	the fuel behavior of the LTAs, and this information
7	will be information that they need to support a batch
8	loading application.
9	And basically this will be able to
10	demonstrate that the Casmos simulate suite of codes
11	(phonetic), as well as the Copernic code, is actually
12	predicting as we expect it to.
13	DR. ROSEN: I thought I heard him say that
14	we would not see the post irradiation examination
15	results before they came in with a batch.
16	MS. SHOOP: I've read that, too, which is
17	kind of interesting.
18	PARTICIPANT: Can you clarify that?
19	MR. NESBIT: The neutronic information is
20	gathered in real time. So when we take a flux map
21	we've got it. We've got the information.
22	When I say post radiation examination, I'm
23	referring to pool-side examinations. When the fuel
24	assembly has been discharged, you measure things like
25	corrosion levels, growth, et cetera, and then hot cell

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	exams, when you actually cut open a fuel rod and look
2	inside of it. That's the kind of information that's
3	not going to be available immediately.
4	DR. POWERS: You can see, Steve, once
5	again it's the metallurgist that slow us down.
6	(Laughter.)
7	MS. SHOOP: Well, when we start talking
8	about the neutronic, as Steve has already told us, the
9	LTAs are going to be instrumented locations. Actually
10	all of them are, but Duke had previously committed
11	that at least two of them would be in instrumented
12	locations so that they could run the transversing in
13	cores and be able to get actual cycle specific
14	measurements on a monthly basis. And that would be
15	used to verify the Casmos simulate.
16	And that would be done both for the first
17	and second irradiation cycles.
18	Oh, and they're also going to be doing a
19	start-up physics test plan, and that plan conforms
20	with ANS 19.6, which is the PWR start-up physics test
21	program, and they have committed to continue using
22	that program throughout the use of the LTAs.
23	DR. ROSEN: So let me come back to this.
24	Now, how long do we end up waiting before we hear what
25	the pool side PIE is on the lead test assemblies after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	the batch has been licensed, which is, I think, what
2	you're saying?
3	Is it a year, two years? I mean, has the
4	batch been operating for several years before we get
5	the PIEs from the LTA assemblies?
6	DR. SIEBER: They won't be here.
7	MS. SHOOP: The batch loading is 2000-and
8	something. Steve, when do you have that planned for?
9	MR. NESBIT: I think a best guess would be
10	2010 or thereabouts. You know, we're looking at
11	putting a batch application in next year, but that's
12	not, you know, an absolute guarantee to give plenty of
13	time.
14	So, I mean, by the time the NRC would get
15	around to acting on that application, there would be
16	a couple of cycles of complete assembly data I would
17	think.
18	DR. ROSEN: Let me see if I can restate
19	what you just said. We would have the results from
20	the PIE from the first lead test assemblies in 2010.
21	MS. SHOOP: No. Actually, Steve, there's
22	actually let me go over my PIEs first so that you
23	can understand what the PIEs are and how they all
24	interrelate because there's actually three different
25	types of PIE.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	MR. NESBIT: The first will be available
2	in 2006.
3	MS. SHOOP: Yeah, the first pool side PIE
4	are performed between cycles, between the first and
5	second irradiation, between the second and third
6	irradiation. You actually take it out, and during
7	that time you would do visual inspections of the fuel
8	assembly and fuel rods. You would check the fuel
9	assembly group, fuel rod group, and fuel assembly bow
10	to make sure that all of those parameters are within
11	specs and it's operating as
12	DR. ROSEN: And that's before the first
13	batch.
14	MS. SHOOP: Absolutely, absolutely.
15	DR. ROSEN: Maybe I'll let you go ahead
16	and maybe I'll get a sense of this better.
17	MS. SHOOP: Okay. Because then actually
18	after the assembly discharge, which they will be
19	discharging at least one assembly after the second
20	cycle of irradiation. You would then do measurements
21	on grid width, fuel rod oxide thickness, grid oxide
22	thickness, the RCCA guide force, the guide thimble
23	plug gauge, and the water channels which checks for
24	fuel rod bowing.
25	And so you would actually do that between

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the second and third, and then actually after you take 2 the assemblies out, which Steve had already discussed, 3 we're going to be getting some after the second cycle, 4 some after the third cycle. You would perform hot 5 cell PIEs, and that's where we're going to send it down to Oak Ridge. They do the rod puncture test to 6 7 check the fission gas. They do metallography, serametography (phonetic), which is where they check 8 for oxide and hydrides, and they also check for the 9 structure of the plutonium amoglomerates (phonetic) 10 11 after it had been irradiated. They check the cladding 12 mechanical test for ductility. They do burn-up will also 13 analysis, and they do the burn-up 14 distribution to see how the amoglomerates change and 15 how that compares to the prediction. So all of those tasks will be performed, 16 and we will have that information for --17 I don't doubt that for a 18 DR. ROSEN: 19 I just am trying to understand the sequence minute. 20 and time between when you get all of that information 21 and when the first batch goes in. 22 DR. POWERS: Steve, the difficulty we have is one of time, and this doesn't relate to the LTA 23 24 approval. I mean, it's an issue you can pursue when 25 we get to the batch.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	74
1	DR. ROSEN: Okay.
2	MS. SHOOP: Now, I would like to go on to
3	the nuclear design and just touch on that.
4	As Steve has already said, you have four
5	LTAs and 189 other fuel assemblies. Therefore you
6	have an insignificant impact on core-wide neutronic
7	behavior.
8	How are they actually doing this? Duke's
9	core design loading strategy is to use a checkerboard
10	pattern, put the LTAs in symmetric locations where
11	they can run the transversing in cores, put them in
12	unrodded locations, and also so that the LTAs are not
13	in a limiting location of the core, but they are in
14	prototypical. That way the data is consistent with
15	what we expect the behavior of MOX fuel in a Catawba
16	or in a standard PWR to be.
17	And now this is going to be a bit more
18	challenging because I have two different graphs here.
19	These are my core key physics parameters, and what
20	you'll really look for here is that Duke did core
21	sensitivity studies. They actually did a core of all
22	LEU and then they actually put the four MOX assemblies
23	in to actually see what the impact and actually ran it
24	through simulate Casmos, to investigate how the core
25	parameters that were really important would change.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	The ones that you really want to note are
2	the critical boron concentration, the control rod
3	worse, the moderator coefficient, and the fuel
4	temperature coefficient.
5	And as you'll notice here, you don't see
6	a substantial change, but there really is an
7	insignificant impact on those core-wide parameters by
8	inserting four MOX assemblies into the reactor.
9	There are some assembly physics parameters
10	that are slightly different, one of which we've heard
11	previously is the reduced delayed neutrons. However,
12	that's why Duke is not putting these in rotted
13	locations. Therefore, for the LTAs this will also be
14	insignificant.
15	I'd now like to turn attention to the non-
16	LOCA transient for just a moment. First of all, I
17	would like to point out that this was a deterministic
18	licensing. Therefore, they were only required to do
19	Chapter 15 analysis. They were not required to go
20	into severe accidents in their accident analysis, non-
21	LOCA transient portion.
22	They used a normal reload process, which
23	has already been licensed and approved by the NRC, and
24	during that process, they would confirm that all the
25	physics parameters fall within the reference values

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

previously calculated.

1

2

3

4

5

6

7

8

And if you look at Table 30-1 of the November 3 REI response, you can actually see the table where they went over all of the transients, what the parameters were that they were already analyzing for, and what the impact of MOX would be, and demonstrated that the impacts were already within their current analysis.

Steve has already talked about some of the 9 10 ones that are most important. So I thought I would 11 actually just put up your favorite one, which is the 12 control rod ejection, and for the control rod ejection, they're not putting it in a rodded location. 13 14 Therefore, the impact on this particular code with 15 four MOX LTAs will be that the peak LEU assembly enthalpy is 54 calories per gram, and the peak MOX 16 17 assembly because the MOX isn't in a rodded location, but the one that would be closest to it, the maximum 18 19 that the MOX will see is 30 calories per gram, which 20 is below any of the test values for any of the studies 21 that have been performed so far.

And that's all I have on the non-LOCA transients. Do you guys have any questions before I turn it over to my colleague, Ralph Landry, who will go over the local analysis.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

MR. LANDRY: Okay. My name is Ralph Landry from the staff in the Reactor Systems Branch, and I'd like to talk a little bit this morning about the review we performed of the MOX LTA LOCA. Okay. The slides that I've given out are basically the same slides that I used with the subcommittee two weeks ago.

1

2

3

4

5

6

7

However, I have added a couple of slides 8 to help clarify a couple of points, but I don't want 9 to spend ten minutes on ten slides. 10 I know that 11 that's not quite possible. So I'm going to try to 12 move through these slides rather rapidly this morning. In the staff review, we looked at two LOCA 13 14 analyses. This morning Steve Nesbit presented results 15 that Framatome performed of an Appendix K calculation Now, when staff did the review, we 16 for the LTAs.

17 looked at two analyses, the analysis of record and the18 MOX LTA LOCA analysis.

The analysis of record was performed by Westinghouse with the W Cobra track realistic large break LOCA code. That was done when Catawba was due in a transition from Framatome fuel and Mark-BW fuel assemblies to the Westinghouse robust fuel assembly, the RFA fuel.

The analysis included sensitivity studies

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	which looked at the effect of Mark-BW fuel on the RFA
2	fuel. That sensitivity study came back and said,
3	okay, with the pressure drop of the Mark-BW assembly,
4	this is going to be the effect on the RFA fuel.
5	The box assembly, the Mark-BW MOX 1 or
6	Advanced Mark-BW whatever exact name is being used,
7	the assembly has a pressure drop that is much closer
8	to the pressure drop of the Westinghouse RFA assembly
9	than it is to the Mark-BW assembly that was resident
10	at the time of the transition to RFA fuel so that the
11	effect of the Mark-BW MOX 1 assembly on the RFA peak
12	cladding temperature would be less than the effect of
13	the at that time resident Mark-BW assembly.
14	Now, the Mox LTA LOCA response, as you
15	heard from Steve this morning was calculated using the
16	Framatome ANP Appendix K code RELAP 5 Mod 2-BNW. This
17	is an approved model. The approved code also includes
18	the property of the M5 cladding.
19	The one question that the staff had during
20	the review, or the more significant question, I
21	believe, was on the decay heat model that was used.
22	I've included a curve which you can't read on the
23	slide. So I added an extra slide with a large blow-up
24	of the decay heat curve.
25	The decay heat curve that was used by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Framatome for the MOX analysis is actually taking the 2 1994 decay heat curve which is predominantly a curve for fission of plutonium, adding in the actinides, 3 4 applying that curve by 1.2. This is taking the 95th 5 percentile decay heat curve, increasing it by 20 percent to 1.2 times the 94 curve, which then ends up 6 7 bounding the 1971 curve multiplied by 1.2. 8 So the curve that was used for decay heat by Framatome not only bounds the 95th percentile 94 9 curve by 1.2, but bounds the Appendix K specified 71 10 curve when it is multiplied by 1.2 also. 11 12 So this is a very conservative decay heat 13 curve. 14 DR. SIEBER: The rule tells you what curve 15 to use. MR. LANDRY: The rule tells you to use 71 16 17 times 1.2. And what you're saying is 18 DR. SIEBER: 19 they didn't, but they bounded it. 20 MR. LANDRY: They used a curve that bounds 21 that, that is even more conservative than the rule 22 specifies. 23 Thanks. DR. SIEBER: 24 MR. LANDRY: This is because these assemblies are MOX plutonium assemblies going into the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	80
1	core. So we agreed with the analysis that was
2	submitted that using a curve that is more appropriate
3	to plutonium and then increasing with a factor of 1.2
4	meets the intent of the rule and is conservative.
5	Now, the results, let me skip up to
6	another slide I added from the subcommittee
7	discussion. To try to clarify the results and put
8	these into perspective, what I've given is the fuel
9	assembly type, what the pellets are that are loaded in
10	that fuel assembly and the computer code that was used
11	for the analysis.
12	The analysis of record performed for the
13	RFA fuel, which is low enriched uranium with a
14	realistic LOCA model is also a peak clad temperature
15	of 2,056 degrees Fahrenheit and a total maximum LOCA
16	oxidation level of ten percent.
17	The model that was used by Framatome for
18	the MOX LTA is using the Mark-BW MOX 1 assembly model
19	with MOX loading, and the Appendix K analysis
20	methodology results in a peak cladding temperature of
21	2,018 degrees for the MOX hot rod and a total maximum
22	LOCA oxidation level of four and a half percent.
23	As Steve said this morning
24	CHAIRMAN BONACA: These are Appendix K
25	calculations.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	MR. LANDRY: These are Appendix K. That's
2	what I'm trying to make clear here.
3	CHAIRMAN BONACA: Yeah.
4	MR. LANDRY: These are Appendix K. This
5	is realistic. This is the 95-95 value of PCT. When
6	the MOX 1 assembly is fueled with low enriched uranium
7	instead of MOX, everything else is the same about the
8	assembly. We then end up with a peak cladding
9	temperature of 1,981 degrees and a maximum local
10	oxidation of four percent.
11	This shows the effect of comparing MOX
12	with LEU at the non-limiting position in the core.
13	Now, we have to keep in mind that the reason these are
14	less using an Appendix K model is this is at the non-
15	limiting location, a more restricted peaking factor
16	than is used in the analysis of record value.
17	CHAIRMAN BONACA: What about the LEU to
18	the right? Is it also? I mean is that the limiting
19	location in the core?
20	MR. LANDRY: No, this is the non-limiting.
21	This is the same location as the MOX.
22	CHAIRMAN BONACA: Okay, all right. What
23	this ends up with, this ends up with a peaking factor
24	of 2.5 total, and I believe these come up with a total
25	peaking factor on the order of 2.4. It ends up about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	four percent lower total peaking factor.
2	So on that basis the staff concludes that
3	the MOX LTAs will comply with the requirements of 10
4	CFR 5046 when inserted into a core of Westinghouse RFA
5	LEU fuel.
б	Now, there have been questions raised
7	about the effect of the MexGen fuel, and as has been
8	said, we are looking into that effect, and we will be
9	visiting Duke next week to look at all of the
10	calculations which they have to assure ourselves that
11	this effect is not going to influence the MOX.
12	But we have already heard Steve explain
13	that the MOX and the NGF fuel assemblies will not be
14	in a position where they will be adjacent. They will
15	not be in a position where they are in a direct line.
16	As he showed you this morning, there may be a MOX
17	assembly. There will be two RFA assemblies and then
18	the NGF assembly offset from that so that none of
19	these assemblies will even be in a direct line with
20	each other.
21	CHAIRMAN BONACA: The question that I have
22	is that you showed us three cases. One is a best
23	estimate and two are Appendix K in the no limiting
24	location. Did they use the same decay heat curve you
25	presented us before for all three cases?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MR. LANDRY: No.
2	CHAIRMAN BONACA: No?
3	MR. LANDRY: But for these two, yes.
4	CHAIRMAN BONACA: Yes.
5	MR. LANDRY: The Westinghouse analysis is
6	using the W Cobra track uses a 95th percentile decay
7	heat curve. So this is a 95th percentile curve raised
8	by 20 percent from the Framatome analysis.
9	So that's why I put this chart together.
10	When we went to the subcommittee this caused a lot of
11	confusion trying to explain these different cases
12	because we're missing apples and oranges, and then
13	applies and pineapples.
14	So what I tried to do is put together the
15	different analyses that have been performed. So it
16	tries to make it inscrutable as much as possible what
17	has been done and why the staff concludes that the MOX
18	LTAs will not affect the analysis of record.
19	DR. SIEBER: You'd better quit while
20	you're ahead.
21	(Laughter.)
22	DR. POWERS: Are there any further
23	questions?
24	(No response.)
25	DR. POWERS: Mr. Martin, are you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	84
1	continuing on to discuss any of the source term
2	analysis?
3	MR. MARTIN: If the committee wishes, yes.
4	DR. POWERS: Please.
5	MR. LaVIE: I apologize. The agenda
6	didn't have me speaking. So I'm going to be winging
7	this from what I remember from what I did at the
8	subcommittee meeting.
9	In reviewing the consequences of putting
10	the four LTAs into the LEU core, the staff considered
11	three main aspects of the use of the MOX fuel. First
12	was the increase in the core inventory and the
13	possible shift in isotopes due to the MOX having
14	fissile material of plutonium rather than U-235.
15	The second aspect was the potential
16	increase in the gap fractions. The open literature,
17	of course, discusses the fact that there is, because
18	of the higher temperatures in the MOX pellet compared
19	to an LEU pellet, there would be a higher diffusion of
20	gases. So the staff wanted to consider that.
21	Associated with that higher diffusion of
22	gases would be the rod pressurization which would have
23	an impact on the fuel handling accident.
24	As you may be aware, we allow licensees to
25	credit for removal of iodine from the gas being

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	released from the drop fuel assembly at the bottom of
2	the pool. The rod pressurization would have an impact
3	on that credit for decontamination.
4	In order to resolve these issues, the
5	staff looking for the source term, looked at some work
6	done by Sandia Labs on MOX fuel and also the
7	licensee's effort.
8	The staff also ran their own scale
9	calculation runs to develop their own source term.
10	The primary reason the staff did this is that the
11	licensee had run his calculations to maximize the
12	amount of Iodine-131, a conservative approach for the
13	scaling analysis.
14	The staff, however, was interested to see
15	whether or not other nuclides might rise to concern.
16	So the staff did the source term calculation for all
17	three cycles, picking the maximum concentration for
18	any isotope regardless of which cycle it fell in.
19	Our work confirmed the work by the
20	licensee. Actually our fraction turned up slightly
21	higher excuse me slightly lower, the ratio.
22	With that in mind, that satisfied the source term
23	issues first.
24	With regard to uncertainty in that, I'd
25	like to point out that the scale code module we used

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	in that was the SAS 2H module. This is a code module
2	that calculates based on the user's inputs the cross-
3	sectional libraries that would be used by the origin
4	model to generate the actual source term.
5	This is particularly advantageous because
6	it allows the licensee to do the same thing. It
7	allows the licensee and the staff to actually model
8	the fuel isotopics, various ratios of plutonium and
9	the actual fuel configuration in doing the
10	calculation.
11	We then had a look at the gap fractions.
12	As the licensee pointed out, they assumed a 50 percent
13	increase over that previously documented in staff
14	guidance.
15	Well, the staff felt that the 50 percent
16	was probably adequately conservative. There really
17	was no the 50 percent number was largely arbitrary,
18	and we wanted to go after and find out and make sure
19	that that was adequate. We requested the research
20	folks to perform some work for us, and they contracted
21	with the PNNL to run a series of FRAPCON code runs to
22	evaluate the fission gas release.
23	The FRAPCON code had been modified with
24	the conductivity correlations for MOX fuel as part of
25	the revision to 3.2 of the code. The licensee

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	provided as their projected power history, which was
2	also inputted into the code along with some
3	proprietary fuel parameters.
4	The result of that effort, PNNL generated
5	gap fractions that indicated that the licensee's 50
6	percent assumption was bounding for what we actually
7	saw in the data. In addition, they also showed that
8	the rod pressurization was below the threshold for our
9	assumption.
10	Our assumption of a decontamination factor
11	of 200 is based on a rod pressurization of less than
12	1,200 psig. They were able to show that.
13	With that done, we then were able to plug
14	that information into the calculations. Since the
15	fuel handling accident involved a single LEU assembly,
16	we looked at that one and did a confirmatory
17	calculation, confirming the licensee's conclusions
18	that that would not be inimical to the public health
19	and safety.
20	The licensee did a scaling approach for
21	the lock rotor accident, the LOCA analysis, and the
22	rod ejection accident. We felt that the scaling
23	analysis was appropriate given the small fraction of
24	LTAs in the core versus the amount of LEU fuel
25	involved.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

For example, in the LOCA we assume all 193 2 assemblies are affected by the core melt. The LTAs 3 only represent 2.1 percent of that. Since we had 4 confirmed their ratio of a nine percent increase in inventory and also the 50 percent gap fraction increase, we were able to confirm their scaling. 6

1

5

7 We did consider the possibility that some of the other nuclides may have had an impact, and we 8 looked at the noble gases because some of the noble 9 gases had increased substantially between the MOX and 10 11 the LEU.

12 when we did this, However, when we conducted a scaling analysis for the impact on the 13 14 whole body dose, we found it was inconsequential and 15 that the licensee's assumption that the iodine dose would be a good surrogate was valid. 16

17 We do not analyze ground contamination or ingestion pathway in design basis analyses. 18 So the 19 nuclides that have the biggest impact on that plume 20 exposure period is the noble gases and the iodines.

21 Based on our review of the licensee's 22 efforts, the staff was able to conclude that putting 23 the MOX LTAs in the core would continue to meet our 24 regulatory requirements for design basis accidents.

> DR. POWERS: Thank you.

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	Now we have some words from Mr. Lyman with
2	the Union of Concerned Scientists.
3	MR. MARTIN: While Dr. Lyman is coming up,
4	there's one other thing that I should have mentioned,
5	and that is with respect to physical security plan,
6	both the licensee and the staff have recognized the
7	need to enhance the physical security plan for the
8	time of proceed of MOX fuel assemblies. That's a part
9	of our review. We understood the committee had not
10	planned to go into that area.
11	We did issue a supplement to our safety
12	evaluation yesterday addressing our finding on that.
13	DR. POWERS: Thank you.
14	DR. LYMAN: Well, once again, I appreciate
15	the opportunity to come to this committee and talk
16	about MOX fuel and my favorite subject.
17	I'm with the Union of Concerned
18	Scientists, and we're assisting the Blue Ridge
19	Environmental Defense League, or BREDL, in its
20	challenge of Duke's LTA license amendment request and
21	the associated security exemption request.
22	We submitted both security related
23	contentions, which have been argued so far in a closed
24	proceeding because of the safeguards information they
25	contain, and also a number of non-security related

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

The outcome is that the board has accepted one security related contention and certified another which is now before the Commission, and it also accepted three safety and environmental contentions by consolidating and rearranging some of BREDL's original contentions, classifying them in a very logical way.

Now, one point I'd just like to make is 8 9 that the process is being driven by Duke's request, which stems from the Department of Energy's request 10 11 that this amendment be granted before the Department 12 of Energy ships plutonium to France for fabrication of the lead test assemblies, and that is simply an 13 14 administrative request. There's no technical reason 15 why that approval has to be granted by August, which is the projected date for shipment, but that's what's 16 driving the time table, and the Atomic Safety and 17 Licensing Board is attempting to accommodate that 18 19 request, and the result is a very highly compressed, 20 adjudicatory proceeding where we're all rushing at 21 breakneck speed.

22 So Duke may be complaining about the pace 23 of certain things. They shouldn't have any problem 24 with the pace of this proceeding.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. APOSTOLAKIS: Just for information,

(202) 234-4433

25

(202) 234-4433

	91
1	you said before the plant shuts down. That's the
2	French plant, right?
3	DR. SIEBER: The Cadarache.
4	DR. LYMAN: I didn't want to get into
5	that, but the Cadarache plant is the older MOX fuel
6	fabrication plant in France, and it's not seismically
7	qualified. It actually was shut down last year, but
8	they are keeping it alive partly due to this one last
9	mission, which is fabricate the MOX LTA
10	DR. APOSTOLAKIS: And if they don't do it
11	there, is there another place where they can do it?
12	DR. LYMAN: Yeah. I mean, the Melox plant
13	is the newer plant that the fuel rods are actually
14	going to be shipped to Melox after they've been
15	fabricated for assembly and the actual assemblies, but
16	there's a time limit.
17	I believe that the licensing approval
18	would be necessary to process weapons grade plutonium
19	in Melox when provided would have been a burden to the
20	current operation of that facility, and so the
21	preference was to do it in Cadarache so that you
22	wouldn't have any other mission, and they have also
23	fabricated breeder fuel in the past.
24	If I'm wrong about that, someone correct
25	me.
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

92 1 DR. SIEBER: Cadarache makes the rods, 2 right? Right. 3 DR. LYMAN: 4 DR. SIEBER: Up to the rod. 5 DR. LYMAN: Right. So what you're shipping is 6 DR. SIEBER: 7 rods. 8 DR. LYMAN: And then it will be shipped to Melox. 9 10 DR. SIEBER: Right. 11 DR. LYMAN: For packaging and sending. 12 Now, my version of the big picture is only a few points, but I think it has come up several 13 14 times, but any issues that are resolved in this 15 proceeding by virtue of the small number of LTAs in the core are going to have to be reconsidered when the 16 17 application is received next year. 18 DR. SIEBER: Right. DR. LYMAN: And although Duke made it seem 19 20 as if even the batch loading isn't going to be much of 21 a problem, obviously there are many serious issues 22 which will require a much more careful evaluation when 23 we come to that, including rod ejection accidents, 24 when it's going to be impossible to avoid rodding 25 certain MOX assemblies.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So in our view, all of these issues should have been worked or at least could have been started to be reviewed years ago when the NRC knew that this process was in the pipeline. It seems like waiting again for the next application before taking on the hard issues is only going to increase the potential for further delays. So we don't see why we shouldn't start talking about those at this point, and this amendment process provides an opportunity to do that.

10 Another issue which I'm personally 11 concerned about is that the U.S. approval process is 12 supposed to be setting an example for the Russian We know that this entire program is 13 counterpart. 14 focused on getting rid of Russian plutonium and the 15 U.S. symmetrical attempt to do it in a bilateral way, but really focuses on Russia. 16

NRC is training Russian regulators in how to license the MOX program, and we are setting an example, and I think that it's in everyone's interest to make sure that the Russian regulator doesn't cut any corners and considers all safety and security issues adequately in their own review.

23 And so for these reasons, I think a24 thorough review should take place now.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

I'm going to briefly touch on the security

(202) 234-4433

25

1

2

3

4

5

6

7

8

9

1 exemption, which I haven't discussed yet, but I 2 thought in my view it's at least as important as the safety issues, and the rationale for Duke seeking an 3 4 exemption from some of the Part 73, 45, and 46 5 security regulations are that they are, quote, impractical and unnecessary to assure the security of 6 7 any MOX fuel assemblies, unquote. That's from their non-safeguards cover letter, that original request for 8 9 the security exemption.

The sections, if you look them up, pertain 10 11 to the physical protection systems for protecting 12 Category I quantities and strategic special nuclear material, which these MOX assemblies are since each 13 14 assembly will contain many times the formal quantity 15 on consignment from the design basis thread to sabotage, and the details are mostly safeguards 16 17 information so that we're not going to talk about them. 18

But Duke has gone on the record and appear in the press that its basic position is that because it's hard to divert plutonium containing bulky fuel rods, that that's really the basis for why it believes the Category I physical protection requirements are unnecessary in these cases.

NRC provided its own guidance in the memo,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	95
1	which I urge you to look at, from Joseph Shay
2	(phonetic) and Clem Tracey (phonetic), January 29th,
3	2004, which provided NRC's plan for how it's going to
4	approve the security exemption, and again, it seems
5	tha the staff's view is already quite close to Duke's,
6	and a MOX fuel assembly somehow much less attractive
7	to terrorists or adversaries because they're large,
8	heavy assemblies, and I'm not going to go into this.
9	It's in my handouts, but we are contesting really the
10	notion that there's something intrinsic about MOX fuel
11	assemblies that makes them less attractive or less
12	vulnerable to certain types of terrorist attack than
13	separated plutonium.
14	And there's also inconsistency with
15	international guidance, and I would urge you to look
16	at my written material.
17	Now, to get into the safety issues, our
18	contention one, which is reframed by the board,
19	focuses on LOCA and other design basis accidents, and
20	the contention is that Duke has failed to adequately
21	account for differences in MOX and LEU fuel behavior
22	with regard to design basis LOCAs and other design
23	basis accidents.
24	BREDL actually is concentrating on the
25	loss of coolant accidents. In our view, the other

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

design basis accidents are not as significant in our view, and so our focus is on design basis LOCAs in this case, and the issues involve fuel related phenomena that may affect compliance with the emergency core cooling system criteria for the MOX LTAs that have not been adequately accounted by Duke's application or the staff's review.

And also M5 cladding related phenomena 8 that may also affect compliance, in particular, from 9 the MOX test centers, and we can also look at the fuel 10 11 cladding interactions in a synergy between them in 12 considering the impact on the loss of coolant accidents. 13

14 The fundamental problem is that the 15 experimental database for the behavior of MOX fuel under LOCA conditions is very spotty. There are great 16 17 uncertainties, and in fact, the French Independent Safety Agency, IRSN, came to NRC a few months ago with 18 19 a proposal for a series of tests at the reactor, 20 including a design basis LOCA test for MOX fuel to 21 reduce some of these uncertainties.

To go into some of the issues that IRSN highlighted, one of the most important appears to be fuel relocation during a design basis LOCA, and this is during the clad ballooning phase, the collapse of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

the pellic column into a rubble bed, which can have an 2 impact on ECCS compliance, such as the peak cladding 3 temperature and the local oxidation responding to that 4 temperature.

Fuel relocation is not considered an 5 Appendix K, and it's now regarded as one of the non-6 7 conservatisms in independence K, but NRC's position is it's balanced by the conservatism for independence K. 8 So it still may not be worth worrying about, but there 9 10 seems to be some internal issues with the staff, 11 whether or not fuel relocation is a significant 12 impact.

According to IRSN, it certainly looks like 13 14 it could have a significant impact. If you consider 15 fuel relocation, it could lead to an increase in the peak cladding temperature by anywhere from 30 degrees 16 17 Celsius to 180 degrees Celsius depending on the filling ratio, and that is how densely packed that 18 19 rubble bed is after the collapse, which increases the 20 local decay heat.

21 That increase in peak cladding temperature 22 can increase the local clad oxidation by up to ten 23 percent.

24 Now, relocation is not considered now for 25 either LEU or MOX, but to the extent that the margins

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

1 to the ECCS criteria are smaller for MOX fuel, taking relocation may be more important because of 2 the reduced conservatism with MOX. There's a small margin 3 4 of MOX to the peak cladding temperature limits. We 5 saw that in a previous slide. If you replaced an LEU assembly with a MOX assembly at the same location, 6 7 you're going to end up with a somewhat higher 8 temperature, a peak cladding temperature. 9 M5 cladding because Also, it's more 10 ductile, it forms bigger balloons. The bigger the 11 balloon, the more opportunity and space there is for 12 relocation, and that's considered to be an important time than on the likelihood of relocation and its 13 14 consequences. 15 DR. Ed, could I ask you POWERS: а question about that ballooning used? 16 Is that a 17 conjecture or do we have data on the ballooning of MOX fuels? 18 19 DR. LYMAN: Well, this is strictly a cladding related issued, and so it's just a matter of 20 21 fact at higher burn-ups M5 is more ductile so that it 22 is more plastic. It gets drained and doesn't rupture 23 or blows up to a larger balloon that will rupture. 24 I'm not sure I have much experimental 25 data, operating with cladding.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	99
1	DR. POWERS: I understand. Thank you.
2	DR. LYMAN: Now, an issue which I raised
3	a few weeks ago and there seems to be some uncertainty
4	is the impact of the MOX fragmentation behavior on the
5	filling ratio. The filling ratio is very important,
6	as we see from this range between 30 and 180 degrees
7	Celsius based on IRSN calculations which have been
8	available to us during our discovery phase of the
9	proceeding.
10	And it's not clear whether, in fact, a
11	different micro structure in LEU will have an impact
12	on the filling ratio and in which direction. In
13	general, my intuition would be that to the extent that
14	the plutonium agglomerates and MOX fuel achieve higher
15	level burn-ups than occur in LEU fuel, so for the same
16	average fuel burn-up you have these regions of high
17	burn-up. I mean, if they start looking like high
18	burn-up LEU fuel sooner than LEU fuel does and develop
19	a core structured with fission gas, that in an
20	energetic event like a LOCA where there is a rapid
21	heat-up, if that causes fragmentation of the clusters,
22	it might lead to more fine fragments.
23	And I know, again, there's some issue
24	about what will happen. I went back and I looked at
25	the PIRT that NRC conducted in 2001 on LOCAs. That's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the phenomena identification ranking tables process, expert elicitation on LOCA, and the expert panel was not sure. They had some disagreement of what direction this would be in, whether it would be important, but clearly there was some concern that MOX fragmentation was going to be different than LEU, and that could have a different and potentially worse impact if relocation specific.

9 And so the issue was really when you're 10 talking about helium burn upset is 45 to 50 gigawatt 11 days per ton, the LEU fuel may not experience the most 12 severe high burn-up effects that MOX met.

Another issue that has to do with the 13 14 interaction between the fuel is that the bonding 15 apparently is another very important issue in 16 relocation. Obviously if there's a greater bonding, 17 it might help to pull the fuel apart during the ballooning process, but again, it seems that this is 18 19 an area of uncertainty, and this is why IRSN thinks 20 that integral tests on actual high burn-up fuel is 21 warranted.

Just to show, if you look at the Appendix K calculation, it doesn't consider relocation effects. We see that the simple substitution was one of the MOX assemblies for LEU assembly in the same position,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

101

average increase of 105 degrees Celsius, which is just the average of that range I showed you, would bring the MOX PCT well over the regulatory limit of 2,200 degrees Fahrenheit and also have an impact on LEU, but to the extent the large and small MOX, we have to worry about it more if we're going to ignore and say that MOX is okay.

Now, M5 cladding issues, although M5 was 9 approved by the staff back in 2000, it seems that 10 11 there are still some technical issues associated with 12 MOX, with M5 cladding, both LEU and for MOX. Right now Research is trying to obtain high burn-up fuel 13 14 with Zircaloy M5 cladding as part of its cooperative 15 agreement with EPRI, and from the tone, it looks to me like they're not having success in obtaining the 16 17 samples yet.

A letter was sent April 21st, 2004, from 18 19 Research to EPRI, again, urging EPRI's cooperation to provide these samples of irradiated fuel, and this 20 21 letter points out that parallel testing at Argonne in 22 unirradiated Zircaloy М5 cladding has shown 23 significant differences in Zircaloy.

24 And this could have something to do with 25 tests that are done at Argonne to try to understand

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

1	the differences between Alloy E110, which has
2	nominally the same metallic composition as M5
3	cladding, but yet has considerably different
4	observation behavior and poor performance in design
5	basis LOCA conditions.

6 Apparently Argonne did some tests on M5 7 samples by etching them, which is not the current preparation for M5, but then found that that led to a 8 9 potential similarity to the outside characteristics of 10 Alloy E10, and this raises questions regarding M5 with 11 respect to the changes that might occur during 12 radiation, and this, again, is why Argonne agreed to seeking these samples for testing and not receiving 13 14 them yet.

15 But I don't think the M5 cladding issues are going to go away, and to the extent that there are 16 17 interactions between M5 and MOX that might pose a problem, that's a concern. 18

I'd also like to point out that Mr. Nesbit 19 did mention that in a previous subcommittee meeting 20 that out of all of the MOX fuel assemblies irradiated 21 22 in Europe, in France, in particular, virtually none of 23 them used M5 cladding. Only a couple of experimental 24 assemblies so far were MOX fueled; M5 cladding was little 25 preserved. So there's very radiation

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

||

experience with MOX cladding.

1

2

5

7

Moving right along, contention two related 3 to source term issues and alleges that Duke is not 4 adequately accounting for differences in MOX and LEU fuel behavior with respect to cladding releases during four disruptive accidents which the board has defined 6 to include both design basis accidents like the Part 100 type event and also beyond design basis severe 8 9 accidents.

To this end, there are suggestions from 10 11 the limited amount of testing that's been done with 12 are different MOX fuel in Europe that there radionuclide release characteristics of MOX fuel 13 14 compared to LEU. These have not been taken into 15 account by Duke's analysis or the staff's review.

particular, 16 In because of the MOX 17 microstructure, not only is there a greater fission gas release to the gap during normal operations, but 18 19 under LOCA or severe accident conditions, there appear to be enhanced release rates with some radionuclides 20 21 from MOX and go to LEU, presumably because of the 22 different matrix structure, and degradation behavior 23 of MOX fuel in severe accidents may be different than the different timing during the core slumps, and any 24 25 of these things could affect source term and

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

consequence analysis.

1

2 Also, current source terms apparently 3 underestimate tellurium and ruthenium isotope release 4 patterns, and these are two other categories in addition to iodine, in which actinides could have 5 substantially greater in MOX fuel. So to the extent 6 7 that the source term doesn't use realistic release fractions with tellurium and ruthenium, it means we 8 are not fully accounting for the differences 9 in inventory very sensitive to MOX fuel characteristics. 10 11 So, again, there are uncertainties due to 12 gaps and experimental database for MOX under core melt conditions. IRSN has proposed a MOX source term test 13 14 for severe accidents again for THADE-related events. 15 We believe those tests are also warranted. So in conclusion, we still think there's 16

17 a lot of research needed to reduce the uncertainties 18 in M5 cladding and MOX fuel performance during LOCAs 19 and severe accidents. There are a series of tests 20 that are proposed or in the works, but if Argonne does 21 get irradiated M5 clad LEU fuel to run LOCA, that will 22 provide some information.

Walden is in the midst of preparing for and may have even begun a fuel relocation test on high burn-up LEU fuel, and again, under the proposed tests,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	which are, as far as I know, not financed yet, and NRC
2	didn't show much interest in providing assistance at
3	the meeting that I attended in October.
4	Again, some more uncertainties introduced
5	by this latest indication that Duke is going to be
6	loading another type of experimental fuel at the same
7	time the MOX LTAs are. I haven't had time to assess
8	that.
9	So in sum, we just don't think the
10	experimental database is sufficient to support
11	approval of the LTA power out at this time unless we
12	can start to close some of the gaps, especially for
13	performance of MOX fuel during design based LOCA.
14	Now, as far as risk calculations go, we
15	don't think Duke has demonstrated adequately that the
16	introduction of the four MOX LTAs will have only an
17	insignificant impact. The question of what is
18	significant is ill defined in NRC parlance, as we all
19	know, but the first thing Duke should do is its own
20	risk calculation, which it hasn't done yet. Duke only
21	incorporated by reference the Department of Energy's
22	calculation from several years back from NEIS.
23	We've pointed out many places where that
24	calculation was inadequate, and we just think before
25	coming to a conclusion Duke should do a design

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

106 1 analysis and evaluate some of the uncertainties and 2 sensitivities associated with the issues that I've discussed. 3 4 Again, four LTAs is a small fraction of 5 the core inventory. We understand that, but before debating whether or not that's significant, we need to 6 7 know, have a good handle on that number, and we just 8 don't have that yet. 9 far as Duke's comparison of the As increase in risk to that associated with other license 10 11 amendments such as power-up rates, I don't believe 12 that these comparisons are valid because the benefits are different in each case. You're talking about a 13 14 power up rate. Obviously that is going to be 15 substituting for another source of electricity generation and the risks and benefits associated with 16 it's different than 17 that, but this particular application of using MOX LTAs. 18 To conclude, BREDL is not seeking absolute 19 20 certainty in this proceeding, but we are only seeking 21 reasonable assurance that this program is going to 22 provide adequate protection of public health and 23 We don't want to shut down every retest safety. 24 assembly program and every fuel qualification program

in the world. We just think that the MOX LTAs are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	107
1	significantly different from LEU in U.S. experience,
2	but it's warranted to try to understand some of these
3	issues a little bit better than Duke has done.
4	And with that, I'll take your questions.
5	DR. POWERS: Are there any questions for
б	Dr. Lyman?
7	(No response.)
8	DR. POWERS: We now have a presentation
9	from Mr. Killar of the Nuclear Energy Institute.
10	MR. KILLAR: Good morning, gentlemen. My
11	name is Felix Killar. I'm the Director of Fuel Supply
12	and Material Licensees from Nuclear Energy Institute.
13	In my position one of my responsibilities
14	is for following the weapons disposition program, both
15	the ATU program and the plutonium disposition program,
16	and I have a very brief statement this morning.
17	First off, our policy. We certainly
18	support the plutonium disposition program. We feel
19	it's very similar to the high risk uranium program as
20	we're taking a very high, very reactive material,
21	diluting it down to a grade that could be used safely
22	with the power plants and dispositioning this material
23	so as not to be a hazard or potential threat to the
24	American public.
25	My second point is that we support the LTA

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	process for verification of fuel types and new fuel
2	types. This is just another iteration as similar as
3	they were talking about the other LTA program they
4	have at the Catawba reactor. This is another
5	application of the same process, and therefore it is
6	consistent with the use and safe operation of plants
7	to assure that we do have good prototypes, that we are
8	very happy and content with the safety of these things
9	going through the power plants in full batches.
10	And then the last point is the history of
11	the MOX LTA program internationally as well as here in
12	the United States we believe can be accomplished very
13	safely.
14	One of the disadvantages of being the last
15	speaker is that sometimes your points are taken. I
16	was going to refer to the Ginna experience as well sa
17	the experience at the end of cycle with most of the
18	enriched reactors here in the United States were
19	reactors here in the United States. When you get to
20	the end of the cycle, you are basically running a MOX
21	reactor.
22	Now, there also is good experience with
23	Dairy Land reactor that had a number of MOX fuel
24	assemblies that ran a number of years as a
25	demonstration project and was a very successful

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

program.

1

2 In fact, one of the benefits of that 3 program is that when they had an assembly that had 4 some problems that was a low enriched uranium 5 assembly, typically they would pull out one of the MOX assemblies and use that as a substitute for the LEU 6 7 assembly for that cycle to get through the cycle. So that's the three points I wanted to 8 I'm just basically talking in 9 raise this morning. support of this program going forward, and this 10 11 program going forward with the LTA program.

DR. POWERS: Could I ask you have you or your colleagues done independent analyses of the performance of these mixed oxide lead test assemblies?

MR. KILLAR: We have not done independent analysis. We have reviewed the programs they've gone through and to see that it is consistent with a typical program, but we have not gone into any independent analysis.

20DR. POWERS: And you are satisfied that21they have taken appropriate steps?

MR. KILLAR: Yes, we are.
DR. POWERS: Thank you.
Any other questions?
(No response.)

	110
1	DR. POWERS: Thank you very much.
2	With that I'll return it to Mr. Chairman.
3	CHAIRMAN BONACA: Okay. Thank you for the
4	presenters.
5	And we'll take a break until five after
6	11.
7	(Whereupon, the foregoing matter went off
8	the record at 10:47 a.m. and went back on
9	the record at 11:05 a.m.)
10	CHAIRMAN BONACA: We'll get back into
11	session.
12	And the next item on the agenda is risk
13	management technical specifications, and Professor
14	Apostolakis, you have the lead.
15	DR. APOSTOLAKIS: Thank you, Mr. Chairman.
16	On Subcommittees on Reliability and
17	Probabilistic Risk Assessment and on Plant Operations
18	held a meeting on March 25th of this year with
19	representatives of the industry and the NRC staff to
20	discuss risk management or risk managed technical
21	specifications. The purpose of the meeting was to
22	hear an overview of the status of the risk management
23	technical specifications, the so-called Initiative
24	4(b), risk informed completion times.
25	The effect of this initiative is to extend

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	111
1	the completion times from a nominal or current
2	completion time up to a predetermined backstop or
3	maximum using configuration risk management programs.
4	This initiative will require real time
5	capability and cumulative and configuration risk
6	matrices. The challenging part is the demand of a
7	high technical capability and scope of PRA, and this
8	will be a central theme to the discussion, whether
9	PRAs are up to the task.
10	And without further ado, I'll turn it over
11	to the staff. Who's starting?
12	MR. BOYCE: Yes, good morning. My name is
13	Tom Boyce. I'm the Section Chief in the Technical
14	Specifications Section of NRR.
15	With me today is the lead staff reviewer
16	for the risk management tech specs, Bob Tjader who
17	will be presenting; Mark Reinhart of the PRA Branch of
18	NRR. I also have Deputy Division Director for
19	Division of Inspection Program Management, Cindi
20	Carpenter, and various reviewers in the audience. So
21	we've come armed to bear here.
22	We're also lucky to have industry
23	presentations on some pilot programs, some of the
24	pilot plants: South Texas is with us, and you'll be
25	hearing from them. That's Wayne Harrison and Bill

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	Stillwell over here. Also Biff Bradley of NEI will
2	make a presentation.
3	As was previously stated, we last
4	presented to the full committee in November 2002,
5	where we covered the full gamut of the risk management
6	tech specs, and there are eight initiatives in the
7	risk management tech specs which you'll hear briefly
8	about.
9	But what we are here today is to focus on
10	Initiative 4(b), and that's what we talked last month
11	to the joint subcommittees on. The reason we wanted
12	to focus on 4(b) this time, it's the most aggressive
13	of the eight initiatives. It's the most heavily
14	reliant on a high quality PRA, and we think it's a
15	significant change in the way we've approached tech
16	specs.
17	As was stated, the current tech specs are
18	what I'll call static. If you have some equipment
19	that's inoperable, you start a plant shutdown at a
20	predetermined time, and that predetermined time is a
21	result of a review as part of the licensing process.
22	You know, you will start shutting down within six
23	hours, for example.
24	The change here is that this would allow
25	a more real time use of a licensee's PRA, and so what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 they do is they take a nonconforming condition, and 2 they would put it into their PRA and say, "Well, we 3 should be able to tolerate this nonconforming 4 condition or the equipment out of service for a 5 certain period of time, " and that would constitute the allowed outage time for that system before they 6 7 entered a shutdown process typically.

8 That's a significant change in the way we 9 license. It's a significant change in the way plants 10 are operated, and it would be a significant change to 11 the way we provide oversight of plant operations.

We're still early in this review process.
So we're not going to have all of the answers. We're
developing as we go.

We are looking for comments and feedback, not a letter per se unless you're going to include comments in a larger letter on risk for, say, the staff's response to the recent SRM from the Commission on balance of operational flexibility and PRA quality or Reg. Guide 1.200, which you're going to hear this afternoon or maybe 5069.

22 So as part of a larger mosaic, comments on 23 this might make stage. We intend to come back to the 24 ACRS as we get further down the road.

Any opening questions?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

	114
1	DR. LEITCH: I've heard the term "risk
2	informed" and "risk based." Now we come across the
3	term "risk management," "risk managed tech specs."
4	What significance should I interpret those words to
5	be?
6	MR. TJADER: We use tech specs to manage
7	the plant, and plus we're excuse me. The idea is
8	that we're managing the risk, and it's just a slight
9	nuance or change in terminology, nothing terribly
10	significant. We risk inform some of the specific
11	details in the tech specs, but when we perform a risk
12	assessment, then per (a)(4) or through the risk
13	management process that we're going to have with 4(b),
14	then we are going to manage the risk. We're going to
15	take compensatory actions and things like that.
16	So it's not that we're using a risk
17	informed approach. We're managing.
18	MR. BOYCE: Yeah, I'd like to expand on
19	that just a little bit. It's a similar approach to
20	what we've got in Reg. Guide 1.177, which says if
21	you've got equipment out of service, you wouldn't do
22	things that would add additional risks. So you might
23	shut down any maintenance in the switchyard. You may
24	not take out of service or do maintenance on
25	equipment in the other train.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	You wouldn't do something that would raise
2	the possibility of another problem keeping that
3	equipment out of service for a longer period of time,
4	and that's what I would call the management part.
5	But I think it's a terminology issue in
6	general.
7	Did you want to add something to that?
8	MR. REINHART: Yeah, just the thought
9	along with what Tom and Bob have said. If you look at
10	tech specs today, you're looking at one train, one
11	component. Looking at a risk management tech spec,
12	you're looking at the combination of the status of all
13	equipment at a given time. If more equipment was out
14	of service when, say, you lost a component, the AOT
15	may be actually shorter than what a tech spec would
16	provide, unless you put in place compensatory measures
17	or put some of that other equipment back in service.
18	If, on the other hand, there was no
19	maintenance going on, it might be a little bit longer
20	or a lot longer so that you could take your time and
21	perform your maintenance in a very orderly manner.
22	So again, what these two gentlemen said:
23	it's really a management it's part of risk
24	informed, but it's a managing the plant at the same
25	time.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	DR. APOSTOLAKIS: Are we going to discuss
2	this issue of whether equipment were already out, what
3	happens?
4	MR. TJADER: We could get into that detail
5	if you'd like to discuss it.
6	DR. APOSTOLAKIS: Right now or later?
7	MR. BOYCE: Later, please.
8	DR. APOSTOLAKIS: Okay. I'm a little
9	puzzled by your request that we shouldn't write a
10	letter unless we comment on this in a letter that
11	addresses bigger issues. Why is that? Why wouldn't
12	we write a letter, you know, and say this is what we
13	think about what's going on here?
14	MR. BOYCE: Oh, I didn't mean to imply
15	that we wanted to preclude a letter. If you thought
16	that there was something that we needed to consider,
17	please, write that letter.
18	I had thought really that to make it
19	clear, we weren't explicitly seeking a letter.
20	DR. APOSTOLAKIS: You're not requesting a
21	letter.
22	MR. BOYCE: Right.
23	DR. APOSTOLAKIS: Yeah, that's fine.
24	That's fine.
25	CHAIRMAN BONACA: Why don't we proceed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	then?
2	DR. APOSTOLAKIS: Yeah.
3	MR. TJADER: Okay. I'll provide an
4	overview of Initiative 4(b), and as I proceed in doing
5	that, if you desire more detail, some of the specific
6	details with inoperabilities come up, feel free to ask
7	that. I know with the subcommittee we discussed some
8	of that.
9	I'll also discuss it in the context of the
10	other risk management tech spec initiatives.
11	You've previously received some of the
12	submittals that we received from industry, the risk
13	management guidance document, which is basically the
14	process which will be utilized to implement Initiative
15	4(b). Biff Bradley later will present an overview of
16	the risk management guidance process, and South Texas
17	will discuss their pilot proposal later. We have
18	Wayne Harrison and Bill Stillwell with us today as Tom
19	mentioned to discuss their proposal. Opening and
20	closing comments.
21	Risk management tech spec Initiative 4(b)
22	is dependent upon PRA quality. Initiative 4(b)
23	requires a quantitative risk assessment to determine
24	the appropriate risk informed completion time.
25	Communication with and training of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	118
1	headquarters staff and regions are essential for
2	successful implementation of Initiative 4(b).
3	Initiative 4(b) is currently participating in the
4	NRC's risk informed environment initiative, which is
5	related to the communication, education, and
6	acceptance by the staff of the risk management tech
7	spec initiatives as well as other regulatory risk
8	initiatives.
9	We're early in the Initiative 4(b)
10	process. Initiative 4(b) is in a proof of concept
11	stage, and we're going to learn as we proceed through
12	the process.
13	DR. APOSTOLAKIS: Whose comments are
14	these?
15	MR. TJADER: The feedback?
16	DR. APOSTOLAKIS: You say opening and
17	closing comments.
18	MR. TJADER: Well, the direction was that
19	we should provide conclusions of
20	DR. APOSTOLAKIS: From us?
21	CHAIRMAN BONACA: Yes.
22	DR. APOSTOLAKIS: Okay.
23	DR. SHACK: That's how they're supposed to
24	make presentations, George.
25	DR. SIEBER: Yeah, we aren't supposed to

	119
1	ask questions.
2	CHAIRMAN BONACA: That's right, which we
3	already have. All right.
4	MR. TJADER: Dr. Apostolakis mentioned on
5	the 25th of March we met with Reliability and PRA and
6	the Plant Operations Subcommittees, and they provided
7	us some feedback, and I have synopsized those here,
8	and feel free to correct me if I didn't get any of
9	them complete or totally correct.
10	In general, the comments were that it's a
11	good idea to risk inform tech specs, and in general
12	the structure of Initiative 4(b) as it is right now is
13	a good start.
14	The issues that were brought up, roughly
15	in descending order of importance, are with respect to
16	configuration risk monitors and assessment tools that
17	are utilized in the risk assessment process, we need
18	to know the extent of the PRA incorporation into those
19	monitors and tools, and we need to be assured that
20	there's adequate QA and QC of the software and the
21	updating of that software that is utilized in the
22	monitors.
23	We need to be aware of what's in the PRA
24	and its impact on the completion times, and we need to
25	design metrics to provide licensees incentive to fix

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the problems within the existing completion times in 2 addition to the existing incentives that already exist 3 in the maintenance rule as it exists now, in other 4 words, the availability and reliability of equipment. 5 It was also mentioned that we need perhaps stops were not adequate, potentially not 6 front 7 adequate, and while my gut feel is that front stops as 8 they are right now -- now we'll get into detail of 9 what a front stop is and a backstop, but basically the front stop is the current completion time of existing 10 11 tech specs. My gut feel is that they are adequate 12 for, in general, four single system inoperabilities and haven't seen any cases where they aren't yet, but 13 14 in the event that there may be one, perhaps a review 15 of front stops ought to be conducted to insure that Initiative 4(b)'s structure is sound. 16 17 There was some discussion with regard to times. In other words, it's proposed that 24 hours be 18 19 given to perform risk assessments when subsequent 20 configuration changes occur in the plant, and you're already in tech specs, and we recognize that 24 hours 21 22

already in tech specs, and we recognize that 24 hours is a long period of time, and that it can be done in significantly shorter period of time than 24 hours. Twenty-four hours, I think, in general is to get the approval process through.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23

24

25

(202) 234-4433

120

DR. KRESS: There was also some discussion
of what zero time was.
MR. TJADER: Oh, what the zero entry. If
you need to go into that further, basically it's when
you enter the spec. That's time zero.
DR. KRESS: Even though it may have been
some time down the road when you enter a new
configuration due to a
MR. TJADER: Yeah, until the LCO time zero
is consistent and time zero is the time of entry of
the spec.
MR. BOYCE: Right, and you thought that
was conservative.
DR. KRESS: Well, it definitely was
conservative, I thought, yeah. You know, you enter
into the tech spec and you're at time zero, and you've
got a given risk configuration. Then something
happens down the line and you merge into a new risk
configuration.
In order to calculate the acceptability of
this, you start it all the way back at time zero
again. So it is definitely
MR. TJADER: Well, it just seems to me
there's a cumulative risk that may be invoked, and if

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	to take it into account from time zero.
2	DR. APOSTOLAKIS: And when are we going to
3	talk about these limits? You will cover that?
4	Because I'm a little confused there about the limits.
5	So tell me when would be a good time to raise the
6	issue.
7	MR. BOYCE: Maybe during the example, when
8	we get to the example slides because that's where it
9	came up in the subcommittee presentation.
10	MR. TJADER: And not only that. I think
11	that South Texas and NEI have some specific slides
12	that address, you know, the limits and the accumulated
13	risk and how it's conducted and things. So utilizing
14	some of their expertise in slides would probably be a
15	good time to do that, too, when they make their
16	presentations.
17	DR. APOSTOLAKIS: Very good.
18	MR. TJADER: And then finally we need to
19	maintain oversight of changes to the PRA after
20	approval of Initiative 4(b) to insure that we are
21	aware of the effects of the configuration rather than
22	from the program and process.
23	Principles for risk management tech spec
24	to the development
25	DR. APOSTOLAKIS: Let's stop what we're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	doing here because I'm a little confused.
2	MR. TJADER: Okay.
3	DR. APOSTOLAKIS: Okay. You listed the
4	comments that you received from the subcommittee, and
5	you will address how you're going to resolve these or
6	did you already give your answers?
7	For example, when you say on Slide 4 there
8	is an issue of QA of software in the updates, I mean,
9	are you planning to do anything about it or you're
10	just acknowledging that the committee
11	MR. TJADER: Yes, we are definitely
12	planning to address that.
13	DR. APOSTOLAKIS: And when will we hear
14	about it?
15	MR. BOYCE: Not at this meeting.
16	DR. APOSTOLAKIS: Not at this one. Okay.
17	MR. TJADER: We are not prepared to
18	resolve some of these issues.
19	DR. APOSTOLAKIS: Now I understand.
20	MR. TJADER: We are early in the process.
21	DR. APOSTOLAKIS: I understand. Something
22	is wrong with this meeting. You seem to leave me
23	behind all the time. Okay. I'll pay more attention.
24	MR. TJADER: It may be that you're way
25	ahead of us is what the problem is.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

124 1 DR. APOSTOLAKIS: Okay. Now it's clear. 2 Thank you. MR. TJADER: 3 These are feedback. These 4 are things that the subcommittee brought up last 5 meeting. You brought up the configuration, risk monitors, and we fully agree that these are things 6 7 that we need to be aware of and how we affect the 8 configuration of risk management process. 9 DR. APOSTOLAKIS: As a side remark, the 10 committee may be briefed on one or two risk monitors 11 soon because remember we were supposed to go to an 12 office some time ago. Now they're going to come here, maybe SE or somebody else. Ms. Weston is working on 13 14 that, and that may happen fairly soon. 15 DR. POWERS: How come you can never get us 16 there? 17 DR. APOSTOLAKIS: I don't understand that. DR. POWERS: I mean, you just never make 18 19 the case very strongly. 20 DR. APOSTOLAKIS: I never make the case? 21 DR. POWERS: You never make the case very 22 You aren't persuasive. strongly. 23 DR. APOSTOLAKIS: I made it. 24 Okav. So the committee may -- will 25 actually, not may -- will be briefed as to what the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	risk monitor does, what the issues are. We're going
2	to see nice figures, pictures, and so on. So that
3	will happen soon.
4	Okay. Thanks.
5	MR. TJADER: Okay. Principles of risk
6	management tech spec development in addition to
7	following Commission guidance in the development of
8	the risk management tech specs initiatives, we seek to
9	achieve coherence with other risk informed regulatory
10	developments such as the maintenance rule which we
11	utilize in our process; PRA quality, which we're
12	dependent upon; and 5069, which may affect some of the
13	later initiatives, like Initiative 8.
14	We take credit for and build upon existing
15	5065, A(4), maintenance rule, configuration risk
16	management programs, and the risk management tech
17	specs initiatives. We must insure that licensee's
18	risk submittals must be standard for quality and
19	comprehensiveness. Submittals must meet Reg. Guide
20	1.200, ASME, and other standards.
21	We must involve the NRC staff with
22	cognizance for operation training, inspection,
23	maintenance, the regions, the SDAs, and risk
24	assessment staff.
25	We must involve the staff to insure a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	quality product and to insure overall support by the
2	staff.
3	DR. APOSTOLAKIS: With respect to quality,
4	is this now the beginning of the era when PRA will be
5	used in real time do you think?
6	MR. BOYCE: Yes.
7	DR. APOSTOLAKIS: Are we getting there?
8	Has anybody thought about whether the
9	existing PRAs which were developed for, you know,
10	assessment purposes without any pressure of time,
11	whether they are actually adequate for this thing?
12	Maybe they are, but is that something we
13	ought to look into, Mark?
14	MR. REINHART: I think we're looking for
15	a very substantially improved or higher quality PRA
16	than most plants have today to support the Initiative
17	4(b), and I think we've communicated that to industry,
18	and they're hopefully going to come back and
19	demonstrate to us that they have that.
20	If you look at the staff requirements
21	memorandum that has this on a phased approach, we're
22	saying this is a proof of concept which is really
23	parallel to that phased approach, and for a 4(b) plant
24	that would be an accelerated development of a high
25	quality PRA. There will be areas where there aren't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 standards. So we're going to have to come to grips with what are we going to do to review that. What are 2 we going to do to make sure that the content is where 3 4 we are wanting to go and that we're not out in left 5 field from where we go when this standard is developed. 6

7 At the same time, we don't want to say, "Well, it's good enough for now and we'll fix it 8 9 To have a plan, go out and manage their later." configuration based on PRA information, along with the 10 11 deterministic also, we need to have a substantial 12 confidence in that PRA.

DR. APOSTOLAKIS: So this PRA then, as you 13 14 said, clearly will have to do more than just what the 15 available standards dictate.

MR. REINHART: Yes.

17 DR. APOSTOLAKIS: And you will not give the review of those low priority, will you, of the 18 19 extra work?

20 MR. REINHART: No. We've talked about 21 this, and we're saying obviously we can't look at 22 that, the low priority as defined under the SRM. We 23 have to have a separate approach here. 24

DR. APOSTOLAKIS: Okay.

MR. TJADER: And in general, the existing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16

25

PRAs out there are not adequate to implement Initiative 4(b). There may be a South Texas, may be a San Onofre that that are close to being adequate or are adequate, but most aren't. Fort Calhoun has volunteered to be a pilot, as I'll bring up later, as has Hope Creek plants, to be a pilot for Initiative 4(b).

In both cases, for them to be pilots will 8 9 require them to upgrade their PRAs and make adequate, and the reviews currently under Reg. Guide 1.200 for 10 11 quality, we recognize that that's just a starting 12 point for assuring quality and that eventually Reg. Guide 1.200, when it gets addenda and things like that 13 14 that are coming in, may be adequate for it, but it has 15 got to be Reg. Guide 1.200-plus at the moment to 16 insure the quality.

17 MR. BOYCE: And just one more point. Ιf these pilot plants do upgrade their PRAs and make them 18 19 complete as we'd like, the PRAs for this as 20 application, and we reviewed it and it was approved, 21 the PRAs would probably be more than adequate for 22 other risk informed applications without further 23 review.

24 So we think this is a very challenging 25 application.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

Basically the initiatives fall into four 5 general categories. The first category include the 6 7 two initiatives that have already been approved. Initiative 2, missed surveillances, and Initiative 3, 8 mode change flexibility, they rely extensively on 9 existing A(4) type configuration risk management 10 11 They are in most respects the least risk programs. 12 significant of the initiatives.

The net set require prior analysis of 13 14 specific plant configurations, and they are the next 15 ones that are soon to be approved. We hope within the next year. They include Initiative 1, modified end 16 17 stage, that is, shutting down to full repairs to hot shutdown rather than going all the way to cold 18 shutdown when it's risk informed to do that for 19 20 plant configurations specific or specific 21 inoperabilities.

22 Initiative 6, entry times into shutdown 23 and entry times into 303 action statements for 24 specific equipments and configurations. There can be 25 extended times. Rather than just allowing one hour

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

130 1 preparation to enter shutdown, they may be risk 2 intelligent to provide additional time. Initiative 7, non-tech spec 3 support 4 systems' effect on tech spec systems, i.e., snubbers, 5 hazard barriers, and it isn't always the smart thing to do to automatically declare the supported system 6 7 inoperable because the snubber is inoperable. That's in general what that issue is. 8 9 And those three, as I said, we have proposals in house for all three of those and for 10 11 certain vendor types, we are ready almost to go 12 forward and approve some of those. The third category requires quantitative 13 14 risk assessments. They require extensive quantitative 15 PRA based risk assessment, and they are Initiative 4, the flexible risk informed completion times, which is 16 17 major concern today, and Initiative 5 is а surveillance frequency programs. 18 19 And then the final category is somewhat in 20 That's an Initiative 8, and it requires the future. 21 involves potentially relocating non-risk or it 22 assessment systems from tech specs. It will involve 23 rule-making because it will require replacing the 24 existing 5036 deterministic criteria in the tech specs with a risk based criteria for determining what should 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	be in specs, and that's some time down the road.
2	Initiative 4, risk informed completion
3	times. The effect of Initiative 4(b) is to extend the
4	existing completion times and tech specs from a
5	nominal or current completion time value up to a
6	predetermined backstop maximum using a configuration
7	risk management program. This is under development.
8	Initiative 4(b) involves applying a process which will
9	be defined in the risk management guidance document,
10	which you have the first rough draft of in it so as to
11	use this risk management guidance document process to
12	determine the risk informed police time.
13	The process will require PRA technical
14	quality and adequacy which will be addressed to some
15	extent as I already mentioned by Reg. Guide 1.200 so
16	that a real time quantitative capability will exist in
17	order to realistically implement 4(b).
18	In addition, it will require configuration
19	of cumulative risk metrics so that we can determine
20	what the risk informed completion time should be as
21	plant configuration evolves and also to evaluate the
22	overall process as time goes on.
23	The current status
24	DR. LEITCH: Do you visualize a
25	preestablished set of plant conditions, many different

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	conditions, where this has all been worked out in
2	advance?
3	MR. TJADER: That's the South Texas way of
4	doing it. There are two ways of doing it. There
5	are
6	DR. LEITCH: Or more on-line training that
7	now we find ourselves in this particular situation.
8	We'll immediately do a
9	MR. TJADER: Do an on-line configuration
10	risk assessment utilizing an on-line monitor, such as
11	possibly San Onofre might do. There's a couple of
12	ways to do it, and perhaps a blended type approach
13	between the type that could be utilized to get the end
14	result.
15	DR. LEITCH: So if you did the former,
16	that is, if you had the preestablished scenarios,
17	would they require NRC approval in advance or it's the
18	methodology in the PRA that you're approving?
19	MR. TJADER: You have to have confidence
20	that the methodology it's primarily the
21	methodology
22	DR. LEITCH: Yeah.
23	MR. TJADER: that they utilize to get
24	to those. We have to be confident in their PRA and
25	that their means of getting those cut sets and those

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	configurations determine and South Texas will go
2	into their process a little bit. They have
3	approximately 20,000 pre-configured plant
4	configurations. We certainly can't I don't think in
5	a realistic time go in and approve each and every one
6	of those.
7	However, we're going to take and review a
8	set of those.
9	DR. LEITCH: But say they come to number
10	1,502 and they now find themselves in this situation.
11	Can they just go ahead and do that?
12	MR. TJADER: Once we approve it.
13	DR. LEITCH: Once you approve it, but I
14	mean, you're not going to approve each one, but you're
15	going to approve the methodology and approve the PRA
16	quality and the QA aspects of it and so forth.
17	MR. TJADER: And of course, South Texas
18	requires extensive updating of their sets as they
19	update the PRA and things. It seems to me to be
20	rather work intensive.
21	DR. APOSTOLAKIS: So a predetermined
22	backstop maximum is not the 30 days that you're
23	putting there for defense in depth purposes. It's the
24	calculated.
25	MR. TJADER: No, there's three things.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	There's the front stop and there's the risk informed
2	completion time, which could extend the front stop up
3	to the backstop, which would be the 30 days, which is
4	30 days, I might add, is what the proposed backstop
5	is at the moment.
6	DR. SIEBER: Right.
7	MR. TJADER: It seems like a reasonable
8	period of time, but
9	DR. APOSTOLAKIS: But the flexible time
10	MR. TJADER: The risk informed provision.
11	DR. APOSTOLAKIS: doesn't have to be
12	predetermined.
13	MR. TJADER: No, it does not.
14	DR. APOSTOLAKIS: They can do it in real
15	time.
16	MR. TJADER: That's right, yes.
17	DR. APOSTOLAKIS: Now, if they choose for
18	certain common configurations to have predetermined
19	it, that's fine.
20	MR. TJADER: That's correct.
21	DR. KRESS: The backstop could be less
22	than the 30 days if the risk configuration says it
23	should be less. If you just say that's a maximum
24	MR. TJADER: I mean, what is proposed now
25	is a standard 30-day backstop. In other words, no

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	135
1	system should have more than 30 days to be inoperable
2	or be in an action statement, in general, and if you
3	perform a process, a risk assessment process that
4	determines that the appropriate completion time is
5	less than 30 days, that then is not a backstop.
6	That's the risk informed completion time.
7	DR. KRESS: That's when you have to do it
8	then.
9	MR. TJADER: That's what you have to deal
10	with, not the backstop. In other words
11	DR. KRESS: It's only if that
12	determination exceeds the 30 days. then you would go
13	ahead and use the 30 days.
14	DR. APOSTOLAKIS: Right. In fact, I saw
15	in the Westinghouse document there were several
16	figures. For a lot of these actions or configurations
17	the risk informed limit is much larger than the 30
18	days. There are several others that is lower. So
19	they stop there.
20	MR. BOYCE: And just to come back to the
21	risk monitor issue, the South Texas project approach
22	is to use what we'll call a database type approach of
23	pre-analyzed conditions, and so that constitute their
24	risk assessment tool. the other risk monitors would
25	be a subset of what we're calling a risk assessment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 tool, a real time risk monitor, a database approach or 2 a blend of the two is what we're struggling with is 3 how do we approve those in advance, and what we're 4 looking at is as a pilot this is supposed to be a 5 generic approach. so that's why it's important 6 whether we approve the database approach or risk 7 assessment tool approach in general or some sort of risk monitor. We're not clear. 8 9 Well, in genera the South DR. KRESS: Texas approach can make use of a much higher quality 10 11 PRA, it seems to me like, than the risk monitor. 12 Well, they've got plenty of time to sit there and so all of their scenarios and include every -- you know, 13 14 make the cut sets different and so forth. 15 DR. APOSTOLAKIS: Yeah. 16 DR. KRESS: But if you've got a risk 17 monitor, it's more of an abbreviated PRA in my 18 opinion. 19 DR. APOSTOLAKIS: Not anymore. 20 DR. KRESS: Not anymore? 21 DR. APOSTOLAKIS: We'll find out. We'll 22 find out. 23 We will find out. DR. KRESS: 24 DR. APOSTOLAKIS: But the down side of it 25 is if you don't pre-analyze the configuration --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

136

	137
1	DR. KRESS: If you've got one you haven't
2	pre-analyzed, you have to do something, yeah.
3	CHAIRMAN BONACA: The question I have is
4	these plants also do on-line maintenance, and so say
5	that you have a component in tech specs that is pushed
6	close to the backstop. They still can't take out the
7	components of the service and do maintenance on those.
8	I mean, right now you have control on the tech spec
9	portion because you have communication coming to you
10	that the components of the service and determine that
11	20 days is acceptable. Okay?
12	How do you I'm sure that the plant has
13	to now take into consideration still all the other
14	components that are being taken out of service
15	simultaneously, right?
16	MR. REINHART: Oh, absolutely.
17	CHAIRMAN BONACA: Is there a process to
18	deal with that? I mean to control it or
19	MR. TJADER: Right. In the process and
20	when we get to Slide 9, which is just actually I
21	think we're just about there. I mentioned the pilots,
22	the proposed pilots. Here's the positive: front
23	stop, which is the current completion time,
24	configuration risk management proposed program based
25	completion time, the backstop proposed is 30 days.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	Here is what we're talking about.
2	This is a typical tech spec condition,
3	typical example. This exists in the risk management
4	guidance document. It's taken out of that, their
5	proposal. A typical condition might be one subsystem
6	inoperable, and under existing specs, the required
7	action would be perhaps B(1), restore subsystem to
8	operable status. The completion time is 72 hours.
9	What the risk management tech spec process
10	and the risk management guide proposes is adding
11	required actions $B(2)(1)$, $B(2)(2)$, and $B(2)(3)$.
12	B(2)(1) is to determine in other words, you're
13	restoring, attempting to restore the subsystem to its
14	operable status within 72 hours. You then at some
15	point determine that you're probably not going to be
16	able to do that within 72 hours.
17	So within that existing 72 hours, within
18	that existing completion time, you determine you
19	perform your risk assessment and you determine what is
20	the appropriate extension beyond 72 hours and what is
21	acceptable at that threshold.
22	Okay, and then you will utilize that risk
23	assessment time, and then $B(2)(2)$, which is verify
24	that completion time beyond 72 hours remains
25	acceptable, and then if you say in parentheses, i.e.,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 within 24 hours, 24 hours is proposed. Hours of a 2 subsequent configuration change; any time there is a 3 subsequent risk significant configuration change to 4 the plant, the risk assessment must be re-performed 5 and to verify that the completion time is accurate for the existing condition. 6 7 And then B(2)(3) then is restore the 8 subsystem to operable status at a maximum 30 days or 9 the completion time that's determined, whichever is 10 less. 11 DR. KRESS: And now I can see for an

12 emerging condition that you weren't expecting that the 24 hours might be appropriate, but it seems to me like 13 14 for -- take this one example, the HPSI subsystem inoperable. You could already predetermine a backstop 15 for that, assuming no emerging condition. 16

17 So why should you have this 24 hours there? You could already have a -- they have another 18 19 line there that says "or extend to such-and-such a 20 level," number of hours, if it can't be completed in 21 72. 22 Can you predetermine that one? 23 MR. TJADER: Oh, absolutely, and in fact, 24 that is the case. I mean, under the CE proposal, they

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 have pre-analyzed a lot of different --

	140
1	DR. KRESS: So it would already have
2	they would already have the backstop, assuming nothing
3	happens that they hadn't anticipated.
4	MR. TJADER: They pre-analyzed some of
5	those situations, and plus
6	MR. REINHART: Can we jump in?
7	MR. TJADER: Yeah.
8	MR. REINHART: One of the questions that
9	has to be determined: what is the integration of
10	programs? For instance, if it's just one component
11	here and it's predetermined, it's really done like you
12	say, or if it's just one component, maybe they could
13	take some time.
14	But under the maintenance rule, every time
15	a configuration changes, you have a much shorter time
16	to run an analysis, and so we have to come to an
17	agreement with the industry and then get that put in
18	the process: really what is an appropriate time,
19	given an emergent condition, once that configuration
20	changes to make the determination? Because what if
21	it's much less? You know, that emergent condition
22	DR. KRESS: What if it's less than the 24
23	hours?
24	MR. REINHART: Exactly.
25	DR. KRESS: That should be the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	determinant, and we don't know that ahead of time.
2	MR. REINHART: Yes, you're right, and so
3	we need confidence that that will be quickly brought
4	to light and an action taken appropriately.
5	MR. BOYCE: If I could generalize your
6	questions, why don't we reanalyze all of the front
7	stops using a risk approach?
8	And that seems to make sense technically
9	from a licensing standpoint. All of those front stops
10	were put in place with a lot of thought, deterministic
11	type of thought, and a lot of them have conditions
12	that were place on the plant as part of safety
13	evaluations and amendments in the past.
14	And so what would happen is we would end
15	up doing two reviews, one for a risk based approach
16	and one to research the licensing history to make sure
17	we completely understood it.
18	DR. KRESS: That would be a pretty big
19	task.
20	MR. TJADER: It increases the scope of the
21	review, and I guess Fort Calhoun is Bob has
22	actually tried to move in the risk based direction on
23	the front stops, but that's the internal process we
24	have to go through to make sure that's right.
25	MR. REINHART: And, again, I think we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

142
really have to come to grips with what does this front
stop mean because that can't be just a buy time where
you do nothing.
If configurations emerge that we need
action and analysis before that front stop, the
program has to clearly articulate when and how that's
taken, and I think that's one of the things we need to
work out.
CHAIRMAN BONACA: You've got to have those
front stops. Many of them are just historical. I
mean, you're put there, and there wasn't much of a
meaning, and then they became important because
everybody always saw 72 hours. So 72 hours seems
but in reality there wasn't much behind that.
MR. REINHART: And another way, say,
looking down the road, when some of these systems
become very flexible and very usable, what's the point
of having the front stop. I mean, the plant is going
to be analyzing their condition as they go along, and
as soon as something changes, they'll be able to see
what that does to the risk and take appropriate
action. That's managing the plant using
MR. TJADER: With respect to that 24 hours
with regard to the completion time of $B(2)(2)$, Fort
Calhoun is the proposed pilot for the CE generic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	submittal, which is the HPSI, single system HPSI
2	pilot, and they recognize the 24 hours is probably
3	more than is necessary for this initial risk
4	assessment.
5	But we have discussed various things, such
6	as maybe having one hour to do a predetermination that
7	it is acceptable, and then to do a more thorough PRA
8	based review and approval, management approval that
9	the 24 hours would be utilized for that.
10	But 24 hours is not yet approved or hard
11	and fast.
12	DR. KRESS: Yeah, I think that's going to
13	be a problem, and the basic concept is you don't want
14	to subject this surrounding population around this
15	plant to a given risk over a given amount of time, and
16	it's cumulative. It's a cumulative risk that needs to
17	be added up over that time.
18	And you know, you're not ever going to
19	manifest that risk, hopefully, but the concept is you
20	don't want to subject them to an unacceptable level of
21	risk, and which has time in it. It's an integral,
22	risk times time or integral CEF time to time or LEU
23	time to time.
24	So the 24 hours is something that if you
25	enter into a condition where that 24 hours would have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
subjected them to a higher level that its acceptable risk, then the 24 hours is not appropriate, and it seems to me like you could almost predetermine some configurations where that 24 hours would not be acceptable, like so many subsystems out of operation at the same time.

7 And these conditions where the 24 hours is 8 no loner acceptable, then you have to shut down or 9 something. That would be the only way to me to accept some value for this reconfiguration calculation. 10 You 11 have predetermination that have to some some configurations are just not acceptable over that 24 12 hour period. 13

MR. REINHART: I just want to add, again, while the 24 hours is proposed, we need to work out what's really reasonable and accomplishable here.

DR. KRESS: Yeah. It may be that 24 hours may even be, you know, -- it might even be longer is acceptable.

20 CHAIRMAN BONACA: One thing that comes to 21 mind here, you know, let me take the example of the 22 HPSI system. The value of the 72 hours as a front 23 stop is to set some kind of urgency that one knows 24 that this is maybe a system that you want since in the 25 tech specs you would like to restore it as soon as you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	145
1	can.
2	On the other hand, you can determine that
3	you can live with it for ten days or whatever, and so
4	you can demonstrate that 30 is a part of that. But
5	I'm thinking about just, you know, the example of a
6	HPSI system. I have the four trains. So I go to the
7	Option B, and now I determine that my trains are not
8	individually this significant. So already I'm doing
9	less about those systems.
10	Then I have this evaluation here that
11	says, well, I've got four and very likely I can stay
12	30 days with the situation down. I guess where I'm
13	going is you may have a situation where on a risk
14	basis and with some justification, you have a lot of
15	systems maybe that are not fully operable for some
16	extent of time.
17	I don't think that that's what the plants
18	want to do.
19	MR. REINHART: No, n.
20	CHAIRMAN BONACA: So how do you prevent
21	that kind of situation from evolving? Because, I
22	mean, you may have 103 plants doing it right, and then
23	somebody abusing that process by having, in fact, a
24	lot of systems out.

MR. REINHART: The intent is that when a

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

146 1 piece of equipment becomes inoperable, the plant 2 starts right then their preparation to repair that and restore it to operable. 3 4 The bigger picture is to focus on 5 accomplishing that and not go through a plant It's 6 transient unnecessarily. not to get а 7 relaxation. One caveat could be if there's three pieces of equipment out, you use your risk assessment 8 9 to tell you which is the most important to get back You get that back, and which is the second 10 first. most important. 11 12 CHAIRMAN BONACA: So you really are working out the issues, yeah. 13 14 DR. APOSTOLAKIS: It's conceivable that 15 you should have three pieces of equipment and say for each one you had a 72-hour front stop, but because you 16 17 have three, many you have to do it in 30 hours. 18 MR. REINHART: Yes, exactly. 19 DR. APOSTOLAKIS: How is that done? Ι 20 mean, is that allowed? Is that mandated here that you 21 do that? 22 No, the risk management MR. TJADER: guidance document, which will be the guidance or the 23 24 procedure, the process to be utilized, we envision. 25 It's not in there yet, as you can see, but we envision

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

147 1 requiring that as soon as the second piece of risk 2 significant equipment, whether it's tech spec or not, 3 becomes inoperable, that you are no longer in front 4 stop space. 5 You're in front stop space for single system inoperability. 6 7 DR. APOSTOLAKIS: Okay, okay. 8 MR. TJADER: But as soon as the second one 9 inoperable, you are then in the becomes risk assessment space, risk informed completion time space 10 11 determination. 12 I think there's three MR. REINHART: periods of time that we need to look at. 13 It's a 14 planning time, a real time when things are actually 15 happening and a post evaluation. I think all of the pieces have to fit together here, and particularly in 16 17 real time that licensee has to be tuned to do what's the safe thing to do right now. 18 19 DR. APOSTOLAKIS: Well, yeah, but I mean 20 we could say the regulations do the safe thing. 21 MR. REINHART: Well, I mean as far as 22 managing the risk, but then you have the cumulative 23 after a year or a cycle. You can go back and evaluate 24 your program and say, "How could I have done it 25 better? How can I approve it?"

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	There's different ways to use that risk to
2	evaluate and manage your plan.
3	DR. KRESS: Let's say you're operating
4	alone with one system map and you've got a risk
5	informed front stop and you move along and you still
6	haven't got it back in operation yet and then just a
7	similar chain goes out of operation, and you've got
8	two of them now. And you calculate the amount of
9	time it takes to reach your reach acceptance criteria,
10	but that's too short to get both of these back in
11	operation or get either one of them back in operation.
12	Now, what do you do? Do you have to shut down when
13	you reach that?
14	MR. TJADER: Yes, right. That's a typical
15	action.
16	DR. KRESS: That's a typical action to
17	shut down?
18	MR. TJADER: Typical action.
19	DR. KRESS: Okay.
20	MR. REINHART: Or go to an appropriate
21	mode. It might be
22	DR. KRESS: It may be a hot shutdown or
23	some
24	MR. BOYCE: Three, oh, three says, you
25	know, shut down to hot standby and then cold shutdown,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	and then it continues walking till you get down.
2	DR. APOSTOLAKIS: Mario, what time do we
3	have? We started 20 minutes late.
4	CHAIRMAN BONACA: The backstop.
5	(Laughter.)
б	CHAIRMAN BONACA: Twelve, forty-five
7	because then we have the meeting with Mr. Paperiello
8	who's coming.
9	DR. APOSTOLAKIS: We have more
10	presentations. So maybe, Bob, can you speed it up?
11	MR. TJADER: Okay. I'll try to run
12	through this if I can here.
13	Potential implementation structure.
14	Basically we envision that program requirements will
15	be stipulated in the tech spec admin. control section.
16	In other words, the PRA quality Reg. Guide 1.200 will
17	be referenced and required, and there may be Reg.
18	Guide 1.200-plus.
19	Essential guidance documents, such as Reg.
20	Guide 1.177 and the risk management guidance document,
21	which is the process there, would be, we envision,
22	would be referenced in the admin. control section of
23	the tech specs.
24	There will be licensee and industry
25	program

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	DR. APOSTOLAKIS: That's an interesting
2	point. One, one, seven, seven refers to permanent
3	changes, right?
4	MR. TJADER: Correct.
5	DR. APOSTOLAKIS: So here, huh? Blast.
6	Oh, so what
7	MR. TJADER: We envision that possibly
8	1.177 has to be enhanced to allow for guidance on how
9	to approve, you know
10	DR. APOSTOLAKIS: Even temporary.
11	MR. TJADER: limits for approving
12	certain forms
13	DR. APOSTOLAKIS: But the existing one is
14	for permanent change.
15	MR. TJADER: That's right.
16	DR. APOSTOLAKIS: Okay. Now, if we go the
17	South Texas way where they predetermine everything,
18	then 1.177 applies because this is a permanent change.
19	Whereas Southern California using a monitor is not
20	under 1.177 because it's not change.
21	DR. KRESS: No.
22	DR. APOSTOLAKIS: Why not? It's not
23	permanent. They recalculate all the time.
24	MR. REINHART: I think we have to
25	DR. APOSTOLAKIS: Excuse me. Are they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	correct or not?
2	DR. KRESS: No, they're conceptually the
3	same.
4	DR. APOSTOLAKIS: Your no refers to the
5	fact that we're not going to allow that.
6	DR. KRESS: NO, they're conceptually the
7	same.
8	DR. SHACK: You're allowing a certain
9	amount of cumulative risk, and whether it's rising
10	from a permanent change or a temporary, you know, what
11	you want to fix is the amount of cumulative risk
12	you're permitting.
13	DR. KRESS: That's right. That's right.
14	MR. REINHART: I might put some words into
15	South Texas' mouth here, but if I'm understanding what
16	they're saying, they will predetermine a large number
17	of configurations, but if they have one that's not in
18	their repertoire, they also have the capability to
19	handle it
20	DR. SHACK: I think we need to invite them
21	up here.
22	DR. APOSTOLAKIS: I understand that, but
23	I mean, everything in 1.177 assumed permanent changes.
24	So I don't see why Southern California Edison should
25	have to comply with this if they're recalculating all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	the time. We're making an additional assumption.
2	MR. TJADER: Well, if it doesn't apply to
3	them, then obviously we wouldn't put that in the
4	admin. control center.
5	DR. APOSTOLAKIS: The incremental core
6	damage probability was determined having in mind
7	permanent.
8	MR. REINHART: We will need additional
9	guidance whether it's a modification to 1.177 or an
10	additional reg. guide. Somehow we have to account for
11	both of these.
12	DR. APOSTOLAKIS: This is the plus then.
13	MR. TJADER: That's the plus.
14	DR. APOSTOLAKIS: Okay. Let me start
15	there. Okay.
16	MR. TJADER: There will be licensee
17	industry program guidance for implementing Initiative
18	4(b). That may or may not be required in tech spec
19	admin. controls section, and plus oversight guidance
20	must be established.
21	Initiative 4(b) relies on PRA quality, use
22	of real time PRA results to determine completion times
23	we discussed. It's significant change to the current
24	usage of licensee's use of PRA and will entail a
25	significant change to NRC review and oversight.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	Therefore the PRA modeling configuration,
2	risk management process and tool must be of high
3	quality and show acceptable results.
4	Pilots for PRA quality and Initiative 4(b)
5	are being implemented in parallel at the moment. Four
6	of the five, Reg. Guide 1.200 PRA quality pilots
7	involve tech spec amendments. There's SONGS, which is
8	a batter of OT chains, Columbia Generating Station DG,
9	diesel generator, OT changes, South Texas Initiative
10	4(b), and the preliminary condition of Initiative
11	5(b). One I don't have there is the non-tech spec one
12	which is Surry, which I think is 5069 change.
13	Risk management 4(b) pilots or South
14	Texas, Fort Calhoun, Hope Creek. At the moment I
15	think we're going to get another one, but it's not yet
16	their proposal these three pilots unfortunately
17	at the moment are not standard tech spec plants, and
18	we're interested in getting a standard tech spec
19	plant. We think there might be one on the horizon,
20	but it's not yet.
21	DR. APOSTOLAKIS: Yeah. Are you reviewing
22	the EPRI interim report as a part of the
23	MR. TJADER: Yes. That's the risk
24	management guidance document.
25	DR. APOSTOLAKIS: Yeah. What is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	154
1	meaning of a quantitative/qualitative risk assessment?
2	And how does one use RG-1.200 to review a qualitative
3	risk assessment?
4	MR. REINHART: I'm not sure what you're
5	DR. APOSTOLAKIS: Page 3-3, if you have it
6	with you, but you take my word for it. They use it.
7	They use those words.
8	MR. REINHART: I think that's one of the
9	things that's going to have in the 1.200 arena and
10	as the pilot goes I'm sure there's going to be some
11	places where we're going to say, "Well, what does this
12	mean? How do we do it?" And we need to clarify that.
13	DR. APOSTOLAKIS: And then it goes on and
14	says it's the top of the page "In addition, the
15	assessment may credit compensatory actions established
16	during the period being evaluated."
17	How does one do this?
18	MR. BOYCE: I don't want to directly
19	answer because I probably won't get it right, but what
20	I'll tell you is that where we are in the review of
21	this document, we did an acceptance review and
22	provided higher level comments, and then this document
23	is going to be resubmitted to us, and we'll do a more
24	detailed review of it.
25	DR. APOSTOLAKIS: So we will have another

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	meeting at some point in the future.
2	MR. TJADER: Oh, for sure.
3	MR. BOYCE: Right, but I don't think we've
4	really engaged it at the level you're asking.
5	DR. APOSTOLAKIS: But you will at some
6	point.
7	MR. BOYCE: I certainly hope we do, and
8	I'm looking at the reviewers in the audience who I'm
9	counting on to do that.
10	MR. TJADER: In general, this is going to
11	be a PRA quantitative assessment. However, that is
12	impossible to perform necessarily 100 percent of the
13	time, and so there could be qualitative bounding
14	considerations for some inoperabilities and things
15	like that.
16	In other words, to the extent that it's
17	possible, there will be some all out qualitative
18	assessments.
19	With respect to the second part of that
20	what was the second part of the question now?
21	DR. APOSTOLAKIS: The assessment.
22	DR. KRESS: Compensating actions.
23	DR. APOSTOLAKIS: Yeah, I mean, we're
24	making a big deal out of the quality of the PRA, and
25	then we're throwing a sentence like this there which

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	opens up gates now to do whatever you like.
2	MR. REINHART: Maybe a high level answer
3	to your question is that based on our initial look at
4	that proposed risk management guidelines we think some
5	work needs to be done.
6	MR. BRADLEY: I just wanted to speak to
7	that briefly because I was somewhat familiar with why
8	the guide was written that way.
9	Biff Bradley, NEI.
10	Generally plants, even if they're using
11	quantitative methods, also are looking at qualitative
12	insights on top. I mean, they're not just taking a
13	risk metric. You're also looking at what are the
14	insights coming out of the PRA. It really wasn't
15	intended to say you can do this strictly
16	qualitatively, but there may be a blended method, you
17	know.
18	And with regard to compensatory measures,
19	some of those are quantifiable. Others are not. I
20	mean, you know, if you rope off the other train or
21	limit maintenance on the other train, then that pretty
22	much means you don't need to, you know, take your
23	averaged unavailability for the other train into
24	account.
25	On the other hand, if it's compensatory

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	action, it's something like, you know, notifying
2	management or whatever. Obviously you can't quantify
3	that. So it depends on which measure you're taking
4	whether you can quantify the credit for it.
5	DR. APOSTOLAKIS: Well, there should be
6	some more detailed guidance.
7	MR. BRADLEY: Yeah, and I think as Tom
8	said, we're in the early stages of evolving that
9	guidance and ultimately there will be considerably
10	more detail on these types of things as we go through
11	the pilots and learn and incorporate that into the
12	document.
13	MR. REINHART: Hopefully the next revision
14	will be more detailed.
15	MR. TJADER: And then the pilots will test
16	these things that we're discussing about today. In
17	other words, quality, scope of PRA, configuration risk
18	management, and the process.
19	These are the big picture issues currently
20	reviewing, big picture review issues. Reliability,
21	the results are accurate. Repeatability, similar
22	plant configurations will result in similar completion
23	times. And it must be enforceable, and there must be
24	adequate oversight. Must have a quality PRA.
25	And that basically concludes my comments,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and I think with respect to some of the detail as far as limits and cumulative risk and determining what the AOT is, I know that in NEI and subsequent South Texas ones there are specific graphs that will discuss some of those details, and that might be the appropriate time to address some of that.

7 DR. LEITCH: How do we prevent the abuse 8 of the system? For example, how do we prevent 9 licensees from selectively managing the maintenance or 10 the out-of-service time on certain systems so that 11 they're bumping into the backstop?

12 I think the cumulative risk MR. TJADER: metrics that we come up with and goals that are 13 14 established for the plant, and plus existing 15 maintenance rule, availability, reliability goals for equipment will be an incentive not to abuse the 16 17 system. I'm not exactly sure what abuse the system You abuse the system and it seems to me that if 18 is. 19 you attempt to abuse the system, you will run into 20 high risk levels and therefore short completion times, 21 and it will tell you you shouldn't do that. 22 DR. APOSTOLAKIS: Unless you take undue 23 credit for compensatory measures. 24 MR. TJADER: Well, as Biff just said, and

that was the other thing I wanted to say in the second

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1	part of that compensatory measures, they have to be
2	able to assess them quantitatively in the PRA or they
3	have to be strict restrictions on what other systems
4	or equipment cannot subsequently become inoperable.
5	It's not just, oh, I'm going to station a
6	fire watch and therefore I can go another five hours.
7	No, there has got to be definite quantitative
8	judgments on the completion times should be and if
9	there are other Tier 2 type requirements that are
10	determined in 1.177, such as systems which should not

be inoperable, that would then be a hard and fast determination and require then the resulting shutdown action or whatever, getting out of the operability of the tech spec.

MR. REINHART: It might be good to go back and look at the different time periods again. Real time on a given configuration, the plant may be able to go to a backstop, but on the evaluation period when you look at the cumulative risk accumulated over the year, if that plant has abused it, it's certainly going to show up.

DR. KRESS: I don't think you ought to view hitting the backstop as an abuse because it's more of that for a defense in depth and actually, you know, if you hit it and shut down, why, it's a good

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

11

(202) 234-4433

159

	160
1	thing. I don't think you ought to view that as an
2	abuse.
3	DR. APOSTOLAKIS: That's not tan issue of
4	hitting the backstop. The issue is coming up with
5	oh, yeah, you have the 30 days. Well, but you should
6	have done it in 20 hours, and you actually claim, you
7	know, 45 because you take dubious credit.
8	MR. KRESS: Yeah, I agree with you on the
9	compensatory.
10	MR. TJADER: And, you know, from our
11	standpoint, we want our goals to have the plant in the
12	full-up configuration to the fullest extent that we
13	can, and so I'm looking to rather than call it abuse,
14	we are looking for ways to incentivize the licensee to
15	get to that point.
16	The technical way we were talking about
17	doing it was using the cumulative risk metric. What
18	I'm concerned about is because cumulative risk can act
19	over such a long period of time, it may not be enough
20	of an incentive. Okay?
21	And so if you have a 30-day backstop that
22	you're allowed you may leave the equipment out of
23	service because you can't get a contractor on site
24	within a week. So, you know, you just let it
25	languish.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	That's the scenario that is of my concern,
2	and so I would like to have some better way to
3	incentivize, something like as low as reasonably
4	achievable approach to risk, and it's something that
5	may come out of this pilot, is how best to do that.
6	I think an ALRA approach to risk makes a
7	lot of sense. Whether I can get rulemaking or not is
8	an entirely different question.
9	DR. LEITCH: It seems to me, too, that
10	there might be a distinction, a forced outage of a
11	system and a scheduled outage of a system. In other
12	words, what concerns me is like the HPSI system there.
13	You're talking about during that period of time a
14	voluntary decision to take a diesel out of service,
15	for example.
16	It seems to me it's a little different if
17	you're scheduling a diesel out of service versus a
18	diesel that breaks down, if that distinction is
19	recognized.
20	MR. BOYCE: Well, the Commission tried to
21	make a distinction for us in the SRM saying there's a
22	tradeoff between operational flexibility and PRA
23	quality, and like the 30 days, the reason we have that
24	backstop there is that's the most we can conceive of
25	for operational flexibility that you need to fix

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

equipment in.
Typically we would expect it to be done
faster. So even within that 30 days of operational
flexibility we'd still like to incentivize if
possible.
So I think the Commission is trying to
tell us to make that kind of judgment if we can.
MR. TJADER: Well, it's certainly the most
we can conceive for plan maintenance.
Let me, if I could, invite Biff Bradley up
to do his presentation. I think what we ran into
unfortunately with the subcommittees and we're running
into here, too, is that unfortunately we're eating up
all of the time.
DR. APOSTOLAKIS: Okay. So shall we move
on?
CHAIRMAN BONACA: George, if you could end
at 20 of one, it would be helpful because this will
give us five minutes to go to the head before we get
Paperiello here.
DR. APOSTOLAKIS: Oh, we've got time for
him to come later.
CHAIRMAN BONACA: And then we have to have
lunch, too.
DR. APOSTOLAKIS: I think we are already

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	163
1	into the details. So do we really need the foundation
2	and the objectives? I mean, it's up to you, Biff.
3	Jumping to Slide 4 or something, five. It's up to
4	you. It's up to you.
5	MR. BRADLEY: Okay. Thanks.
6	Let me go ahead. I'm Biff Bradley of NEI.
7	I also have at the table Wayne Harrison and Bill
8	Stillwell from STP, who is one of our pilot plants of
9	4(b).
10	In the interest of time I'll try not to
11	repeat anything that the NRC staff said, other than to
12	say I generally agree with most of the comments that
13	were made, and the areas that need additional work I
14	would agree.
15	DR. APOSTOLAKIS: You put the word "most"
16	as a defense in depth measure?
17	MR. BRADLEY: Yeah.
18	DR. APOSTOLAKIS: In case you disagree
19	with one, but you
20	MR. BRADLEY: It's possible, but generally
21	speaking I'm in general agreement with the staff's
22	presentation.
23	Okay. The only comment I wanted to make
24	here is just all plants are required by regulation to
25	have a configuration control program right now, even

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	164
1	though we have the existing tech specs. That's
2	(a)(4), the maintenance rule that went into effect in
3	late 1999.
4	All plants use PRA. All plants use their
5	internal events at power PRA as part of their (a)(4)
6	program.
7	We have a considerable amount of
8	experience doing this industry-wide already, and
9	basically what we're talking about here is increasing
10	the rigor of what we're doing as a tradeoff for
11	getting additional flexibility in the deterministic
12	tech specs.
13	I did want to mention also it came up
14	earlier. Industry is ready whenever ACRS is to come
15	in and give you a detailed technical presentation on
16	the tools that we're using, the safety monitors and
17	the other types of tools we're using to do this. This
18	came up at the subcommittee meeting, and EPRI has a
19	considerable amount of activity in this regard.
20	And just to reiterate, we have already
21	done some preparation for that and just need to have
22	a date set. We will be happy to come talk
23	DR. APOSTOLAKIS: Are you talking about
24	the full committee or subcommittee?
25	MR. BRADLEY: Whatever is your desire. We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	can do either, but as much detail as you want. We're
2	ready when you are.
3	DR. APOSTOLAKIS: Okay.
4	MR. BRADLEY: On the objectives, just a
5	couple of things I wanted to mention. With regard to
6	the second bullet, one of the reasons we wanted to try
7	to preserve the front stops in the existing format and
8	content of tech specs was operators have been using
9	these documents for, you know, 20 or 30 years, and we
10	don't want to do something that just radically changes
11	what the operators in the control room are having to
12	deal with.
13	So there was an incentive there to try to
14	maintain the existing form of tech specs, but at the
15	same time allow this option to go to the configuration
16	risk management AOT.
17	Also, it's not one of our objectives to
18	either increase overall unavailability of systems or
19	plant risk through this program. All we're trying to
20	do is optimize the way we take equipment out of
21	service and get flexibility where currently we're
22	constrained by tech specs.
23	Over time this should not result in
24	increased unavailabilities. There are a number of
25	mechanisms out there that would preclude that, such as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	the other elements of the maintenance rule, the
2	oversight process, particularly if we go to MSPI where
3	you're having to track and maintain the availability
4	and the reliability of your key safety functions
5	systems.
6	So, again, it's not our intent to
7	generally change the risk profiles.
8	I think the staff touched on all of the
9	comments here. So I'll go on.
10	Pilot plants. We have South Texas here.
11	Additionally we have Hope Creek, which is a BWR; Fort
12	Calhoun, which is a small Westinghouse plant that's
13	doing the HPSI either the two or three loop; I
14	forget but they're doing the HPSI specific CEOG
15	method.
16	We also have a number for some reasons
17	we've got a lot of plants coming out of the woodwork
18	showing interest in being a pilot. We have two
19	additional plants that are seriously interested in
20	being a pilot. I guess at some point we're going to
21	have more pilots than we can work with here. So
22	DR. APOSTOLAKIS: Can older plants be
23	pilots?
24	MR. BRADLEY: I don't think so. That's
25	NRC's decision as to how many pilots you can have, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	6	7
_	~	

	167
1	there is certainly a lot of interest in this.
2	The risk management guidance as we
3	discussed is developed by EPRI, and it basically
4	builds on the existing (a)(4) guidance. That was our
5	starting point.
6	As we talked about earlier, there's much
7	work that remains to be done on this. We're not
8	trying to claim this is the final form of the
9	guidance. You mentioned a couple of areas where those
10	are the kinds of areas where we have to flesh out a
11	lot more detail in terms of things like credit for
12	compensatory measures or qualitative/quantitative
13	methods, blended methods, and how those could be used.
14	What we've discussed with the NRC staff is
15	taking the existing version of the guidance and moving
16	into the pilot phase and actually using the pilots to
17	flesh out the additional detail.
18	PRA scope and quality obviously important
19	for this initiative. Obviously internal events at
20	Power and LERF will be a 1.200. We envision it as the
21	capability Level 2 of the ASME standard as endorsed by
22	1.200.
23	We also believe you need to have a PRA for
24	external events, including seismic, as well as fire.
25	One challenge for this initiative is that

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 standards for fire, in particular, are a couple of 2 years away, and then there's the time necessary for NRC to endorse that through a subsequent revision to 3 4 Req. Guide 1.200. So these plants are going to be 5 ahead of the curve with regard to fire and possibly external events, and we will be in that box, the 6 7 infamous box where plants would theoretically get low 8 priority. It was discussed that that won't happen 9 here, but this is a good example of why that low 10 11 priority thing doesn't always work. 12 Another thing, clearly you have to be able to quantify configuration risk. That's what your 13 14 tool, your safety monitor, your pre-assessment 15 database, whatever you're using; you have to have that 16 capability, and that's qoinq to have to be 17 demonstrated, and to some degree we'll have to work with the NRC on the level of detail. 18 Another important aspect of this is the 19 20 ability to determine and track aggregate or cumulative 21 Again, it's not our intent to increase risk risk. 22 over time. So we have to have a threshold and some 23 trigger there to keep that from happening, and 24 obviously you'll have PRA updating requirements as well. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

168

	169
1	Maybe STP will. I wasn't planning to
2	actually show any numbers here, but I did want to
3	discuss just in general the metrics that the EPRI
4	guidance will be using.
5	One issue is whether you need and we've
6	been through different versions of this so far, and I
7	don't know where we'll ultimately settle out, but one
8	question is do you need separate guidance for planned
9	maintenance versus emergent conditions. Should you
10	have a smaller window and then a little wider latitude
11	if you have an emergent condition?
12	DR. POWERS: Excuse me just a second.
13	MR. BRADLEY: Sure.
14	DR. POWERS: Steve, do you have to take
15	over? We have a conflict; we've got a problem. The
16	Chairman just walked out of the oh, George is
17	chairing. That's okay.
18	Sorry, George.
19	DR. APOSTOLAKIS: I'm okay.
20	MR. BRADLEY: There are three things that
21	we're looking at, and these are exactly the same
22	approach that's in the existing (a)(4) guidance. One
23	is the temporary risk increase, that is, the
24	integrated or the incremental core damage probability.
25	Of course, this will be the same for LERF, and that's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	the integral of the risk increase over time that you
2	have the equipment out of service.
3	Right now what we have in the (a)(4)
4	guidance, it allows you to have an ICDP of up to ten
5	to the minus five as long as you're incurring risk
6	management actions or whether we'll maintain that same
7	thing going into this remains to be seen.
8	DR. KRESS: That's each time you
9	MR. BRADLEY: Yeah, for a specific
10	configuration, ICDP is limited to ten to the minus
11	five.
12	Now, obviously the question becomes how do
13	you define a configuration, and one way is the way STP
14	does it, which is to roll it up on a work week basis.
15	DR. KRESS: Is there any thought that
16	those guidance acceptance criteria should be different
17	for different plants?
18	MR. BRADLEY: Yes. I think it is possible
19	that one size will not fit all plants because of
20	significant differences in baseline risk values.
21	DR. KRESS: Yeah, yeah. So there is some
22	thinking along that line.
23	MR. BRADLEY: Yes, yes.
24	DR. APOSTOLAKIS: Also, again, the EPRI
25	document, two concepts that I don't know where they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	belong. One is that there will be a nice EDP of ten
2	to the minus six, and that will be a target value,
3	and then a ten to the minus five ICDP which will
4	define the maximum.
5	So which one are you referring to here?
6	MR. BRADLEY: Well, I think that comes
7	from the first bullet you're seeing here where you
8	would plan to a ten to the minus six ICDP, but for an
9	emergent condition you could go higher.
10	DR. APOSTOLAKIS: Oh, I see.
11	MR. BRADLEY: I think that's how those
12	DR. APOSTOLAKIS: Aren't these numbers
13	very low? Ten to the minus six, for heaven's sakes,
14	is a way down there.
15	MR. BRADLEY: Well, an ICDP, for a
16	configuration it's not. It's not what I would call
17	really low. That's typically, you know, we're using
18	numbers in that range right now in (a)(4).
19	DR. APOSTOLAKIS: This would be the mean
20	value of something, I suppose.
21	MR. BRADLEY: Right. The second thing is
22	what we call the speed limit in this slide, but
23	basically that's if you were at the condition you're
24	at. If you were there for an entire year, what would
25	your CDF be, you know, and right now that's a ten to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	the minus three limit in the (a)(4) guidance.
2	And finally the cumulative risk. That's
3	the over time, over an operating cycle or year or what
4	have you. What is the delta risk that you've incurred
5	through this?
6	And the (a)(4) guidance right now states
7	that the permanent change criteria of 1.174 would be
8	used there. So that was the small change criteria of
9	1.174 is ten to the minus five. A very small change
10	is ten to the minus six. Again, we haven't gotten
11	into the down and dirty discussions with the numbers
12	yet with NRC, but this is generally how we have tried
13	to do it.
14	The other important aspect of this is
15	after you've assessed risk and determined what the
16	risk of the configuration is, it's how do you manage
17	the risk. You know, we talked about calling this risk
18	management tech specs. Well, the big, important
19	element of this is managing the risk, and there are
20	many ways that can be done, and I've just listed some
21	examples here.
22	One is take the existing action that's in
23	tech specs, if it's shut down or whatever.
24	A real important one is planning and
25	sequencing. For planned maintenance, obviously you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

173
want to plan your maintenance out so that you're not
incurring risk spikes or, you know, you want to do
that the smart way. That's really the whole point of
(a)(4).
You can train and pre-stage to speed up
maintenance activities and limit your time duration.
So that will also limit your risk; can provide for
rapid recovery; actually set the maintenance up so
that you can get the equipment back to functionality
quickly.
Another classic risk management thing is
to prohibit maintenance on the opposite train, and
then, of course, shut down the plant. That's the tech
spec, and one of the challenges for our risk
management guidance is factoring in, okay, when do you
shut down.
Right now the (a)(4) guidance says one of
the things you can consider is shutting down, but it
doesn't tie that to any threshold, and ultimately for
4(b), we may need to tie it to a threshold.
So finally, in conclusion, it says
challenging from the standpoint that it does clearly

23 require a high quality and a fairly full scope PRA, 24 and again, we're still working on the risk management 25 guidance. We want to flesh that out through the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	pilots.
2	And NRC wants this to be exportable, to
3	use Tom Boyce's phrase, to other plants beyond the
4	pilots. So their challenge is to what level of detail
5	do we capture all of this risk assessment and
6	management in the EPRI guidance and in the tech specs
7	itself to the point where we can export it to other
8	plants.
9	So unless there are any questions I'll go
10	ahead and turn it over to STP.
11	DR. APOSTOLAKIS: Go ahead, please. You
12	have quite a number of slides here.
13	MR. HARRISON: A lot of them are review
14	stuff that
15	DR. APOSTOLAKIS: Can we do that in real
16	time or is it a predetermined? Predetermined?
17	MR. WAYNE HARRISON: Absolutely. Okay.
18	Let's go ahead and go to Slide well, I'll introduce
19	this.
20	I'm Wayne Harrison, South Texas project,
21	and Bill Stillwell from our PRA organization.
22	I'll go quickly over what our pilot
23	application is.
24	Next slide.
25	As we said, we're an industry pilot. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 think the main thing I want to address here on this 2 slide is that we've been doing this for a while, and 3 the risk informed technical specifications, the 4 question was asked about what's risk management. We looked at risk informed technical specifications as 5 one part of risk management. 6 7 We apply configuration risk to a number of different things at STP, and this is just one aspect 8 of trying to safely operate, safely operating the 9 10 plant through risk management. 11 Okay. Next slide. 12 I think we've talked about all of those between Biff and the NRC. So let's go ahead on the 13 14 next slide. 15 The scope and content of our technical specification pilot application is shown here. These 16 17 are the components and functions that are covered in what is a pretty broad scope application. I'd like to 18 19 point out that these are all covered and only covered 20 in most one through four. None of these are in the 21 shutdown modes of five and six. 22 And these were selected on the basis that 23 they're all quantified in our PRA so that we can use 24 the PRA to quantify the extended allowed outage time. That's how we selected this population of technical 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	specifications.
2	Next slide.
3	This is our draft technical specification
4	3.13.1. This is our corollary of the comparable
5	specification to what Bob Tjader showed on the
6	standard spec. We're not an ITS plant. So this is
7	what we were proposing, and each of those technical
8	specifications you saw listed on the previous slides
9	will have words that invoke technical specification
10	3.13.1.
11	Once we have determined that we're
12	planning to go beyond the what is called the front
13	stop time or what is the existing allowed outage time
14	for any system we could apply technical specific
15	3.13.1. Now, as the configuration changes, we have
16	the capability to requantify and reevaluate what the
17	allowed outage time would be and manage to that.
18	Once you invoke 3.13 or once you're
19	applying it for any technical specification, you would
20	continue to apply 3.13.1 until no technical
21	specification system is beyond its front stop time.
22	In other words, you're back into your existing allowed
23	outage time. Nothing is beyond its time.
24	Biff talked about when do you go to
25	shutdown. This one, if you look at the last action

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 here, the way we've structured this is our criteria is 2 1Ethe minus five incremental to core damage 3 probability, and if we encounter a situation where we 4 are above that threshold, then we would declare the 5 action or the LCO not met for the technical specification that put us here and take the required 6 7 actions of that technical specification, which would likely include the shutdown. 8 So that's our hook at this point, and that 9 still, of course, will be under staff review. We plan 10 11 to submit this next month. 12 The next is just page а sample specification. I'm not going to go through that in 13 14 any detail. I'm just going to use this as an 15 opportunity to introduce Bill and tell you that he's 16 going to talk about or touch on the PRA quality. We 17 understand that that's going to be discussed with ACRS this afternoon. 18 19 But he's going to give you, I think, some valuable insights into implementation. We already use 20 21 risk metrics, as I said, for managing our work weeks, 22 briefed our Operations Department, and we our operators, our licensed operators on 23 this risk 24 informed technical specifications. They're 25 enthusiastic about this. They're accustomed to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

177

	178
1	working in this kind of environment, and they're
2	looking forward to using these.
3	So without any further discussion, I will
4	turn it over to the man who knows the real story here.
5	MR. STILLWELL: I hope.
6	My name is Bill Stillwell. I'm the PRA
7	supervisor at South Texas project.
8	Can we have the next slide, please?
9	DR. APOSTOLAKIS: No one is going to talk
10	about this?
11	MR. WAYNE HARRISON: That one?
12	DR. APOSTOLAKIS: Let's go to eight.
13	MR. WAYNE HARRISON: You want to go
14	through that?
15	DR. APOSTOLAKIS: Well, I'm trying to
16	understand B.
17	MR. WAYNE HARRISON: Okay. Let me. B is
18	an STP specific thing. Remember STP has three trains.
19	B is a new action for STP.
20	Right now this only by the way, this
21	only shows the LCO of this technical specification.
22	We're not proposing to do anything to the surveillance
23	requirements. So I'm not showing the surveillance
24	requirements.
25	But right now we only have action alpha in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	this technical specification for essential cooling
2	water. If we don't meet if we have more than one
3	train of essential cooling water inoperable, we're in
4	technical specification 303. However, because of the
5	redundancy in our system and the capability of our
6	systems, STP does not lose safety function with more
7	than one train of ECW inoperable.
8	So it's appropriate for us to have an
9	allowed outage time for more than one train of ECW
10	inoperable.
11	DR. APOSTOLAKIS: But is B the result of
12	an evaluation that involves the incremental core
13	damage probability or is it just a safety, I mean, a
14	deterministic thing. As you say, you know, we have
15	three trains. We can do it with one.
16	MR. WAYNE HARRISON: Right. There's two
17	answers to that. The answer to both those questions
18	is yes. The one hour time frame is deterministic
19	because right now that's consistent with the one hour
20	in 303. So we're not going to debate the staff on
21	what the allowed outage time should be for two trains.
22	DR. APOSTOLAKIS: So that's a front stop.
23	MR. WAYNE HARRISON: That's a front stop.
24	DR. APOSTOLAKIS: Okay. So where is the
25	risk informed?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	180
1	MR. WAYNE HARRISON: The risk informed
2	part would be within that one hour we can either
3	restore it or you see, we have the option to go apply
4	the requirements of technical specification 313, which
5	is this, and Bill
6	DR. APOSTOLAKIS: Oh, 313 is a
7	quantification?
8	MR. WAYNE HARRISON: Right.
9	DR. APOSTOLAKIS: Okay, okay. Go ahead.
10	MR. WAYNE HARRISON: And determine what an
11	appropriate
12	DR. APOSTOLAKIS: But where does it say
13	that? Where does it say go to three oh, yeah,
14	yeah, yeah, yeah. Okay. Go ahead.
15	MR. STILLWELL: Next slide.
16	Okay. I guess Reg. Guide 1.200 is going
17	to be discussed this afternoon. As part of the risk
18	informed technical specifications, we're also a pilot
19	on implementation of Reg. Guide 1.200. As part of
20	that, we are going to be making a submittal the middle
21	of August that will discuss how we feel that we
22	satisfy the requirements of the ASME standard and Reg.
23	Guide 1.200.
24	As I understand it, in October the NRC
25	will come and review the PRA quality, and at the end

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	we will evaluate how well we think we did and how well
2	the NRC thinks we did and are there any recommended
3	changes to Reg. Guide 1.200.
4	At the same time we're going to define the
5	quality that's necessary in the PRA to support risk
6	informed technical specifications.
7	Everybody has mentioned that we've been
8	doing this. We've been doing this since 1996. We use
9	the program to satisfy the requirements of 10 CFR
10	5065(a)(4). In the program, we apply a non-risk
11	significant threshold of one times ten to the minus
12	six incremental core damage probability for our
13	maintenance week.
14	The program also has a higher limit, one
15	times ten to the minus five that's a potentially risk
16	significant threshold. These thresholds are the same
17	as those we were talking about for risk informed
18	technical specification. In a couple of slides, we'll
19	see what's the effect or what we have seen over the
20	past six years.
21	We've had extensive experience applying
22	the configuration risk management program. We
23	routinely use it to manage weekly work, and we've
24	effective applied that process to a recent extended
25	diesel generator allowed outage that we'll talk about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	in a couple more slides.
2	I'm going to see if I can answer some of
3	the questions and concerns that came up in earlier
4	discussions. We are a precalculated configuration
5	risk management program. At the same time we're also
6	real time. It takes us eight minutes to do a
7	calculation to support a change in maintenance
8	configuration.
9	We have an on duty risk management person
10	that gets a phone call within 15 minutes. If a
11	configuration develops that's not covered by the
12	existing precalculated, we have almost consistently
13	gotten an answer back to the plant staff within an
14	hour, no matter what time of the day or night.
15	Backstop. Just for information, all of
16	our backstops are pre-analyzed on the system basis
17	already. That will be part of the submittal that
18	Wayne was talking about. In the submittal we looked
19	at individual component or train configurations and
20	all possible configurations on a system level. So we
21	would look at Train A, Train B, Train C, and all
22	combinations of those three.
23	The tool that we use and most tools that
24	I've seen, I have the capability to reprioritizes and
25	return to service. Arturo (phonetic) will give you a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

183 1 ranked list of components to return to service saying, "Do this for the biggest bang, this other one, and 2 finally this last one." 3 4 You had a question on Reg. Guide 1.177 and whether this would be a 1.177. My opinion, and it's 5 my opinion, Reg. Guide 1.177 would be used if we 6 7 wanted to change a front stop limit rather than a preanalyzed configuration. So Reg. Guide 1.177, the 8 9 submitted would say apparently we have seven days to 10 the front stop. We want to go to 14 days as a front 11 That would be Reg. Guide 1.177. stop. 12 DR. APOSTOLAKIS: Any permanent change. MR. STILLWELL: That would be a permanent 13 14 change. These are not permanent changes. 15 DR. APOSTOLAKIS: Well, if they're predetermined though. 16 17 MR. STILLWELL: They're not permanent. We're only going to be there for a limited amount of 18 19 We just happened to calculate a large number time. 20 of --21 DR. APOSTOLAKIS: What do you mean by 22 Permanent means for the rest of the "permanent"? 23 licensing basis. 24 MR. WAYNE HARRISON: I think what you find 25 though is that the number of times that you will

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	actually go in and apply risk informed technical
2	specifications will be relatively uncommon per time
3	per year. It's not like every time I
4	DR. APOSTOLAKIS: No. I think the way I
5	see, you know, the subcommittee we had didn't really
6	go into details, right? It was a fairly high level
7	overview of what's going on, and I think when we take
8	up Mr. Bradley's offer and maybe organize another
9	meeting where we're actually going into details like
10	this, because we really don't have time today to get
11	into that and the quality issues and this and that.
12	I really like Slide 11. How many
13	utilities have done this? How many utilities have
14	considered zero maintenance CDF and then added the CDF
15	due to on-line maintenance?
16	I mean, this is a very interesting slide.
17	It's not to scale, I hope.
18	MR. STILLWELL: It's not to scale.
19	DR. APOSTOLAKIS: Okay. Bill, what do you
20	want to tell us about this?
21	MR. STILLWELL: Basically this is an
22	example of one of the presentations the operators
23	give. As we change the configuration, you'll see that
24	we actually will present the speed limit, as it were.
25	What is the absolute change of core damage frequency

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	if you assume you're going to be here for a year?
2	So that would be equivalent to the ten to
3	the minus three that's proposed.
4	CHAIRMAN BONACA: So the limit is what,
5	two?
б	MR. STILLWELL: Two is, in this case, two
7	times the face cord and frequency.
8	CHAIRMAN BONACA: I'm sorry? I didn't
9	hear you. If you could speak.
10	MR. STILLWELL: The two is normalized.
11	It's normalized to
12	CHAIRMAN BONACA: So it's not a limit.
13	MR. STILLWELL: It's not a limit.
14	CHAIRMAN BONACA: Okay. The limit would
15	be the lower.
16	MR. STILLWELL: The limit in terms of this
17	scale would actually be higher.
18	CHAIRMAN BONACA: Higher?
19	MR. STILLWELL: In terms of the limit is
20	ten to the minus three. That would be a factor of 100
21	for us.
22	CHAIRMAN BONACA: Wow.
23	DR. APOSTOLAKIS: No, no, no, no, no.
24	Okay. So this is a time history, I suppose.
25	MR. STILLWELL: Right. This would be a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

186 1 time history for an average maintenance week, as an 2 example. DR. APOSTOLAKIS: 3 Okay. 4 MR. STILLWELL: And this is one presentation tool that the operators have. 5 CHAIRMAN BONACA: You said the factor of 6 7 100? 8 DR. APOSTOLAKIS: Yeah, because they're a 9 very low CDF. 10 MR. STILLWELL: Our baseline core damage frequency is --11 12 DR. APOSTOLAKIS: Three ring. don't 13 CHAIRMAN BONACA: Ι quite 14 understand. 15 DR. APOSTOLAKIS: No, he didn't say that they were going to go a factor of 100, but the speed 16 17 limit, if it were ten to the minus three, it's about a factor of 100. 18 19 MR. STILLWELL: You couldn't stay there 20 long, you know, because you're going to hit your other 21 You other metrics are going to quickly metrics. 22 become controlling if you spend much time up in that 23 vicinity. DR. APOSTOLAKIS: In fact, on 13 you have 24 25 the CDF, right? Slide 13. Look at that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	MR. STILLWELL: Let's go to Slide 13 if
2	you can.
3	DR. APOSTOLAKIS: You see, it's on the
4	order of ten to the minus five.
5	MR. STILLWELL: This is six years' worth
6	of history of South Texas Project. Both units
7	represented, and you'll see that maintenance actually
8	goes up and down throughout the year for the plant.
9	These are cumulative annual. So the '04 is weekly,
10	and we track it on an annual basis. Annual core
11	damage frequency modified week by week.
12	MR. BRADLEY: Is that the diesel outage on
13	the
14	MR. STILLWELL: The far right is the
15	diesel outage that we just completed. We've been
16	doing this since 1996.
17	The ten to the minus five average annual
18	core damage frequency is actually based on our current
19	model. It's not the average of the lines. So we
20	calculate an average based on our current PRA and then
21	it has just dropped down slightly. So the blue line
22	is actually not an average.
23	CHAIRMAN BONACA: Now, you said that spike
24	is due to the diesel outage? You don't have their own
25	tech specs, or it allowed to take one out? You have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	three diesels?
2	MR. STILLWELL: We have three diesels.
3	CHAIRMAN BONACA: So you do have an
4	ability to take it out even before you have this
5	implemented.
6	DR. APOSTOLAKIS: I would be careful here
7	using the word "spike." I mean, look at the scale.
8	CHAIRMAN BONACA: I understand that.
9	DR. APOSTOLAKIS: One, point, two; one,
10	point, four.
11	CHAIRMAN BONACA: Yeah, but the spike gets
12	back to the thread.
13	MR. REINHART: If it was a log scale you
14	wouldn't even see it.
15	DR. APOSTOLAKIS: Yeah.
16	CHAIRMAN BONACA: He mentioned it. He
17	used the word "spike," and that's why I referred to
18	that.
19	DR. APOSTOLAKIS: I know, but Bill
20	MR. STILLWELL: I'll clarify it.
21	DR. APOSTOLAKIS: I know him very well.
22	MR. REINHART: This is Mark Reinhart.
23	When you asked about that diesel outage,
24	Mario, South Texas came in for an amendment request to
25	have a one-time extension to do that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	CHAIRMAN BONACA: Okay.
2	MR. REINHART: So they used the 4(a)
3	approach, but on an one-time extension.
4	MR. STILLWELL: And we'll talk about that
5	in the last two slides.
6	DR. APOSTOLAKIS: Looking at the clock,
7	you really have to wrap it up. So tell us what is the
8	most important thing you wanted to tell us.
9	MR. STILLWELL: The most important thing.
10	We have been doing this for six years.
11	DR. APOSTOLAKIS: Right.
12	MR. STILLWELL: We have been controlling
13	maintenance in accordance with the limits that we're
14	trying to establish or that we're working toward in
15	the EPRI and NRC code. The intended one is ten to the
16	minus six.
17	In the course of the six-year history, we
18	have exceeded the ten to the minus six limit two
19	times.
20	DR. APOSTOLAKIS: That's interesting.
21	That's it?
22	MR. STILLWELL: That's basically it.
23	DR. APOSTOLAKIS: Well, gentlemen, I have
24	to apologize for cutting short your presentations, but
25	we will do what Biff offered in one of these months.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	I guess you are coming to Washington quite a lot.
2	MR. STILLWELL: Right.
3	DR. APOSTOLAKIS: We're going to have a
4	more detailed presentation. Maybe at some point when
5	the staff will have had the chance to review that EPRI
6	document and have detailed comments and so on, then it
7	would be appropriate perhaps.
8	When do you think? What time frame are we
9	talking about? The fall?
10	MR. BOYCE: Probably.
11	DR. APOSTOLAKIS: Probably the answer was.
12	MR. BRADLEY: We can certainly support
13	that.
14	DR. APOSTOLAKIS: No, I know you can, but
15	the staff. I would like the staff to have reviewed,
16	to have had some time to review it.
17	MR. BOYCE: Yeah, I'd like to say the
18	fall. As I understand, the submittal is going to come
19	in next month. What we probably need to do is
20	actually do a site visit, and we need to engage some
21	of our inspection oversight type of people.
22	DR. APOSTOLAKIS: Okay.
23	MR. BOYCE: Because that's where we think
24	the risk management guide really needs some of that
25	inspection experience. So if the schedule holds, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	fall would be pretty
2	DR. APOSTOLAKIS: Maybe in the October-
3	November time frame we can have a day subcommittee
4	meeting.
5	MR. BOYCE: All right.
6	DR. APOSTOLAKIS: Very good. Well, do you
7	gentlemen want to say anything else as a parting
8	remark? Biff.
9	MR. BRADLEY: I think not. We've had a
10	positive, constructive working relationship with NRC
11	staff on this, and we hope to continue it, and we
12	recognize it's probably a multi-year thing to get this
13	in place. It's not a simple thing, but there's a lot
14	of enthusiasm for this effort, and I think now that we
15	have PRA standards and Commission direction on scope,
16	I think it enables these kinds of things in a better
17	way than we would have had in the past.
18	DR. APOSTOLAKIS: Very good. Back to you,
19	Mr. Chairman.
20	CHAIRMAN BONACA: Thank you.
21	That was informative and a good
22	presentation.
23	We will recess now until 1:45, and
24	DR. APOSTOLAKIS: Two minutes?
25	CHAIRMAN BONACA: What?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	DR. APOSTOLAKIS: Oh, 1:45.
2	CHAIRMAN BONACA: I said 1:45.
3	(Laughter.)
4	DR. POWERS: He's a PRA type. He came
5	within an order of magnitude.
6	CHAIRMAN BONACA: So we don't need to be
7	on record until 1:45.
8	(Whereupon, at 12:41 p.m., the meeting was
9	recessed for lunch, to reconvene at 1:45 p.m, the same
10	day.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	193
1	AFTERNOON SESSION
2	(1:59 p.m.)
3	CHAIRMAN BONACA: We're back into session.
4	And now we have on the agenda Reg. Guide
5	1.200 and SRP 19.1, and Professor Apostolakis.
6	DR. APOSTOLAKIS: Okay. We wrote a letter
7	in September of 2003, in which we recommended that
8	Regulatory Guide 1.200 be issued for trial use with a
9	number of pilot plants. So the staff is here today to
10	brief us on the status and findings so far from the
11	five pilots, I believe.
12	So Ms. Drouin.
13	MS. DROUIN: Okay. Thank you.
14	I'm Mary Drouin from the Office of
15	Research, and with me is Donald Haroldson from the
16	NRR.
17	Just one quick correction. We haven't
18	actually started any pilots. So we don't have any
19	lessons learned at this point. So we're going to try
20	and give you a status of where we are and what lessons
21	we hope to learn from implementation of the pilot.
22	DR. SHACK: What lessons you should have
23	learned.
24	DR. APOSTOLAKIS: Have you selected the
25	pilots?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	MS. DROUIN: Yes, yes. So we're going to
2	get into that.
3	Okay. The first viewgraph.
4	Okay. So we're here just to inform you
5	about where we are today, what the current activities
6	are, what the pilots are going to be, the schedule for
7	the pilots, what the actual applications for each of
8	the pilots are. We're going to walk through that
9	today.
10	I'll give you a little bit of background,
11	go back over to remind you what were the objectives of
12	the regulatory guide, the purpose of the pilots, what
13	is the scope of the pilot applications with our staff
14	review. This is a very important item here that
15	Donnie will get into, and the schedules, and
16	ultimately our conclusions.
17	Go ahead.
18	Okay. If you remember, back in April, I
19	believe, of 2002, ASME published the standard for
20	Level 1 internal events, full power, also including a
21	limited Level 2 LERF. They also ultimately came out
22	with an addendum about almost a year after that
23	because there was a lot of interchange with ASME and
24	the public in terms of our endorsement in the
25	objections that we took in our draft guide of 1.200.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	And we came to resolution on most of the
2	objections. There are still some clarifications that
3	we hope to resolve during the pilots.
4	Also there's NEI 0002, which is the PRA
5	peer review process guidance that we have up there
6	that most of the utilities have used. It's really
7	much better than most. It's all of them except San
8	Onofre have used this guide.
9	Also, in Regulatory Guide 1.200, we give
10	our staff position on what NEI calls the self-
11	assessment process where they have gone through the
12	peer review criteria and compared it to the ASME
13	standard and identified where there's discrepancies,
14	where they're the same, and then for the discrepancies
15	of the differences, they have some guidance, some
16	self-assessment that the licensee has to do to bring
17	themselves up to the standard.
18	In some of those we agree that the
19	criteria was the same as the standard, but in some
20	places we don't feel the peer review adequately
21	addressed the standard, and so those we hope to also
22	work out during the pilots.
23	SONGS did do a peer review, but it was
24	following the ASME standard, and a lot of lessons came
25	out of that. We actually made changes to Reg. Guide

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 1.200 based on some of those lessons learned. And we 2 hope to work through more of those during the pilots. 3 Then we had a consensus plus, you know, 4 the letter from your committee that said move forward; 5 implement this for trial use for the pilots, which is where we're starting out. We're putting together the 6 7 guidance for the staff reviews and scheduling out the 8 pilots. 9 Next one, please. Going back through and just reminding 10 11 again what were the objectives of, you know, the 12 regulatory guide, basically it's to address the question of PRA quality; that when we look at risk 13 14 informed activities do we have the confidence in these 15 base PRAs, the insights and the results that are being lifted from them in the decision making process. 16 Do 17 we have confidence in those? 18 DR. POWERS: I'm seeing your Mary, 19 struggling enormously again to remember how it is that 20 we declare a PRA to be adequate. I know that we can 21 certainly look and see if the scope is sufficient, and 22 we can certainly look at the databases that have been 23 employed. 24 But how do we know that it's adequate? 25 For instance, if it comes back and says, "Well, the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

196

	197
1	reliability of this system is such that it fails ten
2	to the minus third times per demand," and the system
3	in question fails. We don't know anything, do we?
4	MS. DROUIN: I guess I don't understand
5	your question because I would answer your question
6	with another question. How do you know that you have
7	any confidence in any engineering analysis, that it's
8	adequate enough to support the application?
9	So my question is why is this question
10	being it looks like you're asking it unique to PRA.
11	DR. POWERS: If I do an engineering
12	analysis and it says that the member will stand up
13	here and support the train that runs over it, and if
14	the train runs over it and it doesn't support it, then
15	I know it was inadequate.
16	MS. DROUIN: Well, that's one way.
17	DR. POWERS: I mean a lot of these things
18	you've got pretty good proof one way or another. If
19	I predict that two things are going to react together
20	and put them together and they don't react, my
21	analysis was not adequate.
22	And so I'm struggling here to know how do
23	I know when a PRA is adequate or are we in this
24	situation that Professor Apostolakis decried so
25	eloquently that all we can adjudge is process, that we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	really can't judge product.
2	MS. DROUIN: I think personally that you
3	can judge the product because we're not in a situation
4	where we don't have any operational experience, and I
5	think that when you go back and you look at your
6	operational history of the plants, and you look at the
7	data there and look at it in comparison to what your
8	PRA has said, they aren't saying different things.
9	And I think those two together
10	DR. POWERS: Yeah, but I mean that's
11	the difficulty I have with
12	MS. DROUIN: That's not any different than
13	your train scenario.
14	DR. POWERS: Well, the trouble is that
15	when I do deterministic analysis, I'm saying yes or
16	no. When you give me your probabilistic estimate, if
17	I ask you, in particular, you as an individual for the
18	probabilistic assessment, you're knowledgeable enough
19	that you're not going to give me a point value.
20	You're going to give me a distribution, and then when
21	I go and compare it against the data, the changes are
22	it's a fair probability that it's consistent with the
23	data.
24	MR. DONNIE HARRISON: And if it's not
25	consistent with the data, that tells you something

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	also.
2	DR. POWERS: Then you've got an answer.
3	I mean, she's right about that.
4	MR. DONNIE HARRISON: Right.
5	DR. POWERS: I mean, the point was right.
6	I'm just trying to think of the practicality of it.
7	Do I ever come up with an answer or do I always come
8	up with I can't I suspect I can only conclude that
9	it's not inconsistent with the data is what I come up
10	with most of the time, which is actually a pretty good
11	conclusion.
12	MS. DROUIN: Yeah.
13	DR. POWERS: Okay.
14	MR. PARRY: Excuse me. Can I maybe add
15	something here?
16	This is Gareth Parry from the staff.
17	I think in this context the assessment of
18	whether a PRA is adequate is really more related to
19	whether it conforms to good industry practice. I
20	don't think we can
21	DR. POWERS: I mean, that's George's
22	process evaluation, and sometimes you get stuck there.
23	MR. PARRY: And there's the additional
24	element of this that there will be a peer review also
25	as part of this assessment. So in a sense it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

200 1 whether it's in conformance with what your peers think 2 is good practice. 3 DR. POWERS: Well, suppose that I'm 4 Professor Wallis for a second and I worry enormously 5 about the feelings and sentiments of Shakespearean scholars who know little or nothing about PRA, but 6 7 they said these people have done this analysis and they're knowledgeable people and whatnot, and they 8 9 declared it adequate, but I can't understand the thing they produced, and I can't understand the peer review, 10 11 and I can't understand the assessment demonstrate to 12 this poor Shakespearean scholar that it's, in fact, adequate. 13 14 And what Mary says is, well, you can't do 15 it on the CDF, but you can look at the component data, the second tier of data that go in this and compare 16 the predictions and whatnot against what you observe, 17 and you get a conclusion that by and large is it's not 18 19 inconsistent with the data; is that right? 20 MR. PARRY: At that level, yes. 21 DR. POWERS: One of the things I worry 22 about enormously is the nuclear PRA community is of 23 finite scope. They all know each other. They all go 24 to the same conferences. They all sing from the same 25 textbook, and they can all delude themselves in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	same way.
2	MR. PARRY: This is true of any analysis
3	that can't be directly
4	DR. POWERS: Compared against it?
5	MS. DROUIN: Well, I hope we're smarter
6	than that. I like to think we are, but maybe I'm
7	deluding myself.
8	DR. POWERS: Oh, the capacity for the
9	profession to delude itself is enormous. I mean, look
10	what's been going on in stress corrosion cracking for
11	the last 50 years.
12	(Laughter.)
13	MS. DROUIN: Well, why don't we go ahead
14	and go to the next slide and get into the staff
15	reviews? And at this point I'm going to turn the
16	presentation over to Donnie.
17	MR. DONNIE HARRISON: I think as you all
18	are aware, under the current way we review risk
19	informed license and actions, there's a heavy reliance
20	on the knowledge and expertise or experience of the
21	reviewer to make sure he's looking at the right things
22	and tracking to find where the problems are to deal
23	with in the license application.
24	And during that, there is also a reliance
25	on prior reviews, the peer reviews the industry has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	202
1	done, the IPE, IPEEE, the research reviews of those
2	IPEs and IPEEEs, and then prior applications by that
3	licensee.
4	Those all kind of feed into how the staff
5	reviews a current risk informed licensing action.
6	There's not much guidance beyond that.
7	As well, there's not that much guidance
8	for what is expected of a licensee to submit to show
9	that they've got PRA technical adequacy. So that's
10	also part of the point of needing these standards and
11	needing this implementation trial phase.
12	Go ahead.
13	DR. POWERS: You're looking at this reg.
14	guide and whatnot, and the industry has this peer
15	review that they swear by, and it's being widely used.
16	I mean, just about everybody is using it and using it
17	repeatedly. Every time they refine the PRA they do it
18	a little more detailed or another application and they
19	go through another peer review and get this
20	assessment.
21	Which one is controlling? Is the reg.
22	guide to be? I mean, your standards that you're
23	setting up are to be kind of the minimum, and the peer
24	review process that the industry has set up goes
25	beyond that where it can.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	Do you have any idea?
2	MS. DROUIN: I'm not sure I still follow
3	your question when you talk about minimum. The
4	standard does have a minimum in it, but when it comes
5	down to looking at the peer review, you know, you're
б	going to have to do it in concert with the
7	application. So what you need for that application
8	may not be the minimum or what we would call Category
9	1.
10	MR. DONNIE HARRISON: And the peer review
11	itself may actually, if you follow the NEI guidance,
12	you may get a range for different areas, different
13	grades, and so it doesn't necessarily give you a
14	minimum or a maximum. It gives you a score, if you
15	will, for each of the different areas, and then you
16	have to look at those areas in the context of the
17	decision you're trying to make and say is that area
18	important and is it influencing the decision I'm
19	trying to make.
20	And if it's not, then you can tolerate, if
21	you will, a lower quality analysis or maybe even a
22	bounding analysis in that area. Whereas if it's
23	important, you may want to say, no, I've got to have
24	a good analysis here to be able to buy off on this
25	decision.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	So it's highly dependent, and I don't
2	think a peer review establishes a minimum. Like Mary
3	has said, I think that the standard actually has three
4	levels, and
5	DR. POWERS: Which I'll transparently
6	admit that I've quite understood, but that's okay.
7	MR. DONNIE HARRISON: That's fair.
8	DR. POWERS: This is not the forum to try
9	to explain it to me.
10	MR. DONNIE HARRISON: And believe me, I
11	wouldn't try to explain it. One of the things that I
12	think we're trying to do in this trial phase is look
13	at the standard and look at the reg. guide and see if
14	we stumble over problems, interpretations, and
15	especially things that go across levels.
16	Is it really true that, you know, some of
17	these areas truly go across capability categories or
18	are there some of them that you should have a
19	demarcation that distinguish one level of quality from
20	another within a certain area?
21	But that's part of the pilot. That's part
22	of what we're trying to do.
23	DR. POWERS: One of the things that the
24	rotations in the regulatory field worry about is the
25	distinction between compliance with a regulation and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	self-policing; that when you create a standard with a
2	regulation, people come up and meet that standard, and
3	there's no incentive really to go beyond that.
4	Whereas without a standard and putting
5	reliance on this peer review process that's employed
6	to decide whether something is qualified creates an
7	incentive for innovation and improvement. Have you
8	thought about that?
9	MS. DROUIN: I agree that the peer review
10	is a mechanism for creating innovation because as you
11	look at things, you learn more. You find out, oh,
12	well, it wasn't quite the way I thought it was or you
13	think of a better idea or you notice something is
14	wrong or whatever.
15	I think using a peer review as a mechanism
16	to determine what you have done, how you've gone about
17	doing it meets the intent of what you wanted, is an
18	efficient way to go. It has its disadvantages, but I
19	think it has more advantages to it than disadvantages.
20	DR. ROSEN: Having seen one fairly close
21	up, I can say that it creates a lot of peer pressure
22	to improve. That's a partial answer.
23	MR. DONNIE HARRISON: And I think if you
24	look at some of the experience during the peer
25	reviews, there were cases where licensees in the early

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	phases of this process thought they had good PRAs.
2	The peer review came in and actually kind of surprised
3	them with lower grades than they expected, which put
4	the licensee into, if you will, a fairly aggressive
5	DR. ROSEN: Walking around smug and
6	complacent, and they come in and you end up with 72
7	action items.
8	MR. DONNIE HARRISON: Right.
9	DR. ROSEN: Holy mackerel.
10	MR. DONNIE HARRISON: And I think what
11	that did at least for a couple of licensees is it kind
12	of woke them up and made them go off and actually end
13	up with a second peer review because they wanted to
14	show that they were actually not as bad as they
15	thought they were good, and they wanted to get that
16	finding.
17	So I think the peer review process if done
18	correctly can do that, and it brings the whole
19	industry up by doing that, recognizing there's flaws
20	in the process whenever you do that.
21	If we can move on to the purpose of the
22	pilot, there's listed here about six different items.
23	The first one is just saying that there's things
24	within the reg. guide and the SRP that make
25	observations or clarifications to the ASME standard.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 There were some things where if you will I quess I 2 would characterize them as disagreements between the 3 standard writers and the staff when it comes to the 4 term "significant" and how you define "significant." 5 And so we want to use this pilot to get at 6 that, and we want to look at the interpretations of 7 the requirements and see if we both, us and the 8 industry interpret things the same way. 9 And then there was a question early on about documentation needs. I know in a meeting we had 10 in November of last year with the industry they 11 pointed out that the reg. guide in its documentation 12 section could be misinterpreted in some places, and if 13 14 you will, I'll count that as a lesson learned. We corrected that before we published the reg. guide. 15 So we took that feedback in the November time frame and 16 changed the documentation section of Reg. Guide 1.200 17 so that it was a little clearer for the industry to 18 19 understand. 20 Some of the other things that we're trying 21 to do here is we're trying to assess the licensee 22 self-assessment process to see how effective that is. This is the self-assessment they do between the NEI 23 24 002 review and the ASME standard. So they have to

look at the difference between those two things.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

207

208
They did a peer review. Now they've got
a standard and they need to bridge the gap. So we
want to look at that and see how they do that. It's
an opportunity to look at the scope and level of
detail, the licensee application specific submittals
and the scope and level of detail of our reviews.
Part of the efficiency that is expected
out of the standard is that we will have more
efficient reviews and more focused reviews, and they
won't have to go as detailed in certain areas. So
that's a hope. That's one you pursue.
In the process of doing this, I'm sure
we'll identify things that need to be changed or

we'll identify 13 14 revised or clarified within the reg. guide, within the 15 standard review plan, even in the standard, the ASME standard or the self-assessment guidance that NEI has 16 17 developed.

We're also going to gain some insights 18 into how many resources, how much effort is involved 19 in doing one of these reviews, and I think the 20 21 licensees are going to learn a great deal of how much 22 does it take to develop a license application that 23 meets the standard, that meets the reg. guide. 24 And then these insights that we gain

during this pilot I think will be helpful in the 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

5 Okay. Now, the scope of the pilots. There's five pilots. The first one that's coming in 6 7 is Columbia. It's a risk informed tech spec. They're doing a diesel generator AOT. They call it a loud 8 9 completion time extension. Its intent is to extent the allowed completion time to 14 days, as long as 10 11 they've established some risk management actions, what 12 we'll refer to as compensatory measures.

The way their tech spec is laid out, during the first 72 hours, which is their traditional time, they have to put these compensatory measures in place and have them ready, and after they do that, then they can extend the outage to a 14-day outage. Otherwise they have to follow the way they do things now.

20 DR. POWERS: On this particular piloting, 21 they will, of course, have an extensive seismic PRA? 22 MR. DONNIE HARRISON: No, no. The scope 23 of this pilot -- maybe that's in my next slide or one 24 of my earlier ones. Yeah, we'll just jump to there --25 the pilots are actual risk informed submittals. Okay?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	210
1	So we have to write an SE that talks about the
2	submittal, to approve the submittal of which a small
3	piece of which is PRA quality for technical adequacy,
4	but the pilot is only focused on the standard that we
5	have endorsed in Reg. Guide 1.200, and that standard
6	is a full power Level 1 PRA plus LERF.
7	The other aspects, the external events,
8	lower power shutdown will still be reviewed as part of
9	the application, but it will be reviewed like we
10	review applications today, because we don't have an
11	endorsed standard that's been approved and issued in
12	the reg. guide.
13	DR. POWERS: I mean, if somehow a plant
14	within 200 miles of Mount St. Helen's, it strikes me
15	as one that seismic can be a fairly important
16	determiner and how long it can have its emergency
17	diesel generators out.
18	MR. DONNIE HARRISON: I'm sure that will
19	be a topic as part of the review. I'm just saying
20	that it's not part of the pilot. So that issue will
21	have to, just like lower power and shutdown, has to be
22	dealt with just like fires has to be dealt with.
23	So you're right. You have to deal with
24	it. It's just that it's not within the scope of the
25	pilot. It's in the scope of the application.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And one of the points I have on here is when we have the future standards are developed and endorsed, then I would expect we would go through that process, a pilot process or something like that as well, where we would test them out or could do that, but at this stage we don't have that. So we're doing what we have with what we have.

8 The other aspect, and I'll just hit on 9 this while this slide is up here, is that because these are pilots and we're trying to exercise the 10 11 entire standard, use the entire reg. guide even 12 though, for example, Columbia is a diesel generator AOT extension, we are going to look at things that are 13 14 unrelated to that application that are in the PRA 15 standard.

So the SE will be on the standard, but the pilot will actually go beyond the application because we want to exercise the full breadth of the reg. guide.

20 DR. ROSEN: I assume the people who are 21 submitting this understand that.

22 MR. DONNIE HARRISON: They understand that 23 very well, and if I'm incorrect, Biff will correct me. 24 MS. DROUIN: Let's put it this way. We 25 tried to make it clear, and we have verbalized it

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	212
1	numerous times.
2	DR. ROSEN: Maybe they'll listen.
3	MR. DONNIE HARRISON: Well, as an
4	observation, I think I would say we've already seen
5	one lesson is as licensees have gone out to develop
6	the documentation to support PRA quality or technical
7	adequacy, they're seeing it as a I think they're
8	coming to realize it's a bigger thing to do than they
9	thought originally. It's taking longer to develop the
10	submittal and to do the evaluations than they
11	originally thought.
12	So one of the reasons why we haven't got
13	moving too fast on this to start with is because the
14	submittals have not yet shown up. That's going to
15	change next week.
16	Limerick is a risk informed tech spec.
17	It's a 5(b) initiative. This is where they're moving
18	the surveillance test intervals to a licensee control
19	document. I just put on here that they're not moving
20	surveillance requirements. The test intervals are
21	going to be based on a risk informed process. So it's
22	a process review.
23	SONGS will be coming in a risk informed
24	tech spec as part of a batter replacement, and they're
25	going to reconfigure their DC power system. What it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

213 1 going to try to do is to allow an on-line cross-tab of DC subsystem within a train for up to 30 days for 2 maintenance and replacement of the batteries. 3 4 DR. ROSEN: A temporary change, not a 5 permanent change, right? HARRISON: 6 MR. DONNIE The battery 7 replacement is temporary, but the tech spec will be 8 permanent. This will be --9 ROSEN: The tech spec will be DR. 10 permanent, but you said they're going to reconfigure 11 their system. 12 They're going to MR. DONNIE HARRISON: reconfigure it permanently. 13 14 DR. ROSEN: That reconfiguration is 15 permanent? 16 MR. DONNIE HARRISON: That's a permanent reconfiguration. What they're doing is they have four 17 batteries, and the way the tech specs are laid out, 18 19 they want to split them in the trains so you'll have an A train and a B train with two batteries each, and 20 21 they're going to gain, again, the idea of being a 22 three-day AOT because they can take a battery out and 23 still have train DC. 24 DR. ROSEN: Well, they're making a design 25 change under a pilot of a reg. guide?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	MR. DONNIE HARRISON: Well, no. Again,
2	this is a real application, a risk informed
3	application. So we're going to do a safety evaluation
4	of that application. It's just that it's a piloting
5	of the aspect of the PRA technical adequacy.
6	DR. ROSEN: Okay. So you're going to do
7	a safety evaluation for the change. It's going to be
8	judged against Reg. Guide 1.174.
9	MR. DONNIE HARRISON: Right.
10	DR. ROSEN: In terms of delta CDF?
11	MR. DONNIE HARRISON: Right, and
12	DR. ROSEN: For a permanent change.
13	MR. DONNIE HARRISON: For a permanent
14	change.
15	DR. ROSEN: Okay, I guess.
16	MR. DONNIE HARRISON: And, again, that's
17	the point of all of these. These are all license
18	applications. I would say the only one that is
19	probably pseudo not a license application is the next
20	one, surry, which is a 10 CFR 5069 application. We
21	don't have the rule yet. So it's hard for them to
22	have a license application. They're piloting the
23	industry guidance on 5069. And hopefully once the
24	rule goes out it would be a fairly quick turnover if
25	they had done this and we've accepted it to actually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	implement it then.
2	DR. ROSEN: And what's the scope of their
3	5069 application?
4	MR. DONNIE HARRISON: It's only for a
5	couple of systems, but within 5069, if I can regress,
6	it's a process review. So even though they may only
7	do it for a couple of systems
8	DR. ROSEN: It's a process.
9	MR. DONNIE HARRISON: we're approving
10	the process. Once the rule goes out, it would be a
11	process approval. So the systems are just to
12	demonstrate how the process works.
13	DR. ROSEN: But they would still have to
14	comply with the rule when the rule would come out.
15	MR. DONNIE HARRISON: Right, right. You
16	would have to send in a license amendment.
17	MR. DONNIE HARRISON: Right, exactly, a
18	license amendment. We would review the license.
19	Again, I would assume if we're part of the pilot, at
20	least on PRA on technical we'll be ahead of the game
21	when that pilot comes in.
22	And the last one you heard this morning at
23	least briefly from South Texas, their 4(b) initiative.
24	So that's the five applications we're actually looking
25	at.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	216
1	I'll skip that one.
2	I put this slide in here because I think
3	we needed to understand some of the when we're
4	trying to schedule these pilots, some of the things we
5	had to think about, trying to do this within a one-
б	year period, and as we move along we're kind of doing
7	it in about seven months.
8	We have been having regular meetings and
9	we plan to continue to have those meetings. We've
10	held two general public meetings with the industry and
11	the pilots. We've also had for the first three
12	applicants, we've had individual meetings with them to
13	talk about their application and in that context talk
14	about PRA technical adequacy within that context.
15	We plan to continue to hold regular
16	meetings about every couple of months while the pilots
17	are going on so that we can feed back lessons learned
18	to the other pilot applicants, and they can feed us
19	what they're getting out of this as well.
20	The second bullet just recognizes we're
21	doing multiple there's multiple licensees involved.
22	We're doing different kinds of applications. We're
23	using multiple staff reviewers, and we need to make
24	sure we get efficiencies in those reviews such that we
25	don't end up affecting all the other work that we have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	to do.
2	So there's other risk informed licensing
3	actions and rulemaking that's going on, and we need to
4	make sure those things aren't impacted during this
5	process.
6	And as much as possible, because of all
7	that, the trial application reviews are going to
8	overlap. So we're going to gain efficiencies from one
9	review and move it to the next and just have an
10	overlapping process going on.
11	And as an example, here's the near term
12	schedule for the pilots. Like I said, next week we
13	expect to get an application from Columbia. I think
14	by the end of May right now at least we're supposed to
15	be getting something from SONGS and Limerick. We're
16	going to go out to Columbia the week of June 7th.
17	We're supposed to get a trial application submitted
18	from Surry. I think that's been postponed, that one,
19	as I heard this morning, that it's been postponed a
20	few months.
21	The status meeting we'll hold at the end
22	of June to go over what we learned during the Columbia
23	visit. I think Columbia is going to be a good trial
24	for everyone. It will help the staff to go out on a
25	visit to learn about how they conducted the visit and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	what maybe to change in future visits to do these
2	reviews.
3	The week of July 12th we're supposed to go
4	to Limerick. The week of August 9th, we're going to
5	go to SONGS. At the end of August we're supposed to
6	get the application or some time in August; I think
7	it's mid-August actually we're going to get an
8	application from South Texas for the 4(b) initiative.
9	DR. ROSEN: Go down there. It's a lovely
10	time in South Texas.
11	MR. DONNIE HARRISON: Well, we're planning
12	actually not to go there until October, see.
13	MS. DROUIN: At the earliest.
14	MR. DONNIE HARRISON: At the earliest,
15	yeah. Mary is in control of that schedule.
16	MS. DROUIN: And as somebody who was born
17	and raised in Houston, I know you don't go down there
18	before October.
19	MR. DONNIE HARRISON: And then we plan on
20	having another status meeting at the end of August.
21	DR. POWERS: You've got to suffer when you
22	work for the NRC, and you've got to love it.
23	MR. DONNIE HARRISON: And in this case we
24	can kind of control our own destiny.
25	And the last one I'll leave off her and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	219
1	pass on to Mary. Appendix C of Reg. Guide 1.200 was
2	to be issued by the end of August, and that appendix
3	is for the external events, ANS external events
4	standard. So with that I'll pass on to Mary.
5	MS. DROUIN: Yeah, I just want to go over
6	the overall schedule of 1.200 because as we look to
7	next year of when we're going to publish it as Rev. 1,
8	you know, there's other parts to 1.200 than just
9	Appendix A and Appendix B.
10	We do have Appendix C, which will have our
11	endorsement of the standard. That standard came out.
12	We're in the midst of reviewing it. We've gotten
13	various comments from the different offices in the
14	agency and comments from the regions. So we're
15	pulling together our staff comments right now and
16	trying to sort through them.
17	We hope to go through some public meetings
18	through the summer and discuss it and then finally go
19	with formal public review and comment by the end of
20	August on Appendix C.
21	Go through that process so that ultimately
22	as we go through the pilots we are looking to have all
23	of our lessons learned from the pilots by December,
24	the end of December.
25	That doesn't mean that we would wait till

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the end of December to start modifying the reg. guide. You know, as we learn something we'll do it, but to try and have all of our lessons learned and our changes made to the reg. guide by the end of December so that we would go out on public review and comment for Rev. 1.

7 So what I'm saying is we're doing two public review and comment periods, one in August, but 8 9 that will just be on Appendix C of the reg. guide, and then we will go back out on public review and comment 10 11 on the entire req. guide in January with issuing it at 12 the end of April. So in between there, you see, I have some question marks there for ACRS. 13 We were 14 thinking of coming back to the ACRS in November of 15 this year where we would talk both on the external events and also what lessons learned we've had on the 16 17 pilots to that date.

Then go out for public comment I said in January. We would ultimately want to come back to the ACRS in March because in order to issue Rev. 1 of the reg. guide we will need a letter from the ACRS approving that publication.

We'd also have to go to CRGR also in that time period, and we've interspersed public meetings through the process.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

	221
1	So I kind of jumped around in trying to
2	explain the schedule, but there it is. Now, Donnie,
3	do you want to wrap up?
4	MR. DONNIE HARRISON: Yeah, I'll do the
5	first two and you can do the last two.
6	MS. DROUIN: Oh, okay.
7	MR. DONNIE HARRISON: I'll make a point
8	before we conclude though. Again, the focus here is
9	on the PRA technical adequacy guide. So in these
10	applications when they come in, conceivably our source
11	of the pilot is broader than the application. So we
12	could find PRA technical adequacy issues that may have
13	nothing to do with the application, and we would
14	identify those, but it wouldn't stop the application.
15	So the application may still be approved even with
16	that, in that situation.
17	Likewise, you could have an application
18	not succeed for deterministic review reasons, and yet
19	the PRA technical adequacy part of it would move
20	forward. So that's just a recognition of what can
21	happen in the process.
22	And just to conclude, we're just now
23	embarking on the trial implementation phase really,
24	and it's going to involve some actual license risk
25	informed applications.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MS. DROUIN: And as I said earlier, you 2 know, we have a lot of things that we're looking toward in the pilots to help us on some outstanding 3 4 issues to revise in the reg. guide. Donnie mentioned probably the most significant one is coming to a determination of what should be the definition of the 6 term "significant."

And then just looking at, you know, how 8 9 are these requirements being interpreted. Hopefully there will be some resolution on places where we still 10 11 have objection. I mean, my personal goal is I'd love 12 to have an appendix that says no objections so as we can resolve all of these and come to an agreement on 13 14 them, it would be ideal.

15 I'm also hoping that as we go through these pilots that we get some good lessons learned 16 17that will really help us as we implement the next set of standards. You know, this has been a very 18 19 challenging piece of work to do, and hopefully we 20 aren't going to repeat some of the same mistakes and 21 make the process a lot more efficient as we endorse 22 and implement the external events and as we go into, 23 you know the internal fires and low power shutdown, 24 that those will go a lot smoother from what we've been 25 through on the ASME standard.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

223
DR. ROSEN: What do you think about the
idea that the term "significant," the context around
it, that something is significant if it would impact
the decision making process. If it's not going to
change the decision or have an impact on the decision
making process for the context, it's not significant.
What do you think about that?
MS. DROUIN: That is one explanation you
could use, but I think that can be difficult to use
that kind of definition when you're getting into a
requirement that says, you know, "Don't do this. Only
do this for your significant ones."
How you write that into the standard when
you don't know the application.
DR. ROSEN: It's only good after the fact.
It's not good as an a priori.
MS. DROUIN: Yeah. But you know, it could
be that as we go through the pilots that we become
creative enough to write something of that order. I
mean, I don't know. I mean, I feel as though it has
to be quantitative, but we're certainly open to try
and find a qualitative definition.
DR. ROSEN: Well, see, something like that
would be consistent with the history of development of
the standards. It has always been application driven.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	You know, here's how good a PRA you need to do this,
2	not just how good a PRA you need, period. Because you
3	don't need a PRA at all.
4	MS. DROUIN: I wouldn't agree that when we
5	wrote the standard that it was application driven. I
6	mean, when you decided to write what the requirements
7	are, for example, on your systems analysis or your
8	initiating event, we certainly didn't think, "Oh,
9	we'll write this requirement because of this
10	application."
11	We wrote the requirement because that was
12	needed to achieve the objective of that technical
13	element.
14	MR. DONNIE HARRISON: But if I can maybe
15	agree with you, there's two different things going on
16	here. There's things that are significant to a
17	decision and then things that are significant within
18	an analysis.
19	The problem we have is we're using the
20	analysis and making a decision, and if you separate
21	the two, then you end up with different definitions of
22	what's significant. You have to have different
23	definitions because you don't know the application,
24	and that's part of it. It's not a problem, but it's
25	part of the issue with the word "significant" within

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	the PRA technical ASME standard. It's just what is a
2	good PRA, and what are the elements that it has to
3	have.
4	DR. APOSTOLAKIS: Well, we are a
5	regulatory agency. I mean, we make regulations.
6	MR. DONNIE HARRISON: Right.
7	DR. APOSTOLAKIS: So that ultimately has
8	to support regulatory decision making.
9	MR. DONNIE HARRISON: Exactly. I agree
10	with you. It's just that within the context of
11	writing what does a PRA need to have, you would write
12	one thing, and then how you use it in making a
13	decision is different.
14	DR. ROSEN: Right. I know. I'm not so
15	sure that that's separable. You know, I could hold a
16	good tennis racket in my hand, and you could look at
17	it and say, "That's a pretty good tennis racket," with
18	the thought that you have in your head that I'm going
19	to use it to play tennis.
20	But if my intention is to go hit Noland
21	Ryan's fast ball, it's probably not good enough.
22	MR. DONNIE HARRISON: I agree, but what
23	you would say in that case is that that is quality
24	tennis racket. Its implementation is not good, but
25	yeah, I can agree with you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	DR. ROSEN: I'm not convinced of that. I
2	think it's context driven.
3	MR. DONNIE HARRISON: Fair enough.
4	DR. APOSTOLAKIS: Are you done with this?
5	MR. DONNIE HARRISON: Yes.
6	DR. APOSTOLAKIS: So any discussion?
7	That's what it says here, and it also says
8	that Donnie would do that.
9	(Laughter.)
10	MR. DONNIE HARRISON: I'll do a forum.
11	Everything is wonderful. The staff is doing great.
12	(Laughter.)
13	MR. DONNIE HARRISON: They all need
14	bonuses.
15	MS. DROUIN: I like that part.
16	DR. SHACK: Okay. We'll add to your work
17	load.
18	DR. APOSTOLAKIS: You don't know where
19	you're starting?
20	DR. SIEBER: He's starting from scratch.
21	MR. BRADLEY: I don't have a presentation.
22	I'm going to be quick. I'm going to get you guys back
23	on schedule today, hopefully.
24	We have the five pilots that have put a
25	tremendous effort into this project. This is an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	227
1	important effort for the industry. We spent over five
2	years developing the ASME internal events at power PRS
3	standard; spent nearly two years working on the reg.
4	guide to endorse it, and I think that speaks to the
5	challenge of trying to write a standard for PRA.
6	And now we're at the most important part
7	of all of that, and that is taking that and taking it
8	out of the office building and putting it out in the
9	field somewhere and trying to make it work out in the
10	plant.
11	And I guess it's safe to say there's some
12	trepidation about this. We now have hundreds of PRA
13	requirements, the level of detail, and the need for a
14	more systematic consideration of every element of the
15	PRA is evident, and we expect this to be a fundamental
16	change to the way applications in the past have been
17	performed and reviewed.
18	So we don't see this as a minor change.
19	This is really a step change in the regulatory process
20	and in the evolution of getting risk methods into
21	regulatory space.
22	The Commission wrote an SRM to the staff
23	on PRA scope and quality, and this is the first step
24	of moving in the direction of that SRM going into the
25	Phase 2, as the staff calls it, of the implementation,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So I think so far this has gone well. 6 7 We've had good interactions. I think we understand where we are, what our expectations are for each 8 9 other, and the plants have certainly put a huge effort into this. The plants do not want this to fail. They 10 do not want this standard to become a reason for 11 12 protracted reviews or problems. We all want this to 13 succeed.

14 The ASME standard and the Req. Guide 1.200 15 do set a high bar, capability Level 2. What's evolved is a PRA described there. There is really no plant 16 that the U.S. currently has, but it can be achieved. 17 Much of that is in the area of documentation, and it's 18 19 reasonable should to expect you have good 20 documentation.

The plants that have -- the pilots that have been working on this have put in some cases, you know, man-years into documentation, trying to come up to the standard.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

You know, despite the fact there is some

25

1

2

3

4

5

(202) 234-4433

228

229
trepidation about this, I think at the same time we
all hope that this will enable more significant
applications. I think applications like 5069 probably
just wouldn't have been feasible absent standards.
We all recognize we need standards to move forward.
There are issues of interpretation in the
standard. I was at the San Onofre peer review, as
were some here, and plants have interpreted elements
of the standard differently.
The real interpretation that matters is
what is NRC's interpretation. What is the regulatory
expectation? That is the only interpretation that the
vast majority of plants out there care about, and
that's what's going to emerge from this pilot process.
Right now we have a standard, you know,
but at the end of this process, we're going to have a
much better understanding of what is the expectation
for that requirement. What does the regulator think
that you have to do to meet that?
And that's what we'll get out of this.

We're going to have to communicate this to the industry at large before the reg. guide becomes final next year because at that point this will apply to every application and every plant going forward, and so we have a major communications job once we're done

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

230
with these pilots, taking everything we've learned and
getting it out into the rest of the plants.
So I think that's pretty much all I have
to say. As Donnie said, the real rubber meets the
road starting next week when we get the Columbia 200
page on the docket application, and we hop that's just
a pilot thing and that doesn't set a precedent for
what every plant will have to do forever. Certainly
I don't think we want that.
But we recognize the pilots are going to
have to have more submitted, and that's just what's on
the docket. We have archival documentation that
probably exceeds that by an order of magnitude or
more.
So, again, you know, this isn't a minor
thing, and so far so good, but the real part is just
now starting. So it should be an interesting the rest
of the year. We're going to be really busy.
It's a very aggressive schedule for the
plants and for NRC to get through these five pilots
over the next year.
Any questions?
(No response.)
DR. APOSTOLAKIS: Okay. Thank you very
much, Biff.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	MR. BRADLEY: Sure.
2	DR. APOSTOLAKIS: Well, Mr. Chairman,
3	we're back to almost ahead of schedule.
4	CHAIRMAN BONACA: You are very valiant.
5	DR. APOSTOLAKIS: I run this with an iron
6	hand, I'll tell you.
7	CHAIRMAN BONACA: You pressure these
8	people so hard.
9	DR. KRESS: Valiant.
10	DR. POWERS: There wasn't enough interest
11	to actually have this session is what you're trying to
12	say.
13	CHAIRMAN BONACA: Well, I think we have 25
14	minutes before
15	DR. KRESS: Sort of like stress corrosion.
16	CHAIRMAN BONACA: our break. So we'll
17	do two things. One, we'll take the break, longer than
18	normal.
19	Let me just before we first of all, I
20	think we should go off the record until the next
21	presentation, which comes at 3:30.
22	Second, I would like to just make a head
23	count of the reports that we can work on tonight.
24	(Whereupon, the foregoing matter went off
25	the record at 2:50 p.m. and went back on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	the record at 3:28 p.m.)
2	CHAIRMAN BONACA: We are back into
3	session.
4	And the next item on the agenda is good
5	practices for implementing human reliability analysis,
6	and Dr. Apostolakis.
7	DR. POWERS: What is this, the Apostolakis
8	day?
9	DR. APOSTOLAKIS: Yeah.
10	CHAIRMAN BONACA: Yeah, today is his day,
11	although
12	DR. POWERS: My didn't you assign him MOX
13	and then he could have a clean sweep.
14	CHAIRMAN BONACA: That's a good idea.
15	DR. APOSTOLAKIS: We had the subcommittee
16	meeting where we discussed the good practices
17	document, and we also had another presentations, but
18	today we will just talk about the or we'll hear from
19	the staff on these good practices document. It is
20	supposed to be a general document, not tied to a
21	particular model for human reliability analysis, and
22	eventually it will be part of Regulatory Guide 1.200,
23	right?
24	MS. LOIS: Supporting regulatory
25	DR. APOSTOLAKIS: Supporting acceptable

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

233 1 approaches for determining the technical adequacy of 2 PRA. So --3 DR. SHACK: Another appendix? 4 DR. APOSTOLAKIS: Another appendix. This will be Appendix K. 5 DR. SIEBER: I don't think it will be an 6 MS. LOIS: 7 appendix to regulatory. It will be a supporting 8 document. 9 DR. APOSTOLAKIS: A supporting document? 10 MS. LOIS: On how to perform human 11 reliability. 12 DR. APOSTOLAKIS: Okay. So we can start with Dr. Lois, I guess. 13 14 MS. LOIS: Thank you. 15 Good afternoon. My name is Erasmia Lois. I work for the Office of Research, Probabilistic Risk 16 17 Assessment Branch. And with me today is John Forester of 18 19 Sandia Laboratories, and Alan Kolaczkowski will not be able to be with us today physically. However, he is 20 21 available through the phone. He is the primary 22 developer of the good practices. 23 I would like to recognize the Also 24 contributions of Gareth Parry, who recommended to do 25 the good practices document, and he has been helping

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	out with working closely with Gareth and Alan in
2	general.
3	And Susan Cooper, who is not with us
4	today, but she is also part of the staff.
5	What we'll do today, I thought it would be
6	good if I provide a broad overview of the HRA
7	activities so that the committee recalls what we're
8	doing there, and then as Dr. Apostolakis said, discuss
9	in detail the HRA good practices.
10	We intend to release it for public review
11	and comment in July, and we would like the committee
12	approve and agree with and go ahead and release the
13	document.
14	DR. APOSTOLAKIS: So you are requesting a
15	letter.
16	MS. LOIS: We are requesting a letter.
17	In general, what issues we tried to
18	address by the HRA research program, the first issue
19	is the HRA implementation. As a matter of fact, this
20	HRA quality issues, PRA/HRA quality is an important
21	activity at the NRC, and as part of that, we're also
22	putting our efforts, but also we have developmental
23	activities. Later development is one area that we're
24	focusing a lot.
25	The NRC has new needs. For example,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	applications for materials and waste or new reactors,
2	therefore. We're focusing on expanding or developing
3	new knowledge base for human reliability, and also
4	we're addressing specific regulatory issues.
5	And the next chart is a viewgraph, you
6	know, graphic representation of our activities. The
7	HRA guidance reference documents are on the bottom.
8	this is probably the bulk of our research program
9	currently.
10	However, we're also, as I said, developing
11	data. Data is one of the important limitations of the
12	HRA state of the art. HRA state of the art has not
13	matured at the level of detail, has not reached the
14	level of maturity or some other areas in PRA.
15	Probably the primary limitation comes from the fact
16	that we don't have exact data in terms of number of
17	failures versus the number of demands.
18	What we tried to do here is collect
19	information that exists regarding human performance
20	and develop methods that would help us use the less
21	accurate data, but informative data.
22	We are developing a repository which we
23	call HERA, and currently we're focusing on populating
24	the repository with licensee reports, operational
25	experience and simulator experience, and in the future

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

236
we'll try to expand to open psychological literature
and non-nuclear experience.
In terms of methods, I'm highlighting
ATHEANA. We have a small effort in making ATHEANA
implementation more user friendly, addressing serious
concerns on ATHEANA being cumbersome and, therefore,
not easily to be used by non-ATHEANA experts.
I mentioned the Beyesian quantification of
rushes (phonetic) that go hand in hand with the data
development. We do plan in the future to review other
second generation methods like MERMOS and CREAM for
the purposes of taking advantage of what they have in
terms of modeling human performance, and if we're
going to develop a third generation human reliability
analysis method.
As I mentioned, we have to expand our
knowledge base for human reliability, and these are
some of the things. The bullets here represent some
of the activities.
The less yellow color indicates that these
are more future activities than current activities,
but the human reliability research program is planning
to address related conditions, true performers, ex
control room reactions, slowly evolving events that
describe the advanced reactor work, and also low bar

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	(phonetic) shutdown operations, and severe accidents,
2	the steam generator tube rupture PRA will force us or
3	is forcing us to address that.
4	DR. ROSEN: So you left the bullet off ex
5	control room actions then.
6	MS. LOIS: Yes, I did.
7	DR. ROSEN: Okay. That's not crew
8	performance somehow. There are five bullets under
9	that.
10	MS. LOIS: It's five bullets.
11	DR. ROSEN: Now, what I'm surprised and I
12	don't see anything of is organizational issues. When
13	you think about the future.
14	MS. LOIS: We went to the Commission with
15	a request to allow us to go back to organization
16	factors and organizational issues. We haven't had the
17	approval yet.
18	In actuality we cannot address this issue
19	yet.
20	DR. ROSEN: In what?
21	MS. LOIS: The Commission
22	DR. ROSEN: Yeah, I heard the first part.
23	MS. LOIS: must tell us, must allow us
24	to address the issue.
25	DR. APOSTOLAKIS: Because it has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	238
1	explicitly disallowed you?
2	MS. LOIS: Explicitly stopped the work
3	about ten years ago.
4	DR. ROSEN: So you have a current request
5	into the Commission to allow you to begin in the
6	context of human factors analysis or human analysis
7	MS. LOIS: Human cycles, human
8	performance.
9	DR. ROSEN: yeah, to consider the
10	it's like a fisherman who knows everything about fish
11	and knows nothing about the ocean to do human factors
12	without knowing anything about the organization in
13	which the fish swim.
14	So to me it's important to be you know,
15	it's not something you're going to do overnight. It's
16	just something you begin to consider. You understand
17	the literature. You understand what's going on and
18	you begin to get into that horrible issue of safety
19	culture.
20	But I really think that it's just unwise
21	to close our eyes to this
22	MS. LOIS: In actuality we do believe that
23	the Commission will let this go ahead. We think in
24	preparation, I guess, since a year ago due to Davis-
25	Besse and other higher priority activities. Jay

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	Persensky has the lead, and I think NRR has the lead
2	for it.
3	The EDO had some comments, came back to
4	the staff, and we were not able to address the EDO's
5	comments to go to the Commission. So there are two
6	things.
7	One is the staff was not able to bring it
8	back to the Commission, and the Commission was not
9	able to and, therefore, we don't have the go-ahead
10	yet.
11	However, I do want to remind the committee
12	that in the early '90s or mid-'90s we were doing a lot
13	of work in organizational factors, and we do have two
14	NUREGS ready to go out to be published, and that
15	represents a lot of work in the area. It isn't that
16	we haven't done a lot, and that work is really
17	current.
18	In terms of actual applications, the good
19	practices and the HRA method review addressed
20	primarily licensing issues, Reg. Guide 1.174 types of
21	licensee applications.
22	We are developing to the extent we can
23	we use HRA insights to support various activities. An
24	example her is the fire manual actions. We tried to
25	address in ACRS recommendations. We tried to provide

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	human reliability insights and reliability framework
2	in that activity, but again, as I mentioned, the HRA
3	guidance is an activity that we're going to talk about
4	today.
5	And again, to provide a broad perspective,
6	the HRA guidance consists of three documents.
7	Document one would be kind of a publication, a high
8	level summary of the HRA state of the art, and we plan
9	to have it ready to December, and document two is the
10	one that we're going to talk about today, and we would
11	like to go to public review in July and finalize it by
12	December.
13	And then we're going to, starting in
14	January, we'll start developing evaluating first
15	and second generation methods with respect to the good
16	practices.
17	Within that review we'll try to encompass
18	HRA methods that have not been developed in the United
19	States. However, licensees may use it, and that
20	includes MERMOS, CREAM, et cetera. So it will be a
21	broader review than just
22	DR. APOSTOLAKIS: But why does it take so
23	long, Erasmia? December '06. And you guys go to

workshops. You listen to each other. Why should it 24 take two years? 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MS. LOIS: It will take at least one year. These are many methods. It will take at least one year to have a good draft, and then come to you, having the peer review, incorporate public comments. This is going to be at least -- I envision that this is going to be much more voluminous, much bigger document than the HRA good practices.

Now, as you remember a comment we made at the subcommittee meeting was that the good practices document should be viewed by the principles of other methods, and rather than doing things in the reverse order here, should we have this document first, evaluating what's out there before we write the good practices document?

MS. LOIS: As a matter of fact, that's how we started out. We started out looking at -- we started out evaluating the existing methods with respect to Reg. Guide 1.174 applications, and we started saying, "This is good. This is not good," et cetera, and then we figured it out, good or not good with respect to what, your opinion or my opinion?

So the good practices in a way is the standard, is the agreement among the HRA practitioners that, yes, these are the principles for the employment of good HRA. Once we agree, as you had mentioned in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

2.42 1 the subcommittee meeting, you recommended a broader 2 review than domestic review, and we are going to do 3 that. 4 So incorporating the comments from the 5 more general HRA-PRA community then we will have an agreement that these are good practices, and then we 6 7 will be able to evaluate the various methods with 8 respect to -- I think it's --9 DR. APOSTOLAKIS: Well, it could be the 10 other way. 11 MS. LOIS: -- to what extent the various 12 methods can meet or cannot handle the --DR. APOSTOLAKIS: By the way, as you know, 13 14 there was a special issue with the journal with the 15 papers from the Munich workshop. Were you there at 16 the Munich workshop? 17 MS. LOIS: I was not. I was not part of it. 18 19 DR. APOSTOLAKIS: But one of the papers by 20 Strata (phonetic) and others, with a title on "The Way to Assess Errors of Commission," does, in fact, some 21 What 22 of these things in different context. is 23 interesting is that they give a categorization of the 24 existing methods, and there are three categories: 25 task and activity related approaches, condition

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

wolated approaches which I think is ATTURAND is the
related approaches, which I think is Alheana, is the
context issue, and cognition related approaches, which
is I think somebody else's.
So there is a lot here in this paper.
Again, the motivation is different. It's how do we
collect data, and they say in order to collect data,
you have to have some idea of it, but a lot of what
they're saying here is really very relevant to this
issue of what kinds of models are out there, and then
the next that would be good practices and so on.
And I was very pleased to see this. There
is no American quoted though for some reason.
MS. LOIS: Well, all of
DR. APOSTOLAKIS: Unless it says ATHEANA
you guys don't participate.
MR. FORESTER: John Forester, Sandia Labs.
I was at the Munich meeting, and so I'm
familiar with it.
DR. APOSTOLAKIS: Yes, but you're not an
author.
MR. FORESTER: No, I'm not an author on
your paper, no, but we've talked a lot.
DR. APOSTOLAKIS: Well, I think you get
credit at the end.
No, but what I'm saying is that people

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

244 1 have already started thinking about this, you know. 2 What are the common elements. There's a figure here 3 that has the top -- in fact, the top part of the 4 figure is exactly what you're trying to do, and then they're saying, "Now, here is another model which is 5 ATHEANA, how it handles these things." So it's very 6 7 useful, very useful. I mean, we didn't have the 8 resources. MS. LOIS: One clarification is that the 9 10 good practices address current state of the art. Ι 11 mean, we've talked a little bit about that in the 12 subcommittee. To the extent that, yes, we look at the errors of commission as beyond the state of the art, 13 14 but probably what you recommend here, it would be like 15 probably the next step, third generation methods where we would sit back and we'd go and we'd review 16 17 everybody else's method in a collegial way we'd develop the method that encompasses the good aspects 18 19 of --20 DR. APOSTOLAKIS: Yeah, but that's for the 21 future. 22 MS. LOIS: Yes.

23 DR. APOSTOLAKIS: I mean, for this 24 particular document, I recommend that you have a peer 25 review right away.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	245
1	MS. LOIS: Yes.
2	DR. APOSTOLAKIS: Yeah.
3	MS. LOIS: But I doubt that those ideas
4	will get into this document.
5	DR. APOSTOLAKIS: Well, I mean, there is
6	a group of methods that is related to cognition. Now,
7	those guys may tell you, well, it's a good practice to
8	worry about ABC, and then you decide whether it, in
9	fact, would be a good practice.
10	Because this document now is really very
11	much influenced by ATHEANA, which is not surprising,
12	you know, but
13	MS. LOIS: You mean the current version.
14	DR. APOSTOLAKIS: Yeah, the current
15	version. So getting some input from those people.
16	Are you going to talk at all about the plan? You said
17	you are planning to have this peer review, or this is
18	it?
19	MS. LOIS: This is it. I think John is
20	going to
21	DR. APOSTOLAKIS: So this PRA review will
22	take place
23	MS. LOIS: In July.
24	DR. APOSTOLAKIS: in parallel with the
25	public comment period.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	246
1	MS. LOIS: That's right. As part of the
2	public comment period we will request non-domestic
3	entities that are recognized in the HRA area
4	DR. APOSTOLAKIS: Why not also domestic?
5	MS. LOIS: Domestic is given.
6	DR. APOSTOLAKIS: Oh, I see. Okay. So it
7	would be a formal peer group or you will them
8	individually?
9	MS. LOIS: We have to think about
10	individually. You just recommended and we haven't
11	thought about it, but we plan to do that.
12	DR. APOSTOLAKIS: Okay.
13	MS. LOIS: Okay. With that I will ask
14	John Forester to do the presentation.
15	DR. APOSTOLAKIS: Although, just a last
16	comment. When we talk about cognitive models, it's
17	worthwhile to repeat what Dr. Kress said at the end of
18	the subcommittee meeting. Throw everything that is
19	related to the operator's mind out of the report.
20	DR. KRESS: I did.
21	DR. APOSTOLAKIS: That's going to be the
22	advice. He doesn't want to get into anybody's mind.
23	MR. FORESTER: I'd like to first address
24	the issue that's been underlying the work we're doing.
25	As you know, PRA/HRA is being used. It's being used

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	to assess risk associated with current operating
2	conditions, for example, pressurized thermal shock, as
3	Erasmia mentioned, possibly steam generator tube
4	rupture, severe accident induced steam generator tube
5	rupture, fire scenarios, and so forth.
6	So since a human is an important can be
7	an important contributor to risk, it's also important
8	to insure that the HRA quality is good. So HRA needs
9	to sufficiently represent the anticipated operator
10	performance, and the support of that NUREG standard
11	review plan 19 is noted that modeling of the human
12	performance needs to be appropriate.
13	In addition, the reg. guide for PRA, Reg.
14	Guide 1.200 cites and reflects the ASME standard and
15	industry documents related to what kind of things
16	should be done. So they address what to do, but
17	there's less in those documents on how to do it.
18	So that's what we're trying to address, is
19	to provide better guidance for how to do these things.
20	So our solution then is to develop the HRA
21	good practices as we've talked about, and the goal is
22	to have something that's useful obviously for
23	practitioners, people that are doing HRAs, but also
24	non-experts such as possibly reviewers and NRR that's
25	going to be reviewing submittals for plant changes and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	248
1	so forth.
2	And incidentally, that's another way HRA
3	is currently being used is for plant changes and the
4	risks associated with plant changes.
5	Okay. So we developed the nature
6	DR. APOSTOLAKIS: During the subcommittee
7	meeting that I think one member I don't remember
8	who said that maybe this is too ambitious to have
9	a single document both for reviewers and
10	practitioners, do you remember that? And that perhaps
11	you will need additional guidance for reviewers?
12	MR. FORESTER: That may be the case. You
13	know, I guess that's part of what Reg. Guide 1.200 is
14	trying to do, is a specific guidance for the adequacy
15	of the analysis, and this type of document, you know,
16	assuming you could read this, it would give them some
17	insight about what to look for in reviewing those
18	documents.
19	You may be right. They may need more
20	specific guidance, but this should be a useful guide
21	at some level, I would think.
22	DR. APOSTOLAKIS: Right.
23	MR. FORESTER: So as Erasmia mentioned,
24	we're developing the good practices, and that's what
25	we'll discuss today.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	DR. POWERS: John, a couple of months ago,
2	Jay Persensky came down to us and talked about a
3	document they had prepared to describe some screening
4	methodologies for human factors examination of
5	licensee applications. Does that document provide a
6	hint that you need a similar sort of thing for the
7	human reliability analysis of licensee applications,
8	a screening kind of technology, or is that part of it
9	or
10	MR. FORESTER: I think this would be
11	considered part of that. I mean, I'm not familiar
12	with exactly the work you're describing, but certainly
13	guidance for how to assess human factors issues.
14	DR. POWERS: What was identified then is
15	licensees submit an application that involves some
16	sort of human activity. They would consider the human
17	factors in kind of a rote fashion, whereas what you
18	really wanted was to spend a lot of time on the things
19	where human factors were important and blow off the
20	things where human factors was there, but just not
21	very important in the operation, and so they needed
22	some sort of screening methodology to know how to
23	devote their time.
24	And they came up with this approach that
25	seems like it's reasonably successful in focusing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

250 1 their attention on the things that are important. 2 Similarly, I would just presume that there 3 are lots of licensee applications that have something reliability in which 4 to do with human human 5 reliability could be quite low and still be quite acceptable; others where the human is very critical in 6 7 the success of the operation, and so one would 8 obviously want to screen those things, to look at 9 those things, looking at the best practices and whatnot in great detail if human reliability were very 10 11 important and maybe not so much if it did not matter. 12 I'm just wondering if there isn't another thing on your to do list here or another aspect of the 13 14 to do list that Jay has pioneered something that we 15 could look at. MS. LOIS: This document is kind of going 16 17 hand in hand with the one that Jay created. That document helps more to what extent, how much effort 18 19 the staff should devote to reviewing all of this 20 activity or request. 21 Okay. So it really covers DR. POWERS: 22 what you're doing here. 23 MS. LOIS: But assuming now that some of 24 the requests have been considered important to be 25 reviewed, then if it's a risk informed request, these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	251
1	documents will help the reviewers.
2	DR. POWERS: Okay. So these things are
3	not independent of each other.
4	MS. LOIS: Absolutely, and we're working
5	on inter
6	DR. POWERS: I just have to say I thought
7	that that was a singularly good concept that Jay had
8	come up with then, and I would think that the agency
9	would be just cheering like crazy over it because he's
10	finding a way to optimize the resources devoted to
11	these reviews, and that seems like a good idea to me.
12	MR. FORESTER: Okay. This is just a
13	little bit now the bases and the approach for the HRA
14	good practices, of course relying on the SME standard
15	and industry documents that address, again, what are
16	the high level things that need to be done. That, of
17	course, provides some general guidance, and we want to
18	provide more detail for that.
19	What we're doing is based on existing HRA
20	methods and tools that are out there to describe these
21	issues that talk about HRA processes, insights from
22	the literature, reviews of PRA and HRA applications.
23	Both myself and Alan Kolaczkowski were an author on
24	this and participated in these applications.
25	So we have experiences from reviewing it,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
1 from reviewing the applications and in conducting the 2 applications also, and of course, we're relying on the 3 reviewers of the document for additional support for 4 the basis of the good practices.

5 So our approach then has been to get 6 consensus from the experts at the NRC in terms of what 7 we're doing. It will be in your internal NRC reviews, 8 ACRS feedback about what's contained in the good 9 practices, and as Erasmia has said, we're going for 10 public comment and input from the international HRA 11 community.

12 terms of the scope of the qood Τn the good practices themselves address 13 practices, 14 reactors at full power, internal events analysis, but 15 in reality these good practices should be useful for anyone doing a PRA whether it's for eternal events or 16 17 other kinds of modes of operation.

The idea is that, you know, these are good 18 19 practices in any case. What you might need for 20 additional applications, for example, external events 21 low power and shutdown would be additional or 22 information that might need to be done, but I wouldn't 23 expect to find any inconsistencies between what we 24 say. This should generalize I guess is the point I'm 25 trying to make.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We do not endorse a specific method or tool. The good practices should fit with any HRA method that's being used. I will say that in terms of some of the issues, the quantification level, for example, some of the existing methods might have to be adapted somewhat to some special cases, but again, this is meant to be method free.

have linked it 8 And we to the ASME standard. In fact, in the document we summarize the 9 high level ASME requirements so that you can see where 10 11 the qood practices fit with the respect to 12 requirements in the standard.

And as part of the guidance we 13 also 14 provide some impacts of not performing the good 15 Now, practices correctly. in most cases that addresses things like, well, you'll be in complete or 16 17 your model will be inaccurate and, therefore, your assessment of risk might not be exactly right. 18

But we talk about that, and we provide additional remarks on how to make sure that the good practices are achieved, and again, we focus on the HRA process as opposed to things like data.

When you see the actual HRA good practices document if you haven't, it's organized by logical analysis activities. We begin by talking about the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 overall or general good practices and then move to the 2 pre-initiator human events. Pre-initiators are 3 operator actions or maintenance personnel actions 4 associated with calibrating instruments or restoring 5 systems. So these are actions that if done 6 incorrectly could make systems unavailable in case an 7 initiating event occurred. So we want to provide guidance for how to model those pre-initiating or how 8 9 to identify the pre-initiating events, how to screen them, how to model them, and how to quantify them. 10 Similarly, we address the post initiator. 11 12 Once an initiating event has occurred, the operators want to strive to restore the plant to a safe 13 14 condition. We talk about how to identify those events 15 and provide guidance for that, how to model them, how to quantify them, and then address how to add recovery 16 actions to the model. 17 There's also a section in the report that 18 addresses errors of commission and how to document 19 20 your HRA results. 21 DR. SHACK: But it does this not in the 22 context of particular models; just general discussion. 23 MR. FORESTER: General discussion because 24 we're really focusing on the HRA process here. SO 25 there's a lot of activities associated with doing the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

254

	255
1	PRA and HRA as opposed to just focusing on
2	quantification, for example, which is what most HRA
3	methods focus on doing the quantification process.
4	DR. APOSTOLAKIS: They do develop
5	structure and don't put them down.
6	MR. FORESTER: I'm sorry?
7	DR. APOSTOLAKIS: HRA methods do not
8	necessarily focus on quantification.
9	MR. FORESTER: Not only on quantification,
10	no, but many of them will not provide a lot of
11	guidance for how to identify human failure events or
12	how to put them in the models, and so forth. There
13	are exceptions. You know, there's SHARP-1, the SHARP
14	work that was done by EPRI which provides some of that
15	kind of guidance, but again, that was more of a
16	framework for doing HRA as opposed to a specific
17	quantification process, to just slam more the THERP
18	kind of quantifications.
19	DR. APOSTOLAKIS: Does the whole community
20	agree with the terminology "human failure events"?
21	MR. FORESTER: Well, you know, it seems to
22	be being used by most everyone at this point when you
23	see it discussed in the literature and so forth. That
24	seems to be a fairly common terminology.
25	MS. LOIS: ASME has endorsed the human

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	256
1	failure event image.
2	DR. ROSEN: But doesn't this structure
3	lend itself nicely to the discussion of issues raised
4	by organizational environments?
5	DR. APOSTOLAKIS: Sure.
6	DR. SIEBER: It certainly does.
7	DR. APOSTOLAKIS: In fact, I wanted to say
8	the Commission has vetoed research programs whose sole
9	purpose is to study organizational, cultural issues.
10	I don't think the Commission has ever told the staff,
11	"Do not consider organizational factors in the context
12	of human reliability."
13	In other words, if it's an element of a
14	bigger picture, I don't think there is a no, but
15	what Erasmia was referring to, there were projects
16	back in the '80s and '90s that had the title, you
17	know, organizational such-and-such-and-such, and the
18	Commission said no.
19	DR. POWERS: I can't imagine me splitting
20	a hair like that with my boss.
21	DR. APOSTOLAKIS: No. You know
22	DR. POWERS: I think I would ask him if I
23	was splitting the right hair before I went ahead and
24	did it.
25	DR. ROSEN: Well, a pre-initiator

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	257
1	DR. APOSTOLAKIS: No, there's a difference
2	there.
3	DR. ROSEN: on identification. Let's
4	take that one for an example. Organizational issues
5	can dramatically affect the ability of an organization
6	to identify, you know, conditions that are pre-
7	initiated. I mean, it's classic, right?
8	DR. APOSTOLAKIS: Sure, sure.
9	MS. LOIS: So in a way the HRA and PRA
10	include some aspects of organization performance, but
11	not explicitly, and not probably to the extent that it
12	should.
13	Even equipment performance, if you do a
14	true plant specific analysis and in the case of a high
15	unavailability of important systems, one could infer
16	from that that because of corrective action problems,
17	maintenance problems, et cetera. So you have that
18	aspect, the organizational aspect in your PRA without
19	explicitly addressing it.
20	However, you have the capability to do a
21	better job, and that's what we are working on. Now,
22	the title probably was misleading and probably the
23	commission overreacted by saying organizational
24	practice and PRA or HRA.
25	But it isn't that it's totally absent, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	it's not as much as we could have if we had contained
2	the work. That's all.
3	MR. FORESTER: Yeah, there's one area in
4	particular I'll discuss where we do try and get at
5	some of the organizational influences. There's
6	another areas that we actually do not have in the good
7	practices, but based on the subcommittee meeting I
8	think we should include where with respect to pre-
9	initiators and the identification process.
10	There's not a discussion in there about
11	the fact that we do look at how the organization
12	schedules the work, you know. Do one train one day,
13	another train a different day? How do they use their
14	crews? And so there are aspects that we do look at
15	that's not in the document, and I think those should
16	be
17	DR. ROSEN: With the idea that they're
18	trying to avoid common mode or common cause failure.
19	MR. FORESTER: Exactly. So we do look at
20	it in that sense, but with respect to attitudes and
21	things like that.
22	DR. SIEBER: Standards.
23	MR. FORESTER: We don't really do that.
24	DR. ROSEN: You certainly need to address
25	this. I mean, we're going to write a letter on this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	259
1	then.
2	DR. APOSTOLAKIS: When the reactor safety
3	study was published, it was all Beyesian, but you
4	won't find the word "Beyes" anywhere because it was
5	controversial.
б	There was a footnote in one of the 11
7	volume, "Sometimes this approach is called Beyesian,
8	but we're not going to use that term." So we use some
9	organizational factors, but call them something else.
10	MR. FORESTER: We just addressed the
11	specifics of it, I think, and that's what we're doing
12	now to some extent, but definitely more needs to be
13	done.
14	Okay. So now from this point on I'll be
15	discussing examples of
16	DR. APOSTOLAKIS: Is it correct to say
17	it's not a disciplined or multi-disciplinary?
18	MR. FORESTER: I would say multi-
19	disciplinary would be better.
20	DR. ROSEN: Disciplined is what they have.
21	DR. APOSTOLAKIS: Yeah, the HRAs
22	discipline.
23	MR. FORESTER: You're right. It should be
24	multi-disciplinary.
25	DR. APOSTOLAKIS: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. FORESTER: So from this point on I'll 2 be discussing the good practices at a general level and we can get into detail as much as you'd like. 3 We 4 can begin by talking about general good practices. We 5 emphasize the importance of having а multidisciplinary team participate in conducting the HRA. 6 7 It should be an integrated effort with the PRA.

8 So the idea is to have operators, 9 trainers, procedure writers, PRA people, systems analysts, and so forth participating very early on in 10 11 the PRA. You know, it's a bit of an exaggeration, but 12 in the older days I think a lot of what was done was the system analysis guys, engineers would identify 13 14 what went into the models and then they'd ask the HRA 15 folks to quantify the events.

Well, obviously I think the role of the 16 17 operator should be considered much earlier, and the right people should be involved in doing that, be 18 19 involved with the guys doing the TH work because what the human can do can affect the timing events. 20 So 21 again, the main point is we want an integrated effort. 22 DR. APOSTOLAKIS: I think this is a good 23 point to discuss in the context of this report that 24 Dana raised earlier that Jay has developed. I'm not 25 sure you guys have thought about it, but if I were to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	261
1	do when I should do this, in the baseline PRA that
2	Jay takes and finds the importance measures and tells
3	me here are the important human actions on which I
4	have to spend more time? But I have already spent the
5	time, or should I first do it crude analysis and then
6	after I have identified the important human failure
7	events, I go and do all of this?
8	It's the issue again that, as you know
9	ATHEANA was criticized for a few years ago, voids.
10	It's the Rolls Royce of human reliability analysis.
11	It costs an arm and a leg. You don't expect anybody
12	to do it. So do we need a phased approach and tighter
13	coupling with that document?
14	I don't know myself, but I mean, if I have
15	to do all of this from the beginning, then you are
16	defeating the intent of the Persensky report.
17	MS. LOIS: I will let Alan Kolaczkowski,
18	who is obviously awake
19	DR. APOSTOLAKIS: Is he here?
20	MS. LOIS: He's on the phone.
21	DR. APOSTOLAKIS: Oh.
22	MS. LOIS: Alan?
23	MR. KOLACZKOWSKI: Yes, hello. Alan
24	Kolaczkowski.
25	MS. LOIS: Do you want to answer the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	262
1	question?
2	DR. APOSTOLAKIS: Did you hear the
3	question?
4	MR. KOLACZKOWSKI: No, I did hear the
5	question and I understood it.
6	I do recognize that as you say, Dr.
7	Apostolakis
8	DR. APOSTOLAKIS: Wait, Alan, wait.
9	Can you hear him?
10	THE REPORTER: Not real well.
11	DR. APOSTOLAKIS: No. Can you take the
12	microphone and put it there?
13	You will be recorded. You know, when
14	you're on the phone and being recorded, don't you have
15	to alter the guy?
16	Go ahead. Alan.
17	MR. KOLACZKOWSKI: I heard the question
18	and I understood.
19	(Pause in proceedings.)
20	MR. KOLACZKOWSKI: Should I try again?
21	DR. APOSTOLAKIS: Yes.
22	MR. KOLACZKOWSKI: Is this working better
23	now?
24	DR. APOSTOLAKIS: Yes.
25	MR. KOLACZKOWSKI: Okay. I think the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

intent of this first one is not so much to tell people when they have to do it. In fact, that's true of all of the HRA good practices. It's not that every good practice is always applicable. One has to look at what is the scope of work that they're doing and when it makes sense to apply these good practices or not, and that's is stated, testified earlier on in the document.

However, I think the intent of this good 9 10 practice is that not the extent required if you are 11 going to model human failure events in the model, 12 whether it's in the base PRA or whether you're doing some application five years later and you're going to 13 14 use the PRA for that application and you're going to 15 revisit certain human failure events on the model and adjust them, perhaps modify them, perhaps add others 16 17 to the model, whatever; what you're saying is it's good practice to not have just the -- again, I'll 18 19 maybe stress the point a little bit -- not do it the 20 way we did it in the olden days when we just had the 21 system engineer decide what the event ought to be, the 22 time it put in the model and then have the HRA person and quantify it, but it really should be a 23 qo 24 collective effort with input from trainers, from 25 operators, et cetera, deciding what the event ought to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	264
1	be, how it ought to be defined, when it's applicable
2	in the model and when it's not.
3	We think that's a better practice, if you
4	will and is something that ought to be done whenever
5	you're adding or modifying events.
6	DR. APOSTOLAKIS: Okay. I understand
7	that. Let me ask all three of you: would you be
8	amenable to or agreement; would you find it agreeable
9	to add the paragraph in the introduction making the
10	connection of this document, between this document and
11	the other document and maybe say a few words after you
12	think about it a little bit?
13	I'm not asking for a major revision, but
14	I think we cannot issue one report that says, you
15	know, use importance measures to find the important
16	ones and then have another one that says here are the
17	good practices because a reviewer might say, you know,
18	"I don't care what Persensky says. The good practices
19	document tells me to do this. So I'm going to do it
20	everywhere."
21	MS. LOIS: Gareth wants to
22	DR. APOSTOLAKIS: Gareth wants to confuse
23	the issue. Okay.
24	MR. PARRY: Hopefully to clarify it. This
25	is Gareth Parry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	I think there's a slight misunderstanding
2	here. What Jay Persensky's document is is basically
3	related more to what level of human factors review
4	should I give to, say, a new human action that might
5	be taken to replace an automatic action or something
6	like that. It's really a very specific event.
7	To that extent, the way he uses the PRA
8	results is that the PRA is used to assess the
9	importance of that particular human action, which may,
10	in fact, no even be in the base model because it may
11	be something that's replacing a piece of hardware.
12	I think all of these good practices are
13	really related to how you do the base PRA which helps
14	Jay decide how much resource he has to spend on
15	reviewing that particular action, depending on how
16	risk significant it is.
17	At that point it may be some of that might
18	feed back into a revision of the model.
19	DR. APOSTOLAKIS: Well, I think that a
20	paragraph or two would be helpful making the
21	connection.
22	MR. PARRY: It may be helpful, but
23	DR. APOSTOLAKIS: You may say that if you
24	want, but as you know very well, people who actually
25	do well, people who do PRAs, at least in the old

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

266 1 wouldn't qo to the full blown Level 2 days, 2 uncertainty analysis immediately. They would start 3 with a point estimate, identify what's important, and 4 then focus on those. 5 So it seems to me that Jay is trying to do something similar, you know. 6 7 MR. PARRY: He is trying though to --He disappointed your 8 DR. APOSTOLAKIS: 9 reviewer, yeah, yeah, but why should I have to do everything that's in the good practices document even 10 11 for human actions that will turn out be to 12 insignificant? And I don't think you do. I 13 MR. PARRY: 14 think the way the document is structured is it allows 15 you to screen out certain things. There is a screening 16 DR. APOSTOLAKIS: phase. 17 That's for sure. MR. PARRY: And allows you to go into as 18 19 much detail as you want. DR. APOSTOLAKIS: Yeah. Anyway, I think 20 21 a paragraph, summary, introduction would be helpful. 22 Okay. Alan? 23 MR. KOLACZKOWSKI: Yeah. 24 DR. APOSTOLAKIS: Good. 25 MR. FORESTER: Okay. Next we emphasize

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

the importance of actually going to the plant and participating in the analysis and getting a real sense of what goes on there by doing talk-throughs, walkdowns of, for example, ex-control room actions, if the operators have to leave the control room to carry out certain things. You would definitely want to observe those and look at the timing associated with them.

And there's a heavy emphasis on doing 8 9 simulator exercises. Again, you can't simulate, watch simulator exercises for all of the sequences you're 10 11 analyzing, but you can learn an awful lot of important 12 information about the way the crews interact, about how they use their procedures, how they implement the 13 14 procedures, what their attitudes are about various 15 actions they may have to take, whether they feel they're supported, I quess, by management in terms of 16 their ability to decide what to do. 17

So again, you can use simulator exercise to get a lot of information and be relevant to what you include in the model and how you quantify it. So we emphasize the importance of that.

And then the final general good practice. They just not that HRA should consider both core damage and larger releases.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. KRESS: Would you be amenable, using

(202) 234-4433

25

1

2

3

4

5

6

7

	268
1	George's word, to just striking out the third one?
2	Because all it does is place limits on it, and it
3	doesn't add much.
4	MR. FORESTER: It wouldn't bother me. I
5	guess the concern is not everybody always looks at
6	larger or considers human actions related to larger
7	DR. KRESS: I know, but if you know it's
8	for a PRA and a PRA does that, you're putting limits
9	on it here, which I don't think you want to do because
10	there are other things besides CDF and large early
11	release.
12	MR. FORESTER: That's true. That's a good
13	point.
14	Okay. So now we're moving into some of
15	the good practices associated with the post initiator
16	human events. We begin by, you know, we have this
17	basic book, basic processes, and the first is
18	associated with identifying the pre-initiators. The
19	good practices provide guidance about what to address,
20	what to review. For example, they want to review the
21	test and maintenance procedures, calibration
22	procedures, any kinds of activities that's associated
23	with equipment that's going to be credited in the PRA.
24	So procedures and actions associated with those, with
25	that equipment should be modeled.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So the notion is what to review. Anything
that is going to render equipment unavailable, then
you're going to want to review the procedures and how
those things are addressed at the plant.
Another point that we emphasize is what to
include. We try and talk about what kind of things
should be included in the model. Particularly
important are single or common mode actions that could
affect redundant or multiple diverse equipment. So if
an action could affect both trains of the system, for
example or, again, they're diverse equipment. You
want to make sure those kinds of actions are included
in the model.
You still might include single actions
that affect the single component, but we do provide
some guidance, and we'll talk about that later for how
to screen some of these types of things out so that
you don't have to model and quantify everything that's
involved, but there are a few things you do need to
make sure you include.
And of course, the impact we'll address
the different impacts of these things is that if
you don't do the right reviews and you don't include
the right things, then you may have incomplete or
inaccurate models.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	Next.
2	Good practices address how to focus the
3	analysis on the most important contributors. This
4	relates to what Dr. Apostolakis was talking about. We
5	provide criteria that would allow them to say we don't
6	really need to model this action. We don't need to
7	address it.
8	For example, if you have a system that
9	gets a signal to realign when something goes wrong so
10	that if the crews the only thing that could happen
11	here is they could just leave it misaligned. If
12	there's an automatic signal that realigns it, then you
13	don't really need to model that. You can be confident
14	that, you know, for most cases you still have the
15	system.
16	Similarly, if there's a compelling signal
17	in the control room that a valve was left in an
18	inappropriate position or a system wasn't restored
19	correctly or something, then again you probably don't
20	need to model that because the probability of it being
21	unavailable is so low that it's not necessary. So
22	there's other criteria that we provide, again, to help
23	them screen out these different kinds of initiators.
24	Again, we emphasize not screening out
25	things that will affect multiple equipment, and then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	we also make a note about that if this is a for
2	example, a licensee may have submitted a change, a
3	plant change, and the PRA is going to examine that.
4	Well, if in that analysis certain pre-initiators were
5	excluded, then with the plant change though you
6	probably need to revisit those to make sure that they
7	are not relevant now or that the change didn't affect
8	some assumptions you made earlier on.
9	The good practice, that it address how and
10	where to include the pre-initiated events in the
11	model. So you know, within PRA you're building event
12	trees and fault trees. It's fairly easy. You can be
13	logical in terms of the logic can be correct in
14	terms of where you place things, but in terms of
15	traceability, potentially understanding dependencies
16	between those actions and so forth, there's guidance
17	about trying to tie the different actions to the
18	component or the system or the function or whatever
19	that's being addressed to make sure they're in the
20	right place and you'll have good traceability.
21	Another related good practice is when it's
22	okay to combine multiple individual acts in a single
23	event. So restoring the system, for example, might
24	involve multiple actions. In some cases, you might be
25	able to treat that as a single human failure event.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 In other cases it might be a better idea to break it 2 apart to some extent and provide guidance for when it 3 might be appropriate to have the subtasks or sub-4 events essentially.

5 You know, if the acts and the effects are 6 going to be the same, if all of the performance 7 shaping factors are going to be the same, and there's 8 no potential dependencies between some aspects of the 9 overall task, then you can probably treat them as a 10 single human failure event. So there's guidance 11 there, again, to help in the modeling process.

12 There's essentially eight good practices that address quantifying the pre-initiators. 13 These 14 are some of the main points. Folks are learning how 15 to do detailed analysis of the events that were not eliminated during the screening process. We focus on, 16 again, emphasizing the importance of revisiting that 17 screening analysis when you're looking at plant 18 19 changes and so forth or new submittals that change the 20 base PRA.

It talks about what performance shaping factors could be important for pre-initiators to make sure they address the right things. You know, the primary method that is used for pre-initiators is a set third (phonetic) technology, and there's guidance

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	in there, and this just reemphasizes, you know, the
2	important ones such as having written check-offs and
3	how often the plant changes and whether there are
4	signals in the control room and so forth.
5	And then there's some guidance given for
6	deciding whether the probabilities are reasonable.
7	You know, when you look at this particular probability
8	for an action and another reaction, does it make
9	sense? Is one of them fairly complex? Does it have
10	a probability that the other one may be very simple
11	you know, does one have a higher probability of
12	failure than the other?
13	So this is guidance for how to check and
14	make sure that the probabilities are reasonable.
15	And now we're moving into the post
16	initiator human failure event and good practices.
17	Again, we start out by giving guidance about how to
18	identify post initiators, what to review. You know,
19	you've got to look at the emergency operating
20	procedures because now we're looking at actions
21	associated with responding to initiating event.
22	Abnormal operating procedures, enunciator
23	and alarm procedures. So if it's possible that you
24	might get an alarm and there's a particular procedure
25	or action indicated by that alarm; if the alarm is

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	wrong, could that lead to possibly taking an
2	inappropriate action?
3	So, again, it emphasizes what kinds of
4	procedures should be reviewed and how to consider
5	them.
6	Examining training material to understand
7	how the operators are trained to respond to particular
8	events, and of course, doing simulator runs so that
9	you review the procedures. You review what the
10	control room does. You look at simulator exercises
11	and try and get some idea about plant philosophy with
12	respect to how operators should respond in that
13	particular scenario.
14	And then we provide it again trying to
15	give them some general types of actions that they
16	should expect to be included. Obviously if there's an
17	automatic start of the system expected, then there are
18	going to be modeling failure of that other start, and
19	then the model and the human action to manually
20	initiate the system.
21	It addresses non including heroic actions
22	and emphasizes that all of the actions should be
23	procedure based. So no non-procedure based actions.
24	So, again, the idea is to give them guidance about
25	what to include or not include.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	275
1	I think in the handouts you may have we
2	noticed right at the last minute that a couple of
3	pages were out of order. We're now going to page
4	number 18. I think 20 got in the wrong place.
5	Okay. So we're on Slide 18, which is
6	modeling post initiators.
7	Again, we're talking about how to include
8	these actions in the model and what level. Is it a
9	functional level? Should it be modeled relative to
10	the system, the training of the component?
11	The basic event needs to be linked to the
12	equipment that's going to be affected, and is the poor
13	performance related to the train and what's going to
14	be effective.
15	It also points out that the modeling
16	should be based on plant and accident sequence
17	specific characteristics. So where you include an
18	action in an event tree, for example, it depends on
19	the sequence timing. When is the action going to be
20	relevant? What are the cues going to be for the
21	actions? How are the procedures and the training
22	represented in terms of when that action might take
23	place?
24	Where the action has to take place could
25	be relevant where it's model, and of course, insights

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

from the simulation and walk-throughs and so forth. So again, it helps them understand the things they need to consider in order to be able to include these things in the models.

And the next slide here addresses how we 5 quantify post initiators, the guidance we'd give them. 6 7 The good practices address the importance of modeling both cognitive and execution failures. 8 So if the control room has to diagnose the need to take the 9 action, obviously that should be included. 10 It could be a particular failure probability associated with 11 12 that.

But you also have to look at the execution 13 14 failures. This is a very simple task where you're 15 simply turning a switch in the control room. I mean, that execution failure may be fairly low probability, 16 situations it could 17 but in other be fairly significant. If there's ex control room actions 18 19 involved, possibly throttling various kinds of 20 injection systems might be a little trickier than 21 others. again, it's just emphasizing the So, 22 importance of the need to consider both cognitive and 23 execution.

24 DR. ROSEN: Failure to diagnose in the 25 control room is a crew activity, right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

	277
1	MR. FORESTER: Yes.
2	DR. ROSEN: So you'd have to have the
3	probability of the whole crew, not just
4	MR. FORESTER: That's correct.
5	DR. ROSEN: not just one individual.
б	MR. FORESTER: That's absolutely correct.
7	We talked about I shouldn't say the crew, in fact,
8	rather than the individual because
9	DR. APOSTOLAKIS: In fact, I wanted to
10	make that comment. It seems to me that when it comes
11	to evaluating crew performance, we are not really up
12	to date, are we?
13	We tend to treat the group as one entity,
14	and in many instances this is not quite right. So
15	MR. FORESTER: That's true, and we
16	actually do try and address it. That's one of the
17	things we get from looking at simulator exercises.
18	You see how the shift supervisor, for example,
19	interacts with his crew. Are some of the crew members
20	allowed to do things independently? Are there some
21	actions that they have the privilege essentially to
22	take on their own and then report to the shift
23	supervisor later?
24	Or is it everything has to go through the
25	shift supervisor? How do they handle

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	278
1	DR. ROSEN: We're just talking about
2	diagnosis at the moment. At least I was just trying
3	to say what's happening here. That's the question,
4	and that's a crew activity, and the crews are
5	different, depending upon the structure of the control
6	room staffing.
7	MR. FORESTER: That's correct.
8	DR. ROSEN: I mean, I can think of one
9	plant where there are two units controlled from one
10	control room. So there are two unit supervisors, two
11	crews, two unit supervisors and one shift manager who
12	kind of sits in the middle, and that's a complex crew.
13	And when you're thinking about trying to
14	find an error or diagnosis, you know, you have to
15	think about a complex crew environment, but that's the
16	most complex one I've seen. But there are simple ones
17	that you'd have to think about, too, and the
18	probability of failing to diagnose might be different
19	for different crew compositions and structures.
20	I'm just saying that this is not just one
21	number.
22	MR. FORESTER: Well, I think you can get
23	to one number if you've considered those
24	internationals.
25	DR. ROSEN: No, I understand, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

279
MR. FORESTER: No, I agree with you that,
you know, ultimately it's the plant supervisor
responsibility, but if there's a particular scenario
or context that's involved that has confused one crew
member, well, that influence could then carry over to
the shift supervisor.
So you have to sort of evaluate how as a
team they might respond to that situation.
DR. ROSEN: Right, and I'm thinking more
broadly in terms of a capability that you're
suggesting in this good practice to build into HRA.
That capability needs to be applicable to very complex
situations like we're considering for what has been
proposed for certain advanced plants, many modules,
one control room, many modules, very few operators.
MR. FORESTER: And I agree with that, and
that's an area that we haven't done enough work in.
MS. LOIS: The current state of the art
cannot handle it well, with the exception of ATHEANA
that tries to take into consideration all different
aspects, and that's why we have the Holden simulator
experiments.

And Dr. Apostolakis has recommended to review what other second generation HRA methods do, but you have recommended that crew activity to look at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	for the HRA purposes.
2	DR. ROSEN: Well, I'm just trying to
3	explore the dimensions of some difficulties, the real
4	world difficulties in dealing with crews or crew
5	structures and crew challenges. Those, plus the ones
6	I've mentioned before about not having the crew that
7	you trained with in the simulator really on shift with
8	you when the event occurs because somebody is off
9	relieving something else.
10	So you know, there are some real issues to
11	be dealt with in how one goes about HRA under the
12	complex circumstances.
13	DR. APOSTOLAKIS: John when you talked
14	about the slide, you said it's important for the
15	analyst to consider both cognitive and execution
16	failures.
17	MR. FORESTER: Yes.
18	DR. APOSTOLAKIS: You didn't use the word
19	"model" that you have on the slide. I think that is
20	a dangerous word to use there. "Consider" I think is
21	much more appropriate.
22	Surely you're not asking them to start
23	modeling cognitive processes and make Dr. Kress upset,
24	and it's an impossible task to begin with. So what
25	you mean is consider the possibility of misdiagnosis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	281
1	and maybe whatever else may affect performance, but
2	you don't mean modeling.
3	MR. FORESTER: No, I think the model
4	referred to is you want to have a cognitive element
5	and an execution element that you consider. You're
6	right.
7	I mean, some how we're trying to model the
8	group cognition, but obviously we don't have
9	DR. APOSTOLAKIS: Is the IDEA model from
10	Maryland focusing a lot on
11	MS. LOIS: We are just looking into that.
12	DR. APOSTOLAKIS: on the cognitive
13	processes and so on?
14	MR. FORESTER: Yes.
15	DR. APOSTOLAKIS: You don't meant that.
16	MR. FORESTER: No.
17	MS. LOIS: But even that is very simple
18	minded.
19	DR. APOSTOLAKIS: Yeah.
20	MS. LOIS: It seems three people, and it's
21	yeah.
22	DR. APOSTOLAKIS: Still, I mean, you're
23	getting into the realm of psychology. I'm sorry,
24	John.
25	MR. FORESTER: No. It's hard to use right

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	282
1	now.
2	DR. APOSTOLAKIS: You're an applied
3	psychologist, are you not?
4	MR. FORESTER: I'm aware of the
5	limitations there. So that's good work; it's
б	important work, but when it will be useful to HRA is
7	another question.
8	DR. APOSTOLAKIS: Okay.
9	DR. ROSEN: You know, the problem you face
10	is a little bit like the one we used to face and we
11	still face like, say, in thermal hydraulics where we
12	know this is a three dimensional world, and in three
13	dimensions things behave differently than they do in
14	one dimension, but we can't really do much more than
15	one dimensional analysis or two dimensional analysis.
16	So you know, you're always attempting to
17	approximate the real world. So the real world is
18	crews operating under stress and short time frames
19	with some of the other features that I mentioned
20	before, you know, complex command and control
21	arrangements, et cetera.
22	And you're really trying to model that to
23	get the right answer because you may get a different
24	answer if you take a one dimensional model of human
25	performance. It may look very easy with a one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	283
1	dimensional model. Sure, he gets the signal and he
2	follows his procedure and shuts it off.
3	Well, yeah, but that's not exactly how it
4	turns out in the real world.
5	MR. FORESTER: That's correct. That's why
6	I think ATHEANA has emphasize the air forcing context.
7	And we talk about the importance of context more
8	generally in the good practices. Just the things
9	you're saying needs to be considered. These are the
10	most likely things that influence performance. You
11	need to sort of look at it in the real world sense
12	rather than some special processes inside the brain.
13	I mean, it would be good if we could do that if we had
14	the data.
15	DR. ROSEN: But what I'm saying is we're
16	just calibrating each other here, but that's not how
17	it really works, and that if we're really trying to
18	model how it really works three dimensionally, you
19	know, how the fluid really flows, it's more
20	DR. APOSTOLAKIS: One way of handling
21	those approximations, Steve, would be to actually see,
22	collect the evidence, what happens in that real world
23	and ask yourself, "Am I missing in my model something
24	important that appears to be driving operating
25	experience?"

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Now, have we ever done that? I know that 2 there have been collections of events and so on and 3 analysis, but this last step might, in fact, be a 4 good, convincing argument that certain performance 5 factors that we don't consider now should be considered. 6 7 I remember there was a NUREG or two way 8 back, you know, human error events, failure events 9 during shutdown. It was a very nice listing of 10 things, analysis and so on. But the next step, which 11 is to look at the whole report with however many

12 events it has analyzed and then synthesize and say, 13 "Hey, we see here like prioritizing maintenance, for 14 example, appears in every other event. Is that in 15 anybody's model?"

And say, well, this is strong, because then you will have to go to the two dimensional world that Steve mentions, but that is you have a basis. Okay?

20 MS. LOIS: That's correct. We hope we'll 21 obtain through HERA. That's why we're developing the 22 database.

DR. APOSTOLAKIS: Okay, okay.
MS. LOIS: And HERA has a structure that
is amenable to HRA analysis, and the analysts will be

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	285
1	able to do the searches for various types of
2	DR. APOSTOLAKIS: You know every well
3	though that HERA was betrayed many times.
4	And the other thing, Steve, after 40 years
5	of extensive research, thermal hydraulics, I don't
6	know whether they're modeling the three dimensional
7	world well or
8	DR. ROSEN: At least they know there's a
9	three dimensional world there.
10	DR. APOSTOLAKIS: Unfortunately Professor
11	Wallis is not here.
12	DR. ROSEN: But they know there's a three
13	dimensional world, and what's more, they're allowed to
14	discuss it.
15	DR. APOSTOLAKIS: Well, they do miraculous
16	things there. They even take vectors and convert them
17	to scale-ups.
18	DR. POWERS: George, one of the issues
19	that has come before this committee that continues to
20	arise in my mind, arose in the BWR power up-rates for
21	a particular event, was analyzed both before the power
22	up-rate and after the power up-rate, and the human
23	error probability was assigned to it, and of course it
24	was a little bit higher after the power up-rate
25	because the time available had shortened somewhat.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	286
1	Well, in some cases it was a substantial
2	shortening because there was a relatively short period
3	of time available.
4	But the thing that harps in my mind is
5	that even for those people where there was a short
6	time available, the licensee assured us they tested
7	this thing routinely. They had tested it 50 times
8	with every crew that they had ever had, and no one had
9	ever failed to perform the function in 30 seconds when
10	I think he had seven or four minutes to do it, some
11	substantial time. It had always been done very
12	reliably.
13	And the question that comes into my mind
14	on assigning the human probability gets back to the
15	"do they make sense" question. You know, when faced
16	with that, how do I answer that question? Does it
17	make sense?
18	The human error probability was like all
19	of them at .01 or something like that. I mean,
20	they're all kind of the same, and yet the database
21	here is not inconsistent with .01. I mean, you could
22	look at 50 times and no errors. It's still consistent
23	with .01.
24	Does that make sense? Do we know whether
25	that makes sense or not?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	287
1	MR. FORESTER: Does the value make sense?
2	DR. POWERS: Yeah.
3	MR. FORESTER: Well, you know, to
4	determine whether it makes sense, again, I think you
5	have to evaluate what's involved in the decision
6	process and what the event would be, and once you do
7	that and you have other events that are examined that
8	have different characteristics, you can compare the
9	probabilities amongst those to see if at least
10	relatively speaking it makes sense, I guess.
11	DR. POWERS: Well, here's what I'm really
12	asking you. Here these guys train on this thing.
13	They do their thing, and I'm sure they use THERP for
14	the analysis on this. You clearly gave credit for the
15	training in assessing the probabilities. I don't know
16	the details of what they did, but you would ordinarily
17	do that. You'd take something.
18	They come up with a number, and of course,
19	to them they were being enormously conservative when
20	they evaluated because 50 out of 50 times the guy had
21	done the job, and he had done it in a time that was
22	minimal compared to the time that was available. So
23	clearly the licensee was coming in and saying, "Well,
24	this number I put in here is very conservative. So
25	you guys can take confidence."

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	288
1	And the question that keeps running into
2	my mind is: is it really that conservative?
3	DR. ROSEN: Well, I think, Dana, you had
4	your finger on it. The question they were answering
5	was the case in point, was the throwing of a key lock
б	switch in the control room, and when an operator knows
7	he has to throw the key lock switch, 50 out of 50 of
8	them were able to do it. The question wasn't whether
9	he could get from his seat to that key lock switch in
10	throw it. Everybody agreed that was possible.
11	It was a question whether he would know he
12	had to do it, was the part that no one could assess.
13	DR. APOSTOLAKIS: Which brings up the
14	issue of again how credible are these simulation
15	exercises. In a real time environment
16	DR. POWERS: I mean those are the
17	questions we ask around it, and I was just asking John
18	to contribute to our debate just because it just won't
19	go away in my thinking.
20	DR. APOSTOLAKIS: It will never go away.
21	DR. POWERS: Oh.
22	DR. APOSTOLAKIS: I don't think so.
23	DR. ROSEN: It's because they didn't
24	address the big
25	DR. POWERS: You mean 100 years from now
1	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	289
1	when I'm on my death bed I'll be saying, "Hell, I
2	wonder if that guy could really do that."
3	DR. APOSTOLAKIS: My words, 100 years from
4	now.
5	DR. ROSEN: Dana, you have to ask the
6	right question for them to get closer to the right
7	answer, and the right question is not whether he could
8	turn the switch. It's whether he would know that he
9	needed to turn the switch.
10	DR. APOSTOLAKIS: Yeah, that's the
11	difficulty with the simulations.
12	DR. ROSEN: Right. They never asked that
13	question or they never addressed the question of
14	whether he would know that he needed to turn
15	DR. POWERS: Well, I think they were
16	implicitly I admit with you in our discussion of it
17	they didn't understand what we were asking, but I
18	think implicitly they did. I mean, they're just on
19	the hot seat here and they're trying to get a license
20	extension.
21	DR. APOSTOLAKIS: Yeah.
22	DR. POWERS: And things like that.
23	DR. APOSTOLAKIS: But I think we were
24	supposed to finish this by 4;45.
25	DR. POWERS: This is interesting stuff,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	George.
2	MR. FORESTER: It certainly is.
3	DR. POWERS: This is what the staff should
4	be doing here even if it doesn't have immediate
5	applications.
6	MR. FORESTER: Okay. This just continues
7	then with the good practices we're going to address.
8	DR. APOSTOLAKIS: So you're going now to
9	Slide 23 or what?
10	MS. LOIS: Twenty.
11	DR. APOSTOLAKIS: See the big difference
12	if you put the "the" there? "Errors of the
13	Commission."
14	(Laughter.)
15	DR. APOSTOLAKIS: You'll be in real
16	trouble.
17	DR. POWERS: Yeah, but there's not enough
18	room on the slide, George.
19	(Laughter.)
20	DR. APOSTOLAKIS: I swear you would be in
21	trouble. So what if their errors were to incur a EOC
22	surface, right?
23	Okay, John. You only have four minutes.
24	MR. FORESTER: Okay. Quickly, we do
25	include some guidance about treatment of errors and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

commission. I imagine as everyone knows, traditionally PRA and HRA has not included errors of commission in the model. The thought was that they would tend to be low probability, and there are so many possibilities it would be a very difficult search.

7 We think some of the newer techniques has provided ways to reduce the search to make it more 8 useful at least to go ahead with the search. 9 We encourage that EOC searches be done, particularly in 10 11 submittals if there plant changes are for investigate if 12 applications; encourage to those changes could create situations that now might confuse 13 14 the operators so that if now the way the systems are 15 behaving it would be different than the way they were before. If some of the operators change and so forth, 16 17 they might get set up, for example, to take an appropriate action. 18

So the main idea here is, again, to not require errors of commission, but encourage that they look for them and some guidance for when they might be important, when there's a chance you might find them and they would turn out to be important.

There's a section on HRA documentation, the various aspects involved with doing that. I can

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	292
1	go through those if you'd like.
2	DR. SIEBER: We can read it. No.
3	MR. FORESTER: No, okay.
4	DR. APOSTOLAKIS: This is a very
5	prescriptive document though, isn't it? I mean
6	disciplines involved. I don't remember exactly how
7	you put it, but don't make it sound like you have to
8	have I mean, the discipline is okay, but it's
9	conceivable that one person, let's say, an engineer
10	who has been doing this for 20 years, that he could
11	represent another discipline as well, right?
12	You don't necessarily mean you have to
13	have an engineer. You have to have an operator. You
14	have to have a psychologist.
15	MR. FORESTER: No.
16	DR. APOSTOLAKIS: That would be awfully
17	prescriptive.
18	MR. FORESTER: No, I don't think that's
19	the case.
20	DR. POWERS: But you do indicate that you
21	have to have a chemist.
22	MR. FORESTER: I don't think we really
23	name. We might have some names in there, but we all
24	have chemists.
25	DR. POWERS: He doesn't want one of those.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	293
1	MR. FORESTER: And another point I think
2	is that we acknowledge that depending on what your
3	application is, not all of these things may be
4	necessary.
5	DR. APOSTOLAKIS: So I really think you
6	ought to separate or to say very clearly somewhere
7	that a renewer of an HRA shouldn't really follow these
8	things. A reviewer should be more performance based.
9	I mean, you don't want the reviewer to say, "Ah, did
10	you actually walk into this place, or did you actually
11	make a right turn?"
12	I mean, come on. The analysts should do
13	things like that. So the more I think about it the
14	more I think you really ought to make a distinction
15	between a review document and the guidance for
16	analysis document because a lot of the things you said
17	make perfect sense for the analyst, but I'm not sure
18	about the reviewer.
19	MR. FORESTER: But you just want to
20	examine I don't disagree with you entire, but I
21	guess one example is if the renewer is looking at the
22	document and he notices that there's no mention that
23	they actually walked down the action, that they might
24	say we estimated how long it was going to take.
25	Well, if time is very important and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

294 1 they're relying on someone's judgment of how long 2 something might take, then that might be a reason for 3 concern, not necessarily depending on how the rest of 4 the analysis reads, but --5 DR. APOSTOLAKIS: I agree. I agree, and I may even argue that this is a performance based 6 7 comment. You're giving me an estimate. I have the right to ask you how you got it, right? So that's 8 9 performance based. 10 MR. FORESTER: That's true. DR. APOSTOLAKIS: But to say that, boy, 11 12 you have to have walked down, well, gee, you know. MR. FORESTER: Yeah, that's true. It does 13 14 get kind of tricky because, again, depending on what 15 the application is and the nature of what was being done, not all of these things would be absolutely 16 17 necessary. DR. APOSTOLAKIS: I think you should make 18 the distinction clear either in this document or maybe 19 20 say that somewhere else you're going to. 21 MS. LOIS: But the walk-down, et cetera, 22 is part of the ASME standard, is a part of the PRA 23 standard. 24 DR. APOSTOLAKIS: Well, this particular 25 thing maybe you're right, but in general, I think your

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	focus has been the analyst. Maybe all you have to do
2	is go back and think again and say now for the
3	reviewer, do I want to say this. You know, I'm not
4	saying that you should start another project, but just
5	look at it again.
6	MS. LOIS: Another step that probably will
7	be next step is to develop a review guidance. This is
8	not a review guidance.
9	DR. APOSTOLAKIS: And maybe you can say
10	that up front.
11	MS. LOIS: Yeah.
12	DR. APOSTOLAKIS: A lot of these things
13	can be resolved easily by writing, expanding the
14	introduction, and explaining to people what your
15	intent was.
16	MS. LOIS: Okay.
17	DR. APOSTOLAKIS: Okay.
18	MR. FORESTER: I guess this is just a
19	slide on the usefulness. We still think it could be
20	useful for reviewers, again, just general knowledge
21	about what's appropriate.
22	DR. APOSTOLAKIS: Very good. Any comments
23	from the members?
24	DR. LEITCH: I had a question about the
25	last bullet on 15 and 19. Basically after we go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	296
1	through all of this, we say does it make sense. I
2	mean, if we knew it made sense at the beginning, why
3	would we go through all of this?
4	I mean, are we just developing a technical
5	rationale for an intuitive feeling anyway? And then
6	if it doesn't turn out right, well, there's enough
7	flexibility in this thing we can go back and say,
8	"Well, we should have given more weight to this or
9	more weight to that"?
10	And the bottom line is we come out with
11	what we intuitively believe from the get-go?
12	MS. LOIS: Can I answer that?
13	These criteria came more from our
14	experience with IPU use. We had seen a lot of IPUs
15	provide the very detailed documentation of how they
16	came up with an estimate.
17	However, if you look at the estimates from
18	the perspective of do they make sense, then did not.
19	For example, we show one particular IP where the
20	operator failure to scram, which we suggest at the
21	bottom it was ten to the minus three, and then failure
22	to feed or bleed was ten to the minus five, and that
23	is the aspects that it makes sense that we're looking
24	for here.
25	You know, failure to feed or bleed is a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	very complicated activity. The operators are dreaming
2	how to scramble the reactor. I don't think they are
3	dreaming how to feed or bleed, et cetera.
4	So it's more the logical relationship or
5	this.
6	On the issue that the good practices are
7	addressing is the fact that a lot of HRA experts, we
8	sort of didn't agree, did not have a good
9	understanding of how to do HRA, and they may apply a
10	particular method, quantification method, for example,
11	THERP, to an extreme degree so that they could come up
12	with estimates that are not logical.
13	So it's a bad aspect of it. You're
14	supposed to rationalize your numbers afterwards.
15	MR. PARRY: Could I add a comment here?
16	This is Gareth Parry again.
17	I think part of the intent of this is to,
18	in fact, make sure that the analyst revisits all his
19	estimates in one table and make sure that they're in
20	relative agreement.
21	I mean, these analyses may be done over a
22	protracted period of time. There's an element of
23	subjectivity that goes into all of them, and I think
24	all this is doing is saying that it may be necessary
25	to recalibrate yourself and one day you might have not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	felt very good. So you were being particularly
2	pessimistic about something.
3	It's a sanity check and making sure that
4	the event that has a more challenging set of
5	conditions associated with it, in fact, is a lower
6	error probability than one that has a more
7	straightforward set of characteristics.
8	So I think really it's a sanity check in
9	making sure that on a relative basis things make
10	sense.
11	DR. LEITCH: Yeah, I hear what you're
12	saying. I guess you're talking to a skeptic
13	admittedly, and you know, I don't have a whole lot of
14	confidence in this particular scientific discipline
15	because I think the uncertainties are so great that
16	they swamp what you're trying to do here.
17	MR. PARRY: I would agree that the
18	uncertainties are large, but I think you can take
19	those into account by the way that you use the
20	results, and by the way that you use them in the
21	decision making process.
22	I think part of the discipline is to
23	recognize that your uncertainties are, indeed, large
24	and to still be able to make useful conclusions.
25	DR. APOSTOLAKIS: Anything else?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	DR. LEITCH: You know, this is largely an
2	empirical science, and yet there's very little mention
3	of data or validation of these methods, and I'm just
4	wondering how do you.
5	DR. APOSTOLAKIS: Well, you're raising a
6	much bigger issue now, but they have problems to
7	collect data and so on. Here they're just saying,
8	"Look. If you want to do a decent HRA, there are many
9	models out there, but certain good practices have been
10	emerging over the years, and here they are."
11	We are not trying to quantify anything
12	here, but that question is more relevant to the other
13	stuff they're doing, which we will discuss some other
14	time.
15	DR. LEITCH: Yeah, I feel it's a very good
16	document on what those good practices what things,
17	one, ought to consider. My question is concerning our
18	ability to quantify those things.
19	DR. APOSTOLAKIS: A lot of people have
20	those doubts.
21	DR. LEITCH: I certainly have no
22	objection, and I think it's a good piece of work, and
23	if the question is should we issue this for public
24	comment, I think that's great.
25	DR. APOSTOLAKIS: Yeah, this does not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	300
1	address quantification anyway.
2	DR. POWERS: I guess the way I have looked
3	at it is I'm not sure that I would stake my life on
4	the .01, which is the number that always comes out on
5	these things versus .05 or ten to the minus fifth.
6	But I'm pretty sure that when they come in and say,
7	"We judge this action to be more complex and as a
8	result the likelihood for human error to be higher
9	than this other action," then I think they're on
10	pretty good ground there.
11	DR. APOSTOLAKIS: Right.
12	MR. FORESTER: I think so.
13	DR. POWERS: And so it's like free energy.
14	You don't know exactly where the zero is, but you sure
15	know what the deltas are to a great precision.
16	And I particularly like Gareth's comment
17	that, recognizing you have broad uncertainties is, of
18	course an essential element to the interpretation of
19	these, and I point out that in severe accidents we
20	make enormous strides even though we work with decades
21	and decades of uncertainty all the time.
22	DR. APOSTOLAKIS: The only thing is that,
23	again, we are off the subject now, but the effort to
24	quantify has led to all of this qualitative work.
25	Erasmia referred to the second generation models.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	301
1	Well, there was a first generation model which
2	basically said they were really numbers oriented, and
3	the most sophisticated one would say if the operator
4	has so many minutes, he has the probability he will
5	make a mistake.
6	And then people realized that this was not
7	good enough, and they started bringing into the
8	process models that were developed elsewhere by well
9	known people and so on.
10	So the numbers drove the qualitative
11	models, and I think we have gained a lot of good
12	insights. Now, the numbers are still up in the air.
13	CHAIRMAN BONACA: But I think this effort
14	to quantify, you're absolutely right. For example
15	DR. APOSTOLAKIS: It's a discipline.
16	CHAIRMAN BONACA: help tremendously in
17	the control room designs. I mean, there were a lot of
18	upgrades that took place on a plat specific basis in
19	the '80s, early '90s, that were really tied to an
20	attempt to understand further action, particularly for
21	older plants, some of the critical sequences. You
22	know, you do go through recirculation. You have to do
23	certain things. Some of the more modern plants were
24	set up to have high confidence that the operator would
25	do that. Some of the older plants did not even have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	302
1	the same level of confidence.
2	In fact, you could look at a simulator and
3	see the response of that and understand that you had
4	critical issues there. If you had to quantify still
5	today, you would have significant uncertainties. But
6	there is much higher confidence that they will do it
7	correctly because you can see it on the simulator how
8	the respondents are.
9	So I believe this effort to quantify has
10	been very helpful.
11	DR. APOSTOLAKIS: And not only that, but
12	look at the efforts of the design of the new
13	generation plants. One of the requirements is, you
14	know, don't ask the operators to do anything for the
15	first 24 hours or the first 70 hours. All of that
16	came from this kind of analysis and worry that time is
17	critical, along with other things.
18	The designers cannot make sure that the
19	operators feel good, but they can do something about
20	the available time. So the EPRI what was it
21	called? utility requirements document explicitly
22	said that, that the next generation, I think, for 24
23	hours they have to do nothing, and then for another
24	period of time something else.
25	So there are some practical results that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

303 1 have come out of this, but the numbers, you're right. 2 CHAIRMAN BONACA: But if you take PWRs, 20 3 years ago the likelihood that operators would go into 4 bleed or feed, although the direction was there, it 5 was very low. In fact, they would into the procedure and see what they were planning to do. I mean, there 6 7 were informal points of self-training almost that are 8 given there about doing things. And today because of the focus 9 on this actions required to do that and the training, there is 10 11 much higher confidence there because you can see the 12 crews now when they're supposed to go to bleed and feed, they do so. They do that, and they do it within 13 14 the allotted time, and you can see it on the simulator 15 how they respond to that. So this has all come from this focus on 16 17 operator action. 18 DR. APOSTOLAKIS: Okay. Any other 19 comments? Questions from the members? Would the 20 staff like to make a comment? 21 (No response.) DR. APOSTOLAKIS: 22 No? Well, Erasmia and 23 John, thank you very much. 24 MR. FORESTER: Thank you. 25 MS. LOIS: Thank you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	304
1	DR. APOSTOLAKIS: We appreciate your
2	coming again, and I guess you will hear from us some
3	time in the next two weeks.
4	MR. FORESTER: Okay. Thank you.
5	MS. LOIS: Thank you very much.
6	MR. FORESTER: Thank you very much.
7	DR. APOSTOLAKIS: Back to you, Mr.
8	Chairman.
9	CHAIRMAN BONACA: Okay. With that we will
10	go off the record now, and we'll take a break until
11	5:15 and get back here and talk about letters. I
12	actually want to have John coming in because he has
13	some messages to give us about the discussion on
14	Saturday morning I would like him to hear.
15	(Whereupon, at 4:57 p.m., the Advisory
16	Committee meeting was concluded.)
17	
18	
19	
20	
21	
22	
23	
24	
25	