Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards509th Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, February 5, 2004

Work Order No.: NRC-1284

Pages 1-259

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	509th FULL COMMITTEE MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + + +
8	THURSDAY, FEBRUARY 5, 2004
9	+ + + + +
10	The Committee met at the Nuclear Regulatory
11	Commission, Two White Flint North, Room T2B3, 11545
12	Rockville Pike, Rockville, Maryland, at 8:30 a.m.,
13	Mario V. Bonaca, Chairman, presiding.
14	COMMITTEE MEMBERS PRESENT:
15	MARIO V. BONACA Chairman
16	GRAHAM B. WALLIS Vice-Chairman
17	STEPHEN L. ROSEN Member
18	GEORGE E. APOSTOLAKIS Member
19	F. PETER FORD Member
20	THOMAS S. KRESS Member
21	GRAHAM M. LEITCH Member
22	DANA A. POWERS Member
23	VICTOR H. RANSOM Member
24	WILLIAM J. SHACK Member
25	JOHN D. SIEBER Member

1	ACRS STAFF PRESENT:
2	SHER BAHADUR
3	MAITRI BANERJAN
4	BILL BATEMAN
5	CHRISTOPHER BOYD
6	AMY CUBBAGE
7	JIM DAVIS
8	BOB DOWNIG
9	SAM DURAISWAMY
10	DON FLETCHER
11	JIM HAN
12	MICHELLE HART
13	KEN KARWONSKI
14	ALLEN HISER
15	WILLIAM KROTIUK
16	DAVID KUPPERMAN
17	RALPH LANDRY
18	HOWARD J. LARSON
19	STEVE LONG
20	SHANLAI LU
21	LOUISE LUND
22	STEPHEN RAUL MONARQUE
23	MARCOS ORTIZ
24	JOEL PAGE
25	DAN PRELEWICZ

2

		3
1	ACRS STAFF PRESENT:	
2	MUHAMMAD RAZZAQUE	
3	UPENDRA "KUMAR" ROHATGI	
4	WILLIAM SHACK	
5	JOE STAUDENMAIER	
б	ED THROM	
7	ROY WOODS	
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

1INDEX2Opening Remarks by the ACRS Chairman43ESBWR Design - Thermal-Hydraulic Issues74South Texas Project Cause Investigation of the 1115Reactor Vessel Bottom Mounted Penetration6Leakage7Resolution of Certain Items Identified by the . 1558ACRS in NUREG-1740 Related to the Differing9Professional Opinion (DPO) on Steam10Generator Tube Integrity11Adjourn		4
3 ESBWR Design - Thermal-Hydraulic Issues 7 4 South Texas Project Cause Investigation of the 111 5 Reactor Vessel Bottom Mounted Penetration 6 Leakage 7 Resolution of Certain Items Identified by the . 155 8 ACRS in NUREG-1740 Related to the Differing 9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	1	INDEX
4 South Texas Project Cause Investigation of the 111 5 Reactor Vessel Bottom Mounted Penetration 6 Leakage 7 Resolution of Certain Items Identified by the . 155 8 ACRS in NUREG-1740 Related to the Differing 9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	2	Opening Remarks by the ACRS Chairman 4
5 Reactor Vessel Bottom Mounted Penetration 6 Leakage 7 Resolution of Certain Items Identified by the . 155 8 ACRS in NUREG-1740 Related to the Differing 9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	3	ESBWR Design - Thermal-Hydraulic Issues 7
6Leakage7Resolution of Certain Items Identified by the . 1558ACRS in NUREG-1740 Related to the Differing9Professional Opinion (DPO) on Steam10Generator Tube Integrity11Adjourn	4	South Texas Project Cause Investigation of the 111
7 Resolution of Certain Items Identified by the . 155 8 ACRS in NUREG-1740 Related to the Differing 9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	5	Reactor Vessel Bottom Mounted Penetration
8 ACRS in NUREG-1740 Related to the Differing 9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	6	Leakage
9 Professional Opinion (DPO) on Steam 10 Generator Tube Integrity 11 Adjourn	7	Resolution of Certain Items Identified by the . 155
10 Generator Tube Integrity 11 Adjourn	8	ACRS in NUREG-1740 Related to the Differing
11 Adjourn 260 12 13 14 15 16 17 18 19 20 21 21 22 23 24	9	Professional Opinion (DPO) on Steam
12 13 14 15 16 17 18 19 20 21 22 23 24	10	Generator Tube Integrity
13 14 15 16 17 18 19 20 21 22 23 24	11	Adjourn
14 15 16 17 18 19 20 21 22 23 24	12	
15 16 17 18 19 20 21 22 23 24	13	
16 17 18 19 20 21 22 23 24	14	
17 18 19 20 21 22 23 24	15	
18 19 20 21 22 23 24	16	
19 20 21 22 23 24	17	
20 21 22 23 24	18	
21 22 23 24	19	
22 23 24	20	
23 24	21	
24	22	
	23	
25	24	
	25	

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	8:31 a.m.
3	CHAIRMAN BONACA: Good morning. The
4	meeting will now come to order. This is the first day
5	of the 509th meeting of the Advisory Committee on
6	Reactor Safeguards.
7	During today's meeting, the Committee will
8	consider the following: ESBWR Design - Thermal-
9	Hydraulic Issues; South Texas Project Cause
10	Investigation of the Reactor Vessel Bottom Mounted
11	Leakage; Resolution of Certain Items Identified by the
12	ACRS in NUREG-1740 Related to the Differing
13	Professional Opinion on Steam Generator Tube
14	Integrity; Approach for Evaluating the Effectiveness
15	(Quality) of the NRC Safety Research Programs; and
16	Preparation of ACRS Reports.
17	A portion of this meeting may be closed to
18	discuss general proprietary information applicable to
19	the ESBWR design.
20	This meeting is being conducted in
21	accordance with the provisions of the Federal Advisory
22	Committee Act. Dr. Joe Larkins is the Designated
23	Federal Official for the initial portion of the
24	meeting.
25	We have received no written comments or

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

request for time to make oral statements from members of the public regarding today's sessions. A transcript of portions of the meeting is being kept and it is requested that the speakers use one of the microphones, identify themselves and speak with sufficient clarity and volume so that they can be readily heard.

8 I would like to note that in our published 9 agenda for today, the meeting is supposed to adjourn 10 at -- recess at 7 p.m. In reality, we will recess at 11 6 p.m. We have an activity we have planned before and 12 that will give us the time and probably a few minutes 13 before 6 p.m. we will recess.

14 We will begin with some items of current 15 interest. First of all, I would like to refer you to items of interest in front of you, a couple of 16 17 speeches by Chairman Diaz. There is interesting congressional correspondence; information on operating 18 19 plant issues and on the second page you'll find the 20 announcement for the regulatory information conference that will be held in Washington from March 10 to 12, 21 22 2004 for those who plan to attend, this is important 23 information.

I have an announcement to make. While Jenny Gallow is on rotation to NRR, Sharon Steele --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

6

	7
1	okay, she's not here. All right, I'll make the
2	announcement tomorrow when she's hear so we can
3	recognize her.
4	All right. So that will be put off.
5	With that we will then move on to the
6	first item of the agenda and that is the ESBWR design,
7	thermal-hydraulic issues. I will turn this
8	presentation over to the subcommittee chairman, Dr.
9	Wallis.
10	VICE-CHAIRMAN WALLIS: Thank you very
11	much, Mr. Chairman. This Committee, I think at least
12	on two occasions before this, had a presentation from
13	GE or GENE or whatever it's called now on the ESBWR.
14	And these have been very interesting and informative
15	meetings. This time we're asked to decide on a
16	decision to be made by the staff which is whether or
17	not to accept the TRAC-G code for the analysis of this
18	system and for use in its design certifications.
19	So this time we are asked to make a decision.
20	The subcommittee met with the staff and
21	GENE what should I call you, folks? GE, okay. GE.
22	And we spent two days. It was very informative. The
23	staff presented their SER and the main interest of the
24	subcommittee was not that the staff was making
25	decisions, but why they made these decisions and this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	became revealed in the second day, mostly, when we saw
2	a lot of evidence. It was this evidence, including,
3	I will add a lot of work done by the staff itself,
4	which was very impressive for the committee and really
5	helped us to reach a decision, at least the
6	subcommittee, I think, made.
7	So that's about all I wanted to say. You
8	have received through the e-mail a draft letter on
9	this subject from me. Those of you who didn't receive
10	it can get a copy from Ralph Caruso.
11	Now I think we're going to hear from GE
12	first, is that correct, so they can set the stage and
13	so I'd invite GE to give us a presentation, please.
14	MEMBER FORD: Graham, could I just make a
15	statement? I have a conflict of interest in this
16	subject, since I'm a GE retiree.
17	VICE-CHAIRMAN WALLIS: Thank you very
18	much. It's been noted.
19	I'm not sure what parts of this, if any,
20	are going to be proprietary. I looked at the staff's
21	slides. It wasn't clear to me if any of them were
22	proprietary or not.
23	MS. CUBBAGE: We're planning to have an
24	open session.
25	VICE-CHAIRMAN WALLIS: You've arranged

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	with GE that some of this information which was
2	proprietary before is now going to be open?
3	MS. CUBBAGE: Correct. In some cases, we
4	removed the numbers from the scales.
5	VICE-CHAIRMAN WALLIS: I think that's a
6	great advance.
7	Thank you.
8	MR. RAO: Thank you. I'm Atam Rao from GE
9	Nuclear Energy. We are still GE and we are part of GE
10	Energy now. We are no longer GE Power Systems.
11	The next four slides that I have of the
12	presentation are more as reference and an overview of
13	the design of the ESBWR. What you see in the top
14	lefthand corner is an isometric of the ESBWR. There's
15	the reactor vessel. This is the state of the plant
16	during normal operation and what we have in this plant
17	is three pools of water, about a thousand cubic meters
18	located above the core and the standard suppression
19	pool, about 3,000 cubic meters. Also, the top of the
20	suppression pool, the elevation of that is above the
21	top of the core.
22	Following the last coolant accident or any
23	other event where core cooling might be threatened,
24	the plant depressurizes through diverse
25	depressurization systems. You can see the safety

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	relief valves out here and shown in blue are the
2	diverse depressurization valves up at the top.
3	So we have two means to depressurize the
4	plant. Once you depressurize the plant, this is the
5	final state that the plant ends up in where the core
6	remains covered during the transient and at the end
7	state. It's a fairly elementary analysis.
8	The reason why we have so much margin in
9	the design is basically for a couple of reasons. One,
10	the reactor vessel is about six meters taller than the
11	ABWR and we have about two and a half times as much
12	water in the reactor vessel. So that is the first
13	part of the safety system is the large amount of water
14	in the reactor vessel.
15	And when you get a blow down, there is
16	about three meters of water covering the top of the
17	core for all the pipe breaks. So it ranges between
18	you'll see the exact numbers in one of the later
19	presentations.
20	And the water make up required is
21	extremely slow and you can rely on gravity to keep the
22	core covered.
23	On the right hand side you see the safety
24	systems. I won't be going into these. I presented
25	them before. This is not to scale. This is the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

isometric here which is to scale. This shows all the pools of water and the decay heat removal, heat 3 exchanges which are mounted above the drywall floor 4 here. They're shown out here. This is the isolation condenser and this is the passive containment cooling system.

7 This shows an outline of the total plant and you can see that the number of mechanical and 8 9 fluid systems is substantially reduced in the plant and again, these charts here are for reference. 10 Ι 11 know they are extremely small versions of it, but I 12 can address any questions you might have as they relate to the issues at hand. 13

14 In addition to the design being simple, 15 the analysis is fairly simple. Also, we've done extensive testing of different components that are new 16 to the ESBWR. This shows the depressurization valve, 17 a full scale test was done. 18

19 VICE-CHAIRMAN WALLIS: This is a magician in front there or is that a lion tamer to deal with 20 21 the panthers and the pandas?

MR. RAO: This is a Ph.D. from Dartmouth 22 23 College, thermal hydraulics expert.

(Laughter.)

He has been working on it for 20 years and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24

25

1

2

5

6

he wants to retire. And that's why he's so happy he can see golf every day down the road.

This is the vacuum breaker, full-size 3 4 vacuum breaker test. These are the passive 5 containment heat exchangers and these are the full height test facilities that you'll see referred in 6 7 some of the presentations. This is what's called GIST 8 and this is the plant test facility in Switzerland.

9 What is shown on the next shot, again, is 10 more for reference. It shows some of the key parameters of the ESBWR shown on the right hand column 11 12 It compares the parameters to operating BWRs, here. BWR-4, BWR-6, the ABWR. And what you see basically in 13 14 the top part of the chart is the operating parameters. 15 They are within the experience base. We have not gone out of what is the experience base: power densities, 16 17 the size of the equipment. There are а few extrapolations, but they're within the range of 10 or 18 19 15 percent.

20 What you see in the bottom two rows is a 21 measure of the overall safety of the plant. You see 22 reduced core damage frequency. As you go from left to 23 right you see that there's been a steady improvement 24 in the core damage frequencies for BWRs. And what you 25 see in the right hand columns is the ABWR and ESBWR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	13
1	These are approximate numbers, not the exact detail
2	numbers. What it shows is the order of magnitude of
3	the core damage frequency for the ABWR and ESBWR,
4	similar.
5	But the key thing to notice is in the last
6	row out here is as we evolve the BWR designs, the core
7	damage frequencies improved because we added more
8	divisions of equipment, more diversity and more
9	equipment basically is the way we improved the overall
10	core damage frequency.
11	VICE-CHAIRMAN WALLIS: Also more water, I
12	must say.
13	MR. RAO: Well, there is more water
14	there are a few other things that are different in the
15	ABWR relative to the earlier designs, but it reduced
16	the number of large pipe breaks, for example. You
17	don't have any large pipe below the core elevation,
18	for example, in the ABWR or the ESBWR.
19	But the key thing is that we were able to
20	keep the core damage frequency the same between the
21	ABWR and ESBWR, but with a lot less equipment which is
22	shown in this measure out here, which is the size of
23	the safety building volume.
24	So what it does is it reduces the
25	complexity of the design, it makes the analysis a lot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	easier and makes life a lot easier for the operator.
2	And of course, ultimately, in addition to
3	improving the safety and the security, this
4	simplification results in a significant improvement in
5	the overall economics of the plant design.
6	What is shown in the top right hand
7	column, right hand part of the picture
8	VICE-CHAIRMAN WALLIS: I don't think we're
9	talking here about improvements in security?
10	MR. RAO: We're not revealing that there,
11	but
12	VICE-CHAIRMAN WALLIS: It may become an
13	issue, but I don't think we're making any
14	recommendations or decisions about security.
15	MR. RAO: No.
16	VICE-CHAIRMAN WALLIS: Thank you.
17	MR. RAO: But just as background, all the
18	safety systems are inside the containment which is in
19	order and so from that perspective there's a
20	significant improvement there.
21	When you look at the plant building, this
22	is an actual section of the building, what you see is
23	the major piece of equipment is the reactor vessel and
24	what we've basically done, compared to the BWRs that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	almost six floors of safety-grade equipment that used
2	to be attached on the outside of the reactor building.
3	This is the containment boundary, basically. All of
4	that safety-grade equipment is now no longer there.
5	What we have also done is we've like
6	the BWR six Mach 3s, we have a separate fuel building.
7	Last chart and the next step, we are
8	following what we call a stepwise approach for getting
9	this plant through the design certification process.
10	The reason we adopted this approach is we believe it
11	gets the long lead items reviewed earlier. Just to
12	put it in perspective, the submittals that went into
13	what we're discussing today were in the range of 5,000
14	pages of submittals.
15	So what we are looking for is approval of
16	the TRAC-G code for both the ECCS and containment
17	analysis.
18	VICE-CHAIRMAN WALLIS: That's just a
19	restricted set. I think I originally opened this
20	meeting saying there was approval of TRAC-G for design
21	certification. It doesn't get that far. It's just
22	for LOCA analysis.
23	MR. RAO: Yes, thank you. There are more
24	specific words that the staff has used and I've just
25	skipped it.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	VICE-CHAIRMAN WALLIS: We'd like to see
2	what those words actually are when we get there.
3	MR. RAO: Yes. The staff's words are more
4	complete.
5	We will also ask for approval of the TRAC-
б	G for undisputed operational occurrences in the middle
7	of the year. And then approval of TRAC-G for
8	stability and ATWS by the end of this year.
9	VICE-CHAIRMAN WALLIS: So you will be
10	coming back to us several times this year?
11	MR. RAO: Yes. And then once we've got
12	all of these analysis methods out of the way, we will
13	come in with a design and what's called the DCD by the
14	middle of next year. Since most of the hard stuff
15	would have been gotten out of the way, our expectation
16	is that the FSER would be done within about a year.
17	I just want to clarify these dates are still under
18	discussion with the NRC staff and it's this is what
19	our goal is and our expectation is.
20	And the next presentation is by Dr.
21	Shiralkar. If there are any questions on the design,
22	I will try to take them right now.
23	MEMBER ROSEN: I'm just curious about your
24	statement that you think most of the hard stuff has
25	been done with the TRAC approvals. Certainly has been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	difficult in the new feature of the design, but when
2	we look at a new design, we look at the new features
3	and there are some new features.
4	MR. RAO: Yes.
5	MEMBER ROSEN: For instance, these new
6	vacuum breakers. So there are some challenges ahead
7	relative to review the design. Don't you agree?
8	MR. RAO: Yes. The information is there
9	and we believe it will be a lot easier. That's our
10	hope. I'm still following Dana's advice. Dana
11	stepped out. He told us that it will be approved in
12	two weeks. So we're still looking to that.
13	MEMBER ROSEN: Well, Dana has a way of
14	perhaps exaggerating a little bit.
15	MR. RAO: No, there are hard what I was
16	trying to say is that this part will focus on the
17	hardware, okay. What we will have done out here will
18	be the all the analysis tools that are needed to
19	evaluate the performance would be out of the way, the
20	testing would be out of the way. And the focus in the
21	DCD would be on the systems. We'd have to look at the
22	redundancies and the reliabilities of the systems.
23	We've presented that information as part of this
24	submittal already, so the information is there and
25	that's why we feel that the review will be easier

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	because the information is already there on the table.
2	MEMBER ROSEN: We have hardware to look
3	at. We have operations, maintenance, testing, all of
4	the standard things that need to be looked at. Some
5	of them may be complicated by the passive design. I
6	just don't know. So I wouldn't understate the need
7	for deliberate care as we go forward.
8	MR. RAO: No. We expect this to be as
9	thorough a review as the ones that we've gone through
10	right now.
11	VICE-CHAIRMAN WALLIS: This make sense to
12	me. If we approve, the staff approves the design
13	tools, then it's conceivable that you might do some
14	optimization, a little tweaking of the sort of things,
15	details before the DCD using these design tools. It
16	might turn out that improvements could be made by
17	making some slight change in a valve or something,
18	conceivably.
19	MR. RAO: Yes. It's shown out here on
20	this table out here the items with the asterisk are
21	items that we are looking to optimize and what we did
22	give the staff was a reference design which is what's
23	shown out here. When we come in in the middle of 2005
24	now that we have the analysis tools approved, we will
25	be doing some optimization of the design. But we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1don't expect any of these parameters to be changing by2anything like 50 percent. We're talking about 10 or315 percent at best.4VICE-CHAIRMAN WALLIS: Another question.5The role of PRA in all of this. This not, presumably,6or is it, a risk-informed application? And the move,7even if it's not a risk-informed application,8presumably you're going to submit risk information9because that would be useful. Is the PRA part of the10submittal you're going to make in 2005?11MR. RAO: Yes. We will make the submittal12for the PSA in the what we're calling the DCD and13the safety analysis report in the middle of 2005.14The PSA was used extensively in the design15of some of the features in this plant. And there's16not enough time to cover that out here, but we can17VICE-CHAIRMAN WALLIS: That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.25MR. RAO: I don't know whether it shows up		19
3 15 percent at best. 4 VICE-CHAIRMAN WALLIS: Another question. 5 The role of PRA in all of this. This not, presumably, 6 or is it, a risk-informed application? And the move, 7 even if it's not a risk-informed application, 8 presumably you're going to submit risk information 9 because that would be useful. Is the PRA part of the 10 submittal you're going to make in 2005? 11 MR. RAO: Yes. We will make the submittal 12 for the PSA in the what we're calling the DCD and 13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety into the plant from the beginning.	1	don't expect any of these parameters to be changing by
4VICE-CHAIRMAN WALLIS: Another question.5The role of PRA in all of this. This not, presumably, or is it, a risk-informed application? And the move, even if it's not a risk-informed application, presumably you're going to submit risk information because that would be useful. Is the PRA part of the submittal you're going to make in 2005?11MR. RAO: Yes. We will make the submittal for the PSA in the what we're calling the DCD and the safety analysis report in the middle of 2005.14The PSA was used extensively in the design of some of the features in this plant. And there's not enough time to cover that out here, but we can VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing something, thinking about risk afterwards. One should put risk measures right into the design at the beginning and aim for a certain level of risk or safety, let's call it. You call it PSA, so let's say a certain level of safety. Designing a certain level of safety into the plant from the beginning.	2	anything like 50 percent. We're talking about 10 or
5The role of PRA in all of this. This not, presumably, or is it, a risk-informed application? And the move, even if it's not a risk-informed application, presumably you're going to submit risk information because that would be useful. Is the PRA part of the submittal you're going to make in 2005?11MR. RAO: Yes. We will make the submittal for the PSA in the what we're calling the DCD and the safety analysis report in the middle of 2005.14The PSA was used extensively in the design of some of the features in this plant. And there's not enough time to cover that out here, but we can VICE-CHAIRMAN WALLIS: That's very desirable, it seems to me. Rather than designing something, thinking about risk afterwards. One should put risk measures right into the design at the beginning and aim for a certain level of risk or safety, let's call it. You call it PSA, so let's say a certain level of safety. Designing a certain level of safety into the plant from the beginning.	3	15 percent at best.
6or is it, a risk-informed application? And the move,7even if it's not a risk-informed application,8presumably you're going to submit risk information9because that would be useful. Is the PRA part of the10submittal you're going to make in 2005?11MR. RAO: Yes. We will make the submittal12for the PSA in the what we're calling the DCD and13the safety analysis report in the middle of 2005.14The PSA was used extensively in the design15of some of the features in this plant. And there's16not enough time to cover that out here, but we can17VICE-CHAIRMAN WALLIS: That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.	4	VICE-CHAIRMAN WALLIS: Another question.
<pre>7 even if it's not a risk-informed application, 8 presumably you're going to submit risk information 9 because that would be useful. Is the PRA part of the 10 submittal you're going to make in 2005? 11 MR. RAO: Yes. We will make the submittal 12 for the PSA in the what we're calling the DCD and 13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.</pre>	5	The role of PRA in all of this. This not, presumably,
8 presumably you're going to submit risk information 9 because that would be useful. Is the PRA part of the submittal you're going to make in 2005? 11 MR. RAO: Yes. We will make the submittal 12 for the PSA in the what we're calling the DCD and 13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	6	or is it, a risk-informed application? And the move,
9 because that would be useful. Is the PRA part of the submittal you're going to make in 2005? 11 MR. RAO: Yes. We will make the submittal 12 for the PSA in the what we're calling the DCD and 13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	7	even if it's not a risk-informed application,
10submittal you're going to make in 2005?11MR. RAO: Yes. We will make the submittal12for the PSA in the what we're calling the DCD and13the safety analysis report in the middle of 2005.14The PSA was used extensively in the design15of some of the features in this plant. And there's16not enough time to cover that out here, but we can17VICE-CHAIRMAN WALLIS: That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.	8	presumably you're going to submit risk information
11MR. RAO: Yes. We will make the submittal12for the PSA in the what we're calling the DCD and13the safety analysis report in the middle of 2005.14The PSA was used extensively in the design15of some of the features in this plant. And there's16not enough time to cover that out here, but we can17VICE-CHAIRMAN WALLIS: That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.	9	because that would be useful. Is the PRA part of the
12 for the PSA in the what we're calling the DCD and 13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	10	submittal you're going to make in 2005?
13 the safety analysis report in the middle of 2005. 14 The PSA was used extensively in the design 15 of some of the features in this plant. And there's 16 not enough time to cover that out here, but we can 17 VICE-CHAIRMAN WALLIS: That's very 18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	11	MR. RAO: Yes. We will make the submittal
14The PSA was used extensively in the design15of some of the features in this plant. And there's16not enough time to cover that out here, but we can17VICE-CHAIRMAN WALLIS: That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.	12	for the PSA in the what we're calling the DCD and
of some of the features in this plant. And there's not enough time to cover that out here, but we can VICE-CHAIRMAN WALLIS: That's very desirable, it seems to me. Rather than designing something, thinking about risk afterwards. One should put risk measures right into the design at the beginning and aim for a certain level of risk or safety, let's call it. You call it PSA, so let's say a certain level of safety. Designing a certain level of safety into the plant from the beginning.	13	the safety analysis report in the middle of 2005.
not enough time to cover that out here, but we can VICE-CHAIRMAN WALLIS: That's very desirable, it seems to me. Rather than designing something, thinking about risk afterwards. One should put risk measures right into the design at the beginning and aim for a certain level of risk or safety, let's call it. You call it PSA, so let's say a certain level of safety. Designing a certain level of safety into the plant from the beginning.	14	The PSA was used extensively in the design
17VICE-CHAIRMAN WALLIS:That's very18desirable, it seems to me. Rather than designing19something, thinking about risk afterwards. One should20put risk measures right into the design at the21beginning and aim for a certain level of risk or22safety, let's call it. You call it PSA, so let's say23a certain level of safety. Designing a certain level24of safety into the plant from the beginning.	15	of some of the features in this plant. And there's
18 desirable, it seems to me. Rather than designing 19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	16	not enough time to cover that out here, but we can
19 something, thinking about risk afterwards. One should 20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	17	VICE-CHAIRMAN WALLIS: That's very
20 put risk measures right into the design at the 21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	18	desirable, it seems to me. Rather than designing
21 beginning and aim for a certain level of risk or 22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	19	something, thinking about risk afterwards. One should
22 safety, let's call it. You call it PSA, so let's say 23 a certain level of safety. Designing a certain level 24 of safety into the plant from the beginning.	20	put risk measures right into the design at the
 a certain level of safety. Designing a certain level of safety into the plant from the beginning. 	21	beginning and aim for a certain level of risk or
24 of safety into the plant from the beginning.	22	safety, let's call it. You call it PSA, so let's say
	23	a certain level of safety. Designing a certain level
25 MR. RAO: I don't know whether it shows up	24	of safety into the plant from the beginning.
	25	MR. RAO: I don't know whether it shows up

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 out here, one of the things that we included in the 2 design as a result of this safety consideration was 3 separating out in one of the earlier stages of the 4 design the PCCs and the ICs were one component. That 5 heat exchanger -- look at the heat exchangers. They look alike, except this one is a higher pressure heat 6 7 exchanger and this is a lower pressure heat exchanger. So very early on in the design, we decided we wanted 8 to separate out the isolation condenser and the PCC 9 because that is a prevention system and this is a 10 11 mitigation system. So we separated out the prevention 12 and mitigation. So that was one of the bigger changes that we adopted. 13 14 Another change that we adopted may not

15 show up in this one is we actually have a nonsafety low pressure injection system which relies on the 16 17 pumps from the fuel pool cooling system because we've got the pumps and the power sources for that. We saw 18 by adding an extra line in a few wells we could reduce 19 20 the core damage frequency by about a factor of two. 21 So that was put into the design as a result of the 22 PSA.

23 So the PSA was used extensively in the 24 optimization of the design and the optimization that 25 we'll be doing in the coming months is primarily

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

20

	21
1	related to the vessel in the core. We're going to
2	keep the vessel dimensions the same because of
3	construction considerations. We want to stay with the
4	current infrastructure, so it's going to remain at 7.1
5	meters.
6	VICE-CHAIRMAN WALLIS: Can we move on to
7	Bharat's presentation?
8	MR. RAO: Yes.
9	VICE-CHAIRMAN WALLIS: Do Committee
10	Members have other questions for Atam Rao?
11	MEMBER LEITCH: Just one real quick
12	question. Is there still some further testing on-
13	going to confirm the applicability of TRAC-G for the
14	AAO and the stability in ATWS situations or is the
15	physical testing actually complete?
16	MR. RAO: The testing that is needed for
17	these submittals is complete.
18	MEMBER LEITCH: Okay.
19	MR. RAO: I have you a lawyer's answer.
20	The testing needed for these submittals is complete,
21	but we always keep going testing and we have
22	additional testing that's on-going, but those are
23	confirmatory tests.
24	MEMBER LEITCH: Okay. Thank you.
25	VICE-CHAIRMAN WALLIS: Are we ready to
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	move on?
2	MEMBER KRESS: One of the things that
3	normally concerns us about BWRs is the stability issue
4	at low power.
5	MR. RAO: Yes.
6	MEMBER KRESS: Have you addressed that for
7	the ESBWR and will we hear about it?
8	MR. RAO: You'll be hearing about it.
9	We're going to make a submittal in the middle of the
10	year on stability and we'll give you more detailed
11	presentation at that time. But the short answer,
12	Bharat can address any questions that you have on the
13	stability during his presentation.
14	VICE-CHAIRMAN WALLIS: Okay, we'll move on
15	to the next presentation. Thank you very much.
16	MR. SHIRALKAR: Good morning. I'm Bharat
17	Shiralkar from GE. The thrust so far of the ESBWR
18	submittals to date has been to obtain confirmation
19	that the technology program is efficient and that
20	TRAC-G is applicable for safety analysis. And in my
21	presentation today I'll just touch upon a few
22	highlights to support that conclusion that, in fact,
23	TRAC-G
24	VICE-CHAIRMAN WALLIS: May I ask, none of
25	this is proprietary? Is that true?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	MR. SHIRALKAR: That is correct.
2	VICE-CHAIRMAN WALLIS: Thank you. Or if
3	it was proprietary before, it no longer is. I think
4	some
5	MR. SHIRALKAR: I think some of the scales
6	have been removed, yes.
7	VICE-CHAIRMAN WALLIS: Okay, but some of
8	these figures which I think we see here in your
9	presentation have been presented in the past as if
10	they were proprietary. You've done things to make
11	them nonproprietary?
12	MR. SHIRALKAR: Yes.
13	VICE-CHAIRMAN WALLIS: Thank you.
14	MR. SHIRALKAR: We followed a systematic
15	approach in the ESBWR technology program. We pretty
16	much followed the steps of the so-called CSA process.
17	We defined scenarios, defined important phenomenon,
18	determined code applicability, established the
19	assessment matrices, done the tests and defined the
20	experimental accuracy and the code accuracy and
21	defined the margins.
22	What I'd like to do in this presentation
23	is just to give you a few examples of test coverage,
24	key phenomena, model accuracy and the overall design
25	margins.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Turning to test coverage first, what this 2 shows the response of containment and figure is 3 reactor pressure vessel in terms of pressure versus 4 time for a typical pipe break. You can conveniently 5 divide the transient into three segments. The first is a blowdown period which lasts about the first 10 6 7 minutes or so when the reactor depressurizes and the 8 containment comes up to pressure. 9 Following that, the gravity driven cooling system initiates and we have what is called a GDCS 10 11 period where the GDCS pools are draining into the 12 reactor vessel and refilling it. That lasts for maybe about an hour. 13 14 Following that then we have the long-term 15 period which is basically a containment response issue where the decay heat is being removed by the passive 16 containment cooling condensers. 17 VICE-CHAIRMAN WALLIS: It would be nice to 18 19 see those curves actually begin to come down after 20 three days. They reach a maximum --21 MR. SHIRALKAR: They are pretty -- yes, I 22 think what happens is that you come into a quasi-23 equilibrium. 24 VICE-CHAIRMAN WALLIS: Yes, but they don't 25 go up any further.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

	25
1	MR. SHIRALKAR: They don't go up any
2	further. They stabilize. You do have, of course,
3	active system that's available to bring the pressures
4	down, but the passive will just maintain the pressure
5	at about that level.
6	VICE-CHAIRMAN WALLIS: It might go up, for
7	instance, if you ran out of water in the passive
8	system. You have eventually, you have to refill.
9	MR. SHIRALKAR: You have to refill it,
10	yes. So the bottom part of this figure shows the
11	testing that has been performed. These are all
12	integral systems tests. The TLTA and FIST and the
13	test and containment blowdown tests cover the early
14	part of the transient. The GIST tests were done to
15	look at the performance of the GDCS system. They
16	initiated about 10 bar pressure and covered the late
17	blowdown in GDCS phase as do the GIRAFFE system and
18	integral tests.
19	The long-term period is covered by GIRAFFE
20	and the PANDA test facilities. It's different scale
21	facilities. GIRAFFE is a small facility. PANDA is
22	fairly large, about 150 scale. And some of the PANDA
23	tests were started earlier in the GDCS phase to
24	provide other labs with the other tests.
25	So you can see that we have overlap in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

26 1 with these tests of the entire LOCA coverage 2 transient. 3 Finally, as far as the component tests are 4 concerned, the PANTHERS PCC which is pretty much a 5 full-scale PCCS condenser, passive containment cooling condenser has been tested over a range of conditions 6 7 of steam flow and uncondensable flows covering the 8 entire range of the LOCA transient. 9 So among these tests now we have overlap in coverage at different scales for the entire LOCA 10 11 transient. 12 Just to show you that tests of different scales produce similar results, here are a couple of 13 14 examples. The figure on the right here and the bottom 15 figure are for heat removal by the passive containment cooling condensers. This one shows the heat removal 16 as a function of the normalized pressure and plotted 17 are data from the PANDA IC/PCC which is a section of 18 19 the PANTHERS PCC, the PANTHERS PCC being almost full-20 scale. And you can see the data from these different 21 sized facilities comes together very nice. 22 VICE-CHAIRMAN WALLIS: What we're really 23 doing here is evaluating TRAC-G. So it would be nice 24 to have a TRAC-G prediction on these curves. 25 MR. SHIRALKAR: We do have that, of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	course, later.
2	VICE-CHAIRMAN WALLIS: That's what the
3	subject of this meeting is.
4	MR. SHIRALKAR: Yes. This is part of
5	establishing that there are no scaling effects from
6	the data, that the test data come together and
7	similarly, this one shows the degradation of heat
8	transfer, given uncondensables. This is the heat
9	removed by the condenser plotted versus the
10	concentration of uncondensables from different
11	facilities at different scales and again they line up
12	very nicely.
13	The top figure here is one on containment
14	performance. This is the containment peak pressure
15	plotted as a function of noncondensable concentration
16	in the wetwell. And this data covers different gases
17	like helium and nitrogen in air. It also covers
18	different scales which is a PANDA test facility and a
19	GIRAFFE test facility which is a small test facility.
20	And it makes the point that the primary cause of the
21	pressure increase is simply the transport of
22	noncondensables to the wetwell. It's a nice
23	correlation between that concentration and the
24	pressure reached in the wetwell.
25	VICE-CHAIRMAN WALLIS: This is simply a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	partial pressure thing which is almost a homework
2	problem, isn't it?
3	MR. SHIRALKAR: Yes.
4	VICE-CHAIRMAN WALLIS: Put more gas in,
5	the pressure goes up.
6	MR. SHIRALKAR: Exactly. The difference
7	being, the difference from the 45 degree line being
8	some increase due to the vapor pressure in the
9	wetwell.
10	VICE-CHAIRMAN WALLIS: The other question
11	is how well can you predict this transfer of
12	noncondensable.
13	MR. SHIRALKAR: We'll show you that as we
14	go along.
15	So this is with respect to the test
16	coverage. The next item I was going to talk about was
17	
18	MEMBER RANSOM: On the normalized values,
19	where is the design nominal value on those
20	MR. SHIRALKAR: On the pressure it will be
21	at about 3 bar.
22	MEMBER RANSOM: No, you have it normalized
23	from I think 1/10th
24	MR. SHIRALKAR: Are we talking about this
25	figure here?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	29
1	MEMBER RANSOM: Right.
2	MR. SHIRALKAR: This figure is normalized
3	to a pressure of 3 bars.
4	MEMBER RANSOM: So that is the normal
5	operating condition
6	MR. SHIRALKAR: For the PCC. This also
7	covers the IC data which goes to much higher pressure.
8	MEMBER RANSOM: Okay.
9	MR. SHIRALKAR: Turning to the LOCA
10	transient, as Atam said earlier, the ESBWR LOCA
11	transient response to pipe breaks is extremely mild
12	and the reason for that is simply the amount of water
13	that you have in the reactor vessel. You have more
14	than twice the amount of water that you used to have
15	in the previous designs and what happens is that when
16	you scram the reactor falling and it breaks, the vise
17	inside the core region here collapses and the water
18	that was sitting in the downcomer and around the
19	separators basically rushes in and establishes an
20	inventory inside the chimney. So this water now has
21	now come down here and settled inside the chimney and
22	beyond that point it's just a matter of how much water
23	you lose due to the blowdown process and how much
24	water do you maintain.
25	The right hand plot shows that if you look

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	at the water level above the top of the core versus
2	time in the ESBWR, the minimum water reached, level
3	reached is about more than two meters above the top of
4	the chimney, the minimum water level being at this
5	point
6	VICE-CHAIRMAN WALLIS: The top of the
7	core?
8	MR. SHIRALKAR: Yes, above the top of the
9	core within the chimney.
10	So the initial inventory dominates the
11	LOCA transient just be of the sheer volume of water
12	inside the vessel and we maintain a margin of .12
13	meters to cover it.
14	So given that, I wanted to give you a
15	flavor of what some of the important factors are in
16	this transient and to show you that we do have the
17	code qualified and assessed against those phenomena.
18	We're looking ultimately at a prediction
19	of the chimney level for the reactor vessel and this
20	is determined primarily by the void fractions in the
21	different regions. The void fraction in the different
22	regions are calculated in TRAC-G by what is called
23	interfacial sheer model. It's the sheer between the
24	two phases.
25	And so we're looking at the models in TRAC

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	31
1	which are the interfacial sheer in the core and the
2	interfacial sheer in the chimney, interfacial sheer in
3	the lower plenum downcover and also critical flow
4	determines how much inventory you lose due to the
5	blowdown process.
6	For all of these, this column shows that
7	we have realistic models in the TRAC code and that
8	they have been assessed against relevant data. And
9	finally, the chimney level is the output calculation
10	of using all of these models, the integral calculation
11	and for that also you have assessment against integral
12	tests.
13	VICE-CHAIRMAN WALLIS: Most of these
14	interfacial sheer effects have to do with whether or
15	not the steam which is leaving carries water with it,
16	is that what the
17	MR. SHIRALKAR: Yes, and how much water
18	remains inside the regions, how much water is left,
19	yes.
20	VICE-CHAIRMAN WALLIS: Steam has to come
21	out.
22	MR. SHIRALKAR: Yes.
23	VICE-CHAIRMAN WALLIS: And the question is
24	does it carry a lot of water with it by sheer or does
25	the water stay behind?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	32
1	MR. SHIRALKAR: Exactly. This shows
2	typical comparisons of TRAC-G for one of the important
3	parameters and that is the chimney void fraction of
4	the interfacial sheer in the chimney and here we're
5	looking at data from various facilities which have
6	large hydraulic diameters, diameters that are
7	comparable to chimney diamaters. A chimney partition
8	cell is a square region with the dimensions of .6
9	meters.
10	VICE-CHAIRMAN WALLIS: There is something
11	in the transcript, I read the transcript at our
12	subcommittee meeting which I think needs to be
13	corrected. The transcript reads 26 meters and I think
14	it should be saying .6 meters.
15	MR. SHIRALKAR: Zero point 6 meters.
16	VICE-CHAIRMAN WALLIS: Because it's very
17	strange to have a transcript that says the size is 26
18	meters. That's way out of line. We don't have a
19	chance to change these transcripts, but for the
20	record, if anyone is looking at the transcript of a
21	subcommittee meeting that 0.6 somehow got transcribed
22	as 26. And that is not correct.
23	MEMBER POWERS: Were that the only flaw
24	that ever showed up in the transcript it would
25	probably be devastating.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	33
1	VICE-CHAIRMAN WALLIS: There are lots of
2	other flaws in the transcript
3	MEMBER POWERS: Are you really proposing
4	that you want to spend the time plowing through and
5	correcting transcripts?
6	VICE-CHAIRMAN WALLIS: No, but somebody
7	else who is really interested in this might.
8	MR. SHIRALKAR: It must be due to the lack
9	of clarity in my accent.
10	MEMBER POWERS: No, don't blame yourself.
11	Dr. Kress is famous for the line "defense-in-death"
12	(Laughter.)
13	MR. SHIRALKAR: Fortunately, they probably
14	misspelled your name too.
15	(Laughter.)
16	MEMBER POWERS: So you don't get blamed.
17	MR. SHIRALKAR: At this point, 0.6 meters
18	and these facilities provide data in vessels that have
19	sizes of the order from 50 centimeters to 1.2 meters.
20	This is a simple test where steam will
21	bubble up through stagnant liquid. Comparisons of
22	TRAC-G versus the data
23	VICE-CHAIRMAN WALLIS: I think you need to
24	say the TRAC-G wasn't fudged to fit this data. I
25	understand the model in TRAC-G that's used throughout

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1the whole rest of the system is the same model that2fits these data. It's not as if you fudge it, is that3true?4MR. SHIRALKAR: There's only one model5that's used, but there is a correction for large6diameters.7VICE-CHAIRMAN WALLIS: Oh, there is, okay,8so there is some correction.9MR. SHIRALKAR: There is a correction and10the correction, in fact, uses some of this data11VICE-CHAIRMAN WALLIS: The surprising12thing is it doesn't make much difference because the13steam seems to be broken up into small bubbles, so14that's why you don't have to correct very much of the15data for small pipes.16MR. SHIRALKAR: Yes, we entered the17interfacial sheer correlations through an equivalence18with the vapor flux correlations and we have found19that we needed to make some changes to the VGJ term,20for example, for large diameters which affects the
3 true? 4 MR. SHIRALKAR: There's only one model that's used, but there is a correction for large diameters. 7 VICE-CHAIRMAN WALLIS: Oh, there is, okay, so there is some correction. 9 MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data 11 VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
 MR. SHIRALKAR: There's only one model that's used, but there is a correction for large diameters. VICE-CHAIRMAN WALLIS: Oh, there is, okay, so there is some correction. MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
 that's used, but there is a correction for large diameters. VICE-CHAIRMAN WALLIS: Oh, there is, okay, so there is some correction. MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
 diameters. VICE-CHAIRMAN WALLIS: Oh, there is, okay, so there is some correction. MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
 VICE-CHAIRMAN WALLIS: Oh, there is, okay, so there is some correction. MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
 so there is some correction. MR. SHIRALKAR: There is a correction and the correction, in fact, uses some of this data VICE-CHAIRMAN WALLIS: The surprising thing is it doesn't make much difference because the steam seems to be broken up into small bubbles, so that's why you don't have to correct very much of the data for small pipes. MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
9 MR. SHIRALKAR: There is a correction and 10 the correction, in fact, uses some of this data 11 VICE-CHAIRMAN WALLIS: The surprising 12 thing is it doesn't make much difference because the 13 steam seems to be broken up into small bubbles, so 14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
10 the correction, in fact, uses some of this data 11 VICE-CHAIRMAN WALLIS: The surprising 12 thing is it doesn't make much difference because the 13 steam seems to be broken up into small bubbles, so 14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
11 VICE-CHAIRMAN WALLIS: The surprising 12 thing is it doesn't make much difference because the 13 steam seems to be broken up into small bubbles, so 14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
12 thing is it doesn't make much difference because the 13 steam seems to be broken up into small bubbles, so 14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
13 steam seems to be broken up into small bubbles, so 14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
14 that's why you don't have to correct very much of the 15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
15 data for small pipes. 16 MR. SHIRALKAR: Yes, we entered the 17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
MR. SHIRALKAR: Yes, we entered the interfacial sheer correlations through an equivalence with the vapor flux correlations and we have found that we needed to make some changes to the VGJ term, for example, for large diameters which affects the
17 interfacial sheer correlations through an equivalence 18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
18 with the vapor flux correlations and we have found 19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
19 that we needed to make some changes to the VGJ term, 20 for example, for large diameters which affects the
20 for example, for large diameters which affects the
21 size of the bubbles.
22 This one is data from the ESBWR which is
23 an experimental volume water reactor that was run in
24 the late 1950s, early 1960s I think in Oregon. This
has a core of about one meter, 1.2 meters and a height

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	of the chimney is about 1.5 meters. And there was
2	some probes in there to measure the pressure drops and
3	obtain void fractions in the peripheral region and the
4	central region.
5	And we predicted those quite well,
б	slightly over-predicted the peripheral void fraction
7	which is not surprising because there is a power
8	gradient in the reactor and you have lower power
9	regions near the periphery and we were using just one
10	pipe for that condition.
11	And this is the Ontario hydro data which
12	was obtained in 50 millimeter, 50 centimeter pipe, 10
13	meters high, vertical pipe in which the void fraction
14	was varied by draining the loop at pressure. And the
15	prediction of the void fraction were quite accurate.
16	In fact
17	VICE-CHAIRMAN WALLIS: It shows up better
18	in our transparency, I think.
19	MR. SHIRALKAR: I'm sorry?
20	VICE-CHAIRMAN WALLIS: I think the
21	comparison shows up better in the handout than on the
22	screen unless I'm I guess it is there, but it's a
23	little ghostly.
24	MR. SHIRALKAR: It's kind of hard to see,
25	but I think we have shown this before in larger plots

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1and we can provide you the larger plots.2VICE-CHAIRMAN WALLIS: That's okay.3MR. SHIRALKAR: These are just to show you4some examples at this point.5The conclusion was that interfacial sheer6model predicts large diameter data with errors that7are comparable to data uncertainties that means on the8order of 2 to 3 percent which is about as good as you9can do, obviously. So we're happy with that.10Another important parameter is critical11flow and we've got a couple of comparisons here. One12is through the Marviken test in the top lefthand side.13And a pressure suppression14VICE-CHAIRMAN WALLIS: You have no scale15there, but the Marviken test is available to anybody16who wants to to look it up.17MR. SHIRALKAR: Yes. True.18VICE-CHAIRMAN WALLIS: There's nothing19secret about Marviken.20MR. SHIRALKAR: But you don't know which21test it is.22(Laughter.)23VICE-CHAIRMAN WALLIS: It's not because24you don't know the flow rate25MR. SHIRALKAR: It's concealed because you		36
3 MR. SHIRALKAR: These are just to show you 4 some examples at this point. 5 The conclusion was that interfacial sheer 6 model predicts large diameter data with errors that 7 are comparable to data uncertainties that means on the 8 order of 2 to 3 percent which is about as good as you 9 can do, obviously. So we're happy with that. 10 Another important parameter is critical 11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate <td>1</td> <td>and we can provide you the larger plots.</td>	1	and we can provide you the larger plots.
4 some examples at this point. 5 The conclusion was that interfacial sheer 6 model predicts large diameter data with errors that 7 are comparable to data uncertainties that means on the 8 order of 2 to 3 percent which is about as good as you 9 can do, obviously. So we're happy with that. 10 Another important parameter is critical 11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	2	VICE-CHAIRMAN WALLIS: That's okay.
5 The conclusion was that interfacial sheer 6 model predicts large diameter data with errors that 7 are comparable to data uncertainties that means on the 8 order of 2 to 3 percent which is about as good as you 9 can do, obviously. So we're happy with that. 10 Another important parameter is critical 11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	3	MR. SHIRALKAR: These are just to show you
6 model predicts large diameter data with errors that are comparable to data uncertainties that means on the order of 2 to 3 percent which is about as good as you can do, obviously. So we're happy with that. 10 Another important parameter is critical flow and we've got a couple of comparisons here. One is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	4	some examples at this point.
7are comparable to data uncertainties that means on the order of 2 to 3 percent which is about as good as you can do, obviously. So we're happy with that.10Another important parameter is critical flow and we've got a couple of comparisons here. One is through the Marviken test in the top lefthand side.13And a pressure suppression14VICE-CHAIRMAN WALLIS: You have no scale there, but the Marviken test is available to anybody who wants to to look it up.17MR. SHIRALKAR: Yes. True.18VICE-CHAIRMAN WALLIS: There's nothing secret about Marviken.20MR. SHIRALKAR: But you don't know which test it is.21(Laughter.)23VICE-CHAIRMAN WALLIS: It's not because you don't know the flow rate	5	The conclusion was that interfacial sheer
8 order of 2 to 3 percent which is about as good as you 9 can do, obviously. So we're happy with that. 10 Another important parameter is critical 11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 (Laughter.) 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	6	model predicts large diameter data with errors that
 9 can do, obviously. So we're happy with that. 10 Another important parameter is critical 11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate 	7	are comparable to data uncertainties that means on the
10Another important parameter is critical11flow and we've got a couple of comparisons here. One12is through the Marviken test in the top lefthand side.13And a pressure suppression14VICE-CHAIRMAN WALLIS: You have no scale15there, but the Marviken test is available to anybody16who wants to to look it up.17MR. SHIRALKAR: Yes. True.18VICE-CHAIRMAN WALLIS: There's nothing19secret about Marviken.20MR. SHIRALKAR: But you don't know which21test it is.22(Laughter.)23VICE-CHAIRMAN WALLIS: It's not because24you don't know the flow rate	8	order of 2 to 3 percent which is about as good as you
11 flow and we've got a couple of comparisons here. One 12 is through the Marviken test in the top lefthand side. 13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	9	can do, obviously. So we're happy with that.
12is through the Marviken test in the top lefthand side.13And a pressure suppression14VICE-CHAIRMAN WALLIS: You have no scale15there, but the Marviken test is available to anybody16who wants to to look it up.17MR. SHIRALKAR: Yes. True.18VICE-CHAIRMAN WALLIS: There's nothing19secret about Marviken.20MR. SHIRALKAR: But you don't know which21test it is.22(Laughter.)23VICE-CHAIRMAN WALLIS: It's not because24you don't know the flow rate	10	Another important parameter is critical
13 And a pressure suppression 14 VICE-CHAIRMAN WALLIS: You have no scale 15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	11	flow and we've got a couple of comparisons here. One
14VICE-CHAIRMAN WALLIS: You have no scale15there, but the Marviken test is available to anybody16who wants to to look it up.17MR. SHIRALKAR: Yes. True.18VICE-CHAIRMAN WALLIS: There's nothing19secret about Marviken.20MR. SHIRALKAR: But you don't know which21test it is.22(Laughter.)23VICE-CHAIRMAN WALLIS: It's not because24you don't know the flow rate	12	is through the Marviken test in the top lefthand side.
<pre>15 there, but the Marviken test is available to anybody 16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	13	And a pressure suppression
<pre>16 who wants to to look it up. 17 MR. SHIRALKAR: Yes. True. 18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	14	VICE-CHAIRMAN WALLIS: You have no scale
 MR. SHIRALKAR: Yes. True. VICE-CHAIRMAN WALLIS: There's nothing secret about Marviken. MR. SHIRALKAR: But you don't know which test it is. (Laughter.) VICE-CHAIRMAN WALLIS: It's not because you don't know the flow rate 	15	there, but the Marviken test is available to anybody
<pre>18 VICE-CHAIRMAN WALLIS: There's nothing 19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	16	who wants to to look it up.
<pre>19 secret about Marviken. 20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	17	MR. SHIRALKAR: Yes. True.
20 MR. SHIRALKAR: But you don't know which 21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	18	VICE-CHAIRMAN WALLIS: There's nothing
<pre>21 test it is. 22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	19	secret about Marviken.
<pre>22 (Laughter.) 23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate</pre>	20	MR. SHIRALKAR: But you don't know which
23 VICE-CHAIRMAN WALLIS: It's not because 24 you don't know the flow rate	21	test it is.
24 you don't know the flow rate	22	(Laughter.)
	23	VICE-CHAIRMAN WALLIS: It's not because
25 MR. SHIRALKAR: It's concealed because you	24	you don't know the flow rate
	25	MR. SHIRALKAR: It's concealed because you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	37
1	know what the test number is. But anyway, you can
2	probably find out.
3	VICE-CHAIRMAN WALLIS: That's all right.
4	That's okay.
5	MR. SHIRALKAR: And the pressure
6	suppression test facility, the GE test facility with
7	is blown down from looks like a blowdown from a
8	vertical vessel and again, the critical flow is
9	predicted accurately. I can tell you that we looked
10	at a number of critical flow measurements and the
11	errors typically are the standard deviation is less
12	than 10 percent.
13	VICE-CHAIRMAN WALLIS: I think what the
14	subcommittee asked you to do was to show us some
15	pictures and not a whole torrent of words.
16	MR. SHIRALKAR: Yes, thank you. We were
17	trying to comply.
18	Here integral predictions of the DGCS line
19	break case in the GIRAFFE test facility shows that the
20	reactor pressure vessel on the lefthand side and
21	response and the chimney level on the right hand side.
22	And you can see again the predictions are fairly good.
23	The minimum level in the chimney was predicted
24	narrowed with .1 meter which is quite a bit less than
25	the margin that we have of 2 meters. So we think it's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	good enough.
2	MR. SHACK: What's the diameter of that
3	line?
4	MR. SHIRALKAR: Diameter of?
5	MR. SHACK: The GDCS line. Is that a 6-
6	inch line?
7	MR. RAO: The line itself is 6 inches, but
8	the nozzles are 3 inches connecting to the vessel.
9	VICE-CHAIRMAN WALLIS: So the nozzles
10	limit the flow.
11	MR. SHIRALKAR: Yes.
12	MEMBER RANSOM: Have you done any work to
13	justify the use of standard deviation for
14	characterizing the uncertainty in these comparison?
15	MR. SHIRALKAR: We have used it, yes. We
16	try when we do that, you mean for the
17	MEMBER RANSOM: What I'm asking really is
18	this implies a statistical distribution of the errors
19	and I'm wondering if that's a correct characterization
20	or should there simply be a range of deviation?
21	MR. SHIRALKAR: I think it's different for
22	different things. Like for void fraction data, for
23	example, where we have a lot of data, I think you can
24	characterize it quite accurately in terms of
25	statistical distribution.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER RANSOM: The	, implication is that
	e implication is that
his is some kind of normal dis	stribution.
MR. SHIRALKAR:	It's not necessarily
ormal.	
MEMBER RANSOM: It	implies it.
MR. SHIRALKAR: If	you have enough data,
ou can test it for normali	ty in terms of the
stribution of errors which	we have done, for
cample, void fraction errors.	
MEMBER RANSOM: Wel	l, the danger would be
nat if somebody takes the sig	ma that you give them
nd then assume that that	represents a normal
stribution of the errors, the	n they're going to get
n incorrect result.	
MR. SHIRALKAR:	True. when we do
atistical analysis, we are	careful to try to
naracterize them as a uniform	n distribution if you
on't have enough data or the n	ormal distribution if
e have that data or differen	t distribution if we
an't characterize it.	
MEMBER RANSOM: I t	nink this is important
E you move, as you move to	owards the realistic
ethodology as opposed to say a	a conservative
MR. SHIRALKAR: That	's true. In fact, for
ne AOOs, the operation of trans	ients, we do apply all
MR. SHIRALKAR: Antistical analysis, we are haracterize them as a uniform on't have enough data or the m on't have enough data or the m on't characterize it. MEMBER RANSOM: I the Syou move, as you move to ethodology as opposed to say a MR. SHIRALKAR: That	careful to try t a distribution if yo formal distribution if at distribution if w hink this is importan owards the realistic a conservative

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	of them in a statistical manner and we take, we go to
2	a lot of trouble to try to characterize these
3	distributions as the best we can.
4	MEMBER LEITCH: I assume that in the
5	actual plant, the operator has no knowledge, no direct
6	knowledge of chimney level. It's like present BWRs,
7	he's really looking at the level and
8	MR. SHIRALKAR: That's right. You only
9	have the downcomer level.
10	MEMBER LEITCH: That's the only
11	information he has?
12	MR. SHIRALKAR: Yes.
13	MEMBER LEITCH: Okay, thanks.
14	MR. SHIRALKAR: Turning to containment
15	pressure response, if you look at the containment
16	pressure response to a break, there's a short term
17	response where you have the blowdown flow into the
18	drywell. You have the vent clearing process and then
19	the wetwell starts to pressurize. But in the ESBWR,
20	the long term pressure is the limiting pressure. The
21	short term peak is much smaller, usually, and so the
22	long term pressure can be calculated very simply. You
23	can calculate it and what I've shown here on this
24	read line is almost the back of the envelope
25	calculation in which what you do is you push all the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	noncondensable initially in the drywell or to the
2	wetwell and you make an estimate of what the
3	suppression pool temperature would be to get a vapor
4	pressure and you add it to get the total pressure.
5	And you can see that you can almost make
6	a hand calculation or a rough calculation that will
7	tell you where you're going to end up.
8	VICE-CHAIRMAN WALLIS: The other thing to
9	do would be to put all the noncondensables in there
10	and then vary the temperature in the space and
11	saturation pressure and find out how hot it would have
12	to be in order for that line to move up to this design
13	pressure.
14	MR. SHIRALKAR: Yes. We know, in fact,
15	that if the suppression pool gets hotter than let's
16	say 190 degrees Fahrenheit or so then the wave of
17	pressure increase is fairly rapid.
18	VICE-CHAIRMAN WALLIS: That's right. And
19	that little red line would move up closer to the big
20	red line.
21	MR. SHIRALKAR: Exactly.
22	VICE-CHAIRMAN WALLIS: So you have to
23	calculate that temperature pretty well.
24	MR. SHIRALKAR: Yes, yes. You can
25	estimate it by assuming that a part of the pool above

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	the vent level is the active absorber of energy and so
2	on.
3	VICE-CHAIRMAN WALLIS: That was, I think,
4	your approach that you took before the subcommittee
5	was to bound these things.
б	MR. SHIRALKAR: Yes, and I pointed to make
7	also that we have a margin of about a bar on the
8	pressure, to the design pressure.
9	So again the phenomena we're trying to
10	calculate here is that containment pressure and the
11	parameter of interest, the important parameter, the
12	PCC heat transfer, how much energy will remove the
13	PCC, non-condensable transport to the wetwell and
14	suppression pool certification. These are the
15	parameters that control the ultimate pressure
16	response.
17	We have a realistic TRAC-G model for the
18	PCC heat transfer. The non-condensable transport and
19	suppression pool certification we're treating in a
20	conservative way, but we do have some data that allows
21	us to assess how good those approximations are. And
22	we also have data for the integral response of the
23	containment pressure from the PANTHERS test.
24	To show you a couple of examples, the
25	PANTHERS PCC performance PANTHERS is a full-scale heat

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

exchanger for the containment, passive containment 2 cooling for the ESBWR scale which is about 75 percent 3 of the side that will be in the ESBWR. So it's a very 4 large scale heat exchanger.

5 The figures, this figure here shows the energy removal by the PCC, the function of the inlet 6 7 pressure. The inlet pressure is the test we run so the inlet pressure with a floating variable. 8 The inlet pressure floated to the level that was needed to 9 10 remove all of the energy because as the pressure 11 increases the delta T crosses from the primary to the 12 secondary increase.

see the track here 13 And you can is 14 calculating at slightly higher pressure to condense 15 the steam which is slightly conservative.

These figures here are for steam air 16 conditions for a given steam flow rate and a given air 17 non-condensable flow rate to show the efficiency of 18 condensation which is defined as the fraction of steam 19 20 that's condensed, a fraction of the inlet steam, a 21 function of the inlet pressure. And this one shows 22 the pressure drop in the condenser, as again, a 23 function of the inlet pressure.

24 TRAC-G calculations predict these data 25 very well. One thing to note is the pressure drop

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	44
1	within the condenser itself is very small. It's on
2	the order of 5 to 6 kPa which is less than a psi and
3	so these differences which are still large are still
4	at the order of say 1 kPa or thereabouts.
5	VICE-CHAIRMAN WALLIS: Essentially means
б	that the wetwell and the drywell have about the same
7	pressure, doesn't it?
8	MR. SHIRALKAR: No. The wetwell drywell
9	pressure is usually set by the submergence of the
10	VICE-CHAIRMAN WALLIS: It's a hydrostatic
11	term. This would be in the steam space.
12	MR. SHIRALKAR: That's right. The PCC
13	performances are predicted and the errors are small
14	compared to the design margins. That's the point I
15	wanted to make on this figure.
16	And finally, this is a prediction of the
17	pressure, containment pressure reached in integral
18	systems tests. PANDA is a large-scale test with a
19	drywell wetwell and reactor pressure vessel simulation
20	that is a steam source.
21	VICE-CHAIRMAN WALLIS: This is a real eye
22	test. You're going to have to tell us what's going
23	on.
24	It's a real eye test to look at this.
25	You're going to have to describe what you mean by the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	various curves.
2	MR. SHIRALKAR: Okay. These are three
3	different tests with the this one is the nominal
4	test with the small initial volume of non-condensables
5	that get moved over to the wetwell. And following
6	that, the PCC is able to remove the energy and so the
7	pressures level out, fairly mild transient.
8	VICE-CHAIRMAN WALLIS: This is pressure
9	versus time?
10	MR. SHIRALKAR: Yes, pressure versus time.
11	This is pressure versus time for three different tests
12	in the PANDA test series.
13	VICE-CHAIRMAN WALLIS: And one of these
14	traces is the prediction?
15	MR. SHIRALKAR: This one, the top trace is
16	the driver pressure. The bottom trace is the wetwell
17	pressure.
18	VICE-CHAIRMAN WALLIS: Those are measured
19	or predicted?
20	MR. SHIRALKAR: The two lines there which
21	I can barely read, but I think the dashed line
22	VICE-CHAIRMAN WALLIS: It's a solid line
23	and a dashed line that are
24	MR. SHIRALKAR: The dashed line is the
25	TRAC-G prediction. The solid line is the data.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	VICE-CHAIRMAN WALLIS: And the message is
2	that
3	MR. SHIRALKAR: The message is that the
4	predictions are good for all these three cases. This
5	one is slightly conservative.
6	VICE-CHAIRMAN WALLIS: And those
7	deviations that we see at the right hand end of that
8	curve that you were just on, are not significant
9	compared with some criteria?
10	MR. SHIRALKAR: No. And the reason the
11	track is calculating a higher pressure and the reason
12	for that is this test was a very extreme case where we
13	had 100 percent non-condensable initially in the
14	drywell. So all of those have to be moved over to the
15	wetwell and some of them remain behind in the test and
16	TRAC-G calculated all of them moved over and
17	calculated a higher pressure at the end.
18	But even that
19	VICE-CHAIRMAN WALLIS: So you argue that's
20	conservative, I suppose?
21	MR. SHIRALKAR: It's conservative and even
22	that pressure difference is not significant compared
23	to the one bar margin that we have.
24	VICE-CHAIRMAN WALLIS: Okay, that's good.
25	Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

47 1 MR. SHIRALKAR: I'd like to make a point 2 on this chart that the margins for LOCA that we've 3 been talking about are large. What I'm showing are 4 results for three breaks, three limiting breaks that 5 we consider, the main steam line break, the GDCS line break and a bottom drain line break. We considered 6 7 different failures. One, a failure of a DPV, the 8 failure of an SRV, safety relief valve, а 9 depressurization valve which depressurizes into the drywell. The SRV depressurizes into the wetwell, into 10 11 the suppression pool 12 VICE-CHAIRMAN WALLIS: You call these The implication is that all other 13 limiting LOCAs. 14 LOCAs are somehow milder than these ones? 15 MR. SHIRALKAR: Yes. 16 VICE-CHAIRMAN WALLIS: Is that the case? 17 MR. SHIRALKAR: Yes. MEMBER ROSEN: What is this bottom drain 18 19 line? What's the purpose of that? MR. SHIRALKAR: The bottom drain line is 20 21 for -- it's used for shutdown cooling. It's also used 22 for clean up system. 23 MEMBER ROSEN: For what? 24 MR. SHIRALKAR: Reactor cleanup. 25 MEMBER ROSEN: So it's more than a drain.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	It's not like it implies that it's a maintenance
2	drain, the wording.
3	MR. SHIRALKAR: No, no. I think that's
4	the terminology that we use.
5	VICE-CHAIRMAN WALLIS: It's a pipe coming
6	out of the bottom.
7	MEMBER ROSEN: It has functions,
8	significant functions?
9	MR. SHIRALKAR: Yes. Okay, the message is
10	the margins are large
11	MEMBER ROSEN: Now large is it, the bottom
12	drain line?
13	MR. SHIRALKAR: I'm sorry?
14	MEMBER ROSEN: How large is the bottom
15	drain line?
16	MR. SHIRALKAR: Atam, can you respond to
17	that?
18	MR. RAO: It's a 2-inch nozzle. There are
19	four of them, four 2-inch nozzles at the bottom.
20	MR. SHIRALKAR: Okay, the limiting LOCA,
21	there are more than two meters of margin, core
22	uncovery and the containment has close to one bar
23	margin to the design pressure.
24	VICE-CHAIRMAN WALLIS: It's one bar in how
25	many bars?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	MR. SHIRALKAR: Four.
2	VICE-CHAIRMAN WALLIS: One bar in four
3	bars?
4	MR. SHIRALKAR: Right. In conclusion, we
5	feel that we ran a comprehensive test program that
6	provides data for all the phenomena of interest. We
7	have large margins in the ESBWR and that the TRAC-G
8	calculation report the phenomena accurately. The mix
9	in phenomena are an exception. They're treated
10	conservatively.
11	So in conclusion the TRAC-G is applicable
12	for ESBWR LOCA analysis and should be approved for
13	design certification analysis in conjunction with a
14	defined application methodology which the staff will
15	talk about in a little more detail. The application
16	methodology prescribes how margins are to be included
17	in the calculations.
18	That's all.
19	VICE-CHAIRMAN WALLIS: Thank you very
20	much. There were very few questions during your
21	presentation. I'd say that's either because you did
22	a very good job of explaining or you did such a poor
23	job that nobody understood anything.
24	(Laughter.)
25	I think that the alternative is the first

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	one. Thank you.
2	MR. SHIRALKAR: Thank you.
3	VICE-CHAIRMAN WALLIS: That was very
4	helpful. Thank you.
5	Now is the staff ready? The staff will
6	take us through the third and fourth quarter here.
7	This other handout that we have is just
8	informative about this design of the chimney. I don't
9	think we need a presentation on that.
10	You folks have more slides than GE?
11	MS. CUBBAGE: A few more.
12	VICE-CHAIRMAN WALLIS: Please go ahead.
13	MS. CUBBAGE: My name is Amy Cubbage. I'm
14	the project manager for the ESBWR pre-application
15	review. GE has requested approval of the TRAC-G code
16	for ESBWR LOCA analyses. The scope of the staff's
17	review included application of TRAC-G for ESBWR LOCA,
18	qualification of TRAC-G for ESBWR and also the PIRT
19	testing and scaling in support of qualification.
20	VICE-CHAIRMAN WALLIS: What do you mean by
21	the second one seems to be a more general one?
22	That's the question I had earlier on with Atam's
23	presentation.
24	Are you approving TRAC-G only for LOCAs or
25	for ESBWR without qualification which seems without
I	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	some qualification is used as the term here, but
2	that second bullet which seemed to be a blanket
3	approval and the first one is only for LOCAs.
4	MS. CUBBAGE: That's right. That should
5	have also been for LOCA. I just
6	VICE-CHAIRMAN WALLIS: Oh, okay. Thank
7	you. So it is only for LOCA we're talking about.
8	MEMBER KRESS: The third bullet, you just
9	reviewed the PIRT that was done by GE?
10	MS. CUBBAGE: That's right.
11	MEMBER KRESS: You didn't do a PIRT
12	yourself?
13	MS. CUBBAGE: That's right. This is a
14	list of the specific submittals that GE made and were
15	reviewed by the staff. Copies of these reports were
16	provided to the committee last year.
17	VICE-CHAIRMAN WALLIS: We take that as
18	read, I think.
19	MS. CUBBAGE: Pardon me, sir?
20	VICE-CHAIRMAN WALLIS: We'll take that as
21	read and move on or do you want to take details?
22	MS. CUBBAGE: No, the only thing I wanted
23	to point out is that we issued a large number of
24	requests for additional information and GE was
25	responsive to all of those requests.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1VICE-CHAIRMAN WALLIS: Thank you.2MS. CUBBAGE: This is the schedule for the3current review activities. I just want to point out4that we planned to issue the final SER next month on5TRAC-G for LOCA and containment.6This slide shows the submittal schedule7for additional ESBWR submittals from GE and the dates8here look different from what GE presented because9these are the submittal dates and not completion dates10and we have not developed a schedule for completing11these activities.12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESBWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.25VICE-CHAIRMAN WALLIS: You've got to do it		52
3current review activities. I just want to point out that we planned to issue the final SER next month on TRAC-G for LOCA and containment.6This slide shows the submittal schedule for additional ESBWR submittals from GE and the dates here look different from what GE presented because these are the submittal dates and not completion dates and we have not developed a schedule for completing these activities.12Our conclusion is that TRAC-G including the application methodology is an acceptable evaluation model for ESBWR LOCA analyses and TRAC-G is acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline.24MS. CUBBAGE: That's right.	1	VICE-CHAIRMAN WALLIS: Thank you.
4that we planned to issue the final SER next month on5TRAC-G for LOCA and containment.6This slide shows the submittal schedule7for additional ESEWR submittals from GE and the dates8here look different from what GE presented because9these are the submittal dates and not completion dates10and we have not developed a schedule for completing11these activities.12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESEWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	2	MS. CUBBAGE: This is the schedule for the
5TRAC-G for LOCA and containment.6This slide shows the submittal schedule7for additional ESEWR submittals from GE and the dates8here look different from what GE presented because9these are the submittal dates and not completion dates10and we have not developed a schedule for completing11these activities.12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESEWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	3	current review activities. I just want to point out
6This slide shows the submittal schedule7for additional ESBWR submittals from GE and the dates8here look different from what GE presented because9these are the submittal dates and not completion dates10and we have not developed a schedule for completing11these activities.12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESBWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	4	that we planned to issue the final SER next month on
for additional ESBWR submittals from GE and the dates here look different from what GE presented because these are the submittal dates and not completion dates and we have not developed a schedule for completing these activities. Our conclusion is that TRAC-G including the application methodology is an acceptable evaluation model for ESBWR LOCA analyses and TRAC-G is acceptable for reference VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here. MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right.	5	TRAC-G for LOCA and containment.
 here look different from what GE presented because these are the submittal dates and not completion dates and we have not developed a schedule for completing these activities. Our conclusion is that TRAC-G including the application methodology is an acceptable evaluation model for ESBWR LOCA analyses and TRAC-G is acceptable for reference VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here. MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right. 	6	This slide shows the submittal schedule
 these are the submittal dates and not completion dates and we have not developed a schedule for completing these activities. Our conclusion is that TRAC-G including the application methodology is an acceptable evaluation model for ESEWR LOCA analyses and TRAC-G is acceptable for reference VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here. MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right. 	7	for additional ESBWR submittals from GE and the dates
10and we have not developed a schedule for completing11these activities.12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESBWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	8	here look different from what GE presented because
11 these activities. 12 Our conclusion is that TRAC-G including 13 the application methodology is an acceptable 14 evaluation model for ESEWR LOCA analyses and TRAC-G is 15 acceptable for reference 16 VICE-CHAIRMAN WALLIS: Let me go back to 17 that last slide so we can get something clear here. 18 MS. CUBBAGE: Okay. 19 VICE-CHAIRMAN WALLIS: I expect that the 20 reasons these are somewhat vague is that the staff 21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right.	9	these are the submittal dates and not completion dates
12Our conclusion is that TRAC-G including13the application methodology is an acceptable14evaluation model for ESBWR LOCA analyses and TRAC-G is15acceptable for reference16VICE-CHAIRMAN WALLIS: Let me go back to17that last slide so we can get something clear here.18MS. CUBBAGE: Okay.19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	10	and we have not developed a schedule for completing
 13 the application methodology is an acceptable 14 evaluation model for ESBWR LOCA analyses and TRAC-G is 15 acceptable for reference 16 VICE-CHAIRMAN WALLIS: Let me go back to 17 that last slide so we can get something clear here. 18 MS. CUBBAGE: Okay. 19 VICE-CHAIRMAN WALLIS: I expect that the 20 reasons these are somewhat vague is that the staff 21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right. 	11	these activities.
 evaluation model for ESBWR LOCA analyses and TRAC-G is acceptable for reference VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here. MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right. 	12	Our conclusion is that TRAC-G including
 acceptable for reference VICE-CHAIRMAN WALLIS: Let me go back to that last slide so we can get something clear here. MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right. 	13	the application methodology is an acceptable
 16 VICE-CHAIRMAN WALLIS: Let me go back to 17 that last slide so we can get something clear here. 18 MS. CUBBAGE: Okay. 19 VICE-CHAIRMAN WALLIS: I expect that the 20 reasons these are somewhat vague is that the staff 21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right. 	14	evaluation model for ESBWR LOCA analyses and TRAC-G is
17 that last slide so we can get something clear here. 18 MS. CUBBAGE: Okay. 19 VICE-CHAIRMAN WALLIS: I expect that the 20 reasons these are somewhat vague is that the staff 21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right.	15	acceptable for reference
 MS. CUBBAGE: Okay. VICE-CHAIRMAN WALLIS: I expect that the reasons these are somewhat vague is that the staff intends to do what it takes to do a thorough review of these various submittals. It's not going to be driven by some deadline. MS. CUBBAGE: That's right. 	16	VICE-CHAIRMAN WALLIS: Let me go back to
19VICE-CHAIRMAN WALLIS: I expect that the20reasons these are somewhat vague is that the staff21intends to do what it takes to do a thorough review of22these various submittals. It's not going to be driven23by some deadline.24MS. CUBBAGE: That's right.	17	that last slide so we can get something clear here.
20 reasons these are somewhat vague is that the staff 21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right.	18	MS. CUBBAGE: Okay.
21 intends to do what it takes to do a thorough review of 22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right.	19	VICE-CHAIRMAN WALLIS: I expect that the
22 these various submittals. It's not going to be driven 23 by some deadline. 24 MS. CUBBAGE: That's right.	20	reasons these are somewhat vague is that the staff
 23 by some deadline. 24 MS. CUBBAGE: That's right. 	21	intends to do what it takes to do a thorough review of
24 MS. CUBBAGE: That's right.	22	these various submittals. It's not going to be driven
	23	by some deadline.
25 VICE-CHAIRMAN WALLIS: You've got to do it	24	MS. CUBBAGE: That's right.
	25	VICE-CHAIRMAN WALLIS: You've got to do it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	by a certain date. That's the reason that these are
2	vague?
3	MS. CUBBAGE: Well, these are vague
4	these are submittal dates.
5	VICE-CHAIRMAN WALLIS: No, but it seems to
6	me that's appropriate. I mean if you had some
7	deadline where you have to do the review by a certain
8	date, that would seem to be inappropriate. You do
9	whatever it takes to get it done.
10	MS. CUBBAGE: That's right.
11	VICE-CHAIRMAN WALLIS: Okay, thank you.
12	MS. CUBBAGE: That's right. So continuing
13	with the conclusion, we've concluded that TRAC-G is
14	acceptable for reference during the design
15	certification review of the ESBWR and that approval
16	would be subject to conditions that will be specified
17	in the safety evaluation.
18	Ralph Landry is going to walk through the
19	basis for the staff's conclusion.
20	VICE-CHAIRMAN WALLIS: You may have to run
21	with the number of slides he's got.
22	MR. LANDRY: My name is Ralph Landry from
23	the NRR staff and I am going to try to get through a
24	lot of this fast.
25	MS. CUBBAGE: Is it on?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	MR. LANDRY: Okay. I'm going to try to
2	get through some of these pretty quickly. I have a
3	lot of word slides that I want to just touch on and
4	then get to the slides that show additional results.
5	Bharat showed some results and I'd like to
6	touch on some other results so that when you see the
7	picture of what he showed and what we showed, you get
8	a little bit bigger picture of what we did in the
9	review.
10	Okay, how do we find the code is
11	acceptable? Well, there's a lot of parts that go into
12	determining the acceptability of a code. We have to
13	start with understanding what the bases are for the
14	review and for the acceptance of the code. We have to
15	look at in this case a realistic code so that we have
16	to understand how the phenomena have been identified
17	and ranked properly. We have to look at the test
18	program which I'll get back to you in a minute because
19	of regulatory bases that direct us to a testing. We
20	have to look at the scaling, has the facility and the
21	test program been scaled properly. We want to look at
22	the TRAC-G code and the documentation. This is the
23	specific models within the code and are those models
24	sufficiently accurate or is the uncertainty in the
25	models sufficiently understood that the uncertainty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

can be generated and carried through into the final analysis?

3 And in the case that we're going to talk 4 about today, the staff has done considerable number of 5 confirmatory calculations. We license on the basis of the material that is submitted to us. 6 However, big 7 caveat. When we review codes today, we want the code and we look at the code, run the code and run our own 8 9 codes. This gives us a basis and a warmer feeling for the capability of a code, but we can look at the code 10 11 capability. We can take the code apart ourselves and 12 then we compare the code to our own code calculation or capabilities. 13

MEMBER KRESS: Ralph, let me ask you a question. You outlined what I would call criteria acceptance code. Are those written down anywhere in guidelines or in a review plan or something? Do they now exist in your head?

Well, a lot of it's in the 19 MR. LANDRY: 20 But I'm going to get through some of those. head. 21 When I go into the regulatory bases, those 22 will define very high level what goes into a review 23 and acceptability, but then there are other materials 24 that are not regulatory, but are the basis on which we 25 do our reviews that are defined and are in greater

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

55

	56
1	detail. So I'm going to try to get through a little
2	bit of that this morning.
3	VICE-CHAIRMAN WALLIS: And let me say that
4	there is somewhere in the works and it's been in the
5	works for six years. I'm not sure if it's ever
б	emerged, regulatory guide on what codes have to do and
7	so on?
8	MR. LANDRY: There's a draft regulatory
9	guide
10	VICE-CHAIRMAN WALLIS: There's been draft
11	for so long, it may just blow away.
12	MR. LANDRY: Reg. Guide 1120, I believe
13	the number is, is about what is an acceptable
14	valuation
15	VICE-CHAIRMAN WALLIS: It addresses some
16	these questions that this Committee has been asking
17	for some time. If it isn't out there in the world,
18	it's a real crying shame that it hasn't been issued
19	properly.
20	MR. LANDRY: It's still in the works.
21	VICE-CHAIRMAN WALLIS: That doesn't make
22	any sense. It's not something you did, but I just
23	think this Agency is delinquent in addressing a very
24	important issue about what's the quality of these
25	codes, reducing regulatory guide which never emerges

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	from behind a veil.
2	It has nothing to do with you, but that's
3	
4	MR. LANDRY: I agree with your frustration
5	with that that it would be nice to have those
6	documents out sooner.
7	VICE-CHAIRMAN WALLIS: It's not my
8	frustration. It's not my frustration. I think it's
9	just my judgment on the state of affairs.
10	MR. LANDRY: Thank you, Graham.
11	MR. SHACK: When you say you get a hold of
12	the code, do you actually get the source code so that
13	you can see that the model that's implemented in the
14	code actually is the model that's described in the
15	documentation?
16	MR. LANDRY: Exactly, so they, the manner
17	in which we review a code is we insist that the
18	code must be submitted. That means the source code
19	must be submitted and executable so that we have it,
20	the executable that the applicant is using. We have
21	the source code because we've gone into the source
22	code in a number of cases and made changes. When we
23	wanted to study a sensitivity, we've gone into the
24	source code, made a change, rebuilt the code,
25	recompiled and then rerun ourselves.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

58 1 But of course, that is a code that we have 2 altered, so we can't hold the vendor, the applicant to this is what their code does because it's not a code 3 4 that is in configuration control any longer, but yes, 5 we do get the source code because we do want to have the ability to make changes beyond the changes that 6 7 you can make through input data. 8 VICE-CHAIRMAN WALLIS: I point out that 9 you don't always get the source code from the 10 applicant. 11 MR. LANDRY: We are now. 12 VICE-CHAIRMAN WALLIS: You are now? MR. LANDRY: Or the vendor-owned codes. 13 14 VICE-CHAIRMAN WALLIS: It makes it very 15 much easier for the ACRS to approve something if we 16 know that you have seen the source code and have been able to check it. 17 18 MR. LANDRY: We have. 19 VICE-CHAIRMAN WALLIS: Thank you. 20 MR. LANDRY: That I have to be very 21 careful about, Professor Graham. When I say the 22 vendor's code. Vendors also use commercial codes for certain things such as physics and those codes we 23 24 don't get the source code on because that's a 25 commercially owned product. So I'm just talking about

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	the thermal hydraulic codes right now.
2	Okay, how do we approach the review and
3	where's the material written down? Well, this code
4	because we submitted it as a realistic model was based
5	on the CSAU outline. The CSAU outline is a 14-step
6	process which defines what goes into an acceptable
7	evaluation model. The review which we performed was
8	conducted by NRR, RES and contractors under both
9	offices.
10	NRR reviewed the code models for the LOCA
11	and containment. We performed independent
12	calculations using the TRAC-G code itself and we did
13	independent calculations using the trace CONTAIN
14	linked code.
15	We reviewed the uncertainty methodology.
16	The Office of Research reviewed the test program, the
17	scaling and performed independent containment
18	calculations using the contained code. Overall,
19	management of the review and the SER was handled by
20	NRR.
21	Some of the regulatory bases and I just
22	want to hit these real fast so I can get into the
23	figures. If you look at 10 CFR 50.46, the regulation
24	dealing with LOCA evaluation models, it specifies that
25	sufficient supporting justification to show that the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 analytical technique realistically describes the 2 behavior of the reactor system during loss-of-coolant 3 accident analysis must be provided and that there is a high level and this is where we've had the 4 5 discussion with the thermal hydraulic subcommittee, what constitutes a high level probability that the 6 7 criteria would not be exceeded. That is not defined. This is a high level statement, but we have to then 8 9 assume or look at an individual application and determine 10 is the level of probability that is submitted acceptable. 11

For the containment, the regulatory bases are the general design criteria 16, 38 and 50 and the Standard Review Plan section 6.2.1 and in particular, SRP Section 6.2.1.1.C, I think I have enough ones in there which defines the requirements for pressure suppression containment systems.

In addition, because this is a standard 18 19 design we also have to look at the requirements of 10 20 CFR 52 and in particular .47. Certification of a 21 standard design which utilizes simplified inherent 22 passive features can be granted only if and then 23 there's a whole list of requirements. In particular, 24 you have to demonstrate the performance through either 25 analysis, appropriate test programs, experiment or

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

60

	61
1	combination. The interdependent effects have to be
2	demonstrated through acceptable analysis, appropriate
3	test programs, etcetera. And sufficient data must be
4	shown to exist to assess the analytical tools that are
5	used.
6	This is what forms the basis for now going
7	back and looking at the test program that has been
8	submitted by General Electric in support of the ESBWR.
9	Is the test program sufficient to provide the data
10	necessary to assess the analytical tools which are
11	going to be used in support of the design?
12	Okay, because it's a realistic analysis
13	method, I'm not going to go through all 14 steps of
14	the CSAU methodology. I just want to hit a couple of
15	the important ones.
16	One important step is that the phenomena
17	must be identified and ranked. And this is done
18	through a two-step process. A top-down process by
19	which you start with the scenario to be analyzed and
20	from that point move to the phenomena which are
21	important and a second process called bottom-up where
22	you look at the features of the hardware design and
23	from those features move through to what processes are
24	in important.
25	This two-step process was performed by

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	General Electric for the ESBWR design and resulted in
2	two PIRTs, one dealing with the reactor coolant system
3	and associated hardware itself, and the other dealing
4	with the containment system.
5	The PIRTs that were reviewed have been
6	found to be comprehensive and include all high ranked
7	phenomena expected in a LOCA in the ESBWR.
8	VICE-CHAIRMAN WALLIS: That means you guys
9	couldn't think of any other high-ranked phenomena that
10	could be included? Is that what that means?
11	MR. LANDRY: We looked through the PIRTs
12	and we did not come up with any phenomena that struck
13	us that were not already accounted for by General
14	Electric and their panel. This is not done by one
15	person. There's a panel that reviews the PIRT for the
16	applicant and then what we're looking at is the end
17	product of the entire process of development.
18	The PIRT does not extend to long-range
19	cooling for LOCA/ECCS and containment and must do at
20	the design certification stage. This is one of those
21	caveats that we put into the SER that must be met by
22	the applicant when they come with a design
23	certification. The PIRT is fine as far as it goes,
24	but it does not cover long-term coolant.
25	The testing program was reviewed and here

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I've listed only those tests that are integral tests. There are a number of other -- Dr. Rao showed you at the first, in his first presentation which include separate effects and component tests. We're only concerned right now to focus on the integral system test. You can see that through the GIST, GIRAFFE, PANDA and PANTHER tests that we have a range of integral systems.

Dr. Shiralkar showed you his figure number 9 3 which gave the phases of the LOCA transient for 10 11 ESBWR and the test programs and how those test 12 If you look back at that figure programs cover. you'll see that for every phase of the LOCA in the 13 14 ESBWR, there are at least three facilities providing 15 data and in some cases such as in the GDCS phase, there are as many as five facilities at each point 16 17 providing data which can be used to assess the capabilities of the code or analysis of the event. 18

This kind of coverage of the test program at various scales indicates to us that they have provided for all the parameters expected in the SBWR and the ESBWR, that the test program is applicable to the ESBWR and that no further testing is indicated for TRAC-G qualification or LOCA in the ESBWR.

VICE-CHAIRMAN WALLIS: Hold on a minute

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

now.

1

2

3

4

5

6

7

8

MR. LANDRY: We did want to point out that there was a program called PANDA-P which was performed after the closure of the ESBWR in 1996. This is a program that was a mock-up done by the European Community at the Paul Scherrer Institute in Switzerland, mock-up of the ESBWR. So it's an ESBWRspecific program.

9 But because that program was not done 10 under the auspices of General Electric, it does not 11 necessarily meet the QA requirements and therefore 12 we're saying that if they can show that the code is 13 qualified without the PANDA-P program, then it can be 14 used for confirmative purposes. But we are now 15 allowing it to be used for assessment purposes.

And after review of the test program, the Office of Research, and we agree, that yes, the test program that has been proposed without PANDA-P is sufficient for demonstration of qualification of TRAC-G. So that PANDA-P can now be used for confirmatory purposes.

22 MEMBER ROSEN: Ralph, my question has to 23 do with this last bullet on the slide that no further 24 testing is needed. And if you go back one slide, 25 would you go back just one slide? Look at the last

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

65
bullet on this slide. It says that the PIRT does not
extend to long-term cooling.
Now isn't it possible that when the PIRT
is extended for long-term cooling that new testing
will be provided?
I mean how did these two bullets line up?
They seem contradictory.
MR. LANDRY: There is the possibility.
However, when we look at long-term cooling, because of
the phenomena that normally occurred during the long-
term cooling phase, we do not expect to see phenomena
that have not already been assessed within the code.
This is primarily a single phase process when you get
into long-term cooling. You're not governed by
boiling. You're not governed by two-phase flow or the
very severe heat transfer processes. So we do not
anticipate at this point that there would be phenomena
identified for the long-term cooling phase which have
not already been assessed in the prior phases of the
analysis.
MEMBER ROSEN: But go with me on this one.
What if there were? Then that statement on your next
chart would not be correct, right?
MR. LANDRY: Well, at this point, this is
one of those lawyer-type words, no further testing is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 indicated. That doesn't absolutely, mean 2 categorically no further testing would ever be 3 required. But at this point we see no indication of 4 a need for further testing. If that indication was 5 shown to be necessary, then of course, at the design certification stage we could say it would need more 6 7 testing. 8 MEMBER ROSEN: Why wasn't the PIRT Why was this piece left over? 9 completed? MR. LANDRY: General Electric would have 10 11 to address why they cut the PIRT off when they did, 12 from our examination of the PIRT and but our examination of the event, we do not foresee 13 any 14 phenomena that would be new --15 MEMBER ROSEN: You're telling me the answer to the PIRT, what the PIRT --16 17 MR. LANDRY: Let me ask Dr. Shiralkar to respond. 18 MR. SHIRALKAR: This is Bharat Shiralkar. 19 20 The long-term cooling phenomena was considered, but 21 not a detailed PIRT was developed for it. It's simply 22 a matter of an inventory balanced in long term to make 23 sure that the volume is such that the liquid is up to 24 the right levels. 25 So it's backed by a few and it will

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

66

	67
1	probably depend on the final design, but it's not
2	something that involves new phenomena.
3	MEMBER ROSEN: You're also telling me the
4	answer to the PIRT, the long-term cooling. I think I
5	share your view that I can't think of any phenomena
6	that might be that will need to be tested for long-
7	term cooling, but that's the function of the panel,
8	isn't it, to decide that?
9	So there's a presumption ahead of the fact
10	that it may be okay because that may, in fact, turn
11	out to be the way it is.
12	MR. LANDRY: But we have left that door
13	open that they must complete the PIRT with the long-
14	term cooling phase at design certification and it will
15	be reviewed.
16	Looking a little bit at the testing
17	program, Bharat has already shown a lot of the results
18	of the testing program. I'd just like to look at one
19	and I realize this is fuzzy. This is from a cut and
20	paste through several processes to remove the material
21	that's proprietary.
22	If we look at the performance of the PCCS
23	as data were obtained through the PANTHERS/PCC test,
24	we overplotted, would be the error in steam flow
25	expected for a GDCS line break and the air and steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	flow through PCCS for main steam line break. And we
2	can see all the data all the test points, there are
3	test programs or test groupings. We can see that the
4	test groupings at the PANTHERS/PCC facility has
5	obtained data that really encompasses all the
6	anticipated phases of the LOCA at the ESBWR.
7	And as Bharat has pointed out, the PCC
8	test were at a facility that is nearly full scale, so
9	these are very large scale tests that pipes are the
10	same size diameter. The headers are the same size.
11	The lengths are the same size. It's just the number
12	of tubes that are not the same as for the ESBWR.
13	VICE-CHAIRMAN WALLIS: Could you go over
14	what the vertical axis is here?
15	MR. LANDRY: This is Air Mass Flow Rate.
16	VICE-CHAIRMAN WALLIS: Oh, I thought you
17	said something about error.
18	MR. LANDRY: No, air.
19	VICE-CHAIRMAN WALLIS: Air mass.
20	MR. LANDRY: That's one of those things
21	that will appear in the transcript as error mass flow
22	rate.
23	VICE-CHAIRMAN WALLIS: Air. It's air.
24	MR. LANDRY: Air, A-I-R.
25	MEMBER ROSEN: Now I would have concluded

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1that these tests don't cover all the data. Look at2all of the points that are not in the shaded volume.3What does that mean?4MR. LANDRY: These are tests5VICE-CHAIRMAN WALLIS: The points are the6tests.7MR. LANDRY: These are test groupings.8These are groups of tests.9MEMBER ROSEN: Right.10MR. LANDRY: And groups of tests that up11here in the unexpected region, so that there's a large12volume of data maybe not hitting every single point on13each line, but there are a lot of test data in the14regions where we expect the PCC to be operated.15MEMBER ROSEN: So you're saying that the16data that's significant is in the shaded area.17MR. LANDRY: Right.18MEMBER ROSEN: All the other data,19although there were tests done, it doesn't yield data20that's significant to the important region.21MR. LANDRY: That's correct, but it does22give you data that you can test and see how your code23does in those regions also.24VICE-CHAIRMAN WALLIS: You're saying the		69
 What does that mean? MR. LANDRY: These are tests VICE-CHAIRMAN WALLIS: The points are the tests. MR. LANDRY: These are test groupings. These are groups of tests. MEMBER ROSEN: Right. MR. LANDRY: And groups of tests that up here in the unexpected region, so that there's a large volume of data maybe not hitting every single point on each line, but there are a lot of test data in the regions where we expect the PCC to be operated. MEMBER ROSEN: So you're saying that the data that's significant is in the shaded area. MR. LANDRY: Right. MEMBER ROSEN: All the other data, although there were tests done, it doesn't yield data that's significant to the important region. MR. LANDRY: That's correct, but it does give you data that you can test and see how your code does in those regions also. 	1	that these tests don't cover all the data. Look at
4MR. LANDRY: These are tests5VICE-CHAIRMAN WALLIS: The points are the6tests.7MR. LANDRY: These are test groupings.8These are groups of tests.9MEMBER ROSEN: Right.10MR. LANDRY: And groups of tests that up11here in the unexpected region, so that there's a large12volume of data maybe not hitting every single point on13each line, but there are a lot of test data in the14regions where we expect the PCC to be operated.15MEMBER ROSEN: So you're saying that the16data that's significant is in the shaded area.17MR. LANDRY: Right.18MEMBER ROSEN: All the other data,19although there were tests done, it doesn't yield data20that's significant to the important region.21MR. LANDRY: That's correct, but it does22give you data that you can test and see how your code23does in those regions also.	2	all of the points that are not in the shaded volume.
5 VICE-CHAIRMAN WALLIS: The points are the 6 tests. 7 MR. LANDRY: These are test groupings. 8 These are groups of tests. 9 MEMBER ROSEN: Right. 10 MR. LANDRY: And groups of tests that up 11 here in the unexpected region, so that there's a large 12 volume of data maybe not hitting every single point on 13 each line, but there are a lot of test data in the 14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 MR. LANDRY: That's correct, but it does 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	3	What does that mean?
 tests. MR. LANDRY: These are test groupings. These are groups of tests. MEMBER ROSEN: Right. MR. LANDRY: And groups of tests that up here in the unexpected region, so that there's a large volume of data maybe not hitting every single point on each line, but there are a lot of test data in the regions where we expect the PCC to be operated. MEMBER ROSEN: So you're saying that the data that's significant is in the shaded area. MR. LANDRY: Right. MEMBER ROSEN: All the other data, although there were tests done, it doesn't yield data that's significant to the important region. MR. LANDRY: That's correct, but it does give you data that you can test and see how your code does in those regions also. 	4	MR. LANDRY: These are tests
7MR. LANDRY: These are test groupings.8These are groups of tests.9MEMBER ROSEN: Right.10MR. LANDRY: And groups of tests that up11here in the unexpected region, so that there's a large12volume of data maybe not hitting every single point on13each line, but there are a lot of test data in the14regions where we expect the PCC to be operated.15MEMBER ROSEN: So you're saying that the16data that's significant is in the shaded area.17MR. LANDRY: Right.18MEMBER ROSEN: All the other data,19although there were tests done, it doesn't yield data20that's significant to the important region.21MR. LANDRY: That's correct, but it does22give you data that you can test and see how your code23does in those regions also.	5	VICE-CHAIRMAN WALLIS: The points are the
8 These are groups of tests. 9 MEMBER ROSEN: Right. 10 MR. LANDRY: And groups of tests that up 11 here in the unexpected region, so that there's a large 12 volume of data maybe not hitting every single point on 13 each line, but there are a lot of test data in the 14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	6	tests.
9 MEMBER ROSEN: Right. 10 MR. LANDRY: And groups of tests that up 11 here in the unexpected region, so that there's a large 12 volume of data maybe not hitting every single point on 13 each line, but there are a lot of test data in the 14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	7	MR. LANDRY: These are test groupings.
10MR. LANDRY: And groups of tests that up11here in the unexpected region, so that there's a large12volume of data maybe not hitting every single point on13each line, but there are a lot of test data in the14regions where we expect the PCC to be operated.15MEMBER ROSEN: So you're saying that the16data that's significant is in the shaded area.17MR. LANDRY: Right.18MEMBER ROSEN: All the other data,19although there were tests done, it doesn't yield data20that's significant to the important region.21MR. LANDRY: That's correct, but it does22give you data that you can test and see how your code23does in those regions also.	8	These are groups of tests.
11 here in the unexpected region, so that there's a large 12 volume of data maybe not hitting every single point on 13 each line, but there are a lot of test data in the 14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	9	MEMBER ROSEN: Right.
12 volume of data maybe not hitting every single point on 13 each line, but there are a lot of test data in the 14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	10	MR. LANDRY: And groups of tests that up
each line, but there are a lot of test data in the regions where we expect the PCC to be operated. MEMBER ROSEN: So you're saying that the data that's significant is in the shaded area. MR. LANDRY: Right. MEMBER ROSEN: All the other data, although there were tests done, it doesn't yield data that's significant to the important region. MR. LANDRY: That's correct, but it does give you data that you can test and see how your code does in those regions also.	11	here in the unexpected region, so that there's a large
14 regions where we expect the PCC to be operated. 15 MEMBER ROSEN: So you're saying that the 16 data that's significant is in the shaded area. 17 MR. LANDRY: Right. 18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	12	volume of data maybe not hitting every single point on
MEMBER ROSEN: So you're saying that the data that's significant is in the shaded area. MR. LANDRY: Right. MEMBER ROSEN: All the other data, although there were tests done, it doesn't yield data that's significant to the important region. MR. LANDRY: That's correct, but it does give you data that you can test and see how your code does in those regions also.	13	each line, but there are a lot of test data in the
16data that's significant is in the shaded area.17MR. LANDRY: Right.18MEMBER ROSEN: All the other data,19although there were tests done, it doesn't yield data20that's significant to the important region.21MR. LANDRY: That's correct, but it does22give you data that you can test and see how your code23does in those regions also.	14	regions where we expect the PCC to be operated.
MR. LANDRY: Right. MR. LANDRY: Right. MEMBER ROSEN: All the other data, although there were tests done, it doesn't yield data that's significant to the important region. MR. LANDRY: That's correct, but it does give you data that you can test and see how your code does in those regions also.	15	MEMBER ROSEN: So you're saying that the
18 MEMBER ROSEN: All the other data, 19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	16	data that's significant is in the shaded area.
<pre>19 although there were tests done, it doesn't yield data 20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.</pre>	17	MR. LANDRY: Right.
20 that's significant to the important region. 21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	18	MEMBER ROSEN: All the other data,
21 MR. LANDRY: That's correct, but it does 22 give you data that you can test and see how your code 23 does in those regions also.	19	although there were tests done, it doesn't yield data
give you data that you can test and see how your code does in those regions also.	20	that's significant to the important region.
23 does in those regions also.	21	MR. LANDRY: That's correct, but it does
	22	give you data that you can test and see how your code
24 VICE-CHAIRMAN WALLIS: You're saying the	23	does in those regions also.
	24	VICE-CHAIRMAN WALLIS: You're saying the
25 data has to be cover a bigger power than that than	25	data has to be cover a bigger power than that than

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	the region.
2	MR. LANDRY: That's correct.
3	VICE-CHAIRMAN WALLIS: If you're
4	interested in it, because if the data covered the
5	smaller part of the map in the region you're
6	interested in, then you'd have some concern.
7	MR. LANDRY: You don't know where your
8	boundaries are. And you don't know how your
9	capability is to predict those boundaries.
10	The scaling analysis gave us a great deal
11	of difficulty. On this, I would like to point out
12	that this review was done over a fairly short period
13	of time and the only reason we got through this review
14	in that kind of time frame was because of the level of
15	cooperation which we received from General Electric.
16	We had for long periods, we had weekly phone calls.
17	We had a great deal of interaction, a lot of questions
18	back and forth and we received extremely good
19	cooperation from General Electric through this whole
20	process.
21	And the scaling in particular, received a
22	very high level of scrutiny. The original scaling
23	report the staff found to be very deficient. General
24	Electric went back and redid the scaling, using a much
25	more rigorous scaling analysis based on a method that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

was developed by Marino diMarzo from the University of Maryland and research staff. Developed a procedure for doing a scaling analysis. That procedure was applied by General Electric in the GDCS initiation phase. This is the most critical phase of the LOCA for the ESBWR.

7 They considered multiple volumes in that 8 analysis. The system meaning equations with 9 interactions. They looked at comparison of results with data and calculations in non-dimensional space. 10 11 And this should be Pi, not Ps, where the resulting Pi 12 are different in form and value from the original submittal and the trends in the magnitudes suggest 13 14 though that the data is relevant and sufficient.

VICE-CHAIRMAN WALLIS: There's still the
issue of not matching all the Pis. You never can
match all the Pis.

MR. LANDRY: No.

19VICE-CHAIRMAN WALLIS: And if a Pi should20be 1 and it turns out to be .6, there's always a21question about well is that good enough. So some sort22of judgment has to be exercised and the use of this23scaling type analysis.

MR. LANDRY: That's correct.

VICE-CHAIRMAN WALLIS: And some sort of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

18

24

25

	72
1	assessment of how wrong you might be if the Pi is not
2	quite what you want it to be.
3	MR. LANDRY: We wanted to point out let
4	me ask Dr. diMarzo to make a comment.
5	MR. diMARZO: Marino diMarzo. I can
6	clarify exactly what Graham, you are saying here is
7	exactly the efficiency that was revealed there. There
8	were, so to speak, distortion, if you wish in the Pis
9	and we couldn't figure out what would have been the
10	effect of such distortion among the different
11	facilities and therefore we tried to tell them that
12	their link is distortion to the figure of merit being
13	the minimum vessel inventory before GDCS injection.
14	That was vigorously done and basically we demonstrated
15	essentially that these distortions were irrelevant in
16	the range that they were having to the figure of
17	merit.
18	VICE-CHAIRMAN WALLIS: Okay, that's
19	something that I don't know that we've seen in detail.
20	MR. diMARZO: Right, because originally
21	they started saying one third three type of thing for
22	all this stuff?
23	VICE-CHAIRMAN WALLIS: Yes.
24	MR. diMARZO: We said that's too
25	VICE-CHAIRMAN WALLIS: Too gross a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	criteria.
2	MR. diMARZO: No, but besides, you can
3	have a distortion that's off by 10 percent and causes
4	a disaster. You can have a distortion that's off 200
5	percent and causes nothing.
6	VICE-CHAIRMAN WALLIS: Right.
7	MR. diMARZO: So we had to do that and
8	they did that.
9	MR. LANDRY: So the end result was that
10	from the new scaling analysis which was performed,
11	that the trends and magnitude suggests that the data
12	are relevant and sufficient, the database is
13	sufficient and relevant for code assessment and that
14	the scaling analysis is rigorous, however, it's
15	limited in scope at this point because it's limited to
16	just the GDCS initiation phase.
17	Code documentation. This has been a sore
18	point for at least 20 years now and continues to be a
19	sore point. General Electric has provided a very,
20	very large quantity of documentation for this review,
21	but that documentation comes from the ESBWR design
22	review that was terminated in 1996 as well as the
23	ESBWR specific documentation provided for this part of
24	the review.
25	The review of the code documentation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	disclosed numerous errors, omissions which General
2	Electric has committed to address in a revised TRAC-G
3	model description topical report. And that revised
4	documentation must be submitted within 90 days of
5	issuance of the TRAC-G SER.
6	I'd like to address just one aspect of the
7	ECCS models at this point.
8	MEMBER ROSEN: You're requiring the
9	revised documentation after you get the SER?
10	MR. LANDRY: That's correct.
11	MEMBER ROSEN: A priori, I would have said
12	before.
13	MR. LANDRY: No because
14	MEMBER ROSEN: Normally
15	MR. LANDRY: There are things in the SER
16	that they have to see.
17	MEMBER ROSEN: Pardon me?
18	MR. LANDRY: There are things in the SER
19	that they have to see, also in the process of revising
20	their documentation. And they can't see the SER until
21	we're ready to release it.
22	MS. CUBBAGE: We reviewed the information
23	they submitted in response to REIs and they have to
24	incorporate that information in the approved version
25	of the topical reports which is typically done after

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	we approve the SE.
2	MR. LANDRY: Dr. Shiralkar addressed a
3	couple of the particular models such as critical flow.
4	I'd like to look at now the level tracking model.
5	When we looked at the models in the code, a number of
6	those models we found code comparisons with data that
7	we said okay, that looks good enough and the question
8	always come up how good is good enough?
9	When we looked at things like CCFL, we
10	said that the average deviation was less than the
11	measurement error. The same for the two phase level
12	swell. The data were within and were consistent with
13	the errors in measurements and you can't expect a code
14	to be any better than your error in measurement. Some
15	others, the critical flow model bounded the measured
16	predicted bounded the measured data. We looked
17	at the error rate in interfacial sheer and wall
18	friction and found that those error rates were all at
19	an acceptable level, acceptably low.
20	We looked at another axes-stripped plot to
21	be nonproprietary. This is from one of the PSTF
22	tests. We looked at the level versus time and you can
23	see that the TRAC-G plot with the data. Again, the

data showed to be happening in this test. 25

TRAC-G prediction is pretty well picking up what the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

(202) 234-4433

	76
1	Another
2	MEMBER POWERS: I understand there are two
3	ways to look at that plot. One is hey, it's pretty
4	good. And one is, hey, it's horrible. The peak is
5	wrong, the slope is wrong, the breadth of the peak is
6	wrong.
7	MR. LANDRY: The peak, when it's going up
8	is going up and when it's coming, it's coming down.
9	It's not terribly far off and when we look at that
10	was only one test. When we looked at some of the
11	other tests.
12	MEMBER POWERS: What I'm trying to ask is
13	how do I know that's pretty good?
14	MR. LANDRY: You can't do it just on one
15	test. You have to look at a number of tests. If you
16	look at a number of tests, then you say is overall the
17	code doing a good job. Here, the code is coming up to
18	the pretty close to the same level swell value as
19	a peak. When it drops down it's coming down pretty
20	close to the same lower level.
21	MEMBER POWERS: It's similar to the
22	magnitudes.
23	MR. LANDRY: The magnitudes are similar.
24	MEMBER POWERS: The fact that that
25	observed peak is broad is not nearly so important as

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	you've got the height correct.
2	MR. LANDRY: Got the height correct and
3	you're coming up when you're coming up, here you're
4	leveled off, but when you're going down, when you're
5	going down, you're not going up when the data are
б	going down and vice versa.
7	VICE-CHAIRMAN WALLIS: I think what you
8	really want to say eventually in this kind of a
9	comparison is that the uncertainties which are
10	displayed here, the difference between the data and
11	the predictions of uncertainty and how well you can
12	predict are properly feed into some analysis of
13	uncertainty and that they are within the range which
14	is acceptable for some ultimate uncertainty and figure
15	of merit such as a level in the chimney or something.
16	That's what we'd like to see, I think, is some sort of
17	quantitative measure of uncertainty that's compared
18	with this uncertainty we see here and it feeds right
19	through the whole analysis to the end and then you
20	know how uncertain you are in some figure of merit.
21	I think that's what we'd like to see, not
22	just a qualitative description that it looks okay.
23	MR. LANDRY: And the greater uncertainty
24	you have here, the greater that uncertainty

VICE-CHAIRMAN WALLIS: There might be the

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	78
1	uncertainty and level of that amount is really
2	critical in whether or not the core is cool.
3	MR. LANDRY: That's correct.
4	MEMBER KRESS: Well, you know, what I
5	would like to see when I see a curve like that is an
6	explanation of why they differ. I'm sure this has to
7	do with the level swell model, probably. I'm not
8	sure, but I would guess that and I would like to see
9	some twitching of the code a little bit to see certain
10	parts of it to see if I can reproduce this curve so I
11	could have some assurance of why that I know why they
12	differ.
13	MR. SHACK: Well, how about error bars in
14	the data?
15	MEMBER KRESS: Well, that would be useful,
16	but you know, this data I probably pressure gauges
17	and so
18	MR. SHACK: It's very good.
19	MEMBER KRESS: Yes, that could have some
20	pretty good error bars though.
21	MEMBER ROSEN: Ralph, I think you need to
22	be a little more careful about what you say is that
23	the data is going up when it should be when the
24	TRAC-G says it's going up and going down that's not
25	true across the whole spectrum here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1I can show you where the slope is positive2on the slope for data and negative on the TRAC-G at3the same instant.4MR. LANDRY: I'm just making a general5statement right now. We have to look at more tests6than just this one though. This was a different test.7You can see the data and the code are even lower over8much more of the range.9MEMBER KRESS: That's a small break?10MR. LANDRY: I don't know which test this11is. I just randomly pulled several tests just to not12try to bias what I was showing.13Another PSTF test that was performed. But14in addition to looking at the tests, sensitivity15studies were performed on the level swell model. This16is a sensitivity that was performed for one of the17tests, 580115, whichever test that was, looking at18different nodalization. And you can see that except19for the one case where the four node case, 81529 node20cases, almost like right on top of each other21VICE-CHAIRMAN WALLIS: Where are the data22MR. LANDRY: This is just looking at the23MR. LANDRY: This is just looking at the24sensitivity to normalization without comparing25VICE-CHAIRMAN WALLIS: We can't make this		79
3 the same instant. 4 MR. LANDRY: I'm just making a general 5 statement right now. We have to look at more tests 6 than just this one though. This was a different test. 7 You can see the data and the code are even lower over 8 much more of the range. 9 MEMBER KRESS: That's a small break? 10 MR. LANDRY: I don't know which test this 11 is. I just randomly pulled several tests just to not 12 try to bias what I was showing. 13 Another PSTF test that was performed. But 14 in addition to looking at the tests, sensitivity 15 studies were performed on the level swell model. This 16 is a sensitivity that was performed for one of the 17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 MR. LANDRY: This is just looking at the 23 MR. LANDRY: This is just looking at the 24 <td>1</td> <td>I can show you where the slope is positive</td>	1	I can show you where the slope is positive
4MR. LANDRY: I'm just making a general5statement right now. We have to look at more tests6than just this one though. This was a different test.7You can see the data and the code are even lower over8much more of the range.9MEMBER KRESS: That's a small break?10MR. LANDRY: I don't know which test this11is. I just randomly pulled several tests just to not12try to bias what I was showing.13Another PSTF test that was performed. But14in addition to looking at the tests, sensitivity15studies were performed on the level swell model. This16is a sensitivity that was performed for one of the17tests, 580115, whichever test that was, looking at18different nodalization. And you can see that except19for the one case where the four node case, 81529 node20cases, almost like right on top of each other21VICE-CHAIRMAN WALLIS: Where are the data22MR. LANDRY: This is just looking at the23MR. LANDRY: This is just looking at the24sensitivity to normalization without comparing	2	on the slope for data and negative on the TRAC-G at
statement right now. We have to look at more tests than just this one though. This was a different test. You can see the data and the code are even lower over much more of the range. MEMBER KRESS: That's a small break? MR. LANDRY: I don't know which test this is. I just randomly pulled several tests just to not try to bias what I was showing. Another PSTF test that was performed. But in addition to looking at the tests, sensitivity studies were performed on the level swell model. This is a sensitivity that was performed for one of the tests, 580115, whichever test that was, looking at different nodalization. And you can see that except for the one case where the four node case, 81529 node cases, almost like right on top of each other UICE-CHAIRMAN WALLIS: Where are the data here? MR. LANDRY: This is just looking at the sensitivity to normalization without comparing	3	the same instant.
 than just this one though. This was a different test. You can see the data and the code are even lower over much more of the range. MEMBER KRESS: That's a small break? MR. LANDRY: I don't know which test this is. I just randomly pulled several tests just to not try to bias what I was showing. Another PSTF test that was performed. But in addition to looking at the tests, sensitivity studies were performed on the level swell model. This is a sensitivity that was performed for one of the tests, 580115, whichever test that was, looking at different nodalization. And you can see that except for the one case where the four node case, 81529 node cases, almost like right on top of each other VICE-CHAIRMAN WALLIS: Where are the data here? MR. LANDRY: This is just looking at the 	4	MR. LANDRY: I'm just making a general
You can see the data and the code are even lower over much more of the range. MEMBER KRESS: That's a small break? MR. LANDRY: I don't know which test this is. I just randomly pulled several tests just to not try to bias what I was showing. Another PSTF test that was performed. But in addition to looking at the tests, sensitivity studies were performed on the level swell model. This is a sensitivity that was performed for one of the tests, 580115, whichever test that was, looking at different nodalization. And you can see that except for the one case where the four node case, 81529 node cases, almost like right on top of each other VICE-CHAIRMAN WALLIS: Where are the data here? MR. LANDRY: This is just looking at the sensitivity to normalization without comparing	5	statement right now. We have to look at more tests
 much more of the range. MEMBER KRESS: That's a small break? MR. LANDRY: I don't know which test this is. I just randomly pulled several tests just to not try to bias what I was showing. Another PSTF test that was performed. But in addition to looking at the tests, sensitivity studies were performed on the level swell model. This is a sensitivity that was performed for one of the tests, 580115, whichever test that was, looking at different nodalization. And you can see that except for the one case where the four node case, 81529 node cases, almost like right on top of each other VICE-CHAIRMAN WALLIS: Where are the data here? MR. LANDRY: This is just looking at the 	6	than just this one though. This was a different test.
9MEMBER KRESS: That's a small break?10MR. LANDRY: I don't know which test this11is. I just randomly pulled several tests just to not12try to bias what I was showing.13Another PSTF test that was performed. But14in addition to looking at the tests, sensitivity15studies were performed on the level swell model. This16is a sensitivity that was performed for one of the17tests, 580115, whichever test that was, looking at18different nodalization. And you can see that except19for the one case where the four node case, 81529 node20cases, almost like right on top of each other21VICE-CHAIRMAN WALLIS: Where are the data22here?23MR. LANDRY: This is just looking at the24sensitivity to normalization without comparing	7	You can see the data and the code are even lower over
10MR. LANDRY: I don't know which test this11is. I just randomly pulled several tests just to not12try to bias what I was showing.13Another PSTF test that was performed. But14in addition to looking at the tests, sensitivity15studies were performed on the level swell model. This16is a sensitivity that was performed for one of the17tests, 580115, whichever test that was, looking at18different nodalization. And you can see that except19for the one case where the four node case, 81529 node20cases, almost like right on top of each other21VICE-CHAIRMAN WALLIS: Where are the data22here?23MR. LANDRY: This is just looking at the24sensitivity to normalization without comparing	8	much more of the range.
11 is. I just randomly pulled several tests just to not 12 try to bias what I was showing. 13 Another PSTF test that was performed. But 14 in addition to looking at the tests, sensitivity 15 studies were performed on the level swell model. This 16 is a sensitivity that was performed for one of the 17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	9	MEMBER KRESS: That's a small break?
12 try to bias what I was showing. 13 Another PSTF test that was performed. But 14 in addition to looking at the tests, sensitivity 15 studies were performed on the level swell model. This 16 is a sensitivity that was performed for one of the 17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	10	MR. LANDRY: I don't know which test this
13Another PSTF test that was performed. But14in addition to looking at the tests, sensitivity15studies were performed on the level swell model. This16is a sensitivity that was performed for one of the17tests, 580115, whichever test that was, looking at18different nodalization. And you can see that except19for the one case where the four node case, 81529 node20cases, almost like right on top of each other21VICE-CHAIRMAN WALLIS: Where are the data22here?23MR. LANDRY: This is just looking at the24sensitivity to normalization without comparing	11	is. I just randomly pulled several tests just to not
 in addition to looking at the tests, sensitivity studies were performed on the level swell model. This is a sensitivity that was performed for one of the tests, 580115, whichever test that was, looking at different nodalization. And you can see that except for the one case where the four node case, 81529 node cases, almost like right on top of each other VICE-CHAIRMAN WALLIS: Where are the data here? MR. LANDRY: This is just looking at the sensitivity to normalization without comparing 	12	try to bias what I was showing.
15 studies were performed on the level swell model. This 16 is a sensitivity that was performed for one of the 17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	13	Another PSTF test that was performed. But
16 is a sensitivity that was performed for one of the 17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	14	in addition to looking at the tests, sensitivity
17 tests, 580115, whichever test that was, looking at 18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	15	studies were performed on the level swell model. This
18 different nodalization. And you can see that except 19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	16	is a sensitivity that was performed for one of the
<pre>19 for the one case where the four node case, 81529 node 20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing</pre>	17	tests, 580115, whichever test that was, looking at
<pre>20 cases, almost like right on top of each other 21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing</pre>	18	different nodalization. And you can see that except
21 VICE-CHAIRMAN WALLIS: Where are the data 22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	19	for the one case where the four node case, 81529 node
<pre>22 here? 23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing</pre>	20	cases, almost like right on top of each other
23 MR. LANDRY: This is just looking at the 24 sensitivity to normalization without comparing	21	VICE-CHAIRMAN WALLIS: Where are the data
24 sensitivity to normalization without comparing	22	here?
	23	MR. LANDRY: This is just looking at the
25 VICE-CHAIRMAN WALLIS: We can't make this	24	sensitivity to normalization without comparing
	25	VICE-CHAIRMAN WALLIS: We can't make this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	a judgment of that going up and coming down at the
2	same time. There's no data here.
3	MR. LANDRY: Right. This doesn't have the
4	data. This was a plot to look at the effect of
5	nodalization.
6	VICE-CHAIRMAN WALLIS: It would be
7	interesting to see if by improving the nodalization
8	you can come closer to the data or something. That
9	might be a useful message.
10	MR. LANDRY: We just wanted to show on
11	this that when the sensitivity is done to nodalization
12	that we see that nodalization is very insensitive.
13	VICE-CHAIRMAN WALLIS: Is the trend
14	monotonic? As you have more nodes you get closer to
15	the data or do you get further away from it?
16	MR. LANDRY: I don't know where the data
17	lie initially.
18	VICE-CHAIRMAN WALLIS: That would be
19	something to know, too.
20	MR. LANDRY: We don't have a plot where
21	we're plotting the data.
22	An additional sensitivity was done looking
23	at time step size and here this is part of that same
24	test, varying the time step over a range of five shows
25	that almost insensitive to time steps.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	VICE-CHAIRMAN WALLIS: We don't know the
2	time on the X axis, so it's a little hard to compare
3	this, but if things are only happening over a period
4	of a minute, then .05 seconds is not going to
5	MEMBER KRESS: This is probably about a 10
6	minute range, you would say?
7	MR. LANDRY: I don't know if I can say.
8	MEMBER KRESS: The blow down phase is like
9	10 minutes.
10	MR. LANDRY: I'd have to ask General
11	Electric what I can say.
12	VICE-CHAIRMAN WALLIS: The message here is
13	the staff has itself been running these runs, right?
14	MR. LANDRY: These runs were run by
15	General Electric.
16	VICE-CHAIRMAN WALLIS: Oh, they were run
17	by General Electric. They weren't run by you. Do you
18	run tests like this yourself?
19	MR. LANDRY: We did runs looking at the
20	LOCAs themselves and
21	VICE-CHAIRMAN WALLIS: But you did this on
22	a sensitivity test yourself, with that code on certain
23	things that mattered?
24	MR. LANDRY: These, we did not do. We did
25	tests looking at the effect on thermal margin and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	effects on
2	VICE-CHAIRMAN WALLIS: That would be more
3	important evidence than this.
4	MR. LANDRY: Containment models
5	VICE-CHAIRMAN WALLIS: Is it possible for
6	you to show that evidence at some time?
7	MR. LANDRY: We don't have that.
8	VICE-CHAIRMAN WALLIS: You don't have
9	that?
10	MR. LANDRY: We've done sensitivities, but
11	not on specific models such as level swell.
12	VICE-CHAIRMAN WALLIS: But you said, no,
13	you said you did sensitivity studies on the more
14	important question of what's the effect on some safety
15	parameters, didn't you?
16	MR. LANDRY: On thermal margin.
17	VICE-CHAIRMAN WALLIS: Right.
18	MR. LANDRY: We did studies on thermal
19	margin. We did studies on
20	VICE-CHAIRMAN WALLIS: That seems to me is
21	the more important message. There's a more important
22	message there than what we just saw. I just wondered
23	if you wanted to show that after lunch or something.
24	At some date, give it to us or something. That's a
25	more important just maybe we don't need it now, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

83 1 that would be a more important piece of evidence for 2 Committee, I think. Maybe at the design the 3 certification stage, we'll look for that kind of 4 thing. 5 MR. LANDRY: That's workable. PCCS 6 performance. I don't want to say too much on this 7 because Bharat already went into a great deal on the 8 PCCS performance and comparisons. 9 Just we'd like to point out that the tests 10 that were performed indicate that there's full 11 condensation of a steam. 12 VICE-CHAIRMAN WALLIS: Full condensation? What's that mean? 13 14 MR. LANDRY: It's super heated steam. 15 There's no --VICE-CHAIRMAN WALLIS: You never condense 16 17 all of the steam if you've got non-condensables. 18 MR. LANDRY: But you can have a humid non-19 condensable coming out. 20 VICE-CHAIRMAN WALLIS: Yes. 21 But you don't have super MR. LANDRY: 22 heated steam in it. 23 VICE-CHAIRMAN WALLIS: Yes, but full 24 condensation. MR. LANDRY: By full condensation, we mean 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	84
1	super heated steam.
2	VICE-CHAIRMAN WALLIS: It's like the issue
3	we had in the subcommittee about 100 percent
4	condensation. It's not a meaningful expression.
5	We've berated you for that or GE for that and now
6	you're saying full condensation. That's the same
7	thing.
8	MR. LANDRY: But we're trying to put a
9	caveat on it and say that we're talking about super
10	heated steam. You no longer have super heated steam
11	coming out.
12	VICE-CHAIRMAN WALLIS: It's quite a
13	different statement.
14	MR. STAUDENMAIER: This is Joe
15	Staudenmaier, Office of Research. There isn't full
16	condensation of the steam. They do have measurements
17	of how much steam goes through and goes into the
18	suppression pool at the conditions.
19	VICE-CHAIRMAN WALLIS: So avoid these sort
20	of statements. Or maybe you put that in just to get
21	us irritated.
22	MR. LANDRY: I wanted to see if you were
23	reading it.
24	(Laughter.)
25	I wanted to see if you catch that subtle

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1change in words.2We looked at TRAC-G versus PANTHERS test3results and I think this is a different test than4Bharat showed. This was from test 15, looking at the5efficiency. You can see that the efficiency of TRAC-G6prediction versus PANTHERS was very good.7VICE-CHAIRMAN WALLIS: Now we can assume,8I think, that the efficiency scale is not from 0 to9.1, so that the efficiency of these things is10terrible?11Whatever the scale may be, it's showing up12good efficiency?13MR. LANDRY: Yes.14VICE-CHAIRMAN WALLIS: It's something like1590 percent or something here?16MR. LANDRY: It's very good efficiency.17We looked at the delta P comparison, TRAC-G and the
3 results and I think this is a different test than 4 Bharat showed. This was from test 15, looking at the 5 efficiency. You can see that the efficiency of TRAC-G 6 prediction versus PANTHERS was very good. 7 VICE-CHAIRMAN WALLIS: Now we can assume, 8 I think, that the efficiency scale is not from 0 to 9 .1, so that the efficiency of these things is 10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
 Bharat showed. This was from test 15, looking at the efficiency. You can see that the efficiency of TRAC-G prediction versus PANTHERS was very good. VICE-CHAIRMAN WALLIS: Now we can assume, I think, that the efficiency scale is not from 0 to .1, so that the efficiency of these things is terrible? Whatever the scale may be, it's showing up good efficiency? MR. LANDRY: Yes. VICE-CHAIRMAN WALLIS: It's something like 90 percent or something here? MR. LANDRY: It's very good efficiency. We looked at the delta P comparison, TRAC-G and the
 efficiency. You can see that the efficiency of TRAC-G prediction versus PANTHERS was very good. VICE-CHAIRMAN WALLIS: Now we can assume, I think, that the efficiency scale is not from 0 to 1, so that the efficiency of these things is terrible? Whatever the scale may be, it's showing up good efficiency? MR. LANDRY: Yes. VICE-CHAIRMAN WALLIS: It's something like 90 percent or something here? MR. LANDRY: It's very good efficiency. We looked at the delta P comparison, TRAC-G and the
 6 prediction versus PANTHERS was very good. 7 VICE-CHAIRMAN WALLIS: Now we can assume, 8 I think, that the efficiency scale is not from 0 to 9 .1, so that the efficiency of these things is 10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
7 VICE-CHAIRMAN WALLIS: Now we can assume, 8 I think, that the efficiency scale is not from 0 to 9 .1, so that the efficiency of these things is 10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
8 I think, that the efficiency scale is not from 0 to 9 .1, so that the efficiency of these things is 10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
9 .1, so that the efficiency of these things is 10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
<pre>10 terrible? 11 Whatever the scale may be, it's showing up 12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the</pre>
Whatever the scale may be, it's showing up good efficiency? MR. LANDRY: Yes. VICE-CHAIRMAN WALLIS: It's something like 90 percent or something here? MR. LANDRY: It's very good efficiency. We looked at the delta P comparison, TRAC-G and the
<pre>12 good efficiency? 13 MR. LANDRY: Yes. 14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the</pre>
MR. LANDRY: Yes. MR. LANDRY: Yes. VICE-CHAIRMAN WALLIS: It's something like 90 percent or something here? MR. LANDRY: It's very good efficiency. We looked at the delta P comparison, TRAC-G and the
<pre>14 VICE-CHAIRMAN WALLIS: It's something like 15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the</pre>
<pre>15 90 percent or something here? 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the</pre>
 16 MR. LANDRY: It's very good efficiency. 17 We looked at the delta P comparison, TRAC-G and the
17 We looked at the delta P comparison, TRAC-G and the
18 test data were very close.
19 VICE-CHAIRMAN WALLIS: This is where I go
20 to my colleague, Dr. Powers' question. Yes, it looks
21 fairly good, but is this difference in delta P you're
22 showing here important? If there's more pressure drop
23 in PANTHERS in TRAC-G, does that have some adverse
24 effect on the ability of the system to survive?
25 I think Bharat would say well, it's such

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	a small difference compared with the overall pressure
2	we're interested in or something, but it doesn't
3	matter. You've got to make that comparison.
4	Just looking at the figure doesn't tell
5	you whether being off by a factor of almost 2 at delta
6	P halfway along there matters or not.
7	Do you have some assurance that this
8	deviation doesn't matter?
9	MR. LANDRY: We looked at the overall
10	containment performance, overall calculations are very
11	conservative, so our conclusion is that this does not
12	matter.
13	Bharat, would you like to add something?
14	MR. SHIRALKAR: Yes. This is Bharat
15	Shiralkar. The only important criteria here is the
16	difference in submergence between the main vent and
17	the PCC vent. That pressure difference is of the
18	order of about 8 kPa or so. So as long as a very
19	small fraction of that, it really doesn't matter.
20	You're not in any danger of uncovering the main vent.
21	That's the criteria that we used.
22	VICE-CHAIRMAN WALLIS: So you're saying
23	this small difference is small compared with some
24	driving pressure or something?
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

pressure that would cause the main vent to uncover.

2 MR. LANDRY: The uncertainty determination valve, we presented this to the Thermal Hydraulic 3 4 Subcommittee. We'd like to point it out again here 5 that previous submittals of TRAC-G which we've reviewed for application of the operating fleet AOOs 6 7 included an uncertainty analysis that was very 8 rigorous and very sound. This is an analysis that was 9 termed a normal distribution one-sided upper tolerance limit statistical method. It's an extension of order 10 11 statistics. It's extending the order statistics 12 assumptions to the point of saying that the output variable or metric has to be shown to be normal. 13

14 We found that that methodology was very 15 When we reviewed the LOCA submittal for ESBWR, qood. 16 however, what we saw was a statistical methodology 17 that wasn't a statistical methodology. What General Electric has done is taken all of the parameters that 18 19 are being calculated, borrow the LOCA, place them at 20 their two sigma, should be limits, to define the 21 limiting case, rather than running a set of cases as 22 you would do with order statistics or the normal 23 They were only running one distribution approach. 24 case because they're setting all of the parameters at 25 their two sigma limits. And by doing so, they're not

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

87

using a variation of parameters. So it's not a 2 rigorous statistical methodology. It does, however, 3 come down to the end of saying that the success of the 4 calculation with the parameters set at their two sigma 5 limit is determined by the minimum static head in the 6 chimney.

7 When we looked at the analyses that were done and we'll have a plot later that shows the peak 8 9 cladding temperature, if we get to it, predicted by 10 the codes, we can see that the peak cladding 11 temperature that is predicted is the operating 12 temperature of the fuel. The core never uncovers. The core stays covered by a considerable amount. 13 The 14 level in chimney indicates a considerable coverage so 15 there's never any core heat up, so the criterion that are listed in 5046, as you have to have a PCT under a 16 certain amount and limits on clad oxidation, etcetera, 17 really are I hate to say meaningless, but they really 18 19 don't have much use in this design because you don't' 20 ever heat up the core beyond the normal operating 21 temperature.

VICE-CHAIRMAN WALLIS: Let me just ask you 22 23 about this limiting case. I think what you mean is 24 that you take all these parameters to the two sigma 25 value. It's not really a limit because there is

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	89
1	something beyond that and you use these two sigma
2	limits to find out what's the worse thing or what's
3	the extreme you could get if you went to all of these
4	two sigma values.
5	MR. LANDRY: That's correct.
6	VICE-CHAIRMAN WALLIS: That's not really
7	a limiting case in the sense that it couldn't be worse
8	than that, because there's always a bit beyond the two
9	sigma which would let you go further.
10	So it's not limiting in the sense
11	MR. LANDRY: This was not taken to the
12	point of what do we have what conditions do we have
13	to have to
14	VICE-CHAIRMAN WALLIS: But you see what I
15	mean. To use the word limiting is a little misleading
16	here.
17	MEMBER KRESS: I would have thought you
18	would have shifted your criteria from the 9595 on peak
19	clad temperature and called it 9595 on uncovering the
20	core. You know you're there if you do that and you
21	have to have some sort of relationship between the two
22	sigma
23	
24	VICE-CHAIRMAN WALLIS: And 95
25	MEMBER KRESS: 9595. I don't know how you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	get that without a proper uncertainty analysis. I
2	don't see any rigorous way to take two sigma
3	parameters and assure myself I've got a certain level
4	of confidence.
5	MEMBER POWERS: It seems to me that you
6	have no idea where you are. You're in outer space
7	someplace.
8	MEMBER KRESS: That's exactly right.
9	MEMBER POWERS: I mean if I have a simple
10	process with two uncertain parameters once of which
11	exacerbates the situation and one of which ameliorates
12	the situation and take it to two sigma, I'd probably
13	end up about average.
14	It seems to me you want to do a Monte
15	Carlo or something on this and look at what your 95
16	percentile really looks like rather than arbitrarily
17	taking things out to two sigma. I have no idea what
18	you're getting at.
19	MEMBER KRESS: That would be my I don't
20	know what it means. I don't know what the margins
21	are.
22	MEMBER POWERS: It certainly doesn't
23	provide you any comfort.
24	MEMBER KRESS: Right.
25	MR. LANDRY: This very well may be a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	question that can be asked at the design certification
2	stage, but
3	MEMBER POWERS: It will be.
4	MR. LANDRY: This is a question for the
5	design certification stage, demonstrate the limit on
6	the chimney level because at this point we have to
7	come back to the focus of the review. The focus of
8	the review is the capability of a computer code to
9	analyze the LOCA.
10	Now
11	MEMBER POWERS: But see, our difficulty is
12	
13	MR. LANDRY: You get to the point of what
14	is the actual limit of the level in the chimney.
15	That's really not a code issue at this point. That's
16	an issue once you have the actual hardware design.
17	MEMBER POWERS: But Ralph, you see the
18	difficulty I'm having here is you take everything up
19	to this two sigma, because you have ameliorating
20	things and exasperating things, you may not have
21	exercised the code in any extreme. You may be sitting
22	just where you were if you took them all to mean
23	value.
24	VICE-CHAIRMAN WALLIS: It's how they
25	combine. But I think what I understand they did is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	they took the value, estimate value of these various
2	parameters and they took plus two sigma and the minus
3	two sigma. So they've got three things and then they
4	take the whole spectrum of answers they get from all
5	these three different inputs, whereas in the
6	parameter, nonparameter statistics, you take a
7	distribution, use Monte Carlo sample. Here, they're
8	sort of sampling between these three things and not
9	the whole continue of the distribution.
10	MR. LANDRY: That's correct.
11	VICE-CHAIRMAN WALLIS: And again, there's
12	a question of how does the plus sigma and one thing
13	combine with minus sigma and the other to make it
14	better or worse. I think that's a key question that
15	they really didn't answer very well in the supplement.
16	MR. LANDRY: That's correct. And that's
17	the kind of question that we will probably be asking
18	when we get to the design certification stage to go
19	back and do a parametric study.
20	VICE-CHAIRMAN WALLIS: And I would guess
21	that the staff would also do this sort of statistical
22	or sensitivity study.
23	MR. LANDRY: We'll look at more studies
24	VICE-CHAIRMAN WALLIS: But not quite in
25	such a rigorous complete way, but just to make sure

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	93
1	that things were being reasonable.
2	MR. LANDRY: I think an important part of
3	that is that by specifying a sigma and a mean, you
4	really can't do the nonparametric analyses because you
5	don't know what the distribution is.
6	VICE-CHAIRMAN WALLIS: It's an
7	approximation. If it were normal, you might have a
8	better understanding of what you were doing.
9	MR. LANDRY: Right. It doesn't have to be
10	normal. All you have to understand to do a parametric
11	or a nonparametric statistical analysis is the
12	probability distribution function of each of your
13	parameters.
14	VICE-CHAIRMAN WALLIS: I think the problem
15	is that if you have say an estimate that something is
16	a hundred and your two sigma gives you 80 to 120, it
17	might be that 110 is the worse case. There are all
18	kinds of things you can argue about.
19	MR. LANDRY: That's why you do a
20	parametric study.
21	VICE-CHAIRMAN WALLIS: Or you do the
22	random thing over the whole distribution.
23	MR. LANDRY: Continuing with the
24	uncertainty analysis, the containment response was
25	evaluated as a bounding condition. The staff has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	raised questions about the realistic plant evaluation
2	that is performed in this manner and we will probably
3	have more questions when we do the design
4	certification about performing parametric studies to
5	properly evaluate the operation of the plant itself.
6	The staff finds the General Electric
7	method acceptable due to the predicted lack of core
8	uncovery. However, should at the design certification
9	stage it be found that the ESBWR core does uncover or
10	heat up, then a proper statistical analysis will
11	definitely be required.
12	Some of the independent calculations, I'm
13	trying to race now to get into the
14	VICE-CHAIRMAN WALLIS: You've got 10
15	minutes to finish up here. I think you can do it.
16	MR. LANDRY: We've looked at a lot of
17	cases, a total of 28 cases broken down into 10 areas.
18	I'd like to focus today on just the main steam line
19	break and GDCS line break cases that we ran because we
20	ran these cases ourselves with TRAC-G and with the
21	trace contained link code.
22	VICE-CHAIRMAN WALLIS: The message here is
23	that when you are doing the top things and only TRAC-
24	G, you're comparing it with data and when you don't
25	have data you're comparing TRAC-G with trace or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	contain or whatever.
2	MR. LANDRY: Such as the gravity
3	preservation. When we did that, we were comparing
4	TRAC-G with the hand calculations.
5	VICE-CHAIRMAN WALLIS: Okay.
6	MR. LANDRY: With the hand calculations.
7	We distributed to the Committee what we performed in
8	that calculation.
9	If we look at the GDCS LOCA, the break
10	mass flow rate looking at trace and contain, or trace,
11	contain and TRAC-G, one of the questions that we
12	brought that came up during the discussion with the
13	applicant and with the Thermal Hydraulic Subcommittee
14	was the TRAC-G blip in break flow.
15	General Electric has gone back and
16	examined that further and they found that the problem
17	there was the way they were nodalizing the GDCS line
18	coming off. They were using one node. They went back
19	and increased that to four nodes and this just blipped
20	one away and they're now getting the same response
21	that TRAC-G is getting or trace TRAC-G is getting
22	the same response as trace.
23	VICE-CHAIRMAN WALLIS: Now the beginning
24	of this trial, the comparison isn't very good. I
25	guess you'd argue that that it's sort of an integrated

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	flow that you care about. You're depressurizing the
2	system and so it's good enough. But in terms of
3	saying that both codes sort of agree, that's not a
4	very good agreement in the first
5	MR. LANDRY: They don't overlay, but we do
6	see that both are ramping up similarly and dropping,
7	but the timing is off. This is another of those
8	points that we're going to have to look at further.
9	VICE-CHAIRMAN WALLIS: And the flow rate
10	differs at the beginning significantly, so there's
11	something different about a critical flow model or
12	something?
13	We can go on forever here, but I guess it
14	goes back to all of these questions we had earlier.
15	When is the deviation significant and when isn't it?
16	MR. LU: This is Shanlai Lu from Reactor
17	Systems. And the calculation performed by trace and
18	contain for the initial probably 200 seconds, and it's
19	very significantly determined by the initial steady
20	state and right now, we are in the process to rerun
21	the initial steady state, trying to identify what
22	you're going to need, issues related to that. Because
23	we do have a much quicker DPV opening, early opening.
24	VICE-CHAIRMAN WALLIS: This is an on-going
25	process?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	MR. LU: Yes.
2	MR. LANDRY: If we look at the downcomer
3	collapsed level, this is the top of the active core.
4	If you look at the downcomer level predicted by both
5	trace and TRAC-G, you see very similar results.
6	Looking at the chimney collapsed water
7	level
8	VICE-CHAIRMAN WALLIS: This is the
9	important measure, probably of safety, isn't it?
10	MR. LANDRY: For the LOCA at this point,
11	the chimney level is the measure of safety. We see
12	both codes predicting the chimney levels so you come
13	down to the minimum pretty close to the same point at
14	the same time.
15	VICE-CHAIRMAN WALLIS: It looks as if they
16	get some event wrong at about as they're coming
17	down, but otherwise it looks reasonably good. There's
18	cliffs, it goes through two cliffs there. It looks as
19	if some event occurs
20	MR. LANDRY: They both do, but at
21	different times. There must again, going back to my
22	colleague, Dr. Kress' point, you understand what's
23	going on and why there's a cliff.
24	MR. LU: It drops simply because of the
25	DPV open

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

98 1 VICE-CHAIRMAN WALLIS: It's the event that 2 occurs? 3 MR. LU: Yes, that's the event that 4 occurs. 5 VICE-CHAIRMAN WALLIS: If there were nothing to cause that, you'd be suspicious. With just 6 7 a code doing it erratically that would not be a good 8 signal at all. 9 MR. LU: You're right. MR. LANDRY: Looking at the mass flow rate 10 11 through the break, this is for the main steam line 12 break. We again see TRACE, a high flow, higher flow than TRAC-G, but the two come down and stay together 13 14 for almost the whole time. 15 Looking at the GDCS injection mass flow rate for the main steam line break, then the two codes 16 17 are fairly close, come up at the same time. TRAC-G showing just a little bit more flow as the peak. 18 19 The peak cladding temperature is а 20 This is the trace prediction of PCT. problem. 21 VICE-CHAIRMAN WALLIS: It never goes up. 22 MR. LANDRY: You see the PCT? Well, right 23 at the break time jumps just a little bit and then 24 immediately comes right back down, levels off very 25 quickly. So there's no excursion --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	VICE-CHAIRMAN WALLIS: Goes up in the
2	beginning because you've still got the heat supply and
3	you've done something that tweaks the heat close.
4	MR. LANDRY: You have that slight delay
5	with the reactor scram hitting it.
6	This is a comparison of two trace runs,
7	the trace run for the main steam line break and for
8	the GDCS line break to show that yes, indeed, the GDCS
9	line break does come up with a minimum water level in
10	the chimney, but keep in mind that what would normally
11	be zero is two meters.
12	VICE-CHAIRMAN WALLIS: Something very
13	weird that happens with that jiggle at 600 seconds.
14	The water leaps up and leaps down. That's not going
15	to happen, is it?
16	MR. LANDRY: Shanlai is looking at that.
17	MR. LU: Yes, we are looking at that right
18	now.
19	VICE-CHAIRMAN WALLIS: I should hope so.
20	You've suddenly created a measure of water from no
21	where.
22	MR. LANDRY: It's an instantaneous blip.
23	VICE-CHAIRMAN WALLIS: Yes.
24	MR. LANDRY: So out of the staff's
25	independent calculations we've run 28 cases looking at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	the LOCAs, main steam line break, GDCS line break plus
2	those initial cases that we had listed.
3	The analysis results indicate that TRAC-G
4	is capable of analyzing the limiting LOCA response of
5	the reactor coolant system and the containment peak
6	pressure and temperature.
7	VICE-CHAIRMAN WALLIS: And that's the
8	this decision is made based on your judgment, looking
9	at all these curves and all this evidence, there was
10	a judgment made that TRAC-G is capable.
11	MR. LANDRY: This judgment is made on the
12	basis of slide 2, the agenda.
13	VICE-CHAIRMAN WALLIS: All the slides.
14	MR. LANDRY: All those items
15	VICE-CHAIRMAN WALLIS: You asked these
16	questions. You looked at the evidence and you say in
17	my judgment this evidence satisfies that need.
18	MR. LANDRY: That's correct. When we put
19	all these pieces together, the testing program, the
20	scaling, the calculations which have been supplied,
21	the calculations which we've done, we've come to the
22	conclusion
23	VICE-CHAIRMAN WALLIS: Well, you're a wise
24	and experienced regulator and I think that the
25	Committee may well believe you, your judgment of these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	events, these things is right. I think one concern
2	among many we might have if you retire, someone else
3	is going to look at these curves and wiggles and may
4	not have the understanding of how to interpret them
5	and may not make a wise decision which is I think why
6	we're trying to drive the staff in the direction of
7	being more specific about the criteria area and how
8	they're evaluated.
9	MEMBER POWERS: I thought we were going to
10	require that he just not retire.
11	VICE-CHAIRMAN WALLIS: We can also require
12	that he not retire, but also if he doesn't retire, it
13	will be like ACRS members and his judgment may
14	steadily deteriorate as he gets older.
15	(Laughter.)
16	MEMBER KRESS: Or he may die.
17	MEMBER POWERS: It's not allowed, Tom.
18	MR. LANDRY: Is this getting into the
19	story of Henry VIII and talking about the cow?
20	VICE-CHAIRMAN WALLIS: No, his wives are
21	the ones
22	MR. LANDRY: Have you heard the story
23	about Henry VIII
24	VICE-CHAIRMAN WALLIS: Be careful, be
25	careful.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	MR. LANDRY: Supposedly a person came in
2	and said Henry VIII was going to hang the guy the next
3	day and the guy said well, look, if you don't hang me
4	I can make this cow learn to talk. And another person
5	said to this knave how in the world can you do
6	something as rash as that? You can't make the cow
7	learn to talk? He said no, but I've got a year to do
8	it. In a year's time, I could die. In a year's time,
9	the king could die. In a year's time, the cow could
10	learn to talk.
11	(Laughter.)
12	You never know.
13	VICE-CHAIRMAN WALLIS: Well, is this your
14	evaluation of a code ever taking that form when you go
15	back to the vendor and say code X within a year might
16	be able to predict something useful?
17	(Laughter.)
18	MR. LANDRY: No, we're saying at this
19	point that the TRAC-G code including the application
20	methodology is an acceptable evaluation model for the
21	ESBWR loss of cooling accident analyses as presented
22	in the TRAC-G application for ESBWR.
23	MEMBER KRESS: Does that bless the two
24	sigma
25	MEMBER SIEBER: Yes, it does.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	MR. LANDRY: The staff therefore concludes
2	that TRAC-G is acceptable for referencing during the
3	design certification, review of the ESBWR provided the
4	conditions specified in a safety evaluation are met.
5	That is contained in that statement.
6	VICE-CHAIRMAN WALLIS: I wouldn't think it
7	is blessing the two sigma. It's a tool which is used
8	and you're not accepting the method of calculating
9	uncertainties. You're accepting the fact that you can
10	put in numbers into this code and you can get numbers
11	out of it.
12	MR. LANDRY: When we get to the design
13	certification stage we may very well say now we want
14	to see
15	VICE-CHAIRMAN WALLIS: Acceptable tool.
16	You're saying this hammer is useful for construction
17	purposes. You're not saying that all the details of
18	how you hit the nails and all that sort is acceptable.
19	Is that right?
20	MR. LANDRY: Correct.
21	VICE-CHAIRMAN WALLIS: Good, that's what
22	I thought you were
23	MR. LANDRY: Basically, the application
24	methodology is acceptable. But when we look at the
25	design certification, when we look at uncertainty

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	analysis that has been provided, we may want further
2	support for that uncertainty analysis.
3	This concludes the staff's presentation.
4	VICE-CHAIRMAN WALLIS: You've done very
5	well. We're on the course. We agreed ahead of time
6	that everything would happen exactly as the schedule
7	you've done very well.
8	MR. STAUDENMAIER: This is Joe
9	Staudenmaier, Officer of Research. There was
10	discussion about lack of a reg guide for this type of
11	application. There already is a reg guide for
12	realistic LOCA submittals. I think it's 1.157. I
13	don't remember the number exactly, but that's been
14	around for quite a while, like 15 years or so.
15	VICE-CHAIRMAN WALLIS: And to think that
16	you rewrote or you and some other folks worked on an
17	improved reg guide.
18	MR. STAUDENMAIER: It wasn't meant to
19	supersede 1.157. It was to apply to calculations
20	other than LOCA calculations.
21	VICE-CHAIRMAN WALLIS: I see. Other than
22	LOCA, it didn't include LOCA?
23	MR. STAUDENMAIER: It could be easily
24	applied to LOCA
25	VICE-CHAIRMAN WALLIS: It also included

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	LOCA.
2	MR. STAUDENMAIER: But there already was
3	a
4	
5	VICE-CHAIRMAN WALLIS: Okay. That one has
6	not come out yet, the one that I was complaining
7	about?
8	MR. STAUDENMAIER: It's still in draft
9	form.
10	VICE-CHAIRMAN WALLIS: I really cannot
11	understand that.
12	MR. STAUDENMAIER: Neither can I.
13	VICE-CHAIRMAN WALLIS: Thank you very
14	much. Does the Committee have more questions for Dr.
15	Landry?
16	MEMBER LEITCH: I have, perhaps, a broader
17	question that relates to the certification of these
18	designs. I haven't been through this certification
19	process before, but I guess what concerns me about
20	this design is that in a current fleet of BWRs, the
21	adequate I'm talking about normal operation now,
22	not accident conditions. You have adequate flow and
23	you pull the rods and they're critical and start to
24	steam and so forth.
25	Do we have a code that takes a look at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 this design where all the flow is natural and you 2 begin to pull the rods, how do we know that there's no 3 stratification of flow, that there's no localized hot 4 spots in the fuel? Is there a code that addresses 5 that? Is that something that is considered in a later phase of the design or is that something that we 6 7 basically don't consider to be a safety issue and 8 therefore we don't get into that? MR. LANDRY: That will come up during the 9 General Electric will 10 design certification phase. 11 have to at that point present their hardware design, 12 the hard design of a facility, their operating procedures and so forth and all the support for and 13 14 modes of operation. 15 At this point, this review was very focused on just the TRAC-G code, only for LOCA. 16 MEMBER LEITCH: I understand. 17 MR. LANDRY: So we did not get into that, 18 19 but those are the kind of questions that would 20 normally come up during the design certification 21 phase. 22 See, my concern is that MEMBER LEITCH: 23 with the current fleet, you've got adequate flow, 24 plenty of flow, but I just wonder how we are going to 25 gain the assurance that we're not going to have, as I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

106

1say, some stratification or some localized heating of2the fuel or some other strange phenomena going on3there until the natural circulation is established.4Once we get over that hump and have good,5natural circulation, it's easy from there, but how do6we get started, I guess is the question I have.7MR. LANDRY: In this part of the phase, we8start much later than that.9MEMBER LEITCH: Right.10MR. LANDRY: You're operating at full11power.12MEMBER LEITCH: Right.13MR. LANDRY: And now what happens when14everything goes wrong.15MEMBER LEITCH: Yes. So the answer to my16question is good question, but too soon.17(Laughter.)18MEMBER LEITCH: Yes, okay.20MEMBER SIEBER: Yes, it's 2007.21MEMBER SIEBER: Yes, it's 2007.22MEMBER KRESS: Keep that question in mind.23We'll ask it again.24MEMBER LEITCH: I will.25MEMBER RANSOM: Ralph, given this memo		107
3 there until the natural circulation is established. 4 Once we get over that hump and have good, 5 natural circulation, it's easy from there, but how do 6 we get started, I guess is the question I have. 7 MR. LANDRY: In this part of the phase, we 8 start much later than that. 9 MEMBER LEITCH: Right. 10 MR. LANDRY: You're operating at full 11 power. 12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MEMBER LEITCH: Yes, okay. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.	1	say, some stratification or some localized heating of
4 Once we get over that hump and have good, 5 natural circulation, it's easy from there, but how do 6 we get started, I guess is the question I have. 7 MR. LANDRY: In this part of the phase, we 8 start much later than that. 9 MEMBER LEITCH: Right. 10 MR. LANDRY: You're operating at full 11 power. 12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER SIEBER: Yes, it's 2007. 23 MEMBER LEITCH: I will.	2	the fuel or some other strange phenomena going on
5 natural circulation, it's easy from there, but how do 6 we get started, I guess is the question I have. 7 MR. LANDRY: In this part of the phase, we 8 start much later than that. 9 MEMBER LEITCH: Right. 10 MR. LANDRY: You're operating at full 11 power. 12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MEMBER LEITCH: Yes, okay. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.	3	there until the natural circulation is established.
 we get started, I guess is the question I have. MR. LANDRY: In this part of the phase, we start much later than that. MEMBER LEITCH: Right. MR. LANDRY: You're operating at full power. MEMBER LEITCH: Right. MR. LANDRY: And now what happens when everything goes wrong. MEMBER LEITCH: Yes. So the answer to my question is good question, but too soon. (Laughter.) MR. LANDRY: It's a design certification issue. MEMBER SIEBER: Yes, it's 2007. MEMBER KRESS: Keep that question in mind. We'll ask it again. MEMBER LEITCH: I will. 	4	Once we get over that hump and have good,
7 MR. LANDRY: In this part of the phase, we 8 start much later than that. 9 MEMBER LEITCH: Right. 10 MR. LANDRY: You're operating at full 11 power. 12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 MEMBER LEITCH: I will.	5	natural circulation, it's easy from there, but how do
 8 start much later than that. 9 MEMBER LEITCH: Right. 10 MR. LANDRY: You're operating at full 11 power. 12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will. 	6	we get started, I guess is the question I have.
 MEMBER LEITCH: Right. MR. LANDRY: You're operating at full power. MEMBER LEITCH: Right. MR. LANDRY: And now what happens when everything goes wrong. MEMBER LEITCH: Yes. So the answer to my question is good question, but too soon. (Laughter.) MR. LANDRY: It's a design certification issue. MEMBER LEITCH: Yes, okay. MEMBER SIEBER: Yes, it's 2007. MEMBER KRESS: Keep that question in mind. We'll ask it again. MEMBER LEITCH: I will. 	7	MR. LANDRY: In this part of the phase, we
10MR. LANDRY: You're operating at full11power.12MEMBER LEITCH: Right.13MR. LANDRY: And now what happens when14everything goes wrong.15MEMBER LEITCH: Yes. So the answer to my16question is good question, but too soon.17(Laughter.)18MR. LANDRY: It's a design certification19issue.20MEMBER LEITCH: Yes, okay.21MEMBER SIEBER: Yes, it's 2007.22MEMBER KRESS: Keep that question in mind.23We'll ask it again.24MEMBER LEITCH: I will.	8	start much later than that.
11power.12MEMBER LEITCH: Right.13MR. LANDRY: And now what happens when14everything goes wrong.15MEMBER LEITCH: Yes. So the answer to my16question is good question, but too soon.17(Laughter.)18MR. LANDRY: It's a design certification19issue.20MEMBER LEITCH: Yes, okay.21MEMBER SIEBER: Yes, it's 2007.22MEMBER KRESS: Keep that question in mind.23We'll ask it again.24MEMBER LEITCH: I will.	9	MEMBER LEITCH: Right.
12 MEMBER LEITCH: Right. 13 MR. LANDRY: And now what happens when 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.	10	MR. LANDRY: You're operating at full
 MR. LANDRY: And now what happens when everything goes wrong. MEMBER LEITCH: Yes. So the answer to my question is good question, but too soon. (Laughter.) MR. LANDRY: It's a design certification issue. MEMBER LEITCH: Yes, okay. MEMBER SIEBER: Yes, it's 2007. MEMBER KRESS: Keep that question in mind. We'll ask it again. MEMBER LEITCH: I will. 	11	power.
 14 everything goes wrong. 15 MEMBER LEITCH: Yes. So the answer to my 16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will. 	12	MEMBER LEITCH: Right.
 MEMBER LEITCH: Yes. So the answer to my question is good question, but too soon. (Laughter.) MR. LANDRY: It's a design certification issue. MEMBER LEITCH: Yes, okay. MEMBER SIEBER: Yes, it's 2007. MEMBER KRESS: Keep that question in mind. We'll ask it again. MEMBER LEITCH: I will. 	13	MR. LANDRY: And now what happens when
<pre>16 question is good question, but too soon. 17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.</pre>	14	everything goes wrong.
<pre>17 (Laughter.) 18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.</pre>	15	MEMBER LEITCH: Yes. So the answer to my
18 MR. LANDRY: It's a design certification 19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.	16	question is good question, but too soon.
<pre>19 issue. 20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.</pre>	17	(Laughter.)
20 MEMBER LEITCH: Yes, okay. 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will.	18	MR. LANDRY: It's a design certification
 21 MEMBER SIEBER: Yes, it's 2007. 22 MEMBER KRESS: Keep that question in mind. 23 We'll ask it again. 24 MEMBER LEITCH: I will. 	19	issue.
 MEMBER KRESS: Keep that question in mind. We'll ask it again. MEMBER LEITCH: I will. 	20	MEMBER LEITCH: Yes, okay.
23 We'll ask it again. 24 MEMBER LEITCH: I will.	21	MEMBER SIEBER: Yes, it's 2007.
24 MEMBER LEITCH: I will.	22	MEMBER KRESS: Keep that question in mind.
	23	We'll ask it again.
25 MEMBER RANSOM: Ralph, given this memo	24	MEMBER LEITCH: I will.
	25	MEMBER RANSOM: Ralph, given this memo

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

relative to the question I asked about, whether or not the hydrostatic pressures were calculated correctly, 3 depending on where the connection was made on the 3D 4 vessel, and I guess in my mind it's still an open issue because it came with a yes, TRAC-G does account to a certain extent for the changing elevation but it 6 showed errors from minus 3.7 percent to 5 percent 8 depending on where it was connected.

Experience in the past had shown that even 9 those errors can result in significant recirculations 10 11 under natural circulation conditions. And so I don't 12 feel like that has been completely resolved. Your hand calculations show nowhere nor are the actual 13 14 conditions under which these calculations were made, 15 whether they're single phase or two phased, which 16 might have some bearing on the significance of that 17 error.

MR. LANDRY: We're going to continue that 18 19 discussion with General Electric in trying to resolve 20 what TRAC-G is going. This is something that we have 21 to have on-going with them.

22 We were trying to determine in doing that 23 hand calculation whether or not the gross error that 24 TRAC-B had was present in TRAC-G or not.

> MEMBER RANSOM: Sure.

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

5

7

	109
1	MR. LANDRY: And in so doing, we've
2	determined that no, that gross error is not there,
3	that they are accounting for elevation relative
4	elevation differences relative to the centroid of the
5	donor cell. But whether there is still an error in
6	that, yes, there is still an error from our hand
7	calculation, but we want to continue that discussion
8	with them.
9	So we were satisfied that yes, they are,
10	they have gotten rid of the gross error. Now we're in
11	the fine tuning stage.
12	MEMBER LEITCH: Ralph, at the conclusion
13	of the subcommittee meeting, there were a number of
14	open items presented. Unfortunately, I don't have
15	that handout material with me.
16	MR. LANDRY: That's in your briefing book,
17	by the way.
18	MEMBER LEITCH: Okay. Have those issues
19	now been closed or is that subsumed in the statement
20	that says provided the conditions specified in the
21	safety evaluation
22	MR. LANDRY: That's correct. Provided
23	that all the confirmatory items and conditions in the
24	SER are satisfied.
25	MEMBER LEITCH: So those six or eight

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	110
1	things that were mentioned there are subsumed in that
2	statement?
3	MR. LANDRY: There are a number of items
4	that must be taken care of at the design certification
5	stage. They're really design certification issues and
6	that's why we've tried to say the code is acceptable
7	for reference in the design certification stage
8	provided you do these.
9	And again, General Electric has not seen
10	the SER at this point.
11	VICE-CHAIRMAN WALLIS: Well, I have one
12	comment. One comment in my draft letter point out
13	that your decision seemed to be based on the whole
14	other proprietary information which was not available
15	to the public so there was nothing in the record that
16	showed you had actually compared some evidence with
17	some predictions and so on.
18	And it seems and I suggested that it
19	would really help in a public presentation like this
20	that you and GE would agree to show some evidence that
21	was acceptable in terms of proprietary matters and so
22	on. And you seem to have anticipated that by doing
23	it. There's at least to some degree, GE's been
24	willing to show what previously was proprietary in
25	some form and you've been willing to show by their

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	agreement some evidence which previously was provided.
2	That's a really good thing.
3	MR. LANDRY: Thank you.
4	MEMBER POWERS: That means he's learned to
5	anticipate you. You're getting predictable in your
б	old age.
7	MR. LANDRY: We understood your criticism
8	or your comment at the subcommittee meeting and we've
9	worked with the applicant to try to find a way in
10	which they can present and we can present together
11	material that would normally be proprietary in a way
12	that it could be in the public record.
13	VICE-CHAIRMAN WALLIS: Thank you. Are we
14	finished with this? Do I hand it back to you?
15	CHAIRMAN BONACA: Okay, thank you. Let's
16	take a break now until 10:55.
17	(Whereupon, the proceedings went off the
18	record from 10:41 a.m. to 10:55 a.m.)
19	CHAIRMAN BONACA: Let's get back into the
20	meeting. The next item of the agenda is presentation
21	of the South Texas Project cause investigation of
22	reactor vessel bottom mounted penetration of leakage.
23	And I believe that Jack is going to take us through
24	that.
25	MEMBER SIEBER: Okay. Thank you Mr.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	Chairman.
2	Before we begin with the presentation, I
3	would like to give a minute to Steve Rosen, who has a
4	conflict of interest statement to make.
5	MEMBER ROSEN: I think that's the
6	statement, that I have a conflict with respect to the
7	South Texas Project.
8	MEMBER SIEBER: Okay. So we will duly
9	note that.
10	I will point out that the issue of bottom
11	mounted reactor vessel penetrations has been with us
12	for some time. The examination in South Texas, which
13	is one of the early ones, occurred by licensee
14	initiative, which was found, a very minor amount of
15	that.
16	Those of you who watch and read the NRC
17	Web site, you will notice that there is an updated LER
18	on the Web site, which gives a lot of detailed
19	information about conclusions from the examination and
20	repair of these two penetrations. In addition, there
21	was a special inspection team report and review of the
22	staff evaluation of that. There is information,
23	though, which I don't have, which I understand is also
24	on the Web site that is in its infancy at this point
25	in time.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1So what I would like to do is to introduce2our presenters from NRR. The actual presentation will3be made by Matt Mitchell. And to introduce him, I4will introduce Bill Bateman.5MR. BATEMAN: Thank you.6It is a pleasure to be here this morning.7Again, my name is Bill Bateman. I am Chief of the8Materials and Chemical Engineering Branch. With me is9Matt Mitchell, a senior technical staff member of the10branch. And also Matt was a member of the special11inspection team that did investigate and review the12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22season since then, and there have been no other23licensees that have found any similar-type indications		113
 be made by Matt Mitchell. And to introduce him, I will introduce Bill Bateman. MR. BATEMAN: Thank you. It is a pleasure to be here this morning. Again, my name is Bill Bateman. I am Chief of the Materials and Chemical Engineering Branch. With me is Matt Mitchell, a senior technical staff member of the branch. And also Matt was a member of the special inspection team that did investigate and review the South Texas event. We have been before you, folks, I think two other times along the way. And the licensee has been here as well. I think most of you have a pretty good idea about a lot of particulars. What we are here for today I think is to close the loop on the root cause. Matt will do that. The one thing that I did want to mention is, as you all know, we did issue a bulletin on this matter and requested that licensees inspect the bottom head penetration. So we have had at least one outage season since then, and there have been no other 	1	So what I would like to do is to introduce
 will introduce Bill Bateman. MR. BATEMAN: Thank you. It is a pleasure to be here this morning. Again, my name is Bill Bateman. I am Chief of the Materials and Chemical Engineering Branch. With me is Matt Mitchell, a senior technical staff member of the branch. And also Matt was a member of the special inspection team that did investigate and review the South Texas event. We have been before you, folks, I think two other times along the way. And the licensee has been here as well. I think most of you have a pretty good idea about a lot of particulars. What we are here for today I think is to close the loop on the root cause. Matt will do that. The one thing that I did want to mention is, as you all know, we did issue a bulletin on this matter and requested that licensees inspect the bottom head penetration. So we have had at least one outage season since then, and there have been no other licensees that have found any similar-type indications 	2	our presenters from NRR. The actual presentation will
5MR. BATEMAN: Thank you.6It is a pleasure to be here this morning.7Again, my name is Bill Bateman. I am Chief of the8Materials and Chemical Engineering Branch. With me is9Matt Mitchell, a senior technical staff member of the10branch. And also Matt was a member of the special11inspection team that did investigate and review the12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22head penetration. So we have had at least one outage23season since then, and there have been no other24licensees that have found any similar-type indications	3	be made by Matt Mitchell. And to introduce him, I
6It is a pleasure to be here this morning.7Again, my name is Bill Bateman. I am Chief of the8Materials and Chemical Engineering Branch. With me is9Matt Mitchell, a senior technical staff member of the10branch. And also Matt was a member of the special11inspection team that did investigate and review the12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22season since then, and there have been no other23season since then, and there have been no other24licensees that have found any similar-type indications	4	will introduce Bill Bateman.
7Again, my name is Bill Bateman. I am Chief of the8Materials and Chemical Engineering Branch. With me is9Matt Mitchell, a senior technical staff member of the10branch. And also Matt was a member of the special11inspection team that did investigate and review the12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22season since then, and there have been no other23season since then, and there have been no other24licensees that have found any similar-type indications	5	MR. BATEMAN: Thank you.
8 Materials and Chemical Engineering Branch. With me is 9 Matt Mitchell, a senior technical staff member of the 10 branch. And also Matt was a member of the special 11 inspection team that did investigate and review the 12 South Texas event. 13 We have been before you, folks, I think 14 two other times along the way. And the licensee has 15 been here as well. I think most of you have a pretty 16 good idea about a lot of particulars. What we are 17 here for today I think is to close the loop on the 18 root cause. Matt will do that. 19 The one thing that I did want to mention 20 is, as you all know, we did issue a bulletin on this 21 matter and requested that licensees inspect the bottom 22 season since then, and there have been no other 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	6	It is a pleasure to be here this morning.
9 Matt Mitchell, a senior technical staff member of the branch. And also Matt was a member of the special inspection team that did investigate and review the South Texas event. 13 We have been before you, folks, I think two other times along the way. And the licensee has been here as well. I think most of you have a pretty good idea about a lot of particulars. What we are here for today I think is to close the loop on the root cause. Matt will do that. 19 The one thing that I did want to mention is, as you all know, we did issue a bulletin on this matter and requested that licensees inspect the bottom head penetration. So we have had at least one outage season since then, and there have been no other licensees that have found any similar-type indications	7	Again, my name is Bill Bateman. I am Chief of the
10branch. And also Matt was a member of the special11inspection team that did investigate and review the12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22season since then, and there have been no other24licensees that have found any similar-type indications	8	Materials and Chemical Engineering Branch. With me is
11 inspection team that did investigate and review the 12 South Texas event. 13 We have been before you, folks, I think 14 two other times along the way. And the licensee has 15 been here as well. I think most of you have a pretty 16 good idea about a lot of particulars. What we are 17 here for today I think is to close the loop on the 18 root cause. Matt will do that. 19 The one thing that I did want to mention 19 is, as you all know, we did issue a bulletin on this 19 matter and requested that licensees inspect the bottom 12 head penetration. So we have had at least one outage 13 season since then, and there have been no other 14 licensees that have found any similar-type indications	9	Matt Mitchell, a senior technical staff member of the
12South Texas event.13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22head penetration. So we have had at least one outage23season since then, and there have been no other24licensees that have found any similar-type indications	10	branch. And also Matt was a member of the special
13We have been before you, folks, I think14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22season since then, and there have been no other23licensees that have found any similar-type indications	11	inspection team that did investigate and review the
14two other times along the way. And the licensee has15been here as well. I think most of you have a pretty16good idea about a lot of particulars. What we are17here for today I think is to close the loop on the18root cause. Matt will do that.19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22head penetration. So we have had at least one outage23season since then, and there have been no other24licensees that have found any similar-type indications	12	South Texas event.
15 been here as well. I think most of you have a pretty 16 good idea about a lot of particulars. What we are 17 here for today I think is to close the loop on the 18 root cause. Matt will do that. 19 The one thing that I did want to mention 20 is, as you all know, we did issue a bulletin on this 21 matter and requested that licensees inspect the bottom 22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	13	We have been before you, folks, I think
<pre>16 good idea about a lot of particulars. What we are 17 here for today I think is to close the loop on the 18 root cause. Matt will do that. 19 The one thing that I did want to mention 20 is, as you all know, we did issue a bulletin on this 21 matter and requested that licensees inspect the bottom 22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications</pre>	14	two other times along the way. And the licensee has
17 here for today I think is to close the loop on the 18 root cause. Matt will do that. 19 The one thing that I did want to mention 20 is, as you all know, we did issue a bulletin on this 21 matter and requested that licensees inspect the bottom 22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	15	been here as well. I think most of you have a pretty
18 root cause. Matt will do that. 19 The one thing that I did want to mention 20 is, as you all know, we did issue a bulletin on this 21 matter and requested that licensees inspect the bottom 22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	16	good idea about a lot of particulars. What we are
19The one thing that I did want to mention20is, as you all know, we did issue a bulletin on this21matter and requested that licensees inspect the bottom22head penetration. So we have had at least one outage23season since then, and there have been no other24licensees that have found any similar-type indications	17	here for today I think is to close the loop on the
is, as you all know, we did issue a bulletin on this matter and requested that licensees inspect the bottom head penetration. So we have had at least one outage season since then, and there have been no other licensees that have found any similar-type indications	18	root cause. Matt will do that.
21 matter and requested that licensees inspect the bottom 22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	19	The one thing that I did want to mention
22 head penetration. So we have had at least one outage 23 season since then, and there have been no other 24 licensees that have found any similar-type indications	20	is, as you all know, we did issue a bulletin on this
23 season since then, and there have been no other 24 licensees that have found any similar-type indications	21	matter and requested that licensees inspect the bottom
24 licensees that have found any similar-type indications	22	head penetration. So we have had at least one outage
	23	season since then, and there have been no other
	24	licensees that have found any similar-type indications
at the bottom of their vessels. So, at least to this	25	at the bottom of their vessels. So, at least to this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	point in time, South Texas is unique.
2	So, with that, I will turn it over to Mr.
3	Mitchell.
4	MR. MITCHELL: Okay. Thank you, Bill.
5	I'll move to the first. You have two packages of
6	slides: one word slides and one set of pictures. So
7	I am going to sort of intersperse those throughout the
8	presentation, and we will see how this works.
9	The last time that the staff was here to
10	give the ACRS a presentation of this nature was July
11	11th, 2003. At that point in time, the South Texas
12	licensee was sort of in the middle of their
13	investigation and repair of the STP unit I vessel.
14	They had completed their NDE campaign and had
15	confirmed the presence of axially oriented flaws in
16	two of the STP unit I BMI nozzles, numbers 1 and B-6.
17	They had also repaired the two nozzles using a
18	half-nozzle repair technique, essentially implementing
19	an Alloy 690 half-nozzle from the exterior of the
20	vessel. That was sort of the state of knowledge at
21	the time we were last here.
22	I am going to skip over to the pictures
23	just so that we can reorient ourselves one more time
24	with what we are talking about in terms of a BMI
25	nozzle.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	This first picture sort of gives you the
2	global cross-section of essentially a side hill nozzle
3	in the bottom vessel head. You see the Inconel Alloy
4	600 nozzle, the Inconel welds, and its connection to
5	the low-alloy steel RPP bottom head. This is again a
6	slide you have seen before when we did the July
7	presentation.
8	MEMBER FORD: And, just to make sure, the
9	Inconel weld is 182. That is correct?
10	MR. MITCHELL: Eighty-two, 182, yes.
11	MEMBER FORD: One eighty-two root, then
12	182?
13	MR. MITCHELL: I believe so, yes. The
14	next couple of slides, again, just to refresh our
15	memories, I am going to show what the outcome of the
16	licensee's ultrasonic inspections seem to indicate in
17	the way of the flaw shapes in the two penetrations.
18	The first one I will refer to as penetration 46, shows
19	2 fairly substantial axially oriented flaws running in
20	the tube wall, one of them connecting between above
21	and below the J-groove welds, which would presumably
22	be the leakage path for the reactor coolant to get to
23	the exterior of the vessel and leave the boron
24	deposits, which were observed.
25	MEMBER FORD: Where is it shooting for the

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	UT from?
2	MR. MITCHELL: They are shooting from the
3	inside. Yes. What they had done was they had
4	developed tooling after off-loading the core. Getting
5	the simple tubes out of the way, they would then come
6	off the refueling bridge with a tool which would come
7	down, lock onto the top of the BMI tube, and then send
8	a UT probe down the inside of the tube.
9	CHAIRMAN BONACA: Now, the weld material
10	you show as being intact?
11	MR. MITCHELL: Yes. And it is shown that
12	way principally because UT results were unable to
13	really interrogate the weld material. It was
14	appropriate to claim that they had fully inspected the
15	tube but the weld was somewhat impervious to
16	penetration by the UT probe.
17	CHAIRMAN BONACA: So we don't know still
18	to today?
19	MR. MITCHELL: Actually, I can speak to
20	that in just a few minutes because we do have some
21	additional information on that point.
22	MEMBER SHACK: We actually have a pretty
23	high degree of confidence there was a cracked shape
24	within the tube. They got a nice clean shot at this.
25	MR. MITCHELL: Yes, yes, absolutely. I am

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	going to show penetration 1 in a second in this set of
2	slides because it essentially has the same kind of
3	information that the other slide had on it. It shows
4	again a rather large axially oriented flaw.
5	But I wanted to draw in this sort of small
6	red semicircle that you see on the overhead
7	projection. That is my representation of what the
8	boat sample or the material sample that the licensee
9	took to do further tests and evaluation. I have a
10	better picture of that. Your next slide shows a much
11	better drawing of it.
12	Just so you can kind of get a better
13	orientation of where that fits, that is the sort of
14	shape of the boat sample that was obtained by the
15	licensee.
16	Now I am going to go back to slide 3 in
17	the word slide package. So at the time we were here
18	last, the licensee was in the process of obtaining
19	these boat samples or material samples from the
20	penetrations. They were unable to get a sample from
21	penetration 46. They did obtain a sample from BMI's
22	penetration 1, in which they captured both the
23	material of the tube and the material from the weld.
24	And the intent of where this sample was
25	taken from was twofold: certainly to capture a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 section of the axially oriented crack to try to 2 confirm the cracking mechanism responsible for the eventual reactor coolant pressure boundary leakage and 3 4 to also attempt to capture what had shown up as 5 discontinuities or anomalies in the UT probe These were anomalies at the interface 6 inspection. 7 between the weld and the tube and were believed to be 8 lack of fusion zones that had occurred during fabrication. 9

Your next picture slide, which I think I 10 am going to leave up there for the rest of the 11 12 presentation, shows another good view of the boat sample that was taken, this gray sort of shaded area. 13 14 It shows up better if you actually have the color 15 printout, but the black and white isn't quite as good, and where that was taken from relative to the axial 16 flaw and then some of the other features, which I am 17 going to get to in just a moment. 18

19 The licensee obtained this sample and, of 20 course, took it in or sent it to Framatone for 21 destructive testing so that they could actually 22 examine the cracked surfaces and other features within the sample. What they were able to confirm was that 23 24 the axially oriented crack was completely 25 inter-granular in nature within the part of the boat

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	sample where they could obtain the flaw surfaces to
2	look at, which would be consistent with primary water
3	stress corrosion cracking being the mechanism of crack
4	initiation and propagation.
5	They noted that the axially oriented PWSCC
6	flaw in the tube was located at and connected to one
7	of these discontinuities or anomalies which was
8	observed in the UT scans. Those were, in fact, shown
9	to be weld lack of fusion zones. That was confirmed
10	as part of their analysis.
11	In this drawing, what I have outlined here
12	in green shows up a little better as the extent of
13	that axially oriented PWSCC crack. What I have tried
14	to circle in blue is the lack of fusion zone.
15	Further, when they opened up this
16	specimen, they found something which they had no
17	indication was there. They found a small flaw, which
18	is circled in red on the overhead projection, which
19	connected the weld lack of fusion zone to the interior
20	surface or the crown of that partial penetration weld.
21	And it basically spanned a ligament of about 80 mls,
22	or .08 inches, through the J-groove weld material.
23	This apparently permitted reactor coolant
24	to transport itself from the interior of the vessel
25	through this flaw and into the weld lack of fusion

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The flaw in the weld was, in fact, exactly the zone. 2 same extent as the lack of fusion zone. So there is 3 a reasonable understanding that the occurrence of 4 those two features was connected, that they were 5 interconnected in their appearance within the tube and within the sample. 6

7 I am now going to go on to slide 5 in the word package. The licensee attempted to determine the 8 9 cause of this flaw into the J-groove weld material. But because the surface was heavily oxidized, they 10 were unable to conclusively find out or make a case 11 into existence. 12 how that flaw for came They hypothesized that it might be due to hot cracking 13 14 and/or fatigue mechanisms working to get that flaw to 15 appear at that location.

They also determined that there was no 16 significant inter-granular cracking of the J-groove 17 weld material. They had obviously a rather extensive 18 19 sample of the J-groove weld material as part of the 20 boat sample. At most, they saw cracking of about one 21 to two grains in depth around the border of where the 22 weld lack of fusion zone was.

So there was nothing of any great extent 23 24 to indicate that the weld material was, in fact, 25 acceptable or had shown signs of initiation of primary

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

Í	121
1	water stress corrosion cracking. And it gets back to
2	the point of the representations shown here of the
3	flaw being entirely within the tube seems to be
4	consistent, therefore, with the observations from the
5	boat sample.
6	CHAIRMAN BONACA: Now, this boat sample
7	section, you know, you introduced this now. Is it
8	typical of the weld on all of the tubes that go in?
9	MR. MITCHELL: I'm sorry?
10	CHAIRMAN BONACA: You are showing here a
11	boat sample section.
12	MR. MITCHELL: Yes.
13	CHAIRMAN BONACA: What is it?
14	MR. MITCHELL: That is the material
15	sample. When I said they went and took an electric
16	discharge machining tool in, in order to get this
17	sample for further investigation, that is the sample
18	I was referring to.
19	CHAIRMAN BONACA: Yes.
20	MR. MITCHELL: So they have essentially
21	made cuts of that nature.
22	CHAIRMAN BONACA: I understand now.
23	Right. I understand now. But that flaring of the
24	weld material is typical of older welds for older
25	penetration.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	MR. MITCHELL: That would be typical, yes.
2	So if I move to slide 6, based upon, then, the
3	information that the licensee had at their disposal
4	from the UT inspections of both penetrations 1 and 46
5	and the information obtained from the investigation of
б	this material sample, the licensee proposed what they
7	considered to be the most likely scenario for how the
8	cracking at South Tex. occurred. And it goes that
9	during initial fabrication, weld lack of fusion zones
10	were created within the weld material or the weld-tube
11	interface.
12	A flaw in the J-groove weld then occurs
13	and connects this weld lack of fusion zone to the
14	primary coolant sometime early in the plant's
15	operating history and taking "early" as a very
16	relative term because, really, based upon the
17	information, you can't say exactly when that might
18	have occurred.
19	Reactor coolant then floods the weld lack
20	of fusion zone and creates all of the necessary
21	conditions for primary water stress corrosion
22	cracking. You have known susceptible material. You
23	have a very highly stressed location due to the weld
24	residual stresses. And you have the primary coolant
25	in that location.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

123 VICE-CHAIRMAN WALLIS: Is there some mechanism for concentrating boron? In other words, the concentration of boron in the crack is different from the primary water concentration. It could be temperature gradients or something which is causing diffusion or some sort of separation so that you get a more aggressive material in the crack than you get in the primary water. MR. BATEMAN: Matt, the best way to answer that question might be when they took the boat sample out, if they found any additional boron in that crack I don't know if we have that information or not. That would be the only way to really answer your question. MR. MITCHELL: Yes. I think one could say that certainly you can get concentration gradients at locations like this. Whether that, in fact, occurred in this location, I can't say.

19 VICE-CHAIRMAN WALLIS: His argument was 20 not "Did it happen?" but "Was there no mechanism by 21 which it could happen that we might investigate, such 22 as a temperature gradient or something that would 23 create a more aggressive material." 24 MEMBER POWERS: Ιt raises reallv а

25 interesting phenomenological question. Has someone

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

zone.

	124
1	looked at the diffusion of ionic species, more ionic
2	species and the combination of a concentration
3	gradient and at the low gradient?
4	VICE-CHAIRMAN WALLIS: Yes.
5	MEMBER FORD: As a general question, yes.
6	VICE-CHAIRMAN WALLIS: Yes. You would
7	expect there are different driving forces for
8	diffusion. They are well-known.
9	MEMBER FORD: Tension-driven diffusion,
10	convection.
11	MEMBER POWERS: He is asking about the
12	normal diffusion of an ionic species. I mean, the
13	answer is in general, yes, people have looked at
14	thermal diffusion in ionic species, but have they
15	looked at these ionic species in this gradient?
16	MEMBER SHACK: I think the answer is
17	probably no. In the BWR, the diffusion is generally
18	driven by the electrochemical potential, which gives
19	you a fairly big drive.
20	MEMBER POWERS: Like half a volt.
21	MEMBER SHACK: You don't have that. In
22	steamerators, we have the concentration, the boiling
23	mechanism, which you have, those kinds of secondary
24	crevices. You wouldn't have that kind of a crevice
25	here. You would have a small thermal gradient here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 You would probably have virtually no electr potential gradient. 	rochemical
2 potential gradient.	
11	
3 So there would be a small	thermal
4 gradient. It is hard to imagine that m	much of a
5 concentration.	
6 MEMBER POWERS: I don't	know the
7 quantitative aspects of this.	
8 MEMBER SHACK: One generally als	o sees the
9 boron concentration has a fairly limited eff	ect on the
10 cracking of the Alloy 600. We get boron on t	the brain,
11 and that is sort of important for carbon st	ceel. But
12 for these highly alloy steels, it is not ma	ajor. But
13 plain old primary water does a wonderful	job with
14 Alloy 600.	
15 VICE-CHAIRMAN WALLIS: A "wonder	rful job,"
16 do you mean it damages it or it doesn't dam	mage it?
17 MEMBER SHACK: Correct. You don	't have to
18 postulate too much in the way of an a	aggressive
19 chemical environment. You are beyond the high	gh stress.
20 And primary water would do the job.	
21 MEMBER POWERS: Where could I lo	ook at the
22 thermal diffusion of these ionic species?	It is hard
23 on the ions for sure, but that is fairly ge	eriatric.
24 MEMBER FORD: I agree with Bill	l. I find
25 it hard in that particular scenario when	you don't

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 have any big potential drop, you are in a PWR 2 environment, you are not exposed to the air on the 3 outside, which is an initial issue on the DHB, you 4 could concentrate the boron. I don't see how you get much of a concentration of boric acid in that crevice. 5 MEMBER SHACK: And even if you did, what 6 7 difference does it make? Well, I quess what I am 8 MEMBER POWERS: struggling to understand is you obviously have some 9 intuition on this. How did you get that intuition? 10 And how do I go about getting that that intuition? 11 12 Well, there are three MEMBER FORD: mechanisms in a situation like that, if you get 13 14 concentration of species, an ionic species, just by 15 potential gradient, down the crack. We don't have that in this particular scenario. 16 17 Everything is done at a low potential. The crack tip and the bulk crack mouth, they are on 18 19 the same low potential. You don't have a potential 20 driving right here, like we would have in the boiling 21 water reactor under the old operating conditions. 22 Conduction, I don't think that that is a 23 big issue, particularly in diffusion. I don't think 24 that is a big driver. So my first reaction is no, I 25 don't see how you could get a boron concentration.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

126

	127
1	My other question arises, well, what else
2	would give rise to that circumferential crack? If you
3	did have an Alloy 82, the high chromium content in 82,
4	as opposed to 182, you could conceivably have a hot
5	crack in concentration.
6	So that is why I am saying you have got to
7	be crazy to say, "hot cracking," a potential
8	hypothetical argument for saying that that is the
9	origin of that circumferential crack.
10	You asked what my thought process was.
11	That was my thought.
12	MEMBER POWERS: The specific question was
13	a thermal gradient. I think that was an example. It
14	has been excused out of hand. I am trying to
15	understand why it is excused out of hand.
16	MEMBER SIEBER: His original question here
17	was, how does he get the information so that he can
18	understand?
19	MEMBER FORD: Oh, I see. Any book on
20	crevice chemistry would.
21	MEMBER SIEBER: Any book on crevice
22	chemistry.
23	MEMBER FORD: I will give you the title of
24	an accomplished proceeding on crevice chemistry. I
25	will also send you a paper, another paper.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. MITCHELL: We are looking at the CRDMJ group weld from Davis Bessee. We are actually trying to make crack row specimens. We are having a hard time making crack row specimens because we get so many hot cracks. Every time we take a chunk of metal out to try to make a specimen, it comes from a hot crack. The fact that you have hot cracks here is not really terribly --

9 MEMBER FORD: This is why Bill and I keep 10 on bringing up this question. As far as the chrome 11 content, you go like Alloy 690 from 600 or 82 from 12 You are generally improving the storage room 182. systems because of the increased chromium content and 13 14 the effect that has on the chromium content in the 15 green boundary. It also is adding a problem with 16 relative weldability. You do not agree, Bill?

MR. BATEMAN: I agree. Industry has hadproblems making the 690 repairs.

MEMBER FORD: So you are trying to throw in there is the notion of one problem, stress corrosion cracking. You are putting it into another bin with the manufacturer.

23 VICE-CHAIRMAN WALLIS: Which was the 24 material that this primary material does a wonderful 25 job on? I didn't understand that what you meant by

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	129
1	it.
2	MEMBER SHACK: It is susceptible to
3	cracks.
4	VICE-CHAIRMAN WALLIS: Which material is
5	that? Which is where in this picture?
6	MEMBER SHACK: The tube in the green.
7	VICE-CHAIRMAN WALLIS: So the tube is
8	being made out of something which is very susceptible
9	to cracking in primary water.
10	MEMBER SHACK: Well, it's not an issue.
11	It wasn't thought to be an issue when they redesigned
12	these things.
13	MEMBER FORD: Not initially
14	MEMBER SHACK: It wasn't the idea.
15	VICE-CHAIRMAN WALLIS: That doesn't sound
16	good at all. So a "wonderful job" doesn't mean
17	anything. I was thinking that it would fall apart in
18	a week. It means you have to worry about it.
19	MEMBER SIEBER: Yes. It takes more than
20	a week.
21	MEMBER FORD: I think you have got to look
22	back to the era when these things were designed.
23	Alloy 600 at that time period was state-of-the-art in
24	terms of quantifying stress corrosion cracking
25	assessment. It was not that great. It didn't have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	the experiments.
2	If you shove Alloy 600 into specialized
3	water as it was experimental techniques existed in the
4	'50s and the '60s, it wouldn't crack by a hell of a
5	long time, but in our time frame, it was bad enough.
6	It wasn't until we got to the Curio in
7	France and decided to do some experiments there. They
8	initially said, "You have got to be kidding." But
9	then you do more experiments. It is true. It will
10	crack.
11	CHAIRMAN BONACA: The only question I have
12	is lack of fusion is not an uncommon thing. It
13	happens during welding.
14	MR. MITCHELL: Absolutely not.
15	CHAIRMAN BONACA: I guess I am testing the
16	hypothesis that this is coming from lack of fusion.
17	Very likely it seems like a reasonable scenario that
18	is being developed. It tells me that you have
19	susceptibility at the other plants.
20	MR. MITCHELL: In fact, as a result of the
21	UT inspections that they did at STP unit I, they
22	characterized lack of fusion in all 58 of the STP unit
23	I BMI penetrations to some greater or lesser degree.
24	In fact, the two that actually showed signs of
25	cracking were not at the most extreme end in terms of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	having the greatest magnitude of apparent lack of
2	fusion.
3	I think what this is trying to tell us is
4	that the existence of this flaw, this flawed area
5	through the J-groove weld that lets primary coolant
6	get to that weld lack of fusion zone is, if you will,
7	the critical controlling step in terms of getting at
8	least this mechanism for PWSCC started. One could say
9	that the other BMI penetrations at South Texas may, in
10	fact, not have that feature, which would allow coolant
11	to get into the weld lack of fusion zone.
12	MEMBER POWERS: Could I ask what quality
13	assurance was applied to these welds when they were
14	manufactured?
15	MR. MITCHELL: At this time when these
16	types of welds are being manufactured, they were
17	subject to dye penetrant examinations, root paths, dye
18	penetrant, dye penetrant halfway up or half-inch up
19	into the weld, and then on the crown once it was
20	completed. That was the typical NDE that was applied
21	to this type of a configuration.
22	MEMBER POWERS: And so we concluded that
23	those methods are inadequate?
24	MR. MITCHELL: It apparently did not
25	identify this configuration if this was, in fact,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	present since fabrication. If that was a hot crack or
2	part of that flaw was initiated as a hot crack,
3	apparently the dye penetrant exam was inadequate to
4	find it during fabrication.
5	If it was, for example, subsurface,
6	immediately after fabrication and popped through early
7	in plant life, you might not have picked it up from
8	the last dye penetrant exam that you did.
9	MEMBER SIEBER: Are there other UT
10	examinations at other plants in these areas?
11	MR. MITCHELL: You mean in service, after
12	they have been put into
13	MEMBER SIEBER: In service, yes.
14	MR. MITCHELL: As far as I am aware, in
15	the U.S., no. I am waiting to see if somebody else
16	remembers more about this. I see Allen Hiser in the
17	back of the room. He may have a better recollection.
18	I believe the French did do some UT on BMI
19	nozzles, but I would have to go look that up again.
20	MR. BATEMAN: That's true. They did do
21	some. They have done a substantial amount of UT on
22	these nozzles, but they have found no indications.
23	MR. MITCHELL: It was 14, I think 14,
24	plants out of their fleet that they thought were
25	particularly susceptible.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	MR. BATEMAN: I don't remember the exact
2	numbers.
3	MR. MITCHELL: They called the
4	manufacturing history. Al, maybe you know the exact
5	numbers?
6	MR. HISER: I think it is something on
7	that order that Matt mentioned, about 14 plants that
8	had some fabrication or shipping-related issues that
9	caused them to be thought of as more susceptible. We
10	believe the number is about six that have done some
11	ultrasonic exams.
12	I think it is a continuing management
13	program that they have. So far they haven't
14	identified any service-related cracking.
15	MR. MITCHELL: I think that our other
16	understanding is that I believe they stress-relieve
17	those. Did the French not stress-relieve those
18	penetrations in their vessels? I think that was what
19	we had heard.
20	MR. HISER: I think that was one of the
21	factors that caused some of the nozzles and specific
22	heads to be characterized as more susceptible.
23	MR. MITCHELL: Right.
24	MEMBER SIEBER: And so I guess the bottom
25	line of my question is, we are relying on visual

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 examination is when to assure the pressure boundary. 2 So we would have no clue until one starts to leak that 3 the conditions that would cause flaw grooves and 4 stress corrosion cracking are occurring in any vessel 5 at that location. MR. MITCHELL: It would be correct to say 6 7 that our expectation is that we managed these by looking for evidence of leakage and then take 8 9 appropriate action in response to finding evidence of 10 leakage. 11 CHAIRMAN BONACA: The question that seems 12 to be actually here is that given that apparently this lack of fusion zone is common, is that surprising that 13 14 we haven't seen any of this leaking until now? 15 MR. MITCHELL: You would have to have an

idea of how prevalent. If you, in fact, considered 16 17 this connection to be the rate-limiting step, you would have to have an idea of how prevalent such a 18 19 feature is as part of fabrication. If it is very 20 common, you might expect more.

21 You would say that perhaps 2 out of 58 at 22 South Texas had the right set of conditions to have 23 this occur. That gives you, what, about a four 24 percent change roughly.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. BATEMAN: I'll just add a little bit

(202) 234-4433

25

1 of information. Although South Texas is the only 2 place we have found anything so far, industry is in 3 the process and some, I think Westinghouse for sure, 4 have developed equipment and techniques to go in and 5 do inspections of these tubes if need be. So I think there is anticipation there that we will see more. 6 7 MR. MITCHELL: And I think much of the discussion we are having around the table at this 8 9 point gets to points on my last slide that we have 10 evaluated what the licensee has proposed as the most likely scenario. 11 12 Based upon the evidence available, I think the staff considers that to be a very reasonable --13 14 VICE-CHAIRMAN WALLIS: Could I ask? Do 15 you mean that this is a believable scenario or that of the many scenarios, this is the most consistent? They 16 looked at many different scenarios, and this is the 17 one which is most consistent with the evidence? 18 19 MR. MITCHELL: Yes. 20 VICE-CHAIRMAN WALLIS: That is what this 21 would say? 22 MR. MITCHELL: Yes. The licensee considered such things as perhaps cracking could have 23 24 initiated on the ID and propagated through. 25 VICE-CHAIRMAN WALLIS: This set of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

135

	136
1	scenarios that they postulated was complete, then, in
2	your view? They didn't leave anything out?
3	MR. MITCHELL: Yes.
4	VICE-CHAIRMAN WALLIS: Okay.
5	CHAIRMAN BONACA: So you are saying that
6	they postulated other mechanisms?
7	MR. MITCHELL: Going in, they thought
8	about just fatigue. They thought about ID-initiated
9	primary water stress corrosion cracking working its
10	way out through the tube.
11	They had a fairly comprehensive or I'll
12	just it plain a comprehensive list of scenarios to
13	look into. And they settled to this as the most
14	likely.
15	Then further, so based upon this
16	postulated scenario, we can't at this point conclude
17	that STP unit I is unique because of the way that the
18	rest of the fleet of vessels was manufactured would
19	tend to make one believe that such a set of conditions
20	could exist elsewhere within the industry.
21	Therefore, the continuation of reliable
22	inspections of the bottom vessel heads is appropriate
23	to look for evidence of leakage and so that it could
24	be repaired in a timely manner.
25	The staff has communicated with the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

industry on this topic, both through information notice 2003-11, supplement 1, which contains this information from the licensee's final root cause analysis and LER that was issued in January of this year and through bulletin 2003-02 on our expectations for RPP lower head inspections.

7 CHAIRMAN BONACA: You would have to develop significant comfort that should a tube start 8 9 to leak, you would have enough time. What I mean is 10 that, from the cycle in which you are looking at it and there is no leakage to the next cycle, where you 11 12 impossible find the leakage, it is to have catastrophic failure of the tube, right? I mean, you 13 14 have to have that kind of confidence.

MR. MITCHELL: The experience with South Texas suggests that that would be the case, that this has manifested itself to date as axially oriented cracking, which is, of course, generally unlikely to lead to full-scale rupture and failure of a tube and that it would manifest itself by leakage, by boron deposits on the exterior head.

VICE-CHAIRMAN WALLIS: Can I go back to my previous question, then? You said the licensee had a lot of hypothesized scenarios and compared them with the evidence and concluded that a certain one was the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	most likely. This relies entirely on what the
2	licensee chooses to investigate and tell you about.
3	Presumably someone independent, like
4	Argonne National Lab, is also looking at possible
5	scenarios. They might come up with other scenarios
6	which actually are better than the licensee suggested.
7	MR. MITCHELL: We have not endeavored.
8	VICE-CHAIRMAN WALLIS: So you are relying
9	entirely on something submitted by the licensee,
10	rather than some independent experts, who might have
11	a better explanation?
12	MR. BATEMAN: Well, in fairness to the
13	licensee, the licensee
14	VICE-CHAIRMAN WALLIS: I am not
15	criticizing. I am just saying, you are relying only
16	on the licensee?
17	MR. BATEMAN: Well, that is what I wanted
18	to just expand upon a bit. The licensee did marshal
19	all the forces available in industry to help them get
20	through this. They didn't do this in a vacuum just
21	with their own staff. They brought in people from
22	many different places to help them work through this.
23	And so I would say that if you were to
24	take it to a national lab or some other place, the
25	chances are good we would come up with the same

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	conclusion.
2	MR. MITCHELL: And, just to amplify on
3	that, we certainly did not only look at the final list
4	of hypotheses, if you will, that they came up with.
5	We also examined their process, their root cause
6	analysis thinking, which led them to that list of
7	possibilities. I think that gives us an even greater
8	degree of confidence that they have kind of covered
9	the waterfront on this.
10	MEMBER SHACK: They have also presented
11	their analysis at the CRDM workshop, which is sort of
12	a public peer review, presented rather detailed
13	evidence there. I mean, that hasn't shown nearly for
14	all of the information they have put together.
15	VICE-CHAIRMAN WALLIS: That is really
16	good.
17	MEMBER SHACK: Every industry analysis
18	which was comprehensive
19	VICE-CHAIRMAN WALLIS: It is in a public
20	forum. So other experts have a chance to say, "How
21	about this?" or "How about that?"
22	MEMBER POWERS: Well, it's a public forum
23	of a very unusual type. It is only people who are
24	intimately involved in the CRDM network.
25	MEMBER SHACK: No. There were intervenor

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	groups. The press was there.
2	MEMBER POWERS: As much as I admire the
3	press, their credentials in metallurgy are often quite
4	limited. What I am wondering about is the
5	metallurgists of Bangladesh ordinarily work on bridges
6	that say, "Oh, yes, I have seen this exact sort of
7	thing in some other context" and "This is a special
8	bridge."
9	What I am asking about is the broader,
10	larger technical community, really, though. Is there
11	a forum for doing that sort of thing within the
12	corrosion community that says, "Oh, tell us all about
13	your failures"?
14	MEMBER FORD: Yes, yes, not associated
15	with corrosions, yes.
16	MEMBER POWERS: NASE?
17	MEMBER FORD: NASE, yes. NASE
18	International has got a whole lot of subcommittees at
19	their annual general meeting that meet at their annual
20	general meetings so people from the petrochemical,
21	from nuclear, from fossil power get together and chew
22	over the fat over their various problems.
23	Now, I must admit that is not a really big
24	medium. There are maybe 30 people in these meetings.
25	In answer to your direct question, do they ever get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	141
1	together
2	MEMBER SHACK: There are more than 30
3	people there.
4	MEMBER FORD: Within the subgroups, like
5	PWR and BWR operators.
б	MEMBER POWERS: What I'm worried about is
7	this. Professor Wallis asked, did the licensee
8	consider everything? The answer was, "Oh, yes, he
9	did." Well, that is quite untrue. I mean, I can
10	assure you they left out something. Okay? It would
11	be impossible to ever attest that they considered
12	everything.
13	MEMBER FORD: Sure.
14	MEMBER POWERS: And I am wondering, some
15	of these issues, especially when things are uncertain,
16	if people in outside specific communities worrying
17	about CRDM need to have an opportunity to examine and
18	comment on the findings in some way.
19	This is the larger philosophical issue.
20	It has nothing to do with this specific task. It is
21	that the trouble is everybody worried about CRDM has
22	a certain straitjacket in their thinking. And I am
23	asking, is it appropriate to have that straitjacket or
24	is that
25	MEMBER FORD: Well, it is sort of people

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	in this room, I mean, go into these conferences. I
2	know you have got a predilection against corrosion
3	engineers talking with corrosion engineers.
4	MEMBER POWERS: No. It is not that that
5	I want. It is corrosion engineers in one context
6	talking to corrosion engineers
7	MEMBER FORD: Well, within those two
8	organizations, we should send you meeting minutes.
9	There are people from the regulators, from
10	universities, from national labs all over the world.
11	And, believe me, all of those people in general are
12	Type A type personalities. They will rip you apart if
13	you have a loose idea. It is real.
14	So if you come up with a self-serving
15	opinion, regardless of whether it is from one of these
16	communities, it will be torn apart. And I can assure
17	you of that. I have been torn apart. Bill has been
18	turn apart.
19	VICE-CHAIRMAN WALLIS: So I guess, then,
20	it is not really a question of tearing apart. It is
21	a question of ideas of what might be a new hypothesis
22	which is about to be torn and not torn about.
23	CHAIRMAN BONACA: But we are talking about
24	the specifics of this deal. Could you put up slide
25	number 1?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	MR. MITCHELL: Slide number 1 of the
2	pictures or the
3	CHAIRMAN BONACA: Pictures.
4	MR. MITCHELL: The pictures.
5	MR. BATEMAN: While Matt is putting that
6	up, there is another group. The ASME code is very
7	much involved. They formed a specific working group
8	that has expertise from all of industry to look into
9	Alloy 600 issues, not just CRDM issues.
10	It is an Alloy 600 issue that we are
11	dealing with here. It just so happens Alloy 600 is
12	used in CRDMs, but we use Alloy 600 material to make
13	the welds in the primary coolant system.
14	So it is a bigger, broader issue, and it
15	encompasses all of the expertise there is out there at
16	this point in time.
17	MEMBER POWERS: Certainly I realize that
18	the Alloy 600 issue exists, but it is not the Alloy
19	600 people that I want to look at this. It is the
20	people that don't work with Alloy 600 that I want to
21	get their opinion on it because I think you got more
22	than an adequate number of people who are
23	knowledgeable on Alloy 600 looking at it. And I don't
24	come away saying, "Ah. We have got our finger on the
25	pulse here." I come away saying, "Well, we may

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

144 1 understand this. Well, it could be something that 2 surprises us." MEMBER FORD: Well, we can talk about it 3 4 offline, then. 5 MEMBER POWERS: Sure. 6 MEMBER FORD: I can assure you people from 7 a wide variety of disciplines and interests are 8 discussing it. 9 MEMBER POWERS: Okay. 10 CHAIRMAN BONACA: I had a question. That illustrates the thickness of the wall of the vessel. 11 Okay? 12 13 MR. MITCHELL: Yes. 14 CHAIRMAN BONACA: I would like to know, do 15 we understand now how far did the flaw in the tube expand towards the bottom of the wall of the vessel? 16 How far did it go in physically? Do we understand it? 17 18 MR. MITCHELL: From the UT results, you could make a connection between the extent of the flaw 19 and how far it would have propagated down the tube 20 21 into the area where the ferritic material of the 22 vessel is. If I have one of my drawing pens, I will try to do that justice if I can. 23 24 I think that might be pretty close to a 25 fair representation. So you are not talking of any

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

great extent in that direction, and to some degree you wouldn't expect it to go at great length because if it is driven by the weld residual stresses, once it penetrates a certain distance in either direction, you lose driving force.

6 CHAIRMAN BONACA: I'm trying to, I guess, 7 pursue again the questions that I had before. How 8 comfortable is one between the cycle, when it is not 9 leaking, and the following cycle, where you find the 10 leak that there is a zero chance that there is going 11 to be a large failure of the tube during the cycle?

MR. BATEMAN: The key point, let me draw a parallel over the upper vessel head penetrations because we are all familiar with that as well. As long as there are axial cracks and only axial cracks, we had a certain comfort factor.

As soon as the cracks turned circumferential and, therefore, would be vulnerable to the kind of scenario that you are concerned about, we went to a much more aggressive inspection.

I think the same would hold true here. If in the future we found leaks were identified and they did inspections and found circumferential cracking, then the extent of our concern would certainly expand substantially.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	146
1	CHAIRMAN BONACA: If I remember from the
2	experience in CRDM, all you need is two axial adjacent
3	or some distance from each other to expand into a
4	circumferential one.
5	I mean, it seems to me that at some point
6	you are going to find one if, in fact, this phenomenon
7	is going to happen with some frequency.
8	I am not asking you to have an answer to
9	that. I am only trying to have some comfort about the
10	fact that with these kinds of penetrations, we are
11	going to request just visuals. And probably it is the
12	right thing to do. So there are reasons why for the
13	CRDM visuals are not being considered adequate.
14	MR. MITCHELL: I think that the one other
15	factor that should be considered when comparing these
16	penetrations to the upper head vessel penetrations is,
17	in fact, there is an intentional gap clearance between
18	the tube and the vessel. So it is not an interference
19	fit configuration.
20	I think that has led us to believe that
21	there is a higher likelihood that leakage would make
22	its way through this annulus and then be visible on
23	the bottom head, as opposed to the upper heads, where
24	you have an interference fit configuration.
25	CHAIRMAN BONACA: You haven't abandoned

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 totally the process of asking what if? 2 MR. MITCHELL: Absolutely no 3 not.</pre>	
a not	ot, absolutely
3 not.	
4 CHAIRMAN BONACA: Okay. I	think I agree
5 with your comment that given what we	have seen to
6 date, our response is volumetric exams a	as a baseline.
7 If we had evidence of circumferential	cracking, the
8 response would be different.	
9 VICE-CHAIRMAN WALLIS: Whe	ere does this
10 tube go that is sticking up in the sky	there?
11 MR. MITCHELL: It essentia	lly acts as a
12 guide tube for the thimble tube, whic	h runs inside
13 here.	
14 VICE-CHAIRMAN WALLIS: So i	t runs up into
15 the core, the plenum? It stops in the lo	ower plenum or
16 does it go in through further than that	t?
17 MR. MITCHELL: It stops	in the lower
18 plenum.	
19 VICE-CHAIRMAN WALLIS: But	it sticks out?
20 MR. MITCHELL: Yes.	
21 VICE-CHAIRMAN WALLIS: I dor	ı't know how it
22 is made or how it is put in or how oth	ler things are
23 put in, but if something were put in lat	ter and bumped
24 up against it, presumably this would hav	e some effect.
25 MR. MITCHELL: It could.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

148 1 VICE-CHAIRMAN WALLIS: I don't know what 2 abuse it might be subject to while they are making adjusting something 3 something or or changing 4 something. 5 MR. BATEMAN: That's very possible. We had the same concern with the upper vessel head 6 7 penetrations as well, that aligning, pulling these things to alignment, would induce additional stresses. 8 9 MEMBER SIEBER: The thimbles are actually extracted at every refueling. So there is a physical 10 11 motion that goes on inside that tube. On the other 12 hand, this tube is bigger and stronger than the thimble itself. 13 14 MR. MITCHELL: Absolutely.

15 MEMBER SIEBER: So if you are going to see 16 wear or anything like that, you are going to see it in 17 the thimble. And that has occurred. That has been 18 noted in the past.

19MEMBER LEITCH:Matt, I have some20confidence that this is just a PWR problem.

MEMBER SIEBER: Yes.

22 MEMBER LEITCH: Could this also be a BWR 23 problem but without the boron to indicate the 24 potential leakage could be further down the line? 25 MR. BATEMAN: We do have some BWR leakage

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

21

through the stub tubes. I am not exactly sure where in that, where the CRDM housing is welded to the stub tube. We are not sure exactly. The licensees haven't determined where the leakage is, but there has been some leakage at at least two facilities that I can think of.

And roll repairs to the housings have been the method of how those were repaired, actually put a rollover, some rolling device inside housing, and pressed it up against the vessel wall to stop the leakage.

MEMBER LEITCH: I am saying --

That is not an Alloy 600 13 MR. BATEMAN: 14 problem. Well, there are some Alloy 600 welds, but I 15 am not sure if they were at the two plants I am thinking of, if those particular welds were Alloy 600 16 or not. I don't know. Oyster Creek and Nine Mile, I 17 don't know. They are two older plants. I don't know 18 19 what weld material they use there right off the top of 20 my head.

21 MEMBER LEITCH: See, in one sense, the 22 boron is bad because we are concerned about corrosion. 23 But in the other sense, the boron is a telltale that 24 tells you you have got a little leak. You don't have 25 that in a BWR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

12

150 1 MR. BATEMAN: Well, as you know, you 2 worked at BWR in your past. One of the first things they do when you shut down is go in and do an 3 4 inspection underneath the vessel to look for leaks. 5 Of course, if they are very small, obviously, right, And boron would be a good 6 you won't see them. 7 indicator, you are right. And it is a difficult 8 MEMBER LEITCH: 9 place to inspect. There is so much stuff under the belly of a BWR with the control drivers and all the 10 11 instrumentation and the LBRMs. I mean, there is a whole forest of stuff under there. 12 It is a rat's nest under 13 MR. BATEMAN: 14 there. 15 MEMBER LEITCH: It is hard to see what is 16 qoing on. MEMBER SIEBER: Plus, the radiation is 17 usually airborne. 18 MEMBER SHACK: Could you make good visual 19 20 inspections on all the PWRs? I mean, I know South 21 Texas is ideal, but how about the rest of them? 22 MR. MITCHELL: Other licensees have been 23 performing inspections in that area. I should 24 probably deflect that question over to our folks who

have been dealing more globally with that issue,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	151
1	however, about the quality of those.
2	MR. SULLIVAN: We anticipated that might
3	be a problem, PWRs. And so far somewhere on the order
4	of 23 to 25 plants have done the inspection, depending
5	on whether you want to count Davis Bessee and South
6	Texas.
7	They all made the area accessible by
8	either lowering the insulation or removing panels.
9	They took stuff apart, and they were able to get
10	complete access for visual examinations. A lot of
11	them used cameras.
12	MEMBER SHACK: There is not some old plant
13	with asbestos stuck to the bottom?
14	MR. SULLIVAN: We did not hear of any
15	outliers with respect to being able to get access to
16	get a good look at each penetration.
17	CHAIRMAN BONACA: How many of the PWRs
18	have the bottom instrumentation?
19	MR. SULLIVAN: I think all of them do but
20	the C plant.
21	CHAIRMAN BONACA: All but the C?
22	MR. SULLIVAN: The exception of Palo
23	Verde.
24	CHAIRMAN BONACA: E&W plant they have
25	that?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	152
1	MR. SULLIVAN: Yes. It is somewhere in
2	the high 50s.
3	MR. MONARQUE: The bulletin was sent out
4	to 58 plants, all PWRs.
5	MEMBER LEITCH: Well, I'm still not sure
6	I really got an answer to my question about the B's.
7	I mean, are we doing anything? Is anything
8	appropriate for BWRs?
9	MR. BATEMAN: Well, basically other than
10	typical inspections underneath the vessel at the end
11	of the operating cycle and the two plants that have
12	identified leakage and addressed it, no, there isn't
13	anything else that we are doing in that area.
14	MEMBER SIEBER: Well, are there any
15	further questions?
16	MR. SHEA: Yes. My name is Jim Shea. I
17	am down here sitting in for Bill Roland in region III.
18	One of the questions in our mind is
19	working with Davis Bessee issues. I know they did an
20	inspection, and I guess they are looking for this
21	popcorn-type leakage. I was wondering, do we have any
22	definitive way or thing to look for when we are
23	looking for this type of leakage?
24	They did have some residue that they have
25	addressed as wash-down and other things that they did

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	not attribute to leakage from the nozzles. I was just
2	wondering if we know definitively what you are going
3	to see when you have leakage through this crack.
4	MR. BATEMAN: We can have Ted Sullivan
5	answer that.
6	MR. SULLIVAN: We had discussions with a
7	number of licensees and with the residents at a number
8	of the plants to ask the question basically, "What are
9	the licensees looking for, and how have they been
10	trained?" The consistent answer that we got back was
11	that they were looking for the kinds of deposits that
12	they saw at South Texas.
13	I think that most of the inspectors at the
14	plants would have seen those photos. They might have
15	had some sort of formal training on it. They would
16	have been familiar with the kinds of deposits that we
17	are seeing on the upper head. And they were basically
18	looking for those kinds of deposits that were somewhat
19	puffy, like we have seen on the upper head and seen at
20	South Texas.
21	They have tried to distinguish them from
22	stains coming from wash-down from along the side of
23	the vessel from reactor cavity seal leaks. A number
24	of them did chemical analyses of these deposits by
25	taking things like chemical swipes or by removing

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	whitish material that they didn't think was a boric
2	acid deposit but took the sample anyway.
3	I am not an expert in how they did the
4	chemical analysis, but they used different types of
5	analyses and concluded that the materials that they
6	were removing were not from leakage from inside the
7	reactor, as distinguished from refueling water or some
8	other debris, like insulation.
9	MEMBER SIEBER: Okay. Any additional
10	questions?
11	(No response.)
12	MEMBER SIEBER: If not, I would like to
13	thank you for your presentation.
14	MR. BATEMAN: Thank you.
15	MR. MITCHELL: Thank you.
16	CHAIRMAN BONACA: Any other comments or
17	questions?
18	(No response.)
19	CHAIRMAN BONACA: Thank you for your
20	presentation.
21	We are going to recess until 5 minutes of
22	1:00.
23	(Whereupon, at 11:53 a.m., the foregoing
24	matter was recessed for lunch, to
25	reconvene at 12:55 p.m. the same day.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(12:56 p.m.)
3	CHAIRMAN BONACA: Let's go back into
4	session. The next item on the agenda is the
5	resolution of certain items identified by the ACRS in
6	NUREG-1740 related to the differing professional
7	opinion on steam generator tube integrity. Dr. Ford
8	is going to lead us through the presentation.
9	MEMBER FORD: Thank you, Mr. Chairman.
10	The last two days, Tuesday and Wednesday,
11	we had a two-day full meeting hearing the progress on
12	the DPO issues which were raised in NUREG-1740.
13	Bill, do you want to add a conflict of
14	interest?
15	MEMBER SHACK: I was going to let you
16	finish your speech first, but yes, I have a conflict
17	of interest in this since Argonne National Laboratory
18	has been doing some of this work.
19	MEMBER FORD: As was discussed during the
20	two-day meeting, the resolution of these issues in
21	NUREG-1740 have been melded into a much larger steam
22	generator action plan. This was described to us over
23	the last two days.
24	In order to try and compress all of the
25	information that we heard in these last two days into

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	this current two-hour presentation, we advised the
2	staff that: (a) there should be a brief mention of
3	how the DPO issues were melded into the steam
4	generator action plan, to confine themselves to
5	summaries of the many tasks that are in this action
6	plan, with the recognition that there might be some
7	questions on errors, such as the iodine spiking factor
8	and also the PRA.
9	For those members who were not present the
10	last two days, you will see the full list of
11	presentations just for your information.
12	At this point, I would like to pass it
13	over to Joe Muscara to lead us through this overview.
14	DR. MUSCARA: Thank you, Peter.
15	I guess this morning we will provide a
16	brief overview again and then go into the summary of
17	the work we presented over the last two days.
18	First, as we indicated over the last two
19	days, we have provided the ACRS subcommittees a
20	detailed progress report on a multidisciplinary
21	integrated research program to address the potential
22	for steam generator containment bypass during severe
23	accidents and also on other technical issues that were
24	raised by the ACRS in NUREG-1740.
25	This integrated program that we have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

157 developed in generators was quite similar in concept to the current activities on PTS. Now, the research work is also part of the steam generator action plan that was reviewed and endorsed by the ACRS in October 2001. The items 3.X in the action plan were resolved

7 Considerable research has been completed 8 since this time frame in the areas of in-service 9 inspection, on the steam generator tube integrity 10 under MSLB loading conditions, and primary system 11 component response during severe accidents, and on 12 thermal hydraulics, and also on the PRA.

in the recommendations in 1740.

Based on the completion of some of this 13 14 research, some milestones have been completed. And 15 some of those actions were closed. However, work in some of these same areas has continued based on the 16 lessons learned in the research and underneath for 17 Therefore, the steam generator action 18 refinements. 19 plan is updated periodically to reflect the ongoing 20 activities.

I would also like to indicate that although some of these actions, some of these tasks and subtasks were closed, resolution of the major issues will be based on the staff's utilization of completed and ongoing research activities, which are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

scheduled in the action plan for 2005 and 2006. So we 2 consider, really, our presentations over the last 3 several days to be a progress report on research 4 activities that are ongoing.

5 In addition, I wanted to let you know about an effort we conducted over this past year. 6 7 There was an integration effort conducted by the research staff. Where the programs in the different 8 9 divisions were reviewed and integrated into one program, I held six one-day meetings during this past 10 11 summer where we discussed the overall main goal of the 12 We also reviewed the ongoing research, research. identified new research that was needed, and also the 13 14 interdependencies of tasks and the schedules.

15 So from this, we developed an integrated program for assessing the potential 16 of severe 17 accident-induced steam garniture containment bypass. Now, this work is planned to be completed by the end 18 of fiscal '05. 19

20 What we were intending to do today, then, 21 was provide brief summaries of the work that was 22 presented in detail to the subcommittees and will 23 provide summaries in the areas of materials and 24 thermal hydraulics and PRA. We will also discuss the 25 full pitch and the item spiking issues.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

VICE-CHAIRMAN WALLIS: This integrated program, I was hoping to see a picture or something about how everything fits together. Was this simply a discussion amongst people doing lots of different bits of work?

I guess what we were asking, the subcommittee, was, how does this all fit together? How do you prevent sort of one group from doing an infinite amount of work on something?

10 They are going to have to stop. Have they 11 done enough work to answer some questions? How does 12 it fit into the big picture?

DR. MUSCARA: Yes. I apologize I did not 13 14 make a viewgraph, but I did hand out yesterday the 15 Now, according to that detailed integrated plan. plan, we clearly discussed the technical work and how 16 17 the different tasks fit together, what are the predecessors and successors; that is, what input goes 18 19 to each task and how the outputs of the task are used.

In order to make sure that the work proceeds as it should, we have planned to have periodic meetings of a technical team that has been assembled to integrate this work. The technical team members will meet every two months to review our progress, to define any additional needs, and to make

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	sure that all of the interdisciplines are getting the
2	information that they need.
3	In addition, the contractors are allowed
4	to talk with each other so that they
5	VICE-CHAIRMAN WALLIS: I guess we don't
6	have time to do it now, but there has got to be
7	someone in charge so you can really see how much
8	detail you need in all of the pieces, how they fit
9	together. Otherwise one non-contractor just can get
10	carte blanche to investigate ad infinitum all kinds of
11	stuff.
12	DR. MUSCARA: No. We define precisely
13	what needs to be done. And my responsibility is to
14	make sure that the work is integrated and that it is
15	going on as planned. So I meet at least every two
16	months with the group to make sure that we are doing
17	work that is needed and not beyond.
18	In fact, I mentioned that we identified
19	some new work that was needed. We also identified
20	some work that was not needed. And we have reduced
21	the emphasis on that work.
22	MEMBER FORD: I think the direct answer to
23	your question who was in charge, it is Joe. Joe is in
24	charge.
25	VICE-CHAIRMAN WALLIS: Then, of course, we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	have to satisfy ourselves that you know what you are
2	doing while you are in charge.
3	DR. MUSCARA: Well, I have a team of
4	technical leaders in the different disciplines.
5	VICE-CHAIRMAN WALLIS: Okay. That's fine.
б	DR. MUSCARA: We have defined the work
7	that needs to be done, and we keep up with it on a
8	frequent basis.
9	MR. WOODS: Joe, this is Roy Woods,
10	research staff. Apparently Dr. Graham didn't get a
11	copy of the project plan that you passed out
12	yesterday. I can go get another one if that would be
13	useful.
14	DR. MUSCARA: Sure.
15	VICE-CHAIRMAN WALLIS: Well, I guess it's
16	more than just the plan. I don't want to belabor the
17	point, but it is clear that there has to be judgment
18	made on all kinds of points here about when you need
19	more work here, when you need less work there, and so
20	on. I am not sure that you guys are really on top of
21	that yet.
22	MR. WOODS: We were taking the first cut
23	at that in developing the plan.
24	VICE-CHAIRMAN WALLIS: When you really get
25	on with this PRA and know what you need in the various

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	components, how much more uncertainty will it tolerate
2	in the various bits, you have a much better way of
3	deciding if we need any more work or not.
4	DR. MUSCARA: Yes, precisely, but that we
5	defined what we think we need at this point. We will
6	keep up with it and keep updating it and also have the
7	responsibility to keep management informed about our
8	activities. So frequently when we have new needs or
9	things are not progressing, we have a responsibility
10	to make management aware of this and get problems
11	resolved.
12	So we have a plan in place. I have
13	confidence it will be conducted to completion in a
14	good way.
15	MEMBER APOSTOLAKIS: In your second slide,
16	you say that the integrated program is similar in
17	concept to PTS. PTS had a very nice picture showing
18	how the various disciplines came together. Do you
19	have a similar thing like that?
20	DR. MUSCARA: Yes. In fact, we presented
21	something like that yesterday.
22	MEMBER APOSTOLAKIS: But not today?
23	DR. MUSCARA: We have limited time today.
24	And we felt that we only needed to go in a very broad
25	overview.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	MEMBER APOSTOLAKIS: So yesterday's is big
2	thing?
3	DR. MUSCARA: If I may, then, I would like
4	to go into the very brief summary of the
5	materials-related work. The steam generator plan
6	action item 3.6 relates to a trying to address the
7	ACRS conclusion that improvements can be made over the
8	current views of a constant probability of detection
9	of .6.
10	To address that, we conducted an extensive
11	eddy current round robin analysis of data obtained
12	from a mock-up, where we developed from a bit of
13	probability of detection curves as a function of the
14	inspection method; of the flaw location in depth; as
15	a function of flaw voltage; and all that up here,
16	which is a structural parameter for the integrated
17	tube. We did this for 76-inch Alloy 600 tubing.
18	Again, over the last couple of days, we
19	have presented extensive information on this. Many
20	curves were developed that describe the probability of
21	detection over the entire range of flaw sizes in our
22	parameters of interest. What we found is that
23	probability of detection is fairly high, quite high,
24	for flaws that can impact structural integrity.
25	VICE-CHAIRMAN WALLIS: See, that's the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	kind of thing I was getting at. Were they high
2	enough? And how high did they need to be?
3	DR. MUSCARA: Yes. And that clearly is
4	part of one of the items that feeds into the PRA.
5	MEMBER POWERS: These data that you are
б	collecting on the POD, will they eventually result in
7	replacing the POD that is assumed in the alternate
8	voltage repair criterion?
9	DR. MUSCARA: That's a possibility. It is
10	not something that we have a plan for yet. The
11	industry may provide an alternate criterion. In some
12	cases, they are interested in having a depth base
13	criterion. One such criterion has already been
14	accepted, a depth base criterion for the degradation
15	of the dented support.
16	MEMBER POWERS: The objection that was
17	raised in the original POD report was using the
18	constant .6 POD.
19	DR. MUSCARA: That is right.
20	MEMBER POWERS: We really think POD is a
21	function of depth, and you really ought to develop
22	one. Now, it looks like you are developing one here,
23	but if you are not going to use it, you are wasting
24	time.
25	DR. MUSCARA: Well, you are correct, but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	at the time that we chose that .6, there really wasn't
2	much data.
3	MEMBER POWERS: I understand that.
4	DR. MUSCARA: So the point here is that we
5	developed the data. And the curves are now available.
б	And if one chooses to go that direction, we have the
7	technology and the data.
8	MEMBER POWERS: Okay. But you are not
9	going to write a letter to NRR and say, "Here, guys,
10	use this, and don't give us a hard time"?
11	DR. MUSCARA: We have transmitted the
12	report with the major conclusions from the report. I
13	don't think we said, "Here, use this instead of .6."
14	MEMBER POWERS: You can lead a mule to
15	water. You are just not trying to make it drink.
16	DR. MUSCARA: There were some cracks, of
17	course, that were missed. The POD wasn't perfect.
18	And some of the reasons for missing some of these
19	cracks were that the signals were really too complex.
20	And sometimes they were misinterpreted.
21	Also, we find that some of these tight
22	cracks, it was a low signal response. Therefore, the
23	signal-to-noise ratio is low. And we did find some
24	cases of human error.
25	MEMBER POWERS: Not at Argonne, of course.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	DR. MUSCARA: Well, this was work done at
2	Argonne, but, of course, the evaluations were done by
3	a commercial team.
4	MEMBER POWERS: Not at Argonne.
5	DR. MUSCARA: Oh, no. They don't make
6	errors at all.
7	MEMBER POWERS: I would expect human error
8	there.
9	DR. MUSCARA: None. One thing I noticed
10	I have been involved in this area for a long time
11	and have evaluated the inserting generator, where we
12	developed the POD code for the kind of flaws that were
13	inserted was that there was a major improvement in
14	the results from the current round robins.
15	I attribute that mostly to the current
16	extensive training and qualification requirements for
17	inspection techniques and personnel and also to
18	improvements in the data analysis process. It is a
19	much more complex process that goes on these days when
20	the inspectors evaluate a given signal.
21	VICE-CHAIRMAN WALLIS: Wasn't it
22	inspection reliability or was it consistency that was
23	proved? It wasn't proved to me that you could detect
24	small cracks any better, but all the teams did about
25	the same job was the message I took home.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	DR. MUSCARA: Yes, but reliability, I
2	relate that directly to probability of detection. And
3	with small cracks, there are limitations based on the
4	physics. So that doesn't improve. But for the larger
5	cracks, there was a big improvement.
6	VICE-CHAIRMAN WALLIS: They were all
7	consistent. The teams performed consistently.
8	DR. MUSCARA: They were consistent. There
9	was little spread between the teams. But also this
10	result was a lot better than the work we did in the
11	'80s, where the maximum PODs were about .8. Maximum
12	PODs here were about .95.
13	Noise, of course, is a major parameter in
14	either detecting or missing the flaws. And we have
15	developed methods for adjusting the POD curves based
16	on the level of noise. The idea here is that this
17	data could now be used for this different noise
18	situation. For example, plants may have more noise
19	than our mock-up did. So this data can be adjusted to
20	apply to any particular situation.
21	To move on to the structural integrity
22	work for main steam line break loads, this address is
23	the action item 3.1. We performed structural
24	calculations based on pressure loads we obtained from
25	NRC staff calculations with trays. And we used a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	168
1	factor of 1.5 on those inputs to bond any
2	uncertainties on the calculated pressure loads.
3	We find that the most critical transient
4	of the secondary site transient was the main steam
5	line break from the hot standby. We also determined
6	the dynamic loads have virtually no effect on failure
7	due to the presence of axial cracks. In fact, axial
8	cracks behave a bit better than they do if the crack
9	wasn't there.
10	Now, finite element analysis modeling
11	using one, two, four, and ten tubes that are locked at
12	the support plate show that if only one or two tubes
13	are assumed to be locked, the stresses on the locked
14	tubes can exceed the ultimate tensile strength.
15	However, because the maximum displacement
16	of an unlocked tube support plate is limited to about
17	two inches, the unflawed tubes would not rupture. But
18	there is, of course, a concern that circumferential
19	cracks on some of these loads could propagate.
20	MEMBER POWERS: Joe, when you did these
21	dynamic analyses, you are including the shock and
22	vibration, the structure during the blow-down?
23	DR. MUSCARA: Yes.
24	MEMBER POWERS: My question is, how do you
25	know what trace gives you is correct?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	DR. MUSCARA: Well, we had extensive
2	discussion on this over the last couple of days. The
3	work was benchmarked against some existing data and
4	also was compared to some hand calculations. Again,
5	if you want to go into some detail
б	MEMBER POWERS: Well, presumably I can ask
7	some of the members of the subcommittee about the
8	details of the viewgraph. The problem that I think we
9	always had in looking at the dynamic analyses was
10	squaring the calculated results to the eyewitness
11	accounts of what went on at the Turkey Point
12	blow-down. It just didn't seem to square in drama to
13	one another. So I am struggling to know.
14	DR. MUSCARA: Well, actually, the
15	calculations show deflections on top plates as large
16	as three inches.
17	MEMBER POWERS: Well, the eyewitness has
18	described as being flown off the walking deck and
19	seeing waves coming down the structures at him. That
20	is a good deal more deflection than three inches.
21	CHAIRMAN BONACA: I think that you can
22	bend the plates that way. I wouldn't be surprised, in
23	fact, if you would have booming and all of these
24	noises and so on.
25	MEMBER POWERS: That is the difficulty we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	have always had, that we get these eyewitness accounts
2	that are dramatic but suffer all of the same problems
3	of an eyewitness account. You really don't have any
4	measurements. You just have this guy's memory of a
5	long time ago.
6	It is just difficult to understand without
7	having experimental data that you can actually compare
8	directly for a similar situation.
9	DR. MUSCARA: I think we also had the
10	observation, again, at Turkey Point at the inside of
11	the generator after the transient. There was no
12	damage that was noticed. Also, of course, these loads
13	have to be able to be coupled to the tubes. If you
14	can't couple the load to the tube, then there is no
15	MEMBER POWERS: It doesn't do anything.
16	Yes.
17	DR. MUSCARA: So if you have a clean
18	generator, where the tubes are free to slide, there is
19	no load transmitted. If you have a degraded
20	generator, where many tubes are locked, then the load
21	is shared among the tubes. So, again, it is not a
22	problem.
23	MEMBER POWERS: Halfway between is a
24	problem.
25	DR. MUSCARA: Well, it is not quite

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	halfway in between, but we will see from some of these
2	numbers.
3	So the finite element analysis showed high
4	flaw tolerance under steam line break loads. Now, if
5	the number of locked tubes in a given region we
6	essentially looked at one-quarter of the generator in
7	flow symmetry.
8	So if we have a number of locked tubes,
9	more than 10, the true circumferential cracks, even as
10	great as 180 degrees to wall, 100 degrees around the
11	tube and all the way through the wall, are stable.
12	They will not propagate. If the tubes are locked,
13	then cracks as much as 300 degrees around the tube and
14	all the way through the tube are stable and then
15	propagate.
16	Again, we also have to keep in mind that
17	these kinds of cracks would not be in the generator at
18	the time of a steam line break because they would be
19	leaking and they would be taken out of service. So,
20	even though these large cracks are still stable, we
21	don't expect to have these during the transient.
22	MEMBER POWERS: I guess I have trouble a
23	little with that statement. You have always a
24	probability that you have got a 300-degree
25	through-wall crack in the steam generator.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

172
DR. MUSCARA: That kind of crack would be
leaking. And so it might not be detected by
in-service inspection, but it should be detected by
the leakage monitoring. Of course, if the leakage
goes above 150 gpd, then there is an action, but it
has to be taken care of.
MEMBER POWERS: If not that, then you have
got a 300-degree crack in the steam generator.
DR. MUSCARA: Well, you could have a
300-degree crack that is part of the through wall in
the steam generator. In order to show this, even with
it being cool, it is still stable. My comment is if
it weren't through wall, we would have detected it.
So if it is not quite through wall, it is still a
large flaw. And it is still thought of one.
MEMBER POWERS: You are saying there is no
probability of ever having a 300-degree through-wall
crack in a steam generator? It is absolutely zero?
DR. MUSCARA: No, no. I am saying there
is some probability. I think it is fairly small.
MEMBER POWERS: There is always a
probability?
DR. MUSCARA: Yes, yes. We had also

DR. MUSCARA: Yes, yes. We had also
looked at the potential for propagating these cracks
by the cycles, by fatigue. The fatigue analysis

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

indicated that you have one or two pressure pulses. And, of course, the second pulse is lower force.

We conducted some fatigue analysis to 3 4 demonstrate that, even with 70 cycles, there is still 5 a margin for cracks. If we are assuming only four locked, aqain, this 6 tubes are _ _ is а very 7 conservative assumption because if you have 8 degradation, many more tubes would be rotten -- then 9 through all cracks up to ten degrees still did not grow large enough to cause failure. And if ten tubes 10 11 are locked, then the same is true for cracks up to 230 12 degrees, all the way through the wall. So, again, there is quite a bit of margin, even if we had fatigue 13 14 crack load.

15 So the conservatives, see, again, we 16 applied a 1.5 factor on the thermal hydraulic loads. 17 And now we have many more cycles than what you expect 18 from the transient.

Our conclusions were that loads associated with MSLB are unlikely to fail tubes in the greater generators with the current regulatory requirements, inspection, leakage requirements, and so on.

23 We have felt that no additional 24 requirements in the analysis or experiments are 25 needed. We have conducted some experiments and some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

Í	174
1	analysis. We have seen so much margin that we believe
2	where we are finding these, we would not come to a
3	different conclusion.
4	I briefly wanted to move on to the last
5	area I was going to address. This is the work that we
6	have been conducting on the response of primary
7	assistance components under severe accident
8	conditions. Of course, we did work on steam generator
9	tubes. And we have addressed that and discussed it
10	with you in the past.
11	We have conducted detailed
12	elastic-plastic-creep finite element analysis to
13	determine the behavior of certain premises and
14	components during a station blackout reaction
15	sequence. We have looked at the hot leg and surge
16	line, including O nozzles and outposts, the steam
17	generator manway in the RTD, and instrument line
18	welds.
19	One of the things that we have found was
20	that most of these components failed at approximately
21	the same time. The predicted sequence of these was
22	the RTD weld was first followed by the instrument line
23	socket weld but a surge line to hot leg nozzle, and
24	the hot leg surge line bend and finding the steam
25	generator manway.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

I should briefly mentioned that these analyses were done with some early input on thermal hydraulics. Additional input, the latest input from the thermal hydraulics evaluations will be used in our near term to reevaluate these results. So we are working, iterating with the other disciplines, and updating our results as we need to.

8 In our work on these preexisting 9 components relating high to the temperature properties, we find that in some cases, data is just 10 11 not available. Many of these components were not 12 meant for high temperature service. So we find a lack of data, for example, on carbon steel for the nozzle, 13 14 on the manway cover bolts, and on type 308 stainless 15 steel welds; in particular, for the heat-affected zone, where we expect that the material properties may 16 be less than the rock material. 17

So the current analysis was based on estimate of properties, where the data was not available. On the other hand, this year, this fiscal year, we plan on conducting high temperature tests to obtain the data where the data is lagging.

In a brief overview, this was all I had planned on discussing today. If we may, we could move on to the summary on the thermal hydraulics. I would

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	176
1	be willing to address any other questions if we can.
2	MR. BOYD: My name is Christopher Boyd
3	from the Office of Research. And I have been asked to
4	give a brief overview of the thermal hydraulic aspects
5	of the steam generator action plan.
6	The work that was presented yesterday I
7	summarize here. There were four aspects: the steam
8	generator loads following a main steam line break or
9	a feedwater line break, aerosol trapping in steam
10	generators, the SCDAP/RELAP5 analysis of the severe
11	accident conditions, and the computational fluid
12	dynamics analysis of the steam generator in the plenum
13	mixing during those severe accident conditions.
14	The first aspect, the steam generator
15	loads following the main steam line break or the
16	smaller feedwater line break, this is part of generic
17	safety issue 188. This is a steam generator tube
18	leakage concurrent with these large main steam line
19	breaks covered in the steam generator action plan in
20	the 3.1 area.
21	What was done, the test, was to perform
22	thermal hydraulic analysis using TRACE to develop the
23	loads on these plates following these two breaks. And
24	then this information would be fed onto the stress
25	analysis for displacement and crack growth

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

assessments.

1

2

3

4

5

6

The tests that were done to make ourselves feel more comfortable with this analysis, the loads were compared to predictions from similar analysis, such as Westinghouse analysis using RELAP and a separate code that they develop for this.

7 Conservative load estimates were developed and calculations to compare with the TRACE results. 8 9 And then the technique TRACE, NTRACE was used to predict some relevant tests of blow-down tests of 10 11 And then sensitivity studies were various types. 12 performed the model parameters, the input on parameters, and the numerics to gauge how the code was 13 14 doing on this.

15 So the conclusions out of this were that capable of calculating these 16 TRACE is thermal 17 hydraulic conditions inside of PWR following these large breaks. The steam generator internal loading 18 19 calculated for the Westinghouse model 51 was very 20 comparative to the conservative bounding calculations 21 and also compared well with some Westinghouse RELAP5 22 predictions. It did not agree with Westinghouse 23 TRANFLO calculations, which were significantly lower. 24 The largest internal forces are developed 25 by the acoustic transients occurring very early,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	first, second, following the break for the main steam
2	line break at the main nozzle location. This was done
3	at hot standby conditions.
4	Here is a little bit of data from that
5	main steam line break with the 4.6 square foot of open
6	area. You look at the DP across these tube support
7	plates. The highest tube support plate is seven,
8	getting the largest roughly eight and a half psi $ riangle p$
9	across it.
10	VICE-CHAIRMAN WALLIS: I was thinking
11	about this again. You have a break, and suddenly it
12	depressurizes somewhere. Isn't there an acoustic way
13	which is rather sharp that goes from there, propagates
14	at the same speed as sound and steam? And in a
15	quarter of a second, it goes about 100 meters.
16	So I don't quite understand. Maybe this
17	is to be in a different, another forum. Maybe we need
18	to look at it somewhere else, but it is a little odd
19	that you don't get some initial impulse from the
20	acoustic way, that you get this smooth behavior like
21	this.
22	MR. BOYD: Bill, did you take a look at
23	that? Is the TRACE code able to pick up that initial
24	wave that moves out from the break? This is Bill
25	Krotiuk, who actually did the work.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. KROTIUK: Let's see. Two things. As indicated in the comparisons with the test data, are 2 3 we successful in predicting the travel of the acoustic 4 wave from the tests for the semi-scale test that I 5 had? One thing you have to remember is that 6 7 when you get that depressurization wave initially in 8 a steam generator situation, it is a tortuous path from the location of the break to the first tube 9 10 support plates. 11 So there fair number of are а 12 transmissions and reflections before you reach that tube support plate. So I think that would be the 13 14 reason why you wouldn't see --15 VICE-CHAIRMAN WALLIS: The reason you have got this is that you have realistically modeled the 16 17 internals. It is not as if it is just a vessel with 18 a hole in the top. 19 MR. KROTIUK: That is right. The 20 internals were. 21 VICE-CHAIRMAN WALLIS: That is helpful. 22 Thank you. 23 MEMBER POWERS: Let me understand. You 24 have got the shockwaves going through a complex

> And they get reflected, bounced off, structure.

> > **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	180
1	banging around each other so the points where they are
2	reinforcing in their points are cancelling. Do I
3	understand this correctly?
4	MR. KROTIUK: Basically, from the source
5	of the initial depressurization, as you are traveling
6	back, if you hit an area change, you will get a
7	partial transmission and a partial reflection. So
8	yes, there can be additions and subtractions to the
9	pressure wave as it travels back.
10	When Chris was mentioning about the hand
11	calculation, what I actually did is took the drawings
12	and based on the immediate changes actually did
13	calculate transmissions and reflections and compared
14	that with the peak forces that are calculated by TRACE
15	and got the same order of magnitude.
16	MR. BOYD: Okay. That's all we had in
17	this area.
18	MEMBER POWERS: Chris, I am trying to
19	understand the plot that you had there.
20	MR. BOYD: Okay.
21	MEMBER POWERS: The tube support plates,
22	those are the pressure differentials across, then.
23	What are the TSPs across the top? Is this a legend?
24	MR. BOYD: Legend.
25	MEMBER ROSEN: Let me ask a question about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	it. TSP 7 is the highest tube support going, so on
2	down?
3	MR. BOYD: Yes.
4	MEMBER ROSEN: The largest pressure
5	difference? Am I interpreting that right?
6	MR. BOYD: Yes. To get to TSP 1, you have
7	to pass 7, 6, 5, 4.
8	MEMBER ROSEN: Right. So the first one it
9	sees is 7, and that is the biggest difference.
10	MR. BOYD: It does seem to respond first
11	also. I should turn this over to Dana on this slide.
12	Another aspect in the thermal hydraulic work in the
13	steam generator action plan is the aerosol trapping in
14	the steam generator.
15	Our objective is to provide data in this
16	area. We aren't too clear what these numbers will be.
17	We can guess at the order of magnitude.
18	So there is a program at Paul Sherrer
19	Institut in Switzerland. It is somewhat behind
20	schedule, as I understand it. There will be five test
21	phases that will address retention of aerosols, the
22	deagglomeration deposition year, tube rupture,
23	deposition along the tube array, going on to do
24	retention in a full scale, steam separators and
25	dryers, and the combined effects of the entire steam

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	generator secondary side.
2	MEMBER KRESS: Is this saying that the
3	iodine officially gets in or is it aimed at the severe
4	accident condition products that come later?
5	MR. BOYD: I'm going to defer to Dana.
6	MEMBER POWERS: Tom, this program was
7	conceived well before DPOs and things like this. This
8	is the NUREG-1150 problem, where we discovered that in
9	a bypass accident, we had not in our severe accident
10	models the capability of calculating the
11	decontamination on the secondary side of the steam
12	generator.
13	MEMBER KRESS: It's the whole shebang.
14	MEMBER POWERS: Right. And we made a
15	bunch of estimates for NUREG-1150 but came in with
16	very large uncertainties. Unfortunately, that bypass
17	accident is risk-dominant. So big uncertainties there
18	translate into big uncertainties in the risk
19	assessment. These tests are really designed to get an
20	aerosol problem, which would be if all goes a mess
21	here before you get that.
22	MEMBER KRESS: So this is steam and
23	hydrogen-borne fission products in a dry system?
24	MEMBER POWERS: Yes, that's right. And
25	they are really not looking at the iodine problem at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	183
1	all. It is a separate issue. Now, the European
2	community looked a little at the iodine. It is not
3	very pertinent to our accident scenarios. It is only
4	pertinent if you have real big-time accident
5	management strategies to worry about the iodine
6	problem in this context.
7	MEMBER KRESS: It gets to the overall
8	risk.
9	MEMBER POWERS: Yes. Just for your
10	interest, the experiment involves a nearly full height
11	steam generator model. I think it is actually
12	two-thirds height, but that is essentially full
13	height.
14	MEMBER KRESS: Holes in the tubes?
15	MEMBER POWERS: A hole placed everywhere,
16	once in a while depending on the nature of the test.
17	It involves full-scale actual separators and dryers.
18	I mean, they got them from the plants.
19	MEMBER KRESS: What kind of aerosols?
20	MEMBER POWERS: Right now I think they are
21	going to run titanium dioxide. They are basically
22	looking for an iterate aerosol. This was not a
23	chemical test. This was strictly a physical aerosol
24	test.
25	What I can tell you is that in the test of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	184
1	just flow up the outside to the tubes, those estimates
2	we did for 1150 are looking pretty good.
3	MEMBER KRESS: Do they try to simulate the
4	thermal conditions in the
5	MEMBER POWERS: Yes, not
6	MEMBER KRESS: that are projected in
7	the accident?
8	MEMBER POWERS: Not in this first round.
9	It is an interesting test program. He has listed down
10	the five major tests here. If they find anything they
11	don't understand in any one of those, each one of
12	those has a test matrix they can go explore. And each
13	one of those initially had two tests. And then there
14	is a whole matrix if anything interesting comes out of
15	it.
16	MEMBER KRESS: The attention in steam
17	separators and dryers, is that for BWRs?
18	MEMBER POWERS: No, no. These PWR steam
19	generators have a dryer and a separator up at the top.
20	They look a little different than the boilers devices
21	do, but they
22	MEMBER KRESS: They are there.
23	MEMBER POWERS: They are there. And they
24	are not something you can actually calculate the
25	deposition in. Really, you have just got to go

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	measure the damn thing.
2	VICE-CHAIRMAN WALLIS: Now I'm a little
3	puzzled here. You are not duplicating the heat
4	transfer effects, but in this steam generator, you are
5	heating the tubes. So you are setting up circulation
6	patterns in there.
7	MEMBER POWERS: No. This is flow valve.
8	VICE-CHAIRMAN WALLIS: No, no, no. In the
9	real thing.
10	MEMBER KRESS: This is going right there
11	like that. This is driven by steam.
12	VICE-CHAIRMAN WALLIS: Straight out to
13	where?
14	MEMBER POWERS: The only time you get in
15	trouble is when you open up the safety release valve
16	on the steam.
17	VICE-CHAIRMAN WALLIS: Straight out to
18	where?
19	MEMBER POWERS: To the great out of doors.
20	VICE-CHAIRMAN WALLIS: It is coming out of
21	a tube. It goes into a steam generator. And that
22	steam generator has these big convection pallets
23	swelling around. Those products go through all sorts
24	of tubes before they go out.
25	MEMBER POWERS: No. It is one shot

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	straight up, out the safety relief valve.
2	MEMBER KRESS: You're thinking about the
3	design basis accident. We are talking about severe
4	accident.
5	MEMBER POWERS: This is severe accident
6	time.
7	VICE-CHAIRMAN WALLIS: This is severe?
8	Does this have to do with what we saw in the CFD
9	pictures of the
10	MR. BOYD: We were calculating the
11	secondary circulations. And we talked a little bit
12	about the secondary side but not under the conditions
13	of a leak.
14	VICE-CHAIRMAN WALLIS: But is the leak big
15	enough to overwhelm completely the circulation
16	pallets? It is a big thing.
17	MR. BOYD: It pulls it straight out.
18	VICE-CHAIRMAN WALLIS: Well, you are
19	saying that, but I don't see any numbers of the
20	pallets. I don't see any analysis.
21	MEMBER POWERS: Unfortunately, my CBC
22	machine is not right here at my hand to give you the
23	plots, but I guarantee you when that is open, we are
24	going to the straight out of doors.
25	VICE-CHAIRMAN WALLIS: Are you going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	show me this evidence sometime, are you?
2	MEMBER POWERS: You are too young to know
3	about severe accidents. That is seriously ugly time.
4	VICE-CHAIRMAN WALLIS: I am being serious.
5	My impression is that these big circulation patterns
6	might have something to do with how things deposit in
7	the steam generator.
8	MEMBER POWERS: If you want big
9	circulation patterns, you need to move inside the
10	vessel. That is where we get interesting circulation
11	patterns.
12	VICE-CHAIRMAN WALLIS: Well, again, these
13	are all assertions.
14	MEMBER KRESS: They are backed up by
15	calculations. We don't have any
16	VICE-CHAIRMAN WALLIS: It would be nice to
17	see the calculations. Maybe I can sometime when I am
18	old enough.
19	MEMBER KRESS: When you are old enough.
20	VICE-CHAIRMAN WALLIS: Thank you.
21	MEMBER RANSOM: What is the path that is
22	from the core to the ruptured tubes? I guess they are
23	already assumed to be ruptured and then out the steam
24	line.
25	MEMBER POWERS: Yes. And it depends a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 little bit on where you release your tube, where yo tube is broken. Basically you either break at t support plate or up at the UBEND. 	ne ts
3 support plate or up at the UBEND.	IS
The measure were into home and into	
4 The reason you get into bypass acciden	ef
5 is usually that you have locked open the safety reli	
6 valve on the secondary side. Remember, everything	is
7 dried out on the secondary side.	
8 MEMBER KRESS: Is it gas or aerosol?	
9 MEMBER SHACK: It is gas, single pha	3e
10 flow.	
11 MEMBER POWERS: No, it's two phases.	
12 MR. BOYD: Which one of the members wou	ld
13 like to take the next slide?	
14 VICE-CHAIRMAN WALLIS: Are you going	20
15 tell us what the staff has done on this probl	Эm
16 besides what Dr. Powers has done on it?	
17 MEMBER POWERS: Dr. Powers is not doi	ng
18 this. He is paying attention to what is going on	
19 MR. BOYD: I should say that whenever t	ıe
20 results come in from the artist program, we have pla	ıs
21 to incorporate those into some MELCOR analysis.	
22 VICE-CHAIRMAN WALLIS: You are monitori	ıg
23 the flow pattern inside the steam generator so we c	an
24 see if Dr. Powers' assertions have held any water	at
25 all.	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 MEMBER POWERS: There is no water. It all steam at this point. VICE-CHAIRMAN WALLIS: We don't try hold water. MR. BOYD: So the next step, the next ar 	to rea .he
3 VICE-CHAIRMAN WALLIS: We don't try 4 hold water.	ea he
4 hold water.	ea he
	he
5 MR ROYD: So the next step the next ar	he
6 of work in the thermal hydraulic tasks is t	he
7 SCDAP/RELAP5 analysis. There are several tasks on t	
8 action plan.	
9 Basically we are trying to calculate th	is
10 TMLB' station blackout transient. Now, just	to
11 summarize it in a simple way, we have got the	is
12 boil-off, a reduction in system inventory, core a	nd
13 covery leading to a period of rapid core oxidation	m.
14 By this time, the steam generators are dried out.	
15 One of the steam generators has a stu	lck
16 open relief valve. It is at atmospheric condition	IS.
17 So during this period of rapid oxidation, we see ju	ıst
18 extreme increases in the temperatures at the top	of
19 the core and out into the hot leg.	
20 So all of the power from the core	is
21 distributed to the reactor coolant system structure	s,
22 including the steam generators. And all of the	se
23 structures are heating up at a very rapid rat	e.
24 obviously the thinner structures heating up faste	r.
25 Some of the thinner structures, though	ıh,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 like the tubes, are further from the vessel. So they 2 see a smaller temperature, which helps. Anyway, 3 something is going to break. And that is what we are 4 trying to calculate, what ruptures first. We are 5 approaching melting temperatures or heading that way 6 quickly.

7 So the staff has reevaluated the work that has been done over the past decade, I would assume. 8 9 And we have updated our assumptions and boundary conditions using all of the lessons learned to date. 10 We have come up over the last year with an improved 11 12 best estimate prediction and completed a series of sensitivity studies. 13 That work was presented 14 yesterday.

The modeling improvements that we recently made included nodalization studies, keeping things physical. There were some issues in the model, deep in the model, revised material properties to be consistent at the highest temperatures with the work that is being done on the structures.

21 Realistic heat loss to containment, the 22 earlier calculations typically assumed no heat loss to containment. Reactor coolant pump seal leakage. 23 We 24 were assuming no seal leakage in earlier studies as a 25 default where coolant the reactor pumps leak

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	immediately just based on the way they are designed
2	with no failures. And we put that in.
3	Thermal radiation modeling in the hot leg
4	and some other components and then updated
5	in-the-plenum mixing parameters based on a
6	reevaluation of the 1/7 scale experiments and some CFD
7	analysis.
8	The net effect of all of this, some of
9	these changes would make things worse. Some would
10	make things better. But the net effect was just a
11	slight increase in the margin between the surge line
12	and the tube failures.
13	At this point with this best estimate
14	prediction, the surge line fails about three and a
15	half minutes to the hottest tube in an unflawed
16	condition. So we have gone a long way.
17	MEMBER POWERS: Let me ask you a question.
18	There is an unflawed connotation strikes me as an
19	idealization that doesn't exist.
20	MR. BOYD: And when I say, "three and a
21	half minutes," let's step back a minute. We are
22	talking about thermal hydraulic analysis. In the
23	SCDAP/RELAP5 code, there is a Larson-Miller
24	correlation. And we apply it with what I think of as
25	stress concentration factors of one, one and a half,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	all the way up to seven and a half. So I am talking
2	about the tube that has a stress concentration factor
3	of one.
4	We only apply the temperatures right at
5	the top of the tube sheet. And we were just doing a
6	simple analysis to get some feedback so that when we
7	make a change, we can get some feedback on what
8	happens with the tube failure without having to go to
9	the materials people.
10	The real tube failure analysis will be
11	done using our conditions as boundary conditions.
12	MEMBER POWERS: What we have always wanted
13	to know here is what was consequential flaw. This
14	result, at least in qualitative land, has been around
15	since 1980 that I know of. It said, "Well, if the
16	tubes aren't flawed, well, they are really good."
17	And they said, "Yes, but the tubes are
18	flawed, but what we don't know is, does that make any
19	difference or not? What is a consequential flaw for
20	this competition?"
21	MR. BOYD: We can answer that question in
22	our crude analysis here with this what stress
23	concentration factor on the Larson-Miller correlation.
24	It might have to be two. I think the answer on the
25	hottest tube is one and a half in this calculation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	193
1	It is between one and a half and two.
2	I don't focus on those from a thermal
3	hydraulic point of view. They are giving us some
4	feedback. I look at it as our crude scale. In the
5	end, I want to pass this off to Joe and Argonne to do
6	a detailed tube integrity study with our thermal
7	challenge.
8	MEMBER POWERS: When they do that, they
9	will go in and address the question of whether you can
10	actually use Larson-Miller in this temperature range?
11	MR. BOYD: And none of that I will be
12	honest with you concerns me in the thermal
13	hydraulic land. I want to provide them with
14	temperatures, pressures, and heat transfer
15	coefficients. They have given us this. We use it for
16	some feedback.
17	DR. MUSCARA: We've done a great deal of
18	work to evaluate the behavior of tubes with flaws
19	under these high temperature transient conditions.
20	And we benchmark the models that we are using. We can
21	predict the test results quite closely.
22	MEMBER POWERS: I guess I'm not sure what
23	tests you're talking about.
24	DR. MUSCARA: We conducted a great number
25	of tests where we have tubes with flaws pressurized

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	and failing them by different
2	MEMBER POWERS: Oh, I understand what you
3	are talking about. You are not talking about tests
4	that go into the severe accident machines.
5	DR. MUSCARA: Yes. These are tests where
6	we do simulate the severe accident transfer.
7	MEMBER SHACK: It's ramping up in
8	temperatures that we expect in the severe accident
9	condition. And we have flawed tubes. So we have
10	models to predict the failure of those tubes and have
11	verified those models for ramp conditions akin to what
12	the thermal hydraulics people calculate for the
13	crucial part of the accident.
14	MEMBER KRESS: Well, how does
15	Larson-Miller look?
16	MEMBER SHACK: It does very well.
17	DR. MUSCARA: In fact, it goes way beyond
18	the transient. We have run tests under isothermal
19	conditions and the constant pressure conditions and
20	under many conditions that we knew that we were
21	bonding the transient.
22	MEMBER SHACK: I think from a material
23	side, the predictive capability is quite good.
24	MEMBER SHACK: For that part of the
25	analysis.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	MEMBER KRESS: In a stress concentration
2	factor of one and a half, stress magnification, is it
3	a pretty big crack, is it?
4	DR. MUSCARA: One and a half? Not too
5	big.
6	MEMBER SHACK: Yes. You know, as we say,
7	there is a certain probability that you will have
8	flaws ranging from one to a larger number. We expect
9	the probability that it is greater than, say, two to
10	be quite small. Now, what quite small exactly means
11	is another question.
12	VICE-CHAIRMAN WALLIS: Would you tie that
13	in, this number, one and a half to two, to the size of
14	the cracks you were talking about earlier? How big
15	does a crack have to be before this goes down to one
16	a half, goes to one and a half, say? Does it have to
17	be 90 percent through-wall?
18	MEMBER SHACK: It's 90 percent
19	through-wall on a certain length. It could be
20	VICE-CHAIRMAN WALLIS: So it's a big,
21	really big crack, something detectable. It's not down
22	in the range of 40 percent through-wall and you have
23	difficulty detecting that?
24	MEMBER SHACK: No, it's not.
25	VICE-CHAIRMAN WALLIS: So that puts it in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	some better perspective, I think.
2	MEMBER SHACK: The PRA people will have to
3	come up with a distribution of flaws.
4	VICE-CHAIRMAN WALLIS: So the PRA people
5	are going to predict that?
6	DR. MUSCARA: They have our modeling. And
7	so they are going to exercise
8	VICE-CHAIRMAN WALLIS: They are going to
9	have to receive a distribution of flaws.
10	MEMBER KRESS: They have got some pretty
11	good data. We're talking steam generator tubes.
12	They've got some data on that.
13	DR. MUSCARA: We're providing the
14	distribution of flaws, providing the integrity
15	modeling. They will exercise these to see what are
16	the probabilities of different size cracks.
17	MEMBER ROSEN: Let's talk about the three
18	and a half minutes for a minute, talk about flawed and
19	unflawed conditions. The three and a half minutes
20	doesn't sound like a very long time. I mean,
21	sometimes Mario gives us seven-minute breaks. They
22	aren't very long. Three and a half minutes
23	MR. BOYD: Here's an analogy. The rate of
24	the heat-up makes that three and a half minutes
25	significant. Let's say I took this laptop and I threw

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	it into a vat of molten steel. The case would always
2	melt off before the hard drive. But if you tried to
3	make that calculation, they would be melting pretty
4	close together in the grand scheme. That is the kind
5	of heat-up.
6	VICE-CHAIRMAN WALLIS: I think this is
7	right. You should not compare it with the 14,000
8	seconds. You should compare it with when things begin
9	to start getting exciting. That is actually a fairly
10	short time.
11	MR. BOYD: If I recall from some of these
12	past transients, about 15 minutes when things really
13	happen, temperature increase. Within 15 minutes, that
14	whole transient is over. So 10 minutes out of 15
15	minutes is not too bad.
16	VICE-CHAIRMAN WALLIS: Something happens
17	at eight, and something happens at nine, at ten and a
18	half or something. That is a significant difference.
19	MEMBER ROSEN: So you are telling me to
20	think about 8 minutes, think about 10 minutes, think
21	about 15 minutes, and think about 3 and a half minutes
22	in that context. At three and a half minutes, before
23	the hottest tube failed, they have got that much
24	margin out of the total transient that blasts from
25	this time zero to speculatively the end of 15 minutes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	Is that right?
2	I think you are suggesting to me to be
3	thinking that this is a lot of margin. Am I right?
4	DR. MUSCARA: Not necessarily. What I am
5	thinking is that you should be comparing the failure
6	of steam generator tubes versus other primary system
7	components. Then if there is a difference of three,
8	five, ten minutes, that is fairly significant. That
9	is a whole transient. Where these things are failing
10	is about 15 minutes.
11	MEMBER ROSEN: That was the answer to my
12	question. This is a fairly significant amount of
13	margin.
14	MEMBER RANSOM: Well, I certainly wouldn't
15	consider it a significant margin. Knowing all of the
16	uncertainties involved in these calculations, I can't
17	imagine trying to differentiate between these two
18	cases.
19	MEMBER SIEBER: What's most important in
20	the sequence, as opposed to the amount of time that it
21	takes? What you are trying to do is to avoid bypass.
22	You didn't say you need to have high confidence that
23	the failures will incur in the sequence that your
24	calculations show, whether those are 3 minutes or
25	whether those are 20 minutes. As long as the sequence

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	is there, it makes
2	VICE-CHAIRMAN WALLIS: What we heard
3	yesterday you haven't told us the whole story is
4	that there are these two predictions three and a half
5	minutes apart, but there are uncertainties in both of
6	them. And by changing your assumptions, you can
7	actually get it to got the other way.
8	So there is an uncertainty overlap, which
9	may turn out to be so big. We have got to assume you
10	have an order of probability of having a lure from a
11	set of one. That may not make that much difference.
12	MEMBER SIEBER: It may be that everything
13	is driven by the same basic parameters as far as the
14	failure times are concerned. So I would think that
15	you may be some place on the uncertainty pan, but you
16	wouldn't be in a situation where they cross.
17	DR. MUSCARA: That was the thinking behind
18	my comment. If we are wrong on the temperature on the
19	tubes, wrong in the same direction of temperature of
20	the prime components.
21	VICE-CHAIRMAN WALLIS: Absolutely.
22	DR. MUSCARA: And if I do have three to
23	five minutes difference
24	MEMBER POWERS: It seems to me that I have
25	seen a lot of evolution in our ability to calculate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	this time differential here and changes in the way
2	they model the core meltdown, but I have never seen it
3	switch over. It has always been the surge line first
4	because the range of variations that people are making
5	in the score degradation models are not very big.
6	Some of the recent stuff that has been
7	coming out of things like the TEBIS test might change
8	that, but those are things that are just not modeled
9	in the core now.
10	VICE-CHAIRMAN WALLIS: Well, yesterday,
11	actually, Joe presented that I think it was Joe
12	the hot leg nozzle could fail before the generator.
13	MEMBER POWERS: It's the nozzle.
14	VICE-CHAIRMAN WALLIS: He did manage to
15	get these folks together. He did manage to get that
16	to fail before the
17	MEMBER SHACK: I think the real thing here
18	is the spread in the uncertainties of the failures.
19	I think Dana is right. Certainly Chris is right. We
20	know that the surge line is going to heat up before
21	the tube.
22	The question is, do the failure spreads
23	for those things overlap, how much, how broad those
24	are? And those really haven't been addressed before.
25	And they will be addressed as part of this program.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	DR. MUSCARA: Again, the reason you
2	haven't seen the SRD failing first in previous work is
3	because it is not modeled.
4	MEMBER SHACK: But even here, the surge
5	line, there is a spread. Actually, the uncertainty
6	for the unflawed steam generator tube is relatively
7	narrow, as these things will go in an uncertainty
8	analysis.
9	The spread in the surge line will be wide.
10	And the spread in the times for the flawed steam
11	generator tubes will be broader yet. So you have to
12	look at all of those uncertainties.
13	MEMBER ROSEN: The failure of an RTD
14	nozzle, is that enough to protect the tubes? Does
15	that result in depressurization?
16	DR. MUSCARA: It results in a two-inch
17	hole. And that is estimated to be enough to
18	depressurize.
19	CHAIRMAN BONACA: It's a weld.
20	DR. MUSCARA: Yes, it's the weld.
21	MEMBER SHACK: Yes, the weld for the RTD.
22	DR. MUSCARA: Not necessarily. The back
23	weld sees high temperature.
24	MEMBER ROSEN: And that's enough to
25	depressurize the primary system and perfect the tubes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	202
1	DR. MUSCARA: That's the earlier.
2	MEMBER SIEBER: I would think so.
3	VICE-CHAIRMAN WALLIS: Can we move on now?
4	MEMBER KRESS: I guess usually when you
5	get around to doing these uncertainties with something
6	like the Monte Carlo, you have to be careful about the
7	parameters that are correlated, like maybe temperature
8	coming out of the core, and have a similar effect on
9	both of them.
10	So I guess when you do that Monte Carlo,
11	you have got to look at the correlated parameters. Be
12	sure you get those right because that could shift both
13	of them at the same time. But, anyway, that is just
14	
15	MR. BOYD: Many changes we do make do just
16	shift. Are you delaying the period of rapid oxidation
17	if you do everything?
18	MEMBER KRESS: I think there will be such
19	correlative parameters.
20	VICE-CHAIRMAN WALLIS: Well, let's look at
21	the next slide. I think you are going to find
22	something there which does make a difference.
23	MR. BOYD: So some sensitivity studies
24	were completed. Not listing them all but listing the
25	ones that had some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	VICE-CHAIRMAN WALLIS: The sensitivities
2	to assumptions? Is that what you mean?
3	MR. BOYD: Sensitivities to assumptions,
4	input parameters, boundary.
5	VICE-CHAIRMAN WALLIS: You don't have the
б	mass flow and the hot leg in there as an assumption?
7	MR. BOYD: That's right. Now, when we
8	change the percent of core power transported to the
9	steam generators, that changes the hot leg.
10	VICE-CHAIRMAN WALLIS: This is my point,
11	and I have got to make this seriously, that you cannot
12	make an assumption about that. That is something you
13	have to calculate.
14	The whole thing is how much heat goes in
15	the steam generator, how much heat goes into the main
16	primary system. It is the whole issue here. You
17	cannot say it is 30 percent or something.
18	As we discussed yesterday, if the steam
19	generator had no heat capacity and wasn't cooled,
20	there wouldn't be any power going into the steam
21	generator. So you have got to think physically and
22	predict this thing which affects things the most, not
23	percent of core power.
24	I think if we wrote a letter, although you
25	got the message, we are going to have to put it in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	that letter so that it is there.
2	MR. BOYD: Our dilemma we went over
3	yesterday, we have got
4	VICE-CHAIRMAN WALLIS: It is not just a
5	dilemma. It is a fundamental foolishness in assuming
6	the answer when you should be predicting it.
7	MR. BOYD: We have got the limited 1/7
8	scale test data, which gave us a value here. There
9	were some calculations done. I hate to even bring it
10	up. But they agreed to come up with some
11	calculations. Argonne did those. So they are
12	probably pretty good.
13	The problem is we talked yesterday about
14	the core modeling. Do you think core resistances
15	would affect this? When we change core resistance
16	VICE-CHAIRMAN WALLIS: Do you see what I
17	am getting at? The whole question here is heating up
18	the steam generator to the point where it fails while
19	heating up the primary system to the point where it
20	fails. That is the key question.
21	If you are going to assume something about
22	how much heat goes which ways, that is assuming the
23	answer, isn't it, because that is what makes one of
24	them happen before the other.
25	MR. BOYD: I guess my point is ideally we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	would have full-scale test data.
2	VICE-CHAIRMAN WALLIS: Don't say
3	"ideally." Just agree with me that you have to
4	protect it. You can't assume it.
5	MR. BOYD: We have talked about this. We
6	realize that that is a weakness.
7	VICE-CHAIRMAN WALLIS: It is not. It is
8	fundamental.
9	MR. BOYD: The question is how difficult
10	that is to calculate.
11	VICE-CHAIRMAN WALLIS: I don't care. You
12	ought to do it, difficult or not. If you don't do it,
13	you're just fooling yourselves.
14	MEMBER KRESS: You're saying the one-scale
15	test doesn't give you that?
16	VICE-CHAIRMAN WALLIS: The test helps you.
17	The test helps validate your model.
18	MEMBER KRESS: But it doesn't give you the
19	answer, right?
20	VICE-CHAIRMAN WALLIS: No. As you said
21	there, the steam generator had no way of disposing of
22	heat. There wouldn't be any power heat going into it.
23	So it is obviously to take a limiting case. And then
24	it makes a difference to how much heat goes. That is
25	the whole problem you are trying to solve.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

1As a result, it is the key to solving the2problem, which gets it first.3MEMBER POWERS: I'm sorry I was not at the4subcommittee meeting. I notice that you are focusing5a lot on these accidents with the loop seals intact.6Are you doing anything with the loop seals blown?7MR. BOYD: What we're running is the8sensitivity studies and trying to determine if the9code predicts the loop seals to void out. And there10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.25The model will calculate with the loop		206
3 MEMBER POWERS: I'm sorry I was not at the 4 subcommittee meeting. I notice that you are focusing 5 a lot on these accidents with the loop seals intact. 6 Are you doing anything with the loop seals blown? 7 MR. BOYD: What we're running is the 8 sensitivity studies and trying to determine if the 9 code predicts the loop seals to void out. And there 10 are instances where that is possible in the past. 11 Maybe if Don could help me on that. In the base case 12 that we are running in the major sensitivities of the 13 input parameters, we are not getting loop seal 14 clearing in any of the loops. 15 MEMBER POWERS: That is a strong portion 16 of what your loop seal clearing criteria are. Do you 17 have good criteria for loop seal clearing? 18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions<	1	As a result, it is the key to solving the
 subcommittee meeting. I notice that you are focusing a lot on these accidents with the loop seals intact. Are you doing anything with the loop seals blown? MR. BOYD: What we're running is the sensitivity studies and trying to determine if the code predicts the loop seals to void out. And there are instances where that is possible in the past. Maybe if Don could help me on that. In the base case that we are running in the major sensitivities of the input parameters, we are not getting loop seal clearing in any of the loops. MEMBER POWERS: That is a strong portion of what your loop seal clearing criteria are. Do you have good criteria for loop seal clearing? MR. BOYD: Let me throw this one to Don Fletcher from ISL. MR. FLETCHER: This is Don Fletcher from ISL. I did the SCDAP/RELAPS analysis that is being discussed here. The model that we have has loop seals at the loop seals indicate that they will. 	2	problem, which gets it first.
5a lot on these accidents with the loop seals intact.6Are you doing anything with the loop seals blown?7MR. BOYD: What we're running is the8sensitivity studies and trying to determine if the9code predicts the loop seals to void out. And there10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	3	MEMBER POWERS: I'm sorry I was not at the
6Are you doing anything with the loop seals blown?7MR. BOYD: What we're running is the8sensitivity studies and trying to determine if the9code predicts the loop seals to void out. And there10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	4	subcommittee meeting. I notice that you are focusing
7MR. BOYD: What we're running is the8sensitivity studies and trying to determine if the9code predicts the loop seals to void out. And there10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	5	a lot on these accidents with the loop seals intact.
 8 sensitivity studies and trying to determine if the 9 code predicts the loop seals to void out. And there 10 are instances where that is possible in the past. 11 Maybe if Don could help me on that. In the base case 12 that we are running in the major sensitivities of the 13 input parameters, we are not getting loop seal 14 clearing in any of the loops. 15 MEMBER POWERS: That is a strong portion 16 of what your loop seal clearing criteria are. Do you 17 have good criteria for loop seal clearing? 18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will. 	6	Are you doing anything with the loop seals blown?
9code predicts the loop seals to void out. And there10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	7	MR. BOYD: What we're running is the
10are instances where that is possible in the past.11Maybe if Don could help me on that. In the base case12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	8	sensitivity studies and trying to determine if the
Maybe if Don could help me on that. In the base case that we are running in the major sensitivities of the input parameters, we are not getting loop seal clearing in any of the loops. MEMBER POWERS: That is a strong portion of what your loop seal clearing criteria are. Do you have good criteria for loop seal clearing? MR. BOYD: Let me throw this one to Don Fletcher from ISL. MR. FLETCHER: This is Don Fletcher from ISL. I did the SCDAP/RELAP5 analysis that is being discussed here. The model that we have has loop seals modeled. Those loop seals will blow if the conditions at the loop seals indicate that they will.	9	code predicts the loop seals to void out. And there
12that we are running in the major sensitivities of the13input parameters, we are not getting loop seal14clearing in any of the loops.15MEMBER POWERS: That is a strong portion16of what your loop seal clearing criteria are. Do you17have good criteria for loop seal clearing?18MR. BOYD: Let me throw this one to Don19Fletcher from ISL.20MR. FLETCHER: This is Don Fletcher from21ISL. I did the SCDAP/RELAP5 analysis that is being22discussed here. The model that we have has loop seals23modeled. Those loop seals will blow if the conditions24at the loop seals indicate that they will.	10	are instances where that is possible in the past.
13 input parameters, we are not getting loop seal 14 clearing in any of the loops. 15 MEMBER POWERS: That is a strong portion 16 of what your loop seal clearing criteria are. Do you 17 have good criteria for loop seal clearing? 18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will.	11	Maybe if Don could help me on that. In the base case
 14 clearing in any of the loops. 15 MEMBER POWERS: That is a strong portion 16 of what your loop seal clearing criteria are. Do you 17 have good criteria for loop seal clearing? 18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will. 	12	that we are running in the major sensitivities of the
 MEMBER POWERS: That is a strong portion of what your loop seal clearing criteria are. Do you have good criteria for loop seal clearing? MR. BOYD: Let me throw this one to Don Fletcher from ISL. MR. FLETCHER: This is Don Fletcher from ISL. I did the SCDAP/RELAP5 analysis that is being discussed here. The model that we have has loop seals modeled. Those loop seals will blow if the conditions at the loop seals indicate that they will. 	13	input parameters, we are not getting loop seal
 of what your loop seal clearing criteria are. Do you have good criteria for loop seal clearing? MR. BOYD: Let me throw this one to Don Fletcher from ISL. MR. FLETCHER: This is Don Fletcher from ISL. I did the SCDAP/RELAP5 analysis that is being discussed here. The model that we have has loop seals modeled. Those loop seals will blow if the conditions at the loop seals indicate that they will. 	14	clearing in any of the loops.
 17 have good criteria for loop seal clearing? 18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will. 	15	MEMBER POWERS: That is a strong portion
18 MR. BOYD: Let me throw this one to Don 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will.	16	of what your loop seal clearing criteria are. Do you
 19 Fletcher from ISL. 20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will. 	17	have good criteria for loop seal clearing?
20 MR. FLETCHER: This is Don Fletcher from 21 ISL. I did the SCDAP/RELAP5 analysis that is being 22 discussed here. The model that we have has loop seals 23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will.	18	MR. BOYD: Let me throw this one to Don
ISL. I did the SCDAP/RELAP5 analysis that is being discussed here. The model that we have has loop seals modeled. Those loop seals will blow if the conditions at the loop seals indicate that they will.	19	Fletcher from ISL.
discussed here. The model that we have has loop seals modeled. Those loop seals will blow if the conditions at the loop seals indicate that they will.	20	MR. FLETCHER: This is Don Fletcher from
23 modeled. Those loop seals will blow if the conditions 24 at the loop seals indicate that they will.	21	ISL. I did the SCDAP/RELAP5 analysis that is being
24 at the loop seals indicate that they will.	22	discussed here. The model that we have has loop seals
	23	modeled. Those loop seals will blow if the conditions
25 The model will calculate with the loop	24	at the loop seals indicate that they will.
	25	The model will calculate with the loop

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	seals filled or with the loop seals empty. With empty
2	loop seals, the model is a flow-through loop through
3	the hot legs, through the steam generators, and back
4	to the core.
5	With the loop seals plugged with water,
6	there is a circulation path through the upper part of
7	the hot leg through the tubes of the steam generator
8	and back to the core through the lower part of the hot
9	legs.
10	The analysis done to date has been only on
11	the TMLB' station blackout accident. And for that
12	accident, the loop seals for all of the cases we run,
13	including the sensitivity cases, have remained filled
14	with water.
15	But we do anticipate that the PRA
16	indicates we should look at other accident events,
17	especially those that have depressurizations in them,
18	that the loop seals very well could out. In that
19	case, the model will be adjusted accordingly.
20	VICE-CHAIRMAN WALLIS: They're not just
21	wet or dry. They're there. It's a hydrostatic edge.
22	And we need to figure out whether we stop. Do you
23	have enough hydrostatic edge to blow out, stop, going?
24	MR. FLETCHER: Yes.
25	VICE-CHAIRMAN WALLIS: Once they blow

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	through, it is not so easy to calculate how much
2	liquid is left.
3	MR. FLETCHER: That is correct.
4	VICE-CHAIRMAN WALLIS: It is not a
5	question of are they full, are the empty. They might
6	be partly full. It can make a difference.
7	MR FLETCHER: Right. And the test that we
8	make in the code is to look for void fraction. If the
9	void fraction is greater than five percent, we assume
10	it is blown out.
11	MEMBER POWERS: I mean, that's what I
12	think I was asking. That model came from somewhere.
13	MR. FLETCHER: The model was developed at
14	INEL originally.
15	MEMBER POWERS: Did that come from the
16	mind of man or did that come from some experimental
17	study?
18	MR. FLETCHER: For the loop seals
19	themselves?
20	MEMBER POWERS: Yes.
21	MR. FLETCHER: Basically, the way it is
22	modeled now is the standard way for modeling loop
23	seals with a horizontal cell at the bottom and article
24	cells on each side. That is the standard way of
25	modeling loop seals for LOCA events. It has been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	around for 20 years or so.
2	MEMBER POWERS: That historical
3	precedence, however, does not lend often
4	VICE-CHAIRMAN WALLIS: Let me help you,
5	Dana. If you go back to one of our letters on thermal
6	hydraulics when we were talking about how well codes
7	do. We actually see an example of loop seal clearing.
8	And I think, if my memory serves me right, that was an
9	example where some things were predicted pretty badly.
10	We actually cited in this letter an
11	example of something which didn't work very well. I
12	forget which context it was in, but it was one of the
13	things where we were saying, "Look, the code is set to
14	be okay, but for this particular application, it is
15	off by a factor of three" or something. I remember.
16	That is why we cited it. And I think it was a loop
17	seal clearing.
18	So if the staff were diligent, they could
19	probably find one of our letters on the thermal
20	hydraulic evaluation of a code or something. The code
21	is good enough for this purpose, but for some things
22	like loop seal clearing, it doesn't do a good job.
23	I think we can find that somewhere. I
24	don't know who is going to find it, but maybe we have
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	MEMBER POWERS: We have staff who can pull
2	it out.
3	VICE-CHAIRMAN WALLIS: Good.
4	MEMBER POWERS: I understand what the
5	status is.
6	MR. BOYD: So we're back on the
7	sensitivity studies. We will skip over the first one.
8	I will say that we have made improvements. In the
9	past that variable was not touched. That was a holy
10	grail. At least we are burying it.
11	MEMBER POWERS: You could not have said a
12	worst case.
13	VICE-CHAIRMAN WALLIS: I thought the holy
14	grail was a religious belief.
15	MR. BOYD: We're burying the reactor
16	coolant pump seal leakage. The steam generator out at
17	the wall, heat transfer, these aren't the only
18	sensitivities. These are the sensitivities that prove
19	to have some significance. Some of the sensitivity
20	studies showed no difference in the tube failure.
21	Reactor coolant system heat loss to the containment
22	and steam generator tube leakage itself.
23	So at this point, these are finishing up.
24	We have got a few more sensitivities to do. And then
25	we are going to continue work going into an estimation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	of the uncertainty.
2	VICE-CHAIRMAN WALLIS: I think you are
3	going to fix that assumption and are just going to do
4	a few more sensitivities.
5	MR. BOYD: We are probably going to march
6	on into the uncertainty analysis because I am not sure
7	we are going to get an answer to that question.
8	VICE-CHAIRMAN WALLIS: Of course, it is.
9	I have got a fire in my house. I have got kids in one
10	bedroom. The adults are in the other. The question
11	is, which of them gets suffocated first? How much
12	heat goes to one room, and how much heat goes to the
13	other?
14	You cannot legislate that 30 percent of
15	the heat goes to the kitchen. You have to predict it.
16	That is what you are looking at here.
17	MEMBER POWERS: You obviously have more
18	affection for your steam generator than I do.
19	VICE-CHAIRMAN WALLIS: I am trying to put
20	it in words that even someone who knows nothing about
21	nuclear systems would say would have to be true.
22	MR. BOYD: Yes. So where we stand on
23	that, we have 1/7 scale experiments that give us an
24	answer. And then we have the SCDAP/RELAP code, which
25	has a multi-task core model. It calculates your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	buoyancy-driven flows and resistances in the core.
2	And it gives us an answer.
3	We have the hot leg CCFL limitations,
4	which seem like the RELAP code is giving us answers
5	that are in line with that. So that is where we
6	stand. Your concern is that we would do a better job
7	of calculating basically the vessel flows so that we
8	could couple those in with the hot leg and the steam
9	generator flows.
10	There have been discussions, and there are
11	some plans to look into that in greater detail we have
12	gone over today.
13	MEMBER SHACK: But, again, if that just
14	moves everything back and forth, they all move
15	together, you could argue that it is not a critical
16	issue.
17	MR. BOYD: We had done the sensitivities
18	to demonstrate that this is an important parameter.
19	So we can do a better job of finding out where we are
20	on that.
21	MEMBER ROSEN: Well, now, in this
22	topsy-turvy world, that coolant pump seal leakage in
23	these conditions is a good thing. Is that right?
24	MR. BOYD: That's right.
25	MEMBER ROSEN: More is better.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	MR. BOYD: More is better.
2	MEMBER ROSEN: You lose inventory faster,
3	and you fail the primary system. There will be RCFs
4	before you fail the tubes.
5	MR. BOYD: You melt the core if it is big
6	enough.
7	MEMBER ROSEN: It is a relief valve. It
8	is set in the containment, instead of outside. That
9	is this topsy-turvy world. Out there in the real
10	world, the utilities are working day by day on many
11	problems, one of which is to make sure the reactor
12	coolant pump seals don't leak. They build more and
13	more robust seals, better seals. This problem is not
14	the right direction. Am I correct?
15	VICE-CHAIRMAN WALLIS: This illustrates
16	the problem with saying making the seal better is
17	good. It is conservative for one thing. It is worse
18	for another thing.
19	MEMBER ROSEN: It is better for
20	operational reasons.
21	MR. BOYD: At one point we wanted all the
22	heat to go to the steam generators to save the cores.
23	VICE-CHAIRMAN WALLIS: Yes.
24	MR. BOYD: And now we want the core to
25	melt and save the steam generators.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	VICE-CHAIRMAN WALLIS: So you assumed 100
2	percent, then, for those days?
3	MEMBER ROSEN: When you go out far enough
4	in the situation, yes.
5	VICE-CHAIRMAN WALLIS: That's a very good
б	point.
7	MEMBER ROSEN: You have got to remember
8	vessel failure is a triumph in this case, which is why
9	I think the word "topsy-turvy" came to mind.
10	MEMBER POWERS: Not if you haven't
11	depressurized. Vessel failure is not something that
12	you want to have happen.
13	MR. BOYD: But the steam generator pulling
14	all of this core heat away was initially the great
15	thing to save the core from melting.
16	MEMBER ROSEN: That's what it normally
17	does. It takes the core, turns it into steam, and
18	drives the turbine.
19	MR. BOYD: Now we don't want it anymore.
20	So we have got plans to continue on with an estimation
21	of the uncertainty. In addition, we are going to do
22	an analysis of a combustion engineering plant based on
23	some updated mixing coefficients, and we are going to
24	bring that analysis for those type plants up to speed
21	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	the design of the Westinghouse plant.
2	Now we are going on to the last phase.
3	This computational fluid dynamics work was completed
4	to support the SCDAP/RELAP5 analysis. The
5	one-dimensional SCDAP/RELAP5 code relies on input
6	parameters to define some mixing in the inner plenum.
7	We have a set of 1/7 scale data, and we
8	have used some computational fluids to look at that
9	and extend that data into full-scale conditions and
10	tube leakage effects and different geometries and
11	things like that.
12	So the issues addressed by the CFD work
13	were the applicability of the method, the scaling
14	effect. These are issues that the scaling effect has
15	been debated, the tube leakage effect on mixing. The
16	sensitivity of the results to the governing parameters
17	was studied in some detail.
18	We looked at geometrical distortions of
19	the 1/7th's facility compared to a Westinghouse
20	prototypical steam generator. And then we looked at
21	a combustion engineering plant example, which is
22	significantly different geometry.
23	What we found is that we have some
24	confidence in the technique, at least for the
25	described problem. The application to the full-scale

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	steam generator gave us a good bit of insights into
2	the mixing process. We have much better prediction
3	now of tube to tube variations. Tube temperatures
4	versus time are available from a fluctuating plume.
5	In the grand scheme of things, when you
6	step back, the mixing is still similar to the
7	experiments. That is where we landed there.
8	We looked at tube leakage in some detail,
9	ran a whole battery of tests. I guess the summary
10	there is that the tube leakage does not result in a
11	complete bypass of the inner plenum. The hot plume
12	rising to the inner plenum still mixes and still mixes
13	rather well. The tube, the leaking tube, does not
14	appear to pull the hot plume to itself.
15	Then we looked at a combustion engineering
16	plant and found that the inner plenum mixing in this
17	type of geometry is significantly different. Now,
18	this is a specific geometry. They have some various
19	designs. But in the one we looked at, which is
20	common, it had very little mixing compared to the
21	experiments.
22	This is the last slide, just to throw some
23	red meat.
24	VICE-CHAIRMAN WALLIS: Are you going to
25	have an animation? You are not going to have an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	animation of it?
2	MR. BOYD: I'll work on that.
3	VICE-CHAIRMAN WALLIS: Let me say, as I
4	said at the subcommittee meeting, when you showed us
5	animations of this kind of thing, too, this is really
6	very, very good, the development of these tools. The
7	thing which is wrong is that I think it has to do with
8	the interfacing with SCDAP/RELAP, sort of failing to
9	look at some of the key phenomena there and sort of
10	forcing the assumptions, rather than calculations, on
11	the solution.
12	If you had actually used CFD for both this
13	and the core, which is not ridiculous this looks
14	like a core here, not ridiculous at all. The core
15	looks like this. So what happens to the steam
16	generators? It is rather like what happens in the
17	core upside down.
18	MR. BOYD: The difference is the steam
19	generator is a simple geometry in the end. You have
20	got a bunch of skinny tubes. We sort of know what the
21	
22	VICE-CHAIRMAN WALLIS: How many tubes did
23	you model?
24	MR. BOYD: We modeled 200 and
25	VICE-CHAIRMAN WALLIS: SCDAP/RELAP model

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	are five in the core, five passages in the core?
2	MR. BOYD: We can come up with
3	VICE-CHAIRMAN WALLIS: Do you see what I
4	am saying?
5	MR. BOYD: I know what you are saying.
6	VICE-CHAIRMAN WALLIS: The thing you guys
7	have missed somehow, I think and I could, of
8	course, be completely wrong is that the key
9	questions about what is the flow in the hot leg come
10	out of full CFD analysis, not out of an assumption.
11	The power that goes to the steam generator has to be
12	an output of the calculation. It can in no way be an
13	input.
14	MR. BOYD: And the dilemma I talked to you
15	about is that what you are asking us to do is a CFD
16	analysis of a reactor vessel coolant.
17	VICE-CHAIRMAN WALLIS: There might be a
18	simpler way to do it, but there is no way you can do
19	away with the key question.
20	MR. BOYD: When you do simplified
21	analysis, what you are doing is you are putting big
22	tuning knobs in there.
23	VICE-CHAIRMAN WALLIS: I don't think so.
24	I think if you knew how to do it
25	MR. BOYD: If I knew the answer.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	VICE-CHAIRMAN WALLIS: CFD properly to
2	what happens in the top of the plenum there in the
3	core, most of these questions would not be answered.
4	MR. BOYD: This is typically a simplified
5	model. It works best if you know what the answer is.
6	If we are going to calculate directly what the answer
7	is, then what you are saying is we need to calculate
8	in detail with all that complex geometry our reactor
9	vessel.
10	VICE-CHAIRMAN WALLIS: I think you can do
11	it. You have a very good model here. I think if you
12	looked to how to model that interface between what you
13	did and what happens in the core, and maybe
14	SCDAP/RELAP can do the core all right; it's that
15	interfacing there which is screwed up you would be
16	predicting this percent of full power transport, not
17	assuming it. That is what you need to do.
18	I think if you give that some thought with
19	the talent you have shown in solving this problem,
20	maybe in a week you will know how to solve the other
21	one.
22	MR. BOYD: We have given it a fair amount
23	of thought, though. That is the dilemma we face. We
24	can definitely revisit it and try simpler models, but
25	the truth is when you do a simple model, you usually

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	
2	VICE-CHAIRMAN WALLIS: No. What I am
3	saying is if you don't do that, you have got a bogus
4	answer.
5	MR. BOYD: I will just put it out on the
6	table. What we had planned on doing is we are running
7	sensitivity studies. We were going to vary it through
8	a significant range, the widest range seen in the $1/7$
9	scale test. And then at that point, we can look at
10	the kinds of calculations that you are talking about.
11	There is also a need to wait until we find
12	out if it is significant or not. If we have ranged it
13	through a pretty wide range.
14	VICE-CHAIRMAN WALLIS: The percent of core
15	power
16	MR. BOYD: And in the end, they find out
17	that somebody's inability to determine where the flaws
18	are dominates or something else because it is a bigger
19	problem than just
20	VICE-CHAIRMAN WALLIS: This flow rate in
21	the hot leg, you have an input, MH in the hot leg
22	flow, right? Supposed that flow was zero. There
23	would be no heat transfer into the steam generator.
24	So you are assuming something right away.
25	The way you are putting that is on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

 subscale. So I think that is a good check, but w you get to a real reactor, you know you don't hav 	
2 you get to a real reactor, you know you don't hav	
	ea
3 basis for assuming things.	
4 MR. BOYD: I can guess that it is	not
5 zero.	
6 VICE-CHAIRMAN WALLIS: I will drop	the
7 subject. I think I have said enough.	
8 MR. BOYD: We understand. But I guess	you
9 need to look at it. We have looked at that,	the
10 vessel. It is so complex that it is difficult	to
11 model. So when you simplify it down into blocks t	hat
12 you are going to model, then you have got to put	in
13 coefficients. And if you knew the answer, you wo	uld
14 know just what coefficients	
15 VICE-CHAIRMAN WALLIS: SCDAP/RELAP car	n do
16 it with five channels. And you have umpteen in	the
17 steam generator. Surely you can, even with f	ive
18 channels, model the core or ten or something.	
19 MR. BOYD: They have got five chann	els
20 with knobs on them.	
21 VICE-CHAIRMAN WALLIS: You don't h	lave
22 knobs in CFD. It is an honest calculation.	
23 MR. BOYD: If you don't nodalize enou	.gh ,
24 then you have to put knobs in. I have got knobs	on
25 the tubes here. We talked about that yesterday.	We

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	are not even modeling the tubes in great detail, and
2	I have got knobs on those.
3	But they are easy to figure out because it
4	is just a skinny little tube in one-dimensional flow.
5	It is really a much easier knob to set and be
6	comfortable with.
7	We are willing to try, reevaluate this.
8	There are also some other methods that we could apply.
9	We could talk to you offline to couple the whole thing
10	and have a closed solution.
11	MEMBER RANSOM: One other aspect of this,
12	why are you using MELCOR for the severe core damage
13	accident? I thought that was the NRC's standard code
14	for severe accidents?
15	MR. BOYD: We are going to use MELCOR for
16	this. Right now the ball was rolling with RELAP.
17	RELAP was considered a little bit more advanced from
18	a thermal hydraulic point of view. Our job in a
19	simple way is to provide pressure, temperature, and
20	heat transfer coefficients to the tube integrity guys.
21	We thought SCDAP/RELAP had an edge maybe in that.
22	Now, MELCOR will be used because it can
23	track the fission products. And we are going to try
24	to repeat the SCDAP/RELAP5 analysis with MELCOR. And
25	then we would be tracking fission product.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. BRADLEY: Good afternoon. I am Dave Bradley from SAIC. SAIC is a subcontractor to Sandia National Labs. My coworker from SAIC, Paul Amico, is our PRA guy. I am kind of a phenomenology person. And that is the aspect of the program I will be working on.

7 Dave Kunsman is the Sandia staff member 8 that has overall responsibility and oversight for this 9 effort for SAIC. Roy Woods is the research staff 10 member who has responsibility from the NRC side for 11 this effort.

12 PRA-related activities The topic is related to the accident-induced containment bypass due 13 14 to steam generator tube rupture. I have got in front 15 of me the full presentation that I made to the subcommittee yesterday. All I am going to address 16 17 today are the last two slides, which provide an overview of the effort. So I am going to skip to the 18 19 If you need additional discussion, I can always end. 20 page back to the preceding slides.

21 We are developing a probablistic approach 22 containment bypass to treating due to severe 23 accident-induced steam generator tube rupture. The 24 assumption that we made at the onset of this effort 25 that this would be part of a risk-informed was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	224
1	application. What that means is that you need a PRA
2	with certain capabilities. The capabilities can be
3	established using the ASME PRA standard, which I think
4	is out in draft or final. Is it final now?
5	MR. BOYD: Final now.
6	MR. BRADLEY: That's final? That standard
7	provides a framework for establishing the capabilities
8	that you need for PRA to meet certain objectives. We
9	went through the standard. We provided a draft list
10	of capabilities that we thought would be needed for a
11	PRA to meet the needs of this project.
12	We also identified enhancements to the PRA
13	that would be needed for the specific area looking at
14	severe accident-induced steam generator tube rupture
15	accidents and containment bypass that would result
16	from that.
17	We prepared a draft methodology.
18	MEMBER APOSTOLAKIS: So what are they? I
19	mean, the fact that you did it
20	MR. BRADLEY: They are a long list of
21	enhancements. We went through the ASME standard point
22	by point, area by area, human factors.
23	MEMBER APOSTOLAKIS: But you felt you
24	needed to enhance the standard?
25	MR. BRADLEY: No. Why don't you address

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	it?
2	MR. AMICO: Paul Amico from SAIC. It is
3	not so much enhance the standard. The process says
4	you have to have certain capabilities. It also
5	mentions that in some cases for certain applications,
6	you may need to do enhancements to the PRA that are
7	not called for in the standard.
8	MEMBER APOSTOLAKIS: So give me a couple
9	of examples, Paul.
10	MR. AMICO: Okay. A couple.
11	MEMBER APOSTOLAKIS: Well, here, for
12	example, this particular issue. What kinds of
13	MR. AMICO: Partial failures.
14	MEMBER APOSTOLAKIS: What?
15	MR. AMICO: Partial failures. There are
16	some instances where partial failures; as an example,
17	leakage on the secondary side after the steam
18	generator goes dry. It isolates. It is not a stuck
19	open valve. But you just get some leakage by some
20	path. That generally is not included in a PRA because
21	it is generally not relevant to the kinds of accident
22	scenarios that we analyze.
23	But in this case, a small amount of
24	leakage could depressurize the steam generator. And

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 So we specify in there. We go through the 6 standard and say, "Okay. This part of your 7 application, this part could be category I capability. This could be category II. Certain aspects would need 8 9 to be category III. And, oh, by the way, it is not It is these specific areas within 10 the whole thing. 11 that, those things that are relevant to the specifics, 12 like steam generator containment bypass scenarios that could cause a greater threat to the tube." 13

14The reason we felt we needed to put those15in terms of enhancements or special studies is because16a person using the ASME standard probably wouldn't17think of those things.

18 We are using a plant-specific PRA but not

20 MEMBER SIEBER: In a generic sense? 21 MR. AMICO: In a generic sense, we are 22 using the Comanche Peak PRA. We are using flawed 23 distribution from another plant, the plant we have 24 data for. We are using the thermal hydraulic 25 responses from Zion because that is what all of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

19

	227
1	models were built for and we don't want the thermal
2	hydraulic people to have to go back and do it. So it
3	is a hybrid kind of a plant.
4	The similarities are enough that what we
5	are trying to do here is develop a methodology. If I
6	have certain information, can I implement this
7	methodology and use that information in a way to
8	calculate this, the release frequency from this kind
9	of a scenario?
10	MEMBER APOSTOLAKIS: I'm sorry I missed
11	the subcommittee meeting. The document is on its way?
12	MR. AMICO: The methodology was published
13	in June, and it is on Adams, yes. It should be in
14	your package. It was supplied to the subcommittee.
15	DR. MUSCARA: It was in the background
16	information.
17	MR. AMICO: Yes. Okay. Thank you, Joe.
18	MEMBER APOSTOLAKIS: I don't have it. Can
19	I get it? So that is not the point? You are
20	describing a document that is since last June.
21	MR. AMICO: In June. And, as you know,
22	when you are developing a methodology for something
23	you have never applied before, you expect it to
24	change. So we consider this to be a draft
25	methodology.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	The intent is and we call it
2	risk-informed application when we are done, we want
3	the methodology to say, "If you are going to do this,
4	Mr. Licensee, then go to the ASME standard and
5	evaluate." This is what we would expect to see.
6	So we are building the methodology,
7	saying, "Use the ASME standard in this way, rather
8	than writing a from-scratch methodology document."
9	MEMBER APOSTOLAKIS: Now, I am curious.
10	Did you find any recommendations at this time that you
11	felt were not necessary here? You said you went over
12	all of the recommendations in the standard and you
13	realized that certain things that we needed were not
14	there.
15	Did you feel that you needed everything
16	that is in the standard?
17	MR. BRADLEY: Yes. Essentially you still
18	need to have a complete PRA. It is just certain parts
19	of it can be at a low capability. I mean, you still
20	need the complete model. You have to do the
21	calculations. But some of them could be at a
22	relatively low capability level, not so
23	plant-specific. And you would still get a reasonably
24	good result, plant-specific result.
25	So you would have to actually look at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	document, where we say, "This probably isn't going to
2	matter. So you can be capability level 1 in
3	accordance with the standard." This area is extremely
4	important. There were certain aspects of HRA that
5	were extremely important, errors of commission, things
6	like that.
7	And we said, "That is to be capability
8	level 3. Here is why. Here is why." And that is in
9	that document.
10	MEMBER SIEBER: Well, that's not your
11	methodology. That is what is going on now.
12	MR. BRADLEY: The decision-making was
13	documented in the methodology document. We are
14	revising all of the decisions that were outlined
15	there. As Paul said, we do expect the methodology to
16	change, which is why it was issued as a draft and has
17	not been issued as a final.
18	Our plan is once you completed the
19	application, we know how the methodology will actually
20	work in practice. We will revise the methodology
21	document and publish it again with the application
22	attached and described. That would be our plan.
23	I did want to point out that the
24	methodology does use traditional PRA methods. For
25	this effort, we are drawing very heavily on the work

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	that was done for the PTS application, work very
2	closely with the folks at Sandia and the other SAIC
3	staff person, Allen Korkowsky, on the PTS.
4	MEMBER APOSTOLAKIS: I don't understand
5	the second bullet, "Underlying assumption will be
б	risk-informed." Why do you even have to say that?
7	MR. AMICO: I'm sorry. That should be
8	worded a little better. Risk-informed as envisioned
9	in the ASME standard. So what we are trying to say is
10	we are going to apply that approach, as opposed to
11	just doing a risk-informed.
12	MEMBER APOSTOLAKIS: That means everything
13	we do here.
14	MEMBER POWERS: Right. What we intended
15	and the bullet got shortened is that approach
16	specifically and linking it to the standard is what we
17	are saying.
18	MEMBER APOSTOLAKIS: G.E. intends to
19	submit what they call a PSA. I got befuddled. I'm
20	sorry. I'm sorry. I mixed it up with another
21	project. Anyway, the risk-informed application is
22	something someone else is doing.
23	MR. AMICO: Correct. So we are saying we
24	are that person, and we are approaching it in that way
25	so that when we are done, we can give it to somebody

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	else and say, "If you are that person and you follow
2	this path, you will get"
3	VICE-CHAIRMAN WALLIS: So you are creating
4	something that someone else can use in an application,
5	
6	MR. AMICO: Yes, an approach.
7	VICE-CHAIRMAN WALLIS: rather than
8	something the staff can use for verification?
9	MR. AMICO: It is the same thing.
10	VICE-CHAIRMAN WALLIS: It is not. What
11	the staff uses is quite different.
12	MEMBER ROSEN: What puzzles me a little
13	bit, Paul, is what you are suggesting is that you are
14	building a method so that every plant is going to do
15	a plant-specific analysis of this.
16	MR. AMICO: We have to develop a
17	methodology. And so what we decided to do is do it as
18	we were following ASME's approach to submitting
19	something to NRC.
20	MEMBER ROSEN: So the plan is this is a
21	regulatory issue. It is going to be solved once one
22	way?
23	MEMBER POWERS: Right. And what it means
24	is that if the NRC says, like in PTS, we would like
25	four examples

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	MEMBER SIEBER: In any event, there is no
2	harm in writing down what you are doing.
3	MEMBER POWERS: In the DPO document that
4	we wrote, one of the issues that we had to focus on
5	was, in fact, the human error rate in taking steps
6	once a steam generator tube rupture had occurred.
7	The conclusion that the panel reached was
8	what the staff had done up until then was consistent
9	with the best standards and human error analysis that
10	existed at the time.
11	We also recognized that had people used a
12	different methodology, they would have gotten
13	different results. It is really the rate of human
14	error of omission in this case.
15	There is the famous Korean paper presented
16	in an Italian forum probably by a German that shows
17	people using
18	MEMBER APOSTOLAKIS: Using a Finnish
19	simulator?
20	MEMBER POWERS: using various models of
21	human error, human error rates that they get different
22	results. In your work on this PRA, is that kind of
23	model uncertainty to be addressed or are you just
24	going to accept whatever methodology is adopted in
25	Comanche Peak analysis?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	MR. BRADLEY: Well, that could be true, I
2	guess, within the framework of the PRA itself, looking
3	at uncertainty in the accident frequencies that would
4	come out. I don't know what
5	MR. AMICO: The answer is we will look at
6	what Comanche Creek did. Also, we will be using the
7	approach that was used in PTS. Allen Kolaczkowski is
8	also working on this project. We are also going to
9	have Bill Hanaman, who also is an HRA expert that
10	looks at things a different way. John Forrester from
11	Sandia is also going to be involved. And we are
12	taking a very hard look at HRA and going to see what
13	kinds of errors need to be and how they need to be
14	included.
15	MEMBER POWERS: That would good because
16	the document the committee produced in that area is a
17	ringing endorsement to what the staff had, but it is
18	not terribly satisfactory because what it says is the
19	staff did what you could do at that time. It is just
20	that that is not very good.
21	And so I am heartened that you are going
22	to take a look at it and at least quantify or in some
23	way describe if we are good or bad.
24	MR. AMICO: We're going to use an
25	elicitation approach.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MEMBER APOSTOLAKIS: Not elicitation. 2 mean, elicitation is elicitation. But ATHEANA i 3 presumably dealing with the NRC Commission. 4 MR. AMICO: And we will have some o 5 those, yes. 6 MEMBER APOSTOLAKIS: That's not a ringin 7 endorsement of ATHEANA. We are spending a lot o 8 money on that. And we are going to have some of that 9 MEMBER POWERS: I don't know too muc 10 about these models and whatnot but what I know is tha 11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n 16 time at all for the operator to take an action, but i	f f f t
3 presumably dealing with the NRC Commission. 4 MR. AMICO: And we will have some of those, yes. 6 MEMBER APOSTOLAKIS: That's not a ringin endorsement of ATHEANA. We are spending a lot of money on that. And we are going to have some of that MEMBER POWERS: I don't know too much about these models and whatnot but what I know is tha for the steam generator rupture accident, you have t find out a period of time in which an operator has t take an action. That depends on the number of tube that you have ruptured. 15 If I rupture enough tubes, there is not a ringin the set of the se	f f f t
4 MR. AMICO: And we will have some of 5 those, yes. 6 MEMBER APOSTOLAKIS: That's not a ringin 7 endorsement of ATHEANA. We are spending a lot of 8 money on that. And we are going to have some of that 9 MEMBER POWERS: I don't know too much 10 about these models and whatnot but what I know is that 11 for the steam generator rupture accident, you have the 12 find out a period of time in which an operator has the 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is not	g E n t
 those, yes. MEMBER APOSTOLAKIS: That's not a ringin endorsement of ATHEANA. We are spending a lot o money on that. And we are going to have some of that MEMBER POWERS: I don't know too muc about these models and whatnot but what I know is that for the steam generator rupture accident, you have t find out a period of time in which an operator has t take an action. That depends on the number of tube that you have ruptured. If I rupture enough tubes, there is n 	g E n t
6 MEMBER APOSTOLAKIS: That's not a ringin 7 endorsement of ATHEANA. We are spending a lot o 8 money on that. And we are going to have some of that 9 MEMBER POWERS: I don't know too muc 10 about these models and whatnot but what I know is tha 11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	f · ·
7 endorsement of ATHEANA. We are spending a lot of 8 money on that. And we are going to have some of that 9 MEMBER POWERS: I don't know too muc about these models and whatnot but what I know is tha 10 about these models and whatnot but what I know is tha 11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	f · ·
8 money on that. And we are going to have some of that 9 MEMBER POWERS: I don't know too muc 10 about these models and whatnot but what I know is tha 11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	· n t
9 MEMBER POWERS: I don't know too muc 10 about these models and whatnot but what I know is tha 11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	n t
10 about these models and whatnot but what I know is that 11 for the steam generator rupture accident, you have to 12 find out a period of time in which an operator has to 13 take an action. That depends on the number of tubes 14 that you have ruptured. 15 If I rupture enough tubes, there is not accelerate the steam of tubes.	t D
11 for the steam generator rupture accident, you have t 12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	C
12 find out a period of time in which an operator has t 13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	
13 take an action. That depends on the number of tube 14 that you have ruptured. 15 If I rupture enough tubes, there is n	
14 that you have ruptured. 15 If I rupture enough tubes, there is n	С
15 If I rupture enough tubes, there is n	5
16 time at all for the operator to take an action, but i	C
	E
17 I rupture just a few, then there is a progressivel	Į
18 longer, longer time. And you have got to understan	f
19 that.	
20 That was just an area that we came awa	Į
21 saying, "Well, gee, you know, I know what th	9
22 state-of-the-art is, but I don't know how to approv	9
23 that very much." So you are going to take a look a	
24 it. I think that is great.	L V
25 MEMBER APOSTOLAKIS: That's exactly wha	t

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	235
1	ATHEANA is supposed to do: define the context first.
2	MR. WOODS: Let me spend 15 seconds. This
3	is Roy Woods with the staff. Clearly we want to use
4	the same expertise that we used on PTS. That involves
5	Allen Kolaczkowski and Donnie Whitehead. They
б	certainly were instrumental in developing the ATHEANA
7	method. They know what they know. They know how to
8	do that kind of elicitation. They know how to take
9	the kinds of things into effect.
10	And clearly there is an awful lot of
11	ATHEANA that is going into this. You can call it
12	ATHEANA or you can call it something else, but it is
13	that method, taking those things into account. You
14	guys have made us a little nervous.
15	MEMBER APOSTOLAKIS: No, but you are
16	making us nervous, too.
17	MR. WOODS: Then we make each other
18	nervous. We are using what we learned from that and
19	
20	MEMBER POWERS: We'll give you a huge form
21	to complain about ATHEANA in a different context
22	today. Let me ask a question, Roy, or just make a
23	comment.
24	Developing your expert elicitation, I will
25	tell you that when the group that prepared the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

236 1 document for the ACRS on the DPO came to this issue, 2 in our thinking on this that we certainly were 3 influenced on our opinion by the eyewitness accounts 4 of what went on during the Turkey Point blow-down, you 5 might want to in thinking about doing your elicitation try to reproduce that kind of information for your 6 7 elicitees so that as you try to develop context, you have some understanding of what a blow-down of that 8 9 looks like. MR. AMICO: Yes. One of the issues here, 10 11 of course, is that this particular study, we are 12 looking at the steam generator tube failing after the severe accident progression has started. It is going 13 14 to kind of be an interesting --15 MEMBER POWERS: You'll still get this 16 screaming, whistling, shocky, shaking, rattling rollercoaster kind of event if you have ever been 17 They are noisy. 18 around a tube that blows. And it 19 surely must have some impact on the human, perhaps 20 minor. 21 MEMBER APOSTOLAKIS: So when do you think 22 you will have a PRA, Paul? That's okay. No 23 questions.

24 MR. BRADLEY: Well, Paul already said 25 something about this, the first bullet on the next

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1slide. We are using an updated Comanche Peak PRA.2This is a 2002 version that they prepared and were3kind enough to4MEMBER APOSTOLAKIS: Excuse me. Has this5PRA gone through the peer review process, the PRA6process?7MR. AMICO: No, it has not yet.8MR. ERADLEY: So we have identified some9enhancements, as we mentioned earlier, that will be10required to meet the needs of the project. We are11going to incorporate those enhancements into the12existing Comanche Peak PRA model.13We will use the PRA to determine the14frequency of conditions that could lead to containment15bypass, the result of severe accident-induced steam16generator tube failures.17That is sort of the front end of the18analysis. The back end of the analysis is trying to19estimate the probability that the tube would fail20We have also taken on the task of doing21that by rolling in all of the existing tube failure22models that have been generated at Argonne we		slide. We are using an updated Comanche Peak PRA.
3kind enough to4MEMBER APOSTOLAKIS: Excuse me. Has this5PRA gone through the peer review process, the PRA6process?7MR. AMICO: No, it has not yet.8MR. BRADLEY: So we have identified some9enhancements, as we mentioned earlier, that will be10required to meet the needs of the project. We are11going to incorporate those enhancements into the12existing Comanche Peak PRA model.13We will use the PRA to determine the14frequency of conditions that could lead to containment15bypass, the result of severe accident-induced steam16generator tube failures.17That is sort of the front end of the18analysis. The back end of the analysis is trying to19estimate the probability that the tube would fail10before other RCS components under severe accident11conditions.12We have also taken on the task of doing13that by rolling in all of the existing tube failure	2	
4 MEMBER APOSTOLAKIS: Excuse me. Has this 5 PRA gone through the peer review process, the PRA 6 process? 7 MR. AMICO: No, it has not yet. 8 MR. BRADLEY: So we have identified some 9 enhancements, as we mentioned earlier, that will be 10 required to meet the needs of the project. We are 11 going to incorporate those enhancements into the 12 existing Comanche Peak PRA model. 13 We will use the PRA to determine the 14 frequency of conditions that could lead to containment 15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 We have also taken on the task of doing 21 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	_	This is a 2002 version that they prepared and were
5PRA gone through the peer review process, the PRA6process?7MR. AMICO: No, it has not yet.8MR. BRADLEY: So we have identified some9enhancements, as we mentioned earlier, that will be10required to meet the needs of the project. We are11going to incorporate those enhancements into the12existing Comanche Peak PRA model.13We will use the PRA to determine the14frequency of conditions that could lead to containment15bypass, the result of severe accident-induced steam16generator tube failures.17That is sort of the front end of the18analysis. The back end of the analysis is trying to19estimate the probability that the tube would fail20Defore other RCS components under severe accident21We have also taken on the task of doing23that by rolling in all of the existing tube failure	3	kind enough to
6 process? 7 MR. AMICO: No, it has not yet. 8 MR. BRADLEY: So we have identified some 9 enhancements, as we mentioned earlier, that will be 10 required to meet the needs of the project. We are 11 going to incorporate those enhancements into the 12 existing Comanche Peak PRA model. 13 We will use the PRA to determine the 14 frequency of conditions that could lead to containment 15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 We have also taken on the task of doing 21 We have also taken on the task of doing 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	4	MEMBER APOSTOLAKIS: Excuse me. Has this
7 MR. AMICO: No, it has not yet. 8 MR. BRADLEY: So we have identified some 9 enhancements, as we mentioned earlier, that will be 10 required to meet the needs of the project. We are 11 going to incorporate those enhancements into the 12 existing Comanche Peak PRA model. 13 We will use the PRA to determine the 14 frequency of conditions that could lead to containment 15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 We have also taken on the task of doing 21 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	5	PRA gone through the peer review process, the PRA
8 MR. BRADLEY: So we have identified some 9 enhancements, as we mentioned earlier, that will be 10 required to meet the needs of the project. We are 11 going to incorporate those enhancements into the 12 existing Comanche Peak PRA model. 13 We will use the PRA to determine the 14 frequency of conditions that could lead to containment 15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	6	process?
 9 enhancements, as we mentioned earlier, that will be required to meet the needs of the project. We are going to incorporate those enhancements into the existing Comanche Peak PRA model. 13 We will use the PRA to determine the frequency of conditions that could lead to containment bypass, the result of severe accident-induced steam generator tube failures. 17 That is sort of the front end of the analysis. The back end of the analysis is trying to estimate the probability that the tube would fail before other RCS components under severe accident conditions. 22 We have also taken on the task of doing that by rolling in all of the existing tube failure 	7	MR. AMICO: No, it has not yet.
required to meet the needs of the project. We are going to incorporate those enhancements into the existing Comanche Peak PRA model. We will use the PRA to determine the frequency of conditions that could lead to containment bypass, the result of severe accident-induced steam generator tube failures. That is sort of the front end of the analysis. The back end of the analysis is trying to estimate the probability that the tube would fail before other RCS components under severe accident conditions. We have also taken on the task of doing that by rolling in all of the existing tube failure	8	MR. BRADLEY: So we have identified some
11going to incorporate those enhancements into the12existing Comanche Peak PRA model.13We will use the PRA to determine the14frequency of conditions that could lead to containment15bypass, the result of severe accident-induced steam16generator tube failures.17That is sort of the front end of the18analysis. The back end of the analysis is trying to19estimate the probability that the tube would fail20before other RCS components under severe accident21conditions.22We have also taken on the task of doing23that by rolling in all of the existing tube failure	9	enhancements, as we mentioned earlier, that will be
12existing Comanche Peak PRA model.13We will use the PRA to determine the14frequency of conditions that could lead to containment15bypass, the result of severe accident-induced steam16generator tube failures.17That is sort of the front end of the18analysis. The back end of the analysis is trying to19estimate the probability that the tube would fail20before other RCS components under severe accident21conditions.22We have also taken on the task of doing23that by rolling in all of the existing tube failure	10	required to meet the needs of the project. We are
We will use the PRA to determine the frequency of conditions that could lead to containment bypass, the result of severe accident-induced steam generator tube failures. That is sort of the front end of the analysis. The back end of the analysis is trying to estimate the probability that the tube would fail before other RCS components under severe accident conditions. We have also taken on the task of doing that by rolling in all of the existing tube failure	11	going to incorporate those enhancements into the
 14 frequency of conditions that could lead to containment 15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure 	12	existing Comanche Peak PRA model.
15 bypass, the result of severe accident-induced steam 16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	13	We will use the PRA to determine the
16 generator tube failures. 17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	14	frequency of conditions that could lead to containment
17 That is sort of the front end of the 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	15	bypass, the result of severe accident-induced steam
 18 analysis. The back end of the analysis is trying to 19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure 	16	generator tube failures.
<pre>19 estimate the probability that the tube would fail 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure</pre>	17	That is sort of the front end of the
 20 before other RCS components under severe accident 21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure 	18	analysis. The back end of the analysis is trying to
21 conditions. 22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	19	estimate the probability that the tube would fail
22 We have also taken on the task of doing 23 that by rolling in all of the existing tube failure	20	before other RCS components under severe accident
23 that by rolling in all of the existing tube failure	21	conditions.
	22	We have also taken on the task of doing
24 models that have been generated at Argonne we	23	that by rolling in all of the existing tube failure
11	24	models that have been generated at Argonne we
25 talked a little bit about those a few minutes ago	25	talked a little bit about those a few minutes ago

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

incorporating a full spectrum or at least to the extent that we can the full spectrum of modeling uncertainties that go into the tube failure modeling. We are also going to look at once a tube fails, what the leakage rate is from that tube because a single tube may not give you a large release in a large containment bypass type of accident.

8 So we need to accumulate leakage until you 9 have got a sufficient level of leakage that you have 10 a concern for off-site consequences. So we are going 11 to actually calculate tube failures in sequence until 12 we get to that leakage level that is critical.

What we will do is the outcome of this analysis would be an uncertainty on the time at which you have reached that critical leakage level as a result of tube failures. We want to then couple that with the uncertainty distribution for failure of other RCS components.

19There may be some overlap between these20two distributions. And that would be a condition in21which the tubes could fail before you fail other RCS22components. The outcome of this effort would be what23the conditional probability of tube failure is.24VICE-CHAIRMAN WALLIS: This looks like a

major operation to me. Putting together all of these

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	239
1	physical models and doing a Monte Carlo analysis is
2	not a trivial task.
3	MR. WOODS: Yes. I think the NRC is
4	learning that these things really are
5	multi-disciplined. I mean, a lot of safety problems
6	are multi-disciplined. PTS was. And if you want to
7	tackle it, then you have to take into account the
8	different areas that affect what you are doing. These
9	become huge tasks. Yes, they are.
10	MEMBER POWERS: If you can do it as well
11	as PTS, you will score big points.
12	VICE-CHAIRMAN WALLIS: If we spend that
13	much money, we will be broke.
14	MEMBER POWERS: Well, yes. That is true,
15	too.
16	VICE-CHAIRMAN WALLIS: The risk here is,
17	of course, if you just say, "We need" more and more
18	and more information to get a better and better and
19	better understanding of the uncertainties. So someone
20	has to maintain a management understanding of are we
21	focusing on the right things?
22	MR. BRADLEY: Well, as we go through, we
23	are going to hope to identify the things that are most
24	important and try to simplify things a little bit. It
25	turns out that one aspect

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	240
1	VICE-CHAIRMAN WALLIS: You can simplify.
2	You don't have to get this tremendous knowledge base
3	about everything.
4	MR. BRADLEY: That is the whole thing
5	because I think the problem is very challenging.
б	MEMBER ROSEN: What are the key operator
7	actions, the risk-significant operator actions that
8	you are looking at?
9	MR. BRADLEY: At this point we don't know.
10	Anything that affects conditions on the primary or
11	secondary side, it is a wide variety of potential
12	operator actions and things that the operator might do
13	as a result of the severe accident management
14	guidelines.
15	MR. AMICO: That review has just started.
16	As of about two weeks ago, we started the review of
17	the HRA that is in. Plus, we are reviewing the
18	procedures, Westinghouse procedures, the severe
19	accident guidelines, and trying to determine what
20	needs to be done. So that started about two weeks
21	ago.
22	VICE-CHAIRMAN WALLIS: May I ask, Dr.
23	Ford, if you think we will be finished.
24	MEMBER FORD: You will be finished at 3:00
25	o'clock.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	MR. BRADLEY: The last point on this slide
2	is simply to indicate, as has been mentioned already,
3	that this is an interdisciplinary effort. We are
4	going to require a lot of input and a lot of
5	interaction between us and the thermal hydraulics
6	folks, a lot of interaction with the tube integrity
7	experts and Argonne, a lot of interaction with the
8	experts that are looking at failure of other RCS
9	components. So this is like the PTS effort. We will
10	involve this interdisciplinary team and a lot of
11	integration between these efforts. That is all I
12	have.
13	MEMBER POWERS: I guess I want to correct
14	my question to you, Roy. We have the steam generator
15	integrity DPO stuff, but this seems to go afield from
16	that quite a bit. I mean, it looks like you are
17	addressing another question.
18	Can you evolve ordinary accidents into
19	bypass accidents is what I think you are trying to
20	address here. Is that correct?
21	MR. WOODS: This is quite a bit beyond,
22	but we hope to eventually kind of back up and include
23	more of what is in the DPO, main steam line breaks and
24	that sort of thing.
25	MEMBER POWERS: It seems to me that one of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	the things we would like to know out of that, in that
2	context of the DPO, is, are there flaws that we
3	currently find acceptable that in severe accident
4	space considerably exacerbate our risk? Is that one
5	of your targets here? Are you going to give us some
6	information that answers that question?
7	MR. WOODS: I am not sure we are looking
8	at it that way, but we will produce information that
9	could be used for that if that is what you want to do.
10	MEMBER POWERS: Yes. I mean, it seems to
11	me that is what I would like. This whole idea of the
12	alternate repair criteria is we can identify flaws
13	that we can continue to allow to exist in the steam
14	generator tubes without exacerbating the risks
15	exceptionally.
16	We have done that using a variety of
17	classic metallurgical analyses, but we never took that
18	onto the severe accident space before and asked the
19	question that has always nagged on people, do we get
20	an evolution of severe accidents by whatever
21	initiation? They will go to the containment bypass
22	accident. Are there flaws that we augment the
23	probability of that evolution in an unacceptably large
24	way?
25	I mean, it seems to me that in that world

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

of alternate repair criteria, that is information they 2 would really like to have because it might not ever be 3 revealed by these more classic metallurgical kinds of 4 analyses.

5 MR. LONG: This is Steve Long with the NRR staff. Let me assure you that is one of the things we 6 7 are highly interested in, not so much that we think that the 9505 ARCs are subject to a problem because 8 9 they are limited to areas of the tubes that are 10 confined by structures.

11 We don't expect them to rupture or even 12 leak anything other than a potentially very large blow-down force that would actually displace the 13 14 confinement for the support place. But for other 15 types of flaws for evaluations we do for the 16 significance determination process for the RLP, this 17 is a very important question. We have our eyes 18 squarely on it.

19 We do intend to get that information out 20 of this study.

21 MEMBER POWERS: Okay. That would be nice 22 if that kind of showed up on a viewgraph someplace. 23 MR. LONG: As soon as we think we have the 24 answer, we will let you know.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

The model will provide the MR. BRADLEY:

25

1

	244
1	flaws that are bad from the standpoint of failing
2	early and also from the standpoint of large leakage.
3	So that will come out of our analysis.
4	DR. MUSCARA: And the study point, of
5	course, is flaw distribution, so flaws that are
6	potentially there and generate the normal operation.
7	MEMBER APOSTOLAKIS: Is this where you
8	have your meetings? Is this where you have your
9	meetings?
10	MEMBER SHACK: It's ACRS' computer. That
11	is where we have our meetings.
12	MEMBER FORD: Okay. I think we're moving
13	on right now.
14	DR. MUSCARA: Yes. The NRR staff will be
15	presenting the next two issues. The first one will be
16	the iodine spiking issue and then if there is time, we
17	will talk about the voltage correlations.
18	VICE-CHAIRMAN WALLIS: But we will finish
19	by 3:00. We just have two more issues.
20	MEMBER FORD: We're taking the next one
21	definitely now, the iodine spiking. If we don't have
22	the time to do the next one, we will not give it. We
23	will finish at 3:00.
24	MS. HART: This is Michelle Hart. I am
25	from the NRR staff, and I will be here to talk to you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

about what we have done on iodine spiking so far. As I said in the subcommittee meeting, we had looked at the raw data from studies that you all had previously looked at as well. And we did not come up with anything that would show that our spiking factors are non-conservative considering the conservatisms in our dose analyses overall.

1

2

3

4

5

6

7

24

8 There was a question from Mr. Kress on 9 whether with the higher spiking factors that are in 10 the NUREG if we would still meet Part 100 limits. We 11 went back yesterday and looked at that just to make 12 sure. We did add in that square root of ΔP adjustment 13 factor to scale from the steam generator to rupture to 14 the main steam line break. I can show you --

18 MEMBER KRESS: That was going to be my 19 next question.

 20
 MEMBER POWERS: I mean, how can we know

 21
 that the square root of △P is the scaling factor to

 22
 use?

 23
 MS. HART: We don't. It was given to us

25 he thought that, all things considered, that would be

by Dr. Adams, who did some of the tests. He said that

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

	246
1	the most that the scaling factor, the adjustment
2	factor would be
3	MEMBER KRESS: Is there a technical
4	rationale for that?
5	MS. HART: I was not involved with that
6	portion of it. And there are no words behind that.
7	I pulled it directly from the staff's response to the
8	DPO.
9	MEMBER KRESS: When you say " $ riangle$ P," which
10	$\triangle P?$
11	MS. HART: The change in reactor pressure
12	to depressurization.
13	MEMBER KRESS: Change with time or
14	difference? It is a difference in pressure.
15	MS. HART: Difference in pressure.
16	MEMBER KRESS: What difference is this
17	that we are talking about?
18	MS. HART: Before and after the main steam
19	line break. Pre versus post is my understanding.
20	VICE-CHAIRMAN WALLIS: Do you mean the
21	maintenance only
22	MEMBER KRESS: So it's the starting
23	pressure, and then to come down, you've got an ending
24	pressure. And it's those two?
25	VICE-CHAIRMAN WALLIS: Well, the next

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	table is the square foot of $ riangle P$ is 4. Does that mean
2	that △P is 16 psi?
3	MS. HART: That number I actually pulled
4	from the NUREG, from the ad hoc subcommittee. And
5	that is the
6	VICE-CHAIRMAN WALLIS: Is it the square
7	foot of megapascales or something? What is it?
8	MR. DOWNIG: Excuse me. This is Bob
9	Downig. I am the section chief of containment
10	accident and dose assessment. We are kind of pleading
11	nolo contendere on the $ riangle P$, square root of $ riangle P$. And
12	that is one of the reasons why you see in the third
13	bullet up there the need for additional data.
14	If one wants to have a defensible firm
15	basis to go forward with whether we want this to do
16	something immediately, to take a conservative approach
17	immediately, or down the road to come up with
18	something mechanistic, either way we are going to need
19	additional data.
20	And that square root of $ riangle$ P factor, as far
21	as I can tell, won't bear scrutiny.
22	MS. HART: Nevertheless, if we take the
23	spiking factors that you all had determined in the
24	subcommittee, ad hoc subcommittee paper, the NUREG,
25	and applied that to a main steam line break analysis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	with the tech spec limits and the 500 time spiking
2	factor that we assume gives you a 30 rem thyroid dose
3	and then you apply the new spiking factors with the
4	pressure adjustment factor, all of those resulting
5	doses do remain below the full Part 100 limits.
6	And I do have the next slide is a chart of
7	that. I understand the chart is not necessarily
8	intuitively obvious.
9	MEMBER KRESS: What is the relationship
10	between the four and the nine? Are those two
11	different accident sequences?
12	MS. HART: That was just the range that
13	was given
14	MEMBER KRESS: That was a range.
15	MS. HART: in the NUREG paper that the
16	square root of $ riangle$ P was thought to be somewhere between
17	four and nine.
18	MEMBER KRESS: It was between four and
19	nine.
20	MS. HART: Right.
21	MEMBER KRESS: Your note at the bottom on
22	the off-site thyroid dose acceptance criteria had been
23	30 rem for steam line break?
24	MS. HART: That is correct.
25	MEMBER KRESS: Which of these does that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

<pre>1 compare to? 2 MS. HART: Overall any main steam li 3 break with the accident-induced iodine spiking, 4 would expect the licensee to show that they are with</pre>	we
3 break with the accident-induced iodine spiking,	we
4 would expect the licensee to show that they are with	in
5 30 rem thyroid.	
6 MEMBER KRESS: Is that 73 rem there	in
7 that?	
8 MS. HART: That does not meet that low	er
9 acceptance criteria, but it is within the 300 r	em
10 thyroid Part 100 limits.	
11 MR. DOWNIG: This is to address yo	ur
12 concern from yesterday, where we were trying to figu	re
13 out margin to Part 100. So we went back, and we sai	d,
14 "Look, we will just take the numbers that are in t	he
15 NUREG. We will apply the adjustment factor for t	he
16 pressure shift to scale this data from trips to ma	in
17 steam line break, this hypothetical figure, and	we
18 will see where we come out on this thing."	
19 It was to address your concern about whe	re
20 are we sitting here today if we take that as the w	ay
21 things really are in nature. So that is what we di	d.
22 The purpose of this is to demonstrate th	at
23 we still I mean, we are not meeting the 30 if the	is
24 is true. We have places where we are going to go ov	er
25 that but still within the 300 and again remindi	ng

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

everybody that these are accident doses and not 2 anything that is supposed to be the acceptable dose. 3 This is a design dose. So that was the purpose of 4 this.

5 The other point, I believe, is that we have one plant that is at the .1. Everybody else is 6 7 above that. Most plants have the one. So that is where we are today. Hypothesizing, we take the NUREG 8 9 results and lay it on. And where do we come out?

10 MS. HART: It is mostly the plants that 11 have implemented the alternate repair criteria that 12 are at 30 rem thyroid because they have got to calculate to see how much leakage they can get. 13

14 The other plants, the majority of plants, 15 the ones that are at one microCurie per gram, are nowhere near 30 rem thyroid right now with the 16 standard SRP assumptions and the lower leakage. They 17 are on the order of .1. 18

19 MEMBER KRESS: It still seems to say that 20 you are bucking up against where you would think about 21 whether or not you are meeting the design basis 22 criteria or not. That is the way the table looks to 23 me. 24 MR. DOWNIG: Go to the next slide and show

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 him.

1

	251
1	MS. HART: To help address some of that
2	concern, there are several conservatisms in a design
3	basis accident analysis. We use a 95 percentile
4	meteorology. The dose is the middle of the plume.
5	MEMBER POWERS: When you made the decision
6	to use 95 percentile methodology, did you make that
7	decision because you wanted to compensate for your
8	uncertainty in the spiking factor?
9	MS. HART: No.
10	MEMBER POWERS: You compensated for
11	something else with that?
12	MS. HART: We are compensating for the
13	fact that any meteorological condition could happen at
14	the time of the accident. That is what that
15	conservatism is really about.
16	MR. DOWNIG: Our general practice is where
17	there is a choice of two things, we pick the worst,
18	but we drive it to the farthest extent that we can.
19	So I don't think there is any coordination to manage
20	the overall uncertainty in any of this. It is just
21	conservatism laid on conservatism laid on
22	conservatism.
23	MEMBER KRESS: But this is the nature of
24	design basis accidents.
25	MS. HART: Right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	252
1	MEMBER KRESS: Specify these things. When
2	you specify acceptance criteria, then they all work
3	together.
4	MS. HART: Right.
5	MEMBER KRESS: So claiming conservatisms
6	doesn't help me in there because it is part of the
7	design basis concept. They are there for some reason.
8	I don't know why. Maybe we have over-specified the
9	acceptance criteria, but suppose we have acceptance
10	criteria that goes along with these conservatisms.
11	MS. HART: I don't know if that is exactly
12	the case.
13	MEMBER KRESS: But you know that is the
14	general nature of a design basis accident.
15	MS. HART: That is the general concept.
16	The major ones, of course, you know, for this spiking
17	is we do have a lower acceptance criteria for their
18	design that they are supposed to meet the ten percent
19	of the full Part 100 is what they are supposed to
20	meet.
21	MEMBER KRESS: Where did that come from?
22	Do you know?
23	MS. HART: That I don't know. There is
24	nothing that says what that is about. There are
25	several accidents that if they have a higher

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	probability of occurring, they lower the acceptance
2	criterion. And I think that that is the major reason
3	why those exist, those lower acceptance criteria.
4	That is the list of analysis,
5	conservatisms, and ones that mainly are related to
6	this particular accident so that we don't take credit
7	for the plate out of iodine on steam generator
8	surfaces. We don't take credit for retention or
9	dilution in the building that it is released to. And
10	partitioning of the iodine is not fully credited.
11	MR. DOWNIG: Basically, what we intend to
12	do from this point on is I think, number one, in
13	response to the concerns yesterday about what did we
14	do with the analysis in the NUREG and how did we
15	respond to that, the term "reduce" was used.
16	I think we need to go back and take what
17	we have done. And we have to go through your NUREG
18	point by point and lay that out and take our data set
19	and lay it against your data set and see why we are
20	coming out somewhere different.
21	MEMBER POWERS: I would certainly hope
22	that our data set and your data set were the same.
23	Considering the struggle we had to find out what your
24	data set was, that may not be the case. You know, the
25	DPO document comes in and says, "Is there a linear

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 correlation with the coolant activity and the spiking 2 factor? What is the issue?" and the staff says, "Not 3 enough to worry about and the different professional 4 opinion says, "There is one to worry about," our 5 document comes back and says, "Well, it had not analyzed the data set correctly. There are two sets 6 7 of data here two different populations here," and if we look for a correlation, the problem that they have 8 9 in the interpretation is the time the data were presented, nobody was looking for such a correlation. 10 11 They thought they were sampling a particular number, 12 instead of sampling from a slope. It doesn't really matter. We didn't like 13 14 the way they had done the slope. We thought that they 15 were taking the independent variable as having zero uncertainty; whereas, it had at 16 least as much uncertainty as the dependent variable. 17 We came back and said, "The fundamental 18 19 problem is they don't have a phenomenological 20 understanding of the source of this spiking." So you 21 are taking a stridently empirical approach. 22 I take it from this response that what you 23 are saying is "Don't care. We are going to take a 24 stridently empirical approach on this." 25 MR. DOWNIG: No, we are not saying we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

254

1don't care. What we are saying is that this is a2tough call in the sense that to put this to bed, to3understand it fully, we think that it requires4additional data. We don't have any particular basis5for the square root of ΔP thing.6We have limited data sets that were7collected under certain circumstances. And their8pedigree is not for steam. To put this to bed, we9would need to think about, examine ways to get10additional data to address these areas.11So one of the things that we think is12necessary is for us to work with some folks and13research and others as necessary to see what it would14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the25data I already have before I go off and try to get		255
understand it fully, we think that it requires additional data. We don't have any particular basis for the square root of ΔP thing. We have limited data sets that were collected under certain circumstances. And their pedigree is not for steam. To put this to bed, we would need to think about, examine ways to get additional data to address these areas. So one of the things that we think is necessary is for us to work with some folks and research and others as necessary to see what it would take to have a defensible and empirical base to build a model from to address the situation and see what that looks like. MEMBER POWERS: But you have people who have advanced models already out there. I mean, I believe the first model I found in this regard was published in 1968 or '9, something like that. And there has subsequently been some work by Fernando Iglesias and Brent Lewis put together a model on that. I mean, isn't that where you want to start and say, "Are these models any good looking at the	1	don't care. What we are saying is that this is a
4additional data. We don't have any particular basis5for the square root of ΔP thing.6We have limited data sets that were7collected under certain circumstances. And their8pedigree is not for steam. To put this to bed, we9would need to think about, examine ways to get10additional data to address these areas.11So one of the things that we think is12necessary is for us to work with some folks and13research and others as necessary to see what it would14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	2	tough call in the sense that to put this to bed, to
5 for the square root of ΔP thing. 6 We have limited data sets that were 7 collected under certain circumstances. And their 8 pedigree is not for steam. To put this to bed, we 9 would need to think about, examine ways to get 10 additional data to address these areas. 11 So one of the things that we think is 12 necessary is for us to work with some folks and 13 research and others as necessary to see what it would 14 take to have a defensible and empirical base to build 15 a model from to address the situation and see what 16 that looks like. 17 MEMBER POWERS: But you have people who 18 have advanced models already out there. I mean, I 19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	3	understand it fully, we think that it requires
6We have limited data sets that were7collected under certain circumstances. And their8pedigree is not for steam. To put this to bed, we9would need to think about, examine ways to get10additional data to address these areas.11So one of the things that we think is12necessary is for us to work with some folks and13research and others as necessary to see what it would14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	4	additional data. We don't have any particular basis
7collected under certain circumstances. And their pedigree is not for steam. To put this to bed, we would need to think about, examine ways to get additional data to address these areas.10additional data to address these areas.11So one of the things that we think is necessary is for us to work with some folks and research and others as necessary to see what it would take to have a defensible and empirical base to build a model from to address the situation and see what that looks like.17MEMBER POWERS: But you have people who have advanced models already out there. I mean, I believe the first model I found in this regard was published in 1968 or '9, something like that. And there has subsequently been some work by Fernando Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start and say, "Are these models any good looking at the	5	for the square root of $ riangle P$ thing.
8 pedigree is not for steam. To put this to bed, we 9 would need to think about, examine ways to get additional data to address these areas. 11 So one of the things that we think is 12 necessary is for us to work with some folks and 13 research and others as necessary to see what it would 14 take to have a defensible and empirical base to build 15 a model from to address the situation and see what 16 that looks like. 17 MEMBER POWERS: But you have people who 18 have advanced models already out there. I mean, I 19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	6	We have limited data sets that were
9 would need to think about, examine ways to get additional data to address these areas. 11 So one of the things that we think is necessary is for us to work with some folks and research and others as necessary to see what it would take to have a defensible and empirical base to build a model from to address the situation and see what that looks like. 17 MEMBER POWERS: But you have people who have advanced models already out there. I mean, I believe the first model I found in this regard was published in 1968 or '9, something like that. And there has subsequently been some work by Fernando Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start and say, "Are these models any good looking at the	7	collected under certain circumstances. And their
10additional data to address these areas.11So one of the things that we think is12necessary is for us to work with some folks and13research and others as necessary to see what it would14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	8	pedigree is not for steam. To put this to bed, we
11So one of the things that we think is12necessary is for us to work with some folks and13research and others as necessary to see what it would14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	9	would need to think about, examine ways to get
12 necessary is for us to work with some folks and 13 research and others as necessary to see what it would 14 take to have a defensible and empirical base to build 15 a model from to address the situation and see what 16 that looks like. 17 MEMBER POWERS: But you have people who 18 have advanced models already out there. I mean, I 19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	10	additional data to address these areas.
research and others as necessary to see what it would take to have a defensible and empirical base to build a model from to address the situation and see what that looks like. MEMBER POWERS: But you have people who have advanced models already out there. I mean, I believe the first model I found in this regard was published in 1968 or '9, something like that. And there has subsequently been some work by Fernando Iglesias and Brent Lewis put together a model on that. I mean, isn't that where you want to start and say, "Are these models any good looking at the	11	So one of the things that we think is
14take to have a defensible and empirical base to build15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	12	necessary is for us to work with some folks and
15a model from to address the situation and see what16that looks like.17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	13	research and others as necessary to see what it would
16 that looks like. 17 MEMBER POWERS: But you have people who 18 have advanced models already out there. I mean, I 19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	14	take to have a defensible and empirical base to build
17MEMBER POWERS: But you have people who18have advanced models already out there. I mean, I19believe the first model I found in this regard was20published in 1968 or '9, something like that. And21there has subsequently been some work by Fernando22Iglesias and Brent Lewis put together a model on that.23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	15	a model from to address the situation and see what
18 have advanced models already out there. I mean, I 19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	16	that looks like.
19 believe the first model I found in this regard was 20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	17	MEMBER POWERS: But you have people who
20 published in 1968 or '9, something like that. And 21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	18	have advanced models already out there. I mean, I
21 there has subsequently been some work by Fernando 22 Iglesias and Brent Lewis put together a model on that. 23 I mean, isn't that where you want to start 24 and say, "Are these models any good looking at the	19	believe the first model I found in this regard was
Iglesias and Brent Lewis put together a model on that. I mean, isn't that where you want to start and say, "Are these models any good looking at the	20	published in 1968 or '9, something like that. And
23I mean, isn't that where you want to start24and say, "Are these models any good looking at the	21	there has subsequently been some work by Fernando
and say, "Are these models any good looking at the	22	Iglesias and Brent Lewis put together a model on that.
	23	I mean, isn't that where you want to start
25 data I already have before I go off and try to get	24	and say, "Are these models any good looking at the
	25	data I already have before I go off and try to get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	256
1	more data?" because Lord knows collecting data in this
2	particular area is a very tough job to do. I mean,
3	collecting good data in this area is a very tough job.
4	MEMBER KRESS: I might be willing to say
5	that maybe we have got a bad rule on the books and go
6	back and make some sort of risk-related analysis to
7	see if it is really worth going to all of this effort
8	to get this additional.
9	Intuitively one looks at this thing and
10	says, "This doesn't look like a real risk to me."
11	Although the numbers when you do this exercise, you
12	are bucking up against some criteria, I think I would
13	think about maybe challenging the rule a little bit.
14	I know that is not normally done. You
15	have got rules on the book that have to be met. But
16	we are in the risk-informed world again. I think
17	maybe if you take a risk-informed look at this, maybe
18	it is not worth going to spending all of this money to
19	really put this to bed.
20	I think I would think about that first and
21	then maybe you might decide differently.
22	MR. DOWNIG: Okay. Well, there's
23	obviously more to come. We will take the next step.
24	It is our objective to address your concerns.
25	MEMBER KRESS: We appreciate that.

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

ĺ	257
1	MEMBER FORD: Are there any more comments
2	on this particular issue?
3	VICE-CHAIRMAN WALLIS: Has anything been
4	resolved? There is some more work. Okay. Okay. I
5	thought so.
6	MEMBER SIEBER: They said it requires
7	additional data unless you are going to generate
8	experiments.
9	MEMBER KRESS: My data says it is
10	expensive to do that.
11	MEMBER SIEBER: Yes. And that is an
12	alternative, which is
13	MEMBER POWERS: Once more, I think you run
14	into the problem Bill has on the leakage voltage curve
15	for some of his tubes. Even if you collect some more
16	data, you have got this hugely scattered preexisting
17	database. And unless you collect data to overwhelm
18	that preexisting database, all you have done is to add
19	a little more scatter to an already scattered
20	database.
21	I am not sure you get anywhere with data.
22	I think you have got to to do two things. I think you
23	need to do the question and say, "Is this risk worth
24	meeting on? Is there something I am trying to achieve
25	here more than what is transparently obvious?"

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	And you come back and say, "Well, no. I
2	am going to go beat on this one." Then I think you
3	sit down and say, "Can I understand why this is coming
4	about, even if I only get things in round numbers? I
5	mean, if I only understand trends here, before I go
6	off and launch into another database, it is just like
7	your tubes. You have got a shotgun pattern. How many
8	hundreds of tubes would you have to get data on to
9	turn that shotgun pattern into a straight line if you
10	have got data that was from a population to fill on a
11	straight line?"
12	I mean, it would be a block. You could
13	overwhelm what you have already done.
14	MEMBER KRESS: Good point, Dana.
15	MEMBER FORD: I would like to unless
16	anybody wants to continue this discussion bring it to
17	a close. Joe, would you like to have any closing
18	remarks?
19	DR. MUSCARA: I don't think beyond what we
20	had yesterday.
21	MEMBER FORD: I think my closing remark is
22	thank you very much, you and your colleagues. The
23	presentations of the last three days were meant to be
24	for informational purposes. And the staff, at least,
25	are not requesting a letter. Is that my continued

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	259
1	understanding?
2	On that point, I turn it back to you, Mr.
3	Chairman.
4	VICE-CHAIRMAN WALLIS: We're going to take
5	a break. And then we come back. We are going to take
6	up the matter, I understand, of the research, Paul?
7	MEMBER POWERS: I think we are going to
8	take up the research reviews.
9	VICE-CHAIRMAN WALLIS: The research
10	reviews. Okay, research reviews, rather than research
11	report.
12	MEMBER POWERS: I think we can go off the
13	transcript.
14	VICE-CHAIRMAN WALLIS: We can go off the
15	transcript or we are going to have something else
16	later on?
17	MEMBER POWERS: No.
18	VICE-CHAIRMAN WALLIS: We don't need the
19	transcript after now. Thank you very much. We will
20	take a break until 20 minutes past 3:00.
21	(Whereupon, at 3:04 p.m., the foregoing
22	matter was recessed, to reconvene in
23	closed session at 3:20 p.m.)
24	
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701