Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
	506th Meeting

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Thursday, October 2, 2003

Work Order No.: NRC-1102

Pages 1-126

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1 UNITED STATES OF AMERICA	
2 NUCLEAR REGULATORY COMMISSION	
3 + + + + +	
4 ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (AC	RS)
5 506th MEETING	
6 + + + + +	
7 THURSDAY,	
8 OCTOBER 2, 2003	
9 + + + + +	
10 ROCKVILLE, MARYLAND	
11 The committee met at the Nu	clear
12 Regulatory Commission, Two White Flint N	orth,
13 Room T2B3, 11545 Rockville Pike, at 12:30	p.m.,
14 Mario V. Bonaca, Chairman, presiding.	
15 COMMITTEE MEMBERS:	
16 MARIO V. BONACA, Chairman	
17 GRAHAM B. WALLIS, Vice Chairman	
18 F. PETER FORD, Member	
19 THOMAS S. KRESS, Member	
20 GRAHAM M. LEITCH, Member	
21 DANA A. POWERS, Member	
22 VICTOR H. RANSOM, Member	
23 STEPHEN L. ROSEN, Member	
24 WILLIAM J. SHACK, Member	
25 JOHN D. SIEBER, Member	

	2
1	ACRS STAFF PRESENT:
2	SHER BAHADUR, Associate Director, ACRS/ACNW
3	RALPH CARUSO, ACRS Staff
4	I. JERRY DOZIER, Reactor Safety Engineer
5	SAM DURAISWAMY, Technical Assistant, ACRS/ACNW
6	MEDHAT EL-ZEFTAWY, ACRS Staff
7	JOHN FLACK, NRC Staff
8	CORNELIUS HOLDEN, NRC Staff
9	HOWARD J. LARSON, Special Assistant, ACRS/ACNW
10	HOSSEIN P. NOURBAKHSH, ACRS Senior Fellow
11	WILLIAM S. RAUGHLEY, Senior Electrical Engineer
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

Interpretend Interpretend 2 AGENDA ITEM PAGE 3 Review of the PIRT Process 10 4 Operating Experience Assessment Report - 5 5 Effects of Grid Events 58 6 - - 7 - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - - 15 - - - - 16 - - - - 17 - - - - 18 - - - - 19 - - - - 20 - - - - 21 - - - - 22 - - -<			3
3 Review of the PIRT Process 10 4 Operating Experience Assessment Report - 5 5 Effects of Grid Events 58 6 - - 7 - - 8 - - - 9 - - - 10 - - - 11 - - - 12 - - - 13 - - - 14 - - - 15 - - - 16 - - - 17 - - - 18 - - - 19 - - - 20 - - - 21 - - - 22 - - - 23 - - - 24 - - -	1	I-N-D-E-X	
4 Operating Experience Assessment Report - 5 Effects of Grid Events 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2	AGENDA ITEM	PAGE
5 Effects of Grid Events 58 6	3	Review of the PIRT Process	10
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4	Operating Experience Assessment Report -	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5	Effects of Grid Events	58
8 9 9 10 10 11 12 13 14 15 15 16 17 18 19 20 21 21 22 23 23 24	6		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7		
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8		
11 12 13 14 15 16 17 18 19 20 21 22 23 24	9		
12 13 14 15 16 17 18 19 20 21 22 23 24	10		
13 14 15 16 17 18 19 20 21 22 23 24	11		
14 15 16 17 18 19 20 21 22 23 24	12		
15 16 17 18 19 20 21 22 23 24	13		
16 17 18 19 20 21 22 23 24	14		
17 18 19 20 21 22 23 24	15		
18 19 20 21 22 23 24	16		
19 20 21 22 23 24	17		
20 21 22 23 24	18		
21 22 23 24	19		
22 23 24	20		
23 24	21		
24	22		
	23		
	24		
25	25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(12:33 p.m.)
3	CHAIRMAN BONACA: Let's get started and
4	wrap up this briefing on fire issues.
5	MEMBER ROSEN: Are we on the record or
6	not?
7	CHAIRMAN BONACA: Yes.
8	MEMBER ROSEN: Okay. Now, you asked me to
9	go back, Mr. Chairman, and talk again about the fire
10	dynamics tools.
11	CHAIRMAN BONACA: Not just a complete
12	I mean, I thought that
13	MEMBER ROSEN: Okay. No, I was on the
14	fourth issue, which is the
15	CHAIRMAN BONACA: All right.
16	MEMBER ROSEN: which is post-fire
17	operator manual actions.
18	CHAIRMAN BONACA: Okay.
19	MEMBER SHACK: I mean, we can get those on
20	a CD, right?
21	MEMBER ROSEN: Yes.
22	CHAIRMAN BONACA: So go to the fourth
23	MEMBER ROSEN: They're on a website,
24	actually.
25	CHAIRMAN BONACA: Okay.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	5
1	MEMBER SHACK: I can get the programs on
2	a website?
3	MEMBER ROSEN: I think they said that it
4	was on a website, but what I got was Mark Sally
5	gave me the book, a three-ring binder, and a CD-ROM.
6	Probably the easy way is to just ask him ask the
7	staff to have Mark Sally get a copy for you.
8	CHAIRMAN BONACA: Okay. So
9	MEMBER ROSEN: Okay. So, then, the fourth
10	issue let me just recap. We've talked about
11	10 CFR 50.48, which is the rulemaking to allow
12	licensees to voluntarily adopt NFPA 805. We've talked
13	about post-fire safe shutdown associated circuits
14	analysis and the resolution of the issues there.
15	We've talked about these fire dynamics tools. And the
16	last issue that came up at the subcommittee was a
17	discussion of post-fire operator manual actions.
18	Now, there's a rulemaking underway on this
19	specific subject to address what has been found out to
20	be widespread reliance in safe shutdown analyses on
21	manual actions by operating staffs, in lieu of
22	physical barriers and equipment, which is what
23	Appendix R would proscribe.
24	Now, current requirements don't
25	specifically prohibit manual actions, but criteria for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

when such actions can be relied on are needed. We've 2 talked about it in the subcommittee as feasible manual 3 actions. George had a problem with the word 4 "feasible." "Anything is feasible," said he.

5 But what was really meant was, can the operators, in the time allotted, get to the equipment 6 7 without having to expose themselves to the effects of the fire, smoke, heat, or radiation, and can do it in 8 9 a way that's in a procedure perhaps and not something they have to invent or be heroic in order to carry out 10 11 the action.

12 Now, you should understand that that rulemaking to allow reliance on feasible manual 13 14 actions has -- the NEI has petitioned the Commission 15 to simply codify the allowance for feasible manual actions through the direct final rule process. 16 In 17 other words, don't even bother to go through all of the hoops. They want it now, and they want it quick, 18 19 and that's still on the Commission's table I guess 20 someplace.

Members of the subcommittee listened to 21 22 the presentations on this subject, and basically 23 suggested that the industry and maybe the NRC staff 24 working together should develop a quantitative 25 technique for evaluating manual actions that

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

6

incorporates human error forcing functions into it --2 in other words, uses the kind of human error models 3 that we have, which deals with error forcing functions 4 and established threshold values for evaluating the risk effectiveness and acceptability of manual 6 actions.

7 In other words, take this manual action that's relied upon by a plant, say, and set some --8 9 how likely is it that the guy will be able to carry out that manual action effectively, using the things 10 that are in the handbook on human error reliability 11 12 prediction.

That's not -- this isn't new. 13 There's a 14 handbook out by Gutland & Swain that's been there a 15 long time, or some other technique that may be equally valid. And so there wasn't any conceptual difficulty 16 with accepting the idea that one could take reliance 17 on human manual actions in fires if they were properly 18 19 analyzed.

And those were the four issues. 20 As T 21 said, we'll have another subcommittee meeting in 22 February, and I think -- and then a full committee 23 meeting after that, just because we have to give the Commission the benefit of our views on the 50.48 24 25 rulemaking.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

	8
1	MR. DURAISWAMY: So we plan to write the
2	report at that time?
3	MEMBER ROSEN: At that time, yes.
4	MR. DURAISWAMY: What do you think the
5	timeframe will be approximately for the full committee
6	meeting?
7	MEMBER ROSEN: February.
8	MR. DURAISWAMY: February.
9	MEMBER ROSEN: Okay.
10	MR. DURAISWAMY: Well, Steve, I think
11	50.48, we can look at the thing in the
12	November/December timeframe, the draft final rule.
13	MEMBER ROSEN: Yes.
14	MR. DURAISWAMY: That's coming to the full
15	committee.
16	MEMBER ROSEN: Do you think it will come
17	that early?
18	MR. DURAISWAMY: Yes, sir. They want to
19	come and to talk to us in our November meeting. And
20	if they can't give us the document, it'll be at least
21	December. So either November or December, we'll have
22	red letter on the draft final rule on 10 CFR 50.48
23	during
24	MEMBER ROSEN: Now you're getting me
25	confused, Sam. But the direct final rule is not part

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	of 50.48.
2	MR. DURAISWAMY: What?
3	MEMBER ROSEN: The direct final rule is
4	MR. DURAISWAMY: Oh, no, no. I'm not
5	talking about direct. The draft final rule on
6	10 CFR 50.48 to endorse NFPA 805.
7	MEMBER ROSEN: Okay.
8	MR. DURAISWAMY: So that rule we had red
9	letter.
10	MEMBER ROSEN: Yes, I understand, and
11	that's what I'm talking about.
12	MR. DURAISWAMY: Yes.
13	MEMBER ROSEN: That I think will be in
14	February.
15	MR. DURAISWAMY: No.
16	MEMBER ROSEN: You're saying it could be
17	earlier than that.
18	MR. DURAISWAMY: They just said they
19	wanted to come and talk to us in the November meeting
20	or December.
21	CHAIRMAN BONACA: November or December.
22	MR. DURAISWAMY: Yes.
23	MEMBER ROSEN: They'll have to work with
24	you and me, but I think that's that's early, but I
25	you know, I don't have any I'm not against it,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	if they can get here that soon. I just assumed that
2	it would be next year, early next year, before they
3	could do it.
4	CHAIRMAN BONACA: Okay. Thank you very
5	much for the presentation.
6	And now we have a presentation by Dr.
7	Nourbakhsh on the PIRT process. We had postponed this
8	before, and so we are looking forward to it now. Go
9	ahead.
10	DR. NOURBAKHSH: Now I want to give you a
11	brief review of the PIRT process, and based on my
12	review of the limitations with it and how we can
13	enhance the process.
14	MEMBER ROSEN: Would you do that also in
15	the context of what we just heard about proactive
16	materials degradation?
17	DR. NOURBAKHSH: I will try to touch on
18	it.
19	As you know, PIRT stands for or was
20	initially a step in CSAU methodology, code scaling
21	applicability and uncertainty valuation methodology.
22	CSAU developed as a in order to support the revised
23	ECCS rule which was issued in September 1988. The
24	purpose of CSAU methodology/valuation methodology was
25	to demonstrate the feasibility of using best estimate

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	plus uncertainty approach.
2	So one step of CSAU methodology was
3	tabulating all of the important phenomena because they
4	wanted to focus on the parameters and phenomena which
5	impact the peak cladding temperature when they wanted
6	to do uncertainty, and at the same time for assessment
7	of experimental programs.
8	So, by the way, I looked at the PIRT in
9	the in order to review it, I just did a station
10	PIRT, and I found out that most useful PIRT was in
11	England, but it even stands for it stood for Police
12	Initial Recruiting Test.
13	(Laughter.)
14	And the least actually, I found
15	hundreds of PIRTs, and the least common was a meeting
16	on PIRT, again last year in England, on physical
17	interpretation of relativity theory. So there was a
18	wide spectrum of PIRTs.
19	MEMBER ROSEN: Well, we want to hear about
20	that.
21	DR. NOURBAKHSH: Right. So anyway, what
22	PIRT process, since the initial development of CSAU
23	methodology, has been used in much more applications
24	than it was envisioned for. If you go back to the
25	background of CSAU methodology, that was a well-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	understood phenomenon, relatively. A lot of
2	experience in that, a lot of tests, so there was not
3	really the knowledge base was quite a lot.
4	So the only reason for the PIRT in the
5	context of CSAU was just to tabulate systematically
6	all of the phenomena for completeness. It was a
7	brilliant idea to have a systematic approach to
8	identifying the phenomena.
9	But as we know, in your widespread use of
10	PIRT and Research is planning actually using PIRT
11	in prioritizing the research needs for advanced
12	reactor technical issues. I thought this is a good
13	time to look at the past and what we have learned from
14	all of these PIRTs. And by the way, they are very
15	I mean, they are costly and resource I mean, they
16	are resource-intensive.
17	And to look at past several years of
18	experience with the PIRT
19	MEMBER POWERS: That is one of the
20	comments I have gotten from the NRC project monitors
21	all the time. These PIRTs are incredibly expensive.
22	And when you think about it, you know, some of the
23	fuel supports, they had six meetings with 30 people
24	maybe, maybe less, and we're not talking about like on
25	the order of an FTE.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	DR. NOURBAKHSH: On the order of one FTE?
2	MEMBER POWERS: Yes.
3	DR. NOURBAKHSH: I have been quoted two
4	FTE or three FTE.
5	MEMBER POWERS: I won't argue with you on
6	those. One FTE
7	DR. NOURBAKHSH: It was one or two, yes,
8	but one
9	MEMBER POWERS: And the test runs an
10	INPILE test nowadays runs a million bucks. Turn the
11	reactor on; it costs you a million dollars?
12	DR. NOURBAKHSH: Yes.
13	MEMBER POWERS: Don't do anything with it.
14	That just turns it on, shuts it back down.
15	DR. NOURBAKHSH: That's right.
16	MEMBER POWERS: I mean, that's just what
17	it costs to get the facility to turn it on and turn it
18	off for you is a million bucks, right? So now, is it
19	really all that expensive?
20	DR. NOURBAKHSH: We are not the issue
21	is not expensive, but do we get what we have spent
22	for? I mean, if we enhance the process, the product
23	would be much more useful and much more transparent.
24	MEMBER POWERS: But you start saying, "I
25	will agree with you" right up front, that if I spend

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	any amount of money and don't get what I'm after
2	that's expensive. Okay? But to start in and say,
3	"Hey, this PIRT process is really expensive," I don't
4	think it's so expensive.
5	I think it's actually a money-saving
6	operation. It sure as hell saved the people in the
7	high burnup fuels more than it cost them, because
8	otherwise they I mean, it is a gold-plated defense.
9	If somebody comes in and says, "Well, you guys haven't
10	done X in your program," and you say, "We got a panel
11	of world-renowned experts together. They looked at
12	it, and they told us not to do X."
13	You've just saved yourself an enormous
14	amount of effort right there. That's worth an FTE
15	right there. ACRS sits there and says, "You guys
16	haven't done X." You've got a perfect defense, and we
17	can't say a damn thing about it. It shuts us it
18	shuts Peter up.
19	MEMBER ROSEN: It doesn't shut you up. I
20	know that nothing
21	MEMBER FORD: I just grumble all the time,
22	so they don't pay any attention to me.
23	(Laughter.)
24	DR. NOURBAKHSH: All right. Okay. The
25	objective in here is to review the PIRT process and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	product application and to provide some suggestions
2	for enhancement of the process, basically.
3	An overview of the PIRT process basically
4	is multi-step. You define what the problem is, what
5	the technical issue is, what are the objectives for
6	this PIRT, whether you are doing it for code
7	development or assessment, or you are doing it for
8	uncertainty evaluation of the code, or some
9	development of some experimental program.
10	Basically, then you define your system,
11	what are you looking at? Is that in the vessel, or
12	you are looking at spent fuel pool, or basically the
13	third step would be to define the hardware. And then
14	you define the scenario. Basically, what are the
15	boundary conditions for these technical issues? And
16	if it is accident analysis, basically the definition
17	of the sequence.
18	And then, what are you looking for? What
19	would be you are doing it. What would be the
20	figure of merit or definition, evaluation criteria?
21	You are looking for peak cladding temperature, or for
22	PTS we are looking for pressure temperature gradient,
23	temperature basically.
24	And then, you identify and obtain and
25	review the database which is available on the subject

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	matter. And then, you come to a the meeting. You
2	start with the brainstorming to put all these
3	plausible phenomena on the table. The phenomena, by
4	definition of PIRT, is not it could be a process.
5	It could be a variable. It could be anything which
6	may impact the figure of merit or evaluation criteria.
7	And there is some dependency between all
8	of these parameters, too, but they are not really
9	transparent in on those tables. For example, they
10	said on AP600 subcooling margin and boiling and
11	flashing. They are basically, your interest in
12	subcooling margin is really important, because it
13	impacts flashing or all of these parameters or things
14	like that.
15	And then, the last step would be you rank
16	the importance of these phenomena, have done in
17	different levels, could be done highly important,
18	which has a dominant effect on the figure of merit, or
19	low importance or medium. Or you can give a numerical
20	scale one to five, one to seven. And in some cases
21	I come back to it they use the Sally AHP process to
22	prioritize these. I mean, pair-wise ranking which
23	also has been used to rank all of these phenomena.
24	And then, you document the results.
25	So it's not really the process per se has

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	not been documented. I mean, it was an evolving
2	process. It was one step in CSAU methodology, and you
3	don't see the definition of the process or a manual
4	for the process or except a paper in Nuclear
5	Engineering Design some years back.
6	So my observation so far in reviewing more
7	than 20 of them was success in developing PIRT is a
8	strong function of the degree to which supplemental
9	information are well documented. There are various
10	degrees that you could see, but sometimes those
11	implicit assumptions that experts made is not
12	transparent in those presentations. You have to go to
13	appendices, or they were somewhere.
14	Really, if you wanted to revise a PIRT,
15	you need to do a lot to understand why it was
16	important or why there was a difference of opinion,
17	basically.
18	So this shortcoming may be partly due to
19	lack of a systematic methodology to capture these
20	all of these implicit assumptions that the expert
21	made. And the way these of course, the product is
22	not only the tables, it is the supplemental
23	documentation. But that supplemental documentation is
24	not really in some of them I am not generalizing
25	it are well documented.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Sometimes the individual panel members may be expert in some phenomena. In thermal hydraulics, we don't have that problem, because most of these thermal hydraulic issues everybody is familiar with that. When you go to an area which is multidisciplinary, the chemistry aspect is important, thermal hydraulics, neutronics.

1

2

3

4

5

6

7

Then, look at burnup credit program. 8 It 9 has -- some panel members may be expert in some phenomena and less familiar with other phenomena. 10 So 11 in order to deal with this reality, they were asked 12 not to vote on the issues that they are not familiar But all of these phenomena when you look at 13 with. 14 them, they are interconnected. They are a network.

When you are saying -- you are asking the bottom-line question, importance of this to my figure of merits, he has to implicitly make some judgments on some other phenomena which he may not be familiar with to come up with to do that ranking. So that is -- I am not sure that this always could be done.

21 MEMBER ROSEN: Now, before you leave this 22 subject, because I think it's very important relative 23 to the proactive materials degradation PIRT, I mean, 24 there you're going to have a lot of experts. But the 25 field is so robust and broad and important that the --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	19
1	there will be chemistry experts and materials experts.
2	But even the materials experts will be expert in one
3	aspect of materials and not others.
4	DR. NOURBAKHSH: Or some mechanical
5	aspect.
6	In some prior PIRT efforts, again, there
7	are major observation limitations. Pair-wise
8	importance ranking of components for phenomena this
9	AHP analogy called hierarchy process. Basically, you
10	go top-down linear to you look at your component or
11	the time phase component and under each component's
12	phenomena. And then you rank them, and then there is
13	an algorithm based on ranking value of matrix that
14	they form.
15	They come up the idea behind this AHP
16	is that the people are much when you have 20 issues
17	in front of you to rank, it's very difficult. But
18	when you compare them pair-wise one by one of each,
19	it's much easier. So you get the input of the expert
20	pair-wise two at each time all of the permutations.
21	And then, you come up at the end with an
22	idea of to
23	MEMBER POWERS: But it doesn't work.
24	DR. NOURBAKHSH: come up with the
25	bottom line.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER POWERS: It doesn't work. I mean, the whole history of marketing is replete with people doing pair-wise ranking and finding A is better than B, and B is better than C, and C is better than A. I mean, it is replete with that. It fundamentally has that flaw and it, and it -- any time you're looking at multi-attributes you run into this problem.

1

2

3

4

5

6

7

8 DR. NOURBAKHSH: Actually, Sally himself 9 recognized that, the man who developed AHP, and later on actually criticized in his recent book AHP, and he 10 11 came up with something which is called ANP, analytical 12 looking network IIT, that's at all of these interactions because the real practical problems are 13 14 not linear top-bottom, especially the nuclear safety 15 issues.

We have feedback effects. We have interaction with all of these phenomena and systems that you cannot just ignore them and then --

19MEMBER POWERS: It seems to me that --20DR. NOURBAKHSH: -- trying to --

21 MEMBER POWERS: Well, it seems to me that 22 the thermal hydraulics guys, when they implemented 23 PIRT, did it right. And they said, "Look, formulate 24 some simple models and show me quantitatively how 25 things work, or where the time scales are," some way

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 to do this in an analytic representation rather than 2 relying strictly on opinion. And they had some advantages in doing 3 4 that, but I think that when it's -- when that kernel 5 of an idea from the thermal hydraulics people was taken and applied that the part they threw out was 6 7 that part. That may be incorrect. Show me how 8 important these things are. 9 For instance, I mean, I made my attack on some of the recent PIRT activities yesterday. 10 We 11 wrote a diffusion equation for transport through 12 coated particle fuels. And that's a lot like these thermal hydraulic equations you guys get to work with, 13 14 has a lot of terms in it, has terms due to chemical 15 diffusion, pressure-driven diffusion, temperaturedriven diffusion. 16 17 And I said, "Okay. Well, you've got all of these things that are important, " and they let me 18 19 get away scot-free with that. And nobody -- nobody at 20 any time asked me, you know, what's the relative 21 importance of these terms? If they had, you know, I 22 would have had to admit that, hey, the only one that 23 matters is the DMCO-driven pressure through the 24 silicon carbide layer. But they didn't do that, and I think that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

21

	22
1	has the unwillingness to bring over that aspect of
2	the PIRT process gets you into this ranking of opinion
3	opinion things in a non-transparent way.
4	VICE CHAIRMAN WALLIS: In this thermal
5	hydraulics, there's a kind of discussion about the
6	technical stuff. People make presentations and you
7	look at this. So you sort of you are informed when
8	you
9	DR. NOURBAKHSH: You are well informed,
10	and there is a code. You have a lot of sensitivity
11	calculations in front of you.
12	MEMBER POWERS: Right.
13	DR. NOURBAKHSH: When you are going to
14	something you don't have a code for it for example,
15	advanced reactors and you don't know you don't
16	have that much experience with some of these
17	phenomenology, it may not be as easy or at least the
18	use of this is not going to I mean, I don't think
19	between nine and six if you have one to 20, to me I
20	think you shouldn't give that much weight between 15
21	and 20 or 11 and 20. Maybe one is maybe that's
22	MEMBER POWERS: Can you find a physical
23	phenomenon where you cannot write out a simple time
24	scaling model time scalable model. I mean, Zuber
25	says he can scale every damn thing in the world.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23 1 VICE CHAIRMAN WALLIS: Can you scale 2 cracking and --MEMBER SHACK: 3 No way. 4 VICE CHAIRMAN WALLIS: -- crack growth? 5 DR. NOURBAKHSH: No, not for cracking. MEMBER SHACK: If I can write a partial 6 7 differential equation, I don't need PIRT. I'm home 8 free. 9 MEMBER POWERS: That's not really true, 10 Bill. I mean, that's --11 MEMBER SHACK: Give me an equation. I can do an awful lot with it. 12 MEMBER POWERS: You can do an awful lot, 13 14 and -- but they --15 MEMBER SHACK: I know how to live with the 16 terms and equations. 17 MEMBER POWERS: I mean, why would they have invented this PIRT in the thermal hydraulics 18 do 19 which, damn, they have place, а partial 20 differential equation? They've got a hell of a 21 partial differential equation. 22 MEMBER RANSOM: Although I think in the 23 case of thermal hydraulics mostly they focused on the 24 empirical parts of it, like heat transfer 25 coefficients, triple flow models, that type of thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24 1 MEMBER POWERS: And I think this is not 2 different from most of these others, that the basic 3 equation you understand -- and I think my question is: 4 is there any physical phenomena where I cannot write 5 down some approximate expression for the -- for what's going on? I didn't say it had to be exact. I said it 6 7 -- and, in fact, in the guidance on PIRT it says simplified models. 8 MR. BAHADUR: And you could do order of 9 magnitude analysis to get rid of some of that, like 10 11 you said. 12 MEMBER SHACK: You can write down the equation, but you don't know what the terms are. 13 You 14 don't know what the constants and the coefficients 15 are. 16 MR. BAHADUR: So? 17 MEMBER SHACK: You know they're not big as a house or small as a -- I think a lot of this -- I 18 19 mean, the thermal hydraulic people, I mean, they've 20 got these enormous partial differential equations 21 which are exact if you can solve them, but nobody can 22 solve them exactly. So -- pardon? 23 MEMBER POWERS: They're not exact. 24 MEMBER SHACK: Well, in the pure form they 25 are exact.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	MEMBER POWERS: No, they're not. No,
2	they're not. They don't work after you drop out of
3	the continuum regime. And it happens to you a lot, by
4	the way.
5	MEMBER FORD: The problem I'm seeing is
6	that you're driving towards it does have a
7	simplified algorithm upon which we are going to make
8	our decisions the sensitivity to these various
9	inputs.
10	You mentioned that maybe this discussion
11	should be going towards material degradation. The
12	thing that kills us in materials degradation is that
13	one outlier like core work and core trials for BWR,
14	which does not take into account any simple
15	algorithms.
16	And under certain situations where you
17	have everything else held constant, it will be a big
18	player. If you change these other constants, it's not
19	a big player. And so it's not a simple algorithm.
20	You can't come up with simple algorithms.
21	So, therefore, you came back to the idea
22	that you were mentioning about, well, how many experts
23	do you need on this panel who understand enough of all
24	of the parameters which are important? And there's a
25	limited number of experts, and not all of them can do

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	this, even for one system, the BWR system. If you go
2	into PWRs, forget it.
3	DR. NOURBAKHSH: But just give you one
4	MEMBER POWERS: What? Do you mean there
5	are no experts in PWRs?
6	(Laughter.)
7	DR. NOURBAKHSH: I don't want to go
8	through of these details of some examples that why
9	this AHP doesn't work. I have elaborated on that on
10	that document I gave you.
11	But since the initial development of CSAU
12	methodology and PIRT process, there are I mean,
13	procedures for expert elicitation. One is
14	NUREG/CR-6372 for probabilistic seismic hazard
15	analysis. There are some aspects of it which would be
16	useful that PIRT benefit from that.
17	There is a requirement for documentation,
18	the role of technical integrator or technical TFI,
19	what they call it, and different level. Some of these
20	curves, if you put two of the staff members, they
21	could come up with if you advance prepare that
22	I mean, the question is a prudent question is half
23	of the reason as they say.
24	If you prepare the questions in advance,
25	and then you come up with the structure it well,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	and then be you can do a lot of homework and see
2	what are the information available, where we are
3	having problem of understanding what are really the
4	main issues, then you can bring to focus better these
5	experts and get more use of the those times that
6	you are with expertise with expert, rather than
7	coming in a kind of brainstorming, half a day, one
8	day, to come up with all of these tabulations of all
9	these phenomena and parameters.
10	And you really, in the third day, you have
11	to come up with some kind of sometimes it becomes
12	more working than forcing them to really understand
13	what is the information and why these judgments are
14	being made.
15	Something that I found that had a
16	potential is the influence diagram. Really, this is
17	not it's called I mean, you can call it
18	cognitive mapping, you can call it knowledge mapping,
19	there's all sorts of names for this. And basically,
20	this is something that many people do it in their mind
21	anyway when they come up with some conclusions on
22	something they wanted to make a decision on the
23	judgment.
24	And these are really influence diagrams.
25	It's a good representation of major factors in the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

system and how they influence each other. So it would be a network of representing the thought process of the experts rather than questioning whether this is important on -- with the directive to figure of merit and say why it is important. This impacts this. This impacts this.

7 If it is material degradation, you go to 8 a little bit of microstructure question -- impact on 9 boundaries or whatever. If it is thermal hydraulics, 10 you go to really much more sub-issues. So it would be 11 a network of notes which represent the factors of 12 importance to the issue, and the directed arc shows 13 the influence.

14 The qualitative system analysis is in its 15 infancy. But there are a lot of good techniques they 16 are using that we can use that. For example, you could actually -- a lot of this impact or influence, 17 in our field at least, is monotonic. You can say if 18 19 increase the temperature, you increase you the 20 You could see the trend. potential.

So you can put on this directed arc a plus or minus. That the negative impact -- you increase one, you decrease that. And then, you could put a level -- high, low -- qualitatively. And that qualitative influence diagram has been developed,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	29
1	which is should look at the potential for this.
2	But even graphical presentation of the
3	implicit assumption that experts make the minimal
4	would be a much more transparent product than a table
5	with a series of HL or 1, 2, 3, 4, 5, in front of
6	them, and then I have to dig up the supporting
7	documents. Sometimes it is not even there.
8	The example it's not really I mean,
9	I wanted just to put an example. For example, this is
10	a technical issue and objective, and then you have
11	your hardware. And these are the boundary conditions.
12	The break size or break location or whatever each
13	of them influence all of these networks. It's not
14	clear here, you know, why.
15	But, for example, you put different
16	processes, phenomena, parameters, and how they impact
17	each other. As I say, you can put a plus here or
18	high, low, and then how these finally impact my figure
19	of merits. So you make question which one is
20	important? Which is not? So there's a network of
21	and they each have a different opinion you can
22	capture, why these phenomena were important to figure
23	of merits, why some experts, why not other experts.
24	MEMBER FORD: For instance, in materials
25	degradation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	DR. NOURBAKHSH: Materials degradation,
2	here you have your stressors. You have temperature,
3	water chemistry, you have your
4	MEMBER FORD: But all of the figures of
5	merit, which I'm assuming
6	DR. NOURBAKHSH: No. The figures of merit
7	would be three figures of merit. You can still
8	influence these things.
9	MEMBER FORD: Yes. But the figures of
10	merit, the numbers you are going to put in each box
11	that
12	DR. NOURBAKHSH: No, no, they are not
13	numbered. It will be what you have an assessment
14	like a matrix of influence of each on all of them, and
15	eventually on these.
16	MEMBER FORD: Yes. But all of those
17	figures
18	DR. NOURBAKHSH: Yes.
19	MEMBER FORD: you have put in those
20	boxes are going to change depending on the values that
21	you put in the other boxes. You're going to have a
22	huge interacting it's a pulsating machine. It's
23	going to change. So how and it's going to change
24	depending on the system of
25	DR. NOURBAKHSH: No. All I'm yes. So

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1that2MEMBER FORD: How do you put that3DR. NOURBAKHSH: There is actually, I4can refer you to papers recently published to address5that issue, that on the qualitative influence6diagram. That when you have one it's impacted by7impact of the others, basically, or synergistic8effects you could capture them. There are even9MEMBER FORD: And they can all change10depending on the values put in the other boxes. They11would all12DR. NOURBAKHSH: Yes.13MEMBER SIEBER: Well, you're more14interested in their relationships than you are what15snapshot you're taking16DR. NOURBAKHSH: But as the first step you17wanted to identify the important parameters,18basically.19MEMBER POWERS: Peter, I guess I have two20questions. I fail to understand what I'm supposed to21learn.22DR. NOURBAKHSH: Let me give you a better23example, if it's not clear here.24(Laughter.)25MEMBER POWERS: Well, that'll straighten		31
3 DR. NOURBAKHSH: There is actually, I 4 can refer you to papers recently published to address 5 that issue, that on the qualitative influence 6 diagram. That when you have one it's impacted by 7 impact of the others, basically, or synergistic 8 effects you could capture them. There are even 9 MEMBER FORD: And they can all change 10 depending on the values put in the other boxes. They 11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 Learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	1	that
 can refer you to papers recently published to address that issue, that on the qualitative influence diagram. That when you have one it's impacted by impact of the others, basically, or synergistic effects you could capture them. There are even MEMBER FORD: And they can all change depending on the values put in the other boxes. They would all DR. NOURBAKHSH: Yes. MEMBER SIEBER: Well, you're more interested in their relationships than you are what snapshot you're taking DR. NOURBAKHSH: But as the first step you wanted to identify the important parameters, basically. MEMBER POWERS: Peter, I guess I have two questions. I fail to understand what I'm supposed to learn. DR. NOURBAKHSH: Let me give you a better example, if it's not clear here. (Laughter.) 	2	MEMBER FORD: How do you put that
5that issue, that on the qualitative influence6diagram. That when you have one it's impacted by7impact of the others, basically, or synergistic8effects you could capture them. There are even9MEMBER FORD: And they can all change10depending on the values put in the other boxes. They11would all12DR. NOURBAKHSH: Yes.13MEMBER SIEBER: Well, you're more14interested in their relationships than you are what15snapshot you're taking16DR. NOURBAKHSH: But as the first step you17wanted to identify the important parameters,18basically.19MEMBER POWERS: Peter, I guess I have two20questions. I fail to understand what I'm supposed to21DR. NOURBAKHSH: Let me give you a better23cample, if it's not clear here.24(Laughter.)	3	DR. NOURBAKHSH: There is actually, I
6 diagram. That when you have one it's impacted by 7 impact of the others, basically, or synergistic 8 effects you could capture them. There are even 9 MEMBER FORD: And they can all change 10 depending on the values put in the other boxes. They 11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 DR. NOURBAKHSH: Let me give you a better 23 Example, if it's not clear here. 24 (Laughter.)	4	can refer you to papers recently published to address
7 impact of the others, basically, or synergistic 8 effects you could capture them. There are even 9 MEMBER FORD: And they can all change 10 depending on the values put in the other boxes. They 11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	5	that issue, that on the qualitative influence
8 effects you could capture them. There are even 9 MEMBER FORD: And they can all change 10 depending on the values put in the other boxes. They 11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	6	diagram. That when you have one it's impacted by
 MEMBER FORD: And they can all change depending on the values put in the other boxes. They would all DR. NOURBAKHSH: Yes. MEMBER SIEBER: Well, you're more interested in their relationships than you are what snapshot you're taking DR. NOURBAKHSH: But as the first step you wanted to identify the important parameters, basically. MEMBER POWERS: Peter, I guess I have two questions. I fail to understand what I'm supposed to learn. DR. NOURBAKHSH: Let me give you a better example, if it's not clear here. (Laughter.) 	7	impact of the others, basically, or synergistic
10 depending on the values put in the other boxes. They 11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	8	effects you could capture them. There are even
<pre>11 would all 12 DR. NOURBAKHSH: Yes. 13 MEMBER SIEBER: Well, you're more 14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)</pre>	9	MEMBER FORD: And they can all change
12DR. NOURBAKHSH: Yes.13MEMBER SIEBER: Well, you're more14interested in their relationships than you are what15snapshot you're taking16DR. NOURBAKHSH: But as the first step you17wanted to identify the important parameters,18basically.19MEMBER POWERS: Peter, I guess I have two20questions. I fail to understand what I'm supposed to21learn.22DR. NOURBAKHSH: Let me give you a better23example, if it's not clear here.24(Laughter.)	10	depending on the values put in the other boxes. They
 MEMBER SIEBER: Well, you're more interested in their relationships than you are what snapshot you're taking DR. NOURBAKHSH: But as the first step you wanted to identify the important parameters, basically. MEMBER POWERS: Peter, I guess I have two questions. I fail to understand what I'm supposed to learn. DR. NOURBAKHSH: Let me give you a better example, if it's not clear here. (Laughter.) 	11	would all
14 interested in their relationships than you are what 15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	12	DR. NOURBAKHSH: Yes.
<pre>15 snapshot you're taking 16 DR. NOURBAKHSH: But as the first step you 17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)</pre>	13	MEMBER SIEBER: Well, you're more
16DR. NOURBAKHSH: But as the first step you17wanted to identify the important parameters,18basically.19MEMBER POWERS: Peter, I guess I have two20questions. I fail to understand what I'm supposed to21learn.22DR. NOURBAKHSH: Let me give you a better23example, if it's not clear here.24(Laughter.)	14	interested in their relationships than you are what
<pre>17 wanted to identify the important parameters, 18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)</pre>	15	snapshot you're taking
<pre>18 basically. 19 MEMBER POWERS: Peter, I guess I have two 20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)</pre>	16	DR. NOURBAKHSH: But as the first step you
MEMBER POWERS: Peter, I guess I have two questions. I fail to understand what I'm supposed to learn. 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	17	wanted to identify the important parameters,
20 questions. I fail to understand what I'm supposed to 21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	18	basically.
21 learn. 22 DR. NOURBAKHSH: Let me give you a better 23 example, if it's not clear here. 24 (Laughter.)	19	MEMBER POWERS: Peter, I guess I have two
DR. NOURBAKHSH: Let me give you a better example, if it's not clear here. (Laughter.)	20	questions. I fail to understand what I'm supposed to
<pre>23 example, if it's not clear here. 24 (Laughter.)</pre>	21	learn.
24 (Laughter.)	22	DR. NOURBAKHSH: Let me give you a better
	23	example, if it's not clear here.
25 MEMBER POWERS: Well, that'll straighten	24	(Laughter.)
	25	MEMBER POWERS: Well, that'll straighten

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	it out.
2	DR. NOURBAKHSH: No, no, no, no, no,
3	because you cannot read it. I mean, I don't know
4	whether
5	(Laughter.)
6	MEMBER POWERS: I mean, let me ask Peter
7	a question here, because you see the complexity of
8	corrosion, and I see the simplicity of it. You know,
9	if they're going to ask you a question, "Gee, Peter,
10	is temperature important or not?"
11	MEMBER FORD: In certain circumstances,
12	yes. In others, no.
13	MEMBER POWERS: We are talking if you
14	looked at the process, they would say, "We are talking
15	about a boiling water reactor operating at the Browns
16	Ferry site, the BWR 4, its 22nd year of life, and it's
17	operating at full power."
18	MEMBER FORD: And a constant load and
19	MEMBER POWERS: Yes.
20	MEMBER FORD: degrees Centigrade, to
21	define
22	MEMBER POWERS: Yes. You define the
23	scenario.
24	MEMBER FORD: And if you go into
25	shutdown

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1MEMBER POWERS: No, no, I didn't ask you2anything about shutdown.3DR. NOURBAKHSH: No.4MEMBER POWERS: I only asked you about5this scenario. I asked you the temperature and6MEMBER FORD: Under that defined system,7as a variable, no.8MEMBER POWERS: Okay.9MEMBER FORD: Because you10MEMBER SIEBER: How about the cracking11they had at Davis-Besse? Was temperature important?12Right? Was pressure important? No.13MEMBER SIEBER: Is the heat number15important? Composition? Chemistry?16DR. NOURBAKHSH: Okay. So you're going to17have a different diagram for each component.18MEMBER POWERS: If you look at the what19they did for the fuel, the high burnup fuel, they20said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"21I mean, they were very, very specific. And within		33
3 DR. NOURBAKHSH: No. 4 MEMBER POWERS: I only asked you about 5 this scenario. I asked you the temperature and 6 MEMBER FORD: Under that defined system, 7 as a variable, no. 8 MEMBER POWERS: Okay. 9 MEMBER POWERS: Okay. 9 MEMBER FORD: Because you 10 MEMBER SIEBER: How about the cracking 11 they had at Davis-Besse? Was temperature important? 12 Right? Was pressure important? No. 13 MEMBER FORD: Okay. 14 MEMBER SIEBER: Is the heat number 15 important? Composition? Chemistry? 16 DR. NOURBAKHSH: Okay. So you're going to 17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	1	MEMBER POWERS: No, no, I didn't ask you
 MEMBER POWERS: I only asked you about this scenario. I asked you the temperature and MEMBER FORD: Under that defined system, as a variable, no. MEMBER POWERS: Okay. MEMBER FORD: Because you MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRS, ATWS, BWRS?" 	2	anything about shutdown.
 this scenario. I asked you the temperature and MEMBER FORD: Under that defined system, as a variable, no. MEMBER POWERS: Okay. MEMBER FORD: Because you MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRS, ATWS, BWRS?" 	3	DR. NOURBAKHSH: No.
 MEMBER FORD: Under that defined system, as a variable, no. MEMBER POWERS: Okay. MEMBER FORD: Because you MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRs, ATWS, BWRS?" 	4	MEMBER POWERS: I only asked you about
7 as a variable, no. 8 MEMBER POWERS: Okay. 9 MEMBER FORD: Because you 10 MEMBER SIEBER: How about the cracking 11 they had at Davis-Besse? Was temperature important? 12 Right? Was pressure important? No. 13 MEMBER FORD: Okay. 14 MEMBER SIEBER: Is the heat number 15 important? Composition? Chemistry? 16 DR. NOURBAKHSH: Okay. So you're going to 17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRS, ATWS, BWRS?"	5	this scenario. I asked you the temperature and
 MEMBER POWERS: Okay. MEMBER FORD: Because you MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?" 	6	MEMBER FORD: Under that defined system,
 MEMBER FORD: Because you MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRs, ATWS, BWRS?" 	7	as a variable, no.
MEMBER SIEBER: How about the cracking they had at Davis-Besse? Was temperature important? Right? Was pressure important? No. MEMBER FORD: Okay. MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to Nave a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRS, ATWS, BWRS?"	8	MEMBER POWERS: Okay.
11they had at Davis-Besse? Was temperature important?12Right? Was pressure important? No.13MEMBER FORD: Okay.14MEMBER SIEBER: Is the heat number15important? Composition? Chemistry?16DR. NOURBAKHSH: Okay. So you're going to17have a different diagram for each component.18MEMBER POWERS: If you look at the what19they did for the fuel, the high burnup fuel, they20said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	9	MEMBER FORD: Because you
12 Right? Was pressure important? No. 13 MEMBER FORD: Okay. 14 MEMBER SIEBER: Is the heat number 15 important? Composition? Chemistry? 16 DR. NOURBAKHSH: Okay. So you're going to 17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	10	MEMBER SIEBER: How about the cracking
MEMBER FORD: Okay. MEMBER SIEBER: Is the heat number important? Composition? Chemistry? DR. NOURBAKHSH: Okay. So you're going to have a different diagram for each component. MEMBER POWERS: If you look at the what they did for the fuel, the high burnup fuel, they said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	11	they had at Davis-Besse? Was temperature important?
14 MEMBER SIEBER: Is the heat number 15 important? Composition? Chemistry? 16 DR. NOURBAKHSH: Okay. So you're going to 17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	12	Right? Was pressure important? No.
<pre>15 important? Composition? Chemistry? 16 DR. NOURBAKHSH: Okay. So you're going to 17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"</pre>	13	MEMBER FORD: Okay.
16DR. NOURBAKHSH: Okay. So you're going to17have a different diagram for each component.18MEMBER POWERS: If you look at the what19they did for the fuel, the high burnup fuel, they20said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	14	MEMBER SIEBER: Is the heat number
17 have a different diagram for each component. 18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	15	important? Composition? Chemistry?
18 MEMBER POWERS: If you look at the what 19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	16	DR. NOURBAKHSH: Okay. So you're going to
19 they did for the fuel, the high burnup fuel, they 20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	17	have a different diagram for each component.
20 said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"	18	MEMBER POWERS: If you look at the what
	19	they did for the fuel, the high burnup fuel, they
21 I mean, they were very, very specific. And within	20	said, "Okay. Were high burnup fuel PWRs, ATWS, BWRs?"
	21	I mean, they were very, very specific. And within
22 those things they looked at a specific plant.	22	those things they looked at a specific plant.
23 MEMBER FORD: So you could have a whole	23	MEMBER FORD: So you could have a whole
24 DR. NOURBAKHSH: For each component you	24	DR. NOURBAKHSH: For each component you
25 will have one of these, and	25	will have one of these, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	MEMBER FORD: and each operating
2	condition will sorry.
3	DR. NOURBAKHSH: Operating conditions are
4	fixed. When you are saying, for example, this is the
5	reactor pressure vessel or upper head, or whatever,
6	you know what is the environment that this is exposed.
7	You know the temperature. You know the water
8	chemistry. The variability between the fleet is not
9	really that much.
10	MEMBER FORD: So for every system, defined
11	system condition material, fabrication,
12	composition, blah, blah, blah
13	DR. NOURBAKHSH: You put everything which
14	you define the environments, yes.
15	MEMBER FORD: Okay, fine.
16	DR. NOURBAKHSH: And then, you put the
17	degradation mechanisms here or and then the figure
18	of merits, what you want it to do, potential for
19	initiation, potential for detection.
20	MEMBER FORD: You can fill those
21	DR. NOURBAKHSH: The time before the
22	initial whatever.
23	MEMBER POWERS: And what I'm struggling
24	with
25	DR. NOURBAKHSH: You can put multi figure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	of merits, basically.
2	MEMBER POWERS: What I struggle with
3	heroically is, what am I supposed to do with this Chef
4	Boyardee factory that you've stuck up here?
5	DR. NOURBAKHSH: Which one?
6	MEMBER POWERS: I mean, it takes me an
7	hour to sort out where all of the effort is going. I
8	mean, why is
9	DR. NOURBAKHSH: Okay. No, no, no, no.
10	I transferred this to a matrix for you. This matrix
11	would be a square matrix. You knew the impact when
12	it is zero, you see it doesn't have impact. And then,
13	you put high, low, or one to six, whatever you want.
14	They call it a super matrix.
15	MEMBER POWERS: Okay. Now, what's
16	different between a matrix and a tabulation that has
17	high, medium, and low on it?
18	DR. NOURBAKHSH: You see the impact of
19	each phenomena to others, each sub-issue. For
20	example, you see the impact
21	MEMBER POWERS: Give me an example.
22	DR. NOURBAKHSH: Example. You see
23	flashing is important. You see why it is important.
24	Because flashing you see the impact of flash
25	depressurization on flashing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	MEMBER POWERS: The impact of flashing on
2	flashing?
3	DR. NOURBAKHSH: And then no.
4	MEMBER POWERS: I mean, that's
5	DR. NOURBAKHSH: For example, you went for
6	a small break LOCA. Let me talk about small break
7	LOCA. Small break LOCA basically you will have to
8	look on the peak clad core uncovery. Basically, you
9	are looking at depletion of water or addition of
10	water, one of these two issues.
11	So when you are flashing, you remove
12	water. At the same time when you flash, you
13	pressurize. That pressurization has an impact
14	well, I'll come to that example.
15	This is like AP600, and then I come back
16	to here. This is different than I don't know why
17	I don't see that line yet. It's different than
18	MR. CARUSO: I think what he's trying to
19	do is he's trying to explain this is a documentation
20	process. Okay. Very often
21	DR. NOURBAKHSH: This is implicit
22	exactly. If they are not different than PIRT
23	MR. CARUSO: Right, right.
24	DR. NOURBAKHSH: captures implicit
25	assumption.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 MR. CARUSO: Very often you get these 2 groups of wise men together that produce pearls of 3 wisdom, and the pearls of wisdom may be wonderful but 4 people don't always understand how they arrived at 5 those pearls of wisdom. And this is just a way to try to explain and document how those pearls of wisdom got 6 7 generated. Does that make sense? If this is an effort to 8 MEMBER POWERS: 9 communicate, I know one individual that it's just

10 failing terribly on. Okay? Because all I'm doing is 11 I'm getting dizzy finding out -- I mean, there's 12 nothing linear about this.

DR. NOURBAKHSH: That is exactly what I was trying to say. It's not linear. It has a lot of feedback effects and a lot of --

16 MEMBER RANSOM: Well, it seems to me 17 you're moving away from the purpose of PIRT, though. 18 The purpose of PIRT was simply to, in a qualitative 19 framework, to reduce the number of variables, you 20 know, that you must look at.

21DR. NOURBAKHSH: That is what these are.22I took it from the table. It's half of that table.23MEMBER RANSOM: This is beginning to look24like --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. NOURBAKHSH: This is why it is

(202) 234-4433

25

	38
1	important to my figure of merits here.
2	MEMBER POWERS: If you see that, I would
3	surely like you to tell me how you see that.
4	VICE CHAIRMAN WALLIS: This looks to me
5	like the beginnings of a system dynamics model for
6	LOCA, which is a kind of
7	DR. NOURBAKHSH: Yes, qualitatively.
8	VICE CHAIRMAN WALLIS: pseudo code
9	where you write down all of these boxes and
10	DR. NOURBAKHSH: Exactly.
11	VICE CHAIRMAN WALLIS: say this one
12	affects this one. Instead of writing equations, you
13	write a simple thing this one
14	DR. NOURBAKHSH: Exactly.
15	VICE CHAIRMAN WALLIS: when this gets
16	bigger, that gets smaller, and here's
17	MEMBER POWERS: Well, that's the idea
18	behind neural networks, and that's what it's beginning
19	to look like. We are simply putting
20	DR. NOURBAKHSH: That's exactly what it
21	is.
22	MEMBER POWERS: of all of the
23	effects
24	DR. NOURBAKHSH: We are not saying that
25	we are not substituting these two pairs. We are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	saying this is a better way of presenting it. This
2	way you force the experts to give you the exact
3	rationale for their importance.
4	MEMBER POWERS: If you presented that to
5	me, one of two things would happen. I would be
6	abusive, or I would just turn you off. There is
7	nothing being communicated here.
8	VICE CHAIRMAN WALLIS: Don't put him on a
9	PIRT panel.
10	(Laughter.)
11	MEMBER POWERS: Well, that's the for God's
12	sake truth. Don't ever put me on another one, because
13	I'm so disgusted with what I see as the real problems
14	with it, but I
15	DR. NOURBAKHSH: Are you comfortable with
16	the table having a phenomena versus other phenomenon
17	figure of merit at the end? And then, you see the
18	importance of each relative to other ones. I mean, go
19	through a matrix. The column and the that's
20	exactly what it is.
21	MEMBER POWERS: It's wonderfully
22	efficient. It's much more useful to me
23	DR. NOURBAKHSH: Yes, yes.
24	MEMBER POWERS: than this.
25	DR. NOURBAKHSH: It's much more useful.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	That's being transferred to a matrix, basically.
2	VICE CHAIRMAN WALLIS: Well, it's a multi-
3	dimensional matrix that you're talking about.
4	DR. NOURBAKHSH: But you don't have to do
5	it if you wanted to actually one way of doing it
6	doing it in multi-layers. A square matrix of
7	identical items and figure of merits.
8	MEMBER FORD: But this idea of a square
9	matrix with figures of merit, and just coming up with
10	a number off the table, that assumes that it is
11	linear. It assumes that you've got a simple
12	linearized
13	DR. NOURBAKHSH: No, no. All that's in
14	the matrix you put high, low, or important low
15	importance, high importance, or no relevance. You put
16	zero. So you see what impacts what, what influences
17	what, and how these influence the figure of merits.
18	MEMBER FORD: Okay.
19	DR. NOURBAKHSH: That's basically
20	capturing implicit assumptions that an expert makes.
21	And then you can make that one, based on that, which
22	experiment in that matrix you can actually fill
23	that up, which experiment or which analysis or what is
24	your rationale for that, in a very much transparent
25	way.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	MEMBER LEITCH: So every one of those
2	arrows, then, would have not only a direction
3	associated with it, but a relative importance
4	essentially.
5	DR. NOURBAKHSH: Importance, yes.
6	MEMBER LEITCH: Okay.
7	MEMBER POWERS: Your matrix idea is vastly
8	superior to this, because
9	DR. NOURBAKHSH: Yes. These are very
10	difficult actually to produce even, but one way of
11	making simplifying it, making multi-layers, top-
12	down approach basically. You put the basics and then
13	open the box to go to more details if you want it, to
14	present this. But I wanted to present it a little bit
15	more
16	MEMBER POWERS: Apostolakis loves these
17	diagrams. And every time he puts one up, I just throw
18	things at it.
19	VICE CHAIRMAN WALLIS: It's more the
20	system dynamics people who love these, and this is all
21	they do is draw things like this.
22	DR. NOURBAKHSH: That's what it is.
23	That's basically the relevance there on
24	MEMBER POWERS: If you can replace this
25	with a two-dimensional matrix

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	DR. NOURBAKHSH: But that
2	MEMBER POWERS: where I can readily
3	ready the fact that the liquid inventory depletion has
4	nothing to do with the IRWST injection.
5	VICE CHAIRMAN WALLIS: But the problem is
6	you've been brought up in these American cities where
7	all of the streets are a rectangular pattern. This is
8	more like a traditional European city, where there are
9	all kinds of ways to get from here to there.
10	MEMBER POWERS: But we know that the
11	topologists discovered that in Gurtenburg there was
12	not a way to get there without crossing the bridge
13	twice, right?
14	(Laughter.)
15	VICE CHAIRMAN WALLIS: Well, you may find
16	the same is true here. I mean, you can
17	MR. CARUSO: We actually saw one of we
18	actually saw something like this that this week at
19	the fuels meeting. Do you remember the slide that
20	they put up about how the fuels codes interacted with
21	one another? You weren't there, but it you were
22	there, Peter, and that I mean, it looked just like
23	this. It was a spaghetti network.
24	MEMBER POWERS: We said abusive things to
25	them about it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	MR. CARUSO: And we said abusive things to
2	them. But the point was to show that there were a lot
3	of different factors that interacted with one another
4	in ways that may not have been entirely obvious to the
5	uninitiator.
6	And they were just trying to explain that
7	this is a complex scenario, this is a complex issue,
8	and there are a lot of different players. That's all
9	they're trying to do.
10	MEMBER POWERS: In the fuel area, you
11	know, they're trying to say, "Hey, don't go look at
12	this, because it's so complex you'll never understand
13	it."
14	MR. CARUSO: Well, you know, that's not a
15	good thing to say.
16	MEMBER POWERS: Well, I mean, that's what
17	they're deliberately trying to say. And I think
18	that's what this kind of diagram does. It says it
19	emphasizes the complexity rather than the simplicity.
20	MEMBER SIEBER: Yes. It's to impress.
21	MEMBER POWERS: Well, I mean, these are
22	all pretty simple systems.
23	CHAIRMAN BONACA: Well, in slide 17 you
24	strike a you make another statement regarding IDs.
25	Do they help so that the individual expert can make

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	a judgment in their own areas of expertise without
2	making any implicit subjective judgment on the
3	importance of other phenomena? That was the problem
4	you told me.
5	DR. NOURBAKHSH: Yes.
6	CHAIRMAN BONACA: Could you elaborate on
7	that, explain to my why it is.
8	DR. NOURBAKHSH: These are, again
9	CHAIRMAN BONACA: Take the Figure 14.
10	DR. NOURBAKHSH: I mean, this is a very
11	simple system. But suppose some experts are these
12	are some of the chemistry issues found in here. Some
13	of them are hydraulics issues here. And they are all
14	interactions between there. So you get only expert
15	opinion and elicitation on these interactions, which
16	is chemistry, without the just makes the importance
17	to this without saying how important this is to this,
18	because
19	CHAIRMAN BONACA: Okay.
20	DR. NOURBAKHSH: you have to integrate
21	all of these different expertise to the figure of
22	merit.
23	MEMBER FORD: But in order to do the
24	interrelationships between that block and this block,
25	you need a model to start with.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	45
1	DR. NOURBAKHSH: It's not a model. You
2	can do it qualitative as the PIRT are doing, just
3	making the importance. This is important, this is
4	important, and there are
5	MEMBER POWERS: I like the way we do it on
6	the source term, Tom, which they I'll vote for five
7	percent, Tom says six percent, Jim Geseeky says seven,
8	and the French guys says, "No, I'll bid eight and a
9	half," and so he wins because he got the highest
10	number, right?
11	MEMBER KRESS: This, though, reminds me of
12	the decomposition process they did for 1150. They've
13	taken the complex thing and decomposed it into its
14	parts. And then you could let the experts vote on
15	different parts of this.
16	For example, just looking at the one that
17	he's got up there, let's say our interest was in the
18	minimum vessel core inventory. We've only got two
19	arrows feeding into that. One of them is makeup, and
20	one of them is depletion. Well, on each arrow you put
21	a .5.
22	Then, you go to the liquid inventory
23	depletion, you've got one, two arrows going into it,
24	core flashing and core voltage. Well, core flashing
25	gets rid of maybe a tenth of the fluid, and core

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	voltage gets rid of nine-tenths of it. So I'd put .9
2	and a .1 on that.
3	I'd start working my way up this thing,
4	and I'd have numbers on each one of these things. And
5	eventually I think you can combine those numbers and
6	to get an importance measure for each one of these
7	things on the bottom thing you're interested in.
8	CHAIRMAN BONACA: They're trying to make
9	it look like a PRA is what
10	MEMBER KRESS: Yes. I think he has an
11	idea here that's worth pursuing. You know, you have
12	to be sure you get all of these lines right, and all
13	of these items on here right.
14	VICE CHAIRMAN WALLIS: That's what system
15	dynamics people do accept and consider these .9's
16	or .1's. They have a kind of equation, and it's
17	either a differential or it's a linear thing, which
18	says that
19	MEMBER KRESS: Yes. I've replaced this
20	with
21	VICE CHAIRMAN WALLIS: by a certain
22	amount of
23	DR. NOURBAKHSH: That decomposition comes
24	to your mind if you I mean, you do it mentally.
25	You have this picture basically, may be a simple way

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	of
2	VICE CHAIRMAN WALLIS: How is
3	DR. NOURBAKHSH: to come up with these.
4	And if they're writing for the rationales, they have
5	to explain all of these things, if they have done it
6	correctly. But you force them to explicitly to
7	be
8	MEMBER KRESS: You'd have to have some
9	sort of mental model of some of these things and
10	integrate with time, actually, with them. I think it
11	could be useful.
12	DR. NOURBAKHSH: They do it at different
13	times. That's how
14	MEMBER KRESS: Do it at different times,
15	yes.
16	DR. NOURBAKHSH: Different times which are
17	the dominant phenomena are not changing, basically.
18	That's how they do it for small break LOCA, initial
19	blowdown and then different phases.
20	But instead of voting which phase is
21	important, each phase provided the condition to the
22	second phase. You cannot say the way they did it for
23	AP600. The initial blowdown is not important. It may
24	provide some initial condition to initial IRWST
25	initiation, for example, phase or ADS blowdown phase.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

But there are some actually available -you can put all of these things there top-down. You will put them in smaller boxes, open them. I mean, the agency actually is talking about knowledge management initiatives, that they wanted to capture the infrastructure of knowledge that --

7 VICE CHAIRMAN WALLIS: This is an 8 iterative process. I mean, if you're going to do a 9 new analysis of a new reactor with thermal hydraulics, 10 you might start like this. And this tells you the 11 things you have to worry about in your code. So you 12 set up the code, and then you run it and you do all of these things, and you say, when I've done all of this 13 14 stuff with the code, did it have the sort of -- did 15 the pieces have the importance that I thought they had 16 when I started out? You've got to go back to the 17 loop-around.

MEMBER KRESS: Yes.

19VICE CHAIRMAN WALLIS: That's the thing I20criticized them for. They treated it as sort of a21linear process. But the experts set up the PIRT, and22if the expert opinion was wrong, and the code shows23it, it never gets fed back at the beginning again.24MR. CARUSO: But you should even be doing25this as a design. This is the way an engineer should

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

18

	49
1	do a design of anything. You come up with a model in
2	your mind, you write it down, you think about it, and
3	you iterate it. You have to do that.
4	DR. NOURBAKHSH: And then, when you wanted
5	to do code verification, it's not whether these
6	phenomena are important. It's whether these
7	phenomena's dependency on other variables is rightly
8	captured in the code.
9	The code may have all of these phenomena,
10	but the dependency may not be there. The important
11	difference is that we've captured it there.
12	VICE CHAIRMAN WALLIS: You know, it has
13	condensation but it doesn't consider the effect of the
14	non-condensables, for instance.
15	DR. NOURBAKHSH: So you don't have to have
16	a busy slide like this. You can go top-down,
17	basically. If you do it correctly, you can go you
18	can derive this the top-down scaling from these
19	diagrams basically, what are the input and output.
20	VICE CHAIRMAN WALLIS: Are you saying that
21	the experts together make up this massive diagram?
22	DR. NOURBAKHSH: No. What I'm saying is
23	you do advance preparation based on the knowledge, and
24	then put that matrix in front of them, and you come up
25	with some suggestions even if you want based on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	information.
2	VICE CHAIRMAN WALLIS: Well, I could as an
3	expert say, "Look here, you've missed out on one of
4	these blocks, and you can't put it in."
5	DR. NOURBAKHSH: The complete list, you
6	can look at it. With a matrix, you could see, okay,
7	this condensation has an effect on this. I don't see
8	it in the matrix. This is zero. I have to change it
9	too high. And sometimes there are different opinions.
10	Then you know what to expect, where they are
11	different. It's more transparent.
12	When you do if you have a diagram like
13	this, a draft final, then when you have a test you
14	know the test addressed this part of the diagram
15	basically, addressed this phenomena, this phenomena,
16	and this phenomena. Then, you could see what are the
17	important boundary conditions for this test, whether
18	this test really scales well or not. You know what
19	are the important parameters that should come to the
20	test in order to address this issue.
21	If you need to do a little bit more work
22	but I think it's payoff as well as transparency of
23	the result or capturing the implicit assumptions. And
24	then, revision would be much easier. As you learn
25	more, you can go back and update these things much

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	easier than updating a pair.
2	You cannot just change one of these high
3	to low based on one experiment. You know exactly I
4	have learned now for each of these arrows, you can
5	actually ask the level of knowledge, too high, low,
6	no, or whatever. And then you can capture later on
7	where there is importance and high uncertainty. When
8	we have more knowledge, you go back and redo this.
9	VICE CHAIRMAN WALLIS: Okay.
10	DR. NOURBAKHSH: So with each directed
11	arc, you can ask three questions how important it
12	is, the rating which is very much positive, negative,
13	then you could see the compensating effect sometimes,
14	in some tests or something like that. And then, the
15	third question the level of knowledge.
16	Actually, something like that has been
17	done for when they were assessing the impact of Clean
18	Air Act, basically, the process of issues. And DOE
19	actually sponsored something like that, and they
20	actually were in their defending their approach.
21	They were saying that we are not generating a black
22	box. This is a glass box. You see everything.
23	VICE CHAIRMAN WALLIS: Okay.
24	DR. NOURBAKHSH: So as I said, this
25	provided a better a good context for capturing the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	implicit assumptions. And they are more transparent,
2	these things, than a table for revision. I mentioned
3	that how these diagrams could be used when you have
4	different expertise on different areas in multi-
5	disciplinary type of issues.
6	And if you wanted, really, to do a ranking
7	of these processes, there are tools available which
8	are basically looking at this super matrix that I
9	mentioned and trying again, pair-wise ranking of
10	the super matrix, a nd then come up with the
11	prioritization of each phenomenon or processes.
12	Basically, what you could make the case
13	for I mean, you take into account all of the
14	feedback effects and the interactions between all of
15	these phenomena.
16	And, basically, that summarizes my
17	presentation.
18	CHAIRMAN BONACA: Very interesting.
19	MR. CARUSO: Can I just add one more
20	I'm sorry. I just wanted to add one more comment.
21	The former regulator when I used to say the word
22	"PIRT" to the industry, this is what they used to
23	think of, and this is what caused them all sorts of
24	aggravation. I used to think this and see dollar
25	signs.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

We also used to tell them that PIRT could consist of two engineers sitting around a table one afternoon listing everything that was important. And if that worked, that was just as much a PIRT as this, they thought. And I just throw that out as an observation. I think this is a great idea, but this is just one thought of PIRT in a whole park of potential PIRTs.

1

2

3

4

5

6

7

8

21

25

(202) 234-4433

9 DR. NOURBAKHSH: And then, if you have 10 that super matrix, you can put the initial of 11 experiment in the similar super matrix. You see this 12 experiment address the impact of this to this to this 13 to this, where we have missing -- where we are missing 14 as far as database.

VICE CHAIRMAN WALLIS: What you're saying, I think, is that this isn't just at the PIRT stage of, say, evaluating a code. There is also the validation. There's the comparison with experiment. You can do -you can use this kind of thing as well. You can say, "I've got this experiment."

DR. NOURBAKHSH: Yes.

VICE CHAIRMAN WALLIS: "How does it fit into this kind of a picture? Which of these boxes does it give me information about?"

NEAL R. GROSS

DR. NOURBAKHSH: Exactly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 VICE CHAIRMAN WALLIS: Right. And that might be helpful when we're looking at review of AP1000 and we're saying, "Look, you're saying these experiments are adequate. But which of them has any relevance to this piece down here which, you know, PIRT says is important?"

7 DR. NOURBAKHSH: These experiments address these issues. But the boundary conditions are very 8 9 transparent, what -- you should be using that 10 experiment as a boundary condition, but that you are 11 actually addressing that or not, it's there or not in 12 the test separate effect test facilities, _ _ basically. 13

14 MEMBER POWERS: Well, thank you. That's 15 interesting, and I appreciate your -- quick couple of 16 other questions that come to mind on this. Suppose 17 that I'm the NRC, and I wanted to do a PIRT on what's important in a system. If you get two people together 18 19 like Peter and I, because we see eye to eye and agree 20 on everything so completely, that obviously gives you 21 an inadequate PIRT, especially in controversial areas. 22 So you want somebody with orthogonal views 23 on things, or different views on things. And there's 24 going to be a third person into this thing, and you 25 know that Peter and I are such nice guys that we won't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	browbeat that fellow. So it's okay.
2	What is the proper size of a PIRT panel,
3	without getting too unwieldy? If I have if I
4	invite the nuclear engineering faculty of all of the
5	nuclear engineering schools in the United States to be
б	on the PIRT, that's probably the unwieldy.
7	DR. NOURBAKHSH: Previous experience, at
8	least from what I read, some of the Brits' and Gary's
9	work, is that more than four or five was very
10	difficult to get consensus. That's why even in the
11	burnup credit they came up with voting, basically.
12	They were not really they could not make when
13	you have 20 in the room, it's very hard to make a
14	consensus on the issues.
15	But this way, you are forced to elucidate
16	the information more rather than elucidate personal
17	opinion. You base it on some information that should
18	be there. And then, when you could see exactly where
19	the holes are, where the missing knowledge is, impact
20	of what on what, rather than you could see why
21	these phenomena some people voting it six, the other
22	one three. It's a little bit they may have the
23	same opinion on interactions, and this is a better
24	tool for consensus-building, too, in a way.
25	MEMBER FORD: But you say when you have a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1 large number of people -- I can understand from a decision-making process it is sometimes bad. 2 The Brits, when they do their materials -- provide to the 3 4 materials degradation planning for their defense 5 reactors, lightwater reactors, they use 20, 30 people on the panel, put all of the relevant data on the 6 7 table, and then they discuss as a group as to the relative importance of those packets of data. 8 And 9 they do it very much quicker than one year. They do 10 it in a month. DR. NOURBAKHSH: But their preparation for 11

12 that meeting may be quite -- more substantial than what we do for PIRT here. If you prepare it well in 13 14 advance, and you know exactly what the data is, where 15 the missing elements are, the knowledge base is, and the rationales, a few technical staff could sit down 16 -- which are knowledgeable on the whole integrated 17 issues, basically, a generalist who could sit down and 18 19 develop the initial structure and the importance. And 20 then, when you have the experts it doesn't take that 21 much time, because you start with a much focused kind 22 of agenda.

23 VICE CHAIRMAN WALLIS: Do the Brits make24 more use of academics?

NEAL R. GROSS

MEMBER FORD: Yes.

25

	57
1	VICE CHAIRMAN WALLIS: I think you need
2	some reality check on this. There's nothing like
3	having a
4	(Laughter.)
5	Yes, I mean that seriously. I mean, I
6	think you get people who have been in the business all
7	of their life. They always think that A, B, and C
8	influence D, because it has always been that way. And
9	to have to explain that to some, you know, fair,
10	honest, you know, knowledgeable, smart enough if
11	there are any like that academics, you know, is a
12	very good discipline to have.
13	It's a representative of the outside
14	world, and it's useful to have that sort of person
15	or not someone who is egocentric and all of that kind
16	of nonsense that you find in academics, but someone
17	who is willing to balance information and say, "You
18	told me this. Now convince me." That sort of thing.
19	So I would just look for that kind of representation
20	on a PIRT panel.
21	MEMBER KRESS: Give them a psychological
22	test first?
23	DR. NOURBAKHSH: Yes.
24	VICE CHAIRMAN WALLIS: Well, the problem
25	in this country with the nuclear business is that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	everyone is corrupted. And everyone who is an expert
2	has been hired by either the industry or the NRC.
3	MEMBER KRESS: Right.
4	VICE CHAIRMAN WALLIS: It's very difficult
5	to find anybody who you can say is independent.
б	MEMBER KRESS: They're all corrupt, that's
7	right.
8	VICE CHAIRMAN WALLIS: They're all
9	corrupted.
10	CHAIRMAN BONACA: Any other questions for
11	Hossein? Thank you for your presentation. I think it
12	was informative and timely, and we'll see some results
13	soon.
14	So with that, we have on the agenda here
15	we have presenters, but we have also breaks. So I
16	see that there is an intense desire for the members to
17	take a break, so let's get together again at five of
18	2:00.
19	(Whereupon, the proceedings in the
20	foregoing matter went off the record at
21	1:40 p.m. and went back on the record at
22	1:55 p.m.)
23	CHAIRMAN BONACA: Okay. We can get back
24	into session.
25	The next presentation that we have today

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1is on Operating Experience Assessment Report - Effects2of Grid Events on Nuclear Powerplant Performance. And3we have I believe two presentations.4MEMBER LEITCH: Yes, that's right.5CHAIRMAN BONACA: All right. All right?6MEMBER LEITCH: All right.7CHAIRMAN BONACA: Yes.8MEMBER LEITCH: Go to me first?9CHAIRMAN BONACA: Sure.10MEMBER LEITCH: This operating experience,11this particular quarter we thought it was important to12just talk about switchyard- or grid-related scrams.13And there's a couple of different components to that14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21minute what I mean by that term.22We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 1325automatic scrams. And I think we there were about		59
3we have I believe two presentations.4MEMBER LEITCH: Yes, that's right.5CHAIRMAN BONACA: All right. All right?6MEMBER LEITCH: All right.7CHAIRMAN BONACA: Yes.8MEMBER LEITCH: Go to me first?9CHAIRMAN BONACA: Sure.10MEMBER LEITCH: This operating experience,11this particular quarter we thought it was important to12just talk about switchyard- or grid-related scrams.13And there's a couple of different components to that14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the19plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	1	is on Operating Experience Assessment Report - Effects
4 MEMBER LEITCH: Yes, that's right. 5 CHAIRMAN BONACA: All right. All right? 6 MEMBER LEITCH: All right. 7 CHAIRMAN BONACA: Yes. 8 MEMBER LEITCH: Go to me first? 9 CHAIRMAN BONACA: Sure. 10 MEMBER LEITCH: This operating experience, 11 this particular quarter we thought it was important to 12 just talk about switchyard- or grid-related scrams. 13 And there's a couple of different components to that 14 discussion. 15 Let me remind you that we had a discussion 16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 we were not sure that it was statistically 22 We were not sure that it was perhaps 13	2	of Grid Events on Nuclear Powerplant Performance. And
5 CHAIRMAN BONACA: All right. All right? 6 MEMBER LEITCH: All right. 7 CHAIRMAN BONACA: Yes. 8 MEMBER LEITCH: Go to me first? 9 CHAIRMAN BONACA: Sure. 10 MEMBER LEITCH: This operating experience, 11 this particular quarter we thought it was important to 12 just talk about switchyard- or grid-related scrams. 13 And there's a couple of different components to that 14 discussion. 15 Let me remind you that we had a discussion 16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 We were not sure that it was statistically 22 We were not sure that it was perhaps 13	3	we have I believe two presentations.
6 MEMBER LEITCH: All right. 7 CHAIRMAN BONACA: Yes. 8 MEMBER LEITCH: Go to me first? 9 CHAIRMAN BONACA: Sure. 10 MEMBER LEITCH: This operating experience, 11 this particular quarter we thought it was important to 12 just talk about switchyard- or grid-related scrams. 13 And there's a couple of different components to that 14 discussion. 15 Let me remind you that we had a discussion 16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 We were not sure that it was statistically 22 We were not sure that it was perhaps 13	4	MEMBER LEITCH: Yes, that's right.
 CHAIRMAN BONACA: Yes. MEMBER LEITCH: Go to me first? CHAIRMAN BONACA: Sure. MEMBER LEITCH: This operating experience, this particular quarter we thought it was important to just talk about switchyard- or grid-related scrams. And there's a couple of different components to that discussion. Let me remind you that we had a discussion of this generally of operating experience with the plants in the July timeframe. And during that time it appeared to us as though there was some indication that there were an increasing number of what I call switchyard-initiated scrams. And I'll explain in a minute what I mean by that term. We were not sure that it was statistically significant, but during that particular three-month time period leading up to July there was perhaps 13 	5	CHAIRMAN BONACA: All right. All right?
8 MEMBER LEITCH: Go to me first? 9 CHAIRMAN BONACA: Sure. 10 MEMBER LEITCH: This operating experience, 11 this particular quarter we thought it was important to 12 just talk about switchyard- or grid-related scrams. 13 And there's a couple of different components to that 14 discussion. 15 Let me remind you that we had a discussion 16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 we were not sure that it was statistically 21 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	6	MEMBER LEITCH: All right.
9CHAIRMAN BONACA: Sure.10MEMBER LEITCH: This operating experience,11this particular quarter we thought it was important to12just talk about switchyard- or grid-related scrams.13And there's a couple of different components to that14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20witchyard-initiated scrams. And I'll explain in a21Me were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	7	CHAIRMAN BONACA: Yes.
10MEMBER LEITCH: This operating experience,11this particular quarter we thought it was important to12just talk about switchyard- or grid-related scrams.13And there's a couple of different components to that14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21Me were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	8	MEMBER LEITCH: Go to me first?
11 this particular quarter we thought it was important to 12 just talk about switchyard- or grid-related scrams. 13 And there's a couple of different components to that 14 discussion. 15 Let me remind you that we had a discussion 16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	9	CHAIRMAN BONACA: Sure.
just talk about switchyard- or grid-related scrams. And there's a couple of different components to that discussion. Let me remind you that we had a discussion of this generally of operating experience with the plants in the July timeframe. And during that time it appeared to us as though there was some indication that there were an increasing number of what I call switchyard-initiated scrams. And I'll explain in a minute what I mean by that term. We were not sure that it was statistically significant, but during that particular three-month time period leading up to July there was perhaps 13	10	MEMBER LEITCH: This operating experience,
13And there's a couple of different components to that14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21minute what I mean by that term.22We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	11	this particular quarter we thought it was important to
14discussion.15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21minute what I mean by that term.22We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	12	just talk about switchyard- or grid-related scrams.
15Let me remind you that we had a discussion16of this generally of operating experience with the17plants in the July timeframe. And during that time it18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21minute what I mean by that term.22We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	13	And there's a couple of different components to that
16 of this generally of operating experience with the 17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	14	discussion.
17 plants in the July timeframe. And during that time it 18 appeared to us as though there was some indication 19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	15	Let me remind you that we had a discussion
18appeared to us as though there was some indication19that there were an increasing number of what I call20switchyard-initiated scrams. And I'll explain in a21minute what I mean by that term.22We were not sure that it was statistically23significant, but during that particular three-month24time period leading up to July there was perhaps 13	16	of this generally of operating experience with the
19 that there were an increasing number of what I call 20 switchyard-initiated scrams. And I'll explain in a 21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	17	plants in the July timeframe. And during that time it
20 switchyard-initiated scrams. And I'll explain in a 21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	18	appeared to us as though there was some indication
21 minute what I mean by that term. 22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	19	that there were an increasing number of what I call
22 We were not sure that it was statistically 23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	20	switchyard-initiated scrams. And I'll explain in a
23 significant, but during that particular three-month 24 time period leading up to July there was perhaps 13	21	minute what I mean by that term.
24 time period leading up to July there was perhaps 13	22	We were not sure that it was statistically
	23	significant, but during that particular three-month
25 automatic scrams. And I think we there were about	24	time period leading up to July there was perhaps 13
	25	automatic scrams. And I think we there were about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 seven of those that were related to switchyard issues. 2 And by "switchyard issues," I mean those things that are beyond the generator breaker, let's 3 4 say, disconnect switches, main transformers, lightning 5 arresters, protective relay actuations or misacuations, grid reliability problems regardless of 6 7 their cause, and so forth. 8 And so we thought that we would keep an eye on that thing for a while and see if there continued to be a trend. And, indeed, it seemed like the trend was continuing. For example, there was a

9 10 11 12 two-week period in -- towards the end of July where there were three scrams from 100 percent power due to 13 14 grid problems. And I've listed them here as to which 15 ones those are, and I'll go into that in a minute.

But we're concerned about these issues, 16 17 because when a plant is running along at 100 percent power, and the generator breaker or breakers open, 18 19 there is a significant challenge to the plant. There 20 are robust safety systems that are designed to cover 21 the plant in that situation and protect the plant in 22 that situation, obviously. But it does challenge a great deal of those safety systems. 23

24 So as a result of that, we thought we 25 would have some kind of a presentation, and then in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	the more recent days there has been some fairly
2	significant events occur. So I'd just like to go
3	through just a couple of the just to mention a
4	couple of the events, so that you get an idea of what
5	we're referring to here, a couple of the events that
6	have occurred in the fairly recent history.
7	On July 22nd, at Peach Bottom Number 2,
8	there was a main generator protective relay actuation
9	and a unit scrammed from 100 percent power.
10	Palo Verde, on July 28th, there was a grid
11	perturbation problem, and the one unit scrammed and it
12	sounded like they were very close to losing all three
13	units. But it turned out just to be one unit
14	scrammed.
15	Salem Number 1 on July 29th, there was a
16	500 KV circuit breaker failure, and it tripped the
17	unit there. They declared an unusual event.
18	And since that time, there have been a
19	couple more. On August 3rd, there was a loss at
20	Indian Point Number 2. There was loss of all load and
21	the reactor scrammed from 100 percent power.
22	And, of course, the one that we're all
23	familiar with that's August 14th in the
24	northeast blackout there were nine nuclear plants that
25	went down due to loss of offsite power events.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	62
1	On July 8th, there was an automatic scram
2	from 100 percent power at LeSalle due to a fault in
3	the main power disconnect.
4	One that may be a little bit of an
5	outlier, on August 23rd at Wolf Creek, there was a
6	cropduster plane flew into a 345 KV line, and the
7	plant had to quickly reduce power. They did not scram
8	on that occasion, but I don't know how the cropduster
9	made out. But the plant stayed online.
10	ANO Number 1, on August 29th, there was an
11	automatic scram from 100 percent power, and that was
12	caused by tripping of the main generator breaker, or,
13	actually, the turbine tripped and the main generator
14	breaker failed to trip, and they had to manually open
15	the main generator breaker to prevent motoring of the
16	generator.
17	VICE CHAIRMAN WALLIS: How quickly could
18	they do that? They have to act pretty quickly, don't
19	they?
20	MEMBER LEITCH: Yes, right. Right. This
21	is one of the challenges I'm referring to, yes. And,
22	in fact, one of the challenges is when the main
23	generator breaker opens, all of the turbine valves
24	have to go closed or else you get a turbine overspeed
25	situation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	On September 15th, there was an unusual
2	situation at Peach Bottom. There was actually a dual
3	unit scram, both units from nominally 100 percent.
4	One was a little less than 100 percent due to an
5	electrical transient, and there were some subsequent
6	problems with diesels with a diesel generator and
7	a safety relief valve stuck open. And there was an
8	AIT. In fact, I think there presently is an AIT there
9	at Peach Bottom. I don't think we know the
10	conclusions of that yet.
11	VICE CHAIRMAN WALLIS: Well, these events
12	advise us of latent problems, like if the SRP is stuck
13	open you could say it was a latent
14	MEMBER LEITCH: It was a latent problem,
15	yes. It was not related to the scram directly, not
16	so far as I know, nor was the diesel I think all
17	my impression is that all four diesels started and
18	then one tripped. But I don't know the full status of
19	that investigation. It's currently ongoing.
20	On September 18th, Hurricane Isabel
21	related apparently at Surry 1 and 2. Both units
22	tripped from high power due to loss of power to all
23	circulating water pump busses. So they lost all eight
24	circulating water pumps and manually tripped both
25	units.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	64
1	On August 20th, again, apparently
2	hurricane-related excuse me, September 20th Hope
3	Creek Number 1 tripped, automatic trip from 100
4	percent power, and then later Salem and Hope Creek,
5	by the way, share the same site. Later that same day
6	they manually took Salem 1 and 2 out of service for
7	the apparently the same related situation, which
8	was a salt buildup on the bus structures.
9	So now some of these things are perhaps
10	outliers, but it certainly leads to questions about,
11	you know, if you count these up there's probably about
12	23 or so units that scrammed in the period of, what,
13	two months. And now, admittedly, there's hurricanes
14	and there's blackouts, but I guess there's always been
15	hurricanes and blackouts. You have to deal with those
16	kinds of things.
17	And one might ask the question is there
18	a statistically significant trend here? If there is,
19	does this represent a safety concern? Is there an
20	aging-related issue here? Are we thinking about
21	license renewal? Is there something going on here
22	that's related to the age of some of this equipment?
23	Or is there a change in utility operating practices or
24	maintenance practices with respect to some of this
25	equipment that may be leading to some of this these

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	65
1	issues?
2	So in that regard, we've asked the staff
3	to come in and give us a couple of presentations on
4	this topic. One has to do with the report that was
5	prepared previously. I think it was issued about
6	May 1st, and it deals with the reliability and
7	operating experience of the grid.
8	And interestingly enough, it deals with it
9	in two time periods, from about I think it's '87 to
10	'96, before a great deal of deregulation took place,
11	and it contrasts that with the experience in the
12	period from '97 through 2002. So we'll hear a little
13	bit about that report and some other information about
14	the more recent operating events that have gone on.
15	I would say that there is really two sides
16	to this problem. One is, how does the nuclear plant
17	affect the grid? And I think that's mainly what this
18	report that we're going to hear deals with, and that's
19	something that we need to be concerned about. But the
20	other side of that coin is just as important to us, if
21	not more so, and that is, how does the loss of the
22	grid for other reasons impact the operation or
23	challenge the operation of the nuclear powerplant?
24	So with that, I'd like to turn it over to
25	John Flack, who will take over from here and introduce

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	the rest of the presenters.
2	MR. FLACK: Yes, thank you, Graham. I am
3	hoping I'm John Flack, Branch Chief from the
4	Regulatory Effectiveness and Human Factors Branch in
5	the Office of Research. And hopefully we'll be able
6	to shed a little light on some of the questions you
7	raised here, which are very important.
8	Before we get started, though, I'd like to
9	first go over a few things. One is after I'm finished
10	Cornelius Holden is here from NRR and will bring the
11	committee up to date on what's been happening more
12	recently.
13	And as you've mentioned, Graham, this is
14	really Bill's study that we're looking at today. Bill
15	had started this a few years ago. By the way, Bill
16	came from industry with about 20 years of experience
17	when he came to the NRC in '92. And he actually went
18	to AEOD, which no longer exists as you know, but the
19	function part of the AEOD function did come to
20	Research and is in my branch.
21	We have a small team of about five that
22	look at operating experience and regulatory
23	effectiveness from an independent perspective and do
24	studies. And one of these studies was what Bill was
25	doing on grid, and ironically he was putting together

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 the pieces just before all of this happened. And 2 you'll see some of the things that he looked at as 3 part of his study that indicated that things were 4 actually changing out there.

5 And, really, there is a lesson to be 6 learned from that, because if you look at the 7 statistics backward-looking you may not see that 8 change. Everything seemed to be pretty much in order. 9 We were really not getting -- in fact, the number of 10 events had gone down, although we did notice that they 11 were getting longer in duration.

But the fact that if you look at it from that perspective, you'll notice that things were really changing after deregulation. And this is part of what Bill will be talking about today -- how things have changed, seriously changed, during and after deregulation. And that's pretty much part of his study.

So we had received a number of comments on this study, and that also reflects how one sees it from a different perspective. We had an example from one commenter that it really didn't provide a whole lot of value where from NERC -- and this is really less than a month before we had the blackout event -stating that the events that were cited in Bill's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	report basically provide a wealth of information,
2	lessons learned, so it should be taken seriously and
3	acted upon by the Commission.
4	So you can see the difference of
5	perspectives, I think, that again it bears out I think
6	the fact that if the model is changing one has to
7	really look at that and not solely rely on the
8	statistics that we see from day to day. That we
9	really have to understand it in light of this changing
10	model.
11	So without holding it up any longer, let
12	me turn it over to Cornie and let him bring you a
13	little bit up to speed on what's been going on more
14	recently.
15	MR. HOLDEN: My name is Cornelius Holden,
16	and I'm Project Director for NRR. But more recently,
17	I've been working with Sam Collins as part of the task
18	group looking at blackout event, so I thought it would
19	be timely just to fill you in on task group activity,
20	and then tell you what we're doing within the NRC and
21	internal task group as well.
22	But as you're probably aware, the
23	President of the United States and the Prime Minister
24	of Canada jointly formed a review task group for the
25	blackout event of August 14th. Within that, there are

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	three working groups. There's a security working
2	group, an electric systems working group, and a
3	nuclear working group. And there is a U.S. and a
4	Canadian counterpart on each of those.

5 The chairman is in charge of the U.S. 6 nuclear working group. And during phase one of those 7 reviews, the various working groups are trying to 8 determine what happened, what caused the outage and 9 why, and why was the system not able to prevent the 10 spread of the blackout.

11 There will also be a phase two, which is, 12 how do we prevent future outages? And that will involve input from a variety of stakeholders in that 13 14 process, and there are still details to be worked out 15 that. they -like was mentioned on So on August 14th, nine plants tripped as designed and 16 17 safely shut down as a result of the grid disturbances.

There were a number of other plants that saw the disturbance nationwide, and some plants, because of the way the grids operated, didn't see that. So that's basically where we are on the task group activity there.

Within NRR and Research, we have formed a team to take a look at the events of August 19th, the most recent events that you'll hear about, and Bill

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	Raughley's report. And we're looking at that to
2	understand what those events tell us, put it into our
3	process to determine what actions we need to take as
4	a result of that, whether it's generic communications
5	or rulemaking.
б	And we're proceeding on a schedule that
7	will allow these two both the task the
8	international task group and our working group to
9	transfer ideas from one group to the other, because it
10	may be that out of one group we have ideas for the
11	grid, and the electric working group on the task
12	group may have other issues that will come back, and
13	we'll have to put those into our process.
14	And with that, I just thought I'd lay the
15	groundwork for that.
16	MEMBER LEITCH: I just wanted to emphasize
17	that, you know, there's a lot higher visibility
18	nationwide I'm sure on the impact on the grid.
19	MR. HOLDEN: Yes.
20	MEMBER LEITCH: A big blackout, and so
21	forth.
22	MR. HOLDEN: Yes.
23	MEMBER LEITCH: But I think as the Nuclear
24	Regulatory Commission, we need to be looking at
25	that is certainly important, but I want to be sure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	that we don't lose sight of the impact that that has
2	on the nuclear powerplants. I think it's a real
3	challenge.
4	I mean, on August 14th, the plants all
5	shut down. Apparently, the diesels started reasonably
6	well, and there was no major problems associated with
7	that. But yet do that often enough and there will be
8	some problems, a la the subsequent events that have
9	happened even a couple of weeks ago at Peach Bottom.
10	So we need to be concerned about both
11	sides of that coin, I guess, not just supporting the
12	grid that's important but also if the grid goes
13	down for other reasons, what does it do to the plant?
14	MR. HOLDEN: And I think the internal
15	working group is also going to benefit from the fact
16	that many members of that group also participated in
17	the nuclear working group for the review of the grid.
18	So there will be a lot of transfer of information that
19	happens there.
20	MR. FLACK: Okay. I guess we can move to
21	Bill's presentation. Take it, Bill.
22	MR. RAUGHLEY: I'll just start with the
23	introductory slide here. The topic is grid
24	reliability issues, and people have talked about the
25	report. We're going to focus on those aspects of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The topics we're going to give some background in terms of why we did the report, the regulatory expectations, and some background on deregulation. I'm going to focus on the changes to the grid. We did a little more detailed look than we normally do. It was not the traditional look-see.

9 In the next three bullets we're going to 10 provide insights from the work we did, and I have some 11 backup slides, like I said, if you want to talk about 12 additional topics in the report.

John covered the first report, who we are and what we do. How we got into this is in 1999 the Commission asked the question, "Do we need to take any regulatory action as a result of deregulation? And what actions do we need to take to maintain the licensing and design basis?"

And I wrote a paper and a SECY. The paper was based on a field survey that Reinaldo Jenkins headed. We went through 17 -- or Reinaldo went to 17 rate control centers and 17 nuclear powerplants, and just the basic -- and took a basic overview of what was going on or what the people had planned to do for deregulation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

72

1 It was also based on -- we made multiple trips to the California ISO and PJM, and not because 2 3 they were problems but because they were on the 4 leading edge so to speak of what was going on on 5 deregulation and were fairly open and willing to share with us what they've done. And it was also based on 6 7 NERC reliability forecast. NERC does a -- annually they do a 10-year forecast, and we made extensive use 8 9 of that, and then we also used the operating 10 experience.

And what we've tried to do from all of 11 12 that was postulate what could happen, and, you know, our things we were concerned -- well, I'll get into 13 14 that later. But one of the recommendations in 15 response to the Commission's question, "What action should we take to maintain the licensing basis?" was 16 17 that we would monitor and assess the grid impact and nuclear plant performance, and ergo this study was 18 19 planned. And John talked about the timing of the 20 study.

The next step is we're planning to issue a NUREG in November. We've got comments from the -stakeholder comments from the May issue of the report. We're revising -- there were some minor revisions to the report to address those that we'll talk about.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

73

	74
1	Along the way, too I didn't put it on
2	here is that NRR issued two INs and a RIS having to
3	do with deregulation, just alerting the industry to
4	their concerns. INPO has taken some steps. They've
5	been out kicking the tires, trying to make sure that
6	the plants have been prepared for deregulation, as the
7	follow-on to some of NRR's INs and RISs.
8	Now I'll come back to the methodology and
9	the report a little ways up.
10	In regulatory space, we're talking about
11	GDC-17 having to do with the capacity and capability
12	of the offsite power system, and, in particular,
13	minimizing the chance that a loop that a reactor
14	trip will cause a loop.
15	What's important to recognize in
16	determining the system capacity and capability I
17	think what's important to recognize about the grid is
18	you can't test the capability of the grid, so you have
19	to analyze it. And you have to be prepared for
20	contingencies that you would expect. Typically, the
21	utility is designed for a so that the grid will
22	remain stable for a reactor trip or a single, and
23	even, in some cases, double contingencies.
24	So what they try to do is bounding
25	analysis. Before deregulation, each utility had a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

finite area to manage, and you had a finite number of configurations and the analysis. So you could do -typically on an annual basis, they did power flows, voltage profile, stability analysis, and based on those revised their operating procedures and got the grid set up for successful operation.

7 What the station blackout rule identified 8 is the risk factors, the important risk factors, the 9 loop frequency and duration, and the diesel --10 emergency diesel generator redundancy and reliability. 11 And the outcome of that was coping times, and most 12 plants subscribe to a four- or eight-hour coping time 13 as a result of that.

In the maintenance rule, we pay attention to A4, where licensees are required to manage the increase in risk from plant activities, such as testing the diesel. And there are subjects that are relevant to what we're going to be -- what we looked at.

20 as deregulation, As far there's two 21 aspects that we focused on. One was the 1992 National 22 Energy Policy Act, and that encouraged open generator 23 transmission or generator access the open to 24 transmission system and statutory reforms at the state 25 level to promote wholesale generators.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

The concerns that result from that with the states, when they deregulated they busted up the traditional utility into a generating company and transmission company, and you introduced more players. So our logic was that with more players you'd have longer recovery times, just more coordination, more parties to coordinate.

8 And I think a good example of that is 9 Calloway had an event in '99, and they -- the reactor 10 tripped, and shortly thereafter the voltage dropped 11 because of the grid. There was a transmission line --12 nearby transmission line congestion. The reactor trip 13 exacerbated that.

In order to recover, it took 12 hours to rearrange, but then the power flows were coming from Canada down to Texas for cold weather where they had lots of generation down to the hot weather. And it took 12 hours to rearrange the grid, to reestablish the proper voltages at Calloway.

The next bullet has to do with FERC Order 888, and that required all utilities to provide for open access generation to the transmission system. What that means is anybody could buy a lot, build a generator, and they'd gain access to the transmission system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

1	In my report, I make reference to a slide
2	on a DOE website that shows the status of
3	deregulation. This was as of this is I took
4	this off their website yesterday, but shows up in
5	Region 1 basically is fully deregulated. Region 3 is
6	about 50/50. And then and it's mixed out in
7	Region 4, and nothing going on in Region 2.

8 But it's important to remember that even 9 though a state hasn't restructured, all states are 10 subject to open access transmission. So that's an 11 important part of this. Just because you haven't --12 your state hasn't deregulated, so to speak, doesn't 13 you're exempt from the consequences mean of 14 deregulation.

And then I want to talk a little about the report that -- the information in the report that is -- just downloaded information in the report I didn't put in the slides. These are really backup slides.

But the overall objective of our report was to see if there was any change in the deregulated environment. And the method we used is -- what I did is I drew a line of demarcation between the site and the grid, and the line of demarcation was across the high voltage terminals of the transformers.

And the plant side I called the plant, and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

Í	78
1	the grid side was there was the grid, and then we
2	busted the grid up into the switchyard and the
3	transmission system. And then we began classification
4	of events. According to R events
5	MEMBER LEITCH: Just to be clear, the main
6	transformer was with the powerplant.
7	MR. RAUGHLEY: Yes. The main transformer
8	is with the powerplant, and the station transformers
9	were with the powerplant.
10	MEMBER ROSEN: Just line it up, so
11	MR. RAUGHLEY: Okay. Sorry.
12	MEMBER ROSEN: Now let's be a little more
13	specific. The main transformer, high side, is with
14	the powerplant or with the grid?
15	MR. RAUGHLEY: With the powerplant. The
16	transformer is with the powerplant, and the station
17	transformers, which connect to the offsite system,
18	were with the plant. The generator breakers and all
19	of the high voltage equipment was with the grid. And
20	I called that that was part of the switchyard. And
21	then, out beyond the switchyard I called the
22	transmission system.
23	MEMBER ROSEN: Okay.
24	MR. RAUGHLEY: So then what we did is then
25	we looked at and then we were just looking at

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	reactor trips from power. We didn't look at anything
2	from zero to power. So this is all reactor trips from
3	power.
4	Then, we had R events, which are the
5	GDC-17 events, and in particular these were loops,
6	partial loops, or voltage degradations below the tech
7	spec limit. And what we were looking for there is
8	that subset of events where the reactor trip caused a
9	consequential loop.
10	When the reactor trips, you're depleting
11	a certain amount of watts and bars from the system.
12	And if the system doesn't have enough reserve to
13	recover, you you're going to get a voltage drop.
14	If there's not enough reserve to recover, the voltage
15	will stay depressed and you'll experience a loop.
16	And then, let me jump down to the elements
17	or the traditional loops where the first sequence of
18	events was in the switchyard or the transmission
19	system. R and L events were part of the risk analysis
20	we did. The S and T events well, the R and L
21	events are all they're all loops and part of the
22	risk analysis. The S and T events are generally not
23	risk-significant, and what we used those for was to
24	get insights.
25	And the S events were reactor trips for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	the first sequence of events were in the
2	switchyard, and the T events were reactor trips for
3	the first event in the sequence of events was in
4	the transmission system.
5	And we devoted a page in the report to say
б	to point out that this is very different from what
7	we have done in the past. Before the R and the L
8	events, there wasn't any distinction there, just a
9	loop was a loop. And the S and T events were
10	traditionally called turbine trips.
11	So, and all of these have you know,
12	there's these are events where there's a lot of
13	the events I looked at were traditionally plant-
14	centered events. And what we're doing is looking at
15	the grid aspects of these events, so there's both
16	plant and grid aspects to these events. But the grid
17	did play a major part in the event.
18	MEMBER LEITCH: In the S and T events,
19	though, although they might be referred to as turbine
20	trips, the initial event is, I would think, a
21	generator breaker opening.
22	MR. RAUGHLEY: Yes. Yes. An example
23	would be there's one event in there where a fault in
24	North Carolina tripped the circ water pumps at North
25	Anna. You know, and that reduced vacuum and led to a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	reactor trip, and traditionally we call that I
2	mean, led to a turbine trip. But really, the first
3	event in the sequence was the fault in North Carolina.
4	MEMBER LEITCH: Yes.
5	MR. RAUGHLEY: It caused negative phase
6	sequence, current imbalances, and it led to
7	MEMBER ROSEN: And this cropduster into
8	the Wolf Creek transmission line is a T event.
9	MR. RAUGHLEY: Yes.
10	MEMBER LEITCH: Now, you say the S and T
11	events are not risk-significant? Did I hear
12	MR. RAUGHLEY: No, just a straightforward
13	reactor trip is usually a low 10^{-6} .
14	MEMBER LEITCH: Yes, a reactor trip. But
15	you don't differentiate between that and a generator
16	breaker opening?
17	MR. RAUGHLEY: It depends why the
18	generator breaker opened. If the generator breaker
19	opened because of a generator fault, then that would
20	be a plant-centered event and I didn't count that
21	there. If the generator breaker opened because of a
22	transmission line fault, or a fault in the switchyard,
23	or a plane flew into the transmission lines, then that
24	would be S and T events.
25	MEMBER LEITCH: But from a risk

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	standpoint, I would think a generator breaker opening
2	at full power would be more risk significant than a
3	reactor trip.
4	MR. RAUGHLEY: No. They're all around
5	very low 10 ⁻⁶ -ish.
6	MEMBER LEITCH: Okay.
7	MEMBER ROSEN: Well, it might be more
8	significant the damage to the plant. The turbine
9	doesn't necessarily react to core damage frequency.
10	MEMBER LEITCH: Yes. You'd have to
11	postulate a turbine runaway, creating a missile, which
12	now, you know, it's a I can understand why it's
13	MEMBER ROSEN: Why there's very low
14	probability.
15	MEMBER LEITCH: Yes, yes.
16	MR. RAUGHLEY: Collectively, Jerry is
17	going to talk about the numbers of S and T events. He
18	took what I did and carried it through to 2002, 2003,
19	and there are some fine nuances. But just so there's
20	no confusion, we'll let him show you the number-
21	crunching he did on there. It's very revealing.
22	I will say that the in the S and T
23	events, I did a writeup in there on two events. Well,
24	one, I pointed out that there were four multi-unit
25	trips, and we Section I think it's 3.3.3 in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

revised report and in the old report talks about two events in California.

One tripped -- it was a grid event that tripped two units in one case and four units in another. It tripped two units at Diablo with a fourunit trip and two units at Palo Verde. And they were a cornerstone of the California ISO. They had analyzed those events to death, but they shaped a lot of what the California ISO did.

10 An example is, as a result of that, they 11 increased their reliability criteria to require that 12 the grid be able to sustain the loss of all generators connected to a common switchyard. Typically, you'd 13 14 only want one, but that's what the California ISO 15 determined you would need to do to survive an event like that. And, importantly, there was a NERC report 16 that identified 65 corrective actions. 17

And then, on the R events, the things I want to point out -- that up to the time of the trip the plants were operable. Eight of those 10 events took place in the summer. Seven of the 10 were in the northeast.

And I think there's -- or there are partial loops and tech spec voltage degradations there that normally we ignore. But if you look at those,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	84
1	they are indicating weaknesses in the grid. I mean,
2	if a unit trip causes a partial loop, it's indicating
3	a potential weakness in the grid.
4	And as far as other features of the study,
5	it's all based on actual data. I've only made two
6	assumptions where we don't have data for what's the
7	probability of recovering from the loss of all
8	diesels. We have no experience in that area, and we
9	have no experience from recovering from the loss of
10	all the failure to recover from the loss of all
11	diesels in four hours. So we make two assumptions
12	there.
13	And the internal comment there is that I
14	was conservatively low on those assumptions. So if
15	anything, the risk that we came up with might be a
16	little higher.
17	Another comment on the data that we got
18	was whether there was enough data, and it was
19	suggested that I look at what EPRI did when they
20	analyzed loop events. And they take a short-term look
21	at five years, and it's exactly what I did. I also
22	had two of our statisticians look at our data.
23	There was questions about, did we have
24	enough data? And, really, we're in the lower part of
25	the statistical interval. So, again, it's non-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

conservative, you know, and there's risk and we're non-conservative.

So the things we talk about in the report on what has changed is -- is that there were some events -- the Calloway event and one of the reactor trips -- where there was a consequential loop. It involved increased transmission line loading. And as a result of deregulation, you have -- the open generator access causes changes in the power flow.

The power flows according to the laws of 10 11 electricity -- Kirkoff's laws. And if you overload a 12 transmission, a nearby transmission line to a voltage plant, what you're effectively doing is increasing the 13 14 impedance hanging on the terminals of the plant. And 15 that's causing an additional voltage drop, and that's exactly what happened at Calloway and in an event at 16 17 Oyster Creek.

The other thing we talk about there are lower grid reactive capabilities. We looked at a PJM event. There weren't any loops, but it involved the PJM system, 12 nuclear powerplants. It was two hot days in July, two separate events.

And as they began to -- you know, as the load rose, they went through their voltage reduction and all of their procedures to maintain the system in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	86
1	the condition they wanted. But as they went through
2	this, the grid started didn't respond to what they
3	expected. And they got to the end of their procedures
4	and the voltage was still high.
5	In the followup, what they found was 54 of
6	the 72 generators that they were expecting to provide
7	that didn't provide the advertised reactive
8	capability.
9	The other thing we pointed out was that
10	the reactor power uprates a generator, as a
11	constant KVA device, if you increase the power, you
12	decrease the MVA. The generator is let me get a
13	backup slide to I saw some strange looks.
14	This is a typical generator reactive
15	capability curve. Typically, you're rated at .95, and
16	you would be about at a you know, .92, .94 per unit
17	power. So if you come up here and increase the power
18	rating, you are on a fairly steep part of the curve.
19	You decrease the reactive capability.
20	And one generator one power uprate at
21	a time is it doesn't make a difference. I think in
22	the report I pointed out there have been 62 power
23	uprates, and it has depleted approximately 4,000
24	megavars in total from the grid. That's significant.
25	In NERC's comments to our report they

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 pointed out that that was significant, and they 2 indicated to us that those bars should be replaced. 3 But they -- and I think they were going to pursue 4 that. 5 MEMBER SIEBER: Well, the amount of flowing around 6 reactive that's the grid is 7 controllable by changing the excitation voltage on --8 MR. RAUGHLEY: Yes. 9 MEMBER SIEBER: And so typically that's 10 what happens. The problem is that you may end up with 11 a unit here and there that's doing a lot of reactor 12 duty and not generating much real power. MR. RAUGHLEY: That's true. 13 14 MEMBER SIEBER: And so you've got current 15 going like crazy, but no megawatts. 16 MR. RAUGHLEY: Yes. There's a tradeoff 17 there. MEMBER SIEBER: Because what makes it flow 18 19 is the difference in phase angles from one end to the 20 other, right? 21 MR. RAUGHLEY: Yes, on the power. 22 There's --23 MEMBER SIEBER: Well, the power is voltage 24 that --MR. RAUGHLEY: Well, both are voltage. If 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

87

	88
1	you you had mentioned this to me before. I just
2	made this up. He had mentioned it to me at the
3	meeting our meeting before we started the
4	meeting.
5	If you look at it simplistically, a
6	generator and a load and the reactants between them,
7	the power flow is a function of the voltage, the sign
8	of the angle between them and I'll explain what
9	that is and the reactants between them.
10	And if you were to take the motor and the
11	generator at stand-still and take a marker and mark a
12	stationary mark on the shaft on the stationary part of
13	the machine, and do the same thing on the motor, as
14	you load the generator you and put a strobe light
15	on it you'd see this the generator.
16	It's like the timing light, for those of
17	you that remember points on cars. You see the
18	generator would move this way, in the direction of the
19	rotation of the machine, and the motor would move this
20	way. That's the angle they were talking about.
21	But for constant power, then the voltage
22	is going to drop. So that's why you have an automatic
23	volt. That's why it's important to have the voltage
24	regulator in auto all the time. Then that
25	automatically increases the voltage.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	MEMBER SIEBER: Another way to look at it
2	is if the motor is sitting there with no load, but
3	turning and you start putting a mechanical load on the
4	motor, that angle changes between the motor phase and
5	the generator phase.
6	MR. RAUGHLEY: Yes.
7	MEMBER SIEBER: And the voltage regulator
8	reduced the voltage, and the turbine throttle valves
9	open up.
10	MR. RAUGHLEY: Yes. This is called the
11	stability limit.
12	MEMBER SIEBER: Yes.
13	MR. RAUGHLEY: Just for your information.
14	And this is the basic equation to all stability
15	analysis.
16	MEMBER LEITCH: So a lot of these plants
17	that didn't respond in the 1999 PJM episode probably
18	had their voltage regulators on manual.
19	MR. RAUGHLEY: It was more a function of
20	the fact that it was so hot that it derated the
21	machine, and it couldn't deliver
22	MEMBER LEITCH: Okay. So it was
23	MR. RAUGHLEY: the rated power. And
24	the cumulative effect of that
25	MEMBER SIEBER: In the network, the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	machine that's dealing with reactor power looks more
2	like a capacitor than an inductor, or it can.
3	MR. RAUGHLEY: Yes. The next bullet we
4	add this. NERC pointed out to us let me back up.
5	Both of these things lead to lower voltages. You
6	know, lower voltages may require different action
7	levels.
8	The next bullet increase in the
9	transmission line relief requests when NERC read
10	our report they called right away and said, "Go to our
11	website and click here, there, and the other thing,
12	and look at this curve." And this is transmission
13	line relief requests.
14	What they are are LERs basically on the
15	system, and they're graded one through six. And about
16	LER 3 require physical actions in terms of curtailing
17	transactions, reconfiguring the grid, and then you get
18	into levels 5 and 6 and they require actions within 10
19	minutes and five minutes, respectively.
20	And what you have here is here's '97, and
21	some where you have where deregulation that's
22	when open generator access transmission started. Then
23	you have '98 and '99, 2000, 2001, 2002. So you can
24	see the level of activity increasing.
25	And the reason NERC pointed out to us

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	one of our conclusions was that that that the
2	concern should be from May to September, and that's
3	what triggered this, May to September.
4	MEMBER LEITCH: That's certainly the
5	bigger concern. But even in the winter months, there
6	is a significant increase in the number of relief
7	requests. I mean, you were running along here at
8	whatever that is 10.
9	MR. RAUGHLEY: Yes, per month.
10	MEMBER LEITCH: And then more recent
11	MR. RAUGHLEY: Numbers per month.
12	MEMBER LEITCH: Yes. And more recent it
13	looks like 60, 70, even in the winter months.
14	MR. RAUGHLEY: But, again, it's something
15	that supports things that have changed.
16	MEMBER LEITCH: It's certainly a lot worse
17	in the summer.
18	MEMBER SIEBER: Well, let me ask a
19	question which will be an opinion, and maybe you don't
20	know and can't answer. But it looks like grid
21	capacity has remained the same, while load is going
22	up.
23	MR. RAUGHLEY: Yes.
24	MEMBER SIEBER: And that's due to a lack
25	of investment in the transmission systems?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	MR. RAUGHLEY: Yes. There is John
2	mentioned we were briefing Reinaldo and I and Mr.
3	Calvo briefed Commissioner Merrifield on the day of
4	the event. And one of the things we took to the
5	meeting was a writeup from the New York ISO, and we
6	showed them curves in there.
7	What you said was exactly in there. It
8	showed the that that load was increasing,
9	generation had increased, and that the load had
10	intersected supply, and it showed and it had a
11	curve for transmission line investment going headed
12	down.
13	MEMBER SIEBER: And so the reason why the
14	physical situation exists is because the regulatory
15	economic regulatory system wanted deregulation. And
16	to my mind, that would mean that the states involved
17	would be the states where economic deregulation

Region 4. 19

18

20 MR. RAUGHLEY: Yes. Yes. Our --21 MEMBER SIEBER: That makes sense. 22 I mentioned the --MR. RAUGHLEY: Yes. 23 MEMBER SIEBER: If you go back to that map 24 of the United States, that's the way it looked. 25

occurred, which would be our Region 1 and parts of

MR. RAUGHLEY: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	93
1	MEMBER ROSEN: Well, I guess I'll follow-
2	up that question. If you put that chart back up, the
3	one with the hump in it in the summertime, the number
4	of relief requests, if you split that up by region
5	you'd see no change in Regions 2 and 3, or very
6	little?
7	MR. RAUGHLEY: I didn't look at
8	MEMBER ROSEN: And a big change in
9	Regions 1 and 4?
10	MR. RAUGHLEY: look at that.
11	MEMBER SIEBER: That would be interesting
12	to do, then, Steve.
13	MEMBER ROSEN: You didn't do that, you
14	say?
15	MEMBER SIEBER: No. But it would be
16	interesting to see that.
17	MR. RAUGHLEY: Yes. All of these
18	transmission line requests are written in terms of the
19	340 KV line from this town to this town. So you'd
20	have to have a grid of you know, a map of the grid
21	and go through and do that. But we could talk to NERC
22	about
23	MEMBER SIEBER: Doing it.
24	MR. RAUGHLEY: I'm sure they've got some
25	database that would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	94
1	MEMBER ROSEN: Do you have any sense of
2	where it's the highest?
3	MR. RAUGHLEY: I think it was in the
4	midwest.
5	MEMBER ROSEN: Really.
6	MR. RAUGHLEY: As in Ohio, Indiana,
7	Illinois.
8	MEMBER ROSEN: That's of some interest,
9	actually.
10	MEMBER SIEBER: Well, Illinois is
11	deregulated, but Indiana is not. And Ohio is not.
12	MR. RAUGHLEY: But you've got to remember,
13	the open generator access transmission doesn't
14	there's two things going on here that
15	MEMBER SIEBER: Well, even if we figured
16	out what the problem was, there wouldn't be anything
17	the NRC could do about it.
18	MR. RAUGHLEY: That's true. But we'll get
19	into one thing that some utilities have done about it
20	in one of our conclusions.
21	And the last has to do with the increased
22	coordination times, and the increased time there's
23	increased coordination times, and there's like I
24	said, the Calloway event that I mentioned. Both the
25	loops and events not involving a loop where you lose

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	95
1	power, the times are all increased.
2	And I've got another thought on this. As
3	far as the safety issues that come from this, what we
4	did on this is if you look at you know, I said we
5	compared before deregulation to after, I think. You
6	know, we started in '97, because that was their first
7	full year of open generator access transmission.
8	And looking through the before and the
9	after, you really don't see any change if you just
10	look at the data or average the data out over a full
11	year. But what we noticed when we put the data on a
12	spreadsheet was that all of the loops all but one
13	of the loops was in the summer.
14	And if you looked at that in the past,
15	they were evenly distributed throughout the year.
16	There were 54 loops I think, and the past 23 were in
17	the summer. And the rest were in the rest of the
18	year, and now we're looking at nine out of 10.
19	And it's the same on the risk. If you
20	look at the risk over the whole year, the risk drops.
21	As you start to look at it in the summer, the risk
22	you start to see the change. So you don't see the
23	problem unless you look at it in the summer.
24	And then you have the increased likelihood
25	of an induced loop during the summer. Both the two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	events in 2000 201 trips is what we had there.
2	And the long time to recover from a loop
3	and there's a couple things going on there. You
4	have the increased coordination time. But if you look
5	at the loops, there's a noticeable absence. There are
6	no short plant-centered loops. If you look at the
7	data before, in the '85 to '96 timeframe, you see a
8	lot of one-minute, four-minute, 10-minute, quick,
9	quick loops. There are no short duration plant-
10	centered loops. All of the loops have to deal with
11	there's one plant-centered loop. The rest of them
12	have to deal with either the grid or weather affecting
13	the grid.
14	As you can see, there is some and like
15	I said, all of these have plant aspects to them, but
16	these are the grid aspects.
17	The other thing we looked at the actual
18	recovery time and then the assumed availability. In
19	some of the risk analysis, they assume they could have
20	gotten power back sooner. But really it only makes it
21	our concern was for the events more than four
22	hours. It makes a difference of this column. It's
23	66 percent of the events in the risk analysis were
24	more than four hours. And here it's 50 percent, and
25	it really doesn't make much difference to the risk.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	MEMBER LEITCH: I would assume some of the
2	problem is not only communication time but also
3	restoration procedures. These are so complex it may
4	be difficult to have discreet restoration procedures.
5	When you were dealing with a traditional
б	utility that ran the generation and the transmission
7	system in its franchised area, there were pretty
8	specific procedures on how to restore the system. You
9	know, you cut away from your neighbors and you get
10	your hydro plants running, and you throw a feed to
11	your powerplants, and, you know, get yourself pretty
12	well bootstrapped. And now it's a much more complex
13	evolution, it would seem to me. And also, there are
14	so many variables it's difficult to have a discreet
15	procedure.
16	MR. RAUGHLEY: Yes, it's definitely plant-
17	specific, operator-dependent. You know, you're going
18	to get a wide range of responses. But you can see the
19	shortest event here is 90 minutes. If you use if
20	you count the actual time, it's 43 minutes. Where if
21	you look at the data before there is most of it is
22	on the average of 20 minutes, and all of those are
23	gone.
24	And again, procedure-wise, with the plant-
25	centered events you've got full control of the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	recovery. You know, when you have an event on the
2	grid, then you've got to get other people on the
3	phone. In the appendix, I went through event 69 in
4	our report. It was a lightning strike, knocked out
5	one line. They had a partial loop. They hastened to
6	recover. It progressed to a loop.
7	They forgot to reset a relay, so they
8	opened up five more breakers on this end and five more
9	on that end, progressed to a loop, and then they had
10	to get the proper person in to tell them how to get it
11	back. They had to walk it down. They had to do some
12	minor testing. That took a total of eight hours.
13	That's
14	MEMBER ROSEN: You've kind of explained
15	why events have gotten longer. But why did the ones
16	that were short go away?
17	MR. RAUGHLEY: They're under the plant's
18	control. The plants have I would attribute it to
19	strong corrective action programs in the plant. If
20	the plant aggressively my experience has been
21	plants aggressively pursue reductions in reactor trips
22	that they have control over.
23	This is a large family of reactor trips
24	that they have no they have no control over the
25	weather, or, you know, any changes you have to make to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	the switchyard or the transmission system. I think
2	things under their control, that's on their radar
3	screen, they go after it.
4	I think the carrot for the industry here
5	is in the S and T, you know, all of these we're
6	talking 50, 60 grid-related reactor trips. And
7	collectively, in a deregulated environment, you're
8	looking at if you're out two days, you're looking
9	at a couple million dollars a trip times 50 is
10	100 million.
11	And if you reduce overall, if you
12	reduce 50 reactor trips, you know, it's probably eight
13	or nine percent reduction in the overall risk from
14	nuclear power. That's how they have to look at this.
15	That's the carrot to get with the transmission and
16	switchyard people along here.
17	Our conclusions had to deal with you need
18	to consider the seasonal effects, particularly when
19	you're doing EDG maintenance. There you don't want to
20	do the EDG maintenance and have the diesel on the
21	floor when the grid is degraded. And likewise with
22	the maintenance.
23	Some utilities we think, particularly the
24	California ISO, there is contractual arrangements
25	between the grid operators and the nuclear

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5 So, for example, San Onofre has a very detailed contract, and they said, "You've told me your 6 7 They've done their grid will behave like this." analysis, and they've gone back and said, "We need 8 this much bars and watts as a function of time for 9 this condition. We need power back in four hours if 10 we go black," and as a result there's a black --11 12 there's a market for black start -- basically, for an alternate access generator. But everything is in the 13 14 form of a contract where there's a hard agreement 15 between the transmission company and the switchyard.

And our last thing is you have to do -- to 16 17 consider real-time parameters. With this open changing daily. 18 generator access, the stuff is 19 California they do -- what we used to do a public 20 service once a year, they do once per shift. They 21 have a team of 40 electrical engineers split over 22 three shifts doing low flows, voltage drops, stability 23 analysis, to make sure they're never in a non-analyzed 24 condition.

MEMBER SHACK: Now, when they had their

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

100

	101
1	contracts, were they maintained during the brownouts?
2	MR. RAUGHLEY: Yes, I would attribute that
3	that was the actions they had set up with all of the
4	shenanigans going on with the you know, they were
5	the ones directing the brownouts, to maintain the grid
6	in a stable condition.
7	MEMBER SIEBER: But the actual purchase
8	and scheduling of power was outside those contracts,
9	right?
10	MR. RAUGHLEY: Yes. The actual purchasing
11	and scheduling of power is done on a daily basis.
12	They have a power market that opens at midnight and
13	closes at 7:00 in the morning for the next day. The
14	engineers go through by 1:00. They reanalyze the grid
15	for the results of the power market, and then between
16	1:00 and 4:00 they direct the redirect the bidding
17	in the power market.
18	MEMBER SIEBER: Let me ask you this
19	question to help refresh myself on the way this really
20	works. If Company A decides to sell to Company B
21	10 hours worth of electricity at 1,000 megawatts an
22	hour, they will schedule that on some transmission
23	line. The fact is that it won't necessarily go on
24	that transmission line.
25	MR. RAUGHLEY: Exactly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	MEMBER SIEBER: But it'll go on somebody
2	else's system maybe. And you can't schedule the bars,
3	because you really don't know what the bars are going
4	to be unless you have real-time
5	MR. RAUGHLEY: Right.
6	MEMBER SIEBER: flows. Okay. And so
7	how do you manage since everything has a limit, how
8	do you manage where everything is going? I mean, I
9	can see how you make your money
10	MR. RAUGHLEY: You have to do the analysis
11	and make sure you're in an analyzed condition.
12	MEMBER SIEBER: You'd have to do the
13	analysis just to make sure that the power even went.
14	MR. RAUGHLEY: Yes. You've got to do the
15	analysis to figure out where it's going to go.
16	MEMBER SIEBER: Yes, right.
17	MR. RAUGHLEY: And you can ship power from
18	Virginia to Massachusetts, and it could go up around
19	the Great Lakes and over. I mean, it's
20	MEMBER SIEBER: In the old system, you
21	used to be able to control the ins and outs on your
22	transmission lines by adjusting all of the exciter
23	voltages.
24	MR. RAUGHLEY: The exciter voltage and
25	there's signals on there were signals on the inner

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	ties to bias
2	MEMBER SIEBER: Yes, the power
3	MR. RAUGHLEY: the governor responses.
4	MEMBER SIEBER: Right. Yes, you would
5	dial in a certain resistance.
6	MR. RAUGHLEY: Yes.
7	MEMBER SIEBER: But that's gone now?
8	MR. RAUGHLEY: I haven't followed up on
9	that. I don't know for sure. I would suspect it has
10	to be for what they're doing.
11	MEMBER SIEBER: I would think so.
12	MEMBER ROSEN: Who do these 40 engineers
13	work for? Do they
14	MR. RAUGHLEY: They work for the
15	California ISO. They basically manage everything from
16	Idaho down and over. They're looking at that part of
17	the grid Washington, Oregon, California, Arizona,
18	New Mexico, and back up. It's a nonprofit
19	organization and participating transmission companies
20	pay them to manage the grid.
21	MEMBER SIEBER: So getting back to my line
22	of thought, you would probably have to have at least
23	20 percent excess capacity over your expected peak
24	load in order to be able to handle the variety of
25	routes that the transmissions could occur on.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	MR. RAUGHLEY: Yes, it would vary from
2	system to system. I don't
3	MEMBER SIEBER: But quite frequently, west
4	to east power goes through Canada, right? From the
5	midwest to the east coast.
6	MR. RAUGHLEY: Yes. What you're trying to
7	do is the power is more expensive on the
8	MEMBER SIEBER: Right.
9	MR. RAUGHLEY: northeast. So, and it's
10	cheap in the south, so you'd like to sell it up in the
11	northeast and make more money.
12	MEMBER SIEBER: But you may end up with it
13	going through Canada to get there.
14	MR. RAUGHLEY: Yes.
15	VICE CHAIRMAN WALLIS: How much does it
16	lose on the way? If it goes 3,000 miles, I think it
17	loses the transmission losses must be significant.
18	MEMBER LEITCH: With the extremely high
19	voltages it's not much.
20	VICE CHAIRMAN WALLIS: But even so.
21	MEMBER SIEBER: It's still thousands of
22	amps.
23	MR. RAUGHLEY: Okay. As far as we issued
24	the report in May, and we also at that time, we
25	asked for stakeholder comment. We got comments from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	Westinghouse, NEI, and NERC. These are the positive
2	comments. NERC and Westinghouse were very supportive
3	of the report. I think John read NERC's bottom line.
4	NEI looked at it statistically, and they just flat out
5	didn't like it.
6	And what we've done is we've taken the
7	comments and they've become they'll be put in
8	Appendix D of the revised report, and then we'll
9	address each comment. And that will be part of the
10	NUREG, so it's all together there as a package.
11	So the finale here changes in grid
12	performance have occurred since operating in a
13	deregulated environment. That performance can impact
14	the nuclear powerplants, and we need to continue to
15	seek a better understanding of the grid. And that's
16	what the and all of this is getting pumped into
17	Cornie's team.
18	MEMBER LEITCH: You intend to publish a
19	NUREG?
20	MR. RAUGHLEY: Yes, it's scheduled for
21	November.
22	MEMBER LEITCH: And it would that will
23	communicate your thoughts and recommendations to the
24	industry?
25	MR. RAUGHLEY: John will

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	106
1	MR. FLACK: Yes. I think a lot of those
2	recommendations we see coming out of the study are
3	actually being picked up right now as part of the work
4	that's going on with the team. So this is Bill is
5	on the team itself, so we have a direct transfer of
6	that information to that team.
7	We also put the report on the web for
8	access for people to look at. And then, I don't know
9	if Cornie wants to take it from there and talk about
10	the team's efforts and what other recommendations
11	might be coming out of that.
12	MR. HOLDEN: Yes. I think obviously we're
13	going to have to have public interface on where the
14	team comes out.
15	MEMBER LEITCH: We have no authority to
16	hire some of these things. These are suggestions,
17	recommendations, but
18	MR. HOLDEN: Right. We have no regulatory
19	authority over the grid.
20	MEMBER ROSEN: But on the other hand, if
21	the staff concludes that a client is not meeting GDCs
22	because of this
23	MEMBER LEITCH: Yes, then we have
24	MEMBER ROSEN: then we have direct
25	authority on that licensee.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	107
1	MEMBER LEITCH: Yes, we do.
2	MEMBER ROSEN: Which exercising that
3	regulatory authority could influence their views.
4	MEMBER LEITCH: Correct.
5	MR. FLACK: Another option might be a
6	policy of some sort where it specifies our
7	expectations as an agency. But that's being
8	entertained at this point. It's something to think
9	about.
10	MEMBER SIEBER: Before you disappear, the
11	slide you now have in your hand, could you give us
12	copies of that?
13	MR. RAUGHLEY: Sure.
14	MEMBER SIEBER: Okay. I have one other
15	question. On degraded grid, a lot of stations have
16	tap-changing auxiliary transformers. Are they typical
17	the typical ones they install in nuclear
18	powerplants? Can they change taps under load?
19	MR. RAUGHLEY: Yes. Some, not all,
20	probably a third.
21	MEMBER SIEBER: But they're not automatic.
22	MR. RAUGHLEY: A third are automatic, and
23	all the rest are no-load taps.
24	MEMBER SIEBER: Okay.
25	MR. RAUGHLEY: One thing that has come of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	108
1	this, you know, after the Calloway event they replaced
2	their transformers with no-load taps with automatic
3	bought new transformers.
4	MEMBER SIEBER: No-load taps.
5	MR. RAUGHLEY: And put in capacitor banks.
6	After the California events, Diablo Canyon replaced
7	all of their transformers with automatic tap changers.
8	And I think Salem has recently replaced theirs.
9	MEMBER SIEBER: They can the automatic
10	ones can change under load.
11	MR. RAUGHLEY: Yes.
12	MEMBER SIEBER: The no-load taps cannot,
13	and that's where you put capacitor banks with circuit
14	breakers, to put them in
15	MR. RAUGHLEY: Yes. Some places like
16	Calloway needed both to get it to work right.
17	MEMBER SIEBER: Okay. And so that is
18	something the agency can regulate. You can force the
19	utility to deal with degraded grid situations where
20	you may have voltage and power available that is below
21	the level at which all of your under voltage relays
22	would actuate.
23	MEMBER LEITCH: Okay. Thank you, Bill.
24	I guess we'll ask Jerry to give his
25	presentation. Jerry, have at it.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER SIEBER: Thank you very much. Good presentation.

My name is 3 MR. DOZIER: Good afternoon. 4 Jerry Dozier. I'm in the Operating Experience 5 Section. The Operating Experience Section is a realtime organization. We look at briefs -- at events 6 7 early in the morning. By 8:00, we brief these events to the executive team. 8:30 we're in a meeting to 8 discuss the generic implications, and also followup of 9 And then, we also participate with the 10 the events. 11 regions the response, the in agency special 12 inspections, augmented inspection teams, and things of that nature. 13

14 And that's what really brought this 15 presentation to being is that the executive team asked 16 that, okay, we have the Riley report. Let's see 17 what's happening now with our grid. This was actually put together before the task force was assembled, so 18 this was some of the early information, although I 19 20 have updated those graphs to reflect the information 21 to date.

The objective of this presentation is to graphically present recent grid event data. Hopefully, a graph is worth 1,000 words, and some of the data will speak for itself. I will also be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

109

110 1 talking about an overview of three recent events and 2 the different agency responses that we have for these 3 different events. 4 We have a -- you know, we all -- if we 5 have a grid event, we don't always respond to it the And so I've got a few examples showing that 6 same. 7 differentiation, and more of our risk-informed 8 approach to addressing these -- to responding to the 9 events. 10 As Bill said, in this particular 11 presentation I'm only dealing with the S, which is the 12 switchyard events. That's the 500 KV switchyard right there outside of the plant. That's the S events. T 13 14 is those things within the -- outside of the 15 transmission grid that's outside of that area. 16 Now, an R event is -- those events are 17 those that we've had a reactor scram, and by having the reactor scram we lost offsite power. A lot of 18 19 times what -- and there's only 10 of these events in 20 the period '94 to 2003. But if you look at some of 21 those events, basically what happened was we had the 22 scram, there was something wrong in the switchyard area, and it gave us that loss of offsite power. 23 So 24 that's what we're talking about -- the T, S, and R 25 events.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	The first graph we have here, the pie
2	chart, this is the entire period 1994 to present. We
3	see here that basically about 50/50. We have 50
4	percent of our problems right there in that low area
5	right outside the plant. I'll show a switchyard a
6	little bit later and show and maybe that will show
7	demonstrate why, you know, with the multiple
8	redundancy we have in this a single failure on the
9	outside grid a lot of times doesn't have a real effect
10	on the in a lot of cases don't have a real effect
11	on the plant. And I'll show one of those.
12	Now, in the period if you take 2002 to
13	present, our new information after the Riley event,
14	you'll again see it's about a 50/50 type of situation.
15	In this case, there were zero R events.
16	The next graph presents the information.
17	The S, T, and R events from 1994 to present. There is
18	a couple of errors on this, and maybe if you ask about
19	the you know, there is a little bit of margin for
20	error in this, and I wanted to express it. There were
21	actually nine events that occurred as a result of the
22	blackout on 8/14. So reduce this number actually from
23	27 events to 25.
24	But all in all, if you look at 2003,
25	whether or not it's 25 or 27 events, these are 20-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

something events that have caused actual reactor scrams within our system.

1

2

3 If you take away the red line there 4 reflecting -- if you take away the blackout that 5 occurred, then really in the 2003 time period you're looking back at '95, '96, you know, maybe even before 6 7 deregulation and now, may not have been so much different, but Bill talked about, well, the duration 8 9 of those events had been longer. Maybe the earlier events were shorter duration, loss of offsite power 10 11 for these later are longer in duration. So it's not 12 quite an apples for apples comparison. CHAIRMAN BONACA: Yes. But even if you 13 14 take out those from the blackout, you still have a 15 higher number, don't you? 16 MR. DOZIER: Yes. It's a little bit 17 higher number, yes. 18 CHAIRMAN BONACA: And the year is not 19 over. 20 MR. DOZIER: Right. 21 CHAIRMAN BONACA: Okay. 22 So the next question was: MR. DOZIER: 23 why did we have these events in the first place? And 24 this pie chart, if you'll just focus on the three 25 biggest parts of the pie, you'll see one of the bigger

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

112

	113
1	ones was equipment failure. And that one is kind of
2	self-explanatory. Something happened with the
3	equipment.
4	The next one was a fault occurred. Now
5	this is a lightning strike, salting of the switch
6	gear, things of that nature, raccoon running over the
7	line. Those are the fault types of situations.
8	The next biggest one is and this is a
9	'94 to 2003 period the next one is the weakness in
10	the electrical grid. Now that's the area that the
11	station blackout was in, and that's where you would
12	categorize those three events. So you see here a
13	large piece of that pie is attributed to those three
14	causes.
15	If you break it down into just the 2002 to
16	2003 period, you'll see that those three have grown
17	the electrical, equipment failure, and fault. And so
18	that seems to be the 80 percent of the pie that is
19	causing the most problem.
20	The next graph and the next series of
21	graphs is the grid events by region. And Bill showed
22	that chart on deregulation in the different regions
23	that had regulation versus those that didn't. I
24	didn't make an attempt to correspond that data, but if
25	you look at this '94 to present data you'll see that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	and then also right after the blackout everybody
2	was focused on Region 1 and a little bit of Region 3.
3	But if you look at this and you take the
4	whole period into consideration, you see that Region 4
5	popped up pretty good in this as far as numbers of
6	events that actually scrammed the plant.
7	The executive team asked a question. They
8	said, "Well, we've got different numbers of plants in
9	there, so I'd like you to normalize this data to see
10	what really happens." Region 2 in this the text
11	box up there under number of plants, you'll see that
12	Region 2 has a lot of plants with 32.
13	So, really, what happens with this
14	normalization is you get Region 2 gets worse as far
15	as I mean, gets better I'm sorry and Region 4
16	even gets worse when you normalize the data.
17	Now this is recent data. And actually, if
18	you look over here on the left this is only up to four
19	events. But it does show even that Region 4 had the
20	most number of these grid events prior to the
21	blackout. So I think the big thing is, you know,
22	Region 4 is kind of important, too, in these.
23	But after you consider the grid events and
24	put those into the equation, you'll see that Region 1
25	is the dominant winner on getting the bad piece of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	this pie. Again, this is just a normalization of the
2	present data, and you'll see here that again,
3	Region 1 high with Regions 3 and 4 right there in the
4	about the same area.
5	Next I would like to share a few of the
6	events, go into a little bit of the details, but keep
7	it at an overview level. And the importance of this
8	event is it happened in April. This was prior to the
9	blackout occurring. And just to let the committee
10	know, we were already on a lot of these grid events.
11	For example, this grid event we had a
12	regional brief where we briefed all of the people
13	the members of the region. But anyway, to describe
14	this event, basically though it was and this is the
15	big overview, and I'm going to go into a little bit of
16	the details. High winds in the 500 KV switchyard blew
17	a disconnect closed resulting in a partial loop.
18	I'll show you that disconnect in a few
19	minutes. It's basically just a well, I'll show it
20	in just a second.
21	MEMBER SIEBER: Well, they're gear-driven,
22	though, right? With a crank?
23	MR. DOZIER: Yes. It's manually you do
24	manually turn those.
25	MEMBER SIEBER: You turn the crank.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1MR. DOZIER: Exactly.2MEMBER SIEBER: I don't see how the wind3could blow it closed.4MR. DOZIER: Well, it was I can go into5that just in the next picture, if I can6MEMBER SIEBER: Fine.7MR. DOZIER: Okay. They scrammed on load8rejection. The diesel generators energized the safety9busses.10Now, what really throws these things into11higher risk is the plant response to the event. In12this case, the instrument air they had instrument13air complications. So that bumped the risk up a14little bit more, and that's really what one of the15factors that goes into making it a special16MEMBER ROSEN: By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.22MR. DOZIER: And in this case there was a		116
 could blow it closed. MR. DOZIER: Well, it was I can go into that just in the next picture, if I can MEMBER SIEBER: Fine. MR. DOZIER: Okay. They scrammed on load rejection. The diesel generators energized the safety busses. Now, what really throws these things into higher risk is the plant response to the event. In this case, the instrument air they had instrument air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. MEMBER ROSEN: Yes. 	1	MR. DOZIER: Exactly.
4MR. DOZIER: Well, it was I can go into5that just in the next picture, if I can6MEMBER SIEBER: Fine.7MR. DOZIER: Okay. They scrammed on load8rejection. The diesel generators energized the safety9busses.10Now, what really throws these things into11higher risk is the plant response to the event. In12this case, the instrument air they had instrument13air complications. So that bumped the risk up a14little bit more, and that's really what one of the15factors that goes into making it a special16MEMBER ROSEN: By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.	2	MEMBER SIEBER: I don't see how the wind
 that just in the next picture, if I can MEMBER SIEBER: Fine. MR. DOZIER: Okay. They scrammed on load rejection. The diesel generators energized the safety busses. Now, what really throws these things into higher risk is the plant response to the event. In this case, the instrument air they had instrument air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air complications," do you mean the instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. MEMBER ROSEN: Yes. 	3	could blow it closed.
 MEMBER SIEBER: Fine. MR. DOZIER: Okay. They scrammed on load rejection. The diesel generators energized the safety busses. Now, what really throws these things into higher risk is the plant response to the event. In this case, the instrument air they had instrument air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. MEMBER ROSEN: Yes. 	4	MR. DOZIER: Well, it was I can go into
7MR. DOZIER: Okay. They scrammed on load8rejection. The diesel generators energized the safety9busses.10Now, what really throws these things into11higher risk is the plant response to the event. In12this case, the instrument air they had instrument13air complications. So that bumped the risk up a14little bit more, and that's really what one of the15factors that goes into making it a special16MEMBER ROSEN: By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.	5	that just in the next picture, if I can
 rejection. The diesel generators energized the safety busses. Now, what really throws these things into higher risk is the plant response to the event. In this case, the instrument air they had instrument air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air complications," do you mean the instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. 	6	MEMBER SIEBER: Fine.
 9 busses. 10 Now, what really throws these things into 11 higher risk is the plant response to the event. In 12 this case, the instrument air they had instrument 13 air complications. So that bumped the risk up a 14 little bit more, and that's really what one of the 15 factors that goes into making it a special 16 MEMBER ROSEN: By "instrument air 17 complications," do you mean the instrument air 18 compressors were not on the safety bus? 19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes. 	7	MR. DOZIER: Okay. They scrammed on load
 Now, what really throws these things into higher risk is the plant response to the event. In this case, the instrument air they had instrument air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. MEMBER ROSEN: Yes. 	8	rejection. The diesel generators energized the safety
11higher risk is the plant response to the event. In12this case, the instrument air they had instrument13air complications. So that bumped the risk up a14little bit more, and that's really what one of the15factors that goes into making it a special16MEMBER ROSEN: By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.	9	busses.
12 this case, the instrument air they had instrument 13 air complications. So that bumped the risk up a 14 little bit more, and that's really what one of the 15 factors that goes into making it a special 16 MEMBER ROSEN: By "instrument air 17 complications," do you mean the instrument air 18 compressors were not on the safety bus? 19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes.	10	Now, what really throws these things into
 air complications. So that bumped the risk up a little bit more, and that's really what one of the factors that goes into making it a special MEMBER ROSEN: By "instrument air complications," do you mean the instrument air compressors were not on the safety bus? MR. DOZIER: No. Instrument air is non- safety-related. 21 MEMBER ROSEN: Yes. 	11	higher risk is the plant response to the event. In
14little bit more, and that's really what one of the15factors that goes into making it a special16MEMBER ROSEN: By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.	12	this case, the instrument air they had instrument
<pre>15 factors that goes into making it a special 16 MEMBER ROSEN: By "instrument air 17 complications," do you mean the instrument air 18 compressors were not on the safety bus? 19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes.</pre>	13	air complications. So that bumped the risk up a
16MEMBER ROSEN:By "instrument air17complications," do you mean the instrument air18compressors were not on the safety bus?19MR. DOZIER: No. Instrument air is non-20safety-related.21MEMBER ROSEN: Yes.	14	little bit more, and that's really what one of the
<pre>17 complications," do you mean the instrument air 18 compressors were not on the safety bus? 19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes.</pre>	15	factors that goes into making it a special
<pre>18 compressors were not on the safety bus? 19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes.</pre>	16	MEMBER ROSEN: By "instrument air
19 MR. DOZIER: No. Instrument air is non- 20 safety-related. 21 MEMBER ROSEN: Yes.	17	complications," do you mean the instrument air
20 safety-related. 21 MEMBER ROSEN: Yes.	18	compressors were not on the safety bus?
21 MEMBER ROSEN: Yes.	19	MR. DOZIER: No. Instrument air is non-
	20	safety-related.
22 MR. DOZIER: And in this case there was a	21	MEMBER ROSEN: Yes.
	22	MR. DOZIER: And in this case there was a
23 partial loop. They lost one of the service	23	partial loop. They lost one of the service
24 transformers that fed the instrument air.	24	transformers that fed the instrument air.
25 MEMBER ROSEN: Right. So the instrument	25	MEMBER ROSEN: Right. So the instrument

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 air compressors didn't have any power. 2 MR. DOZIER: Right. Right. 3 MEMBER ROSEN: That's what I was trying to 4 say. 5 MR. DOZIER: And it's not 6 MEMBER ROSEN: The instrument air 7 compressors are not on the safety bus. 8 MR. DOZIER: Exactly. Exactly. 9 Okay. And I'll go a little bit into the 10 detail of this event now. This is the disconnect that 11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this		117
3 MEMBER ROSEN: That's what I was trying to 4 say. 5 MR. DOZIER: And it's not 6 MEMBER ROSEN: The instrument air 7 compressors are not on the safety bus. 8 MR. DOZIER: Exactly. Exactly. 9 Okay. And I'll go a little bit into the 10 detail of this event now. This is the disconnect that 11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event. <	1	air compressors didn't have any power.
4 say. 5 MR. DOZIER: And it's not 6 MEMBER ROSEN: The instrument air 7 compressors are not on the safety bus. 8 MR. DOZIER: Exactly. Exactly. 9 Okay. And I'll go a little bit into the 10 detail of this event now. This is the disconnect that 11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	2	MR. DOZIER: Right. Right.
5 MR. DOZIER: And it's not 6 MEMBER ROSEN: The instrument air 7 compressors are not on the safety bus. 8 MR. DOZIER: Exactly. Exactly. 9 Okay. And I'll go a little bit into the 10 detail of this event now. This is the disconnect that 11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 Counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	3	MEMBER ROSEN: That's what I was trying to
6MEMBER ROSEN:The instrument air7compressors are not on the safety bus.8MR. DOZIER:Exactly.9Okay.And I'll go a little bit into the10detail of this event now.This is the disconnect that11we're talking about.If you look here, basically this12disconnect if it was in the closed position, it13would come over and latch here.And that's the14energize position.15They were working on this breaker that was16over here.So this disconnect is in this risen17position.It's really designed for about 77 mile per18hour winds, but there was a problem with the19counterbalance on this particular one.20Now I'll go and show you.Since a lot of21these events really, if you kind of look at one,22you kind of get an idea of what goes on. But in this23case, the wind blew this disconnect closed.That was24the start of this event.	4	say.
7compressors are not on the safety bus.8MR. DOZIER: Exactly. Exactly.9Okay. And I'll go a little bit into the10detail of this event now. This is the disconnect that11we're talking about. If you look here, basically this12disconnect if it was in the closed position, it13would come over and latch here. And that's the14energize position.15They were working on this breaker that was16over here. So this disconnect is in this risen17position. It's really designed for about 77 mile per18hour winds, but there was a problem with the19counterbalance on this particular one.20Now I'll go and show you. Since a lot of21these events really, if you kind of look at one,22you kind of get an idea of what goes on. But in this23case, the wind blew this disconnect closed. That was24the start of this event.	5	MR. DOZIER: And it's not
8 MR. DOZIER: Exactly. Exactly. 9 Okay. And I'll go a little bit into the 10 detail of this event now. This is the disconnect that 11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	6	MEMBER ROSEN: The instrument air
9Okay. And I'll go a little bit into the10detail of this event now. This is the disconnect that11we're talking about. If you look here, basically this12disconnect if it was in the closed position, it13would come over and latch here. And that's the14energize position.15They were working on this breaker that was16over here. So this disconnect is in this risen17position. It's really designed for about 77 mile per18hour winds, but there was a problem with the19counterbalance on this particular one.20Now I'll go and show you. Since a lot of21these events really, if you kind of look at one,22you kind of get an idea of what goes on. But in this23case, the wind blew this disconnect closed. That was24the start of this event.	7	compressors are not on the safety bus.
10detail of this event now. This is the disconnect that11we're talking about. If you look here, basically this12disconnect if it was in the closed position, it13would come over and latch here. And that's the14energize position.15They were working on this breaker that was16over here. So this disconnect is in this risen17position. It's really designed for about 77 mile per18hour winds, but there was a problem with the19counterbalance on this particular one.20Now I'll go and show you. Since a lot of21these events really, if you kind of look at one,22you kind of get an idea of what goes on. But in this23case, the wind blew this disconnect closed. That was24the start of this event.	8	MR. DOZIER: Exactly. Exactly.
<pre>11 we're talking about. If you look here, basically this 12 disconnect if it was in the closed position, it 13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.</pre>	9	Okay. And I'll go a little bit into the
disconnect if it was in the closed position, it would come over and latch here. And that's the energize position. They were working on this breaker that was over here. So this disconnect is in this risen position. It's really designed for about 77 mile per hour winds, but there was a problem with the counterbalance on this particular one. Now I'll go and show you. Since a lot of these events really, if you kind of look at one, you kind of get an idea of what goes on. But in this case, the wind blew this disconnect closed. That was the start of this event.	10	detail of this event now. This is the disconnect that
13 would come over and latch here. And that's the 14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	11	we're talking about. If you look here, basically this
14 energize position. 15 They were working on this breaker that was 16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	12	disconnect if it was in the closed position, it
15They were working on this breaker that was16over here. So this disconnect is in this risen17position. It's really designed for about 77 mile per18hour winds, but there was a problem with the19counterbalance on this particular one.20Now I'll go and show you. Since a lot of21these events really, if you kind of look at one,22you kind of get an idea of what goes on. But in this23case, the wind blew this disconnect closed. That was24the start of this event.	13	would come over and latch here. And that's the
16 over here. So this disconnect is in this risen 17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	14	energize position.
17 position. It's really designed for about 77 mile per 18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	15	They were working on this breaker that was
18 hour winds, but there was a problem with the 19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	16	over here. So this disconnect is in this risen
19 counterbalance on this particular one. 20 Now I'll go and show you. Since a lot of 21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	17	position. It's really designed for about 77 mile per
Now I'll go and show you. Since a lot of these events really, if you kind of look at one, you kind of get an idea of what goes on. But in this case, the wind blew this disconnect closed. That was the start of this event.	18	hour winds, but there was a problem with the
21 these events really, if you kind of look at one, 22 you kind of get an idea of what goes on. But in this 23 case, the wind blew this disconnect closed. That was 24 the start of this event.	19	counterbalance on this particular one.
you kind of get an idea of what goes on. But in this case, the wind blew this disconnect closed. That was the start of this event.	20	Now I'll go and show you. Since a lot of
23 case, the wind blew this disconnect closed. That was 24 the start of this event.	21	these events really, if you kind of look at one,
24 the start of this event.	22	you kind of get an idea of what goes on. But in this
	23	case, the wind blew this disconnect closed. That was
25 MEMBER SIEBER: So it must have broken	24	the start of this event.
	25	MEMBER SIEBER: So it must have broken

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1something in the disconnect.2MR. DOZIER: Yes. There was3MEMBER SIEBER: A shaft or a pin or4something like that.5MR. DOZIER: There was a mechanical6problem with it, because it was designed for 77 mile7per hour winds. This was only 25 to 35 mile an hour8winds.9But, however, we're showing here it was10working on this particular date, 5204 breaker. And,11of course, this thunderstorm was coming up. The folks12that were working on it decided to take shelter in the13switchyard house. And at this point, the two14disconnects were in the open position.15Now, this switchyard is in the normal16is showing the deenergized position. But, really, all17of these disconnects here are closed throughout this18system. I've talked about the redundancy of the19you have a line coming from Baxter Wilson. That one		118
3MEMBER SIEBER: A shaft or a pin or4something like that.5MR. DOZIER: There was a mechanical6problem with it, because it was designed for 77 mile7per hour winds. This was only 25 to 35 mile an hour8winds.9But, however, we're showing here it was10working on this particular date, 5204 breaker. And,11of course, this thunderstorm was coming up. The folks12that were working on it decided to take shelter in the13switchyard house. And at this point, the two14disconnects were in the open position.15Now, this switchyard is in the normal16is showing the deenergized position. But, really, all17of these disconnects here are closed throughout this18system. I've talked about the redundancy of the19switchyard. For example, you have different lines.	1	something in the disconnect.
4 something like that. 5 MR. DOZIER: There was a mechanical 6 problem with it, because it was designed for 77 mile 7 per hour winds. This was only 25 to 35 mile an hour 8 winds. 9 But, however, we're showing here it was 10 working on this particular date, 5204 breaker. And, 11 of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	2	MR. DOZIER: Yes. There was
5MR. DOZIER: There was a mechanical6problem with it, because it was designed for 77 mile7per hour winds. This was only 25 to 35 mile an hour8winds.9But, however, we're showing here it was10working on this particular date, 5204 breaker. And,11of course, this thunderstorm was coming up. The folks12that were working on it decided to take shelter in the13switchyard house. And at this point, the two14disconnects were in the open position.15Now, this switchyard is in the normal16is showing the deenergized position. But, really, all17of these disconnects here are closed throughout this18system. I've talked about the redundancy of the19switchyard. For example, you have different lines.	3	MEMBER SIEBER: A shaft or a pin or
6 problem with it, because it was designed for 77 mile 7 per hour winds. This was only 25 to 35 mile an hour 8 winds. 9 But, however, we're showing here it was 10 working on this particular date, 5204 breaker. And, 11 of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	4	something like that.
7 per hour winds. This was only 25 to 35 mile an hour winds. 9 But, however, we're showing here it was 10 working on this particular date, 5204 breaker. And, of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	5	MR. DOZIER: There was a mechanical
8 winds. 9 But, however, we're showing here it was 10 working on this particular date, 5204 breaker. And, 11 of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	6	problem with it, because it was designed for 77 mile
9But, however, we're showing here it was10working on this particular date, 5204 breaker. And,11of course, this thunderstorm was coming up. The folks12that were working on it decided to take shelter in the13switchyard house. And at this point, the two14disconnects were in the open position.15Now, this switchyard is in the normal16is showing the deenergized position. But, really, all17of these disconnects here are closed throughout this18system. I've talked about the redundancy of the19switchyard. For example, you have different lines.	7	per hour winds. This was only 25 to 35 mile an hour
10 working on this particular date, 5204 breaker. And, 11 of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	8	winds.
11 of course, this thunderstorm was coming up. The folks 12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	9	But, however, we're showing here it was
12 that were working on it decided to take shelter in the 13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	10	working on this particular date, 5204 breaker. And,
13 switchyard house. And at this point, the two 14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	11	of course, this thunderstorm was coming up. The folks
14 disconnects were in the open position. 15 Now, this switchyard is in the normal 16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	12	that were working on it decided to take shelter in the
Now, this switchyard is in the normal is showing the deenergized position. But, really, all of these disconnects here are closed throughout this system. I've talked about the redundancy of the switchyard. For example, you have different lines.	13	switchyard house. And at this point, the two
16 is showing the deenergized position. But, really, all 17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	14	disconnects were in the open position.
17 of these disconnects here are closed throughout this 18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.	15	Now, this switchyard is in the normal
<pre>18 system. I've talked about the redundancy of the 19 switchyard. For example, you have different lines.</pre>	16	is showing the deenergized position. But, really, all
19 switchyard. For example, you have different lines.	17	of these disconnects here are closed throughout this
	18	system. I've talked about the redundancy of the
20 You have a line coming from Baxter Wilson. That one	19	switchyard. For example, you have different lines.
	20	You have a line coming from Baxter Wilson. That one
21 is independent from the Franklin line, and both of	21	is independent from the Franklin line, and both of
22 these can feed this bus.	22	these can feed this bus.
23 So there's a lot of redundancy in there,	23	So there's a lot of redundancy in there,
24 and that's why a single failure of an outside power	24	and that's why a single failure of an outside power
25 source doesn't have so much effect on our plants.	25	source doesn't have so much effect on our plants.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	What's not shown here, too, is there is
2	also a Fort Gibson line, a smaller 115 KV line that's
3	also into it. Notice here that I am talking about a
4	partial loss of offsite power, not a complete one.
5	MEMBER SIEBER: Was that disconnect the
6	clearance point for the safety corners for the break
7	repair? In other words, when it went closed, did it
8	energize the breaker that was being worked on?
9	MR. DOZIER: Exactly. Well, they didn't
10	energize that breaker. But what happened okay,
11	they had those disconnects open. The next thing is
12	these disconnects blow shut. So you've got a
13	grounding device right here, you know, to protect the
14	workers while they are working.
15	MEMBER SIEBER: So you can offset
16	MR. DOZIER: Right. So when that
17	occurred, you basically caused a short here, which
18	made the a ground fault at this particular breaker
19	and this particular breaker. And that was your first
20	loss of this service transformer 21, which does go to
21	the division 2 and 3 safety busses.
22	MEMBER SIEBER: Right. Got it.
23	MR. DOZIER: After you had this fault
24	here, there was also some problems in the Baxter,
25	Wilson, and Franklin relay station. They temporarily

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	had a little perturbation there. That gave the a
2	differential current ground fault
3	MEMBER SIEBER: Okay.
4	MR. DOZIER: for these areas. Your
5	generator was still coming in from this side over
6	here, but it was seeing so much of the different
7	perturbations it got a load reject.
8	MEMBER SIEBER: Okay.
9	MR. DOZIER: Load reject caused the
10	turbine control valves to go closed. Reactor
11	scrammed.
12	MEMBER SIEBER: Okay. Now, do those have
13	reclosers on them? Or do they just stay tripped? You
14	know, a recloser, once you get a fault, it will go and
15	try to connect it again.
16	MR. DOZIER: Actually, I'm not sure.
17	MEMBER SIEBER: Don't know. Okay.
18	MEMBER LEITCH: I think that's mainly at
19	lower voltages on the distribution system. I don't
20	think these 500 KV or 345, whatever it was, I don't
21	think they have reclosure devices on them.
22	MEMBER SIEBER: Okay.
23	MR. DOZIER: Okay. So we have an event
24	here. What did we do about it? The risk analysts

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	E^{-5} range came because of the like I said, we had
2	some instrument air complications, and so that's why
3	it shot up in that minus five area.
4	Now, that's the area where we look at
5	doing a special inspection. We look at the numbers.
6	We also have deterministic criteria that are also
7	looked at. You know, is there generic implications to
8	it? Was it a complex event? Was there a personnel
9	issue, performance issue involved? So that's the
10	deterministic criteria that we look at.
11	So in this case we went in with a special
12	inspection. As mentioned earlier, we did a briefing
13	to the regions on this event to explain and share the
14	lessons learned about the event. After the inspection
15	team went in, basically they did come out with a
16	finding on this instrument air, and it was a green
17	finding.
18	The next event this one just happened
19	the 19th of last month the Salem/Hope Creek. You
20	have Artificial Island kind of close to that you
21	know, the salt this estuary I think. And you had
22	high winds and rough surf during Hurricane Isabel.
23	We got salt deposits on that which caused
24	it caused a fault out in the switchyard. Hope
25	Creek got a reactor scram off that faulting situation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Salem, on the other hand, they manually shut down. Hope Creek -- they were a little more sensitive to these faults because they had recently installed a digital fault sensing system. But in this case, you had -- this was one event where you have actually three plants going down.

7 Okay. So what did we do with this event? Well, in this case, it was in the 10^{-6} range. It was 8 right there in the special inspection area, but it was 9 like that understood the salting, 10 felt we we 11 understood the hurricane and what happened. We kind 12 of looked at the licensee action, and then we said, well, we're not going to do a special inspection for 13 14 this, because we can't really learn anything from it. 15 But we will follow-up as part of the routine baseline inspection. 16

MEMBER ROSEN: How high were the winds atSalem/Hope Creek?

19 MEMBER LEITCH: At Salem and Hope -- I
20 seem to remember around 75, but --

21 MEMBER ROSEN: So it was still a 22 hurricane, minimal hurricane. 23 MEMBER LEITCH: I didn't think it got to

quite hurricane strength, or they would have probably manually shut the units down at that --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	MEMBER ROSEN: That's what I'm trying to
2	get at is how high were the winds, and what was their
3	hurricane shutdown procedure?
4	MEMBER LEITCH: Well, my impression was
5	that the winds in that area and I don't live too
6	far from there were probably about 40 miles an hour
7	with higher gusts.
8	MEMBER ROSEN: With the sustained wind,
9	the site never reached hurricane force.
10	MEMBER LEITCH: They say that they were
11	telling me that some of the problem was that they had
12	winds, but not a whole lot of rain. They said that if
13	they had some rain it would have helped this salting
14	situation. So they had the worst situation with the
15	wind blowing the saltwater onto the busses, without a
16	whole lot of rain to wash it off.
17	MR. DOZIER: And a lot of these plants
18	were in unusual events, which triggers at about I
19	think around 75 miles per hour winds.
20	MEMBER ROSEN: Well, 73 is hurricane,
21	minimal hurricane on the Saffir-Simpson Scale. And
22	plants usually have a different procedure once they
23	predict sustained winds greater than hurricane
24	strength. Sustained means for two hours or more
25	usually.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

124 1 So, you know, I'm surprised that -- well, 2 I have to gather from this that they never predicted sustained winds greater than 73 miles -- or never 3 4 experienced it. And, really, what they experienced 5 was gusts perhaps up there, and, like you say, no rain, but enough wind to whip saltwater onto the 6 7 insulators. I think that's correct. 8 MR. DOZIER: 9 MEMBER LEITCH: I think had it been 75 they would have had to take action based on their 10 11 emergency procedures. 12 MEMBER ROSEN: If they predicted that the winds would exceed 75 -- sustained winds in excess of 13 14 73 miles an hour, they would have had to shut down and 15 be in at least hot shutdown two hours before that 16 happened. I mean, that's typical. 17 MR. HOLDEN: I know that Region 1 spent a couple of days before that hurricane reviewing the 18 19 hurricane response procedures at each licensee 20 facility that was anticipated. So they went up and 21 down the coast in Region 1 and Region 2. 22 MR. DOZIER: Okay. The next event which 23 Mr. Leitch had already talked about was Peach Bottom. 24 And Peach Bottom -- actually, it was a dual-unit trip, and it was caused by a loss of multiple offsite power 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	lines, basically a lightning strike and momentary low
2	voltage on the other offsite power line.
3	This was a pretty complicated event with
4	Unit 3 had a the MSIVs went shut. The safety
5	relief valves had to open on Unit 3. The safety
6	relief valves, one of them stuck. Also, one of the
7	four diesel generators tripped. This was a pretty
8	complicated event for them. In this case, the risk
9	was in the E^{-3} to E^{-4} range.
10	And so at that level, we're at a higher
11	level of inspection team called the augmented
12	inspection team, and they were dispatched on 9/24 to
13	investigate, get a sequence of events, and try to
14	fully understand this event. They will they have
15	some preliminary findings, but the details haven't
16	really surfaced. Tomorrow they will be briefing the
17	utility on those findings.
18	I didn't conclude this, because the I
19	figure with the task force going on and hopefully they
20	can provide the right conclusion and recommendations
21	for this for these grid events.
22	MEMBER LEITCH: Okay. Thank you, Jerry.
23	Any questions for Jerry?
24	MEMBER SIEBER: Good presentation.
25	MEMBER LEITCH: Any concluding remarks?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	126
1	MR. FLACK: No, I think that pretty much
2	wraps it up. Bill's work well, again, as Bill
3	mentioned, will be out in NUREG form in November we're
4	shooting for with responses to comments that we've
5	received. So we'll be sending copies of those around.
6	MEMBER LEITCH: Okay. Does any of the
7	committee have anything else? Any concluding remarks?
8	MEMBER ROSEN: I presume we'll hear a lot
9	more about this.
10	MEMBER POWERS: Yes, I would expect so.
11	MEMBER LEITCH: We have put a little
12	picture on the back of the handout that I gave you, a
13	satellite picture of the northeast blackout. I just
14	thought it was an interesting picture.
15	Okay. Mr. Chairman, back to you.
16	CHAIRMAN BONACA: Okay. Thank you. That
17	was very informative, very well very good
18	presentation.
19	We are ahead of time. Let's take a break
20	now for 20 minutes, come back at 10 of 4:00, and then
21	we have Dr. Powers is going to tell us about the
22	research report.
23	(Whereupon, at 3:30 p.m., the proceedings
24	in the foregoing matter went off the
25	record.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433