Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards506th Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Wednesday, October 1, 2003

Work Order No.: NRC-1102

Pages 1-280

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS) 506th MEETING
6	+ + + +
7	WEDNESDAY, OCTOBER 1, 2003
8	+ + + +
9	ROCKVILLE, MARYLAND
10	+ + + +
11	The Advisory Committee met at 8:30 a.m. at
12	the Nuclear Regulatory Commission, Two White Flint
13	North, Room T2B3, 11545 Rockville Pike, Dr. Mario V.
14	Bonaca, Chairman, presiding.
15	<u>COMMITTEE MEMBERS</u> :
16	MARIO V. BONACA Chairman
17	GRAHAM B. WALLIS Vice Chairman
18	GEORGE E. APOSTOLAKIS Member
19	THOMAS S. KRESS Member
20	GRAHAM M. LEITCH Member
21	DANA A. POWERS Member
22	VICTOR H. RANSOM Member
23	STEPHEN L. ROSEN Member
24	WILLIAM J. SHACK Member
25	JOHN D. SIEBER Member

1	<u>ACRS STAFF PRESENT</u> :
2	JOHN T. LARKINS Director
3	SHER BAHADUR Associate Director
4	SAM DURAISWAMY Technical Assistant
5	
6	ALSO PRESENT:
7	WILLIAM BURTON, NRR
8	JOE COLACCINO, NRR
9	DAN FREDERICK, Conax
10	SUDESH GAMBHIR, OPPD
11	MIKE MAYFIELD, RES
12	JOE MUSCARA, NRR
13	SELIM SANCAKTAR, Westinghouse
14	JAMES SCOBEL, Westinghouse
15	JENNIFER L. UHLE, NRR
16	BERNIE VAN SANT, OPPD
17	RON VIJUK, Westinghouse
18	
19	
20	
21	
22	
23	
24	
25	

2

	3
1	I-N-D-E-X
2	Agenda Item Page
3	1) Opening Remarks by the ACRS Chairman 4
4	2) Final Review of the Fort Calhoun License 5
5	Renewal Application
6	Briefing and discussions
7	3) Interim Review of the AP1000 Design 85
8	Briefing and discussions
9	4) Proactive Material Degradation Assessment . 196
10	Program
11	Briefing and discussions
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(10:17 a.m.)
3	CHAIRMAN BONACA: Good morning. The
4	meeting will now come to order. This is the first day
5	of the 506th meeting of the Advisory Committee on
6	Reactor Safeguards.
7	During today's meeting, the committee will
8	consider the following: Final review of the Fort
9	Calhoun license renewal application; interim review of
10	the AP1000 design; proactive material degradation
11	assessment program; preparation for meeting with the
12	NRC commissioners; and proposed ACRS reports.
13	A portion of this meeting will be closed
14	to discus the proposed ACRS reports on safeguards and
15	security. This meeting is being conducted in
16	accordance with the provisions of the Federal Advisory
17	Committee Act. Dr. John Larkins is the designated
18	federal official for the initial portion of the
19	meeting.
20	We have received no written comments or
21	requests for time to make oral statements from members
22	of the public regarding today's sessions. A
23	transcript of portions of the meeting is being kept.
24	It is requested that the speakers use one of the
25	microphones, identify themselves, and speak with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	sufficient clarity and volume so that they can be
2	readily heard.
3	Before we get into the agenda, I would
4	like to point your attention to items of interest we
5	have in front of you. There are no speeches in it
6	this time, but there are a number of issues about
7	operating events and NRC information notices.
8	And in the back, you have also printed out
9	the metrics from the RFP inspection finding summaries.
10	It may be of interest to you.
11	With that, if there are no further
12	comments from anybody regarding the introduction here,
13	I would like to move to the first item on the agenda.
14	I am responsible for this item. So this
15	is the final review for the Fort Calhoun license
16	renewal application. And we have in front of us the
17	Fort Calhoun people. So Mr. Gambhir?
18	MR. GAMBHIR: Thank you very much, Mr.
19	Chairman. And thank you very much for the opportunity
20	to come and speak before this committee about the Fort
21	Calhoun application.
22	With me today let me start out with the
23	introductions I have Tom Matthews here, who is the
24	licensing lead for us on this project; and Bernie Van
25	Sant. Bernie has been the project manager on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 license renewal project. And Joe Gasper I think you 2 all know. He was the original project manager and has 3 been the program manager for us. Also we have Mike Fallin back there. 4 Mike is with the Constellation 5 Nuclear Services. And they have done an extremely good job for us on putting the application together. 6 7 As far as our presentations are concerned, they will be brief. I am aware of the time limits we 8 9 have here, and I think much of the presentation will I will be very brief and 10 be made by the NRC team. 11 introduce Bernie for his presentation. 12 Just to start out with the plant operating status, we are in the middle of the refueling outage 13 14 right now. This was 468-day breaker-to-breaker run 15 for us. Since '97, Fort Calhoun has improved the reliability of the unit significantly. And this is 16 our third breaker-to-breaker run in four cycles. 17 We are fully aware of the fact that when 18 19 good things happen to you, you need to start paying 20 attention to little things. As you will see on my 21 next slide, that is precisely what we are doing. 22 All NRC performance indicators are green. 23 The inspection we had from the NRC in our corrective 24 action program, the problem identification and the

resolution program, there were no green or higher

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

6

1 findings. In general, the program is well-run. 2 recognized for industrial We were 3 operating excellence by INPO earlier this year. So 4 overall Fort Calhoun performance has been pretty good. 5 I mentioned earlier that the performance improvement program started back in '97. 6 We have a 7 vision of keeping the nuclear option alive to 2033 and beyond. And with that, what it means is even though 8 Fort Calhoun is a small unit and also is fully 9 one-third of the power we produce at OPPD, but it's an 10 11 important mix. And that's the biggest value that we 12 have for Fort Calhoun station. We introduced what we call a six factors 13 14 formula. You call it a CHOICE. And we have been 15 emphasizing the critical self-assessments and the 16 broad and lasting corrective actions, human 17 performance, making the operations event-free, and focusing on the high visibility issues and also being 18 a cost-effective producer and then ensuring excellence 19 20 in material condition. Let me speak to that. 21 I talked about the reliability of the 22 unit. Our board of directors has recently authorized 23 several upgrades for Fort Calhoun station. We have a 24 contract that is signed by MHI for the replacement of 25 the steam generators, reactor vessel head. And since

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

7

	8
1	we will have to make a hole in the containment to do
2	those things, we also have approval to go ahead and
3	take out the pressurizer. So we will be the first one
4	to replace the pressurizer. We do have a contract
5	with MHI.
6	Those are just three examples that I
7	decided for you of several projects that we have. We
8	are in the process of buying a new simulator from CAE.
9	So the board has shown confidence. We are
10	making investments in there. And there are a lot of
11	other improvements that we will be making in the unit.
12	VICE CHAIRMAN WALLIS: What's the time
13	scale? Are you going to do all of these changes for
14	this
15	MR. GAMBHIR: The steam generators, the
16	reactor vessel head, and the pressurizer will go in
17	2006 outage. We will be also replacing the condenser
18	in 2005 outage. So there is a lot of things that
19	we're doing to improve the reliability of the unit.
20	MEMBER LEITCH: Sudesh, I noticed at the
21	beginning of the current outage, there was a fuel
22	assembly that was dropped. I was wondering if that
23	was an equipment problem or a human performance
24	problem and just what your reaction is to that
25	situation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5	Now, there are some other contributing
6	problems. None of those are material condition
7	issues. But there were some others, you know, for
8	example, not using effectively operating experience.
9	Previously we had handled a few ourselves.
10	For the last three outages this will be the third
11	we have brought in a vendor to handle the fuel
12	during the outage. And I would say it's a human
13	performance, but this is a human performance issue
14	that could have been prevented.
15	Those are the things that we will be
16	working on now, the long-term corrective action.
17	MEMBER LEITCH: Now, the fuel handling has
18	to be done with an individual with an SRO at your
19	facility. Now, that's not the vendor. In other
20	words, you have an SRO responsible for the fuel
21	handling as well?
22	MR. GAMBHIR: It's the supervision. There
23	has to be supervision. Actually, engaging the bundle
24	can be done by the contractor.
25	MEMBER LEITCH: But the supervision?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

10 1 MR. GAMBHIR: have the Yes, we 2 supervision. There are a lot of contributing causes 3 there that we are still working on, but it was a human 4 performance issue. 5 MEMBER LEITCH: Okay. Thank you. 6 MR. GAMBHIR: Joe, do you want to add 7 anything to that? 8 DR. GASPER: No. I think you covered 9 everything. MR. GAMBHIR: Okay. If there are no other 10 11 questions, then I will turn it over to Bernie. Bernie 12 is going to go for the implementation. Are you okay here, Bernie? 13 MR. VAN SANT: As Sudesh said, I want to 14 15 cover two topics. One is to go over some of the inspections that we have been doing on two of our RCS 16 17 And then I also want to talk about components. license renewal implementation. 18 Two components that I will be going over 19 are the CEDM drive mechanisms and the reactor vessel 20 21 head. I will give you a little background. In the 22 early '90s, Fort Calhoun had a leak in our upper CEDM 23 Shortly after that, Palisades, who has a housing. 24 similar design, CEDM housing, and dry mechanism started having leaks in their drives. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	As a result of that, OPPD committed to
2	developing a CEDM material reliability plant. That
3	plant consists of going in on an outage basis and
4	doing inspections on the welds, on the CEDM upper
5	housing, and on the CEDM seal housings for all the
6	drive packages, taking those, a group, at a time,
7	every outage until we get a good identification of
8	what the cause of the cracking is, mechanisms, and how
9	to implement a program to ensure that we don't have
10	any in the future.
11	We have committed that whatever comes out
12	of this plan, which would be mutually agreeable
13	between NRC and OPPD, that we have committed to carry
14	that program into the period of extended operation as
15	one of the commitments we made for license renewal.
16	I will get into the inspection results in
17	2002. We inspected the seal housings for the control
18	and the dry mechanisms using eddy current testing
19	methodology.
20	We tested eight seal housings and found no
21	indication in any of the eight seal housings. We then
22	attempted to use a robotic UT measurement machine on

the upper housing welds. We did this because of the high-dose area involved in examining the housings.

Unfortunately, this was somewhat of a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

23

24

25

	12
1	prototype machine and didn't perform like we had
2	anticipated. So we ended up having to go back in and
3	manually do UT on some of these welds. As a result,
4	we only had two welds that we ended up achieving a UT
5	reading on. Both of those were acceptable.
6	This outage we're going back in with a new
7	style of UT machine we hope to have a much better
8	success rate on. We have completed the
9	MEMBER SHACK: Excuse me. What are you
10	inspecting with the eddy current system?
11	MR. VAN SANT: The seal housing on the dry
12	package. The way our seal housings are set up may be
13	a little different than what you are used to. We have
14	an upper housing, which is essentially a ten-foot tube
15	that goes from the reactor vessel nozzle up to the
16	control element dry package and in the control element
17	dry packages where the seal housing is.
18	So the upper housing has three welds on
19	there that are susceptible to cracking that we are
20	inspecting. And then inside the control element dry
21	package, there's a seal housing that we inspected that
22	a current
23	MEMBER SIEBER: And the entire tube is a
24	pressure boundary?
25	MR. VAN SANT: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	13
1	MEMBER SHACK: And this is all 347?
2	MR. VAN SANT: The control element upper
3	housing is a 316, I believe. And the dry package, I
4	think that is a 347, but I can't say for sure.
5	As I said, we just now have started this
6	week attempting the robotic inspection of the UT on
7	the upper housing welds. So I don't have any results
8	to report on it as of yet, but that should be done by
9	the end of this week.
10	The reactor vessel head, we did a bear
11	head inspection in 2002, again with the robotic visual
12	inspection. I did not identify any buildup of boric
13	acid or any leakage around any of the nozzles.
14	We repeated that again this outage, the
15	same results, haven't seen any buildup of boric acid.
16	We have compared the digital pictures from 2002 with
17	the pictures we take in this outage, in 2003, and
18	there's little, if any, change in the condition of the
19	head. It's clean, in good shape. So we're very happy
20	with that.
21	MEMBER LEITCH: Bernie, are you able to
22	fully comply with the NRC order in your 2003
23	inspection?
24	MR. VAN SANT: Currently, we are at just
25	under 12 EFPY. So the bear-head and visual inspection

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	both comply with the current order. We will have to
2	do a volumetric in '05.
3	MEMBER LEITCH: In '05, yes.
4	MR. VAN SANT: We are replacing the head
5	in '06. And based on the results of the inspections
6	and the planned replacement in '06. We are
7	considering going in for an exemption on the
8	volumetric on '05, but we are planning to do that.
9	MEMBER LEITCH: Okay. Thank you.
10	VICE CHAIRMAN WALLIS: While we're on the
11	RCS, I noticed you have a crack in your pressurizer
12	lower shell instrumentation nozzle.
13	MR. VAN SANT: Yes.
14	VICE CHAIRMAN WALLIS: And I was rather
15	surprised to see this is going to be managed entirely
16	by calculating things. I would think that you would
17	want to inspect as well.
18	MR. VAN SANT: The nozzle will be
19	evaluated for TLAA. We have imposed a fix on that
20	nozzle. And the TLAAs address the
21	VICE CHAIRMAN WALLIS: This is
22	calculations, isn't it?
23	MR. VAN SANT: Yes. But we are replacing
24	it in '06.
25	VICE CHAIRMAN WALLIS: Yes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	15
1	MR. VAN SANT: This nozzle as part of the
2	pressurizer will be
3	VICE CHAIRMAN WALLIS: You are relying
4	entirely on the theoretical work to ensure that it is
5	okay?
6	MR. VAN SANT: We won't be relying on the
7	theoretical work for the new license at all because it
8	is going to be replaced in '06.
9	VICE CHAIRMAN WALLIS: Between now and
10	'06, it's there.
11	MR. VAN SANT: Right.
12	DR. GASPER: Between now and '06, the
13	pressure boundary weld was moved to the external side
14	of the pressurizer.
15	VICE CHAIRMAN WALLIS: So you have another
16	pressure boundary.
17	DR. GASPER: And that, then, was
18	incorporated into the ISI program as required by the
19	code.
20	VICE CHAIRMAN WALLIS: Right. So it
21	really doesn't need much management because you've got
22	a new pressure boundary?
23	MR. VAN SANT: Right.
24	DR. GASPER: That is correct.
25	VICE CHAIRMAN WALLIS: Thank you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16 1 MEMBER SIEBER: Does the code allow a 2 repair like that? DR. GASPER: Yes. We either have or will 3 4 be submitting to the NRC. The code also requires a 5 submittal to the NRC. And I do not know the exact status, whether that's --6 7 MEMBER SIEBER: You're probably relying on 8 a code case, right? 9 DR. GASPER: Yes. I don't remember --10 MEMBER SIEBER: Because a code itself, 11 that's not adequate repair. 12 I don't remember the DR. GASPER: Yes. exact details. 13 14 MEMBER SIEBER: There have been other 15 places that have used a code case. But a number of CE 16 DR. GASPER: Yes. 17 design plants have implemented this fix. 18 MEMBER SIEBER: Okay. Thank you. 19 MR. VAN SANT: The analysis that we were 20 talking about was only for the period of extended 21 operation. We currently have the analysis in place 22 for the weld as it exists now. 23 MEMBER ROSEN: Have you had a look at the 24 reactor vessel bottom head yet? 25 MR. VAN SANT: We have no nozzle

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	penetrations in our bottom head. So the answer is no,
2	we have not looked at that.
3	MEMBER ROSEN: You have no
4	instrumentation, thimble heads, or
5	MR. VAN SANT: No.
6	DR. GASPER: All our instrumentation is
7	top-mounted. All the NCOR instrumentation comes in
8	through the top of the reactor vessel.
9	MEMBER ROSEN: So the bottom head is
10	completely smooth? There's no
11	DR. GASPER: Yes. There are no
12	penetrations in the bottom head.
13	MEMBER ROSEN: Okay.
14	MR. VAN SANT: Continue on? The next
15	topic I wanted to cover was our license renewal
16	implementation. One of the things I wanted to
17	emphasize was that in preparation of the license
18	renewal application, we performed our scoping in
19	accordance with 10 CFR 54.4.
20	What that means is we looked at all SSCs
21	in our plant. We did not screen any components based
22	on safety classification, went back and looked through
23	the database for all the license renewal components.
24	There are a significant number of
25	components that are not safety-related. If my memory

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	serves, it was approximately 16 percent of the
2	components that we have in our database are not the
3	safety-related classification, did not have a
4	safety-related classification.
5	The other bullet that I have here is to
6	identify that we are updating our configuration
7	control procedures for modifications and engineering
8	changes to incorporate the requirements of 10 CFR
9	54.37.
10	We will be using the same criteria for
11	evaluating configuration changes that we used in
12	scoping for the license renewal application. If we
13	identify a component that meets the criteria for the
14	scope of license renewal, we will be including aging
15	management programs, applying those programs to those
16	components the same as we did in the license renewal
17	application.
18	I wanted to talk a little bit about the
19	commitments we have made as part of our license
20	renewal application. We have the commitments listed
21	in the SER as well as in our USAR supplement.
22	These commitments consist of three
23	different types of commitments. One is for new
24	programs that we have had to develop; program
25	enhancement to existing programs, where we have had to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	do additional work to satisfy the requirements of the
2	GALL and the NRC; and then, finally, commitments to
3	perform TLAA evaluations for components prior to
4	entering the period of extended operation.
5	These commitments will be tracked in the
б	Fort Calhoun station regulatory commitment tracking
7	system, the same as we track all of our regulatory
8	commitment items. In that system, we have assigned
9	orders and established commitment dates for those
10	items to ensure that they are completed on time.
11	Finally, for those programs that we have
12	credited for license renewal, all of those programs
13	have implementing procedures to carry out the
14	requirements of the program. In those implementing
15	procedures, we have annotated either the whole
16	procedure or the steps in the procedures that are
17	required to comply with the needs of the aging
18	management program.
19	So it's obvious to anyone using the
20	procedure or trying to change the procedure that these
21	steps are commitments to the NRC and need to be
22	treated accordingly.
23	MEMBER LEITCH: Do you have any idea how
24	many of those programs either are or will be
25	implemented short-term versus waiting until you're 39

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

20 1 and a half, so to speak, before implementing them or 2 We're in the process of 3 MR. VAN SANT: 4 implementing the changes now. The goal is within the 5 next few years to have those all implemented. We're not waiting until 2013 in the period of extended 6 7 operation to get those implemented. We need to get them in process and get them off our books, basically 8 to move on. We don't want to come on 2013 and try and 9 figure out what it is we committed to. 10 11 Right. MEMBER LEITCH: 12 MR. VAN SANT: So we're going forward with 13 those now. 14 MEMBER LEITCH: Yes. That's good. We're 15 concerned not only about your resources if you wait until the last minute but NRC inspection resources as 16 This could be a very high peak load 17 well. if everybody were to just wait until the last minute. 18 So 19 I'm pleased to hear you're moving towards implementing 20 those programs. 21 DR. GASPER: As part of the implementation 22 of the new procedures, we will have training for all 23 of the engineers that will be doing configuration 24 changes that could impact the license renewal 25 application commitments.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 OPPD also will be training any new 2 engineers that come on board. They have to be 3 qualified to perform certain tasks. Those people that 4 will be qualified to perform configuration change 5 activities will receive training on the procedure, which will include training on the license renewal 6 7 commitments and the process of scoping and screening for license renewal. 8 9 We also will have the plant equipment database updated to reflect those components that are 10 11 part of the license renewal commitments that were 12 scoped in as part of license renewal. This combined with the procedure annotation to identify those 13 14 commitments and the training we feel will ensure that 15 we maintain our commitments to the NRC throughout the period of extended operation. 16 17 CHAIRMAN BONACA: I have a question. DR. GASPER: Yes? 18 19 CHAIRMAN BONACA: In the late '80s, you 20 did experience movement of the thermal shield, some 21 vibration. 22 DR. GASPER: Yes. 23 CHAIRMAN BONACA: And I think in 1992, you 24 replaced 11 pins. 25 DR. GASPER: That's correct.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21

	22
1	CHAIRMAN BONACA: And then the vibrations
2	were reduced essentially to normal. Okay? Now, if I
3	remember, you are proposing to continue to monitor
4	thermal shield vibration to this thermal shield
5	monitoring program.
6	Now, if I understand, that's essentially
7	inspections but is not I guess where I am going is,
8	how do you identify the vibrations? What is a normal
9	level of vibration? What isn't normal? You do not
10	have a loose part monitoring system, right?
11	DR. GASPER: Right.
12	CHAIRMAN BONACA: And you are claiming
13	that you don't need to have one to monitor this. So
14	if you could elaborate on that?
15	DR. GASPER: The monitoring is done using
16	neutron noise analysis. We do neutron noise analysis
17	on start-up from every refueling. And, actually, when
18	we detected the original motion on that thermal
19	shield, it was detected in neutral noise analysis such
20	that we determined that we needed to go in and do
21	visual inspections.
22	And we're going to be continuing that
23	program because we fully recognize that those pins can
24	certainly relax again. And it was successful
25	previously, but we weren't able to identify that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	sudden motion was starting and we needed to go in and
2	inspect those pins.
3	CHAIRMAN BONACA: Okay. I understand how
4	you did that. And that's the basis for saying we
5	don't need a loose part monitoring system?
б	DR. GASPER: Yes. Basically, our feeling
7	is that if we detected it would be a loose part, it
8	would probably be too late. We would potentially have
9	damage to the shield. So that is why we are using
10	neutron noise.
11	CHAIRMAN BONACA: The other question I had
12	was regarding CEDM, just a clarification of your
13	presentation. You said you had leakage from the CEDM
14	package. If I understand it, this is the package
15	above, directly over the head.
16	DR. GASPER: Right.
17	CHAIRMAN BONACA: Okay. Now, you're
18	replacing the head in 2006, which gives us comfort
19	insofar as leakage from the CEDM there, but the other
20	leakage you are still monitoring through normal means,
21	I guess, right, for the foreseeable future? You're
22	not changing your upper package?
23	MR. GAMBHIR: We're changing the CEDM
24	housing also.
25	CHAIRMAN BONACA: You're changing the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	upper housing. Okay.
2	MR. GAMBHIR: The leak we had, it was a
3	spare penetration that we had. And that was out of
4	the housing itself.
5	DR. GASPER: Yes. That was actually that
б	ten-foot pipe basically. And it was due to stress
7	corrosion cracking due to the fact that those were not
8	vented. So we tracked oxygen in them.
9	CHAIRMAN BONACA: And you are replacing
10	those?
11	DR. GASPER: Actually, the ones that are
12	cracked, those have been removed.
13	MEMBER ROSEN: Going back one slide to
14	your license renewal implementation discussion on
15	slide 10, I think you are appropriately identifying
16	training as important and also that you're going to be
17	implementing some of these requirements beginning soon
18	and not waiting until the end and embedding those
19	requirements in your procedures.
20	All of those things are good, but what are
21	your thoughts about putting this program under the
22	control of one person who is identifiable as the
23	license renewal guru or do you feel that you don't
24	need such a person in an ongoing manner that just
25	using a broad scope procedural approach would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

satisfactory?

1

2 MR. VAN SANT: Our belief is that if you 3 haven't properly documented the procedure, that 4 doesn't mean you have a license renewal guru, so to 5 speak, to be able to address it. You should have an adequate procedure guidance that can walk somebody 6 7 through the evaluation to determine if they have an 8 impact on the commitments or license renewal 9 application.

MEMBER ROSEN: This is different than some 10 11 other licensees who have appeared before us and been 12 granted license renewal. Some of the licensees have identified site points of contact, for example, on 13 14 license renewal, someone who is the keeper of the 15 knowledge that was gained during the review and knows where all the pieces of the program are and who can 16 17 teach new people and examine issues as they come up separate from the procedural network. 18

19 That gave me some comfort in that I felt 20 that the program was less than automatic. There was 21 someone who was guiding and able to guide and who had 22 the history and could respond to issues as they came 23 up if they had a tangential or even a direct impact on 24 license renewal activities.

MR. VAN SANT: We have people who will be

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

available to support that, but the recognition was that in going forward, at some point, you are going to lose that historical knowledge, that you need to have that control in procedures such that you are not dependent on people to provide that function.

I think that is a little 6 MEMBER ROSEN: 7 bit of a red herring. I'm not talking about being 8 dependent on people and not having it in the 9 I'm suggesting that, in addition to procedures. having it in the procedures and in addition to the 10 11 training was some comfort to me to be advised by a 12 licensee or several licensees that they had someone who could be pointed to by management and say, "The 13 14 license renewal implementation is your bag. You're 15 the guy who has to be thinking about that as part of your job." 16

17 MR. GAMBHIR: Let me address that. Ι think that's a good point. 18 Here are the lessons 19 learned personally for me over the years, that people 20 change, conditions change. So you do need to have a 21 strong documentation background so we can move 22 forward.

23 One of the things that we did at Fort 24 Calhoun was -- this is back when we did the design 25 basis reconstitution -- we also developed what we call

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

1 the program basis documents. 2 have very detailed program basis We They're not part of the license. I mean, 3 documents. 4 they were not done for this. They have been done 5 since many years. And things like steam generators, erosion corrosion programs, the relief valves, the 6 7 safety valves, I mean, all of these things, you wanted 8 to preserve the knowledge. 9 Bernie, correct me if I am wrong. We are 10 looking at a program basis document on the license 11 renewal. So we will have a program basis document on 12 the license renewal also because that will be the

master document that retains all of the knowledge. 13 14 It's in there.

15 And I'm sure there will be a sponsor 16 assigned. Each of the documents has a sponsor assigned. So indirectly I think we will have what you 17 are talking about, and then each of the procedures 18 19 then implement it.

MEMBER ROSEN: I think that's fine. 20 You 21 have a go-through guide and a program basis document 22 that is really the intent of my comment that I think 23 24 MR. GAMBHIR: We'll have that. And your 25 point is valid. I mean, there are so many things in

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

27

28 1 these that you can't write in every procedure. And 2 then sometimes things do get mixed up. And so we will 3 have. 4 The program basis documents in general 5 have served us extremely well. We preserve from year to year how many man-hours were used, what did we 6 7 find. We had a change of system engineers on steam generators and weren't able to just switch over to the 8 9 next person. So that's the same concept we'll have in the license --10 11 ROSEN: Ιt said knowledge MEMBER 12 management issue. MR. GAMBHIR: Right. 13 14 MEMBER ROSEN: I think what you have 15 described now would go a very long way to giving me the same kind of comfort that, for instance, the site 16 17 point of contact approach has given me in the past. 18 I thank you. 19 VICE CHAIRMAN WALLIS: I have a question 20 about FAC, flow-accelerated corrosion or flow-assisted 21 corrosion. You have had thin walls because of 22 You actually had one that ruptured. corrosion. 23 DR. GASPER: In '97. 24 VICE CHAIRMAN WALLIS: So as these 25 machines get older, the pipes, walls get thinner, may

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

29

1 rupture. That apparently is okay because they're 2 managed by checkworks and all that kind of stuff. And 3 as you monitor these pipes, they're replaced when you 4 have to replace them. And, therefore, they're not an 5 obstacle to renewing the license and that public 6 perception might be that as these things get older and 7 they wear out, then that's a bad thing.

8 But the fact that you can renew these 9 pipes makes it okay. Is that really sort of putting 10 it in the kind of everyday terms? Is that the way FAC 11 works?

DR. GASPER: Yes. Typically checkworks is used in a predictive method to identify where the maximum wear is occurring. That's confirmed basically with your inspection program. You are then selecting the sites that have the maximum rates and going and inspecting those.

As we get to replacements, typically right now we are trying to the best of our ability to replace with FAC-resistant material in order to cut down the amount of inspections and stuff, we've got to do that. That's an outage expense every year.

23 So the relative costs of replacing with 24 FAC-resistant material versus continuous inspections 25 leads you towards at least in our case to replace with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	30
1	resistant material.
2	So that's right now basically our
3	philosophy. We are trying to replace with resistant
4	material where we can.
5	MR. GAMBHIR: In addition to that, for the
6	condenser that we're putting in, that will have
7	titanium tubes. And that allows us to do better
8	chemistry management also. So we're kind of looking
9	at it from that point of view, too.
10	MR. VAN SANT: We're also replacing
11	feedwater heaters. As we go in and replace the
12	feedwater heaters, at that time, when we're cutting
13	into the extraction lines, we're looking at what
14	piping we can replace as part of that.
15	VICE CHAIRMAN WALLIS: Yes. Those
16	extraction lines have historically given you problems.
17	MR. VAN SANT: Right. That's the danger
18	area.
19	MEMBER ROSEN: And the material for the
20	construction of the feedwater heaters is?
21	MR. VAN SANT: It's going to be stainless
22	steel tubing. It's currently stainless steel tubing
23	right now. And we'll replace with stainless steel
24	tubing.
25	CHAIRMAN BONACA: Would you be doing all

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	of this work if you were not planning for license
2	renewal?
3	MR. VAN SANT: No.
4	MR. GAMBHIR: I think what it is is that
5	part of the justification is that the operation to
6	2013 becomes uneconomical. We solved it. For
7	example, we are doing condenser inspections. It's
8	going to cost about \$7 million just to inspect those.
9	The condenser has been a source of problem
10	for us in the past. So the economic case that we have
11	put together is that we need these things for going to
12	2013 even. But it would have not been economical if
13	we were going only to 2013.
14	So the fact that we can go to 2033 this
15	is where I believe strongly that license renewal adds
16	to the safety of the plant because what we are doing
17	is this is going to help improve the reliability of
18	the unit and, in turn, improve the safety of the unit.
19	MEMBER ROSEN: And not have a long,
20	lingering period where you're managing to get through
21	and then shut down in 2013. Instead of that, taking
22	a proactive approach, improving the material condition
23	of the plant across the board, and planning to go on
24	for a longer period.
25	MR. GAMBHIR: That is correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	MEMBER SIEBER: Have you purchased the
2	condenser tubes yet?
3	MR. VAN SANT: No, not yet. We're going
4	out for bid shortly.
5	MEMBER SIEBER: I presume that you are
6	aware that the moment of inertia of titanium tubes is
7	different than what you now have and they are prone to
8	vibration. And you may be in a situation where you
9	have to stake the condenser because the tube support
10	plates are too far apart. Just so you are aware of
11	that and spend
12	MEMBER ROSEN: I think that is well-known,
13	Jack. I think that places where titanium condensers
14	have been installed to replace, for instance,
15	Admiralty brass, Monell metal have been successful.
16	MEMBER SIEBER: Some have. Some haven't.
17	MEMBER ROSEN: My own experience has been
18	that it's very satisfactory.
19	MR. VAN SANT: We're not just re-tubing.
20	We're replacing the entire module.
21	MEMBER SIEBER: Oh, really? Okay. So you
22	all have new support plates.
23	MR. VAN SANT: Right.
24	MEMBER SIEBER: Okay. That solves that
25	problem.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	33
1	CHAIRMAN BONACA: Okay. Any other
2	questions?
3	(No response.)
4	CHAIRMAN BONACA: If not, then we will
5	hear from the staff. Thank you.
6	MR. KUO: Thank you, Dr. Bonaca.
7	My name is P. T. Kuo. I am the Program
8	Director for the License Renewal and Environmental
9	Impacts Program. Butch Burton is going to make the
10	presentation. He's the project manager, as you know.
11	And, briefly, just a status report that
12	during the top of SER with open items, we had 11 open
13	items. By the time that we finished the subcommittee
14	meeting, we had only one left, which had to deal with
15	the changing of tables by the applicant in the
16	application. And since then, even this issue has been
17	resolved already. Butch is going into the details of
18	that.
19	And I also want to mention that given Fort
20	Calhoun being the first GALL plant, we have a number
21	of lessons learned. We are trying to incorporate
22	these lessons learned into the future application
23	reviews. Butch is also going to go over some of the
24	lessons we have learned.
25	So with that and if he is ready, then I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	will turn it over to Butch.
2	MR. BURTON: All right. Thanks, P. T.
3	MR. KUO: Sure.
4	MR. BURTON: Can everybody hear me okay?
5	First, one housekeeping item. The slides that I am
б	going to have up here, I had to make some last minute
7	changes to them. The committee members have the
8	correct slides. For some of the folks in the
9	audience, you are going to find very minor differences
10	between the slides I have up here and what you have;
11	again, very, very minor.
12	Thank you for allowing me another
13	opportunity to talk with you about the staff's review
14	of the Fort Calhoun license renewal application. Let
15	me start with a very brief overview. I know it looks
16	like a lot of slides, but I intend to move through
17	them fairly quickly.
18	The application was actually submitted by
19	letters dated January 9th and April 5th. And as I go
20	through, I will explain to you a little bit about how
21	and why that happened in two submittals, as opposed to
22	one.
23	As you know, it's CE PWR located just
24	north of Omaha, Nebraska. Current license expires in
25	August of 2013. They're requesting a 20-year

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	extension of the license. We issued our SER with open
2	items in April. We had our subcommittee in June. And
3	we issued the final SER in September.
4	We also had a brief session with the full
5	committee I believe that was in March to try and
6	familiarize you all with the application since it was
7	the first to utilize GALL.
8	VICE CHAIRMAN WALLIS: This SER, we have
9	had comments on SERs in the past, license renewal. My
10	impression is that it's, for me anyway, much more
11	complete than the earlier ones. It goes over the
12	history and how the RAIs were resolved, there were not
13	inspections, and so on, gives much more explanation as
14	to why you reached the decisions that you did. And I
15	found that very useful.
16	MR. BURTON: Good, good. I'm glad to hear
17	that. We thought that it was important that we
18	communicate to our stakeholders some of the background
19	of GALL, how it was developed because it was the first
20	one to understand how things were structured and how
21	we performed our review. So we did try to include all
22	of that. I am glad to hear that you found it helpful.
23	One of the things that I know that you all
24	are always interested in is how this application
25	compared to previous ones. As I mentioned, it's the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	36
1	first application to fully implement the GALL process.
2	If you remember, St. Lucie applied
3	portions of GALL, but we were the first ones to
4	actually look at an application that instituted the
5	full process.
б	As a part of that, we had to do some
7	re-engineering of our review process. And I have some
8	lessons learned with that. One of them was that it
9	was the first plant where we actually did a
10	confirmation of their claim of consistency with GALL
11	for the aging management programs. And we actually
12	included that as part of the AMR inspection. Again,
13	there were some lessons learned associated with that
14	that I will talk about.
15	It was also the first plan to utilize an
16	SER template. What we tried to do was we tried to
17	make the review a little bit more consistent from a
18	stakeholder's point of view to be able to consistently
19	document how we did what we did. And so we actually
20	developed a template. And we have actually used that
21	concept with applications after Fort Calhoun. So
22	those are some of the things that were different from
23	some previous applications.
24	Okay. I'm actually going to begin at the
25	end. I am going to start with the staff's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 One is that actions have been identified, have been or will be taken. You have heard this 6 7 language before. This is basically the reasonable assurance finding associated with the safety review. 8 The second item is basically that we have 9 to look at the environmental impacts and make sure 10 11 that there are -- if you have seen the conclusion 12 there, it is very legalistic, but it basically says that environmentally we have not found anything that 13 14 would prevent them from implementing this license 15 renewal option if they choose to; and then, finally, matters raised under 2.758, which is basically a 16 17 hearing. And there were no requests for hearings or petitions to intervene. So that last requirement has, 18 19 in fact, been met.

20 So these are the conditions. Basically, 21 most of the rest of my presentation is how we came to 22 reach this first finding, this first reasonable 23 assurance finding.

24 Okav. The first thing that the staff 25 looks at is the methodology. The reasoning behind

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

37

	38
1	that is that if the methodology is not sound, you
2	can't trust the results. So the first thing is they
3	have to look at what they're doing and make sure their
4	methodology is sound.
5	Specifically, we're looking to make sure
6	that the methodology meets the requirements of the
7	rule and that it is consistent with how it is
8	described in the application. So that is what we are
9	looking at.
10	We supplement the staff review with a
11	methodology audit. That's normal procedure for us.
12	As a result of the review and the audit, we had four
13	requests for additional information having to do with
14	methodology.
15	I've identified functional realignment.
16	You know that always comes up. And so that's one of
17	the things that we always look at. One of the things
18	that came up, we had a question with regard to
19	functional realignment.
20	For those who may not be aware of what
21	that means, it's basically when you take the functions
22	of one system and actually functionally, not
23	physically but functionally, associate them with
24	another system. The one that comes up most often has
25	to do with containment isolation. Often you will have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	systems that they would have no other in-scope
2	function except for containment isolation.
3	And so what some applicants have done is,
4	rather than bringing that whole system in scope, they
5	will take that particular component that does that
6	in-scope function and actually functionally realign it
7	to a new system that is normally called in this case
8	containment isolation.
9	But from a methodology point of view, all
10	of that needs to be clearly laid out and described.
11	What we found was that when you looked at some of the
12	documentation, it wasn't real clear how all of that
13	was done.
14	When we find those kind of apparent
15	discrepancies, what we do during the inspection is we
16	say, "Okay. The paperwork, the description doesn't
17	seem to be in line with what you're claiming. Let's
18	sit down, and you go through with us exactly what you
19	did in order to do this functional realignment."
20	What we found is that they, in fact, did
21	it correctly. The problem was just in the
22	documentation. In fact, that was one of the RAIs
23	associated with it. And they came back and made a fix
24	that clearly described that methodology.
25	There were no open items. We had one

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	confirmatory item, which we resolved, which had to do
2	with the realignment. So from a methodology point of
3	view
4	CHAIRMAN BONACA: In the process of
5	scoping and screening, did you identify other items
6	that should be in scope?
7	MR. BURTON: Yes. In fact, after we
8	looked at the methodology, then we looked at the
9	scoping and screening results. And that's what's
10	going to come up in the next slide.
11	CHAIRMAN BONACA: Okay. And you'll tell
12	me how many systems and also if these were part of the
13	interim staff guidance?
14	MR. BURTON: Sure, absolutely.
15	CHAIRMAN BONACA: I guess where I am going
16	is if we have the application, we see that there is a
17	significant number of components and systems that are
18	included in the scope after the staff reviews and
19	finds that there are discrepancies.
20	I would expect that once GALL becomes
21	fully institutionalized in the applications and a
22	member of I mean, there shouldn't be the need for
23	the staff to come in and identify all of these
24	components. Okay? So how can we say the methodology
25	is adequate if, in fact, it doesn't lead to have two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	reviewers coming to the same conclusion?
2	MR. BURTON: Right. And, actually, that
3	is a very good question, and the staff has looked at
4	that. When you find that the results if there are
5	a number of things that had not been brought into
б	scope, then you question the methodology, which is
7	basically what you are saying. And, in fact, during
8	the inspections, we did look at that and ask for some
9	explanation. And often what it was is that you
10	will see this in some of the RAI responses it's not
11	that they missed it.
12	It's that they looked at it and made a
13	determination for various reasons that the RAIs will
14	talk about the details, why they made a conscious
15	decision not to scope it in. And the staff would have
16	a disagreement. And that is part of what some of the
17	discussions were. And a lot of that is documented in
18	the RAIs and the subsequent SER.
19	We would have been particularly concerned
20	if it was something where they just completely missed
21	it. And what we found was when we questioned them
22	about that.
23	For instance, I'll give you a for instance
24	about the scoping: the circ water tunnel. One of the
25	issues that came up when we were doing the review was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	the circ water tunnel was not initially included in
2	scope. Let me just say that. And so we said, "Well,
3	what if the tunnel failed? Could it not block raw
4	water discharge?" because it all goes through that
5	tunnel.
6	And our first thought was, "Well, the
7	applicant just missed it."
8	And, in fact, when we started to talk to
9	them, they said, "No. We did not miss it. We did
10	look at that and consider that, but we found that if
11	the tunnel collapsed, there would still be room for
12	raw water discharge to get through."
13	So we got into those discussions. And
14	ultimately what they did decide to do was to actually
15	bring the tunnel in scope and actually made it part of
16	the intake structure, which was already in scope.
17	And then when something comes into scope,
18	we bring all of the associated aging management
19	information with it. But what we found was that when
20	you looked at concrete, steel, whatever the structural
21	components were that were associated with the tunnel,
22	they were already captured in the intake structure.
23	So when all was said and done, there
24	really was nothing that really changed other than
25	bringing that additional tunnel into scope.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	Does that answer your question?
2	CHAIRMAN BONACA: Yes, it does. I mean,
3	my main concern is to see progressively as we move
4	through these license renewals, that the guidance is
5	clear and that you will come to the same conclusion
6	and there isn't the need for the staff to identify all
7	of these additional components because whenever there
8	is a discrepancy, I'm left to the question, how many
9	things have been missed by both the staff and the
10	licensee?
11	MR. BURTON: Right. You're absolutely
12	right. Yes, we do expect that that kind of thing will
13	be reduced and eventually go away as we go on,
14	certainly.
15	So, anyway, in terms of scoping and
16	screening methodology, when all was said and done, we
17	found that the methodology was adequately described
18	after some of the discussions and the commitments to
19	make some modifications to the functional realignment
20	description but other than that, that they were, in
21	fact, meeting the requirements in terms of
22	methodology.
23	Now, once we went through the methodology,
24	then we looked at the results. Okay? We did a staff
25	review here in headquarters supplemented by a scoping

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	and screening inspection, which, again, is what we
2	normally do. Exactly 69 RAIs came out of the scoping
3	and screening review and inspection.
4	After going through the responses to the
5	RAIs, we found that there were three that carried over
6	as open items, all of which have been resolved.
7	And I do want to add that during the
8	subcommittee meeting in June, when we looked at the
9	exact status of all the open and confirmatory items,
10	at that point, everything had already been resolved
11	with one exception, which I will talk about.
12	So in terms of the specifics of the open
13	items, we had already discussed them at the
14	subcommittee meeting. And they were resolved at that
15	point. Later on, I do have several slides. I won't
16	go into detail, but it gives a list of all of the open
17	and confirmatory items, what the issues were, what the
18	final resolution was.
19	MEMBER LEITCH: Assume the ISGs were not
20	fully promulgated at this time. Would you think that
21	if he had been, that a number of these RAIs would have
22	been greatly reduced?
23	MR. BURTON: I don't know about greatly
24	reduced. It certainly would have impacted on the
25	number. There's no question. Because you're right,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

45 at the point that we started our review, many of the ISGs had not been issued. In fact, even now, like, for instance, seismic 2/1, that takes us back to Hatch. There's been a long development and issue process with that.

The one thing that I can say, not only 6 7 with Omaha Public Power but with some of the other applicants, is that it doesn't look like the industry 8 is waiting for the final ISG to be issued. 9 If they 10 can address it in the development of their application, they seem to be trying to do that. 11 Ιf 12 they are too far along in the development of their application or if they application is already 13 in-house, they know that they can expect RAIs. 14 And 15 they're ready for them.

So we find that even when the ISGs are still in development, they look at what the staff's initial position is. And they do try to address it.

So yes, a lot of the scoping and screening review results, we had three open items, one of which was the tunnel that I had just talked about, and no confirmatory items.

23 Okay. One issue that came up during the 24 subcommittee meeting and has since been mentioned, I 25 understand, at St. Lucie and I know it came up at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

46 1 Robinson yesterday has to do with the pressurizer 2 spray nozzle. I tried to kind of summarize where we are with that. 3 4 The way it started off was the staff 5 identified an issue with the spray nozzle. From our point of view initially, we said, "Well, the spray 6 7 pattern is really critical. It would seem to us that critical 8 the spray pattern is to meeting the depressurization as far as reaching cold shutdown for 9 Appendix R. And on that basis, it seems to us that 10 11 the spray head should be in scope." back 12 Applicant came and said, "No. Actually, the spray pattern is not critical to meeting 13 14 Appendix R and depressurizing and reaching shutdown." 15 What they had done was they had done a study and found that the pattern is not so important 16 17 as the fact that you get the water in the pressurizer. It's not as efficient clearly, but in order to get the 18 thing shut down in, I believe it is, 72 hours, it may 19 20 not be the most efficient way to do it, but as long as 21 you can get that water in there, you will get there. 22 So what is in scope, what is in scope, is 23 the pressurizer in the piping that ensures that the 24 water can get in there. The problem is that when we 25 documented this in the SER with open items, it didn't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	come across that way because in their response, they
2	also talked about alternate ways of reducing pressure.
3	Our conclusions, the way it sounded, it
4	sounded like the basis for our finding was that they
5	had all of these alternate means of reducing pressure.
6	I guess it would be similar to everybody
7	says with the spent fuel pool cooling, they always
8	say, "If push comes to shove, we can run a garden hose
9	in there to keep the fuel covered."
10	That's fine. That's good. That's nice.
11	That's not a basis for reaching any kind of safety
12	finding. And I think our SER sort of read that way.
13	And you guys called us
14	VICE CHAIRMAN WALLIS: Your SER is a
15	little confusing because the statement in there is
16	"The pressurizer spray head has no intended function."
17	Well, obviously it has a function or it wouldn't be
18	there.
19	What you should say is it has no necessary
20	safety function or something.
21	CHAIRMAN BONACA: Yes, for the license
22	renewal.
23	VICE CHAIRMAN WALLIS: It obviously has a
24	function.
25	CHAIRMAN BONACA: Yes, yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	48
1	MR. BURTON: Okay. Yes. I understand
2	where you are going with that, but for license
3	renewal, intended function has a specific function.
4	An intended function is a function that is needed to
5	
6	VICE CHAIRMAN WALLIS: It depends on the
7	context, yes.
8	MR. BURTON: Yes.
9	VICE CHAIRMAN WALLIS: But this is too
10	sweeping a statement, it seems to me. If someone just
11	reads this, it doesn't make sense and has no intended
12	function. All parts there have some intended
13	function.
14	MR. BURTON: Okay.
15	VICE CHAIRMAN WALLIS: But they're not
16	relevant to this particular issue. That's all.
17	MR. BURTON: Okay. Yes. And these kinds
18	of things may come up again. I guess what I will say
19	is if there is still something in the SER that is
20	still not clear, that certainly may be one of them.
21	If we need to make any of those final
22	changes, we still have another shot of doing that
23	because we can make changes in the SER and then put it
24	in the NUREG. And that is the final.
25	So if you feel that that clarification is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	needed, I think we can still do that.
2	CHAIRMAN BONACA: Well, I think this is
3	helpful, what you're presenting, then, because when I
4	read it the first time, I pulled up this issue, to me,
5	it was really like, you know, yeah, when I go down my
6	highway, if I failed my brakes, I can still use my
7	hand brake to bring my car to a stop. Yeah, you can
8	do that, but that really is the sense I got.
9	And so I was saying, well, the primary
10	means of cooling here is pressurizer head. Do we want
11	to really present the operator with a situation where
12	he doesn't have it?
13	I guess it's a bigger question than
14	general. You made another example before of the
15	what was it, the canal, the discharge canal, where
16	still the ability of discharging groundwater through
17	a collapsed canal.
18	I understand the license renewal is very
19	specific and focused on the design basis, but we don't
20	want to get to the point where you have plants which
21	you are not taking care of.
22	So if you have spray head failing, for
23	example, would you have loose pieces up there? Where
24	would they go? You know, there are issues there that
25	come up.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

50 1 So that gives an impression that by 2 focusing summarily on the design basis, in arguing 3 about including or not including, there are almost 4 some cavalier actions about the rest of the plant. And none have been raised. It's just that 5 that the impression it leaves. 6 7 MR. BURTON: I understand exactly what 8 you're saying. And you're right because because 9 something is not in scope or not subject to an AMR, that certainly does not mean that an applicant is just 10 11 going to let it fall to pieces. 12 Yesterday, we heard CHAIRMAN BONACA: another applicant, who said that the reason why they 13 14 were not put in the scope was a different one, was 15 because they had looked at operating experience. And they had seen nobody having problems with 16 the 17 pressurizer spray head. Well, to that, I can say, in 30 years of 18 19 operation now, we are talking about 30 more years for 20 How can you project other plants. the same 21 performance in the future? 22 So there are issues there that leave you 23 puzzled about it. 24 MEMBER ROSEN: Well, now that you have 25 developed substantial expertise in the issue of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	crediting the pressurizer spray nozzle to meet
2	Appendix R, along comes 50.48(d), risk-informed fire
3	protection rules, which, by the way, changes the
4	waterfront on this issue because now you don't have to
5	go to cold shutdown. You can stop at hot shutdown.
б	And so now, whether or not you need the
7	pressurizer nozzle spray to get to hot shutdown timely
8	starts the debate over again for plants that take the
9	voluntary road to use implementing 50.48(d).
10	MR. BURTON: You're absolutely right. As
11	you well know, currently the whole license renewal is
12	not yet risk-informed. But you're absolutely right.
13	And it's something that we are all aware
14	MEMBER ROSEN: But that's the current
15	licensing basis. And the current licensing basis
16	would be changed for a plant that voluntarily
17	implements 50.48(d). So now you're going to have to
18	go back when that happens.
19	And in some cases, like this one, I think
20	it might relax this requirement of a pressurizer
21	spray. In some other cases, it might have other
22	impacts.
23	CHAIRMAN BONACA: Relax it even further.
24	I mean, it's not in scope.
25	MR. BURTON: What you're saying, we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	totally agree with, and the staff is aware of it. And
2	P. T. may want to speak to it.
3	MEMBER ROSEN: The general message is that
4	as regulations that affect the current licensing basis
5	change
6	MR. BURTON: Change, right.
7	MEMBER ROSEN: then one has to think
8	what the impacts are for regulatory actions that have
9	been taken in the past that were fundamentally based
10	on the licensing basis.
11	MR. BURTON: Absolutely, absolutely. I
12	agree with you. I don't know if
13	MR. KUO: Mr. Rosen, whenever the licensee
14	wants to change the current licensing basis, they have
15	to submit an amendment for staff review. So it has to
16	go through the regulatory review considering whether
17	it would be a factor, what we impacted, before the
18	licensing basis can be changed.
19	MEMBER ROSEN: That's right. And if they
20	don't discuss this one, a plant that is adopting
21	50.48, you have an RAI.
22	MR. KUO: Correct.
23	MR. BURTON: Absolutely. Absolutely. So
24	going back to Dr. Wallis, we will definitely go back
25	and take another look at that and see if we can get

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	that clear because we don't want to send the message
2	that because the spray head is not in scope that,
3	therefore, its function is not important.
4	VICE CHAIRMAN WALLIS: It says it has "no
5	intended function." It doesn't say anything about
б	importance. It says not at all.
7	MR. BURTON: Right.
8	VICE CHAIRMAN WALLIS: You may as well
9	throw it away.
10	CHAIRMAN BONACA: Well, you want to add
11	"in license renewal" into the
12	MR. BURTON: We'll clear that up.
13	Okay. So, again, our conclusion after
14	looking at the scoping and screening results, again,
15	there are two things: whether all of the structure
16	system and components that should be within the scope
17	of license renewal have been identified. And that's
18	54.4(a).
19	We have found that all of them have been
20	identified and that the structures and components that
21	are within scope that should be subject to an aging
22	management review again, passive long-lived
23	components, that those have been identified. And,
24	yet, the requirement is 54.21(a)(1). And we found
25	that all of those had been identified.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Next, after scoping and screening comes aging management. I have this in two parts. First, talk about the aging management programs. And I've got basically what amounts to I guess just some statistics or whatever, but staff thought that its review -- again, it was supplemented by an AMR inspection and audit.

And what we have done, for those of you who were at the Robinson presentation, after Fort Calhoun, we re-engineered the process, where the confirmation of consistency with GALL is now done by a separate aging management program audit team that goes out, starting with Robinson.

14 We didn't have that. We actually tried to 15 that consistency check in the incorporate AMR 16 inspection. What we found was that it was really a 17 really big burden on the inspection team because they had to do everything that they have always done, and 18 19 then we added this on top of it.

It was quite a lot. And for that reason as well as some others, we decided to pull that out. That seemed to be a function that we could handle within projects. And so that's what we're going to be doing in the future.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

VICE CHAIRMAN WALLIS: One thing these

(202) 234-4433

25

1

2

3

4

5

6

7

	55
1	inspectors looked at was the containment protective
2	coatings. I just wonder how they handle something
3	like this, which is sort of a matter of present
4	concern. I mean, there's a bulletin out there. There
5	is a NUREG guide. There is debate among the agency
6	about how to handle sump blockage and all of that.
7	How do they deal with something which is
8	a current issue like that, which isn't in GALL in the
9	same way because GALL is based on what is done in the
10	past or it was developed before these things were of
11	current interest?
12	MR. BURTON: Okay. Let me answer it in
13	two parts. First of all, let me talk specifically
14	about coatings. OPPD did not take credit for
15	coatings. Okay? What they said is the underlying
16	metal and its management is what we're going to do.
17	Having the coatings is a help, but
18	VICE CHAIRMAN WALLIS: But it might be a
19	hindrance. If they come off, they're bad.
20	MR. BURTON: Right. But what they are
21	hanging their hat on is the management of the
22	underlying component is what they are going to
23	maintain. That is what they are hanging their hat on.
24	Now, again, this is right back to what you
25	were saying before. That is not saying that they're

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	not going to take care of the coatings and look at
2	them and all that kind of thing, but for license
3	renewal, in terms of what they are crediting, they are
4	not taking credits for the coatings. They are
5	credited with managing the component itself.
6	Now, the broader issue of issues that come
7	up, that's part of what we do. That's part of what
8	the ISGs are for. As we do our reviews and the
9	reviewers who are working on the license renewal are
10	the same reviewers looking at current operating
11	issues, I mean, I don't see how you could do it any
12	other way and still be on top so that license renewal
13	would be relevant. So that same reviewers do both.
14	And that is how we identify the issues
15	that may need to be addressed in license renewal. The
16	documentation of that whole resolution process for
17	license renewal is what the ISGs are. And we have 15
18	ISGs at this point, either issued or in draft, or
19	MR. KUO: Total number, 20.
20	MR. BURTON: Twenty. So there is a whole
21	range of issues that were actually identified by
22	reviewers or sometimes by inspectors, like with the
23	fuse holders I'm sure you all are familiar with,
24	current operating issues that may have an impact on
25	license renewal. And we have a whole process in place

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	57
1	to try and evaluate and reach resolution and
2	incorporate those resolutions into our guidance
3	documents. Am I answering?
4	Okay. Aging management programs, 24
5	total. Fourteen of the 24 are what we call common
6	amps. And by that, where we are now is we break up
7	the systems into six broad what we call system
8	structural groups.
9	There are some aging management programs
10	that apply across those groups. The one that usually
11	comes to mind is chemistry. Chemistry is a program
12	that's applied to reactor systems. It's applied to
13	auxiliary systems. It's applied to ESF systems. Each
14	of those is a separate system group. Nonetheless, a
15	common amp is something that applies across those
16	system groups. We have 14 of those.
17	There were also ten system-specific
18	groups. For instance, the reactor vessel internals
19	inspection applies specifically to reactor systems.
20	Anyway, here is just a breakdown for each
21	of the two major groups. We had five that were
22	completely consistent with GALL common amps, seven
23	that were consistent with some deviation, two that
24	were non-GALL. Under the ten, you can see a similar
25	breakdown.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	We had a total of 22 systems that were
2	consistent with GALL, either completely or partially.
3	We had one aging management program, non-EQ cables,
4	but when they initially submitted the application, it
5	was a non-GALL amp.
6	This is one of those situations where we
7	were issuing GALL and certain aspects of GALL. And
8	one of them that came sort of on the back end was
9	11(e)(1), $(e)(2)$, and $(e)(3)$, management of cables.
10	And so we got into a thing where they were
11	not really being consistent with the GALL amp. And
12	through some discussions and interactions, they went
13	and reformulated that amp. And now they are
14	consistent with GALL.
15	Number of amps that are consistent but
16	with some deviations, there were 13 of them. And this
17	seems like such a basic thing. I am using the term
18	"deviations," but specifically what you see in the
19	application, the deviations came in three forms,
20	clarifications, exceptions, and enhancements,
21	something very simple. Well, what exactly do each of
22	those mean? And that was never defined.
23	So we even had an RAI just to say,
24	"Exactly what do you mean by these terms?" So we got
25	that clarified. And, as you can see, these are the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	number of aging management programs that have one or
2	more.
3	Number of GALL amps that are referenced in
4	the LRA, total of 33. Sometimes you had a
5	plant-specific amp that said they were consistent with
6	one or more GALL amps. But when you totaled them all
7	up, there were 33 of them.
8	We have 38 RAIs from the amp review, no
9	open times, one confirmatory item. Again, that was
10	resolved. We also reviewed for each of the aging
11	management programs the USAR supplement, which
12	ultimately is going to go into the USAR and what is
13	going to be living on after license renewal.
14	One of the issues that always comes up is
15	one-time inspections. Okay? At Fort Calhoun, at the
16	time, the one-time inspection program had not yet been
17	developed. So what we did was because it wasn't
18	developed, what we had to look at was to make sure
19	that when it is developed, that all the right things
20	are there.
21	So what we did during the review and the
22	inspection is to go through and say, "Okay. What is
23	it that when it is developed needs to be there?" and
24	make sure that their commitment tracking system had
25	those elements in it. So that's what we did. And

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	60
1	also those commitments are in Appendix A of the SER.
2	Staff will review fulfillment of
3	commitments in inspection procedure 71003. This is
4	where we talked before about these commitments that
5	they make. How are we going to make sure that they
б	actually implement them? It's going to be in this.
7	And, actually, this procedure is being revised to
8	MR. KUO: That procedure has been issued.
9	MR. BURTON: It's been issued. Okay.
10	Good.
11	MEMBER SHACK: This is new, right? I
12	don't recall this coming up in other license renewals.
13	The one-time inspection programs were defined.
14	MR. BURTON: Yes. I don't want to say
15	okay. Right. You're right. At some of the previous
16	applications, the amp was developed more than what we
17	saw at Fort Calhoun. And, frankly, we were a little
18	surprised by that. But, nonetheless, that was a
19	situation that was presented to us.
20	So we had to go back and say, "Okay.
21	Given the fact that they are making a commitment to
22	development, just having a promise that it is going to
23	be developed is not enough. We need to at least have
24	an understanding that when it is developed, what is it
25	going to cover, such things as small-bore piping?"

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	You know, there are certain one-time
2	inspections that from our own experience, we know
3	previous applicants have committed to and that kind of
4	thing, not to say that they weren't, but we had to be
5	sure that it was documented.
6	So that's when we went to the
7	commitment-tracking system. And we wanted to see
8	something more than a commitment to develop a one-time
9	inspection. We wanted to see what will be in there.
10	And, in fact, that's what we did.
11	When all was said and done, we felt we
12	were satisfied with that. And those commitments,
13	those specific commitments, what will be in that amp,
14	you see you can see in Appendix A of the SER.
15	CHAIRMAN BONACA: You have still 25 slides
16	to go. I would suggest that whatever you have, just
17	a counting of issues that
18	MR. BURTON: Okay. Let me just go to the
19	conclusions. Okay. Conclusions for the aging
20	management programs, basically that the programs are
21	adequate to manage aging. That's 54.21(a)(3).
22	54.21(d) requires that there be an
23	adequate description of the programs and activities.
24	We found that to be the case. So you're okay there.
25	Okay. I will try not to be so long-winded.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	MEMBER ROSEN: I think the point is you
2	don't need to go through the accounting. You can do
3	it, but you don't need to go
4	MR. BURTON: You're all right? Okay.
5	Good. Good. Okay.
6	CHAIRMAN BONACA: On this one-time
7	inspection, however, wait a minute. I'm still
8	reflecting.
9	MR. BURTON: Okay.
10	CHAIRMAN BONACA: I mean, they committed
11	to the GALL approach. So we expect that that would
12	have implementation of one-time inspection, as
13	identified by GALL, unless they had made an exception
14	already to you now.
15	MR. BURTON: Right. You're right. And
16	that is basically what the commitment was. We're
17	going to develop a one-time inspection in accordance
18	with GALL.
19	CHAIRMAN BONACA: So you have some idea.
20	I mean, the GALL, the ten attributes, et cetera, is
21	already somewhat defined, which you expect.
22	MR. BURTON: But even beyond that, there
23	were some other things where they were saying, you
24	know, this can be covered in a one-time inspection,
25	saying, "Well, okay. Let's make sure we get it in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

CHAIRMAN BONACA: Right.

MR. BURTON: Okay. Skip to which one? I think I skipped to TLAA 16, slide 16. I put this up because I know it came up at St. Lucie. And it also came up yesterday at Robinson. So we thought it was important to put it in here.

One of the TLAAs, reactor vessel neutron 8 9 embrittlement, upper shelf energy, and pressurized shock, 10 thermal for both, we did independent 11 calculations. In both cases, the applicant used TLAA 12 option 2, which was to extend the analysis to the end of the extended operating period. 13

Minimum limit for upper shelf energy is 50 foot-pounds. We did independent calculations to confirm that they did not go below that minimum limit. We used reg guide 1.99. And the lowest value was 54.6 foot-pounds for 48 EFPY, which is the end of the extended term. So we did independent calculations to ensure that --

21MEMBER ROSEN: What capacity factor is22assumed?23CHAIRMAN BONACA: Capacity factor?24MEMBER ROSEN: To say that 48 EFPY is

25 adequate.

	64
1	MR. BURTON: Yes. I don't know the
2	details of that. I don't know. Do you know, Barry?
3	MR. LOIS: Eighty percent.
4	MEMBER ROSEN: Isn't that an issue? I
5	mean, this plant is running breaker-to-breaker whole
6	three out of the last four cycles. So they're not
7	going to be running 80 percent capacity factors. So
8	they're going to get to many more EFPY by the end of
9	the license term, the extended license term, 48, I
10	would suspect.
11	MR. LOIS: Most likely they're making up
12	for what they lost in the past. In the past, 25 years
13	or 30 years, the load factors were much less than 80
14	percent. So most of them, it would come up on the
15	average about 80 percent.
16	MEMBER ROSEN: How sensitive is this
17	lowest projected value of 54.6 for 48 EFPY? What if
18	you had 50 EFPY? Would you be below 50 foot-pounds?
19	MR. LOIS: My name is Lambros Lois,
20	Reactor Systems Branch for the PTS.
21	In the case that they do exceed or do
22	something different than predicted, they are required
23	to come back and give us a report.
24	MR. ELLIOT: I would just like to answer
25	the question about capacity factor. This is simple

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

arithmetic. Sixty years, 48 divided by 50 is the capacity factor. That's what they're projecting. It isn't the capacity factor that is critical here. It's the neutron fluence. They estimate the neutron fluence. And they have to keep track of it to see if there is a deviation from what they predict. If there is a deviation from what they predict, they have got to do the calculations all over This is a projection based upon where they aqain. will be in 2033. If that changes, the numbers change. Now, how much of an impact is this? First, can you go back to the previous slide? This is not a limit. This is a screening criteria. And as the fluence goes up, I don't have the exact number, but it's going to have to be a lot to go below 50. Even if it goes below 50, there are still things they There is analysis they can do to show the can do. plant can still operate below 50. So that's the critical issue here.

21 The next slide is probably more critical. 22 And that's the PTS screening criteria slide. In this 23 one here, they're just below the limit. So if they do 24 increase the capacity factor for this plant as a 25 result of better operation, they could wind up over

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(202) 234-4433

65

	66
1	the screening criteria.
2	But they have to tell us that as part of
3	the PTS rule, that if something changes that
4	significantly changes their result, they have to come
5	back in here and tell us what the impact is.
6	VICE CHAIRMAN WALLIS: So if they have a
7	PTS rule
8	MR. ELLIOT: And this number is based on
9	the fluence that they give us that they project. Now,
10	if that number changes, according to the PTS rule,
11	they have to come back in and do flux reduction or
12	provide some additional analysis to show that they can
13	still operate the plant.
14	My name is Barry Elliot, by the way.
15	VICE CHAIRMAN WALLIS: It would be really
16	tardy of the NRC not to revise the PTS rule by them.
17	MR. BURTON: Okay. Dr. Rosen, are you
18	okay with that? Thanks, Barry. Thanks, Lambros.
19	Okay. So, again, conclusions for the
20	TLAA. For all of the applicants' TLAA evaluations, we
21	found that they have demonstrated that it will be met
22	by one of the three options given in the rule, which
23	is that either the evaluation as it currently is is
24	good for the extended period that they projected to
25	the end of the extended period, found things

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	satisfactory, or they have concluded that aging
2	effects will be managed for the period of extended
3	operation. We found that one of these three options
4	for each of the TLAA evaluations and found them to be
5	acceptable.
б	I will move faster. Okay. Inspections
7	and audits.
8	VICE CHAIRMAN WALLIS: If this is just
9	history, do we need to go through this part or
10	MR. BURTON: Not if you don't want to.
11	It's no problem. Again, the bottom line is all of the
12	audits and all of the inspections, you know, if we did
13	find some issues, we generally expanded our sample to
14	get to the bottom of why we were finding anything that
15	we found. Ultimately everything was found to be
16	acceptable.
17	At the end, there were no loose ends that
18	needed to be tied up in an optional third inspection,
19	which you know is part of our process.
20	MEMBER LEITCH: I guess already I'm
21	confused between this and Robinson, but the inspection
22	to verify compliance with GALL was not done in the
23	field, right? That was
24	MR. BURTON: No, no. It was. It was. It
25	was actually part of the aging management review

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 inspection. This is where for Fort Calhoun, we 2 checked their claim that they're consistent with GALL. 3 We actually did that as part of the AMR inspection. 4 As I mentioned before, the inspection team 5 had to do all of its normal work that it has traditionally done plus that. And we found that it 6 7 really was a significant burden. 8 We had a very good inspection team, 9 probably the most comprehensive we have ever had. Normally our inspection teams are four or five people. 10 11 We had eight for one, nine for the other. We have the current operating project 12 have one of the current resident 13 manager. We 14 inspectors. We had two former senior inspectors at 15 that plant, very comprehensive inspections. But even with all of that talent, it was 16 17 lot of work to do what we normally do plus а confirmation and consistency with GALL for the amps. 18 And that's one of the reasons why we pulled it out and 19 20 now we do that and have a separate amp audit. Okay? 21 MEMBER LEITCH: Okay. 22 I won't dwell on this, just MR. BURTON: 23 to say I already mentioned the commitment-tracking 24 system is one of the things that we looked at during 25 the inspection. They actually have a couple of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

68

69 1 programs: an ongoing commitment program as well as a 2 commitment-tracking system. 3 With regard to the aging management 4 programs that had to have been fully developed, we 5 looked to make sure that if ultimately these things were tracked in the tracking system, that it said all 6 7 the right things in the system, it identified all the 8 right things to be done. These next few I can definitely skip over. 9 Eleven open items, the breakdown for confirmatory 10 11 items, breakdown, everything is resolved. The only 12 issue was one open item, 3.0-1, which was open at the time of the subcommittee meeting. 13 14 What that was was when they responded to 15 RAIs, they had also made a number of changes to some of the tables in the application. At that point in 16 the review, we didn't have time to run all of those 17 down before we issued the SER with open items. So we 18 19 just put a placeholder there as an open item. 20 Since then we went back and were able to 21 track all of those down and found everything 22 So at this point, everything has been acceptable. 23 resolved. 24 The next few slides, 22 through 25, I It's just a laundry list of 25 won't go into those.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	70
1	exactly what all the open and confirmatory items are.
2	License conditions. Basically there were
3	no plant-specific license conditions that came out.
4	So the only ones you'll see we're going to have in the
5	license are the two standard ones, which basically say
6	that the next available opportunity, you're going to
7	update the USAR to include the supplement and that any
8	of the inspections that you have committed to before
9	the end of the current term, you'll do it.
10	Okay. Lessons learned. First one. There
11	were about five or six of them. I'll go through them
12	real quick. The first had to do with linkage. During
13	the development of GALL, including the demonstration
14	project, we had worked with the industry and concluded
15	that there didn't need to be a link between the
16	plant-specific information in section 2 and the
17	generic GALL information in section 3. And that is
18	how the January submittal came in.
19	But when a lot of the reviewers saw that,
20	they had a real problem. They said, "I cannot make a
21	reasonable assurance finding if I don't understand how
22	the plant-specific information is tied to a specific
23	GALL AMR and AMP."
24	So we asked them to go back and put this

25 linkage in, which they did. And that was submitted in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

71 1 April. That's why there were two license renewal 2 applications, one of the reasons that there were two separate submittals. 3 4 As a result of what we found with Robinson 5 and Ginna and some of the ones after, they have this linkage now. So that was one of the lessons learned. 6 7 And the applicants were able to respond quickly and 8 actually make those changes. The next lesson learned. There were some 9 structures and components that were not addressed in 10 11 GALL, but, nonetheless, the applicant found that they 12 could take credit for managing those structures and components, take credit for GALL to do that. 13 14 However, when we saw the application, it 15 wasn't real clear which ones they were and which ones they weren't. So we went back and asked them, "Those 16 ones that you are going to take credit for GALL, even 17 though GALL didn't address those structures and 18 19 components, pull them out. Put them in a separate 20 table." So they did that. And that was also part of 21 that April 5th submittal of additional information. 22 Now, you won't see a third table for 23 Robinson and all the folks who came after. What they 24 did was they went back and said, "Well, we don't want

to do a third table. Let's just try and make our

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25
	72
1	first two tables, identify them better." And
2	apparently that was done. So that's sort of a
3	one-time thing that you won't see again.
4	Definition of what is consistent with
5	GALL. When we first started, we all assumed that we
6	were all on the same page in terms of what consistent
7	meant. However, we found out that was not the case.
8	And it wasn't even so much with Omaha Public Power but
9	with some of the later applicants.
10	We found that, I guess in the worst case
11	and I can't remember which one it was when they
12	said, "consistent with GALL," that meant that they had
13	the same structure or component. That's it. It might
14	be a different material, different environment,
15	different aging effect, but, yet, they called it
16	consistent. So right away we said, "We've got a
17	problem here."
18	Since then we have had some interactions
19	with the industry. We have reached agreement on
20	exactly what consistent means. And certainly with
21	Farley, which has just come in, this problem has
22	definitely gone away or should have definitely gone
23	away. But you may still see some issues with
24	Robinson, Ginna, Summer, Dresden, Quad because they
25	were too far in the queue to really address this.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	And yesterday when you were asking about
2	why Robinson had so many RAIs, some of that was
3	because of this, because we still had to ask RAIs to
4	get all of that consistency sorted out. And you may
5	see that with some of the other applications. Okay?
6	Another lesson learned. The environments
7	were not always clearly defined, even what's internal
8	versus what's external. So we had at least one RAI
9	having to do with that. They responded. We got it
10	all clarified.
11	Since then, part of the LRA format more
12	clearly defines the environments. Again, Farley was
13	the one that you should see the full implementation of
14	that.
15	Okay. This is what I already mentioned:
16	the verification of consistency of the applicant's
17	aging management programs with GALL. We tried to do
18	it with the AMR inspection. We got through it.
19	The actual result of that is that of the
20	24 aging management programs, we only had time to
21	actually look at 19 of them, which is unusual for us
22	because we try to get through all of them.
23	That was one of the indications where we
24	said, "Well, we're going to have to think about doing
25	this a little bit differently." And one of those is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	that now we have these audit teams. I think, as
2	mentioned yesterday, the audits need to work to look
3	at all of the aging management programs.
4	Okay. Overall, usefulness of GALL. We
5	found that GALL basically did work. As Mr. Leitch
6	pointed out at the subcommittee meeting, though, the
7	benefits weren't as extensive as we had originally
8	hoped for some of the reasons that I have already
9	mentioned.
10	So it was obvious that further process
11	improvements were needed. We have already
12	VICE CHAIRMAN WALLIS: These sweeping
13	statements, like the first one, we have heard that
14	about other things that the staff has done. It's not
15	clear what metrics you are using or whether this is a
16	kind of a hopeful statement. You had a bigger
17	inspection team than usual. You had a longer SER than
18	usual. Maybe there was more work than usual. Maybe
19	it was less efficient in some ways. What's the
20	CHAIRMAN BONACA: More RAIs than usual.
21	VICE CHAIRMAN WALLIS: Right. More RAIs
22	than usual. What's the measure of efficiency?
23	MR. BURTON: You're absolutely right, like
24	I said. And that's why we said it wasn't as effective
25	as we had hoped. But what we found is that GALL

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	VICE CHAIRMAN WALLIS: Maybe they were
2	happier, but does that mean it's efficient?
3	MR. BURTON: Well, let me explain that.
4	And we gave a little bit of ground on this review.
5	Because it was the first time, we were using a very
6	different approach. With some of the reviewers, the
7	truth is that they were a little skeptical about the
8	process.
9	So we gave them a little bit of leeway to
10	say, "Okay. If there is something that you are really
11	not convinced that GALL is really addressing, we will
12	let you go on and explore that a little bit."
13	And that's why, at least in the Fort
14	Calhoun case, we have probably more RAIs than I
15	certainly think we could have had because we did give
16	them some leeway. Even with that, we could see that
17	GALL will work. And I think probably the best
18	evidence for those folks who were here at Robinson,
19	the next plant, where people were now more comfortable
20	with GALL and how to look at it and that kind of
21	thing, were really starting to see some benefits. So
22	that's what I mean.
23	So in terms of metric, we are ultimately
24	looking at the reduction in the number of RAIs, the
25	review times perhaps, the number of open items. I
	•

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	think you all see that now we're coming to you, even
2	at the subcommittee stage, with most open items
3	resolved. So we are seeing progress. But, like I
4	said, there is still room for improvement.
5	A lot of the implementation's improvements
6	we have already begun with Robinson. We expect all of
7	the benefits we should see with Farley. And we really
8	expect to see a lot of improvement there. So we think
9	we're heading in the right direction.
10	CHAIRMAN BONACA: Could you go back one?
11	MR. BURTON: Back one? Sure.
12	CHAIRMAN BONACA: I'm still concerned
13	about this one here, verification of consistency. I
14	mean, take the one-time inspections. They have not
15	defined when they are going to do them, how they are
16	going to do them. Okay?
17	How can you verify consistency of these
18	one-time inspections with whatever is in GALL? For
19	example, small-bore piping, I mean, you want to
20	inspect to determine whether or not you have aging
21	effect, irrespective of risk significance.
22	Okay. So where does that come in later on
23	with a problem that says we are going to use purely
24	ISI and that's based on a risk-informed approach and
25	you disagree with that now?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	I mean, you say now we are going to verify
2	later on and discuss it later on. When are you going
3	to do all of this work?
4	MR. BURTON: When? Are you saying when?
5	CHAIRMAN BONACA: Yes.
6	MR. BURTON: Well, that's part of that bow
7	wave that you guys have kind of put out in front of
8	us.
9	CHAIRMAN BONACA: Yes. But it used to be
10	a bow wave, and now it seems to be like an enormous
11	bow wave because everything is being put off.
12	MR. BURTON: Everything is being put off.
13	CHAIRMAN BONACA: Who is going to do the
14	verification? Who is going to
15	MR. BURTON: You're right.
16	MR. ELLIOT: I just want to talk about the
17	small-bore piping.
18	CHAIRMAN BONACA: Yes. Just an example.
19	MR. ELLIOT: Specifically, when Butch did
20	the audit of the small-bore piping, he came back with
21	the audit results. We reviewed those audit results.
22	What they were doing was they were
23	consistent with GALL for small-bore piping. And what
24	it says is for the small-bore piping, you ought to do
25	a volumetric examination, in addition to the regular

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	ISI.
2	So they were committed to that. Where we
3	found that they were short was that they didn't say
4	where they were going to do it. So we were concerned
5	about that. In fact, the GALL is sufficient in that
6	area.
7	So we went back to them in this area. And
8	we told them they have to do an evaluation of where
9	their susceptibility is, stress corrosion cracking or
10	thermal fatigue-type problems.
11	They committed to do that as part of their
12	future evaluation. That gave us the assurance that
13	they would be picking the right location. So they are
14	going to do an engineering evaluation as part of it to
15	pick the right location.
16	CHAIRMAN BONACA: But do you feel
17	comfortable that you looked at all of the issues?
18	MR. ELLIOT: Well, the two issues that we
19	were concerned about were small-bore piping with the
20	thermal fatigue issue
21	CHAIRMAN BONACA: I understand.
22	MR. ELLIOT: and the stress corrosion
23	cracking.
24	CHAIRMAN BONACA: But there are other
25	one-time inspections. And for each one of them, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	79
1	have to go back and do this kind of communication.
2	And then it's back to
3	MR. ELLIOT: I can't speak for all. I
4	just can speak for the small-bore pipe.
5	CHAIRMAN BONACA: I understand.
6	MR. BURTON: But what you're saying is
7	true. What Barry just expressed in terms of
8	small-bore piping we did with other things as well.
9	CHAIRMAN BONACA: Yes.
10	MR. BURTON: And that is what we have
11	documented in Appendix A of the SER in the commitment
12	table. And what we confirmed is in their
13	commitment-tracking system, to that level of detail
14	for small bore as well as other systems.
15	CHAIRMAN BONACA: Now, GALL doesn't
16	specify that. Do you feel that at some point the GALL
17	has to be revised to include more detail since
18	MR. ELLIOT: We are revising GALL to have
19	a small-bore piping separate document.
20	CHAIRMAN BONACA: It seems to be generally
21	appropriate because there is such a reliance on GALL
22	for a description of programs such that they can say,
23	"Yes. We'll meet GALL." Then there has to be some
24	definition of the concern that staff has. And we'll
25	continue to use

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	MR. ELLIOT: And this came up because of
2	the audit and the inspection. And we fixed it, I
3	think, fixed it for this application. And for future
4	ones, we're changing GALL to include that type of
5	direction.
6	MR. KUO: And, Dr. Bonaca, this is also
7	one of the ISG issues.
8	CHAIRMAN BONACA: Okay.
9	MR. KUO: It's being developed.
10	MR. BURTON: That's basically it in terms
11	of a summary of the safety inspections. Very quickly,
12	we did the environmental review. We found everything
13	to be okay. We didn't find anything that we saw could
14	be a problem to prevent them from pursuing the license
15	renewal option.
16	As I mentioned before, there were no
17	requests for a hearing or petitions to intervene. So
18	we met 2.758. And, last slide, we actually made it
19	where I started off, the three conditions for
20	granting a renewed license. All three have been met.
21	CHAIRMAN BONACA: I have a question for
22	the applicant. We heard before that at some point,
23	you will have all of these commitments and procedures.
24	And Mr. Rosen here pressed for the issue
25	of, will you have a person who coordinates that and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	keeps the memory of this program? And you said no,
2	maybe yes, you will have some.
3	It seems to me that there is a lot of work
4	to be done still. So do you have a project right now
5	that would stay alive until everything is in place?
6	MR. GAMBHIR: Yes, we do have that. As a
7	matter of fact, I have a copy of all of the actions
8	that we have identified. And in there, there are
9	hours that have been identified, the duration, how
10	long it will take. We are supposed to do that.
11	CHAIRMAN BONACA: The project will
12	continue. Right now
13	MR. GAMBHIR: Right. The project will
14	continue. What we are calling on is now I didn't
15	mention that earlier, but my responsibility is to run
16	all the projects that we are doing, all the big ones
17	we're doing.
18	And one of the new projects that we have
19	identified is we are calling that a license renewal
20	implementation project. So it has its own budget for
21	next year. The idea is that I am aware of the fact
22	that people walk away when the project is done. We
23	have celebrated success. And then we will move on.
24	The dirty work still needs to get done.
25	Somebody has to update the drawings and those kinds of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	things. So the answer is yes. The project will
2	continue next year.
3	As a matter of fact, Ken Henry, who works
4	for Dr. Gasper, has responsibility to get all of
5	these things done and implement the project.
6	CHAIRMAN BONACA: What do you do with the
7	requirements for license renewal in the procedure? Do
8	you flag it as an LRA requirement?
9	MR. GAMBHIR: Yes. That's our normal
10	process.
11	CHAIRMAN BONACA: You press it back to
12	this master document that you keep with that so that
13	you have an understanding of where it came from?
14	MR. GAMBHIR: That is correct. What we do
15	is you bracket the commitments. And then there is a
16	reference on the back, simple thing that works for us.
17	VICE CHAIRMAN WALLIS: Can I ask the
18	applicant if they have found that this GALL-centered
19	process was particularly helpful or was it a pain or
20	what?
21	DR. GASPER: It was certainly a learning
22	experience.
23	MR. VAN SANT: It was helpful in that it
24	did make clear on a lot of the programs that we use
25	what the expectations of the commission are. So from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	83
1	that aspect, we knew going in what our programs needed
2	to do. And it did help from that aspect.
3	Being the first plant, it was a lot of
4	lessons learned coming out of it. But it was
5	definitely worthwhile.
6	CHAIRMAN BONACA: One last question I had
7	would be, do you find that GALL was helpful to you,
8	not the process itself but just the whole GALL report,
9	in clarifying issues, for example, the expectation
10	that the staff has that?
11	MR. VAN SANT: Yes. Like I said, it made
12	it very clear what the expectations were for the
13	programs.
14	CHAIRMAN BONACA: And insofar as the
15	discrepancy in scoping determination, I mean, you had
16	a methodology and you concluded that the component is
17	not in scope. Staff came in using the same
18	methodology and concluded that the item should be in
19	scope.
20	Do you feel that there is a problem there
21	in general or more guidance should be needed for you
22	to converge?
23	MR. VAN SANT: I think every plant is
24	going to have gray areas. We're not a standardized
25	design.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	CHAIRMAN BONACA: I understand that. Yes.
2	MR. VAN SANT: That's where these come up.
3	CHAIRMAN BONACA: Yes.
4	MR. VAN SANT: Our position was
5	essentially not to argue over the gray areas. And it
6	came up as an issue with the commission. We basically
7	accepted their position and went forward with it.
8	CHAIRMAN BONACA: But you find that the
9	guidance is adequate?
10	MR. VAN SANT: Yes.
11	CHAIRMAN BONACA: Thank you.
12	MR. BURTON: Thank you. I appreciate it.
13	CHAIRMAN BONACA: Any other questions?
14	(No response.)
15	CHAIRMAN BONACA: None? I thank you for
16	a very informative presentation, as always.
17	MR. BURTON: A little too informative.
18	CHAIRMAN BONACA: No. You really stayed
19	within the time. We gained five minutes. So we will
20	now take a recess for lunch. And we will meet again
21	at 1:00 o'clock.
22	(Whereupon, at 11:56 a.m., the foregoing
23	matter was recessed for lunch, to
24	reconvene at 1:00 p.m.)
25	CHAIRMAN BONACA: We are resuming the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	meeting. The next item on the agenda is Interim
2	Review of the AP1000 design and Dr. Kress will lead us
3	in the presentation.
4	MEMBER KRESS: I don't know if "lead
5	through" the presentation is the right word or not,
6	but this is another one of our interim meetings to be
7	sure we keep AP1000 certification on our front burner
8	and in front of us.
9	It's to deal with some of the items that
10	we had asked for additional information on before, in
11	particular, squib valve reliability and containment
12	lambda and a few other things like remind us of the
13	design features and some of the open items in the SER.
14	But at this moment I don't anticipate a
15	letter, unless one of you guys come up with some sort
16	of burning issue that you think has to have a letter
17	to document it.
18	VICE CHAIRMAN WALLIS: It's more likely to
19	be a cooling issue rather than a burning issue.
20	MEMBER SHACK: If there's a failure of
21	cooling, then it will be a burning issue, won't it?
22	MEMBER KRESS: But anyway, with that
23	unless some of you fellows want to make statements,
24	I'll turn it over to Mike, did you want to say a
25	few words first?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	86
1	MR. CORLETTI: No, today's presentation is
2	going to be Ron Vijuk, our Engineering Manager, on the
3	AP1000.
4	MR. VIJUK: I'm Ron Vijuk. It's nice to
5	be here. What we plan for today, to give you the
6	status report on where we are on the design cert.
7	review on AP1000 is first to go quickly through an
8	overview of the plant design to refresh our memories
9	there and then get into the design certification
10	status and in particular, talk about the open items
11	that we're working on with the staff to get resolved
12	in the near term.
13	And finally, a couple of technical
14	presentations on specific topics that we've heard
15	there's interest on from ACRS, one on the ADS4 squib
16	valves and one on post LOCA aerosol deposition
17	calculations.
18	A little bit about AP1000, I think the
19	main thing here is that the AP1000 we've tried to
20	keep the design, the plant design and its features as
21	close to the AP600 design as possible. And this
22	allows us to take advantage of all the engineering
23	work that went into the AP600 in the 1990s and apply
24	it to the AP1000. So we view the AP1000 essentially
25	an uprate of the AP600.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

It is an integrated plant design. That 2 is, we're looking at the total plant, not just the 3 nuclear side of the plant, but the total plant and 4 that's important as a design to plant and especially in the way they do the physical arrangement of the 6 plant. The AP1000 has а simplified reactor

coolant system loop compared to our traditional PWR 8 9 plants by using canned motor pumps and we keep all the primary loop piping above the reactor core. 10

11 We use simplified, passive safety systems 12 which you've all heard about in previous meetings and I'll go over it briefly. Of course, in the control 13 14 room and in the I&C area we're using digital 15 technology. An important aspect of the passive safety systems are that we have no requirement for outside AC 16 17 power. Everything is either self-actuated or powered from batteries, AC powered. 18

19 MEMBER KRESS: Just one question on your 20 canned motor pumps?

> MR. VIJUK: Sure.

22 MEMBER KRESS: Have you used canned motor 23 pumps this size before? Have they been in use? 24 MR. VIJUK: The history on canned motor 25 pumps is that they are used extensively by the Navy

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

7

21

88 1 and we're even using some of the early plants like 2 Shippingport. The size of pump we're using in AP1000 is bigger than the size we've applied in those 3 4 applications. Yes, so it is --5 Does their PRA have a 6 MEMBER KRESS: 7 reliability number? The pump really doesn't come 8 MR. VIJUK: 9 into the PRA. It's a normal operating thing. The 10 pumps are actually, when the safety systems are 11 actuated, the pumps are tripped. 12 MEMBER KRESS: I was thinking about a loss of coolant just by losing the pump itself as an 13 14 initiating event. 15 MR. VIJUK: I guess in that sense it does come into the PRA and a loss of flow event, these kind 16 17 of things and there's a probability assigned to that, 18 but yes, it's factored in in PRA in that way, yes. 19 CHAIRMAN BONACA: We are resuming the 20 The next item on the agenda is Interim meeting. 21 Review of the AP-1000 design and Dr. Kress will lead 22 us in the presentation. 23 You still have MEMBER POWERS: the 24 problem. 25 MEMBER KRESS: How do you know what the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	reliability is?
2	MEMBER POWERS: How do you get that
3	probability? Pull one out of the air?
4	MEMBER KRESS: I guess that's a PRA issue
5	and we'll bring it up again when we get to the PRA, if
6	we haven't viewed it.
7	MR. VIJUK: Shall we go on? Okay. The
8	control room is a compact control room taking
9	advantage of digital technology there as well.
10	Another important feature of the design is
11	that we've made extensive use of modular construction
12	techniques, so the way we put the structures together
13	is a bit different than previous plants.
14	The primary system is made up of
15	convention components, if you will, but in a slightly
16	different configuration in the typical Westinghouse
17	PWR, with the canned motor pumps and the loop piping
18	above the core, but the basic components, the reactor,
19	the steam generators, the pressurizer are all
20	basically the same as today's plants with the
21	upgrades, if you will, from lessons learned over the
22	years.
23	The canned motor pumps, of course, as
24	we've just discussed is a new feature on modern plants
25	at least.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	The reactor design is we use 14-foot
2	fuel and it's very similar to South Texas in that
3	sense and to the two plants in Belgium that use
4	exactly this core size, 157 assemblies and 14-foot
5	fuel.
6	Steam generators are bigger than a typical
7	Westinghouse
8	MEMBER ROSEN: Before you get off that
9	point, you're still on a bullet of proven reactor
10	design fuel. You've got no bottom mounted
11	instrumentation. What do you do about you need to
12	do plug profiles and things like that?
13	MR. VIJUK: We have fixed in-core
14	detectors. They come in from the top. This a
15	typical Westinghouse plant has moveable in-cores
16	coming from the bottom, but in this design there's no
17	penetrations in the bottom head.
18	MEMBER SIEBER: What kind of detectors are
19	they, gamma thermometers or fission chambers?
20	MR. VIJUK: These are I want to say the
21	material, but rhodium or vanadium. The combustion
22	engineering plants use these routinely.
23	MEMBER SIEBER: Okay.
24	MEMBER KRESS: Does anybody use gamma
25	thermometers at all?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	91
1	MEMBER SIEBER: Pardon?
2	MEMBER KRESS: I didn't think anybody used
3	gamma thermometers.
4	MEMBER SIEBER: They use them in Europe,
5	but they were trying to market them here and I don't
6	know whether anybody picked up on it or not.
7	MR. VIJUK: The basic story here is that
8	this equipment is basically the same, very similar to
9	operating plants, except the canned motor pump.
10	MEMBER KRESS: Was the canned motor pump
11	to get rid of the pump seal LOCA problem?
12	MR. VIJUK: Well, actually, it's driven
13	more by reliability.
14	MEMBER KRESS: Reliability.
15	MR. VIJUK: And when we were first putting
16	the design together with the utility people, there
17	were a lot of people with Navy experience and at that
18	time, at least, people were having problems with the
19	shaft shield pumps and there was a lot of influence
20	from these people to adopt these kind of pumps for
21	this redesign. That's where it came from.
22	AP1000, just like the AP600, uses passive
23	safety systems and we use passive processes only, so
24	we don't need diesel generators and big equipment,
25	rotating equipment to operate the safety systems.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	This reduces the dependency on operator reactions and
2	with these passive systems, we can mitigate the design
3	basis accidents, but we still have the backup from the
4	active systems as another level of defense for beyond-
5	design-basis accidents.
6	MEMBER SHACK: Actually, if you could use
7	the backup systems, an operator would prefer to do
8	that rather than go through the passive?
9	MR. VIJUK: That's right, and for most
10	kinds of events, the normal systems will reactor to an
11	event and take care of the plant.
12	MEMBER SHACK: Right.
13	MR. VIJUK: And the operator will use
14	those. These are the normal operating systems.
15	MEMBER SHACK: Right.
16	MR. VIJUK: And some of the features of
17	the passive system, this is the passive decay heat
18	removal system which is a heat exchanger located in
19	the large IRWST in containment refueling water storage
20	tank. There's inside containment and it operates by
21	natural circulation from the hot leg and returning to
22	the channel head of the cold side of the steam
23	generator to set up a natural circulation loop to
24	remove decay heat for transient events, basically,
25	non-LOCA type events.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	MEMBER KRESS: Now what does your active
2	system look like for doing that same function?
3	MR. VIJUK: It would be the emergency
4	feedwater system, feeding the steam generator and
5	removing the heat through the steam generator.
6	MEMBER KRESS: Steam generator?
7	MR. VIJUK: And we do have an active, we
8	call it the start up feedwater system.
9	We do have a normal feedwater and what we
10	call a start up feedwater system that functions in
11	much the same way as an emergency feedwater system,
12	but it's designed mainly for normal conditions.
13	MEMBER SIEBER: You also have diesels,
14	right?
15	MR. VIJUK: Yes, we have two emergency
16	diesels that power the loads in a blackout situation
17	or a loss of off-site power situation.
18	Safety injection systems is made up of a
19	series of tanks at different pressures. The core make
20	up tanks is two of these. These are large tanks,
21	inside containment at full system pressure and can
22	naturally circulate to the primary system in the event
23	you need emergency makeup. In a LOCA situation, if
24	the level drops down to the level of the cold legs,
25	then they will drain by steam flowing up this line and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 water flowing into the vessel. So this is both like 2 an emergency boration system for transient events and 3 high head safety injection make up for LOCA events. 4 And then we have two accumulators, very 5 much like traditional plants that provide rapid reflooding of the vessel after a large LOCA and these 6 7 are at 700 psi. And then we have a very large tank, the 8 in-containment refueling water storage tank which 9 provides a low head safety injection by gravity 10 11 feeding to the reactor vessel. This is longer term 12 makeup from this tank to the reactor in a post-LOCA situation. 13 14 And we get the pressurization through the 15 ADS system which is -- there are four stages. Three 16 are under pressurizer where these are opened up 17 sequentially. Once you have a signal that there's a LOCA, you get that by the core makeup tank starts to 18 drain and it reaches a set point and actuates the ADS. 19 20 And this brings the pressure down in a controlled 21 fashion so the accumulators can help inject and 22 finally the fourth stage of ADS coming off the hot 23 legs brings you down to near the containment pressure 24 so that the head of water in the IRWST can feed the 25 reactor vessel.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

94

	95
1	MEMBER KRESS: Does your IRWST have a
2	closed lid?
3	MR. VIJUK: There's a floor on top of this
4	with vents in it, so it's a covered tank.
5	MEMBER KRESS: It's a vented
6	MR. VIJUK: It's open to the atmosphere of
7	the containment essentially through the events. It's
8	a big pool with a cover.
9	MEMBER KRESS: And you have ways to duct
10	the containment condensate back into that tank?
11	MR. VIJUK: Yes. And ultimately the
12	containment floods up, the design can flood up so that
13	the level in the containment in the long term and this
14	is several hours after a local is up to about the
15	reactor vessel's flange level and then this pool can
16	continue through these recirc screens, continues to
17	feed the reactor from the pooling containment and this
18	way you set up a you're steaming the containment
19	through the ADS pads, condensing in containment. We
20	have a gutter system that drains the water back to the
21	pool in containment or the IRWST. So we set up a
22	continual process of feeding the core.
23	MEMBER RANSOM: Have you done anything
24	special as far as possible debris plugging in the
25	IRWST and also the research screens?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	96
1	MR. VIJUK: Yes, these are designed
2	specifically to address the potential for debris
3	plugging, yes, and they're much bigger than current
4	plants, sump screens and this is one of the items
5	we've been discussing with the staff and we are
6	basically following what's happening with the
7	operating plants, but we're in much better condition
8	because of the bigger screens and lower velocities
9	that we had in this design.
10	MEMBER KRESS: You have all reflective
11	insulation?
12	MR. VIJUK: We have all reflective
13	insulation in areas that can be affected by LOCA.
14	MEMBER KRESS: That's what I meant.
15	MR. VIJUK: The ultimate heat sink is the
16	passive containment cooling system and we had the
17	containment for this plant is a steel pressure vessel
18	and we cooled the outside of this pressure vessel with
19	gravity flow of water from a tank on the roof of the
20	chill building that puts a film of water on the
21	outside of this steel vessel and then natural
22	circulation of air flowing up through, alongside the
23	containment vessel, sets up an evaporative cooling
24	process that removes heat through the shell that's
25	coming from the decay heat steaming into the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	containment and condenses. And then the steam
2	condenses on the inside, flows back into the IRWST or
3	the pooling containment.
4	MEMBER ROSEN: How do you provide normal
5	containment atmosphere cooling?
6	MR. VIJUK: We have fan coolers,
7	conventional type system. A little bit about PRA,
8	just like most plants that have been through design
9	certification, the redundancy and diversity and
10	reliability that we can design into the plant and give
11	us a very good result in terms of the core damage
12	frequency.
13	We've addressed severe accidents in AP1000
14	just as we did in AP600. We had to do some extra work
15	for AP1000 to configure the insulation. In fact, this
16	is a little bit out of date. We have run heat
17	transfer tests to improve the heat transfer capability
18	on the bottom of the vessel by streamlining the
19	insulation designed to get a good flow path for water
20	cooling on the outside of the vessel. And the
21	automatic depressurization system helps with issues
22	like high-pressure core melt. We have igniters in the
23	system dealing with hydrogen and the ADS and in-vessel
24	retention also help deal with the issues of steam
25	explosions and severe accidents.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	98
1	MEMBER POWERS: Can I understand better
2	about in-vessel retention? That means that you're
3	going to try to keep the core debris on the lower
4	head?
5	MR. VIJUK: Yes, the idea is that the core
6	debris, if you lose all cooling on the inside of the
7	vessel, core debris will eventually end up in the
8	lower head and with the cooling on the outside, the
9	heat transfer is sufficient to maintain the thickness
10	of vessel head here to support the core debris.
11	MEMBER POWERS: How do you determine what
12	heat flux you need to be able to extract with that
13	water?
14	MR. VIJUK: By analysis of the molten
15	pools.
16	MEMBER POWERS: I see. And what does that
17	analysis entail?
18	MR. VIJUK: I'll have to ask Jim Scobel to
19	speak to that a little bit.
20	MR. SCOBEL: Hi, this is Jim Scobel. We
21	looked at two different debris lower head debris
22	bed configurations. Our base case was metal over
23	oxide debris bed, similar to what we did for AP600 and
24	as a sensitivity case we looked at a debris bed with
25	heavy metal uranium-zirconium-steel configuration at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	99
1	the bottom with a large fraction of decay heat in that
2	lower layer and also concluded that that would not
3	fail the lower head.
4	MEMBER POWERS: What did you use for the
5	heated solution?
6	MR. SCOBEL: It was assumed to be much
7	less than the amount of decay heat that we had in the
8	
9	MEMBER POWERS: I'm not sure what that
10	means.
11	MR. SCOBEL: Bottom metal layer. We made
12	a very strong assumption of the amount of heat that
13	was from the decay heat and the other heat sources
14	were considered to be secondary to that amount of heat
15	that was from the decay heat.
16	MEMBER POWERS: I guess I don't understand
17	what you mean by that. Decay is being produced at
18	some rate, right?
19	MR. SCOBEL: Yes.
20	MEMBER POWERS: And what did you take at
21	the rate at which heat was being generated by
22	materials dissolving in the melt?
23	MR. SCOBEL: Well, you have an oxidation
24	reduction reaction which is going to
25	MEMBER POWERS: Where is this oxidation

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	reduction reaction taking place?
2	MR. SCOBEL: It would be in the oxide
3	layer.
4	If you had metallic zirconium and molten UO2 in
5	contact with each other, you would have an oxidation
6	reduction reaction which is at most mildly exothermic.
7	MEMBER POWERS: I would be more concerned
8	with the heat evolved as I dissolved my lower head.
9	MR. SCOBEL: Well, that was not
10	considered.
11	MEMBER POWERS: That's where your critical
12	phenomenon on cooling is taking place, isn't it?
13	I mean it doesn't matter what's going on
14	really in the oxide.
15	MR. SCOBEL: I'm sorry, say that again?
16	MEMBER POWERS: The critical issue is
17	what's going on at the lower head and so if you have
18	a metallic metal attacking a metallic solid and
19	dissolving that solid and that is involving heat, that
20	gives you the chance for self-propagating attack and
21	that's the thing you need to worry about and I'm
22	asking what you took for that?
23	MR. SCOBEL: Nothing.
24	MEMBER POWERS: That's probably not
25	conservative, is it?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	MR. SCOBEL: Well, there were additional
2	analyses done to support ex-vessel steam explosion
3	core-concrete interaction and those
4	MEMBER POWERS: That's not the issue here,
5	is it?
6	MR. SCOBEL: No, but it's
7	MR. VIJUK: The issue is whether a crust
8	forms on the pool?
9	MR. SCOBEL: No, you don't have a crust
10	forming on the pool in the metal layer.
11	MR. VIJUK: In the bottom metal layer.
12	MR. SCOBEL: In the bottom metal layer.
13	MEMBER POWERS: You'll get a metallic melt
14	down there and it could crust, but won't last very
15	long and it would self-dissolve or in dissolving the
16	metal, you're paying the price of heat of melting, but
17	you're getting it back from the heat of dissolution,
18	except you didn't in your calculation, because you
19	only paid the price of melting the vessel head metal.
20	MR. VIJUK: It seems like we might want to
21	talk about this off-line a bit.
22	MEMBER POWERS: Or we could talk about it
23	on-line.
24	(Laughter.)
25	What's the metal you had down there? You

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	told me that you took a uranium-zirconium rich heavy
2	metal and put it down.
3	MR. SCOBEL: Right.
4	MEMBER POWERS: What does the phase
5	diagram look like on that system?
6	MR. SCOBEL: It didn't have a phase
7	diagram for that system.
8	MEMBER POWERS: Well
9	MR. SCOBEL: We made some conservative
10	assumptions with respect to melting temperature for
11	the vessel head.
12	MEMBER POWERS: I guess there are what,
13	five primary papers and at least one review paper on
14	the system in the literature and they'll show you have
15	a very, very large inter-metallic lattice phase there
16	with a very strong heat of reaction. So now what's
17	the justification for taking no heat of solution?
18	MR. SCOBEL: As I said, we assumed that it
19	was much, much less than the amount of decay heat in
20	that metal layer which we took a very high value for.
21	MEMBER POWERS: It seems like you have a
22	pretty strong assumption here. Are you going to do an
23	experiment to validate this?
24	MR. SCOBEL: No.
25	MEMBER KRESS: Decay heat is distributed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

through the melt and dissolution heat is localized right at the interface so even if it were smaller, it could have a bigger effect on whether or not -- the issue is whether or not in-vessel retention is actually a reality or whether you penetrate the vessel.

7 I think Dana has really a legitimate 8 point. I don't know how much credit you're taking for 9 in-vessel retention in terms of -- of course, it never 10 arises in design bases accident phase at all, but it 11 arises -- comes about in PRA space and risk space and 12 I guess we were wondering what effect that would have 13 on your LERF, for example, calculation.

If your CDF is in need of 4 times 10⁻⁷ it may not make any difference. But I think it's a legitimate question if you're really relying on invessel retention.

MR. SCOBEL: Well, in terms of LERF, it 18 19 really doesn't make an impact just because from an exvessel steam explosion point of view which would be 20 21 the primary method for filling the containment early. 22 MEMBER KRESS: That's another issue. I'm 23 not sure we know how to do ex-vessel steam explosions 24 very well and so I'd have to look at your calculations 25 for that also.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	But in risk base it may not be an issue
2	because you have such a good CDF and I guess it would
3	arise as a potential issue if we had rules that talk
4	about balance between LERF and CDF.
5	MEMBER ROSEN: Things like rules called
6	defense-in-depth.
7	MEMBER KRESS: Yes, but we don't have any
8	rules. We just have some main guidance.
9	MEMBER POWERS: The question I'd ask you,
10	Tom, is suppose that I came in and said F + $1/2$ MA.
11	(Laughter.)
12	But it's okay, it doesn't make any
13	difference in risk base. But it's offensive to the
14	soul.
15	(Laughter.)
16	MEMBER KRESS: I can understand that very
17	well.
18	MEMBER POWERS: There's a point where you
19	say, look, you've got to do a technically defensible
20	job on these things. I don't care what the risk is.
21	CHAIRMAN BONACA: We are resuming the
22	meeting. The next item on the agenda is Interim
23	Review of the AP-1000 design and Dr. Kress will lead
24	us in the presentation.
25	MEMBER ROSEN: One of our Members once

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	made a distinction between things that were
2	nonconservative and things that were just plain wrong.
3	(Laughter.)
4	MEMBER KRESS: Was that Graham Wallis?
5	MEMBER ROSEN: I believe it was the
6	professor on the ACRS staff.
7	MEMBER KRESS: Anyway, the thought we'd
8	like to leave with you. We won't have a letter on
9	that at this time. We'll have it in the notes.
10	MR. VIJUK: I think we understand the
11	question.
12	MEMBER FORD: At the last July meeting, I
13	brought up four related questions, two of them have
14	been answered.
15	There was another part that relates to
16	this diagram. The core shroud barrel is presumably
17	going to be made, as I understand it, from 316L cold
18	wet, serial welded which in the high flux areas
19	increased high flux areas is likely to crack or could
20	crack. That in itself would maybe not be so bad, but
21	I understand the diagrams correctly, during a severe
22	accident, we'd have a lot of cold water impacting on
23	that maybe cracked core shroud.
24	I know you've addressed this question.
25	Could you give us the answer very briefly?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	MR. VIJUK: I'm not sure I really
2	understand the question. We're cooling the outside of
3	the reactor vessel in this scenario.
4	MEMBER FORD: From some of the diagrams.
5	It's not shown on this diagram. But during an
6	emergency cooling situation
7	MR. VIJUK: During a LOCA situation
8	MEMBER FORD: You've got a whole lot of
9	cold water impacting on that core shroud. Is that
10	correct or was I misreading the diagram.
11	MR. VIJUK: The core barrel injection
12	comes in here and there's a core barrel
13	MEMBER FORD: Core barrel. I was using
14	PWR sorry. Core barrel.
15	MR. VIJUK: Yes, the injection water
16	impacts on the core barrel.
17	MEMBER FORD: Which could be cracked.
18	What's the impact of that severe accident situation?
19	MR. VIJUK: I don't have the answer to
20	that and I don't think we have the material expert
21	here to deal with it right now.
22	MEMBER FORD: But I know you are
23	addressing that issue.
24	MR. VIJUK: This is the last one on the
25	plant. This is just to show a comparison to the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	Sizewell plant in terms of what the passive systems
2	allow you to do in terms of getting the safety systems
3	into a compact arrangement.
4	Now we'll move on to where we are in the
5	design certification process and what issues we're
6	doing with. These first 5-mile stuns as you can see
7	we've been through and this is pretty much the
8	schedule that we sent out at the beginning of the
9	project back beginning of 2002.
10	The staff issued their draft SER on June
11	16th with 174 open items and we're now in the process
12	of working through those open items to resolve them
13	and the next few slides we'll go through the
14	particulars of that.
15	The key issues are listed here. Thermal
16	hydraulic issues associated with small-break LOCA and
17	I'm going to go through that in more detail. The rest
18	of these I'll just talk about from this slide.
19	Structural design of nuclear island
20	critical structures, the open item was to do more
21	detailed analysis of some of the structural and
22	seismic analyses. We've completed that. There will
23	be a meeting with a technical audit meeting with the
24	staff next week in Pittsburgh to review the results of
25	that.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	108
1	Acceptance of leak-before-break for
2	AP1000. The basic issue here was the amount of piping
3	analysis necessary of design certification stage to be
4	able to identify which piping systems were eligible
5	for leak-before-break and we have submitted some
6	additional analyses of certain piping areas and
7	provided the rationale for evaluating the rest of the
8	leak-before- break piping arrangements. And this will
9	be discussed in a technical meeting tomorrow with the
10	staff.
11	Miscellaneous PRA items. There were a
12	number of open items in the PRA and mainly clean-up
13	items but some involved additional sensitivity studies
14	and evaluating sensitivity to squib valve reliability
15	which we'll talk more about today.
16	Sump performance. This is the issue we
17	talked about a little bit before about the current on-
18	going issue for the operating plants with regard to
19	potential sump blockage and we've responded to these
20	items and are continuing to follow what's happening
21	with the operating plant discussions.
22	Security. The new design basis threat
23	came out earlier this year. In AP1000 we've tried to
24	deal with the items that could impact the plant design
25	itself and factor that into our design certification

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

documentation. Most of the security issues are related to the plant operator and will be dealt with at the combined licensed stage.

4 Dose analysis. The control room 5 methodology, the staff recommended methodology has changed since AP600 and there's a NUREG guide on that 6 7 with a different methodology. We have redone our 8 analysis for AP1000 with that methodology and 9 submitted it to staff. 10 CFR 50.44 is the hydrogen 10 combustible gas rule which we had anticipated actually 11 in the AP1000 design documentation in that we don't 12 have recombiners for design basis accidents, but we do have some passive recombiners in the system. 13

And then there were miscellaneous ITAAC items where there were open items on addressing specific comments about how the ITAACs were written or their content.

18 I'll get into the thermal hydraulic items 19 which was a main topic for the subcommittee meetings 20 we had in July in Pittsburgh.

And then there's three basic issues involved in the open items in this area: upper plenum and hot leg entrainment which has been an issue in this area; COBRA/TRAC modeling for long-term cooling and boron precipitation during long-term cooling and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

1

2

we'll talk about what we're doing on each of these items.

3 The entrainment issue derived from when we 4 were doing studies before we submitted our design 5 certification application, we did precertification review, if you'll recall where we looked at the 6 7 testing and codes that we used for AP600 and assess 8 their applicability to AP1000. And in particular, we 9 looked at the test programs that were done for AP600 and assessed their scaling relative to AP1000 and 10 11 concluded that the AP600 tests were appropriately 12 scaled even for the AP1000 conditions, but the issue that came out at that time and we'd been working on 13 14 since was basically with the higher power in AP1000, 15 we could higher steam velocities above the core and in the upper plenum hot legs and this could affect the 16 amount of liquid that gets discharged through the ADS 17 system and therefore have an effect, potentially have 18 19 an effect on core cooling.

20 So ultimately the staff wrote a letter 21 saying we want to see test data and we've completed 22 some testing at Oregon State University in a facility called APEX-1000. This is the same facility that was 23 24 used for AP600. It was modified to represent the 25 AP1000, more heaters put in. Or bigger heaters put in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

111
to represent the power and some of the components were
changed to reflect the changes that were made in going
from 600 to 1000 in the real plant.
We have submitted to the staff a series of
reports describing the facility, the scaling
assessment test reports and data for five tests and
our conclusion from these tests is that the behavior
for APEX-1000 is essentially the same as it was for
APEX-600 in terms of the overall performance of the
passive systems.
And we've also submitted to the staff
NOTRUMP simulation of two of the APEX-1000 tests and
the simulations show good agreement like we had on
AP600 and these tests showed no core uncovery for the
design basis accident testing.
Several other things we've done and
discussed with the thermal hydraulic subcommittee at
the last meeting and we submitted these to the staff
and the staff is having the chance to review them. We
did a sensitivity study with our small break code,
NOTRUMP, where we assumed that all of the flow beyond
the core exit going through the ADS core pipe behaved
in a homogenous way and this way tried to bound the
effects of entrainment in the upper plenum and hot leg
so that you get as much water out of the system as you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	112
1	can.
2	And even with this assumption, we got no
3	core heat-up from in the analysis.
4	Kind of a side validation, the question
5	came up about what's the void fraction profile in the
6	reactor core under these low pressure conditions when
7	you're making up from the IRWST and from the sump and
8	so we looked at the void fracture models that's used
9	in the NOTRUMP code and compared it to the full scale
10	rod bundle data from years past to validate the void
11	model used in NOTRUMP.
12	And then we did kind of a first principles
13	analysis that we called the simple model or the Bill
14	Brown Model, some people call it, to assess what is
15	the quasi-steady condition after you depressurize the
16	primary system and you're feeding by gravity on one
17	side and discharging the decay heat through the ADS
18	four paths on the other side, what is the quasi-steady
19	condition that you would expect the system to come
20	through based on just looking at conservation of the
21	energy and mass and momentum?
22	And this simple model allows us to look at
23	that and during the conditions when you're going from
24	when you open the final stage of ADS on the hot
25	legs and the pressure is coming down the last little

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

bit and you're starting to get injection from a head of water stored in containment.

3 And we did some sensitivity studies with 4 this to -- some parameters in the model that represent 5 the void equation like a ZC row parameter and recently we've done one to look at the effective of slip ratio, 6 7 the base model used homogenous flow and then we looked at some slip conditions to see the impact of that and 8 9 the conclusions from this is that the system behavior that we're seeing in the test and in the NOTRUMP code 10 is to be expected based on the first principles --11

CHAIRMAN WALLIS: 12 VICE Now in this interesting period of time, the pressure has dropped 13 14 in the detection line, the pressure head valve for 15 that is balanced by the pressure drop through the ADS4 system, head of water and pressure drop in the lines, 16 17 pressure drop out of the break. And to get this pressure drop out of the break you've got to get the 18 19 pressure drop through this rather strange set of pipes 20 that has Ts and bends and all those things which we 21 don't how to model very well.

I think one of our issues was how do you assess the behavior of that kind of strange geometry that you have between your hot leg and your actual ADS4 valve.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

113

	114
1	MR. VIJUK: Yes. A couple of things we're
2	doing to address that is one, we have test results now
3	from APEX-1000.
4	VICE CHAIRMAN WALLIS: So APEX-1000 has
5	tried to model really well, all these details of those
6	bends and Ts.
7	MR. VIJUK: It represents the geometry in
8	the plant. Whether we have it to the level of detail
9	that would make you happy, I'm not sure, but we do
10	have the riser pipe and the horizontal and the exit
11	the basic geometry is there, yes.
12	So that gives us some information to deal
13	with what is the pressure drop through the ADS4 under
14	various two-flage conditions.
15	The other interesting that we've done
16	recently is looked back at the ATLAS test that Steve
17	Bajorek and company ran at OSU, also where they did
18	air water tests with feeding water in the hot leg and
19	you have restriction on the other end so you can have
20	a wave coming back and look at the entrainment they
21	measured in those tests and the phenomena occurring
22	there. And we found some other data that supports the
23	idea that bi-modal operation where you have vapor for
24	a while and then it cycles and you have liquid for a
25	while.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

115 1 VICE CHAIRMAN WALLIS: It's an oscillatory 2 behavior. 3 MR. VIJUK: Right. So we have data to 4 deal with the issue. 5 VICE CHAIRMAN WALLIS: Does the APEX have two ADS4 valves? 6 7 MR. VIJUK: It simulates the two pipes as 8 one. 9 VICE CHAIRMAN WALLIS: In one, doesn't it. 10 So the flow division between the pipes is not 11 simulated in any --12 MR. VIJUK: On each side. On one side, it's --13 14 VICE CHAIRMAN WALLIS: On the one side, 15 coming out of the hot leg you have the vertical riser and then there's only one valve at the end of that 16 17 system? MR. VIJUK: On each side, yes. 18 19 VICE CHAIRMAN WALLIS: So it's not 20 duplicating the flow distribution. 21 MR. VIJUK: It doesn't duplicate that 22 aspect. 23 VICE CHAIRMAN WALLIS: But you're going to 24 handle that in some impressive way that it's going to 25 be all right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	116
1	MR. VIJUK: I believe so, yes. Yes, I
2	think so.
3	MEMBER RANSOM: Well, have the issues of
4	scaling between the subscale model and the full scale
5	been resolved in that bimodal situation?
6	MR. VIJUK: That's something we're looking
7	at too, and we've submitted some new information to
8	the staff on that that we plan to go through tomorrow.
9	We have a meeting planned for tomorrow to talk through
10	our responses to the most recent round of question son
11	these issues.
12	And we have looked at some scaling effects
13	as well. Yes.
14	VICE CHAIRMAN WALLIS: I think your
15	argument is going to be that if you've got water going
16	through the fall line, even if you don't model it very
17	well, then it must have come from the core and
18	therefore, there has to be water about the core,
19	because there's a continuous flow process going on.
20	MR. VIJUK: Yes, I think what we conclude
21	from all the we've run RELAP. We've run
22	COBRA/TRAC. We've run NOTRUMP. We've run test at
23	600. We run test at 1000. We've run test in ROSA,
24	test is SPEDS and they all do the same thing. They
25	spit water and steam out of the ADS4. And it gets it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	down to the pressure you need to inject. So I think
2	the evidence is pretty strong that the system works.
3	So to resolve this item, I mentioned we
4	have a meeting planned for tomorrow to work, talk
5	through with the staff, these various issues
6	associated with entrainment.
7	VICE CHAIRMAN WALLIS: I'm just wondering,
8	when do we get to see the details of this? When is an
9	appropriate time for say, the subcommittee to look at
10	the details?
11	MR. VIJUK: A lot of the details have been
12	sent to the staff and certainly those details
13	VICE CHAIRMAN WALLIS: So maybe in three
14	or four months or something?
15	MR. VIJUK: Can be made available. I
16	think we'd be ready before that as far as to
17	discuss. A good assessment would be after our
18	discussion tomorrow.
19	VICE CHAIRMAN WALLIS: I'll see how you
20	resolve things with the staff, yes.
21	MR. VIJUK: So we've submitted the
22	additional test information. We've validated NOTRUMP
23	against the new test. We've done the sensitivity
24	analyses and simplified models.
25	And we believe this demonstrates that our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	DCD analysis is appropriate.
2	Next issue has to do with the long term
3	proving analysis. This is after you're on to
4	injection from the gravity systems and you're sitting
5	there feeding the vessel on one side and steaming from
б	the ADS4, pulling out into the long term when the
7	containment floods off and you're feeding from the
8	sump instead of the IRWST. So you have a lower head
9	of water, several hours into the event.
10	And the issue that came up was relative to
11	the sophistication of the COBRA/TRAC modeling that was
12	done initially in our DCD submittal. We have revised
13	that model with more noting. It's more like our large
14	break COBRA/TRAC model now to evaluate this phase of
15	the performance. So we've done that and completed the
16	plan analyses. We've provided a model description and
17	it incorporated the results into Chapter 15 of CDC.
18	The results are, I would say, on a global
19	basis very similar to the results we had before,
20	except now we can get a much better picture of the
21	void profile in the core and this kind of thing during
22	this period of time.
23	The boron issue is related to it's kind
24	of the flip side of the entrainment issue.
25	Entrainment says well, maybe this ADS4 is going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

119
take more water out than you put in and create a core
cooling problem. This is the other side that says
well, maybe you can't get any water out and only steam
comes out and therefore over the long term the boron
concentration will build up in the reactor vessel.
So in dealing with this, we've run the
COBRA/TRAC model, this long-term cooling model out at
14 days after the power is way down, trying to get to
a point where you have less steam and less chance with
the steam to entrain water out. We're looking at
lower power levels.
And this shows that you continue to get
lots of water out of the system. In fact, as the
power goes down, you get more and more water out of
the system.
We've applied a first principle analysis
here to look at the amount of liquid flow and compared
the simple model to the COBRA/TRAC model and then used
the Simple Model to calculate over a very long term
what the flow is to the system and therefore have a
way to calculate how the concentration and inlet
temperature change as during the event.
VICE CHAIRMAN WALLIS: Did you find this
boron steam water phased diagram which we were looking
for?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	MR. VIJUK: No, we didn't find it.
2	VICE CHAIRMAN WALLIS: You still haven't
3	found that?
4	MR. VIJUK: We have not been able to find
5	
6	VICE CHAIRMAN WALLIS: Don't you need that
7	in order to make these calculations?
8	MR. VIJUK: I don't think so.
9	VICE CHAIRMAN WALLIS: Do you need to know
10	how much boron goes off with the steam and how much
11	stays behind in the water?
12	MR. SCHULZ: This is Terry Schulz from
13	Westinghouse.
14	We found some test data where some
15	measurements were taken of how much boron would leave
16	in the steam, so some direct, physical test data and
17	that's what we have used in our calculations. That's
18	what we had been using in our calculations.
19	MEMBER ROSEN: You've qualified these ADS4
20	valves for long-term passage of liquid at high
21	pressure?
22	MR. VIJUK: We're going to talk about the
23	squib valves later. Maybe that would be a good time
24	to discuss that, but it's basically like an open pipe.
25	But we can show you the details a bit later, if you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	can hold that.
2	The overall status on the thermal
3	hydraulic items is that we've we responded to the
4	items like the end of July and early August. The
5	staff has looked at our initial response. About two
6	weeks ago we got a set of 30 additional questions
7	related to our responses and we've just yesterday sent
8	in responses to 27 or maybe even a few more of the 30
9	questions and that's basically the agenda for
10	tomorrow's meeting is to go through those and make
11	sure we're coming to a meeting of the minds here on
12	these issues.
13	That's the path forward on the thermal
14	hydraulics.
15	And looking forward to the rest of the
16	design certification review, so we have three in
17	the next week and a half we have three key meetings,
18	if you will, on resolving items. The one tomorrow on
19	thermal hydraulics. Another one tomorrow on leak
20	before break issue and then the structural audit at
21	Westinghouse next week. And we're targeting having a
22	technical resolution and ready to talk to the full
23	committee again, possibly as early as December.
24	I'm going to move on to the next topic now
25	and introduce it. This is the topic on the ADS squib

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	valves. So today, we're going to talk about
2	MEMBER POWERS: Mr. Chairman, could I
3	interrupt the speaker a little bit?
4	I looked ahead in the vu-graphs and found
5	that there was some work being done by Sandia here.
6	Trust me, I know nothing about it, but since I work
7	for them occasionally, less and less often lately, I
8	bring to your attention that I know nothing about this
9	and although I'm intensely curious
10	MEMBER ROSEN: The Chairman has granted
11	you a waiver to participate in this discussion.
12	MEMBER POWERS: Excuse me.
13	MR. VIJUK: Okay, so we're going to talk about
14	the design itself and we have Dan Frederick here from
15	the valve vendor, Conax, to talk about it and we'll
16	talk about how we use the information we've developed
17	relative to squib valves in our PRA assessment. And
18	part of that was getting this independent evaluation
19	from some folks at Sandia.
20	First, why are we using squib valves for
21	this application and this slide tries to capture our
22	logic for choosing these relative to a more
23	conventional type valve like an air-operated value or
24	a motor-operated valve and the real driving force was
25	reliability and we believe we can engineer higher

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

123 1 reliability into this valve than we can into an airoperated valve or a motor operated valve for this 2 specific application. 3 4 And reliability to open the way the 5 electrical circuitry can be set up, allows a more This type of valve independent actuation circuit. 6 7 gives diversity from the other stages of ADS which do use motor operated valves. 8 It's essentially a closed system and only 9 10 operated in an emergency. There's -- and the way you 11 set up the circuitry, there's very little chance of 12 inadvertent opening --MEMBER FORD: May I address that one, 13 14 plese. This is one of the other questions I asked and 15 which was not so far gotten an answer to. The very low change of an inadvertent 16 17 opening, that's based on doing tests presumably on valves which are open to the air, etcetera. 18 They're not tests that have been done when 19 20 the valve has been exposed to water and I brought up 21 the question at last meeting that the design of the 22 burst disk in this valve is such that you'd expect to 23 have cracking or you could have stress corrosion 24 cracking and therefore since it's pressurized and 25 under normal situations, you could just get an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	inadvertent opening because of failure of that disk
2	that is in the ADS4 valve.
3	I understand you have addressed this
4	question. Is there a quick answer.
5	MR. VIJUK: The quick answer we designed
6	this just like we designed pressure boundaries. It's
7	ASME code Class 1 pressure boundary and that's why we
8	don't expect it to fail.
9	But I think Dan Frederick can speak more
10	to the specifics of the conditions for this valve.
11	MEMBER FORD: I'm sorry, does that, you
12	mentioned a code situation. Does that take into
13	account you could have environmental degradation
14	occurring at that high radius curve that's on that
15	last disk?
16	CHAIRMAN BONACA: We're having this
17	specific presentation after this, right?
18	VICE CHAIRMAN WALLIS: We're having a
19	presentation on the valves?
20	MEMBER ROSEN: Is he going to discuss this
21	question?
22	So far he's just deferring our questions.
23	That's fine.
24	MR. VIJUK: I'm not the materials expert.
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	125
1	MR. VIJUK: I'm not trying to avoid the
2	questions, but I think Dan can probably speak to it
3	better than I can. He'll be up
4	MEMBER FORD: Oh, he'll be up in a minute?
5	I didn't understand.
6	MR. VIJUK: I was just trying to explain
7	the reasons beyond choosing this type of valve as
8	opposed to another type of valve, that's all. And
9	another important factor was you have zero leakage
10	during normal operation with an air operated valve or
11	motor operated valve, you can expect some leakage.
12	The in-service testing and in-service
13	inspection and maintenance is another aspect and I
14	think part of this relates to your question as well as
15	detecting cracks and so forth. That comes into the
16	equation as well.
17	And our assessment was that after looking,
18	we looked pretty hard at air operated valves and
19	trying to make them perform this function and it got
20	pretty messy from a design standpoint, from an
21	engineering standpoint to provide the air, high
22	pressure air and so forth needed for that. That in
23	the end, we believe this is simpler and will be easier
24	to implement than the more conventional type vales.
25	And it ends up being less in size and weight and we

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 made this choice back on the AP600 and at that time we
2 had the utility people reviewing our design and
3 leading the design and they were strongly in support
4 of this decision.

This talks about some of the circuits and 5 the way the circuits are set up they can be made 6 7 highly reliable. We have two safety protection systems divisions to each valve and one diverse 8 9 actuation system actuation circuit to each valve, all independent and this way it's two-way diverse because 10 11 the protection system is diverse from the diverse 12 actuation system.

And these have low probability of spurious actuation and two-out-of-four logic and the controller circuit minimizes the likelihood of hot shorts and basically the required voltage to actuate the valve is not available in the controller circuits.

18 MEMBER FORD: If it minimizes the 19 likelihood, what is the minimum achieved?

20 MR. VIJUK: I think Selim will talk about 21 that --22 MEMBER ROSEN: How many of these in the plant, 23 eight? 24 MR. VIJUK: There's two on each hot leg.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER ROSEN: Four.

25

	127
1	MR. VIJUK: Four.
2	MEMBER ROSEN: You only have to go one go
3	open to ruin your day, right?
4	MR. VIJUK: One. That's considered a LOCA
5	event, yeah, and we consider it and analyze it.
6	Inadvertent opening.
7	So that's kind of the background and I'll
8	turn it over to Dan Frederick from Conax who has the
9	experience behind these valves.
10	MEMBER KRESS: Welcome back again.
11	MR. FREDERICK: Thank you. Okay, I'll go
12	ahead and get started. Can you hear okay?
13	My name is Dan Frederick. I'm Vice
14	President of Engineering for Conax and I'm here to
15	give an overview for the squib valve.
16	We need to flip the page.
17	(Slide change.)
18	MR. FREDERICK: Okay, first of all, to
19	give you some of the background on the squib valve
20	itself, it starts off approximately about 10 years
21	ago. I was with Pyronetics at that time and General
22	Electric was very interested in going to use a 7-inch
23	normally closed pyro valve. And so at that point they
24	came to us and we were one of seven valve vendors that
25	they had contacted in regard to trying to achieve what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

128
they thought was the best approach for their program.
And as a result of that, the valve design
that we at Pyronetics at that time had provided as far
as the basic cross sectional design concept was
accepted by them as the best way to proceed with what
they had intended to do.
And I'll just give you a little history to
the Pyronetics, just some of you have heard it before,
but others haven't, so I just want to tie it in.
Pyronetics was a company that was part of OEA that was
located in Denver in the same facility.
MEMBER ROSEN: What's OEA?
MR. FREDERICK: OEA, Incorporated, it's a
separate company that was located in Denver. And that
company, OEA, at one point transferred all the
technology of the aerospace division to Northern
California and it was part of the OEA Aerospace Group.
What remained in Denver was the automotive side which
mainly was the initiators for the airbag.
And then after getting to Northern
California and becoming part of OEA Aerospace, I was
there for about five years in Northern California and
prior to that I started with OEA in 1980. Since that
time, since I left there, UPCO has bought out the OEA
division and presently right now, Conax is licensed to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 sell product, manufacture, design and sell product 2 that had previously been designed by OEO, "Pyronetics" 3 during whatever stage you want to start at. So right 4 now, we have a license to do that. And therefore, 5 that's how Conax ties in with the Pyronetics early design phase that I'm referring to. 6 7 And of course, the big issue at that tine 8 is can you scale up a valve? What we had proposed was 9 a 2-inch valve and similar here what we're talking about is scaling up a valve. That was the big issue 10 at that time as well. 11 12 Then it was going from 2 to a 7 which was at that point a very huge increase in size and the 13 14 present time we're talking about going from a 7 to a So we provided GE a list of our customers at that 15 9. They contacted several of those. 16 They came point. 17 back and gave Pyronetics the contract. 18 through. We built We went and 19 successfully tested the valves. 20 MEMBER ROSEN: The 7-inch valves? 21 MR. FREDERICK: The 7-inch valve, that's 22 correct. And so, of course, the application right now for AP600, as you can see on the bottom of the chart, 23 24 it was to use the same 7-inch ID valve, originally, 25 and now for the AP1000 it requires a 9-inch.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

129

130 1 So that's a little overview of the history 2 of where we're at. 3 (Pause.) 4 Sorry about that. I haven't used this 5 before. (Pause.) 6 This is a cross sectional view of the 7-7 8 inch valve which was scaled up to meet the 9-inch 9 requirement with some changes, obviously as far as interface --10 MEMBER ROSEN: The 7-inch is the minimum 11 12 diameter? MR. FREDERICK: Yes, the 7-inch is the 13 14 full passage itself. 15 MEMBER ROSEN: That's the place where 16 Peter, Dr. Ford, is concerned about the --17 MR. FREDERICK: That's correct. There's a notch right here and that gets sheared out. 18 19 MEMBER ROSEN: High stress location, 9inch diameter. 20 21 MR. FREDERICK: That's correct. 22 MEMBER ROSEN: Circumference high D, 23 right, Dana? 24 MR. FREDERICK: Okay, as far as the operation of the valve, first of all, it's a fairly 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	simply operated unit. You have some initiators on the
2	top. Generally, what you do is you have the current
3	come in, it fires one, two or three initiators, how
4	ever many you choose. That then, in turn, fires into
5	a booster charge that's contained within this cavity.
6	That then fires, creates a pressure within the top
7	part of the valve itself. When the pressure gets to
8	a specific level, what happens is that this tension
9	bolt actually breaks. This piston bend is driven
10	down. The impact force of the piston on this, what
11	I'll call a nipple section causes this thing to come
12	down and get sheared out of this section and this
13	particular part right here then is driven over center
14	and opens up for full flow through the valve.
15	MEMBER ROSEN: If I were looking down, if
16	I was standing on top of that thing that's driven down
17	and flops over, what's the cross section look like?
18	MR. FREDERICK: This right there?
19	MEMBER ROSEN: No, go down, go down to
20	there to that thing. What is the cross section of the
21	top of that look like?
22	MR. FREDERICK: Like this.
23	MEMBER ROSEN: It's a rectangle.
24	MR. FREDERICK: Yes, it's more like a
25	rectangle.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	132
1	So you've got an impact force of a
2	specific point here and then it rotates over.
3	MEMBER ROSEN: And it's hit by this piston
4	coming down?
5	MR. FREDERICK: That's right. This piston
6	right here, the bottom of that piston impacts right
7	here. That generates enough force to shear that
8	section and drive that valve down.
9	MEMBER ROSEN: All the way around 27
10	inches?
11	MR. FREDERICK: Pardon?
12	MEMBER ROSEN: All the way around 27
13	inches?
14	MR. FREDERICK: It's already been proven
15	on the 7-inch. We've gone through several firing
16	tests and every one of them were successful.
17	And so what we're talking here is going
18	from a 7-inch ID up to a 9 which means obviously
19	you've got a scale of the passage here and that
20	correspondingly changes everything here accordingly
21	because everything is getting bigger?
22	MEMBER ROSEN: What would it take to build
23	one and do it?
24	MR. FREDERICK: What do you mean?
25	MEMBER ROSEN: Well, build a 9-inch and do
•	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

133
it just like you did for a 7.
MR. FREDERICK: Are you talking cost,
schedule?
MEMBER ROSEN: How hard would that be?
(Laughter.)
MR. FREDERICK: The first time around when
we had the contract for the 7-inch, it took about a
year and 3 to 4 months from start to finish before we
delivered product.
So we built the valves, went through our
development test program. GE went through a program
on all the booster charges as far as the radiation
environment, etcetera, etcetera. We built the valves.
We tested some in our plant in Denver. We then
shipped some to Wiehle in Huntsville at which time
representatives from our company and GE were there for
witnessing of the actual test with the actual steam
that was put into the unit to fire it.
MEMBER ROSEN: About a year and a half,
you think?
MR. FREDERICK: About a year and a half.
MEMBER ROSEN: Would that be the same for
a 9-inch?
MR. FREDERICK: Yes sir, right. In fact,
I say that because in my mind at least I don't see the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	problem with scaling it up because we went through a
2	very large exercise, working GE previously on the
3	design analysis associated with the requirements
4	associated with this type of valve.
5	So the design analysis work has already
6	been completed. So what we do is we take that,
7	implement the new requirements and we scale it up
8	accordingly.
9	VICE CHAIRMAN WALLIS: There are no new
10	phenomena going from 7 to 9 inches?
11	MR. FREDERICK: No sir. Things are just
12	bigger so of course, you'd have more powder in here
13	obviously from a booster charge standpoint because you
14	need more pressure here in order to actually drive
15	that thing down because your cross section is bigger.
16	MEMBER ROSEN: Now in Pittsburgh, you did
17	say that you were planning to do these tests of a
18	development prototype, 9-inch valve, including charge
19	sizing, looking at things like charge sizing,
20	inspection, hydrostatically testing, hydrostatic and
21	leak testing vibration, actuation with over-loaded
22	boosters and actuation with underloaded boosters just
23	to see what kind of sensitivity I presume the device
24	has to the over or under loading of boosters.
25	And all of that is to be done at some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	point and the question is when?
2	MR. FREDERICK: Well, that's really up to
3	Westinghouse. Right now, we have no contract to do
4	that.
5	MR. CORLETTI: This is Mike Corletti from
6	Westinghouse. That activity is part of the COL
7	application and as part of an ITAAC verification.
8	That testing will have to be completed as part of
9	ITAAC.
10	MEMBER ROSEN: In the meantime, we have to
11	take it on faith that this valve has the same failure
12	probability as the 7-inch valve and I'm taking it on
13	faith that when you do the testing as part of the
14	ITAAC after you have a COL, that it will turn out to
15	be have the kind of failure characteristics and
16	thereby the likelihood of failures is that E^{-4} numbers
17	that you're quoting for demand in the meantime, we
18	don't have any proof of that.
19	MR. CORLETTI: But the next presentation
20	is the discussion of the reliability and I think I'll
21	defer based on the reliability to that. But as far as
22	on faith that we can do the type test, it's a
23	condition of operation of the plant that these type
24	tests are completed.
25	MEMBER ROSEN: Yes, I understand that. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	understand that. That's not where I'm pushing. What
2	I'm pushing on here is in the meantime and before we
3	have that test, we have to take on faith reliability
4	that you're quoting to feed into the PRA.
5	MR. CORLETTI: The next presentation will
6	provide you why we believe we have confidence in the
7	PRA reliability numbers that we've provided.
8	VICE CHAIRMAN WALLIS: But to come back to
9	my concern. Even when you're doing this for GE, for
10	the SBWR, there was no concerns at all about
11	environmental degradation of that high radius,
12	presumably stress concentration at the point where you
13	no one was concerned about that?
14	MR. FREDERICK: Well, this particular
15	section, we went through the design analysis report
16	for the 7-inch valve. At that point there was
17	established by the customer at that time, they gave us
18	a specific corrosion rate that they had anticipated to
19	see over the life of that unit. Therefore, that
20	corrosion rate value was input into the design
21	analysis and therefore the size of that section was
22	slightly enlarged in order to account for that.
23	VICE CHAIRMAN WALLIS: General corrosion
24	wouldn't concern me. It's more that it's use for
25	that's the stress components the high stress

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

137 1 concentrator. I'm more concerned about --2 MR. FREDERICK: Okay, well, I understand your point. The only thing I can say there is there's 3 4 been an awful lot of valves built over the years where 5 we have not had one that actually cracked from a condition we're talking. 6 7 Granted, we haven't had it in the conditions that we have here. I will admit that. 8 But then on the other hand, there's been an awful lot of 9 valves that have been delivered that had extremely 10 11 high pressure requirements and have met a lot of 12 environmental requirements on missile and satellite applications. 13 14 MEMBER ROSEN: What re the conditions up 15 against the section that Peter is concerned about? Is 16 that --17 MEMBER KRESS: Stagnant, borated water. Stagnant borated water at 18 MEMBER ROSEN: 19 2,000 psi? MR. FREDERICK: Well, I have a comparison 1 2 chart here, I think, that gives that information. MEMBER RANSOM: How often would that 3 4 component be replaced? 5 MR. FREDERICK: That I'll defer, somewhat, 6 to Westinghouse, because we've had discussions with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	regard to when you would do a, quote, "changeout."
2	And so I'll have to defer that to you, Terry.
3	MR. SCHULZ: This is Terry Schulz. We
4	would do an inspection in accordance with the ASME
5	code, which means that every ten years you would be
6	taking this apart and looking at it on some staggered
7	basis. It's four valves so it wouldn't all be nothing
8	for ten years, but sometime in between ten years you'd
9	look at it. And then based on what you would see, you
10	could replace that rather easily if need be; it's not
11	a hard thing to do.
12	MEMBER RANSOM: I guess I'm bringing that
13	question up because I mine which also refers to
14	your question. I bring it up because it's an easy
15	thing to remedy. Use a different material, put a
16	coating on it, whatever. I'm bringing it up because
17	no one's raised this question before and I hate to see
18	it go into service and that potential problem never
19	have been addressed. That's why I'm bringing it up.
20	MR. FREDERICK: Well, I appreciate your
21	concerns. I know we've had some discussions with
22	Westinghouse with regard to what material should be
23	utilized, and that's still undergoing and has not been
24	totally finalized yet. So we are moving in that
25	direction.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	MEMBER POWERS: May I ask you what you're
2	using for the initiator in the charge?
3	MR. FREDERICK: I can't give you that
4	information. It's proprietary to UPCO.
5	MEMBER POWERS: That's fine.
б	VICE CHAIRMAN WALLIS: But it can sit
7	there for many years without doing anything, without
8	deteriorating?
9	MR. FREDERICK: On the GE Program, the
10	initiators and boosters were subjected to an
11	accelerated aging test program to show that they were
12	good in their particular case for a four-year
13	requirement. So they did go through that program.
14	MEMBER POWERS: When you say good, you
15	mean that they would after being aged do the function
16	they were intended to do.
17	MR. FREDERICK: They were aged to simulate
18	the time frame under the conditions that they would
19	have been anticipated to be used. And after that
20	time, we fired a bunch a hardware to substantiate that
21	we were still getting the same performance that we had
22	prior to that.
23	MEMBER POWERS: I guess the question that
24	comes to my mind with squib valves that I have had the
25	pleasure of using that the squib would work fine but

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the metal around it would be terribly badly corroded from products of decomposition of the squib initiator and charge itself. And that's specific to the material, and I don't know that yours is the same. Did that sort of thing get looked at?

MR. FREDERICK: Well, like I said, I can't 6 7 give you the powder and materials used, but what it amounts to is that there was a requirement on this 8 9 particular valve that had to be able to be refurbed, 10 meaning if you fired it, you had to be able to get it 11 back together, and it was 24-hour changeout in order 12 to tear it down after it's fired, put in the new 13 hardware and be ready to use it again. And that was 14 demonstrated and proven that you could do it within a 15 24-hour period. And so you do replace some of the components, obviously, that are involved here because 16 17 I mean obviously you're sharing metal and you've got 18 a few things happening, but the key parts associated 19 with the body is still the same part that you have in 20 there to start with.

21 MEMBER POWERS: Yes. But what I was 22 asking really about the corrosion of the body over a 23 course of time around where your charge is located. 24 MR. FREDERICK: Right in here?

MEMBER POWERS: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

	141
1	MR. FREDERICK: Okay. Well, if that
2	became an issue over a period of time and you could
3	replace the members that you had a concern with.
4	MEMBER POWERS: It's just that those
5	issues tend to find out when you go to use it, not
6	because of an inspection program.
7	MR. FREDERICK: Well, I think you'd be
8	able to see that. I think that the powder that we use
9	in there is relatively benign to the environment
10	itself because it is a refurbishable unit, and that
11	was kept in mind during the design of the valve in its
12	early stages. The one key feature about the valve
13	itself as far as refurb, I mean you can take this
14	whole thing apart, you know, this whole sections comes
15	out, everything up here comes out and it's all easily
16	removable. So anytime you chose to do a tear-down or
17	a review or whatever you'd like to do with some period
18	of time, we could easily do that.
19	MEMBER ROSEN: Is it welded into the pipe?
20	I mean it's welded into the system, right?
21	MR. FREDERICK: No, no. This is metal
22	seals, and the center faces right here.
23	MEMBER ROSEN: How is it here comes the
24	pipe from your flange.
25	MR. VIJUK: A flange on one side, open on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	the other end.
2	MR. FREDERICK: Yes. Right here's the
3	flange.
4	MEMBER ROSEN: Oh, okay.
5	MR. FREDERICK: And then there won't be
6	anything over here; it will be just an open-ended.
7	MEMBER SHACK: What holds the gate in the
8	vertical position before it fires?
9	MR. FREDERICK: Right here?
10	MEMBER SHACK: Yes.
11	MR. FREDERICK: This is all one metal, one
12	piece of metal here.
13	MEMBER SHACK: Oh, yes. All right.
14	MEMBER ROSEN: And how thin is the minimum
15	thickness?
16	MR. FREDERICK: I don't know the exact
17	number offhand. I would have to look at the design
18	analysis report. I can get that information and we
19	can provide it later.
20	MEMBER ROSEN: Is it mils or tens of mils?
21	MR. FREDERICK: No, no. Off the top of my
22	head I'd say at least a quarter of an inch, maybe
23	three-eighths.
24	MEMBER RANSOM: Out of curiosity, was the
25	breach-lock type design considered initially so that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	if the thin part did fail, you would get a small LOCA
2	rather than a large LOCA or would that even be of any
3	concern?
4	MR. FREDERICK: Well, this is the basic
5	design that was originally proposed and no issues came
6	up that would have caused us to go any other direction
7	than we had proposed. Okay? Testing performed on the
8	valve I've got listed over there. I think you can
9	take a look at that. It went through an extensive
10	test program.
11	VICE CHAIRMAN WALLIS: It's interesting,
12	it snaps the bolt at the top?
13	MR. FREDERICK: Pardon?
14	VICE CHAIRMAN WALLIS: It snatches the
15	bolt and it chops off the ring and it doesn't break
16	the pin that across the bottom.
17	MR. FREDERICK: Right here?
18	VICE CHAIRMAN WALLIS: Right.
19	MR. FREDERICK: No, because the pin
20	doesn't see any load. The pin is mainly there for a
21	retainment.
22	VICE CHAIRMAN WALLIS: It gets hit by that
23	thing coming down.
24	MR. FREDERICK: No, because you're hitting
25	here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
VICE CHAIRMAN WALLIS: Oh, it's the the
hammer's on the bottom.
MR. FREDERICK: You're hitting here so you

don't see any impact load on the panel. 4 So that 5 allows it to freely go over it without any impact loads. Okay? I just want to point out that generally 6 7 with any devices that we make at Conax, generally have to have high reliability because they're used in life 8 support programs, aerospace programs and obviously any 9 10 consequence of any failure would be an absolute 11 disaster, whether it be human life or even high 12 millions of dollars in satellite and missile 13 applications. So high reliability is required, and 14 I'll get into some of the things that we do to ensure 15 that we have that.

Conax procedures, first of all, control high reliability. I mean we have a very detailed approach on how we make sure that we build things, and it goes through the various departments. Everybody's interacting in order to give their input on what needs to be done, and a lot of this is based upon a lot of factors that I'll bring out here in just a minute.

Custom valve designs and upscaling is a standard process, so there, again, what I'm saying is I don't see a problem going from seven to nine. Going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

||

1

2

3

16

17

18

19

20

21

22

(202) 234-4433

144

1 from two to seven was a much bigger task. Simple 2 valve designs reduce problems, and I say that because 3 I think the key thing with any squib valve is that 4 there's not that many parts that are actually going 5 into the valve itself. So the moving parts are very minimal, and therefore your chance or likelihood of 6 7 having anything go wrong is reduced because there are a substantial amount or a fewer amount of parts that 8 9 have been utilized. The development process that we 10 go through, I've mentioned that in the previous 11 meeting and we'll touch that a little bit here in a 12 minute. 13 Some of the reliability numbers, I got 14 some information from an UPCO report that I then put 15 down here and then the Conax reliability here. MEMBER ROSEN: What's UPCO stand for? 16 17 MR. FREDERICK: Pardon? 18 MEMBER ROSEN: What's UPCO? 19 MR. FREDERICK: UPCO is Universal 20 Propulsion Company, and they are now owned as part of 21 the Goodrich operation that's headquartered in 22 Arizona. 23 MEMBER ROSEN: And they've made 64,000 of 24 these valves? 25 MR. FREDERICK: Valves total.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

145

	146
1	MEMBER ROSEN: Which are used in what
2	service?
3	MR. FREDERICK: Mainly in missiles and
4	satellite applications. Obviously not in commercial
5	use like nuclear power plants.
6	MEMBER ROSEN: Missile and satellite
7	operations. Just give me a feeling for what is it
8	that they do in these applications.
9	MR. FREDERICK: Well, if you want to,
10	let's say first of all, they're used to fire open
11	if you want your propellant to start functioning your
12	system. Without the valve opening, the satellite
13	would not function, therefore it would be a loss.
14	Okay? We have normally closed valves and normally
15	open. We have others that when they get up there to
16	wherever they want them they want to shut off the fuel
17	flow. You can fire the valve, shut it off and
18	therefore the satellite just continues its operation.
19	On other systems like missiles, for
20	example, we have some pure gas systems that's used on
21	some of the guidance type work that goes into some of
22	the key missile programs. You have to fire a pyro
23	valve to knock of the section that opens up the flow
24	for the gas to go through, and that's used for locking
25	on targets and doing the work. So, again, if that did

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

not work, the missile would not work. It's also used on missile applications for, again, like satellites where things sit there for a long time, they're pressurized, they're ready to go, but until you actually fire that valve you have no fluid going through the system to drive the missile to its end state.

And so, generally, all the normally closed 8 valves are used in a condition generally to take some 9 10 fluid or pressure, we've got some valves that have 11 10,000 psi operating, or we've got nitrogen tetroxides 12 or monomethyl hydrozines hydrozines or or any 13 combinations of those type of fluids and gases that 14 are used up-front on that section until the time 15 you're ready to operate that valve, and when you do then that fluid or gas does its work in the system. 16 17 And that's their intent, so if the valve doesn't work, 18 you've got a major system problem with a missile or a 19 satellite application. 20 MEMBER ROSEN: Okay.

MR. FREDERICK: So there, again, that's 22 why it's so important that the reliability is built in 23 up front, okay?

24 VICE CHAIRMAN WALLIS: But the aging isn't 25 -- these don't sit around for ten years before they're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

21

	148
1	used.
2	MR. FREDERICK: These don't?
3	VICE CHAIRMAN WALLIS: The ones that have
4	been tested and used didn't sit around for ten years.
5	MR. FREDERICK: Some of the satellite
6	valves are required to stay up there a long, long
7	period of time, some around ten years before they're
8	ever fire.
9	VICE CHAIRMAN WALLIS: Okay.
10	MR. FREDERICK: Because that's basically
11	the requirements for falling down, and the length of
12	time keeps increasing as time goes on because everyone
13	wants to extend the life or the use of something that
14	they've already got.
15	Squib valve design summary, squib valves
16	have high inherent reliability, and I believe that
17	based upon the thousands of valves that have been
18	produced and functioned very well. Reliability for
19	smaller valves is applicable for larger valves
20	because, obviously, you've got to start someplace to
21	get someplace else in which case that's how you get
22	there you start small and you go large. I've had
23	cases where I've taken valves and had to miniaturize
24	them for some of the Star Wars programs years ago in
25	which it was a case going the other direction. I mean

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

149 1 there are cases where you want to go down. 2 design standards have been The same 3 established as far as how to do the engineering 4 analysis, the proof and the leak testing of the 5 valves. Over and under testing of boosters and initiators is a standard practice. You need to know 6 7 what your margins are associated with how the unit's 8 going to operate. The design concept for shearing metal is 9 10 I mean, obviously, one of the key things the same. 11 with the squib valve you've got parent metal 12 throughout the entire life of whatever you're trying 13 to use until the time you're ready to open it up, so 14 you don't have to worry about any parent metal or any 15 connections that leak. That would be a problem if you didn't have an all metal section to prevent that. And 16 17 to date there's been no failures associated with shear 18 sections cracking under pressure or temperature conditions for the valves that we have delivered. 19 20 And if you have any other questions, I'll 21 be glad to take them right now or move on. Thank you. 22 MEMBER ROSEN: There are still a few questions on the table. One is the water, the design 23 24 for water, passing borated water at high pressure. MR. FREDERICK: Well, that gets back into 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	again reviewing the material combinations that's being
2	exposed to it over time, and I've got to work those
3	details out with Westinghouse to fine tune what the
4	plan is as far as material applications.
5	MEMBER ROSEN: So that's later also. I
6	mean the proof that these nine-inch squib valves will
7	pass water at high pressure for a long period of time,
8	I guess that's their design function in long-term
9	MR. FREDERICK: Well, I don't see any
10	problem with the valves passing water over long term.
11	I guess the issue mainly is is the concern about,
12	let's say, water in contact with the surface over a
13	long time.
14	MEMBER ROSEN: The seed.
15	MR. FREDERICK: Yes, in contact with the
16	seed over a long period of time. That's the issue
17	that we're still trying to work out with Westinghouse
18	with regard to material selection. But can we answer
19	that right now, I would say no because that hasn't
20	been decided yet. And, further, it would still take
21	some kind of test program in order to do that unless
22	perhaps Westinghouse has some data already on the
23	liquid in contact with the materials that are planned
24	for use.
25	MEMBER SHACK: Stainless steel has worked

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 rather well in PWRs, and when you weld you get rather 2 high stresses in the weld. They may not be design 3 stresses but I haven't cracked very many welds in 4 stainless steel in PWRs. So I think they have a high 5 probability of success. I mean you obviously have to pay attention to the details of the design, but I 6 7 think there are materials and design considerations 8 that you can use to give you a high probability of 9 success. 10 is MR. CUMMINS: This Ed Cummins. 11 Actually, if a valve opens, it's effectively a pipe, 12 and the question is sort of equivalent to will a 13 stainless steel pipe allow a two-phase flow, and I 14 think that's --15 MEMBER ROSEN: It doesn't have to reclose. MR. CUMMINS: It does not have to reclose. 16 17 MEMBER ROSEN: It's different in that sense from a safety relief valve. 18 19 MR. CUMMINS: Yes. 20 MEMBER ROSEN: Which you expect to open, 21 pass water and then reclose. This valve 22 MR. CUMMINS: That's right. 23 never -- you have to replace the actuating part of the 24 valve in order to put it back in service. 25 MR. SANCAKTAR: name is Selim My

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

151

	152
1	Sancaktar. I work for Westinghouse in Reliability and
2	Risk Assessment. Earlier this year, we gave you a
3	presentation on AP1000 PRA and during this
4	presentation you have brought up some questions about
5	the squib valve reliability, same questions that were
6	already discussed today. So what we did is we went
7	back since we are very much interested in the
8	health of these valves, it's in our interest to make
9	sure that the design will not cause problems later on.
10	And anything that you say we wanted to make sure that
11	we look into. So I'm going to kind of summarize what
12	we tried to do.
13	What we did was we went to Conax, a vendor
14	with considerable experience in this area, and you
15	already heard Dan Frederick summarize his position on
16	that. Whether he convinced you or not, I leave it to
17	you, but I was impressed and I bought it. But we
18	thought that you may need a little bit more proof than
19	that, so we said where else and we went to Sandia. We
20	thought that we are not on the same side of the fence
21	with Sandia most of the time, so that should be a good
22	check on our design and what we want to obtain.
23	So we went to Sandia and we told them what
24	the questions were and what we are trying to do. We

told them about Conax and we made sure that they

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	153
1	contacted each other and talked with each other. And
2	I have four slides that I want to try to very quickly
3	summarize the Sandia report. You're right, we didn't
4	make these slides, we just took these slides out of
5	Sandia's presentation, and I hope that I don't butcher
6	it. If I do any injustice to Sandia, I apologize up-
7	front.
8	MEMBER POWERS: These guys do injustices
9	to Sandia enough that they probably applaud.
10	MEMBER ROSEN: All the national labs are
11	treated equally here.
12	MR. SANCAKTAR: Also it's vice versa.
13	MEMBER KRESS: I've heard that first
14	question asked many times.
15	MR. SANCAKTAR: Why Sandia?
16	(Laughter.)
17	MEMBER POWERS: And you've seen that
18	answer to, "Sandia has successfully."
19	MR. SANCAKTAR: No, that's their answer.
20	My answer, Westinghouse answer is because we thought
21	that Sandia would be
22	CHAIRMAN BONACA: Okay. We need to move
23	on. We have to reach our time and we there's another
24	presentation, I understand, after this.
25	MR. SANCAKTAR: So Sandia with some basis

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	to talk about this subject. They are not neophytes in
2	this area. Here are the reasons for it, and they
3	looked into this and they also provided us with their
4	current test data, which is better done I'm going
5	to show you on a slide on the next one, that they are
6	more experienced now than they gave us data previously
7	that we used for AP1000.
8	MEMBER KRESS: Now these are pretty small
9	valves, right?
10	MR. SANCAKTAR: Excuse me? Yes. Yes.
11	MEMBER ROSEN: Now what is this NMLT/SLT?
12	What are all those abbreviations?
13	MR. SANCAKTAR: I have no idea about what
14	these acronyms stand for. The thing that I wanted to
15	emphasize here, there was another slide we removed, is
16	they have more experience now than they gave us in
17	1996 when we actually used their data. See, at the
18	time they gave us this number based on data available
19	at that time. Now, after six years, they have more
20	data and the trend that's the only thing I wanted
21	to emphasize the trend is even in a better
22	direction. But I wanted to
23	VICE CHAIRMAN WALLIS: So two in ten to
24	the minus four is one in 5,000? They tested one
25	failed in 5,000 tests?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	MR. SANCAKTAR: Actually, it's zero in
2	4,000 for this one, and this is zero in 5,000
3	something.
4	VICE CHAIRMAN WALLIS: So it's zero
5	really.
6	MEMBER SHACK: Well, you have to compute
7	your confidence on that.
8	MEMBER ROSEN: It's never quite
9	MEMBER SHACK: Zero out of 5,000 is zero.
10	MEMBER ROSEN: It's never quite zero.
11	VICE CHAIRMAN WALLIS: So there's a
12	confidence on these numbers.
13	MR. SANCAKTAR: So their this is,
14	again, Sandia conclusion. The AP1000 valve design is
15	a basic design that has been used extensively for many
16	smaller squib valves, so there's nothing new here.
17	And environments environment was one of the
18	questions brought up, and they're pointing out that
19	the valves that are built so far are used in very
20	harsh environments. The scaling, they are basically
21	scaling is not an issue, they don't see that as an
22	issue, and that the reliability is maintainable. The
23	number that has been assessed at this point is
24	maintainable. So they are basically concurring with
25	our current position.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	MEMBER KRESS: And you actually paid for
2	this? Bill Shack could have told you that for free.
3	MR. SANCAKTAR: So that's the bottom line
4	and this is their slide.
5	MEMBER KRESS: Okay.
6	MR. SANCAKTAR: Now I'm going to just
7	summarize things very quickly. These are just going
8	back through numbers, we have this EPRI number, and
9	then we have two Sandia sources which we used to
10	calculate the AP600 and AP1000 reliability. We got
11	new numbers now based on even more tests, and the
12	trend is in the right direction. And what we have
13	used is very reasonable. Just as a point, the EPRI
14	data is really based on MOVs. They didn't have data,
15	they just used MOV data. MOVs are considerably more
16	complicated than these valves.
17	And we, of course, are aware of the fact
18	that the AP1000 CDF is somewhat sensitive to the value
19	of the squib valve. It should be. And we are aware
20	of it, so we want to make sure that this area is
21	covered well, and we have taken all the design
22	operational conclusions to make sure that we are using
23	a reasonable, maybe a little bit even conservative
24	reliability and that we will try to maintain it
25	throughout the operation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	So the bottom line is recent information
2	from different sources would point out that the
3	failure probabilities are reasonable, consistent with
4	operating experience. This can be achieved for the
5	AP1000 specific design. Upscaling isn't a problem,
6	operational environment is not a problem, according to
7	people whom we've discussed the subject with, and we
8	told you who they are, and that this really is
9	answering your question about it may not be obvious
10	from the way it's stated but it's saying that the
11	concern is we don't think the concern is a major
12	failure mode. However, we note of course your point
13	and it should be made sure that it has been covered in
14	the design. So that's all I have to say.
15	MEMBER ROSEN: I guess the weakness of
16	this could you go back one slide?
17	MR. SANCAKTAR: Certainly.
18	MEMBER ROSEN: To me, might be that one
19	there. The first bullet, the sensitivity analysis,
20	you doubled the failure probability.
21	MR. SANCAKTAR: Yes.
22	MEMBER ROSEN: But one perhaps could argue
23	that doubling is a minor change in this thing. Would
24	you consider a tripling, a quadrupling?
25	MR. SANCAKTAR: Certainly. If you triple

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	it I mean as long as we are going in small steps
2	like that, it would go from 15 percent to 30 some
3	percent. I'm not sure exactly what, maybe 31 or 32.
4	I don't know how linear it is, you know, in that
5	range.
6	MEMBER KRESS: Increase it by a factor of
7	ten and go to 75 percent, roughly.
8	MR. SANCAKTAR: Right. I mean if these
9	squib valves are a factor of ten worse, and we are
10	really off the mark, we may as well use MOVs and we
11	don't need to go to them. The whole purpose of this
12	design is to stay away from MOVs because MOVs are not
13	as reliable. So we have to assure that
14	MEMBER ROSEN: Go back another slide and
15	let's take a look at that.
16	MR. SANCAKTAR: Okay.
17	MEMBER ROSEN: If back.
18	MR. SANCAKTAR: Oops. I don't know where
19	I am. I went to
20	MEMBER ROSEN: You're going the wrong way.
21	MR. SANCAKTAR: Oh. This slide?
22	MEMBER ROSEN: So if it's a factor of ten
23	worse
24	MR. SANCAKTAR: Right. We'll back to
25	MEMBER ROSEN: the failure to open in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	159
1	demand would be 1.3 to the minus three. Take that
2	Sandia 2002 data.
3	MR. SANCAKTAR: If you want to go from
4	here, right, we will be going in this range.
5	MEMBER ROSEN: You're almost back to the
6	EPRI motor-operator valve data.
7	MR. SANCAKTAR: Right. Exactly. I mean
8	if we truly believe that we are really that far off,
9	then we wouldn't have done this way, because already
10	have MOVs
11	VICE CHAIRMAN WALLIS: Well, I don't think
12	MOVs have anything to tell you about squib valves at
13	all. They're completely different things.
14	MEMBER POWERS: And what he's saying is he
15	would design an MOV into the system if he wanted to be
16	that bad.
17	MR. SANCAKTAR: We are living with them in
18	many areas. Yes?
19	MEMBER RANSOM: All of these data are
20	failure to open. Is anything known about the
21	inadvertent actuation of different kinds of valves in
22	these circuits?
23	MR. SANCAKTAR: The inadvertent actuation
24	is a very will depend on the properties of the
25	actuating design. We are not privy to how these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 valves are used in various applications. However, in 2 our application, we have done -- we tried to design it 3 out, not number it out or not try to hand write it out 4 but design it out as much as possible. And one of the 5 important points is we have a arm and -- separate arm and fire circuits. And if you arm it alone, the 6 7 accidental, it doesn't go. If you fire it by itself, 8 it doesn't go. You have to do both of them, and you have to do them in a certain very short amount of 9 10 time, within seconds. So accidentally arming doesn't 11 make it go, accidentally firing it doesn't go. Doing 12 these two at two different considerably different time 13 frames, like a minute apart or something, doesn't do 14 it. So we tried to design it and it's very 15 specifically designed. MEMBER ROSEN: And all of that's embedded 16 17 in the circuitry. 18 MR. SANCAKTAR: Yes. 19 MEMBER RANSOM: Well, can you put a number 20 to that? 21 MR. SANCAKTAR: Yes. We did, actually. 22 MEMBER RANSOM: I mean do you know what --MR. SANCAKTAR: Yes. Yes. The number to 23 24 that actually is like -- that slide has disappeared 25 due to the shortening of this -- is 5.9 minus five.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

160

	161
1	It's calculated by fault tree analysis, assigning
2	various failure combinations and common cause and this
3	and that.
4	VICE CHAIRMAN WALLIS: Can we move on?
5	MR. SANCAKTAR: Anything else? Okay.
6	MR. CORLETTI: This is Mike Corletti from
7	Westinghouse. I guess I'd like to ask what you'd like
8	to see in the next presentation. This is a subset of
9	what we presented in Pittsburgh. The question had
10	came up what do we do for a post-LOCA aerosol
11	deposition. We went through in Pittsburgh how we did
12	an AP1000-specific calculation analysis, similar to
13	what was done for AP600, and I'm leaving it up to the
14	Committee here whether you want to see the entire
15	presentation or
16	MEMBER KRESS: Well, I don't think we have
17	time for the entire presentation.
18	VICE CHAIRMAN WALLIS: The results were
19	interesting.
20	CHAIRMAN BONACA: How long would be the
21	NRC presentation?
22	MEMBER KRESS: That's a good question.
23	MR. COLACCINO: This is Joe Colaccino. We
24	expect the staff presentation to be less than 15
25	minutes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	MEMBER KRESS: I'm looking at your slides
2	to see
3	MR. SCOBEL: Well, in a quick summary, I
4	would say that we used the AP600 value for lambda and
5	then later showed that AP1000 is expected to have a
6	significantly higher lambda than AP600. So we did
7	the analysis conservatively. That's the quick and
8	dirty summary.
9	MEMBER KRESS: Now, lambda is a variable
10	in time.
11	MR. SCOBEL: Yes.
12	MEMBER KRESS: I was looking at one of
13	your slides that says you took a dominant core damage
14	sequence from PRA?
15	MR. SCOBEL: Yes. We used a core damage
16	sequence to generate the environments to calculate the
17	lambda.
18	MEMBER KRESS: And you used MAAP to get
19	the environmental conditions?
20	MR. SCOBEL: That's correct.
21	MEMBER KRESS: Which, basically, consists
22	of the steam condensation rates and the thermal
23	gradients
24	MR. SCOBEL: Yes.
25	MEMBER KRESS: And the aerosol

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	163
1	concentrations come out of MAAP also?
2	MR. SCOBEL: No. Actually, they didn't.
3	They came from 1465.
4	MEMBER KRESS: Okay. You standardized
5	MR. SCOBEL: We used 1465
6	MEMBER KRESS: You use the standardized
7	source term.
8	MR. SCOBEL: Yes.
9	MEMBER KRESS: Timing also?
10	MR. SCOBEL: Yes. Which is based on a
11	similar sequence from what we used for generating the
12	environment.
13	VICE CHAIRMAN WALLIS: So the lambda is
14	higher significantly but you're going to go back and
15	still use AP600 lambda?
16	MR. SCOBEL: That's correct.
17	MR. CORLETTI: No. Excuse me, this is
18	Mike Corletti. Dr. Wallis, we initially had used the
19	AP600 lambda but I think the staff had requested us to
20	perform a detailed AP1000 calculation. Once we had
21	paid for that, we decided to use the value of the
22	AP1000. So we are using the AP1000 value now.
23	MR. SCOBEL: Oh, okay. I didn't do that
24	part of the analysis.
25	MEMBER KRESS: Yes. I noticed at one of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	your slides that the dominant contributor of the
2	lambda was thermophoresis. I have a question about
3	that. Was there any hydrogen combustion involved in
4	this?
5	MR. SCOBEL: There was hydrogen combustion
6	involved in the environment for the lambda
7	calculation.
8	MEMBER KRESS: So at short periods you had
9	high thermal gradients?
10	MR. SCOBEL: Yes.
11	MEMBER KRESS: Dana, does that raise any
12	flags with you?
13	MEMBER POWERS: Yes.
14	MEMBER KRESS: Because it takes a while
15	for thermal gradient lambda to be developed, and I'm
16	not sure you have in a hydrogen combustion
17	VICE CHAIRMAN WALLIS: Isn't it the
18	condensation that does it?
19	MR. SCOBEL: It's a combination of the
20	heat transfer and the condensation heat transfer, but
21	the hydrogen combustion is occurring at ignitors so it
22	is sustained over periods of time during the releases.
23	MEMBER KRESS: Oh, you're sustaining it
24	over a period of time.
25	MR. SCOBEL: That's correct.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	MEMBER KRESS: And you feed that into a
2	thermal gradient at the wall? Because this is
3	thermophoresis to the walls.
4	MR. SCOBEL: Yes.
5	MEMBER KRESS: So what that does is raises
6	the temperature of the environment?
7	MR. SCOBEL: Yes.
8	MEMBER KRESS: Okay.
9	MR. SCOBEL: If you look at the
10	temperature plot that's in there, you can see that
11	even on this title heat transfer rate you can see the
12	spikes that are occurring as you have hydrogen burning
13	at the ignitors.
14	MEMBER KRESS: Those are overall mass
15	balance temperatures of the containment volume; is
16	that what those are?
17	MR. SCOBEL: I'm sorry, I don't
18	understand.
19	MEMBER KRESS: Are those average
20	temperatures for the whole containment
21	MR. SCOBEL: Yes, it is an average
22	MEMBER KRESS: sort of a bulk average
23	temperature.
24	MR. SCOBEL: Yes, it is an average.
25	MEMBER POWERS: Is this a one-node

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	problem?
2	MR. SCOBEL: The aerosol calculation is a
3	one-node problem.
4	MEMBER KRESS: So your delta T there looks
5	like you don't have a wall temperature there.
6	MR. SCOBEL: I do not, but the wall is the
7	passing containment cooling system, which would be
8	because it has the evaporation on the outside of the
9	wall, it would be significantly cold.
10	MEMBER KRESS: Pretty cold. So you're
11	looking at temperature differences of like 100 degrees
12	C in these.
13	MR. SCOBEL: Yes, that's correct.
14	MEMBER KRESS: And that translates into
15	what value for lambda did you actually end up with?
16	MR. SCOBEL: The average value, I believe,
17	is 1.1 per hour.
18	MEMBER KRESS: Does that factor in the
19	full surface area of the containment?
20	MR. SCOBEL: Yes. Yes, it does.
21	MEMBER KRESS: Dana, do you have any other
22	questions about that lambda?
23	MEMBER POWERS: I don't know very much
24	about this particular calculation. I'm a little
25	surprised you say the whole containment volume. Do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167
1	you really take the dome into account for this
2	calculation?
3	MR. SCOBEL: Yes. In terms of volume?
4	MEMBER POWERS: Yes.
5	MR. SCOBEL: That's correct. Yes, we do.
6	MEMBER POWERS: That probably explains the
7	difference between this and 600, because I don't think
8	they did for 600; I think they left the dome out.
9	MR. SCOBEL: I think I don't think
10	that's correct for AP600. We left out volumes that
11	were inactive like the dead-ended compartments, the
12	PXS compartment, the CVS. But the entire offered
13	compartment was accounted for.
14	MEMBER POWERS: I mean what I know is
15	what's written down here, and the issues that come up
16	on this is it looks like they used a fairly small
17	particle size but it's not very important here because
18	thermophoresis and diffusophoresis are dominant, and
19	in this size range there's not a whole lot of size
20	sensitivity to that. There is a sensitivity to the
21	shape factors that you choose to use for these
22	particles which are not fully dense. And so the
23	question comes up what shape factor did you use? Now,
24	NAUASTAR tends to treat everything as though it was a
25	sphere.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	MEMBER KRESS: Yes. I think they used a
2	density factor of 0.8 of material.
3	MEMBER POWERS: So that would give you
4	like a 1.2 shape factor, which is a pretty small shape
5	factor. That's essentially a sphere. That's not even
6	a very fluffy sphere. So you raise questions about
7	that. Since AP600 was done, there's now been some
8	measurements of shape factors under diffusophoresis,
9	and you can get some substantial shape factor effects
10	for what nominally look like spheres under
11	diffusophoresis just from the double it, triple it
12	kind of thing. And so you'd ask questions about how
13	do you treat shape factors?
14	The devil is a lot in the details here
15	because although the lambda they're getting out of
16	here is not an outrageous lambda, I mean it's kind of
17	what you'd expect, but what you've got is a
18	substantially higher inventory. And so for the 10 CFR
19	Part 100, you're asking what's the worst two hours
20	here because you're leaking out, and though you've got
21	a substantial lambda, it's not like 75 percent bigger.
22	So you've got the worst two hours where you're very
23	close for AP600. You've got a higher inventory, so
24	you've got to ask what's happening in the worst two
25	hours here, and it's not in this particular thing. A

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	little bit surprises me that they're getting so much
2	thermophoresis if they're not looking at internal
3	structures. I don't know whether you are or not.
4	MR. SCOBEL: Well, the heat transfer is
5	dominated by the passive containment cooling system,
6	especially after an hour or so when you're expecting
7	to get the releases of the fission products from the
8	core. So you expect your internal heat syncs to be
9	more or less saturated compared to the passive
10	containment cooling system.
11	MEMBER POWERS: Sure. Sure. When you're
12	going to the wall you've got a temperature gradient
13	and you've got a steam flux going the same way. It's
14	real easy to double count, so now the question is how
15	are you adding together the two effects, and you
16	really have to do that with Fokker-Planck equation.
17	You can't just fumble around with it. Now, there are
18	various ways to add and I just don't know how NAUASTAR
19	does that.
20	MEMBER KRESS: I thought they just
21	calculated them separately and added them linearly.
22	MEMBER POWERS: No. See now they double
23	count because you've got a volume that's moving like
24	this and then you're adding on to it. Well, this
25	volume has not seen the total thermal gradient and so

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	170
1	you're effectively depositing particles twice. It's
2	a real problem in these combined phoretic
3	environments. You have to do that really you have
4	to go really do that. At this size, you're in the
5	transition between the Newton regime and the continuum
6	regime, so you've got to figure out how you're going
7	to solve continuum mechanics and the Boltzmann
8	equation and make them match because you can't solve
9	them there. There's some guys that have done that in
10	the literature mostly down in Texas, and they have
11	some nice answers to that that they run against tests,
12	and I just don't know how they would compare it
13	against the straightforward addition. I'd have to
14	look at it, but it's I mean it's a tough question.
15	I notice in the viewgraph that it says,
16	gee, we neglected all these things and the experiments
17	show that aerosols tend to form sticky material to
18	either be retained in narrow path or fall quickly to
19	the ground. Well, the LACE tests they pick some
20	materials and when we look at what the fuel evolves
21	when it degrades we don't get stuff that looks like
22	LACE. LACE, as I recall, use cesium hydroxide and of
23	course that's one of the great results that comes out
24	of the Phebus Program. We don't have any cesium
25	hydroxide. We have cesium-molybdates and things like

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	171
1	that. And, in fact, in the tests we're doing now seem
2	to say these reactor aerosols just are not hydroscopic
3	and so this has neglected the hydroscopicity. That
4	may not be a great conservatism there.
5	My point being is the devil's in the
6	details on this, and I'm not sure how much of the
7	detail you can go into without actually pulling apart
8	the NAUA code and you never know where it stands right
9	now because it's an evolving code. I mean it keeps
10	it reacts to the changing technical environment.
11	MEMBER KRESS: Well, I'm not sure how to
12	proceed with this question then. Did you want to pose
13	some specific questions you'd like answers to and
14	they'll come back to us later on this or do you want
15	to look into it as a Committee ourselves?
16	MEMBER POWERS: Well, I mean you're
17	clearly going to have to look at the Part 100 analysis
18	on this plant, and that's where this thing comes
19	forward.
20	MEMBER KRESS: Yes.
21	MEMBER POWERS: I mean just on the face of
22	it, I look at this lambda 1.1 and I say, well, okay,
23	it's a larger than what they got for AP600. I don't
24	have any reason to doubt it. I mean if they'd come in
25	with ten, I would have said, well, they probably

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

172
haven't got that right. If they'd come in with 0.1,
I would have said, well, they probably haven't got
that right for another reason. It's this combination
of the lambda and the inventory and what the worst two
hours are and do you survive the Part 100 scrutiny?
And that's where we want to look at this stuff.
I mean you can say specific things: Okay,
what did you do about the diffusophoretic shape
factor, and we kind of know what that ought to be now.
We've got some measurements. How do you combine the
diffusophoresis term and the thermophoresis term?
You've got a problem with double counting here when
you do phoretics at the same time.
You would ask what did you do about the
non-radioactive mass, because you put 1465 in. That
only gives you the radioactive mass in there. So what
did you do with the rest of it? Well, they probably
didn't do anything with it. They probably just took
the particle size. Because they're coming in a little
bit small on the particle size, which, by the way, is
it's not a huge conservatism but it's definitely
not non-conservative, you know what I mean? I mean if
you were dominated by gravitational sedimentation, it
would be hugely conservative. But since you're
dominated by phoretic processes which are very size-

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	173
1	dependent at 0.1 microns but not very size-dependent
2	in this range, it's kind of a wash sort of thing
3	there.
4	To the extent that diffusophoresis is
5	important, you really come down to what your
6	condensation model due to the non-condensable gases in
7	there, more of a thermohydraulic question than
8	anything else.
9	MEMBER KRESS: That comes right out of
10	four, I guess.
11	MEMBER POWERS: Yes. And I don't know
12	what you're using.
13	MR. SCOBEL: Off the top of my head I
14	don't know either.
15	MEMBER POWERS: One of them.
16	(Laughter.)
17	VICE CHAIRMAN WALLIS: So how would you
18	reassure that they've done it reasonably? Would it
19	require that Dr. Powers read all your stuff and review
20	it or that Dr. Powers examines the staff about how
21	well they have assessed all these phenomena or how
22	would we be sort of reassured that everything is good
23	enough? What's the means for us to get to that state?
24	MR. SCOBEL: Is that up to me?
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	MEMBER ROSEN: Most assuredly, not.
2	MEMBER POWERS: Traditionally, the staff
3	has done independent calculations in this area.
4	VICE CHAIRMAN WALLIS: So we'd go after
5	the staff for reassurance.
6	MEMBER KRESS: I think we could ask this
7	question of the staff. They're probably not prepared
8	to address it today, but it's a question we could put
9	to the staff and see how they dealt with these issues
10	and their view and proceed from there.
11	VICE CHAIRMAN WALLIS: So the staff has
12	got a message now, I hope.
13	MEMBER KRESS: Yes. It's strictly a
14	question of do you meet the regulatory requirements of
15	10 CFR 100 from the various DBAs. And they have to
16	address those when they look at their SERs. So when
17	we get to evaluating the SER, I guess we'll bring that
18	question up.
19	With that, I'd like to turn it over to the
20	staff and hear their presentation. I'm going to
21	postpone the break until we hear from the staff.
22	MEMBER ROSEN: How long is the staff's
23	presentation?
24	MEMBER KRESS: They said about 15 minutes.
25	VICE CHAIRMAN WALLIS: That's for their

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	presentation; 35 minutes for questions?
2	MEMBER KRESS: Right.
3	MR. COLACCINO: This is Joe Colaccino.
4	Each of our slides we each are going to present a
5	status and we only have one slide for each of us. And
6	so I know mine I can do in one or two minutes just on
7	the status of the overall project.
8	VICE CHAIRMAN WALLIS: Do you have any
9	technical content?
10	MR. COLACCINO: Yes, sir. We're going to
11	talk thermohydraulic issues. With that, I'd like to
12	introduce Jennifer Uhle to do that, Section Chief in
13	the PWR Section.
14	MS. UHLE: Professor Wallis is this on?
15	My slide doesn't really have any technical content per
16	se because it was a repeat of what was said at the
17	Subcommittee meeting. At this point, we raised some
18	more questions to Westinghouse and they submitted
19	about 20 I guess 28 of the responses to yesterday,
20	and we're having a meeting with them too, so that's
21	where we're really going to get down into the details.
22	At this point, what we thought the staff
23	would do today would simply be to summarize to the
24	full Committee what our concerns are. Now, you've
25	already heard that because of what Westinghouse has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

already presented to you, so I don't know exactly what you want me to get into today. So what I had done was just put together a one-page slide that discusses the overarching issues.

5 But, first, I want to introduce the NRC We mostly have everybody here today. 6 Review Team. 7 We're getting some help from Research with Steve Gene Hsii is in NRR, he's in my section, 8 Bajorek. 9 he's in the back there. Walt Jensen, Lambros Lois, 10 Summer Sun and Len Ward. So the independent analysis 11 that the staff is doing is extensive. We are 12 comparing NRC code calculations and we are doing some 13 data comparison as well as some independent analytical 14 modeling. I was going to put my slide up but we 15 figured we'd be faster because I only have one slide because we have to get the projector set up, so I'm 16 17 just going to speak from my slide here.

18 At this point, we have some open items that were identified in the draft SE. 19 One that came 20 out as part of the discussion with the SE was the 21 identification of the limiting small-break LOCA 22 transient that was discussed to some degree at the 23 Subcommittee meeting, and the limiting small-break 24 LOCA had been the DEG or the DVI. However, they're getting very similar collapse liquid levels for the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

177
ADS inadvertent ADS-1,2,3 as well as with the cold
leg break. And so we wanted to verify that they have
identified what the limiting small-break LOCA
transient is because our review is focusing on that
particular transient.
We've also noticed that with our review
that containment back pressure that's been credited
for the small-break LOCA transient before was 14.7 and
now it's increasing to some degree, so we wanted to
get a better review or do a better review of that to
make sure that the back pressure that they are
crediting is not, I would say, non-conservative. So
we've addressed that in a question. We'll be
discussing that with Westinghouse tomorrow.
We have an open item that was raised by
the Subcommittee, and that is the NOTRUMP/RELAP5
comparison. If you've compared the two calculations,
we're getting somewhat different collapse liquid
levels, and we're also seeing it looks like a period
of time right around before the ADS4/IRWST transition
where there is a bifurcation between the two codes
where the NOTRUMP calculation shows an increase in
collapse liquid level, the RELAP 5 shows a decrease.
And after that point in time, the slopes are pretty
similar, so what we're trying to do is narrow our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

focus to look at that period of time. At first, NRC staff was going to do that review ourselves here. Looking at staffing and the logistics of things, Westinghouse may in fact do that comparison and then NRC would independently confirm that. We're going to discuss that tomorrow as well.

7 We have, of course, the outstanding issue on the core -- the level swell during the ADS4/IRWST 8 9 transition phase. And in that I should say that it's 10 not just a level swell but it's also the entrainment, 11 so any of the phenomena that are occurring during this 12 period of time it gets difficult to review because 13 there are so many phenomena that are in some way 14 competing. The higher the level swell you have the 15 more entrainment you would get. So to say that you're conservative in level swell you'd want to say that 16 17 NOTRUMP underpredicts level swell. But then if 18 NOTRUMP is underpredicting level swell, then that's 19 not conservative with respect to entrainment, because 20 you're going to be keeping more water in the core. 21 So Westinghouse has set up a variety of

calculations that demonstrate that looking at each one of these phenomena individually that they have calculated conservatively the prediction of the transient, and we're going to go over that with them

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	179
1	again tomorrow to make sure that we're in full
2	agreement.
3	VICE CHAIRMAN WALLIS: Now, let's see now.
4	We had a meeting in July and both you and Westinghouse
5	knew that there were these questions. I'm a little
6	surprised that the answer is Westinghouse submitted
7	something yesterday.
8	MS. UHLE: Westinghouse had submitted
9	information to us at an earlier period of time, okay?
10	We then went out with an additional set of questions
11	that are then questioning their answers. And what we
12	found was that we could sit there and go back and
13	forth
14	VICE CHAIRMAN WALLIS: But no one was
15	saying, "We're going to resolve this before we meet
16	with the ACRS on October the 1st"?
17	MS. UHLE: At the time in the meeting, we
18	thought that we would have that the Subcommittee
19	meeting would be canceled and that we may have a full
20	Committee meeting and at which point in time we would
21	discuss what we had resolved at that point. So for us
22	Westinghouse had submitted responses to our original
23	questions. They thought that they had
24	VICE CHAIRMAN WALLIS: But we're no
25	further ahead than we were in July. You haven't told

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	180
1	us anything new since then.
2	MS. UHLE: To the degree that we're
3	further ahead, we're further ahead in the comparison
4	of NOTRUMP to the
5	VICE CHAIRMAN WALLIS: Well, maybe you are
6	but we haven't been told.
7	MS. UHLE: Okay. I can tell you where
8	we're further ahead.
9	VICE CHAIRMAN WALLIS: Well, you probably
10	don't have the time to do that now. Maybe you want to
11	tell us where you're further ahead.
12	MEMBER POWERS: Jennifer, could I ask a
13	question. Now, you've spoken mostly about
14	thermohydraulics and the piping system and things like
15	that. How about this issue that was just raised, the
16	condensation rates in the containment?
17	MS. UHLE: Yes. The containment review,
18	that's in a different branch.
19	MEMBER POWERS: I see. And similarly
20	MS. UHLE: That's in the Containment
21	Section.
22	MEMBER POWERS: hydrogen blocking of
23	the dome and things like that
24	MS. UHLE: Yes. That's in a different
25	branch, but Joelle and Joe are writing down your

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	questions, and I believe that they would get those
2	concerns to the appropriate group. So in reactor
3	systems what we focus on is the
4	MEMBER POWERS: Looking at reactor systems
5	where you have this effluent coming out of your AD4
6	valve
7	MS. UHLE: Yes.
8	MEMBER POWERS: do you get a lot of
9	water droplet?
10	MS. UHLE: That is an open issue that we
11	have. Westinghouse, again, says conservatively that
12	they would during the ADS4/IRWST transition time
13	where it's conservative to assume a lot of water is
14	going out, they have done an analysis that shows that
15	with a homogenous situation that they're taking out a
16	lot of liquid and that they're slowing the
17	depressurization rate but they're still getting poor
18	covered. And, okay, that's something that we're,
19	again, looking at. We recognize that, but our
20	question then turns out to be when you get into the
21	long-term cooling analysis, you need to take liquid
22	out, so it's now non-conservative to assume liquid is
23	being taken out in a transition where you turn from
24	one assumption for conservatism into another. That's
25	our question. That's what we'll be discussing with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

them tomorrow.

1

2 I mean based on back-of-the-envelope 3 calculations that we have at this point, if you're 4 talking a long-term cooling, we are concerned about 5 the assumption that they are entraining as much liquid as they say. So on the last bullet, you'll see on 6 7 boron precipitation RELAP5 or WCOBRA/TRAC sensitivity studies. We want to address that by either running a 8 9 RELAP5 deck to completion into the long-term cooling 10 stages but we have to model the sump, and there's, 11 again, questions about the pressure drop through the 12 lines in the sump and the configuration, and RELAP 13 multi-demodeling of pipes doesn't do whereas 14 WCOBRA/TRAC can where they can get a gradient and then 15 donor the appropriate void fraction up into the ADS4 16 lines. So we're going to work out tomorrow 17 sensitivity studies that we would like Westinghouse to 18 run to determine if we feel that their calculation of 19 entrainment during this long-term phase the is 20 conservative for the boron precipitation. 21 MEMBER POWERS: It would be useful, if you

can in the course of doing these analyses, to report the water droplet emissions into the containment in the, say, 200 to 1,000 micron range.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MS. UHLE: See, we're not -- I mean we're

(202) 234-4433

22

23

24

25

	183
1	not going to have any idea of what we'll have an
2	idea of the mass coming out, but to say we know the
3	interfacial area exactly and therefore the diameter of
4	the droplets, there are no models in the code that
5	have been validated to determine that. But, of
6	course, you would think the higher the velocity of the
7	vapor, the smaller the droplets you're going to
8	MEMBER POWERS: That sort of information,
9	because that may be one of the hidden conservatisms in
10	this aerosol calculation, is those kinds of droplets
11	are usually pretty good at sweeping out aerosol and
12	just knowing what it is so you get some quantification
13	would be a useful thing to do if you're trying to do
14	a realistic source term analysis.
15	MS. UHLE: I mean we can certainly go and
16	come with a correlation that looks at what the size of
17	the droplets that are entrained, but it's not going to
18	be validated in any way. And it's not given by the
19	code; it's going to be just based on our view of
20	MEMBER KRESS: Normally, those droplets
21	are long gone before the source term comes out.
22	VICE CHAIRMAN WALLIS: They've all fallen
23	out, those big ones.
24	MS. UHLE: But, Dr. Powers, you're
25	indicating you want a lot of interfacial areas. You

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	184
1	want very small droplets.
2	MEMBER POWERS: Well, I'm just struggling
3	around for trying to understand all that's going on
4	with the aerosols in this containment, and what's
5	conservative and what's not conservative. And that's
6	just one thing that came to mind. I mean if there
7	isn't any, then that's fine too.
8	MEMBER KRESS: I suspect, for example,
9	that those droplets may not be well treated in the
10	thermal analysis of the containment.
11	MEMBER POWERS: There are droplets all
12	over this system. What we rather suspect is the
13	dripping off the roof if there's any condensation up
14	there inconsequential. They're just too damn big.
15	But these flows and things like that and bubbling and
16	popping
17	MEMBER KRESS: But those sprays they put
18	in really sweep out the aerosol.
19	MEMBER POWERS: But now if they would just
20	put a spray in there would be no problem at all. We
21	could all go home and not have to agonize so much.
22	MEMBER KRESS: Sorry about that.
23	MR. CORLETTI: You want another spray
24	system.
25	(Laughter.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	185
1	MEMBER POWERS: We love spray systems
2	around here.
3	VICE CHAIRMAN WALLIS: On the boron
4	precipitation, did you find this mysterious phase
5	diagram which seems to be a trivial thing to find with
6	boron water steam?
7	MS. UHLE: We did not. That question was
8	posed to Westinghouse. We thought we would
9	VICE CHAIRMAN WALLIS: I think it was
10	promised that someone would come up with one of these.
11	Now, Westinghouse said that they're going to meet with
12	you and then they're going to meet with us again in
13	December, but since there seems to be no progress
14	MS. UHLE: There is progress.
15	VICE CHAIRMAN WALLIS: Well, I mean
16	nothing to no progress reported to us that's
17	technical on any of these issues. There would have to
18	be probably a Subcommittee meeting between now and
19	December that's going to
20	MS. UHLE: Right. And that's what we
21	thought was discussed at the Subcommittee meeting,
22	that there would be a later Subcommittee meeting when
23	Westinghouse and the staff
24	VICE CHAIRMAN WALLIS: Well, we can't have
25	it until you have something to present to us which is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	ready.
2	MS. UHLE: Right. And it was not we
3	felt or the staff's position was that it wasn't the
4	point of today to provide progress to you. We thought
5	that that would be at the later Subcommittee meeting.
6	VICE CHAIRMAN WALLIS: That's right. So
7	when is that going to be? When is a reasonable time
8	to schedule this time when you will actually show the
9	real progress made in resolving these issues with
10	Westinghouse?
11	MR. CUMMINS: This is Ed Cummins. I think
12	we can answer that better after tomorrow, and I think
13	that we could communicate with you based on the
14	progress tomorrow.
15	VICE CHAIRMAN WALLIS: So it seems to me
16	that your idea to come back to the full Committee in
17	December is really rather premature because there's no
18	
19	MR. CUMMINS: Well, if you're
20	Westinghouse, you think you've answered all the
21	questions, but it's unfair to say that without the
22	interaction with the staff that that's the case. So
23	we feel pretty good, but I don't think you should rely
24	just on that. I think we could communicate to you
25	within a week when we would be ready to have a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	Subcommittee meeting.
2	VICE CHAIRMAN WALLIS: Well, it's a two-
3	sided thing. The staff should be doing work too.
4	MEMBER KRESS: May I put that on your
5	list?
6	VICE CHAIRMAN WALLIS: Maybe the staff has
7	been doing work that concludes that your work is
8	wrong, I have no idea.
9	MEMBER KRESS: We'll work that out. We
10	don't need to discuss that here.
11	MEMBER POWERS: I'll just inject, I found
12	the presentations and the information very useful
13	since I wasn't at any of the Subcommittee meetings.
14	Even Jennifer's zero viewgraph presentation was
15	interesting.
16	MS. UHLE: I have a viewgraph, they just
17	didn't put it up there. In fact, I have two. One is
18	entitled with my name on it.
19	VICE CHAIRMAN WALLIS: Really, your
20	viewgraph says that you're looking at the things that
21	Westinghouse presented this morning, so that's it.
22	MS. UHLE: Yes. If you want me to go into
23	what we have done in addition to what we had done from
24	the Subcommittee meeting, then I can summarize that
25	briefly for you. And that is we've been looking more

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 at the comparison of NOTRUMP to the APEX tests. We've done more back-of-the-envelope type calculations of 2 3 the level swell. We've looked at during the long-term 4 cooling and the ADS4/IRWST injection phase. We feel 5 that Westinghouse has, although I'm not saying for sure, appropriately compared data for the level swells 6 7 in both cases. We have made -- we're starting to reduce the data from the APEX-1000 test to get a 8 9 better idea of what the quality is going out the ADS4 10 and comparing that to what is predicted by NOTRUMP 11 during the ADS4/IWRST transition phase. 12 We've, in addition, loaded up a simplified 13 RELAP model to do the long-term cooling. What we need 14 from Westinghouse was the information on the L over Ds 15 for the pressure drops and get a better idea of what 16 the flow paths are in the system as a whole with 17 respect to the connection to the containment. And 18 that's when the question came up, well, why don't you 19 just tell us what sensitivity studies to do for 20 WCOBRA/TRAC because they already have a model put 21 together. So that's what we're putting forth there 22 tomorrow at the discussion. 23 And. of course, we've studied the 24 responses that Westinghouse has provided so far and 25 came up with the 30 additional questions, and we felt

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

188

	189
1	that we could go back and forth for quite a while
2	doing questions and answers, and we thought that a
3	workshop would be a more effective way of resolving
4	the problems, or I should say concerns. I guess
5	they're not problems.
6	MEMBER KRESS: Questions?
7	MS. UHLE: Questions. And also I should
8	put we have looked at the containment back pressure
9	determination and got our hands around exactly what
10	type of back pressure that they've been crediting for
11	each of the cases. We looked at the the
12	containment analysis is done in another branch but
13	looked at the assumptions that went into the
14	calculation to determine if they were conservative for
15	the small-break LOCA transients. But I would say the
16	majority of our work has focused on the boron
17	precipitation concern.
18	VICE CHAIRMAN WALLIS: And you still don't
19	have any phase diagrams for this boron precipitation
20	process? How can you do it?
21	MS. UHLE: Well, your phase diagram is
22	my feeling that your question is how much boron is
23	taken into going into the steam.
24	VICE CHAIRMAN WALLIS: Right.
25	MS. UHLE: And so we're conservatively

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 assuming none is going into the steam and it's all 2 staying in the water. So that's conservative. And we 3 checked to see what the inlet condition or the inlet 4 temperature coming into the bottom of the core is and 5 looking at the solubility as a function of time to see if there's going to be precipitation or not. And it 6 7 all boils down to how much you're ripping out, and, again, we are very skeptical about the Westinghouse 8 analysis and we're therefore meeting tomorrow to take 9 10 a look at it, because when we at this point in time 11 say is this -- are you precipitating, okay, we would 12 probably be more concerned than Westinghouse is. Well, this will just 13 CHAIRMAN BONACA: 14 have to come to a Subcommittee meeting and look at 15 where we stand. It seems is if there is a lot of work 16 that has been done. VICE CHAIRMAN WALLIS: Well, we'll still 17 18 be here on Friday and you've had this meeting with 19 Westinghouse tomorrow? Perhaps we can get together on 20 Friday? 21 MS. UHLE: Only if you pay for lunch. 22 (Laughter.) 23 VICE CHAIRMAN WALLIS: I'm not sure I'm 24 allowed to pay for your lunch. 25 MS. UHLE: Oh, yes, you are.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

190

	191
1	MEMBER POWERS: You can. She can't pay
2	for you.
3	MS. UHLE: We're not allowed to pay for
4	you. I'll buy you dessert to sweeten you up.
5	MEMBER POWERS: An impossible tour.
6	CHAIRMAN BONACA: Do we have another
7	presentation?
8	MEMBER KRESS: Yes.
9	CHAIRMAN BONACA: Let's move on to that.
10	MEMBER KRESS: Let's move on. Thank you,
11	Mr. Chairman.
12	MR. COLACCINO: Okay. I know we're
13	pressed for time, so I will also talk from a slide on
14	the status that's just right in front of you. Just go
15	over real quick where we're at with the DSER, it's
16	progress on our supplemental DSERs. What we on the
17	project team look at are the technical issues and what
18	our schedule is. I didn't think I said it at the
19	outset, my name is Joe Colaccino. I'm one of the
20	three project managers that's working the AP1000.
21	We did issue the DSER on time, on June 16,
22	2003. We did have 174 open items. We have been I
23	guess I would say we've been aggressively
24	Westinghouse has aggressively been engaging us and
25	we've been responding to them on virtually all of the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	open items that they can have response. We are
2	carrying some open items that really they're staff
3	open items that we need to complete certain actions,
4	and Westinghouse understands that.
5	As of yesterday, we had 24 of the open
6	items that we consider resolved, we have reviewed and
7	resolved, and we have no additional technical issues.
8	We have 36 open items that we have gotten commitments
9	from Westinghouse to change in a particular way, and
10	we just have to verify those commitments and DCD
11	changes, sorry, design control document, or in their
12	actual response to the open item.
13	We have had some additional questions, and
14	I think you've touched upon some of those that we have
15	passed down to Westinghouse. We're not tracking them
16	as open items per se, we've given them numbers. What
17	we are really sticking with the 174 open items that we
18	had at DSER so we don't lose track of anything.
19	We did in the DSER have five supplemental
20	reviews that we did say in the DSER that we expected
21	to issue supplemental draft safety evaluation reports,
22	and I've listed the five over here. Notice in
23	particular we have a public meeting scheduled tomorrow
24	on leak-before-break. We have staff members here
25	today who will be leading that discussion with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 Westinghouse. It is a public meeting. We're making 2 significant progress on this issue. We don't see that 3 -- we're moving forward on this issue. We don't right 4 now, at this point, the progress that we've made hold 5 this as one of our significant technical issues. There has been at least one other public meeting, 6 7 several calls between the staff and Westinghouse on 8 this. The security review is not done. 9 We did 10 not have a security section except to say that the 11 security review would be completed at some portion, 12 and we would issue a supplemental DSER. We still 13 expect to do that. That review is in progress and 14 NSER is conducting that review. 15 The initial test program at Westinghouse has been provided a number of additional questions, 16 17 and that review, that's an active review, Westinghouse 18 has responded to those questions and we're in the 19 progress of evaluating those. The testing and computer code evaluation, Chapter 21, we're in the 20 21 documentation really. This is mostly on the staff to 22 document the changes, how the AP600 codes are valid 23 That effort is ongoing also. for AP1000. 24 With regard to the significant technical issues, Jennifer -- and you've heard most of this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

193

presentation -- discussed the reactor systems issues, the entrainment, long-term cooling, core swell and boron precipitation. I would hold up as the other pole in a two-tent, you know, the long poles, is the structural and seismic issues, specifically the containment design and the basemat uplift. The staff did conduct an audit and public meeting at Westinghouse in early April. The containment design was not -- the calculations associated with the containment design were not available for the staff to review then. They are available now, so next week the staff will be going and looking at that. They'll be seeing that for the first time.

14 With regard to basemat uplift, there are 15 a number of open items that are associated with base mats that were outstanding from the April audit. 16 17 Westinghouse has come back and has tried to address We've also had discussions with 18 those questions. them, conference calls on that. 19 So we look to next week in the structural and seismic area. We carried 20 21 at the DSER phase on the order of 53 of the open 22 items, roughly one-third of the open items in the 23 DSER. We look at that as pretty significant activity 24 next week, which folds into the last one, discussion 25 of the schedule.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

	195
1	Back in July of 2002, we set out a
2	preliminary schedule which stated that which gave
3	our DSER date of June 16, 2003, our FSAR issuance date
4	of September of 2004. That schedule is stipulated on
5	us having minimal open items. We still believe we can
6	meet that schedule unless some of the other technical
7	issues present are more trouble than we think they
8	are. We have in that schedule, in that July 2002
9	schedule, we had scheduled then to come back to ACRS
10	full Committee in July of 2004.
11	Now, we are going to reassess the schedule
12	after we feel that we have three important
13	activities coming in the next couple of days, this
14	being one of the, of course. The other one is being
15	the workshop that's taking place tomorrow with reactor
16	systems, and also the audit next week. So after the
17	audit next week, we should be able to have a better
18	idea of where we stand on our schedule, and we plan to
19	issue some milestones, I think, as Westinghouse told
20	you, as to how we can complete if September of 2004
21	is still a good date and what our milestones that we
22	need to meet, both NRC and Westinghouse, to meet that
23	date. Other than that, I have nothing else. If you
24	have any questions, I'll be glad to answer them.
25	MEMBER KRESS: Seeing none, I guess we'll

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	196
1	turn the meeting back to you, Mr. Chair.
2	CHAIRMAN BONACA: Are there any more
3	questions? If there are none, we'll take a recess
4	until quarter of four.
5	MEMBER KRESS: Do you want to say
6	something, Mike?
7	MR. CORLETTI: I think thank you very
8	much.
9	MEMBER KRESS: Yes. Well, thank you.
10	(Whereupon, the foregoing matter went off
11	the record at 3:29 p.m. and went back on
12	the record at 3:48 p.m.)
13	CHAIRMAN BONACA: We're back in session,
14	and we have interesting presentation now on this NRC
15	research program on materials degradation. And Dr.
16	Ford is going to walk us through this and introduce
17	the presenters.
18	MEMBER FORD: We were originally billed to
19	be hearing about a program that you've all heard about
20	informally the material degradation program. In
21	fact, it's going to be wider than this. Mike Mayfield
22	is going to present a wider range of materials
23	degradation aspects that are being covered.
24	It will be of relevance to the research
25	report, Dana. It will also be give us some good

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	background for the presentation tomorrow to the
2	Commission.
3	MEMBER SIEBER: I've got to change it now,
4	because I said we would be anxious to or eager to
5	hear from the staff. Now
6	MEMBER FORD: You've heard.
7	MEMBER SIEBER: we've heard, so now
8	I've got to rewrite my speech.
9	MR. MAYFIELD: Well, we'll be happy to
10	come talk to you some more.
11	(Laughter.)
12	MEMBER FORD: So, Mike, it's all yours.
13	MR. MAYFIELD: Well, thank you. Some
14	months ago the committee had been briefed on the
15	staff's efforts looking at the response to the Davis-
16	Besse lessons learned passport and the program that
17	addressed the Davis-Besse issues.
18	When I looked at the committee's letter,
19	I said, "Well, that's interesting. I'm glad to see
20	the support. But, oh, by the way, we have a much
21	larger scope program than was briefed to the
22	committee." So I had asked Dr. Larkins for some time
23	to sit with the committee and just give you a snapshot
24	of what we're doing and the scope of those activities.
25	And it turns out now that with the Commission

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	briefing, the timing, maybe we were late by a month,
2	but at least we're a day in advance.
3	So with that, I have with me this
4	afternoon Joe Muscara from the Materials Engineering
5	Branch.
6	MEMBER POWERS: Is he qualified to talk to
7	us?
8	MR. MAYFIELD: Sir?
9	MEMBER POWERS: Is he qualified to talk to
10	us?
11	(Laughter.)
12	MR. MAYFIELD: You know, there have been
13	doubts.
14	(Laughter.)
15	But in
16	MEMBER POWERS: I never get an answer
17	either.
18	MR. MAYFIELD: In this specialty, yes,
19	sir, I contest that he is qualified.
20	What I wanted to do was to, again, talk
21	fairly quickly about a broad range of subjects, not to
22	do a specific technical briefing, but rather to try
23	and illustrate the range of areas where we're working,
24	and that we are producing some results, not just
25	plans.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	199
1	Our environmentally-assisted tracking
2	research is a long
3	MEMBER POWERS: Mike, can I interrupt
4	and
5	MR. MAYFIELD: Sir?
6	MEMBER POWERS: tell you where I'm
7	struggling? And it may be a little unfair to the
8	other members, because I've looked into some of this
9	stuff here. But I'm trying desperately to understand
10	the bound between what's the NRC responsibility to
11	understand about these units that in order to
12	fulfill its mission of protecting the public health
13	and safety versus what is the responsibility of the
14	owner or operator
15	MR. MAYFIELD: Right.
16	MEMBER POWERS: of the machines.
17	MR. MAYFIELD: If I can, let me address
18	that as we go, because actually I think there is a
19	pretty good story in this area in particular. By and
20	large and part of the answer to your question goes
21	to the second bullet. This is a long-standing
22	program. It goes back to the early or, I'm sorry,
23	mid '70s.
24	Over time, what we've been doing is
25	responding to degradation that's been identified in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	service. You can look at the stress corrosion
2	cracking in the BWR piping, and it morphed itself into
3	irradiation-assisted stress corrosion cracking. We've
4	been worrying about fatigue life in piping;
5	subsequently, fatigue crack growth in pressure vessels
6	and piping, the steam generator tube's activity
7	MEMBER SHACK: What about embrittlement of
8	cast stainless steel?
9	MR. MAYFIELD: Embrittlement of cast
10	stainless steel. There is one laboratory that
11	MEMBER POWERS: Did you guys do any work
12	on that at all?
13	MR. MAYFIELD: There was one laboratory
14	that did some kind of cheesy work, but we subsequently
15	got that straightened out, and a good piece of work
16	evolved.
17	MEMBER ROSEN: And actually, that bullet,
18	steam generator tube degradation, really has 11-teen
19	sub-bullets under it. But it
20	MR. MAYFIELD: Yes, sir.
21	MEMBER ROSEN: starts with something
22	called denting, if you're old enough to remember that.
23	MR. MAYFIELD: That's correct. And so the
24	point about the steam generators is that activity was
25	one that started out under the EAC program, and then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

201
as it blossomed became a program unto itself. And I
think we've briefed the committee on that a couple of
different times.
The primary water stress corrosion
cracking is sort of the in vogue thing today, and now
the boric acid corrosion. One of the things that has
kept happening to us over time, as well as to the
industry, is where we're responding to identified
degradation, often times we're responding to the
degradation being identified by water in the floor.
We're tired of it. The industry is tired
of it. And so this has been a time where we have
started putting some serious emphasis on a proactive
research program looking forward, not to solve the
problem, but to see what we can do to develop as
research tools to do what is necessary to look
forward.
The industry today has a major program in
this area. That program materials I think it's
just materials degradation. The chief nuclear
officers, it's my understanding, have voted
unanimously to form this and support the program with
dollars as opposed to just moral support. They are
pulling staff members online to staff the activity,

and then there is research work looking proactively at

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

202 1 what can be done. That's one major element of their 2 program. 3 They are the ones putting, if you will, 4 the serious money into it at this stage, and Joe will 5 talk more about what we're doing on the proactive program as we go. But the industry are the ones that 6 7 are putting the money into solving the issues. Our role is more one of confirmatory, once they've put 8 something forward; anticipatory, in trying to get our 9 10 arms around, is what the industry doing credible? Are 11 they missing something? 12 There is no -- well, I think the one 13 guarantee in this is that we will not guess about 14 everything that could go wrong in a nuclear powerplant 15 in the materials system. It's just not practical to 16 say we would do that. 17 Hopefully, we can get further along than 18 we are today. One of the things --19 MEMBER POWERS: If you were king, what 20 would we have? 21 MR. MAYFIELD: I'm sorry. Say it again? 22 MEMBER POWERS: If you were king, what 23 would we have? If Joe were king, what would we have? 24 MR. MAYFIELD: In terms of? The ability to predict 25 MEMBER POWERS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	what's going on.
2	MR. MAYFIELD: We'd have first principles
3	models that helped us where we could understand the
4	degradation mechanisms, identify the susceptible
5	locations, and be able to predict quantitatively what
6	was going on and where and when.
7	And then, we would have the inspection
8	tools necessary to go out and confirm that, indeed,
9	that was happening, that and that we could reliably
10	detect and quantify the degradation and make sound
11	predictions about, when do you need to react? You,
12	the licensee, when do you need to react to to make
13	the run/repair/retire decisions? I think that
14	phrasing has fallen
15	MEMBER POWERS: I mean, what you describe
16	sounds like a wonderful thing for a license to have.
17	MR. MAYFIELD: Well, you said if I was
18	king.
19	MEMBER POWERS: Yes, I know. No, I said
20	if Joe was king.
21	MR. MAYFIELD: Ah, well. Okay.
22	MEMBER POWERS: I'm never going to make
23	you king. I know what you'd do.
24	(Laughter.)
25	MR. MAYFIELD: I agree. And I think the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

NRC's role -- and, in fact, when we were here a couple of weeks ago talking about the sump blockage issue, one of the issues that came up there was the, if you will, tension between the staff's role and the industry's role. And that I think by its very nature, a confirmatory research program, brings about that tension.

What is our role? And when do you trade off or hand off from the staff to the industry and back? It is a difficult issue. It comes up repeatedly. I came to work for the NRC in '85. We were discussing exactly that issue for the budget that year. And we have had that discussion actively every year since, and it's -- it changes a bit with time and cycles a bit with time. And it cycles with issue.

MEMBER POWERS: I mean, what I can tell you is that there is an ACRS position, de facto in one of our research reports, that says, yes, it's the industry's responsibility to take care of nearly all of these problems.

But the problem that you run into is they can make mistakes, they can leave things out, and it's NRC's responsibility to make sure that their proposed solutions are: a) in fact, solutions; and b) do solve the problem completely. And to do that, NRC has to be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	205
1	an active participant in the field. I mean, that's
2	basically what the ACRS has said in the past.
3	MR. MAYFIELD: And that's pretty much what
4	we're doing. And I think this program area is
5	actually an excellent example of that, and one of the
6	things we'll talk about is some of the interaction we
7	are having with the industry cooperatively.
8	MEMBER POWERS: Well, Joe has put another
9	spin on that, and one that I'm enormously sympathetic
10	with. He says if I'm an owner or operator of these
11	things, I'm so anxious to devote all my efforts to
12	getting rid of the problem that I really haven't got
13	time or inclination to go into the fundamentals.
14	And if you're just looking over people's
15	shoulder and watching, then you do have a chance to go
16	into the into more fundamental perhaps than other
17	people. And that, too, seems to be a good idea to me.
18	I mean, I don't have any trouble with that.
19	MR. MAYFIELD: And I think that perhaps
20	prior to the V.C. Summer and Davis-Besse events we
21	were seeing and I don't want to make this sound too
22	definitive. But generally, we would see issues or
23	approaches to, well, let's make the problem go away
24	and move on, rather than really understand the
25	problem, and look for, where can something similar

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	happen to us?
2	I think that what we're seeing now is an
3	industry that has decided, one, it's a safety issue,
4	so we need to do something about it. Well, they've
5	always dealt with the safety aspects of it. But now
6	it's getting to be a bigger and bigger economic
7	impact, and there is plainly an economic advantage to
8	being able to run the plant rather than having to stop
9	and fix it.
10	So there is now both pieces coming
11	together the safety interest and the economic
12	interest. And it's
13	MEMBER POWERS: I get
14	MR. MAYFIELD: creating a situation
15	where in this area we are I think in the kind of
16	environment we'd like to see.
17	MEMBER POWERS: I get the sense that there
18	is a feeling toward this like there like TMI.
19	Another Davis-Besse incident impacts not just that
20	plant but the entire industry.
21	MR. MAYFIELD: All we were trying to
22	really illustrate with this slide is that degradation
23	continues to evolve with time. One of the things that
24	we have found is just about the time we think we've
25	fixed one problem another one creeps up. And it may

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	207
1	simply be a variant on the problem we think we've
2	solved.
3	And that's something that we've some of
4	us have wearied of. And we'd very much like to try
5	and get our arms around it a little bit better than we
6	have today, and to be able to deal with some of these
7	things.
8	MEMBER SIEBER: Are there real solutions
9	other than just changing materials? For example, your
10	program really looks at detection in a timely fashion
11	and adequate repair methods or replacement, you know,
12	and
13	MR. MAYFIELD: I think there are some good
14	examples where there have been mitigative strategies
15	put in place. For example, in the BWRs. The
16	hydrogen
17	MEMBER SIEBER: Chemistry.
18	MR. MAYFIELD: water chemistry I think
19	is an excellent example. Some of the stress
20	improvement techniques, the weld overlay repair
21	technique while not really a mitigator, allowed
22	them many of the plants to avoid large-scale
23	replacements.
24	So there are things that had been put in
25	place. The technique

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	MEMBER SHACK: Well, the attention we pay
2	to water chemistry is a relative
3	MR. MAYFIELD: The attention we pay to
4	water chemistry today is a huge
5	MEMBER SIEBER: On the other hand, you can
6	develop mitigating strategies and say, "Well, this
7	will solve this problem." In the meantime, you've
8	created another problem. For example, steam generator
9	chemistry in PWRs.
10	MR. MAYFIELD: Yes.
11	MEMBER SIEBER: The first inclination was
12	to make the water as pure as it could possibly be,
13	which happened to be the wrong thing to do.
14	MR. MAYFIELD: That wasn't all that great
15	an idea.
16	MEMBER SIEBER: Right. And so, where do
17	you lead yourself? By the time you're done, you've
18	probably solved the problem. But the plant is now in
19	really bad shape.
20	MR. MUSCARA: If I may make a comment on
21	the water chemistry.
22	MEMBER SIEBER: Okay.
23	MR. MUSCARA: And our role and the
24	industry's role. If you remember back in the
25	mid '70s, a lot of work was going on, EPRI-sponsored

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	work, on BWR pipe cracking.
2	MEMBER SIEBER: Right.
3	MR. MUSCARA: And most of that work was
4	done with high stress and high oxygen levels. That's
5	it.
6	MEMBER SIEBER: That's right.
7	MR. MUSCARA: We came in with our EAC work
8	at Argonne and started doing work with the effects of
9	impurities, and sure enough we found that impurities
10	had a big effect, maybe even bigger than the oxygen.
11	And this led the industry, which were developing the
12	water chemistry guidelines.
13	MEMBER SIEBER: Okay.
14	MR. MUSCARA: So, again, there is a role
15	for us in identifying and understanding problems, and
16	then there's a role for the industry to respond.
17	MEMBER SIEBER: Well, there's no doubt in
18	my mind that that's the truth. I think you bring
19	something to the table, that it represents a little
20	bit of a different viewpoint than the manufacturers
21	and licensees might have. And I think it takes all
22	three.
23	MR. MAYFIELD: I agree.
24	MEMBER SIEBER: Okay.
25	MR. MAYFIELD: The one thing that we are,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	have been, and continue to push is to not just deal
2	with the problems of the day but to try and understand
3	what's under that problem, what caused it.
4	MEMBER SIEBER: Right.
5	MR. MAYFIELD: And it has been difficult
6	in the past to really be able to pursue that at the
7	level we thought was appropriate. There's budget
8	challenges, and there's all kinds of new things
9	happening.
10	One of the things we're pushing on we
11	have a commitment from Ashok Thadani to keep pushing
12	in this area. He is very supportive of trying to get
13	ahead of this. So this has become an element of the
14	program that we anticipate continuing and continuing
15	fairly aggressively.
16	MEMBER SIEBER: How much do the
17	Commissioners, other than the Chairman, know about
18	this?
19	MR. MAYFIELD: Probably fairly little.
20	MEMBER SIEBER: Until tomorrow.
21	MR. MAYFIELD: We have briefed the
22	Chairman on at least the broad strategy, not on the
23	specifics. I think the committee, far and away, has
24	received more information, at least informally, and
25	what we'll talk about this afternoon.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	MEMBER SIEBER: Okay.
2	MR. MAYFIELD: But the Chairman I think
3	knows in sort of broad brush direction where we're
4	going.
5	MEMBER SIEBER: Okay. So I can expect
6	when I talk to the Commissioners tomorrow that three
7	of them won't know very much about it.
8	MR. MAYFIELD: I think that's a fair
9	expectation.
10	MEMBER SIEBER: Okay.
11	MR. MAYFIELD: Major activities in the
12	materials degradation program look at environmentally-
13	assisted cracking and lightwater reactors, corrosion
14	of pressure boundary materials in concentrated boric
15	acid solutions.
16	You'd think this was something we would
17	have addressed many years ago, but it turns out there
18	are fundamental aspects of it that even today we don't
19	really have a good handle on. And then, finally,
20	looking examination of the North Anna 2 nozzles and
21	J-welds, and I'll talk a little bit more about what we
22	have acquired.
23	We've got ongoing this week a vessel
24	penetration conference, and we'll talk a little bit
25	more about that. There's an Alloy 600 issues task

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	212
1	group. That's an activity that's collaborative with
2	the industry.
3	We're looking at forming an international
4	cooperative program looking at primary water stress
5	corrosion cracking and non-destructive examination
6	techniques. The NDE piece we'll say a little bit more
7	about, but you really need to have the tools that have
8	been validated and that are highly reliable for
9	detecting and characterizing the degradation.
10	That's going to be, I believe, essential
11	to get ahead of this problem. And then, finally,
12	we'll talk some more about the proactive materials
13	degradation initiative.
14	Just to without going through the slide
15	in detail, the reliability of the NDE program has been
16	a long-standing program. It started at about the same
17	time the environmentally-assisted cracking work did.
18	We have a major activity looking at ISI reliability
19	and ASME code requirements.
20	We are looking at surface roughness
21	effects, how smooth does the surface really have to
22	be, how does that impact the reliability of the
23	inspection. We're looking at techniques for
24	inspecting for stress corrosion cracking and reactor
25	internals.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 One of the big things that, frankly, Joe 2 had a large hand in several years ago was getting in 3 place in the ASME code, and then the industry moving 4 forward on performance demonstration programs to 5 demonstrate that the inspections that were being performed really were reliable. 6 7 That's an area we continue to follow and be interested in, and looking at how sample sets are 8 9 developed, how many inspection tests have to be 10 performed, addition of -- additional training of the 11 inspectors. 12 And, finally, we follow fairly closely 13 of the parallel international some research 14 activities. 15 MEMBER FORD: Mike, could I ask a question to follow up on that? At the last meeting that we 16 17 had, the subcommittee meeting on the Davis-Besse 18 issue, we brought up questions about probabilities of 19 detection, inspection techniques used for the VHP and 20 also the bottom head. 21 The back from the answers we qot 22 utilities, the MRP, were quite honesty rather woolly. 23 They weren't crisp and to the point. 24 MR. MAYFIELD: Yes.

> That does not -- first of MEMBER FORD:

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	214
1	all, in reality, what is the case? And do you feel as
2	though there's a need to move forward, a need to push
3	more?
4	MR. MAYFIELD: Well, I think that there
5	plainly is a need to move forward and have additional
6	mockups that deal with a broader range of issues
7	and
8	MEMBER FORD: I guess my more specific
9	question was: was that just a bad communication from
10	the speaker? Or is that
11	MR. MAYFIELD: No. I think that the
12	where the industry has been, they were doing this on
13	the fly.
14	MEMBER FORD: Right.
15	MR. MAYFIELD: It was I think to their
16	great credit. They were taking a serious attempt at
17	quickly putting together inspection mockups, so they
18	would have some sense that, indeed, these inspections
19	were being effective.
20	Doing that on the fly is always a
21	challenge. And do you have enough sample sets? Do
22	the range of flaws adequately capture what you would
23	like to have? The answer to those things are no, and
24	so there is interest and I think need for additional
25	work in that area.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	Where they are today I have to admit I
2	haven't
3	MEMBER FORD: Well, for example
4	MR. MAYFIELD: specific. I don't know.
5	MEMBER FORD: along this same line of
6	questioning, V.C. Summer I mean, they failed to
7	identify these cracks time and time again. They were
8	there. But then they used eddy current to identify
9	where there were, in fact, superficial indications.
10	And then, when they tested those with volumetric, they
11	found the cracks.
12	It seems as if they there was a
13	discovery that a combination of eddy current and
14	volumetric would be an improved technique to identify
15	cracking.
16	Now, given that it is an improved
17	technique, are they using it now after V.C. Summer?
18	Or is it simply something that is now being done?
19	MR. MUSCARA: They are using it now.
20	MEMBER FORD: They are using it now.
21	MR. MUSCARA: Let me give you a little bit
22	of perspective about this work that has gone on for a
23	number of years on performance demonstration. We
24	initiated the work at Battelle Northwest Laboratory,
25	have come up with some recommendations, and, in fact,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	216
1	a draft reg. guide to require performance
2	demonstration.
3	The reason was that the techniques are in
4	place, cookbook procedures, didn't seem to work. And
5	every time they changed a parameter thinking that this
6	would solve the problem, it still wasn't working. So
7	we decided we needed to have a performance
8	demonstration.
9	And when we started working with the code,
10	the initial document in fact required that any
11	inspection that's conducted per the code should be
12	conducted using qualified techniques, procedures, and
13	personnel through performance demonstration.
14	Well, people realized that some of these
15	inspections were not very effective for example,
16	cast stainless steel, dissimilar metal welds. And so
17	the words were changed a little bit. It said that you
18	should use qualified procedures if you have a
19	supplement.
20	So the code developed several supplements
21	for those components and materials that were
22	inspectable. The ones that were difficult they've
23	left behind work in progress. And so what's
24	happened is that because the problem is difficult
25	there has been no performance administration

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	supplement developed.
2	I've been pushing that if the problem is
3	difficult, do some work, resolve it, get the
4	performance administration process in place. So what
5	has happened with some of these inspections is that
6	there wasn't a qualified procedure. And there wasn't
7	a qualified procedure because it was difficult.
8	But, in fact, if the code insists that any
9	inspection that's conducted should be conducted
10	according to a qualified procedure, then all of the
11	inspections should be effective.
12	MEMBER POWERS: This is one of those areas
13	that elicits some of my challenges that I'm facing
14	here. If the code requires that there be a qualified
15	procedure, and the licensee doesn't have one, why is
16	it that NRC has any responsibilities other than to
17	tell the licensee, "Go get yourself a qualified
18	procedure."
19	Now, I can understand that that might not
20	be a useful comment 10 years, 20 years ago. But today
21	when we see this EPRI NDE Center, and things like
22	that, why does NRC have any responsibilities in the
23	NDE business at all now?
24	MR. MAYFIELD: Let me give you a case
25	a specific example. And Joe mentioned the cast

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	stainless steel and inspecting that material.
2	We were hearing from some of the industry
3	folks that the material is uninspectable, the job
4	can't be done, you just can't find flaws in it, so we
5	should give up inspecting it.
6	We had asked Steve Doctor at PNNL to
7	explore this. Is this true? Steve looked Steve,
8	and I think with some input from Joe, looked at a low
9	frequency SAFT system, synthetic aperture focusing
10	technique, and took his equipment down to the NDE
11	Center and inspected their cast stainless steel sample
12	sets and did very well. In fact, it is inspectable,
13	and they did a good job in characterizing the flaws
14	that were in the sample sets.
15	So our role in this is to go back and say,
16	"You know that story about not inspectable. Well, you
17	may not like the speed of the technique, and
18	economically it may be a challenge for you, but oh, by
19	the way, the material is inspectable." Not as well as
20	others, but it is inspectable.
21	MEMBER POWERS: And I think that's a
22	really good example of where I think it's appropriate
23	for the regulator to validate his contention that he
24	thinks it's inspectable and should be inspected, and,
25	you know, be a responsible regulator.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	What I'm asking about is this should we
2	have an ongoing capability to evaluate these NDE
3	capabilities or not. I mean, that sort of thing.
4	MR. MAYFIELD: Okay. When V.C. Summer was
5	down with their hot leg crack, we were asked to
6	provide some support to NRR. And we asked Steve and
7	Debbie Jackson from my staff to get on the airplane
8	and go visit with the licensee. And Steve went down
9	and looked at what the licensee was doing and said,
10	"Gee, why don't you try a different transducer," and
11	I don't remember the specifics, "and find cracks."
12	And that level of expertise isn't
13	something that you go pluck off the shelf. Somebody
14	has to pay for it to keep the technique sharp, to keep
15	the skill set sharp. And that's a role that the
16	region found extraordinarily useful.
17	I believe I can speak for Dan Archen
18	sitting here, I think shaking his head yes, that the
19	regulatory office found useful and ultimately I
20	think the licensee found useful but it was a role
21	that the Office of Research played to have that
22	capability and skill set
23	MR. VIJUK: I mean, that's
24	MR. MAYFIELD: available to support the
25	regulatory program.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	220
1	MEMBER POWERS: I mean, that is one of the
2	criteria we have for the research program is to have
3	that expertise. And we concede the point that to
4	maintain that expertise you've got to get them
5	involved in something. You just can't say be smart
6	all the time and we'll use you when we want to.
7	And so, I mean, it's an acceptable answer
8	to me. I just
9	MR. VIJUK: And, Dana, I don't pretend to
10	tell you that I've got a formula that I can tell you
11	exactly, "Here's how much I ought to invest in these
12	various areas." But that's the initiative. That's
13	what we're trying to do with this.
14	MEMBER POWERS: And we will not try to
15	tell you that either, that I mean, that's a
16	judgment call that you guys in management get the big
17	bucks well, in some cases the little bucks.
18	(Laughter.)
19	MR. VIJUK: Some bucks.
20	MR. MUSCARA: I think it's important to
21	realize that you just don't get this kind of
22	expertise. We have been supporting this work for 25
23	years, and so we've developed people, we've developed
24	technologies that we make use over and over.
25	MEMBER POWERS: We've already bought that.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	221
1	I mean
2	MR. VIJUK: Okay.
3	MEMBER POWERS: you've picked one of
4	our boxes
5	MR. VIJUK: Okay.
6	MEMBER POWERS: that we bought off on,
7	so and that's all I was asking for.
8	MR. VIJUK: Okay.
9	VICE CHAIRMAN WALLIS: Mike, what I'm
10	trying to formulate here is that all of this seems to
11	be in all in the context of nuclear stuff and NRC.
12	What is NRC doing in the nuclear industry? I don't
13	see it in the perspective of, what is the whole
14	community I mean, this business of degradation of
15	materials occurs everywhere.
16	MR. MAYFIELD: Yes.
17	VICE CHAIRMAN WALLIS: And isn't there
18	some kind of forefront university research, which has
19	nothing to do with nuclear, which is still relevant to
20	you which is going on?
21	MR. MAYFIELD: Absolutely. And that's
22	VICE CHAIRMAN WALLIS: And I don't see
23	that perspective here at all. I really think it's
24	within the little club of nuclear people doing this
25	stuff.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	222
1	MR. MAYFIELD: Well, you see that
2	perspective because that's the club I personally
3	belong to. But what we are doing, and what we have,
4	is input from many different sources. One of the
5	programs that we belong to is actually an EPRI
6	program, a cooperative program, cooperative
7	international program on CIR I'm sorry, I've lost
8	the name of the thing. But it's a cooperative program
9	looking at irradiation-assisted stress corrosion
10	cracking.
11	VICE CHAIRMAN WALLIS: That's still a
12	closed club, though. EPRI is
13	MR. MAYFIELD: It's a closed club, but
14	they are reaching out to a variety of other people.
15	One of the people Joe uses, or we use, as a consultant
16	is Roger Staehle. And Roger's program today addresses
17	a broad range of subjects, and it is not confined
18	solely to the nuclear industry.
19	MEMBER POWERS: How in the world do you
20	get Roger on the consulting fees that government will
21	pay?
22	MR. MUSCARA: He's kind to us.
23	(Laughter.)
24	VICE CHAIRMAN WALLIS: But you need to
25	have that perspective, and I don't quite know whether

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	there's 90 percent of the understanding about this
2	field resides in NRC and its club, or whether the
3	maybe you've only got 10 percent of it, and 90 percent
4	of it is out there somewhere else. I don't have
5	MR. MUSCARA: Just a brief comment. We do
6	make use of people that are involved in other fields.
7	Of course, we hear about the work they're doing for
8	us, but they're doing work in other areas.
9	But in addition, I'd like to mention also
10	that when we're talking about degradation and
11	corrosion, these are mechanisms that are environment-
12	specific. And when you look at other industries
13	petrochemical their environments are entirely
14	different. So you wind up having to worry about,
15	really, the nuclear core of people that notice the
16	environment and work with these environments.
17	But their expertise goes beyond our area.
18	Unfortunately, we cannot use much of the data that's
19	out there, because it's for different systems,
20	different sets of conditions.
21	MEMBER SIEBER: Well, even in the coal-
22	fired powerplant industry, the materials are
23	different.
24	MR. MAYFIELD: That's correct.
25	MEMBER SIEBER: As well as the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	224
1	environment.
2	MR. MAYFIELD: Yes.
3	MEMBER SIEBER: And if you go beyond that
4	to aeronautics and things like that, the materials are
5	really different. And so I think it's sort of a
6	natural phenomenon that you end up with these clubs of
7	specialists in certain materials under certain
8	environments.
9	MEMBER FORD: But if I could also just
10	address your question, if I'm allowed to. You know,
11	the NRC is also a member of this ICGEAC, which is 72
12	companies and national labs. And those individuals
13	also work in other areas.
14	For instance, GE did work on chemical
15	plants, and my ex-colleagues. So we do draw in
16	from
17	MR. MAYFIELD: Yes.
18	MEMBER FORD: other industries.
19	MR. MAYFIELD: And you mentioned that it's
20	an international cooperative group. In its original
21	incarnation, it was called the International Cyclic
22	Crack Growth Rate Group, and the NRC was one of the
23	founders of that group. It was actually an NRC
24	initiative that got that going.
25	MEMBER SIEBER: Well, the interesting

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	thing is that if you look for reasons why the NRC
2	should be doing this, it's that the ASME code under
3	which these inspections are done names the NRC as the
4	regulating authority in other words, the final
5	decisionmaker as to what's right and what's wrong.
6	And so there is a responsibility that's
7	laid on the shoulders of the agency in order to make
8	sure that the latest data and information and
9	correlations and techniques are in place and in use by
10	the users of the code.
11	MR. MAYFIELD: That's correct. And we
12	also, because we endorse the code in the regulations,
13	we pick up a responsibility to look carefully at
14	what's in the code.
15	MEMBER SIEBER: That's right.
16	MR. MAYFIELD: And the best way to
17	understand that is to have participated along the way.
18	I won't dwell on this cooperative program.
19	We are developing this, looking to leverage both our
20	knowledge and our funds. We've had some informal
21	meetings with several countries, found a fair bit of
22	interest in pursuing this. And we have had a bit of
23	a kickoff meeting at the conference this week, and the
24	feedback is positive, at least informally.
25	When you ask them to sign the check is

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	when they get serious about their level of interest.
2	But we think it's likely they that we will see
3	participation in this program.
4	The elements of the EAC program at
5	Argonne, we've looked at fatigue life evaluation in
6	both PWR and BWR environments, looking at carbon and
7	low alloy steels, as well as the stainless steels. We
8	are looking at irradiation-assisted stress corrosion
9	cracking for stainless steels in both BWR and PWR
10	environments.
11	We're looking at crack growth rates in the
12	nickel-based alloys and, finally, looking at how you
13	reduce all of that information to practice through the
14	code.
15	This is just to illustrate that there
16	we have found, at least in the laboratory, there is an
17	effect of the environment in reducing the fatigue life
18	for the carbon steels and the low alloy steels. I
19	think the committee has been briefed on this work in
20	detail by both the staff and the industry.
21	When we look at irradiation effects on
22	stress corrosion cracking growth rates, in the normal
23	water chemistry BWR environment, crack growth rates in
24	the present study come out about a factor of five for
25	the irradiated steels higher than for the unirradiated

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	227
1	steels. And this NUREG-0313 curve is the crack growth
2	rate curve that the staff tends to default to when
3	they don't have other information on stress corrosion
4	cracking growth rates.
5	And so when we irradiate these steels in
6	the normal water chemistry environment, we find
7	significantly higher and, in my world, a factor of
8	five is significant higher crack growth rates.
9	However, when we lower the oxygen, we find that the
10	crack growth rates go down well below down in here
11	well below the NUREG-0313 curve.
12	Just to try and summarize that again,
13	crack growth rates at these kind of fluences, for the
14	normal water chemistry we're seeing fairly high growth
15	rates compared to what we have traditionally used for
16	unirradiated steels. But when you drop the oxygen,
17	the crack growth rates come back down.
18	One of the other things people have
19	speculated for many years that neutron irradiation
20	lowers the fracture toughness of stainless steels.
21	Then comes the great debate about, well, how much?
22	How serious an effect is it?
23	Work that's being done is showing that, in
24	fact, the J-R curve, the crack growth, ductile crack
25	growth resistance, has been obtained, and we find

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	228
1	there is a substantive effect, particularly in the
2	reduction of the crack initiation resistance the
3	infamous $J1_c$ parameter. And we find that we come from
4	fairly high values down rather sharply with
5	irradiation. And it appears that we're going to some
6	sort of plateau effect.
7	Continued work in this area we're
8	looking at going to some higher dose levels, out to
9	40 dpa, looking at using the BOR-60 reactor,
10	temperatures around 300 C. We have completed the five
11	and 10 dpa dose rate studies.
12	VICE CHAIRMAN WALLIS: The evidence for a
13	plateau seems to be extrapolation.
14	MR. MAYFIELD: I'm telling you if it
15	appears we don't have the data, that's why we've gone
16	out to 40 dba, to see the other thing I would say
17	is it can only go so low.
18	VICE CHAIRMAN WALLIS: Zero.
19	MR. MAYFIELD: Well, it won't it, by
20	and large, won't fall apart on its own. But it's, how
21	low does it go at the higher dose rates?
22	We're looking at effects of some of the
23	chemical compositions. We're running a range of
24	mechanical property kinds of tests, doing
25	microstructural characterization of this, and we're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	229
1	looking to we talked earlier about if Joe was king,
2	what would he do.
3	The notion here is to try and develop some
4	modeling capability to predict this behavior, and then
5	to make some projections for the PWR coolant
6	environment.
7	MEMBER POWERS: And what is the
8	counterpart industry program here?
9	MR. MAYFIELD: Very similar kinds of
10	things coming at it from a somewhat different
11	standpoint. They are doing test reactor irradiations.
12	They are also getting components out of internals,
13	getting samples from decommissioned plants. So there
14	is a companion.
15	And, frankly, getting the samples out of
16	the decommissioned plants is the big buck industry in
17	the or initiative. Doing the BOR-60 irradiations,
18	while not inexpensive, is certainly less costly than
19	going and chopping chunks out of somebody's core
20	bearing.
21	MEMBER POWERS: So, I mean, what you're
22	seeing here I think is this point that Joe has made
23	earlier, is that they are taking a somewhat empirical
24	approach, and maybe you're taking a more academic or
25	scientific approach on this?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	MR. MAYFIELD: We're taking perhaps a more
2	structured approach. They are going and getting what
3	they can get and testing it with the uncertainties
4	that come with, well, what is the fluence that that
5	component saw? What does the spectrum really look
6	like? What was the temperature, the irradiation
7	temperature?
8	So there's a fair bit of uncertainty that
9	goes with testing things that you acquire from an
10	operating plant as opposed to the much less uncertain
11	situation of a test reactor irradiation.
12	One of the things that we have seen over
13	time is that, for example, in reactor pressure vessel
14	embrittlement you see a fair bit of scatter in the
15	material surveillance samples, because there is a fair
16	bit of uncertainty as to what they actually see.
17	We get much less scatter, not
18	insignificant, but much less when we do test reactor
19	irradiations. And it goes to being able to control
20	the conditions.
21	MEMBER POWERS: Aren't you just saying
22	that the industry has a bad program?
23	MR. MAYFIELD: Not at all. I'm saying
24	they are testing the real material with all its
25	uncertainties, and we can then use that to test

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

modeling. At some point you have to test -- the thing that's really of interest to you is the performance of the component in service, under service-irradiated conditions, and to understand the uncertainties that go with that service operation and to correctly characterize those uncertainties.

MEMBER POWERS: You know, what I see one could easily forecast is they come back and say, "Okay. Well, I've taken this trojan reactor apart, and I've looked at it, and it has these properties. And that's about like my properties, and so I'm okay."

And you come back and say, "No, you are 10 degrees colder or hotter or one way or the other. And I've run my model and it says you're not okay. And you just have catharsis here."

MR. MAYFIELD: One of the lessons that certainly the staff learned, and I'm pretty sure the industry learned, was from the Yankee Rowe experience, where they came in -- as you recall, they were one of the lead plants for license renewal.

And they came in to the staff and were 21 22 doing the reactor pressure vessel assessment, and Neil 23 Randall said, "What temperature do you run at?" Well, 24 we run -- actually, we said, "Just a bit less than 25 500." And "But the embrittlement he says,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

	232
1	correlations are 525 to 575. What are you doing about
2	a temperature correction?" And the answer was,
3	"Nothing."
4	"Well, maybe you should." And so when we
5	started testing what was actually going on at that
6	plant, not plant materials but pushing at exact
7	conditions at the plant, their license renewal story
8	started unraveling. Economic considerations
9	ultimately took over, but it was looking the test
10	was what's really going on and how well do your plant
11	conditions match the models that are being used.
12	And I think that acquiring samples from
13	albeit decommissioned plants, and testing those, and
14	understanding what the plant actually saw and how that
15	compares to the model, and how that actually compares
16	to regulatory criteria and uncertainty levels that we
17	would anticipate, I think that's a valuable
18	MEMBER POWERS: But see, without your
19	program, the industry would never know those things.
20	MR. MAYFIELD: I'm sorry. Say again.
21	MEMBER POWERS: Without your program, the
22	industry would never know those things.
23	MR. MAYFIELD: Well, and that's where part
24	of the cooperative activity comes. Rather than the
25	staff simply sitting back saying, "Gee, you ought to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	do all of this stuff," and then ending up trying to
2	argue our way through it, we are, in fact, doing the
3	more structured aspect of this, which supports some
4	other activities that the industry has ongoing. But
5	it gives us the independent data set to test their
6	results and their contentions.
7	MEMBER SIEBER: Well, even if you use
8	actual decommissioned reactor test data, you still
9	have a problem with the dose
10	MR. MAYFIELD: That's correct.
11	MEMBER SIEBER: issue, because it is
12	quite variable as you
13	MR. MAYFIELD: Yes.
14	MEMBER SIEBER: travel around the core,
15	and you have to know exactly
16	MR. MAYFIELD: Yes.
17	MEMBER SIEBER: You have to understand and
18	calculate what the fluence is at the location where
19	you take the samples.
20	MR. MAYFIELD: With all due respect to my
21	colleagues that do those sorts of calculations, I'll
22	trust the sampling. Thank you.
23	MEMBER SIEBER: Okay.
24	MR. MAYFIELD: One of the things that we
25	have done in the few other instances where we've been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

able to acquire samples from service is to go back to some of the national laboratories, and through various counting schemes tried to back calculate what the fluence really was and test that against the transport calculations. While not all that precise, it tells you if you're grossly in error. So it has been useful from that standpoint.

Rather than belabor it, we do have this conference ongoing. Just to indicate the level of seriousness that the national and international communities see this problem, we've got 220 folks in a Marriott hotel up here in Gaithersburg representing 11 different countries, significant industry participation to this thing.

We will put the proceedings out on CD as well as a NUREG conference proceedings. But this has been an extraordinarily well-attended conference covering a broad range of subjects and very active discussions.

20 VICE CHAIRMAN WALLIS: When the industry
21 participates, do they actually present sort of
22 significant technical work?
23 MR. MAYFIELD: Yes.
24 VICE CHAIRMAN WALLIS: Okay. Good.
25 MR. MAYFIELD: Yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

	235
1	MEMBER ROSEN: Are these licensees there?
2	MR. MAYFIELD: Yes. Some are licensees,
3	some from EPRI, but there are a fair number of
4	licensees.
5	MEMBER FORD: To me, that was the most
6	significant factor. At this particular conference I
7	think there were about 20 attendees from operating
8	reactors as opposed to two or three from EPRI that you
9	would get at a normal technical conference. I think
10	that's about right, wasn't it, Joe?
11	MR. MUSCARA: Well, in addition, there's
12	also a representation from
13	MR. MAYFIELD: Make sure you use the mike.
14	MR. MUSCARA: I said in addition there's
15	also a representation from Bettis and KAPL, so there's
16	wide representation. And we're getting a lot of good,
17	relatively new information.
18	MEMBER SIEBER: Well, actually, the Navy
19	did a lot of work in the '50s and '60s which never
20	seemed to make it to the commercial end of the
21	business. And I guess perhaps I don't understand all
22	of the deal about classification, but it seems to me
23	that the Navy data is very pertinent to what the
24	commercial people think is
25	MR. MAYFIELD: Some is and some isn't, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	you can go a lot further than that.
2	MEMBER FORD: The change with Rickover
3	when Rickover went away, then the number of attendees
4	from KAPL and Bettis increased dramatically.
5	MR. MAYFIELD: Yes. But they very often
6	will attend, and that's they don't participate
7	much, so we still fight that issue. But it rightly
8	or wrongly, they have their classification rules, and
9	so far at least I've been unsuccessful in thwarting
10	those rules.
11	I mentioned that I think the committee has
12	heard that we've been getting materials from some of
13	the vessel heads. We've got nozzle 3 and then
14	nozzles 2 and 46 from Davis-Besse, and we're doing a
15	fair bit of characterization of those materials and
16	looking at the cracking, how it initiates and how it
17	propagates.
18	We have gotten samples from the North Anna
19	Unit 2 head. Those were harvested by the industry and
20	provided to us. Then, there is a collaborative
21	coordinated program I guess is the phrase, looking at,
22	what do you do beyond that?
23	One of the things that PNNL has done we
24	shipped the samples to PNNL. They are characterizing
25	them, and then the industry teams will come in and do

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

237 1 inspections. Sort of an inspection round robin with 2 PNNL arbitrating the program, so as sort of the 3 independent arbiter of things. 4 One of the -- we've talked a fair bit 5 about the inspections. We spend a lot of time worrying about how cracks initiate and grow and what 6 7 they may look like. The point here with the crack is the way they bifurcate they create 8 tips a particular challenge for the inspections and being 9 10 able to correctly characterize and quantify the 11 cracking. 12 They also can create some challenges for fracture analysis, because you now have a 13 the 14 bifurcated crack tip. And those don't behave quite 15 the same way, so you -- if you treat it like it's a single sharp crack, you're going to get a conservative 16 17 result. 18 So trying to find ways to characterize that historically has proven fruitless, and you treat 19 20 them as a single sharp crack. You just have to 21 recognize that there is an unguantified level of 22 conservatism in that treatment. 23 VICE CHAIRMAN WALLIS: It's a rather 24 strange crack there. It doesn't look like a crack. It looks like it's a chain of ponds connected by 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	little streams. It's very different from the usual
2	crack.
3	MR. MAYFIELD: I probably have never
4	thought to characterize it that way, but those
5	that's actually fairly typical of this type of crack
6	and
7	VICE CHAIRMAN WALLIS: It opens up that
8	much.
9	MR. MAYFIELD: Sir?
10	VICE CHAIRMAN WALLIS: It opens up. That
11	thing on the left, it opens up that much with a
12	little
13	MR. MAYFIELD: Well, the
14	VICE CHAIRMAN WALLIS: Anyway, we don't
15	really need to get into this. But it just looks
16	strange. The one on the bottom there has got these
17	very fine cracks, and then these very fat regions
18	mixed up with it. It's strange.
19	MR. MAYFIELD: There are those of us, you
20	know, fat people find fat regions. So
21	VICE CHAIRMAN WALLIS: But those are
22	ponds, isolated little ponds, too. Anyway, let's go
23	on.
24	MR. MAYFIELD: We do have this new boric
25	acid corrosion program going that's looking at the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	239
1	crack growth rates in the Alloy 600 and 182 from the
2	Davis-Besse head. We're not all that fascinated with
3	Davis-Besse anymore. We are, however, very keenly
4	interested in how the Alloy 600 and the 182 materials
5	that are still in service how they are behaving.
6	We're looking at a computational model and
7	a probabilistic assessment of a number of things
8	crack initiation and growth. Then, finally, we're
9	looking at measuring the electrochemical potential and
10	wastage rates for a range of solution compositions,
11	temperatures, and pressure boundary materials. These
12	are fairly basic bits of data that we were surprised
13	we couldn't put our hands on when we started trying to
14	characterize Davis-Besse. So
15	MEMBER POWERS: And could I understand
16	what you do with this, for instance, the corrosion
17	rate of low alloy steels and concentrated boric acid.
18	I mean, isn't it adequate just to know that that's a
19	really bad idea, to have low allow steel and
20	concentrated boric acid?

21 MR. MAYFIELD: It's a -- is it enough to 22 know that if I knew exactly what I had, and that I 23 always had really concentrated boric acid, and I knew 24 what that meant, then I'd say, yes, that's just 25 fundamentally a bad idea. Now you're left with, well,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

240
how bad an idea is it? And how long can I let it be
a bad idea?
We had Sequoyah, I believe, that had a
leaking valve or something up on the vessel head, and
they had some minor cutting. How long had that gone
on? We've had leaking seals for a very long time, and
we've only had one Davis-Besse.
So the notion of understanding that and
establishing appropriate inspection and regulatory
acceptance criteria gets to be important. And to just
say, gee, all boric acid is a bad idea, well,
fundamentally I agree it's a bad idea. How bad an
idea?
MEMBER POWERS: Yes. I mean, that's what
I'm asking. Why do I need to know that? Isn't it the
case now I mean, you saw drips of boric acid on the
bottom of South Texas' reactor pressure vessel that
were smaller than the eraser here. And that was
enough to create a big brouhaha.
MR. MAYFIELD: Well, I think it was
MEMBER POWERS: Isn't that the answer,
that it demonstrates
MR. MAYFIELD: No. I don't think the
issue there was the potential for the boric acid to
corrode away the low alloy steel. The issue there was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	it was an indicator that we had a leak in a place we
2	really weren't anticipating one for other reasons.
3	The issue here is when I've got boric acid dripping
4	out on other things, how concerned should I be?
5	MEMBER POWERS: And so you're saying that
6	if you go in and inspect a plant today, and it has
7	boric acid leaking onto something, that you'll run
8	back and do a calculation and say, "Oh, yes, you can
9	run three more cycles and"
10	MR. MAYFIELD: No. It's the other end.
11	How frequently should I be looking, and with what
12	reliability? Is it enough to simply do a plant
13	walkdown? When I find boric acid in one place, how
14	aggressively do I need to look in other places? Not
15	that they were the source of the leak, but where there
16	may be some consequential damage. And how frequently
17	do I need to do that?
18	MEMBER POWERS: Isn't the answer always
19	going to be if you see the boric acid, you're going to
20	look aggressively?
21	MR. MAYFIELD: Absolutely.
22	MEMBER POWERS: And you're going to look
23	every shutdown?
24	MR. MAYFIELD: I'm going to do some level
25	of looking at every shutdown. Part of the issue here

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	is predicting or getting a handle on how aggressively
2	do I need to look at this, and how with what
3	frequency. Do I need to do do I need to bring
4	plants down in mid-cycle? I think that is unlikely.
5	But if the results come back and say, you
6	know, it really doesn't take very much boric acid to
7	create a really bad situation, which I don't think
8	they're going to do, but if that's what they said, we
9	may change inspection frequencies.
10	But right now we don't have the basic
11	information to make those calls, and we think that
12	where we are is adequate. That's the judgment. And
13	this is a bit of confirmatory work to fill a technical
14	hole, so that we can say that with higher confidence,
15	or, if the judgment has been wrong, to revisit it.
16	Does that answer your question? Or
17	MEMBER POWERS: It's an answer. I
18	struggle with understanding it. It's a real good
19	answer. Don't get me wrong, Mike. I really like the
20	answer. I'm trying to figure out how I articulate it
21	so it's limiting, because I think I could say the same
22	thing about second quantitization of iron.
23	MR. MAYFIELD: And that's where a judgment
24	call comes in as to how far do you go. I agree. I
25	used to have this go-round with Jim Snezak when he was

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	the Deputy Executive Director for Operations. Why are
2	you doing any of these radiation effects? Why don't
3	you just call it good? Well, we learned something
4	new. Sam Collins has regularly characterized NRC as
5	a learning organization.
6	I don't need to learn everything that I
7	need you know, out there, but I there are some
8	of this that we still think important.
9	Just to give you do this one very
10	quickly. NRC is looking at the North Anna 2 discarded
11	head pieces as part of an NRC industry collaborative
12	program. We have seven nozzles that have been removed
13	and shipped to PNNL, and there are going to be several
14	NDE teams that will go examine those nozzles. And
15	then, following that we'll do destructive exams.
16	Just to give you a sense of size, these
17	are not trivial bits of steel that we've acquired.
18	They are contaminated to varying levels. So we've had
19	to set up a controlled area for them to be handled and
20	to characterize them.
21	Our part of this is
22	MEMBER SHACK: That's a distorted picture.
23	How much of the tube is sticking out of that sucker?
24	MR. MAYFIELD: Quite a bit. I think by
25	the time they shipped them I think they lobbed off a

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	244
1	fair bit of the tube. This is when they were being
2	harvested. So, but it's more than two or three
3	inches.
4	MEMBER POWERS: All of those samples lost.
5	(Laughter.)
6	MR. MAYFIELD: Well, the
7	MEMBER POWERS: That would keep Bill happy
8	for months.
9	MR. MAYFIELD: The one thing I have
10	learned about Joe Muscara and Bill Cullen is they
11	don't waste much. So Joe ind his programs wastes
12	virtually nothing, and Bill Cullen I think came to us
13	with the same view in life. You don't waste valuable
14	material.
15	The other side of that is you can only
16	test so much Alloy 600.
17	There was a presentation to the committee
18	years ago by one of Dr. Shack's colleagues, a
19	gentleman by the name of Tom Kassner. And one of the
20	committee members asked him, why does there appear to
21	be so much data on Alloy 600 in all of these different
22	environments?
23	And I remember Tom's answer was, oh, every
24	graduate student loves to test Alloy 600, because
25	everything cracks it. And we decided maybe that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	245
1	hadn't been the best choice of alloy.
2	Just to transition to the proactive
3	program, when we look at how the NRC manages materials
4	degradation, the box on the lower left goes to
5	managing identified degradation, typically gets
6	involved with the regulatory program, inspections,
7	required inspections, code activities.
8	When we start looking at, where does the
9	research program contribute and balance off against
10	things that the industry is doing, we look at the
11	evaluation of new materials, materials that are being
12	proposed, Alloy 690 is a material that's being used
13	regularly as a replacement alloy. We look at
14	inspection procedures and techniques for testing
15	assertions about what can and cannot be done. And
16	then, finally, we are looking at new degradation
17	mechanisms.
18	We talked earlier about what can be done
19	mitigation strategies, looking at repair and
20	mitigation strategies. One of the first tests is to
21	make sure you do no harm, or at least to try and make
22	sure you do no harm. Steam generators I think the
23	varied history there is a classic example where maybe
24	we should have looked a little harder before we moved
25	forward.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

So the research program contribution is really looking at the center and right-hand boxes to test this, not to develop the solutions, but to have sufficient information and technical data to support an assessment about whether a repair strategy really does hold up, whether a new material really is going to perform the way it's being touted. So that really is our role in this.

Well, let me make an 9 MEMBER SIEBER: observation. You can agree or disagree with it. 10 But 11 I remember back in the 1950s -- and I am that old --12 when Inconel 600, which is what we called it back in 13 those days -- was considered the next best thing to 14 Superman's kryptonite. And they had not observed 15 primary water stress corrosion cracking, and so this was the miracle material which later on seemed to end 16 17 up cracking no matter what you did.

MEMBER POWERS: Jack, it behaved just like kryptonite does to Superman. It damn near killed him.

(Laughter.)

21 MEMBER SIEBER: On the other hand, here 22 comes 690, and it's being applied in a lot of 23 different places -- steam generators, reactor vessel 24 heads, and so forth. And to my knowledge, there isn't 25 a lot of data.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

18

19

20

Í	247
1	MR. MAYFIELD: That's correct.
2	MEMBER SIEBER: And so where you are right
3	now is here's kryptonite number two. And you won't
4	know until all of a sudden these materials will start
5	revealing sooner or later some of their imperfections.
6	MR. MAYFIELD: Left to their own devices,
7	the materials and environments, you're exactly right.
8	It eventually will if there's an operative
9	degradation mechanism, it will self-reveal. Part of
10	what we're trying to do, and I believe part of what
11	the industry is trying to do, is to get ahead of that
12	curve.
13	MEMBER SIEBER: Well, how do you do it,
14	though, without a tremendous amount of testing before
15	you ever apply to
16	MR. MAYFIELD: Well, right now people had
17	to move forward, and so there's precious little
18	testing, and there are people making some significant
19	financial gambles.
20	MEMBER SIEBER: That's right.
21	MR. MAYFIELD: Being followed up with
22	additional testing, looking at what do we need to do
23	in terms of inspection intervals, are there other
24	mitigation strategies we need to put into place. And
25	I think that's really where it's going.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	248
1	MEMBER SIEBER: So you're relying on being
2	able to predict and define what when to inspect and
3	how often to inspect and how to inspect as part of the
4	a major part of the strategy for new materials?
5	MR. MAYFIELD: Well, and then develop the
6	understanding that would support that.
7	MEMBER SIEBER: Yes, okay. But without
8	data, how do you predict?
9	MR. MAYFIELD: Well, you have to that's
10	where you have to go get the data and develop the
11	understanding.
12	MEMBER FORD: But I don't think the
13	situation is quite as bad as you are proposing, Jack.
14	Yes, we've had a whole lot of problems over the last
15	30 years. But at the same time, there has been a
16	tremendous increase in the understanding the
17	fundamental of understanding many of these cracking
18	mechanisms for the existing materials.
19	If that understanding is any good, then
20	you can extrapolate it from, for instance, 600 to 690
21	and no change in microstructure, etcetera. And if
22	your predictive models are any good, then you should
23	know where to look.
24	MEMBER POWERS: Peter, I'm willing to bet
25	that when the guy came in to advance Alloy 600 over

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	stainless steel in the steam generator tubes he made
2	the exact same speech.
3	MEMBER FORD: I can't answer your question
4	definitively, because I wasn't around at that time,
5	and I haven't worked on PWRs. But I know you are
6	wrong as far as BWRs are concerned. We were way ahead
7	of the ball, because we understood the mechanisms on
8	IASCC in the core.
9	MEMBER POWERS: I'm stunned that you say
10	that, because I just saw a big thing up there that
11	said, well, we don't understand IASCC at all.
12	MR. MAYFIELD: That isn't what it said.
13	We're continuing to improve, but it
14	MEMBER SIEBER: I hate to introduce
15	something that would degrade old conversation, but
16	and you may want to move on.
17	MR. MAYFIELD: Yes. Why don't we let
18	me turn it over to Joe to talk about this proactive
19	materials degradation initiative. Joe?
20	MR. MUSCARA: If you don't mind, maybe
21	I'll follow up on the 690 issue just briefly.
22	Clearly, when the plants were built, we all thought
23	600 was a wonderful material. There was data at the
24	time that indicated otherwise. It wasn't widely
25	publicized, and it came out a little bit too late.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	But there was data early on that showed that this
2	material could crack in primary water.
3	And with respect to the 690, we have some
4	data, we have some understanding, particularly for the
5	primary side. We don't really understand very much
6	what's going to happen on the secondary side, where
7	there's a lot of crevices and a lot of places for
8	corrosion to take place.
9	We didn't discuss it today, because we've
10	heard about the generator work before. But let me
11	mention very briefly we are doing some work on
12	evaluating the cracking susceptibility of both 600 and
13	690. Now, the reason we're doing 600 is so that we
14	have a lot of field experience with 600.
15	If we're able to test 600 under the
16	appropriate environmental conditions, we're doing some
17	additional work to define what those conditions are.
18	We're trying to define what happens in crevices, what
19	is the water chemistry in the crevices.
20	Given that, we'll run some tests under
21	those chemistry conditions, both with 600 and 690, and
22	we see how the two behave. We know how 600 has
23	behaved in the field, and hopefully they will we
24	can build a bridge to develop an understanding how 690
25	is going to behave in the field.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

And with this stage we do know that 690 cracks. We know some conditions under which the materials cracks, and those conditions could be in actual plants. One of the things we're trying to do is to try and bound -- get a feeling for under what conditions will 690 crack. And that work is planned and will be going on.

MEMBER SIEBER: Let me ask this question. You know the conditions and perhaps the chemical and environmental conditions where 600 cracks. So you get a sample of 690, and you recreate in a test lab those same conditions, and it either cracks or it doesn't crack.

If it doesn't crack, that doesn't mean that some other mechanism or some other combination of things that doesn't particularly disturb 600, wouldn't cause 690 to deteriorate, crack, or whatever.

18 MR. MUSCARA: Yes. This is why we're 19 trying to determine what are the realistic conditions. 20 And we're doing parametric studies with respect to the 21 environment, the stresses, the dynamic or static 22 stresses and strains. We're going to use samples that 23 are typical of what's in the generator -- is it tubing 24 or is it fracture mechanics specimens.

So we're trying to get a better

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25
	252
1	understanding of the degradation, both materials
2	so, again, we can make effective use of the data we
3	have on 600.
4	MEMBER SIEBER: I guess there is nothing
5	else you can do.
6	MR. MAYFIELD: Well, but it's the
7	potential that 690 is going to crack in situations
8	that we hadn't anticipated is exactly why you work to
9	have an effective inspection program.
10	MEMBER SIEBER: Right.
11	MR. MAYFIELD: And the challenge there is
12	making sure that you've got inspection procedures and
13	techniques that will capture things that you rather
14	than fine tune them for the degradation mode that
15	you're seeing today, you need to have something that
16	allows you to do a little more general assessment to
17	at least detect something that's newly forming. And
18	that's the challenge is to look for that.
19	MR. MUSCARA: The big challenge with
20	inspection at this point is that 690 is thought to be
21	more resistant. Therefore, industry wants us to
22	inspect less frequently. And we don't have the data,
23	frankly, at this point to say how often do you need to
24	inspect.
25	MEMBER POWERS: Well, why don't you just

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	tell industry, "Look, you want us to inspect less
2	frequently. Good. Bring us the data to defend that
3	position."
4	MEMBER SIEBER: To justify it.
5	MR. MAYFIELD: Well, you sort of start
6	getting off into the regulatory policy that the agency
7	has taken. And what's being done today is to make
8	engineering judgments based on what limited
9	information is available and making regulatory
10	decisions on that basis, and then to come back and do
11	the confirmatory research to say how good a story is
12	this, and to either support the regulatory decision or
13	to suggest, no, that wasn't quite right.
14	MEMBER POWERS: Let me ask another
15	question on following along on Jack's line of
16	thought there. He pointed out that 690 is the answer
17	to a maiden's dream now, and it may not be true. Why
18	in your program are you not looking at other alloys
19	that are not so enthusiastically received by the U.S.
20	industry but maybe are viewed enthusiastically by
21	other industries? And I'm thinking of 800 right off
22	the bat.
23	MR. MAYFIELD: I think that we have to
24	start somewhere, and you need to make your investment.
25	My understanding is our the U.S. industry has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	looked now at 800 and made a conscious decision to not
2	go that direction. I think that
3	MEMBER POWERS: They're wrong.
4	MR. MAYFIELD: Well, they may be. And
5	that's something that as we look at some of the
6	international experience and try and draw on in the
7	steam generator world, certainly the German experience
8	with the Alloy 800 has I think been very positive.
9	So the notion is rather than trying to do
10	it all ourselves, let's look at where we can
11	collaborate, where we can get information from other
12	sources, and build on that.
13	MEMBER POWERS: I mean, here's you
14	know, in the abstract, you know, that's a good answer.
15	But I think Jack's got a point here, that you have
16	this history that says, okay, everybody said this is
17	great, and we're going to use it, and it turned out
18	maybe not so great. It's not a total disaster, but
19	it's not so great. And it's unfortunately not so
20	great on your touching on your risk-dominant
21	sequences.
22	Okay. So it's one of these things that
23	you you know, you not only fence in the chickens,
24	you guard the chicken coop as well, because it's high
25	on your risk-dominant sequences.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

255 1 Okay. Now the industry is coming in and 2 saying, well, we've got another great thing. And you, 3 NRC, you know, bless this, and so you're doing your 4 research. But shouldn't you, just to protect 5 yourself, be saying, okay, I'm going to also equally look at these other alloys that other people who are 6 intelligent individuals and also have risk-dominant 7 accidents if selected, and maybe I'll quit approving 8 9 these 690 alloys. 10 MR. MAYFIELD: And if I could -- yes, you 11 were talking earlier about kingdoms. If my budget 12 went in the right direction, I would absolutely take 13 on that kind of program. I live in a world where 14 there are limited fiscal resources, and we look at how 15 to leverage those resources by reaching out to the international community, building on what they have, 16 17 and addressing the problem that is most prominent on 18 our table today. 19 I'm not disputing that that would be a 20 good thing to go do. Plainly, it would be. The 21 practicality of it, given where we are today, 22 financially is just not realistic. 23 MEMBER SIEBER: There is the additional 24 question as to who is the designer. You know, should

the regulating agency be the one that is developing

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	256
1	materials and saying, "This is a good one; this one
2	isn't"? Or should they be saying, "If you use this
3	one, you have to have this inspection protocol, use
4	these techniques, and be able to characterize these
5	kinds of indications"?
6	MR. MAYFIELD: And, plainly, that's where
7	we are is more in that role. We have periodically
8	examined other materials in different context, but we
9	have looked at some different materials and different
10	approaches, just to see what else is out there. But
11	those were in the days of much larger budgets.
12	MEMBER SIEBER: Well, that's sort of a
13	policy issue, as I see it.
14	MR. MAYFIELD: Yes.
15	CHAIRMAN BONACA: For Alloy 690, isn't
16	there experience coming from France and every place
17	there has some of the heads
18	MR. MAYFIELD: They have.
19	CHAIRMAN BONACA: in the early '90s.
20	MR. MAYFIELD: And my perception is that
21	the service data we have so far is positive. We
22	haven't gotten any of those heads through 40 years
23	yet, but it's positive. I don't think there's
24	from the information that I have seen, I don't think
25	there's any question that 690 is a better alloy than

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	257
1	600, and the associated weld melts.
2	And for the materials that were available
3	today, and that the licensees in this country chose to
4	use, I don't think there's any question that 690 is a
5	superior choice to 600.
6	It is not impervium. It will crack given
7	certain sets of conditions. And the test now is, how
8	realistic are those sets of conditions, and how
9	much
10	CHAIRMAN BONACA: I guess what I was
11	referring to is if there is enough experience, even a
12	few years. I'm sure that they're reflecting the
13	frequency of their inspections based on what they
14	find, and that may be interesting to you
15	MR. MAYFIELD: Absolutely.
16	CHAIRMAN BONACA: in setting up
17	expectations for the frequency of inspections here and
18	being different for the one for Alloy 600. I mean,
19	that should
20	MR. MAYFIELD: And we've maintained
21	continuing dialogue with the French and others on
22	exactly these kinds of issues, both through the
23	regulatory program and through our research program.
24	VICE CHAIRMAN WALLIS: Everything you said
25	is empirical. This wine is better than that wine, you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	258
1	know, and this year is better than that year. And
2	there's no kind of theoretical or intellectual
3	structure to understanding the mechanisms or following
4	why this is better than that, getting
5	(Laughter.)
6	I don't see any of that in here.
7	MR. MAYFIELD: Well, if you go back a few
8	slides you'll see some hint that indeed we would like
9	to try and develop some of that.
10	VICE CHAIRMAN WALLIS: I heard water
11	chemistry mentioned. There must be mechanisms for
12	what happens in these cracks.
13	MEMBER SIEBER: Well, it's not a simple
14	problem to solve.
15	MEMBER POWERS: My favorite story in that
16	regard with respect to stress corrosion cracking is
17	when I joined Sandia National Laboratories I came in
18	to a group of about 11 scientists, and I was the only
19	one not working on stress corrosion cracking. And
20	they hadn't figured out the mechanism.
21	MR. MAYFIELD: We've had Peter
22	mentioned this international cooperative group on
23	environmentally-assisted cracking. There were some
24	raging debates in that community and these are the
25	serious-minded technical experts is it anodic

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	259
1	dissolution, or is it hydrogen embrittlement?
2	And I do believe one of the committee
3	at least one of the committee members, actually two of
4	them, were active participants in those discussions,
5	on opposing sides of the issue as I recall.
6	MEMBER POWERS: No wonder we I mean,
7	and nothing has changed, by the way.
8	MEMBER FORD: Okay, guys. We've got 15
9	minutes. We should this gets a lot of attention,
10	because it is part of the Commission
11	MR. MUSCARA: Well, I don't think I need
12	to go into a lot of background why we look at
13	proactive materials degradation. Clearly, the
14	reactive approach has been inefficient and costly and,
15	in fact
16	VICE CHAIRMAN WALLIS: My point is that
17	the intellectual mechanistic is the most proactive way
18	you can do it. The list of criteria for proactive
19	so don't I'm surprised not to hear more of it
20	mentioned.
21	MR. MUSCARA: I guess we had not discussed
22	the steam generator program with you, because we felt
23	we had covered it. But in that program, we are being
24	it's been one of the few proactive programs we've
25	had in recent years. And in that program we will be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	260
1	looking at some of those issues to try and understand
2	better the cracking. And the first place to start is
3	to understand better the chemistry that the material
4	experiences.
5	MR. MAYFIELD: But there are ongoing
6	activities in some of these other cooperative programs
7	that go to exactly the kinds of modeling and fairly
8	basic approaches to this. And just in the interest of
9	time, I hadn't explored those. We would be happy to
10	come back and tell you in more detail about what's
11	going on, if you'd like.
12	VICE CHAIRMAN WALLIS: It's significant to
13	me that you chose not to mention that.
14	MR. MUSCARA: Well, I was going to mention
15	it in my viewgraph.
16	MEMBER POWERS: Unfortunately, Graham, I
17	suspect if they had come in and said, "We're focusing
18	heavily on the mechanistic," one of the committee
19	members would have said, "5,000 people are doing that,
20	and they haven't made progress in the last 20 years.
21	What makes you think you will in the next five?"
22	MEMBER FORD: Well, let's move on.
23	MR. MUSCARA: Okay. So we over the
24	last few months, we've been thinking about this
25	proactive materialistic relation, mainly because there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	has been a concern or a question asked from our
2	chairman that effectively challenges us to decide or
3	determine what is the next big problem, and are we
4	ready? What are we going to do about it?
5	So we've been thinking about how to
6	approach this problem. How can we be more proactive?
7	Clearly, the first step is to identify the
8	materials and the components that are susceptible to
9	various cracking or degradation mechanisms. So in the
10	first step we want to identify locations where
11	degradation could reasonably be expected in the
12	future.
13	To do this, I was looking for a structured
14	approach. Clearly, we need to depend on expert
15	opinion, expert elicitation. But I wanted to have
16	some structure to this approach, and I've looked at
17	the PIRT process and decided that this process can be
18	used for evaluating locations in the plant where we
19	could expect degradation.
20	MEMBER SIEBER: Isn't that part of the
21	Davis-Besse action plan?
22	MR. MUSCARA: No.
23	MEMBER SIEBER: No? Okay.
24	MR. MUSCARA: Now, we do need to make some
25	changes. At least we need to adapt the PIRT process

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	for this issue. It's somewhat different than what
2	PIRT has been used for in the past. In the past, in
3	fact, PIRT has been used for very focused
4	evaluation of a very focused problem, and here is a
5	fairly broad problem.
6	But there are a lot of similarities. For
7	example, when one looks at the phenomenon in the
8	standard PIRT, and in those generally related to
9	thermal hydraulic phenomena, a similar situation for
10	us is the degradation mechanism themselves. So the
11	phenomena become the degradation mechanism.
12	If we look at the scenario from the
13	traditional approach versus what we need, in our case
14	the scenario is really the stressors that these
15	materials would experience. So the scenarios for us
16	would be things like the material, the environment
17	with respect to chemistry temperature stresses,
18	irradiation embrittlement, and so on. So our
19	scenarios are the stressors.
20	At any rate, we decided that this PIRT
21	process could work. And because of its structure I
22	think it would give us a disciplined way to go about
23	this. And our thoughts are that we would have a
24	panel. Within this PIRT panel, we're thinking about
25	seven members with a PIRT technical leader.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Amongst these seven members I would like to have five materials degradation experts, a systems expert, and an expert that has materials experience but also comes from the operating plant. So he has operating plant experience with knowledge and materials.

7 We foresee running about six meetings. Three meetings would be concentrating on the PWR and 8 9 three meetings on the BWR. We plan on developing a 10 lot of information before hand, background 11 information, that the experts need to have. We don't 12 developing information intend on degradation 13 mechanisms, because the experts have this information. 14 They know this.

But we need to develop information on what the component is, what its function is, what are the stresses that it sees, so that they can decide from those parameters whether there's a potential for degradation. So before we start the panel, we plan on pulling together a lot of information on the components, the materials, and the stressors.

There is information available that we can start, for example, from the GALL report. One thing that we want to do beyond GALL is -- the GALL report is based on experience of the past. We're trying to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

15

16

17

18

19

20

21

	264
1	look forward, so we'll start with GALL, but we need to
2	think about potential for cracking in the future,
3	because initiation times may be longer we just
4	haven't experienced them yet or maybe because of
5	some new degradation methods that are operating.
6	So in our work we look at past experience,
7	but are also trying to project forward and consider
8	other potential degradation mechanisms and longer
9	initiation times.
10	The results of this will then be reviewed
11	by an international group of experts. Clearly, we
12	cannot have too large of a panel, because we wouldn't
13	get anything done. And, of course, it's quite costly.
14	But we do want to have the results reviewed by a
15	broader group. So we will have some independent
16	review of the results.
17	But given that we have identified the
18	materials and the components of interest, we then want
19	to determine what can be done to proactively predict
20	degradation and be able to manage it. From our side,
21	we want to be able to develop the database or the
22	foundation for having regulatory activities in place
23	that would keep the degradation from becoming a safety
24	issue.
25	From the industry side, of course, there

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

would be interest in even avoiding the degradation. If you're now identifying the potential, there are things that can be done to avoid it. So in that context, we want to review and evaluate in-service inspection and continuous monitoring techniques for the combinations of materials in geometries where we expect the degradation.

If we find that the inspection techniques are not reliable, then there is a need to do new work. You know, what needs to be done to develop the appropriate inspection techniques?

If we find that the periodic in-service inspection techniques are not adequate to detect a particular problem that may be progressing more rapidly, then there may be a need for continuous monitoring. Those kinds of things will be determined, evaluated, and recommendations will be made.

18 We also want to review and evaluate 19 techniques that could ameliorate the stressors to 20 prevent the expected degradation. That is, it's quite 21 possible for a particular component that by just 22 changing the temperature a few degrees that you may 23 not expect a problem. So we want to identify those 24 kinds of things. Can we do something with the stress 25 state, maybe the residual stresses?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

In addition, assuming that the degradation occurs, then one would need to consider replacement materials. And so within our work, we would plan on reviewing and evaluating potential new materials for replacement. Of course, if the industry does not intend to use new materials for replacing the component, and they use the same material, then we need to have guidance on, well, then, maybe you need to have a different in-service inspection program.

So given a more resistant material, maybe the inspection program does not need to be as rigorous. But with the old material, which is still susceptible to cracking, then there may be more requirements with respect to in-service inspection.

15 In addition, when one repairs a component, we find clearly from our experience that degradation 16 17 often occurs in repaired areas. And that's because we 18 wind up leaving the material in a -- with a poor microstructure and high residual stresses. So there's 19 20 a need to review and evaluate fabrication techniques. 21 Will the fabrication techniques that will 22 be used for replacing a component be adequate for the 23 future operation of the component? I believe there 24 will be a need to do additional work on really the 25 welding processes, so that you control the welding to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

minimize stresses and to optimize microstructures.

These kinds of things can be done. We've done some work in the past with respect to trying to predict sensitization of stainless steel. We found that you could do this. We were really studying how different welding procedures would sensitize the material, but we found that by varying the parameters you could -- in effect, anneal inside surface, and the resolution of the material, which would have left it not susceptible.

So the stresses could be minimized, and the microstructures could be optimized. So that's something that needs to be looked at, review and evaluate, and then make recommendations for It doesn't say that we will do those developments. developments, but we would like to make the observations and the recommendations.

18 MEMBER POWERS: I guess, once again, I 19 come back to saying, how far do you go in trying to 20 teach the industry how to make good welds?

21 MR. MUSCARA: Well, again, from our point 22 of view, if industry comes in and repairs a component, 23 and leaves it in worse condition than it was, we need 24 to make our own decisions. What do we require from 25 those components? Do we require more inspection?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	268
1	Less inspection?
2	So we need to understand if the particular
3	repair procedures will leave the component in a good
4	condition or not. Now, if it's not in a good
5	condition, then it's our responsibility to indicate
6	that you need to do better monitoring. And if they do
7	use a better procedure, then we know that we don't
8	we can accept a different inspection program.
9	So I think it's still part of our
10	responsibility to know how well these techniques work.
11	MEMBER POWERS: But why isn't that one
12	where you just asked
13	MR. MUSCARA: I'm showing
14	MEMBER POWERS: this repair that you've
15	made has left the material in a better condition than
16	it was?
17	MR. MUSCARA: Well, I think, again, if
18	we're looking at the reactive approach, we wind up
19	often making not necessarily the best decisions.
20	Sometimes too conservative. But if you have a
21	problem, and you have to replace a component, there's
22	no time to start looking into a better or poorer
23	repair procedure, or even making the case on how good
24	the procedure is.
25	The fact is that the plant will be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	repaired and it's going to go back out. And the
2	problem we have left is, how do we deal with this?
3	how do we deal for its future operations?
4	MR. MAYFIELD: Well, one of the other
5	points to not lose sight of, Dana, is that and it
6	goes to Joe's last bullet about the expected
7	interaction with the industry on this. These are
8	things that we believe need to be dealt with. I think
9	you have gone to we necessarily think we're going
10	to deal with all of them.
11	And where we are today, at least where I
12	am, I'm not convinced how much of this is really
13	falls to the NRC to fund, and how much of it is us
14	trying to encourage others to spend the money to chase
15	the subject.
16	MEMBER POWERS: I'm absolutely persuaded
17	that it's useful and worthwhile for NRC to invest
18	something in this area. What I'm struggling with is
19	how to make it finite.
20	MR. MAYFIELD: I'm sorry. How to what?
21	MEMBER POWERS: How to make it finite.
22	It's very clear to me that it's more they're not
23	investing enough. Quite frankly, to be blunt, the
24	Commission right now is vulnerable to an incredible
25	if you have a Davis-Besse-like incident in a plant

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	that you've given a license extension to, now I would
2	expect the Commission would get an opportunity to
3	explain that to the Congress in various subcommittee
4	meetings and things like that. So it's clear they
5	need to invest something.
6	But, you know, what's the limit on it?
7	That's what I'm struggling with.
8	MR. MUSCARA: But, again, at this stage,
9	as I thought I had stressed, our role right now is to
10	review and evaluate and recommend. So, but the review
11	and evaluation will have a feeling for
12	MEMBER POWERS: But you see, Joe, we've
13	conceded, we've mutually agreed that to review
14	effectively, you have to be knowledgeable in the
15	field. And you cannot become knowledgeable in the
16	field simply by reading the literature.
17	MR. MUSCARA: That's correct. Yes.
18	MEMBER POWERS: And, I mean, that is an
19	assumption that this committee has agreed not just
20	with you, but throughout research. We've agreed that
21	that is the case, and I think we understand why that's
22	the case.
23	And so now how much do we have to do to
24	become a knowledge reviewer of what the industry
25	proposes?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	MR. MUSCARA: Well, maybe let's put that
2	off until I'm finished, because
3	MEMBER POWERS: Sure. That's where I'm
4	struggling with it.
5	MR. MAYFIELD: Very quickly, we don't have
6	the answer either.
7	MEMBER POWERS: I'm sure we don't. I
8	mean, I'm sure we don't.
9	MR. MAYFIELD: And that where it's in the
10	eye of the beholder, what's you know, when is
11	enough enough?
12	MEMBER SIEBER: One of the issues is that
13	where you are right now is sort of an after-the-fact
14	deal, whereas the repair procedures in the ASME code
15	is before the fact. And the problem with dealing with
16	the code is that it moves at such glacial speed none
17	of us will live long enough to see them actually shape
18	up the code, where, you know, you draw circumscribe
19	what the appropriate repair procedures are.
20	And so you're forced to do something, and
21	I guess I come away first thought that what
22	you're doing is probably the right thing.
23	MR. MUSCARA: Second-to-the-last bullet,
24	review and study potential new degradation mechanisms,
25	this effectively comes partially from the results from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	272
1	the PIRT. We will, I'm sure, discuss and debate
2	different components and environment combinations
3	where we don't know enough. We have a suspicion that
4	cracking may occur, but we don't know enough.
5	As part of the PIRT, those areas where we
6	have a suspicion that degradation is possible, but we
7	don't have enough knowledge, that's an area where we
8	think we need to develop some additional knowledge.
9	Again, as examples, we don't have
10	experienced degradation yet in a particular component,
11	but that may be a matter of time. Do we know enough
12	about the crack initiation times for particular
13	materials and environments? So it may be that we will
14	have to address this in getting a better understanding
15	of particular aspects of different degradation
16	mechanisms.
17	Finally, I had a bullet here on industry
18	and international interaction. Again, we've only been
19	looking at this for the last three or four months.
20	But I've had the opportunity to discuss this issue
21	with the two main international meetings and
22	conferences. And there clearly is a tremendous amount
23	of interest in the willingness to support work in this
24	area.
25	We have also discussed this with EPRI, in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	particular doing the first step identifying the
2	materials and components that are susceptible to
3	degradation. They are effectively telling me, yes,
4	we're interested. Now, I'm trying to go beyond that.
5	I'm trying to get to the next step.
6	Just in the last couple of days I've
7	talked with Mike Robinson, who is heading the
8	technical committee for the industry developing this
9	new degradation materials degradation program. And
10	we are going to get together within a week or two to
11	sit across the table and discuss what we are planning
12	on doing, what they are planning on doing, but, in
13	addition to that, how they can cooperate and help us
14	do this work.
15	And so, in effect, we agreed that we need
16	to go beyond "we're interested." They need to get to
17	the point where they can make some commitments, and
18	we've agreed we will start doing this. So that's
19	going to go on over the next couple of weeks.
20	But I think with respect to identifying
21	locations, in order to be proactive we have to do
22	this, and we have to get going on that issue.
23	There has been so much interest, and in
24	particular we had a one of our international
25	meetings in Canada on the generator program two weeks

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	ago. I was approaching the subject at a side
2	discussion, and there was, again, some tremendous
3	interest there in participating, wanting to cooperate
4	in doing work in this area.
5	So the conclusion I've come to over this
6	last week is that originally I thought let us do the
7	first step. Let's identify the areas of interest and
8	then start developing the programs around us. What
9	needs to be done with reviewing and evaluating
10	inspection and repairs and the materials, etcetera.
11	Well, it seems to me that with the
12	interest that is available, you already know enough of
13	some of the areas that need to be addressed that I
14	need to start another group concurrent with the work
15	that's going on to identify the locations, to start
16	planning and exploring the research program.
17	So the thought here is to get together
18	maybe I should mention numbers. At the first meeting
19	I had 24 scientists and engineers and government
20	agency people indicating that they had an interest in
21	participating. And I've picked up additional support
22	from the other meetings.
23	So there is a lot of interest. What I'm
24	trying to do is pull together government agencies,
25	international government agencies, funding agencies,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

and researchers to together work out a plan. What are the areas that need to be investigated? What would be the objectives of the work? How far can we take the work?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

Develop the program and then to have a coordinated international effort to address all of the work. So each country's organization will do a small piece of the work, but together we can get all of the work done.

And I've approached several people with this idea. It seems to be something people want to do. So I want to explore this. So my feeling is that we should be able to identify the areas of interest.

We should be able to identify a broad program to address the issues -- whether it's interest from the regulator or from the NSSS vendor, from a fabricator, that the overall program would be defined and pieces of it will be done in different places, but coordinated cooperatively so everybody can take advantage of it.

21 So in my thinking at this point, this is 22 where we're going. We do plan on starting the PIRT 23 process hopefully this year. And we do hope to get 24 contributions for that from the industry also.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER POWERS: Can I chat with you just

a little bit about the PIRT process? I come at it as a person who was extremely enthusiastic about the idea of taking PIRT, which had been devised initially in the thermal hydraulics realm, and applying it to some of these phenomenological issues, like the high-burnup fuel issue.

And we actually saw pretty good success when it was applied in the high-burnup fuel issue as the front end of their program to decide what areas should they pursue, because there is essentially an infinite amount that you could do. And so what were the things that you ought to do based on your best understanding? And I think they did an outstanding job.

Since that time, I've participated in a couple of these exercises, and the most recent one of which I came away just absolutely infuriated at the way it was organized and run, because despite the name -- Phenomena Identification and Ranking Table -- it became a structure identification and ranking exercise.

And in trying to think about how it could be done better, I hearken back to what I think was one of the discoveries in the expert elicitation process -- if Dr. Apostalakis was here, he would say it's an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

	277
1	expert opinion elicitation process that one of the
2	things that you will find is expensive about PIRT as
3	you get these experts together and it takes them a
4	long time to focus on your problem is you might
5	find it useful, because you have a technically-skilled
6	set of staff and a technically-skilled set of
7	contractors working for you, to create a strawdog for
8	them to work from, rather than putting the aspiration
9	and say invent this out of whole cloth.
10	Because I think the formalisms that have
11	been ascribed to phenomena identification and ranking
12	can easily take over, and you can easily lose out,
13	especially in the phenomena aspects of it, to this
14	formalism. Because, I mean, quite frankly, the
15	thermal hydraulicists had a wonderful idea on doing
16	these things, and they carried it out very nicely.
17	Well, sometimes it's been done very well for thermal
18	hydraulics, but you cannot take that formalism exactly
19	and translate it into this field. And you have to
20	make some adjustments and
21	MR. MUSCARA: I agree. And this is why
22	I've said it's a PIRT-like process. We really looked
23	at I spent a day with Brandt, and of course we had
24	some differences of opinion a number of times. I'm
25	trying to use as much of that process as I can, but,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

ĺ	278
1	in fact, you know, it's a sophisticated expert
2	elicitation process.
3	For that reason, we're doing a lot of
4	legwork ahead of time. We're trying to get a lot of
5	background information. And, in fact, we are going to
6	fill out, you know, an example, so that our at our
7	first meeting this will be discussed with the experts
8	and
9	MEMBER POWERS: That's going to pay off
10	for you big time, because what they've done on the
11	coated-particle fuel I think is just a waste of time,
12	because it's all formalism. And, I mean, vast areas
13	of phenomena are just hidden in curt little structural
14	statements, and you have to be very careful about
15	that.
16	MR. MUSCARA: And hopefully we won't get
17	hung up on the formalism. But I'd like to take
18	advantage of the structure. So
19	MEMBER POWERS: I think it's a fantastic
20	idea, and the greater diversity you can get in your
21	panel without having it become unwieldy I think in
22	the high-burnup fuel they got tremendous diversity,
23	and it paid off very well. But I think they paid for
24	having a certain unwieldiness to it.
25	MR. MAYFIELD: But that's, frankly, why I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	279
1	like Joe's approach of starting with a somewhat
2	smaller panel, get something, and then vet that with
3	a much larger audience.
4	MEMBER POWERS: Yes. I mean, that's
5	probably a really good idea, because you really want
6	diversity, but the unwieldiness will just kill you.
7	MR. MUSCARA: One of the aspects we
8	discussed with Dr. Boyack was, you know, for PWR you
9	want to have these other experts. For the BWR I
10	said, no, for this problem, for degradation, I want
11	the BWR guys to be there when we discuss the PWR,
12	because it's experience that they could use.
13	So I've decided not to have two separate
14	panels, but have the same panel, essentially with the
15	same expertise, but taking advantage of both sides.
16	MEMBER POWERS: See, what you're seeing
17	with Boyack is this structuralism here. You know, to
18	find the reactor, just find the accident. And you
19	don't have to do that, because you're working in a
20	phenomenological area.
21	MR. MAYFIELD: And that's exactly where
22	we've been trying to go.
23	With that, unless there are other
24	questions, Mr. Chairman, that's all we have to say.
25	MEMBER FORD: Mike, Joe, thank you very

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	much, indeed. I understand that there is no request
2	from you for a letter
3	MR. MAYFIELD: That is correct.
4	MEMBER FORD: on this, and the
5	information you give to us will be useful for the
6	research report, I think. And it will also be useful
7	background for the talk tomorrow to the Commissioners.
8	Are there any other questions from the
9	committee? No?
10	MEMBER POWERS: I mean, have you got all
11	day? I'm struggling heroically here.
12	MEMBER FORD: Thank you very much, indeed.
13	Mario, it's yours.
14	CHAIRMAN BONACA: Yes. Thank you very
15	much.
16	Okay. I think we are going to go off the
17	record now and take a break. We'll get back at 20 of
18	6:00. We need to go through the presentation, the
19	slides for tomorrow. And the other thing I would have
20	liked to do is to read Tom's letter on security and
21	safeguards, give him some feedback on it.
22	(Whereupon, at 5:25 p.m., the proceedings
23	in the foregoing matter went off the
24	record.)
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701