Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards505th Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Friday, September 12, 2003

Work Order No.: NRC-1069

Pages 1-52

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS) 505TH MEETING
6	+ + + +
7	FRIDAY
8	SEPTEMBER 12, 2003
9	+ + + +
10	ROCKVILLE, MARYLAND
11	The Committee was called to order at 8:30
12	a.m., at the Nuclear Regulatory Commission, Two White
13	Flint North, Room T2B3, 11545 Rockville Pike, Dr.
14	Mario V. Bonaca, Chairman, presiding.
15	COMMITTEE MEMBERS PRESENT:
16	DR. MARIO BONACA, ACRS Chairman
17	DR. GRAHAM B. WALLIS ACRS Vice Chairman
18	DR. GEORGE E. APOSTOLAKIS ACRS Member
19	DR. THOMAS S. KRESS ACRS Member
20	DR. GRAHAM M LEITCH ACRS Member
21	DR. DANA A. POWERS ACRS Member
22	DR. VICTOR H. RANSON ACRS Member
23	DR. STEPHEN L. ROSEN ACRS Member-at-Large
24	DR. WILLIAM J. SHACK ACRS Member
25	DR. JOHN SIEBER ACRS Member

		2
1	ACRS STAFF PRESENT:	
2	SHER BAHADUR	Associate Director, ACRS
3	SATISH AGGARWAL	NRR
4	RAMIN ASSIN	RES
5	MARK BLUMBERG	NRR/DSSA/SPSB
6	SAM DURAISWAMY	Designated Federal Official
7	RALPH CARUSO	ACRS Staff
8	O.M.P. CHOPRA	NRR/DE/EEIB
9	CLIFF DOUTT	NRR/DSSA/SPS
10	MICHELLE HART	NRR/DE/EEIB
11	HOWARD J. LARSON	Special Assistant, ACRS
12	PAUL LOESER	NRR/DE/EEIB
13		

			3
1		I-N-D-E-X	
2		AGENDA ITEM	PAGE
3	I.	Opening Comments Chairman Bonaca	4
4	II.	Presentation by Mr. Aggarwal	7
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:30 a.m.)
3	CHAIRMAN BONACA: Good morning. The
4	meeting will now come to order. This is the third
5	day of the 505th meeting of the Advisory Committee
6	On Reactor Safeguards. During today's meeting the
7	committee will consider the following.
8	Draft final revision-1 to Regulatory
9	Guide 1.53, application of the single failure
10	criteria to safety systems.
11	Preparation for meeting with the NRC
12	Commissioners. The subcommittee report on fire
13	protection issues. Future ACRS activities and a
14	report of the planning and procedures subcommittee.
15	Reconciliation of the ACRS comments and
16	recommendations; and proposed ACRS reports. Seven
17	of those.
18	A portion of this meeting will be closed
19	to discuss a proposed ACRS report on safeguards and
20	security.
21	This meeting is being conducted in
22	accordance with the provisions of the Federal
23	Advisory Committee Act. Mr. Sam Duraiswamy is the
24	designated Federal Official for the initial portion
25	of the meeting.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	5
1	We have received no written comments or
2	requests for time to make oral statements from
3	members of the public regarding today's sessions. A
4	transcript of portions of the meeting is being kept,
5	and it is requested that the speakers use one of the
6	microphones, identify themselves, and speak with
7	sufficient clarity and volume so that they can be
8	readily heard.
9	Now, before we start on the first item
10	on the agenda, I would like to just make a brief
11	announcement regarding the agenda itself, okay? Dr.
12	Wallis has to leave by 3:00 p.m., and also Dr.
13	Apostolakis, I believe, shortly after?
14	DR. APOSTOLAKIS: No, before.
15	CHAIRMAN BONACA: So, what I would like
16	to do after the first presentation and discussion,
17	and before the preparation for the meeting with the
18	Commissioners, we will get a reading of Graham's
19	letter so that we can give him feedback, and back to
20	it in the early afternoon.
21	And also a reading of George's letter,
22	and hopefully we can even approve it maybe.
23	DR. APOSTOLAKIS: As far as I am
24	concerned, you can approve it right now.
25	CHAIRMAN BONACA: I don't want to pre-

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	б
1	judge it. So with that, I will turn to Dr. Shack,
2	who is going to lead us through this presentation.
3	Be aware of the timing issue that we have. We have
4	a very tight schedule, and I am sure that you will
5	be policing this hour.
6	DR. SHACK: You kept such tight control
7	yesterday, right. You set such a good example
8	yesterday.
9	CHAIRMAN BONACA: I am not sure about
10	that.
11	MR. AGGARWAL: We will try to help you
12	and not ask too many questions.
13	CHAIRMAN BONACA: Today I will make a
14	better example.
15	DR. SHACK: One thing that I would like
16	to point out to the members is that our revised
17	draft final has been revised once more. You have a
18	memo from Mike Snodderly, which contains some last
19	minute changes.
20	These are mostly again to address the
21	possibility that every time you revise a reg guide
22	that there is always this concern about back fits,
23	and again this will the reg guide is intended for
24	essentially applications for all future discussions,
25	and can be adopted voluntarily by licensees who are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	making changes, but it is intended as a back fit.
2	In addition to Satish Aggarwal, who is
3	the author of the reg guide, we also have a
4	distinguished visitor today, Mr. David Zaprazny, who
5	is the Chairman of the IEEE working group.
6	Basically the reg guide endorses an IEEE standard
7	379-2000, and Mr. Zaprazny is the chairman of the
8	working group that developed the new standard, and I
9	will turn it over to Satish then to discuss the reg
10	guide.
11	MR. AGGARWAL: Good morning. Before I
12	provide the background on the reg guide, let me at
13	the outset state that the purpose of this briefing
14	today is to seek your concurrence with this staff
15	position in respect to single phase criteria to
16	safety systems.
17	So we are hoping at the conclusion of
18	our presentations that subsequently we will receive
19	a letter to that effect. Now, let me first of all
20	make it clear what is a single failure.
21	You all know power instrumentation and
22	control portion of each safety system consists of
23	more than one safety group, and any one of which can
24	complete the safety function.
25	Thus, a safety system must perform all

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	8
1	safety functions required for a design basis event
2	in the presence of any detectable failure within the
3	safety system. And in a nutshell is the single
4	failure criteria.
5	DR. APOSTOLAKIS: So the idea of a
6	single failure then applies to a well-defined system
7	and not a function?
8	MR. AGGARWAL: That's right.
9	DR. APOSTOLAKIS: So if I consider the
10	function of removing decayed heat, I will not
11	necessarily think in terms of a single failure that
12	I am losing one system, and therefore I have a
13	redundant system, right? That is a different kind
14	of concept?
15	MR. AGGARWAL: If you look at the safety
16	functions, and you look at your more than one group
17	that performs that safety function, and you fail one
18	of the functions, and show to me that you will still
19	be able to perform. I will present some more
20	examples as we proceed.
21	DR. APOSTOLAKIS: So it applies to
22	functions as well and not just systems?
23	MR. AGGARWAL: It applies to both.
24	DR. APOSTOLAKIS: So if my function is
25	to inject water under high pressure into the core, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	must have at least one way of doing this?
2	MR. AGGARWAL: Exactly. That is a given
3	design, and we are saying show it to us, and this is
4	single failure.
5	DR. APOSTOLAKIS: Even if the system is
6	highly redundant and meets the criteria and not the
7	system level?
8	MR. AGGARWAL: Right.
9	DR. APOSTOLAKIS: Wow.
10	MR. AGGARWAL: And the specific design
11	is nothing new. This has been there for years.
12	This is fundamental to a nuclear power plant design.
13	DR. LEITCH: But let's say, for example,
14	in a boiling water reactor, in George's scenario,
15	you want to inject water at high pressure. So you
16	have the HPSI system and if that fails, there is no
17	direct replacement for it.
18	What you have is an alternate means to
19	blow the reactor down to low pressure and then
20	inject. So
21	MR. AGGARWAL: Exactly. You have to
22	show how you can accomplish that function by a
23	different matter.
24	DR. APOSTOLAKIS: So, wait, that is a
25	good example. You are not really accomplishing the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	10
1	function, because you don't have another way of
2	injecting water under high pressure.
3	MR. AGGARWAL: Right.
4	DR. APOSTOLAKIS: But you are getting
5	around it by reducing the pressure?
6	MR. AGGARWAL: Reducing the pressure and
7	then injecting the pressure.
8	DR. APOSTOLAKIS: So essentially you are
9	managing the accident
10	MR. AGGARWAL: Right, mitigating it.
11	DR. APOSTOLAKIS: In more than one way.
12	MR. AGGARWAL: I just wanted to clear
13	where
14	DR. APOSTOLAKIS: Well, you are doing a
15	very good job.
16	MR. AGGARWAL: Thank you.
17	DR. APOSTOLAKIS: But would this apply
18	to advanced reactors as well?
19	MR. AGGARWAL: It should apply to all.
20	DR. APOSTOLAKIS: Okay.
21	DR. LEITCH: I always thought to carry
22	that example a little bit further that single
23	failure was really that well, to continue to talk
24	about HPSI, for example, and a piece of
25	instrumentation on the HPSI system would not that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	is, the failure of a piece of instrumentation would
2	not render the HPSI system inoperable, and there
3	would be another piece of instrumentation that would
4	trigger the HPSI system to initiate, for example.
5	MR. AGGARWAL: By design all safety
6	related equipment should be able to perform its
7	function. Single failure is saying that you take
8	one system, one increment, fail it, and show me how
9	you can accomplish the purpose of the function and
10	mitigate the accident.
11	DR. WALLIS: This is a very difficult
12	thing, because a system is a meaningless word. I
13	mean, a system encompasses whatever you wait it to
14	encompass. So I could say the ECCS system, and that
15	is everything, and that is accumulators, and
16	DR. APOSTOLAKIS: That's why I went to
17	the function level.
18	DR. WALLIS: Yes, but even then you have
19	got to say how are you going to divide the
20	functions. I mean, keeping the core cool is a
21	function.
22	DR. APOSTOLAKIS: But the reality is
23	that the actual function well, I mean, what you
24	do is you are looking for the worst single failure.
25	So you are going sensitivities on individual trains,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	and not functions, until you find the one which is
2	the most limiting one, and then you assume that one.
3	DR. WALLIS: That is very different
4	though. You have got three trains and one is out of
5	order, you can still perform the function with two.
6	DR. APOSTOLAKIS: Exactly.
7	DR. WALLIS: And that is quite different
8	MR. AGGARWAL: May I suggest that you
9	hold that thought and let's proceed, and we will
10	give you the imperfect examples to make a point, and
11	tell you what that all means.
12	CHAIRMAN BONACA: Now, is this
13	consistent with the move towards risk-informed
14	regulations? Probably not.
15	MR. AGGARWAL: Not really. What we are
16	going to talk about is the PRA in a minute. Also, I
17	would like to point out that the single failure
18	could occur prior to or at any time, during or the
19	DBE for which the safety system is required to
20	function.
21	It is a given, but keep these two ideas
22	in mind as we progress. Now, I
23	DR. APOSTOLAKIS: Now, if I said that
24	the single failure criteria means a specific
25	implementation of the concept of defense in depth, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	would be right, right?
2	MR. AGGARWAL: Yes.
3	DR. APOSTOLAKIS: It just makes that
4	concept specific and implementable in a particular
5	case.
6	MR. AGGARWAL: That's correct.
7	DR. APOSTOLAKIS: All right.
8	DR. SHACK: And this only holds true, of
9	course, during design basis events.
10	DR. APOSTOLAKIS: True. True.
11	DR. ROSEN: Well, the whole idea of risk
12	informing the regulations is that we know serious
13	events don't have just a single failure. There is
14	almost never a significant event with just one thing
15	happening.
16	DR. SHACK: Well, you design it with
17	just a single failure event, period.
18	DR. ROSEN: All serious events, not just
19	in the nuclear industry, but in all industries, are
20	combinations of multiple issues.
21	MR. AGGARWAL: Well, if I may proceed,
22	let me give you the feedback background under that
23	guide. The issue that (inaudible) 11-18 for public
24	comments.
25	DR. ROSEN: Well, excuse me, but I may

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

14
have missed this. Why are you doing this?
MR. AGGARWAL: Why are we doing it?
This is the commission policy to look at the IEEE on
a national consensus standard on single failure
criteria, whether they meet our regulations or not.
If they do, we would like to introduce them in a reg
guide or regulation.
DR. ROSEN: This is a national standard
on single failure criteria
MR. AGGARWAL: Yes, sir. What you have
is a national consensus standard.
DR. ROSEN: But who issued it?
MR. AGGARWAL: IEEE.
DR. APOSTOLAKIS: It applies only to
nuclear facilities?
MR. AGGARWAL: That's right.
DR. APOSTOLAKIS: So why should IEEE
care?
MR. AGGARWAL: Well, if you would like
to circulate that standard among the members.
DR. APOSTOLAKIS: Why would IEEE care
about nuclear facilities?
MR. AGGARWAL: Sir, George, IEEE assigns
the maximum number of standards for operations in
nuclear power plants.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	15
1	DR. APOSTOLAKIS: Well, I can see them
2	publishing standards for instrumentation and
3	control, and things
4	DR. SHACK: This is single failure for
5	instrumentation control systems.
6	MR. AGGARWAL: Power, and electrical,
7	and
8	DR. APOSTOLAKIS: Oh, it is not general?
9	MR. AGGARWAL: No, this is what my first
10	opening line was, that the (inaudible) control
11	systems.
12	DR. APOSTOLAKIS: I think though the
13	CHAIRMAN BONACA: The question I think
14	is that this kind of concept somewhat, which I think
15	is very appropriate for a component or system, et
16	cetera, is really a casualty analysis to determine
17	how it is capable of performing its function with a
18	failure in it, was really translated later on in the
19	accident analysis it seems to me.
20	When instead you have a much more
21	complex grouping of systems, et cetera, and you
22	should consider possible multiple offenders, I
23	think.
24	DR. APOSTOLAKIS: Well, this was
25	actually a very good when it was proposed.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16
CHAIRMAN BONACA: Well, sure.
DR. APOSTOLAKIS: But it really makes
sure that you don't have single element minimal
concepts. That is really what it does.
MR. AGGARWAL: Exactly.
MR. LOESER: And in this case the
original document that was endorsed was dated 1972.
A lot has happened since then, and
DR. APOSTOLAKIS: The reactor safety
study, for example.
MR. LOESER: And in this case there have
been several other versions that have not been
endorsed. I am not sure why. But we decided that
it was time to endorse the latest one, the 2000, and
that is what this draft guide is for, is to help
update Reg. Guide 153 to a remedial standard.
DR. POWERS: Let me ask, and I may be
asking this question out of turn here, but I will
ask it anyway. When you think about modern
electrical systems, and you say the failure is when
there is a termination of the ability to perform its
intended function.
And I think about software controlled
digital systems with design requirements embedded in
them that may in fact be flawed. So the system does

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	not perform the function that one group of people
2	intended it to do, but the other group of people
3	definitely didn't address that because they didn't
4	put the requirements on the software to address that
5	particular set of circumstances. Have we had a
6	single failure?
7	MR. LOESER: Yes, and that's why the
8	branch technical position 19 requires a diverse
9	method not subject to the same single failure to
10	accomplish the same basic function.
11	That's why if you have all of the
12	software and all four channels using identical
13	software, they is supposed to be some alternative
14	way in case that software fails to perform its
15	function, whether by specification error, or coding
16	error, or just something else.
17	If there is a common failure of all the
18	systems using that software the plant still has to
19	be able to survive.
20	DR. POWERS: That is what we have done
21	on safety. What I am really asking is that with
22	regard to the standard have we had a single failure?
23	MR. ZAPRAZNY: Yes. Design error can be
24	a single failure.
25	DR. POWERS: And so the fact that these

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

18 1 guys developed a piece of electrical equipment, and 2 it meets all of their requirements, but it just does not happen to meet what the systems requirements 3 4 are. There has been a failure, and their failure. 5 DR. APOSTOLAKIS: A design error can be a single failure as long as it affects one 6 7 component. I don't think you are dealing with 8 common cause failure. 9 MR. ZAPRAZNY: It is dealing with common 10 cause failure, yes, and that is addressed in the 11 standard. 12 And then I also might MR. AGGARWAL: point out that that there is this IEEE 7.432, which 13 14 addresses the basic issues raised. 15 I know it is, and --DR. POWERS: MR. AGGARWAL: And which we have 16 endorsed. 17 DR. POWERS: And you brought that before 18 19 us, and we spent hours trying to understand 20 everything there. 21 Right. MR. AGGARWAL: 22 I was just looking at the DR. POWERS: 23 definition of your standard and trying to think 24 about what was missing, and what you brought up, I 25 think I understood. But it is a question with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

19
respect to this standard itself, and whether that
was recognized as a failure, because I would not
have.
They did, but I would not have if I were
kind, but that's okay. That's okay.
DR. APOSTOLAKIS: You will talk about
common cause failures later?
MR. AGGARWAL: Yes.
DR. APOSTOLAKIS: Okay.
MR. AGGARWAL: I did say earlier that we
received four comments letters, and as a result of
those comments letters, we made a few minor changes
in the (inaudible) section.
I might point out that comment letters
may be found to be long, several pages, but what is
contained on those comment letters is noting new.
One of the lawyer firms sent this letter every time
he devised an electrical regulation or reg guide,
bringing up fundamental issues which the Commission
had addressed before, in terms of the rule making
when their endorsement of IEEE Standard 603, and
more specifically 10 CFR 50 (a) (h) subparagraphs.
So we met with CRGR to discuss this reg
guide and seek their endorsement, and it might also
be noted that when we issued the draft reg guide, in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

20 1 the implementation section, we are given the option 2 that you can use the old one and be subject to review by the staff on a case-by-case basis, or you 3 4 can use the civilian. 5 This language we have used at the insistence of CRGR, and brought it (inaudible) in 6 7 the industry, because the project changed, and the change was not acceptable to the public. 8 This (inaudible) something be done in 9 this language, and they didn't like it, okay? 10 In 11 other to resolve this, if you will turn over to the 12 next page, the final reg guide. This is the language that we have been 13 14 using in all reg guides over the last 10 years, and 15 so all we did was bring it to the same language which is accepted by the industry and in our opinion 16 and OGC's opinion it not clear. 17 The bottom line is that backfitting is 18 19 not intended. Now in doing so, and the industry 20 raises the issue of safety systems, protection 21 system, and what not, CRGR asked us in the Section 22 A, and this is a reg guide, dated August 25th, 2003, 23 and copies of which have been provided to the 24 committee. And this is under Section A, which we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21
expanded to clarify what a safety function means,
and what a protection system means, and all this
information is nothing new. It was already there
when we were doing the rule making.
So it is simply that we are reproducing
it here, and in the instrumentation section, we made
it clear that no backfitting is intended, and this
will be used for the operating plants on a voluntary
basis if there are any modifications proposed by the
licensee,
DR. LEITCH: What does the word evaluate
mean? In other words, if a license voluntarily
proposes modifications to a safety system that do
not comply, then that is a cause for a rejection of
that modification?
MR. AGGARWAL: Technically, this is one
matter that the staff will accept without question.
The licensee is always free to come up with an
orderly matter of accomplishing it.
And naturally that will be evaluated by
this staff and that is all that it means.
MR. LOESER: In this particular case, if
they had previously committed, for example, to the
1972 version
MR. AGGARWAL: Right.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	DR. LEITCH: and their new
2	modification met the 1972 version, but did not meet
3	the 2002 version that's okay?
4	DR. LEITCH: That's okay. Okay.
5	MR. LOESER: There is not a requirement
6	for them to meet this new one, because there is no
7	backfit required as long as they meet the
8	commitments that they made at the time of their
9	license.
10	DR. LEITCH: Okay. And obviously an
11	encouragement to do so, but not a requirement to do
12	so.
13	MR. LOESER: That's exactly correct.
14	DR. LEITCH: I understand. Thank you.
15	MR. AGGARWAL: At this time I would like
16	to raise or discuss the issues of the significant
17	technical changes between 1972 and what we are
18	endorsing now.
19	The first item is that in the current
20	version which you have before you, we have included
21	a requirement for a single failure analysis in
22	design using digital computers.
23	And that brings you to the IEEE Standard
24	603, and 7-4.3.2. Incidentally, I might point out
25	to the committee that if the standard had been

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	revised and approved by the IEEE standard vote
2	yesterday, and we wold have Standard 7-4.3.2, which
3	is still a much m ore improved standard for guidance
4	in the digital computers.
5	And it is the staff's intention to
6	endorse that standard in the near future, and so we
7	will be back to you again explaining to you how we
8	are going to meet all these requirements in terms of
9	digital computers.
10	DR. LEITCH: Let me ask another question
11	and perhaps that I should have asked earlier. Those
12	definitions that you referred to right at the
13	beginning of your talk, are they different in the
14	new standard versus the 1973 standard, or are they
15	still the same old definition?
16	MR. AGGARWAL: They are different. They
17	are much more improved based on our experience, and
18	clarity. If you would like to hear, we can tell
19	you exactly what changed, but it includes improved
20	language just for clarity.
21	And even in the reg guide, I had made
22	this point very clear what that really means,
23	because I know often that the term single failure is
24	misunderstood, and so I thought that this is the
25	time that we put that to bed, and this is exactly

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	yes, sir?
2	DR. APOSTOLAKIS: I guess I am still
3	struggling to understand what the single failure is.
4	The safety systems you say here will be capable of
5	performing the required safety functions. Is a
6	single failure an actual failure, or could it be a
7	cause for failure of 3 or 4 different systems?
8	MR. AGGARWAL: It could be either.
9	DR. APOSTOLAKIS: It could be a cause.
10	MR. AGGARWAL: Right.
11	MR. LOESER: Well, in this case, when
12	you consider a single failure, you have to consider
13	not only the failure itself, but all the subsequent
14	failures that that causes.
15	For example, a software failure could
16	cause more than one component to fail, because there
17	is more than one component using that software.
18	DR. APOSTOLAKIS: Right.
19	MR. LOESER: So you have to use sort of
20	a trickle down effect. If you have a power spike of
21	some sort and that equipment that is not fused,
22	everything that power spike will blow out is part of
23	that single failure.
24	DR. APOSTOLAKIS: So you are moving now
25	towards PRA, and that is really what you are doing.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	MR. LOESER: Well
2	DR. APOSTOLAKIS: You are considering
3	the consequences of a failure.
4	MR. LOESER: We are not doing this on a
5	well, it is a cause and effect, and not only the
6	failure itself, but all subsequent failures that
7	that failure causes are all part of the same single
8	failure.
9	DR. ROSEN: I would say it is more like
10	failure modes and effects.
11	MR. LOESER: That is actually correct.
12	MR. AGGARWAL: You're right.
13	DR. APOSTOLAKIS: Yes, but the initiator
14	here must be a failure itself, and not a cause. In
15	other words, it can not be human error of omission
16	or commission.
17	It has to be an actual failure. As you
18	said, you know, power fails, and then it
19	proprogates. But it cannot be a cause that is not a
20	failure by itself. That is the way that I
21	understand it.
22	MR. ZAPRAZNY: If you have a circuit
23	breaker fail on a load center
24	DR. APOSTOLAKIS: Well, that is a
25	failure.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	MR. ZAPRAZNY: But your failure results
2	in loss of all the
3	DR. APOSTOLAKIS: Fine, fine, I
4	understand that.
5	DR. ROSEN: And then later on the
6	sequence, if there is an operator action required,
7	and the operator failures to do it, that is not one
8	failure. That is two failures.
9	DR. APOSTOLAKIS: Right. And the other
10	question is how about passive failures? I mean,
11	does that make sense in this context?
12	MR. AGGARWAL: It does, and I intend to
13	touch on that area.
14	DR. APOSTOLAKIS: So if I have a fire
15	that just deteriorates and all of a sudden I have a
16	hot short, that is a failure?
17	MR. AGGARWAL: Yes.
18	MR. LOESER: A failure to do something
19	is not considered any differently than a failure to
20	not do something. So a failure to trip or a failure
21	for a component to react because it is burned out,
22	or because a wire worked its way lose or something,
23	a failure to act in some manner is still a failure.
24	But I think that there is an important
25	difference between electrical and mechanical

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	systems. In the mechanical systems, you don't
2	consider a pipe failure as a single failure. I
3	think there is a fundamental difference here.
4	DR. ROSEN: Well, that is an initiating
5	event, and we consider the pipe failure the
6	initiating event, and then we test the responses for
7	the single failure criteria.
8	MR. AGGARWAL: Right.
9	DR. APOSTOLAKIS: So that is a design
10	basis failure?
11	MR. ZAPRAZNY: Once again, a pipe
12	failure is a passive failure which is a single
13	failure.
14	DR. APOSTOLAKIS: No, that is
15	DR. ROSEN: That is the initiating
16	event.
17	DR. APOSTOLAKIS: the initiating. It
18	is a DBE, but it is not because here you said
19	even with a DBE, I don't want a single failure to
20	disable the system.
21	MR. LOESER: I think you would have to
22	differentiate which pipe. If you are talking about
23	a pipe that causes the event, but if there is some
24	other valve that is now supposed to open, or a pipe
25	that is supposed to transmit water to alleviate this

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	situation to mitigate the accident, then that
2	failure would be the single failure.
3	DR. APOSTOLAKIS: But that is the
4	system.
5	CHAIRMAN BONACA: It is the system, and
6	so you are not supposed to assume two pipe failures.
7	MR. LOESER: That's correct.
8	DR. APOSTOLAKIS: In other words, if I
9	have an initiating event that comes from a pipe
10	failure, a single failure cannot be another pipe
11	failure.
12	CHAIRMAN BONACA: Or any other component
13	that
14	DR. APOSTOLAKIS: Is that consistent
15	with would a system failure be another passive
16	failure?
17	CHAIRMAN BONACA: No.
18	MR. LOESER: Wait a second. It could.
19	I think there is a difference. If you had an
20	initiating event for example, a computer in the
21	feedwater system failing to do whatever it is
22	supposed to do in cutting off feedwater; another
23	electrical failure in a digital system, or in a
24	valve, or anything else, would be a single failure
25	even if the failure is similar to a software

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	failure.
2	It is not like the I mean, the single
3	failure could be very similar to the one that
4	initiated the event.
5	DR. APOSTOLAKIS: Yes, in that sense
6	they are different from mechanical systems.
7	MR. AGGARWAL: I might bring to the
8	attention of the committee that this particular
9	slide is addressing the issue of shared system, and
10	what I intend to bring to your attention that IEEE
11	standards describe the manner in which single
12	failure criteria should be applied to shared
13	systems.
14	The intent is neither to endorse or
15	(inaudible) the hearing between the system, the
16	standard for minimum requirements to ensure that
17	shared systems are analyzed as adversely as possible
18	to ensure that the fact of component failures as
19	there was no sharing.
20	That is a very simple thing, that you
21	can share systems, but you still have to have
22	(inaudible). So this is a new addition to the IEEE
23	standard 379.
24	DR. APOSTOLAKIS: Is it shared systems
25	or shared components?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	30
1	MR. AGGARWAL: Shared systems. But
2	shared components are a part of the system.
3	DR. APOSTOLAKIS: Give me an example of
4	a shared system.
5	MR. AGGARWAL: You might have the same
6	diesel which you might be sharing between the two
7	units.
8	DR. ROSEN: A start-up boiler at a plant
9	that has two units, and that would share the piping
10	and the boiler.
11	MR. AGGARWAL: In some old plants the
12	D.C. power is shared, and I am in 372 in terms of
13	control So essentially as I was speaking to you
14	about the shared system, and these are the two basic
15	criteria which are in this standard, that the safety
16	system of each unit shall be capable of performing
17	their required safety function, and with a single
18	failure initiative concurrently in each unit within
19	the system that are not shared.
20	Number 2, for reasons that will be
21	included in the design to ensure that a single
22	failure within one unit will not adversely affect
23	the other unit, thereby preventing the shared system
24	from performing the required safety function.
25	DR. APOSTOLAKIS: So if I have two

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	units, what you are saying is that I should be able
2	to survive a single failure in one and a single
3	failure in the other; is that what this says?
4	MR. AGGARWAL: Yes.
5	DR. APOSTOLAKIS: It says that in each
6	unit you should be able to handle a single failure.
7	So I an have one here and one there, and I would
8	still be okay?
9	MR. AGGARWAL: Right.
10	DR. APOSTOLAKIS: Well, why did you have
11	to do this? I mean, I don't understand why. Wasn't
12	that embedded in the previous definition?
13	MR. AGGARWAL: Well, there were concerns
14	over how we deal with the shared system, and the
15	IEEE made it clear that some guidance would be
16	provided in the failure.
17	DR. APOSTOLAKIS: Now the second bullet
18	really and in the first are redundant aren't
19	they?
20	MR. AGGARWAL: In a way.
21	DR. APOSTOLAKIS: So there is an
22	implementation of a single failure criterion on this
23	transparency.
24	MR. AGGARWAL: That's correct.
25	DR. APOSTOLAKIS: You don't understand

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	32
1	the first, but they give you the second?
2	MR. LOESER: There is a number of cases
3	where things were understood to be in the original
4	document. Everybody knew this is what was going on,
5	but it was not spelled out. So this standard tried
6	to spell out a number of the items, and this is one
7	of them.
8	Like you said, everybody understood
9	this, but it didn't say it very specifically. So
10	that is one of the items that we tried to take care
11	of.
12	DR. APOSTOLAKIS: Probably the second
13	bullet is more appropriate actually.
14	MR. AGGARWAL: And also you should know,
15	and I am sure that you are aware of, that in the
16	nuclear industry it is a very aging group, and newer
17	people are coming in, and they have no idea how the
18	systems work.
19	So this is an other training tool to
20	them to make it explicitly clear what the standards
21	were meant. Now I will turn my attention to the
22	analysis.
23	DR. APOSTOLAKIS: I think the first
24	bullet in fact is vulnerable to criticism because of
25	that word concurrently. I think the second bullet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

33
is more appropriately worthy. It says that if you
have a single failure in one unit, it should not
prorogate to the other, and that's fine.
But to say to consider two single
failures concurrently is against the philosophy of
single failure criteria isn't it?
DR. ROSEN: No, that is two different
units.
DR. APOSTOLAKIS: Yes.
MR. AGGARWAL: All right. We are going
to turn over to the analysis which is needed to be
done, and there are several stats, and that might
answer some of the questions which have been raised
recently.
The first criteria is that a safety
function for which the analysis is to be performed
shall be determined, and let me give you the
examples. Like reduced power, and isolate
containment, and cool the core.
The second criteria is that protective
action at the system level that are available for
safety functions shall be determined. Let me again
give you a few examples. For example, the rapid
(inaudible) and not the control rods, and building
of the containment isolation was safety injections,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	and poor spray.
2	These are the types of examples of that
3	protection. The next criteria is that safety group
4	that will sufficiently satisfy the required safety
5	functions shall be determined. Again, let me take a
6	few examples.
7	One example that comes to mind is that
8	either a two (inaudible) system, or one (inaudible)
9	spray and two LPSI, lower pressure coolant injection
10	subsystem, would we advocate to cool the core.
11	The next criteria is the independence of
12	the safety group that will be established shall be
13	verified. And again just to expand on that, this
14	independence should be verified.
15	And how would you verify that? By
16	observing that there are at least two safety groups
17	that have no shared equipment. For example, relays,
18	switch gear, buses, power sources, and even the
19	locations.
20	The next item here is for systems or
21	parts, where independence cannot be established, a
22	systematic investigation of potential failures shall
23	be conducted to assure that single failure criteria
24	is not valid.
25	Again, let me give you a few examples.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	Failures include short-circuits, open voltage,
2	grounds, low AC and DC voltage, and these are all
3	examples that fall into this category.
4	DR. LEITCH: But it seems to me that it
5	depends greatly on how one defines the safety
6	function in your previous slide.
7	MR. AGGARWAL: That is correct.
8	DR. LEITCH: And, for example, to go
9	back again to this example, if the safety function
10	is to inject water at high pressure, the BWR would
11	fail if you define the function as to cool the core
12	and it passes.
13	MR. LOESER: In this particular case,
14	you are defining the function and then saying that
15	function fails. That is not really a you are
16	saying the function is to inject water at high
17	pressure, and then you are saying the system injects
18	water at high pressure and fails, this is you can
19	do that to any degree.
20	With any single component failure the
21	system that injects high water or high pressure at
22	water water at high pressure I am getting a
23	little tongue-tied will not fail.
24	That is, you can lose any particular
25	valve, and you can lose any particular pipe, and you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	36
1	can lose any particular sensor that tells it to
2	inject the water, and it will still do that.
3	However, then if you want to failure the
4	entire system that is, HPSI, you have to now take
5	your function to the next higher level, and that is
6	to say to adequately cool the core.
7	You can't define your function and then
8	define the failure as that function at the same time
9	and have a valid analysis.
10	DR. LEITCH: Well, if you had redundant
11	HPSI systems, you could, right?
12	DR. LEITCH: Well, it would define the
13	function of injecting water, you would have two of
14	them, and you would say, okay, I define my failure
15	as not being able to inject water, regardless of how
16	many.
17	CHAIRMAN BONACA: That would restrict
18	really your designing ability. I mean, you can
19	either provide the function by having a redundant
20	high pressure planes, or you may have provided the
21	function of cooling a high pressure at the lowest
22	level still. So one train of high pressure and one
23	train of
24	DR. APOSTOLAKIS: But Graham's point is
25	very well taken. It depends on what you call

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	function.
2	MR. LOESER: Yes.
3	CHAIRMAN BONACA: Oh, yes.
4	MR. LOESER: And that defines the
5	function, because no matter what you are defining,
6	you could always say, okay, I lose that, and what is
7	next.
8	DR. APOSTOLAKIS: I have a question for
9	Dr. Powers. In your infamous memo, or taped report,
10	or whatever it was regarding the (inaudible) you had
11	in big boldface letters, this design phase, and the
12	defense in depth I think you said, or single failure
13	criteria of the agency, isn't this really what you
14	had in mind there?
15	You said if the primary way of removing
16	heat failed, there would have no alternate way of
17	doing it as I recall.
18	DR. POWERS: I think in fact I had them
19	failing on a couple of bases, and one of them is
20	that they lost their final heat sync and they had no
21	way to get to the heat sync.
22	DR. APOSTOLAKIS: All right.
23	DR. POWERS: And the second one is if
24	they SCRAMed the reactor, they had to use the safety
25	systems to shut it down, because just using the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	control rods to cool it down, because the
2	temperature coefficient and reactivity it came back
3	alive, and so you had to put in the SCRAM rods in
4	order to shut it down.
5	So if your SCRAM rods failed, you can't
6	shut the reactor down. In other words, if you have
7	a single failure and your SCRAM is (inaudible), you
8	can't shut the reactor down and that is a violation
9	of the single failure criterion.
10	DR. APOSTOLAKIS: Well, it is a
11	violation of the system level, the fire level,
12	because you are assuming that you are losing the
13	whole SCRAM system, independently of whether you are
14	losing it due to a single failure or some other
15	failure, it is the function level that we are
16	talking about.
17	DR. POWERS: Well, clearly in my
18	memorandum, I was thinking of the function level,
19	but in fact that particular SCRAM system can be lost
20	by failure of a single digit component.
21	DR. APOSTOLAKIS: I see. So the heat
22	sync is what? You don't need an alternate heat
23	sync. There is one heat sync, but getting there
24	DR. POWERS: You have to be able to get
25	there.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	CHAIRMAN BONACA: The point that I was
2	making before was that in the function of the
3	accident analysis, I don't think the regulation is
4	prescripted that you must have two trains of high
5	pressure, two trains of low pressure, and especially
6	for boilers.
7	The old boilers used to have many
8	isometric means of providing redundant functions.
9	So you could use high pressure injection and in
10	compliance with only one train.
11	But then you have other means through
12	the installation condenser, and to provide a
13	function of cooling during a LOCA, and what you have
14	to demonstrate is that either way we will take you
15	to shutdown, and there were different ways to get
16	there.
17	So I don't think in defining the
18	function of the regulation that it is prescriptive
19	of high pressure injection, and you have to have two
20	trains or whatever. That is one vital design, but
21	it was left free to perform the function, which is
22	the one of cooling, at high pressure, mid-pressure,
23	and low -pressure until you get to shutdown.
24	DR. LEITCH: But if we are starting with
25	a blank piece of paper to design an advanced reactor

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	wouldn't that redundancy be required at the system
2	level?
3	I mean, what I am trying to say is that
4	say we design, and you are starting with a clean
5	piece of paper to design a BWR today, would these
6	regulations require that you have two HPSI systems?
7	MR. LOESER: I don't think so. I would
8	think that it would define the function and what the
9	licensing comes in, but once again we are probably
10	not prescriptive enough.
11	We would want to know that if you lost
12	that system that there would be no consequent to the
13	health of the public or the safety. That is, you
14	have some other way of cooling off the core before
15	there is any problem.
16	And if that way was to depressurize and
17	then use low, I would suspect that that would be
18	acceptable. However, I might point out that I am
19	ont in the accident analysis branch, or the reactor
20	systems branch.
21	DR. LEITCH: I understand that.
22	MR. LOESER: So I may be making a bad
23	supposition.
24	CHAIRMAN BONACA: That is a good
25	question. There were old boilers at the Vermont

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	41
1	Yankee, for example, that had in fact they were
2	isometric in that sense, and had redundant systems.
3	But they had multiple systems, and
4	Vermont Yankee, for example, had only one high
5	pressure injection train. Then you have the
6	isolation condenser, and you have other means of
7	system safety failure, and so you have in an
8	isometric plant, but still it was not licensed. But
9	today I don't know if you would
10	DR. ROSEN: I don't think there is
11	anything that would mitigate against it, and in fact
12	those older plants having different means of getting
13	the same function or more armor against a common
14	mode failure.
15	CHAIRMAN BONACA: They are very, very
16	in fact, the core damage frequency for those plants
17	is very low.
18	DR. APOSTOLAKIS: Even if you have
19	redundant ways, that is where the mechanical systems
20	differ from electrical systems. And in a lot of
21	what the old plants, there is a single suction line
22	for both trains from the RWST, and so you have the
23	design basis event somewhere else, and it is a LOCA.
24	Now you have to cool the core, but that
25	single failure doesn't count as a single failure.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	CHAIRMAN BONACA: But you would not
2	design it today that way.
3	DR. APOSTOLAKIS: You would not.
4	CHAIRMAN BONACA: And typically the
5	(inaudible) because some of the earlier plants had
6	it that way.
7	DR. ROSEN: You would not do it not
8	because it is not strictly allowed by the
9	regulation. You would just do it because it is a
10	better practice.
11	CHAIRMAN BONACA: A good practice.
12	DR. APOSTOLAKIS: Yes.
13	MR. AGGARWAL: Let me conclude with
14	regard to the analysis and further observations.
15	Electrical, mechanical, and system logic failures
16	shall be considered in a single failure analysis.
17	A given component can have different
18	failure modes, and all analyses will be made for all
19	or each mode the failures. The location of safety
20	equipment shall be also analyzed to determine the
21	effect of common cause failures.
22	I am going to turn to the PRA now. The
23	IEEE or the industry has concluded that PRA analysis
24	is no substitute for a single failure analysis.
25	DR. ROSEN: Nor is a single failure

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	analysis a substitute for a PRA.
2	MR. AGGARWAL: So conversely that is
3	very well said. However, I would like to add
4	something. A failure can be excluded for a single
5	failure analysis based on PRA operating experience.
6	DR. APOSTOLAKIS: In other words, I can
7	argue that well, first, I have a single failure
8	someplace, and I fail the criteria. But then I can
9	come back and say, look, based on this, and this,
10	and this, and that, and that, and that analysis, the
11	reliability of this particular piece of equipment is
12	so high that you should exclude it. I mean, the
13	failure cannot happen, and that is what you say.
14	MR. AGGARWAL: And that would apply
15	here.
16	DR. APOSTOLAKIS: Is that a new thing, a
17	new idea?
18	MR. LOESER: No, no. What about the
19	reactor vessel?
20	MR. LOESER: It is not a new idea, but
21	one that has been spelled out clearly.
22	MR. AGGARWAL: Clearly and explicitly.
23	MR. LOESER: It is one of those things
24	that we always knew this.
25	DR. ROSEN: We never took the failure of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	44
1	a reactor vessel.
2	DR. APOSTOLAKIS: Well, it allows you to
3	have a common
4	DR. ROSEN: We argued that the reactor
5	vessel is not going to fail.
6	DR. APOSTOLAKIS: Well, the reactor
7	vessel is a different beast, but the suction lines,
8	that is a basis on whether you allow it.
9	MR. AGGARWAL: Another example that
10	comes to my mind is that we essentially are
11	considering the passive failure, and you take a
12	motor controlled sample (inaudible), and you take it
13	granted that it will not fail, and that is based on
14	your analysis, judgement, PRA, or whatever it is.
15	And you don't have to conclude in your
16	analysis that let's fail the whole thing.
17	DR. APOSTOLAKIS: Wouldn't the more
18	accurate expression be passive component failure.
19	The failure itself cannot be passive.
20	MR. AGGARWAL: Okay. You are right.
21	DR. APOSTOLAKIS: It is like expert
22	elicitation.
23	MR. AGGARWAL: You're right.
24	DR. APOSTOLAKIS: It is an expert

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	45
1	MR. AGGARWAL: The last significant
2	change involves the sensing lines, and now the
3	standard explicitly states that the lines connecting
4	sensors to the proper system shall be included, and
5	let me again give an example.
6	Equalizing walls, chambers, and
7	isolation walls. In conclusion
8	DR. LEITCH: All the way back to the
9	penetrations to the vessel, right?
10	MR. AGGARWAL: What about it?
11	DR. LEITCH: I mean, you have to have
12	redundant penetrations to the vessel.
13	MR. AGGARWAL: Correct.
14	DR. LEITCH: And not just coming out of
15	the vessel and then (inaudible) redundant valves.
16	MR. LOESER: And this is another one of
17	those cases where everybody knew this was meant all
18	the while, but it was never spelled out. So it was
19	just spelled out.
20	MR. AGGARWAL: In conclusion, it is my
21	submission to the committee that IEEE standards in
22	question is a much improved standard over the number
23	of years, and the staff is working with the IEEE
24	hand-in-hand.
25	In the last reg guide with the many

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 exceptions to the IEEE standard, and looking over a number of years, although those sections have been 2 incorporated or resolved, it is the opinion of the 3 4 staff that this standard, if it satisfies so that 5 the requirements are met, it will meet the commission requirements on the part of single 6 7 failure. And it is my submission to you that the 8 committee concur with our findings, and permit us to 9 publish this guide as a final guide. Thank you. 10 Ι 11 would also like to thank Dave, who took the time to 12 come from Susquehanna River to join us today, and on behalf of the NRC, I would like to thank him. 13 Excuse me, Satish. 14 MR. CARUSO: 15 MR. AGGARWAL: Yes. MR. CARUSO: I was wondering if you 16 17 could please -- in my review of the reg guide, I saw that there is additional guidance with regard to 18 single failure analysis in the designs that used 19 20 digital computers. 21 And that this guidance is provided in 22 the common cause failure section and refers the 23 reader to the IEEE standard 7-4.3.2-1993. 24 MR. AGGARWAL: Right. 25 MR. CARUSO: And it discusses common

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

46

47 1 cause failures, but yet design deficiencies are 2 specifically exempted from the standard. Could you please elaborate on why those were exempted from the 3 4 standard? 5 MR. AGGARWAL: I really don't understand the question. Do you, Dave? 6 7 MR. ZAPRAZNY: Could you repeat that again? 8 9 MR. CARUSO: When I looked at the 10 standard --MR. AGGARWAL: This is the standard that 11 12 we are talking about now, 379, or 7-4.3.2? Well, 379, and it refers or MR. CARUSO: 13 14 it says that additional guidance was added to 15 address single failure analysis in designs that used digital computers, and that this guidance is 16 17 provided in the common cause failure section and refers the reader to IEEE Standard 7-4.3.2-1993. 18 19 And it identifies some important common cause failure mechanisms for digital computers, and 20 21 that it would be a software flaw, which can be 22 considered a design deficiency. Yet, design 23 deficiencies were specifically exempted from the 24 standard. MR. AGGARWAL: Ralph, could you tell us 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	48
1	the section number also? Are we on 5.5?
2	MR. CARUSO: This was based on 1.53 in
3	the reg guide, I guess.
4	MR. AGGARWAL: Okay. And where are you
5	reading it from?
6	MR. CARUSO: This was
7	DR. ROSEN: Excuse me. Cliff Doutt, do
8	you remember the design deficiency section?
9	MR. DOUTT: I think
10	MR. AGGARWAL: Cliff, could you please
11	move to the mike, please?
12	DR. ROSEN: Thank you.
13	MR. DOUTT: Are you talking about the
14	next to last paragraph on page 5?
15	MR. CARUSO: Yes.
16	MR. DOUTT: I think what he is asking is
17	on your single failure criteria, and you go to
18	common cause, common cause has some exceptions for
19	the single failure criteria, based on you know,
20	you have design issues which are exempted because
21	you are saying that surveillance, or quality control
22	programs, or whatever, will take care of that.
23	But in digital systems, it references
24	you back to 7.4.3.2, because that common cause there
25	is a design.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

49 1 The standard itself exempts some common 2 cause based on I think one's design, and the 3 reasoning being that if you go back over and say you 4 are going to take credit for either surveillance or 5 quality control programs, but in software the design flaw is common cause. I know the standard 6 7 references you back to 7.4.3.2. MR. LOESER: Let me see if I understand 8 9 what you are saying. You are objecting because this 10 particular paragraph has on the third line, it says 11 things that are exempted are design deficiencies. 12 But in fact if you take into account 7.4.3.2, which talks about V&V, for example, on the 13 14 design and on the specifications and all of this, 15 where you ensure that there are no design deficiencies, or at least to the probability of a 16 17 design deficiency, is sufficiently small that you are not capable of finding it anymore, despite your 18 19 best efforts. Yes, I think the standard 20 MR. DOUTT: 21 actually draws you off, because common cause failure 22 in software is unique, and so it takes you to 23 7.4.3.2 to resolve that. 24 MR. AGGARWAL: Exactly, and that is the 25 subject matter of the IEEE Standard 7.4.3.2.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	MR. DOUTT: Right.
2	MR. AGGARWAL: And as I submitted to the
3	committee before, that the latest (inaudible) IEEE
4	standard yesterday, and the staff plans to endorse
5	that, and we will be back to you, and provide
б	information on how single failure will apply to
7	digital computers.
8	MR. LOESER: In this particular case the
9	last paragraph of Section 5.5 happens to be on page
10	6, and it says guidance on using diversity to
11	address common cause failures in digital computer
12	systems as provided by IEEE Standard 7.4.3.2-1993.
13	And that in fact does address design
14	errors. So if you think about it, that last sentence
15	is sort of an exception to the fact that it talks
16	about design deficiencies being exempted from common
17	cause failure. Does that answer your question?
18	MR. CARUSO: Yes, and it seems like
19	there was and maybe I am missing something, but
20	it appears that it is going to be addressed
21	MR. LOESER: Well, design deficiencies
22	are addressed in the existing version of 7.4.3.2.
23	MR. CARUSO: Yes, that's correct.
24	MR. LOESER: Design deficiencies are
25	addressed in the existing version of 7.4.3.2.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	MR. CARUSO: Yes.
2	MR. LOESER: And the fact that there is
3	a new one coming out doesn't really change that.
4	MR. AGGARWAL: But he is talking about
5	the reg guide, and what we are saying is that the
6	reg guide will endorse the standard will be
7	forthcoming, yes.
8	MR. LOESER: But, Satish, that has
9	nothing to do with what we are talking about. The
10	fact that we are planning to endorse a new version
11	of 7.4.3.2 doesn't matter if the existing version
12	takes care of this version.
13	MR. CARUSO: I think the reference for
14	7.4.3.2 was intended to cover common cause software
15	failure in 7.4.3.2 right now, and the new standard
16	will just be whatever enhancements there are.
17	MR. AGGARWAL: That's right.
18	MR. LOESER: So what is the question?
19	MR. CARUSO: That the design
20	deficiencies are considered as a common cause
21	failure.
22	MR. LOESER: In digital software, yes.
23	That's why we review the design.
24	MR. CARUSO: Very good.
25	MR. AGGARWAL: This will conclude our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	presentation.
2	DR. SHACK: Any further questions from
3	the committee? If not, thank you for a detailed
4	presentation, Satish.
5	MR. AGGARWAL: Thank you.
6	CHAIRMAN BONACA: I think we can go off
7	the record now. We do not have to record the
8	meeting anymore.
9	(Whereupon, at 9:31 a.m., the meeting
10	was concluded.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	