Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Reactor Safeguards493rd Meeting

Docket Number: (not applicable)

Location: Rockville, Maryland

Date: Thursday, June 6, 2002

Work Order No.: NRC-419

Pages 1-382

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS)
5	493rd MEETING
6	+ + + +
7	THURSDAY, JUNE 6, 2002
8	+ + + +
9	ROCKVILLE, MARYLAND
10	+ + + + +
11	The ACRS met at the Nuclear Regulatory
12	Commission, Two White Flint North, Room T2B3, 11545
13	Rockville Pike, at 8:30 a.m., Dr. George E.
14	Apostolakis, Chairman, presiding.
15	COMMITTEE MEMBERS PRESENT:
16	GEORGE E. APOSTOLAKIS Chairman
17	MARIO V. BONACA Vice Chairman
18	F. PETER FORD Member
19	GRAHAM M. LEITCH Member
20	DANA A. POWERS Member
21	VICTOR H. RANSOM Member
22	STEPHEN L. ROSEN Member
23	WILLIAM J. SHACK Member
24	JOHN D. SIEBER Member
25	GRAHAM B. WALLIS Member

1	ACRS STAFF PRESENT:	
2	JOHN T. LARKINS	Executive Director
3	SHER BAHADUR	Associate Director
4	SAM DURAISWAMY	Technical Assistant
5	TIMOTHY KOBETZ	Cognizant Engineer
6	HOWARD J. LARSON	Special Assistant
7	MAGGALEAN W. WESTON	Staff Engineer
8	NRC STAFF PRESENT:	
9	PATRICK BARANOWSKY	NRR
10	BILL BASEMAN	NRR
11	STEVE BLOUR	NRR
12	THOMAS BOYCE	NRR
13	ART BUSLIK	NRR
14	JOSE CALVO	NRR
15	CYNTHIA CARPENTER	NRR
16	KEN CHANG	NRR
17	STEPHANIE COFFIN	NRR
18	MARY DROUIN	NRR
19	RON FRAHM	NRR
20	MIKE FRANOVICH	NRR
21	D.E. HICKMAN	NRR
22	ALLEN HISER	NRR
23	MICHAEL JOHNSON	NRR
24	IAN JUNG	NRR
25	PETER KANS	NRR

1	NRC STAFF PRESENT:		
2	P.T. KUN	NRR	
3	ANDREA LEE	NRR	
4	SAM LEE	NRR	
5	W. LIU	NRR	
б	TONY MARKLEY	NRR	
7	MICHAEL MARSHALL	NRR	
8	MIKE MAYFIELD	NRR	
9	SCOTT NEWBERRY	NRR	
10	ALLEN NOTAFRANCESCO	NRR	
11	BOB PALLA	NRR	
12	RICHARD PUDLEY	NRR	
13	JACK ROSENTHAL	NRR	
14	MARK RUBIN	NRR	
15	MARK SATURIUS	NRR	
16	PAUL SHAMANSKI	NRR	
17	MIKE SNODDERLY	NRR	
18	DWIGHT SNOWBERGER	NRR	
19	ASHOK THADANI	NRR	
20	JOHN THOMPSON	NRR	
21	KEITH WICHMAN	NRR	
22	CHARLES ADER	RES	
23	SATISH AGGARWAL	RES	
24	NILESH CHOKSHI	RES	
25	FAROUK ELTAWILA	RES	

1	NRC STAFF PRESENT:	
2	SIDNEY FELD	RES
3	ED HACKETT	RES
4	HOSSEIN HAMZEHEE	RES
5	ASIMIOS MALLIAKOS	RES
6	JOHN RIDGEBY	RES
7	ALAN RUBIN	RES
8	HAROLD VANDERMOLN	RES
9	JACK GROBE	NAC/Riii
10	ALAN LEVIN	OCM
11	SUSAN UTTAL	OGC
12	ALSO PRESENT:	
13	MIKE BARRETT	
14	CHARLES BRINKMAN	
15	BOB BRYAN	
16	KURT COZENS	
17	DAVID DELLANO	
18	STEVE EIDY	
19	STEPHEN FYFITCH	
20	PAUL GUNTER	
21	ANN HARRIS	
22	TOM HENRY	
23	JOHN HINKLING	
24	PHIL HOLZMAN	
25	BILL HORIN	

1	ALSO PRESENT:
2	DANIEL HORNER
3	TOM HOUGHTON
4	STEVE HUNT
5	ROGER HUSTON
6	DICK LABOTT
7	JOHN LEHNER
8	DAVID LOCKBAUM
9	STEVE LOEHLEIN
10	ALEX MARLION
11	PATRICK McCLOSKEY
12	MARK MCLAUGHLIN
13	JIM MEYER
14	JIM POWERS
15	DEANN RALEIGH
16	PETE RICCARDELLA
17	JACK ROE
18	JOHN RYCYNA
19	ROBERT SCHRAUDER
20	KEVEIN SPENCER
21	TUNG TSE TSENG
22	BOB YOUNGBLOOD
23	
24	
25	

	6
1	I N D E X
2	Opening Remarks by the ACRS Chairman 7
3	CRDM Cracking of Vessel Head Penetrations
4	and Vessel Head Degradation 9
5	Technical Assessment Generic Safety Issue
6	(GSI)-189, "Susceptibility of Ice
7	Condenser and Mark III Containments to
8	Early Failure from Hydrogen Combustion
9	During a Severe Accident"
10	Technical Assessment of GSI-168, Environmental
11	Qualification of Low-Voltage
12	Instrumentation and Control Cables 209
13	Development of Reliability/Availability
14	Performance Indicators and Industry
15	Trends
16	Technical and Policy Issues Related to
17	Advanced Reactors
18	Adjourn
19	
20	
21	
22	
23	
24	
25	

	7
1	PROCEEDINGS
2	8:31 a.m.
3	CHAIRMAN APOSTOLAKIS: The meeting will
4	now come to order. This is the first day of the 493rd
5	meeting of the Advisory Committee on Reactor
б	Safeguards. During today's meeting, the Committee
7	will consider the following: CRDM Cracking of Vessel
8	Head Penetrations and Vessel Head Degradation;
9	Technical Assessment Generic Safety Issue (GSI)-189,
10	"Susceptibility of Ice Condenser and Mark III
11	Containments to Early Failure from Hydrogen Combustion
12	During a Severe Accident"; Technical Assessment of
13	GSI-168, Environmental Chylifaction of Low-Voltage
14	Instrumentation and Control Cables; Development of
15	Reliability/Availability Performance Indicators and
16	Industry Trends; Technical and Policy Issues Related
17	to Advanced Reactors; and Proposed ACRS Reports.
18	This meeting is being conducted in
19	accordance with the provisions of the Federal Advisory
20	Committee Act. Mr. John T. Larkins is a designated
21	federal official for the initial portion of the
22	meeting.
23	We have received no written comments from
24	members of the public regarding today's sessions. We
25	have received requests from Ms. Ann Harris, a member

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	8
1	of the public, and David Lockbaum, Union of Concern
2	Scientist for time to make oral statements regarding
3	GSI-189.
4	A transcript of portions of the meeting is
5	being kept and it is requested that the speakers use
6	one of the microphones, identify themselves and speak
7	with sufficient clarity and volume so that they can be
8	readily heard.
9	I don't have any special comments. Do any
10	of you Members want to say anything before we start?
11	MR. LARKINS: Mr. Chairman?
12	CHAIRMAN APOSTOLAKIS: Yes.
13	MR. LARKINS: I think we also received a
14	letter from Mr. Ken Bergeron regarding GSI.
15	CHAIRMAN APOSTOLAKIS: Yes.
16	MR. LARKINS: 189.
17	CHAIRMAN APOSTOLAKIS: Yes, we did.
18	MR. LARKINS: Which we will enter into the
19	record.
20	MEMBER KRESS: And I understand Mr.
21	Lockbaum will speak to that letter.
22	CHAIRMAN APOSTOLAKIS: Yes. The first
23	item on the agenda is the CRDM Cracking of Vessel Head
24	Penetrations and Vessel Head Degradation. The
25	cognizant member is Dr. Ford. Please.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER FORD: Thank you. The Metallurgy and Plant Operations Subcommittees had an extended 2 meeting being briefed on the CDRM housing cracking and 3 4 head degradation pressure vessel issues. We 5 purposefully did not dwell on safety culture and reactor oversight process issues since these are being 6 7 dealt with separately.

8 All the ACRS Members, apart from Dr. 9 Powers, were present at the Subcommittee meeting. The 10 staff have requested a letter from us, commenting on 11 the technical aspects of these degradation programs. I'd first 12 like to proceed with the 13 presentation by Jim Powers, I understand from FENOC. 14 Good morning. I'm Jim MEMBER POWERS: 15 Powers, the Director of Engineering for First Energy at the Davis-Besse Nuclear Plant and we're going to 16 17 review the -- briefly, the presentation that we did yesterday to the Subcommittee and I brought with me 18 19 once again Mark McLaughlin, who is our field team lead for work on the reactor head at Davis-Besse; Bob 20 Schrauder who is the Director of Life Cycle Management 21 22 for First Energy. He's responsible for the procuring 23 and installing a replacement head from the Midland 24 Plant which preferred approach is now our to 25 recovering the head at Davis-Besse. And Steve

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	10
1	Loehlein will talk briefly on the root cause, any
2	updates and questions there may be on that. So Mark,
3	why don't you go ahead.
4	MR. McLAUGHLIN: All right, thank you,
5	Jim. Since you all have seen these pictures, I will
6	be brief. Next slide, please.
7	(Slide change.)
8	MR. McLAUGHLIN: Keep on going. Next one.
9	Okay, this first picture is abrasive water jet cutting
10	machine that we used. This particular picture is on
11	a one to the mockups. We did mockup this process
12	twice prior to performing it on the reactor pressure
13	vessel head at Davis-Besse.
14	Next slide.
15	(Slide change.)
16	MR. McLAUGHLIN: This next picture is a
17	picture of the cutout on the actual head at
18	Davis-Besse.
19	Next slide.
20	(Slide change.)
21	MR. McLAUGHLIN: This is a picture
22	underneath the head at Davis-Besse using a remote
23	camera and it's the same cutout.
24	Next slide, please.
25	(Slide change.)

	11
1	MR. McLAUGHLIN: This is a picture of the
2	cavity that has been removed and I'll talk about on
3	the next slide. We had three phases of samples that
4	we're going to do analyses for. Phase 1 was boron
5	samples from various location son the head. Those
6	we do have a draft report with the results of those
7	samples. Just briefly, we did five boron, iron and
8	lithium which is to be expected, as well as nickel and
9	chromium in those samples.
10	Phase 2 samples
11	MEMBER SHACK: Excuse me. You're looking
12	at analysis techniques that will tell you more than
13	just the chemical composition. We're going to know
14	the actual bores?
15	MR. McLAUGHLIN: That's correct, yes. We
16	do have they had the forms.
17	MEMBER SHACK: Right, you're not a
18	mineralogy, so
19	MR. McLAUGHLIN: That's correct.
20	MEMBER SHACK: That's not your concern,
21	but that information will be available?
22	MR. McLAUGHLIN: Yes, it will. We would
23	expect to have that report issued to the staff within
24	the next two weeks.
25	Phase 2 will be essentially the same type

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	12
1	of analysis. The Phase 2 has the samples that were
2	taken when we removed nozzle number 2, so there should
3	be some boron from the annular space and should
4	hopefully that will help us with some of the chemistry
5	questions that we have in the annular space.
6	And then Phase 3 is the actual nozzles 2
7	and 3 that were removed as well as the cavity and
8	we're working with the staff on determining exactly
9	which tests to perform on that. Right now, all three
10	of these samples are in Lynchburg, Virginia and we
11	have meetings scheduled within the next two weeks with
12	the staff to go down there and discuss what type of
13	analysis because the next step will be will require
14	some destruction of the samples.
15	MEMBER WALLIS: It seems to me that
16	there's a lot of clue in the shape of the cavity as to
17	what happened. I hope you're really careful to get
18	all the information you possibly can out of it before
19	it is destroyed or turned into something else.
20	MR. McLAUGHLIN: What we're doing is we're
21	going to take extensive photographs of the cavity in
22	its present condition, as well as take a lot of
23	measurements so we can gain as much information prior
24	to doing any destruction of the sample.
25	MEMBER WALLIS: I would suggest that

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

	13
1	people some hypotheses before they start doing this so
2	they know what they're looking for, so they know
3	what's required in order to verify or challenge the
4	hypotheses.
5	MR. LOEHLEIN: Yes, we in root cause have
б	been advising from several months ago what sorts of
7	things we were looking for that might give us evidence
8	of different types of mechanisms, whether they be flow
9	induced, impingement, corrosion, what have you.
10	In this cavity, we were unable to <u>in situ</u>
11	take any kind of impression like we were able to do at
12	Nozzle 2. There are areas, a lot to do yet
13	MEMBER WALLIS: You can take impressions
14	of that.
15	MR. LOEHLEIN: We couldn't while it was on
16	the head.
17	MEMBER WALLIS: You can now though.
18	MR. LOEHLEIN: Now we can do a lot of
19	things and Tod Plune is back at the site that's
20	working on the lead as far as what we do with these
21	samples.
22	MEMBER WALLIS: Okay.
23	MR. McLAUGHLIN: Yes, we also have a
24	person who will be down there in Lynchburg with us,
25	with the staff is Mr. Steve Fyritch. He's on the Root

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Cause Team for the Davis-Besse Root Cause. So we're keeping the root cause personnel tied into this process.

4 And this picture is a picture of the actual cavity. You can see into the underhung area 5 after it was removed. And then the last picture shows 6 7 the side view of the sample that was removed. You can 8 see the J-groove weld around Nozzle 11 and the last 9 time we were here there was some discussion about 10 maybe a possible detachment or corrosion between the 11 stainless steel liner and the base material. We did 12 perform a visual inspection. We can't do any dye 13 penetrant because the surface is too rough to do that 14 and there was no evidence of any cladding detachment.

15 That's all I have. Ιf there's any 16 questions -- all right. I'd like to turn it over to 17 Bob Schraider who is the Director of Life Cycle Management for First Energy Nuclear Operating Company. 18 19 And he's the senior person in charge of head 20 replacement.

21 MR. SCHRAUDER: Good morning. As Mark and 22 Jim indicated, while we went down the repair path, I 23 in parallel was looking at the ability to procure, 24 transport and install a replacement reactor vessel 25 head at Davis-Besse.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

1Our search included looking at2accelerating a schedule for manufacture of a brand new3head for Davis-Besse and also looking at existing4heads in the industry.

5 We were unable to significantly accelerate the schedule for our new head which is scheduled to be 6 7 delivered during the first quarter of 2004. We did 8 find two compatible heads with Davis-Besse existing in 9 the industry. One was at a checkdown plant in 10 California, the Rancho Secho Plant. The other was the 11 unfinished plant up in Midland, Michigan which was 12 also a Babcock & Wilcox design. We quickly narrowed 13 our view down and decided to purchase the Midland 14 head. It had several advantages to us. It was very 15 us, away and close to one state it was not 16 contaminated, so any work that we had to do on it and 17 significantly easier with transportation was an uncontaminated head than it was a contaminated one. 18

19 Т']] talk little bit а about. the 20 similarities on this head to the Davis-Besse design. It was fabricated by Babcock and Wilcox to the same 21 22 code and addenda as the Davis-Besse reactor vessel 23 head was. We have records on this head, indicating 24 that it was accepted by Consumers Power. And it was signed off by an authorized nuclear inspector as an 25

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	16
1	acceptable ASME component.
2	We also have records indicating that this
3	head was hydrostatically tested prior to its shipment
4	to the Midland site.
5	Now our approach to procuring this
6	well, one thing I should say is that the Midland Plant
7	was canceled back in the 1980s. Since that time this
8	reactor vessel head has been sitting on the head stand
9	within the containment at the Midland site.
10	We chose Framatome to work with us because
11	of their expertise, technical expertise and their
12	access to the records on this head. They actually
13	purchased a head from Consumers for us as a basic
14	component. They're compiling the code data package or
15	pulling that out of the records, compiling it for us
16	and they will disposition any nonconformances due to
17	the storage of that head in the containment.
18	They will also reconcile the Midland head
19	for the design at Midland to the design at Davis-Besse
20	and I'll show those design requirements in just a
21	minute and of course they do have a quality assurance
22	program there at Framatome and they will be doing this
23	in accordance with their quality assurance program,
24	including Part 21 reporting on requirements. Then
25	they will sell that head to First Energy as the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

component, basic component.

1

The next slide shows that the material of 2 construction and this head is virtually identical to 3 4 that of the Davis-Besse design, even that material for the closure head flanges, in fact, the same material 5 has all the same material properties. The design, you 6 7 see, this head and vessel was designed to the same 8 pressure and temperature as the Davis-Besse design 9 requirement.

10 We did take a look at the nozzles on this 11 head and the material of those nozzles. They are the same nozzle material as the Davis-Besse with a 12 13 different heat number and those two heat numbers are 14 identified on this slide. All but one are from a 15 single heat. Neither of these two heats has any 16 industry experience. Their qualities and their yield 17 stress we have found to be in the middle of the range 18 of the heats that have some industry experience.

19 And of course, the alignment of the 20 control rods is the same on this head as it was for the 21 22 Davis-Besse design. 23 This picture shows what's known as the 24 There are four of these key-ways on the head key-way. 25 that precisely align this head to your vessel and each

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

is somewhat custom fit to the vessel. 1 They are in 2 nearly the same position but the times are mils off. 3 There are eight surfaces on these four key-ways, the 4 inner and the outer. Four of those eight surfaces needed to have some slight machining to precisely fit 5 this head to the Davis-Besse head. And the control 6 7 rod drive mechanism flange indexing, where the control 8 rod drive mechanism comes on to the nozzle has an 9 indexing pin for proper alignment and there are two 10 locations that you can align from on this. The 11 Davis-Besse design is on the opposite one that Midland was set up for and therefore those indexing holes, 12 13 there's a plug that needs to be taken out of the 14 existing hole on the Midland head and moved to the other side so that we have the proper indexing 15 16 location for our control rods. 17 Is the plug welded in? MEMBER KRESS: 18 MR. SCHRAUDER: No, it's not. 19 Just forced in? MEMBER KRESS: 20 MR. SCHRAUDER: That's correct. The other difference on this head is the O-ring design. 21 The 22 O-ring has the groove in the O-ring itself is slightly smaller on the Midland head and that is consistent 23 24 with the rest of the head, the Davis-Besse had 25 somewhat of a unique difference. We had a .5 inch

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	19
1	small diameter in our O-ring. We have analytically
2	shown that the smaller O-ring will seal effectively in
3	the groove in our vessel and of course, we'll test
4	that as we bring this vessel and head up to pressure.
5	We will manufacture and install new O-
6	rings on to the Midland head.
7	MEMBER KRESS: How did you assure yourself
8	that the O-rings would seal sufficiently?
9	MR. SCHRAUDER: We have the precise
10	dimensions of the location of the grooves on the
11	Midland
12	MEMBER KRESS: Was it dimensional?
13	MR. SCHRAUDER: That's correct. And there
14	is a leak off system between those seals that we'll be
15	able to verify that the seals we see no problem.
16	We have very good crush on
17	MEMBER KRESS: Are those the same seals
18	that were leaking in the regional vessel?
19	MR. SCHRAUDER: No, those seals, I believe
20	were the control rod drive mechanism.
21	MEMBER KRESS: That's not the seals you're
22	talking about?
23	MR. SCHRAUDER: No, this is the head to
24	vessel flange seating surface.
25	MEMBER KRESS: Okay.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	20
1	MR. McLAUGHLIN: As a matter of fact, if
2	you want to
3	MEMBER KRESS: It would be right here.
4	MR. McLAUGHLIN: Right here, the O-ring
5	grooves are here.
6	MEMBER KRESS: That's a big O-ring that
7	goes all the way around?
8	MR. McLAUGHLIN: That's correct, a set of
9	two of them.
10	MR. SCHRAUDER: And the gaskets you were
11	talking about are up here.
12	MEMBER WALLIS: Do those O-rings move once
13	the system is pressurized?
14	MR. McLAUGHLIN: I suppose they could a
15	little bit. There's clips that hold the O-rings in
16	place. However, the clips are slotted.
17	MEMBER WALLIS: You're essentially relying
18	on the crush to hold them in place?
19	MR. McLAUGHLIN: Correct.
20	MEMBER WALLIS: And that seals they're
21	not supposed to move the way the rubber ones do.
22	MEMBER SIEBER: Not from side to side, but
23	when you pressurize the vessel, it moves a little bit.
24	There's tension in the studs. The compression of the
25	O-ring reduces slightly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

21
MR. SCHRAUDER: This next pictorial, if
you will, is useful in looking at the next few slides
that I'll discuss the examinations that we'll do on
this head to verify its suitability for use at Davis-
Besse.
We're doing three different sets of
examinations. One is to supplement the Code Data
Package. One is our pre-service inspections and
another is just additional, nondestructive exams that
we'll do to verify that there's been no deleterious
effects due to this long-term storage that this had at
the Midland containment.
You see to supplement the code data
package we'll be doing visual examinations, looking
for any obvious signs and in particularly looking to
verify that there are no arc strikes on the head which
may indicate unauthorized welding on the head.
We're going to radiograph and actually
we've already completed the radiograph of the flange
to dome weld. This head, like the Davis-Besse head
was forged in two pieces, the dome and then the flange
and then there's a large weld on that. We've
completed a radiograph on that weld and they've shown

24 it to be a good weld.

We got about a 96 percent coverage due to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	the lifting lugs that prevented 100 percent
2	radiography on that. We do, however, have records
3	that indicate that there was 100 percent radiograph
4	successfully done on that head in the past.
5	We do intend to do a radiograph on all the
6	nozzle to flange welds for the control rod drive
7	connection and then we will do a dye penetrant exam of
8	the J-groove welds on the nozzles underneath the
9	vessel.
10	The pre-service inspections are shown on
11	the next page, the magnetic particle again on the
12	flange to dome weld. We'll do an ultra sonic on that
13	same weld and then we'll do a liquid penetrant exam of
14	the peripheral control rod drive mechanism, nozzle to
15	flange, and that is required by code and we will meet
16	the code on that. Our expectation, our intent is that
17	we will actually get to all of those nozzle to flange
18	welds. We believe we had adequate access
19	MEMBER WALLIS: So now we have some theory
20	about the rate of crack growth, you have some idea
21	about how big a crack you need to detect, then you
22	CRDM nozzle and its environment, in order to predict
23	what will happen, say in the next 10 years?
24	MR. McLAUGHLIN: The next slide, I think
25	we'll describe what we're going to do.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	23
1	MEMBER WALLIS: I just want to be sure
2	that what you're doing here is going to detect what
3	you need to detect in order to predict what's going to
4	happen, let's say during 20 years or whatever. I
5	didn't ask you that yesterday, but it occurred to me
6	you can match that the kind of techniques you're
7	using here on the precision to what you need to know.
8	I didn't ask that, but I'd like to some assurance that
9	you've done that.
10	MR. McLAUGHLIN: Okay.
11	MR. SCHRAUDER: The non-destructive exams,
12	the additional exams that we'll do, many of these are
13	to get that base line and to fully understand what
14	if there are any existing flaws or cracks.
15	MEMBER WALLIS: Well, you can't detect
16	below a certain size.
17	MR. McLAUGHLIN: What we're doing is we're
18	going to do the eddie current of the inside diameter
19	of the nozzles, so that we can detect any surface
20	flaws so that would be a crack initiation spot and
21	then we're also going to do the ultra sonic
22	examination to make sure there are no cracks present.
23	MEMBER WALLIS: No cracks.
24	MEMBER POWERS: To make sure we understand
25	any indications.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	MEMBER WALLIS: Well, you never detect
2	nothing. You detect up to above a certain size and I
3	just wondered if that precision is good enough. This
4	isn't my field, so someone else should be asking it.
5	MEMBER POWERS: This is the same equipment
6	we're going to be using for the in-service inspection.
7	So this will be a baseline of
8	MEMBER WALLIS: Yes.
9	MEMBER POWERS: The condition of the
10	nozzles.
11	MR. McLAUGHLIN: Our expectation
12	MEMBER WALLIS: I guess you didn't give me
13	a quantitative answer though.
14	MEMBER POWERS: Steve Fyfitch, would you
15	please?
16	MR. FYFITCH: Steve Fyfitch for Framatone.
17	It's not my field either. I'm not a UT, eddy current
18	specialist. But if memory is correct, the eddy
19	current can see a flaw in the surface that's
20	approximately 2 mils in depth and the UT can see
21	something a little bit larger than that.
22	MEMBER WALLIS: And within how many years
23	would that be expected to grow to a point where you
24	worry about it?
25	MR. FYFITCH: If you go by industry

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	25
1	experience, we've had vessels in-service, so we've
2	done eddie current inspections on, that have been in
3	service for 20 years and we haven't seen indications
4	on some of those.
5	MEMBER WALLIS: I was thinking of using
6	all those wonder DADTs we saw yesterday.
7	MR. FYFITCH: Well, that's you know
8	MEMBER WALLIS: Maybe we can ask the DADT
9	father there.
10	MR. FYFITCH: The cracked growth curves,
11	yes.
12	Do you have anything to say on that, John?
13	MR. HICKLING: John Hickling, EPRI. As I
14	pointed out yesterday, the DADT curves have been
15	evaluated or derived to evaluate relatively large
16	flaws in their further growth. The industry
17	experience of stress corrosion cracking is that the
18	initial phases of growth are very small flaws or
19	defects is very, very slow indeed and takes up the
20	large majority of life. So it's difficult to make a
21	quantitative prediction in that area because the DADT
22	curves do not apply to those very slow early stages of
23	growth.
24	MEMBER WALLIS: So it's a qualitative
25	judgment, really.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	26
1	Thank you.
2	MR. SCHRAUDER: Let me I probably
3	should have said this earlier. Let me state that our
4	intent with this head is not that it will be a
5	permanent replacement, but rather we intend to put
6	this head in now and we are continuing with the
7	procurement of our new head with the new material and
8	our expectation is that we'll install that head on our
9	vessel around the Year 2010 or 2012 when we replace
10	our steam generator. So this vessel will be, or this
11	head will be in service for 8 to 10 years. And I
12	believe that is not very many thru-wall cracks,
13	certainly have identified themselves within that time
14	period.
15	MEMBER WALLIS: You might have to face
16	this question if you actually started detecting cracks
17	in this Midland head.
18	MR. SCHRAUDER: Yes sir.
19	MEMBER KRESS: Why not keep it
20	permanently?
21	MR. SCHRAUDER: Say again, sir?
22	MEMBER KRESS: Why not keep the head
23	permanently?
24	MR. SCHRAUDER: We think that the new
25	material in the new head would be a better option for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	27
1	us and the inspections and the exposure from the
2	inspections on this would still make it a better
3	choice to replace the head with the new material.
4	This head, as I said, is within the
5	containment at Midland. And that head will not fit
6	for the equipment hatch at Midland, nor will it fit
7	within the equipment hatch at the Davis-Besse plant,
8	so both of those containment structures will need to
9	be temporarily opened and then restored in order to
10	get the heads in and out.
11	MEMBER SHACK: Will you be left with an
12	equipment hatch so you could bring the next new head
13	through?
14	MR. SCHRAUDER: No, we will not. The
15	design and the time required to put a new equipment
16	hatch in it's really quite significant. So we'll
17	evaluate when we put the steam generators in whether
18	we want to add a larger hatch at that time, but we're
19	not doing it for this. We'll restore the containment
20	as we find it now.
21	MEMBER RANSOM: Is the Midland containment
22	going to be restored?
23	MR. SCHRAUDER: The Midland containment
24	will not be restored to nuclear design. It will be
25	restored for basically weather protection and that's

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

in accordance with consumers' desires. 1 2 We will prepare our head for moving 3 outside of the containment also and we'll take the 4 necessary radiological controls to temporarily store 5 that head at the site. Our intent at this time, if it categorizes this low-level waste, we would like to 6 dispose of it now rather than use permanent storage at 7 8 the Davis-Besse site. 9 We are going to transfer our service 10 structure and work platform from our existing head to 11 this head. We are doing the modification on the lower portion of the skirt on the Midland head which will 12 13 remain and we're putting in the inspection ports there 14 to make it accessible for inspection and any cleaning 15 that might be necessary. 16 We are re-using as I said earlier, I 17 believe, the control rod drive mechanisms from the Davis-Besse head on this head also. As we did look to 18 19 the repair and had to cut out a couple of the nozzles 20 on the old head, we had to redesign our control rod locations. 21 We will revert back to the original 22 control rod configuration for this new head. 23 And we'll do а couple of really 24 serviceability modifications to this to the split nut 25 rings to make them easier to get on and off as we go

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

into outages. We also are putting the upgraded gasket 1 2 design onto these nozzles as we had the Davis-Besse 3 head. 4 that's all Ι have the head And on 5 replacement, unless there are additional questions. 6 MEMBER LEITCH: When you go back in 7 service will you have modified the so-called mouse 8 holes, if that's the right terminology, to improve --9 MR. SCHRAUDER: That's what Ι was 10 referring to. We don't actually modify the mouse 11 holes. The new inspection ports go up a little bit 12 higher than those, but they will have the larger 13 inspection ports. 14 MEMBER LEITCH: Okay, so that's what that bullet refers to? 15 Yes sir. 16 MR. SCHRAUDER: 17 MEMBER LEITCH: Thank you. MR. SCHRAUDER: Okay, with that, I'll turn 18 19 it over to Steve Loehlein who has the lead on our root 20 cause investigation team. MR. LOEHLEIN: All right, the root cause 21 22 report has been an issue as of about 7 weeks ago and 23 I understand the ACRS members are familiar with it, so 24 we have a brief slides here in the way of summary. I 25 ask that we move ahead to the conclusions as a means

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	30
1	of remembrance here.
2	The key conclusions that we had out of our
3	root cause investigation were that the degradation to
4	the Davis-Besse reactor head was caused initially by
5	primary water stress corrosion cracking which led to
6	nozzle leaks which were undetected which then allowed
7	boric acid corrosion to occur over an extended period
8	of time.
9	We also concluded that the existing guides
10	and knowledge was adequate to have prevented this
11	damage from occurring.
12	We also included in today's presentation
13	the time line, just in case Members have questions.
14	MEMBER FORD: Just for the record, I want
15	to be sure that we understand that we knew physically
16	what occurred, but we don't know in terms of
17	predictions since the specific mechanisms and thereby
18	we cannot tell whether this is, in fact, just a leader
19	of the fleet or that it really is an isolated
20	occurrence. For instance, we don't know the specific
21	mechanism by which you can get 1-inch per year. You
22	don't know the specific design operational criteria
23	that would give you that in any, not just Davis-Besse,
24	but in any reactor of this particular design.
25	Do you agree?

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

MR. LOEHLEIN: I think what the report clearly shows is that there's a lot of evidence that substantiates that the corrosion took at least four years in that area, four to six, that even over that period of time it is still a significant corrosion rate for the cavity size that's there.

7 We also determined through comparison of 8 testing that's been done historically that under the 9 right conditions, rates like that can be created, but 10 I think what you're saying is a question in which we 11 do not have data for is what does it take to get to 12 that point where that type of rate gets established 13 and in this particular degradation issue here, Davis-14 Besse, we don't have any new evidence that tells us 15 anything more about that. All we know is what we see there and the evidence we do have available 16 is 17 consistent with what we wrote in the report is that if you have a small crack and things go undetected that 18 19 can go into a leak which through some slow corrosion 20 mechanisms slowly open up the annulus and once there is the ability for communication of air, oxygen with 21 22 just the right amount of moisture available to keep 23 local temperatures low, these high corrosion rates 24 then become possible.

MEMBER FORD: Again, for the record, it's

25

1

2

3

4

5

our understanding that the MRP is considering the conditions that need to be evaluated and then we'll evaluate those conditions which will give us the prediction capability for this particular degradation mechanism.

6 MR. LOEHLEIN: I hate to speak for them. 7 I can tell you we're working with them and the work 8 that I've seen is in line with what you're expecting. 9 MEMBER FORD: I just hate to think that 10 this root cause analysis, this document is the end of 11 this whole process. It is not.

12 MR. LOEHLEIN: And of course, from our perspective and what we had available to us in terms 13 14 of evidence at the time, there's only so many 15 conclusions that we can draw in looking back from the We really don't have 16 1996 to 1998 time frame. 17 evidence to look prior to that and draw conclusions 18 from it. You have to use the existing industry body 19 of knowledge to predict what happened prior to that. 20 So all I can say is we uncovered no evidence of anything new. What we don't have, probably, and many 21 22 people feel we should have a better understanding of 23 these early stages than we have had up until now. 24 MEMBER FORD: Okay, but you can't say, for

25 instance, you can't disprove a hypothesis that the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

33 cavity grew slowly and then grew maybe at 4 inches a 1 2 year in its final year. MR. LOEHLEIN: As a matter of fact, that's 3 4 a good point. It's the reason why we said as a bounding assumption that if you look at the other 5 industry data, a rate is highest at the end with what 6 7 we would consider to be a bounding assumption, would 8 have been 4 inches which of course means that we would 9 consider that to be kind of a linear assumption than 10 it was maybe one inch per year in 1998. 11 MEMBER FORD: Right. The one inch a year, 12 taking the one inch a year as being what's going to 13 happen, in another situation, there could be another 14 event where the hole actually closed faster at some 15 stage. 16 MR. LOEHLEIN: What we can say is that 17 what happened at nozzle 3 in the physical evidence 18 that we have, it appears as though that cavity grew at 19 newly ideal conditions. The right balance of a leak 20 rate with forecast and availability. In actuality, if you have leak rates lower and probably significantly 21 22 higher, the corrosion rates, we expect would be lower. 23 One case you don't have enough moisture to get the 24 ideal conditions and in the other, you get enough 25 moisture that you get a dilution effect and you don't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	have as high a concentration of boric acid.
2	So the combination of a situation where a
3	cavity region was growing at the top of the head,
4	where the boric acid had accumulated could remain
5	there to be constantly available for concentrating
6	mechanism, all these things that build a case that
7	this was a nearly ideal corrosion
8	MEMBER FORD: For making a cavity. Now if
9	you have a big leak, you might make a canyon rather
10	than a cavity, it seems to me. That's the flow going
11	down the head.
12	MR. LOEHLEIN: There's a lot of things
13	that could be speculated as to what would happen in a
14	higher flow rate. Certainly, higher flow rates would
15	show up more readily on RCS than identified leakage as
16	well, probably other things, maybe containment,
17	humidity and so forth.
18	I guess lots of variations could be
19	conceptualized.
20	MEMBER FORD: Could you comment on the
21	nondestructive testing techniques that could be used
22	which would be able to size the amount of this
23	degradation, this particular degradation phenomenon?
24	MR. LOEHLEIN: Do you mean in terms of how
25	large the cavity

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	MEMBER FORD: We're hearing that we will
2	be talking about managing all of these degradation
3	issues in terms of visual inspection as appropriate.
4	But what is the capability of nondestructive testing
5	as used in the plant to size a corrosion?
б	MR. McLAUGHLIN: I'll talk to that.
7	MR. LOEHLEIN: Yes, I'm no expert in that
8	area.
9	MR. McLAUGHLIN: What we found is if you
10	look at the ultra sonic testing results and I believe
11	we presented those to you guys the last time we were
12	here, you could see on both nozzles 2 and 3 a couple
13	of clues that something was going on. One, you could
14	see where a normal plot of ultra sonic data, you can
15	see the top of the head. And the location of both of
16	these cavities, you could not see the top of the head.
17	You could also see a location that was obvious that
18	there was no contact between the outside diameter of
19	the nozzle material and any base material. You could
20	see that on the ultra sonic. Now the ultra sonics
21	will not tell you the depth, so you don't know whether
22	it's two mils or six inches. But we did have a clue
23	that something was going on and that's why in our
24	repair process we chose to repair nozzles 2 and 3
25	first because we did feel that there was some anomaly.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS
The other thing I would say that from the inspections that we did on say nozzle 2, I believe that you would pick up the area on top of the head, so if you're doing a visual inspection and you had the cameras that we're using now, that you would see that area of corrosion on top of the head. So from a visual standpoint, I believe you would see it.

Definitely from an ultra sonics will pick that up.

9 MEMBER FORD: But it would be by inference 10 in terms of the sizing capability, looking at the top 11 of the head and the amount of boric acid you see on 12 the head, top of the head, it will be by inference? 13 MR. McLAUGHLIN: That's correct.

MEMBER FORD: If you've got a problem, it would tell you nothing at all, of any of your inspection, kinds of inspection, nondestructive inspection techniques, any way of sizing the amount of that degradation.

MR. McLAUGHLIN: That's correct. I think that you have to have both. You have to use the ultra sonics as well as the visual, if you want to get the size of any type of corroded area.

23 MEMBER SHACK: Your through the vessel 24 wall for sonic measurement, was that able to size that 25 the minor degradation that you saw at nozzle 2?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

36

	37
1	MR. McLAUGHLIN: No, what happens is the
2	J-groove weld comes down and you can't do ultra sonics
3	from underneath the head going up.
4	MEMBER SHACK: That would almost set a
5	limit. If it was any deeper than say one inch or
6	something then I would see it with the through-wall.
7	MR. McLAUGHLIN: That's correct. You
8	could pick it up then and we did do some ultra sonic
9	tests.
10	MEMBER SHACK: So that would sort of set
11	a minimize size of a cavity I could detect with the
12	through-wall ultra sonic if I had a shadow on the
13	through nozzle ultra sonic that I wanted to see how
14	big the cavity was behind it, I could say if I didn't
15	see anything on the through-wall it would be less than
16	one inch or something like that.
17	MR. McLAUGHLIN: That's correct.
18	MR. SCHRAUDER: But Mark, I think the
19	other thing, maybe it's not noticed here, is that when
20	you have through-wall leak and all the evidence of
21	that and the UTs that show where the cracks are, in
22	the repair process of grinding those out, you
23	automatically expose the area and as a matter of fact,
24	that's how we knew that there was a small cavity
25	region, also two, pretty early, as I understand it

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	38
1	because of that, we machined that out. Or is that not
2	true?
3	MR. McLAUGHLIN: That's true. I mean when
4	you machine the bottom of the nozzle, you specifically
5	machine up above any cracks that are there so you can
6	get all the cracks out and the corroded area should
7	start either at or just above. I think we saw it
8	started just above the cracks, so you know, I would
9	expect during the repair process you would discover
10	that, but
11	MR. SCHRAUDER: One thing is clear. The
12	boric acid deposits that appear on the head by the
13	time even at that stage, where it's only 3/8ths inches
14	deep, there is a significant amount of boric acid
15	that's going to escape and it's going to have some
16	rust colorization with it as well. That's consistent
17	with what EPRI saw in its test of an annular. Once
18	you have corrosion by products, they'll be evident in
19	what's expelled out of the annulus.
20	I think in our figure we have in the root
21	cause report, the cavity region does extend to the top
22	of the head.
23	MEMBER FORD: Thank you. Unless there's
24	any other
25	MEMBER SIEBER: One quick question. On

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	39
1	your bar chart of unidentified leakage there, if I
2	look at that through about the second quarter of 1998,
3	leakage was pretty low.
4	MR. SCHRAUDER: Right.
5	MEMBER SIEBER: Then you developed a
6	pressurized relief valve leak and it looks like you
7	shut down, repaired that, started it up again, but
8	leakage was now up. Have you drawn any conclusion as
9	to what that additional leakage, after 1999, said
10	quarter, was?
11	MR. SCHRAUDER: Certainly. At this time
12	we believe that some of it was due to the development
13	of the leakage at nozzle 3. But as it is with
14	unidentified leakage rates, since this leakage that
15	was ultimately repaired went on for some months, that
16	masking and then that loss of time frame, the staff
17	the site staff wasn't able to determine the source of
18	the changes and of course, they could have been
19	attributed to other possible leak sources and there
20	were attempts to look for them, but they never found
21	them.
22	MEMBER SIEBER: Okay, thank you.
23	VICE CHAIRMAN BONACA: Just one comment I
24	have. Although the problem may have developed in the
25	last four years, in looking at the root cause, I think

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	40
1	you have to look before. Root cause does that. It
2	goes with the early 1990s because although by 1996 you
3	had all the flanges were not leaking any more, but
4	there was a certain mindset in the people from
5	previous outages that you have leakage from the
6	flanges and you can live with it and I think the
7	mindset, it's important to understand. I understand
8	the code allows for leakage to occur from those
9	flanges to some degree. And the question then has to
10	be also is the code proper or adequate because I mean
11	clearly there is a history, if I look at the root
12	cause, it covers about 12 years, that in which there's
13	a certain mentality there that may not be unique to
14	Davis-Besse.
15	MR. McLAUGHLIN: What you're saying is is
16	from a management standpoint back in the early 1990s
17	with some of the decisions that we made, we set the
18	standard at Davis-Besse before that.
19	VICE CHAIRMAN BONACA: Right. And I don't
20	want to speculate. I'm not part of the root cause,
21	but I think it's important to see this ingrained
22	thinking because I think it's associated with an
23	interprotectional code and it could be further than
24	simply Davis-Besse.
25	MEMBER POWERS: And that's a good point

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	41
1	and this is a picture of the technical aspects of the
2	problem that we're resolving at Davis-Besse, but there
3	are larger issues on how this was allowed to occur in
4	the areas of decision making, ownership, oversight
5	standards is where we're driving to resolve the bigger
6	issues in the organizational performance. They got us
7	here, we'll be working with that under the 350
8	inspection manual chapter process as part of the plant
9	recovery sets of major activities that will be
10	discussed elsewhere.
11	MEMBER FORD: I'd like to move on at this
12	stage unless there are any other questions for this
13	particular team.
14	Thank you very much and we appreciate it.
15	We'd like to move on to presentations by
16	the MRP, Larry Matthews.
17	MR. MATTHEWS: I'm Larry Matthews. I work
18	for Southern Nuclear and I'm the chairman of the Alloy
19	600 Issues Task Group of the Materials Reliability
20	Program.
21	MEMBER KRESS: Those were cedar shakes on
22	that roof.
23	MEMBER FORD: That's your house, Tom.
24	MEMBER KRESS: Yeah, that's my house.
25	(Laughter.)

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	42
1	MR. MATTHEWS: We had quite extensive
2	presentations yesterday with a lot of data and what I
3	propose to do today is try and quickly go through some
4	of the summary conclusions information.
5	First thing we did was introduce not
6	really introduce, but reorient our thinking on how we
7	categorize plants and rank plants to something called
8	effective degradation years where we don't use a
9	reference of some significant degradation like Oconee
10	3, but we just measure effective degradation years for
11	each plant, which is the same thing as the effective
12	full power years normalized to 600. And this is just
13	a simple chart that shows the ranking of the units and
14	their inspection results to date as a function of
15	where they were in effective degradation years.
16	The date of the EDY, if you will, was a
17	year ago. We're going to update these to the exact
18	effective degradation time at the time they did the
19	inspections.
20	(Slide change.)
21	MR. MATTHEWS: Then John Hickling got up
22	and gave a significant discussion where the expert
23	panel was on coming up with recommended crack growth
24	rate curve. If you recall, the expert panel had
25	narrowed the data base down to 26 heats of material

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	from lots of material suppliers and product forms with
2	the number of data points for each heat ranging from
3	1 to I guess to 32 for one heat. The method used was
4	to assume a shape of the curve versus stress intensity
5	factor and then to normalize the magnitude of the
6	crack growth rate for each heat to the best fit to
7	that heat data. That's the numbers in the column
8	here. And then plot those and sort those and plot
9	those and fit that with a log normal distribution.
10	The recommended crack growth curve we've
11	come up with is one based on the parameter that go
12	through the 75th percentile of the heat data.
13	(Slide change.)
14	MR. MATTHEWS: This is the data base, all
15	the 158 data points that we have and the dark curve is
16	the 75th percentile of the heat data. If you go back
17	one, basically each one of these points on this curve
18	could be represented as a curve parallel to the MRP
19	curve or the Scott curve on this curve, plot, and then
20	the black MRP curve would indeed be above 75 percent
21	of all those family of curves.
22	(Slide change.)
23	MR. MATTHEWS: The application of this
24	recommended curve is intended for the disposition of
25	PWSCC flaws that are detected in the field in

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

44 1 thick-walled Alloy 600 components. We don't disposition. We repair through-wall flaws, so we're 2 talking about flaws that are axial ID flaws that are 3 4 shallow or flaws that may be detected below the 5 J-groove welds. This crack growth rate curve would be used 6 7 determine the crack growth between time of to 8 detection and the next inspection interval to decide 9 if it's okay to run for one more cycle or one more 10 operating internal before that flaw is repaired or 11 inspected again or not. And if it's not, then it 12 would have to be repaired at that point in time. 13 The last two bullets, John pointed out 14 yesterday, were that there's essentially very little 15 or no data on our data base below, approximately 15 megapascals root meter, but for all practical purposes 16 17 by the time a crack is detected the K would be above So it doesn't really effect the actual 18 that value. 19 use of the curve. 20 (Slide change.) 21 MR. MATTHEWS: Then we had Dr. Pete 22 Riccardella, got up and made his presentation on the 23 probabilistic fracture mechanics analysis that's being 24 performed by his company for the MRP. The point in 25 this is to try and determine the risk of rod ejection

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

as a function of time for the units and for the fleet. A model is being constructed and using that model, if we go to the time that Oconee 3 detected their first large leak, they were at approximately 20.1 effective full power years. That would translate to slightly over 21 effective degradation years.

7 The prediction at the top line is what is 8 the probability they would have detected their first 9 leak at that point and it's over 90 percent. The 10 thick line at the bottom is what is the probability 11 they would have one large Circ. flaw and that's about 12 percent, if you look at this for the B & W fleet, 12 13 that's close to how many what the fraction of the 14 plants that have detected large Circ. flaws and then 15 the probability of net section collapse is fairly small still, but net section collapse being equivalent 16 17 to a rod or nozzle ejection.

18 This model then was used to help us 19 technical basis construct а for the proposed 20 inspection plan that we had come up with. We analyzed plants at various head temperatures and the model 21 22 hasn't been fully constructed at this point for CE and 23 Westinghouse design, so all this work was basically 24 done with a Westinghouse -- I mean with the B & W 25 geometry but at different head temperatures.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	46
1	Then we set the risk categories based on
2	the probability of net section collapse per year and
3	also based on accumulative leakage probability. We
4	used both of those and you'll see in the next slide or
5	two that they pretty much parallel each other.
6	And then set the inspection intervals
7	based on the effect of various inspections on the
8	probability of net section collapse.
9	(Slide change.)
10	MR. MATTHEWS: This is a little bit
11	different way of plotting it, but I think it's
12	instructive. The horizontal axis is simply that each
13	individual plant's current head temperature of left
14	axis is the equivalent effective full power years, not
15	degradation years, but effective full power years,
16	normalized to their current head temperature. And for
17	many plants, their current temperature is the
18	temperature they've had for the life of their plant,
19	but there are a few that made modifications to their
20	internal package that has made a significant
21	difference at some point in the life of the plant.
22	These two points, right here being in particular at
23	early in their life they were operating at a
24	significantly higher temperature accumulated quite a
25	number of effective full power years when you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

normalize it to their current temperature after their 1 2 modifications and so they -- even though they're now a cold head plant, they had accumulated a significant 3 4 amount of degradation, if you will, before they made that modification and this methodology that we have of 5 now trying to capture effective degradation years 6 7 captures that and doesn't then look at then how slow 8 that plant would progress which would be very slow 9 from between 1080 watts and 1580 watts, would take a 10 significant amount of time. 11 MEMBER SHACK: They must have been a very hot head plant though? 12 13 MR. MATTHEWS: They were -- in fact, they 14 may have been over 600. For a Westinghouse unit later 15 design that was perhaps rather unique. I'm not exactly sure. 16 I think they were well over 590 and 17 then dropped their -they did а significant modification to their upper internals to get their 18 19 upper head temperature --20 MEMBER SHACK: But I mean Davis-Besse and Oconee run over 600 and they're way down at 18 years. 21 22 Well, they're down at 18 MR. MATTHEWS: 23 effective full power years at 600. They're actually 24 20 something effective degradation years, if you will, 25 whereas this plant is only slightly over 10 effective

COURT REPORTERS AND TRANSCRIBERS

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

47

	48
1	degradation years. Got it?
2	MEMBER SHACK: Yes, I keep getting
3	between EDY and EFPY.
4	MR. HISER: Bill, this is Allen Hiser from
5	NRR. That plant was operating initially at 601 and
6	dropped to about 561 after their steam generator
7	replacement and other related mods.
8	MR. MATTHEWS: From our kind of generic
9	analysis, we pulled off the function of temperature
10	here the effective full power years at that
11	temperature at which the plant would reach net section
12	collapse probability of 1 times 10^{-3} and 1 time 10^{-4}
13	and those are the two chain link curves here and then
14	we also pulled off the probability of leak being 75
15	percent and 20 percent and those are the dark solid
16	blue line here and the gold colored line here. You'll
17	note they very closely parallel the curves for the net
18	section collapse probability at 10^{-3} and 1 time 10^{-4}
19	and then we also just plot and this is a fairly simple
20	plot to do, the effective degradation years on where
21	a five effective degradation years would be in terms
22	of EPFY, 10, 15 and 18.
23	In the upper set that we talked about,
24	tends to be very close to the 18 effective degradation
25	years, the 10^{-4} on that section collapses very close

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	to the 10 effective degradation years. And so for the
2	purposes of our inspection plan, the initial
3	inspection plant. We had proposed that everything
4	above 18 effective degradation years be classified in
5	the high susceptibility or high risk category, between
6	10 and 18 be moderate, and below 10 be classified as
7	low, and then come up with a graded inspection
8	approach as a function of which category the plant was
9	in as a function of time.
10	(Slide change.)
11	MR. MATTHEWS: We also looked at the
12	impact of the inspections that could be done but bare
13	metal visual and NDE. For the bare metal visual we
14	assumed a fairly low probability of detection in
15	today's world of .6 and then we also if a flaw is
16	missed, in other words, if there is a leaking
17	penetration that's not detected by the bare metal
18	visual and it's in that .4 that's missed the first
19	time you do the inspection after that leak develops,
20	the next time that one is inspected, we knock it down,
21	for that nozzle, down to .2, so I mean .2 times .6,
22	so there's only about a 12 percent probability that
23	that would be detected in subsequent cycles. So
24	that's the kind of credit we're taking for the visual
25	inspections and then for nondestructive examinations

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-4433

(202) 234-4433

	50
1	under the head, there was a POD curve from an EPRI
2	report based on size that was used and then we knocked
3	that down by 80 percent.
4	(Slide change.)
5	MR. MATTHEWS: If you look at the effect
б	of the inspections, the blue line is the probability
7	of net section collapse. These calculations, I
8	believe, were run at 600, so EPFY would be the same as
9	EDY. The probability of net section collapse with no
10	inspection would be the blue line. And the effect of
11	doing a bare metal visual, the recommendation for a
12	moderate plant which is 1 over 10 EDY, doing that
13	every 2 EDY would that knock down on the probability
14	of and you only have a 12 percent probability of
15	picking it up later. It initially has the significant
16	impact on the probability of net section collapse, but
17	then that tends to go back up over time because of the
18	low probability of detection over time.
19	Recall that at this point while we're
20	still below 3 times 10^{-4} on the probability here, we
21	would move that plant into at 18 EDY, we'd move it
22	into the high susceptibility category and impose a
23	different frequency on these inspections.
24	The effect of NDE with the PODs that we
25	had assumed in these models is significantly more and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	because of that better inspection capability keeps
2	that probability of net section collapse down all the
3	way out until the plant moves into and even though
4	it's on a lower frequency, it keeps it down as you
5	move on down, out.
6	(Slide change.)
7	MR. MATTHEWS: After that
8	MEMBER WALLIS: Before you go on to this,c
9	an we go back to your Figure 6?
10	MR. MATTHEWS: Yes.
11	MEMBER WALLIS: Because we've had some
12	time to think about it.
13	MR. MATTHEWS: This one?
14	MEMBER WALLIS: Figure 6, next one.
15	MR. MATTHEWS: Yes.
16	MEMBER WALLIS: I'm trying to think about
17	what it means. The Scott curve is a curve fit to some
18	data for a steam generator experience and it has three
19	constants in it, alpha, beta and 9; 9 has been chosen
20	not to change. Data is 1.16. You assume it's the
21	same as the steam generator experience.
22	MR. MATTHEWS: Right.
23	MEMBER WALLIS: So the only coefficient in
24	this equation that's been tweaked is alpha.
25	MR. MATTHEWS: Correct.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	52
1	MEMBER WALLIS: And alpha is tweaked by
2	means of a method which you use for Figure 6. There's
3	a cumulative distribution function. Essentially
4	what's happened it's a way of getting a mean alpha for
5	all the heat, right?
6	MR. MATTHEWS: Correct.
7	MEMBER WALLIS: So once that has been
8	done, you've determined your Scott equation and all
9	you've done is found an alpha. What's the best alpha
10	to describe this huge amount of data.
11	MR. MATTHEWS: Exactly.
12	MEMBER WALLIS: On average, right?
13	MR. MATTHEWS: Exactly.
14	MEMBER WALLIS: And then Figure 6 then,
15	nothing has been derived from Figure 6. Figure 6,
16	you're simply saying given that you've made this
17	decision to choose this alpha, which is the only
18	parameter you've derived from the data, the only
19	parameter, very gross thing, here's the curve and
20	here's the data and it's not a surprise it goes to the
21	data because it was derived from mean alpha for the
22	data.
23	And so looking at it, what are we supposed
24	to conclude? I guess we conclude that there's an
25	enormous amount of scatter. That's about all we can

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	53
1	conclude from this figure. It's not a derivation of
2	anything. It's just a comparison between a curve and
3	data which is all over the map. That's all we can
4	conclude from this figure, right?
5	So I'm just wondering what I ought to
6	conclude, since I think I now understand what you've
7	done.
8	MR. MATTHEWS: Okay. Well, what we're
9	proposing to do is use this as an estimate of the
10	crack growth rate to be used if we have a flaw that is
11	detected in the field.
12	MEMBER WALLIS: Right.
13	MR. MATTHEWS: To determine the crack
14	growth rate to assess whether or not that flaw could
15	be left in service for some period of time.
16	MEMBER WALLIS: I guess I'm sort of
17	familiar with science and engineering and I just
18	wonder seeing this whether this gives me a good
19	feeling, that we've got something reliable as a
20	predictive tool.
21	If I saw this I would be very
22	suspicious of this in any other context.
23	MEMBER SHACK: If you believe this was a
24	fit to the data, you'd wonder why in the world they
25	were fitting

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	MEMBER WALLIS: They're not fitting this.
2	MEMBER SHACK: But they're not fitting it
3	to the data and but you somehow look at it as
4	though it is a fit.
5	MEMBER WALLIS: No, I look at it as a
6	given that you've chosen this alpha to reach your
7	conclusions and you've chosen to fix beta and 9, this
8	is somehow telling me, well, I've made that
9	assumption. How well does it compare with all the
10	data I've got. This is what this is telling me.
11	Do I feel good about that? I don't know
12	why I should feel good about that.
13	MEMBER SHACK: If you made each of those
14	dots a different color to represent his 21 heats and
15	then he plotted 21 curves, you would see that the
16	curve is a reasonable representation of the data for
17	a particular heat.
18	MEMBER WALLIS: You mean if you have
19	different curves for each heat.
20	MEMBER SHACK: Yes.
21	MR. MATTHEWS: Yes, like I said if I take
22	each point on this, that represents one heat.
23	MEMBER WALLIS: We haven't seen that. We
24	haven't seen how well one of these alphas fits with a
25	data where you've got say 26 points instead of 1.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	MR. MATTHEWS: Right.
2	MEMBER WALLIS: And we haven't seen that.
3	MR. MATTHEWS: Each one of these would be
4	a separate curve.
5	MEMBER WALLIS: You've got to sort of make
6	a judgment about whether your method is appropriate as
7	a reliable predictive tool.
8	MEMBER SHACK: No, clearly you can't have
9	a predictive tool with a single curve with this much
10	variability in the crack growth rate data.
11	MEMBER WALLIS: Right.
12	MEMBER SHACK: It's a hopeless task. It's
13	an unreasonable thing to expect. Until you can come
14	up with a predictive tool to tell me what alpha is for
15	a given heat, but he has to make some you can argue
16	whether his choice of a 75th percentile is appropriate
17	as a way to
18	MEMBER WALLIS: Well, I guess in a sense
19	you've got a great deal of insecurity here. You've
20	got to be very conservative is what I would conclude.
21	MR. MATTHEWS: Pete.
22	MR. RICCARDELLA: I'd just like to point
23	out what you're focusing on now is really
24	MR. MATTHEWS: Just state your name,
25	please.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. RICCARDELLA: Pete Riccardella from 1 2 Structural Integrity Associates -- is really at the heart of the probabilistic fracture mechanics analysis 3 4 because this huge scatter that you're seeing on this 5 chart really dominates the results and the probabilities of getting a large crack. 6

7 You'll notice the horizontal line here at 8 1 millimeter per year and then if I go up an order of 9 magnitude to where those higher data points are, 10 that's 10 or actually more like 15 millimeters per 11 in our Monte Carlo sampling in this year and 12 probabilistic fracture mechanics, one out of every 13 thousand points that we pick is way up there, that's 14 over half an inch per year and of course those are the 15 ones that lead to ultimately to the net section 16 collapse if it's grown at that speed.

MEMBER WALLIS: So one could wonder if your tail is right -- I've got 6 points up there at the high end.

MR. RICCARDELLA: Yes.

21 MEMBER WALLIS: And I sort of wonder if 22 cutting off the tail in the statistical way --23 MR. RICCARDELLA: Well, but where I cut it

off -- I've presented yesterday results where I did a log triangular and then also a log normal and show

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

20

	57
1	that that was about a factor of 2 difference on the
2	probability of failures.
3	The log normal didn't cut off the tail.
4	MEMBER WALLIS: I think you did a splendid
5	job with what was available.
6	(Laughter.)
7	MR. MATTHEWS: And that is what's
8	available.
9	MEMBER WALLIS: But we've got to face up
10	to the fact that there's a lot of insecurity about
11	this and I agree, you have to do statistics, but then
12	how you treat that tail up at the top there makes
13	quite a difference.
14	MR. RICCARDELLA: Well, that's why I
15	presented results from treating the tail in two
16	different ways.
17	MEMBER WALLIS: I know.
18	MR. RICCARDELLA: To show what the effect
19	was.
20	MR. MATTHEWS: The tail is a couple of the
21	worst performing heats.
22	MEMBER WALLIS: It's actually about six of
23	the worst performing heats.
24	MR. MATTHEWS: Above the 75th percentile,
25	yes. It would be.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	58
1	MEMBER RANSOM: Well, is the heat, for
2	example, a random parameter? It seems to be a more
3	important variable than any of the rest?
4	MR. MATTHEWS: It is.
5	MEMBER RANSOM: Why are you focusing on
6	that then?
7	MR. MATTHEWS: We don't know which heats
8	<u>a priori</u> are going to be the ones that going to
9	MEMBER RANSOM: If I were the general
10	public I would say maybe you better take the worst
11	heat.
12	MR. MATTHEWS: That's one approach that we
13	could do. But the approach that we've proposed is to
14	take a what we consider a fairly conservative
15	estimate of what the crack growth rate might be for
16	there. Certainly, it's not the ultimately bounding
17	every data point that's ever been generated crack
18	growth rate and then use that to make a best estimate
19	of how far the crack would grow in the next interval
20	and then tack margin on so that even if you're off
21	some, you've set a limit. So even if you miss it,
22	you're still not into any kind of catastrophe and even
23	if we did miss it, and the crack did go through-wall,
24	we're still well away from a net section collapse
25	because you've still got time for that crack to then

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	59
1	turn and grown circumferentially.
2	MEMBER RANSOM: Maybe I'm missing
3	something, but do you drive on uncertainty to go along
4	with this best estimate?
5	MR. MATTHEWS: No, no.
6	MEMBER RANSOM: But if you're going to use
7	probabilistic methods it would seem like that would be
8	the appropriate thing to do.
9	MR. MATTHEWS: In this right here, in the
10	probabilistic methods, we didn't use a curve with an
11	uncertainty. What we used well, I guess it might
12	translate into that, but we used the whole scatter of
13	the data base was put into the and sampled in the
14	Monte Carlo analysis.
15	MEMBER KRESS: How long do you scatter
16	above the 75 percent
17	MR. MATTHEWS: Actually, the whole data
18	base was used in the Monte Carlo. And like we said
19	yesterday, we don't have any zero points in here.
20	They weren't included
21	MEMBER WALLIS: You see, your whole
22	hypothesis is stress intensity factors and the main
23	variable affecting crack growth rate and that isn't
24	shown at all from this figure.
25	MEMBER SHACK: For a given heat.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	60
1	MR. MATTHEWS: For a given heat it is.
2	And if I had plotted these so that you could tell
3	these two and whatever the other points are for one
4	heat and these down here are from another heat, you
5	could say that well, okay, this shape is probably
6	pretty good for a given heat. The heat gives us a
7	sensitive parameter, but we don't know those
8	parameters necessarily that's driving that for every
9	heat out in the field.
10	MEMBER WALLIS: Well, we're not going to
11	resolve this today.
12	MR. MATTHEWS: No, we're not.
13	MEMBER FORD: Hold on, there might be a
14	John Hickling.
15	MR. HICKLING: John Hickling, EPRI. May
16	I just remind you of two things I presented yesterday.
17	I did, in fact, show two curves of the individual
18	heats and at least in one of them you could see as
19	Bill Shack says, the 50 is quite reasonable on a heat
20	to heat basis, but let me remind you that all of the
21	lab data does tend to be biased towards higher stress
22	corrosion crack growth rates because a deliberate
23	choice was made when many of the experiments were done
24	to choose a heat which was known to be susceptible to
25	cracking. And that's a bias which is in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

laboratory data inevitably because the experimenter was desirous of obtaining a result in his test. And I fully -- I understand the problem that one has visually with this picture. I have it myself. There is that hidden bias in there which shouldn't be forgotten.

7 MEMBER FORD: Could I ask that we move on? 8 MEMBER SHACK: Since we're all talking 9 about our warm and fuzzy feelings, my warm -- the 10 problem where I don't have the warm and fuzzy feeling 11 is in the K solutions yet. Until Pete explains to me why the zero degree nozzle one doesn't act like the 12 13 way I expect it to act, that's really step one in this 14 whole process. If I'm not warm and fuzzy up there, 15 then I have a time following the chain down. MEMBER SHACK: K is not the driver. 16

MEMBER SHACK: K IS HOU CHE

(Slide change.)

18 MR. MATTHEWS: Let's see, where was I? Then I was going to move into Glenn White from 19 20 Dominion had gave a presentation on the work that Dominion Engineering is doing for the MRP relative to 21 22 possible the progression or the scenarios for 23 progression from a leak to a cavity and his work was 24 trying to answer a couple of questions if there is a 25 significant head loss, would it amount of be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

17

detectable visually? And I think his conclusion there 1 2 is yes, the products that are going to be generated in that corrosion are going to be available on top of the 3 4 head for detection and then is there a period of time following the initiation through-wall leak for which 5 there is assurance that if we don't have unacceptable 6 7 reactor vessel head corrosion and we believe, but we 8 haven't finished the work yet, that there will be a 9 significant period of time between the initiation of 10 any corrosion and the time the cavity gets to be 11 significant and the growth rate becomes significant. (Slide change.) 12 13 MR. MATTHEWS: He looked at all the 14 possible mechanisms and he characterized them as a function of the flow rate from 10^{-6} up to 1.0 gpm. 15 He looked at the thermal-hydraulic environment, the 16 17 chemical environment, properties of boric acid and 18 their compounds and the relevant experimental results 19 that are available. 20 His conclusion at that point was that the leak rate is expected to be the key parameter, 21 22 primarily I think based on a couple of things. The 23 expansion cooling at the leak rate increases,

would be available and then it would be very easy to

potentially could get to the point where a liquid film

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

(202) 234-4433

24

25

62

get some very high concentrations of boric acid at essentially saturation temperature and atmospheric pressure which are known to be highly corrosive. And then the increasing leak rates from higher velocities could get into erosion or flow accelerated corrosion mechanisms.

1

2

3

4

5

6

25

7 MEMBER FORD: Could you go back to that I want to be sure that we all realize 8 last slide? 9 that there's very, very little data to support this 10 hypothesis as to the specific mechanism of degradation. That is reasonable. The hypothesis that 11 12 the leak rate is a critical parameter is reasonable at 13 this stage.

14 If subsequent experiments, which I hope 15 there are subsequent experiments to prove this 16 hypothesis, then it's going to be fairly obvious that 17 current technical specification of one gallon per 18 minute may have to be modified. Do you agree?

MR. MATTHEWS: I guess I'm not going to try to answer that right now. I don't know. One gallon per minute clearly -- I mean clearly Davis-Besse got into a situation where they eroded a cavity or corroded a cavity on their head with less than one gallon per minute leak.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

If the purpose of the one gallon per

(202) 234-4433

	64
1	minute tech spec is to try and prevent something like
2	that, it doesn't do it. If that is not the purpose of
3	the one gallon per minute tech spec, then maybe it
4	doesn't and I'm not a tech spec guy. I'm not sure
5	what the purpose of that 1.0 gpm was to start with.
6	MEMBER WALLIS: Okay.
7	MR. MATTHEWS: But if you're going to try
8	and protect bio tech spec on unidentified leak rate,
9	1.0 gpm will not I mean it clearly did not stop
10	what was going on at the Davis-Besse plant.
11	MEMBER WALLIS: Thank you.
12	(Slide change.)
13	MR. MATTHEWS: The leak rate also
14	determines how much boric acid gets out of the system
15	on to the top of the head or wherever else it goes and
16	Glenn tried to use or I don't know that we've
17	actually gotten to the point of trying to define a
18	time line. I think he has looked at how much low
19	alloy steel material might be lost versus the volume
20	of boric acid and/or corrosion products that would be
21	available for detection. He did not present anything
22	on that. This was the basic result that he had going
23	from a through-wall leak to the annulus that was not
24	leaking to the top of the head because of being sealed
25	off above the leak for some reason, having zero

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	leakage up to .01, I mean .001 gpm, .01 and then the
2	various increasing flow rates on up to greater than .1
3	gpm.
4	The types of flow, I mean the types of
5	possible significant corrosion mechanisms or
б	degradation mechanisms that would be taking place in
7	each of those flow regimes and this seems to present
8	a plausible progression from the through-wall crack in
9	the nozzle or weld progressing to a larger flaw with
10	a larger flow rate in the degradation progression as
11	we go.
12	Almost all the other nozzles that have
13	been detected with leaks in the U.S. industry, well,
14	in the world, have been in this range here where
15	there's been very, very little flow rate and very
16	little boric acid accumulation on top of the head.
17	I guess we think that Davis-Besse had
18	progressed further in that process and we're over into
19	this range of degradation creating a larger cavity.
20	Glenn's not through with his work. It's
21	labeled preliminary. When he gets through with that,
22	we will find, I think we'll be putting more of a time
23	line on this as best we can, but like we say, there's
24	not a lot of work at these kinds of flow rates at this
25	point and trying to do that we may wind up trying to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

spec tests that need to be done at these flow rates. 1 2 MEMBER WALLIS: This is very interesting 3 preliminary work and I agree it presents plausible 4 progression and we had some questions about some of 5 the details yesterday which I don't want to get into. I just wanted to ask that although this is 6 7 preliminary, you are somehow using it in the guidance 8 which we're going to get next and when to inspect. I 9 mean what do you expect to happen physically and it's 10 going to influence your strategy of inspection, it 11 seems to me. Is this very preliminary work, being fed into the inspection strategy or not at all? 12 13 MR. MATTHEWS: Ι think it will be. 14 Basically, if you recall from the presentation 15 inspection plan, initial yesterday on the that 16 proposed inspection plan did not take into account the 17 wastage issue in any shape other than to assume that there would be some improvements in the boric acid 18 19 control program that would prevent that issue from 20 happening. The staff gave us the comment. We need to 21 22 marry these two issues and so we've taken that comment 23 back and we're going to try and very rapidly come back 24 with a modification --25 So you don't have an MEMBER WALLIS:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

66

	67
1	answer to my question yet.
2	MR. MATTHEWS: Well, the answer to your
3	question is no, this was not taken into account
4	because that program that we initially proposed
5	MEMBER WALLIS: But you're thinking of
6	taking it into account?
7	MR. MATTHEWS: Yes. This would have to be
8	taken into account in response to the staff's request
9	that we marry any inspection programs
10	MEMBER WALLIS: Realizing that again this
11	is not a very secure science.
12	MR. MATTHEWS: Right, it's plausible, but
13	is it absolute, no, not yet.
14	MEMBER FORD: I'd point out for the record
15	that corrosion science is one of the oldest sciences,
16	in my own defense.
17	MR. MATTHEWS: Okay.
18	MEMBER FORD: I mean they all do. Science gets
19	them all confused.
20	MR. MATTHEWS: Then we presented a
21	presentation, Michael Lashley made this presentation
22	on the proposed inspection plan that we had discussed
23	with the staff on May 22nd and like we said that
24	initial proposed inspection plan did not take into
25	account on how to protect against the wastage issue.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

It was a nozzle ejection issue that that plan was trying to protect against. We received significant comments from the

1

2

19

20

We received significant comments from the staff that we should marry the plan with the wastage protection inspection plan and look at, like you say, the time frame for the wastage development, whether or not the tight nozzles will indeed leak because one of the basic tenets of the plan was that they would and that visual would be an adequate way to detect initial leakage in the plant.

11 And then the policy issue is that an 12 acceptable way to detect when a plant initially has 13 the problem by an initial leak and then we also did 14 not address replacement heads because we recognize 15 they would be of a different material, but they said 16 the plan needs to at least put out some kind of 17 inspection recommendations for the replacement head. I've left out all the detail slides here, 18

but just went straight to the flow chart.

(Slide change.)

21 MR. MATTHEWS: Like I showed earlier, 22 categorized plants, that's low susceptibility, 23 moderate susceptibility and high susceptibility based 24 their effective degradation years. low on Α 25 susceptibility plant, we had recommended that they do

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	100 percent bare metal visual or alternatively if they
2	chose or wanted to, 100 percent NDE. Do that once
3	every 10 years after the plant has been operating for
4	20 years, some time in their third interval.
5	For a moderate susceptibility plant, we
6	had recommended 100 percent bare metal visual. The
7	first outage that they entered this category and then
8	once every two effective degradation years after they
9	get into that category. Put a cap on that of 5
10	effective full power years because some of the low
11	temperature plants two effective degradation years
12	could be a significant amount of time. If it's a high
13	temperature plant, two effective degradation years is
14	effectively going to be every refueling outage.
15	Alternatively, they could also perform the
16	nonvisual NDE, the first outage, and then at half the
17	frequency of the visual because the nonvisual NDE
18	would detect cracks at a much earlier stage than the
19	visual would.
20	The high susceptibility category,
21	initially we were thinking about just doing bare metal
22	visual, but could cover what we don't know. It was
23	recommended that we include 100 percent NDE for those
24	plants that are in the high susceptibility category
25	and there was a time, a grace period because four

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

years after NDE category or issuance of this plan and 1 2 that was because there's a limited amount of tools out there and when the plan hits the street, there may not 3 4 be enough tools to do all the plants that might be in that category the first time it's out there. 5 But like I say, it's to cover what we don't know and 6 7 we're requiring them to do that. 8 The bare metal visual would have to be 9 performed every refueling outage or alternatively the 10 nonvisual the first time in every four effective 11 degradation years. And the four effective degradation 12 years were based on how long the cracks would take to 13 grow through-wall, etcetera. 14 MEMBER FORD: Again, just for the record, I think that's a very dangerous argument to make. 15 16 MR. MATTHEWS: Which one? 17 MEMBER FORD: Just because you don't have 18 the tools, you're not going to inspect. 19 The basic plan is based MR. MATTHEWS: 20 upon the visual and the NDE requirement that we're placing on the plants when they enter the high 21 22 category is there, like I guess in the terms of my executive vice president, that's to cover what we 23 24 don't know. We base the plan on what we think we know 25 and that the visual was adequate to cover that. The

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

70

	71
1	nonvisual was there to cover what we don't know.
2	MEMBER FORD: I'm assuming that since this
3	is on-going discussions with the staff
4	MR. MATTHEWS: They're likely to have a
5	different perspective.
6	(Laughter.)
7	MEMBER WALLIS: Could I ask, it is based
8	on what you think you know and the arguments for what
9	you think you know are overly have been quite good.
10	But we've heard good arguments before Davis-Besse too.
11	MR. MATTHEWS: Yes.
12	MEMBER WALLIS: So once per 10 years seems
13	as if you're really very, very confident that nothing
14	surprising is going to happen in those 10 years.
15	MR. MATTHEWS: Like I said, this initial
16	plan was based on just protecting against the next
17	section collapse from PWSEC. As we go back and try to
18	marry this inspection plan with something that's going
19	to protect against the possibility of a wastage
20	cavity. I suspect that several of these frequencies
21	will have to be changed and possibly even the
22	inspection techniques.
23	MEMBER FORD: Okay.
24	MR. MATTHEWS: Once you do the inspections
25	what we had the plants do, if they detected a through-

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	72
1	wall leak, the plant is reclassified as a high
2	susceptibility plant and the only way to get out of
3	that category then is to replace the head.
4	I guess theoretically you could replace al
5	the nozzles and welds, but that would be prohibitive.
6	We require them to they would be required to
7	characterize the indication that they have that's
8	generated the through-wall leak or through-wall crack
9	or the leak. We can't run with that, so to prevent
10	leaks in the future we'd have to pare that nozzle and
11	then perform 100 percent NDE on the rest of the
12	nozzles.
13	This was at the next refueling outage and
14	I know this is one of the things we received comments
15	on as allowing another cycle there. We'll have to
16	look at that.
17	Basically, the logic behind that was you
18	had performed some inspection that assured you that
19	you had detected all of the leaks and you repaired all
20	of the leaks. Agreed, there is some small probability
21	that another leak might develop in the next cycle, but
22	you're not sitting there with another nozzle that's
23	been leaking for a number of years and growing a Circ.
24	flaw because that would presumably have been detected
25	in the other inspections. So that was the initial

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	73
1	logic between doing that. The plant would then be
2	reclassified and go back into the high susceptibility
3	category.
4	If a low susceptibility plant detects any
5	cracking, we're going to stick that plant into
6	immediately into a moderate susceptibility cracking
7	plant, unless it's through-wall and then they go to
8	high. And then based on that crack and everything,
9	they would have to determine their new inspection
10	interval and what category they would be in.
11	But that's basically the initial plan. I
12	can say we've received comments from the staff when we
13	initially presented this. We're on a fast track to
14	try and incorporate those comments and decide how
15	we're going to modify our plan to address the issues
16	that the staff raised and get back with them on
17	another proposal.
18	MEMBER SHACK: Your temperature counts for
19	one of the big variables that you're going to have in
20	your susceptibility. The other one is the heat, the
21	heat variation which we have no good way of handling.
22	Have you looked to see with your current scheme what
23	fraction of the heats you would be looking at in the
24	high susceptibility category, that is, would you have
25	captured a fair sample of the heats to assure yourself

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	that you didn't have a moderate susceptibility plant
2	based on temperature with a high susceptibility based
3	on heat?
4	MR. MATTHEWS: We haven't done that, but
5	I think we have the information that we could do that,
6	that look. And that's something I think we ought to
7	go back and take a look at.
8	MEMBER SHACK: It seems to me that somehow
9	you ought to set this up so that your high
10	susceptibility thing where you're going to be doing
11	the nonvisual captures at least enough of the heats to
12	give you a confidence that you've looked at those,
13	even though they might be moderate susceptibility in
14	terms of temperature.
15	MR. MATTHEWS: Pete, you want to say
16	something?
17	MR. RICCARDELLA: Yes, I just wanted to
18	this is Pete Riccardella from Structural Integrity.
19	Remember that a big part of the categorization is
20	based on the high susceptibility heats. Remember our
21	time to leakage correlation which is that Weibull fit
22	is strictly the B & W plants. So pretty much that
23	part of the assessment is based on the higher
24	susceptibility heats. And
25	MEMBER SHACK: You did a triangular

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	distribution, but your triangular distribution was
2	only
3	MR. RICCARDELLA: Only of the seven B & W
4	plants which tended to be we believe, tends to be
5	the higher susceptibility heats and don't forget we
6	also correlated the crack growth to those as well.
7	MEMBER SHACK: You might get a certain
8	amount of debate on that in terms of the heat basis.
9	MEMBER WALLIS: Yeah, I think so. They're
10	high temperature plants. We don't know really know
11	that they're the high susceptibility heats. There
12	could be some other heat is such a mysterious thing
13	that there could be other bad heats out there and I
14	would really like to have a physical basis for making
15	the difference, not some mysterious heat that no one
16	knows what it is.
17	MEMBER FORD: I'd like to draw a close to
18	this particular message. Any other questions.
19	MEMBER RANSOM: I'd like to make an
20	observation or a comment that this may not apply to
21	future things, but just the Davis-Besse observation of
22	one of simply taking the massive material removed from
23	the head and did a chemical analysis, you would have
24	realized that the iron content, the amount of iron
25	you're removing was significant.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	And I'm wondering if a mass balance on the
2	iron, I know that in a nuclear plant on any
3	radioactive material there's a very detailed mass
4	balance made. But even if you just took the material
5	off the head at an inspection and analyzed it, you
6	would realize whether you're removing grams, kilograms
7	or what mass of iron is being removed and in fact, it
8	might be worthwhile if the material has been preserved
9	from the Davis-Besse head to estimate how much iron is
10	actually in that.
11	MR. MATTHEWS: I'm not aware of how many
12	barrels do you have locked up somewhere. None?
13	MEMBER SIEBER: Well, a lot of it stayed
14	on the head, but some dripped down the sides. Some of
15	it went into fan coolers, some of it is all over the
16	containment.
17	MEMBER RANSOM: Sure, so that would only
18	tell you that if you are removing significant iron in
19	that, that I actually remove more than that.
20	MEMBER SIEBER: That would tell you
21	MR. MATTHEWS: Probably not totally
22	uniform in its constituency either.
23	MEMBER SIEBER: Right.
24	MR. MATTHEWS: Coming out in this amount
25	versus that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	77
1	MEMBER RANSOM: Well, you've got to sample
2	it, of course, than do a statistical.
3	MEMBER FORD: I'd like to bring this
4	particular discussion to an end. Thank you very much,
5	Larry.
6	MR. MATTHEWS: You're quite welcome.
7	MEMBER FORD: We'd like to call on the
8	staff, Bill Bateman.
9	We'd like to ask Bill Bateman and his
10	staff to make their presentations.
11	MR. BATEMAN: Good morning. I'm Bill
12	Bateman, NRR, Chief of the Materials and Chemical
13	Engineering Branch and with me at the table are Ed
14	Hackett who is representing the Lessons Learned Task
15	Force and Jack Grobe from Region III as a Division
16	Director of Reactor Safety and also leading the 0350
17	Panel.
18	(Slide change.)
19	MR. BATEMAN: I've got one slide here and
20	I'm going to try and go over quickly what the staff
21	discussed yesterday. The first item is to update you
22	on where we're at with respect to the status of the
23	bulletins from the last time we briefed the full
24	committee. I'll start with Bulletin 2001-01. As you
25	may recollect, Bulletin 2001-01 was issued to address

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the concern with circumferential cracking and vessel head penetrations.

We emphasize with the bulletin that the high susceptibility plants had to inspect within a certain time frame and that was accomplished and we did identify, the plants did identify some cracking in VHP nozzles and those were repaired.

8 This most recent outage season, there were 9 no other additional cracks identified as a result of 10 inspections that were performed. So that gives us at 11 this point some confidence in the susceptibility model. I know we've had discussions here about heats 12 and their potential impact and I think there's 13 14 definitely something we're going to look into, but at 15 least at this point in time we haven't found anything 16 as a result of the inspection data that would concern 17 we are totally misled by the time us that and 18 temperature susceptibility model. So that's kind of 19 the status of where we're at with Bulletin 2001-01 at 20 this point.

21 MEMBER LEITCH: I have a question that 22 relates to BWRs. With respect to the CRDM cracking 23 issue, the boron in the PWRs was an important 24 indicator that we had some incipient through-wall 25 cracks and the BWRs we don't have that obviously. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	79
1	in the stub tube barriers, we have some of the same.
2	I mean it's difficult to inspect which might be
3	analogous to the head of the PWRs. It's there's
4	some tolerance perhaps for, in some plants, for a
5	little bit of leakage down there. There are so many
6	things that can possibly leak. It's not uncommon to
7	have a few drips coming out of there which may be, in
8	my mind analogous to the tolerance in the PWRs and the
9	flange leaks and that's kind of clouding the picture.
10	Admittedly, you have a much lower
11	temperature down there in the BWRs, but I guess my
12	question is have you thought at all about whether
13	there's applicability of this issue to the BWR stub
14	tubes and other, CRBs and other instrumentation
15	penetrations that are down there in the belly of the
16	BWRs?
17	MR. BATEMAN: Yes. We have. As a matter
18	of fact, there are at least two plants that come to
19	mind that have had leaks in their stub-tube welds and
20	we have allowed them to roll repair those stub tubes
21	to stop the leak.
22	But the one thing that we do take some
23	confidence in is the weld bead and how the stub tube
24	is connected to the housing such that even if the weld
25	were a through-wall crack you still have that weld

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

80 bead around the OD of the stub tube that would prevent 1 2 nozzle ejection. 3 MEMBER LEITCH: I guess I'm just not 4 familiar enough with that design to quick picture what 5 you're saying. Could you say that again? MR. BATEMAN: You have the stub tube which 6 7 comes through which you install the housing and then 8 you basically weld the housing to the stub tubes. So 9 if you picture a Philip weld in your mind, that Philip 10 weld is attached to the housing and to the stub tube. 11 If that crack, if that weld were to crack, you still 12 have the Philip weld which acts as a blocker for that 13 housing to go, move through the stub tube and out of 14 the bottom of the vessel, where you don't have that 15 situation here in the PWR design. 16 MEMBER LEITCH: So you could get а 17 significant leak, but not a --18 MR. BATEMAN: But not an ejection, right. 19 MEMBER LEITCH: Okay. And the temperature 20 is --MR. BATEMAN: Substantially lower, so you 21 22 wouldn't expect there to be nearly the susceptibility. 23 We have seen some leaks at the older 24 Nine Mile and Oyster Creek have got some plants, 25 As I said and we have performed some role leaks.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	81
1	repairs as a temporary repair, but we're pushing for
2	more permanent repairs. There is a recent code case
3	that's provided an avenue for them to make a more
4	permanent repair.
5	MEMBER ROSEN: What's the temperature at
б	the stub tube, typically?
7	It seems lower.
8	MR. BATEMAN: Right off the top of my head
9	what's the saturation temperature for
10	MEMBER LEITCH: 545, I think.
11	MEMBER ROSEN: So it's in the range of the
12	cold head plants, PWR cold head, even below that.
13	MR. BATEMAN: I'm not exactly sure either
14	what the weld material is. I think it's and maybe
15	some of my staff might know. I think it's a stainless
16	steel weld as opposed to an alloy 600 weld.
17	MEMBER ROSEN: But a few degrees
18	temperature difference is very significant. I mean
19	this phenomenon is highly temperature dependent and
20	what you would expect in the normal engineering
21	disciplines to not matter, a few degrees Fahrenheit,
22	it turns out to matter quite a bit.
23	MEMBER SHACK: Well, I'm not sure that's
24	true in this case. You know the mechanism in the BWR
25	is not PWSCC and I don't I was actually trying to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

think last night when Graham mentioned this to me, 1 2 what we know about temperature dependence, but by and large the temperature dependence of the mechanism is 3 4 likely to be operative in the BWR, I don't think will 5 be as temperature sensitive as PWSCC is, although I don't think we have a whole lot of data on that 6 7 although Peter would know that. 8 I don't know if I can say MEMBER FORD: 9 anything because of a conflict of interest but I'm 10 sure Dr. Hickling could address that issue. 11 MR. HICKLING: Just a brief, comment, John Hickling, Bill Shack is, of course, 12 EPRI. completely right. It's a different mechanism in the 13 14 BWR and the weld metals susceptibility, whether it be 15 182 or to a lesser extent 82, is well known, has been 16 for many years. But it's not comparable, certainly 17 not in terms of temperature dependance to the PWR 18 situation. 19 MEMBER ROSEN: I got too far along there. 20 Really, all I was trying to find is what is the temperature and I think the answer was 21 545 or 22 something like that. 23 MEMBER WALLIS: In terms of a Scott curve 24 you're probably below the magic number 9. It's not 9 25 in this material. But it's something.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

82

	83
1	MEMBER SHACK: No, no, no. Because your
2	activation energy is likely to be quite different and
3	it's cold comfort farm. It might be cold
4	MEMBER WALLIS: That doesn't help you?
5	MEMBER SHACK: That ain't buying nearly as
6	much as it does in the PWR case, at least I believe
7	that would be there's much sparser data.
8	MEMBER FORD: But if I could make a
9	comment in relation to your concern which really comes
10	down to is anything being done about assessing that
11	particular phenomenon and yes, there's a tremendous
12	amount of work being done, background work in the
13	laboratory on cracking of 182, 82 and 600 in BWR
14	environments.
15	It's not as though we're just sitting on
16	our thumbs and doing nothing.
17	MR. HICKLING: John Hickling, EPRI. I had
18	one comment. Of course, in the BWR, you have an
19	effective mitigation technique by the use of hydro and
20	water chemistry and one of the main driving forces
21	behind hydro and water chemistry is to protect that
22	sort of material down at the bottom of the head.
23	MEMBER LEITCH: Yeah, it's just there is
24	a lot of history before some of these plants went to
25	hydrogen water chemistry and some of that with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

relatively poor control of reactor water chemistry in the early years.

3 MR. BATEMAN: Okay, I'll move on to the 4 status of Bulletin 2002-01 which was the bulletin we 5 issued right after Davis-Besse head degradation was identified and that bulletin was issued to give the 6 7 staff assurance that there were no other Davis-Besse's 8 And basically issued that bulletin out there. 9 requesting licensees to respond within 15 days and 10 they did and we basically have reviewed all the 11 responses and at least at this point in time have 12 confidence that we don't have any other Davis-Besses 13 out there.

14 We had some discussion yesterday, as you 15 recall, about how do we gain that confidence and was 16 basically based on the licensees' responses and 17 subsequent phone calls by my staff to follow up on 18 questions that arose from our review of their 19 was not based on individual NRC responses. Ιt 20 observation of each reactor vessel head.

So anyway, that's where we're at with Bulletin 2002-01. When we did get the 60-day responses which asked for information on their boric acid inspection program. Those came in, I guess, last week and we're in the process of reviewing those. I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

1	think we got through about 20 percent of those.	So
2	that's where we stand on Bulletin 2002-01. A	∖ny
3	questions on that?	

4 Okay, the next item is we spent quite a 5 bit of time yesterday listening to data analysis of crack growth rates and all that sort of thing and I 6 7 think where it's all leading to is where do we go from 8 now? I don't think any one of us wants another Davis-9 Besse head degradation type scenario. I don't think 10 any of us wants any more circumferential cracking to 11 the extent that we found at Oconee. So that's where our challenges are. 12 What's the next step to go on 13 from here?

14 And I think it's the inspection plan. Ι 15 think that's where we're at. We've got to agree between the industry and ourselves what will be an 16 17 effective inspection claim so that we don't have -- we won't have this kind of situation again and that's 18 19 what we're working on right now. You heard the 20 industry's presentation. We're basically at this 21 stage working on a piece of generic correspondence to 22 bridge the gap between now and the time we come to agreement with industry and then in some way codified 23 24 either in the ASME code or through rulemaking and the 25 regulations.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

85

	86
1	We haven't decided exactly what our
2	position is on that yet, but I can assure you that it
3	will be in excess of what industry has proposed.
4	Until we and then we'll back down from that over
5	time, given that industry presents a technically sound
6	argument to justify that.
7	MEMBER LEITCH: What's the time frame for
8	this interim communication? Do you have a time in
9	mind for that?
10	MR. BATEMAN: It's in draft right now and
11	it's going to be moving pretty quickly, so I would say
12	barring any unforeseen difficulties, I would say
13	within the next month and a half.
14	MEMBER LEITCH: Before long, the fall
15	outage seasons is going to be upon us.
16	MR. BATEMAN: Yes.
17	MEMBER LEITCH: And I'm sure that a lot of
18	plants, if that impacts their inspection program in
19	the fall, as I suspect it might, they need that
20	information in a timely fashion.
21	MR. BATEMAN: Agreed. And we've had
22	various licensees express that to us.
23	MEMBER SIEBER: Actually, if you wanted to
24	hire technicians and rent inspection equipment, they
25	ought to know now.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	87
1	MR. BATEMAN: I think a smart licensee
2	would
3	MEMBER SIEBER: Do it any way.
4	MR. BATEMAN: Do it any way. I mean if
5	you're going to wait around for the regulator to tell
6	you what to do, you may be caught between a rock and
7	a half place when it comes to outage time.
8	MEMBER ROSEN: How are you going to impose
9	the requirements of this new plant? What regulatory
10	vehicle will you use?
11	MR. BATEMAN: What we're contemplating
12	right now is a bulletin and a bulletin basically is
13	not doesn't require licensees to do anything. We
14	only have limited vehicles that require licensees to
15	do anything, for example, orders. We're not
16	contemplating orders at this time, but I think it will
17	be based similar to the Bulletin 2001-01 where we'll
18	ask the licensees what their plans are and we'll
19	represent what we consider to be an acceptable answer
20	to that question.
21	It would be undoubtedly based somewhere
22	along something similar to what the licensees have
23	presented for an inspection plan, but more than likely
24	will have different intervals and frequency, different
25	methods and frequencies.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	Any other question son that? If not, I'd
2	like to turn it over to Jack Grobe, to give you a
3	brief update on the 0350 Panel.
4	MR. GROBE: Thanks, Bill. I apologize.
5	I wasn't able to reduce it to one slide, but I do have
6	a couple of slides, just summarizing what we talked
7	about yesterday.
8	Following the discovery of the cavity in
9	early March at Davis-Besse, the NRC chartered what's
10	referred to an 0350 Panel. It's a more extensive
11	oversight process for a plant that meets certain
12	criteria and the bases for chartering that panel were
13	that the head degradation issue at Davis-Besse
14	certainly represented a complex and substantive
15	technical issue, but also posed a number of complex
16	regulatory issues and organizational issues for the
17	NRC.
18	The plant has been in extended shutdown
19	situation with a regulatory hold on that shutdown and
20	that's through a confirmatory action letter. 0350
21	enhances our ability, as an agency, to define and
22	communicate what we believe are necessary actions
23	prior to restart and it also enhances our ability to
24	coordinate the agency activities in response to the
25	situation at Davis-Besse. So those are the bases for

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	formation of the 0350 panel.
2	(Slide change.)
3	MR. GROBE: There's a number of goals that
4	the panel has. The first of those is to ensure that
5	we have a broad and integrated focus on assessment of
6	the facility performance. For a normal plant in an
7	operating configuration that assessment would be under
8	the responsibility of the branch chief and the
9	regional office and the inspection staff that feed
10	into that. In a case like Davis-Besse, we want to
11	have a much more substantive oversight process.
12	In addition to that, the 0350 panel
13	insures that there's a shared understanding between
14	both First Entergy, the licensee, the NRC and the
15	public on the issues that need resolution prior to
16	restart.
17	Also, the panel has the capability to
18	break down organizational boundaries in the Agency.
19	We have a number of staffs that are involved in
20	response to this situation to ensure effective and
21	efficient utilization of Agency resources and to
22	minimize the impact on the licensee. The panel is
23	able to bridge those organizational boundaries.
24	In addition, we've had extensive interface
25	with concerned citizens in the area of the plant,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

concerned groups of citizens across the country, federal, state and local elected officials, as well as the media and the 0350 panel gives the agency a central focus for a single point of contact on consistent communication with the public.

Two other focus areas, the panel will 6 7 provide restart -- excuse me, oversight following 8 During the course of an extended shutdown restart. 9 like this at Davis-Besse, part of our normal 10 assessment program includes performance indicators and 11 those performance indicators that are operationally focused will atrophy during the shutdown time frame. 12 13 So the panel will continue to provide oversight after 14 restart until it determines and recommends to senior 15 agency management that the plant is ready to return to the routine reactor oversight process. And finally, 16 17 one of the responsibilities of the panel is to create a compehrensive public record, publicly available 18 19 record of decisions and activities that go into the 20 Agency's actions.

21 MEMBER LEITCH: John, I'm still a little 22 unclear. Whose approval of the NRC is required for 23 the restart, is it this 0350 panel and the approval 24 chain?

MR. GROBE: No. No. The panel is

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

	91
1	chartered by the regional administrator, Jim Dyer in
2	Region III. As far as a restart decision, the panel
3	will go through a structured process to get to a
4	recommendation for restart. That recommendation will
5	be made to Jim Dyer and then Jim's responsibility is
6	in with in coordination with Sam Collins, Director
7	of NRR and Bill Kain and Bill Travers, the Deputy DDO
8	and EDO. We'll make the final restart decision.
9	As far as return to service, excuse me,
10	return to the routine reactor oversight program,
11	again, that's a recommendation of the panel to Jim
12	Dyer and he will coordinate with Sam Collins on that.
13	MEMBER LEITCH: Okay, thank you.
14	MR. GROBE: But Jim is the person that
15	makes those decisions.
16	(Slide change.)
17	MR. GROBE: The licensee recently
18	submitted on May 21st what they refer to as a return
19	to service plan and that's available on our website.
20	It contains six substantive building blocks. That's
21	how the licensee refers to them. These building
22	blocks form the major tenets of their return to
23	service activities. First one, of course, is
24	restoring the reactor head and they've chosen to
25	replace it. Second is looking at inside containment

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

at the effects of leakage and boric acid and that 1 2 includes two areas of focus. One is the reactor 3 coolant pressure boundary, the remainder of the 4 reactor coolant pressure boundary beyond the reactor 5 head and the second is other equipment inside containment that could have been affected by the 6 7 atmosphere that existed in containment.

8 The third is a system health assurance 9 plan. The focus of that is to examine risk 10 significant systems that are important to plant safety 11 and ensure that, in fact, their operability is where the licensee believes it is. Fourth is referred to as 12 13 program technical compliance and what that means is 14 are the programs functioning as expected and there's 15 a number of focus areas here, one that the licensee has chosen is the boric acid corrosion management 16 17 Another one is the corrective program, of course. 18 action program. Both of those programs didn't 19 function as expected, in this case, the design change 20 process and there may be others.

The fifth area is management and human performance excellence plan and I would include organizational effectiveness in this. Clearly, there were some decisions made, judgments made, activities that occurred that involved human performance and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

92

1 that's an area that needs to be addressed. And 2 finally, any necessary testing before restart and then 3 after restart. So those -- hang on for just a second. 4 Those are the six areas.

5 The NRC will be creating what's referred to as a restart checklist and that will be published, 6 7 publicly available. The restart checklist will 8 contain these activities and others that the NRC 9 believes necessary for resolution prior are to 10 restart. That would also include, for example, any 11 licensing actions that are necessary code or 12 exemptions and there may be sub-elements in these six 13 areas. These six areas clearly capture the major 14 flavors of what needs to be done before restart. And 15 then our assessment in this context would be to ensure that we're comfortable with the licensee's assessment 16 17 of root cause in each of these areas; ensure that there are detailed implementation of these activities 18 19 is going to address those causal factors; and then 20 examine their implementation, both by observing and evaluating 21 what they do and then conducting 22 independent inspections of other areas that they don't 23 cover. And finally, ensuring that any deficiencies 24 identified through the course of these activities are 25 adequately resolved prior to restart, those that need

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

93

	94
1	to be resolved prior to restart.
2	(Slide change.)
3	MR. GROBE: My final slide is just simply
4	to refresh your memory on what inspection activities
5	are on-going right now. The augmented inspection team
6	completed its work in April. The purpose of the
7	augmented inspection team was a fact-finding mission.
8	It did not put the results into a regulatory context.
9	The AIT follow-up inspection which does that is on-
10	going at this time. We've received substantive
11	information from the licensee on the process they're
12	going to go through to replace the head and we're
13	crafting our inspection plan for that and staffing it
14	right now.
15	And the extent of condition, these are the
16	activities, the inspection activities that are on-
17	going inside containment. That inspection is also
18	under way.
19	Are there any questions that I can answer?
20	We covered this in substantial detail yesterday.
21	Okay, thank you very much.
22	MR. HACKETT: I didn't get down to as
23	efficient as Bill either, but I hope I can do this in
24	three slides.
25	Davis-Besse Lessons Learned Task Force.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	95
1	I'm Ed Hackett. I'm the Assistant Team Leader.
2	Kicked off activities this week on Monday. I guess
3	I'll start with the charter, again, like Jack said, we
4	went into pretty good detail on this yesterday. There
5	are five elements that are listed here. I won't go
6	through those in detail. Only to mention that the
7	focus will be primarily on the top two, the reactor
8	oversight process and regulatory process issues. The
9	team right now is consisting of nine staff from the
10	NRC. It's a mix of managers, technical staff, also
11	representation from all three major offices at the NRC
12	and the regions.
13	Right now, we're looking at splitting the
14	team two ways. Art Howell is the team leader and Art
15	Howell and some of the regional folks on the team will
16	head a group that will largely interface at the site
17	and with the region and I will head a group here at
18	headquarters that will deal with most of the
19	headquarters' activities.
20	In terms of schedule, I think Dr.
21	Apostolakis aid to me yesterday, when you're done in
22	six months we'll have a good story. Unfortunately, we
23	need to be done in three months. I think we're
24	probably going to wish we had six months. But the
25	bottom line is we're looking at having to complete

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

this activity by September 3rd with finalization of a 1 2 report. We're looking at doing it in two phases. As 3 I mentioned, we've only just gotten the team together 4 this week, so we're sort of in a preparation phase right now that includes putting together a lot of the 5 processes and procedures for the group and just 6 7 getting situated physically. That will probably take 8 most of the month of June. After that, we'll be in a 9 review phase and a report preparation phase that will 10 extend from basically July into September. 11 A couple of things I mentioned along the way here, there are other activities going on that are 12 13 related. There is a congressional investigation 14 that's been organized through the Energy and Commerce 15 Subcommittee, United States Congress. That will be 16 going on while this activity is going on also. 17 There's an NRC IG investigation also into certain aspects of the NRC decision making process related to 18 19 the most recent outage and deferral of inspections at 20 Davis-Besse. So those are going on also. There will be sensitivities and interfaces associated with that 21 22 in the Davis-Besse task force. There may be things 23 that the task force comes up with that need to get 24 handed off, in particular, to Jack's panel, for 25 instance.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

96

(202) 234-4433

1 In terms of status, sort of where we are 2 right now, I think I mentioned the top two. Team 3 members are here and physically located at 4 headquarters now, including all the regional staff. 5 There's going to be a lot of coming and going from the Team orientation, we had three days 6 site. of 7 briefings that just concluded yesterday and Jack 8 briefed us for at least three hours, I believe, as 9 part of what his group is doing yesterday. There was 10 a preliminary Region III office visit scheduled for 11 today. That is not happening since several of us are 12 going to be out there next week. The fourth bullet 13 down there, there is a site visit or what we've been 14 calling a public entrance meeting in the site vicinity 15 at Oak Harbor, Ohio. That's scheduled for June 12 and 16 that will be in the morning of June 12. We're 17 basically, we will do kind of what I'm doing here, inform the public and the folks in the vicinity of the 18 19 plant, of what the task force activities are going to 20 be. As part of the process, we are conducting 21

interviews with many of the NRC managers, the senior managers. Myself and Art Howell have done a number of those already and several others are in progress and the team right now is preparing detailed review plans.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

97

ĺ	98
1	The last thing I'll mention is to
2	supplement the meting we're going to be having out in
3	the site area next week, we also plan a similar
4	meeting here at headquarters. Right now, we're
5	working towards having that on June 19 and members of
6	the public are welcome and invited to come to that and
7	we will be soliciting any comments on the team's
8	charter at that point and also next week. So that's
9	what I had in the way of status and I'd be glad to
10	take any questions also.
11	MEMBER FORD: I'd like to thank you very
12	much. I'd like to just say for the public record that
13	yesterday we had a 10-hour meeting in which all of
14	these topics which were covered in the last two hours
15	were very fully discussed, so that will be in the
16	public record.
17	MEMBER KRESS: One question before we
18	close to the staff, is anybody perhaps in research
19	working on an engineering chemical physical bottle for
20	this wastage problem to try to see if they can predict
21	by model?
22	MR. HACKETT: I'll go ahead and speak for
23	the Research Office, since that's my home base. Bill
24	Collins is probably the one. I don't know that he's
25	here at the moment. Bill's got the lead for the NRC

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Research Office on doing exactly that and it's obviously the problem is defining the task and then getting it done and getting the right amount of resources applied to it I think is going to be one of the key issues.

I think one of the things that's been 6 7 discussed is obviously a teaming with the MRP to look 8 into doing some more detailed analyses on the cutout There 9 from the Davis-Besse head. have been 10 discussions of mockups for a variety of the mechanisms 11 that have come up and have been discussed here with the Committee. 12 All of that, as my understanding, 13 plans for that are in progress. Bill's branch has put 14 together a user request that's very comprehensive 15 that's been sent to the Office of Research and has been iterated on several times. 16 And again, our 17 problem is going to be time and resources. There's a lot of work I think that needs to be done here and 18 19 we'll probably be back talking to the Committee about 20 that in the future, but the short answer is yes, that type of work is underway. 21

22 MEMBER KRESS: I'd be very interested in 23 that because that's the kind of stuff I used to do, 24 that kind of modeling.

MR. HACKETT: We have the advantage that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

	100
1	a lot of folks want to work on this. It's technically
2	exciting even though it isn't necessarily exciting in
3	the right way for the NRC and the licensee and the
4	public, but there's a lot of very interesting aspects
5	of this technically, so there is going to be a lot of
6	work.
7	MR. BATEMAN: I would just like to make a
8	point and it's one I tried to make in my brief
9	presentation. My hope is we never have to deal with
10	this situation again and
11	MEMBER KRESS: A good model might tell you
12	whether you do or not.
13	MR. BATEMAN: I'm hoping that an
14	aggressive inspection plan would preclude the need for
15	any angst at all about whether or not this will ever
16	happen in the future.
17	MEMBER KRESS: I think that would involve,
18	if you saw any leakage at all, regardless how big it
19	was, you have to go in and inspect to see if there's
20	wastage associated with it.
21	MR. BATEMAN: Right.
22	MEMBER KRESS: Which may be the solution,
23	you're right.
24	MR. HACKETT: I think I'd add one more
25	comment just in closing. Allen Hiser yesterday had a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

101 presentation that got into discussion of management by 1 2 leakage and I think we're starting to see that as a 3 theme with some of these recent occurrences when you 4 look back over this progression of D.C. Summer, I think some 5 Oconee, now Davis-Besse. of the discussion yesterday went to the fact that these 6 7 plants were designed in a very robust way, defense-in-8 depth, and so on. And for a long time, a lot of this 9 type of situation has been managed through leakage 10 fairly effectively. 11 What we're seeing now is erosion of these 12 margins and that may not be the prime way of doing 13 this in the future. 14 MEMBER KRESS: I think the purpose of the 15 research and the model would be two things. One to 16 tell you that you do have to have leakage that's 17 observable in order to get the wastage. That's Question two is how much does the 18 question one. 19 leakage have to be an dhow fast does it progress and 20 so that you can talk about scheduling inspections. I think those two things would be the purpose of 21 22 developing a good physically based, chemically based 23 model. 24 MR. BATEMAN: Just another point. I know 25 you have read the root cause report and recognize that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	they characterize the root cause as a probable root
2	cause with a causal factor being at the blanket of
3	boric acid sitting on top of the head. At this point,
4	we don't know how much of a contribution that blanket
5	of boric acid, crystal sitting on top of the head
6	actually contributed to the corrosion of Davis-Besse.
7	Obviously, other plants had through-wall cracks and
8	didn't have the same amount of wastage around the
9	nozzles, but they also didn't have the blanket of
10	boric acid on top of the head either.
11	MEMBER KRESS: I would personally think
12	it's not very important but I have a mental model of
13	what's going on.
14	MR. BATEMAN: Yes. I've talked to a
15	number of people who feel that that blanket on top
16	probably did contribute in some way to the wastage.
17	CHAIRMAN APOSTOLAKIS: Okay, thank you,
18	gentlemen.
19	Please come to the microphone. Identify
20	yourself first.
21	MR. GUNTER: Yes, Paul Gunter with Nuclear
22	Information Resource Service.
23	A couple of questions. I noted that First
24	Entergy said that they were collecting the boric
25	deposits and they have the cutting of the wastage.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

Has staff made a request or is First Entergy offering samples of the cracks in the nozzles themselves? 2 Ιt seems like this would be worthwhile preserving as well 3 4 I'm wondering if, in fact, this kind and of information is forthcoming. 5

1

Let me start the answer and 6 MR. GROBE: 7 then maybe Bill wants to supplement and if First 8 Entergy has any contributions that would be fine, too. 9 First off, there's very limited amount of 10 the boric acid on the head that was collected. At the 11 same time, these repair activities were going on. The 12 utility was cleaning the head and very little, if any, 13 of the existing boric acid, boric oxide corrosion 14 product blanket on the top of the head was collected. There were some materials collected from the crevice 15 on penetration 2 when that penetration was removed. 16

17 By and large, the cracks have been ground out because that's part of the repair process, so 18 19 they're ground away and there's very little data that 20 can be gained from that. All of these materials have been transported to Lynchburg where they're going to 21 22 be examined and I think Bill's staff is going to be 23 involved in the decisions of what types of 24 evaluations, destructive evaluations will be 25 undertaken.

NEAL R. GROSS

MR. BATEMAN: First Entergy has been working very closely with us on the types of analyses, on what types of material to do, so the answer to your question is yes, we are working, First Entergy is working with the NRC to gather as much information as can be gathered from the samples.

1

2

3

4

5

6

7 MR. McLAUGHLIN: Paul, the process we've 8 been using because all of this material is governed by 9 our confirmatory action letter, there's a section in there addressing quarantine. All of these samples are 10 11 being handled under the quarantine, so what we've done is we developed, in conjunction with the staff, as 12 13 well as our root cause team, we develop a written 14 action plan on what's going to be done with those 15 samples and results will be shared with the staff as well as MRP and anyone else who wants those and that 16 17 will be done, as I described earlier. Right now we have two nozzles in the cavity. 18 We're going to 19 actually make a trip down to Lynchburg, Virginia which 20 is where those three pieces are stored right now and develop a written action plan on where to proceed as 21 22 far as the testing that's going to be required to 23 provide the industry as much information as we can. 24 But I guess in gathering --MR. GUNTER: 25 Excuse me, could you just MEMBER FORD:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	identify yourself?
2	MR. McLAUGHLIN: I'm sorry, Mark
3	McLaughlin, First Entergy.
4	MR. GUNTER: I gather though that there is
5	some concern with regard to sample size, that is
6	currently available. As far as physical evidence that
7	could be extrapolated further down the line. Am I
8	correct? That
9	MR. McLAUGHLIN: Well, the one piece of
10	information that would have been nice and this is one
11	thing that's kind of a thorn in my side because I was
12	the project manager, but the one piece of information
13	that looking back I wish we would have gathered is
14	when we pulled nozzle number 3, the cavity was full of
15	boron. If we had gotten some samples of boron out of
16	that cavity it may have helped preclude some of the
17	need for research as far as where there's some
18	unusual chemical components that were at work there
19	and it may have helped develop some of the corrosion
20	rates.
21	MR. GUNTER: Okay, and just one final
22	question. With regard to the cladding separation
23	issue, I heard this morning that there was no evidence
24	of separation, but that the dye penetrant test didn't
25	do it or wasn't taken, so am I to believe then that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	the cladding separation issue is inconclusive?
2	MR. McLAUGHLIN: I've performed visual
3	inspection and the reason that a dye penetrant test
4	has not been done is because there will have to be
5	some machine operation done on the outside diameter of
6	that cavity sample and we will not do anything that
7	would be considered destructive. It would be
8	destructive to do that machining operation and we will
9	not do anything destructive to that sample until a
10	written sample plan has been issued and that's what
11	we're going to be doing in the next two weeks. We're
12	going to get with the staff and take a physically
13	look at the cavity and that I would say that's going
14	to be done of the tests that will be performed.
15	However, we're not going to do anything that would
16	destroy any evidence prior to everyone coming to a
17	consensus on a written action plan to do those tests.
18	MR. GUNTER: Thank you.
19	MEMBER WALLIS: Now I'm curious. You said
20	the cavity was full of solid material?
21	MR. McLAUGHLIN: When we pulled yeah,
22	when we puzzled nozzle number 3, we had a camera that
23	was underneath the head, so you could see when the
24	nozzle was removed there was now we know it was a
25	boron iron mixture. I guess what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

(202) 234-4433

	107
1	MEMBER WALLIS: I'm interested in how much
2	water was in there.
3	MR. McLAUGHLIN: There wasn't anything
4	that ran out. You couldn't tell that there was water
5	there.
6	MEMBER WALLIS: It could have been
7	MR. McLAUGHLIN: It maintained its shape.
8	MEMBER WALLIS: It could have been liquid
9	boron, but then solidified, but it certainly wasn't in
10	a liquid state at all. It was full of solid.
11	MR. McLAUGHLIN: That's correct. If you
12	look at the video, it appears that it's carbon steel
13	and you know, if you have an ant farm and you can see
14	all the holes through the glass, that's what it
15	appeared to be because there were so many little
16	fissures and tunnels going through this boron that was
17	and that was the pattern that we saw. I mean it
18	really, from the camera view appeared to be carbon
19	steel with some erosion.
20	MR. GROBE: I believe at that time you
21	were 19 or 20 days after shut down. So for an
22	extended period of time there had been no forcing
23	function to force liquid into that area.
24	MR. McLAUGHLIN: Right.
25	MEMBER WALLIS: Yes, but it could have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701
	108
1	dried out or something.
2	MR. GROBE: Right, exactly.
3	CHAIRMAN APOSTOLAKIS: I think we have to
4	move on. Are there any other comments from the
5	public?
6	Yes sir?
7	MR. HORNER: Dan Horner from McGraw-Hill
8	Nuclear Publications.
9	Yesterday, one of the EPRI representatives
10	made the comment about, I think it was about GEL 8805,
11	that it's a good plan if it's implemented properly.
12	So in that context, I guess my question is as there's
13	been quite a lot of discussion about the inspection
14	plans that are being developed by the industry and
15	NRC. Can someone say what discussion there has been
16	about ensuring proper implementation of them and
17	alternatively, is there consideration of a possibility
18	that the current inspection regime is adequate on
19	paper, but simply has to be implemented and enforced
20	more effectively?
21	MR. GROBE: A number of responses. First
22	off, as soon as the information notice was issued on
23	precursors to this type of corrosion, specifically the
24	containment air cooler cleanings and the rad monitor
25	filter clogging, I can speak for Region 3. We went

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

back and evaluated those issues at the plants in Region 3. I believe the other regions also did, to confirm that there were no precursors that existed and that's consistent and in line with the activities that Bill Bateman's staff were doing following up Bulletin 2002-01.

7 Secondly, we talked about paper reviews. 8 Our inspections do involve some paper reviews, but 9 there's much in field activities and independent 10 observations in the field, so it's not just a paper 11 review, that the inspection program does. I believe 12 part of the Lessons Learned Task Force and our 13 Inspection Program Management Branch as well as the 14 Lessons Learned Task Force is evaluating the 15 appropriateness of our inspection activities in these 16 areas and whether they need to be augmented. I don't 17 know if either Ed or Bill want to talk to this.

18 MR. BATEMAN: The only other thing I'd 19 like to add is that the 60-day response of the 20 Bulletin 2002-01 asks the licensees to discuss their boric acid inspection program, so we do have those 21 22 responses and are reviewing them at this time. Thank you. 23 MR. HORNER: 24 MR. MATTHEWS: This is Larry Matthews from

25 || the MRP. Also, the MRP is planning a workshop, I

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

	110
1	believe some time this summer to get together with all
2	the utilities and look at best practices in the boric
3	acid walkdown program and try and come up with what
4	are the best ways to implement this type of program in
5	the industry and that workshop will be taking place
6	this summer.
7	CHAIRMAN APOSTOLAKIS: Any other questions
8	or comments from members of the public?
9	Well, gentlemen, thank you again for
10	coming here.
11	MR. GROBE: Thank you.
12	CHAIRMAN APOSTOLAKIS: We'll recess until
13	11:00.
14	(Whereupon, the proceedings went off the
15	record at 10:44 a.m. and resumed at 11:02 a.m.)
16	CHAIRMAN APOSTOLAKIS: Okay. The next
17	topic is technical assessment of Generic Safety Issue
18	(GSI) 189, Susceptibility of Ice Condenser and
19	Mark III Containments to Early Failure from Hydrogen
20	Combustion During a Severe Accident.
21	Our leader on this subject is Dr. Kress.
22	Tom?
23	MEMBER KRESS: Thank you, Mr. Chairman.
24	I remind the committee members that this
25	issue has to do with ice condenser and Mark III

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

containments that during a severe accident will 2 effectively condense the steam and concentrate 3 hydrogen. And in order to control the hydrogen 4 concentrations so that you don't get detonable 5 concentrations, these are -- these type of plants are located 6 provided with igniters throughout the 7 containment area outside the ice condenser chamber and 8 in the drywell for Mark IIIs.

9 These igniters also have associated with 10 them some fans to be sure you don't -- that the hydrogen can get to the igniters, and that you don't 11 12 stratify and create pockets of high concentrations.

13 So the issue is, though, that one of the 14 severe accidents that contributed a great deal to the 15 risk is a station blackout. The igniters and the fans 16 are powered by AC power, and in a station blackout you 17 lose that power. So the issue before us is: should igniters and fans for ice condenser plants and Mark 18 19 IIIs be equipped with backup power in the event of a 20 station blackout accident.

And this -- if it were so required, this 21 22 would constitute a backfit. And the staff is required to make a regulatory analysis for backfits. 23 The 24 research has done this, and this will -- what we'll 25 hear about today is the regulatory analysis backfit

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	112
1	for possibly some options on backup power.
2	I would want to point out that on this
3	subject we have received comments from a member of the
4	public, Ken Bergeron, and he couldn't be here today
5	for other commitments, but I think David Lockbaum has
6	agreed to speak to his comments.
7	And, in addition, we have comments from a
8	member of the public living near Watts Bar, which is
9	an ice condenser plant, Ms. Ann Harris. And I think
10	there is a TVA employee I'm sure there is Bob
11	Bryan, who would like to make a few comments. So we
12	have a busy schedule ahead of us.
13	With that, I'll turn it over to the staff
14	to give their presentation.
15	MR. NOTAFRANCESCO: Al Notafrancesco. I'm
16	Task Manager for GSI-189. We are doing this in the
17	Office of Research. I'm in the Safety Margins and
18	Systems Analysis Branch.
19	Okay. GSI-189 has to do with Mark IIIs
20	and ice condensers, as said earlier. Basically, in
21	the process of risk informing 10 CFR 50.44, we had a
22	series of Commission papers and gave us the status and
23	the staff plans. We got an SRM December 31st, told us
24	to resolve GSI-189 expeditiously. So that's what we
25	plan to do.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

In February 2002, this past February, it passed the generic issue screening process. We quickly generated a task action plan, and we are currently completing a technical assessment. And basically I'm going to present you an overview of the technical assessment.

7 Just to give sense of what the а 8 population of plants we're talking about, PWRs with 9 ice condenser containments, there's nine reactors, 10 four dual units, one single unit. There's four BWR 11 plants, four single units. In the 1980s, these plans 12 were retrofitted with AC-powered igniters to mitigate 13 the consequences of copious amounts of hydrogen as 14 part of the post-TMI action.

So, but there has always been a long issue about the performance in station blackout, because they're not available, and that's where we're going.

This is just a schematic of the two types of plants. What they have in common -- their pressure suppression containments, their intermediate volumes between 1.2 and 1.5 million cubic feet. One uses ice, one uses water.

23 MEMBER KRESS: Would you point to where
24 the igniters are likely to be located in those?
25 MR. NOTAFRANCESCO: Okay. The igniters

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	114
1	are judiciously located pretty much everywhere except
2	the ice chest and the lower plenum here. Everywhere
3	else there is igniters. For the Mark III, there's
4	more igniters, so they're pretty much particularly
5	below the ACU floor where there's potential for
6	hydrogen buildup.
7	Okay. The objective of this work was to
8	justify if a backup power supply is warranted. Two
9	aspects we looked at cost benefit guided by the
10	NRC-prescribed methods.
11	MEMBER WALLIS: Excuse me. You said just
12	the igniters. How about these fans, which may be a
13	pointed issue?
14	MR. NOTAFRANCESCO: It's included in here.
15	MEMBER WALLIS: Do you mean igniters and
16	fans or fans or both or either or
17	MR. NOTAFRANCESCO: Well, we've considered
18	the fans, and we feel
19	MEMBER WALLIS: You've already discarded
20	them as a need?
21	MR. NOTAFRANCESCO: Well, I
22	MEMBER WALLIS: This just says igniters.
23	MR. NOTAFRANCESCO: As part of our
24	analysis, we pretty much discarded them.
25	MEMBER WALLIS: Okay.

	115
1	MR. NOTAFRANCESCO: We did consider them.
2	CHAIRMAN APOSTOLAKIS: So the power supply
3	will be to igniters only.
4	MR. NOTAFRANCESCO: That's the bottom-line
5	recommendation.
6	CHAIRMAN APOSTOLAKIS: Okay.
7	MEMBER ROSEN: And you will explain to us
8	why the fans are not needed to
9	MR. NOTAFRANCESCO: And we'll get to that.
10	And that's why I have it here. Cost-benefit analysis
11	guided based on looking at fans, not
12	MEMBER ROSEN: Pardon me. But it's a
13	little bit unclear from that statement that you
14	MR. NOTAFRANCESCO: Okay. But here. For
15	ice condensers, perform an updated severe accident
16	analysis demonstrating igniters alone are adequate.
17	I didn't get to that line yet.
18	MEMBER WALLIS: So your purpose there
19	you don't say anything about fans here at all. It
20	looks as if you've already decided
21	MR. NOTAFRANCESCO: Fans are imbedded in
22	here.
23	MEMBER WALLIS: They are? Okay.
24	MR. NOTAFRANCESCO: But we we'll get to
25	it. I'm just trying to walk you through the history

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	a little bit, too, of the action plan. We didn't
2	discard it at the beginning, but as time went on
3	okay. So then we executed the task action plan, and
4	then briefing the committee, and we want to send our
5	findings to
6	MEMBER WALLIS: It's a poor objective. I
7	mean, it looks as if you're asked to prove that
8	igniters alone are adequate. It's just a poor
9	starting point. It's almost that you start with
10	that igniters alone are adequate.
11	CHAIRMAN APOSTOLAKIS: Well, that was not
12	part of the original objective, I hope.
13	MR. NOTAFRANCESCO: Well, we've got to
14	understand this is melted with the Mark IIIs, and the
15	fans aren't an issue with that. So the fans are a
16	little issue with ice condensers but not for the
17	Mark III. So we've got to put it in perspective.
18	It's a larger dealing with two different classes of
19	containments.
20	Okay. Our approach for expeditious
21	resolution was to use existing studies and to assemble
22	a support team with contractor assistance. We
23	supplied you about three or four weeks ago a package,
24	and each of the contractors provided a report. And
25	one component is the cost analysis, the benefits

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	117
1	analysis, and the plant analysis, specifically on the
2	fan performance and the igniters alone aspects of it.
3	MEMBER WALLIS: But, again, you say use
4	existing studies. You've got to determine that
5	they're adequate first.
6	MR. NOTAFRANCESCO: Well, what I I'll
7	get to it and try to differentiate. There's some
8	ongoing work. But before I get to the analysis, I'll
9	get to some of the preliminary the aspects related
10	to the cost analysis first.
11	CHAIRMAN APOSTOLAKIS: Now, what
12	percentage of the large early release frequency does
13	the SBO contribute to? Is it one of the major
14	contributors?
15	MR. NOTAFRANCESCO: Well, hopefully, our
16	benefits analysis will quantify that.
17	CHAIRMAN APOSTOLAKIS: Well, you'll
18	probably lift it from existing studies. You're not
19	going to do it yourself. That's part of the
20	MR. LEHNER: In the
21	CHAIRMAN APOSTOLAKIS: Who are you?
22	MR. LEHNER: John Lehner from Brookhaven
23	National Lab. In the March 3 analysis, which was
24	based on the on NUREG-1150, the SBO was 90-some
25	percent of the total core damage frequency. In the

118 it condensers, varies, but it's 1 ice still а 2 significant part of the total core damage frequency. 3 CHAIRMAN APOSTOLAKIS: But you are not 4 dealing with core damage frequency here. You are 5 really producing LERF. 6 MEMBER KRESS: That's part of it. Core 7 damage frequency is --8 CHAIRMAN APOSTOLAKIS: Yes, but, I mean --9 MEMBER KRESS: -- a component of LERF. 10 CHAIRMAN APOSTOLAKIS: I know. But what was the percentage to LERF? 11 MR. LEHNER: Well, if you -- for Catawba, 12 13 the conditional containment failure probability was about .3. So probably about 30 percent of that's SBO 14 15 frequency. 16 MEMBER KRESS: Yes, that's not а 17 conditional early, but --MR. LEHNER: Conditional SBO. 18 MEMBER KRESS: Yes. But conditional early 19 20 is a little lower than that, but it's a substantial contribution of the LERF. 21 22 MR. LEHNER: Okay. Thanks. 23 MR. NOTAFRANCESCO: Okay. As part of the 24 cost benefit, we are trying to get a handle of what 25 the cost is and what kind of configuration can one

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	119
1	construct that would enhance plant capability. And
2	we've concentrated on a pre-staged design, which is a
3	stationary diesel that could be hooked up when needed,
4	and then we also looked at an off-the-shelf option
5	where a portable generator is put in place with
6	minimum plant modifications. So we're trying to run
7	a gamic of what is an optimal arrangement considering
8	cost.
9	MEMBER WALLIS: What's the difference?
10	They're both going to be there all the time. It's
11	just that one is cheaper than the other.
12	MR. NOTAFRANCESCO: Right. But that is
13	needed to
14	MEMBER WALLIS: You're not going to move
15	the portable diesel generator around.
16	MR. NOTAFRANCESCO: Well, the portable
17	diesel generator is hopefully small enough that there
18	will be more of them, and they'll be available
19	MEMBER WALLIS: This is one you can buy in
20	a hardware store or something, instead of going to
21	some nuclear supplier.
22	MR. NOTAFRANCESCO: Right. They will be
23	more of them, more diverse places. There will be
24	more
25	MEMBER SIEBER: Does that mean somebody

	120
1	has to go out and buy these things? Here's an
2	accident. Will you send a clerk down to the store and
3	say, "Get me one of these"?
4	MR. NOTAFRANCESCO: Well, that's
5	they're small. They're about 5 KV generators for
6	igniters.
7	VICE CHAIRMAN BONACA: Well, I think if I
8	can offer a suggestion, I mean, looking ahead to your
9	slides 14 and 15, they really provide answers to all
10	the questions you are getting right now. I would
11	suggest that you go through this analysis first, and
12	then we'll understand why you're making certain
13	equipment choices.
14	You know, you have presented some options.
15	It seems to me that those two slides explain why you,
16	for example, feel that igniters alone are effective.
17	And then, in that case
18	MR. NOTAFRANCESCO: Well, again, we're
19	isolating on ice condensers. We'll looking to try and
20	do both classes of plants. I'm trying to walk through
21	this.
22	VICE CHAIRMAN BONACA: All right. I just
23	all right. That's fine.
24	MR. NOTAFRANCESCO: Again, there's the
25	cost-benefit component that's necessary to meet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	121
1	VICE CHAIRMAN BONACA: Okay.
2	MR. NOTAFRANCESCO: to promote any sort
3	of backfits. I wanted to just I'll quickly go
4	through this thing and
5	VICE CHAIRMAN BONACA: Sure.
6	CHAIRMAN APOSTOLAKIS: So why is the low-
7	cost option more reliable during an earthquake?
8	MR. NOTAFRANCESCO: Well, okay, that's my
9	next slide. There's some judgment in this. The pre-
10	staged design, if it's designed for external events,
11	clearly, the costs start to skyrocket. We do expect
12	some survivability even or a subset of the external
13	events. So it's not going to be 100 percent
14	qualified, but it does provide us some capability.
15	CHAIRMAN APOSTOLAKIS: So, again, now
16	we're bringing up the issue of external events. How
17	much is are these contributing to station blackout?
18	MR. NOTAFRANCESCO: They could be about a
19	half. External blackouts could contribute roughly a
20	half, I think we assume.
21	MR. LEHNER: Yes. For the ice condensers,
22	the external core damage the external SBO frequency
23	was about two-thirds of the internal station blackout
24	frequency.
25	CHAIRMAN APOSTOLAKIS: When you say

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	122
1	"external," do you mean earthquakes primarily?
2	MR. LEHNER: Primarily earthquakes, but I
3	think there is also some high winds. Yes, but it's
4	primarily earthquakes, I believe.
5	MR. NOTAFRANCESCO: Again, this judgment
6	on the low-cost, no permanent structure, and setup
7	would occur after the initial impact of the external
8	event. Portable diesel may come from multiple diverse
9	locations. Attributes may
10	CHAIRMAN APOSTOLAKIS: I don't understand
11	that sentence. Is that clear? No permanent
12	structure, setup would occur?
13	MR. NOTAFRANCESCO: Well, there's a
14	since this option
15	CHAIRMAN APOSTOLAKIS: Do you mean damage?
16	MR. NOTAFRANCESCO: Well, in the pre-
17	staged design, there is the assumption of having a
18	concrete pad and having a small doghouse off the aux
19	building. So it's a permanent structure.
20	CHAIRMAN APOSTOLAKIS: Oh, I see.
21	MEMBER ROSEN: The setup would occur
22	after
23	CHAIRMAN APOSTOLAKIS: There would be no
24	permanent structure, and the setup would occur after
25	the initial

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	MR. NOTAFRANCESCO: Right.
2	CHAIRMAN APOSTOLAKIS: Oh. See, I'm
3	thinking sometimes
4	MR. NOTAFRANCESCO: Well, I'm
5	MEMBER WALLIS: The difference is build a
6	building or just wheel up a generator and hitch it
7	down.
8	MR. NOTAFRANCESCO: Right. I mean, that's
9	what this was. Use of portable with minimum permanent
10	modifications.
11	Okay. Putting numbers to this concept,
12	we
13	CHAIRMAN APOSTOLAKIS: Well, let's
14	understand this a little bit, though. You are saying
15	it would occur after the initial impact of the
16	external events. So we presume that the humans will
17	perform as anticipated, as expected, after a major
18	earthquake? Or you didn't address that issue?
19	MR. NOTAFRANCESCO: Well, we assumed there
20	will be an army of guys trying to recover from the
21	damage, so
22	CHAIRMAN APOSTOLAKIS: And those guys have
23	not been affected by the fact that they have just been
24	through a major earthquake.
25	MR. NOTAFRANCESCO: Well, you know, we're

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

124
not saying it's going to be 100 percent effective
through all the credible earthquakes, but at least a
significant fraction.
CHAIRMAN APOSTOLAKIS: But you have some
human reliability numbers in the calculations?
Because, I mean, in the one instance you assume that
the earthquake will affect the pre-staged design
MR. NOTAFRANCESCO: Well
CHAIRMAN APOSTOLAKIS: which is
reasonable. But then, you know
MR. NOTAFRANCESCO: Well, we in the
numbers we do say the reliability of the portable
setup is a little less than the pre-staged setup. But
we also use judgment to say it may be compensated by
the fact that the off-the-shelf approach is more
versatility to respond to external events and may
compensate for that negative in which
CHAIRMAN APOSTOLAKIS: Well, there is more
versatility, but we are relying now on the crew.
MEMBER LEITCH: You have some considerable
time to do this.
MR. NOTAFRANCESCO: Two, three hours,
several hours.
CHAIRMAN APOSTOLAKIS: Oh, you do?
MR. NOTAFRANCESCO: Yes. At least

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	125
1	several. It depends on your sequence.
2	MEMBER LEITCH: I thought I remember
3	seeing 48.
4	MR. NOTAFRANCESCO: Well, we wanted the
5	CHAIRMAN APOSTOLAKIS: Wait a minute.
6	What happens during those 48 hours?
7	MR. NOTAFRANCESCO: The 48 hours are used
8	as an assumption
9	CHAIRMAN APOSTOLAKIS: Are you also in a
10	state of damage to the core? Has the core been
11	damaged?
12	MR. NOTAFRANCESCO: In these cases they
13	are, because you're trying to deal with hydrogen.
14	You're trying to get the igniters powered.
15	CHAIRMAN APOSTOLAKIS: Okay. Sure. So
16	the fact that I have 48 hours by itself doesn't
17	MR. NOTAFRANCESCO: No, I'm not saying
18	that's
19	CHAIRMAN APOSTOLAKIS: help me very
20	much because I have a core damage event. So
21	MR. NOTAFRANCESCO: You don't have 48
22	hours. The 48-hour number had to deal with the length
23	of time of putting the diesel in a tank. It was just
24	part of the estimate of having them working for 48
25	hours after setup. That's where the 48 hours comes

	126
1	in.
2	CHAIRMAN APOSTOLAKIS: Okay.
3	MR. NOTAFRANCESCO: But you're in a
4	degraded core core melt sequence. You have time to
5	to set this up before you the hydrogen is
6	generated. That's the concept of
7	MEMBER KRESS: There's a station blackout
8	rule that requires the plants to have backup diesels
9	already. These are big diesels to power safety-
10	related equipment. Why can't the igniters and fans be
11	hooked to those diesels?
12	MR. NOTAFRANCESCO: That could be
13	possible. That could be
14	MEMBER KRESS: Was that an option that
15	was
16	MR. NOTAFRANCESCO: That could be an
17	option for the utility, clearly. We just crossed it
18	out based on an independent backup.
19	MEMBER KRESS: An independent backup.
20	MR. NOTAFRANCESCO: Right. There's other
21	demands on other things. I don't know if we could
22	MEMBER ROSEN: The problem, Tom, is if you
23	hook them to the station's safety-related diesels,
24	you're assuming those diesels are not functional in
25	station blackouts.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	CHAIRMAN APOSTOLAKIS: Right. They're
2	out.
3	MEMBER ROSEN: That is the assumption.
4	Station blackout means you don't have AC power either
5	offsite or onsite.
6	VICE CHAIRMAN BONACA: So you have the
7	station blackout, and now you have core damage, and
8	you have hydrogen.
9	MEMBER ROSEN: Now, the question is: why
10	would you assume, given that, that these would work?
11	I mean, don't you then say it'll be there's another
12	layer through
13	VICE CHAIRMAN BONACA: Right.
14	MEMBER ROSEN: but it one says with
15	the assumption of station blackout it means you don't
16	have AC power. And here you say, okay, we're going to
17	provide AC power.
18	VICE CHAIRMAN BONACA: Well, I mean, do
19	you have a redundant system, an additional system? I
20	mean, how many layers are you going to
21	MEMBER ROSEN: I understand. I understand
22	that this is
23	CHAIRMAN APOSTOLAKIS: No. But, I mean,
24	the reason why you are in an SBO situation is that
25	something very dramatic has happened.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	MEMBER ROSEN: Exactly.
2	CHAIRMAN APOSTOLAKIS: And I think the
3	question, you know, why should these additional
4	diesels survive, then, is a good one.
5	MEMBER ROSEN: Well, and I think the focus
б	on earthquakes is completely wrong. I mean, the issue
7	is not really earthquakes, although that's one of the
8	ways you could get to station blackout. But, you
9	know, high winds and flood are seem to me also very
10	important.
11	CHAIRMAN APOSTOLAKIS: Yes. They
12	mentioned that they are those are
13	MEMBER WALLIS: I have another question.
14	Why does the diesel have to run the 48 hours? Because
15	the igniters are only used once, aren't they? You
16	need a certain amount of
17	CHAIRMAN APOSTOLAKIS: Well, no, no, no.
18	MEMBER WALLIS: energy, or do you keep
19	them clicking away all the time?
20	CHAIRMAN APOSTOLAKIS: That's not what he
21	said. He said you have 48 hours to connect to diesel.
22	MEMBER ROSEN: Allen, do you want to try
23	again?
24	MEMBER WALLIS: He needs a tank. He's
25	going to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	129
1	MR. NOTAFRANCESCO: The tank of 48 hours
2	was just an assumption just to come up with an
3	estimate. It could be even less than that. But the
4	costs associated with a tank covering 48 hours or 24
5	hours is quite small.
6	MEMBER WALLIS: It reminds me of something
7	that goes off all the time.
8	MR. NOTAFRANCESCO: That continuous hot
9	points
10	MEMBER WALLIS: Continuous operation.
11	Okay. Okay. It's not something that senses
12	CHAIRMAN APOSTOLAKIS: Anyway, can we go
13	back to seven, because I don't think I got an answer
14	to my question. This seven. You have in there the
15	study that you guys did has some probabilities that a
16	setup would not be correctly done?
17	MR. NOTAFRANCESCO: Yes.
18	MR. ROSENTHAL: Can we just play this
19	is Jack Rosenthal. You or I I think we need, just
20	so everybody is clear, at time T zero you have
21	Hurricane Andrew hit, or you have an earthquake hit,
22	etcetera, real events that cause loss of offsite
23	power. You hypothesize common mode failure of the
24	diesel generators. The source of the power would be
25	diverse, not subject to that common mode which would

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

dominate the event.

1

Given blackout, either several hours will go by in which you live off your batteries, your station battery, six, eight hours, with supplying water to your steam generators from your steam driven auxiliary feedwater pumps, or sometimes people will postulate failure of that steam driven pump which moves the sequence up in time.

9 At some point, so many hours into the 10 event, you start uncovering the core, heating the 11 core, generating hydrogen. You'd like the igniters to 12 be continuously powered, so that they can burn off the 13 hydrogen in small amounts over a period of hours 14 that's being created. And the emission time for this 15 whole process that was assumed -- that's the 48 hours 16 that he's talking about in which -- during which, you 17 know, it's -- one could be -- so we -- I --18 CHAIRMAN APOSTOLAKIS: I understand that. 19 MR. ROSENTHAL: -- I just wanted some 20 clarity on the sequence. CHAIRMAN APOSTOLAKIS: How much time do I 21 22 have? 23 MR. ROSENTHAL: To start.

CHAIRMAN APOSTOLAKIS: To start.

MR. ROSENTHAL: Well, if the batteries are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24

25

	131
1	running and the auxiliary feedwater pump is running,
2	then things shouldn't get bad for, let's say, eight
3	hours.
4	CHAIRMAN APOSTOLAKIS: So I can stop
5	having those
6	MR. ROSENTHAL: But that's not to say that
7	the station crew would be dedicating its resources to
8	getting this little generator connected up. I would
9	think that they would be dedicating their resources to
10	getting the main power back on. So at some point in
11	the process, the tech support center, the coping crew,
12	makes the decision that they have to divert resources
13	to get out to do these heroic actions and somehow get
14	this alternate source connected. I think that a .8
15	was assumed.
16	MR. MEYER: Yes. Jim Meyer from ISL. The
17	low-cost option has some down sides, and the
18	functional reliability we're assuming for that was
19	about .8. The majority of
20	CHAIRMAN APOSTOLAKIS: And .8 is the
21	probability that they will do it successfully.
22	MR. MEYER: Yes. It would be the non
23	CHAIRMAN APOSTOLAKIS: Within whatever,
24	four, five, six hours.
25	MR. MEYER: Within the required period of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	time, which we were given guidance on as being between
2	two and four hours. The
3	MEMBER ROSEN: How does that compare to
4	the higher cost option?
5	MR. MEYER: Yes. The pre-staged we were
6	assuming a reliability of about 90 percent. And the
7	difference between the 90 percent and the 80 percent
8	is basically the human reliability issue because the
9	pre-staged is a matter of of everything is set up
10	ahead of time.
11	You really have to initiate the start of
12	the generator and hook up to the igniters, whereas the
13	low-cost option you have to actually move the
14	generator to the place where it's to be hooked up to
15	the igniters and then power the igniters. So we were
16	assuming
17	CHAIRMAN APOSTOLAKIS: You didn't do any
18	uncertainty analysis? I mean, it was a point estimate
19	based
20	MR. MEYER: We didn't do any uncertainty
21	analysis.
22	VICE CHAIRMAN BONACA: Would you have
23	better survivability for the low cost, given that you
24	can utilize protected areas to maintain it rather than
25	the installed one, which is going to be installed in

	133
1	some area where, as you are saying, because of cost
2	reasons you are not protecting it as well. I'm just
3	asking if the protection issue is considered here.
4	MR. MEYER: Well, you're talking now about
5	external events?
6	VICE CHAIRMAN BONACA: Yes.
7	MR. MEYER: The context of external
8	events?
9	VICE CHAIRMAN BONACA: Yes.
10	MR. MEYER: Well, the pre-stage that we
11	analyzed, we analyzed both assuming only internal
12	events and then we considered the added cost of
13	external events. For low cost we didn't do that type
14	of direct analysis.
15	But these low-cost options have a history
16	of being very robust and capable of accommodating, for
17	example, vibrations from seismic events. So the
18	expectation is a combination of robustness of the
19	devices and their location would allow for
20	accommodation of some external events that pre-stage
21	wouldn't.
22	VICE CHAIRMAN BONACA: And so that's why
23	I was asking the question, because I can imagine that
24	when you were making a point in the pre-stage cannot
25	be totally protected because the cost would be

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	134
1	excessive, so you have a more costly option,
2	however, is not fully protected.
3	And then that's why I was trying to
4	understand the least expensive option, which is
5	portable can be better protected because you can put
6	it somewhere where you have protection. So it is an
7	issue that is not reflected in the .8 or .9, is it?
8	MR. MEYER: The .8 and .9 were just
9	assuming internal events.
10	VICE CHAIRMAN BONACA: Doesn't reflect
11	that issue. Okay.
12	MEMBER WALLIS: .8 to .9 is just pulled
13	out of the air? The actual reliability of the
14	generator used in a construction trade is probably 99
15	percent.
16	MR. MEYER: The reliabilities of the
17	actual generator are very high.
18	MEMBER WALLIS: Yes. Very, very high.
19	MR. MEYER: It's a combination of the
20	reliability the unreliability, unavailability, and
21	the human factors.
22	CHAIRMAN APOSTOLAKIS: The human factors.
23	MR. MEYER: The human factors drives both
24	numbers.
25	CHAIRMAN APOSTOLAKIS: Now, why do you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	135
1	have to move it you say? I mean, why isn't it where
2	it's supposed to be already?
3	MEMBER ROSEN: Well, that's one option,
4	right?
5	MR. MEYER: No, this is the pre-staged
6	CHAIRMAN APOSTOLAKIS: No, the portable.
7	MR. MEYER: Let me point out that we're
8	not trying to do a future licensee's work in designing
9	a system. We're just doing a feasibility study that
10	said if you were to have a five, seven kilowatt pre-
11	staged diesel in some sort of doghouse, or if one were
12	to have a fancy Honda generator on the back of a
13	pickup truck, what might it cost, and how efficacious
14	might it be, with the details of the design left to
15	the to some future licensee, should they be
16	required to do this?
17	So, and what we recognized what it was
18	I think that Honda generators, or whatever they are
19	on the back of pickup trucks, are very reliable. They
20	get bounced around all the time. The workman throws
21	it off the back of the truck, drops it on the floor,
22	pulls the ripcord, and the thing starts.
23	However, he's got to think to do it. He's
24	got to divert scarce crew resources to take the
25	action. He's got other parities to do. You've got to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	get this thing started, and then somehow you've got to
2	get power some temporary rig of power onto the
3	switch gear, which is going to the igniters. And it's
4	all those human actions that would dominate.
5	CHAIRMAN APOSTOLAKIS: Okay. Let's move
6	on.
7	MR. NOTAFRANCESCO: Here are the specific
8	numbers of the low-cost option ice condenser,
9	Mark III, pre-staged, and the difference here is
10	basically to accommodate multi two-unit sites in
11	which you could share some costs in the pre-staged.
12	Again, Mark IIIs, they are only single-unit plants.
13	Also, give you a sensitivity if we were to
14	make the pre-staged more robust to deal with external
15	events. You can see the cost dramatically starts to
16	go up.
17	MEMBER ROSEN: What does this "with ext-
18	qual" stand for?
19	MR. NOTAFRANCESCO: External
20	qualification.
21	MEMBER ROSEN: Qualification against
22	external events.
23	MR. NOTAFRANCESCO: Right. It's just
24	maybe several times a factor on the baseline cost.
25	MEMBER WALLIS: It's also the generator is

137 only like \$2K, I got from your report, so the rest of 1 2 it is --MR. NOTAFRANCESCO: Well, there's a lot of 3 4 components to an engineering installation. 5 MEMBER WALLIS: So it's not just going to 6 be driven off and take -- it's going to be --7 VICE CHAIRMAN BONACA: I don't understand. You are showing there NRC? 8 9 MR. NOTAFRANCESCO: Yes, the NRC --10 VICE CHAIRMAN BONACA: That's -- okay, that's --11 MR. 12 NOTAFRANCESCO: There's two 13 components. 14 VICE CHAIRMAN BONACA: I understand now. 15 MR. NOTAFRANCESCO: Industry, of course, 16 and it's in the document, and NRC. And the assumption 17 here is that the rulemaking, of course, associated is 18 minimal. But it's --19 CHAIRMAN APOSTOLAKIS: So we do things 20 that cost only \$13,000. There are certain things we 21 do that cost only \$13,000? MR. NOTAFRANCESCO: Well, that's why this 22 23 is -- we're linking it on this. 24 MEMBER WALLIS: This is per installation. This is for the whole fleet. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	138
1	MR. NOTAFRANCESCO: Per unit. This is per
2	unit.
3	Okay. Now the benefits analysis on ice
4	condensers and the Mark IIIs. This is the cost; this
5	is the benefit component. What we did, again, to
6	expedite this, we and to use existing information,
7	we have the agency is required, as part of the
8	license renewal, to have to look at severe accident
9	mitigation alternatives.
10	And as coincidences the past few months
11	took place, we understood that the Duke plants,
12	McGuire and Catawba, came in with submittals. And one
13	of the alternatives is looking at backup power to the
14	igniters and fans. So we looked at their averted
15	costs, and that's where I get this table from is that.
16	It's plant-specific based on the PRA. It
17	was contrasted against an NRC or a Sandia report on
18	using different containment conditional failure
19	probabilities. And here's the sensitivity associated
20	with it. These costs they look at discount rates.
21	The base is seven percent. Three percent is the
22	sensitivity, and looking at useful
23	CHAIRMAN APOSTOLAKIS: What exactly are
24	you calculating?
25	MR. NOTAFRANCESCO: You are converting the

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	139
1	person rem of the averted person rem to a monetary
2	cost.
3	CHAIRMAN APOSTOLAKIS: But in the report
4	it also says that you are looking at land
5	contamination.
6	MR. NOTAFRANCESCO: That's filtered into
7	this, right?
8	MR. LEHNER: There are offsite property
9	costs that are
10	CHAIRMAN APOSTOLAKIS: No, no, no. You
11	have to come up here. You have to go to a microphone
12	somewhere.
13	MR. LEHNER: John Lehner from Brookhaven.
14	There are offsite property costs that are in addition
15	to the \$2,000 per person rem calculation.
16	CHAIRMAN APOSTOLAKIS: Right. So these
17	are here?
18	MR. LEHNER: These are included, yes.
19	CHAIRMAN APOSTOLAKIS: Okay.
20	MR. LEHNER: So it's both the \$2,000 per
21	person rem costs as well as the monetary costs for
22	evacuation, cleanup, decontamination, whatever.
23	CHAIRMAN APOSTOLAKIS: So you assume a
24	certain period of years that will be required to
25	decontaminate some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	140
1	MR. LEHNER: Yes. Actually, those costs
2	are based on the consequence analyses that were done
3	with NUREG-1150 for an ice condenser plant, and for
4	well, in this case, for the ice condenser plant. Yes.
5	MEMBER KRESS: There's a NUREG document
6	that tells how to gives real guidance on how to
7	convert this cost and discount it for current worth.
8	And we reviewed that one time and passed judgment and
9	said we thought that was good guidance. And they
10	followed that NUREG guidance.
11	CHAIRMAN APOSTOLAKIS: But did both the
12	licensee's and the NRC's analysis consider the same
13	kinds of costs? Because the difference is fairly
14	large.
15	MR. NOTAFRANCESCO: This in here?
16	CHAIRMAN APOSTOLAKIS: McGuire in the
17	NUREG, yes. Are you looking at the same
18	MR. NOTAFRANCESCO: Well, this is a plant-
19	specific, and this was a sensitivity that Duke did
20	based on the conditional probabilities included in
21	this NUREG.
22	CHAIRMAN APOSTOLAKIS: Sensitivity, where
23	is it? No, it's discount rate.
24	MR. NOTAFRANCESCO: Well, the discount
25	rate is based in here.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	141
1	CHAIRMAN APOSTOLAKIS: The range. So even
2	the high point, \$248K, is significantly lower than the
3	\$678K.
4	MR. LEHNER: Can I maybe explain that?
5	CHAIRMAN APOSTOLAKIS: Yes.
6	MR. LEHNER: I think the what you're
7	looking at in that table is both of those columns
8	are the plant's calculations. Right, Allen?
9	MR. NOTAFRANCESCO: Right. Yes.
10	MR. LEHNER: No, both. The left and the
11	right. The difference is that in the right column
12	they use the failure the containment failure
13	probabilities from NUREG/CR-6427. The NRC
14	calculations actually or the calculations that were
15	done for NRC by BNL are not shown there. They are
16	similar to what on the right.
17	CHAIRMAN APOSTOLAKIS: Oh. So this is
18	both for the licensees.
19	MR. LEHNER: Right. And the difference
20	I think the main difference is that they used
21	containment failure probabilities reported in NUREG-
22	6427.
23	CHAIRMAN APOSTOLAKIS: And in the first
24	one they use their own.
25	MR. LEHNER: Yes.

	142
1	MR. NOTAFRANCESCO: But in your work you
2	confirm pretty much it's
3	MR. LEHNER: Yes.
4	MR. NOTAFRANCESCO: high up there
5	anyway, and that's what I said.
6	MR. LEHNER: It's pretty similar to that,
7	yes.
8	MR. NOTAFRANCESCO: But it had nothing to
9	do with the I mean, the variation has to do with
10	discount rate.
11	MR. LEHNER: Right.
12	MR. ROSENTHAL: Excuse me. George, just
13	to be absolutely sure, take the core damage frequency
14	attributable to station blackout, multiply that by the
15	delta change in containment failure attributed to
16	whether you're going to have igniters or not,
17	calculate the associated person rem for that event,
18	and then convert that to dollars. So we're looking at
19	averted person monetized averted person rem
20	incremental.
21	CHAIRMAN APOSTOLAKIS: Plus contamination.
22	MR. ROSENTHAL: Yes.
23	CHAIRMAN APOSTOLAKIS: Yes.
24	MR. ROSENTHAL: Okay.
25	CHAIRMAN APOSTOLAKIS: Yes, I understand.

	143
1	MR. NOTAFRANCESCO: That was the ice
2	condenser summary. This is the Mark III. Since we
3	didn't have SAMAs and plant-specific numbers probably
4	to work on, Brookhaven used the IPE specific to Grand
5	Gulf, took the perspective and insights from 1150, and
6	came up with a range of averted monetized costs.
7	CHAIRMAN APOSTOLAKIS: Now, give me an
8	example of an early failure that is averted. You say
9	all early failures are averted.
10	MR. NOTAFRANCESCO: Due to hydrogen
11	combustion. Any
12	CHAIRMAN APOSTOLAKIS: Yes. I mean, what
13	kind of failures are we talking about? How they
14	MR. NOTAFRANCESCO: Containment failures.
15	That means they are early containment failures.
16	CHAIRMAN APOSTOLAKIS: Oh.
17	MR. NOTAFRANCESCO: They are early
18	containment failures. Again, early failures are
19	specific to the generic issues. The title of the
20	generic issue is early
21	CHAIRMAN APOSTOLAKIS: So you are
22	eliminating early containment failure, right? That's
23	what you're saying?
24	MR. NOTAFRANCESCO: Well, that's
25	CHAIRMAN APOSTOLAKIS: From hydrogen
	144
----	--
1	combustion.
2	MR. NOTAFRANCESCO: Right.
3	CHAIRMAN APOSTOLAKIS: Okay.
4	MEMBER SIEBER: But if the igniters
5	CHAIRMAN APOSTOLAKIS: So it's not all of
6	them, just
7	MR. MALLIAKOS: This is Asimios Malliakos
8	from the staff, Research. We don't completely
9	eliminate failures. I mean, we don't go completely
10	down to zero. But let me give you an example. Let's
11	say we have an RCS pressure at vessel break, lower RCS
12	pressure. We can drive the probability from .2 to
13	.01. So it doesn't go completely down to zero.
14	CHAIRMAN APOSTOLAKIS: And there is a
15	rationale why you do that.
16	MR. MALLIAKOS: There is
17	CHAIRMAN APOSTOLAKIS: Why is it .01?
18	There must be some other possibility of failure,
19	right? You are eliminating the failure you are
20	reducing it by the probability of failure due to
21	hydrogen.
22	MR. MALLIAKOS: Yes. Yes.
23	CHAIRMAN APOSTOLAKIS: So there are still
24	other causes. That's what you're saying, and that's
25	what

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	MR. MALLIAKOS: That's right. We have
2	direct containment heating. We have other events that
3	take
4	CHAIRMAN APOSTOLAKIS: Okay.
5	MEMBER KRESS: Okay. That's high pressure
6	melt for
7	CHAIRMAN APOSTOLAKIS: Not here.
8	MEMBER KRESS: Not very likely for
9	Mark IIIs, but
10	CHAIRMAN APOSTOLAKIS: Not in these
11	containments, right? That was the whole point.
12	MEMBER KRESS: Well, yes, they are
13	potential issues for both containments.
14	CHAIRMAN APOSTOLAKIS: Yes, John.
15	MR. LEHNER: Actually, let me make another
16	clarification here. In the Mark IIIs, the igniters
17	don't eliminate all early failures from hydrogen. In
18	the high pressure scenarios, the vessel fails at high
19	pressure. Then, at least according to the 1150
20	analysis, the igniters will not eliminate the
21	CHAIRMAN APOSTOLAKIS: Do you still have
22	high pressure scenarios?
23	MR. LEHNER: You still have high pressure
24	scenarios, because in a you know, when you lose
25	in a station blackout you will lose the ability to

	146
1	depressurize the vessel. And, therefore, you will
2	have high pressure scenarios, in which case you have
3	a whole bunch of other mechanisms that come in. One
4	of them is DCH steam explosion.
5	CHAIRMAN APOSTOLAKIS: I thought that high
б	pressure scenarios had been eliminated.
7	MR. LEHNER: Not for station blackout,
8	because you eliminate you lose your ability to
9	depressurize.
10	MEMBER WALLIS: This is something that
11	hasn't been through a subcommittee?
12	MEMBER KRESS: No, we didn't have a
13	subcommittee on this one.
14	MEMBER WALLIS: So no subgroup of the
15	committee has had a chance to really dig into the
16	rationale for all of these things?
17	MEMBER KRESS: Other than we were supplied
18	with the documentation to read.
19	CHAIRMAN APOSTOLAKIS: So the dominant
20	contributor is in station blackout is low pressure
21	scenarios, but the others are not eliminated.
22	MR. MALLIAKOS: Yes. That's for the
23	averted benefit. That's the low pressure.
24	CHAIRMAN APOSTOLAKIS: Okay.
25	MR. MALLIAKOS: The high pressure, it

	147
1	doesn't make much of a difference. There is no
2	difference.
3	CHAIRMAN APOSTOLAKIS: But it's not a
4	major contributor here on these containments.
5	MR. LEHNER: No, it is. I mean, one of
6	the reasons why you see less of a benefit for the
7	Mark IIIs is because the igniters will only help you
8	in the low pressure scenarios, and the high pressure
9	scenarios will not benefit from the igniters. That's
10	why you see a much lower benefit here than you did for
11	the ice condensers.
12	CHAIRMAN APOSTOLAKIS: It would have been
13	nice to see some event trees here, you know? But it's
14	too late now.
15	MEMBER KRESS: They're in the document.
16	MR. NOTAFRANCESCO: They're in the
17	document.
18	CHAIRMAN APOSTOLAKIS: Well, this
19	information is in the document, too, right? And yet
20	it is also on slide 10.
21	MR. NOTAFRANCESCO: I'll talk to Asimios
22	later.
23	I just want to give a sense of looking at
24	other plant-specific parameters that are important to
25	the values of monetized benefit, and looking at the

	148
1	other three Mark IIIs, give you a sense that Grand
2	Gulf is on the low range compared to these guys
3	these other so we're looking at a plant-specific
4	sample, but we're trying to look at the whole range of
5	plans by something like this.
6	CHAIRMAN APOSTOLAKIS: What's the SBO
7	frequency ratio?
8	MR. NOTAFRANCESCO: In relationship to
9	Grand Gulf, since we did those calculations based on
10	Grand Gulf, we wanted to see what other parameters
11	will affect the monetized cost. And one of the things
12	is the SBO ratio, and it's the population the
13	difference in population and frequency will influence
14	those numbers.
15	And on the cost-benefit analysis, this is
16	many lines here. Basically, what I did here was put
17	the benefits on top, the different ranges for the
18	classes of plants. The relationship of the low cost
19	and the pre-stage fix if one included external
20	qualification of fans were more in this range. And
21	this is why we gravitated to the low-cost option is
22	there's margin related to the ice condenser, but it's
23	marginal with the Mark IIIs, at least for some of
24	them.
25	MEMBER WALLIS: What's the benefit to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	149
1	NUREG-6427? I don't understand that.
2	MR. NOTAFRANCESCO: Well, that's been
3	quoted a lot, so I just put it in here as a
4	sensitivity.
5	MEMBER ROSEN: Pardon me, but I'm used to
6	benefit to cost ratios, where one has a number.
7	MEMBER KRESS: That's a ratio.
8	MEMBER ROSEN: This is incomprehensible to
9	me, this slide. Is it two to one or three to one or
10	four to one or some 10 to one?
11	MR. NOTAFRANCESCO: Well, we're trying to
12	explain it as uncertainties here. There's
13	uncertainties in how one could come up with this,
14	uncertainties here. There's uncertainty in how this
15	was derived.
16	CHAIRMAN APOSTOLAKIS: I guess if you look
17	at it, you are comparing the upper
18	MEMBER KRESS: The location of the upper
19	with the lower.
20	MR. NOTAFRANCESCO: Right.
21	CHAIRMAN APOSTOLAKIS: So what you're
22	saying is that the one that passes the test is the one
23	where the lower part, the cost
24	MEMBER KRESS: Is to the left.
25	CHAIRMAN APOSTOLAKIS: is to the left

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	150
1	of the benefit.
2	MEMBER KRESS: Right.
3	CHAIRMAN APOSTOLAKIS: And the only one
4	that does that is the low cost.
5	MEMBER KRESS: Right. The cost benefits,
6	and then for ice condensers. It's marginal for
7	Mark IIIs, but it's clear for ice condensers.
8	CHAIRMAN APOSTOLAKIS: But for Mark III
9	even those still
10	MEMBER KRESS: It's still they call it
11	it depends on the range.
12	CHAIRMAN APOSTOLAKIS: But this range is
13	only due to the range not the real uncertainties,
14	is it?
15	MR. NOTAFRANCESCO: The range is due to
16	the types of plants, the Grand Gulf
17	CHAIRMAN APOSTOLAKIS: Oh.
18	MR. NOTAFRANCESCO: That was my previous
19	slide, which I have the different factors involved.
20	Those factors were the multipliers to the \$40K, and
21	that's how I get the close to 200-plus.
22	CHAIRMAN APOSTOLAKIS: How does that work,
23	by the way? I mean, on a generic basis
24	MEMBER KRESS: I would have gone ahead and
25	added them up, and added up the cost for each one, and

	151
1	looked at the total sum.
2	CHAIRMAN APOSTOLAKIS: But is this cost-
3	benefit analysis done on a generic basis or a plant-
4	specific?
5	MEMBER KRESS: Well, it's they try to
6	do it on plant-specific because you're going to have
7	specific plants that this backfit will apply to. So
8	you have to take into consideration those specific
9	plants, but you try to do it for that group of plants
10	in a generic sense.
11	CHAIRMAN APOSTOLAKIS: Yes?
12	MR. ROSENTHAL: Let me just try a little
13	bit. What we tried to depict as a bar for the ice
14	condenser plants is a range of initiating frequencies
15	and associated consequences for the range of ice
16	condenser plants. For this large bar, NUREG/CR-6427,
17	there's a study that was done on direct containment
18	heating.
19	And that used a range of initiating event
20	frequencies extracted from the NUREG-1150. No, I'm
21	sorry, from the NUREG-1150. The ice condenser bar is
22	a range from their own IPEs or their own plant-
23	specific estimates.
24	On the costs so it tries to consider
25	the range as a function of the plant. On the cost

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

side, it's very difficult to come up with -- on a plant-specific basis, one plant might be \$60K, and 3 another plant might be \$80K. I think you're just 4 tricking yourself. Nobody really -- you know, one could estimate the cost, but one full well knows that 5 when you go build these things that the cost can have 6 a considerable range.

8 And so what you'd like to believe is that 9 the -- is that your decision is reasonably insensitive 10 to the variability in the assumptions. And the 11 argument is made that the low-cost option for a range 12 of what you think the cost might be is less than the 13 range of benefits that you think that you'd get --14 than the range of benefit. That's all you're trying 15 to say.

MEMBER KRESS: Now, would you explain the 16 17 -- with the external qualification, or with fans, does the "with fans" mean the low-cost option? 18

MR. NOTAFRANCESCO: No, it's centered with 19 20 the pre-stage. When fans are involved, you need much more power, and nobody is going to lug a portable 21 22 diesel around. So it's tied to the pre-stage 23 configuration.

24 MEMBER KRESS: If you had to supply power to the fans, you wouldn't use a portable is what 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

7

	153
1	you're saying.
2	MR. NOTAFRANCESCO: No, it's more a
3	larger capacity diesel. I was just using this as a
4	sensitivity in relationship to the other possible
5	options here.
6	CHAIRMAN APOSTOLAKIS: Given the plant-to-
7	plant variability, I want to understand that. Maybe
8	you answered it, Jack, but when you if you guys
9	decide that, yes, installing the low-cost option is
10	cost beneficial on a generic basis, would there be
11	some plants out there that would do the same analysis,
12	and based on their numbers would show that it's not
13	cost beneficial for them and they would be exempted,
14	or that's not allowed?
15	MR. ROSENTHAL: It wouldn't be allowed.
16	Number one, it wouldn't be allowed because it's a
17	generic rule.
18	CHAIRMAN APOSTOLAKIS: It's a generic.
19	MR. ROSENTHAL: Okay. But now look at
20	the bar on the ice condenser, okay, it's the range of
21	ice condenser plants. And what we're arguing is that
22	the low-cost option is by about a factor of three or
23	four better
24	CHAIRMAN APOSTOLAKIS: So you don't expect
25	that to happen.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	MR. ROSENTHAL: for the range of
2	plants.
3	CHAIRMAN APOSTOLAKIS: Right. So, okay.
4	Right. Is that something you apply to all cost-
5	benefit analyses or for a range of plans, whatever
6	option you are considering must be clearly beneficial?
7	What if it's beneficial for 60 percent of them? Then,
8	you cannot do anything about it, right?
9	MR. ROSENTHAL: No. Then, one should do
10	a regulatory analysis. Okay?
11	Allen, just leave it up for a second.
12	When we were discussing this okay.
13	Cost-benefit analysis is clearly a risk-based
14	exercise.
15	CHAIRMAN APOSTOLAKIS: And it's different
16	from regulatory analysis.
17	MR. ROSENTHAL: We are supposed to be
18	risk-informed.
19	CHAIRMAN APOSTOLAKIS: Right.
20	MR. ROSENTHAL: So one of the inputs to a
21	risk-informed decision process that you would do in a
22	reg analysis, okay, is you would say things okay,
23	I have my cost benefit analysis. I have do I want
24	some degree of regulatory clarity, regulatory
25	coherence?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

155 1 Does it make sense to have different 2 requirements for ice condensers in Mark IIIs given 3 that the underlying issue is hydrogen generation? And 4 so that a risk -- in our view a risk-informed decision would be to have a requirement for the Mark IIIs and 5 the ice condensers. 6 7 One could argue that on a strictly risk-8 based basis you don't make the argument on the 9 Mark IIIs. 10 CHAIRMAN APOSTOLAKIS: Okay. 11 MEMBER LEITCH: Can we talk a little bit about the fuel for this thing? Have we thought about 12 13 fire hazards associated with that? I mean, I guess in 14 the low-cost analysis we're picturing a doghouse 15 someplace out in the field with this diesel on wheels, right, and probably a 55-gallon drum on wheels? 16 Is 17 that the picture? No additional fuel in the reactor building? 18 19 MR. NOTAFRANCESCO: I don't think we're 20 specific on that. Are we? 21 MR. MEYER: We considered the fuel --MR. NOTAFRANCESCO: This is the low-cost 22

24 MR. MEYER: We considered the fuel 25 requirements for both the pre-stage and for the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

option.

23

	156
1	portable options, and, for example, chose the diesel
2	as compared to gasoline type of generators because the
3	plant would be familiar with the safety precautions
4	associated with diesel.
5	MEMBER WALLIS: Is this winter diesel or
6	summer diesel fuel?
7	MR. MEYER: I'm sorry?
8	MEMBER WALLIS: Is this winter diesel or
9	summer diesel fuel? If you have a diesel machine, you
10	have to change your fuel in the winter in certain
11	parts of the country. Otherwise, it won't work.
12	MR. MEYER: Well, that we didn't take
13	that into account.
14	MEMBER WALLIS: I mean, there are certain
15	things associated with running a diesel machine, which
16	give rise to extra costs, like changing of fuel every
17	year and making sure it runs and maintaining it.
18	VICE CHAIRMAN BONACA: Would you have the
19	procedures on how to connect it? I mean, I'm
20	beginning to get concerned about, you know, pre-
21	staging sounds like some kind of operation where it's
22	wired and connected and there are procedures and
23	switches. And this thing here is sitting out there on
24	some kind of track, and somebody has to make a guess
25	on what I mean, what do we mean it's not pre-

NEAL R. GROSS

	157
1	staged?
2	MR. MEYER: Part of the cost analysis was
3	to in addition to the implementation cost was to
4	consider the operational costs to the industry, to the
5	licensee, and that included maintenance costs,
6	training, all that would go into maintaining the
7	availability of that piece of equipment when it would
8	be needed. So that was all folded into the analysis
9	and is part of our report.
10	VICE CHAIRMAN BONACA: You know, if you
11	have no procedures in place very specific, if you have
12	no clear understanding of the fuel for summer, winter,
13	all these kind of things, you know, I don't give you
14	the .8 credit, because you may have a measured event
15	out there that creates such a confusion that in
16	addition to that we have to have people guessing on
17	what they have to do or so I mean, sure, I am
18	comfortable about the set of estimates that you are
19	giving out.
20	MR. MEYER: Well, as I said earlier, there
21	are definite down sides to the portable low-cost
22	option. And it would have to be worked out through
23	proper procedures to make sure that this was an
24	effective alternative. The actual hookup to the
25	igniters themselves isolating the 1E class system in

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433

(202) 234-4433

	158
1	an appropriate way, all that would be done and
2	installed ahead of time. It would be the actual
3	moving the portable diesel to the site and the hookup
4	that would be part of the
5	VICE CHAIRMAN BONACA: So you have a
6	degree of pre-staging already. You have a location
7	where you have to bring it.
8	MR. MEYER: Oh, yes.
9	VICE CHAIRMAN BONACA: So specifically
10	okay. So that's
11	MR. MEYER: And that's all been part of
12	the cost analysis. That was included in the cost
13	analysis.
14	VICE CHAIRMAN BONACA: I think it is an
15	important element that you are not you have already
16	pre-staging of a kind.
17	MR. MEYER: Yes. It would be semi pre-
18	staged.
19	MEMBER LEITCH: You got off you were
20	going to answer my fire question, I think, and you got
21	kind of off that. In other words, tell me where this
22	fuel is going to be stored in the low-cost option and
23	in the pre-staged option.
24	MR. MEYER: Well, the pre-staged option,
25	the what was envisioned would be a fuel storage

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	159
1	tank right next to the actual steam the actual
2	diesel generator. For the portable, it would have
3	to
4	MEMBER LEITCH: That would be in the
5	reactor building? This one?
6	MR. MEYER: This would be in a separate
7	it's been referred to as a doghouse, a separate
8	facility located outside the auxiliary building or the
9	reactor building.
10	MEMBER LEITCH: Okay.
11	MR. MEYER: For the portable, the fuel
12	storage would we would envision it to be part of
13	the normal diesel fuel storage, and have that diesel
14	fuel available for the purposes intended, for use with
15	the diesel.
16	MEMBER LEITCH: So you have this event,
17	and then the you from the main diesel tank or
18	the day take, or something like that for the main
19	diesels, you fill up a 55-gallon drum and wheel it up
20	to the location and wheel up this portable diesel to
21	the location, and by a pre-established set of
22	procedures you connect this to the fuel, you connect
23	this
24	MR. MEYER: Yes.
25	MEMBER LEITCH: to the electric somehow

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	by you know, you know exactly what you're going to
2	do, you've practiced this, you connect
3	MR. MEYER: Our procedure is in having
4	that part pre-staged you would have you would be
5	able to hook up to the igniters and be consistent with
6	conforming to the isolation of the 1E system. You
7	know, that's an important part of that.
8	MEMBER LEITCH: And while this is actually
9	in use, you would then have this 55-gallon drum, if
10	you will, of fuel in the reactor building?
11	MR. MEYER: It depends on where you would
12	have this hookup.
13	MEMBER LEITCH: Yes. But it's hard to
14	imagine it being other than that.
15	MR. MEYER: That would be an issue an
16	issue that would have to be contended with. That
17	would be an important down side consideration.
18	MEMBER SIEBER: Sir, could you state your
19	name and affiliation for the record?
20	MR. MEYER: Yes. Jim Meyer from ISL. I
21	should comment, too, that at some sites these type of
22	portable capabilities are already in place, and in
23	other sites they will be implemented as part of
24	license renewal considerations of the severe accident
25	mitigation alternative fixes. So these type of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

161 considerations have been thought through before for 1 2 licensees. MR. NOTAFRANCESCO: This is a cost-benefit 3 4 The first bullet has to do with the ice summary. condensers. Clearly, it's cost beneficial for the low 5 cost and with potential attribute of having -- of 6 7 better dealing with external events. 8 it's Mark IIIs, marginally cost 9 beneficial. Some are more cost beneficial. Some 10 plants -- some are close. Our recommendation was to 11 send the issue over to NRR to pursue further 12 regulatory action. 13 CHAIRMAN APOSTOLAKIS: What does that 14 mean? 15 MR. NOTAFRANCESCO: As part of the generic 16 issue process, we've done our technical assessment. 17 It'll go over to NRR, and they may do a regulatory 18 analysis, whatever. 19 This is the type of -- NRR MEMBER KRESS: 20 can make a regulatory analysis of whether or not it complies with the rule. 21 22 Let me be clear. Your analysis shows that 23 if you wanted to power fans as well as igniters, that 24 you would have to use a more rugged pre-staged unit because the fans require a lot more power than the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	igniters do.
2	MR. NOTAFRANCESCO: Right. About five
3	times more.
4	MEMBER KRESS: Yes. And that if you had
5	had that option of those two together, it doesn't pass
6	the cost-benefit test that you give it.
7	MR. NOTAFRANCESCO: Right.
8	MEMBER KRESS: Okay. Now, the other
9	question I have is
10	MR. NOTAFRANCESCO: It's illustrated here?
11	MEMBER KRESS: Yes. I don't know if you
12	have a slide on it or not, but I would be interested
13	in seeing the calculations I guess they are done
14	with CONTAIN probably or MELCOR that shows the
15	hydrogen concentrations in the various control volumes
16	as a function of time for a station blackout event
17	with the igniters operating.
18	MR. NOTAFRANCESCO: Right.
19	MEMBER KRESS: Okay. Do you have that
20	anywhere, or do you
21	MR. NOTAFRANCESCO: I could go through
22	that. I'll be using the plots that are in your
23	packet.
24	MEMBER KRESS: Yes.
25	MR. NOTAFRANCESCO: Well, before we go to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	163
1	that, how about let me give you some of the overview
2	before
3	MEMBER KRESS: Okay.
4	MR. NOTAFRANCESCO: There's only a few
5	slides here.
6	MEMBER KRESS: Okay.
7	MR. NOTAFRANCESCO: And the third
8	component, as I said, we're having Sandia using MELCOR
9	to do the containment analysis aspects, igniters
10	alone, igniters with fans. As part of the new 50.44
11	hydrogen source terms, we are feeding on this work in
12	by looking at the containment response aspects of
13	it. And as part of this, they're looking at different
14	uncertainty studies on the hydrogen release rates and
15	sequences.
16	MEMBER WALLIS: So this is a new study?
17	MR. NOTAFRANCESCO: Well, this study is
18	within a year. It's still ongoing.
19	MEMBER WALLIS: And it replaces the 6427
20	containment study?
21	MR. NOTAFRANCESCO: Well, our MELCOR study
22	effectively does that, right.
23	MEMBER WALLIS: It replaces it?
24	MR. NOTAFRANCESCO: It updates it with the
25	latest hydrogen source terms and a more definitive

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	containment analysis.
2	MEMBER WALLIS: It's a better
3	nodalization, is it?
4	MR. NOTAFRANCESCO: Yes. There is better
5	nodalization.
6	MEMBER POWERS: Mr. Chairman, I'd better
7	recuse myself from the discussion of this MELCOR
8	stuff. I will comment that it has not undergone an
9	internal peer review at Sandia, and there are internal
10	discussions about some of the results.
11	MR. NOTAFRANCESCO: Our study to date has
12	shown that igniters alone are effective in controlling
13	hydrogen buildup. There is marginal improvement if
14	one air return fan is included. However, the down
15	side is that it accelerates time of high-sped melt-
16	out. We are continuing with the uncertainty study,
17	looking at the variations of hydrogen source terms,
18	we'll look at other sequences.
19	What we've looked at so far is a fast
20	station blackout. We're going to look at a slow
21	station blackout looking at burn propagation numbers.
22	Okay. I could go with the MELCOR, but
23	since we were inspired by Ken Bergeron's letter, we
24	have a quick response on that, if you would like to
25	listen. Ken is a proponent of including the fans, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	we looked at his basis, and he does push the envelope
2	on what-ifs. And he uses limiting conditions and some
3	of it seems extreme.
4	The ease in which DDT is discussed is
5	not
6	MEMBER ROSEN: Would you tell me what DDT
7	is in this context?
8	MR. NOTAFRANCESCO: DDT?
9	MEMBER ROSEN: Yes, that's a pesticide,
10	isn't it?
11	(Laughter.)
12	MR. NOTAFRANCESCO: It's deflagration to
13	detonation transition.
14	MEMBER POWERS: Let me ask a question for
15	my own interest. I've lost track of this field. What
16	is the quality of our predictive capabilities of
17	deflagration to detonation transitions?
18	MR. NOTAFRANCESCO: Well
19	MEMBER POWERS: Isn't it true that we
20	can't predict them at all?
21	MR. NOTAFRANCESCO: Well, part of it we're
22	trying to predict the hydrogen concentrations and see
23	what the menu is to make sure if there is a chance of
24	DDTs.
25	Asimios, are you going to add something to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	166
1	this? He's a hydrogen expert.
2	MR. MALLIAKOS: This is Asimios Malliakos
3	from the staff, Research. The question, what is our
4	knowledge to be able to predict detonation from
5	deflagration? The first thing I'm thinking and
6	talking at the same time we need to have a very
7	good understanding about the hydrogen distribution in
8	the containment. We have performed quite a few
9	experiments. We have developed some models for the
10	deflagration to detonation transition.
11	I'm not really sure what we have done in
12	the case of ice condensers. We need to have mixers at
13	least above nine, 10 percent, to be able to have
14	transition from deflagration to detonation. Only at
15	higher temperatures we can go lower than that.
16	I'm not sure if I'm answering your
17	question.
18	MEMBER POWERS: Well, the statement here
19	seems to imply that someone can look at a geometry and
20	say it is difficult to get a DDT or not, presumably
21	based on something.
22	MR. MALLIAKOS: Yes.
23	MEMBER POWERS: There are a whole raft of
24	experiments or some sort of a predictive
25	MR. MALLIAKOS: The geometry has to do a

	167
1	lot with this. For example, if we have a geometry
2	with obstacles
3	MEMBER POWERS: I will grant you that.
4	The question is: given a specific geometry with lots
5	of obstacles in it, can anyone reliably predict
6	whether there will be a DDT or not?
7	MR. MALLIAKOS: Based on if I have the
8	hydrogen concentration? There are some areas that are
9	kind of questionable.
10	MEMBER POWERS: We'll assume that you got
11	up into the detonable range of hydrogen
12	concentrations.
13	MR. MALLIAKOS: Yes. We do have models
14	that with some reasonable assurance we can predict if
15	it's going to happen or not, yes.
16	MEMBER POWERS: I'd like to see those.
17	MR. MALLIAKOS: Okay.
18	MEMBER WALLIS: There's something wrong
19	with your bullet, though. It's not the job to show
20	that there's ease of DDT. It's a job to show that
21	with good confidence DDT will not occur. Isn't that
22	what you're supposed to show? Not that it's easy to
23	occur.
24	MR. NOTAFRANCESCO: Well, I was just
25	commenting on the on the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	168
1	MEMBER WALLIS: Yes, but there's a
2	different objective altogether. Trying to rule
3	something out is very different from trying to show
4	that it might happen.
5	MR. NOTAFRANCESCO: I'm not going to rule
6	it out based on this letter. I'm just saying the tone
7	of it, I was trying to look at its basis.
8	MEMBER WALLIS: No. But he is claiming
9	that you could have DDT. He doesn't have to show it's
10	easy to for it to happen.
11	MR. NOTAFRANCESCO: Well, he's setting up
12	sequences or scenarios in which we're going to get
13	this 20 percent plus pocket throughout the whole ice
14	condenser, and it would light off, and we would have
15	a massive explosion. And I was trying to I was
16	more pointed towards his postulation.
17	MEMBER WALLIS: Well, can you exclude it?
18	Can you show that what he postulates is unlikely?
19	MR. NOTAFRANCESCO: Well, that's why we're
20	continuing with this MELCOR work.
21	MEMBER WALLIS: Oh, you're continuing to
22	work on it.
23	MR. NOTAFRANCESCO: We're continuing to
24	work on it.
25	MEMBER WALLIS: Okay.

	169
1	MEMBER POWERS: Dr. Wallis, again, I'm
2	I confess ignorance in some areas. But in your
3	considerable expertise in using control volume codes
4	without momentum equations to predict hydrogen
5	distributions, is that a well-developed field now?
б	MEMBER WALLIS: I don't know enough to say
7	whether it's a well-developed field. It's difficult
8	enough to predict without worrying about hydrogen
9	concentrations what will happen in the containment in
10	all the spaces.
11	MEMBER KRESS: I think you still have the
12	problem of
13	MEMBER WALLIS: Especially with
14	condensation.
15	MEMBER KRESS: You still have the problem
16	of numerical diffusion, and you have the problem of
17	they don't treat the momentum effects very well with
18	the control volumes.
19	But the question I had earlier was, given
20	the MELCOR calculations, I'd like to see the results
21	of hydrogen concentration versus time and the various
22	control volumes that actually MELCOR predicts,
23	regardless of whether it can predict those or not. Do
24	you have that somewhere on a slide or
25	MR. NOTAFRANCESCO: Yes, I'm building to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	it.
2	MEMBER KRESS: Oh, I'm sorry.
3	MR. NOTAFRANCESCO: But I'll pass this one
4	up.
5	MEMBER KRESS: Okay.
6	MEMBER WALLIS: You have the steam
7	concentrations, too?
8	MR. NOTAFRANCESCO: Yes.
9	MEMBER KRESS: And they're pretty low
10	in
11	MEMBER WALLIS: I don't think that was in
12	our handout, was it, all the detail, all the stuff
13	that came
14	MR. NOTAFRANCESCO: Well, it was one of
15	the attachments, but I I was given an hour and so
16	many minutes. I have them as backup.
17	MR. TINKLER: Al, can I take a couple of
18	your minutes? I wanted to respond to the questions
19	about DDT. My name is Charles Tinkler from the
20	Research staff.
21	Actually, there's been a great of work
22	that's gone on, much of it centered in Germany and in
23	Russia over the last 10 years to look at criteria for
24	the transition to detonation. These are criteria for
25	judging the potential for transition that focus on

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

171 what is seen to be an intrinsic measure of 1 the 2 detonability of a mixture, the cell size of a mixture, which is mainly based on properties and characteristic 3 4 dimensions of the geometry which confine the mixture. Work done by the Russian Academy of 5 Sciences, and in conjunction with work done at FCI, 6 7 have developed correlations expressing the necessary 8 ratio of characteristic dimensions to the cell size, 9 correlations such as seven lambda and 13 lambda which 10 give an indication of the measure of the likelihood 11 that a mixture can undergo a detonation. 12 This doesn't speak to all irregular 13 geometries, which can create local pockets of 14 But the state of the art for assessing turbulence. 15 detonability of mixtures is improved, and for certain kinds of geometries we think that those kinds of rough 16 17 measures can give a picture of the detonability. And I would also point out, too, that it 18 19 is also -- the direction that you are concerned about, 20 if you are concerned about circumferential propagation versus axial propagation in the ice bed, those are 21 22 clearly things that we can make decisions on. 23 That's not to say that we have a rigorous 24 first principles model for predicting transition to 25 detonation. In that regard, it's clear that our

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	ability to predict all of the contributors to
2	irregular flow and transition do not exist. But
3	methods have been developed, principally by FCK, for
4	assessing detonability of mixtures.
5	So to simply and this is the point that
6	we that the staff was making. To simply assert
7	that because a mixture is richer in a region for some
8	potential for some period of time, and that richer
9	mixture presumably or a priori leads to a detonation,
10	it simply isn't appropriate.
11	MEMBER POWERS: Let me come back to the
12	correlation approach. The challenge one always faces
13	with correlations is when you extrapolate them beyond
14	the available database, this database that has been
15	developed in Germany has no ice condensers is rich in
16	ice condenser geometries?
17	MR. TINKLER: No. But much of the Russian
18	data is quite large scale. And the issue of scale of
19	experimental facilities for flame acceleration and
20	transition to detonation is an important
21	consideration. And the Russian data did fill a much-
22	needed large-scale portion to the database and
23	typically shows that mixture concentrations need to be
24	quite high before there's a serious
25	MEMBER POWERS: Well, I think that's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	before you're getting into any significant detonation,
2	you're going to have to have a pretty rough mixture.
3	There's no question about that.
4	I was struck by the numbers that you just
5	threw out, the 11 lambda and seven lambda, because it
6	was almost identical to the numbers for propagating
7	from a large to from a small to a large channel.
8	MR. TINKLER: Yes, they are.
9	MEMBER POWERS: And that's remarkable
10	because the physics there and the physics of the DDT
11	are completely different.
12	MR. TINKLER: Well
13	MEMBER POWERS: It shows you a certain
14	universality, I suppose.
15	MEMBER WALLIS: Well, the bigger question
16	is, isn't it it's what kind of hydrogen
17	concentration is likely to occur with or without fans.
18	Isn't that the issue that we're trying to address
19	here?
20	MR. NOTAFRANCESCO: And that's what we're
21	investigating.
22	MEMBER WALLIS: Are you going to show us
23	that evidence, or are we going to have to go to lunch?
24	Is there some evidence that's convincing that you
25	don't need fans that you can show us?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	MR. NOTAFRANCESCO: Well
2	VICE CHAIRMAN BONACA: What concerns me,
3	however, is that if fans if you show that fans are
4	needed, then the backfit analysis says it cannot be
5	justified. It seems to me that we are I don't
6	know, we are selecting a solution and trying to
7	justify it technically, because it's the only one we
8	can afford. It's as if you know, if the only thing
9	we can afford is a match.
10	MEMBER KRESS: Yes. But I think that
11	judgment is made in the absence of a detonation in the
12	ice chamber. If the fans could prevent a detonation
13	in the ice chamber, then you would have a different
14	cost-benefit ratio, I think.
15	That's one reason I wanted to see these
16	concentrations and hear this discussion on why they
17	think the potential or the detonation in the
18	chamber itself is not very high. And I wanted to see
19	the basis for that, and it has to do with the geometry
20	of the chamber, plus the concentrations of hydrogen in
21	there as a function of time.
22	CHAIRMAN APOSTOLAKIS: So detonation was
23	not considered?
24	MEMBER KRESS: Not in the ice chamber.
25	MEMBER WALLIS: I don't understand why

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	there's hydrogen in there at all. I mean, you've got
2	an early accident, and there's a LOCA, and the steam
3	rushes in and it drags in oxygen and nitrogen. It
4	fills up with oxygen and nitrogen. Well, how does
5	hydrogen get in there?
6	MEMBER KRESS: You make it out of the
7	clad.
8	MEMBER WALLIS: How does it get into the
9	ice condenser?
10	MEMBER KRESS: Well, the steam condenses.
11	MEMBER WALLIS: The steam is already
12	condensed
13	MEMBER KRESS: The steam
14	MEMBER WALLIS: and dragged in a lot of
15	non-condensables which are not combustible. So it's
16	a long story. It's not a trivial thing.
17	MEMBER KRESS: Well, you always have an
18	hour in there. The hour is
19	MEMBER WALLIS: You see what I'm saying.
20	In the early stages of the accident, you don't have
21	hydrogen. You're going to fill the ice condenser up
22	with a lot of non-hydrogen masses.
23	MEMBER KRESS: Well, you're making a
24	speculation. MELCOR calculates that for you.
25	MEMBER WALLIS: I hope it does.

	176
1	MEMBER KRESS: And that's what I want to
2	see. What does MELCOR tell us about that very thing?
3	MR. NOTAFRANCESCO: I'll give you a couple
4	of samples of
5	MEMBER KRESS: Okay.
6	MR. NOTAFRANCESCO: what we've done
7	here.
8	MEMBER RANSOM: Well, the worrisome thing
9	along that line, according to the document 1150, it
10	doesn't account for the degradation of condensation in
11	the ice condenser due to the presence of non-
12	condensables.
13	MEMBER KRESS: Yes, it does it's in
14	there. I don't know where that comes from.
15	MEMBER RANSOM: Well, it's in 1150.
16	MEMBER KRESS: Oh. Well
17	MEMBER POWERS: Well, 1150 is the only
18	MELCOR calculations that were done for 1150 are a
19	pretty clear version of MELCOR.
20	MEMBER RANSOM: There is a discussion on
21	the heat transfer modeling in there. It may be that
22	that's not accurate.
23	MEMBER POWERS: Yes. You're talking about
24	12-year vintage modeling.
25	MEMBER SIEBER: I guess an associated

	177
1	question is, if you don't have fans, and you do have
2	core damage that results in hydrogen, it also results
3	in direct containment heating. And without fans, you
4	aren't melting the ice.
5	MEMBER WALLIS: Can we go on with this
6	now? Weren't there different ones maybe with
7	different nodalization in the ice condenser? Or am I
8	mistaken?
9	MR. NOTAFRANCESCO: Yes. In the report
10	there is a sensitivity, but we so far gravitated to
11	the 26-cell configuration.
12	MEMBER WALLIS: Okay. But there were
13	tests there were ones made with
14	MR. NOTAFRANCESCO: Yes. Less
15	MEMBER WALLIS: more nodes than
16	MR. NOTAFRANCESCO: Right, 38, something
17	like that, and 15.
18	MEMBER WALLIS: But they were particularly
19	in the condenser itself, I think.
20	MR. NOTAFRANCESCO: Right.
21	MEMBER WALLIS: I'm trying to remember,
22	because I don't have this in front of me.
23	MR. NOTAFRANCESCO: Yes. The condenser
24	was divided in four axial nodes.
25	MEMBER WALLIS: For this one.

	178
1	MR. NOTAFRANCESCO: Right.
2	MEMBER WALLIS: Okay.
3	MR. NOTAFRANCESCO: The quick overview of
4	what we've seen so far is that if I have fans, I have
5	more oxygen.
6	MEMBER WALLIS: Where are the fans?
7	MR. NOTAFRANCESCO: It's an air return
8	fan. It'll take air from above and force it down into
9	the lower compartment. It's not here. So the idea is
10	to it's replenishing the oxygen. Therefore,
11	there's more burning in the lower compartment than
12	without the fans, in which there and let me go
13	through some of this and I'll
14	MEMBER WALLIS: So you burn up the
15	hydrogen before it can get to the ice condenser. Is
16	that the idea?
17	MR. NOTAFRANCESCO: Well, that's what the
18	fans do. But there's a distribution I'll show you.
19	I just wanted to give a sense of the fast
20	SBO timing, because it's nice to know what drives this
21	is what goes comes from the reactor vessel. So I
22	just wanted to highlight a couple of areas.
23	This case is for Sequoyah. It has pump
24	seal leakage, and hot leg fails at four hours. And
25	I'll show you some of the this is the hydrogen

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	source for the sequence. You can see core-in covers
2	here, and you've got a couple of
3	MEMBER WALLIS: Hydrogen is already being
4	made when the hot leg fails?
5	MR. NOTAFRANCESCO: The hydrogen right.
6	MEMBER WALLIS: Okay. That makes a big
7	difference, then. I'm sorry. I thought the hot leg
8	was going to fail first.
9	MEMBER KRESS: And total hydrogen produced
10	is about 500 kilograms there.
11	MEMBER WALLIS: A bit squirt of hydrogen
12	comes out, then. Okay.
13	MR. NOTAFRANCESCO: For completeness, let
14	me show you the profile for liquid water, since we
15	have pump seals, the rates on this side, S rates.
16	MEMBER WALLIS: So there is steam that
17	comes out earlier
18	MR. NOTAFRANCESCO: Yes.
19	MEMBER WALLIS: from the ports.
20	MR. NOTAFRANCESCO: The ports and the hot
21	water coming through the pump seals, and the hot leg
22	breaks here. I think the seals fail about two
23	hours
24	MEMBER WALLIS: So there's a lot of steam
25	in the containment for a long time before the hot leg

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	180
1	fails. And it's being condensed in the ice condenser.
2	MR. NOTAFRANCESCO: Right. So you're
3	affecting the ice bed geometry. The melting is going
4	on already. And here's the that's the steam source
5	rate, and it really pops out at the hot leg break. So
6	the interest is between three and a half hours, four
7	hours.
8	Before I show some curves, let me show you
9	what the gets some of the difference here of a
10	table of where the hydrogen is lit off. With the
11	igniters only, there is less lower containment
12	burns. You see with fans there's more it's more
13	burn.
14	There is burning in the ice bed because
15	there is upward and downward propagation, and that has
16	happened a lot earlier. Then, you get a DDT issue.
17	MEMBER WALLIS: So it's burning there.
18	It's not exploding. Is that the idea?
19	MR. NOTAFRANCESCO: Well, they are assumed
20	to have deflagration-type burning, volumetric burning.
21	MEMBER WALLIS: This ice bed is dripping?
22	All the there's water dripping from all these ice
23	trays?
24	MR. NOTAFRANCESCO: Well, it's going to
25	drip into the lower containments.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	MEMBER WALLIS: Can you predict
2	deflagration and detonation in an ice bed with
3	dripping full of droplets?
4	MR. NOTAFRANCESCO: Well, I don't I
5	don't know if we can
6	MEMBER WALLIS: Well, I think it would
7	make quite a difference.
8	MR. TINKLER: We can predict deflagration
9	behavior in simulated spray flow where we have droplet
10	distributions that go from quite large to quite small,
11	as well as in near supersaturated steam conditions,
12	too. But that environment is a real acts to dampen
13	the acceleration of combustion.
14	MEMBER WALLIS: Yes.
15	MR. TINKLER: That is a huge heat sink
16	that works to slow down all combustion processes.
17	That often is not fully appreciated.
18	MEMBER WALLIS: Well, I'm trying to
19	appreciate it. What is
20	MR. TINKLER: Well, I'm not suggesting
21	that the committee doesn't appreciate it, but
22	MEMBER WALLIS: What's the effect on
23	detonation?
24	MEMBER KRESS: It doesn't have any effect
25	on detonation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	182
1	MEMBER WALLIS: No effect on detonation?
2	MEMBER KRESS: No, because it takes place
3	so fast that the heat sink doesn't matter. It's the
4	geometry that
5	MEMBER WALLIS: It might prevent it
6	burning?
7	MEMBER KRESS: It might prevent an
8	ignition, but
9	MEMBER WALLIS: It wouldn't prevent a
10	detonation. It might
11	MEMBER KRESS: If you once started a
12	detonation, it wouldn't have any effect.
13	MEMBER WALLIS: So the droplets might be
14	bad because they prevented burning, and then we'd wait
15	and wait and wait until it
16	MEMBER KRESS: Until they build up in
17	concentration. I still want to see the concentrations
18	versus time.
19	MR. TINKLER: I think we would contend,
20	though, that that environment would impact the
21	likelihood that you could accelerate flame propagation
22	and combustion, because it because of because
23	the suspended water droplets will try to remove heat
24	as that flame is as the flame propagates.
25	MEMBER KRESS: If you had suspended water

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

183 droplets, but I doubt if you have any suspended 1 2 droplets in there much. That kind of rundown --3 MR. TINKLER: I think that looks like a 4 rain forest in there. 5 MEMBER KRESS: Well --MR. NOTAFRANCESCO: Let me offer you some 6 7 -- I couldn't get a color one, but I'll -- it's not 8 very simple to distinguish. This top here is steam, that's oxygen, and this is hydrogen. This is for the 9 10 low containment in a particular compartment, nine. And this is the action area where the hydrogen is 11 12 burning. 13 MEMBER KRESS: Okay. Now, do you have the 14 same curve for a couple of the nodes in the ice chamber itself? 15 16 MR. NOTAFRANCESCO: Right. I'm going to 17 get to that. MEMBER WALLIS: What is the no dimension 18 19 scale? That's very peculiar. It must mean something. MR. NOTAFRANCESCO: It's mole fraction. 20 That's all for --21 22 Okay. MEMBER WALLIS: 23 MR. NOTAFRANCESCO: While I'm at it, this 24 is the upper containment, and you can see it's about 25 four percent. Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	184
1	MEMBER WALLIS: Someone is going to ask
2	you about the uncertainty in these predictions.
3	MR. NOTAFRANCESCO: Okay. The ice bed is
4	over here. If you want to see
5	MEMBER WALLIS: That's mole fraction of
6	what?
7	MEMBER KRESS: Mole fraction of hydrogen.
8	MR. NOTAFRANCESCO: Here's hydrogen.
9	Again, the peak is steam, and the hydrogen is the
10	lower one, about here.
11	MEMBER KRESS: But for a period of about
12	four hours, it looks like the hydrogen concentration
13	in there with the power to igniters only is about 20
14	percent mole fraction. Is that am I interpreting
15	that right? One of those nodes?
16	MEMBER WALLIS: Which one is the hydrogen?
17	It's not clear to me which
18	MEMBER KRESS: I was looking at that .2
19	line going across. That one. That's hydrogen in one
20	of the nodes?
21	MR. NOTAFRANCESCO: That's steam. The
22	higher peak is the steam. Right here is the hydrogen.
23	It's under
24	MEMBER WALLIS: Which one is which
25	curve is the hydrogen?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	MR. NOTAFRANCESCO: Right where I've got
2	the laser.
3	MEMBER WALLIS: In the beginning.
4	MEMBER ROSEN: Why don't you trace it from
5	the beginning.
6	MR. NOTAFRANCESCO: Right here. Hydrogen.
7	MEMBER WALLIS: Oh, okay. It'll be low.
8	Okay.
9	MR. NOTAFRANCESCO: Then it's here.
10	There's a little blip because we got that big pulse,
11	and then it goes back down. And it's
12	MEMBER KRESS: And is that it continuing
13	on after
14	MR. NOTAFRANCESCO: Yes, this is
15	MEMBER WALLIS: It's the fat line, isn't
16	it? It's hard to see. So there's a time when it's up
17	in the high teens?
18	MR. NOTAFRANCESCO: It may peak out
19	briefly towards the high teens.
20	MEMBER WALLIS: And what's the
21	uncertainty, you think, with this prediction
22	MR. NOTAFRANCESCO: That's why we're
23	looking at the uncertainty of the
24	MEMBER WALLIS: You're looking at it now?
25	MR. NOTAFRANCESCO: of the source

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	186
1	terms. It drives the containment analysis how good
2	the source terms are, so we're going to look at the
3	uncertainty of the
4	MEMBER WALLIS: But you've reached a
5	decision already on the regulatory action. And now
6	you're looking at uncertainty in hydrogen
7	concentration?
8	MR. NOTAFRANCESCO: Right. We're going
9	to
10	CHAIRMAN APOSTOLAKIS: Can we accelerate
11	this a little bit?
12	MR. NOTAFRANCESCO: Well, that's all I
13	had.
14	MEMBER KRESS: I think at this time on the
15	agenda we have plans to hear from David Lockbaum. Is
16	David here?
17	MR. LOCKBAUM: Good afternoon. I
18	appreciate the opportunity to talk to you today on
19	this subject. The reason I came today was Ken
20	Bergeron contacted me last week. He was planning on
21	submitting a letter, and he was concerned that merely
22	submitting a letter might you guys get a lot of
23	paperwork, and he was afraid it would just fall on a
24	pile.
25	It's very obvious that it didn't just fall

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	187
1	in a pile. It has been discussed, so I'm not going to
2	spend a lot of time, because that the main reason for
3	my coming here today was to call attention to Ken's
4	issues, and they are clearly in play.
5	From the observations I heard of the
6	staff's presentation this morning, there's a couple of
7	things that I'm confused about. It's on slides 14 and
8	15, slide number pages 14 and 15 of their
9	presentation, where they looked at for non-station
10	blackout events, they assumed the igniters and the air
11	return fans are functional. And for station blackout
12	events they did a MELCOR study to show that igniters
13	only are effective in controlling hydrogen burnup
14	was the staff's conclusion.
15	That would lead one to believe that for
16	non-station blackout events that you don't need to air
17	return fans either. If the fans are effective,
18	they're effective. And I assume that would then mean
19	that the industry could make the air return fans non-
20	safety grade or take them out altogether.
21	So it looks like it supports the statement
22	on slide 15 that igniters alone are effective, and
23	perhaps they don't need them for non-station blackout
24	events either.
25	I think, more importantly, the concern

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	that Ken has, that I echo, is that the low-cost
2	estimate low-cost option that the staff is
3	proposing, and I don't feel is sufficiently justified,
4	may actually be setting the operators up for a worse
5	accident than the one they are dealing with.
6	Three Mile Island and Chernobyl at
7	Three Mile Island, the operators in training were
8	stressed to avoid the pressurizer going solid, and
9	that contributed them towards a path that wasn't as
10	successful as it might have been otherwise. At
11	Chernobyl, the operators were dealing with a situation
12	where they thought it was getting out of hand, so they
13	took action to shut down the plant with positive
14	moderator coefficient, made things worse.
15	This low-cost option may be the cheapest
16	way of setting the operators up for another bad
17	accident, and we don't need to be doing that.
18	Unless a stronger justification is made
19	for not including the air return fans in the station
20	blackout provisions, we would oppose putting in just
21	the igniters. That just doesn't seem and this bit
22	with the 55-gallon drums of diesel generator on wheels
23	just seems to make it a little bit easier for
24	saboteurs to attack a plant without bringing their own
25	explosives, and that may not be a good idea for a

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	189
1	number of reasons.
2	That's all I had, since the Bergeron
3	letter is already in play. Thank you.
4	CHAIRMAN APOSTOLAKIS: Okay.
5	MEMBER KRESS: Okay. I think at this time
6	also we have on the schedule to hear from Ms. Ann
7	Harris.
8	MS. HARRIS: Thank you. Mr. Chairman,
9	members of the committee, my name is Ann Harris. I've
10	traveled here today by my personal resources without
11	benefit of taxpayer support or government payroll.
12	I appeared before this committee in
13	November 1995 prior to your support to the Commission
14	for the licensing of Watts Bar's nuclear plant
15	TVA's Watts Bar nuclear plant. I moved out of the
16	evacuation zone to a nearby area. The fact that we
17	are all here again seven years later to hear staff's
18	offering on the Generic Safety Issue 189, and NRC's
19	recommendation, is evidence of how things work with
20	staff and the industry.
21	The ice condenser issue may be a generic
22	issue to you. But you should be aware that it's real
23	people's lives you're talking about. This is not a
24	generic issue to me. It's about the nuclear reactors
25	just down the road from where I live and where members

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	of my family and friends live.
2	I hope that you are as worried about the
3	time factor as I am. I take it as a positive sign
4	that at least something is going to be done, even if
5	it's going to be just talk this time. But do we need
6	more talk?
7	I was in this same room seven years ago
8	arguing that Watts Bar was not ready for prime time.
9	That didn't do any good since most of the problems
10	were never fixed. They were just forgiven. Will we
11	be back talking seven years from now when TVA and
12	staff admit that safety is still not a prime factor?
13	I think not.
14	TVA will be in the nuclear weapons
15	production business at Watts Bar and Sequoyah because
16	staff has never seen an industry license amendment
17	request it did not like.
18	At the meeting in 1995, one of the
19	subjects I heard about was whether the hydrogen
20	igniters would work. My transcript of that meeting
21	shows that Committee Member Ivan Catton tried to raise
22	questions about hydrogen igniters and whether the
23	igniters are Watts Bar were adequate to prevent the
24	containment from leaking from hydrogen explosions.
25	In fact, he was asking questions about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	191
1	whether the igniters were located in the right
2	locations in the containment, and now here you are
3	seven years later talking about the same thing. These
4	meetings are like seven-year locust visits; they just
5	keep coming.
6	Committee members, talking just isn't good
7	enough anymore. Your talking has put lives at stake.
8	It appeared at that '95 meeting that Mr. Catton was
9	truly interested in whether Watts Bar was safe enough,
10	but he was cut off and shut up by the Chairman at that
11	time.
12	What we did not know at that meeting was
13	that the person at Watts Bar responsible for making
14	sure the ice condenser was working correctly before
15	startup had discovered that the screws holding the ice
16	baskets up were defective. TVA devised a scheme to
17	hide Curtis Overall's discovery, then get rid of him,
18	therefore obtaining the Watts Bar license by lying to
19	this committee and to the Commission.
20	After years of investigations and court
21	proceedings, the NRC has been forced to levy a fine
22	against TVA. TVA has had so many fines for employee
23	abuse they shed them off like water off a duck's back.
24	No big deal.
25	The most troubling fact is that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

5 told anyone that I'm I've never an engineer, but I do have common sense. 6 From what I 7 understand, NRC seems to be finally facing up to the 8 fact that ice condensers won't really work, won't 9 protect the public during an accident. Their idea to 10 fix the problem is to get a little portable generator 11 from Home Depot or Lowe's, put it on a pickup truck, roll it up to containment, and plug it in. 12

I worked in TVA's nuclear program for 16 years, 14 of them at Watts Bar. I've seen some crazy, silly, childish, and outlandish things done in the name of safety. But I believe this one could take the blue ribbon.

I keep having this cartoon run through my 18 19 head of what would be going on if this generator is 20 needed. There is a hurricane, a severe lightning storm, a terrorist attack, a flood. It's dark, no 21 22 lights, no backup power. Shift supervisor has just sent someone to the little shed out back containing 23 24 the Honda generator with a copy of the combination to 25 the padlock.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

192

1	People living downstream are depending
2	upon this person to know the combination without
3	hunting the paper it was written on. The rain is
4	wetting the paper. His glasses are covered with
5	water. The wind blows the paper away, and he starts
6	back inside for another copy.
7	When he gets back, he unlocks the shed,
8	rolls the generator to the containment building, plugs

8 rolls the generator to the containment building, plugs 9 it in, proceeds to get it running. I think that our 10 lives and our property values deserve a little more 11 concern than this NRC proposal. Why are you only 12 recommending this blue light special approach?

13 I feel that the people who live near these 14 plants are getting short-changed, run over, and made 15 expendable. The NRC recommendation seems to say the backup power doesn't have to work if the accident is 16 17 caused by a flood or an earthquake or a terrorist How do you think this kind of accident is 18 attack. 19 going to happen? Merlin conjuring? Whoof.

20 Committee members, the people living in 21 these communities are real-live people whose lives are 22 being talked about here this morning, not just numbers 23 and statistics. Those same people trust the NRC to 24 protect their interest.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

I wouldn't be surprised if NRC gets

25

194 pressure from industry about making changes to the ice 1 2 condensers to make them actually work. I imagine that you will be pushed to pick numbers, to redo your 3 4 calculations, making it impossible to solve the problem that fixes the containment. 5 I'm speaking as much to licensing people 6 7 in the audience as well as this committee and the 8 Research staff, to keep in mind the interest of the 9 real people living near these plants. Think twice 10 about trying to make industry happy with an analysis 11 that says they don't have to fix anything. 12 It is good that NRC has made a start, but 13 so many times good starts end up as dead ends. Ι 14 think you should be careful about plans to fix the ice condenser plants, depending upon the goodwill and good 15 16 intentions of the plant owner. 17 Some of the proposed changes, like the cheap portable generator idea, seem to be planning on 18 19 not having the inspections that you have for other 20 safety equipment. I don't know about other utilities, but I know TVA well enough to know that if NRC leaves 21 22 it all up to them the generator won't have a motor or 23 a receptacle for the plug. 24 Ιf there's neither inspection nor 25 enforcement, that backup system is not going to be

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

there when it's needed. You see, the bigger danger is 1 2 to have a lot of back and forth talking, leading 3 people to think that something has been done to fix 4 the problem. But you and I know that's not true, and 5 therein lies the problem. Misleading is worse than doing nothing. 6 7 I would ask that you recommend to the

Commission that these ice condensers be fixed to 8 protect the public now. You should advise the staff that they should be bending over backwards to protect 11 the public safety, not bending over to avoid trouble 12 from the industry.

Thank you.

14 MEMBER KRESS: Any comments or questions 15 from the members? Seeing none, thank you, Ms. Harris. 16 And I'd like to turn the microphone over

17 to Bob Bryan. I think he has a -- he's from TVA. He 18 has a few words to say.

19 Thank you. I just wanted to MR. BRYAN: 20 comment very briefly about the cost-benefit study. For TVA, which has the Sequoyah and Watts Bar nuclear 21 22 plants, our igniter system is -- requires quite a bit 23 more power than was considered in the cost-benefit 24 study.

Our igniters are about 600 watts apiece,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

9

10

13

25

196 which would require a generator the size of about 21 1 2 kilowatts per train. This I think is outside the the four and a half or five kilowatt 3 range of 4 generator that was looked at in the low-cost option. So I think we're basically looking more at one that 5 would be an agist of what was put together for the air 6 7 return fan case. 8 This is just a quick look at the thing --9 we're currently evaluating what the cost would be for 10 us to install such a system with the cabling and tie-11 in to the 1E power system. Thank you. 12 13 VICE CHAIRMAN BONACA: Are you considering 14 powering also the air return fans? 15 MR. BRYAN: No, we're not. This was just 16 -- the 21 kilowatts would be just for the igniters. 17 If you powered the air return fans, depending on the unit, it would probably be between 50 to 75 kilowatts, 18 19 depending on the plant. 20 VICE CHAIRMAN BONACA: Thank you. Seeing how late it is, I 21 MEMBER KRESS: guess I'll ask if there are any comments from the 22 23 members that they want to make at this time, or any 24 questions. 25 I've MEMBER RANSOM: got а comment.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	197
1	Mark I and Mark II containments are inerted. And in
2	the material that was provided, it was indicated that
3	this was the more or less ultimate solution. I'm
4	wondering, I didn't hear anything this morning about
5	inerting, you know, the Mark IIIs and the PWR ice
6	container ice condenser containers.
7	MEMBER KRESS: They are not inerted.
8	That's
9	MEMBER RANSOM: Pardon?
10	MEMBER KRESS: They are not inerted.
11	MEMBER RANSOM: Right. But could you
12	inert them?
13	MEMBER KRESS: I think that would be a
14	much more expensive backfit.
15	MEMBER RANSOM: Has that been looked at?
16	MEMBER KRESS: I don't know if it has in
17	the past or not.
18	MR. TINKLER: Following TMI, when we
19	when we examined additional hydrogen control for all
20	the plant designs, we did consider the feasibility of
21	inerting ice condenser Mark IIIs. But they do require
22	much more frequent access to portions of the
23	containment.
24	Normal maintenance in the ice bed, and
25	there's there are a lot of systems in Mark III

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	where people are inside the plant. So limiting access
2	so severely as a result of inerting the plants was
3	judged to be overall detrimental to plant safety.
4	MEMBER RANSOM: Is that true of the Mark I
5	and II? I mean
б	MR. TINKLER: Well, the Is and IIs are
7	small. So you can't go in the drywell of a Mark I
8	when it's operating, if it was inerted or not inerted.
9	The shine you know, the dose the received dose
10	is just so large that you just couldn't stand it. So
11	they are not you know, there are other reasons why
12	you don't want to be in a in the drywell of a
13	Mark I or II. But there are many portions of an ice
14	condenser in Mark III where you can safely go into the
15	plant.
16	MEMBER LEITCH: As I recall, all the
17	hydraulic control units in a Mark III are inside
18	containment, and they require frequent periodic
19	maintenance it would be very difficult to do.
20	MEMBER KRESS: Would the staff care to
21	make more comments before we
22	MR. ADER: Tom, this is Charles Ader with
23	the Research staff. I was just going to mention,
24	because some of the discussion has kind of moved
25	around on some topics. As Charlie Tinkler just said,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

the earlier studies on the 50.44 rule had looked at 2 some of these things. As part of the IPE there was a look at the backup power for igniters, and at that 3 4 time everybody was looking at having to power both fan coolers and igniters, and they've generally been found 5 not to be cost beneficial. 6

7 This study, which was an expedited study, 8 I think there was a view that you may be able to get 9 by with the igniters. We were trying to expedite it 10 through, so, really, the question is: does it appear 11 to be prudent, cost beneficial, to proceed on with 12 powering igniters with backup power?

13 Now, there is some ongoing work that will 14 continue on with the staff. We think it will confirm 15 the conclusions. But it was not a -- going back from 16 square one and trying to revisit things that had 17 already been determined not to be cost beneficial. So it's really that last piece of it that we've been 18 19 looking at at this time.

20 CHAIRMAN APOSTOLAKIS: Thank you. Would someone from the staff comment on Ms. Harris' comment 21 22 near the end of her presentation that -- regarding 23 inspection of these diesels. I mean, are you going to 24 require some sort of inspection, so that reliability 25 will be maintained? Or it will not be a safety-

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	200
1	related component, so what requirements are you going
2	to impose, if any?
3	MR. ADER: At this point in time, the
4	research study is looking to technical feasibility and
5	the cost benefit. In the general process, if we
6	conclude that it looks like we should go forward, it
7	would be transferred to NRR, and they would look at
8	the actual details of how it would be implemented,
9	whether it would be
10	CHAIRMAN APOSTOLAKIS: But wouldn't,
11	though, your assumptions in the calculations depend on
12	this? I mean, we were told earlier that the
13	probability of installing it and starting it correctly
14	would be .8. But it seems to me that that .8 would
15	depend on a lot of things, part of which would be the
16	inspections and possible tests. So I
17	MEMBER ROSEN: I would second your
18	comments, especially with regard to testing and
19	demonstration that these things can, in fact, be done
20	under adverse circumstances.
21	CHAIRMAN APOSTOLAKIS: Right. I mean, you
22	know, the human factors is one element, but also, you
23	know, other things are important. And regarding human
24	factors, I mean, she has a pretty dramatic description
25	here of what it would take to do. Is that what's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	201
1	going to happen? I mean, it's going to be a piece of
2	paper or you know, sometimes these mundane things
3	turn out to be very important. So that .8 probability
4	probably needs to be scrutinized.
5	MEMBER ROSEN: You know, George, we have
6	scientific words for what Ms. Harris described the
7	aeroforcing context.
8	CHAIRMAN APOSTOLAKIS: That's right. The
9	context, yes. It seems to me that deserves some
10	serious consideration.
11	MEMBER KRESS: Well, you know at that .8
12	probability you are implying goes down, then this
13	option gets closer and closer to telling the backfit
14	analysis. So you're forcing the regulatory analysis
15	to say this is not a viable option by forcing the
16	reliability down.
17	CHAIRMAN APOSTOLAKIS: Well, then, we have
18	to look at the other things, too. I mean, with
19	LERF
20	MEMBER ROSEN: I don't know where George
21	is going with his comments, but I my comments are
22	along the same lines. But they are that if you're
23	going to rely on these devices, then I would need a
24	showing that they will, in fact, work.
25	CHAIRMAN APOSTOLAKIS: Do what the intent

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	202
1	is.
2	MEMBER ROSEN: Yes. That there's a fairly
3	high likelihood that they will function as intended.
4	And at the moment, it's unsatisfactory to me to have
5	Research say, "Well, that will be determined by NRR."
6	Part of my decisionmaking process here will be to know
7	what the testing and inspection regimen will be.
8	MR. ADER: I didn't mean to leave that
9	impression. I mean, in our analysis, we need to make
10	a fair attempt at trying to quantify that before we
11	transfer it over. The specific mechanism of
12	implementation, where there would be rulemaking,
13	plant-specific, it would be an NRR decision.
14	But you're correct. We should be trying
15	to give the best analysis and most robust we could.
16	Some of that I think had been put in number
17	CHAIRMAN APOSTOLAKIS: Oh, I'm sorry. Go
18	ahead.
19	MR. FELD: This is Sidney Feld with
20	Research. One of the cost elements that we did
21	include in our analysis was an industry operation
22	cost, which included quarterly maintenance,
23	surveillance, and testing of the diesel generator.
24	And those costs were included in
25	CHAIRMAN APOSTOLAKIS: That would be an

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	203
1	important element, it seems to me, in the
2	presentation.
3	MR. FELD: in the analysis.
4	CHAIRMAN APOSTOLAKIS: Yes, yes. That
5	would be really an important element. But the other
6	thing that strikes me as a little odd is the absence
7	of an uncertainty analysis. I mean, would any of
8	these conclusions change if one included the various
9	uncertainties that are here?
10	How sensitive is the conclusion that the
11	low-cost option is cost beneficial, if I consider all
12	of the uncertainties? And how, you know, sensitive is
13	the other conclusion that having qualifications, and
14	so on, is not cost beneficial? I don't know.
15	I mean, when these reliabilities, and so
16	on, are so uncertain, and what's going to happen it
17	seems to me that would be one of the cases where you
18	would try to look at the uncertainties.
19	MR. FELD: There is as I said, there is
20	some additional work going on within staff on looking
21	at some of the uncertainties, at least of the
22	containment hydrogen analysis.
23	CHAIRMAN APOSTOLAKIS: Right.
24	MR. FELD: The feedback I've gotten is we
25	think that will confirm you know, confirm the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	conclusions to proceed further.
2	CHAIRMAN APOSTOLAKIS: But if there is
3	still work going on, why are we here today? I thought
4	we were going to be presented with a technical
5	analysis that would lead to some closure? And
6	evidently there is
7	MR. MEYER: Well, within the generic issue
8	process described in the Management Directive 6.4, we
9	would do technical work that would provide a basis for
10	either dismissing the generic issue or deciding that
11	it should move forward. And I think that we believe
12	that we've done enough work to decide that it should
13	move forward.
14	What we've tried to say is that for either
15	the low-cost or the pre-stage option for the ice
16	condenser plants, for a wide variety of assumed
17	initiating event frequencies, and it that it makes
18	sense to go forward. For the Mark IIIs, it's less
19	clear that it's cost beneficial from a strictly risk
20	standpoint, even for a range of initiating
21	frequencies.
22	It seems to me that going from assuming
23	that the thing is efficacious at .8 to .6, it isn't
24	going to change the decision to move forward. The one
25	area which is really a modeling issue and we're

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	205
1	looking at the modeling issues in this is do you
2	need the fans or not? That's going to dominate not
3	differences as a factor of two in blackout frequency.
4	So and so we have an initial conclusion
5	that we don't need the fans. That it would be
6	efficacious without the fans. And then, we clearly
7	say we go we've got to do some more work to pin
8	this down, but that we've done enough that it pays to
9	move forward.
10	MEMBER WALLIS: How about the comment that
11	we heard that your estimates of the power requirement
12	were way too low for this particular plant?
13	MR. MEYER: Jim Meyer again. Was the
14	question on the in particular, the TVA issue with
15	the added power requirements? We recognize that the
16	the reason Catawba is our is kind of our base
17	case plant, we recognize that for both Sequoyah and
18	Watts Bar, that their igniters require considerably
19	more power. And, in fact, it's about 520 watts per
20	igniter compared to typically 133 watts per igniter
21	for
22	MEMBER WALLIS: I think we heard 800.
23	Didn't we hear 800? 600
24	MR. MEYER: Well, my information was 520,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	206
1	considered the implications of that, both for the pre-
2	stage and for the off-the-shelf. And the conclusions
3	we came to is that, yes, the cost would be higher
4	because the diesel cost would be higher, and there
5	would be some added engineering costs that would be
6	higher.
7	But the diesel costs are only a small part
8	of the overall costs, so the conclusion was that we
9	still felt comfortable with our numbers.
10	MEMBER WALLIS: Well, his conclusion was
11	that you couldn't get away with that portable
12	generator. You had to go to the more expensive
13	option.
14	MR. MEYER: Well, there are portable
15	generators, and, in fact, portable generators up to 50
16	kilowatts. So there are such things as portable
17	generators in that range. But I agree with you, you
18	would move more towards the pre-stage with the TVA,
19	because of the fact that you require considerably more
20	kilowatts to operate the igniters. But we did take
21	that into consideration.
22	CHAIRMAN APOSTOLAKIS: Any other
23	MEMBER POWERS: A question was posed
24	CHAIRMAN APOSTOLAKIS: Okay.
25	MEMBER POWERS: A question was posed about

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

whether what droplets would, in fact, be detonation 1 2 propagation? And after horsing around with it a little bit, I have concluded that both Drs. Tinkler 3 4 and Kress are correct. Dr. Kress said that large 5 droplets dripping down from the ice bed would have no impact on the shock wave propagation. 6 I think he's 7 correct on that large droplets sparsely -- sparse 8 The shock wave just doesn't even know numbers. 9 they're there. And then -- and Dr. Tinkler is correct 10 11 that applying this to sub-500 micron particles just 12 because of the momentum effect will inhibit the 13 propagation of the --14 MEMBER KRESS: Yes. And my comment was 15 predicated on the fact I don't think you have that 16 size droplets in there, those tiny --17 MEMBER POWERS: Yes. I mean, that's when 18 you guys are going to have to sort out -- but 19 whichever way it is, you understand the detonation 20 wave correctly. MEMBER ROSEN: Geez. Between the two of 21 22 you --23 MEMBER WALLIS: It doesn't -those 24 droplets -- everything will be over by the time 25 they're shattered, I would think.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

207

	208
1	MEMBER POWERS: You may be able to break
2	the big ones, but you
3	MEMBER WALLIS: It will shatter them into
4	pretty small pieces.
5	MEMBER POWERS: You won't break the little
6	ones. They're there's surface tension there.
7	CHAIRMAN APOSTOLAKIS: Any other issues
8	from the staff or members of the public?
9	MR. GUNTER: Yes, I'd like to
10	CHAIRMAN APOSTOLAKIS: Please.
11	MR. GUNTER: if I can. Paul Gunter,
12	Nuclear Information Research Service. I thought I
13	heard, during the presentation, that the emergency
14	that these portable generators would be fueled out of
15	the common storage tanks. And I think that that
16	ignores the issue of common mode failure and with
17	contaminated fuel. So I just wanted to raise that
18	issue as something I thought I heard and needs to be
19	addressed.
20	CHAIRMAN APOSTOLAKIS: Any response?
21	Okay. We are running behind, so let's be
22	back at 1:40. Thank you.
23	(Whereupon, at 1:04 p.m., the proceedings
24	in the foregoing matter went off the
25	record for a lunch recess.)

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	
2	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
3	(1:42 p.m.)
4	CHAIRMAN APOSTOLAKIS: The next item is
5	the technical assessment of Generic Safety Issue 168,
6	Environmental Qualification of Low-Voltage
7	Instrumentation and Control Cables.
8	Mr. Leitch is the cognizant member.
9	Graham?
10	MEMBER LEITCH: As the Chairman has said,
11	this is GSI-168 concerning the environmental
12	qualification of low-voltage I&C cables. As we all
13	recognize, these cables are very important in plant
14	operation, since they can, if they fail, give
15	misleading and confusing information to the operator.
16	We have some samples of cables that most
17	the ACRS have seen previously, and they are identified
18	to the tests, and so forth. These represent nothing
19	that we have not already seen, except that some of the
20	members of the ACRS are new since the last
21	presentation, and they may be interested in seeing the
22	samples. So we're not planning to pass them around,
23	but they are here if you'd like to take a look at
24	them. And they are all identified as to what they
25	are.

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	210
1	CHAIRMAN APOSTOLAKIS: These are
2	artificially aged?
3	MR. AGGARWAL: Yes, sir. That is correct.
4	CHAIRMAN APOSTOLAKIS: It is correct.
5	MEMBER ROSEN: Have they been through a
6	real LOCA?
7	(Laughter.)
8	MEMBER LEITCH: So at this time, then, I'd
9	like to turn the presentation over to Mike Mayfield,
10	who will introduce his presenters.
11	MR. MAYFIELD: Thank you. We are here
12	this afternoon to talk to you about the technical
13	assessment that we have completed and the transition
14	from research/technical assessment to NRR's
15	implementation phase. We have a panel of speakers
16	this afternoon that will be headed by Nilesh Chokshi.
17	Satish Aggarwal will be make the bulk of the
18	technical presentation. Paul Shemanski will have a
19	piece of this, and Art Buslik, who did the risk
20	assessment.
21	So with that, Nilesh?
22	MR. CHOKSHI: Okay. I think this is,
23	given the timeframe, we have got a pretty fairly high-
24	level presentation. We came about a year and a half
25	ago and talked about the results of the tests and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	211
1	research. So the purpose main purpose is now that
2	the technical assessment is complete to summarize the
3	technical assessment and discuss the our
4	recommendation.
5	Paul, would you put that okay.
б	CHAIRMAN APOSTOLAKIS: Can you move it
7	higher a little bit? All the way up there.
8	MR. CHOKSHI: Okay. As Mr. Mayfield
9	mentioned, under the Management Directive 6.4, the
10	operator research completes its technical assessment.
11	The next step is it goes to the program office for
12	consideration for the regulatory for the regulatory
13	action.
14	A year and a half ago we talked about the
15	test results. Since then, we have had some
16	interactions with industry groups, and we have done a
17	little bit more in the risk area. So I think at this
18	point now the technical assessment is complete.
19	So the primary purpose today is to give
20	you the results oral results of the technical
21	assessment recommendation, and then get your comments,
22	and, as the process requires, we will incorporate your
23	comments before we transmit the final technical
24	assessment to the NRR.
25	Our current plan is to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

212 1 MEMBER LEITCH: Let me just say that 2 originally there were 43 issues identified. And as I 3 understand what happens, many of these issues were 4 resolved from researching the literature. A number of them were felt not to require additional research. 5 And that finally boiled down to a set of six issues 6 7 that required additional research. 8 What we have today in the technical 9 assessment is basically a report on the results of the 10 research associated with those six issues. Is that a correct characterization? 11 12 MR. CHOKSHI: Yes, six. Right, there are six issues. 13 14 MEMBER LEITCH: Okay, good. Thank you. 15 MR. CHOKSHI: Those are the remaining 16 ones. 17 MR. AGGARWAL: That is correct. However, 18 when we interacted with the industry, as a byproduct 19 of our research, several questions came. These were 20 put to the industry, and we do intend to present to you the outcome of the discussions with industry as 21 22 well. 23 MEMBER LEITCH: Okay. Thank you. 24 MR. CHOKSHI: So, yes, the two days -- we 25 will talk about those six issues and seven questions,

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

	213
1	primarily findings from those.
2	So Mr. Aggarwal is going to do that now,
3	give you an overview of the technical assessment. And
4	in the end, I'll come back and talk about our final
5	recommendation to move forward to this task to NRR.
б	So with that, Satish?
7	MR. AGGARWAL: Thank you.
8	As pointed out to you, Mr. Chairman, we
9	met with you in October year 2000, and we presented
10	the test results of all six LOCA tests, condition
11	monitoring and assessment, and also we told you about
12	the EQ literature review, the basic result being that
13	we didn't want to reinvent the wheel. We wanted to
14	see what industry had done so far and where we stood.
15	As pointed out by Graham, ultimately we
16	narrowed it down to those six issues, and six LOCA
17	tests had nothing to do there's no relationship one
18	to one. But six tests were conducted and completed.
19	Subsequently, after meeting with you, we
20	had numerous meetings with the nuclear industry and
21	relayed many questions during those discussions, which
22	I briefly will discuss.
23	One point I would like to point out, the
24	criteria for qualification is based on zero failure,
25	since we are only testing one single prototype. But

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	214
1	please bear with me, and keep in mind a single
2	prototype and the criteria is no failures.
3	Next.
4	And essentially, when you go for LOCA
5	test, it is required that we bring that cable to the
6	end of life condition. You had the 40 years or 50
7	years, and that is meaning thereby that we get thermal
8	and radiation heating to bring the cables to that
9	condition.
10	Then, we put the cable to a LOCA test
11	sample, where either single peak or two peak. As
12	required, in the original qualification, we go through
13	the test procedure.
14	And, finally, we perform a post-LOCA test
15	to demonstrate adequate margin by requiring the
16	mechanical durability.
17	The underlying principle being that if you
18	are part of the test, we feel that cables are so
19	robust that we end up giving design basis even, those
20	cables will perform their safety function.
21	Next.
22	MEMBER LEITCH: Now, the pre-aging is done
23	by raising the temperature in accordance with the
24	an iraneous relationship?
25	MR. AGGARWAL: That is correct. But the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

staff did not come out with any numbers. What we did 1 2 was these cables were previously qualified by the 3 manufacturers, and they have taken an iraneous 4 equation, their design temperature. They came out 5 with a number in terms of the hours and what degree of temperature and radiation. What we did in our test, 6 7 we simply reproduced those numbers.

8 your technical MEMBER LEITCH: Now, 9 assessment seems to suggest or flat out states that 10 the iraneous methodology is conservative, yet Dr. 11 Rosen was at a fire meeting -- and we have his report 12 where it seems to suggest that the iraneous 13 relation is non-conservative. Would you discuss that? 14 MR. AGGARWAL: Sure. 15 This was the wire safety MEMBER ROSEN: 16 aging conference held here in Rockville several weeks 17 ago that my trip report was about. 18 MR. AGGARWAL: Ι submit that both 19 statements are correct. Let me bring to you --20 (Laughter.) That is the diplomatic response. 21 22 I think he's qualified to MEMBER ROSEN: 23 be on the ACRS. 24 (Laughter.) 25 MR. AGGARWAL: There is no question in my

1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701
	216
1	mind and the industry that there are uncertainties in
2	an iraneous equation. It has limitations, but this is
3	the best we have.
4	CHAIRMAN APOSTOLAKIS: Well, I don't
5	understand what it means that the equation is
6	conservative. I mean, the equation has parameters.
7	Wouldn't it depend on the values of the parameters, or
8	whether
9	MEMBER ROSEN: Let me see if I can
10	reproduce what the issue was.
11	CHAIRMAN APOSTOLAKIS: Okay.
12	MEMBER ROSEN: From memory, because I
13	didn't bring my report.
14	CHAIRMAN APOSTOLAKIS: Did you write it?
15	MEMBER ROSEN: Yes, I wrote it.
16	(Laughter.)
17	The aging according to the people in
18	this conference is a phenomena that relies on
19	oxygen that is caused by oxygen diffusing into the
20	cable insulation. And when you do a test at higher
21	temperature to simulate long life, you are exchanging
22	temperature for time in the iraneous equation.
23	You do that you do it quickly, and the
24	diffusion of oxygen into the cable insulation doesn't
25	occur, because it's a time-limited phenomena. It

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	takes time for the oxygen to get into the cable
2	jacket. And so the what you get out of a
3	simulation an aging accelerated aging test is a
4	cable that is not as damaged as one that's naturally
5	aged where there's lot of time.
6	It's a lower temperature in the normal
7	environment, but there's lot of time for the oxygen to
8	diffuse completely into the cable insulation material.
9	And to me, when I heard that, either I got it wrong or
10	it didn't square with what you're saying in
11	CHAIRMAN APOSTOLAKIS: Microphone, Art.
12	MR. BUSLIK: There are two effects. One
13	is diffusion-limited oxidation, which is what you're
14	talking about. And in a sense, you luck out. The
15	reason is that very frequently, if the material the
16	material would become as brittle on the surface where
17	the oxygen has a chance to diffuse, and very and
18	very frequently, if it becomes brittle on the surface,
19	you'll get a crack there which propagates throughout
20	the depth of the cable insulation. So that, in a
21	sense, you luck out because it's the properties at the
22	surface which are important.
23	There's another effect which has to do
24	with the fact that sometimes you don't have one rate-
25	determining constant, let's say, in the kinetics. You

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	may have two. And in this case, if if the
2	arrhenious low with the activation energy determined
3	from higher temperatures and accelerated aging, this
4	will always be non-conservative.
5	It's just a simple equation. You have a
6	linear combination of two arrhenious expressions, and
7	you'll see that if that the one with the I think
8	with the higher activity energy I may get a will
9	dominate at the lower temperatures or I think
10	that's right, or else vice versa. I'd have to figure
11	it out.
12	(Laughter.)
13	But at any rate, that you always get a
14	non-conservative thing. However, it is possible to
15	verify using you're referring, actually, to Ken
16	Goen's work. And it is possible to verify using
17	oxidation ultra sensitive oxidation consumption
18	methods what the aging is at much lower temperatures,
19	closer to the ones that actually occur in a plant.
20	And, in some cases, you obtained the fact
21	that there is really no no change in the activation
22	energy. In other cases, though, I think it is really
23	just true that we don't know. But I think that the
24	results that Brookhaven also came up with using a
25	method of verifying the activation energy for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	cables in certain isolated cases, and he found that
2	there was agreement there.
3	That was it's in what is it?
4	NUREG/CR-6704, Volume 1, toward the back somewhere.
5	But it's true, in general, you may not know.
6	MEMBER LEITCH: Thank you, Art.
7	MEMBER WALLIS: But doesn't it depend on
8	the material of the cable? There may be some cables
9	for which what you say is true, that there's a
10	severe
11	MR. BUSLIK: Yes, but it
12	MEMBER WALLIS: at the surface governed
13	by arrhenious, but maybe other materials, presumably
14	other studies, that say that it's diffusion-limited,
15	refer to something real, for which diffusion is an
16	important phenomenon.
17	MR. MAYFIELD: This is Mike Mayfield from
18	the staff. I've had the opportunity to spend some
19	time talking with Dr. Gilland, and there are a couple
20	of different classes of the materials. The bulk of
21	the materials that he has tests fall into a class
22	where the iraneous equation gives reasonable to
23	somewhat conservative predictions of the actual aging
24	that he sees.
25	There is another class of materials, and

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	220
1	part of the work is to define what exactly how do
2	you characterize that class, where the iraneous
3	equation doesn't seem to work very well, and
4	MR. BUSLIK: But it's not related to the
5	diffusion-limited oxidation so much, I believe, as the
6	I've forgotten what he calls it the chemical.
7	MR. MAYFIELD: That's correct. And so
8	there are these two classes of materials, and part of
9	the work that he is continuing is to better
10	characterize the two classes. But for most of the
11	materials that we've been talking about and for the
12	insulation materials that I believe we've tested in
13	this program, the iraneous approach gives you
14	reasonable to somewhat conservative predictions of the
15	aging.
16	We have also acquired I think in the
17	previous briefings we've talked about some the
18	limited amount of naturally aged cable that we could
19	acquire. There's only so much of this stuff you can
20	get, where we have then also had the archival unaged
21	material that we then artificially age.
22	And within the uncertainties of the actual
23	doses that the naturally aged materials received, and
24	the variation in material properties that just
25	naturally occur with these polymers, you are hard put

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	221
1	to tell a difference within the extent that we can
2	make these kind of measurements.
3	MR. BUSLIK: And referring to the question
4	about the diffusion-limited oxidation, I think maybe
5	perhaps in all cases what you're concerned about is
6	the mechanical integrity of the insulation, which is
7	related to its brittleness. And if it becomes brittle
8	on the surface, I think the cracks will generally
9	propagate throughout. So I think, in general, it
10	turns out to be okay there.
11	MEMBER ROSEN: I'm a little bit concerned
12	about the scope of coverage of the testing. Does the
13	conclusion that you are offering that it is generally
14	conservative to do the pre-aging as we have done it,
15	apply to the kinds of safety-related cables, all
16	safety-related cables in plants? I know "all" is a
17	big word. But let me say the majority or in the main
18	it applies to the cables? How broad is is it
19	conservative to do this? It now depends upon the kind
20	of cable.
21	MR. AGGARWAL: In our test program, we
22	tested three types of the cable, which the majority of
23	the plants used to the extent of 75 percent or 77
24	percent. It is our submission that these are the
25	principal cables which are used in I&C applications in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

222 nuclear powerplants in the USA. 1 2 The second part is when we brought up a 3 program, we were looking at it. We were not looking 4 at the validity of iraneous oxygen diffusion. The technical issue before us was that when we do the 5 testing, according to IPEEE Standards 323 and 383, you 6 7 are required to create the cable. 8 And under exemptions, certain the 9 manufacturers have come up with certain numbers in 10 terms of temperature and the duration. Our goal was 11 to provide some kind of judgment what industry did. 12 Was it conservative? The only way to verify for us 13 was it took naturally aged cable from the plants, and 14 then we compared what we have done after excellent 15 rating, and the staff concluded that the techniques we 16 used in qualification, they seem to be conservative. 17 Now, with regard to iraneous -- the

18 activation energy, in a separate study we also 19 concluded that what the industry had used seemed to be 20 reasonable and acceptable.

21 MEMBER ROSEN: So you don't feel that 22 Gilland's results inconsistent are with that conclusion? 23 24

MR. AGGARWAL: No, I don't.

Well, no. I mean, I don't MR. BUSLIK:

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

But you have to remember that sometimes it 1 either. 2 can be very sensitive to the material you have. For 3 example, Gilland, in an old water reactor safety 4 meeting paper, talked about a change in the activation 5 energy for the ethylene propylene dyene monomer material. And I wrote him an e-mail about it, and it 6 7 turns out that that was one used for seals, and it's 8 mostly amorphous. 9 And even though it may be a problem there, 10 it may very well not be a problem -- and probably the 11 Brookhaven tests verify this -- for the ethylene 12 propylene dyene monomer materials, which are used for 13 insulation, which have a greater crystalline fraction. 14 MEMBER ROSEN: Okay. I'm not an expert on I just pointed out what appeared to me to be an this. 15 16 inconsistency. And I just sat and listened. 17 MR. AGGARWAL: Thank you. 18 As we reported to you previously, there 19 were failures of certain I&C cables in NRC tests, 20 namely in LOCA test numbers 4, 5, and 6. Failures of single conductor bonded Okonite cables. Sampled more 21 22 cables in test number 4, and eight out of 12 cables 23 failed in LOCA test number 6 for 60 years. 24 We also found in our research that there 25 is no single condition monitoring technique available

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	224
1	which is effective to detect degradation. Probably
2	combination of different techniques can be used,
3	depending upon the type of insulation.
4	We also found that visual inspection can
5	be useful in assessing the degradation of cable with
6	time.
7	MEMBER POWERS: What do you mean?
8	Clearly, if the degradation gets bad enough, I'd go in
9	and I can see, "Yep, that cable is degraded." But
10	it's a long time. I mean, it's it's visual
11	inspection is not going to tell you anything about the
12	level of degradation.
13	MR. AGGARWAL: You are correct. Again, as
14	compared to doing nothing
15	MEMBER POWERS: Ahh.
16	(Laughter.)
17	How about as compared to some of the
18	instrumental techniques?
19	MR. AGGARWAL: We have discussed in our
20	report and there are several which can be used
21	elongation at the break is one which is universally
22	used, but it is destructive. People use different
23	matters the OIT, OITP, different techniques are
24	available. And, again, each of them has limitations.
25	Our report, NUREG/CR, really provides that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	information, and we hope the industry will pick up and
2	use it in a manner that will be useful to them.
3	MEMBER POWERS: Because what we were
4	discussing earlier is you embrittle the surface, and
5	then you get a crack, and that crack propagates
6	through. So the embrittling of the surface presumably
7	goes along at a nice arrhenious or quasi-arrhenious
8	rate. But once it cracks, that's not going to be an
9	arrhenious behavior.
10	MR. AGGARWAL: Correct.
11	MR. BUSLIK: But what is thought and,
12	by the way, I think when they talk about visual
13	inspections, they also pick up on the cable systems to
14	see how flexible the cable is, and I guess whether
15	there are
16	MEMBER POWERS: Well, again, I mean, when
17	if the damage has gone on far enough, yes, that
18	works great. But by that time, you are in a severely
19	damaged state.
20	MR. BUSLIK: That's true. But I think
21	it's felt that if there's any practically any
22	you'd have to speak to the people in industry. But if
23	there's any flexibility left in the cable, or a
24	certain amount, that the cable will survive a LOCA, at
25	least at that time. And then you have to worry, I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	226
1	guess, about the rate of
2	MR. AGGARWAL: The point I was trying to
3	make was that licensees should know the environment
4	and the reason cables are uprated.
5	MEMBER POWERS: Well, you've mentioned
6	combined thermal and radiation doses. What kind of
7	radiation doses are we talking about?
8	MR. AGGARWAL: We have taken 50 megarads
9	total dose. And how much power?
10	MR. MAYFIELD: Basically, for EQ testing,
11	we assume 50 megarads for the background radiation;
12	that is, during the first 40 years. And then,
13	typically, the accident dose is 150 megarads. So you
14	get about 200 megarads would be the total integrated
15	dose that the cable would be subjected to during a
16	LOCA simulation test.
17	MEMBER POWERS: That does grievous damage
18	to polybond chlorides.
19	MR. MAYFIELD: Yes. They are very
20	susceptible to radiation, right.
21	MR. AGGARWAL: So the bottom line is that
22	if you know the environments, some kind of visual
23	inspections could be useful.
24	Next.
25	In the area of risk, as you must have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

227 noted with our -- in our report submitted to you, the 1 2 state of the art incorporating cable failures into PRA is still evolving. We do not advance to all of them. 3 4 But it may be noted the key assumption in PRA is that 5 the operating environments are lower than or equal to what are presumed in the qualification test. 6 7 In other words, licensees know where the 8 hardest parts are. That is the key assumption. And, 9 of course, the uncertainties are in terms of the 10 experiments, human failure rates, factors, and what 11 And what we find, that if the -- if not. any 12 requirements such as condition monitoring, and all of this, the benefits are zero to modest. 13 14 MR. BUSLIK: If you reduce the cable failure probabilities to zero, the benefits 15 are The benefits are not 16 modest. There are benefits. 17 zero. But they're modest. MEMBER ROSEN: When you say the state of 18 19 the art of incorporating cable failures into PRA is 20 evolving, I would wonder where. What was going on that I don't know happened? 21 MEMBER POWERS: Have we got a long time in 22 23 this meeting? 24 (Laughter.) 25 MEMBER ROSEN: On this subject.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	228
1	MEMBER POWERS: Oh, oh. Okay.
2	MR. BUSLIK: Well, first of all, what I
3	did was I sort of took some data from Jacobus, which
4	he had a certain number of failures and a certain
5	number of tests, but it was on all different kinds of
6	cables. And I used all I could do was take the
7	fraction of failures over the total number of trials,
8	basically, and get some sort of average probability of
9	failure.
10	What you would like to be able to do is
11	sharpen that for the particular type of cable. Also,
12	I assume that the cables were essentially at their
13	environmental qualification limit, because that's what
14	was tested.
15	MEMBER ROSEN: Are you responding to the
16	second bullet on this question on this chart? My
17	question is: what's going on in PRA?
18	MR. BUSLIK: No, what are we doing now.
19	MEMBER ROSEN: In terms of incorporating
20	the cable
21	MR. BUSLIK: Well, we are doing something.
22	We have a project, which instead of doing what I did
23	will attempt to estimate, using the physics of the
24	aging of the cables, of the cable insulation, the
25	probability of failure of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	229
1	MEMBER ROSEN: Well, there's a research
2	project going on that might lead to some techniques
3	that PRA practitioners could use. I don't know of any
4	PRA practitioners in the utility industry that are
5	incorporating cable failure probabilities.
6	CHAIRMAN APOSTOLAKIS: It depends on what
7	you are you talking about LOCAs here?
8	MR. BUSLIK: Yes, yes. These are
9	CHAIRMAN APOSTOLAKIS: Okay.
10	MR. BUSLIK: I'm sorry. These are the
11	thing that is importance as far as cable failures is
12	the possible common mode failure in the harsh
13	environment of a LOCA.
14	CHAIRMAN APOSTOLAKIS: Because when you
15	say that the results indicate that the benefits from
16	reducing the cable failure probability is zero to
17	modest, you don't include fires.
18	MR. AGGARWAL: Fire is out of the scope.
19	CHAIRMAN APOSTOLAKIS: Out of you
20	eliminate the
21	MEMBER ROSEN: No. Hot shorts or any of
22	that, they're not
23	CHAIRMAN APOSTOLAKIS: Nothing. Nothing.
24	MR. AGGARWAL: That's right.
25	MEMBER ROSEN: What you are talking about

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	is just aging effects, I assume.
2	MR. AGGARWAL: That is right.
3	MR. BUSLIK: In fact, Steve Gullen pointed
4	out that the that aging cables may actually behave
5	better in a fire. There are less flammable, because
6	the volatile materials come off.
7	MEMBER LEITCH: Could we talk about the
8	tables that are on pages 45 and 46 in the technical
9	assessment report?
10	MR. AGGARWAL: There are two tables.
11	MEMBER LEITCH: There are two tables, one
12	on 44 concerning PWRs and one on 45 concerning BWRs.
13	We need only talk about one of them. Let's talk about
14	the one on 44. There is a core damage frequency
15	there. Now that core damage frequency
16	MR. BUSLIK: Is the reduction in the core
17	damage frequency, if the cable failure probabilities
18	were brought to zero from what it would be if if
19	the if the cables had the failure probabilities
20	that I estimated, assuming that industry essentially
21	did nothing to try to reduce it.
22	But nevertheless
23	MEMBER LEITCH: How could the probability
24	be brought to zero if
25	MR. BUSLIK: Well, what I'm saying is if

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	231
1	you have really perfect condition monitoring, this is
2	then, the failure probabilities would be zero.
3	It's a bounding case. Obviously, no condition
4	monitoring technique is going to be perfect.
5	MEMBER LEITCH: Okay. Then, you give a
6	certain credit for voluntary industry actions.
7	MR. BUSLIK: Right.
8	MEMBER LEITCH: And that
9	MR. BUSLIK: And that I just reduce the
10	values by 30 percent. This was the the voluntary
11	industry actions I said were they were assumed to
12	be limited to ensuring the cable environment is within
13	the cable's environmental qualification envelope.
14	But actually I assume that for both cases,
15	with respect to temperature and dose, and to
16	inspecting cables visually, near their connections to
17	a component, when maintenance on that component is
18	performed. In other words, I didn't take any credit
19	for a systematic walkdowns where there was tactical
20	lifting of cable visual and tactical observations
21	of the cables throughout the cable run. So it wasn't
22	very much.
23	MEMBER LEITCH: So the first number,
24	though, is the present state of things?
25	MR. BUSLIK: It's a conservative estimate

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	232
1	of the present state of things, I would say. For one
2	thing, all of the cables are not at their
3	environmental qualification limits. But I don't know
4	what the temperature and dose rate particular cables
5	see in a plant. We have
6	MEMBER LEITCH: I guess what I'm trying to
7	do is get a feel for, where are we now in core damage
8	frequency, where could we be with voluntary industry
9	actions, and where could we be with a full-blown
10	regulatory program?
11	MR. BUSLIK: All right.
12	MEMBER LEITCH: I only see two of those
13	three numbers here. I guess that's what I'm
14	MR. BUSLIK: Well, with the full-blown
15	regulatory program, I didn't really intend to estimate
16	it. It's bounded by the two times 10^{-5} per year
17	reduction in core damage frequency. I mean, I don't
18	really know how good condition monitoring could be.
19	I don't know how accessible the cables are, things
20	like that.
21	MR. AGGARWAL: Essentially, then, Table 1
22	tells you what the constant state is. Table 2 is
23	telling you some allowance provisions for
24	maintenance and related activities. And this is the
25	difference.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	MR. CHOKSHI: I think the most benefit you
2	can get out is this two times ¹⁰⁻⁵ . So that is the
3	upper limit of the benefit. That is this calculation.
4	MEMBER LEITCH: Two times 10^{-5} ?
5	MR. CHOKSHI: That was the reduction in
6	the core damage assuming zero probability of failure
7	for cables.
8	MR. BUSLIK: And that was taken at
9	between 30 years and 60 years, essentially. And
10	before that it was zero assessment approximation.
11	MEMBER LEITCH: So there is reducing
12	the cable failure probability to zero, the benefits
13	are modest.
14	MR. BUSLIK: I think so, especially if you
15	look at the costs. Basically, the averted costs from
16	from averted accidents. They're not that high.
17	What is it? \$200,000 for a plant without license
18	renewal or half a billion for a plant with license
19	renewal. But those are bounding numbers.
20	MEMBER LEITCH: The benefits of industry
21	actions are, then, even smaller than modest because
22	you're getting all the way to zero.
23	MR. BUSLIK: That's right.
24	MR. AGGARWAL: Thank you. As I started
25	earlier, that we had numerous meetings with industry.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	The bottom line in the discussion with industry was
2	that followed the claim the industry claim that I&C
3	cable has not experienced any significant aging. In
4	limited cases and they know of the hot spots the
5	licensees are exercising several options, such as
6	early replacement, modification of the environment, or
7	they do some kind of condition monitoring. Whether
8	the old plants are doing it or not, we do not know.
9	Aging evaluations are ongoing throughout
10	the plant life as a part of normal life.
11	Turning to the 60-year aging assessment,
12	which was LOCA test number 6, in our test, eight out
13	of 12 cables failed the post-LOCA test. And we have
14	concluded that some of these cables may not have
15	sufficient margin beyond the 40 years of the qualified
16	life.
17	Again, if one can conclude the operating
18	environments are less severe than what was assumed
19	during the qualification, then margins can be used to
20	extend the life.
21	MEMBER POWERS: Let me ask a question
22	about that. When you test these cables, you take a
23	cable and you age it, and then you run a test on it,
24	and that cable is a cable.
25	MR. AGGARWAL: Yes, sir.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

235 1 MEMBER POWERS: But in the real plant, the 2 cable that's sitting there has all kinds of junk -dirt, all kinds of contamination stuff, and things 3 4 Do we know what benign junk to get on like that. these cables and what's deleterious junk to get on it? 5 I mean, is there -- if we spill 40 weight motor oil on 6 7 the cable, it doesn't make any difference; but if we 8 spill glycerine on it, it does? 9 MR. AGGARWAL: Unfortunately, I don't have 10 an answer to that. I have not studied the research 11 program. 12 MEMBER POWERS: I mean, it seems to me 13 it's what is missing from all of this, when you start 14 saying you're conservative, is that there's another 15 variable that the plant experiences that we really 16 don't know anything about. I mean, what are cables 17 getting contaminated with? MR. AGGARWAL: That is correct. 18 19 MEMBER POWERS: What are they in contact 20 with that -- maybe it's not a contamination. Maybe a little nickel metal does bad things to the cable 21 22 insulation in a synergistic effect or something like 23 that. 24 MR. MAYFIELD: This is Mike Mayfield from 25 the staff. Keep in mind that most, if not all, of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	cables have a protective jacket over the outside of
2	the insulation.
3	MEMBER POWERS: That's true.
4	MR. MAYFIELD: And the jacket is what
5	would see the spill, as opposed to the insulation
6	itself.
7	MEMBER POWERS: You are right on that. Of
8	course, the jacket itself may be the long-term
9	incompatibility.
10	MR. MAYFIELD: It's a good question, and
11	I don't have an answer for it. It's just that there
12	is this other barrier between the insulation that we
13	were concerned about
14	MEMBER POWERS: No, you're right on that.
15	You're right about that. But before I jumped and said
16	I was conservative, I'd like to know a little more
17	about that.
18	MR. MAYFIELD: Didn't say we were
19	conservative. I simply said to keep in mind there's
20	this other layer.
21	MEMBER POWERS: Yes.
22	MEMBER ROSEN: I'm less concerned, Dana,
23	about spilling glycerine or motor oil on them than I
24	am about such things that are much such things as
25	humid or moist salt air.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	MEMBER POWERS: Sure.
2	MEMBER ROSEN: So a lot of these are sea
3	coast sites. How do your tests take that into
4	account? Or isn't it necessary to do that kind of
5	thing?
6	MR. AGGARWAL: The IEEE standard does not
7	require any conservation. It simply has a LOCA test
8	and the post-LOCA test. And if you pass it, then
9	you're considered to have passed.
10	MR. CALVO: Excuse me. This is Jose Calvo
11	from the NRR. Most of these cables are inside the
12	containment, so I guess this portion to salt water
13	it will not be seen there. So as long as you keep
14	that salt with the water and the salt from the
15	containment, you don't have to consider that part.
16	MR. MAYFIELD: This GSI is focused on
17	cables in a harsh environment, which takes you inside
18	containment by virtually by definition.
19	MR. AGGARWAL: The bottom line of the test
20	is that knowledge of the environment for cables
21	continues to be essential.
22	MEMBER POWERS: So let me understand that
23	that you have told us that if you reduce the
24	failure probability to zero, it has limited
25	MR. MAYFIELD: Dana, she's asking you to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	use the microphone.
2	MEMBER POWERS: And I wouldn't want to get
3	on the bad side of her, because she is behind me.
4	(Laughter.)
5	You said if I reduced the probability of
б	cable failure to zero it does not have much impact on
7	risk. How about the inverse problem? What's the kind
8	how much risk do I gain if I raise the probability
9	of cable failures up to one? I think that's what we
10	usually do. Isn't it, George?
11	MR. BUSLIK: Let's see. I didn't bring it
12	with me, but well, that would be the essentially
13	similar that would be the Birnbaum importance of
14	it. And those numbers are given here, but
15	MEMBER POWERS: If I had looked hard
16	enough, I would have found them.
17	MR. BUSLIK: That's right. And let me see
18	if I can find
19	MEMBER POWERS: But those are the numbers
20	that lead you to say that it's essential.
21	MR. BUSLIK: Yes. I mean, roughly, I
22	would say it could if you just change that in the
23	PWR it could go up by maybe a factor I mean, it was
24	a 15 percent probability of failure of instrument
25	cables. And instrument cables were important at

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	Surry. So it would go up by a factor of over six.
2	MEMBER WALLIS: We're talking about
3	environment. You said they failed by a crack on the
4	outside propagating through.
5	MR. BUSLIK: Right.
6	MEMBER WALLIS: This would seem to be
7	influenced by bending of the cable
8	MR. BUSLIK: Yes.
9	MEMBER WALLIS: around corners and
10	MR. BUSLIK: Yes. In fact, you find that
11	cables could be very brittle after the pre-aging
12	the accelerated aging experiments. And yet they don't
13	fail during the LOCA, because the LOCA simulation
14	presumably, because they aren't moved there. And it
15	does introduce an uncertainty because you don't really
16	know for sure whether the cable will be subject to
17	vibration or
18	MEMBER WALLIS: No. I mean, I feel like
19	in installing the cables they are stretched, aren't
20	they?
21	MR. BUSLIK: I don't know
22	MEMBER WALLIS: They couldn't be always
23	straight.
24	MEMBER POWERS: Yes. But what they
25	MR. MAYFIELD: This is Mike Mayfield from

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	240
1	the staff. Let's be careful here. Cables are, of
2	course, installed in the unaged condition. There are
3	criteria on bend radii. There are criteria on pull
4	forces. There are a number of things to look at
5	exactly the issue you are raising, Mr. Wallis, that
6	so there are criteria for this.
7	The issue is: if you had some mechanical
8	vibration, some movement of the aged cable during the
9	actual
10	MEMBER POWERS: Well, like maybe in a main
11	steam line break, or something like that.
12	MR. MAYFIELD: Could you get enough
13	mechanical force to move the cables enough and
14	MEMBER POWERS: Those kinds of questions.
15	MR. MAYFIELD: and that's an issue that
16	we've talked about, but I don't think we have a good
17	answer for it.
18	MEMBER POWERS: I mean, it when you
19	mention that movement, of course, the thing that comes
20	immediately to mind is the main steam line break, or
21	even a steam generator tube break, because of the
22	apparently the vigorous vibrations that we expect
23	you get there. Maybe we should be looking at that.
24	MR. MAYFIELD: Again, that's something
25	we've talked about a bit. But as Satish has pointed

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	out, what we got to in this test program specific to
2	this GSI well, it didn't take us there, but it's
3	still a valid point. It's just we didn't get there,
4	and I'm not quite sure how you'd address it in a
5	sensible fashion.
6	I know that I can move the cable enough
7	aged cable enough to damage it. Now, would I get that
8	kind of movement depending on where it is inside
9	containment during a steam line break?
10	MEMBER POWERS: You know, what we could do
11	is we could take some of that money we have on heavy
12	section steel and apply it to
13	(Laughter.)
14	MR. MAYFIELD: But then we would miss
15	vitally important information dealing with other
16	critical systems.
17	MEMBER WALLIS: Going back to the radius
18	of curvature and that sort of thing, these cables are
19	installed by somebody. Someone is laying cable?
20	MR. MAYFIELD: Yes, sir.
21	MEMBER WALLIS: And I would think in
22	handling the cable and manipulating it around corners,
23	and so on, there is all kinds of bending that goes on,
24	twisting, and so forth, which is not
25	MR. MAYFIELD: In its unaged condition,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	242
1	this stuff is remarkably flexible. At the same time,
2	there are criteria for how they handle it.
3	MEMBER WALLIS: Yes. But
4	MEMBER POWERS: If you watch them pull
5	cables nowadays, it just stuns me how careful they are
б	about this stuff.
7	MEMBER WALLIS: So, well, they are in
8	nuclear plants. They certainly aren't usually around
9	universities where
10	(Laughter.)
11	MR. MAYFIELD: I'm going to let that one
12	go.
13	MEMBER POWERS: There's nothing critical
14	at a university either.
15	(Laughter.)
16	MEMBER WALLIS: There are professors, and
17	they they could complain.
18	(Laughter.)
19	MR. AGGARWAL: I would simply point out
20	that in IEEE standards there is the test known as the
21	Mandril test, that you take the cable and take so many
22	times around it, and then test under the high voltage
23	to show whether or not there are any cracks. So,
24	indeed, that test gives you that kind of feeling that
25	if anything like that happens in the life, in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	243
1	operating plant, at the time of construction, then, if
2	a test passes, you will conclude that it would be
3	capable of handling those inspections.
4	This cable is put all around, and this is
5	roughly this diameter. In Mandril, it will bend
6	around 20 times, but that's opposed to high voltage.
7	MEMBER LEITCH: I have a question
8	concerning the second bullet there. Failure in NRC
9	tests indicate that some cables did not meet
10	qualification criteria in the margins that we set.
11	Now, in your technical assessment then,
12	there's an overall conclusion on Page 57 that says, in
13	part, that the EQ process is adequate for the EQ of
14	low voltage cables and INC cables for the current
15	license term of 40 years. How do those two statements
16	square up? It seems on one hand you're saying the
17	process is adequate, but here you've had some cable
18	failures.
19	MR. AGGARWAL: My submission is that the
20	process of qualifying cable is adequate. It presumes
21	that the licensees know their environmental conditions
22	and they are monitoring them. And if those conditions
23	are lower than those during the qualification, then
24	there is no problem. But if they do not know, of
25	course there is a problem. This is how I will explain

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433

	244
1	the failure.
2	MEMBER LEITCH: Now, you had some cables,
3	I guess it was Samuel Moore cables that failed above
4	77 degrees at less than 40 years
5	MR. AGGARWAL: Okonite cables.
6	MEMBER LEITCH: Okonite, was it? Yes.
7	I'm sorry. Yes. That failed at less than 40 years
8	service. So do we know that those that cables are
9	not in the field and operating in those conditions?
10	MR. AGGARWAL: Okay. In a nutshell, the
11	story about Okonite cables is that those cables
12	originally qualified for 90 degrees C. And the
13	manufacturer had never tested those cables in real
14	life. He used a similar argument. Bigger cables were
15	tested, and he applied that to the smaller cables.
16	Now, when these cables failed in an RC test, the
17	manufacturer named the Okonite and tested the cable
18	themselves on their own initiative. And they
19	concluded that their cables are only good for 77
20	degrees.
21	Now, NEI has done a survey and they
22	indicated that probably four plants might have that
23	problem but definitely one of them exceeded those
24	conditions. And I do not know the name of the plant,
25	and I do not know, you know, what the conditions are.

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	245
1	We do know that there is one plant which apparently
2	has exceeded
3	MR. CALVO: Excuse me. Let me augment
4	this a little bit. Yes, we don't know whether one
5	plant, we don't care to a certain degree, because the
6	important part is that a new test has been done that
7	demonstrates qualifications establish a new
8	qualification threshold, which is at a lower
9	temperature. One plant is very close to that, and you
10	can say that where that plant may not reach the annual
11	life of 40 years, but that's part of the Environmental
12	Qualification Program. It's a lot of stuff out there
13	that hasn't reached 40 years, and the Program requires
14	that you replace them or you do some testing or you do
15	some analysis.
16	So knowing the plant is not important.
17	What is important is that the Okonite has informed all
18	the licensees that report that kind of cable and told
19	them, "This is a new threshold." Now, you look there

20 pursuant to 10 CFR 50.49 was the EQ rule that's whatever corrective action 21 supposed to do is 22 necessary. And all that thing has been taken care of. 23 Now, the Okonite failure was not a safety significant failure, it was a very limited, very 24 limited application on these cables. It was mostly a 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

	246
1	single conductor and it was very, very few of them,
2	okay? So that one is not on the control. The
3	licensees are being advised that corrective actions
4	have been taken, pursuant to 10 CFR 50.49, so,
5	presumably, that part is done.
6	MEMBER LEITCH: So that's what gives you
7	the confidence then to say that the EQ process is
8	okay? In other words, if the process is correctly
9	followed
10	MR. CALVO: Right.
11	MEMBER LEITCH: then so the 77
12	degrees is fed back to the licensee and he does all
13	the right things and his plant environmental
14	conditions are known and he factors that into the
15	process, the process is okay.
16	MR. CALVO: Right.
17	MR. AGGARWAL: That's correct. And the
18	bottom line, as you see, the knowledge off the
19	operating environment is essential. The licensee, he
20	should know where the hardest parts are.
21	MEMBER LEITCH: But the process is okay
22	for 40 years.
23	MR. AGGARWAL: Correct.
24	MEMBER LEITCH: And what about for 60
25	years, is the process still okay, if he's still has

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	247
1	all those things?
2	MR. AGGARWAL: Processes are still good as
3	long as you know your environment.
4	MR. CALVO: If I may, the process is the
5	same process. All you do when you reach in 40 years
6	the question is being asked does this cable have
7	sufficient life to go 20 more years? And what you do
8	is you look at all the information that you collected
9	over the previous years and you determine that the
10	actual service conditions are sometimes much lower
11	than the actual temperatures or radiation that this
12	particular cable will qualify. So based on that, most
13	of the cable that we see in the license renewal has
14	been reanalyzed and concluded that because of the
15	lower actual service conditions, you can extend it for
16	20 more years. So the process is the same process.
17	It's a program that is still it's assumed that the
18	cable the life is 40 years. You've got to make a
19	decision to go beyond 40 years. Either replace the
20	cable or you want to license it and you determine
21	or test it or you determine what you're going to do
22	with it. So the rule has those provisions built into
23	it.
24	MEMBER LEITCH: So I think a lot of what
25	our well, at least what my questions comes down to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

is not so much the research report but what is NRR going to do to implement that? And I guess we don't really have -- I mean this hasn't really been presented to NRR yet or it's just now being presented.

5 MR. CALVO: We've been working with research in these efforts, and we have reported the 6 7 results. I guess the knowledge of the environment I 8 think is necessary to ensure that the balance of the 9 equipment within the qualified basis of the particular 10 equipment. I think what is important knowing the 11 environment is that's still to predict failures, but it should -- it verifies the fact that the equipment 12 13 is within the tested parameters. It tells me that the 14 equipment was qualified for these parameters, 15 continues to be qualified. If it is not qualified, 16 then the rule will come in, the process will tell you 17 that you've got to do something about it. Something 18 can very well be that it wasn't good for 40 years, 19 maybe only good for 38 or 35. A decision has to be 20 made when you reach that point there.

21 We know that knowing the environment it is 22 important. It is necessary to establish that your 23 equipment continues to be qualified. We know that 24 they have done it, we know that we have done some 25 inspections several years ago to verify some of that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

(202) 234-4433

	249
1	Then about three years ago we have done recently a
2	programmatic evaluation of the program itself with
3	some licensees. We verified that the program was
4	adequately implemented as part of the license renewal.
5	We're also doing some verifications right now to see
6	that we can extend it for another 20 years. So we
7	know the environment has been done. We see no smoking
8	guns, that it will probably be the NRC or NRR to go
9	there and do inspections at this time. We feel that
10	they have done the correct thing up to now.
11	MEMBER LEITCH: So this will ultimately
12	depend on voluntary industry actions rather than a big
13	regulatory
14	MR. CALVO: Well, no. It's an environment
15	they've got to know what it is, because, you see,
16	the rules say that equipment must be qualified and
17	remain qualified for the life expectancy. So if the
18	environment that you predicted changes, that means the
19	qualification also has to change. So this is if
20	they're meeting the rules, which I know they're
21	meeting the rules, they've got to do these kind of
22	things.
23	So they force them to do it. Just like
24	any regulation, they've got to do it, because it's the
25	only way that you ensure you do some maintenance, you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

replace something, you put a barrier there or you do some operating things in there, some events. The program requires them to evaluate to determine whether the qualified life remains what it was 20 years ago when the equipment was qualified.

1

2

3

4

5

MR. MAYFIELD: This is Mike Mayfield. Let 6 7 me take you to -- Jose's provided, I think, a good 8 summary on the technical side. The process, we'll 9 transmit our findings and recommendations to NRR for 10 the implementation based on our discussions with Jose 11 and the Management. I think the anticipation is this will go into their generic communication process and, 12 13 like you say, will go to some voluntary action. Ι 14 think that's prejudging a bit. I'm not quite sure 15 today what will come out of that process, but I think 16 the expectation that they have expressed is it will go 17 into their generic communication process and play out 18 from there.

19MEMBER LEITCH: So would the expectation20be that we would hear another presentation once we21know what those actions are?

22 MR. CALVO: It all depends how much you 23 want to know about EQ. That will be fine. We'll be 24 happy to do it.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

MR. MAYFIELD: I think if the Committee

(202) 234-4433

	251
1	asked for that, then the staff would be prepared to
2	support that request as well.
3	MEMBER LEITCH: I see. Fine. We're
4	running we have three more minutes to go here.
5	MR. AGGARWAL: Okay. I'll do 30 seconds.
6	The industry practices, as described by NEI in their
7	letter, in the staff's opinion, seems to be educate
8	but the plant-specific practices are not known to us.
9	Again, as I stated earlier, walk down to look for any
10	visible sign of degradation we find can be proven
11	useful and effective, as compared to nothing.
12	MR. CHOKSHI: Okay. I think just to the
13	summary, and already we touched on this, and I think
14	Mr. Mayfield described, our recommendation is to the
15	NRR, and we have been discussing this with NRR, is to
16	look at the dissemination of this information while
17	they generate a communication process. And I think
18	it's important to, as itemized here, the results of
19	the tests and potential implications so that the
20	licensees can evaluate the results of the tests for
21	themselves a summary of Okonite.
22	And I think that one of the things is all
23	of this information the last item, the importance of
24	the knowledge of operating environment and hot spots
25	is really critical to address many of these issues by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS
	252
1	doing reanalysis, understanding the remaining margins,
2	remaining life. So I really think that information
3	needs to get out and then the communication process
4	should determine the level of the communication or any
5	other subsequent actions. So it is, as noted in the
6	transmittal memo to you and in the technical
7	assessment, we are following this to NRR with a
8	recommendation that they use the generic communication
9	process for dissemination of our findings. So that's
10	the overall presentation with the technical assessment
11	and where we stand.
12	MR. AGGARWAL: And, certainly, we look
13	forward to receiving a letter from you in terms of
14	your advice, comments which we will cooperate and
15	finally submit to the Director of NRR.
16	MR. MAYFIELD: That concludes our
17	presentation.
18	MEMBER POWERS: I have to say that in some
19	sense this is the kind of research you wish NRC had
20	more time to do, where you can go through and do a
21	technical assessment in the field, not necessarily
22	coming up with anything regulatory but saying, "Hey,
23	guys, these are the things that we worry about, maybe
24	you ought to worry about them." It's kind of a nice
25	thing for a regulatory body to be able to do,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	summarize a field, show some data, show some concerns
2	and show some ways of handling it. It's kind of nice.
3	MR. AGGARWAL: I wish we have unlimited
4	funding and unlimited time.
5	MEMBER POWERS: Yes, yes.
6	MEMBER LEITCH: Any other questions?
7	MEMBER POWERS: Well, have you thought
8	about mining the heavy section steel funds?
9	(Laughter.)
10	MEMBER LEITCH: Mr. Chairman? I turn it
11	back to you, Mr. Chairman.
12	CHAIRMAN APOSTOLAKIS: Thank you, Mr.
13	Leitch. Thank you, gentlemen. Appreciate you coming
14	here. Our next we're supposed to continue with
15	this. I don't like that. We'll take eight minutes
16	and be back at 2:50.
17	(Whereupon, the foregoing matter went off
18	the record at 2:41 p.m. and went back on
19	the record at 2:51 p.m.)
20	CHAIRMAN APOSTOLAKIS: The next item is
21	the development of reliability/availability,
22	performance indicators and industry trends. The
23	cognizant member is Dr. Bonaca, so Mario, please lead
24	us through this maze.
25	VICE CHAIRMAN BONACA: Well, in order to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	identify and evaluate potential new PIs, the Agency's
2	conducting a pilot program, monitoring the
3	unavailability and the unreliability of several risk-
4	significant systems identified through the Phase 1
5	performance indicators. The pilot includes an attempt
6	to integrate unavailability and unreliability for each
7	set of the system, train into a risk-informed PI
8	called Pilot Mitigating System Performance Indicators.
9	I hope I quoted it correctly.
10	We received an update on this issue at the
11	Subcommittee last Thursday. The staff is here to
12	present this work. They have pointed out to us that
13	this is work in progress. This is the first of
14	several updates, two or three updates they plan to
15	give us. At this stage, don't expect a letter from
16	us, but this is an important update for us. I believe
17	during this presentation the staff will also discuss
18	performance and accountability reports determination,
19	that no statistically significant adverse industry
20	trends in the performance that are identified for
21	2001.
22	With that, I'll pass the presentation to
23	Mr. Baranowsky.
24	MR. BARANOWSKY: Okay. Thank you, Dr.
25	Bonaca. Let me go to the first viewgraph. As you

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	255
1	said, the purpose of this presentation that I'm going
2	to give, which is going to be divided into two parts,
3	one that I'll give and one that Tom Boyce will give.
4	The first one is on an overview of the reliability and
5	availability performance indicator pilot program,
6	which is being done for the reactor oversight process,
7	as led by NRR and supported by the Office of Research.
8	And it's an informational briefing. I've identified
9	in this first viewgraph what the content of this
10	discussion will be, a little bit on the background,
11	some of the problems that we're trying to solve, some
12	insights that we derive from studies that were done on
13	risk-based performance indicators, a very brief
14	discussion of the technical approach that we're
15	taking.
16	We're also going to mention the issues
17	that were raised at the Subcommittee because we want
18	to make sure we're capturing those for when the next
19	time we come we want to address those properly. And
20	then we'll talk about some conclusions and the
21	implementation schedule.
22	Just briefly on the background, SECY 99-
23	007, which is sort of the base document for the
24	reactor oversight process, did identify that the

25 performance indicators that were proposed and

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

have limitations in terms of their risk-informed

1

2

3

4

5

6

characteristics.

7 During the first couple of years, the 8 reactor oversight process and a number of technical 9 issues came up that have to do with how the indicators are formulated and deal with incidents in their 10 11 accounting. And, as such, a working group was formulated and the Office of Research participated in 12 13 this working group and suggested that some of the 14 technical work that we had done in the performance indicator project could be used to solve many of the 15 problems, but not necessarily everything. 16

17 reliability and availability So the performance monitoring approach that was selected for 18 19 the mitigating systems can be described as but one 20 aspect of an area of improvement in the reactor oversight process, and so we're looking to at least 21 22 move forward step-wise in making some improvements 23 there. 24 The problems that we are trying to address

25 project are as follows: in this The current

NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS (202) 234-4433

indicators, in performance particular for 1 the 2 mitigating systems, include design basis functions along with the risk-significant functions, and that 3 4 sometimes provides improper importance to the design basis functions that are not risk-significant, and so 5 there's a desire to make a correction there. 6 The 7 thresholds of performance used in the current 8 performance indicators are generic, one-size-fits-all, 9 and there have been a number of problems identified 10 about the lack of being risk-informed in that regard 11 because of the variation in risk from plant to plant, especially for different mitigating systems. 12 13 The demand failures were accounted for as 14 an unavailability of sorts in the so-called fault

exposure hours, and they end up, in many cases, providing an overestimate of the risk significance of what the demand failures actually result in in terms of their impact on plant risk. And there are no performance indicators currently in the ROP that are directed toward the support systems.

unavailabilities of 21 The the support 22 currently cascaded the systems are onto 23 unavailabilities of the monitored system. And the 24 concern there is that the monitored system is being, 25 in terms of its unreliability and unavailability, is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	258
1	being dominated by the support systems, or at least it
2	can be. And so we're looking for an indicator that
3	can give us information about the monitored system in
4	addition to the support systems.
5	VICE CHAIRMAN BONACA: Now, isn't there a
6	major problem with the PIs, the fact that the
7	thresholds that are risk-based are kind of unrealistic
8	because one single PI has to raise the core damage
9	frequency by a significant amount.
10	MR. BARANOWSKY: Yes.
11	VICE CHAIRMAN BONACA: And we know in real
12	life that doesn't happen. I mean it's usually a
13	combination of things.
14	MR. BARANOWSKY: Right. Actually, part of
15	that problem has to do with the selection of the PIs,
16	and the other part has to do with the formulation.
17	The one in particular that you run into that problem
18	the most with is the initiating event performance
19	indicator where all reactor trips for all plants are
20	treated equally. Well, if you look at the risk
21	significance of different initiating events that
22	involve reactor trips, you can easily see orders of
23	magnitude difference in their risk significance.
24	And if you want to capture that correctly,
25	you have to have a more risk-based formulation to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

259 1 reflect that such that the more risk-significant failures would have a less tolerance than the less 2 risk-significant ones, and you wouldn't put equal 3 4 weighting on them. And then you would come up with a different threshold, if you will. 5 And the approach that we're taking on the 6 7 mitigating systems could actually be used on the 8 initiating event systems. We might look at that in 9 the future to correct that one. I'm not sure we run 10 into the same thing on the mitigating systems, but 11 that's a correct point. 12 So let me just cover some of the problems 13 that we are trying -- that we think that these 14 modified performance indicators will correct. First 15 we worked to make sure that the riskof all, significant safety functions are the ones that are 16 17 captured in the performance measurement. Now, the performance indicators, the way they're formulated, 18 19 they account for a plant-specific design and operating 20 characteristics through the use of available risk models and data. And available risk models are 21 22 basically the site-specific PRA for the licensee, and I think I'll mention later that the NRC will be doing 23 24 parallel analyses using our own risk models in the 25 form of the standardized plant analysis risk models or

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

260

SPAR models.

1

The demand failures are now accounted for 2 correctly in the reliability formulation. 3 They allow 4 for accumulation of failures the to be more 5 appropriately counted in the performance indicator. The performance indicators are going to now include 6 7 separate indicators for the cooling water systems that 8 provide support to the mitigating systems for which we 9 currently have performance indicators, and that will 10 eliminate the cascading problem and sort of an unfair 11 count, if you will, of the indication of performance in those other frontline systems. 12 But it will also 13 treat the support systems according to their risk 14 significance in the model.

15 The other thing I want to mention is that we believe that this pilot addresses at least some of 16 17 the things that were raised by the ACRS, maybe not 18 every single question. But the issue of the plant-19 specific thresholds is addressed. The technical basis 20 for the choice of sampling intervals, we believe that was covered primarily in our risk-based performance 21 22 indicator report, but we still will provide additional 23 basis to have a complete package in this application. 24 And there was also an indication that the 25 action levels should be related explicitly to risk

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

metrics, such as CDF and LERF, and I think we have at least an improvement in that area from what we had before.

4 Just to quickly go over Okay. the 5 insights from the Phase 1 study of the risk-based performance indicator report, because that was the 6 7 technical foundation even though the formulations are 8 a little different now, but that was the technical 9 foundation for what we're proposing these in 10 performance indicators.

11 We identified that there were enough risksignificant differences amongst the plants that we had 12 13 to have plant-specific thresholds for both 14 unavailability and unreliability, and the mitigating 15 system performance indicators will handle that. The unavailability and unreliability indicators were found 16 17 to provide an objective in risk-informed indication of 18 plant performance. And by that I mean they're 19 logically connected to risk. You can actually trace 20 what element of risk is associated with these indicators fairly directly. 21

And they provide broader coverage of risk than the current indicators, which we mapped out in that report, which I believe was NUREG 17.53. We mapped out the coverage that the performance

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

indicators gave in terms of systems equipment and 2 accident sequences. Do I have that right? And we 3 looked at this for an example of 44 plants, so we have 4 a pretty good feeling that we have good coverage there. 5

did 6 We find that doing performance 7 indicators for component cooling water and service 8 water systems were a problem. But the formulation that we're proposing now using importance measures 9 10 solves the problem of having many complex models to 11 deal with, and I think it's really a step forward that 12 allows us to incorporate a simple formulation to 13 represent a more complex situation.

14 And the last thing is we did use some data 15 analysis using Bayesian update approaches, which, based on our statistical analysis, we were able to 16 17 I'll say minimize practically the likelihood of false positive and false negative indications. What we're 18 19 interested in there is if there is a performance issue 20 that's because of statistical issues is not showing up but that could be, say, read in the current oversight 21 22 process, we have a very, very, very small likelihood 23 that we would miss that performance issue.

24 On the other hand, if there is not a 25 performance issue, there is a relatively small, not

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

quite as small, but a smaller likelihood that we're 1 2 going to call it a performance issue. I mean you have 3 to make some balances on these things. You can't get 4 them to be all completely small. And we looked at 5 different approaches. And in fact that's still an open issue, but it's an item that I think is the 6 7 strength of looking at some of the statistics involved 8 when you go through these formulations.

9 Now, the mitigating system performance 10 index, or indicator, was formulated a little bit 11 differently from that which we used in the risk-based 12 performance indicator project in that we're directly 13 looking at a change in cord damage frequency as an 14 index. And it's an index because it's incomplete but it accounts for the elements of plant design and 15 16 operation and risk that are accounted for in the 17 current indicators, at least, as a minimum. They might account for more, but at least accounts for 18 those. It's primarily at the Level 1 from a PRA point 19 20 of view, full power.

Also, the indicator has two elements to it, the unavailability and unreliability, which during the risk-based performance indicators, when we worked with the metrics of unreliability and unavailability, defined properly, we had trouble combining them in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	other than a complex model, almost a full PRA. When
2	we came up with a similar formulation, we were able to
3	combine them in something that's at least easy to look
4	at, even if the bases behind the weighting factors is
5	well, it's a little bit complex.
6	And also we're baselining performance
7	similar to the principles espoused in SECY 99-007
8	wherein we are trying to look at the 1997 time period
9	as a baseline. And that's still an issue to be
10	covered in future studies and presentations to this
11	group as we move along.
12	So just to move down on this particular
13	next chart, you see that the mitigating system
14	performance index is an unavailability index plus an
15	unreliability index, and one of the nice
16	characteristics of this is it allows some balancing of
17	unavailability and unreliability or if both are
18	declining, then they're properly accounted for,
19	instead of having separate indications looked at
20	independently, as if one's frozen and looking at the
21	other, and this matches up with the maintenance rule.
22	So it was one of the major concerns that we have
23	about the maintenance rule was accounting for
24	unavailability and unreliability differently and then
25	the combination of these things differently, and I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	265
1	think we've solved most of that here.
2	MEMBER ROSEN: And it's attractive to me
3	too, because you can have a system that's perfectly
4	available but highly unreliable because you run it all
5	the time and you haven't maintained it, or one that's
6	totally reliable and completely unavailable because
7	you never run it and you're always maintaining it.
8	But here and, clearly, the licensees have to make
9	that balance. And, clearly, this indicator, because
10	of its mathematical formulation, allows you kind of
11	it portrays the balance.
12	MR. BARANOWSKY: And the other thing
13	that's nice about breaking these two things out is, as
14	we discussed at the Subcommittee, the unavailability
15	indicator covers maintenance downtime and corrective
16	actions, whereas the unreliability one covers whether
17	it performs as indicated when it's tried. And that
18	helps you focus any look, if you will, as a regulator
19	in terms of what kind of follow-up actually it would
20	take if, let's say, this indicator were to go over
21	some threshold. And it's also, I think, useful for
22	licensees to look at it that way, which they do in the
23	maintenance rule, so it's consistent with that.
24	The next chart just shows a list of the
25	systems. Basically, we have for boiling water

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

reactors, we have three cooling water systems that are 1 2 more or less what I would call your front line ECCS 3 type systems: The emergency diesel generators, which 4 are part of the emergency AC power system, and then 5 the support system cooling, which in most cases involves systems with the name 6 emergency service 7 water, reactor building closed cooling water or 8 turbine building closed cooling water systems or their 9 equivalent. And then for the PWRs, we have injection 10 systems represented by high-pressure injection and the 11 RHR for low pressure considerations, the auxiliary 12 feedwater system, aqain the emergency diesel 13 generators and again the support system cooling 14 functions with some different names.

15 Now, let's talk a little bit about the 16 limitations of performance indicators, because we 17 spent a long time, I mean months, going over what can and can't be captured by these performance indicators. 18 19 The performance indicators are meant to look at an 20 accumulation of information over a period of time, one to three years or so, and then draw some inference 21 22 about performance. Individual incidents are meant to 23 be covered by a risk assessment type indication. So 24 what we did was we identified the types of individual 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	267
1	VICE CHAIRMAN BONACA: The STP.
2	MR. BARANOWSKY: The SDP, for example.
3	SDP Phase 2, Phase 3 type activity. And so what we
4	did was we went over, well, what are the kinds of
5	things that can and can't be reasonably captured and
6	have good statistical characteristics for us to
7	measure performance with? And we have this list here,
8	like common cost failures. We know that they have a
9	risk significance, but we can't track enough years to
10	get common cause failure into the reliability
11	formulation, but over time the common cause failure
12	impact on the risk-importance measure, whether it's
13	Fussell-Vesely or Birnbaum, will show up.
14	So it's counted for in time, and it's
15	instantaneous, if you will, implications in the
16	reactor oversight program inspection process will be
17	captured through the SDP. And the same goes with
18	passive failures. And there's a few systems
19	components that are highly reliable. The system is
20	highly risk-significant, and single failures over a
21	period of one to three years don't have very good
22	statistical characteristics to them, and those also
23	would be looked at as if they were a rare event in
24	risk space.
25	Okay. Now

	268
1	MEMBER ROSEN: If you're done talking
2	about the limitations
3	MR. BARANOWSKY: No, I'm not done. Well,
4	I'm done with that limitation. I'm going to talk
5	about some of the we're going to look at a number
6	of technical issues, which we don't we wouldn't say
7	they're limitations but they're still open in terms of
8	how to make a final formulation on them.
9	MEMBER ROSEN: Well, of all the
10	limitations that you've mentioned, the most important
11	one is one you really didn't call out as a limitation.
12	And that to me is that this only covers at-power
13	situations. Risk doesn't go on a holiday when you
14	take a plant off the line.
15	MR. BARANOWSKY: Yes.
16	MEMBER ROSEN: And so the shutdown risk is
17	important, even though there are people in this Agency
18	who don't think that. It's my view that it's fairly
19	important. And depending upon exactly what you do
20	during shutdown, PWRs and mid-loop, for instance,
21	create a lot of risk during that period.
22	MR. BARANOWSKY: Yes. I think
23	MEMBER ROSEN: If you don't go to mid-
24	loop, well, okay, maybe you don't have a risky outage.
25	But mid-loop operation especially hot early mid-loop

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

1 is a risk configuration. So I think when you're 2 setting up an index program like this, if you're not 3 looking at shutdown risk, you're not showing the whole 4 scope, and that's one of the -- to me that's the 5 principal limitation.

6 MR. BARANOWSKY: Okay. That's an 7 excellent point, and we looked at that in our risk-8 based performance indicator study. And one of the 9 things that we found that was a problem with the 10 current indicators and even the current maintenance 11 rule implementation was that the performance of 12 equipment during shutdown was being overlaid on top of 13 the performance of equipment during power, and the 14 risk metric being used was the at-power risk measure, which really is erroneous. 15

We did a fairly good look at this and 16 17 concluded that we don't have enough data during shutdown to look at reliability and unavailability in 18 19 the cumulative sense that we do in these performance 20 indicators, but that we could look at what occurred during shutdown and the different modes that occur 21 22 during shutdown, including like mid-loop, as you said, 23 and make a judgment call about the risk implications 24 of shutdown operations that could improve the way the 25 significance determination process, as opposed to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

performance indicators, can take a look at the implications of shutdown in the reactor oversight process.

1

2

3

So we're working with NRR now to take those insights and try and get them into the shutdown significance determination process. If we had the shutdown risk models, we could use risk metrics for unavailability and unreliability that were appropriate for shutdown, but we don't have those.

10 MEMBER ROSEN: I don't think I want to 11 tell you how to do this, because I don't know, but I 12 do know that it's a big hole and that you ought to be 13 working towards ultimately including risk during 14 shutdown in these programs.

15 We're going to have MR. BARANOWSKY: 16 shutdown risk models for SPAR because we need it for 17 the Accident Sequence Precursor Program. As you say, 18 you get enough risk during shutdown that we have to be 19 able to evaluate that. I suspect that -- and that 20 won't take a long time. I think it's a couple of years to have pretty good models, at least in terms of 21 22 what we know today about shutdown risk, maybe not some 23 new stuff. But we should be able to look -- first, 24 we'll have the reactor oversight process, significance 25 determination process incorporate the insights from

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

the risk-based performance indicator study in this 1 2 area, and then, if it's appropriate after discussions 3 perhaps with this group and others, we'll look at 4 whether other performance indicators make any sense if we have the risk models to set the thresholds by. 5 Otherwise I don't have a way to do it. 6 I can't set 7 them with the at-power models, which is really all we 8 have available. 9 MEMBER ROSEN: Well, I don't think you 10 should have -- let the excellent be the enemy of the 11 good in this case. You should try to find something 12 rational to do to begin to measure risk during 13 shutdown and try to put that into the program. Maybe 14 it's something as simple as duration in hot early midloop. 15 16 MR. BARANOWSKY: Yes. That's exactly 17 right. 18 MEMBER ROSEN: And time runs from 19 subcriticality, some kind of index like that. 20 MR. BARANOWSKY: Are you sure you didn't read our report? Okay. Why don't we cover that at 21 22 the next ACRS Subcommittee meeting, because I think we 23 did a nice job in looking at that and see if it 24 answers your questions or if you have other issues 25 that you think we need to look at.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	272
1	MEMBER ROSEN: You say you're going to
2	cover it when?
3	MR. BARANOWSKY: At the next Subcommittee
4	meeting, which we're going to have proposing in
5	November.
6	CHAIRMAN APOSTOLAKIS: He's proposing two
7	more.
8	MEMBER ROSEN: Good.
9	MR. BARANOWSKY: We had so much fun at the
10	last one.
11	CHAIRMAN APOSTOLAKIS: One of the few
12	staff members who loves us.
13	MR. BARANOWSKY: I'll bring the doughnuts.
14	MEMBER ROSEN: We can do something to get
15	him not to love us.
16	MR. BARANOWSKY: That would be hard.
17	Okay. The next so we're going to look at a lot of
18	things during the next several months, and we're going
19	to report back to you on that. Let's go to the next
20	one.
21	Just quickly, let me summarize here what
22	I think were the highlights of the Subcommittee
23	meeting that we had on May 30. You were looking for
24	the reasons and justification for the selection of the
25	baseline values that we had. That was an issue that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

was discussed quite extensively. There were questions 2 raised about use of the thresholds that are currently in place and we derived from SECY 99-007. We're going 3 4 to talk about that.

5 And then also there was quite a bit of discussions about the formulation that we had for the 6 7 PI, including the use of Fussell-Vesely in different 8 parameters in that equation, and we're going to put 9 that all together in a white paper of sorts before --10 if you'll allow us to have another Subcommittee 11 meeting, we'll do it then, and you'll see in my 12 schedule we're shooting for a November time frame.

> CHAIRMAN APOSTOLAKIS: Good.

14 MR. BARANOWSKY: And we'll also be able to 15 report some the implementation on of initial 16 activities and issues that come from the pilot, 17 presuming it gets off the ground at that point.

So to conclude, I think the maintenance of 18 19 the mitigating system performance index approach is based on risk insights, and one of its strengths is 20 it accounts for plant-specific design 21 that and 22 operating characteristics through the use of the 23 available risk models and the data. Currently, we're 24 using the Fussell-Vesely importance measure. We might 25 look at Birnbaum and some other possibilities to see

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

273

1

13

	274
1	if they have better characteristics.
2	We're treating demand failures in an
3	unreliability context. We're using Bayesian update to
4	get the best statistical treatment that we can. The
5	risk-significant safety functions are now a
6	significant focus for the success criteria in
7	determining what's a failure and what's not a failure
8	that goes into the performance indicators. And we're
9	going to be able to, we think, incorporate the cooling
10	water systems that provide support to the more front
11	line systems. We can balance unreliability and
12	unavailability or if they both go up or both go down,
13	the indicator covers that. It's a fairly objective
14	indication because of its link to the risk model.
15	We've identified limitations. You've
16	brought another one up here. We're wide open to hear
17	more and see if we can either address them or make
18	sure that they're accounted for in the significance
19	determination process. And we believe that this
20	indicator provides the right vehicle for making an
21	appropriate risk characterization of performance
22	that's related to reliability and availability of
23	equipment.
24	So we have a schedule, as indicated here.
25	We're going to have a workshop to go over how one can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	275
1	implement the formulation that's been proposed. We're
2	going to try and start the pilot around August 1,
3	somewhere around there. We think that around
4	November, depending on your concurrence, we might be
5	ready to come back, talk about some of these technical
6	issues and how things are going. The pilot will end,
7	the data collection and sort of online trial period,
8	if you will, in February. We'll take about six months
9	to assess that, but in that six-month period, we'd
10	like to have another briefing to let you know how
11	things are coming, because I think, ultimately, we
12	would like to get some kind of a letter from the
13	Committee, and that's probably around the summer of
14	2003.
15	CHAIRMAN APOSTOLAKIS: You'd like some
16	kind of a letter or a good letter?
17	MR. BARANOWSKY: Some kind of good letter.
18	(Laughter.)
19	That's all I have to say.
20	CHAIRMAN APOSTOLAKIS: Any
21	MEMBER ROSEN: You have another plant
22	participating in the pilot
23	MR. BARANOWSKY: Oh, sorry.
24	MEMBER ROSEN: slide. You don't want
25	to put that up.

(202) 234-4433

(202) 234-4433

	276
1	MR. BARANOWSKY: Right. Go ahead and show
2	that if you want.
3	MEMBER ROSEN: Because it reminds me of
4	the punchline in Casablanca, "Round up the usual
5	suspects."
6	MR. BARANOWSKY: Some of them are there.
7	MEMBER ROSEN: Well, when are we going to
8	see a list of people participating in the pilots with
9	another name on it, other than "usual suspects?" I'd
10	like to see some spreading a little bit.
11	CHAIRMAN APOSTOLAKIS: Palo Verde is
12	there, South Texas is there.
13	MR. BARANOWSKY: Actually, South Texas is
14	just is a relatively recent addee, because we have
15	been working this group of pilots, and South Texas
16	wasn't there on the first list.
17	MEMBER ROSEN: Yes, but it's one of the
18	usual suspects. But I'm talking about seeing some
19	plant that's new to the game.
20	MR. BARANOWSKY: Davis-Besse?
21	MEMBER ROSEN: Perhaps.
22	MR. BARANOWSKY: But I think this group
23	will be
24	MEMBER POWERS: Let me I'm not sure I
25	understand the question. I look at this list and I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	277
1	say, hey, this is a pretty good cross-section. I got
2	Hope Creek and Salem on one end and I got Palo Verde
3	and that damn thing off in Texas someplace on the
4	other end. That's a fair cross-section.
5	MEMBER ROSEN: Well, I'm just talking
6	about some plant that has not participated at
7	developing new capabilities and getting into the
8	you know, I'm just railing at the idea that it's
9	always the same plants that
10	MEMBER POWERS: I mean just to have
11	somebody participate that's for participation sake
12	doesn't strike me as very useful.
13	MEMBER ROSEN: Well, it has much more to
14	do with
15	MR. BARANOWSKY: Tom Houghton from NEI
16	would like to address that.
17	CHAIRMAN APOSTOLAKIS: We have a comment
18	from the industry.
19	MR. HOUGHTON: Tom Houghton, NEI.
20	MEMBER ROSEN: Is there a law against
21	that?
22	MR. HOUGHTON: Actually, comparing pilots
23	before Limerick's new, they haven't participated;
24	Millstone's not participated; Surry has not
25	participated, Braidwood has not participated, Palo

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	278
1	Verde, San Onofre and South Texas have not been
2	pilots. None of those have been pilots before, so we
3	do have quite a different
4	MEMBER ROSEN: You're talking about here
5	in this particular program.
6	MR. HOUGHTON: Well, in the reactor
7	oversight process.
8	MEMBER ROSEN: I'm talking about the use
9	of risk techniques in general.
10	CHAIRMAN APOSTOLAKIS: He's broadening the
11	issue.
12	MEMBER ROSEN: And Dana accuses me of
13	prosteltizing, and I plead guilty. The idea being
14	that the more people get involved in the formulation
15	of these kinds of things, the more likely we are going
16	to have smoother implementation, more broader
17	implementation.
18	MR. BARANOWSKY: Tom, what about the
19	MR. HOUGHTON: We also do have, I don't
20	know whether it's a good name to use or not, but
21	plants that are shadowing this process, so we will
22	have probably I would guess an equal number of plants
23	that are going to play along with the process but not
24	be officially in it. So it will be quite broader.
25	MR. BARANOWSKY: And we expect the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	279
1	workshop to have a large spectrum of participants, and
2	probably when we have summary meeting afterward to go
3	over issues and how they're resolved, I think not only
4	these shadow plants but others will be involved.
5	Okay. So we'll, with your agreement, come
6	back in November or there abouts.
7	VICE CHAIRMAN BONACA: Thank you. That
8	was a good update. And now we have the report on no
9	statistically significant adverse industry trends.
10	MR. BOYCE: Good afternoon. I'm Tom Boyce
11	of the Inspection Program Branch of NRR, and I'll be
12	presenting the industry trends portion of this
13	briefing.
14	We're going to be covering today some of
15	the background for the program, how we communicate
16	with stakeholders, the process for identifying and
17	addressing industry trends, other results for fiscal
18	year 2001 and where we're headed in the future.
19	As background, one of the performance goal
20	measures in the NRC strategic plan is that there be no
21	statistically significant adverse industry trends in
22	safety performance. That was put in place in about
23	1998/1999. NRR picked that up in 2000 from research,
24	and we implemented the ITP in 2001. One of our key
25	outputs is to make sure we address this performance

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	280
1	goal measure.
2	CHAIRMAN APOSTOLAKIS: So the key words
3	here are "statistically significant," right?
4	MR. BOYCE: Well
5	CHAIRMAN APOSTOLAKIS: Because you can
6	have a single event that is risk significant, but then
7	that's because it's a single event it will not fall
8	under this, would it?
9	MR. BOYCE: Right. There's a second
10	performance goal measure which we think would capture
11	that on the Accident Sequence Precursor Program.
12	CHAIRMAN APOSTOLAKIS: Yes, that ASP.
13	MR. BOYCE: Right. And so in terms of
14	reporting to Congress and addressing the issue, that
15	would be covered. It would remain to be seen the
16	contribution of that individual event to changes in
17	the industry indicators.
18	CHAIRMAN APOSTOLAKIS: Yes, but then we
19	wouldn't call that a trend if it's a single
20	MR. BOYCE: That's correct. It would
21	probably be an outlier, which I think was your I
22	think you brought that up in the Subcommittee, the
23	Davis-Besse example.
24	CHAIRMAN APOSTOLAKIS: Within four days I
25	can be consistent.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MR. BOYCE: The two purpose of the program 2 are align with the NRC strategic plan and the first is to provide a means to confirm that the nuclear 3 4 industry is maintaining the operating and safety 5 performance of nuclear power plants. And the second by clearly communicating that performance 6 is to 7 enhance stakeholder confidence in the efficacies of 8 the NRC's processes.

9 Speaking of communications with 10 stakeholders, this is how we do it. We put the 11 industry indicators up on the NRC's web site. Those 12 were first put in August of last year. They were 13 taken down temporarily post-9-11, and they're back up 14 as of a few months ago. We provide an annual report 15 to the Commission. We've provided two reports so far. 16 One was in June of 2001 and one was April of this 17 I believe you have copies of both of those year. 18 Commission papers.

19 We provide an annual report to Congress as 20 part of the NRC's performance and accountability report. And, finally, these indicators are presented 21 22 at various conferences with industry. A most recent 23 example might be the Regulatory Information Conference 24 in March, the American Nuclear Society presentations 25 and several others I'm aware of.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

depicts 1 This slide the process for 2 identifying and addressing industry trends. In general terms, we apply statistical techniques to each 3 4 of the indicators in the program, and we look for what amounts to an upward trend in any of the trend lines. 5 If we saw an upward trend, we would take a look at the 6 7 underlying issues and assess the safety significance. 8 For example, if SCRAMS were to go up, as Pat alluded 9 to earlier, there's many reasons for SCRAMS to go up, 10 but that would be our first indicator that we need to 11 go take a look at the underlying causes. Based on what we found and the safety 12 13 significance of what we found, we would then take the 14 appropriate Agency response in accordance with our 15 processes for addressing generic issues. These 16 processes are the generic communications process in 17 NRR and the generic safety issues process in the Office of Research. Finally, there's an annual review 18 19 as part of the Agency action review meeting, and this 20 is a group of senior managers of the NRC. This is a snapshot of the results of the 21 22 for fiscal year 2001. ITP Bottom line, we have 23 identified no adverse trends based on eight indicators 24 that were developed by the former Office of AEOD as

well as the Accident Sequence Precursor Program. We

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. 282

(202) 234-4433

are trying to develop additional indicators that are derived from the plant-specific information submitted as part of the ROP. They would cover all the cornerstones in the reactor oversight process. We initially kicked off this program in April of 2000, so we do not yet have four years worth of data. However, we did --

8 MEMBER POWERS: You mentioned the ASP 9 Program, that you didn't find any trends. Did you 10 happen to look to see if there was any trend for 11 shutdown accidents to be more or less prevalent than 12 they had in the past? The ASP important accident 13 events.

MR. BOYCE: I'll take the first cut and then perhaps Pat will fill in. As part of the industry trends program, we use a single indicator which is total counts of ASP events, and so shutdown events would just be a small subset of that, we hope. And there was --

20 MEMBER POWERS: A big subset of that? 21 MR. BOYCE: Well, actually, I don't know 22 because we didn't look into it, but Pat's group 23 produces a separate SECY paper for the ASP Program, 24 SECY 02-041, I think, was the most recent one. I 25 don't know whether that issue was addressed as part of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

	284
1	that Commission paper.
2	MR. BARANOWSKY: Yes. We do look at
3	shutdown events in more of an ad hoc manner, because
4	we don't have the tools for shutdown analysis that we
5	have for the at-power conditions.
6	MEMBER POWERS: Why don't you have those
7	good tools?
8	MR. BARANOWSKY: We're trying to develop
9	them based on resources available.
10	MEMBER POWERS: Why don't you have more
11	resources available?
12	MR. BARANOWSKY: You would have to talk to
13	the powers that be.
14	MEMBER ROSEN: He is the powers that be.
15	(Laughter.)
16	MEMBER POWERS: What particular suite of
17	language should appear in our research report that
18	would say these guys have been struggling along unable
19	to analyze shutdown precursor events with any kind of
20	adequacy, and they need the tools to do that better,
21	and therefore should have resources to do that better.
22	MR. BARANOWSKY: To be fair about it, if
23	that was said a few years ago, we probably would have
24	the tools now, but we are embarked on getting those
25	tools in place. I don't know that we could go any

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	285
1	faster than we can right now, because we have to have
2	people who can manage the work and who can do the
3	work, and there's just limits to who's available.
4	MEMBER POWERS: I've heard that story for
5	four years, Pat.
6	MR. BARANOWSKY: I don't think so.
7	MEMBER POWERS: We're working on this
8	stuff, we're working on this stuff, we're working on
9	this stuff.
10	MR. BARANOWSKY: We actually have
11	schedules now.
12	MEMBER POWERS: And I've got Steve over
13	there telling me that the world the spin angular
14	momentum of the Earth is about to come to an end if we
15	don't put better attentions to shutdown risk.
16	MEMBER ROSEN: Dana always exaggerates the
17	importance of my remarks. I'm grateful but it's not
18	quite the spin angular momentum that's
19	MR. BARANOWSKY: The shutdown risk, from
20	what we've seen, is not 50 percent of the accident
21	sequence precursors, and I'm fairly confident that
22	it's not that high.
23	MEMBER ROSEN: What did you say?
24	MR. BARANOWSKY: I don't believe it's 50
25	percent.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	286
1	MEMBER ROSEN: Of what you've seen so far.
2	MR. BARANOWSKY: Of what I would see if I
3	did even a really complete accident sequence precursor
4	analysis.
5	MEMBER ROSEN: Your zero information guess
6	it would be one-sixteenth of the set of ASP events.
7	So I mean if it's anything more than a sixteenth,
8	Steve's probably right.
9	MR. BARANOWSKY: Yes.
10	MEMBER ROSEN: The spin angular momentum
11	of the Earth is
12	MR. BARANOWSKY: It's about 20 percent or
13	so, it looks like.
14	MEMBER ROSEN: I've got a calculation for
15	you right now. It only applies the real risk is
16	PWR. Two-thirds of the plants are PWRs. It's half of
17	the risk of two-thirds.
18	MR. BARANOWSKY: I'm saying around 20
19	percent.
20	MEMBER ROSEN: That's two-twelfths, right?
21	CHAIRMAN APOSTOLAKIS: Two-sixths.
22	MEMBER ROSEN: No, two-sixths, right, half
23	of the risk of two-thirds.
24	CHAIRMAN APOSTOLAKIS: Which is one-third.
25	MEMBER ROSEN: One-third.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	287
1	MR. BARANOWSKY: Which is well within the
2	uncertainty.
3	MEMBER POWERS: Yes. And the zero
4	information guess would be six percent.
5	MEMBER ROSEN: Right. Define high. I say
6	it's six times that.
7	MEMBER POWERS: Yes. So you're saying
8	it's six times that. And these guys don't have the
9	tools to analyze it exactly. I mean, you know, if I
10	were you, I would really complain. You're just not
11	getting the support you need.
12	MR. BARANOWSKY: Well, as I said, we are
13	developing the tools now. I believe the Commission
14	has pretty much said we need to get on with developing
15	the accident sequence analysis capabilities and SPAR
16	models for the spectrum of capabilities
17	MEMBER SIEBER; When do you shutdown?
18	MEMBER POWERS: When do we see the
19	shutdown?
20	MR. BARANOWSKY: I believe so because
21	we've provided that in our budget discussions, and
22	there seems to be support for it.
23	CHAIRMAN APOSTOLAKIS: Shutdown and fire
24	what?
25	MEMBER SIEBER; Shutdown and fire and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701
	288
1	operations is, in my opinion, guessing a third, a
2	third, a third.
3	MEMBER ROSEN: That's the whole
4	CHAIRMAN APOSTOLAKIS: Is that what the
5	Commission said, Jack.
6	MEMBER SIEBER; That's what I'm saying.
7	CHAIRMAN APOSTOLAKIS: Oh, you're saying
8	that.
9	MEMBER SIEBER; So fire and operations.
10	MEMBER POWERS: Let me ask a question.
11	Where would I go to look at the program plan for
12	developing these tools?
13	MR. BARANOWSKY: That's excellent. I
14	believe we've supplied, but we'll supply you again,
15	with the SPAR model development plan, which includes
16	this information, and I can guarantee you'll have that
17	shortly.
18	MEMBER POWERS: And I'll be just delighted
19	and thrilled.
20	MR. BARANOWSKY: You'll call me up you'll
21	be so delighted.
22	CHAIRMAN APOSTOLAKIS: And the spin
23	angular momentum of the Earth will be preserved.
24	MR. BARANOWSKY: Preserved.
25	MR. BOYCE: All right. Thanks for

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	289
1	fielding that one, Pat.
2	MEMBER POWERS: Now, wait, you don't get
3	away scott-free here.
4	MR. BOYCE: Oh. Well, I'm sure there will
5	be other opportunities.
6	MEMBER POWERS: Okay. What about the
7	inspection force? What kind of information do they
8	get?
9	MR. BOYCE: Well, you're right, I didn't
10	want to draw fire, but I did want to say that we're
11	not just doing PIs as part of our oversight of
12	licensees. We do have inspectors that go out in the
13	field and are looking very closely at these things,
14	and we do have inspection procedures that are tailored
15	to shutdowns. Part of that inspection process
16	MEMBER POWERS: Okay. So they find
17	something now. They want to do a significance
18	determination process. What do they do?
19	MR. BOYCE: Well, there is a shutdown SDP.
20	There are many deficiencies in that shutdown SDP.
21	CHAIRMAN APOSTOLAKIS: Based on what? How
22	did they develop it?
23	MR. BOYCE: Perhaps we can come back on
24	this before I
25	CHAIRMAN APOSTOLAKIS: Yes. Okay. I

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	think we should.
2	MR. BOYCE: get in trouble here. But
3	
4	MEMBER POWERS: Well, I think you should
5	you and Pat ought to get together and go complain
6	to the powers that be. You're not getting the support
7	you need.
8	CHAIRMAN APOSTOLAKIS: Well, if there has
9	to be any complaints to the powers, I want to add a
10	couple things.
11	(Laughter.)
12	CHAIRMAN APOSTOLAKIS: Whoever has the
13	most power will maybe have a meeting about
14	complaining.
15	MR. BOYCE: Let me point out another,
16	perhaps, weakness in our program right now. The
17	performance goal measure talks really only looks at
18	trends, and if you look at the indicators that we have
19	right now, they start in about 1998 1988, excuse
20	me. And those trends, most of them show an
21	exponential type of decay, and some of the indicators
22	might be approaching asmototic limits in terms of
23	improvements in performance. It's very difficult to
24	say that for sure, but that's what it looks like it
25	appears. And so it's inevitable that at some point

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

we'll have a trend line that goes up. And what we're trying to do is rather than be tied to our process that would have us react to something that may or may not have safety significance, we're trying to establish thresholds based on the safety significance.

An example would be SCRAMS. Right now, 6 7 we're averaging about 0.85 SCRAMS per plant per year, 8 whereas back in 1988, plants were averaging on the 9 order of two and a half to three SCRAMS per plant per 10 year. So if there was an uptick of 0.85 to one, we're 11 not sure that that would be a change in the safety 12 performance of the plants, and so we're trying to 13 establish a rational basis. And that's most of the 14 development work that's ongoing, and I'll get to that in just a second. 15

If we are able to develop these more risk-16 17 informed thresholds and get them in place, it would 18 enable us to change the performance goal measure to 19 something similar to what the Accident Sequence 20 Precursor Program uses, which is something like no more than one ASP event per year. 21 It would mean no 22 more than one indicator exceeds a certain threshold 23 per year, just to provide an example of our current 24 thinking.

Finally, we're also developing additional

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

25

1

2

3

4

5

indicators that we might be able to use in 1 the 2 program. An example is we developed on the order of 3 15 initiating event indicators. Those were provided 4 in SECY 02-058, which I think you have a copy of. And 5 we're taking look at those seeing а and the 6 applicability of the program. One of the -- for 7 example, steam generator tube ruptures is a very 8 infrequent event that you can't really monitor well on 9 a plant-specific basis, but you can do a lot better 10 monitoring them on an industry level, so we're taking 11 a look at those. 12 MEMBER POWERS: And it's really 13 remarkable, because when you look at that -- and, like 14 you say, you can't ask real detailed questions because it doesn't happen often enough to do that -- but if 15 16 you take broad integrals, it's constant. It's a 17 constant rate of steam generator tube ruptures. Ι 18 mean it defies logic. I mean you would think it would go up as steam generators get old, but it doesn't seem 19 20 to. MEMBER ROSEN: Well, that's because a lot 21 22 of steam generators are being replaced. They're not 23 getting older, on average. 24 MEMBER POWERS: But there was a period of 25 time they were.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

292

	293
1	MEMBER ROSEN: Well, that's true.
2	MEMBER POWERS: And it didn't change.
3	MEMBER ROSEN: But that's because the
4	industry made heroic efforts to avoid those kinds of
5	things in that time period.
6	MR. BOYCE: And I think the NRC oversight
7	helped and contributed, just to put in a plug.
8	(Laughter.)
9	MEMBER ROSEN: This had something to do
10	with it and that's the degree of heroism required.
11	MR. BOYCE: A lot of these initiating
12	events were based on the work that was done earlier in
13	NUREG 57.50, if you're familiar with that NUREG. And
14	we're also trying to bring up to date some of the
15	system reliability and component reliability studies
16	that research has done in the past.
17	The rest of this presentation describes
18	where we are in terms of threshold development, and
19	what we'd like to do is just give you an introduction
20	here and then come back sometime this fall to give you
21	more details on where we are. We would probably
22	piggyback with the MSPI work that's being done. I'm
23	not sure we need at least two more presentations, as
24	Pat talked about, but we'd definitely like to come
25	back.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	294
1	CHAIRMAN APOSTOLAKIS: In November.
2	MR. BOYCE: Probably the most important
3	bullet here to take away is that industry thresholds
4	differ from plant-specific thresholds in that while
5	we're working on models for each of the plants and
6	we're getting there, there isn't an industry-level
7	model right now, and so the challenge is to come up
8	with a rational way to get an industry-level risk.
9	MEMBER POWERS: Maybe I didn't follow.
10	Why would I want to have this?
11	MR. BOYCE: Well, what we're trying to do
12	is get to the if you have a model to use well,
13	we don't have a model, but what we're trying to get to
14	is risk-informed thresholds.
15	MEMBER POWERS: But why wouldn't I want to
16	make those I mean I'm surprised that Dr.
17	Apostolakis isn't climbing down your throat right now
18	saying, "The one thing that we've learned in all of
19	our risk studies is it's very plant-specific." Why
20	aren't you climbing down his throat, Dr. Apostolakis?
21	CHAIRMAN APOSTOLAKIS: I wasn't paying
22	attention.
23	(Laughter.)
24	MR. BOYCE: Well, I think I
25	MEMBER ROSEN: Let me suggest a different

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

295 strategy perhaps or a strategy. But is it not true 1 2 that the risk of the industry today, a snapshot, is the sum of core damage frequencies over all the plants 3 4 divided by the number of plants? 5 MR. BOYCE: That's, in essence, really what he's talking about, and that's why, for instance, 6 7 when you trend steam generator tube ruptures, you 8 know, they're made of all individual plants and hardly 9 any of them have tube, but you want to know what's 10 happening in the industry, you look at the collection, 11 but it has to be in a risk context so that when you 12 count these things you don't weigh things way out of 13 balance incorrectly. So I'm agreeing with what you're 14 saying. I don't have all those models in place. Ι 15 think I was agreeing. 16 MEMBER POWERS: He's just giving you a 17 real nice model. He says get the industry by doing 18 the plant-specifics and selling. 19 Actually, that is one of our MR. BOYCE: options that I'll get to. Some of this is a --20 MEMBER POWERS: Why would you want to do 21 22 anything different? 23 MR. BOYCE: Timing. We need something in 24 The SPAR models aren't going to be place sooner. 25 and licensees, PRAs may give slightly available,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

different results than the SPAR models, and we need to come to agreement with all the stakeholders as to what constitutes the appropriate model to use. So we're trying to get thresholds sooner. It may be that we do get to exactly what you just described.

I'm not sure I understand 6 MEMBER ROSEN: 7 your -- I don't know whether your answer -- understand 8 your answer. I mean after all, you can call up the 9 risk supervisor at each plant and ask him what his 10 current CDF is. Of course, it changes as they do 11 Bayesian updates, but you could get a snapshot. He'd 12 say -- and you'd have to make your question quite 13 specific. You'd say, "Give me your best shot at your 14 internal events plus shutdown where your interval 15 events, if it includes fire, not giving a separate 16 fire number." So the guy gives you three numbers and 17 you add them up and you do that to the next plant. 18 Now, there are some plants that are not going to give 19 you all those numbers. You have to have a little 20 asterisk in your column where you make an estimate maybe, but at the bottom of the line, you're going to 21 22 -- at the end of this, you're going to construct a 23 table and you're going to press a button and it's 24 going to add it up --

25

1

2

3

4

5

CHAIRMAN APOSTOLAKIS: Isn't that already

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	297
1	in the IPE?
2	MEMBER ROSEN: IPE, so, you know.
3	CHAIRMAN APOSTOLAKIS: Well, we start with
4	that, but then we make the phone calls.
5	MEMBER ROSEN: Yes, you make the phone
6	calls, because IPE is so far out of date, you know,
7	that was 1988. It's 20 years
8	CHAIRMAN APOSTOLAKIS: That's when the
9	letter came out, the IPEs were done later. But you're
10	right, I mean there will be updates and so on. But
11	the point is that you can have a table tomorrow.
12	MEMBER ROSEN: Yes.
13	CHAIRMAN APOSTOLAKIS: And then start
14	calling people to
15	MEMBER ROSEN: Well, yes. You could have
16	a table from IPE tomorrow or you could have in two
17	weeks, you could have this other table.
18	CHAIRMAN APOSTOLAKIS: That's correct.
19	MR. BOYCE: Okay.
20	CHAIRMAN APOSTOLAKIS: My experience with
21	this thing is that it takes about two and a half to
22	three years for people to go to plant-specific stuff.
23	I don't know why. Look at the ROP. Now they're
24	talking about plant-specific. This is a semi-
25	empirical observations.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	MEMBER ROSEN: But what is it that takes
2	two and a half years? I'm asking.
3	CHAIRMAN APOSTOLAKIS: They initial the
4	system.
5	VICE CHAIRMAN BONACA: If we keep this
6	way, it will take two, three years to finish this up.
7	CHAIRMAN APOSTOLAKIS: And that will be
8	okay, let's move on.
9	MR. BOYCE: The other thing I'd like to
10	point out is this approach lends itself most readily
11	to the initiating events in mitigating systems
12	cornerstones. There's five other cornerstones where
13	we do need to develop some sort of indicator, and
14	those other cornerstones, as examples, are things like
15	occupational radiation exposure, public radiation
16	exposure, emergency preparedness, safeguards and
17	physical security. And the approach that we're
18	talking about here it would not be applicable in those
19	cornerstones.
20	So having said that, what we're going to
21	try and do is develop a jump ahead on my slides
22	develop an expert panel where we would build on the
23	work done in the initiating events and mitigating
24	systems cornerstones and see how it might apply to the
25	other cornerstones and try and look for consistencies

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

in approach, not just risk approach but also statistical approach.

So bear with me and let me complete the 3 4 presentation. In concept, we're looking at a couple of different kinds of thresholds. 5 The one we've talked about up to this point could be termed an 6 7 action threshold. It's where we actually take an 8 Agency response, a preprogrammed Agency response and 9 we would also report it to Congress. We could also 10 contemplate more of a lower threshold which would give 11 us more of an early warning that there is something 12 developing. And this might -- we're not really sure 13 how we might use it, but it might lead to information 14 notices sent out to industry or perhaps generic safety 15 inspections by the staff. In addition, we may continue to monitor trends so that we can identify 16 17 issues before it manifests themselves as safety problems in our indicators. Next slide. 18

19 Here's some of the characteristics we'd 20 like in thresholds. Next slide. This slide talks about the process for establishing the thresholds. 21 22 The important element here is we're going to establish 23 an expert panel, give them inputs from risk and 24 statistical information. We're going to have experts 25 on that panel in each of the cornerstones, and we're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

299

	300
1	going to try and come up with a rational basis for
2	establishing the thresholds.
3	CHAIRMAN APOSTOLAKIS: You know, as part
4	of the input to the panel, you can do what Mr. Rosen
5	suggested, develop the table, plant-specific stuff,
6	and give it to the panel and let them process it.
7	MR. BOYCE: Right.
8	CHAIRMAN APOSTOLAKIS: That would be a
9	simple thing to do. If they decide to come back with
10	generic thresholds, then that's their judgment, but I
11	doubt it. But they probably could
12	VICE CHAIRMAN BONACA: You'll have apples
13	and oranges in that table. That was the only
14	MEMBER ROSEN: Yes. There's a lot of
15	apples and oranges now.
16	CHAIRMAN APOSTOLAKIS: What if you have
17	generic thresholds, then what do you do? You take the
18	apples and oranges and make a fruit salad.
19	VICE CHAIRMAN BONACA: I understand. All
20	I'm saying is if you get an expert panel, let them
21	hopefully they'll be expert enough to try to sort out
22	
23	CHAIRMAN APOSTOLAKIS: But they don't have
24	access to this information. Not every expert reads
25	the summary reports. This is just an additional input

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	301
1	and let them take care of it.
2	MEMBER ROSEN: One comment on apples and
3	oranges. The peer certification process is making it
4	more like apples like two kinds of apples: Granny
5	Smith apples and red delicious apples. Because it's
б	forcing a convergence of the numbers, so that's a good
7	thing.
8	MEMBER POWERS: Yes. Well, I think George
9	would argue that it's forcing a convergence to
10	crabapples.
11	MEMBER ROSEN: Well, having gone through
12	one recently, I know for sure that it's forcing
13	improvements. Now, if it's forcing improvements as
14	much elsewhere as it was in the plant that I'm
15	familiar with, then that's a good thing.
16	MEMBER POWERS: The ones I'm familiar with
17	you're right, it's certainly forcing some people to
18	make some I mean I think everybody ends up having
19	to make some changes and improvements in their PRA.
20	But I think George would argue it's improving to a
21	consistent level of mediocrity.
22	MEMBER ROSEN: I don't think so. Hossein,
23	what do you think? You know the peer process pretty
24	well.
25	MR. HAMZEHEE: I'd rather be quiet today.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	302
1	(Laughter.)
2	MEMBER ROSEN: I don't want you to. You
3	know too much. I'd like to hear what you think.
4	MEMBER POWERS: I mean I think the point
5	that George would make if he weren't being so quiet
6	over there
7	CHAIRMAN APOSTOLAKIS: Shy, I'm shy.
8	MEMBER POWERS: uncharacteristically
9	quiet, retiring, is there is not yet such a strong
10	incentive for the licensee to lean forward in the
11	trenches in PRA technology, because the benefits are
12	not so transparently coming to him.
13	MEMBER ROSEN: Yes. I think that's true
14	about leaning forward in the trenches, doing new
15	things, and that's a little bit why I was
16	proselytizing about the selection of the usual
17	suspects in previous presentations. But as to coming
18	up to the level that's expected in the peer
19	certification, that is happening, so there's a push
20	there or a pull up to that level. Beyond that, yes,
21	you're correct, there's not a whole lot of incentive
22	to
23	VICE CHAIRMAN BONACA: On the other hand,
24	we have groups of plants out there, okay, where if you
25	go and look at their stuff, they have to support the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	303
1	development and dimensions of the PRA. They have
2	roughly one person here or less oftentimes versus this
3	program, some of them have had four people assigned to
4	one plant for ten, 15 years. And that is not
5	changing. That's where I'm saying
6	MEMBER ROSEN: That's where you're wrong.
7	I think what's happening in the industry is there is
8	more manpower going into this across the board.
9	VICE CHAIRMAN BONACA: I'm not denying it
10	is increasing but just two years ago we went to see a
11	plant and we had one person there. And we're talking
12	about Davis-Besse, and now you're about to bring
13	Davis-Besse into this process.
14	CHAIRMAN APOSTOLAKIS: It was amazing the
15	kind of stuff he was promising to do.
16	VICE CHAIRMAN BONACA: Yes. It was
17	amazing what they promised that they would do by
18	October, including the update and everything else.
19	What I'm trying to say and I don't want to make
20	point of Davis-Besse what I'm saying is there's an
21	unevenness there that still are
22	MEMBER ROSEN: Yes. It's clear that
23	there's an unevenness, but I think that the trend is
24	in the right direction across the board. There will
25	be places where it's very uneven. And it's to the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	304
1	point that it's a Level 3 with one person. When you
2	get two people, then you realize you can only do a
3	Level 2. You get six people, then they start
4	complaining they really can't do the Level 1 right.
5	CHAIRMAN APOSTOLAKIS: It goes back.
6	MEMBER ROSEN: And when you have South
7	Texas with a dozen people, then the whole thing's a
8	mess, because that's when they find all the problems.
9	CHAIRMAN APOSTOLAKIS: We are really
10	running out of time here.
11	VICE CHAIRMAN BONACA: Can we please
12	yes, let's complete this presentation.
13	CHAIRMAN APOSTOLAKIS: Do you have any
14	conclusions?
15	MR. BOYCE: That we'll come back to?
16	These are some of the technical approaches. Some of
17	them are statistically based, some of them are PRA-
18	based. One intriguing one is to follow the example
19	set at the MSPI and perhaps, and Pat alluded to it, we
20	develop a roll-up indicator for the initiating events.
21	We have right now on the order of 15 initiating
22	events, and we may be able to roll them up into a
23	single index. That's tipping our hand a little bit.
24	We're exploring that heavily right now. Or some
25	combination of the above. And we'll get back to you.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	305
1	CHAIRMAN APOSTOLAKIS: Good.
2	MR. BOYCE: Here's some of the technical
3	questions. I won't go through them, but there are
4	several questions that have been brought up as part of
5	this forum that we also need to look at.
6	CHAIRMAN APOSTOLAKIS: Why does Congress
7	want this information?
8	MR. BOYCE: Well, I'm not sure I have the
9	background answer to that question, but
10	CHAIRMAN APOSTOLAKIS: What do they do
11	with it?
12	MR. BARANOWSKY: I can answer it. It's
13	required of all agencies through the performance and
14	accountability reporting requirement to pick agency-
15	wide performance indicators that are a measure of how
16	well we're doing.
17	CHAIRMAN APOSTOLAKIS: Oh, so it's just an
18	
19	MR. BARANOWSKY: For instance, the FAA
20	might have certain accident or near-miss rates that
21	they track. We track precursors, we track performance
22	of plants and other things, there's a lot of things.
23	And so we're required by law to do that.
24	MR. SATURIUS: And we picked them. We did
25	it to ourselves. We picked the no significant adverse

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	306
1	trends as a reporting requirement.
2	CHAIRMAN APOSTOLAKIS: Okay.
3	MR. BOYCE: That's part of the GPRA,
4	Government Performance and Results Act of 1993. My
5	answer was why does Congress want to know about all
6	the details that we're providing at a high level if we
7	exceed one of these thresholds, and it's to keep them
8	aware of what's going on in the nuclear industry.
9	CHAIRMAN APOSTOLAKIS: Okay.
10	MR. BOYCE: All right. Schedule? This
11	you've not seen before. At the Subcommittee, we
12	didn't have this particular slide. But we've asked
13	Research to give us thresholds for the first two
14	cornerstones by the end of July. We would digest
15	those, interact with stakeholders from industry, we'd
16	come back to the ACRS and we would try and use those
17	and, as I said, expand the approach as it can be
18	applied to the other cornerstones.
19	We think we'll have thresholds for the
20	other cornerstones in about the September time frame.
21	We're going to be looking at changing the performance
22	goal measures sometime this fall. That would be part
23	of the budget process. Somewhere in here we're going
24	to be coming back to the Subcommittee, and, again,
25	that would be piggybacking on the MSPI. We've got our

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	307
1	annual Commission paper in March of next year, and we
2	think we'll have final thresholds developed an in
3	place sometime during FY '03. That would conclude my
4	portion of the brief.
5	VICE CHAIRMAN BONACA: And we'll be glad
6	to have an update in the fall, piggyback on the other
7	one, performance indicators. Thank you for the
8	presentation. Any questions? If none, back to you
9	with ten minutes.
10	CHAIRMAN APOSTOLAKIS: We did? Okay.
11	Thank you very much. We'll recess until 4:10.
12	(Whereupon, the foregoing matter went off
13	the record at 3:56 p.m. and went back on
14	the record at 4:12 p.m.)
15	CHAIRMAN APOSTOLAKIS: Quiet. The last
16	topic of the day is technical and policy issues
17	related to advanced reactors. Dr. Kress will Chair
18	the session.
19	MR. KRESS: Thank you, Mr. Chairman. The
20	fact that we have such high-powered and respected
21	people here attests to the importance of this issue.
22	You know, with the new technology in advanced
23	reactors, it may be difficult to figure out how to fit
24	them in to the current licensing system. And in the
25	process of doing so, there are a number of policy and

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS WASHINGTON, D.C. 20005-3701

	308
1	technical issues that will have to be faced up.
2	And, you know, I've articulated a number
3	of these in the past, and the staff is making some
4	studies to I think go to the Commission with, and say,
5	"These are the policy issues that we need to resolve
6	before we can proceed to license or certify these
7	advanced reactors." So we're going to hear about the
8	I guess it's still a preliminary document this
9	time, and I guess either Ashok or Farouk is going to
10	start us off.
11	MR. ELTAWILA: I see that Ashok is the
12	lead presenter, so I'm here to support him.
13	(Laughter.)
14	MR. THADANI: Not correct. We'll take
15	care of that in a moment. Farouk is actually going to
16	go through the presentation. But I do want to share
17	some thoughts with you. We had a we briefed the
18	Commission on March 19 on research programs and again
19	towards the end of May, and Tom participated in that
20	meeting Commission brief on advanced reactors. One
21	of the things I noted during our brief was the
22	absolute importance of making sure we lay out,
23	particularly for non-light-water reactor technologies,
24	we lay out a clear understanding of what our
25	expectations are in terms of safety. And you'll hear

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

NEAL R. GROSS

a little bit about safety goals, their incompleteness and a number of issues related to the whole concept of defensing that.

1

2

3

4 And I indicated that the point that it would take great deal of intellectual capital to be 5 able to develop these things, and they would require 6 -- my view is they would require interaction and 7 8 discussions with a number of people who have had 9 considerable experience in sort of thinking about 10 these safety principles and where is the country 11 going. What is really meant by this expectation that 12 the future reactors would be safer than the current 13 class? What does that really mean?

14 So we've just started. We're looking 15 forward to, I think, considerable dialogue with you, 16 and we'll be talking to others. We're looking at some 17 options of what sort of help we need to get to go forward in this particular area. And then there are 18 the technical issues. Our intention is to get some 19 20 information up to the Commission fairly soon, but we do need to get the research plan to the Commission I 21 22 think it's fall of this year. And before we do that, 23 we would like to have some of your thoughts reflected 24 in the paper that we'd like to send to the Commission. 25 With that, I think Farouk is going to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

	310
1	raise all the key points.
2	CHAIRMAN APOSTOLAKIS: When is the paper
3	going up, Ashok?
4	MR. THADANI: I think fall of '02.
5	CHAIRMAN APOSTOLAKIS: The fall?
б	MR. THADANI: Do we have a date?
7	MR. ELTAWILA: The final paper is last day
8	of fall, so December 22. Christmas.
9	(Laughter.)
10	CHAIRMAN APOSTOLAKIS: This is the only
11	ACRS meeting?
12	MR. ELTAWILA: No, no. This is what we
13	send you a pre-decision, a copy of that paper for your
14	consideration. That paper is going to the Commission
15	this coming June just to try to scope the problem and
16	the issue that we are working on. And then we'll have
17	public workshop, discuss the issue in public workshop,
18	have another discussion with you.
19	So just to start wit the discussion here,
20	this is an outline of my presentation. I'm going to
21	start with the purpose of the briefing and give you
22	some background about some of the advanced reactor
23	issues that we are working on. And as Ashok
24	indicated, the Commission has certain expectations
25	about enhanced margin of safety for advanced reactor,

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	311
1	so I'm going to touch on that briefly. And I'm going
2	to discuss relationship to international center.
3	In this presentation and in the paper that
4	you have, we focus on five policy issues that have
5	technical basis, but there are a lot of other policy
6	issues that are addressed in other Commission papers.
7	I'm going to touch on them, but I'm not going to get
8	into them in detail.
9	The five policy issues here, the reason we
10	group together in this paper, because they are all
11	interrelated. If you work on one of them or any
12	decision that we make on one of them will affect the
13	other decisions. That's why we would like to address
14	them in group. And then I will discuss our future
15	plan later.
16	MR. KRESS: Farouk, I presume among those
17	five issues assume among them would be the role that
18	PRA and high-level risk acceptance criteria might
19	play. That's cross-cutting through all of them.
20	MR. THADANI: Yes. And it is one of the
21	major issues.
22	MR. ELTAWILA: That's the first issue,
23	event selection and role of PRA that's embedded in
24	that issue.
25	MR. KRESS: That's embedded, yes.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	312
1	MR. ELTAWILA: And we have Scott Newberry
2	and Mary Drouin here to help me if I stumble on
3	anything.
4	The purpose of the briefing, I think we
5	originally, we thought that we are going to wait until
6	we finished the pre-application review of the Exelon
7	PPMR before we go to the Commission on Policy
8	Decisions. With the cancellation of the PPMR, we
9	recognized that I think that these policy issues are
10	of vital importance to the advanced reactor type of
11	the gas reactor type, the PBMR and GT-MHR. And we
12	have done work in the past in this area.
13	So based on the work that we have done
14	thus far with Exelon and the work that we have done in
15	the '80s and '90s on other advanced reactor type like
16	the CANDU and MHTGR, that's the old GE design, we
17	believe that we have sufficient information right now
18	to go to the Commission with our recommendation on the
19	policy issue.
20	CHAIRMAN APOSTOLAKIS: But did the Exelon
21	action have any impact on the policy issues that you
22	are proposing? I mean it seems to me that you have
23	more time now, don't you?
24	MR. ELTAWILA: We don't believe we have
25	more time, but I think it will be much better if the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Commission makes its expectation clear. If we make 1 2 our expectation clear, what is this future design going to look like, what's the capability that we 3 4 require of this design, the designer will be able to cope with that and incorporate them in their design. 5 If we wait until we have a design here to review, our 6 7 decision might impact them and cause a backfit and 8 things like that. So it's better. 9 CHAIRMAN APOSTOLAKIS: It's better because 10 you have more time to think about it. 11 MEMBER WALLIS: Well, I think it's very 12 appropriate that you set the rules before the design. MR. ELTAWILA: That's what we're trying --13 14 MEMBER WALLIS: Because the safety would 15 be enhanced, because they will design to the rules, 16 not to try to fix them after. 17 CHAIRMAN APOSTOLAKIS: You used the word, "cancellation." I'm not sure that's what Exelon used. 18 19 MR. THADANI: No, it's not cancellation. 20 It's that they're getting out of this business. But let me -- I'm glad -- the points that Graham are very 21 22 You recall we talked to you about the important. vision and mission of the Office of Research some time 23 24 ago, and in that is one element which is making sure 25 the Agency is prepared for future challenges and is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

313

not an impediment to any specific technology in terms 1 2 of saying -- someone comes to the table and we say, 3 "Well, it's going to take us seven years." So it is 4 essential for us, we believe, to go forward and for us 5 to be setting some ground rules, which the designers, as Farouk noted also, can take advantage of. 6 There 7 would be -- I think this actually is a much more 8 stable way to go forward. 9 CHAIRMAN APOSTOLAKIS: Yes. But my point 10 is that if you had an application, say, coming in the 11 next year or so, then you look at these policy issues 12 perhaps with a different eye, and say, "Well, gee, how 13 much of the current system can I use, " and so on. 14 And now that you have a little more time, it seems to me the policy issues should be a little different, and 15 16 they should be really what they ought to be. 17 MR. THADANI: Yes. And one other piece of 18 information I want to give you is I have talked to the Department of Energy to get their sense of what they 19 20 see future is going to look like. 21 CHAIRMAN APOSTOLAKIS: Right. 22 And they continue to tell MR. THADANI: 23 I've had discussions with Bill Magwood. He me. 24 continues to tell me that he sees the gas cool

technology in the future for this country. So he

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

25

(202) 234-4433

314

	315
1	still believes it's an important element.
2	MEMBER POWERS: Ashok, Magwood's just come
3	down with his definition of what his Gen-4 reactors
4	are, and he's come up with six. He's got a gas
5	coolant fast reactor, he's got a are you ready for
6	this, Tom?
7	MR. KRESS: I know what you're saying.
8	MEMBER POWERS: A molten coolant reactor.
9	MR. KRESS: Yes.
10	MEMBER POWERS: He's got a
11	MEMBER ROSEN: Liquid metal reactor.
12	MR. KRESS: Yes.
13	MEMBER POWERS: metal reactor. He's
14	got something called a lead battery, which is kind of
15	hilarious. Super critical water reactor, and then
16	he's got the one that's the cat's meow of them all, a
17	very high temperature gas reactor.
18	MR. KRESS: Right.
19	MEMBER ROSEN: Remember, those are
20	reactors that their Gen-4 Program has been studying
21	and for implementation into 2030. This is not next
22	year.
23	MR. THADANI: That was going to be my
24	point. There's a distinction here, and Bill Magwood
25	made a presentation recently, I think to the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	316
1	Commission also, and he pointed out what he believes
2	over the next ten years is likely to happen. And then
3	Generation 4 basically is 2030 to 2050 is what
4	CHAIRMAN APOSTOLAKIS: Just about the time
5	when we'll retire, right?
6	MR. THADANI: I want to enjoy a few years
7	of my life.
8	(Laughter.)
9	MR. KRESS: But I think the policy issues
10	that you selected address all those reactor types.
11	MR. THADANI: That's exactly right.
12	MEMBER WALLIS: George, you can tell your
13	grandchildren then that you had a role in making this
14	possible when it happens.
15	CHAIRMAN APOSTOLAKIS: What do you mean?
16	I'll still be on the ACRS.
17	(Laughter.)
18	CHAIRMAN APOSTOLAKIS: Let's go on,
19	Farouk.
20	MEMBER ROSEN: But I want to be sure
21	before you go on, I want to be sure that the outcome
22	of that is, I understand, is that we're going to move
23	forward in a way to enable those things to be
24	possible, not just look at gas-cooled pebble bed
25	reactors. Is that correct?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	317
1	MR. THADANI: Yes. I think a lot of this
2	will really aid, not just in terms of gas-cooled
3	technologies but other technologies as well, yes.
4	MEMBER ROSEN: It should.
5	MR. ELTAWILA: I want to make a point here
6	that these five issues are not new. We have
7	interacted with these issues with another ACRS
8	committee in the '90s and the Commission, and we
9	issued the SECY 93-092, same five issues. And the
10	Commission approved the staff recommendations in an
11	SRM dated July 13, 1993, but because of the change in
12	Commission, the ACRS, the staff and our experience
13	with risk-informed regulations, all of these led us to
14	go and revisit these issues, put them back in front of
15	you. We'd like to get your feedback and then go to
16	the Commission with either the same recommendation or
17	different recommendation, but they are not new issues.
18	MR. KRESS: Yes. The resolution of those
19	issues were LWR-specific, as best I remember, back in
20	'93.
21	MR. ELTAWILA: And they were written in
22	terms of the CANDU, the MHTGR, or whatever it was, and
23	the Pius. So they were really for the advanced
24	reactor in general, not for the light- water reactor.
25	We would like to have a continuous interaction with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	318
1	you. For example, at this stage, what we'd like for
2	you to see if we identified this issue, provide enough
3	clarity about them and what is your views about them?
4	Eventually, it will come back to you after we have
5	interaction with the stakeholder and discuss our final
6	recommendation to the Commission. Whether you send us
7	letter now or towards the end, that's completely up to
8	you.
9	CHAIRMAN APOSTOLAKIS: At the end, you
10	will want one.
11	MR. ELTAWILA: We definitely will want one
12	at the end, but if you want to send us one right now
13	to help us, that would be
14	MR. THADANI: We would appreciate it,
15	certainly, even if you have any views that you want to
16	put forth, be they in our discussions or if you want
17	to advise the Commission if you disagree with anything
18	that we say here or in the paper.
19	MR. KRESS: We can certainly do that. I
20	don't know if we can address that third sub-bullet
21	under the third bullet yet, but we can give you
22	comments on the first two sub-bullets.
23	MR. ELTAWILA: Okay. That would be great.
24	As I indicated earlier, we have other activities where
25	we are developing a risk-informed performance-based

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	319
1	regulatory framework. That will be a technology-
2	neutral framework so we can use it for any kind of
3	reactor design. I'm not going to talk about it here,
4	but it's going to be a part of the RIRIP updates
5	that's due to the Commission in June of this year.
6	MEMBER SIEBER; I would hope that it's not
7	a two-stage either/or system between deterministic and
8	risk-informed for advanced reactors. I would like to
9	see it just risk-informed to sort of force the context
10	into that kind of thinking as opposed to giving
11	alternatives.
12	MR. ELTAWILA: It's not alternative. It's
13	together, I believe, that's whenever it's possible
14	that you can use the performance-based regulatory
15	framework
16	MEMBER SIEBER; That would be the
17	requirement to use that.
18	MR. THADANI: I think, certainly, there
19	will have to be some sort of high-level risk-informed
20	approach.
21	MEMBER SIEBER; Right.
22	MR. THADANI: But that when you go to
23	some specific designs
24	MEMBER SIEBER; There will be
25	determinants.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	320
1	MR. THADANI: you might find there is
2	such limitations
3	MEMBER SIEBER; Right.
4	MR. THADANI: in trying to meet those
5	high-level goals that you may have to resort to some
6	other considerations.
7	MR. SALSBERG: No, but you won't have
8	alternative rules.
9	MR. THADANI: No. Our intention is not to
10	have alternatives.
11	CHAIRMAN APOSTOLAKIS: And there will be
12	no two-track system.
13	MR. THADANI: No.
14	CHAIRMAN APOSTOLAKIS: Two-tier system.
15	MR. THADANI: That's not the intent.
16	MR. ELTAWILA: Just for background
17	information, we completed the preapplication review
18	for the AP-1000, PBMR preapplication activities. We
19	are continuing to work with Exelon, trying to close
20	out and document where most of the information that we
21	received on our request for additional information.
22	We expect additional preapplication activities, like
23	GE is meeting with us sometime this month about GE-
24	ESBWR, which is a 1,200 megawatt electric, which
25	builds on the ABWR and on the SBWR that was under

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

NEAL R. GROSS

	321
1	review here at the Commission a few years ago. And
2	Framatome is proposing SWR1000 and another is NG-
3	CANDU, which is new generation CANDU. So all these
4	are preapplication that's on the horizon, so the staff
5	will be
6	CHAIRMAN APOSTOLAKIS: Why do you say
7	they're possible? Do you have any indications of
8	anybody that they might actually come?
9	MR. ELTAWILA: They are all GE-ESBWR is
10	coming to discuss
11	MR. THADANI: They sent a letter in April.
12	MR. ELTAWILA: Yes, they sent a letter in
13	April. We have a meeting with them this month. We
14	had already a meeting with Framatome, and we're
15	planning to have another meeting with them in August.
16	NG-CANDU, or AACL, they are coming June 19.
17	CHAIRMAN APOSTOLAKIS: Oh, so there is
18	already contact.
19	MR. ELTAWILA: There is a contact with
20	these
21	CHAIRMAN APOSTOLAKIS: What does ESBWR
22	stand for?
23	MR. ELTAWILA: European Simplified Boiling
24	Water Reactor, but eventually it will become Economics
25	Simplified Boiling Water Reactor.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	322
1	(Laughter.)
2	CHAIRMAN APOSTOLAKIS: So they will apply
3	for a green card, I assume. The European reactor will
4	apply for a green card?
5	(Laughter.)
6	MR. ELTAWILA: That's one of the policy
7	issues that we need to discuss.
8	CHAIRMAN APOSTOLAKIS: It's a policy
9	issue.
10	MEMBER ROSEN: We'll ask them if they have
11	any business here, and they'll say, "No, not yet."
12	And we'll say, "Well, come back when you do."
13	MR. ELTAWILA: Again, many of the issues
14	that developed in the course of our review have
15	resulted in generic policy implication, like the legal
16	and financial issue, and we issued a SECY paper. We
17	are planning to provide the Commission in the June
18	time frame with a technical paper in conjunction with
19	the policy papers. So to facilitate a policy
20	decision, we want them to see the underlying technical
21	basis for our recommendation.
22	VICE CHAIRMAN BONACA: What is the NG-
23	CANDU?
24	MR. ELTAWILA: New generation CANDU.
25	That's

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	323
1	MR. THADANI: As I understand, it's slight
2	enrichment I think they're moving away from natural
3	uranium. And we would certainly be interested in
4	getting better understanding of things like the
5	coefficient and so on.
6	VICE CHAIRMAN BONACA: Yes. That was the
7	one that has to be no good.
8	MEMBER FORD: I have a question. With all
9	these reactors coming up for reapplication, how many
10	of them can you in fact address, given the people, the
11	resources you have?
12	MR. THADANI: Let me right now, there
13	is a significant issue about budget. Obviously, the
14	Commission has not made any decisions about 2004
15	budget, and they may want to make some changes even in
16	2003 budget before the Appropriations Committee does
17	its thing for 2003 budget. Our plans currently do not
18	include consideration of review of any designs
19	other than an HGDR and AP-1000, and we have some
20	limited resources we've identified in the outyears.
21	I think it was Farouk, you'll have to correct me
22	Iris, I think we put some in the outyears, some
23	resources.
24	MR. ELTAWILA: That's correct.
25	MR. THADANI: So we could discuss with

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	324
1	Westinghouse and others the key thermalhydraulic issue
2	and the testing issues upfront. So we put some
3	resources for that. If ESBWR or SWR1000 or NG-CANDU
4	come in, the Commission is going to have to make some
5	decisions about how to do allocation of resources.
6	CHAIRMAN APOSTOLAKIS: But you have to
7	respond if they come in. I mean it's not
8	MR. ELTAWILA: That's correct.
9	MR. THADANI: Yes.
10	CHAIRMAN APOSTOLAKIS: You can't tell them
11	we can't do it.
12	MR. THADANI: Well, we can say we can do
13	it, but it seems to me one option would be to get in
14	the line and maybe it will take us longer time because
15	of resource considerations.
16	CHAIRMAN APOSTOLAKIS: That's the last
17	thing you want to do. I mean
18	MR. THADANI: I'm not suggesting that
19	that's what it's a Commission decision in the end.
20	CHAIRMAN APOSTOLAKIS: Right.
21	MEMBER ROSEN: Is there a problem, to some
22	degree, ameliorated by attempting to do things
23	generically, to set some criteria generically?
24	MR. KRESS: Oh, yes, that would help
25	tremendously. I think we're off the subject, though.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	325
1	I mean this is your guy's business, you can figure
2	that out.
3	CHAIRMAN APOSTOLAKIS: Maybe we can go to
4	the issues at some point. Thank you, Farouk.
5	MR. ELTAWILA: You're welcome. I think
6	one of the well, that's the important issue here,
7	the Commission expectation about enhanced safety, what
8	we mean by enhanced safety.
9	CHAIRMAN APOSTOLAKIS: Shouldn't we
10	quantify them first, though, the margins, instead of
11	talking about them?
12	MR. ELTAWILA: That's a very good
13	question.
14	CHAIRMAN APOSTOLAKIS: Are you going to
15	have it somewhere there to quantify the margins of
16	safety?
17	MR. ELTAWILA: Not during this
18	presentation. Hopefully, as part of our work, we will
19	be able to try to come up with methodology to quantify
20	the margin of safety.
21	CHAIRMAN APOSTOLAKIS: Yes. I mean I
22	remember when we were discussing Option 3 here, Mary
23	and your colleagues, what was it, a year ago. They
24	agreed also that that would be something useful to do.
25	In fact, you write it in the report. It's in the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

	326
1	report that the margins of safety should be
2	quantified.
3	MEMBER WALLIS: First of all, you have to
4	
5	CHAIRMAN APOSTOLAKIS: Because then you
б	can have the
7	MR. THADANI: That's right.
8	CHAIRMAN APOSTOLAKIS: Sorry?
9	MR. THADANI: First you need to when we
10	talk about some high-level safety principles, it seems
11	to me that they will have to incorporate within them
12	some discussion of what sort of confidence level one
13	is looking at at that level. If one were to define
14	that, then one has to go forward and try and
15	understand what the margins are and what do we really
16	mean by certain level of confidence. And the thinking
17	that we've gone through so far is that is the general
18	path that we're going to have to at least consider and
19	hear options and so on. As to where we end up, I
20	don't know.
21	CHAIRMAN APOSTOLAKIS: In PRA, what we
22	have really quantified so far is the defense in-depth
23	measures.
24	MR. THADANI: Yes.
25	CHAIRMAN APOSTOLAKIS: But we have not

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	327
1	touched the safety margins.
2	MR. THADANI: Correct.
3	CHAIRMAN APOSTOLAKIS: We have taken the
4	success criteria, as given to us by the vendor, and
5	then we work with those.
б	MR. THADANI: That's right.
7	CHAIRMAN APOSTOLAKIS: Okay?
8	MR. THADANI: That's right.
9	MR. KRESS: When the Commission talked
10	about enhanced safety margins for the advanced
11	reactors, I think they had in mind a better safety
12	status. It's not the margins we normally talk about.
13	MR. THADANI: I wanted to come back to
14	George's point, because one of the things we don't do
15	well whoops, I think I turned off something.
16	MR. KRESS: An SBO.
17	MR. THADANI: Nice to have some control
18	here. In PRA, George, I guess common uncertainties
19	are sometimes done well.
20	CHAIRMAN APOSTOLAKIS: Right.
21	MR. THADANI: But the model uncertainties
22	are not done well at all. And what we're trying to
23	do, and not just in the context of the advanced
24	reactors, but we're trying to make sure that we have
25	efforts underway to try and understand what sort of

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

model uncertainties exist. And one of the issues that I'm exploring, the staff is looking at now, Farouk's staff is looking at, is if we want to modify 50.46 to look for functional reliability of ECCS, I suppose we establish some criteria, ten to the minus X, whatever it is. And we say but you should do realistic analysis, which is good.

8 Now, let me take you to another event 9 path, if you will. I don't want to assume any systems 10 failing, but I want to understand what things can go 11 wrong in terms of the implicit models in the code. How much confidence do I have in that? Shouldn't 12 13 there be some relationship of what one might call 14 model uncertainties to establishing some system reliability requirements? And Jack Rosenthal 15 in 16 Farouk's division is going forward to take a look at 17 that.

We're making slow progress, but those are the kinds of things I hope we'll take advantage of as we go forward on these new designs.

21 MEMBER WALLIS: Ashok, in a totally risk-22 based world, you wouldn't need margins of safety. I 23 mean they would be inherent in your choice of the risk 24 basis and you might -- you would be able to trade off 25 margin here against margin there --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	329
1	MR. THADANI: Exactly.
2	MEMBER WALLIS: that the risk basis
3	would give you. And then you would be able to tell
4	the public really that we're assuring a certain level
5	of risk. And how it's done by the industry is up to
6	them.
7	MEMBER ROSEN: But a totally risk-based
8	world is impossible, because in principle, because
9	model uncertainty, things that you don't know about,
10	can't be included.
11	MEMBER WALLIS: I'm sorry, risk-based
12	regulations can form. Not the world, it's the
13	regulations, they can be risk-based. Then you have to
14	deal with these uncertainties.
15	CHAIRMAN APOSTOLAKIS: In any case, the
16	issue of margins is right now outside the PRA,
17	essentially. I mean we are really working with the
18	defense in-depth measures and we're quantifying them.
19	If we have redundant systems, we know how to do that.
20	We do this, we do that. We are not including, of
21	course, passive areas, but it would be nice to have
22	all those so we'll be able to make tradeoffs and have
23	a better idea how well we meet the goals.
24	MEMBER ROSEN: I think some future
25	reactors will have to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	330
1	CHAIRMAN APOSTOLAKIS: And these are
2	future reactors.
3	MEMBER ROSEN: And we'll have to treat
4	passive failures in future reactors in PRA
5	CHAIRMAN APOSTOLAKIS: Sure.
6	MEMBER ROSEN: because of the nature of
7	the design.
8	VICE CHAIRMAN BONACA: Although, I mean
9	for new reactors you have such there's a challenge
10	because databases are not available. A lot of
11	information there is not, so there will be very large
12	uncertainties.
13	CHAIRMAN APOSTOLAKIS: So we've had a long
14	discussion on a slide that Farouk has not even
15	described yet.
16	(Laughter.)
17	MR. ELTAWILA: So the Commission has
18	expressed expectation in the advanced reactor policy
19	statement and in the severe accident policy statement,
20	for example, and both of them indicate that they
21	expect the new design to have better margin or better
22	safety than existing reactor.
23	Just to highlight two points that for the
24	advanced reactor the Commission encouraged the
25	simplified reactor inherently safe and use passive

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	331
1	feature, although that's very good but it poses a
2	tremendous challenge to PRA, because now the system is
3	responding to phenomenology rather than a component
4	failure. And we really don't have experience in doing
5	that work so that the passive system reliability
6	becomes an important issue.
7	CHAIRMAN APOSTOLAKIS: Let me come back to
8	the previous sub-bullet.
9	MR. ELTAWILA: Okay.
10	CHAIRMAN APOSTOLAKIS: I guess B, "Safer
11	than current reactors." You have to be very careful
12	with that. And the reason why I'm saying this is
13	several years ago DOE had an office and their highest
14	priority was to build a new production reactor. That
15	was before Mr. Gorbachev came to Washington to meet
16	with Mr. Bush. And DOE being very ambitious, said
17	that our new production reactor will be safer than the
18	commercial reactors. Then when it came time to
19	actually implement that they had a big problem. What
20	does safer mean? Is it supposed to be safer than the
21	best reactor out there? Is it supposed to be safer
22	than the average? What does it mean?
23	And what was at stake was millions of
24	dollars, okay? Because all it takes is a very
25	progressive utility with an excellent reactor and so

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	332
1	on to reach very low levels of core damage frequency,
2	and then the new production reactor had to be safer
3	than that. Okay? And they had the restrictions
4	regarding the sites. One was Savannah River, the
5	other one was somewhere else. Well, you know, the
6	seismic risk was more or less there, so you have to be
7	a little careful when you phrase these things.
8	MR. ELTAWILA: I agree with you. I'm
9	going to give you my own
10	MR. KRESS: That's exactly what he meant
11	by this being a policy issue is what did the
12	Commission mean by statements like that?
13	MR. THADANI: That's the point here.
14	CHAIRMAN APOSTOLAKIS: Well, then I'm just
15	elaborating on it.
16	MR. THADANI: Let me read you something
17	from I think this is the severe accident policy.
18	CHAIRMAN APOSTOLAKIS: This was a real
19	case, though.
20	MR. THADANI: As you know, there are three
21	relevant policy statements. One is severe accident
22	policy statement, the other is advanced reactor policy
23	statement and then the standardization policy
24	statement. Those are the relevant policy statements
25	that we're talking about. And I'm just let me

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	333
1	quote from I think it's the severe accident policy
2	statement. "The Commission fully expects that vendors
3	engaged in designing new standard plants will achieve
4	a higher standard of severe accident safety
5	performance than their previous designs."
6	And the point here is there is some sort
7	of expectation of improved safety. What does that
8	mean? And that's the same question we asked, Tom was
9	there, of the Commission. We need to be able to
10	articulate what that really means.
11	MR. KRESS: And the Commission said, "You
12	tell us."
13	MR. THADANI: Yes.
14	CHAIRMAN APOSTOLAKIS: Well, usually they
15	would like to see some options, and then they pick
16	around. What I'm saying is there was a real case
17	where people were enthusiastic, it will be safer than
18	the and then they had to eat their words. They
19	just couldn't afford to be safer.
20	MR. ELTAWILA: As a minimum, provide the
21	same degree of protection as current plants, and I
22	think that's the second part. And I really think the
23	issue of safer, and that's my own interpretation, is
24	that there were a lot of uncertainties in the severe
25	accident at that time and the expectation that by

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

resolving this severe accident issue you will be able to understand them better and you can make a better safety case.

4 MR. KRESS: They can provide a higher level of confidence in your review of your safety. 5

MEMBER POWERS: When we started looking at 6 7 probablistic approaches to, "Oh, we want to make 8 plants safe," we very quickly realized that if you 9 look at prevention systems, you can only go so far 10 with them. Eventually, you get to the point where 11 having redundancy and even diversity in systems actually starts costing you safety rather 12 than 13 helping. And so you had to have what has come to be 14 called a balance between prevention and mitigation. 15 And that became pretty much a pretty good guide for 16 what we were trying to do in the area of safety.

17 Now we see people coming forward with more 18 advanced reactors, and one that comes immediately to 19 mind are the AP series of reactors. What you're 20 saying, "Gee, we've done this PRA analysis on this thing, and our prevention systems are tremendous and 21 22 they give us CDFs of ten to the minus seventh and 23 things like that." And, you know, how do we react to 24 that?

You can look at their probablistic risk

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

334

25

1

2

3

assessment, and if it's like most probablistic risk 1 2 assessments, there are things you can quibble on, but 3 you don't find things that say that this absolutely 4 wrong, that the prevention systems just aren't this 5 good. But, quite frankly, you don't believe it. And so do we still have to -- I mean do we have to evolve 6 7 this concept of a balance between prevention and 8 mitigation or are we just changing the balance between 9 prevention and mitigation? Where do you see this 10 going here? Again, that's one of the 11 MR. ELTAWILA: policy issues that we are asking the Commission, and 12 13 I think I'm -- how about if we wait until we get to 14 that issue and see the question that we're asking are the right questions and we'll see where we develop the 15 technical basis for that. 16 17 I'd like to point out on the MR. KRESS: third bullet to the Committee that these guys have 18 19 been listening to us. You could probably find every 20 one of those in one of our letters or another. CHAIRMAN APOSTOLAKIS: What does RIRIP 21 22 mean, risk-informed rest in peace? 23 (Laughter.) 24 MR. ELTAWILA: That's exactly what it is. 25 That's Commission definition of that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

335

VICE CHAIRMAN BONACA: On the question of 2 should a higher level require that, I think simply by placing some requirements for containment for severe 3 4 accidents from the current generation, you would 5 already, in a qualitative sense, set up a higher level of expectation in safety. Right now we see everything 6 7 which is severe accidents beyond design basis to make 8 some portions of that part of design basis.

9 MR. THADANI: I think it's useful to touch 10 Dana's point, it seems to me. AP-600, for example. 11 I mean we had a clear path, clear guidance from the 12 Commission as Part 52 of our regulations, and then 13 referring to Part 50; that is, you meet our 14 regulations, that you address all unresolved safety 15 issues and high- and medium-priority generic safety issues, that you conduct a PRA and if it identifies 16 17 areas for enhancement, you conceded those.

And then we went beyond and we looked at 18 19 their words about reliability of decay heat, both in 20 the context of core damage and containment response. And we looked at some challenges to containment, 21 22 particularly early challenges, to see what sort of 23 features could be added to significantly reduce those 24 threats. And there's no question, at least in my --25 well, in addition to that, obviously, the rule says

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	337
1	they need to meet our safety goals also.
2	Now, one can always use that approach, but
3	is that the most efficient way for new designs? And
4	my own sense is that there is a better way to go at
5	it. But it needs to be borne out through some real
б	work, and we're just at the beginning of that.
7	MEMBER POWERS: I mean your first policy
8	issue hints at the problem. We can go ahead and say,
9	meet the safety goals and they'll have exactly the
10	same problem the current plants have, and it's very
11	difficult to tell whether you are or not, so you end
12	up using a surrogate. And you raise that question of
13	the current metrics, and I've seen a lot of people
14	raising that question, and for the life of me it
15	puzzles me. Because I look at CDF, core damage
16	frequency, and I say, well, some of these reactors
17	don't undergo core damage the way I look at core
18	damage, but I sure as hell know what a core damage
19	event in them is as much as I do one in a zircalloy
20	clad oxide fuel one. I mean it didn't strike me as a
21	tremendous leap of imagination has to be gotten to
22	change that CDF into I mean you're just changing
23	the letters a little bit, but then number's about
24	exactly the same.
25	MR. THADANI: I think the point here is

(202) 234-4433

	338
1	more than just the CDF itself. Do we want to stay
2	with the same value of LERF that we've been using? Do
3	we want to stay with the statements we made for AP-600
4	and others, 24-hour containment integrity for those
5	certain threats? Is that what we want to stay with?
б	MEMBER POWERS: Yes. Now, that's those
7	are real questions, because
8	MR. THADANI: Yes. And those are the
9	things we're talking about.
10	MEMBER POWERS: And the containment versus
11	confinement debate comes up.
12	MR. THADANI: Yes.
13	MEMBER POWERS: And, you know, some of the
14	words I've seen on that have been interesting to me,
15	and I'd just point out that the Savannah River
16	reactors were designed with confinements, and those
17	confinements, when we think about confinements and
18	terrorist or sabotage acts, sometimes we think they're
19	orthoginal with those confinements, were designed to
20	take an airburst from a nuclear weapon. So you can
21	design a confinement to be perfectly robust. It's
22	just a different approach than a containment, and
23	CHAIRMAN APOSTOLAKIS: Also, it seems to
24	me the words, "prevention" and "mitigation" refer to
25	a particular point, in this case, CDF, I mean core

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

You want to prevent it, and then if damage. happens, you want to mitigate the consequences. What if you don't have a core damage pivotal event, but you now have a frequency consequence, I mean release curve? Again, it's not obvious to me what prevention and mitigation means in that case because you will have different frequency regions. Well, I think, George --MEMBER POWERS: I think -- when I said it didn't take a big leap for me to translate CDF to something applicable to, say, a coded particle fuel reactor in a large graphite block, it seems to me that the only thing that counts is when you release fission products. CHAIRMAN APOSTOLAKIS: Yes MEMBER POWERS: If the only thing we did was damage core, we wouldn't care. And, of course, that's one of the great attractions, the molton salt reactor. You could probably the damage the core a lot and not release any fission products at all, because they'd absorb into the molten salt.

And when you look at frequency consequence 21 22 curves, I mean, yes, in reality, they're nice, smooth 23 curves and whatnot, but they have a sharp cliff, and 24 when you go over that cliff you know that that's 25 different than when you're just slowly degrading down.

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

it

	340
1	CHAIRMAN APOSTOLAKIS: And also it depends
2	on where you're releasing. It could be outside, could
3	be somewhere inside.
4	MEMBER POWERS: But it only counts if it
5	gets to the great out outdoors.
6	CHAIRMAN APOSTOLAKIS: If it isn't
7	outdoors, it doesn't matter.
8	MR. THADANI: But that is not the point.
9	I think we're going to have to think this through to
10	balance and design. I think that's I believe you
11	said that, and let me use an example: Reactor
12	pressure vessel today. We want to be sure, have
13	pretty high confidence that it's very, very unlikely
14	that you'll fail reactor pressure vessel. What are
15	potential challenges to the integrity of the pressure
16	vessel? Should you somehow divide the balance and
17	design? Does that mean that you have frequency of
18	challenge and the conditional probability of vessel
19	failure? Do you have to build that in in the vessel
20	to get balance because you're trying now kind of two
21	different things.
22	MR. KRESS: Sure, you're allocating among
23	sequences, and I think you
24	MR. THADANI: That's why I think frequency
25	consequence

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	341
1	MR. KRESS: Yes, yes.
2	MR. THADANI: you still have to think
3	about other factors.
4	MR. KRESS: You do, but I think this
5	question of prevention versus mitigation has to be
6	rethought. In the first place, we don't have any
7	guidelines on what that balance ought to be. If you
8	look at the current plants, you get some conditional
9	containment failure probabilities of 0.8. That's like
10	not having a containment at all. And then, by the
11	other token, you get some down around 0.01. So we
12	don't have good guidance on what that ought to be, and
13	in my view, some of the concepts, the molten salt, for
14	example, or the tri-cell coated fuel particle taps do
15	both their prevention and mitigation in one concept.
16	And I think that ought to be a way to think about it.
17	And I really think the overall view ought
18	to be do we meet high-level risk acceptance criteria
19	at a sufficient level of confidence? And the way you
20	build defense in-depth in that, in my mind, is to talk
21	about the uncertainties, and what you want to do is
22	balance that uncertainty across all these frequency
23	ranges.
24	CHAIRMAN APOSTOLAKIS: But the uncertainty
25	

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

MEMBER POWERS: The problem I've always 2 had with that, you know, "Let's talk about the 3 uncertainties," is that's great but you guys won't. 4 The only uncertainties that ever get discussed -usually uncertainties aren't discussed at all. All we get is point estimates, even from you guys, Ashok. Today we didn't.

MR. THADANI: I accept the criticism.

9 MEMBER POWERS: But when we do get 10 uncertainties, all we get these mamby-pamby little 11 various -- this adhesion coefficient or something like, nobody coming in and asking really where the 12 13 uncertainty is and whatnot. And so whereas you're 14 right, perhaps, though I don't actually agree with 15 you, but I will concede you have a point in principle, I think in practical fact it can't be done. 16 And 17 you're forced to come where I'm much more comfortable is saying, what if the codes and analyses are wrong? 18 19 And that's where you start addressing defense in-20 depth.

21 CHAIRMAN APOSTOLAKIS: And margins, I They go together, 22 think, not just defense in-depth. 23 although defense in-depth is the first thing that 24 comes to mind.

MR. KRESS: My view is --

25

1

5

6

7

8

	343
1	MEMBER POWERS: I won't argue with you on
2	that.
3	MR. KRESS: My view, Dana, is that the
4	uncertainties are a measure of how wrong the codes are
5	if you could quantify them.
6	MEMBER POWERS: It's a measure that you
7	never make.
8	MR. KRESS: Yes. We ought to be able to
9	do it better.
10	CHAIRMAN APOSTOLAKIS: No, but you see I
11	think what happens
12	MEMBER WALLIS: If you haven't made up to
13	now, it's going to be made.
14	CHAIRMAN APOSTOLAKIS: But what's going to
15	happen, guys, is the typical thing that engineers and
16	scientists do. Even if they try to quantify them,
17	they will quantify the uncertainties in the hardware,
18	in the processes, perhaps, and so on. I'm willing to
19	bet that nobody will come here and say, "And if we
20	build this reactor and we have these regulations, the
21	licensee will ignore this particular program and that
22	will lead to all sorts of problems," because we don't
23	think that way, and yet that's a major uncertainty.
24	MEMBER POWERS: Well, I mean what are the
25	chances we're going to build one and say, "And I bet

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 you this guy let's the boric acid chew through the 2 head." 3 CHAIRMAN APOSTOLAKIS: Well, that's what

4 I meant, that we heard today that the inspection 5 program -- that was a conclusion of the root cause analysis -- was good enough. It's just that it was 6 7 not implemented right, and the AIT report concludes 8 the same thing. That's its first conclusion, in fact. 9 They said it was pretty good, but if you don't have 10 the -- now, do you design the reactor with that kind of uncertainty in mind? I doubt it very much; I don't 11 12 think anyone would do that.

13 MEMBER WALLIS: You have the same thing 14 with codes, and we know that when we say 15 thermalhydraulic code, different people get different 16 answers depending on how they use it. So you've got 17 the human factor there too, someone who's careless use of a code, predicts something which is really not a 18 19 good answer and then uses it is just as careless as 20 the quy who let's boric acid sit --

21 MR. KRESS: We design reactors now with 22 our general design criteria and our design basis 23 accidents, and we take account of that by talking 24 about single failure criteria, but we don't deal with 25 it in there. Where we deal that is in the other parts

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

the regulations having to do with the reactor 1 of 2 oversight, inspection. I don't see a reason why we 3 have to change those parts of the regulations. Ι 4 think what we're dealing with here is trying to design 5 a regulatory system that helps a reactor design get certified in the first place. 6 And then these other 7 issues I can deal with them in other parts of 8 regulatory space. 9 CHAIRMAN APOSTOLAKIS: Maybe you want to 10 use different words there that will be safe enough. Oh, safe enough, yes. 11 MR. KRESS: 12 CHAIRMAN APOSTOLAKIS: And also realistic. 13 You know, it pains me to admit this, but I think there 14 is some point to the structure of this interpretation of Defense in-depth, because people are wrong. 15 Ι thought it was a joke but people do make mistakes. 16 17 MEMBER POWERS: Not at MIT. 18 CHAIRMAN APOSTOLAKIS: Well, but we don't 19 design them, unfortunately. 20 The second conclusion of the AIT report was tat a BNW owner's group underestimated the rate of 21 22 corrosion by at least a factor of two. Now who would 23 have said that in a study, in a PRA, that they will do 24 these calculations but they may also be wrong with 25 some probability? You can't say that. First of all,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

345

	346
1	people will be all over you. But it's something
2	that's inconceivable, and yet people do do those
3	things.
4	MEMBER WALLIS: You figure that in.
5	Certainly, I use the code example. I mean you know
6	something about the accuracy or uncertainty in the
7	predictions of codes, and you do build it in.
8	CHAIRMAN APOSTOLAKIS: See, that's the
9	thing
10	MEMBER WALLIS: But it's not formulated in
11	a quantitative way. You certainly bring it into your
12	consideration when you're making a decision, but it's
13	not formulated. What you're asking for is some
14	quantitative measure.
15	CHAIRMAN APOSTOLAKIS: Well, I'm not
16	asking for it. I think it's some uncertainty that we
17	don't even think of.
18	MR. KRESS: Anyway, I think this
19	CHAIRMAN APOSTOLAKIS: Make the system
20	more robust because you never know what's going to
21	happen, that kind of thing.
22	MR. KRESS: I think this discussion points
23	out a lot of formidable challenges these guys have.
24	MR. ELTAWILA: Mr. Chairman, I'm less than
25	one-third of my presentation, and I have 15 minutes.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	347
1	No, I need guidance. There is no way I can go through
2	the whole are you allowing me time or you want me
3	to finish at certain time?
4	CHAIRMAN APOSTOLAKIS: Use your judgment
5	and skip some things.
6	MR. ELTAWILA: I will skip something, but
7	I'd really like to highlight here on that viewgraph is
8	that the Commission had expectation that new reactor
9	will have containment equivalent to large, dry
10	containment. Of course, they meant light water
11	reactor. They did not mean at that time gas core
12	reactor. And the basis for that they approved a
13	confinement versus a containment in the policy paper.
14	So I'm bringing it upfront here.
15	Some of the policy issues that Mary's
16	going to address in her Commission paper are should we
17	be looking at different cornerstones in our regulatory
18	framework? For example, radiation protection for
19	worker, security and safeguards. These are a couple
20	of the issues. Should we be considering lead
21	contamination as part of our the metrics of the
22	MEMBER POWERS: Cornerstone issue. I
23	could imagine that you might have well to enhance your
24	safety and security just because of the current
25	environment, but let me ask you, do you think that

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	348
1	you're getting enough mileage out of the known risk-
2	informed cornerstones that you have, that you need to
3	look for others of those? You know, radiation
4	protection, health security, things like that. I mean
5	they're the stepchildren of the cornerstones as it is.
б	Do you need more stepchildren?
7	MR. ELTAWILA: No, but that's all. The
8	Commission said no before, yes?
9	MEMBER POWERS: It seems to me I would not
10	waste a lot of time on that. The lane contamination
11	really is something that they need to decide, but I
12	think we know what the answer is going to be.
13	MR. ELTAWILA: Yes. I think the issue of
14	defense in-depth I think Tom alluded to it. When you
15	have the tri-cell particle that performs both the
16	function of prevention and mitigation and the fuel
17	can't stand very high temperature for a long period of
18	time, assume this is true. Can we allow the length of
19	time as a barrier, as a defense in-depth. These are
20	some of the questions that we'll be tackling in the
21	future.
22	MEMBER ROSEN: Well, before you get off
23	that slide, there's one I the Generation 4 Program
24	has pointed at that's not there, and that is the need
25	for off-site evacuation.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	349
1	MR. ELTAWILA: It's in there.
2	MR. THADANI: It's coming.
3	MR. ELTAWILA: These additional policy
4	issues I'm going to address the emergency planning
5	as part of this.
6	CHAIRMAN APOSTOLAKIS: But these are
7	related also to the others. If you bring up the issue
8	of international standards, for example.
9	MR. ELTAWILA: Quickly, since these
10	designs, or most of them, are done overseas, we really
11	need to look at the senders overseas and see if we can
12	capitalize
13	CHAIRMAN APOSTOLAKIS: Yes, but for
14	example, the Europeans don't really have safety goals;
15	we do. So I don't know how you
16	MR. THADANI: Well, I think if you go back
17	and let me use EPR. If you go back and look at the
18	EPR safety principles, they include probablistic
19	considerations.
20	CHAIRMAN APOSTOLAKIS: Not the way that
21	our Commission has I don't think they say this is
22	a goal, do they?
23	MR. THADANI: Well, they establish some
24	probablistic considerations
25	CHAIRMAN APOSTOLAKIS: For what?

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	350
1	MR. THADANI: which then drive them to
2	certain designs, for example, in terms of core damage
3	severe accidents.
4	CHAIRMAN APOSTOLAKIS: But we have it at
5	
6	MR. THADANI: Ten to the minus X they
7	have.
8	CHAIRMAN APOSTOLAKIS: Yes, but we have it
9	at a level of individual risk.
10	MR. THADANI: Oh, yes, yes, they don't.
11	CHAIRMAN APOSTOLAKIS: They don't do that.
12	MR. THADANI: You're right. You're right.
13	MR. KRESS: With respect to this, Ashok,
14	Farouk, I may be a maverick on this issue because I
15	think it be well to understand what the safety
16	requirements are in other countries and IAEA, their
17	principles and stuff like that. But I find it
18	perfectly reasonably to say different countries that
19	have different have high-level risk acceptance
20	criteria. That's because they have different citing
21	characteristics, they have different values. They
22	might value nuclear more than we do because it's the
23	only option they have. So it's perfectly reasonable
24	to me that we'd have a different set of safety
25	standards than some of the countries.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	351
1	CHAIRMAN APOSTOLAKIS: At the health and
2	safety level, yes, but the core damage or equivalent
3	level, I'm not sure that's a wise way to go. Because
4	one accident somewhere kills everybody.
5	MR. KRESS: Well, I don't think that's
6	necessarily true either. I think that's a misnomer.
7	CHAIRMAN APOSTOLAKIS: I think we've used
8	the argument that that design is different from ours
9	to the limit. I don't think the American people will
10	buy that.
11	MR. THADANI: I think that there's so many
12	different variables that I think there are different
13	forces that would push certainly western Europe in
14	some directions that we may not want to go.
15	MR. KRESS: That's exactly my point. I
16	don't think it's true that an accident anywhere is an
17	accident everywhere, especially for some of the new
18	plants.
19	CHAIRMAN APOSTOLAKIS: I think you're
20	going to have a hard time convincing me
21	MR. KRESS: Only philosophically.
22	MEMBER POWERS: But from a practical point
23	of view, I think you're right, Tom, that we had a
24	major accident in Russia with a plant design that was
25	very different from ours. And it had a remarkably

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	352
1	little impact on the United States nuclear power
2	program. Big impact on Europe's but remarkably little
3	in Japan. So I think, yes, once the designs are
4	distinct enough, you're probably right.
5	CHAIRMAN APOSTOLAKIS: But my argument is
6	that the argument that the designs were distinct
7	enough was accepted last time. I'm not sure how many
8	times the American people will accept that.
9	MR. KRESS: They also didn't look very
10	close either.
11	(Laughter.)
12	MEMBER SIEBER; A more important factor
13	may have been the fact that they're far removed from
14	us and people, when something happens thousands of
15	miles away, don't see it as
16	CHAIRMAN APOSTOLAKIS: I really don't want
17	anybody to have a reactor with a core damage frequency
18	of ten to the minus three or two. I don't care where
19	it is, I don't care what their needs are.
20	MEMBER POWERS: There are a couple of
21	them.
22	CHAIRMAN APOSTOLAKIS: They should
23	MEMBER POWERS: Already.
24	CHAIRMAN APOSTOLAKIS: The West is doing
25	something about the ones I know about.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	353
1	MEMBER POWERS: They would try to bomb
2	them.
3	CHAIRMAN APOSTOLAKIS: Okay, Farouk.
4	MR. ELTAWILA: The first policy issue that
5	we are putting in front of the Commission is the event
6	selection and safety classification of system
7	structure and the component. And as I mentioned
8	earlier, that this passive system the traditional PRA
9	will not work the same way
10	CHAIRMAN APOSTOLAKIS: What do you mean by
11	better selection? You mean design basis?
12	MR. ELTAWILA: Yes, the design basis and
13	beyond design basis. So these are the yes, design
14	basis selection. And the selection of these, for
15	example, they will be generally low probability event,
16	but they are going to be responding to different
17	uncertainty. So assessing the reliability of this
18	system and try to quantify the core damage frequency
19	or LERF based on these phenomenological uncertainty
20	will be extremely difficult. So sheds doubts about
21	the usability of PRE.
22	That issue was raised in front of the
23	Commission long time ago and in the 1993, and the
24	staff at the time said that we are going to use a
25	blend of deterministic and probablistic approach.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	354
1	We'll use the deterministic as it exists right now and
2	supplement it with risk information. And the
3	Commission found that to be acceptable at that time.
4	CHAIRMAN APOSTOLAKIS: Well, that was nine
5	years ago, but I would say well, first of all, is
6	your does your second bullet imply that maybe we
7	will not have design basis accidents at all, that
8	we'll have some other approach that maybe some people
9	can come up with or a test to we have to have them?
10	Maybe not in the
11	MR. ELTAWILA: The approach that was
12	proposed by the PBMR have some design basis approach,
13	but, again, they are selected using PRA.
14	CHAIRMAN APOSTOLAKIS: Right.
15	MR. ELTAWILA: You know, that they were
16	not really deterministic. They said that these are
17	the design requirement that we are going to design the
18	plants for.
19	CHAIRMAN APOSTOLAKIS: Because there is
20	value to having specific accidents and accident
21	sequences, because then it eases communication.
22	There's no question about it. At the same time, you
23	may not want to treat them the way what is in the
24	LWRs.
25	MR. THADANI: If you go, for example, the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	355
1	concept of frequency and consequences, if you go to
2	that concept, consequences starting with nothing
3	happening all the way to some significant releases, if
4	you go to that, the point here would be you can do
5	that in absence of a specific design, you can lay out
6	some things. But then when you go to the specific
7	design, you still need to maybe using that concept,
8	you still need to, as you were saying in terms of
9	communication, analysis and so on, need to identify
10	what are those events that you need to
11	MR. KRESS: You have a copy of my
12	viewgraph that I gave to the Commission?
13	CHAIRMAN APOSTOLAKIS: Yes. I don't like
14	the word, "supplemented," excuse me.
15	MEMBER WALLIS: I don't see how you can
16	set deterministic requirements for a reactor concept
17	which doesn't yet exist. You can always set
18	probablistic sort of requirements and safety goals,
19	but you cannot set deterministic goals.
20	MR. KRESS: I was proposing an iterative
21	process in my slides to the Commission in which you
22	have some sort of you always are going to have a
23	design concept. You don't have anything unless you
24	start out with a design concept. And you can select
25	initiating events for those concepts, and you can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

NEAL R. GROSS

establish some sort of initiating event frequency. 1 2 Now, that's going to be the tough part, but the 3 question is now which of these events and at what 4 frequency level are you going to cut off and say these 5 are design basis and these others aren't? Well, you could do it iteratively in the way that I proposed, 6 7 and you would have to adjust the design, but you have 8 to have a PRA to do this. 9 MEMBER WALLIS: That's right. You'll be 10 MR. KRESS: And you have uncertainties in 11 and you have to have high-level acceptance 12 it, 13 criteria. 14 MEMBER POWERS: Tom, the difficulty I have is that's great if I'm designing the reactor. 15 But when I'm in the business of regulating the reactor, 16 17 and you've gone through all that, do I care? 18 MR. KRESS: Once the design is fixed, 19 that's the basis for certification. 20 MEMBER POWERS: No, no, no. Why should I care? Why shouldn't I say the basis of certification 21 22 is this plant has an expectation value of the risk of such and such a value at such and such a confidence 23 24 limit, and I really don't care what particular 25 accidents the designer worked to try to knock down at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

356

	357
1	very low levels?
2	MR. THADANI: If you take that in
3	conjunction with other requirements like, for example,
4	source term, containment fuel, quality and things like
5	that, you can make that determination.
6	MEMBER POWERS: Yes.
7	MR. KRESS: Dana, I think this is back to
8	my rationalist defense in-depth concept, and what it
9	has to do with is you focus on individual sequences,
10	and this is a way to do it. And you assure yourself
11	that individual sequences meet two criteria: One,
12	they don't contribute overly to the overall risk, and
13	they don't contribute a huge amount to the
14	uncertainty. That's why you do it in that manner.
15	MEMBER POWERS: Well, we've debated this
16	before. I mean I don't care if my risk is ten to the
17	minus eight and it's 99.9 percent due to one sequence,
18	that's fine with me.
19	MR. KRESS: Yes. But you wouldn't want 99
20	percent of your uncertainty be due to that sequence.
21	That's my point.
22	MEMBER POWERS: If the uncertainty is only
23	ten percent, I don't care.
24	MR. KRESS: Well, that's true too. That's
25	a sliding scale.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	358
1	MR. ELTAWILA: The Commission actually
2	addressed part of that issue in the '90s. For
3	example, the air intrusion that was very low
4	probability event, but the Commission said, "Don't
5	have arbitrarily cut off at the exact frequency."
6	Consider that issue, even though it's a very low
7	probability, look at the consequence in that issue
8	CHAIRMAN APOSTOLAKIS: Right.
9	MR. ELTAWILA: and incorporate it in
10	the
11	CHAIRMAN APOSTOLAKIS: The PRA.
12	MR. ELTAWILA: in your decision.
13	MR. KRESS: You have to look at all
14	sequences.
15	VICE CHAIRMAN BONACA: In Option 2 right
16	now we're struggling with the issue of having just one
17	criterion, okay, to throw things into Risk 1, 2, 3 and
18	4, and we have in fact discussed the possibility of
19	having well, the FSAR has different criteria, has
20	a set of criteria, generally. What are we going to
21	use here? Are we going to intermediate criteria for
22	the
23	CHAIRMAN APOSTOLAKIS: I think it's
24	covered by his earlier comment that what was it?
25	MR. THADANI: It was the issue of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	359
1	classification.
2	CHAIRMAN APOSTOLAKIS: The cornerstones,
3	additional cornerstones. You may want to add
4	additional. But I really don't like the word,
5	"supplemented,"
б	VICE CHAIRMAN BONACA: But I think
7	certainly we don't want to get into a situation, as we
8	have right now, for Option 2 where
9	MEMBER POWERS: I mean "supplemented" is
10	what they said.
11	MR. ELTAWILA: That's what the Commission
12	said. I think what we responded to Exelon we
13	indicated there's going to be a blend of both real
14	deterministic and probablistic analysis.
15	CHAIRMAN APOSTOLAKIS: Okay. That was in
16	1993, wasn't it?
17	MR. ELTAWILA: Yes. It's just a
18	statement.
19	CHAIRMAN APOSTOLAKIS: I think from the
20	whole discussion here in my view there will have to be
21	deterministic requirements at least for the ease of
22	communication, but these should be based on
23	probablistic arguments as much as possible.
24	MEMBER POWERS: George, we're all
25	Bayesians now.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433
	360
1	(Laughter.)
2	CHAIRMAN APOSTOLAKIS: It's not this
3	Committee that worries me.
4	MR. ELTAWILA: With probablistic
5	arguments, with the robust consideration of
6	uncertainties.
7	MEMBER POWERS: Yes, I'd like to see that
8	happen.
9	MR. KRESS: That's our mantra now.
10	MR. THADANI: But you know, you've got to
11	keep pushing. I think we cannot
12	CHAIRMAN APOSTOLAKIS: But, you know,
13	Ashok, it's very disappointing what's happening in
14	real life. I mean the reactor safety study 25, 27
15	years ago quantified parameter uncertainties. We
16	ought to be discussing now model uncertainties. And
17	what's happening? People are not even doing the
18	parameters anymore. It's really very discouraging.
19	MR. THADANI: I know Mary's just itching
20	to get and react to that statement, but I can tell you
21	that there's really a fair amount of effort let me
22	make sure. Maybe we have not been here talking to you
23	as to what it is we're doing to move in that
24	direction. I think your observation is reasonable
25	that I've seen more studies recently over the last few

1323

NEAL R. GROSS

(202) 234-4433

	361
1	years which have had less discussion of uncertainty
2	than I used to see many years ago.
3	CHAIRMAN APOSTOLAKIS: That's right.
4	MR. THADANI: So I think that
5	CHAIRMAN APOSTOLAKIS: And you know why?
6	I've talked to industry about these things. You know
7	what the answer is? The NRC staff doesn't want them.
8	I'm sorry, but that's what they told me: Why should
9	we do it? Anyway, let's go on.
10	MR. ELTAWILA: The issue of fuel
11	performance and qualification is one of the most
12	important issues, and I think the policy decision that
13	we would be seeking guidance from the Commission is
14	regarding the test requirement. You know, we
15	traditionally stopped at design basis requirements, so
16	what is the role of beyond design basis? Should we
17	stop they can demonstrate that the fuel will keep
18	the temperature of 1600 degrees. We would like to
19	require additional test that will go beyond that and
20	look at the failure point and so on and when you can
21	release the fission product.
22	MEMBER WALLIS: This is a deterministic
23	thing which is thrown out in the air. It depends upon
24	what the fuel is, what the accidents are, what the
25	risks are. You can't just pick a number like 1600

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	362
1	degrees C.
2	MR. ELTAWILA: I did not pick that number.
3	MEMBER WALLIS: But you can't.
4	MR. ELTAWILA: I think because they have
5	qualifications
6	MEMBER WALLIS: You put it down there.
7	Someone
8	MEMBER POWERS: I think Graham is raising
9	a general point here, and not just the fuel, but the
10	general point is that why wouldn't you treat this just
11	the way you treat many of the things now in looking at
12	a safety analysis report? A guy has come to you and
13	he's said, "Gee, I've got a reactor here. It's ten to
14	the minus eighth reactor, and I proved it with this
15	analyses." And you go through that analysis and you
16	say, "Okay, one of your assumptions is that the fuel
17	is good to 1600. It doesn't even hint at releasing
18	fission products at 1600 for three and a half days.
19	Prove that to me with test data and things like that."
20	And you would just go through other things but
21	following the assumptions that he made when he had
22	done his analysis of the risk. I mean why focus just
23	on fuel? I mean it would be all of the major
24	assumptions. It may be up to some discretion and
25	guidance from the staff on which ones they wanted to

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	363
1	go after.
2	MR. ELTAWILA: Again, Dana, because as I
3	indicated earlier, that the decision on any of these
4	issues will affect the other decisions. So if you are
5	going to say that there will be no fission product
6	released ever, then you want to be sure that this
7	decision is not at 1650. You're going to start seeing
8	a release in fission product.
9	MEMBER POWERS: Everything comes out.
10	MR. ELTAWILA: So it's again because the
11	importance that was given to the fuel as a prevention
12	and mitigated feature that you want to have more
13	assurance that we have done in the traditional fuel
14	design.
15	MEMBER SIEBER; Okay. I guess when I see
16	you said the burnups and temperature requirements in
17	a deterministic way, you're really putting a box
18	around what the fuel cycle will look like, which sets
19	the cost.
20	MR. ELTAWILA: I apologize. This was
21	Exelon proposal. I should have made that clear. This
22	is the proposal that will be running at 80,000
23	megawatt day per metric ton and is going to be with a
24	stand temperature of 1600 degrees C. That's not our
25	requirement.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	364
1	MEMBER SIEBER; Okay. I don't think we
2	ever should make a requirement like that.
3	MR. KRESS: This may be an issue specific
4	to gas cool reactors.
5	MEMBER ROSEN: Right. But I'm known to
6	think about these things generically. Should you
7	qualify for fuel's performance? Absolutely, but it
8	may be different for different designs. Should fuel
9	qualification testing be completed prior to granting
10	a mine operating license? Excuse me? I wish we would
11	just all rise at once and say, "Of course." I mean we
12	didn't do that before but that was then, this is now.
13	MR. KRESS: Wait a minute. Suppose I told
14	you that I have a fuel that I can't qualify?
15	MEMBER ROSEN: Well, I'd say you have a
16	problem convincing me to license your reactor.
17	MR. ELTAWILA: What would you say that we
18	have a fuel that was produced based on the same
19	manufacture and process, like in Germany, but even you
20	cannot prove to anybody that you are going to be
21	following that process?
22	MR. KRESS: That's exactly
23	MR. ELTAWILA: And there is a
24	qualification, there are wealth of database on the
25	Germany fuel, but the technology itself they have not

	365
1	produced that fuel using this process for a long
2	period of time. So can you rely on this old data or
3	you want the current processing of the fuel be tested
4	to prove that this condition will be attained?
5	MEMBER POWERS: It's a cute question
6	because you know what the answer is. They're not even
7	close to reproducing the German fuel. I mean it's
8	appalling how far away they are.
9	MR. KRESS: And not only
10	CHAIRMAN APOSTOLAKIS: Just have the
11	Germans do it then, make it?
12	MR. KRESS: But not only that if they do
13	get the process down to where they've got the same
14	quality fuel, and then you're going to take so many
15	billion of those things and stick it in your reactor,
16	to say that each one of those now has that quality
17	based on the fact that I know how they made it,
18	there's no way, in my mind, you can statistically
19	prove that fuel has the quality that they said it has.
20	And that's your issue here. You have to focus on
21	process rather than product.
22	MEMBER POWERS: Well, don't worry, Tom,
23	they're so far away now they can statistically prove
24	they ain't there.
25	MR. KRESS: Well, right now, but they can

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Í	366
1	prove they're not there, but when they want to hit
2	their target level they can't prove it. But I suggest
3	that it's because you can't stick enough of this fuel
4	and take it to that burnup level, at that temperature
5	long enough in a test reactor, there's no way you can
б	get the statistics out of that. What you have to do
7	is test all the fuel at the same time.
8	MEMBER POWERS: And what's
9	MR. KRESS: And the only way to do that is
10	stick it in your reactor and, as installed, during
11	startup and initial operations, you look to see how
12	much fission products you get in your primary system.
13	This should be a measure of at least how many faulty
14	fuel elements you have. It's just like you know,
15	we measure the quality of the fuel now by looking at
16	how much activity is in the thing. You're going to
17	have to develop that kind of concept for these, I
18	think. And it ought to be part of the licensing
19	provision.
20	CHAIRMAN APOSTOLAKIS: Isn't it completely
21	inconceivable that I can have some damage to the fuel
22	but then I have other means to contain it?
23	MEMBER SIEBER; Yes.
24	CHAIRMAN APOSTOLAKIS: Why?
25	MEMBER SIEBER; We usually put a reactor

(202) 234-4433

	367
1	pressure vessel around it.
2	CHAIRMAN APOSTOLAKIS: So then why do I
3	need I mean I can provide other measures. Contain,
4	let them clean it up.
5	MR. KRESS: Well, you can, you can.
6	MEMBER POWERS: We kind of do that right
7	now.
8	CHAIRMAN APOSTOLAKIS: So, again, we're
9	going back to the picture of the reactor as a whole,
10	of the plant. It's not just
11	MEMBER SIEBER; You've essentially removed
12	one of the barriers of your risk
13	CHAIRMAN APOSTOLAKIS: But I may have
14	installed another one.
15	MEMBER SIEBER; Yes. You may just put
16	more and more barriers.
17	MEMBER POWERS: Well, you're right,
18	George, in the sense that we have much the same
19	problem that we were discussing in connection with
20	Yucca Mountain. We all agree that there are going to
21	be multiple barriers. Now, the question is do we put
22	our constraint on what the totality of those barriers
23	are? Or do we go in and say, "Okay. The totality has
24	to be hits," but no one barrier can be more than 30
25	percent of this.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	368
1	CHAIRMAN APOSTOLAKIS: Absolutely,
2	absolutely.
3	MEMBER POWERS: And that's a very
4	interesting question to get into, and every time I
5	persuade myself that I don't want to dictate what the
6	barriers do, you come back with an argument on why I
7	should.
8	CHAIRMAN APOSTOLAKIS: Farouk, you are
9	going too slow here.
10	(Laughter.)
11	MR. ELTAWILA: I'll try. Okay. The issue
12	of the source term is one of the traditionally, we
13	use the TID 14844 or NUREG 1465 as a generic source
14	term. The pebble bed and all advanced reactors try
15	now to have a scenario-specific source term. And that
16	I raise a question about the experimental database to
17	support that, the fission product release and
18	transport and the models and so on. We raised that
19	issue in front of the Commission in '93, and they
20	found there is no problem in using a mechanistic
21	source term for the specific scenario, provided the
22	database is adequate to address that issue. And as a
23	matter of fact, in that regard, they said that we
24	should be including their intrusion scenario.
25	The next issue is the containment

NEAL R. GROSS

	369
1	performance issue. I'm sorry?
2	CHAIRMAN APOSTOLAKIS: We discussed this
3	already. Didn't we discuss this?
4	MR. ELTAWILA: I'm sorry.
5	CHAIRMAN APOSTOLAKIS: I thought we
6	discussed most of this.
7	MR. ELTAWILA: That's true and so we can
8	move on. Same issue with the
9	MEMBER POWERS: Well, I think for our
10	discussion purposes, sometime, just between us girls
11	here, we're going to have to come down to some
12	agreement on how we're going to handle the sabotage
13	versus the more classical thing. Are we going to just
14	set that aside and say we'll deal with sabotage and
15	terrorist threats aside or are we going to continue to
16	mesh is together? Because it really causes confusion,
17	in my mind.
18	MR. ELTAWILA: It is an issue that
19	MEMBER POWERS: I mean in the end you're
20	going to have integrate it all together, but for
21	discussions purposes
22	MR. ELTAWILA: Yes. It is an issue that
23	we're going to have to address, period.
24	MR. KRESS: That's another reason to
25	change our thinking on the balance between prevention

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	370
1	and mitigation. I think the more you put on the front
2	end the less vulnerable it is to sabotage. That's a
3	personal opinion. I think that, for instance, a
4	pebble bed reactor is probably much less vulnerable to
5	sabotage than an LWR.
6	MEMBER POWERS: Oh, I think it's much
7	more.
8	MR. KRESS: Well, we'll have to debate it.
9	CHAIRMAN APOSTOLAKIS: Emergency.
10	MR. ELTAWILA: The next issue, Mr. Rosen,
11	is the emergency evacuation, and the issue was
12	addressed again in 1993 about reducing the EPZ and
13	looking for it based on the small source term and so
14	on. And the Commission at that time did not feel that
15	we had enough information to reduce the EPZ, but at
16	the same time told the staff to keep an open mind
17	about this issue and come to us when you have
18	additional information. We are keeping an open mind
19	about this issue, and we're going to address it in
20	totality with the rest of the other issues as part of
21	the
22	CHAIRMAN APOSTOLAKIS: Which may lead to
23	an increase in EPZ
24	MEMBER POWERS: Well, especially when you
25	have

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	371
1	CHAIRMAN APOSTOLAKIS: depending on the
2	reactor design, right? It's part now of the total
3	risk profile.
4	MEMBER POWERS: I think you've got another
5	thing to take into account. You've got a societal
б	thing to take into account.
7	CHAIRMAN APOSTOLAKIS: That's exactly
8	right.
9	MEMBER POWERS: Because you've got a bill
10	in Congress right now that says make the EPZs 20
11	miles.
12	MR. THADANI: Well, I don't think the bill
13	says to make EPZ 20 miles. I think it talks about KI.
14	MR. KRESS: Yes. It's a planning and
15	CHAIRMAN APOSTOLAKIS: But I don't think
16	we should focus our discussion on reducing the EPZ.
17	I think everything else we have discussed today is
18	that we should look at the system as a whole
19	MR. ELTAWILA: We should look at the whole
20	thing as in development.
21	CHAIRMAN APOSTOLAKIS: If meeting the
22	safety goals requires a larger EPZ, so be it.
23	MEMBER ROSEN: Right, but nobody's
24	designing new reactors with a goal of having a much
25	larger EPZ.

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	372
1	CHAIRMAN APOSTOLAKIS: That's their
2	business. We are regulators.
3	MEMBER ROSEN: The business end of the
4	business is attempting to provide an attractive
5	product, and one of the most attractive products is
6	one where you can put a reactor someplace and say,
7	"See," to the public, "this reactor is so safe we
8	don't even have an off-site emergency plan."
9	MEMBER POWERS: But you can say that I
10	mean I could say that right now. You've got to
11	persuade the public that they agree with you.
12	CHAIRMAN APOSTOLAKIS: Yes.
13	MEMBER ROSEN: Because the next sentence
14	is not that it's so safe that you don't stop with,
15	"It's so safe that we don't need an off-site emergency
16	evacuation plan." You say that, and you say,
17	"Because," and then you give a cogent answer that
18	people can understand.
19	MEMBER POWERS: I think I would believe
20	you more if you said, "It's so safe that we don't need
21	an EPZ, and it's so safe that we don't even want
22	Price-Anderson indemnification."
23	CHAIRMAN APOSTOLAKIS: All we need today
24	is a process for determining these things. We don't
25	have to convince anybody. We have to convince people

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	373
1	that our process is rationale and science-based.
2	That's all.
3	MR. KRESS: Clearly, if you had high-level
4	risk acceptance criteria and had appropriate PRA with
5	uncertainties that showed that at particular
6	confidence level you meet those without any emergency
7	response at all, the question I would raise is that
8	would be a nice goal to have but wouldn't you want an
9	emergency plan anyway, even though you had that?
10	MEMBER POWERS: That's right, because you
11	might be wrong.
12	MR. KRESS: Because I might be wrong. And
13	there might be other considerations, like sabotage and
14	things like that.
15	MR. THADANI: The Commission has we've
16	had some requests, as you know, to reduce EPZ in some
17	cases. I guess when EPRI came to us in the
18	requirements development, ALWR document, that was one
19	of the issues. They wanted to reduce the EPZ. And,
20	basically, what we told them then, and I recognize
21	this is several years ago, what we said was that
22	emergency planning is considered yet another layer of
23	defense in-depth outside of the design considerations.
24	But as I think George was saying, these are all linked
25	issues, and come out where it does and the Commission

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	374
1	we just need make sure we give Commission the
2	relevant information.
3	VICE CHAIRMAN BONACA: Okay. That's it.
4	Thank you.
5	MEMBER POWERS: The plan is that Mary is
6	going to be the lead author on this document?
7	MR. ELTAWILA: I'm sorry?
8	MEMBER POWERS: May Drouin is going to be
9	the lead author on this document?
10	MR. ELTAWILA: Which document? The policy
11	paper is Tom King. And Mary has the policy paper
12	MEMBER WALLIS: Tom King?
13	MR. ELTAWILA: Yes. He's
14	MEMBER POWERS: You remember him.
15	MR. ELTAWILA: back.
16	MEMBER WALLIS: I have a comment on this
17	whole thing.
18	MR. KRESS: We'll open the floor for
19	comments at this point.
20	MEMBER WALLIS: What I see here is a whole
21	series of questions, and I see very little in the way
22	of confidence that you guys have the answers.
23	MR. ELTAWILA: We don't.
24	MEMBER WALLIS: The ACRS has been sitting
25	here trying to get some answers, but that's just our

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	375
1	game. I mean it's your job to come up with answers.
2	MR. KRESS: Their job right now is to
3	define what the questions are.
4	MEMBER WALLIS: So I have a lot of doubt
5	about you meeting anything like a deadline by fall
6	2002.
7	MR. ELTAWILA: No. I think maybe we
8	present you with the same Commission the same
9	question that we asked in 1993. There was a decision
10	taken by the Commission. The staff made the
11	recommendation to the Commission. So we know the
12	answers to most of these questions. All what we are
13	doing right now revisiting this question to see if we
14	are changing our mind because of information that we
15	have or because of new policy change or something like
16	that. But I think we feel very confident that all
17	these questions will be addressed satisfactory by the
18	
19	MEMBER WALLIS: So all the questions have
20	been answered before and you're just tweaking the
21	answers? Is that what you're doing?
22	MR. ELTAWILA: Well, I don't think it's
23	tweaking the answers. It's just looking at the
24	additional information that we have, the experience
25	that we gained in risk-informed regulation and see if

	376
1	it changed any of these answers.
2	MR. THADANI: I think let me be careful
3	because I want to make sure we're not missing each
4	other's point here. What we're talking about is a set
5	of issues. As you know, some of the technical issues
6	it's going to take a long time before we get real
7	information. But we want to make sure that the course
8	of action that we lay out for us to follow is agreed
9	to. I mean we're not going to be able to have risk-
10	informed regulatory structure in three months. We're
11	just not going to have that. But what we do need to
12	be sure is that is there buy-in on the part of the
13	Commission? This is a multiyear effort.
14	MEMBER WALLIS: Well, I'm not
15	MR. THADANI: Here are the issues that we
16	need to go forward with. We need to have some
17	confidence.
18	MEMBER WALLIS: Let me be a member of the
19	public here. I mean just because the Commission is
20	going to make some decisions doesn't mean that they're
21	right decisions. You've got to provide enough
22	information to make darn sure that they make the right
23	decisions. That's what I'm confused about.
24	MR. THADANI: That's fair. And I would
25	like to think that we have already got some

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	377
1	information that obviously would be supplemented by
2	what we learn over the next several months. But we're
3	not going to go to Commission with no information.
4	We're going to lay out what we know and what needs to
5	be developed further, and that's part of the idea
6	behind the research plan.
7	MR. KRESS: You're not going to them and
8	asking for resolution of these issues at this time,
9	are you?
10	MR. ELTAWILA: We need
11	MR. KRESS: You're just going to say, "Are
12	these the right questions?"
13	MR. ELTAWILA: Right. Are these the areas
14	if the Commission says upfront that, "We just don't
15	want you to pursue high-level safety principles
16	approach," we'd like to know that.
17	CHAIRMAN APOSTOLAKIS: One of the things
18	that I would appreciate if I were in their shoes is
19	what lessons did we learn from the current regulatory
20	system? Some of them are obvious, of course, but, for
21	example, yesterday we had a marathon Subcommittee
22	meeting of ten hours on CRDM cracking and Davis-Besse
23	and so on. Let's say we license a reactor to 2030.
24	Would there be a subcommittee in 2050 for ten hours
25	looking at something unexpected and trying to fix it?

NEAL R. GROSS

	378
1	MEMBER WALLIS: Yes.
2	CHAIRMAN APOSTOLAKIS: There would be?
3	MEMBER WALLIS: Yes.
4	MEMBER WALLIS: Why? Why are you so
5	confident that there will be?
6	MEMBER POWERS: Because no one has ever
7	gone broke underestimating human capabilities.
8	CHAIRMAN APOSTOLAKIS: Well, but
9	MEMBER POWERS: George, the world is far
10	more complicated than the rationalists think it is.
11	CHAIRMAN APOSTOLAKIS: This was a major
12	thing with that Voltaire stock, you know.
13	(Laughter.)
14	Well, but if that's the case, then the
15	policy decisions that we're making now somehow we'll
16	accommodate for that, which brings us back to the
17	structure as defense in-depth. But how far can you
18	push that? See, that's the real issue.
19	MR. SALSBERG: Well, I think there's
20	another thing, though. I mean how far do you want to
21	accommodate that in the design, and how far do you
22	accommodate that in a kind of performance regulation?
23	CHAIRMAN APOSTOLAKIS: And I fully agree
24	with that, but I tell you, before Three Mile Island I
25	was a major player in the PRA we were doing for the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

379 industry. If you dared say that the operators would 1 2 do something wrong, you were out of the project, 3 because the industry did not believe that the 4 operators could make a mistake, period. 5 MR. SALSBERG: Your PRA is never going to 6 postulate every error that --7 CHAIRMAN APOSTOLAKIS: Nobody paid attention to the PRAs. As Rasmussen said, it was a 8 9 status symbol. Everybody wanted to have the blue 10 reactor safety study but nobody read it except him and Levin. 11 George, to think that --12 MEMBER POWERS: 13 CHAIRMAN APOSTOLAKIS: Well, you're not 14 giving me a warm feeling here that we're going to have these Subcommittee meetings --15 16 MEMBER WALLIS: You can't have a warm 17 feeling, George, it's just the way it is. 18 MEMBER POWERS: And what you would hope 19 for are one or two of them and not a marathon of 20 marathons. CHAIRMAN APOSTOLAKIS: Well, I didn't get 21 22 the answer I wanted, but --23 MR. SALSBERG: Let me just ask sort of a 24 practical question, as a pragmatic sort of guy. 25 CHAIRMAN APOSTOLAKIS: Are you saying that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

> > 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	380
1	the questions so far have not been?
2	MR. SALSBERG: If I go with everything
3	I hear is PRA and uncertainties. Now, you know, we
4	talk about public acceptance. If I have to come in
5	and defend a PRA down to whatever level I want to get
6	down to, in a public litigation sort of situation, it
7	seems to me that's an endless discussion. One of the
8	things I like about a design basis is there's a very
9	concrete acceptance kind of criteria with limits, and
10	I just have a very difficult time in the sort of
11	judicial approach in the litigation nature of
12	Americans
13	CHAIRMAN APOSTOLAKIS: But nobody's
14	proposing that, Bill.
15	MR. SALSBERG: Well, I hear some things
16	that sound a lot like that.
17	CHAIRMAN APOSTOLAKIS: No, no. It will be
18	deterministic requirements based on probablistic
19	arguments.
20	MR. KRESS: And even selection of design
21	basis accident.
22	CHAIRMAN APOSTOLAKIS: Yes. But you will
23	never go and argue probablistic, because you'll never
24	finish.
25	MR. THADANI: In the end, that's what we

	381
1	meant here. Once you go if you go with frequency
2	consequence approach, you still you can do that in
3	the abstract even
4	CHAIRMAN APOSTOLAKIS: Yes.
5	MR. THADANI: without knowing what
6	number sequence. You can do these things. But you
7	still, and Graham's point is valid, that you need
8	design information, you need to if you're going to
9	rely on PRA, you need to have some level of confidence
10	in that. And what we're suggesting is once you lay
11	out this plan and once you have confidence in the
12	analysis, you can define certain events that sort of
13	become part of the design base and that you make
14	hopefully more rational decisions regarding the
15	requirements for structure systems and components.
16	That's the thinking. But it's got to go through a
17	process, and I mean we're just sharing with you our
18	early thoughts.
19	CHAIRMAN APOSTOLAKIS: Yes. Acceptance
20	criteria will have to be deterministic. Otherwise
21	there's no end to this.
22	MEMBER POWERS: Right. I'll just kick in,
23	Farouk, I think you guys have really come up with a
24	really nice set of questions.
25	MR. KRESS: Yes. That was my

	382
1	MR. ELTAWILA: Well, I really I don't
2	want to leave you with that we only have questions and
3	we don't I think we have the technical basis and
4	the technical basis is going to be sharpened between
5	now and October.
6	CHAIRMAN APOSTOLAKIS: We understand that.
7	MR. ELTAWILA: Okay. Thanks.
8	MR. KRESS: I think that's
9	CHAIRMAN APOSTOLAKIS: Are there any other
10	comments from members of the public or the staff?
11	Thank you very much. Gentlemen, this was very, very
12	informative. It was a little low-key, I would say,
13	but thank you.
14	MR. THADANI: Farouk took too long.
15	That's the only problem.
16	(Laughter.)
17	MEMBER POWERS: As usual.
18	CHAIRMAN APOSTOLAKIS: We'll recess for
19	eight minutes and come back and give advice to our
20	colleagues on the letters.
21	(Whereupon, the foregoing matter went off
22	the record at 5:40 p.m.)
23	
24	
25	