Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Nuclear Waste 171st Meeting
Docket Number:	(not applicable)
Location:	Rockville, Maryland
Date:	Tuesday, June 6, 2006

Work Order No.: NRC-1074

Pages 1-157

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON NUCLEAR WASTE (ACNW)
5	171st MEETING
6	+ + + +
7	TUESDAY
8	JUNE 6, 2006
9	+ + + + +
10	ROCKVILLE, MARYLAND
11	+ + + + +
12	The Advisory Committee met in Room T2B3 of the
13	U.S. Nuclear Regulatory Commission, Two White Flint
14	North, 11545 Rockville Pike, Rockville, Maryland, at
15	1:00 p.m., Michael T. Ryan, Chairman, presiding.
16	PRESENT:
17	MICHAEL T. RYAN Chairman
18	ALLEN G. CROFF Vice Chairman
19	WILLIAM J. HINZE Member
20	RUTH F. WEINER Member
21	
22	
23	
24	
25	
	I

	2
1	INDEX
2	AGENDA ITEM PAGE
3	Opening Remarks by the ACNW Chairman 3
4	Overview of Commercial Spent Nuclear Fuel
5	Reprocessing 6
6	NRC's Spent Nuclear Fuel Reprocessing
7	Regulation
8	Adjourn
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	3
1	PROCEEDINGS
2	(1:03 p.m.)
3	CHAIRMAN RYAN: All right. Let's come to
4	order please.
5	This is the first day of the 171st meeting
6	of the Advisory Committee on Nuclear Waste. My name
7	is Michael Ryan, Chairman of the ACNW.
8	The other members of the Committee present
9	are Vice Chairman Allen Croff, Ruth Weiner, James
10	Clarke is out sick for this meeting. He will be
11	joining us next month as scheduled, and William Hinze
12	is here.
13	We also have an Emeritus member of the
14	Committee in the audience who is going to give a
15	presentation, Dr. Ray Wymer. Welcome, Ray, thanks for
16	being with us again.
17	During today's meeting the Committee will
18	be briefed by Dr. Wymer on the theory and technology
19	used in the past for reprocessing of spent nuclear
20	fuel.
21	We will be updated by the NRC staff on the
22	implications of a Department of Energy Nuclear Fuel
23	Recycling Program through NRC's regulations concerning
24	the licensing of spent nuclear fuel recycling
25	facilities.
	1

(202) 234-4433

	4
1	We will be briefed by the NRC staff on
2	potential changes to the regulatory process that may
3	be needed to accommodate spent fuel nuclear
4	reprocessing.
5	And we will discuss the proposed white
6	paper on the subject of reprocessing we hear about
7	today.
8	John Flack is the Designated Federal
9	Official for today's session.
10	This meeting is being conducted in
11	accordance of the provisions of the Federal Advisory
12	Committee Act.
13	We have received no written comments or
14	requests for time to make oral statements from members
15	of the public regarding today's session. Should
16	anyone wish to address the Committee, please make your
17	wishes known to one of the Committee staff.
18	It is requested that speakers use one of
19	the microphones, identify themselves, and speak with
20	sufficient clarity and volume so they can be readily
21	heard.
22	It is also requested if you have cell
23	phones or pages that you kindly turn them off.
24	Is Dr. Thadani coming? Or is he going to
25	be joining us later? Okay, I'll just announce for
•	

(202) 234-4433

	5
1	everybody and we will make comment when Dr. Thadani
2	joins us. He is coming up the hall, okay. Oh, thank
3	you.
4	Ashok, we have come to the point in the
5	agenda where we wanted to recognize formally for the
6	record that this is your last Advisory Committee on
7	Nuclear Waste meeting. We are thrilled that you are
8	moving into a new phase of your life and career and
9	retirement, semi-retirement, or travel and work as you
10	see fit rather than as you are asked to come in.
11	We certainly want to recognize and
12	appreciate your counsel and insights that you have
13	offered to this Committee in the time you have been
14	with us. It really has been helpful.
15	We have expanded into areas where we drew
16	heavily on your expertise. And we really appreciate
17	the effort that you put forward along with John Flack,
18	I might add, to advise and educate the Committee on
19	risk-informed approaches from the reactor side of the
20	house. I think it has enriched our offering to the
21	Commission and the advice we have given them.
22	And we certainly want to recognize for the
23	record and tell you we very much appreciate all the
24	hard work you have put in with us and for us and on
25	our behalf.

(202) 234-4433

	б
1	So we wish you all the very best. And
2	thank you very much for being with us.
3	Now we'll get to work on today's session.
4	All right. Thank you. Thank you very much.
5	(Applause.)
6	CHAIRMAN RYAN: All right. And at this
7	point, if you want to make any comments, please feel
8	free.
9	MR. THADANI: The only comment is yes to
10	everything you said. Semi-retirement, little bit of
11	this, little bit of that.
12	CHAIRMAN RYAN: Well good for you. That's
13	great. May you enjoy it and do well.
14	Let me turn over today's technical session
15	to Allen Croff, Vice Chair, who is going to lead us in
16	the afternoon sessions. Allen?
17	VICE CHAIRMAN CROFF: Thank you, Mike.
18	By way of introduction of both this
19	afternoon's session and something that is going to go
20	on into the future, today we are going to hear from
21	first Dr. Ray Wymer on the historical technical
22	aspects of reprocessing. And then we will hear from
23	NMSS staff on regulations concerning the licensing of
24	reprocessing and recycle facilities.
25	Again, mostly a status in what is and a
	1

(202) 234-4433

	7
1	little bit about what might be. That will lead up to
2	the end of the afternoon where we will talk some about
3	a proposed white paper that we would like to have
4	developed during the summer that will be more forward
5	looking in a technical sense.
6	That is to try to understand what the
7	Department of Energy is planning or pursuing in terms
8	of recycle, the technology of it as fodder for our
9	deliberations sometime near the end of the summer or
10	the early fall in preparing some advice for the
11	Commission.
12	We also hope to hear from the Department
13	sometime during the summer but we are still trying to
14	schedule that. That is the rough plan forward but
15	today is sort of a historical tutorial background-kind
16	of an afternoon.
17	With that, our first speaker is Dr. Ray
18	Wymer. A brief bio, Ray was at Oak Ridge National
19	Laboratory for nearly 40 years, ending up as Division
20	Director in the Chemical Technology Division, which
21	had a lot to do with developing reprocessing in this
22	country. He is also a former member of this
23	Committee.
24	With that, welcome back, Ray. The floor
25	is yours.

(202) 234-4433

	8
1	DR. WYMER: Thanks, Allen. It is good to
2	see familiar faces out there after I have been away
3	three years.
4	CHAIRMAN RYAN: You can use the lapel mike
5	if you would rather stand and work that way.
6	DR. WYMER: Okay. Can you hear me okay
7	now?
8	PARTICIPANT: Just fine.
9	DR. WYMER: Okay.
10	PARTICIPANT: Is it all right with the
11	reporter?
12	DR. WYMER: Okay? Thank you.
13	It was three years ago that I retired from
14	this Committee. And I'm happy to say that all of you
15	look the same that I remember seeing when I was here
16	before. I've aged a little.
17	This talk today is one that I initiated
18	many years ago at Oak Ridge National Laboratory and
19	gave it for a lot of years in connection with trying
20	to inform people who were largely from the Department
21	of State, CIA, AEC at that time, later on DOE.
22	And the idea was to give these people an
23	idea of what reprocessing is so when they went out
24	into the field or tried to do their work back here in
25	the states, that they at least had heard the language
	I contract of the second se

(202) 234-4433

	9
1	a little bit and understood some of the words.
2	They were certainly not experts and you
3	are not going to be experts, if you aren't already,
4	after you hear my talk today. That is, to give an
5	elementary, a very elementary discussion of the
6	nuclear fuel cycle reprocessing in particular.
7	Allen Croff picked up after I quit. He
8	could give this talk just about as well as I could, I
9	think. Maybe better. He improved on it and I picked
10	up on his improvements and that is what you are going
11	to see today my early work plus what he added to it
12	over the years. Plus maybe one or two other things
13	that I have added since.
14	I should say that I am anticipating that
15	I am giving this talk to people who really are novices
16	in the field, who are very bright, but who have not
17	necessarily been exposed to this particular branch of
18	knowledge.
19	If you don't fall in that category I
20	know some of you don't if you are a lot better
21	informed than that, why the door is back there. We
22	will be taking names as you go out.
23	Anyway, we will start off here. I'm going
24	to try to give you, as it says here, a historical
25	overview. Very simply, why should you reprocess?
	1

(202) 234-4433

10
Well, there are several reasons. Possibly
not all of them are listed here. One is there are
valuable things left in the spent fuel despite the
fact that we may be storing it in Yucca Mountain.
There are valuable materials to be found in the
nuclear reactor fuel.
Another reason to reprocess, it has been
in the past, to obtain fissile material for military
use. Of course the reprocessing plant at Idaho Falls
is closed so we are not reprocessing out there
recycled material.
One of the important ones and one that is

12 One of th is important for the future is in connection with the 13 14 Global Nuclear Energy Partnership and that is to 15 reduce the amount of waste that is stored in the highlevel waste repository proposed, as I recall the NRC 16 is very careful in all of its writings to refer to the 17 Yucca Mountain Repository as the proposed Yucca 18 19 Mountain Repository.

20 And by reprocessing and recovering the 21 waste materials from the spent fuel, you greatly 22 reduce the volume required to be stored in Yucca 23 Mountain because the PWR are 12 feet long and, you 24 know, about eight or ten inches across square. And so 25 you reduce the volume and also you can take out the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

	11
1	good fissile material.
2	And if you go farther into the future,
3	into the Global Nuclear Energy Partnership scheme if
4	that gets off the ground and really flourishes, then
5	also you will be taking out some of the heat producing
6	elements which also are space limiters, as you know,
7	in Yucca Mountain.
8	And finally, if you reprocess you don't
9	have to store or dispose of the fissile material.
10	This is a very limited list of the kinds
11	of fuels there are out there. But these are principle
12	U.Stype fuels, past, present, and future. Light
13	Water Reactor fuel is reprocessed overseas but, as you
14	all know, not in the United States anymore. And it
15	really never was although it almost was.
16	And there are two kinds of fuels that are
17	present in large amounts, the light water pressurized
18	water reactor and light water boiling water reactor
19	fuels. And, of course, the Fast Breeder Reactor,
20	there is reprocessing going on overseas. We never
21	really got to reprocessing here in this country except
22	for the little bit of reprocessing on EBR-II fuel out
23	at Idaho Falls.
24	And the HTGR fuel, there is no
25	reprocessing anywhere. And that is a tough fuel. I

(202) 234-4433

	12
1	worked about ten years on that at Oak Ridge National
2	Laboratory. And that is a pretty tough row to hoe, to
3	reprocess HTGR fuels.
4	But they are being considered actively now
5	again after quite a hiatus as a potential new power-
6	producing reactor fuel. They go to very high burn
7	ups. They operate at very high temperatures.
8	The advantage of that, of course, is
9	several fold. Not only do you get a lot greater
10	thermal dynamic efficiency by operating at a higher
11	temperature, you get closer to 40 percent efficiency
12	instead of about 30 percent efficiency, which is about
13	a 30 percent increase or more in utilization of the
14	heat produced.
15	And at these high temperatures, with high
16	temperature gas cooled reactors you are processing.
17	A great many industrial reactors require high
18	temperatures for various kinds of chemical processes
19	and other kinds of industrial processes. And
20	currently you need these kinds of temperatures if you
21	are going to go into a hydrogen economy and produce
22	hydrogen thermochemically, which is one of the major
23	considerations these days.
24	You not only can produce hydrogen by I
25	realize this is not all reprocessing but am giving you
	I contract of the second se

(202) 234-4433

	13
1	the benefit of my vast knowledge you can
2	electrolyze water from the electricity produced from
3	reactors but also you can run thermochemical
4	processes, most of which run at about 750 degrees
5	centigrade.
6	So HTGRs have several promises. And they
7	also can be used as burners for actinides although not
8	as efficiently as fast breeder reactors.
9	So while we have had a checkered and
10	unproductive history in reprocessing, the West Valley
11	Plant up in upstate New York operated, you see there,
12	for about six years. A small plant, it was fraught
13	with problems.
14	There were leaks in the plumbing. They
15	would run people in and out so bring them in off
16	the street so to speak and let them operate the plant
17	until they got their dose, then they would fire them
18	and bring in another bunch. But still they
19	reprocessed a fair amount of fuel and produced some
20	other fuels besides.
21	The Midwest reprocessing plant, the GE
22	plant, never got off the ground. They built it and
23	decided before they ever ran it that they hadn't
24	better run it because it probably wouldn't run. And
25	so what they use it for now is they have a large
1	

(202) 234-4433

storage pool. And they store spent fuel there at present.

1

2

And that was going to be a rather novel 3 4 plant. They were going to use -- the final clean up 5 was fluoride volatility which is a very efficient way separate uranium from almost everything else 6 to 7 because except for tellurium and a few things like that that there aren't much of in spent fuel, not very 8 many elements form volatile hexafluorides like uranium 9 And so it proves to be a very good way to do a 10 does. final clean up of uranium. 11

12 And of course the -- what they used to call the AGNS plant, the Allied General Nuclear Fuel 13 14 Reprocessing Plant at Barnwell, with a standard PUREX 15 plant, it came along at a very inopportune time. That was the time of the Carter administration when he said 16 let's set an example to the rest of word and not 17 And nobody else will either. 18 reprocess.

And, of course, he was a little wrong in that regard. And so they stopped at that point. And I think this is probably about when the NRC stopped having an active interest in licensing reprocessing plants.

And that was long enough ago, as you see, 30 years ago, which means that everybody who knew

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	about licensing that plant has retired or died or
2	both. And pretty much so you people are pretty
3	much starting from scratch here in the NRC with
4	respect to licensing reprocessing plants. So this
5	little primer we have here today is supposed to at
6	least get you off the ground.
7	This is the compulsory nuclear fuel cycle
8	diagram that shows that the whole thing starts in a
9	reactor, you generate spent fuel. You get into
10	shipping, which is a thorn in everybody's side, then
11	you get into reprocessing which creates a couple of
12	streams of waste a waste stream and a product
13	stream. And it can be two product streams depending
14	on how you handle it.
15	And then with the uranium, it is still
16	more highly enriched in Uranium 235 than is natural
17	uranium by a couple tenths of a percent. And so it is
18	worthwhile to put it back through an enrichment.
19	However, it has, in the course of being
20	irradiated, it has built up some uranium 236, which
21	you can only recycle a couple of times and then you
22	get into some pretty neat neutron poisons. And so you
23	can only go around this loop a couple of times because
24	of the uranium 236 buildup, and then you would start
25	paying a penalty. But the first time through or two,
	1

(202) 234-4433

(202) 234-4433

	16
1	you can re-enrich.
2	This also is sort of a troublesome cycle
3	because some undesirable elements like technetium tend
4	to recycle and so after a while, you begin to get a
5	little bit of radiation in this part of the recycle
6	which is not desirable.
7	Anyway, that is the whole cycle more or
8	less. You can, of course, make well, I'll get to
9	that later.
10	I've got about three slides that say they
11	are the elements of the nuclear fuel cycle.
12	Transportation is on there. It is not formally part
13	of recycle but it is important. And if you don't
14	transport it from the reactor, you can't reprocess it.
15	Then, of course, there is onsite storage of the spent
16	fuel, typically in storage pools. I'll say more about
17	each of these things.
18	You have the so-called head end processes
19	which involve treating the elements so that you can
20	extract the fuel material. If you chopped it up or
21	knocked the cladding off, the transfer of these pieces
22	which you will see pictures of later to a dissolver
23	and you dissolve them up to dissolve the fission
24	products, dissolve the uranium, dissolve the
25	plutonium, dissolve the higher actinides, what few
	I contract of the second s

(202) 234-4433

there are.

1

2

3

4

5

6

And then you put it -- typically you take the dissolver solution and put it into an interim storage tank where you do the first real analysis. This is where you start running your for real material balance analyses.

7 You know pretty well what you have got 8 from the exposure records on the fuel that the reactor 9 sends you. But they are not nearly as precise and as 10 complete and good as the analysis of the dissolver 11 solution. So this is what you analyze and you track 12 the fissile material with taking samples out of that 13 tank.

Then you go on and you transfer the stuff out of the interim storage tank into the separation process equipment, which I will say quite a bit about, where you separate the uranium and plutonium. This is the way it was done, the way it is done in the present, and not necessarily the way it will be done entirely in the future.

You separate the uranium from plutonium from the fission products and other actinides, typically those plutonium and americium by solvent extraction. Then you have the uranium and plutonium together and you separate the plutonium from the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	uranium by adjusting conditions in the system. And I
2	will say more about that. I'll say more about all of
3	these.
4	When you convert the uranium and plutonium
5	to the oxides if you are to prepare fuel from them.
6	And that is being done overseas to some extent, and
7	they you store the products onsite until you get ready
8	to ship them off to the fabrication plant. And you
9	store the waste fission products.
10	The high-level wastes are typically stored
11	as a solution. It starts out as a nitric acid
12	solution. We store that in a tank. And typical tank
13	volumes, waste tank volumes, are a million gallons.
14	They are good sized tanks. And a lot of solid waste
15	are produced in the course of doing a reprocessing
16	operation. And so those are stored also until you
17	dispose of them.
18	Well, okay, let's go back up to the front
19	end again and talk about transportation. And that's,
20	as I said earlier, a troublesome operation in that
21	people don't want spent fuel transported. They would
22	just as soon it would magically go from the reactor to
23	the reprocessing plant and not be on the roads or on
24	the rivers or on the rails.
25	And the elements are large and the
	1

(202) 234-4433

19 1 shielding is heavy. And a 100 tons is not an 2 unreasonable weight for a waste package loaded with fuel elements. And it is subject, of course, to 3 4 federal, state, and local regulations. People have it 5 pretty highly regulated. It is not part of reprocessing but it is very important. 6 7 This is one of many kinds of spent fuel shipping casks. You see the fins, the cooling fins to 8 9 get rid of the heat. These spent fuel elements, even though some of them may be five, ten, 20, 30 years old 10 11 -- they have been stored in the pool a long time some 12 of them, they still are undergoing radioactive decay. And they store quite a bit of heat -- they generate 13 14 quite a bit of heat. 15 And it is disposed of typically by air In some of the containers, it is forced air. 16 cooling. Most of them it is convection. 17 There is another example, a little bit 18 19 more detailed. If you can't read it, this one has 20 impact fins which means you could drop it and 21 something absorbs the shock. And this one has neutron 22 Typically the neutrons are as much of a shielding. 23 dose as gamma rays outside a spent fuel container. 24 And sometimes more. 25 And this particular one says it has

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	20
1	uranium shielding material or the metallic uranium,
2	which is a very good gamma ray absorber because it has
3	a high atomic number and a lot of electrons for the
4	gamma rays to rattle off on and lose energy as heat.
5	And there it is loaded on a rail car. I'm
6	not sure I've mastered the modern age here yet. But
7	these are this is a picture of a PWR fuel assembly.
8	As you can see, you can't it doesn't tell you it is
9	12 feet tall but it is. And there are individual pins
10	in there, fuel pins. They are zircaloy clad. And
11	they are about a half inch diameter.
12	And they have uranium dioxide pellets
13	which are a carefully crafted thing. The production
14	of these pellets is a white glover operation as is the
15	fabrication of the fuel element. I don't think a
16	survival room in a hospital is any cleaner or worked
17	out more carefully. Maybe not as much.
18	And you can see here is an end plate that
19	the fuel pins stick into.
20	This is what assembly looks like. This is
21	the spring that holds the pellets together. And also
22	they provide a gas plenum space above and below the
23	elements. So during radiation, fission product gas
24	like xenon come off and they accumulate in these
25	plenum areas.

(202) 234-4433

	21
1	And of course when you break open these
2	things for reprocessing, you release that gas. That
3	becomes part of your off gas problem.
4	Well I mentioned high temperature gas
5	cooled reactors. This is a picture of what was a
6	typical fuel element from the Peach Bottom reactor
7	which operated out at Fort St. Vrain just outside of
8	Denver for a number of years. This is all solid.
9	That is about 14 inches across from the one flat place
10	to the other.
11	These holes, maybe you can see, all
12	through the top, little holes are rare sticks of
13	graphite put in pencils of graphite about as big
14	around as your finger. And in each of these pencils
15	of graphite are millions if not billions of tiny
16	spheres which are less than a millimeter typically in
17	diameter. And that is where the fuel is.
18	So you take typically a metal tube and you
19	pour all these little tiny sphere in there that have
20	uranium 235 in them that's what these have 93
21	percent enriched, incidentally, and then you force
22	pitch down into that tube and it surrounds all these
23	little micro spheres.
24	And it is those pins then that are lowered
25	into this large graphite piece block. These other
	1

(202) 234-4433

holes are control rod hole or gas flow cooling holes. One or the other.

The micro spheres are, as I said, a 3 4 millimeter in diameter. The actual piece of that 5 tiny, tiny sphere that has fuel in it is about half that diameter. They are very small, maybe 400 6 7 microns. And then that is surrounded by pyrolytic carbon which is deposited much the same way you get 8 9 soot in your chimney. You take gas like ethane or ethylene and you thermally decompose it and it coats 10 everything. Of course it coats all the equipment as 11 12 well but it coats the little spheres.

Then you move into another device. 13 And 14 you put in methyl silicone -- dimethyl or trimethyl 15 silicone. And you heat that up and that decomposes into silicone dioxide which coats another layer around 16 the spheres. And that is what really is a containment 17 vessel. That little tiny silicone coating all these 18 19 spheres is equivalent to that zircaloy cladding on 20 that 14-foot long fuel element.

And then you put another layer of carbon on top of that. And that is the out shell. That is the protection for the inner stuff.

24The inner carbon coating, the innermost25layer of parliamentary deposit carbon is porous.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

1 The outermost layer is impervious. The 2 innermost layer is porous to, again, to serve the same 3 function that the plenum -- that the gas space above 4 the fuel always did. It is a place for fission gases 5 to accumulate without bursting that little sphere wide open and releasing the fission products. 6 So that is 7 а HTGR fuel element, none of which have been But there is a lot of interest in HTGRs. 8 processed. 9 And they probably will come along. 10 But, of course, we also have fast breeder This is -- it is more similar obviously to 11 reactors. the water reactor fuels than is the HTGR. 12 These are the fuel pins here. Typically they are stainless 13 14 steel clad. You don't need to use zirconium. Thev 15 use zirconium in light water reactor fuels because the neutrons are thermalized and they would be captured 16 too much stainless steel. 17 18 John? 19 MR. LARKINS: Yes, in the forte varying 20 fuel didn't you have both biso and triso? 21 It depends on whether or not DR. WYMER: 22 you are going to have a blanket, John. The triso 23 coated is the fuel particles. But if you are going to 24 have a blanket like we were talking about having, it 25 was a thorium breeder reactor. And they had a thorium

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

23

	24
1	blanket of those same kinds of graphite blocks.
2	And the thorium oxide or thorium
3	oxycarbide is really what it was, they didn't make a
4	pure carbide, that was coated with silicone and then
5	with a graphite coating on the outside. But that was
6	for the breeder blanket.
7	It's not likely, under most current plans
8	although it may come along, that the next generation
9	of HTGRS will probably
10	MR. LARKINS: I just seem to remember
11	I thought they had both types in
12	DR. WYMER: Yes, they did. But one was
13	the breeder blanket. And it was going to be a thorium
14	fuel cycle reactor, which would be a really tough row
15	to hoe. I spent about 10 years working on that
16	particular concept.
17	And with thorium, a thorium breeder, you
18	make uranium 233. Unfortunately, uranium 233 cannot
19	be made without making uranium 232. Uranium 232 has
20	a gamma that won't quit. And it is there in about 800
21	parts per million. And that's more than enough. It
22	makes everything remote fabrication and everything
23	else is remote at that point.
24	MEMBER WEINER: Is the HTGR fuel like the
25	fuel for the pebble bed modular reactor?

(202) 234-4433

25 1 DR. WYMER: Exactly the same except 2 instead of putting in those little microspheres, they are exactly the same. So they are putting them in 3 4 these great big block -- you surround them with a 5 layer of graphite. In size, they are between a golf ball and a tennis ball. And you can throw them down 6 7 and they bounce. They are tough. 8 The pebble bed reactor was an interesting 9 concept because you have to keep moving the pebbles. 10 And so you have a great big tank with a conical bottom and you put all these balls in there. 11 12 And, of course, they move at different They move down the side faster than they do 13 speeds. 14 down the middle. And so as they drop out the bottom 15 of this cone, you count each one. And you decide then whether that one goes back into the top again or tat 16 that becomes waste. 17 So the pebble bed reactor, that's the one 18 19 that is currently being considered most accurately as 20 a matter fact, you probably know, for a reason I don't 21 understand. I guess because there is more experience 22 They had the -- the Germans bought the AVR with them. 23 and the HTGR both, both pebble bed reactors, one 24 bigger than the other. And that is the direction that 25 the current HTGR design is going rather than to these

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	26
1	prisms.
2	But anyway, these are stainless steel
3	clad, I was saying, because the neutrons in a fast
4	reactor are fast, hence the name. And they are not
5	well captured in steel. And, therefore, you don't
6	have to worry about the neutron parasitic reactors
7	gobbling up the neutrons that you would sooner have
8	making fission reactions real rather than being lost
9	other products.
10	CHAIRMAN RYAN: Ray, one other question.
11	It is how things overlap. I mean I've heard that the
12	HTGR fuel, because of its high burnup raises
13	challenges in transportation, a topic you Touched upon
14	earlier. And I guess what I'm thinking about as you
15	are talking is how has this been treated as a system?
16	You know there is optimization from a
17	reactor point of view, how you produce electricity,
18	power, steam whatever it is, how do you optimize it
19	from what you generate as wastes that need to be
20	further processed in some way.
21	CHAIRMAN RYAN: I have never seen a study
22	on that, Mike. There may be some going on today. I
23	would hope so in connection with the plans that say
24	South Africa has it for building an HTGR. But I never
25	have seen a cradle to graveif you could opt the
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

1 aryan sites into that kind of optimization strategy or 2 what you would look at if you were going to say, well, 3 you know for this reactor or that reactor it is going 4 to produce these wastes. And if you did it this way, 5 you would produce uglier waste and if you did it that way you would produce less ugly waste. 6 7 I mean the uranium 2336 example is one 8 that you don't want that around if you can avoid it. 9 CHAIRMAN RYAN: I would advise people to 10 stay away from Detroit and the fuel cycle. There is a lot of uranium right here. You don't need to go to 11 12 foreign for a long time. And I'm like you. I don't 13 DR. WYMER: 14 know of any comprehensive or thorough studies that 15 have been done. I'm looking for them. And I hear a lot of talk about, you know, interactions between 16 transportation and fuel and, you know, toxicity of 17 this and reprocessing of that. 18 19 And I'm really kind of interested if you 20 have any insights as to pluses and minuses as you go 21 through your talk. Those would be real helpful. 22 Okay, I'll try to keep it CHAIRMAN RYAN: 23 in mind. 24 DR. WYMER: Okay, thanks. Yes? 25 MEMBER WEINER: The South Africans are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

27

	28
1	currently working on a transportation design for the
2	pebble bed.
3	DR. WYMER: Are they? I wasn't aware of
4	that.
5	MEMBER WEINER: Yes. We just had a tour
6	of the pebble bed fabrication facility.
7	DR. WYMER: Oh, did you. I bet that was
8	fun.
9	MEMBER WEINER: Yes.
10	DR. WYMER: I would like to do that.
11	Well, as all of you in this room know, the
12	present storage is at the reactors, mostly in pools,
13	some on concrete pads but that is where it is. And,
14	of course, some of those sites have been storing fuel
15	for a lot more than five years because there is no
16	place else to put it. So they just started. An those
17	reactors have been running some of them 40 years.
18	At the processing plant, typically you
19	unload the fuel from the shipping containers and put
20	it down into the pool of water. And this is s picture
21	of a UK pool. I'm afraid it doesn't show you much.
22	This is where the pool is. That is the water. And
23	there are tracks for a crane to bring the casks.
24	You will see more of this in a video that
25	I'm going to show later on so don't worry that you

(202) 234-4433

	29
1	can't see much of this.
2	Anyway, you get some notion that it is a
3	relatively equipment-packed area. It is not a simple
4	nothing about reprocessing is really simple.
5	Obviously these things are extremely
б	radioactive so all the operations are done by heavy
7	shielding, typically using cranes and crane-operated
8	manipulators and remote operations from outside the
9	cell.
10	Fuel elements are chopped into small
11	pieces. The PWR fuel, that 12-foot high thing as you
12	will see later, is treated very poorly. I told you
13	they built it like a white-glove operation and they
14	treat it like a foundry. You know they just it
15	almost breaks your heart to see what they do to that
16	carefully fabricated fuel element. And the fission
17	product gases are, of course, released and come off
18	into the off-gas system.
19	Well, the way they cut it is with a
20	just a big, massive, brute force operation. They take
21	the fuel element, and you will see this, too, later,
22	and they shove it in from the side. And they come
23	across with a sheer that just crunches off about two
24	inches of it. And there is a great squealing,
25	creaking, grinding operation as they chop this thing
	I

(202) 234-4433

	30
1	up.
2	And this is iridium dioxide inside the
3	fuel elements. Inside there is a zircaloy cladding.
4	And it crumbles, of course, and falls out. And the
5	pieces of zircaloy get all mangled and twisted. And
6	some of the outside gets trapped inside. And it is a
7	brute force operation.
8	And here is what it looks like some of
9	the typicals of it. This is part of the oxide
10	pellets. Those are the segments of cladding. You
11	chop it up like this so you can get at it.
12	You only have an inch to go from each end
13	with acid that dissolves the oxide. So you don't
14	so you can get it dissolved in a finite time,
15	reasonably sure you've got it all dissolved out of
16	those pieces. So you cut it into pieces as long as
17	you can get away with instead of dissolving everything
18	outside the chunks.
19	That material you just saw is put into a
20	dissolver. And I'll show you pictures of that later.
21	And you can either chop right over the dissolver and
22	drop it directly in or you can separate it and move
23	the stuff separately into the dissolvers.
24	This is one version and there are as
25	many versions of this as there are clever nuclear

(202) 234-4433

	31
1	engineers and design engineers who want to come up
2	with a new dissolver design. And there are lots of
3	dissolver designs. There are some that are rotary,
4	some that are continuous, up-screw types. And there
5	is this type. You drop the fuel down into here. You
6	put nitric acid in, dissolve the fuel, and, of course,
7	you get the off-gas. This silver zircaloy trap is to
8	collect the iodide. There are not many things that
9	form insoluble iodide compounds. And so the silver
10	iodide is relatively insoluble and it is a high
11	surface material and you catch the iodide on the
12	silver.
13	The rest of the off-gas goes into the off-
14	gas treatment system. And, of course, you have to
15	have a way to take off the spent fuel. So you have
16	this basket which would take off the fragments of
17	cladding. This basket allows you to do that.
18	You notice this has cooling coils as
19	well as heating coils. When the reaction starts out
20	and you start dissolving this uranium dioxide, it gets
21	pretty hot. And it boils and froths and foams.
22	And they really want to control the rate
23	of dissolution so you control the temperature by
24	cooling and keeping it down to a reasonable operating
25	temperature. Now as it gets dissolved, well then you

(202) 234-4433

(202) 234-4433

	32
1	have to heat it to get the last little bit dissolved.
2	This is another type of dissolver. This
3	is where you drop the fuel pieces in. They are carried
4	along in this spiral rotary thing. Balls come
5	dropping out here. And the nitric acid solution which
6	you put into it goes counter current to the direction
7	that the fuel is going, which means you get a lot of
8	good contact type with flush acid coming in. As you
9	have more nearly completed the dissolution, it is
10	harder and harder to dissolve the stuff out of the
11	spent fuel out of those chopped up fragments.
12	You have fresh nitric acid solution
13	hitting that. The nitric acid solution gets used up
14	more and more and it is fairly well used up by the
15	time it contacts the incoming fuel pieces. So they go
16	counter current and you get a lot better efficiency on
17	dissolving.
18	The problem with these dissolvers are in
19	the seals. It is hard to maintain a seal when
20	rotating equipment in a concentrated nitric acid
21	solution. So these have that operating problem.
22	Well, as I mentioned earlier, the interim
23	storage place after your dissolution is really the
24	first chance you have to get an accurate analysis of
25	the fissile element content of uranium and plutonium
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

and anything else you want to look for. And that serves as a basis for your material balance and the subsequent reprocessing.

4 You have to adjust the acidity and the 5 concentration in order to optimize the processing So you make a feed adjustment. And 6 requirements. 7 then depending on the type of equipment you use, you may or may not need to do a feed clarification. 8 Ιf 9 you use -- and I will show you one later -- if you use what are called pulse columns, they are very tolerant 10 of fine materials and solids that might come through. 11

12 If you use what called a centrifugal 13 contractor, which has fast rotating parts that are 14 spaced very close together, then you don't want any 15 solids. You have to do a feed clarification in that 16 operation.

17 What I've just showed you are the dissolvers. And one other thing that happens when you 18 19 dissolve up these materials in nitric acid, you 20 produce nitrogen oxides. You start with HNO3, which 21 has pentavalent 5 valent nitrogen and you wind up with 22 4 valent and 2 valent nitrogen oxides. And they are recoverable. You can re-oxidize them in air and 23 24 produce more nitric acid which is recycled through the 25 plant so you use your nitric acid as completely as you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

33

1

2

3

4

5

6

7

8

9

Ruthenium is not a volatile by itself but
ruthenium tetroxide, RUO4, is a very volatile
compound. However, if the fuel is long dissolved and
it has been laying around 10, 20, 30 years, all of the
not all but a significant amount of ruthenium has
decayed. And the only ruthenium you have left is
basically non-radioactive ruthenium or a very low
level of radioactive ruthenium.

But in short cooled stuff, especially in fast reactor fuel reprocessing, that becomes a consideration. Iodine is always a consideration, of course, because it goes to the thyroid. And you don't want it out there amongst the babies.

15 And krypton is a problem unto itself because that is a noble gas. That means it doesn't 16 17 react with anything to speak of. And there are special pieces of equipment that have been developed 18 19 many years ago for moving krypton, none of which are 20 in active use. But if we go to a lot of reprocessing 21 and this becomes a big deal. And probably some 22 recovery of the krypton will be required. At present, 23 it is not.

And sometimes there is a Carbon 14 present. And if that is the case, then you have to do

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	something about trapping whatever carbon dioxide comes
2	off which in these kinds of fuels would be small. But
3	in HTGR fuel reprocessing, it could be very large
4	because of all the graphite you've got to get rid of.
5	Typically you burn it.
6	MEMBER WEINER: Would you use cold traps
7	for krypton and CO2?
8	DR. WYMER: That is kind of what you do,
9	Ruth. It is basically one of those cold trapping
10	operation. That is right. You just drop the
11	temperature way down and you condense it. That's one
12	of the ways you can do it.
13	With any of the other large solutions, you
14	really carry out the separation, you adjust your
15	concentration. Plutonium in this process exists in
16	two valent states, the plus three and the plus four.
17	And others. Plutonium is a weird element because you
18	can have three valent states coexisting simultaneously
19	and they can live with each in significant amounts.
20	You know they are not just trace amounts but they are
21	there in percentage amounts, all three valent states
22	at the same time.
23	Only the Plutonium 4 really extracts good.
24	So you have to do a valence adjustment. You have to
25	adjust everything to the Plutonium Plus 4 so you get
	1

(202) 234-4433
	36
1	good removal of it. And that is what is done in this
2	step.
3	This is kind of an important graph in that
4	it tells you how the radioactivity decay. This is for
5	high-level waste but that is the same as in fuel
6	elements. How it decays with time.
7	And as sort of a reference point, the
8	radioactivity of the original ore is indicated by this
9	line. So if you get rid of that, you are getting to
10	where people shouldn't be too upset by it. But you
11	can see that the decay drops off very rapidly. This
12	is years so if you hold it for 100 years, you are down
13	here from about ten to the seventh down to ten to the
14	fourth, a thousandfold reduction in the radioactivity.
15	So storing is a good idea particularly
16	storing for at least five years before reprocessing
17	would get you out here a ways. And if you can store
18	it for longer than that like they are talking about
19	Yucca Mountain, maybe 100 or 200 or 300 years, then
20	you really do bring it down a lot before you close up
21	the mountain which makes it really Yucca Mountain
22	is a non-retrievable storage facility.
23	CHAIRMAN RYAN: Ray, let me, if I may, ask
24	a question about that graph.
25	DR. WYMER: I'm not sure I could go back
1	I contract of the second se

(202) 234-4433

to it.

1

2 This group's total CHAIRMAN RYAN: 3 radioactivity fission products and actinides, and I 4 sure understand it on that basis, but this is one of 5 those points of overlap for me. When you think about performance assessment, you think about Carbon 14 and 6 7 Neptunium, and Technetium 99. I wonder if we've got 8 the same picture when you consider the mobile risk 9 importance --

10 DR. WYMER: No, no, not at all. You're 11 seeing many of those plus Yucca Mountain waste, and 12 no, the toxicity, as you know, out here ten to the fifth years gets controlled by Neptunium and the 13 14 Technetium. In the very short term, of course, it's 15 controlled - you know all this, but you're asking for the benefit of other people. This is not - Cesium 16 and Strontium are the controllers up there. As far as 17 the hazard is concerned, the actinides, they abide. 18 19 They're very long-lived, typically, and they become in 20 the long run - Neptunium is one of them - they become 21 a controlling radioactivity along with Technetium, and 22 to a much lesser extent Iodine 129, but that's down. 23 I don't know whether I'm answering your question or 24 not.

CHAIRMAN RYAN: Well, you have. You sure

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	38
1	got to the summary from that perspective. The other
2	kind of argument I've seen people talk about with this
3	sort of a curve, not exactly the same, is while, if we
4	reprocess the actinides go somewhere else, and all
5	that. But at the end of the day, it's a zero sum
6	gain.
7	DR. WYMER: That's right.
8	CHAIRMAN RYAN: If it's going out of a
9	reprocessing plant to some other waste treatment line
10	versus straight into Yucca Mountain, I think this is
11	where my root question that I asked at the beginning
12	comes from - how does it work as a system?
13	DR. WYMER: Well, the other thing that we
14	haven't said much about is that part of the Global
15	Nuclear Energy Partnership is you build a fast reactor
16	some place about 30-40 years out into the future, and
17	you take these - like all the UREX processes do,
18	depending which UREX process you're talking about,
19	they take one or more actinides out in a separate
20	stream, as well as the Cesium and Strontium out of a
21	separate stream. And those the actinides then are
22	planned to be put in the fast reactor. And in a fact
23	reactor, as you know, they'll have enough cross
24	section that they will fission, and even the non-
25	fissile actinides fission if you leave them in a fast
	1

(202) 234-4433

	39
1	reactor long enough, and that's in terms of fission
2	products. And then you're dealing with the fission
3	product waste instead of an actinide waste.
4	CHAIRMAN RYAN: But, again, I think you've
5	hit the key point, is that it really relies on several
6	modified or even new components of a total system to
7	make sense out of all that.
8	DR. WYMER: It does. Well, if you're from
9	Los Alamos you say I'll stick those actinides in a
10	particle accelerator. If you're from any place else
11	in the world, you say I'll put them in a fast reactor
12	and burn them up. So that really it's a zero sum
13	gain, as you said, unless you do that.
14	CHAIRMAN RYAN: Right.
15	DR. WYMER: If you convert them from
16	actinides by burning them in a fast reactor
17	CHAIRMAN RYAN: It's still a zero sum,
18	though, because if you have a fast reactor and you're
19	fissioning those
20	DR. WYMER: But they're fission products
21	instead of actinides.
22	CHAIRMAN RYAN: But there's a cost in
23	terms of occupational exposure in terms of risk, risk
24	assessment for that fast reactor, so you may end up
25	with a different profile
	1

(202) 234-4433

	40
1	DR. WYMER: Refabricating the actinides.
2	CHAIRMAN RYAN: All of that, so all of
3	that has to be taken into account.
4	DR. WYMER: Absolutely.
5	CHAIRMAN RYAN: And your point is if
6	everything goes right, you've converted a long-lived
7	radionuclide to a shorter lived one.
8	DR. WYMER: That's exactly right.
9	CHAIRMAN RYAN: Okay.
10	DR. WYMER: That's the reason for going
11	from lactinides to actinides, that and the heat in
12	Yucca Mountain. Really, that's right. There's no
13	free lunch in any of this at all.
14	Okay. This is if you ever saw a
15	simplified diagram of a complicated process, this is
16	it. This is sodium hydroxide decladding. Well,
17	that's only used if you have aluminum cladding on the
18	fuel. If it's zircaloy or if it's graphite, or if
19	it's stainless steel, this is replaced with shearing,
20	that big mechanical shear that chops the stuff up.
21	Anyway, one way or another, you cut it up so you can
22	expose the uranium dioxide that's inside the spent
23	fuel. You dissolve it with nitric acid, you've got
24	the off-gas problem to deal with. You separate out
25	the fission products, and someplace - and you send
	1

(202) 234-4433

1 them over here into waste. You separate the plutonium 2 uranium, you remove the uranium from and the plutonium, or plutonium from the uranium, whichever, 3 4 and you put the waste into a tank concentrated by 5 evaporation, and these days the plan is that you vitrify that nitric acid solution, make a bar of 6 7 silicate glass out of it, recover the acid somewhere here. And if you're going to do MOX fuel fabrication 8 9 which is being practiced a number of places in the 10 world, you do that. So this is a very simplified block diagram of some of the operations, and it's not 11 -- take it for what it's worth. 12 VICE CHAIRMAN CROFF: Ray, before you go 13 14 on - with reference to that diagram, you might 15 elaborate just a bit on the head-end for HTGR fuel, how it differs. 16 17 DR. WYMER: Okay. I don't have a picture of that, but if you have these graphite balls, for 18 19 example, you crush them up, and you put them through 20 a grinder, which is -- after you crush them, the gap 21 of which is such that it will remove the graphite 22 that's adhering to the little balls, but will not 23 crush the balls. Now the balls are hard. You may 24 take the outer layer of graphite, that non-porous 25 outer layer, you may break some of those, but the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 silicate carbide containment vessel, which is only 2 half a millimeter in diameter, that is not supposed to 3 be fractured. So the idea is to remove as much carbon 4 as you can, without losing any of the fuel stuff 5 that's inside that little ball. And then that graphite becomes a waste, and there's quite a bit of 6 7 it. And then you have another process whereby you grind up the liberated silicon carbide coated kernels 8 which have the uranium dioxide or uranium carbide, or 9 uranium oxide carbide, depending on what you make 10 inside. You grind those up, and you dissolve that in 11 12 nitric acid. When you do that, you're not home-free, 13 14 because it turns out when you dissolve uranium carbide 15 or uranium oxicarbide particles, you make organic

acids out of the graphite. Some of these are 16 powerful, complex agents for uranium and plutonium, 17 and so you have to have a process that is more than 18 19 competitive with the complexing action of the mellitic 20 gases, the various other organic gases that are 21 forming complexing agents. It can be done, and it has 22 been done, but it's not like falling off a log, it's 23 not like dissolving UO2 in nitric acid. You've got a 24 little work cut out for you, but you could do it. 25 It's kind of messy. Is that what you wanted?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	43
1	VICE CHAIRMAN CROFF: Yes.
2	DR. WYMER: Okay.
3	MR. FLACK: Ray, I'd just inject - the
4	prism blocks have fuel insert, which makes it less of
5	a waste, I guess, than the pebble bed, which includes
6	the entire graphite in the ball. Right? Do the fuel
7	elements inside because you can knock those out.
8	DR. WYMER: No, because nobody had come
9	up yet, at the time we stopped working on it, with a
10	final good way to move those sticks from the holes
11	that they were pushed down into in that graphite
12	block. There were various things proposed, like
13	drilling. Of course, that breaks up the silicon
14	carbide particles, and there's more graphite than was
15	there in connection with that stick of graphite in
16	which the little particles were contained, so there's
17	probably a little bit more graphite actually from that
18	process than the other.
19	Another way was to put kind of a brush,
20	steel brush down in the hole. Another way, for those
21	of you who are old enough and remember the Los Angeles
22	problems, friends of mine called it the WATTS process,
23	W-A-T-T-S, burning the whole block. Remember when
24	there was a riot in Watts and they burned the whole
25	block.
1	

(202) 234-4433

	44
1	MR. LARKINS: That's what I thought they
2	were talking about. This was the PGX graphite?
3	DR. WYMER: I'm not sure what that is.
4	MR. LARKINS: Yes. That's the block.
5	DR. WYMER: Oh, the *(2:00:53) fuel off.
6	MR. LARKINS: Yes, chop it and burn it.
7	DR. WYMER: Yes. They were going to grind
8	one approach was to just break up the whole block
9	and burn it, but if you ever tried to burn graphite,
10	you know, it's hard. A solid piece of graphite, of
11	theoretically dense graphite, you've got hold a blow-
12	torch to it to make it burn. You've got to keep
13	holding it there. It doesn't suddenly catch fire and
14	burn, so it's not real simple.
15	MR. LARKINS: I wasn't old enough, but I
16	
17	DR. WYMER: No, you weren't. You don't
18	know about burning the whole block. He was young.
19	No. This is something I stole from back in the 70s.
20	Some of you remember INSEC where this is the flow
21	sheet that was turned out in one of the reports at
22	that time. This was a 40 mega watt day per ton burn-
23	up with only a three-year cooling time. The
24	significance of the cooling time is that determines
25	the amounts of some of the important fission products

(202) 234-4433

1 that are present, some of the shorter-lived fission 2 Take the spent fuel in, put it in buffer products. 3 storage. This is based on a thousand ton storage, 4 which is a year's worth, 250-day operating year. Burn 5 four tons a day, you go through a first extraction, and that separate the fission products from the 6 7 uranium and plutonium. Then you do uranium and plutonium separation, you clean up each of those 8 streams down there. Fission products and whatever 9 else you didn't quite extract - nothing is perfect, 10 nothing is clean. There's always a little bit 11 12 uranium, little bit of plutonium lies up here. What you shoot for is less than a tenth of one percent of 13 14 the plutonium, you like to be .05. And then the 15 solvent that you use for solvent extraction, because of the high radiation, undergoes some radiolytic 16 17 decomposition, the gamma rays and the beta decompose it to tributal phosphate, which is what you use, 18 19 dibutal phosphate, monobutal phosphates. becomes 20 Those are very strong complexing agents for uranium 21 and plutonium, and if you cycle those back around 22 again, they stay in the aqueous space, and I'll say 23 more about this in a minute, but they stay in the 24 nitric acid phase, instead of going into the phase 25 that contains uranium and plutonium, and they will

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 complex and hold it in the nitric acid phase which 2 represents a loss to the process, so you have to do a 3 solvent recycle, which produces a waste from your 4 recycle operation. And then you have various other 5 waste streams. Then you wind up, ideally, with your plutonium and uranium separated, products which you 6 7 can later mix together in a different ratio to produce 8 MOX fuel, if you want to. That's mixed uranium 9 plutonium oxide fuel.

10 Okay. The process that's used to carry out this magic separation of uranium and plutonium 11 12 from the fission products is a solvent extraction process, so-called. This is where I assume that you 13 14 don't know anything. You take two liquid phases, one 15 of them is tributal phosphate dissolved in something like kerosene, a nice pure kerosene, maybe 30 percent 16 17 by volume is tributal phosphate, which is an industrial plasticizer. And the rest of it is 18 19 kerosene, 60-70 percent is kerosene. And that's 20 immiscible in water, and you shake that up with a 21 nitric acid solution that you got by dissolving up the 22 uranium and the spent fuel. And if you shake it up 23 real good one way or another - I wouldn't advise a 24 separatory funnel - and the uranium and plutonium are 25 extracted, a little bit staying behind. And I'll show

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

47

you	more	e abou	t that	in a	a	minute.	And	then	in	the
aque	eous	phase	remain	the	Ś	fission	produ	cts.		

3 Now what you do is this is not a really good clean separation. 4 Some of the fission products 5 stay with the uranium and plutonium, some of the uranium and plutonium stay with the fission products, 6 7 so you take those two phases, you take the TBP phase that has the uranium and plutonium, and you shake it 8 up with some more nitric acid, clean or nearly clean 9 nitric acid, which back extracts the fission products 10 11 out of the uranium and plutonium phase. And you shake 12 the fission products phase that has some trace uranium and plutonium with it, with the tributal phosphate 13 14 phase, and that extracts the other remaining traces of 15 uranium and plutonium out of the fission product 16 waste.

17 Now you do this in a fairly complicated way, which I'll explain to you as best I can in a 18 19 It isn't just that -- it's not exactly what minute. 20 I just said, but the effect is the same. Okav. 21 Here's your kerosene and tributal phosphate, and 22 there's your - as you can see, we're left uranium and 23 plutonium back there along with the fission products, and the plutonium 4 and the uranium which is there is 24 25 uranyl ion, uranium plus 6, goes up into the kerosene

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

in the TBP phase, and that's just to give you a very simple picture.

3 Now don't get lost in this one. This 4 shows you how much uranium and plutonium, and other 5 things, are extracted as a function of nitric acid concentration. And as you can see, the higher the 6 7 nitric acid concentration, the better these things are But you can also see that the distribution 8 extracted. 9 coefficient, which is the ratio of the concentration 10 of uranium or plutonium in the aqueous and organic phases, that's what the distribution represents, the 11 12 ratio of the concentrations. It starts out here at about 1 molar, about .1 for plutonium, which means 13 14 you're not extracting it, 90 percent of it is staying 15 in the aqueous phase, so you run the acidity on up here a little bit to about 4 or 5, and then you see 16 17 you get above 1, so 1 means that half the plutonium is in the aqueous phase and half is in the organic phase, 18 19 not too good. But if I now take that and extract it 20 again, I'll get a half of a half left behind, and a 21 half, of a half, of a half, so I do that seven times, 22 I got over 99 percent of it extracted. 23 And you see the fission products now, 24 ruthenium is an anomalous behavior, it goes down.

25 Here's plutonium 3 - I said you had to get it up to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

	49
1	plutonium 4 - you can't extract plutonium 3 worth a
2	darn. It's way down there, only a thousandth.
3	Zirconium extracts, and you scrub that out. That's
4	one of the fission products that you take out by
5	taking the organic phase and hitting it with 4 or 5
6	molar nitric acid, which keeps uranium and plutonium
7	in the organic phase, but takes the zirconium out, so
8	you can get the zirconium out good.
9	Then you see the rare earths which are a
10	major component. That's lanthanum and cerium, and
11	gadolinium, rare earths are not extracted hardly at
12	all.
13	MEMBER WEINER: The plutonium 4 dissolved
14	actually, or is it as the intrinsic colloid?
15	DR. WYMER: Yes. No, it dissolves. It
16	forms plutonium 4 nitrates dot 2 TBPs or something.
17	It's an actual adapt of compound. It forms a real
18	species, just as the uranium does. They form an
19	addition compound with tributal phosphate. Yes,
20	you've got to worry about colloids, but not at 4 molar
21	acid, but you get down to say .3 molar acid, then you
22	start worrying about plutonium colloids.
23	Well, this is a pulse column. This is the
24	workhorse of the whole separation process. You bring
25	the tributal phosphate dissolved in kerosene here.
	1

(202) 234-4433

	50
1	It's lighter than water and lighter than nitric acid
2	solution, so it comes up the column. You bring in
3	your fume from the dissolver at the top of this
4	column, and it falls down. These things here are
5	circular plates about like that, can't get any bigger
6	than that because you get criticality problems, and
7	there are a bunch of holes punched in them. And as
8	the organic solvent goes up, it has to go through
9	these holes. And is it does, of course, it goes
10	through, bloop, bloop, bloop, makes droplets. And
11	that gives you a high surface area, gives you a lot of
12	area of contact so that you can extract the uranium
13	and plutonium easily out of the down-coming aqueous
14	feed.
15	Once again, the freshest best extracting
16	power TBP is at the bottom where you need it, because
17	that's where the plutonium and uranium are the most
18	dilute, so you get the highest extraction power where
19	you need it the most, because it's harder to extract
20	dilute material than it is concentrated material. So
21	these things run counter-current to each other, so you
22	get these multiple stages. You can see here, we've
23	got one, two, three, four, five, six, seven, twelve,
24	thirteen, fourteen - in this particular picture
25	fourteen - that's about the right number you have,
	I contraction of the second

(202) 234-4433

(202) 234-4433

1 anywhere from twelve to sixteen stages. Well, you know, seven stages you got over 99 percent, you got 2 3 another four or five stages here, so you get a very 4 complete extraction. You can get about 99.95 percent 5 of plutonium in a well-run plant. They didn't originally when they started, but they do. 6 7 In order to help the system along, there's a little pump here that goes like that, and it pushes 8 9 on the organic phase, it jerks it up through the pulse plates to give you the high surface area to give the 10 11 efficiency of extraction. This shows you, if you 12 could see over the table, one of these perforated So that's the heart of the process. 13 plates. 14 Now there are other kinds of contactors, 15 I said that this is the one I told as I mentioned. you was tolerant of fine particulate material. 16 All it has to do is get through that hole, which is a pretty 17 It's a millimeter or so, maybe a 18 fair size. 19 millimeter and a half, so you don't get a lot of dirt 20 hanging up in it. There's that kind of device also on

the Colorado Plateau for when they were mining and

milling uranium, that and mixer settlers, because they

would handle dirt - you can actually put in dirty

solution of ore, dissolved ore through there, it would

NEAL R. GROSS

(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

go through.

21

22

23

24

25

(202) 234-4433

	52
1	This is the centrifugal contactor, which
2	I mentioned. It's a cream separator. It spins and
3	slings the heavy phase to the outside, which is the
4	water like phase of the tributal phosphate. It is
5	pushed in by the water going out. The tolerance is
6	close, so you can't tolerate any dirt. The advantage
7	of this thing is it spins like mad, and it's a lot
8	faster than a pulse column. A pulse column goes
9	chunk, chunk, chunk, like that, as it pulls things
10	through the pulse plate, but this thing spins and it
11	does a very fast separation, fast extraction, fast
12	phase separation of the two phases, and you could have
13	a much smaller plant with this kind of a contactor
14	than you can with a pulse column.
15	The drawbacks, of course, are it is a
16	sophisticated, complicated mechanical device spinning
17	at high speed, but they are used, and they're used
18	successfully. There's not much else to say that can
19	be said simply about it. They are used commercially
20	on a large scale. One thing I ought to say, too.
21	One of the reasons for going to these,
22	besides the throughput, is that they are relatively
23	very small, and about a third of the cost of a
24	reprocessing plant is in the concrete and the
25	shielding. That's what you pay for. Because if can
	1

(202) 234-4433

	53
1	decrease the size of the cells that you have, the hot
2	cells that you have, the shielded cells, you're a lot
3	of money ahead. So it's two things, throughput and
4	cost.
5	This is an actual bank of eight of them,
6	there's four on this side, four on that side. They're
7	commercially available in that size, or commercially
8	available a lot bigger than that.
9	MR. LARKINS: Ray, in terms of the amount
10	of material that you can process in those two, what
11	types of rates, how much material can you process in
12	a time?
13	DR. WYMER: You could probably - what you
14	just saw there, probably close to a ton a day I would
15	think, through eight contactors spinning at the rate
16	they do. And they really put it through.
17	Okay. Well, this is just a list of the
18	kinds of things you have to have in a reprocessing
19	plant. You have glove boxes where you can deal with
20	small amounts of radioactivity. You have hot cells
21	where you do reprocessing and handling of materials,
22	and other than reprocessing operations where you have
23	a lot of radioactivity, say some kinds of waste. And
24	the actual reprocessing plant, you have maybe two and
25	a half, three feet of shielding around the

(202) 234-4433

1 reprocessing material were the very hot material comes 2 Glove boxes are used for a variety of things. in. 3 You can use them for working on equipment, anything 4 you need to do hands-on that's not highly radioactive, 5 they all have an off-gas system that they're hooked 6 into. 7 Canyon is the name typically given to a 8 very large scale reprocessing plant because they look 9 like a canyon. You look down them, and there's these big walls, and you'll see a picture of it here in a 10 little bit, so they call them canyons. 11 12 Now this is a line of hot cells. This particular line I think is probably ORNL. 13 It looks 14 like the TRU facility, to me, at ORNL. And these are 15 hot cells, and these are the manipulator controls. 16 People do things here that -- the motions here are 17 reflected inside the hot cell by simple grasping manipulators. And it's a job that requires a good 18 19 deal of depth perception on the part of the operators. 20 And it takes a lot of training to do it well. 21 These are glove boxes, that typically 22 people sit in front of these things for hours at a 23 time with their hands in these gloves that push into 24 there, and some of these gloves are very heavy, some

of them are lead-lined. They have ground up powdered

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

	55
1	lead in them for gamma shielding. You can imagine
2	working four or five hours in lead gloves, develop
3	strong arms. There's part of the off-gas system.
4	MR. FLACK: Ray, is the robotics taking
5	over in this area, or is it still
6	DR. WYMER: And awful lot of robotics,
7	particularly the French have really pushed the remote
8	operations of robotics, yes, to keep the doses to
9	their operators down, and it gives you a lot of
10	precision, too. You'll see some of that in this tape
11	that I'm going to show shortly.
12	This is the front of a hot cell. Again,
13	the one at British Nuclear Fuels Limited, so you see
14	the windows that they look through.
15	Now video - we've got two here, one of
16	Magnox fuel being processed, another of oxide fuel
17	being processed.
18	(A film was shown.)
19	DR. WYMER: Your handouts said it's a
20	video of processing at Sellafield. There's a segment
21	on there about processing at Sellafield, but I don't
22	think it shows you enough more to warrant taking the
23	time to show it to you. You saw the reprocessing
24	plant, which is a more modern one that you've seen
25	here in France.
1	I

(202) 234-4433

	56
1	CHAIRMAN RYAN: Actually, it would be
2	interesting to compare the two.
3	DR. WYMER: Okay. Can you take it back to
4	the beginning? It's the first segment on that tape.
5	PARTICIPANT: Have you started seeing it
6	already?
7	DR. WYMER: I'm sorry?
8	PARTICIPANT: Have you already started
9	looking at it?
10	DR. WYMER: No, no. All of this was
11	France, so what you'll see now is Great Britain.
12	PARTICIPANT: The very beginning?
13	DR. WYMER: Yes, the very beginning.
14	PARTICIPANT: Why did they wait two years
15	before
16	DR. WYMER: Two years is still pretty hot
17	at two years. Five is more typical.
18	CHAIRMAN RYAN: Ray, a couple of the
19	drivers from two to five years is some of those
20	ruthenium isotopes, are they not?
21	DR. WYMER: Yes, the half-life of some of
22	those is long enough that there's still some there at
23	two years.
24	CHAIRMAN RYAN: I think some of the other,
25	if I recall, is iodine and some of the other things
	I contract of the second se

```
(202) 234-4433
```

	57
1	that are environmental release questions that tend to
2	be gone at five plus years.
3	DR. WYMER: Although, the iodine 133, of
4	course, 131
5	CHAIRMAN RYAN: 131 is long gone.
6	DR. WYMER: Eight days half-life.
7	CHAIRMAN RYAN: Yes, that's long gone.
8	DR. WYMER: Yes, the 139, of course, was
9	ten to the seventh years, something like that. It's
10	going to be around a while, but there's two sides to
11	that radioactive decay coin. The fact that they have
12	very long half-lives, they're going to be around a
13	very long time. The fact that they have a very long
14	half-live means they're not very radioactive, so it's
15	a trade-off, kind of. Although, they're radioactive
16	enough to be of concern.
17	CHAIRMAN RYAN: That depends. I mean,
18	even some of those long-lived ones, like iodine 129,
19	if you have enough stable iodine in your diet, you'll
20	block it. If you don't have enough stable iodine in
21	your diet, it's important, so it's interesting.
22	DR. WYMER: Sure, where the wigget is
23	flooded out, absolutely. Sure.
24	CHAIRMAN RYAN: Carbon 14, the stable
25	element intake in the diet determines what carbon 14
1	

(202) 234-4433

	58
1	can get in.
2	DR. WYMER: Well, carbon 14 is sort of in
3	the same boat as tritium. Tritium has a 12-year half-
4	life, lot of tritium is released in the world various
5	processes, but half-life 120 years.
6	PARTICIPANT: We're ready.
7	DR. WYMER: One-tenth of 1 percent. Okay.
8	Let her roll. This is the Sellafield Plant now that's
9	advertised on your hand-out, I hope.
10	(A film was shown.)
11	DR. WYMER: This film was about 25 years
12	old. The Thorp Plant you saw was under construction
13	will be closing down in either 2010 or 2011, after
14	having served over 30 years. And they talked about
15	using ferrasulfonate to reduce the plutonium from
16	extractable plus 4 phase to the non-extractable,
17	finely extractable plus 3 stage. Ferrasulfonate is no
18	longer used because the presence of iron in it, which
19	substantially increases the volume of the waste that
20	has to be treated, so that the reducing agent now to
21	reduce the plutonium to an unextractable form valence
22	are all organic materials that are subject to
23	decomposition, and they produce no solid waste,
24	provides bulk waste to the vitrification plant. So
25	that's been eliminated.

(202) 234-4433

	59
1	Virtually, all of the discharges into the
2	it turns out, the Irish Sea on that early plant
3	have been discontinued. They're down to extremely low
4	level. Was not so good in the beginning for a number
5	of years, and the Irish were not exactly happy campers
6	about all that, and aren't today. And there probably
7	is quite a bit of radioactivity in the sludge at the
8	bottom of the Irish Sea. But at any rate, that's the
9	way things stand. Let's see. There was something
10	else I was going to say about that. Oh well, let's
11	move on here.
12	Different solvents can be used other than
13	tributal phosphate TBP. Things like carbon
14	tetrachloride, in some rare cases, and you can use
15	other acids, but these have never been used on a
16	commercial scale. The French are doing a lot of work
17	developing new reagents. One of the problems with
18	tributal phosphate is that, as I said earlier, when it
19	is subject to radiation it forms dibutal and monobutal
20	phosphates which are not extracted, complexing agents,
21	and they mess up the extraction. And also, the
22	phosphate radical fuel 4 3 minus is irreducible
23	residue. It's like iron, it doesn't go away, and so
24	it becomes part of the waste, and adds to the waste
25	volume, so getting rid of phosphates is another
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

direction that people are going, but they have not gone there yet. Still tributal phosphate.

3 If you're not highly radioactive, you can 4 use ion exchange, which is a lot like solvent 5 extraction, except the phase that extracts the stuff you want in solid instead of liquid. 6 And then can 7 just simply remove the material then by another 8 chemical reaction, remove the uranium and plutonium 9 from the ion exchange resins. The problem with that 10 is that ion exchange resins are organic materials, typically, and organic materials undergo radiation 11 damage, and it's not uncommon in highly radioactive 12 operations to start out with a column full of tiny 13 14 beads about a millimeter in diameter of ion exchange 15 resin, and when you're done you wind up with a column full of black tar, which you can't get out without --16 and it's extremely radioactive, so you can only use 17 this for fairly low levels of radiation. 18

A significant problem occurred at Savannah River a number of years back, where they were doing a plutonium clean-up on ion exchange resin. Turns out you can make a plutonium nitrate and ionic complex, about six nitrate ions instead of four, which would make it neutral. It becomes negative and ionic, and then you could separate that on anionic exchange

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

column, but they lowered it onto the column that way and let the column go dry and, of course, the radiation made explosive gases. This thing blew up, so you've got to be careful with ion exchange, it has its limitations.

There are other ways to separate uranium 6 7 and plutonium from fission products, which are not This DUPIC process, in particular, merits 8 aqueous. 9 some mention because that's being developed as a collaborative effort between Canada and South Korea. 10 It's a very low decontamination process, and it 11 12 involves - you must have two different kinds of reactors to make it work. You start out with fuel 13 14 from a light water reactor, like a pressurized water reactor, and you knock it out of the cladding like 15 16 before. And then instead of dissolving it, you just 17 heat it up in air or ozone, oxygen. And when you do that, the uranium dioxide undergoes a phase change and 18 19 it crumbles into a fine powder. And when it does 20 that, it releases large high cross section fission 21 product gases, like xenon, and they go off in the off-22 So does, of course, the iodine, the ruthenium qas. 23 and everything else. It's volatile, and so you have 24 this -- but you've gotten rid of some high cross 25 section materials.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

(202) 234-4433

	62
1	Now you couldn't just take this material
2	then and reconstitute it into a light water reactor
3	fuel because it still has too many fission products,
4	and too many neutron absorbers, too many high cross
5	section neutron absorbers. But once you put it into
6	a heavy water reactor like CANDUs, they are much more
7	efficient than light water reactors, and they will
8	burn this kind of fuel, so the DUPIC process that's
9	being developed involves light water reactor fuel, and
10	then subsequently heavy water reactor fuel. These in
11	tandem allow you to get the additional burn-up, and
12	it's a very simple reprocessing operation. But, of
13	course, it's all highly remote, the fabrication and
14	everything else. I thought it's kind of interesting,
15	and it's being worked.
16	MEMBER WEINER: Before you go away from
17	that slide, if you can go back to it.
18	DR. WYMER: Can we go back to that slide?
19	MEMBER WEINER: I'm sorry. One more.
20	DR. WYMER: One more.
21	MEMBER WEINER: I'm surprised, is there a
22	future for the EBR-II process?
23	DR. WYMER: No. The EBR-II was a very
24	special process run out at Idaho Falls in their
25	totally contained and inert atmosphere circular cell
	1

(202) 234-4433

(202) 234-4433

1 that they have out there, specifically for processing 2 fuel from the EBR-II reactor. They ran the process. 3 They shut the plant down. It worked, and basically, 4 what they did, was they demonstrated on a commercial 5 scale high temperature processing, pyrochemical processing, which was a major step forward. 6 That is 7 considered as the next - we talked about it a minute 8 ago in connection with one of Mike's question. It's 9 considered as a way of completing the Global Nuclear Energy Partnership cycle, for the processing, the mass 10 11 breeder fuel pyroprocessing, which reactor is 12 basically a fused salt process, fused fluorides, pretty corrosive, but not the less, it works. 13 Okay? 14 MEMBER WEINER: Thanks. I wondered about what had happened. 15 Okay. Yes, it served its job 16 DR. WYMER: 17 and it's done. And it did work. Ion exchange - I'm not going to belabor 18 19 this - as I said, is a solid material, and put the 20 liquid on it, the stuff you want, if you set the 21 system up properly gets on the ion exchange resin. 22 The other stuff runs out the bottom as waste. Then 23 you pour some more liquids through it that liberates 24 the uranium and plutonium from the ion exchange resin, 25 and that's your product stream, so it's a two-step

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	64
1	operation.
2	Now onto MOX fuel preparation. Ideally,
3	you would use the uranium and plutonium both in light
4	water reactor fuel, and instead of continuing to use
5	enriched uranium all the time, you put plutonium in.
6	It takes a little bit more plutonium, a percent or so
7	more plutonium to get the same reactivity that you had
8	from enriched uranium, but nonetheless, it certainly
9	does work. And there are several countries doing
10	this, and I'll say more about it here. Why don't I
11	just go on to it.
12	These are the countries that are involved
13	in it, Belgium, France, France has a couple of them,
14	UK, Japan, and this gives you the status. You've got
15	this in your hand-out. The capacities, they're either
16	here or they're going to be here. And, of course,
17	we're going to build one at Savannah River, a MOX fuel
18	fabrication plant is currently being looked at by the
19	NRG, because it'll be a commercial plant.
20	Fuel refabrication, I'm not going to dwell
21	on. You basically take the oxides of either uranium
22	or uranium and plutonium, press them into pellets.
23	Typically, for light water reactor fuels they're about
24	a half inch in diameter to about a half inch high,
25	slightly dished on the top and bottom to allow for a
	1

(202) 234-4433

little fission product gas, and they under fine irradiation they take them up to quite a high radiation these days, 40, 50, 55,000 mega watt days per ton, 38 used to be the standard. And they break up when you do that, so that makes it easier for them to come out of the cladding when you chop them up because they're already partially broken due to the radiation effects.

This is fuel pellet fabrication. 9 I copied a Cogema flow sheet here. Fabricate the pellets from 10 11 uranium and plutonium recycled scrap. They're 12 bringing these in pure from the plant that makes the oxide from the solutions, the nitrate solutions, and 13 14 then you recycle scrap, and you make the pellets, and 15 you weigh them, and grind them up to get the right size, put in a binding agent which will burn-off on 16 heating, press them in a hydraulic press, you center 17 them, they shrink, you grind them to the right size, 18 19 then you test them and you reject what didn't pass, 20 back to scrap recycle. and it qoes And the 21 fabrication, you drop them into the zircaloy metal 22 tubes, put the plugs on the ends, clean the outside, 23 you pressurize them, do non-destructive testing on it 24 to see that everything is uniform, then you package, 25 you store them, and you ship them to where you want

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

4 either in an oven, or you can sinter them
5 induction heating.

1

2

3

Ray, I'd like to 6 VICE CHAIRMAN CROFF: 7 make one point on the refabrication that doesn't come through in a lot of the solids handling, which is a 8 9 big part of a refab plant, handling and blending. But the word "scrap", there's a lot behind that because 10 the scrap has to be redissolved in nitric acid from 11 through solvent extraction process, reprecipitated, 12 and then calcined again, so there are a lot of 13 14 elements of reprocessing that Ray has talked about in 15 a refab plant, and they are in the proposed plant down 16 at --

17DR. WYMER: Scrap can be several percent.18VICE CHAIRMAN CROFF: Yes, at Savannah19River, that was all the discussion about red oil comes20from the solvents. That's not evident, it's a rather21cold flow sheet.

CHAIRMAN RYAN: Yes. Yes. One of the other things that I think about, too, when I hear some of these details is that at the moment, we deal with high level waste, low level waste, TRU, and a few

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	67
1	other odds and ends. But when you talk about
2	reprocessing being on the scheme, of course, the IAEA
3	and the Europeans all have intermediate level waste.
4	DR. WYMER: They're trying to get away
5	from that, though, as you probably know, that
6	classification.
7	CHAIRMAN RYAN: But nonetheless, there is
8	a component of fission products and waste that have a
9	little bit of everything that's not economic, perhaps,
10	to make recovery on. And I just wonder how it's an
11	open question, but that's certainly something to think
12	about as you optimize whatever system you look at, as
13	you have to think about not only getting to some end
14	waste, but also what are its ultimate disposal
15	characteristics in whatever group of categories you
16	end up with.
17	DR. WYMER: Yes. The idea that is being
18	worked on is not totally here yet, is to work the
19	process such that you clean up the low level waste low
20	enough that it's true low level waste, and the rest of
21	it all goes into high level waste. But it's hard,
22	because a lot of things do fall into an intermediate
23	category, as you have just implied, all of Europe has
24	always had an intermediate level waste category, and
25	we have always side-stepped it in our nomenclature,
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

but not in our practice. And we only have low level waste and high level waste formally.

CHAIRMAN RYAN: 3 If you take just the 4 metals that we looked at in the grinding and crushing 5 operation, which are always fun to see, we have irradiated hardware, stainless steel stuff that comes 6 7 out of light water reactors, which is fairly straightforward. It's nickel 62, it's cobalt 60, and 8 9 a dribble and a drab of whatever all else. I mean, some of them can be screaming hot like the stellite 10 balls because there's so much cobalt in them, but 11 12 that's a five-year half-life. It's a solvable But then when you get to cladding hulls and 13 problem. 14 stripped off magnesium, you get into -- first of all, 15 chemical questions of magnesium are fun to think about, but then there's enough - like you said, there 16 could be a few percent of what you really wanted to 17 recover for reuse in fuel or other things, that raise 18 19 the question - well, how is it low level waste if 20 there's enough of that along the fuel component or 21 plutonium, or whatever all else to deal with. Where's 22 the cut-off point?

DR. WYMER: Yes. In the past, the cut-off point for the fissile materials have typically been an economic question. That day is going to come to an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

	69
1	end, I think. You can afford to lose .05 percent, you
2	can't afford to lose 2 percent of your plutonium, so
3	that's been done on an economic, rather than on a
4	technological basis.
5	CHAIRMAN RYAN: Even if you look at fresh
6	fuel, enriched uranium fuel fabrication in the old
7	days, it was hundreds of grams were acceptable in
8	waste, and now they're recovering every last milligram
9	that they can because it's so valuable.
10	DR. WYMER: That's right.
11	CHAIRMAN RYAN: The other aspect of it is
12	risk-informing the decisions on what's in waste. It's
13	not so much the economics of the chemical process,
14	though those are clear drivers, but do you need to
15	process more with the end point of what's in the waste
16	in mind, versus the economics of just returning some
17	material to useful purpose in fuel.
18	DR. WYMER: And those factors are becoming
19	more and more important all the time.
20	CHAIRMAN RYAN: Yes.
21	VICE CHAIRMAN CROFF: I'd like to
22	elaborate on Mike's line of discussion here. First,
23	a reprocessing plant would produce a fair amount of
24	what we would call remotely handled transuranic waste,
25	what DOE would call that, which is greater than Class

(202) 234-4433

	70
1	C in the civilian world. And also, a rather
2	substantial amount of remotely handled transuranic
3	waste, very hot greater than Class C, the cladding
4	holes being the prototypical example. Getting those
5	down to less than transuranic levels based on
6	historical examinations has been beyond heroic, and
7	not deemed possible. The implication in the NRC world
8	is what had been fairly modest amounts of greater than
9	Class C, in a recycle scenario, it becomes a major
10	waste stream that has to be dealt with somehow.
11	CHAIRMAN RYAN: Yes, the interesting thing
12	of all of that is it's either source-based definitions
13	or health physics-based definitions of contact and
14	non-contact. And none of those definitions, none of
15	them have anything to do with ultimate risk in a
16	disposal setting, so you might find out that what seem
17	to be pretty bright lines between one category and
18	another, when you take it out of the operational
19	setting and put it in a disposal setting, might not be
20	so bright. So I think that's kind of what we're
21	wrestling with here, is to think how do you go from
22	operational and health physics and radiation
23	protection-based views of how the world works, and
24	economical and chemical process to say okay, I've got
25	six bins of waste. What do they look like in a

(202) 234-4433

(202) 234-4433

	71
1	disposal setting, and what are the risks from that
2	standpoint.
3	DR. WYMER: That's right.
4	CHAIRMAN RYAN: Thanks.
5	DR. WYMER: Just one detail, follow-up on
6	that one on the cladding. A zircaloy cladding, even
7	though it has had the fuel dissolved out of it with 4
8	or 4 molar nitric acid or higher, it's not really
9	it's not ever completely decontaminated, because in
10	the instance of fission, fission fragments and
11	actinides recoil into the cladding deep enough that
12	they do not dissolve out, and so they never become a
13	totally clean waste. And typically these days, you
14	take the whole bunch of those claddings and you just
15	compress them into a great big cube of zircaloy
16	cladding, almost theoretically dense. Okay. We've
17	dealt on this.
18	MEMBER WEINER: Before you go away from
19	that one.
20	DR. WYMER: One more, go back one more
21	time.
22	MEMBER WEINER: Can we go one more time?
23	DR. WYMER: Can you go back there?
24	PARTICIPANT: Oh, you've got something on
25	the screen.
	72
----	--
1	DR. WYMER: You can back it up. Can I do
2	that? Doesn't say back?
3	PARTICIPANT: It says previous.
4	DR. WYMER: Oh, previous. Okay. There we
5	go. I can do that.
6	MEMBER WEINER: Thank you. As I recall,
7	you made the statement at the beginning of your talk
8	that waste volumes would be reduced if we went to
9	reprocessing, but it looks to me that just from the
10	volume point of view, just recognizing that the
11	specific activity would be very different just from
12	the volume point of view, looks to be increased. Are
13	you thinking that you can separate out the fission
14	products and store those in other ways?
15	DR. WYMER: I know what you're talking
16	about. I was referring to the volume of waste in the
17	repositories.
18	MEMBER WEINER: Okay.
19	DR. WYMER: As opposed to storage. There
20	was a lot of liquid waste stored from these processes,
21	that's right. If you're talking about the volume
22	compared to the volume of the fuel, we make a lot more
23	volume. But that then, of course, is vitrified, put
24	in the containers, and then you don't have these 12
25	foot rods with a lot of space between the fuel

(202) 234-4433

	73
1	elements.
2	MEMBER WEINER: So when it's vitrified, or
3	immobilized in some way, you're not actually
4	increasing the volume of waste. You've compressed it
5	enough with getting rid of the fuel rods that the
6	volume is actually less? I'm just curious about that.
7	DR. WYMER: I think I mentioned - I was
8	talking about that in the context of the Global
9	Nuclear Energy Partnership scheme, where you took out
10	the actinides and the cesium, and the strontium, and
11	in that case
12	VICE CHAIRMAN CROFF: Ray, before you dig
13	yourself in too deep here, believe it or not, the
14	recent French experience is the total waste from the
15	reprocessing plant is smaller than the volume of the
16	spent fuel.
17	DR. WYMER: Yes.
18	VICE CHAIRMAN CROFF: Total, I mean true
19	cladding. The whole enchilada.
20	DR. WYMER: Let me rehash what I
21	MEMBER HINZE: By 50 percent, 100 percent?
22	MEMBER WEINER: Ten percent?
23	MEMBER HINZE: Twenty-five percent?
24	THE WITNESS: I don't think it can be 100
25	percent smaller. No, no.

(202) 234-4433

	74
1	CHAIRMAN RYAN: The volume has nothing to
2	do with the risk.
3	VICE CHAIRMAN CROFF: The volume has
4	nothing to do with the risk, but it's surprising what
5	they have been able to do with volume. And by keeping
б	chemicals that are volatile, like oxygen or whatever
7	out of the system.
8	MEMBER HINZE: Well, the volume does have
9	something to do with the risk if you involve human
10	intrusion.
11	VICE CHAIRMAN CROFF: It has to do with
12	storage space in this kind of stuff. But they've done
13	amazing things on the volume issue.
14	DR. WYMER: Well, I'm going to be
15	intruding on somebody else's time here, but I do want
16	to answer the questions. The thought there was that
17	by reducing by taking the actinides out and burning
18	them, and by reducing the volume of that 12 foot
19	element down into a 10 foot thing, put all together,
20	taking into consideration the heat lobe which limits
21	the spacing on the waste in the Yucca Mountain
22	repository, you do reduce the footprint required.
23	MEMBER WEINER: Thank you.
24	DR. WYMER: From start to finish. This is
25	the inside of million gallon tanks that never got
	I contract of the second se

(202) 234-4433

	75
1	anything in them, of course, because the plant never
2	ran. These are all cooling coils inside, so these
3	things are huge. Now, of course, what we have out at
4	Hanford, we have at Savannah River, 177 of those tanks
5	out at Hanford, and 50 some at Savannah River that
6	need to be emptied and decommissioned in some way.
7	They're pretty much empty now of liquid, but they have
8	a lot of sludge and crystalized salts on the bottom.
9	This is just an array of waste tanks at Savannah
10	River.
11	This is - I think Allen must have put this
12	together sometime. Where did you get that, Allen?
13	VICE CHAIRMAN CROFF: I stole it from you.
14	DR. WYMER: What?
15	VICE CHAIRMAN CROFF: Jerry Nickles.
16	DR. WYMER: Oh, Jerry. Oh, well. Yes.
17	Jerry never was a slacker. Reprocessing capacity, a
18	lot of these are trivial, but if you look at the
19	output, you get an idea of what really is important
20	here. We have UK, France, Russia, China, Japan coming
21	on-stream with the Rokkasho-mura plant, which is in
22	cold testing as we speak, I think. Have I missed one?
23	India is doing some reprocessing, of course. Those
24	are the big ones, and these others have toyed around
25	with it. There's another slide, more of them here.
l	1

(202) 234-4433

	76
1	This is another continued list. And here are some
2	carefully chosen references, if you want to know more
3	than you think you want to know about reprocessing.
4	Most of these are - if you really want to know,
5	they're worth reading. In particular, I would commend
6	to you - that I quit. (Laughing.) Any other
7	questions? Okay. Let's go ahead and take questions.
8	Ruth, any more?
9	MEMBER WEINER: Unfortunately, one. This
10	is just a general question. Looking at all of the
11	reprocessing reformulation of MOX fuel processes that
12	you've just talked about, which would you choose if
13	you had to choose one for future development, or are
14	there specific processes that are most suited to
15	specific fuels?
16	DR. WYMER: If you put aside the HTGRs,
17	which are in a class all by themselves, I think for
18	the next 20 or 30 years, it's all PUREX, hands down.
19	After that, we may get into some of these UREX
20	process, which are modified PUREX processes. The
21	French may come on with some of their totally
22	different extractants, other than TBP, in the future,
23	mainly in connection with managing the waste, reduce
24	the waste volume. But TBP has the reason it's been
25	used and picked up and used for so many years, it's
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	77
1	unusual for something to last that long - is because
2	of all the desirable properties it has. It has the
3	right viscosity, has the right flashpoint, has the
4	right extractability for uranium and plutonium. It
5	can be diluted with inexpensive kerosene. It just has
6	a lot of advantages that are awfully hard to overcome.
7	That's why eventually the French, who started out with
8	things like BUTEX, and ourselves out at Hanford with
9	hexone, we eventually everybody went to TBP for
10	those reasons. It's cheap. So for the next 20-30
11	years, that's what you'll see, but there certainly is
12	room for improvement.
13	The pyro processes do have some
14	advantages. Few salt volatilities, such as they
15	pushed for GNEP as a phase 2. That was all developed
16	at Argonne National Lab, and it was demonstrated on
17	the EBR-II fuel, and the plants are general smaller
18	for give and throughput than the aqueous plants are.
19	Of course, there are fluorides which is very
20	corrosive, and they run it 400 degrees Centigrade,
21	which is pretty hot, but not out of sight. They
22	produce a waste that is somewhat difficult because
23	it's a fused salt waste, and you have to fix it, but
24	Argonne has developed some processes for fixing that
25	fused salt fission product containing waste, so I
I	1

(202) 234-4433

(202) 234-4433

	78
1	think that has a future down the line a ways. And
2	it's for applications like fast butal reactors where
3	if you want to reprocess on a fast cycle, and you
4	don't want to burn up your tributal phosphate with
5	radiation damage, you do not burn up sodium fluoride,
6	lithium fluoride with radiation. You do liberate a
7	little fluorine gas over time, but it could be
8	reconstituted easily, so I think that has a future.
9	MEMBER WEINER: Thank you.
10	CHAIRMAN RYAN: I think I asked the
11	questions I was really keen on, Ray, as you talked.
12	And the summary that I took away is that you'd agree
13	with this idea of system optimization, and the points
14	of optimization can be many, it can economics, it can
15	be getting maximum kilowatt, mega watt days per ton on
16	the fuel.
17	DR. WYMER: Very complex.
18	CHAIRMAN RYAN: It can be minimizing the
19	waste you generate, it can be the ease of handling in
20	the reprocessing plant, and costs all the way along
21	the way, or can be ultimately one of the
22	characteristics of the waste that allow for effective
23	disposal. So somewhere amongst all of that, there's
24	got to be
25	DR. WYMER: There's an optimization.
	1

(202) 234-4433

	79
1	CHAIRMAN RYAN: At least a range of
2	options that one could look at, and I
3	DR. WYMER: Some will be contradictory to
4	others, and that's why you have to optimize.
5	CHAIRMAN RYAN: Absolutely. Absolutely.
6	And I think you wrestle with what I few to be goofy
7	definitions of contact and non-contact handled waste
8	and things of that sort, when we ought to remember
9	that uranium is uranium, is uranium. It doesn't
10	matter where it came from, or where it's going, it's
11	still uranium, and has, as I recall, a 4.51 times 10
12	to the 9 th year half-life 238. Doesn't matter where
13	it came from, so those kind of characteristics in
14	balance, I think, at least what I think about when I
15	think about rethinking reprocessing.
16	And the second part of that is risk-
17	informing it along the way. And I would hate to say
18	well, let's optimize on this waste disposal parameter,
19	and finding out that we've increased an inordinate way
20	to that savings risk to workers, or risk to something
21	else in the system, or optimizing a reactor becomes 25
22	times more expensive for that little increment over
23	here. So system is the magic word to me that we need
24	to focus on. We can't have one kind of reactor - and
25	we'll do that 30 years from now. I'm a little nervous

(202) 234-4433

	80
1	about that.
2	DR. WYMER: My cynical view, Mike, is that
3	each part of the fuel cycle will optimize themselves
4	on economic basis, and then they will do whatever else
5	is necessary being driven by regulators.
6	CHAIRMAN RYAN: And, I guess, what I'm
7	suggesting is that the advice to regulators is don't
8	let them do that, optimize the total system.
9	DR. WYMER: I'm a little scared of that,
10	too.
11	CHAIRMAN RYAN: At least somewhere in the
12	middle is the playground where the right answer can be
13	formulated.
14	DR. WYMER: But people are loathe to do a
15	total system analysis on anything. But, anyway,
16	you're right.
17	CHAIRMAN RYAN: Well, I read a piece on
18	the Global Initiative, and it looked to me just like
19	the too cheap to meter stuff from the 50s.
20	DR. WYMER: Yes.
21	CHAIRMAN RYAN: And I was actually
22	appalled at it, so history is we're doing the
23	repeat history, I guess.
24	DR. WYMER: Oh, sure. You know that,
25	Mike.

```
(202) 234-4433
```

	81
1	CHAIRMAN RYAN: Okay. Well, thanks. I
2	appreciate the discussion because it really will help
3	us shape how we take the technical information and
4	turn it into a strategy.
5	DR. WYMER: Thanks for having me.
6	CHAIRMAN RYAN: Thanks for being here.
7	VICE CHAIRMAN CROFF: Not quite yet.
8	First, a point to John Flack, but we hope to get the
9	DOE people in later this summer to talk about the
10	forward-looking program. We need to make sure to ask
11	the question about whether they're doing system
12	analyses.
13	CHAIRMAN RYAN: Right.
14	MR. FLACK: No, I think that is the key,
15	because what are the drivers, and how because
16	that's outside of our control.
17	VICE CHAIRMAN CROFF: I mean, ask it right
18	now, and if there's a specific person that can talk to
19	it for a half hour, let's get them here.
20	MEMBER HINZE: Well, a couple of very
21	quick questions. One of your first slides, Ray, was
22	reprocessing - why do it? If you were to put up a
23	slide which would say reprocessing - why not do it,
24	and you remove the political card, what would you have
25	under that?
1	I contract of the second se

(202) 234-4433

	82
1	DR. WYMER: Why not do it?
2	MEMBER HINZE: Yes.
3	DR. WYMER: Well, I think I don't know
4	whether this gets what you want. The only reason you
5	reprocess is to conserve resources and to save money,
6	so that's why you reprocess.
7	MEMBER HINZE: And so, the reason why you
8	shouldn't do it then is?
9	DR. WYMER: The reason why you should not
10	do it?
11	MEMBER HINZE: Yes.
12	DR. WYMER: Because of all these problems
13	that Mike has been alluding to. I don't think you
14	should not do it. It is my belief that Yucca Mountain
15	will be a satisfactory repository for the waste. It's
16	my belief that we can, in fact, reprocess safely, so
17	I don't believe you should not do it.
18	MEMBER HINZE: I knew there was a good
19	reason why we didn't see that slide.
20	DR. WYMER: Yes. When you get a speaker,
21	you have to accept his presence.
22	MEMBER HINZE: The second question -
23	you've given us a number of references here. I'm
24	interested in a reference that would give me the best
25	information, the most complete information on the
	1

(202) 234-4433

	83
1	waste from reprocessing in terms of volume, in terms
2	of radiation, in terms of heat, et cetera. Is there
3	some place where this is written so that a layman in
4	this area could look at it and understand it?
5	DR. WYMER: Well, the best single
6	reference on that list is the first one.
7	MEMBER HINZE: Is by Wymer?
8	DR. WYMER: No. I bagged mine about three
9	I sprinkled them throughout, but I didn't put it
10	first. The best one there is by Justin Long, and he
11	covers almost everything. And that's an encyclopedic
12	discussion of things. Now whether the waste is a key
13	thrust of that, probably not, but it's in there. So
14	if you want the best overview you can get, it's Justin
15	Long's book.
16	MEMBER HINZE: So waste is not necessarily
17	treated as an entity there, but has to be extracted
18	DR. WYMER: That's what I found.
19	MEMBER HINZE: Okay. Thank you very much.
20	DR. WYMER: Piecemeal it out. Yes.
21	VICE CHAIRMAN CROFF: ACNW staff.
22	MR. FLACK: Just a question on your
23	thoughts about the impact of reprocessing on the
24	licensing of Yucca Mountain. Are these going to be
25	someway coupled at some point, do you think? Will

(202) 234-4433

	84
1	have a major effect on that licensing process?
2	DR. WYMER: That's one of the drivers,
3	sort of the half-hidden agenda, DOE wanted to go to
4	Global Nuclear Energy Partnership, it's to extend the
5	lifetime of the Yucca Mountain repository by five-
6	fold, by so dramatically reducing the volume of waste
7	that goes into it.
8	MR. MAGRUDER: It can have a major effect,
9	then
10	DR. WYMER: No major effects.
11	MR. MAGRUDER: which is how do you
12	quantify that in cost space? It just becomes not an
13	economic
14	DR. WYMER: Well, if you look at how much
15	money it's taken so far, they'll save a lot of money.
16	Build three or four more Yucca Mountains, some
17	billions of dollars. So yes, it would be a major
18	driver, to say nothing of the social and political
19	problems associated with Yucca Mountain, and building
20	another one.
21	MR. HAMDAN: Very quickly. I don't know,
22	I didn't hear or see it, but I think this was
23	fascinating. Maybe, I daresay, the best presentation
24	I've heard at ACNW in the two years I've been here.
25	Very brief question - if you were to start the

(202) 234-4433

	85
1	reprocessing in the U.S., would you do it through boil
2	out plants, or do it based on
3	DR. WYMER: It's far enough along, the
4	technology is far enough along, you would build a
5	plant. You wouldn't build a powder plant for PUREX
6	processing.
7	CHAIRMAN RYAN: And just a quick follow-
8	up. I guess I took from the presentation, the videos
9	even though they were dated somewhat, that the French
10	seem to be in the world lead.
11	DR. WYMER: By a mile.
12	CHAIRMAN RYAN: By a mile. I just wanted
13	to make sure that was clear.
14	DR. WYMER: Yes. I'm sorry, that should
15	have come through loud and clear. They're shutting
16	down the Thorp plant. They'll still be operating to
17	do some reprocessing over there, but won't be the
18	oxide fuel through the Thorp Plant.
19	CHAIRMAN RYAN: You didn't mention the
20	newer Japanese activities, and they're kind of getting
21	to where they're up and running.
22	DR. WYMER: Well, they have that little
23	reprocessing plant, Tokai-mura, that is running for
24	many years, the French built for them. They had a
25	leaky dissolver that they almost sued the French over,
	1

(202) 234-4433

	86
1	but they took the Rokkasho-mura plant up on the upper
2	end of Honshu, I think they're still cold testing,
3	still running uranium through it.
4	VICE CHAIRMAN CROFF: No, they went hot
5	about three or four weeks ago.
б	DR. WYMER: Have they gone hot now?
7	VICE CHAIRMAN CROFF: Just barely.
8	DR. WYMER: Then I'm behind. Oh, maybe I
9	did read that. And only it's at a much lower capacity
10	than the
11	vICE CHAIRMAN CROFF: They're still
12	feeling their way along. It's still shake down.
13	DR. WYMER: That's right. I remember
14	seeing that now. Yes, that's a big plant, that's 800
15	to 1,000 tons a year, and it's a total French design.
16	CHAIRMAN RYAN: I mean, again, even though
17	it's in Japan, it is French technology, and they have
18	a pretty strong presence there, I guess.
19	DR. WYMER: Absolutely.
20	CHAIRMAN RYAN: Yes.
21	MR. THADANI: A quick one - today we have
22	approved burn-up levels of 62,000 mega watt days
23	metric ton.
24	DR. WYMER: It's that high now?
25	MR. THADANI: Yes. And some experiments

(202) 234-4433

	87
1	have been done to look at the condition of the fuel
2	pellets, and the reactor reinsertion accident. But I
3	don't think people have looked at it in the context of
4	at the end how do you deal with the condition of the
5	pellets, particularly if you go to reprocessing. And
6	I'm hearing now some talk about perhaps going to
7	75,000 mega watt days per
8	DR. WYMER: They're going to get into
9	cladding problems.
10	MR. THADANI: And I'm wondering if that
11	could pose significant challenges down the road.
12	DR. WYMER: I think it does. I think
13	cladding becomes the driver at about that level. Yes.
14	MR. THADANI: And that's why I think
15	Mike's point, that you have to take a total systems
16	look, the issue is critical.
17	DR. WYMER: Yes, absolutely.
18	MR. THADANI: To look at up front, also.
19	CHAIRMAN RYAN: Well, you know - I mean,
20	it's not only even the burn-up, it's simple things
21	like design of the fuel. You know, if you're going to
22	design it for optimal heat transfer versus designing
23	it for some optimization between heat transfer, burn-
24	up, and reprocessing schemes
25	MR. LARKINS: It almost seems like we're
	1

(202) 234-4433

1 a little behind the power crew on that, because if you 2 look and see what's happening, you've got maybe 15-25 proposed plants to be certified, either combined 3 4 operating license and things like that over the next 5 few years. And if those plants, those will all be current light water reactor-type fuel, so I'm not sure 6 7 how do you go in and optimize early on on - actually fuel fabrication, I think is set. 8 9 MR. THADANI: All the economics are done 10 up front. CHAIRMAN RYAN: And for the current 11 12 generation of reactors, I guess we're in for a dollar, so a dime extra is not a big deal. But by the same 13 14 token, that's under the scheme that there isn't any 15 so high burn-up, reprocess, the there's not а monitoring processing and things like that. 16 But if 17 the game changes in one regard, then maybe there are things at this early stage that can't be done, maybe 18 19 not, or maybe they shouldn't be. But then I think 20 you're going to go through the exercise, I think, 21 about how to optimize. 22 Yes, but I think we're going MR. LARKINS: 23 to be locked in even if we go to reprocessing, with 24 almost current technology. 25 That could very well be, CHAIRMAN RYAN:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

88

	89
1	and again, there may be small changes that could
2	improve, or there may not be. But I think it's worth
3	the exercise to think about that.
4	DR. WYMER: Yes, definitely at least a
5	crude first order, maybe zero order total systems look
6	ought to be taken.
7	CHAIRMAN RYAN: And again, I mean, even if
8	you leave the reactors out of it, and assume that's
9	fixed is one option.
10	MR. LARKINS: How do you optimize
11	reprocessing.
12	CHAIRMAN RYAN: Still optimize the
13	reprocessing to look at waste products and end points.
14	MR. FLACK: It may also depend on whether
15	you're going to build burners in the future, and you
16	may want to reprocess in a way that allows you to
17	prepare for that.
18	DR. WYMER: You know, there's such a thing
19	as doing too much planning.
20	MR. FLACK: Have to be visionary, too.
21	CHAIRMAN RYAN: The number of degrees of
22	freedom can get pretty awesome at some point.
23	DR. WYMER: Well, things change too much
24	to plan too far. A 20-30 year horizon is okay, like
25	my five years is worth some

(202) 234-4433

	90
1	VICE CHAIRMAN CROFF: You want to use the
2	microphone? We're being recorded.
3	DR. WYMER: Just as well you didn't hear
4	that. Anything else?
5	VICE CHAIRMAN CROFF: I think we've
6	reached the end of it, and we've run a bit over, so
7	thank you very much. You hit the nail on the head in
8	a great presentation. Stick around, we'll be getting
9	back to you later. But let's go ahead and take a 15-
10	minute break here, get back at 3:45.
11	DR. WYMER: That's the most flattering
12	thing that was ever said to me.
13	VICE CHAIRMAN CROFF: We'll pick up with
14	the NMSS part of this.
15	(Whereupon, the proceedings went off the
16	record at 3:30 p.m. and went back on the record at
17	3:45 p.m.)
18	VICE CHAIRMAN CROFF: Let's go ahead and
19	come back to order. We're going to move on and talk
20	about sort of the regulatory side of this whole
21	recycle thing.
22	And our next the lead for this little
23	session is going to be Stu Magruder from the NMSS
24	staff. And he's going to do a tag team with some of
25	the other NMSS staff members. So I'll let you go
1	I Contraction of the second

(202) 234-4433

	91
1	ahead and introduce yourself more fully and them.
2	3) NRC'S SPENT NUCLEAR FUEL REPROCESSING REGULATION
3	MR. MAGRUDER: Okay. Actually, Joe
4	Giitter, who is the Chief of the Special Projects
5	Branch and the Fuel Cycle Division, will start off and
б	kind of introduce things.
7	I'll do about the first half of the
8	presentation roughly, and then Joe will do the last
9	half. But obviously we'll be open to answer questions
10	any time during the presentation.
11	MR. GIITTER: Thank you. As Stu said, I'm
12	just going to provide a few opening remarks. And
13	we'll start right in on the presentation and try and
14	go through it because we realize we're a little bit
15	behind schedule here.
16	We are fortunate in this morning we were
17	able to go down and have our first meeting with the
18	Department of Energy. I think we have more answers
19	now than we did yesterday at this time.
20	There is still a lot of uncertainty with
21	GNEP and we'll try to answer the questions that you
22	have, but, really, it's something that's still at a
23	very high level, fairly conceptual level. And a lot
24	of the details haven't really been worked out yet.
25	So with that in mind, we will tell you
	1

(202) 234-4433

	92
1	what we know, what we believe our role is going to be.
2	And even that hasn't really been decided yet. The
3	Commission has given us direction. We'll talk about
4	that. But DOE, we haven't come to a complete
5	agreement with DOE on that yet, although we're making
6	very good progress and we had a very good meeting this
7	morning.
8	With that, I'll let Stu go ahead and start
9	the presentation.
10	MR. MAGRUDER: I don't trust myself with
11	the pointer. Next slide.
12	As Joe mentioned, the presentation will
13	focus on we'll start off with a discussion of GNEP,
14	talk a little bit about what the NRC staff has been
15	doing over the last few months, what we plan to do in
16	the future, a little bit about what our regulatory
17	authority is, and what we might do, you know, existing
18	regulations.
19	We'll talk a little bit about the
20	facilities that they're proposing, what our role would
21	be in those, talk a little bit about some issues. You
22	know, Dr. Ryan mentioned a bunch of very good points
23	about taking a systematic look at this. There are a
24	lot of trade-offs involved. And we'll raise some of
25	those issues and then talk a little bit about the path
	1

(202) 234-4433

	93
1	forward.
2	Next slide, please. There is a lot of
3	information in this slide. This is with DOE's
4	advertising the Global Nuclear Energy Partnership,
5	or GNEP, as we call it, is a very broad-reaching
6	program, basically to restart; reprocessing; or, as
7	they call it, recycling of spent nuclear fuel in the
8	United States. And they're very up front about a lot
9	of the purposes here.
10	I guess it's broader than just in the
11	United States, to be fair. It really is a global
12	initiative. It builds on the nuclear renaissance
13	around the world, the desire to reduce, you know,
14	emissions, the desire to make nuclear power available
15	to more countries in the world, as you see, recycle
16	used fuel, minimize waste, safely and securely allow
17	nations, developing nations, to deploy.
18	And then the last bullet there, reduce the
19	number of required U.S. geologic waste repositories to
20	one for the remainder of this century. That's the
21	goal. And we'll talk a little bit about how they plan
22	to do that.
23	Like was talked about earlier today, it
24	was difficult enough or it is difficult enough to
25	license one repository. And the goal is not to have
	1

(202) 234-4433

	94
1	to license another one for a long time.
2	I mean, the President proposed this. The
3	2006 Appropriations Act directed DOE to develop a
4	recycling plan. Dr. Croff and I were just talking
5	about a plan and that it was just issued. It was
6	supposed to be issued in March that Congress
7	recommended that or directed them to do it, but it was
8	just issued on May 31st, the official plan.
9	And we'll make sure that people have a
10	copy of that. It's posted on the DOE Web site, but I
11	don't know how to find it yet. I've got a copy from
12	somebody from DOE. So we'll make sure that people get
13	the link to it.
14	CHAIRMAN RYAN: Yes. Actually, if we
15	could ask you to do that fairly soon, like before we
16	leave this week, that would be helpful.
17	MR. MAGRUDER: Oh, definitely, yes.
18	CHAIRMAN RYAN: Okay. Thanks.
19	MR. MAGRUDER: We can do that.
20	MR. GIITTER: I've got a copy here. If I
21	can get somebody on your staff to make copies?
22	MR. MAGRUDER: Right. And we'll get the
23	link to everybody either later today or early tomorrow
24	morning.
25	CHAIRMAN RYAN: That would be great.
1	

(202) 234-4433

	95
1	MR. MAGRUDER: Next slide, please. This
2	is a view of both the domestic side of it and the
3	international side. And we'll talk mostly about the
4	domestic side, obviously, because that's the main
5	that will be the NRC's main role, although we do have
б	a role in some of the international activities. We
7	were talking this morning with DOE about export
8	licenses for material and transferring technology to
9	other countries and things like that.
10	MEMBER WEINER: Are you at the same time
11	or is the program at the same time looking at
12	expanding the use of nuclear-generated electricity and
13	reducing the volume, the waste capacity needed to just
14	one Yucca Mountain?
15	MR. MAGRUDER: Yes. That's the goal.
16	Well, there are various scenarios, but
17	MEMBER WEINER: Thank you.
18	MR. MAGRUDER: in any case, if you can
19	burn the actinides in burner reactors, then all of the
20	calculations have shown you just need one repository
21	for the waste, the remaining high-level waste.
22	MR. GIITTER: That's assuming there are
23	different scenarios, as Stu pointed out. And if we
24	maintain the current call it market share, roughly 20
25	percent of electricity generated by nuclear power
	I contract of the second se

(202) 234-4433

1 throughout the rest of the century, I think the 2 estimate was an additional 8 Yucca Mountains or an 3 additional 8 high-level waste repositories would be 4 needed. And there is an expansion of that. If the 5 market share goes beyond 20 percent, obviously there would be even more. So that was the basis for their 6 7 estimate. MEMBER WEINER: But the reduction to one 8 9 generation IV reactors also depended with on 10 maintaining the 20 percent market share. That was really my question. 11 12 MR. GIITTER: Okay. MR. MAGRUDER: Right. And I guess there 13 14 are various projections based on not reprocessing, recycling. And, as Joe mentioned, that would be 15 multiple repositories required. Even under the 16 scenario where the percentage of power produced from 17 nuclear is increased above the current 20 percent, DOE 18 19 still believes that only one repository would be 20 required. 21 The next slide, this slide here, Okay. 22 talks about the big picture of what would happen in Essentially closing the fuel cycle, 23 the U.S. 24 obviously all the processes up to going into a

lightwater reactor would be the same.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

96

	97
1	Then there would be separation, some kind
2	of probably aqueous process that would separate the
3	material. We haven't or DOE has not decided exactly
4	what that process would be, but they have decided that
5	it will not be a Purex process.
б	There are a number of reasons for that.
7	The main reason is proliferation concerns. They do
8	not want to separate plutonium from other materials.
9	As was discussed earlier this afternoon,
10	most of the aqueous processes are very similar to the
11	Purex process. It's just where the different streams
12	are. So a lot of the technology will be very similar,
13	but it will not be a Purex process.
14	Can you go back, please? I'm sorry. Stay
15	on this slide for a while. The idea is to separate
16	some of the short-lived fission products, along with
17	the uranium, possibly separate the uranium for
18	recycling in a separate stream but take the strontium
19	and cesium and store them, let them decay away and
20	then eventually dispose of them as low-level waste.
21	Fission products would be theoretically
22	the only waste stream that would end up in the
23	high-level waste repository, the other fission
24	products, the longer-lived fission products.
25	The transuranics from the reprocessing
	1

(202) 234-4433

	98
1	facility would be fabricated into fuel. The type of
2	fuel they haven't decided yet. But the fuel would be
3	then burned in fast reactors, probably sodium-cooled
4	fast reactors, but the prototype or I guess the design
5	they're basing things on is the G.E
6	MR. GIITTER: Advanced liquid metal
7	reactor.
8	MR. MAGRUDER: Yes, ALMR design. And then
9	there would be a facility. Probably the same facility
10	that manufactured the fuel for the fast reactors would
11	reprocess that fuel or recycle that fuel. And they're
12	talking about probably a pyroprocessing technology
13	there.
14	And then, again, whatever fuel or whatever
15	products, fission products, of the waste stream from
16	that would go to the repository as well. So, as we
17	talked about earlier, this significantly reduces the
18	amount of waste, both heat and volume, that would end
19	up in the repository.
20	The technology demonstration program is
21	the first step of this, of the GNEP program here. As
22	you can see, there are three main facilities that
23	we're talking about or three main demonstration
24	facilities.
25	ESD is engineering scale demonstration
	I

(202) 234-4433

	99
1	facility. That will be a facility that will
2	demonstrate whatever aqueous reprocessing technology
3	they choose. And that would be the first one built.
4	They're talking about getting that
5	operational. Here this slide says 2011. Now, this
6	morning they told us somewhere between 2011 and 2015
7	depending on a little bit depends on the
8	technology. Most of it I think depends on the funding
9	level that they get.
10	But that would be just to demonstrate the
11	technology. And they're talking fairly small scale.
12	They're not sure exactly, but they're talking about
13	tens or maybe low hundreds of tons per year for this
14	facility.
15	The next facility time-wise that they
16	would be talking about building would be a
17	demonstration facility for the fast reactor or
18	advanced burner test reactor, ABTR.
19	We talked briefly about that. That would
20	be roughly the same size, what they're talking about,
21	as the GEA ALMR design, several hundred megawatts
22	probably.
23	And then, finally, you know,
24	chronologically the advanced fuel cycle facility,
25	which would be, again, a demonstration-scale facility,
	1

(202) 234-4433

	100
1	not a full commercial scale or full-scale facility.
2	And that would be coming online in the late well,
3	2016 to 2020 roughly time frame.
4	MR. GIITTER: One of the things they told
5	us this morning is that the advanced fuel cycle
6	facility and the ABTR may be collocated, located at
7	the same site.
8	MR. MAGRUDER: Right. Yes. I guess the
9	vision for the longer term, after the technologies
10	have been demonstrated, their goal is essentially to
11	have modular designs and have essentially locations
12	where you would have three, four, maybe five advanced
13	burner reactors and one fuel reprocessing facility on
14	the same site. So that you would ship in lightwater
15	reactor fuel to the facility, but once you shipped
16	that fuel in, it would just keep recycling the fuel
17	from the advanced burner reactors through to the
18	facility until eventually you have transmuted all of
19	the actinides. And all you have left are fission
20	products.
21	I mean, you would still have to transport
22	the spent fuel from lightwater reactors, but you would
23	not be transporting the other waste streams too far
24	anyway we're talking about.
25	VICE CHAIRMAN CROFF: If we can, I would

(202) 234-4433

	101
1	like to let them get through the presentation as much
2	as we can. I think it would make it difficult.
3	MR. MAGRUDER: Okay. A little bit more
4	detail about the three facilities that we're talking
5	about. Again, this is the engineered scale
6	demonstration for the reprocessing technology. One of
7	the goals, actually, one of the goals of the whole
8	project, is to make all of these facilities eventually
9	commercially viable. And a lot of that has to do, it
10	seems that a lot of that has to do, with the fact that
11	you're averting the cost of building more
12	repositories.
13	Now, I mean, we didn't talk about their
14	business plan or how they would get interested, but
15	one of the goals of the demonstration facility is to
16	gather cost data to determine the viability of these
17	different facilities. And obviously one of the
18	streams from this demonstration facility would be the
19	separated transuranics for the advanced burner test
20	reactor.
21	The next facility we've got here is the
22	advanced fuel cycle facility, again, a multipurpose
23	facility. This would be where the fuel would be
24	fabricated. And they're also talking about I
25	didn't mention it earlier but advanced simulation
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	102
1	laboratory is a facility that they are also working
2	on. Again, that would be a lot of code development
3	there and trying to kind of go to the next step of
4	code development.
5	MR. GIITTER: The DOE Office of Science is
6	heavily involved in GNEP.
7	MR. MAGRUDER: Right.
8	MR. GIITTER: They're the ones leading the
9	effort on the code development.
10	MR. MAGRUDER: Yes, yes. Most of the
11	other stuff here is at the Nuclear Energy Office of
12	DOE, although NNSA is also involved, especially in the
13	international area.
14	I talked a little bit already about the
15	advanced burner test reactor. Again, as we talked
16	about earlier this afternoon, the goal is to you
17	need fast neutrons to transmute the transuranics. And
18	it seemed like the most economical way to do that is
19	through a reactor.
20	This facility is the one that they have
21	talked most about NRC involvement in. Their goal is
22	to gather data and basically prepare a design
23	certification package for this reactor so that it
24	would be easy to license by the NRC.
25	And, as you can see, we put a little bit
	1

(202) 234-4433

	103
1	of information about, you know, some of the advanced
2	reactors or the burner reactors or fast reactors that
3	are operating around the world. The Phoenix in France
4	and the BN-600 in Russia are similar scale.
5	I mentioned these already briefly, but the
6	planning milestones, they're talking about operation
7	of the simulation laboratory would be starting up
8	relatively soon.
9	As I mentioned, we got a little bit
10	updated on the dates this morning. Essentially they
11	just kind of drew error margins around the dates that
12	they had here and kind of gave themselves some more
13	fudge room there.
14	The last bullet there, you know, they
15	would like to get the advanced burner reactor itself
16	operating by 2023 roughly. I see some notes there.
17	They have published several public documents regarding
18	GNEP. They published an advanced notice of intent,
19	solicitation of interest for basically communities or
20	facilities that would like to host some of these
21	facilities, and got more than 30 expressions of
22	interest. It varied from national labs to commercial
23	facilities to communities that already have nuclear
24	facilities located there. So there's a lot of
25	interest, obviously, in doing something like this
	1

(202) 234-4433

	104
1	around the country.
2	Next slide. Here we go. We, actually Joe
3	and some other folks, were approached by DOE last
4	fall, I guess, for the first time about their
5	proposal, right before they went public with it.
6	MR. GIITTER: Last summer, yes.
7	MR. MAGRUDER: Yes. Well, last summer
8	even. And we started thinking about what the NRC role
9	would be in this process here. In January, we started
10	to write a Commission paper, which actually went up in
11	March, kind of laying out what we knew about the
12	program at the time and what some of our concerns
13	might be, what we thought our role might be. That's
14	SECY 06-0066.
15	The Commission considered that for a
16	while, actually along with a paper that Commissioner
17	McGaffigan wrote with his own personal views on
18	reprocessing.
19	In the middle of May, they issued staff
20	requirements memoranda to us, on both our paper and
21	Commissioner McGaffigan's paper, basically saying that
22	we should work with DOE to learn more about what
23	they're proposing to develop a conceptual licensing
24	process for these facilities.
25	Now, they also asked us to draft
	I

(202) 234-4433

legislation to clarify, I guess, the NRC role to give us authority over DOE facilities. Again, that's DOE. 3 We talked about that a little bit today. I think 4 we're in relatively agreement with DOE on this. For some small demonstration facility, technology the NRC demonstration facilities, on DOE sites, probably would not have to license the facilities.

8 We would be very interested in following, 9 you know, obviously what they're doing so that we 10 would be ready to license them if they built more facilities. But if they were to build larger-scale 11 facilities or almost full-scale facilities, even if 12 they were on DOE sites or owned by DOE, the Commission 13 14 would like the NRC to license those facilities. So 15 that's what this legislation would propose. I'm assuming that the commission asked for that based on 16 17 discussions with Congress ahead of time, but I'm not 18 sure.

Additional --

MR. GIITTER: I think, just to kind of add 20 to what Stu said, the feeling is that we need to be 21 involved in what DOE is doing, we need to understand 22 23 it because if this does move to commercial scale at 24 some point, we are going to be in a very difficult 25 position to do a licensing review.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

19

So it's better for us to understand the technology now. And if and when DOE moves towards commercial scale, we'll be in a much better position. And we'll be able to make determinations as to whether or not we need to do changes to our infrastructure and things like that.

7 MR. MAGRUDER: A little later on in the 8 presentation, we'll talk about some of the specific 9 license issues that we have gotten where we are with 10 the current regulations and what we're proposing.

This is the second slide on what the Commission has directed us in the SRM. They asked us to work with DOE to see if we can come up with a cost-reimbursable agreement to fund NRC work for the next couple of years, mainly I think because they didn't -- well, a couple of reasons.

I think, one, they weren't quite sure what was going to happen. They didn't want to commit significant NRC resources to this project yet. And also I think they felt that it wouldn't be fair to build existing licensees for this work yet.

22 So we are starting to work with DOE on 23 coming up with some kind of agreement. An alternative 24 is to request additional funding from Congress.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Another thing they asked us to consider is

(202) 234-4433

25

1

2

3

4

5

6

1 incorporating elements of Part 52 in our conceptual 2 licensing process, basically what we're planning to do 3 for the new reactor licensees. And I think the reason 4 they like that is it would be a one-step licensing 5 process, where we would certify design, look at the facility or the site they're proposing, and then just 6 7 have one hearing for the proposed facility. 8 They asked us to look at the full recycle 9 In the paper, we weren't sure exactly what option. 10 DOE was proposing. At one time they were considering 11 recycling fuel back in commercial 12 lightwater reactors. That was what we called the partial recycling option. 13 14 They decided not to do that. They decided 15 to skip that and go directly to burning the fuel in fast reactors. So that's what this full recycle 16 17 option is. I quess maybe the most important thing is 18 19 they told us to proceed at a pace commensurate with 20 DOE's progress, not get out ahead of DOE, and kind of 21 follow what they were doing. 22 A little bit of the legislative background 23 here on what authority we actually do have with regard to DOE facilities. Obviously the Atomic Energy Act 24 25 gives us authority for all commercial activities.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

107
	108
1	Energy Reorganization Act gave us limited
2	authority for DOE facilities. As you can read here,
3	section 202 is the applicable section. And that's
4	specifically section 202(1) directed us authority for
5	the Clinch River reactor and other reactors operated
6	for the purposes of demonstrating suitability for
7	commercial operation. So it's pretty clear that the
8	advanced burner reactor or even the ABTR that DOE is
9	considering building, we would have regulatory
10	authority to license those facilities right now.
11	Sections 202(3) and (4) direct NRC for
12	high-level waste receipt and storage but not for waste
13	from DOE R&D activities. Part 5 directs NRC, gives us
14	authority for DOE for the MO_x facility, which we're in
15	the process of licensing right now at the Savannah
16	River site.
17	DOE reprocessing facilities and TRU fuel
18	fabrication facilities are not clearly subject to NRC
19	regulation right now. And that's what the Commission
20	I think wanted us to clarify. And OGC is actually
21	currently working on that. And we expect to have
22	draft legislation in the fall for Congress to consider
23	in the next session early next year.
24	Existing regulations and processes and how
25	we would apply. This is kind of the suite of

(202) 234-4433

	109
1	regulations that could apply to these facilities. And
2	I'll walk through each of these in a little bit more
3	detail in the next few slides.
4	Part 50 is, as a lot of you probably
5	remember, not just for utilization facilities or
б	reactors but is also for production facilities. And
7	here is the definition from Part 50 of production
8	facilities.
9	Joe will talk about this in a little bit.
10	This is what we licensed the reprocessing facilities
11	back in the '60s and '70s under. And that's because
12	it specifically says facilities for the separation of
13	isotopes, of plutonium, processing of irradiated
14	materials containing special nuclear material.
15	It's clear that Part 50 would apply now to
16	reprocessing facilities. However, Part 50, as you are
17	well-aware, is not tailored to reprocessing
18	facilities. It really evolved to a regulation for
19	lightwater reactors. And so it would be problematic,
20	I think, to license a reprocessing facility under Part
21	50.
22	Next slide, please. Again, this is a
23	little bit more on Part 50. As I said, it's evolved
24	to really be specific to lightwater reactors. A lot
25	of things even since we licensed most of the reactors

(202) 234-4433

	110
1	here, a lot of regulations or a lot of parts to this
2	have been added based on knowledge.
3	I think it's interesting or it's worth
4	pointing out that Part 50 is a two-step licensing
5	process. The licensee would have to or the applicant
6	would have to get a construction permit, which entails
7	public hearings. And then they would have to come in
8	after the construction is completed and apply for an
9	operating license, which is another chance for public
10	hearings.
11	So we can go to the next slide here. A
12	little bit more. Each step of the process, as I said
13	earlier, would involve staff review, mandatory ACRS
14	review, which is obviously public hearing before the
15	Atomic Safety and Licensing Board, and then ultimately
16	Commission review and decision. That's what the Part
17	50 licensing process is like.
18	Part 52. An ESP is an early site permit,
19	which you may be familiar with, where staff would
20	review sites based on kind of bounding, information
21	about what facilities could go on the site. We would
22	certify standard reactor designs. And then facilities
23	could come in or a utility could come in for a
24	combined license, a COL.
25	As I mentioned, it's a one-step process.
	I Contraction of the second

(202) 234-4433

	111
1	And basically what I mean by that is that once an
2	early site permit has been granted and design
3	certification has been granted, if an applicant
4	married those up in a combined license application,
5	there would be just one hearing at that time. And
6	issues that had been decided in the design
7	certification in the early site permit discussions
8	unless things had changed, those issues would be
9	considered settled and would not be considered for a
10	hearing for the combined license.
11	Okay. Part 52 is really just a licensing
12	process regulation, although there are a few
13	additional requirements in there. But basically all
14	of the technical requirements from Part 50 would
15	apply. And a hearing may be requested, obviously.
16	And the Commission would decide on the appropriate
17	hearing procedures. So the reason we're discussing
18	these is this is kind of a model that we would use for
19	the licensing process for these new facilities.
20	Briefly, Part 70 is what we use to license
21	facilities that handle special nuclear material. All
22	of the existing fuel manufacturing facilities are
23	licensed under Part 70.
24	The enrichment facilities, the gas
25	centrifuge facilities well, I should say the gas

(202) 234-4433

(202) 234-4433

	112
1	centrifuge facilities are applying for licenses under
2	Part 70. They haven't been granted them yet. LES is
3	close to getting a license obviously. The MO $_{\rm x}$
4	facility we're reviewing under Part 70.
5	This is a one-step process. As noted
6	here, we're doing the MO_x facility in two steps,
7	mainly per DOE's request, to ensure some sort of
8	schedule parity with the Russian MO_x facility. But it
9	doesn't have to be. Part 70 is designed as a one-step
10	process, where you apply. And once the NRC is done,
11	then we actually issue a possession and use license.
12	It's not called an operating license.
13	The key to Part 70 is that it's
14	risk-informed. Subpart H was put in in 2000, which
15	requires an integrated safety analysis. And it's
16	based on likelihood and consequence of events.
17	We think this is a good model to follow
18	for new facilities also. And we would probably apply
19	some of this to the licensing of the new DOE
20	facilities as well.
21	There was discussion earlier this
22	afternoon about the waste products from these
23	facilities. Certainly some of the products from the
24	reprocessing facilities would fall under Part 30 or
25	Part 72.
I	I contraction of the second

(202) 234-4433

	113
1	There are not very many Part 30 licensees,
2	but a lot of the technical requirements from Part 30
3	would apply, we think, to some of the facilities here,
4	same with Part 72.
5	There will be, you know, interim storage
6	of different components. We are still working out
7	obviously DOE is still figuring out their plans, but
8	I'm sure that the NRC will be involved in at least
9	reviewing a lot of the storage facilities, the
10	waste-processing facilities, and such.
11	Certainly if the facilities are
12	commercial, we would license facilities, but I think,
13	even if they are DOE-owned and operated facilities, we
14	would probably be involved in licensing them.
15	I guess we can go to the next one, talk a
16	little bit about waste incidental reprocessing, of
17	which all of you are much more familiar than I am.
18	But basically I think a lot of the concepts anyway,
19	the managing risk of waste would play a very prominent
20	role in how we view the waste streams from here.
21	CHAIRMAN RYAN: Let me just pick up on one
22	bullet, if I can, while it's up there.
23	MR. MAGRUDER: Yes, please.
24	CHAIRMAN RYAN: Highly radioactive doesn't
25	mean it needs to be in a high-level waste repository.

(202) 234-4433

	114
1	Stellite balls are highly radioactive.
2	MR. MAGRUDER: Yes.
3	CHAIRMAN RYAN: Cobalt-60 sealed sources
4	are highly radioactive.
5	MR. MAGRUDER: Exactly.
6	CHAIRMAN RYAN: So that's one of those
7	other terms that I think we just in the same way
8	we've got to be cautious about not using origin-based,
9	we need to not use what I view to be a health physics
10	base kind of definition, too.
11	MR. MAGRUDER: Exactly, exactly. Thank
12	you.
13	And then just a note here that there are
14	different criteria for different DOE facilities as far
15	as what is not high-level waste. And, you know, we
16	talked a little bit about the fact that we don't have
17	any intermediate waste category in the United States.
18	You know, how we categorize this waste and
19	what the waste forms will be will be a topic that we
20	will be talking about a lot with DOE over the next
21	5-10 years, I'm sure. And it will be an area where
22	we'll ask for your input, I'm sure, quite a bit on how
23	to deal with this stuff, what's the best way for the
24	country to deal with this stuff.
25	Let me turn it over to Joe now. We'll
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	115
1	talk a little bit more specifically about the
2	facilities.
3	MR. GIITTER: Okay. As Stu mentioned, Stu
4	talked about the various facilities, that NRC could be
5	in a position of regulating those. And I guess the
6	timing would depend on whether or not the draft
7	legislation flies or whether these things go to
8	commercial scale at some point in time.
9	Certainly a reprocessing facility if it's
10	commercial is one that NRC would regulate. And, as
11	Stu pointed out, Part 50 is really not probably the
12	best option. In fact, it might be the path of
13	greatest resistance if you want to license a
14	reprocessing facility.
15	Fuel fabrication facility. Again, that's
16	a facility that if it's commercial, NRC would probably
17	regulate. DOE told us this morning that we would
18	probably be collocated with the fast reactor facility,
19	which makes sense.
20	DOE is of the view I don't think they want
21	NRC to regulate the demonstration facilities. And so
22	we'll see what happens, but, as a minimum, they do
23	believe it's important, as I said, for NRC to work
24	closely with them. So in the future, they will be
25	licensable technologies.
	1

(202) 234-4433

Also, an interim storage facility, one that would store the short-lived fission products and some sort of a stable matrix, a lot of them DDK, and then eventually they would be disposed of as low-level waste; and then the vitrification facility, one that would vitrify the high-level long-lived waste stream, which is primarily fission products.

8 We may get some experience in this if it 9 turns out that the Senate approves and we get the 10 authorization from Congress to have safety oversight 11 of the Hanford waste tanks.

You may know that the House Appropriations Committee did give NRC \$10 million for that purpose, but, you know, we still have to see what happens with the Senate in the Conference Committee.

Reprocessing facilities. You saw from the videotapes of Sellafield and Mohawk, these are very, very large facilities. I know that some of you have been to Mohawk. I've been there myself. And they are very large, very expensive facilities.

I think West Valley is probably a good example of what not to do in terms of designing a reprocessing facility. Ideally, as we move forward, we will learn what we can, the lessons learned, from West Valley.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	117
1	As Stu indicated, Part 50 really isn't
2	intended for reprocessing facilities. And we would
3	really need to if we are going to use Part 50, what
4	we would probably have to do is to have the Commission
5	give an order to the staff to tell the staff, give the
6	staff explicit instructions on how to do the review.
7	And that might be very difficult as well. But I think
8	my feeling is that if we tried to use Part 50 to
9	license a reprocessing facility, we wouldn't be
10	successful.
11	That last bullet says the Commission could
12	establish a licensing framework by identifying
13	specific parts of the existing regulations and
14	identifying new requirements. I think there would
15	probably be a lot of exemption requests and it
16	wouldn't be a very clean licensing process.
17	The alternative, there are really two
18	alternatives. One is to develop an entirely new
19	regulation. And that would ideally be a risk-informed
20	performance-based regulation. But one of the things
21	that I feel fairly strongly about is when you're
22	licensing a new technology and you really don't
23	understand that technology well, it's important to
24	also have some deterministic criteria as well.
25	We even have that in Part 70. The general
	1

(202) 234-4433

	118
1	design criteria, of course, in 10 CFR 50 have been
2	replicated to some degree in Part 70. And they're
3	called principal design criteria, but they're very
4	similar in some respects.
5	So, in addition to having a purely
6	risk-informed performance-based regulation, there are
7	some things where you have a safety net. And it's
8	important to have some deterministic criteria,
9	especially with new technologies that haven't been
10	tested.
11	CHAIRMAN RYAN: Could you give us an
12	example just so I understand what you mean better?
13	MR. GIITTER: Well, I can give you an
14	example of MO $_{\rm x}.$ I can't go into details on this
15	reprocessing facility, but one would be, you know, on
16	the MO_x facility, it's very important to have
17	emergency power.
18	Because of the concept of having zones,
19	where as you move in towards the glove boxes, you have
20	areas of lower pressure, you know, the confinement
21	zones, you want to have emergency, a really reliable
22	emergency, power system to ensure that you don't lose
23	emergency power to the ventilation systems. That
24	would be an example. And that's a deterministic
25	requirement.

(202) 234-4433

	119
1	CHAIRMAN RYAN: That would be as opposed
2	to relying on some other view of power with
3	MR. GIITTER: That would be as opposed to,
4	exactly, yes.
5	CHAIRMAN RYAN: Where there is a "low
6	risk" of failure?
7	MR. GIITTER: Right, right.
8	CHAIRMAN RYAN: I'm with you. Okay.
9	Thanks.
10	MR. GIITTER: So we are looking at
11	possibly Part 70 there. We probably have to do some
12	significant revisions to Part 70, but Part 70 does
13	provide a good framework for regulation of that type
14	of facility. It has a certain degree of flexibility.
15	We would also probably develop some new or
16	we would certainly develop new regulatory guidance.
17	We have done that. We did that for MO_x .
18	We came out with NUREG-1718, which was a
19	standard review plan specifically for the MO_{x} fuel
20	fabrication facility. We didn't do that for the LES
21	and the USEC, the gas centrifuge licensing reviews,
22	for a couple of reasons. We felt that the existing
23	NUREG-1520, which is the standard review plan for fuel
24	cycle facilities, was sufficient and also because
25	those facilities were fairly low-risk facilities for

```
(202) 234-4433
```

	120
1	fuel cycle facilities.
2	And, as I mentioned, there would be some
3	changes to Part 70. One would be to address the fuel
4	containing transuranics. There are some safety and
5	technical differences between metallic and oxide fuel.
6	We're not sure which way DOE is going to go yet, but
7	that would be something that would possibly require a
8	change to Part 70.
9	When you're dealing with recycled
10	plutonium and transuranics, you're going to run into
11	obviously some very challenging design considerations.
12	And there's probably going to be a need for more
13	shielding and more remote operation. And we may have
14	to make some changes to Part 70 to address those types
15	of design considerations. And there may be some new
16	or different criticality safety considerations as
17	well.
18	We do have some experience with the MO_{x}
19	fabrication facility. One of the challenges we had
20	was there wasn't a lot of benchmark data for
21	plutonium, for weapons-grade plutonium. And we were
22	able to get that. There is probably more benchmark
23	data for recycled plutonium, and I know the French
24	have a lot of that data.
25	As Stu indicated, there may be some

(202) 234-4433

	121
1	changes to Part 30 and Part 72. And also the WEIR
2	non-high-level waste determinations. So, in essence,
3	we would be looking at making changes to our
4	infrastructure, our licensing regulatory
5	infrastructure, to be able to review license
6	applications or really be prepared to review these
7	facilities that they do move towards commercial scale
8	or if it's determined that NRC should do licensing
9	reviews of these facilities.
10	CHAIRMAN RYAN: So far, though, you are
11	talking about a scheme where you're driven by the
12	facilities generating the materials, not by any
13	forward-looking view to the question that we talked
14	about with Dr. Weimer, are you generating a category
15	of waste that hasn't been generated before in terms of
16	
17	MR. GIITTER: That's a very good question.
18	I agree with your comment on the systematic approach.
19	Right now all we know based on our conversations with
20	DOE is what the facilities are going to be. We don't
21	even know what the waste streams are going to be.
22	So I agree with your comment. And I think
23	that forward-looking approach, taking a systematic
24	view of the entire process is prudent. But at this
25	point I really can't comment on what it would be
1	

(202) 234-4433

	122
1	because we just don't know.
2	CHAIRMAN RYAN: Fair enough. I appreciate
3	that point, but I guess the caution that I see is
4	don't slip into the trap of thinking just about the
5	licensing of the facilities but make sure that you're
6	really focused on what end products are being produced
7	because if you look anywhere in the world, that's
8	where the trouble starts.
9	MR. GIITTER: That's a good comment.
10	CHAIRMAN RYAN: Yes.
11	MR. MAGRUDER: I was encouraged a little
12	bit this morning by the discussion that DOE had. I
13	mean, it seems like they are at least considering the
14	trade-offs that are involved in deciding what type of
15	fuel to use, what
16	CHAIRMAN RYAN: Well, again, if you look
17	at the world system, that's where the wheels go off
18	the tracks.
19	MR. MAGRUDER: Exactly, exactly. Whether
20	they can get their arms around the whole thing and
21	make rational decisions, I don't know, but they're at
22	least trying to do that.
23	MR. GIITTER: The other thing we took a
24	look at is whether Part 50 could be used to license a
25	liquid metal reactor. Both Bob Pierson, our division
	I contract of the second se

(202) 234-4433

	123
1	director, and myself are probably two of the few
2	people in NRC that actually have some experience in
3	licensing liquid metal reactors. I worked for
4	Westinghouse as a licensing engineer on Clinch River.
5	And Bob was a manager in charge of NRC's preliminary
6	licensing review of the ALMR back in the early '90s.
7	I can tell you from personal experience
8	that it would be a very painful process to try to
9	license an advanced liquid metal reactor under Part
10	50.
11	One of my jobs was to go through the
12	standard review plan for lightwater reactors in the
13	NUREG-800 and to show where the Clinch River deviated
14	or met the standard review plan. And there were
15	probably more instances where it didn't meet it than
16	where it did.
17	And there are unique considerations with
18	liquid metal reactors. One of the considerations is
19	because the design and safety considerations are
20	substantially different than lightwater reactors. The
21	mindsets, some people are very uncomfortable.
22	For example, with Clinch River and I'm
23	not sure about the ALMR, but the design requires
24	redundant and diverse fast-acting shutdown systems
25	because you have a positive void coefficient. And,
	1

(202) 234-4433

	124
1	you know, if you have voiding in the reactor, you can
2	have a fairly significant reactivity excursion.
3	On the other hand, there are some safety
4	advantages to using liquid metal reactors. You don't
5	have to have systems in standby readiness, emergency
6	core cooling systems in standby readiness. You have
7	liquid metal, which doesn't boil until you reach about
8	1,623 degrees Fahrenheit at atmospheric pressure. And
9	the operating hot leg temperature is around 2,000
10	degrees.
11	So you have a substantial built-in
12	subcooling margin. And so you have more forgiveness
13	for loss of heat sink accidents. Then, again, you
14	have issues like the reactiveness of sodium in water
15	and sodium in air.
16	But that is clearly going to be a
17	challenge. And, again, I think we would need to look
18	at possibly a new regulation or, going to the next
19	page, something that the staff has been working on.
20	And that is developing a technology-neutral framework
21	for licensing advanced reactor designs.
22	CHAIRMAN RYAN: Could you talk a bit more
23	about that? Before you leave that slide, could you
24	talk a little bit more or are you going to go back to
25	that in a minute?
	1

(202) 234-4433

	125
1	MR. GIITTER: No. I can go back to it.
2	CHAIRMAN RYAN: The technology-neutral
3	framework.
4	MR. GIITTER: Maybe Stu can comment on
5	that because he worked on it.
6	MR. MAGRUDER: Yes. A while ago, yes.
7	basically, the staff has been thinking about next
8	generation reactors for several years, obviously. And
9	the goal is to have kind of a set of high-level
10	standards that any design would have to meet. They
11	would have to there would be certain reliability
12	requirements.
13	There would be certain health physics
14	requirements and worker protection requirements. And
15	they would have to meet the NRC quantitative health
16	objectives, you know, for reactors and things like
17	that.
18	And then we would try to develop kind of
19	an over-arching set of principles that any design
20	would have to meet. And the goal would be to try and
21	apply these principles to this design, essentially.
22	So that eventually it would probably
23	become a new Part 53 or whatever. I don't know what
24	the next available regulation number is, but they were
25	talking about developing a new regulation because of
	I contract of the second s

(202) 234-4433

	126
1	the diverse you know, the gas reactors or PBMR, you
2	know, other types of liquid metal reactors besides the
3	sodium reactors. So it's fairly high-level now, but
4	we would try to apply those principles to this. Dr.
5	Larkins has some comments.
б	MR. LARKINS: No. It's like you said.
7	And I think it's just being discussed now. There are
8	a couple of public workshops being planned in the next
9	few months. The ACRS has reviewed the concept paper
10	and commented on it. So I think it's probably still
11	a little
12	CHAIRMAN RYAN: A work in progress.
13	MR. LARKINS: Yes. It's a work in
14	progress. It's still a little ways to go.
15	MR. GIITTER: There would be a number of
16	security and safeguards issues, obviously, when you're
17	talking about reprocessing spent fuel, possible
18	changes to Part 73, Part 74, and Part 75.
19	And there may be changes to Part 51 to
20	address the potential environmental impacts of spent
21	fuel transportation to the facilities that are
22	described here. I mean, Part 51 does address that
23	already to some extent, but with the waste streams
24	that may be generated and the number of facilities,
25	it's probably going to be some additional reevaluation
I	1

(202) 234-4433

	127
1	of the fuel cycle in Part 51. I know that the last
2	time I checked, the tables in there hadn't been
3	updated in some time.
4	Some potential issues that we have
5	identified. Obviously in the fuel fabrication area,
6	you're going to need increased shielding, health
7	physics issues unique to reactor-grade plutonium.
8	I will say I've been to Malox, and it can
9	be done. I'm convinced it can be done, and it can be
10	done right. But, again, it's going to take you
11	know, it's an issue. And, like anything, there is a
12	certain amount of problem-solving that has to be done
13	to get to that point.
14	There would likely be a large number of
15	remote operations
16	radionuclide inventories. You're talking about in
17	some cases very high radiation fields, large
18	radionuclide inventories. Of course, spent fuel is
19	always a challenge. Some of the spent fuel that would
20	be processed would obviously be very old, even decades
21	old, but with newer fuel, you know, you still have a
22	significant heat load.
23	Another problem that has been discussed is
24	americium-241. Americium-241 creates some interesting
25	challenges because, as you can see from this curve
	I contraction of the second

(202) 234-4433

	128
1	here, you actually have a significant ingrowth of
2	americium-241 with time.
3	The longer you let the spent fuel sit, the
4	more ingrowth you have. And so ideally, especially if
5	you're talking about reprocessing the spent fuel, it
6	would be ideal to do it sooner, rather than later, to
7	minimize the amount of 241 ingrowth.
8	I think the approach that people are
9	talking about, though, as Stu indicated, you separate
10	out the americium with the other transuranics, with
11	the neptunium and curium and, of course, the
12	plutonium. And you burn it in a fast reactor.
13	And 241, I believe, will fission at those
14	neutron energies. You can significantly reduce the
15	241. But if you don't, then, you know, you've got a
16	problem in terms of the
17	CHAIRMAN RYAN: Could you just keep on
18	that graph?
19	MR. GIITTER: Yes.
20	CHAIRMAN RYAN: I'm missing something.
21	Americium ingrowth where? For recycles of fuel, the
22	americium-241 goes with the plutonium, right?
23	MR. GIITTER: Right.
24	CHAIRMAN RYAN: It's going to grow in
25	there,
	I contraction of the second

	129
1	MR. GIITTER: Right, right.
2	CHAIRMAN RYAN: as opposed to grow in
3	somewhere else, which I guess is in waste.
4	MR. GIITTER: Right.
5	CHAIRMAN RYAN: Okay. This is one of
6	those interesting trade-offs. If you reprocess at
7	five years, what issues do you raise in the
8	reprocessing plant itself, dose to workers every day,
9	
10	MR. GIITTER: Right, that's right.
11	CHAIRMAN RYAN: as opposed to
12	theoretical dose down the line somewhere. That's an
13	interesting
14	MR. GIITTER: This is one of the inputs
15	that helps you optimize, making the best
16	optimizations.
17	CHAIRMAN RYAN: But trading off real rem
18	today versus hypothetical rem somewhere down the line
19	is something to think about.
20	MR. MAGRUDER: Yes, it is. We brought
21	that up with DOE this morning.
22	MR. GIITTER: These are some other issues
23	that we thought about. Security obviously, the idea
24	is that once you irradiate fuel, it's self-protecting,
25	but if it's been sitting in a spent fuel pool for a
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	130
1	couple of decades, it may not be as self-protecting as
2	you might like. So there are obviously some
3	proliferation issues there and, of course,
4	transportation issues.
5	Social. What is really going to make this
6	program move forward is whether or not it gets
7	international acceptance because this is a program
8	that involves a number of international partners.
9	India apparently has already agreed to
10	sign on. The other countries may be a little more
11	skeptical, may be taking a little bit of a wait and
12	see attitude. But Russia appears to be eager to join.
13	DOE is trying to line up as much international support
14	as it can for this.
15	And, of course, things change with
16	changing administrations. And I don't need to go into
17	detail on that, but, I mean, as energy prices go up,
18	as oil prices go up, people are more open to other
19	technologies for producing energy and electricity.
20	Acceptance. Research. Well, our
21	experience is mostly based on Purex, on the commercial
22	level. And DOE is adamant that Purex is not going to
23	work for this. They're looking at only a UREX+ or
24	UREX plus something process, which, of course,
25	includes the transuranics with the plutonium so that

(202) 234-4433

	131
1	it is less of a proliferation concern. But that is
2	going to require the cooperation of other countries as
3	well.
4	And countries like France and Great
5	Britain and even Japan that are operating currently
6	using the Purex cycle may not be very excited about
7	the idea of going to a UREX process.
8	One concern is, of course, the spot market
9	price uranium. To some extent, it's going to drive
10	the economics. And the last time I checked, the spot
11	market price was about \$43 a pound of U308. That's
12	higher than spending in a long time, but in current
13	dollars, it's actually considerably lower than it was
14	in the '70s. In fact, in order for it to be at in
15	real terms the same price as it was in the mid '70s,
16	it would have to go to over \$100 a pound.
17	CHAIRMAN RYAN: That's kind of a "So
18	what?"
19	MR. GIITTER: Yes.
20	CHAIRMAN RYAN: I mean, that's like saying
21	gasoline should be \$9 a gallon based on the price in
22	'63. You know, the point is there is an aggressive
23	market for developing uranium resources. And the
24	prices are going up.
25	MR. GIITTER: I guess my point is industry

(202) 234-4433

	132
1	is primarily interested in the economics of this. And
2	in
3	CHAIRMAN RYAN: That's based on today's
4	dollars. That's not based on what should have, could
5	have been.
6	MR. GIITTER: Yes.
7	CHAIRMAN RYAN: I mean, I just don't
8	follow that as being helpful. The fact is uranium is
9	expensive, getting more expensive.
10	MR. GIITTER: It is expensive, but it is
11	a relatively small percentage of
12	CHAIRMAN RYAN: In the big picture, it's
13	nothing.
14	MR. GIITTER: Well, yes. It's a small
15	percentage of their O&M costs.
16	Radiological issues. This first bullet
17	here, we were thinking before we talked to DOE this
18	morning that they may have to use enriched uranium for
19	the driver fuel for the advanced burner test reactor.
20	They clarified that this morning and said no, they
21	would just go to a higher plutonium concentration.
22	But, in any event, there may be some
23	issues down the road with recycling that may have some
24	ramifications for lightwater reactors. And we're not
25	exactly sure what those are at this point in time.

(202) 234-4433

	133
1	Byproduct, low-level waste obviously needs
2	to be minimized. And there were a number of waste
3	streams that we're not as I said, we really don't
4	know what all the waste streams are, but it's going to
5	be a challenge, I think, relative to what we see our
6	current waste streams, just to keep track of them and
7	be able to figure out what the best solution is for
8	minimizing the volume of waste, the best solution from
9	an environmental perspective.
10	And there may be some wastes that are
11	difficult. High-sodium or chloride waste may be
12	difficult to vitrify. We saw that with the surplus
13	plutonium disposition program for MO $_{\rm x}.$ It was
14	originally planning to vitrify those wastes, and they
15	decided that it was too difficult technically to do
16	that. And they decided to MO_x ify those wastes.
17	CHAIRMAN RYAN: One of the interesting
18	things we haven't explicitly touched on today, either
19	in Dr. Weimer's talk or your presentations, is mixed
20	waste. This is probably as good a place as any to ask
21	it. You don't really have a big mixed waste problem
22	in radioactive waste management unless you reprocess.
23	So has anybody raised the mixed waste
24	question? Have you heard any comment on that or
25	MR. GIITTER: We haven't gotten into that
	1

(202) 234-4433

	134
1	kind of detail yet. You're right. I agree with what
2	you said, but that is something that we are going to
3	have to look at.
4	CHAIRMAN RYAN: Yes. Reactivity is one.
5	Of course, when I see sodium, I think that's a
б	reactive metal. So that's clearly going to be mixed
7	waste as well as other things.
8	MR. GIITTER: The path forward. We did
9	meet with DOE this morning to talk about it was
10	just our initial kickoff meeting. They're planning to
11	have another meeting in about one to two weeks to
12	focus on the international issues.
13	As Stu indicated, OGC is currently working
14	on drafting some legislation for NRC authority to
15	regulate the demonstration facilities, and target for
16	having that completed is the fall of this year.
17	We did talk a little bit about developing
18	a conceptual licensing process. And when I say
19	"conceptual," we're talking very high-level. One of
20	the vote sheets on the SRM had asked us to do that by
21	the end of 2007. So that's our intent, to try to do
22	it at a conceptual level anyway, by the end of 2007.
23	As I indicated before, the conceptual
24	licensing process would address not only the fuel
25	cycle regulations but also regulations that would
	1

(202) 234-4433

	135
1	apply to the advanced burner test reactor. It would
2	apply to possible changes to Part 51 for environmental
3	reviews. It would apply to domestic and IAEA
4	safeguards and import/export controls and, of course,
5	waste management.
6	Our plan is to develop a task force that
7	includes representatives from NMSS and NRR, Office of
8	International Programs, the Office of Research, and
9	the Office of General Counsel, and any other entities
10	that may have an interest in this in trying to work
11	this problem over the next year and a half and see
12	where DOE goes with this and in the meantime work very
13	closely with DOE to understand the technology.
14	We want to be able to ask the right
15	questions and the tough questions so that when all is
16	said and done, if they do decide to go to a commercial
17	scale or Congress decides that we're going to regulate
18	these facilities, that we will be in a position to do
19	it.
20	CHAIRMAN RYAN: Okay.
21	MR. MAGRUDER: That concludes our
22	presentation.
23	MR. GIITTER: Yes. That's it. Questions?
24	CHAIRMAN RYAN: Thank you. Bill?
25	MEMBER HINZE: A very quick question. The
	I

(202) 234-4433

	136
1	decision as to whether to develop a new regulation or
2	supplement or modify existing regulations, have you
3	thought about the criteria you are going to use to do
4	that? What's the time frame of that decision and
5	passing that up to the Commission?
6	MR. GIITTER: Well, as I said, our goal is
7	to complete our I'll use the word design of a
8	conceptual licensing process by the end of fiscal year
9	2007.
10	The criteria we're going to use, you know,
11	it's going to be based on our experience, based on our
12	licensing experience. In the materials arena, we have
13	had some very good experience recently with MO_{x} and
14	the gas centrifuge facilities. And, of course, NRR
15	has had some experience with the Part 52 process.
16	MEMBER HINZE: But you won't have the
17	experience of seeing these demonstration projects.
18	MR. GIITTER: That's correct. And that's
19	why we're only talking about developing something at
20	a conceptual level.
21	MEMBER HINZE: I understand. Thank you
22	very much.
23	CHAIRMAN RYAN: One that kind of adds to
24	Bill's question. I guess just hearing your
25	presentation, again, I appreciate the fact that you
	1

(202) 234-4433

	137
1	are here in a very preliminary stage offering us your
2	insight. So this is more of a dialogue than it is
3	question and answer. I'm trying to learn from you as
4	much as anything else.
5	It seems to me that with a demonstration
6	facility, I understand that you don't want to regulate
7	it because DOE certainly has its own structuring
8	capabilities in that area, but, by the same token, it
9	seems to me that not regulating it might be missing an
10	opportunity.
11	Clearly you're going to be involved and
12	active with it, but how could you meet in the middle?
13	I mean, is there a way to help be involved in their
14	process in some way in how they self-regulate it?
15	They'll have to do something
16	MR. GIITTER: Well, that's a
17	CHAIRMAN RYAN: and learn from it and,
18	by that process, improve your regulation for the
19	full-blown facility and the commercialized version of
20	it.
21	MR. GIITTER: I understand what your
22	question is. My personal feeling is that we should
23	regulate it, the demonstration facilities and, by
24	going through that process, make further changes to
25	our regulations so that when these facilities are at
1	

(202) 234-4433

	138
1	a commercial scale, that there will be less
2	uncertainty.
3	But that's more of a political decision or
4	a policy decision. You know, I can't comment on
5	whether or not I don't know if that's going to be
6	something that Congress would be in favor of.
7	I can tell you I know the DOE doesn't
8	think we should, you know, license the demonstration
9	facilities. And another interesting issue may be more
10	than likely that these demonstration facilities are in
11	existing DOE reservations. It doesn't mean we
12	couldn't license them. The MO_{x} facility is probably
13	a good example of a facility that's on a DOE
14	reservation.
15	CHAIRMAN RYAN: I would just say that's
16	something that maybe deserves some additional dialogue
17	and thought because somewhere in the middle of not
18	regulating it and regulating it, there is an
19	opportunity to participate. We can learn an awful lot
20	and I'm going to guess end up with an improved
21	regulatory process at the end of the day.
22	MR. GIITTER: Right. And that's our plan
23	as a minimum. And DOE agrees with us on that. If we
24	don't regulate it, we will be working very closely
25	with DOE. The question is, to what extent would we
1	1

(202) 234-4433

	139
1	force them to go through an NRC-type licensing
2	process.
3	CHAIRMAN RYAN: Point.
4	MR. GIITTER: And we tried that, for
5	example, with a fast flux test facility with mixed
6	results. Clinch River, as an example, did go through
7	an NRC licensing process. And I think that was
8	probably much more useful, both to the staff and to
9	the applicant.
10	CHAIRMAN RYAN: The other question, I
11	guess, and it's kind of off to the side, but I
12	didn't hear anything that talked about how any
13	agreement state entities would be involved if any of
14	these are agreement states. I'm going to guess not.
15	Have you thought about that dimension?
16	MR. GIITTER: We haven't.
17	MR. MAGRUDER: That has not come up at
18	all. That's a very good point.
19	CHAIRMAN RYAN: Some of those parts are
20	agreement state parts, too.
21	MR. GIITTER: Yes.
22	MR. MAGRUDER: Yes. That's a good point.
23	CHAIRMAN RYAN: And on DOE facilities, I
24	know some agreement states, maybe not the agreement
25	state program that is authorized by the NRC but the

(202) 234-4433

1 radiological health departments are involved in roles 2 with DOE facilities in various states. So just tuck that away as something to think about maybe later on. 3 4 That struck me as you were talking about some of the 5 parts that are more familiar to me as they are adopted and agreement states, your fabrication, for example. 6 7 MR. MAGRUDER: Right. 8 CHAIRMAN RYAN: Thanks. Thank you. 9 MEMBER WEINER: I just have one. And it 10 will certainly come up in regulation. It seems to me 11 just from a very lay perspective that as far as 12 nonproliferation is concerned, the genie is already out of the bottle. And I'm a little bit concerned 13 14 that we're looking at regulation, sort of ex post 15 facto regulation, that won't be doing anything. 16 By the way, I wanted to thank you for a 17 very thorough discussion of something, where you really are just at the beginning. 18 But I would like to 19 your opinion about that hear since you're the 20 regulator. 21 CHAIRMAN RYAN: I'm not sure, Ruth, what 22 you mean by the genie is out of the bottle on 23 proliferation. I'm going to need to understand your 24 question a little bit better. 25 MEMBER WEINER: Well, you know, we keep

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

140

	141
1	saying we're not going to produce plutonium because
2	we're concerned about proliferation, but
3	internationally there is a large number of countries.
4	Plutonium has proliferated around and nuclear weapons
5	have proliferated. We can't get away from that.
6	MR. MAGRUDER: But I think
7	MEMBER WEINER: And we are also and
8	another aspect of this is we are not in the leadership
9	position for reprocessing. There are other countries
10	that do it.
11	CHAIRMAN RYAN: Well, what's the question?
12	MEMBER WEINER: The question is since this
13	regulation made a major point of saying that Purex is
14	a no-no because we are concerned about proliferation,
15	at least if I'm reading you correctly,
16	MR. MAGRUDER: That's correct.
17	MEMBER WEINER: why is this a concern?
18	And how effective do you think this concern is going
19	to be? In other words, if we have a regulation that
20	says in the United States, no Purex, a Purex-type
21	process that gives you plutonium is a no-no, is that
22	really going to do anything in the international
23	arena? What do you think?
24	MR. MAGRUDER: Well, I agree with you the
25	genie is already out of the bottle. And I think that

(202) 234-4433

	142
1	the proliferation concern is only part of the
2	motivation, actually, for not using Purex.
3	I mean, one of the things that DOE said
4	this morning, which caught my attention, was that the
5	United States wants to kind of retake the lead in
6	nuclear technology and they wanted to get it back out
7	in the forefront. I think what they see is everybody
8	is doing Purex now. They're nothing new there,
9	nothing exciting about Purex. Let's skip Purex and go
10	to the next generation, which they see as UREX or some
11	of the variants of UREX.
12	So I think, you know, proliferation is a
13	nice thing to say. I mean, certainly we want to do
14	all we can for nonproliferation, but I think the real
15	reason is kind of trying to put the United States back
16	into a leadership role and these technologies.
17	MEMBER WEINER: Do you think that is going
18	to do it?
19	MR. MAGRUDER: I have no idea. You should
20	ask Dr. Weimer, see what he
21	(Laughter.)
22	MEMBER WEINER: I'm reminded that that is
23	an unfair question, but I do thank you for that
24	perspective.
25	VICE CHAIRMAN CROFF: I guess I maybe have
	1

(202) 234-4433

	143
1	a question or two here, which one to start with. I
2	guess let me go back to the time when the NRC was
3	trying to license a reprocessing plant and policy
4	changed and it stopped, this being the Barnwell well.
5	At that time and subsequent to that time,
б	the NRC did some rather considerable number of studies
7	to cost-benefit studies to evaluate effluent releases;
8	in other words, how much effluent control was
9	desirable, how much of it was too much.
10	And I am sort of here bootstrapping off of
11	what Mike mentioned earlier. A lot of what is going
12	to be important in licensing these plants is what goes
13	up the stack, what goes in the creek, and what wastes
14	come out of it.
15	Back at the time there were these
16	cost-benefit studies that arrived at some kind of an
17	answer, there were a number of studies of how much, in
18	particular, radionuclides could go up the stack,
19	iodine, krypton, carbon-14, tritium, most of them
20	based on the prevailing approach at the time, which
21	relied very heavily on collective dose and adding out
22	very small doses to an awful lot of people.
23	Since that time, there has been a lot of
24	thinking about how you use collective dose. There was
25	considerable technology development activity well
1	I contract of the second se

(202) 234-4433
	144
1	subsequent to Barnwell to look at off-gas
2	technologies.
3	Are all of these newer considerations
4	reflected in regulation? Is there some considerable
5	amount of work there that needs to be done to
6	determine how much krypton or whatever can go up the
7	stack.
8	And the final part of that is EPA has a
9	standard or a requirement, I guess, in Part 190
10	concerning the release of krypton and iodine. Is
11	there any consideration or have you heard anything on
12	their part about reconsidering that standard?
13	MR. GIITTER: There is a lot of work that
14	has to be done. And, as I said before, we're just
15	getting into this. Unfortunately, I am not in a
16	position to answer your questions, but it is something
17	we're going to be looking at.
18	MR. MAGRUDER: I can't help on that one
19	either. Sorry.
20	VICE CHAIRMAN CROFF: Okay. Second, I
21	agree that the NRC should be involved to the maximum
22	intent possible, I guess, or practical, to use a
23	phrase, with DOE as they build these demonstration
24	facilities.
25	Referring to this ESD, which is the first,

(202) 234-4433

145 1 I guess I call it a demonstration reprocessing plant, 2 as I understand the description, it's now supposed to 3 be operational, stated 2011, but maybe 2015 is what 4 they have allowed. 5 In terms of federally funded large capital projects, that's close to the day after tomorrow. 6 7 There's a very long, convoluted process of conceptual designs and budget approvals, which would lead me to 8 9 conclude that DOE must be in some stage of the 10 conceptual design at this point. MR. GIITTER: Correct. And I'm probably 11 12 sticking my neck out here a little bit, but I think that DOE may be looking in an existing facility. 13 And 14 when we met with them this morning, they did give us 15 a list of facilities that they were looking at as potential facilities they could use as a starting 16 17 point for the engineered scale demonstration. VICE CHAIRMAN CROFF: Well, even if it's 18 19 modifications, they're going to have to be rather 20 substantial --21 Right. MR. GIITTER: 22 VICE CHAIRMAN CROFF: -- to bring it up to 23 licensable standards.

24 MR. GIITTER: Right. That's a lot. You 25 would save a considerable amount of time relative to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	starting with a green site.
2	VICE CHAIRMAN CROFF: I don't know about
3	that. It's the dollar numbers I think that drive the
4	process, not the green
5	CHAIRMAN RYAN: Of course, the trade-off
6	is remodeling is always tougher than building
7	something new.
8	VICE CHAIRMAN CROFF: Yes.
9	MR. MAGRUDER: They've told us that on the
10	ESD, they got the CD-0, the approval for the concept,
11	I guess, a couple of months ago, I guess. And their
12	goal is to get the CD-1 sometime next summer, I think.
13	VICE CHAIRMAN CROFF: "CD" being critical
14	decision?
15	MR. MAGRUDER: Right, right. They are
16	planning to have a 30 percent conceptual design
17	meeting sometime early fall on the ESD. So that gives
18	you a rough idea of where they are. And they have
19	invited us to that design meeting.
20	VICE CHAIRMAN CROFF: Okay. And have they
21	said that this ESD, they're going to try to build it
22	to be licensable as if it were to be licensed, even
23	though it may not be?
24	MR. MAGRUDER: Yes.
25	VICE CHAIRMAN CROFF: That would seem to
I	1

(202) 234-4433

	147
1	prevent some
2	MR. GIITTER: I'm not sure that I would go
3	as far to say that they would say that it would be
4	licensable under any particular regulation other than
5	they would want to know if there's anything associated
6	with the design that would be difficult for it to be
7	licensed, which is a little different.
8	VICE CHAIRMAN CROFF: That would seem to
9	present some interesting challenges in terms of
10	telling them your expectations on, for example,
11	effluent controls for six months. That's pretty
12	formidable.
13	Okay. Let me pursue another line here.
14	Coming, as we heard, in Dr. Weimer's talk, coming out
15	of the plant, there are going to be any number of
16	waste streams. You can imagine a high-level waste
17	stream, be it vitrified or not, we'll see some
18	amount of low-level waste, meaning class C or less,
19	for which there is presumably a disposal destination,
20	but a fairly substantial amount of what I would call
21	transuranic waste, which is in DOE space greater than
22	class C, everything from cladding holes to things
23	contaminated from processing the plutonium and
24	cleaning it up.
25	And right now the greater than class C
	1

(202) 234-4433

	148
1	problem is not very large, but if this were to happen,
2	it would become rather considerably larger.
3	Is there any dialogue with the, I guess it
4	is, Department of Energy in this presumably
5	forthcoming EIS on greater than class C? Is this on
6	the radar screen?
7	MR. GIITTER: I believe it is, yes.
8	MR. MAGRUDER: That's my understanding.
9	MR. GIITTER: Right. They talked about
10	that a little bit this morning.
11	VICE CHAIRMAN CROFF: Okay.
12	MR. GIITTER: As I said earlier, they're
13	definitely trying to think holistically about what
14	they are doing for the entire fuel cycle.
15	VICE CHAIRMAN CROFF: "They" would be
16	talking about the NE people?
17	MR. GIITTER: Yes.
18	VICE CHAIRMAN CROFF: But have they made
19	the connection back to the other parts of DOE that are
20	doing the greater than class C thing?
21	MR. GIITTER: Yes, I think this is a major
22	priority with the Secretary. And I'm trying to
23	remember the organization in DOE, but they are working
24	very closely with other offices in DOE. NE is driving
25	the program, has a leadership role for the program,
	I contract of the second se

(202) 234-4433

	149
1	but all of the other, many of the other, offices in
2	DOE are working on this.
3	I do have to say that I have worked with
4	DOE on a number of other instances, and this is really
5	the first time I have seen all of the offices working
6	together. They seem to be anyway.
7	VICE CHAIRMAN CROFF: Okay. I think with
8	that, ACNW staff? John Flack, you had a question
9	earlier.
10	MR. FLACK: I have a lot of questions, but
11	I think we'll get around to them over the next several
12	months. I don't want to hold it up.
13	MR. LARKINS: Let me just ask a quick
14	question. I noticed in the SRM, staff has directed to
15	developing some type of legislation. Is that going to
16	be the success path in terms of agency involvement or
17	without the legislation, would you still see working
18	with DOE in some cooperative fashion, develop some
19	regulatory framework, at least some way of certifying
20	or proving this facility?
21	MR. GIITTER: I think we would be in a
22	stronger position personally, again, if we could
23	regulate those facilities. But absent that, I think
24	we can accomplish a lot without that. And DOE
25	certainly seems to be willing to work with us. So I

(202) 234-4433

	150
1	think there is a success path either way.
2	MR. LARKINS: I was thinking back because
3	there have been a number of activities like this in
4	the past, having been around through CRBR also doing
5	HCDA calculations.
6	MR. GIITTER: Yes.
7	MR. LARKINS: I think there are several
8	examples. I was wondering if compiling information on
9	the areas where things have gone well and, you know,
10	what do you consider a success and where there have
11	been problems.
12	MR. MAGRUDER: That's a good point. As I
13	mentioned earlier, one of the overriding goals of this
14	program for them is to commercialize it. And they
15	realize that unless the NRC agrees with what they're
16	doing and would be receptive to an application from
17	somebody, that it's a non-starter.
18	So they are very willing to work with us
19	on making sure that if we don't regulate facilities
20	right away, that they are very willing to work with us
21	to make sure that whatever they are doing, we would
22	not have a problem.
23	MR. LARKINS: But are you compiling
24	information on where you think we've had success in
25	the past and where there have been problems so you can
	1

(202) 234-4433

151
sort of identify issues on
MR. GIITTER: It's a knowledge management
issue, John.
(Laughter.)
MR. LARKINS: Yes.
MR. GIITTER: I don't think we necessarily
know. We're working on what we can.
MR. LARKINS: Yes.
MR. GIITTER: And, you know,
unfortunately, there's not a lot of people around who
have any experience when we did the licensing of
Barnwell and Clinch River for that matter.
MR. LARKINS: Well, maybe we can help you
pile in a knowledge management program to retrieve
some of that information.
MR. GIITTER: Anything you could do to
help would be appreciated.
MR. LARKINS: Okay.
CHAIRMAN RYAN: That's okay. I mean, that
leads to another question, John. And that is
resources and particularly people. If you'll look in
this building, I guess I don't know the number, but it
would be probably smaller than you would think of
folks who are here and are involved in signing a
license for a reactor or major fuel cycle facility.

(202) 234-4433

	152
1	It's a small fraction.
2	MR. GIITTER: Yes, it is.
3	CHAIRMAN RYAN: And here we are on the
4	leading edge of an international cooperative program.
5	We want to grasp the lead back, as my colleague
6	suggested. Where are the people going to come from?
7	MR. GIITTER: We're going to
8	CHAIRMAN RYAN: Thermal hydraulic people.
9	I mean, go up and down the list.
10	MR. GIITTER: Assuming this program moves
11	forward, our goal is to hire people. And they are
12	going to be new people, but they are going to be
13	talented people and people who can come up and speak
14	quickly.
15	CHAIRMAN RYAN: That's a great goal, but
16	the point is when you look out there, the academic
17	programs, which, you know, I know a little bit about,
18	they're not out there. You try and find how many
19	nuclear engineering programs are around the country
20	today versus '65. It's a big difference.
21	MR. GIITTER: Well, and I can tell you if
22	you want to talk about this, one of the strategies we
23	have taken in fuel cycle is, instead of just going out
24	to job fairs and trying to recruit people, we're
25	trying to develop conduits where we can get talent
1	I contract of the second se

(202) 234-4433

	153
1	from select universities.
2	Just fuel cycle, for example, we have a
3	need for criticality safety engineers.
4	CHAIRMAN RYAN: Right.
5	MR. GIITTER: There are only two programs
6	in the United States that have criticality safety
7	programs: University of New Mexico and University of
8	Tennessee. So what we have done in both of those
9	schools is we have sent a senior chemical safety
10	engineers out to do a colloquium to give them an idea
11	of the type of research, the type of work that we're
12	doing in the NRC to kind of whet their appetite.
13	We are also directing research at those
14	universities; and in areas, for example, there's not
15	a long of benchmark data for uranium-235 above
16	five-weight percent. That's one area where we're
17	working both with the University of Tennessee,
18	University of New Mexico to have them help us out.
19	And we're sending managers down to have
20	special recruitment sessions at those universities.
21	We're doing what we can. But it takes a while to
22	develop those kind of relationships.
23	CHAIRMAN RYAN: Yes. And I'm asking not
24	to try and find a hole but to see if there is a way
25	where this Committee could help you identify what some

(202) 234-4433

	154
1	of those things might be and point them out to the
2	Commission because, you know, as we write letters,
3	it's always helpful to say, "We heard about a manpower
4	need in this area."
5	Another area is ALARA engineering and
6	shielding design and some of those things. Even those
7	basic things are in complex facilities. I mean, we're
8	putting people to work that sometimes it's their first
9	big design project, probably more often than not.
10	So, you know, I would offer you the
11	opportunity that if you see those opportunities or
12	gaps or issues, don't hesitate to integrate those into
13	what we hear about because we can maybe offer comment
14	on them.
15	MR. GIITTER: I appreciate it.
16	CHAIRMAN RYAN: I'm sensitive to your
17	challenge because, zoom, there's this whole big new
18	fuel cycle. And I think about the numbers of folks,
19	like you've said and some of the others have said,
20	that have retired or passed or both. And where are we
21	going to get the smart folks to fill the jobs? It's
22	hard enough to compete with private industry for those
23	graduates that are coming out.
24	MR. GIITTER: That's right. Yes.
25	CHAIRMAN RYAN: And you end up hiring a
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

155 1 lot of consultants and contracting for a lot of 2 research and support activities. That's great, but 3 that doesn't put them on your team here to get the job 4 done. 5 MR. GIITTER: We just made an offer, Stu did, to an individual who was doing research for, I 6 7 believe it was, Argonne National Lab related to GNEP. 8 So we are doing what we can to --9 CHAIRMAN RYAN: Oh, yes. And clearly you 10 will be, but, you know, I'm not too sure it doesn't need to be notched up a bit. 11 MR. MAGRUDER: He turned down an offer 12 from Exelon to come and work for us. I hope that's a 13 14 good thing. I don't know. 15 VICE CHAIRMAN CROFF: Great. Latif? MR. HAMDAN: What do we know about the DOE 16 17 time line? When are they going to whatever it is they are going to do? 18 19 MR. GIITTER: It's on the slides. 20 MR. MAGRUDER: Add four years to it. As 21 much as we know is on the slides, but, as I mentioned, 22 a lot of it depends on the funding. VICE CHAIRMAN CROFF: I think that's an 23 excellent segue. First, thanks very much for an 24 25 informative presentation in preliminary very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	circumstances.
2	Part of the path forward here I think
3	we'll probably be seeing you guys through the summer,
4	we hope in the July meeting, to get DOE in maybe to
5	talk a little bit more about their schedule, but, more
6	importantly, to get down a little bit into the
7	technical details of what's a pyroprocess and what's
8	a UREX and sort of tell us what they know and what
9	they're thinking and where they're going at a more
10	technical level. So we'll look forward to seeing you
11	then.
12	And, with that, I think I would like to
13	move into the next portion of the agenda, where we
14	want to talk about a white paper.
15	Ray, do you want to come up to the table?
16	Ray has been brought on board as a consultant to lead
17	the development of a white paper on this while recycle
18	ball of wax, whatever the thing is.
19	MR. LARKINS: I don't know whether it was
20	mentioned, but this SRM also calls for the involvement
21	of the ACRS and the ACNW in this whole activity. So
22	this is a good precursor for
23	VICE CHAIRMAN CROFF: Yes. That is the
24	reason we're doing all of this. And we propose that
25	a white paper on this subject area be the vehicle for
	1

(202) 234-4433

	157
1	helping the Committee get smart in terms of things
2	like what are the process details to the extent
3	they're known, what are the effluents, and what do we
4	know about these processes and where they're going to
5	give us the best basis we can for making
6	recommendations.
7	That's basically where we want to get to
8	in the white paper and presumably sometime in the
9	fall, the white paper plus the collective briefings
10	will be the basis for a letter to the Commission
11	giving them our collective wisdom.
12	Sir?
13	MR. LARKINS: Do we still need to be on
14	the transcript?
15	CHAIRMAN RYAN: So now we'll conclude the
16	transcript today. Do we need the transcript tomorrow
17	at all?
18	MR. LARKINS: No.
19	CHAIRMAN RYAN: Okay. So that's it.
20	(Whereupon, the foregoing matter was
21	concluded at 5:21 p.m.)
22	
23	
24	
25	
	1