Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Nuclear Waste
	163rd Meeting

Docket Number: (not applicable)

- Location: Las Vegas, Nevada
- Date: Wednesday, September 21, 2005
- Work Order No.: NRC-614

Pages 1-235

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON NUCLEAR WASTE (ACNW)
5	163 rd MEETING
6	+ + + + +
7	WEDNESDAY,
8	SEPTEMBER 21, 2005
9	+ + + + +
10	LAS VEGAS, NEVADA
11	+ + + + +
12	
13	The Advisory Committee met at 8:30 a.m. at
14	Pacific Enterprise Plaza Building One, 3250 Pepper
15	Lane, Las Vegas, Nevada, Dr. Michael T. Ryan,
16	Chairman, presiding.
17	MEMBERS PRESENT:
18	MICHAEL T. RYAN, Chairman
19	ALLEN G. CROFF, Vice Chairman
20	JAMES H. CLARKE, Member
21	WILLIAM J. HINZE, Member
22	RUTH F. WEINER, Member
23	ACNW STAFF PRESENT:
24	NEIL M. COLEMAN, ACNW Staff
25	JOHN FLACK, ACNW/ACRS Staff
I	1

	2
1	ACNW STAFF PRESENT (Continued):
2	LATIF HAMDAN, ACNW Staff
3	MICHELE KELTON, ACNW Staff
4	JOHN T. LARKINS, Executive Director, ACNW/ACRS
5	Staff
6	MICHAEL LEE, ACNW Staff, Designated Federal
7	Official
8	RICHARD K. MAJOR, ACNW Staff
9	RICHARD SAVIO, ACNW Staff
10	MICHAEL SCOTT, ACNW/ACRS Staff
11	SHARON A. STEELE, ACNW Staff
12	ASHOK THADANI, ACNW/ACRS Staff
13	ALSO PRESENT:
14	MICK APTED, Monitor Scientific
15	CHARITY BARBER, Greenburg Traurig
16	JO ANN BIGGS, Hunton & Williams
17	CHRIS BINZER, Robison/Seidler
18	RAY CLARK, EPA
19	RICHARD CODELL, NMSS
20	ROBERT FRI, Resources for the Future
21	STEVE FRISHMAN, State of Nevada
22	CAROL HANLON, DOE/ORD
23	GEORGE HELLSTROM, DOE
24	NORM HENDERSON, BSC
25	CHRISTIN HITIRIS, NMSS/HLWRS
I	

	3
1	ALSO PRESENT (Continued):
2	DONALD HOOPER, CNWRA
3	MATTHEW HUBER, Purdue University
4	JOHN KESSLER, EPRI
5	MATT KOZAK, Monitor Scientific
6	BRUCE MARSH, Johns Hopkins University
7	ROD MCCULLEN, NEI
8	JACOB PAZ, SEL EMV
9	GENE PETERS, NMSS/HLWRS
10	FRED PHILLIPS, New Mexico Institute of Mining
11	and Technology
12	MAGGIE PLASTER, City of Las Vegas
13	MYRLE RICE, Lincoln/White Pine Counties
14	WALTER SCHALK, NOAA ARL/SORD
15	SOLEDAD SIFUENTES, Cogema Engineering
16	JUDY TREICHEL, Nevada Nuclear Waste Task Force
17	ABE VAN LUIK, DOE
18	MARYLA WASIOLEK, BSC
19	
20	
21	
22	
23	
24	
25	
I	

	4
1	<u>CONTENTS</u>
2	PAGE
3	Opening Remarks, Chairman Michael T. Ryan 5
4	Presentation of Robert Fri
5	Presentation of Dr. Matt Huber
6	Presentation of Dr. Bruce Marsh 130
7	ACNW Subcommittee Report on Savannah River and
8	Barnwell LLW Disposal Site Visit 210
9	Introduction to ACNW, Dr. John T. Larkins 222
10	Purpose of Evening Session, Chairman Ryan 226
11	Open Public Comment:
12	Mike Henderson
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	1

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:33 a.m.)
3	CHAIRMAN RYAN: The meeting will come to
4	order.
5	This is the second day of the 163rd
6	meeting of the Advisory Committee on Nuclear Waste.
7	My name is Michael Ryan, Chairman of the
8	ACNW.
9	The other members of the committee present
10	are Allen Croff, Vice Chair; Ruth Weiner; James
11	Clarke; and William Hinze.
12	Today the committee will hear from Mr.
13	Robert Fri of the Resources for the Future and Dr.
14	Fred Phillips of the New Mexico Institute of Mining
15	and Technology on the National Academy of Science's
16	1995 recommendation for the Yucca Mountain Standards
17	and the 2005 court decision vacating a 10,000 year
18	time period of regulatory compliance in 40 CFR Part
19	197.
20	Mr. Fri is participating via video
21	conference, and Dr. Phillips is here in person.
22	The committee will hear a review by Dr.
23	Mark Huber of Purdue University on the evolution of
24	climate in the Yucca Mountain area over the next
25	million years.
I	

(202) 234-4433

	6
1	The committee will be briefed by Dr. Bruce
2	Marsh, an ACNW consultant from the Johns Hopkins
3	University, on an approach to the modeling of magma-
4	repository interactions.
5	And we'll hear a briefing from Ms. Leah
6	Spradley, an ACNW summer intern, on the modeling of a
7	volcanic ash plume using the HYSPLIT computer code.
8	We will hear a briefing from ACNW members
9	who have participated in the August 2005 visit to the
10	Savannah River site and the Barnwell low level waste
11	disposal site.
12	We'll continue preparation of potential
13	ACNW letters and reports and discuss matters related
14	to to conduct of ACNW activities.
15	We will also conduct a public outreach
16	meeting this evening later on in the agenda.
17	Mike Lee is the designated federal
18	official for today's session.
19	This meeting is being conducted in
20	accordance with the provisions of the Federal Advisory
21	Committee Act. We have received requests for time to
22	make oral statements from members of the public,
23	including Mr. Danny Kaufman and staff from Congressman
24	Givens' office.
25	Yesterday we also arranged for Steve
I	1

(202) 234-4433

	7
1	Frishman to make some comments after a couple of this
2	morning's presentations.
3	Should anyone else wish to address the
4	committee, please make your wishes known to one of the
5	committee staff. There's also a sign-up sheet in the
6	back of the room for those wishing to address the
7	committee.
8	It is requested that speakers use one of
9	the microphones, identify themselves, and speak with
10	sufficient clarity and volume so they can be readily
11	heard.
12	It is also requested that if you have cell
13	phones or pagers, kindly turn them off while in the
14	meeting room.
15	Thank you very much.
16	I'd ask to take special attention to using
17	the microphone as close as you can so everybody can
18	hear you. There's a little problem with acoustics in
19	this room and hearing folks. It is difficult unless
20	you take full advantage of the microphones.
21	So if we could do that, that would be a
22	big help. So thank you very much.
23	For this morning's session, I'm going to
24	turn the meeting over to Professor Hinze, a committee
25	member who is going to lead us through this morning's
I	

(202) 234-4433

	8
1	session.
2	Bill.
3	MR. HINZE: Thank you very much, Mike.
4	We have an interesting morning. We are
5	going to be, as Mike has mentioned, we will be having
6	three presentations that will provide us with
7	background as we review the draft revision of 63, of
8	10 CFR 63, that is reacting to the proposed change in
9	197 as a result of the court remand of the time of
10	compliance in the Yucca Mountain Standards.
11	The basis of this is that the 1992 Energy
12	Policy Act stated that the EPA was supposed to prepare
13	their standards for Yucca Mountain in a consistent
14	fashion with the technical basis standards as
15	established by a National Academy of Science panel.
16	We are fortunate to have two of those
17	panelists with us today to discuss the results of the
18	panel's efforts. We are hoping that they will provide
19	us background on the basis for their decisions on
20	establishing the standards, how they went about doing
21	their work so we have some idea of how they reach
22	their decisions, and we also are interested in the
23	crosscutting issues, such as the dose factors, the
24	infiltration, the climate change, and all of these
25	other issues that impinge upon the time of compliance.
	I

(202) 234-4433

	9
1	With that, I will ask Dr. Fri, Robert Fri,
2	who is with the Resources for the Future to provide us
3	with his view of the panel's work.
4	Dr. Fri, I recall that I introduced you to
5	this committee. I believe it was about a decade ago
6	when we held the workshop on time of compliance, and
7	it seems to me that my recollection is that the
8	subject matter was pretty much the same, and so we're
9	anxious to have you reenlighten us and provide
10	whatever information you can to the committee that
11	will help us do the best possible review of 10 CFR 63.
12	With that, it's yours.
13	DR. FRI: Thank you very much, and thank
14	you for the opportunity to appear electronically. It
15	does wonders for my schedule.
16	I remember ten years or so ago when we had
17	that meeting, and I even have still in my files the
18	report of the ACNW on what came out of that meeting,
19	on what you thought about all of this at the time. It
20	was a very good report. So we might just all dig that
21	stuff and save ourselves a lot of time.
22	Let me spend some time talking about the
23	report and focusing on some of the aspects of it that
24	bear on the standard as it has evolved over the last
25	few years since our report was written.
ļ	I

(202) 234-4433

	10
1	As was said, I was the chair of the study
2	that performed that report with the oversight of the
3	Board of Radioactive Waste Management here at the
4	National Research Council, and I want to stress that
5	after the committee finished its report, it disbanded.
6	Although the board has come back to this subject from
7	time to time, I certainly have not studied it in
8	detail, and I think Brad, while he was very
9	instrumental in some of the technical considerations
10	that went into the report at the time, his interests
11	often lie elsewhere as well.
12	So we'll try to do the best we can within
13	the confines of what the committee had to say in its
14	report.
15	Let me first address a couple of aspects
16	of the form of the standard that the committee
17	recommended in the Yucca Mountain standard report.
18	The Yucca Mountain standard abbreviation to TYMS, and
19	I may use the term "TYMS report" or "TYMS committee"
20	for shorthand as we go through this presentation.
21	First of all, as to the form of the
22	standard, although the Energy Policy Act stipulated
23	that EPA should develop a standard that prescribed
24	dose equivalence, that was actually in the statute
25	itself. Our report recommended that EPA develop a
I	

(202) 234-4433

	11
1	standard that sets a limit on risk to individuals of
2	adverse health effects from release from the
3	repository. In other words, state the standard in
4	terms of risk rather than dose.
5	There were a couple of reasons for that.
6	One is a technical reason, and that is since the
7	risk, the dose-response relationship has been known
8	to change over time, the dose that preserves a
9	specific level of risk might change over time, and it
10	seemed to us easier to set this standard in the form
11	of risk.
12	The other, it occurred to us that it might
13	be more understandable to the public. As you know,
14	EPA has elected to set the standard in terms of dose,
15	and that, of course, was within their prerogative.
16	The second issue that had to be addressed
17	by the committee is the level of protection afforded
18	by the standard, that is, what level of risk would be
19	appropriate, and our report noted that the level of
20	protection was a policy decision that needed to be
21	established and would be established through the
22	rulemaking process.
23	We said that science can provide some
24	guidance in this matter, but at the end of the day,
25	the level of protection that the public wants is up to
I	

(202) 234-4433

	12
1	them, and since the level of protection of dose
2	allowed is now handled in a different way by EPA, I
3	think it's important to note that we did not suggest
4	that there was a strong scientific basis one way or
5	the other for a specific level of risk.
б	We did point out that a number of other
7	sources have set risk levels in certain ranges, and
8	that that was a good starting place for EPA policy,
9	but we didn't try to recommend a specific level of
10	risk because we felt that was a social decision.
11	Well, with those two background ideas from
12	the report about the level, about the form of the
13	standard, let me then turn to the issue of the time of
14	compliance and the evolution of the standard over the
15	last ten years, its remand by the D.C. Circuit Court
16	of Appeals and so forth.
17	As you know, the difference between the
18	standard proposed by EPA several years ago and the
19	recommendation of the TYMS Committee were greatest in
20	the area of how to assess whether the repository will
21	comply with the radiation standard that EPA sets, and
22	of course, it's on this issue of time of compliance
23	that the Court of Appeals remanded the proposed
24	standard to EPA last year.
25	Now, I don't need to go through this for
1	

(202) 234-4433

	13
1	this particular audience in any detail, but let me
2	just remind you that what we're dealing with is a
3	process whereby material is stored in the repository
4	over time. The canisters degrade. Radioactive
5	material leaves the site and spreads in a plume
6	throughout the immediate vicinity. That process can
7	be modeled. Then that gives you some idea of what the
8	source term is going to be for exposure to humans.
9	Then you have to have some kind of
10	scenario whereby humans come into contact with that
11	radiation that's being in the groundwater, and then
12	you have to decide who is going to be protected, and
13	that sequence of logic is the structure I'm going to
14	talk a little bit about the standards.
15	So first the question is how long do you
16	model this process in order to decide when you're
17	going to test the standard.
18	The TYMS report concluded that there is no
19	scientific basis for limiting the compliance
20	assessment period to 10,000 years. That's the
21	principal recommendation and conclusion on time of
22	compliance; that there is no basis for limiting it to
23	10,000 years.
24	And of course, this is the issue that the
25	D.C. Circuit sort of remanded the standard on really
	I

(202) 234-4433

	14
1	by saying, look, the one black letter thing the
2	committee said was there's no basis for 10,000 years,
3	and you limited it to 10,000 years, and that doesn't
4	seem like it's consistent with what the committee
5	said.
6	Having said that, the committee
7	recommended that the compliance assessment be
8	conducted for the time up to which the greatest risk
9	of exposure to radiation from Yucca Mountain occurs
10	within the limits imposed by the long-term stability
11	of the geologic environment.
12	So that's kind of the second step in the
13	committee's recommendation on how long. The first was
14	10,000 years has no particular basis. The second, it
15	makes sense to go out to the time of greatest risk
16	within the limits of geologic stability.
17	And finally, the report concluded that the
18	geological formations at Yucca Mountain were
19	sufficiently stable to permit modeling of physical
20	processes that controlled the movement of radioactive
21	waste from the repository for up to a million years.
22	So that's the third step in the logic.
23	Fred will talk a little bit more, I think,
24	about the reasoning behind that final step.
25	Let me just say it's important to
I	

(202) 234-4433

understand that this conclusion does not necessarily suggest that we can predict what's going to happen a million years from now. What it does is to say that the modeling of the physical processes that result in radioactive waste movement out of the repository is not likely in the judgment of the committee, not likely to be distorted by changes in geological conditions during that period.

9 So in this sense I understand that the 10 committee's conclusions say that modeling physical processes for up to a million years is not really that 11 much more difficult than modeling it for 10,000 years, 12 and the longer time horizon provides more time for the 13 radioactive waste to be released, that is released 14 15 from the repository, to migrate to distant locations 16 where it is more likely to come into contact with 17 humans.

I go into all of that in some detail 18 19 because I think it's important to understand what the 20 actually said about this committee "how long" There are three parts to it. 21 question. Ten thousand 22 years doesn't hold up scientifically. It's best to go 23 to the point of maximum risk, limited by the geologic 24 stability of the formations of Yucca Mountain. 25 Thirdly, the committee felt that for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	16
1	modeling purposes the stability was adequate to run
2	the models up for a million years.
3	Okay. The second element then is the
4	exposure scenario. The exposure scenario describes
5	the means by which humans are exposed to the
6	radioactive material from Yucca Mountain chiefly
7	through the extraction of groundwater for growing
8	foodstuffs or for drinking.
9	The TYMS report concluded that there is no
10	scientific basis for predicting the societal factors
11	that are required to establish exposure scenarios, and
12	so we recommended that such scenarios be established
13	through the rulemaking process, and the practical
14	consequence of this recommendation is to rely on the
15	knowledge of current human activity around the site
16	rather than to speculate on what people might do in
17	the future.
18	In other words, we said there was no
19	scientific basis for predicting future human behavior.
20	So you'd better use the only good information you
21	have, which is what you know today.
22	Finally, there's the question of then who
23	is protected. Who is going to get exposed to this
24	material by the scenario that's developed to
25	rulemaking?
I	I

(202) 234-4433

And the TYMS report recommended that EPA apply the standards to a critical group representative of those individuals who based on cautious but reasonable assumptions have the highest risk resulting from repository releases. Now, this turns out to be a somewhat

6 7 complicated concept, but basically the purpose of it 8 was to avoid the accumulation of overly conservative 9 assumptions. In particular, Yucca Mountain was selected because of its isolation and the expectation 10 that that would reduce the likelihood that some 11 individual would come in contact with the groundwater 12 that is contaminated with radioactive material from 13 14 the repository.

And the committee felt and concluded that this isolation should be taken into account in compliance assessment and so recommended that the probability of people being present be taken into account when selecting the critical group.

And as I'll suggest in a moment, it's that probabilistic approach that turns out to be very important. Okay. That's what the committee recommended about, in general at least, about the time of compliance issue.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Now, going back to the standard that EPA

(202) 234-4433

25

1

2

3

4

5

	18
1	issued and then was remanded last year by the Court of
2	Appeals, the inconsistency lies in the different
3	treatment of the time horizon for compliance
4	assessment and in different treatment of the
5	definition of who is to be protected.
б	The court decision didn't talk about the
7	latter point. The fact is a substantial difference
8	between, in my judgment, the way EPA approached this
9	and the way the committee approached it. The TYMS
10	committee elected to carry time horizon out to the
11	point of greatest risk to the public which is almost
12	certainly more than 10,000 years.
13	EPA limited its time of compliance to
13 14	EPA limited its time of compliance to 10,000 years, and the question of who's protected, as
14	10,000 years, and the question of who's protected, as
14 15	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a
14 15 16	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group
14 15 16 17	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca
14 15 16 17 18	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca Mountain. Now, you know, that basically means that
14 15 16 17 18 19	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca Mountain. Now, you know, that basically means that it's not a dead certainty that some individual is
14 15 16 17 18 19 20	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca Mountain. Now, you know, that basically means that it's not a dead certainty that some individual is going to come into contact with the worst possible
14 15 16 17 18 19 20 21	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca Mountain. Now, you know, that basically means that it's not a dead certainty that some individual is going to come into contact with the worst possible case of radioactive material in the groundwater. You
14 15 16 17 18 19 20 21 22	10,000 years, and the question of who's protected, as I indicated earlier, the committee recommended a probabilistic identification of the credible group that would account for the isolation of Yucca Mountain. Now, you know, that basically means that it's not a dead certainty that some individual is going to come into contact with the worst possible case of radioactive material in the groundwater. You have to consider it probabilistically. That was the

(202) 234-4433

	19
1	exposed individual. This individual was assumed to
2	live above groundwater that does contain the highest
3	concentration of radioactive contamination from Yucca
4	Mountain, and eats food and drinks water that contains
5	this contamination.
6	In other words, the reasonably maximally
7	exposed individual is a deterministic concept. There
8	is no doubt that this person will counter the most
9	contaminated water from the repository.
10	Now, at this point I need a visual. Fred,
11	do you have that?
12	DR. PHILLIPS: No. Well, I have a copy on
13	my computer, but I wasn't aware I was supposed to show
14	it. It did not get through.
15	DR. FRI: Okay. Here it comes. I guess
16	we're going to do it the old fashioned way.
17	This, incidentally, behind it is Kevin
18	Crowley, who is the Director of the Board on Nuclear
19	and Radiation Studies here at the Academy.
20	If you can see this chart, it illustrates
21	these differences and the approach of the committee
22	and EPA. The vertical axis represents the time
23	horizon. This is the shorter time, compliance time,
24	say, 10,000 years, and this is the longer compliance
25	time that the committee recommended.
I	

(202) 234-4433

	20
1	The horizontal axis represents the degree
2	to which the person to be protected is selected on a
3	probabilistic or deterministic basis. This is the
4	probabilistic box, and this is the deterministic box.
5	And as you can see, the committee and the
6	EPA were at diametrically opposed ends of this
7	representation. EPA had a short compliance period and
8	a deterministic scenario. The committee recommended
9	a longer compliance period and a probabilistic
10	scenario.
11	Now, the appeals court concluded that EPA
12	had not set a standard that was based on and
13	consistent with the findings and recommendations of
14	the National Academy of Sciences because EPA didn't
15	follow the committee's advice on the compliance
16	period, but that's all the court addressed.
17	But if EPA were to have taken the course
18	of proposing a new standard in response to the court's
19	direction only changing the time horizon without
20	reevaluating the use of the reasonably maximally
21	exposed individual in the standard, there would have
22	been a problem that the committee wanted to avoid.
23	The problem is that the specification of
24	the time horizon and selection of the person to be
25	protected are intimately connected. So if EPA wanted
I	

(202) 234-4433

	21
1	to extend the time horizon but retain the
2	deterministic selection of the person to be protected,
3	the resulting standard would show up in the upper
4	left-hand corner over here, deterministic exposure and
5	a longer time horizon.
6	But that is a place that the committee
7	specifically did not want to be, and we know this
8	because one member of the committee did want to
9	combine a long time horizon with the deterministic
10	selection, and he outlined that process and that
11	recommendation in some detail in the report.
12	So the committee spent a lot of time
13	considering that option and concluded that this would
14	run the risk of excessive conservatism. As I wrote in
15	the report in response to that committee member's
16	proposal, "the standard should avoid an extreme case
17	defined by unreasonable assumptions affecting those in
18	risk."
19	Some members of the committee believed
20	that the approach advocated by this dissenting member
21	could become such an extreme case. So up in that
22	corner is a place the committee consciously didn't
23	want to go.
24	So in revising the standard, EPA, after
25	the remake, EPA could have looked at what combination
ļ	I

(202) 234-4433

	22
1	of time horizon and selection of the person to be
2	protected would create a reasonable case that is
3	consistent with the court's opinion and the
4	recommendations of the academy. It could have tried,
5	for example, to show that the protection afforded to
6	the public by its remanded standard is functionally
7	equivalent to the TYMS committee approach and that
8	there were good policy reasons for going ahead with
9	their approach, or it could have accepted the longer
10	time horizon, but selected the individual risk in a
11	less deterministic way, thus avoiding an overly
12	conservative approach.
13	I don't know which of those might have
14	worked. The committee went out of its way not to try
15	and figure out whether the standard could be complied
16	with. We didn't want to do those calculations, but
17	there were ways of doing it.
18	But what EPA did do, as I understand this
19	most recent proposal, is to change yet another
20	variable, and that is the level of risk or dose
21	itself. It retained the 10,000 year standard and the
22	reasonably maximally exposed individual as the person
23	at risk and then added a post 10,000 year all pathway
24	standard that applies to the time of peak dose up to
25	a period of a million years.
I	1

(202) 234-4433

The numerical value of that added standard is 350 millirem, which is considerably higher than the dose allowed for the 10,000 year standard. That does release the constraint, I suspect, but it's difficult to say whether EPA's proposed standard is consistent with the TYMS report, which only provided, as I said earlier risk ranges for starting points for EPA's analysis.

9 however, that the committee I'd note, 10 recognized that EPA properly has considerable discretion in applying policy considerations outside 11 the scope of our study to the development of the 12 health standard for Yucca Mountain, and so I think my 13 14 view of the new proposal has gone as the mission 15 changed as an area in which the committee did not take 16 a stand because we felt it was not basically a 17 scientific question, but rather a societal question of determining what risk is acceptable. 18

Well, I hope that bring some clarity to what is a complicated situation, and, Mr. Chairman, I'd either be happy to have Fred go ahead and talk about some of these scientific and technical and background of all of this or answer a few questions now. It's up to you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. HINZE: Well, I thank you very much,

(202) 234-4433

25

1

2

3

4

5

6

7

8

	24
1	Dr. Fri, for an excellent review of the situation and
2	how it impacts upon the decisions that were made by
3	the EPA in their revised 197 standard.
4	I think that we'll allow questions at this
5	time while all of this is fresh in our mind, and if
6	you don't mind, what we'll do is go around the
7	committee and see what questions there are for you.
8	Ruth, could I start off with you?
9	MS. WEINER: Well, I have quite a few, and
10	I don't want to monopolize the time. The TYMS report
11	says that and this is a direct quote that the
12	related uncertainties in extending well past 10,000
13	years are "sufficiently boundable." Dr. Fri, what
14	caused you to make that recommendation, to say that
15	these uncertainties were sufficiently boundable?
16	DR. FRI: At this point, Fred Phillips,
17	who is much better prepared to talk about the
18	technical details than I am since I'm not a scientist,
19	so I'm going to ask Fred to tackle that question.
20	DR. PHILLIPS: Do you want me to go ahead
21	and address this now?
22	DR. FRI: Yes, I think so.
23	DR. PHILLIPS: I mean, basically what we
24	did was to go through and consider the various
25	potential causes of uncertainty and variability in the
I	I

(202) 234-4433

predictions or simulations. I don't want to use the word "prediction" here really.

3 I mean, they basically fall into two main 4 categories, and those are climate variability and 5 geological processes. And going through and looking 6 at those, it did not appear that either one of those 7 processes would vary a large amount more over a time 8 period of a million years than they would be likely to 9 or at least that we would seriously have to consider 10 that they would over a period of 10,000 years.

11 MS. WEINER: But part of what we just 12 heard and what the TYMS report is quite clear about is 13 that part of the uncertainty is the probability of 14 exposure, in other words, the probability that there 15 will be people there, and that whatever they will be 16 doing will result in exposure to releases.

17 That's the place where I wonder whether 18 sufficiently boundable uncertainties were considered. 19 In what sense would that be uncertainty related to 20 exposure be sufficiently boundable?

DR. PHILLIPS: I think the committee's 21 22 position was that we did not view that issue or the 23 particular circumstances that are associated with 24 exposure scenarios to be in any sense really 25 predicable, and that recommended what we was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	26
1	essentially a stylized assessment of risk based on our
2	current situation.
3	We did not recommend trying to come up
4	with strange future scenarios for what people might be
5	doing because we do not feel that that's really a
6	valid area to speculate in.
7	So our position was that this sort of
8	stylized approach to assessing risk would be equally
9	I mean, it's equally applicable or equally
10	inapplicable, depending on the viewpoint you want to
11	take, in 10,000 or a million years.
12	MS. WEINER: In other words, you don't
13	know.
14	DR. FRI: Let me add to that. Remember
15	that the assignment of the committee was to look at
16	the technical or the scientific basis for the standard
17	at Yucca Mountain. So the question on the exposure
18	scenario becomes: is there a scientific basis for
19	creating a scenario that's different from the
20	knowledge that we have today about behavior in the
21	vicinity?
22	And the answer of the committee was, no,
23	there is not such a technical basis, and we recommend
24	using the information that you have today.
25	We apply the same principle to the
ļ	I

(202) 234-4433

	27
1	question of human intrusion in which there was a lot
2	of studying going on about what was going to happen
3	some time in the future about people inadvertently or
4	on purpose drilling into one of the canisters and so
5	on and so forth, which according to committee, which
6	incidentally EPA adopted pretty much right down the
7	line, was we can't make that prediction. The thing to
8	do is, again, in Fred's term, to use a stylized
9	approach. Just assume that somebody is going to drill
10	a hole through one of these things and see what
11	happens. And if it's a big problem, back to the
12	drawing board. IF it works out, then that's fine.
13	And that's what we did. We just didn't
14	see that there was a scientific or technical basis for
15	predicting the future of humanity's activities either
16	in human intrusion or exposure case.
17	MS. WEINER: It seems to me that what
18	you've done is hand EPA a very, very difficult problem
19	because you're asking EPA has to set a standard.
20	that's what the law says they had to do. Did you look
21	forward in your considerations and this is really
22	a policy question did you look forward in your
23	considerations to what EPA might do under these
24	circumstances? Did you consider alternatives for EPA
25	to take?
I	I

(202) 234-4433

(202) 234-4433

	28
1	DR. FRI: No, we didn't. What we did,
2	however, do was to recognize, I think, the points you
3	were making, and that is that science and this issue
4	can only take you so far. It can enlighten policy, in
5	some cases, as in the case of saying that there's no
6	scientific basis for limiting the standard to 10,000
7	years. It can foreclose some avenues of policy, but
8	it can't in the end of the day make policy. That's a
9	public policy issue. EPA is in that business. They
10	do it by rulemaking.
11	And we noted frequently and consistently
12	that there would be policy considerations that would
13	shape the form of the standard over which EPA had
14	control, and admittedly we didn't solve their problem
15	for them. We left them plenty to do, but we felt that
16	that was the appropriate place to draw the line.
17	MS. WEINER: Well, thank you.
18	I'm going to save the rest of my questions
19	for Dr. Phillips since he answered the technical ones.
20	Thank you.
21	MR. HINZE: Thank you, Ruth.
22	Allen, questions?
23	VICE CHAIRMAN CROFF: I'm not entirely
24	sure how to ask this, but the academy's report
25	essentially recommended that the time of compliance be

(202) 234-4433

	29
1	peak, I believe, risk.
2	MR. HINZE: Could you get a little closer,
3	please?
4	VICE CHAIRMAN CROFF: The report
5	recommended that the time of compliance be peak risk,
6	I believe.
7	DR. FRI: That's correct.
8	VICE CHAIRMAN CROFF: Instead of 10,000
9	years or any other value which was said to be it's not
10	a quote, but more or less arbitrary. Can you
11	elaborate a little bit more on the scientific and
12	technical basis for saying it should be peak risk or
13	dose?
14	I can imagine radionuclide release
15	profiles that at least have the potential to maybe
16	make that not such a good choice, where there might be
17	a peak at a shorter time and then a sustained release
18	at a somewhat lower level, but over a much longer time
19	that might warrant looking at other time selections.
20	Can you elaborate a little on how you got
21	to specific determination?
22	DR. FRI: Well, let me start and then ask
23	Fred to finish it off. What we said was essentially
24	that the objective ought to be to find the time of
25	peak risk to the exposed individual. So that means
I	

(202) 234-4433

	30
1	you've got a lot of moving parts in that calculation.
2	The plume is moving over time, and its distribution of
3	radionuclides changes over time. Of course, there's
4	an exclusion area ignore, and you've got the
5	probability that people are going to be on any
6	specific place at any specific time.
7	And so what we did was to ask ourselves
8	the question: is it plausible to say that the risk
9	for those can be calculated given the situation with
10	all of those moving parts?
11	And Fred and other members of the
12	committee, and you'll find their piece in one of the
13	appendices to the report, did work out an approach, a
14	computational approach to dealing with that problem.
15	It may not be the best one, but we were really at this
16	point not interested in necessarily coming up with the
17	most efficient solution to this problem, but rather
18	simply an existence proof that there was a solution to
19	it.
20	We convinced ourselves that technically
21	you could do it, and os that's what we recommended.
22	Fred, do you want to add something to
23	that? I'm sure you can.
24	DR. PHILLIPS: I mean, I don't have a
25	whole lot to add. I would just say that what we
I	

(202) 234-4433

	31
1	recommended was a risk based standard and, therefore,
2	the appropriate time to evaluate that seemed to be at
3	the period of maximum risk, whenever that fell.
4	I mean, it sounds to me that perhaps you
5	are thinking in terms of some risk integrated over
6	time or something like that. I mean, that's certainly
7	an option one could consider. That wasn't what we
8	ended up recommending.
9	VICE CHAIRMAN CROFF: I wasn't necessarily
10	suggesting that. I mean, it comes to mind, but I was
11	more trying to get at, you know, what you're thinking
12	was in saying peak dose as opposed to maybe looking at
13	the dose profile around the peak or maybe even looking
14	at least to some extent at even longer times where
15	there might be somewhat lower doses or shorter times,
16	where the doses might be somewhat lower, but much more
17	sustained, and maybe saying, well if there's a high
18	dose for 1,000 years and a somewhat lesser dose for
19	100,000 years, maybe it's more reasonable to focus on
20	the somewhat lower 100,000 year problem.
21	Was there any discussion of these kinds of
22	tradeoffs leading to your selection of the peak?
23	DR. PHILLIPS: Well, I mean, there was
24	certainly discussion of it, which at this point I
25	can't recall in detail, and after a lot of discussion,
I	

(202) 234-4433

(202) 234-4433

	32
1	that was what we spent much of our early meetings on.
2	We settled on a risk based standard and, therefore, I
3	think if you accept that premise, then evaluating that
4	at the point of peak risk is really the only
5	acceptable time frame.
6	DR. FRI: I think it's safe to say that in
7	our consideration, we recognize that it was a
8	complicated thing. Yes, there were some higher dose
9	rates early on. They attenuated, of course, over
10	time. At the same time the geology might result in,
11	you know, pooling of the waste material in certain
12	spots which created a more likely exposure to a
13	relatively high dose, and it was that whole complex
14	set of movements that we felt needed to be captured by
15	going out toward the time of peak risk.
16	MR. HINZE: Thank you, Allen.
17	Dr. Ryan.
18	CHAIRMAN RYAN: thanks, Bill.
19	Just a follow-up comment to Allen's
20	question, and maybe you could respond to it. I think
21	I see a slightly different picture that's in tune with
22	your idea of a peak risk, and that is that if you
23	recognize an individual where you've focused a
24	scenario development recommendation, you know, it's
25	where you're actually calculating dose or risk. That
I	

(202) 234-4433

	33
1	risk is pretty finite in time because you've got the
2	individual's lifetime as the cap for the risk for that
3	individual.
4	And then kind of moving that individual
5	scenario across a longer time line seems to me to be
6	what you've recommended.
7	DR. PHILLIPS: Yeah, I think that I'm
8	essentially in agreement with you on that. The only
9	thing that I would add is that we really didn't pose
10	it in terms of an individual but rather in terms of a
11	critical group.
12	CHAIRMAN RYAN: A critical group.
13	DR. PHILLIPS: But it would nevertheless
14	be over the extent of a human lifetime.
15	CHAIRMAN RYAN: No, I understand it's the
16	average memory of the critical group, and it's a
17	little bit more formal construct there, but you know,
18	again, you're talking about kind of individuals and
19	sort of realistic characteristics of how an individual
20	risk or dose would be calculated and then that
21	evaluated over some longer time line is really where
22	you made the recommendation.
23	DR. FRI: Yes, that's right.
24	CHAIRMAN RYAN: All right. Thanks.
25	MR. HINZE: Thank you very much.
I	

(202) 234-4433

	34
1	Dr. Clarke.
2	DR. CLARKE: Excellent summary. No
3	questions at this time. Thank you.
4	DR. FRI: Thank you.
5	MR. HINZE: Dr. Fri, Bob, I'd like to ask
6	you a couple of questions. Many countries have a
7	tiered approach, and as you will recall, the ACNW at
8	one time suggested a tiered approach to the standards
9	and the regulations.
10	In view of the uncertainties that your
11	panel has recognized, did you consider a tiered
12	approach with a variation in the standard as the
13	uncertainties increase or move from a quantitative to
14	a qualitative?
15	If you did consider this, on what basis
16	did you reject it?
17	DR. FRI: Well, I think that we may have
18	talked about it, but certainly the tiered approach was
19	not in my memory prominent in the final discussions of
20	what our recommendations would be. I think what we
21	felt was that the modeling that we outlined pretty
22	much along the lines that we have discussed was
23	feasible, and then you would go ahead and calculate
24	this time of peak risk and make your assessment at
25	that point.
I	I

(202) 234-4433

	35
1	Now, if you argued that let me back off
2	and the time frame of stability, the time frame
3	over which you could do the calculations was
4	sufficiently long that you'd pick up the time of peak
5	risk; if you argued that the uncertainties are such
6	that that's not going to happen, then I think you
7	might be interested in looking at some other approach.
8	But we didn't think that was going to
9	happen. So we didn't look at or we didn't recommend
10	the alternative of a tiered approach.
11	Fred, do you want to add anything to that?
12	DR. PHILLIPS: Yeah. I mean, I believe
13	that we spelled out at one point in the report here
14	several issues that we had explicitly not dealt with,
15	and one of those was trying to put any kind of
16	societal weight, I guess you might say, on future
17	consequences, and this may be similar.
18	I guess there are two levels of issues
19	here that you could talk about. One is uncertainty in
20	behavior of a system as time increases, and increasing
21	uncertainty in that, and that's essentially a
22	technical issue.
23	The other one is given that increasing
24	uncertainty in both the technical issues and in the
25	human issues that are involved, one could choose to
	I

(202) 234-4433

	36
1	weight less the consequences of future actions, and
2	this is, in fact, what EPA has at this point fairly
3	explicitly done by upping the level of the standard
4	after 10,000 years.
5	So we said, you know, certainly that this
б	option of saying that we want to give less weight to
7	consequences after some long time period is one that
8	should be considered, but that it's not within our
9	purview.
10	MR. HINZE: Thank you.
11	Let me ask another question of you, Bob,
12	if I may. Peak dose. Did your panel consider that
13	there might be multiple peaks in the dose in the post
14	10,000 year period and that the uncertainties would
15	make it untenable to predict which of those is really
16	going to be the maximum peak dose and so rather than
17	having the time of compliance be the peak dose, have
18	a specified period of time like a million years?
19	In other words, why did you move to did
20	you give thought to going to a specified period like
21	a million years or 500,000 years or did you envision
22	that the peak dose could be really predicted that well
23	and thus specified?
24	DR. FRI: It was really the latter, I
25	think. We looked at the the question is can you
	I

(202) 234-4433

	37
1	computationally deal with all of these moving parts,
2	as I said earlier.
3	And we satisfied ourselves that that was
4	possible. So we said that's the way we think would be
5	the best technical way to go about it rather than set,
6	you know, a specific time in the future at which the
7	peak dose would occur.
8	And besides, you know, the dose if you
9	mean well, if you mean dose by what's in the ground
10	versus risk by which you mean the exposure scenario
11	probabilistically applied, you've got even more moving
12	parts, but we felt they could all be modeled.
13	MR. HINZE: Thank you.
14	Human intrusion was something that the
15	TYMS panel had remarks about in terms of developing a
16	specific scenario for it and dealing with it. Can you
17	give us any insight into your thinking on that and
18	where you ended up and so forth? Can you reach back?
19	DR. FRI: A little ways. Again, Fred
20	should chip in after I make a few introductory
21	comments.
22	We looked at human intrusion, and I
23	remember that, in fact, Bob Budners (phonetic) did a
24	terrific analysis of all of the kind of possible
25	scenarios dealing with human intrusion and basically
I	

(202) 234-4433

showed that trying to predict the future in any of these cases provided no useful information, and we concluded that we really couldn't predict what was going to happen.

On the other hand, the possibility of 5 human intrusion is real. So rather than start 6 7 creating scenarios about what might or might not 8 happen over the next, you know, thousands of years, if 9 not longer, as well as scenarios of the effectiveness 10 of countermeasures that you take to avoid human intrusion, why don't you just pick, you know, one 11 stylized scenario, which in our recommendation was 12 essentially assumed that somebody for whatever reason 13 14 comes along, drills a hole into the repository through 15 one of the waste canisters, evaluate what happens. 16 And if that works out okay, fine. If not, 17 you know you'll have to do something else, and that's essentially, I believe, the approach that EPA adopted. 18 19 MR. HINZE: Thank you. 20 With that I'll open the questioning to the staff. Latif. 21 22 DR. HAMDAN: I have one question 23 concerning the groundwater standard, which is the 24 standard in the EPA aggression (phonetic), and the

25 question is: did the committee look at the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

38

	39
1	groundwater standard beyond 10,000 years? And if they
2	did not, why not?
3	DR. FRI: We did not look at the
4	groundwater standard and on purpose. The conclusion
5	of the committee was that we felt that a health
6	standard, defensible standard that would protect
7	public health could be set on the basis of individual
8	risk or dose, preferably risk, and our assignment was
9	simply to determine whether that was possible or not
10	and give the basis for it, and we did.
11	The groundwater standard, you know, may or
12	may not be redundant in that regard, but we felt it
13	wasn't our job to look at it. We said that if
14	possible, to protect the public health with a standard
15	that protects individuals at the time of peak risk or
16	peak dose and that was sufficient to protect the
17	public health.
18	MR. HINZE: Mike.
19	MR. LEE: Yes, thank you.
20	I have two questions. The first one, Dr.
21	Fri, going back to your earlier
22	DR. FRI: Closer.
23	MR. LEE: opening remarks concerning
24	geologic stability or the predictability of climate
25	geology over 10,000 years versus a million years, in
	I

(202) 234-4433

	40
1	projecting future geologic events, could you elaborate
2	on what the committee's views might have been in terms
3	of the ability to make those predictions and what
4	appropriate measures for making those predictions
5	would be?
6	The existing standards rely on a 10,000
7	year time frame and prediction of events over that
8	time can be applied. I think it's being proposed now
9	to a million years. Do you have any views on that or
10	could you elaborate on that?
11	DR. FRI: Well, let me start, but I think
12	Fred is probably in a better position to answer that
13	question. I think all I want to say is what the
14	committee said was that the geologic considerations
15	suggested there was enough stability there that one
16	could conduct a modeling over an especially long
17	period of time to find out what the peace risk to a
18	probabilistically determined individual was.
19	It didn't say you were making predictions
20	about what would happen geologically. We just said is
21	it stable enough in order to undertake the
22	probabilistic risk assessment that has to go forward
23	over this time.
24	And our answer was yes, but that's all we
25	said. That was sufficient under our purpose. We
ļ	1

(202) 234-4433

	41
1	weren't trying to predict the future in any kind of
2	detail.
3	Fred, you should comment on that.
4	DR. PHILLIPS: Sure. Could you be a
5	little bit more specific about your question though?
6	MR. LEE: Currently, EPA is now proposing
7	that the new
8	MR. HINZE: Could you get closer to the
9	mic, please?
10	MR. LEE: Oh, I'm sorry.
11	In the proposed revision to the EPA
12	standard, EPA is now proposing that the projections of
13	recurrence of certain features, events and processes
14	over 10,000 years can be used in a million year
15	analysis, and my question is: had the committee given
16	any consideration to how those projections might be
17	conducted or appropriate ways of doing those
18	projections?
19	DR. PHILLIPS: Okay, and again,
20	specifically what processes are you thinking of here?
21	MR. LEE: Geologic processes.
22	DR. PHILLIPS: I mean, if we're talking
23	about things, I mean, basically the geologic processes
24	that are relevant that we considered are things such
25	as rates of tectonic displacement, rates of surficial
I	

(202) 234-4433

	42
1	erosion, rates of base and infilling. All of those
2	are going to affect topography, and topography is the
3	driving force for groundwater flow. They could
4	potentially also affect the geologic framework through
5	which the water flows, and those rates are reasonably
6	well quantified at present, and there is no evidence
7	to indicate that there is likely to be major changes
8	in them in the future. In the million year time frame
9	I should say.
10	And so if one can use those present data
11	to predict changes in the configuration of the
12	landscape or the hydrogeologic framework over the
13	period of 10,000 years, there's no reason to think
14	that they would not be also applicable with a somewhat
15	larger bound of uncertainty at a million years.
16	DR. FRI: Is that it then?
17	MR. LEE: That's helpful.
18	My second question: has there any thought
19	been given to commenting on the current standard? I
20	know that the committee previously commented on the
21	draft.
22	Has there been any discussion at the
23	academy on that?
24	DR. FRI: The committee hasn't commented
25	because there isn't a committee. I have no idea
I	1

(202) 234-4433

(202) 234-4433

	43
1	whether the Board on Nuclear Radiation Studies has any
2	intention of saying anything or not.
3	Kevin Crowley is shaking his head no.
4	MR. LEE: Thank you.
5	DR. FRI: Consider that an authoritative
6	response.
7	MR. HINZE: Thanks to Kevin.
8	Other questions? John Flack.
9	MR. FLACK: Yes. Just one question. On
10	the consideration of the mean versus the median, on
11	the implementation of the standard, whether or not
12	it's a dose or the risk, was there any consideration
13	of that and whether one should be preferable in
14	dealing with the uncertainties over the other?
15	DR. FRI: That cropped up in the EPA
16	stuff. I don't know whether we considered it or not.
17	Fred, do you?
18	DR. PHILLIPS: I'm afraid at this point I
19	don't remember whether we discussed that.
20	MR. HINZE: Are there any questions from
21	the audience or any comments?
22	Steve. Steve, introduce yourself and go
23	to a microphone, please.
24	MR. FRISHMAN: I'm Steve Frishman with the
25	State of Nevada.
l	I

	44
1	I'm not here to discuss the merits of the
2	report or of the EPA standard. We'll have plenty of
3	time to talk about that in other venues. I do want to
4	just make a fairly simple statement that someone last
5	week much more notable than I said and remember
6	it's established law
7	MR. HINZE: Could you speak up just a bit,
8	Steve, please? thanks.
9	MR. FRISHMAN: Okay. Remember it is
10	established law, and I'm not sure whether any of you
11	have actually read the court opinion on this or not.
12	In fact, what I did was I copied out of that opinion
13	the section on the 10,000 years to put in your records
14	so that you can actually see what the court said about
15	it over a space of about ten or 12 pages.
16	But the important point that got us in the
17	situation that we're in right now is, first, the court
18	said the 10,000 year compliance period selected by EPA
19	violates Section 801 of the Energy Policy Act because
20	it is not as EPA required or as the Energy Policy Act
21	requires based upon and consistent with the findings
22	and recommendations of the National Academy of
23	Sciences.
24	That is the finding. The other thing that
25	I think is probably of more importance to you at this
I	

(202) 234-4433

point, and I have some interest in why this subject is even before you today, but the point that I think should be of interest to you is that the second finding of the court is that the Nuclear Regulatory Commission's licensing requirements are not unlawful, nor arbitrary and capricious, except to the extent that they incorporate EPA's 10,000 compliance period. That's it. And now if you're looking for some further remedy, what the court said was it was the Congress that required EPA to rely on NAS' expert and scientific judgment, and given the serious risks that

nuclear waste disposal poses to the health and welfare
of the American people, it is up to Congress, not the
EPA and not this court to authorize departures from
the prevailing statutory scheme.

17 That's the situation you're in. I think the proposals that are out there take some liberties 18 19 with that, but I think it's necessary to remember that 20 we can all discuss and rediscuss the points that have 21 been talked about this morning. We all have opinions 22 on them, and they may not be the same now as they were 23 in 1995. I know some of mine have changed in some 24 experience with thinking about how you create and 25 implement a rule.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

But the position that we have right now that I think is possibly of greatest concern to you is advising the Commission on whether the rule that they proposed for Part 63 fits within the scheme of what the court found and what is realistic for a licensing process.

7 To go back and revisit what EPA was 8 thinking, what Bob and Fred were thinking, and I 9 remind you that Tot Pickford was thinking some things 10 quite differently from what you've heard today, I'm 11 not sure that that's anything more than sort of 12 spinning of wheels.

13 If you really want to look at what your 14 responsibility is to advise the Commission, then you 15 should look pretty hard at what has been proposed for 16 Part 63 and see whether it fits within the realm of a 17 very, very simple court decision, even though it 18 consumed 100 pages because there were lots and lots of 19 other issues.

But I'll leave for you to look at the ten or 12 pages on the 10,000 year issue, and I urge you to look at it in its simplicity and straightforward approach to finding an answer on whether something is lawful or not.

25

1

2

3

4

5

6

So I encourage you to not take your

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 investigation out to where we were before 1995 because 2 that is definitely behind us, and all we're doing now 3 is trying to repair what EPA did the first time, and 4 my guess is that we're going to be in a situation in 5 a couple of years where we're going to be trying to 6 repair what EPA did the second time. 7 MR. HINZE: Thank you, Steve. 8 I'm sorry, Judy. Would you go to the 9 microphone? I couldn't hear you. 10 MS. TREICHEL: Can we get a copy of the graphic? 11 12 Bob, how do we get copies of MR. HINZE: the graph of the --13 14 DR. FRI: I think Fred has got it on his 15 computer, don't you? 16 DR. PHILLIPS: I do have one on my 17 computer, and with a little bit of manipulation, we could get it transferred over. 18 19 Okay. If we could ask the MR. HINZE: 20 staff to get that from Fred and make copies and make 21 them available to the committee, the staff and the public, we'd very much appreciate it. 22 Okay? 23 There's another hint here, if you would, 24 sir. Did you have something to add? 25 DR. PAZ: Just like the other morning, I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

47

	48
1	was supposed to be on my way to Texas, but
2	MR. HINZE: Would you introduce yourself,
3	please?
4	DR. PAZ: Yes, my name is Dr. Jacob Paz.
5	And one comment which I have to say is the
6	performance of the repository. There are too much
7	emphasis on modeling, very little on large scale study
8	and how the performance of the repository will be in
9	the next 10,000 years or more, specifically there is
10	no studies what is the competition between the heavy
11	metals and (unintelligible) the absorption rate in the
12	KE, and to make an assumption, it can lead very
13	serious uncertainties.
14	For 10,000 years, I think this is the
15	code say what it has to say, and either the code or
16	the Congress has to address it, but I think the EPA
17	went out of the boundary.
18	Other important questions is to look in
19	the multi-level, and what is the heavy metal going to
20	be deposited there? What is the risk to population?
21	Ignored.
22	In the long term, is the issue of the
23	actinide (phonetic) will be converted to lead. When
24	it start to grow and grow, this also pose a serious
25	problem.
I	I

(202) 234-4433

	49
1	Thank you.
2	MR. HINZE: Thank you very much.
3	Certainly your remarks will be considered.
4	Any other questions?
5	If not, I would like to move directly to
6	you, Fred, and Fred is a Professor of Geosciences in
7	hydrology at New Mexico Institute of Mining and
8	Technology and is a member of the committee and has
9	already answered several of these questions.
10	But what I would like to do now is to move
11	to more specific questions that might be designed
12	towards the science that was used in reaching the
13	decision regarding particularly the time of
14	compliance.
15	And I wonder, Fred, on the basis of the
16	comments that Bob made and the questions that have
17	arisen here, do you have any comments that you'd like
18	to make to start this off?
19	DR. PHILLIPS: No, I don't really, I
20	think, have a lot to add. I actually sort of made the
21	comments that I was going to make at the beginning of
22	my presentation in response to one of the earliest
23	questions. I was just going to say or I did describe
24	how we went through sort of climatic and geologic
25	factors that would cause the parameters within which
I	I

(202) 234-4433

	50
1	some sort of probabilistic analysis would be conducted
2	to become outside of the bounds that would be used,
3	and our conclusion after doing that was that something
4	on the order of a million years was a reasonable time
5	frame for the extent, to the point at which one might
6	speculate that changes would become so large that the
7	whole scenario would significantly be altered.
8	And I will add that the million years was
9	not intended as the result of a rigorous analysis.
10	That was a suggestion of the general time frame that
11	we thought was applicable.
12	MR. HINZE: Okay. With that, I would like
13	to ask the committee and would like to go around the
14	committee and make certain that we have all of our
15	questions covered.
16	Ruth, can I start with you again?
17	MS. WEINER: I saved some questions for
18	Dr. Phillips.
19	The committee suggested setting a standard
20	in terms of risk rather than dose. What did you
21	consider as far as uncertainties in the risk factor?
22	What did you consider the risk factors to be and how
23	did you incorporate uncertainties in the risk factor
24	in your thinking?
25	I mean, what people frequently do is risk
I	1

(202) 234-4433

	51
1	is risk. Risk for low doses is risk of cancer, and
2	you take the dose, whatever it may be, multiplied by
3	some conversion factor, assuming linearity, and come
4	up with a risk. Is that what the panel did?
5	DR. PHILLIPS: Well, I mean, again, of
6	course, it's important to recognize we weren't
7	actually performing any risk analysis. We were merely
8	thinking about the general procedures that might be
9	used, and our recommendation was for a thoroughgoing
10	risk or probability based analysis in which one would
11	employ transport models that would be essentially
12	Monte Carlo models that would consider variations in
13	all of the natural parameters, that would govern
14	transport, and that would include the geochemical
15	aspects of it that would cause transport of
16	radionuclides to be at different rates than water
17	itself; and that then that would produce a probability
18	distribution of concentration at any particular point
19	within the system, within the area, right? And that
20	probability distribution would be multiplied by the
21	probability of a person being on the spot to consume
22	the water and then the probability of the particular
23	habits that would also influence the dose that they
24	would receive.
25	MS. WEINER: I see. So you looked at
Į	1

(202) 234-4433

	52
1	uncertainties in the dose calculations themselves.
2	DR. PHILLIPS: Yes, that's right. I mean,
3	certainly much more than simply the dose to risk
4	conversion factor.
5	MS. WEINER: Thank you.
6	DR. FRI: If I may, if I understand the
7	question one of the issues is that the dose response
8	relationship, our understanding of it changes over
9	time, and that's one of the reasons we suggested a
10	risk based standard. Because if societally you were
11	either one in a million chances of mortality as a
12	result of this is an acceptable societal standard,
13	then the dose response relationship that gives rise to
14	that risk can change without having to change the
15	standard.
16	So we did recognize there were some
17	uncertainties in that relationship, and to avoid
18	complicating the standard, we said you've got to go
19	with a risk based standard.
20	MS. WEINER: Thank you.
21	That is very helpful and very clarifying.
22	The other technical question I have is since the
23	maximum activity occurs very early on in the life of
24	the repository, when you said look at the time of peak
25	dose or to get back to Dr. Hinze's question, possibly
I	

(202) 234-4433

	53
1	several times of peak dose, were you considering
2	disintegration of the waste package, mobility of the
3	dominant actinides like Neptunium 237? Did all of
4	that figure into your estimate that the peak dose
5	would be somewhere out past 10,000 years?
6	Because if you look at the activity, it
7	becomes flat, fairly flat. The total activity becomes
8	fairly flat, and the dominant contributors are some of
9	the actinides that have grown in.
10	Was that part of your consideration in
11	saying that the peak risk occurs past 10,000 years?
12	DR. PHILLIPS: Yeah, I mean, our
13	assessment in that regard was based on reports
14	published by Sandia and Lawrence Livermore mainly, as
15	I recollect, which and I'll say in addition that,
16	of course, we were only considering transport outside
17	of the exclusion zone. We were not concerned with
18	things that were happening inside of it.
19	And those showed that several of the
20	actinides would reach their peak levels in a time
21	frame that was a great deal longer than 10,000 years.
22	MS. WEINER: So, yes.
23	DR. PHILLIPS: I mean, that was basically
24	a result of a total system performance analysis.
25	MS. WEINER: Right. So you looked at the
l	

(202) 234-4433

	54
1	performance assessment and said that because where the
2	mobility of certain actinides becomes very pronounced.
3	DR. PHILLIPS: Correct.
4	MS. WEINER: And did you then look at the
5	exposure as being through any particular pathway,
6	ingestion, inhalation, or just general? How did you
7	look at exposure of the critical group?
8	DR. PHILLIPS: I mean, again, we did
9	not our viewpoint was that all significant pathways
10	for exposure should be considered, but based on
11	previous assessments, it appears that the one by
12	ingestion through water would be the predominant one.
13	MS. WEINER: A final question. You
14	outlined or Dr. Fri outlined the human intrusion
15	recommendation. Isn't your human intrusion scenario
16	deterministic rather than probabilistic?
17	DR. PHILLIPS: In a sense, I suppose so.
18	We considered the option of doing a probabilistic
19	scenario analysis on that, and we rejected that for
20	the reasons that Bob gave.
21	And fundamentally, to boil it down to its
22	simplest terms, the geologic environment and the
23	performance of the engineering systems that are around
24	the waste are things that are fundamentally analyzable
25	on a scientific basis and which can be incorporated

(202) 234-4433

	55
1	into a probabilistic analysis in some meaningful way.
2	Human society and human behavior, long
3	periods into the future we did not feel fell into that
4	category, and that is why we recommended a different
5	approach for those.
6	MS. WEINER: And finally, this is a
7	question that is difficult to phrase. Did you
8	consider the impact that your recommendation,
9	particularly the fact that you said that the 10,000
10	years has no scientific basis; did you look at the
11	impact of what that might have on policy and
12	regulation?
13	What kind of considerations did you give
14	to that? That's really a question for Dr. Fri, I
15	guess.
16	DR. PHILLIPS: I think that that's
17	correct.
18	DR. FRI: Well, we didn't try to, as I
19	recall the report, we didn't try to tease out what the
20	substantive policy consequences would be. The report
21	does, as I recall, say that we know that we're handing
22	EPA a very complicated administrative and rule making
23	chore, but that's about as far as we went.
24	There was also early on in the report a
25	longish list of half a dozen or more things that we
I	

(202) 234-4433

1 elected not to consider, and I don't have the report 2 right in front of me. So I'm not going to try and 3 read them all to you, but there were -- we considered 4 a number of things pretty much off limits for our 5 committee. We had enough trouble figuring out what the technical basis for the standard would be and 6 7 recognizing that there are a lot of other issues that 8 have to be dealt with. 9 Allen? Dr. Ryan? MR. HINZE: James? 10 DR. CLARKE: I just want to follow up on Ruth's first question of risk versus dose. I think, 11 committee 12 Fri, you said earlier that the Dr. 13 recommended a risk based standard, but did not recommend a target risk level to that, we thought, 14 15 should be decided by the public. 16 So I don't know if that was where you were 17 going, Ruth, or not, but the other part of my understanding is that your knowledge that peak dose 18 19 for certain radionuclides or peak travel time for 20 certain radionuclides, peak dose would occur after 10,000 was based on modeling that was in progress and 21 modeling studies that were being done by other. 22 23 So you really were not doing those kinds 24 of calculations; is that correct? 25 DR. PHILLIPS: That's correct.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

56

	57
1	DR. FRI: The number is intentional, too.
2	I mean, not only were we not necessarily equipped to
3	do it, but we did not want to be in the position of
4	knowing what the answer might be if you did a
5	compliance assessment. We didn't want to be in the
6	position of appearing to back-engineer anything.
7	So we just took what data were already available from
8	studies that were being done or had been completed at
9	the time.
10	DR. CLARKE: Thank you.
11	MR. HINZE: Fred, I would like to ask a
12	couple of questions, if I might, regarding your
13	decisions regarding the time of compliance and
14	stability.
15	Now, I was at a meeting recently where
16	and this gets at the point of how you reach your
17	decision I was at a meeting recently where a
18	knowledgeable person was discussing the probabilistic
19	volcanic hazard at the site, and the remark was made
20	that 10,000 years was something that could be
21	reasonably predicated I'm paraphrasing but that
22	up to a million years seemed extremely improbable to
23	that person.
24	And I guess what I'm getting at is I'm
25	wondering what kind of we all have our areas of
I	I

(202) 234-4433

	58
1	expertise, and I'm wondering what kind of information
2	was brought in from the public and from the workers in
3	the area towards understanding the long-term
4	techtronic stability of the area.
5	DR. PHILLIPS: Well, I mean, we surveyed
6	the a great deal of research, of course, has been
7	done on Yucca Mountain and the vicinity because of the
8	waste repository, proposed waste repository, and so we
9	basically relied on the findings of that research for
10	rates of geologic processes in climate change. I
11	mean, I find it a little hard to
12	MR. HINZE: Did you have presentations by
13	the DOE staff on these topics?
14	DR. PHILLIPS: Yes, we had presentations
15	from DOE staff and other research, you know, people
16	that were also performing research on the area and
17	from people who were funded by the State of Nevada to
18	do research and so on. So we had a wide range of
19	input on that.
20	MR. HINZE: And that has led you to the
21	stability and the predictability.
22	CHAIRMAN RYAN: Bill, you're going to have
23	to get into the microphone a little bit.
24	MR. HINZE: Okay. It's sliding. Thank
25	you very much, mic.
I	

	59
1	Let me ask you as a geoscientist and as a
2	member of the panel, as you were thinking about these,
3	did you give any thought to the difference in
4	characterization of the site for 10,000 versus some
5	longer period of time, or did you give any thought to
6	what kinds of information that one might need to
7	consider the site for a long period of time rather
8	than for 10,000 years?
9	DR. PHILLIPS: It would be helpful to me,
10	I think, if you could give me some specifics there
11	because
12	MR. HINZE: Well, let me be very specific.
13	Is there, as you've thought about this, is there any
14	site characterization that you would deem advisable
15	that would be useful for considering the time of
16	compliance of a million years versus that of 10,000
17	years? Are there additional geological tectonic,
18	igneous, seismic studies that would be germane for a
19	one million rather than a 10,000 year time of
20	compliance?
21	DR. PHILLIPS: That's an interesting
22	question. You know, I think that the geological
23	investigations that were associated with the site were
24	not conducted by people who were thinking in terms of
25	a 10,000 year time frame. They were not conducted by
I	I

(202) 234-4433

	60
1	engineers who had a 10,000 year cutoff. Okay?
2	They were conducted by geologists who if
3	they were studying the volcanic rocks they were
4	interested in what happened in the Miocene, and that's
5	a lot longer ago than 10,000 years, and so on.
б	So I really do think that the base of
7	investigations is certainly there. One might want to
8	try and interpret that data somewhat differently. So
9	I reread or not reread, but I read some of the more
10	recent documents that have come out on the performance
11	assessment, and the basis for that in preparation for
12	this meeting, and of course, all of them sort of cut
13	off the evaluation. Well, here's what we can expect
14	to happen over 10,000 years, and people are going to
15	have to go back and redo those, looking at it in a
16	longer time frame.
17	But, for example, a lot of the basis for
18	the climate projections that were in those is on the
19	Devil's Hole oxygen isotope curves, and those are a
20	far longer time period than 10,000 years.
21	So the database is there, and I just think
22	it needs to be used for a different time frame.
23	MR. HINZE: Any further questions? Latif.
24	DR. HAMDAN: Yes. Fred, one can
25	understand that you want to evaluate the risk at the
I	, ,

(202) 234-4433

	61
1	time of the big dose. That I can understand some of
2	the one thing to do, technical stability and
3	sciences for a million years or more, but what I was
4	struck by this morning, you saying that when you came
5	to the conclusion that one million years is
6	reasonable.
7	And, frankly, I don't think it is. I
8	don't think it's reasonable at all. We cannot predict
9	for that many years. We don't have manmade structures
10	that are millions years old. We can't make them. We
11	cannot manage them. The economics are 4,000 years
12	old. So what is the basis for coming to the
13	conclusion that a million years is reasonable?
14	DR. PHILLIPS: The materials that are the
15	basis for the prediction of the physical part of the
16	system at any rate I won't necessarily say the
17	engineering part but for the physical part or the
18	system, those are materials many of which have been
19	out there and in that environment for periods far
20	longer than a million years. Most of the rocks that
21	the water is going to be flowing through have been
22	there for many multiples of millions of years.
23	And their behavior over those types of
24	time periods is well understood. There's well over
25	100 years of geological and geochemical research into
I	I

(202) 234-4433

	62
1	understanding how they behave over those sorts of time
2	periods.
3	Similarly to tectonics, in the time frame
4	of tectonics, a million years is a very short period.
5	Only in areas of extremely high tectonic activity do
6	you get significant variations. In general, a million
7	years is too short a time to be very interesting to
8	look at.
9	So why one would say that fundamentally
10	what would happen in the environment over a million
11	year time period in terms, again, not of a specific,
12	exact prediction, but in terms of assessment of
13	probabilities over that time period, I don't
14	understand why one would say that it's not
15	predictable.
16	With regard to the engineered systems,
17	that' more problematical, but in fact, most of the
18	changes and the degradation in the engineered systems
19	that would be associated with the repository will be
20	within the initial 10,000 year period. Those residual
21	things that are going to happen after 10,000 years are
22	going to be simply a continuation of that of the
23	earlier period.
24	So if one can't say anything meaningful
25	about what's going to happen over a million years, I
I	

(202) 234-4433

	63
1	don't see how one could say something similar about
2	what's going to happen over 10,000 years with regard
3	to those systems.
4	DR. FRI: Let me just stress something
5	that Fred said because it's really important. The
6	question the committee was addressing at that point is
7	is the geology stable enough to do a reasonable
8	compliance assessment out to the point of peak risk
9	which may be as long as a million years.
10	The question was not can you predict
11	what's going to happen in a million years or, for that
12	matter, in 10,000 years. We're just trying to run a
13	probabilistic risk compliance assessment, and the
14	conclusion as Fred has pointed out clearly was that
15	the geologic factors are sufficiently stable and known
16	that you can run the model over a long enough period
17	of time to find out where the plume is at the period
18	of peak risk.
19	DR. PHILLIPS: Another significant factor
20	here is that the area that we're talking about is one
21	of quite considerable geological stability, and were
22	it in a more tectonically active or even a
23	climatically more erosive type of environment, you
24	know, a million years might not be feasible.
25	But I feel fairly confident in saying that
I	1

(202) 234-4433

one could go back out to Yucca Mountain a million years from now and everything would still be very recognizable. It would have changed somewhat, but you would not no problem, you know, locating where you were with respect to Yucca Mountain.

I looked at some of the recent literature, 6 7 you know, to sort of check the kind of numbers we used 8 back ten years ago and really things have not changed 9 very much, but basically according to the data that 10 are currently available and are currently used in the system performance models -- and I extrapolated out 11 12 the rates in there that are used over a million year time period -- one would expect the summit of the 13 14 mountain to be somewhere between one and ten meters 15 lower in elevation than it is presently due to 16 erosion.

17One would expect somewhere between ten and1850 meters more sediment to be deposited in the crater19flat basin and the other basins that surround Yucca20Mountain.

21 One would expect that faults would have 22 displaced things somewhere between 50 and 100 meters 23 over a large area. That's not a single fault. 24 Displacements over a single fault would be on the 25 order of one to 25 meters, something like that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	65
1	So, you know, there would be changes, but
2	nothing drastic.
3	DR. HAMDAN: I really don't want to
4	belabor the point, but I want to make the point
5	that
6	MR. HINZE: Latif, we can't hear you.
7	Speak in, please.
8	DR. HAMDAN: I don't belabor the point.
9	I just want to say I like the science and I like the
10	arguments, and I like the exercise, but I feel that
11	the context may be missing in this whole argument,
12	meaning that what started all of this is if the
13	framework for the time of compliance in a rule by the
14	EPA, and that's the point that I've been trying to
15	make.
16	MR. HINZE: Are there any further
17	questions from the staff or from the public? Judy.
18	MR. TREICHEL: Just one sentence out of
19	the bible that we've been discussing. On page 123
20	there is a sentence. Well, the bold says "use of mean
21	value." The sentence says, "We recommend that the
22	mean values of calculations be the basis for
23	comparison with our recommended standards."
24	MR. HINZE: Thank you. I think that you
25	previously remarked that you have no recollection of
I	

(202) 234-4433

	66
1	the discussion of the median versus the average and so
2	forth, right?
3	PARTICIPANT: That's right.
4	MR. HINZE: Ruth.
5	MS. WEINER: If there's time I'd like to
б	ask a follow-up question. Could I ask a follow-up
7	question?
8	MR. HINZE: Please, please.
9	MS. WEINER: This is a follow-up to Dr.
10	Hamdan's question. Is it correct then to say from
11	your considerations of the geology of the site that
12	this recommendation refers to this particular site or
13	the particular geologic region in which this site is
14	located and were there a different site, this
15	recommendation could be different?
16	DR. PHILLIPS: Absolutely.
17	MS. WEINER: Is that appropriate?
18	Thank you.
19	MR. HINZE: Fred or Bob, do you have any
20	final comments that you'd like to make to help the
21	committee?
22	DR. FRI: Nothing that occurs to me, but
23	of course, if you have other questions, we'd be happy
24	to try to remember the answers to them.
25	MR. HINZE: Okay. Well, thank you very
Į	

(202) 234-4433

	67
1	much, and on behalf of the committee, I want to thank
2	Dr. Crowley of the academy for making your appearances
3	possible, and to both of you for your contributions.
4	They've been very helpful, and we'll be very anxious
5	to look at the transcripts and look at them and your
6	remarks in detail.
7	And, Fred, we want you to stay around if
8	you can for the rest of the meeting.
9	With that we'll take a 20 minute break
10	until let's say 10:25, and we'll pick up with the next
11	presentation on this topic.
12	Thank you.
13	(Whereupon, the foregoing matter went off
14	the record at 10:05 a.m. and went back on
15	the record at 10:33 a.m.)
16	MR. HINZE: Thank you very much.
17	We will proceed with Matt Huber's talk on
18	the evolution of climate in the Yucca Mountain region
19	over the next million years. Paper copies of his
20	presentation, as well as the two subsequent
21	presentations will be available for the public and the
22	committee this afternoon. So paper copies are coming.
23	With that I would like to introduce Matt
24	Huber, my colleague at Purdue University. Matt has
25	been a research professor at Niels Bohr Institute in
I	1

(202) 234-4433

	68
1	Copenhagen and is currently a professor at Purdue
2	University and focuses his effort on climate modeling.
3	He has many distinctions and awards, and
4	I would mention specifically that he cooperated with
5	EPRI in their recent report on long-term compliance,
6	and working with them on the climate modifications
7	that can be anticipated over the next million years or
8	so.
9	He is also the co-chair of the
10	Paleoclimate Working Group of NCAR, the National
11	Center for Atmospheric Research, which speaks to his
12	many accomplishments.
13	With that, Matt, it's yours.
14	DR. HUBER: Thanks, Bill.
15	Can people hear me now? Good.
16	So excuse me while I have to juggle a
17	pointer, a microphone, and advancing this. So I'll
18	try and not stumble around too much.
19	I'm a global climate modeler. The climate
20	models that I used are based in the equations of
21	physics. You start off with F equals ma, and you work
22	from there. People have been using these models now
23	originally for 40 years, and the current generation of
24	models is really quite good and I'll hopefully help
25	you see that today.
I	

(202) 234-4433

	69
1	All right. So one of the interesting
2	things about this problem from my perspective is the
3	question of, well, weather, as you know, is very
4	difficult to predict. Climate is difficult to
5	predict. We live on this very variable world with
6	nasty things like clouds and storms and hurricanes and
7	ocean currents and vegetation and pesky things called
8	people that live near the surface.
9	So one could ask the question how could
10	you predict climate a million years from now when you
11	can't even predict the weather next week, and that's
12	an important question. It's one that I deal with on
13	a regular basis because I've devoted my whole career
14	to predicting what the climate was like 50 million
15	years ago, 40 million years ago, 30 million years ago,
16	and also into the future.
17	And hopefully I can convince you that we
18	can tackle that problem in a pretty quantitative and
19	realistic way.
20	So, again, with this issue of variability,
21	this is satellite imagery of water vapor in the
22	atmosphere. You can see this is a turbulence problem.
23	There's mixing and stirring of water vapor which ends
24	up raining out as precipitation in weather systems,
25	and the ones that are of particular relevance to Yucca
I	

(202) 234-4433

Mountain is this bad boy right here, which often times gets set up and you pull in moisture from the eastern Pacific and occasionally will suck it up into this area.

5 Sometimes you get moisture that comes in 6 and comes down around here. So if you want to 7 understand, for example, infiltration in the 8 hydrological situation in the Yucca Mountain region, 9 you have to somehow include information about how 10 weather is going to change in the future, and there's different approaches to doing that. 11

Now, this is a satellite map of the cryosphere and also the biosphere as a function of time over several years, and what you see is the beading of the seasonal cycle in the Southern Hemisphere, ice and snow growing and receding, and you see this repeated in the Southern Hemisphere.

Now, you see this over the course of a seasonal cycle, but you also see something that looks very similar, except that it deals with mean annual conditions over the course of glacial/interglacial cycles.

23 So this is the sort of thing we have to 24 come to grips with if we're going to say anything 25 about climate over the next million years. And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

there's, as I said, different approaches to dealing with that.

3 Now, you can take a very modern day 4 mechanical approach as a starting point, which is 5 simply to say let's go and look at precipitation and 6 observe records here in this region in the past, say, 7 50 years and relate that to large scale patterns. The 8 reason why you want to relate it to the large scale is 9 ideally you can simplify the problem down to 10 understanding the conditions in just a couple areas and then ask how might the conditions in those areas 11 evolve as a function of time. 12

And what work is in this 13 area has 14 consistently come up with is that you can understand 15 variability precipitation in this region by 16 understanding really just three different 17 precipitation modes, ones related to El Nino or the El Nino southern oscillation, which are called ENSO. 18 The 19 Pacific Decadel oscillation, the PDO, and what has 20 historically been called the Atlantic Meridional oscillation, but which is probably reflective of a 21 larger mode that's global in extent, and I'll show you 22 23 what I mean by these in a second. 24 So there's a lot of published work that's

25 been done on this, and what the Atlantic Meridional

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

71

	72
1	model looks like is if you look at these red colors,
2	these are essentially sea surface temperatures. So
3	what this mode looks like is a warming up of the
4	Northern Hemisphere oceans and a cooling here along
5	the Pacific, and associated with that mode are major
6	changes in precipitation, including changes in drought
7	frequency over the whole United States and especially
8	in the Southwest.
9	There's the one that everybody is familiar
10	with, El Nino. This is what a typical El Nino looks
11	like. It's a large bolus of warm water in the eastern
12	equatorial Pacific with an extension up here, and
13	associated with that will be wetter conditions in the
14	Southwest, and these are all things that are
15	verifiable in the modern day, and we kind of
16	understand them.
17	There's a Pacific meridional mode. Again,
18	I personally think that there's only one mode.
19	meridional just means north-south. It's a "jargony"
20	term, and that mode is related to a shifting of warm
21	water north of the equator, and you get this big thing
22	of warm water off the coast of western North America,
23	and associated with that is a big band of increased
24	precipitation actually across the whole U.S., but with
25	a focus right here in the Southwest.
ļ	I

(202) 234-4433

There's another mode, the Pacific Decadal Oscillation, which again shows up as a big thing of warm water. It looks a lot like a long El Nino, but it's not actually a long El Nino, and it's correlated with big changes in precipitation here in the Southwest and in Texas, for example.

So the reason why it seems like somebody 7 8 like me says, "Oh, El Nino causes warmer winters," and 9 then an El Nino happens or -- sorry -- wetter winters, 10 and then an El Nino happens and it's a dryer winter. It isn't because we're all idiots who are predicting 11 It's actually -- well, it may be. 12 these things. You could always take that attitude, but I would argue 13 14 that it's because there isn't just one mode of 15 variability. There's actually three or four and 16 they're interacting, and so predicting the net can be 17 quite difficult.

Now, you can do an even simpler exercise 18 19 just to simply take a region, say, centered in the 20 Yucca Mountain area and look at the events in which a 21 lot of precipitation occurred and correlate them with 22 temperatures all over the planet, and what emerges is 23 an interesting pattern of increases in precipitation 24 in the tropical Pacific, actually increases in this 25 region, and a large scale increase in precipitation

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	74
1	actually over much of the Northern Hemisphere. This
2	is a large, global pattern. These are called
3	teleconnection patterns.
4	Now, that pattern is not identical to the
5	pattern which is known as El Nino, and that's a really
6	important point. This is the pattern that you would
7	get if you tried to pick out what's that just due to
8	El Nino.
9	And you see something similar, say, in
10	North America, as we just saw, except it only makes up
11	a small part of the actual precipitation variability
12	in North America and has a different spatial pattern.
13	So there's actually, like I said, a combination of all
14	these modes or what adds up to precipitation
15	anomalies.
16	Now, it's interesting that a number of
17	really prominent people, National Academy type people,
18	have actually predicted that in a global warming world
19	we'll actually lose what we would typically think of
20	as the cold upwelling regions in the eastern
21	equatorial Pacific that lead to El Nino, in other
22	words, that conditions may become more like a
23	permanent El Nino.
24	And if you think about the conditions that
25	happen in this area in an El Nino, imagine those
I	1

(202) 234-4433

happening all the time. And you can look at what that would add up to, and that would lead to a substantial increase in precipitation, but nothing outside of the 3 4 range of what's already been considered in a lot of these reports. It's just an additional source of increased precipitation.

7 Now, I'm going to step back and go back to 8 the global problem again because in order to 9 understand the local problem in the Yucca Mountain 10 region, you have to relate it to changes of the global scale over the next million years, and of course, you 11 You have to come back down 12 can't just do the global. to the local. 13

14 But this is one of the areas that I work 15 This is the global mean surface temperature in. 16 record over the past 1,000 years. It shows bumps and 17 wiggles and then right near the end of the record in the past 100 years, it shows this big increase. 18 This 19 is very well correlated with increases in carbon 20 dioxide concentrations and human emissions. This is a thing we know as anthropogenic global warming. 21 Now, what has typically been assumed, and 22 23 it's written into many of these documents is global 24 warming may happen. We're not sure, but it may 25 happen. The effects will be felt for about 2,000

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

years, and then we're just not going to think about it again.

3 One of the things that we used to project 4 into the future are global climate models, and these I'll show a little bit more about them in a minute, 5 6 but these include an atmospheric component, a land 7 surface component and an ocean component. They 8 frequently now include interactive vegetation, and 9 they have implicit into them a human component because 10 somehow you have to come up with scenarios for greenhouse gas emissions, and since we're the ones 11 12 doing the emitting, we have to somehow include human beings into the model. 13

14 So this is a range of predictions. Again, 15 you could think of these as stylized approaches. We 16 choose different scenarios that basically have to do 17 with how human beings behave, and try and predict how -- and then we feed the different inputs into 18 19 different models, and that's what leads to this 20 This goes from 2000 to 2100, and you end up spread. with global warming from anywhere from about two 21 22 degrees up to about five.

And, again, these are quantitative predictions, but they are stylized in terms of how they deal with the human component of this problem.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

76

	77
1	A lot of this should sound familiar.
2	This work, this is from the
3	Intergovernmental Panel on Climate Change. This work
4	involves somewhere around 3,000 climate scientists who
5	worked for five years and issue a report. Every
6	single thing in that report has to be in press at
7	least in a peer reviewed journal.
8	So there's an intense amount of scrutiny
9	and the science is of uniformly high quality. The
10	climate models that are being used have to somehow
11	deal with the real world. So they have to include an
12	ocean. They have to include land. They include river
13	runoff. They include vegetation, soil, water,
14	infiltration. They include just about everything, not
15	quite everything, but we're always adding more bells
16	and whistles, but they're pretty comprehensive, and
17	you represent the earth as a series of grid cells, and
18	the grid cell spacing is basically a function of how
19	many runs you want to do and how fast a computer you
20	have.
21	As I said, the models tend to have
22	something like four different components to represent
23	the major aspects of the earth system.
24	And ten years ago we were running models
25	with a resolution that looked like this, and five
I	I

(202) 234-4433

	78
1	years ago we were running models with a resolution
2	that looked like this. The little grid boxes indicate
3	the resolution of the model.
4	For the most recent IPCC report we are
5	running at a resolution that looks like this. Well,
6	you're seeing what I'm actually plotting is
7	topography. So if you think about graphic effects on
8	climate, that's represented here.
9	And four years from now, we're going to be
10	doing all of our simulations at this resolution which
11	actually starts looking pretty close to the real
12	world, and that's just a function of how fast a
13	computer we can get.
14	Let me go back. We can validate the
15	models in the instrumental record period by simply
16	taking these models and feeding into them the things
17	that we know change. So in this case we take natural
18	variability. So volcanoes and incoming cellular
19	(phonetic) radiation variability due to the solar
20	cycle, force the model just with that.
21	In this case we add greenhouse gases and
22	nothing else, and in this case we add them both, and
23	the key thing to take home from this is when you add
24	them both, you get model records and observations,
25	which are the red lines here that look remarkably
I	

(202) 234-4433

	79
1	similar to each other.
2	So that's an empirical verification that
3	models get the right answer with the right forcing,
4	and the don't get the right answer with the wrong
5	forcing.
6	You can also use these same models and do
7	paleoclimate, which is another way of verifying their
8	validity, and I'll talk more about that.
9	There's a wider range of likely things
10	that are going to happen in a global warming world.
11	I list them here mostly for reference in your printed
12	document. There's a lot to see there, but what we're
13	pretty sure of is the Southwest is going to get a
14	whole lot warmer. There are some results that will be
15	coming out in the proceedings in the National Academy
16	some time in the next couple of weeks, which I can't
17	talk about, but you should definitely have a look at.
18	It's going to be a lot hotter here.
19	Hydrological cycle predictions are more inherently
20	uncertain because the models don't do as robust a job
21	with that.
22	Now, the release of CO $_2$ depends on human
23	behavior. So these are different profiles of likely
24	carbon dioxide concentrations. They go from the
25	modern day value, which is already higher than it has

(202) 234-4433

	80
1	been in the past 400,000 years, and then you go ahead
2	into the future.
3	And again, these are stylized because we
4	have to somehow represent human behavior. I found it
5	a very interesting statement that to represent human
6	behavior from the National Academy perspective was
7	somehow a statement of things will stay just how they
8	are, and of course, the way things are is exponential
9	growth of population.
10	So if you extrapolate from exponential
11	growth of population you end up, of course, with one
12	person per square foot of the entire Southwest in
13	100,000 or something. So, you know, it's an
14	interesting statement.
15	In the global warming community, the way
16	we've dealt with that is to take existing growth
17	rates, make assumptions about how they will change or
18	not change, not assume that population is staying
19	constant, which it obviously isn't.
20	For a range of CO_2 releases, you get a
21	range of sea level rises anywhere from about .2 of a
22	meter to half a meter, and I'll just note that if you
23	were to run these models out, you now know that you
24	would get something like eight meters.
25	That's something that needs to be
	1

(202) 234-4433

	81
1	considered in the Yucca Mountain process, how if this
2	happens will sea levels change and how will that
3	affect the local regional hydrological balance.
4	So other than just taking results from one
5	particular climate model, this is December, January,
6	February averaged temperature from a world with four
7	times preindustrial CO_2 . It's where we're going to be
8	in 100 or 150 years, modern day model, and this is the
9	temperature difference, and all you have to do is look
10	at the temperature difference.
11	High latitudes are warmed by more than 12
12	degrees C. In this region, in this model, you're
13	talking about a temperature change of somewhere
14	between four and five in the winter. So warming and
15	actually a pretty substantial warming in the summer.
16	MR. HINZE: What time period? Excuse me.
17	DR. HUBER: yes.
18	MR. HINZE: What time periods are those
19	again?
20	DR. HUBER: Sir, this would correspond to
21	where we're going to be in about 150 years, and this
22	is today in the model.
23	Now, the question of are we going to
24	continue warming past that or how long will that
25	period. This four times CQ world less is a different
I	I

(202) 234-4433

	82
1	one, which I'll get to.
2	But we start getting there in 150 years or
3	so. So what we've gotten 3,000 scientists in the
4	world to agree on and the National Academy to agree on
5	and basically everybody to agree on is that unless
6	something happens to change the rate at which
7	greenhouse gases are being increased, well, they're
8	just going to increase, and warming is going to
9	continue as that happens.
10	Most of the feedbacks in the climate
11	system that we know about are positive in the sense
12	that if you melt back ice, that decreases the albedo
13	of the earth, which just causes it to become warmer.
14	Other than geochemical processes that
15	operate on ten to 100,000 year time scales, there's no
16	known negative feedbacks in the climate system that
17	have been vetted. So this looks like things are going
18	to get warmer unless something that we don't know
19	about happens.
20	Now, we also know, and I'll get to this,
21	that greenhouse gases have changed the climate in the
22	past, are a fundamental component of climate change in
23	the past, and one of the things we might do is look to
24	see how far back into the past we have to go to see
25	the greenhouse gas concentrations we were putting in

(202) 234-4433

and look and see what the climate was like during that period.

3 Well, so that we can go back 400,000 4 years, we have ice scores and we connect -- if I had a newer figure, I could take this back a million and 5 it wouldn't look any different. 6 The top record in 7 purple is CO, from ice scores. You see that it maxes 8 out in this period at a little over 280 ppm, which is 9 actually less than we're at today, and it has minimums 10 around 180, and you'll see that there has been this gorgeous beading of climate in terms of temperature, 11 ice volume, carbon dioxide, and methane, and a fairly 12 regular or it's somewhat chaotic, but a fairly 13 14 predictable pattern, and this be can very 15 quantitatively tied to changes in earth's orbit and how that affects incoming solar radiation at the 16 17 surface.

So records like that, in this case one 18 19 could take the Devil's Hole record, which is similar 20 in important respects, and has differences in some respects, but the general idea is the same, Owens Lake 21 22 records or whatever local records, and you could 23 assume, as has been assumed that we can take those 24 records from the past 10,000 years or a million years 25 or however long we have a record, and make some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

83

	84
1	quantitative assumptions about which part of the
2	records we think are good analogues, and then use
3	these as bounds for understanding what the
4	hydrological cycle shifts and climate shifts will be
5	like in this area, and call that the standard
6	approach, and on this I'll call it Method 1.
7	And what we've learned from that is that
8	basically from this perspective glacials are the case
9	we need to worry about because they tend to be wetter.
10	I mean, it's much more complex than that, but that's
11	the take-home message.
12	And those same methods have indicated that
13	we're going to be heading into a ice age in the not
14	too distant future from my perspective as somebody who
15	studies deep time.
16	Now, another approach would be to actually
17	do it like I said, look at the CO $_2$ that we're
18	releasing, look at the warming that that should
19	introduce, compare that with global climate models,
20	and then go back to some period even further back in
21	earth's past and there might be a better analogue, and
22	use that period to assess what the hydrological and
23	climate regions would be like in this region.
24	And then yet another one is and this
25	one has been done is to use simplified climate

(202) 234-4433

	85
1	models to retrodict the past, to verify that the
2	models work, and then use those to go forward in the
3	future.
4	So I'm going to discuss each one. Method
5	one, there's been, you know, I've got a stack of
6	papers this high on what has been done with that.
7	People who want to read that can read that.
8	I already said the main thing that we've
9	learned from that, which is that glacials are wet,
10	which is bad. Occasionally another wet member can be
11	the monsoonal intermediate case, but basically you can
12	bound the uncertainty in terms of these methods by
13	looking at glacials.
14	And the general idea is that they provide
15	you can put error bars on these, and you can go and
16	you can ever improve your estimates of the past
17	change. The problem may be that you could keep doing
18	this, but maybe the basic underlying assumption that
19	the next 50,000, 500,000 years is going to be just
20	like the past 50 to million years.
21	Maybe that's just not valid, and there's
22	very good reasons to think that that's not the right
23	approach at all, which I'll get to next.
24	So you could refine those estimates all
25	you want, but maybe they're not relevant to the
I	1

(202) 234-4433

	86
1	problem at hand.
2	So let's talk about Method 2, which has
3	its own problems. Method 2 is to basically do a
4	certain amount of hand waving and argument by
5	analogue, and I'll show you what I mean in a second.
6	Okay. So if you take the anthropogenic
7	CO_2 and plug that into a climate model, you end up
8	with estimates of global warming of several degrees,
9	say, five to ten depending on how far out you run them
10	to equilibrium. You can take those estimates of
11	global mean temperature change and we have a very good
12	record of this, a paleoclimate record, and we can go
13	back and you can just draw a line and you go back in
14	time, and, oh, okay, the last time it was that warm
15	was, say, 45 to 50 million years ago.
16	Again, this is just a different
17	paleoclimate analogue. It's the same basic idea, and
18	that would suggest that we're heading toward a climate
19	that looks like the Eocene.
20	Now, what did the Eocene look like? Well,
21	this is what the West in general looked like in the
22	Eocene. It was a subtropical swamp, crocodiles,
23	turtles, some of the thickest coal deposits in history
24	were lain down during this period of time.
25	And you can plot those up on a map.
I	

(202) 234-4433

	87
1	Everywhere that you see greens is basically corals in
2	green happy things. The big orange crocodiles are
3	crocodiles in the fossil record, and the little blue
4	dots which maybe you can't see are lathyritic soils
5	and kaolinite, and those tend to form under very warm
6	conditions with seasonal moisture. They tend to form
7	in the monsoonal regions today or in the high tropics.
8	And you'll see if you pick a latitude
9	that's appropriate for where we are today, there are
10	laterites and kaolinites there.
11	On the other hand, there's a big arid zone
12	in the geological record. So it's unclear what to
13	make of this. Now, there's an obvious problem with
14	doing this, which is that the continents move around.
15	Vegetation changes. The ocean currents change.
16	Everything else changes.
17	So there's a reason why you should be
18	really skeptical of using this approach, but
19	nevertheless, it at least helps you to broaden your
20	thinking when you say we've looked at the worse
21	possible case is a glacial. Well, is it possible to
22	at least think about the worst possible case being
23	subtropical rain forest?
24	It would be simple enough to test. You
25	just take one of your models and input conditions for
I	I

(202) 234-4433

	88
1	Costa Rica as a boundary condition. That wouldn't
2	address the likelihood of that happening. It would
3	just be an end member.
4	So now let's talk about what I think is
5	close to being the right way to go ahead, and this is
6	actually the standard way in the paleoclimate and
7	future climate prediction business, although it wasn't
8	used in the Yucca Mountain process, and that is to use
9	physically based modeling, properly calibrated, verify
10	it with paleoclimate, but then use it to go ahead in
11	the future.
12	This isn't arguing by analogy. This is
13	calibrating your model on the pass and using the
14	equations of physics and looking into the future.
15	And what this basically assumes, like any
16	other method, it assumes something. It assumes that
17	most of what we need to know about climate is subsumed
18	within earth's orbit, which is something you can, if
19	you're a Serbian mathematician, you can sit down in a
20	prison cell and write it out, as Milankovitch did, or
21	if you're like you and me, you can sit down in class
22	and write out the equations and predict how incoming
23	solar radiation will change as a function of time.
24	That's an immanently knowable problem.
25	You also have to include the carbon cycle because, as
Į	I

(202) 234-4433

	89
1	I said, we have ample evidence that changes in
2	greenhouse gas concentrations are fundamentally
3	important, and in this case, in the carbon cycle we
4	should really include human activity.
5	So you should also include some sort of
6	knowledge of the carbon cycle or you could do it in a
7	stylized way.
8	But if you add those two basic ingredients
9	up, and what I'll show you is that if you just take
10	those two basic ingredients, you can explain most
11	climate transitions in the past 60 million years.
12	That tells us that very basic level. We do understand
13	climate and what causes it to change, and we can write
14	down the equations and we can solve this problem.
15	If you look at the documents that were
16	written by various organizations for Yucca Mountain,
17	they say we can't do that and that's wrong.
18	Now, basically because of computational
19	reasons most of the people who have been working on
20	this use computationally efficient models, and they
21	lack a three dimensional resolution, and part of what
22	that ends up meaning is that those nice teleconnection
23	patterns that I showed you that controlled
24	precipitation locally here, they don't exist in those
25	models.
ļ	1

(202) 234-4433

So the main limitation of these simplified models isn't that the models are wrong. It's just we won't be able to go to the scale of interest for this problem with them, but they at least give us an indication what the global changes will be like, and I'll show you the next step at the end of the talk, and that will be four.

So earth's orbit is a knowable thing. 8 The 9 quantities of relevance to us are the eccentricity, so 10 essentially the degree to which earth's orbit is elliptical changes as a function of time. I'm going 11 to write down that equation, and interestingly, by 12 dumb luck we happened -- well, maybe not dumb luck --13 14 we happened to be founding our civilizations at a time 15 where we're entering into a period of low ellipticity.

What that effectively means is a change in the seasonal cycle. There are other cycles having to do with precession and obliquity which I won't really talk about, although they're important. As we'll see, we get everything we need to know out of the eccentricity argument.

22 So this is work by Berger and Loutre, 23 published in <u>Science</u> in 2002. Other people using 24 other models published something similar in 2001 and 25 2000. This is time before present minus 200,000 years

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

91 1 going into the future, 150,000 years. This is 2 eccentricity, which again we know this. We can write 3 the equation for it. It's an external forcing of the 4 system. 5 And this is how it will change the amount of sunlight hitting the earth's surface at 65 degrees 6 7 north. And we've known for almost 100 years now that 8 that's the quantity that drives the timing of ice 9 ages, and you can use this model to predict the volume 10 of ice on the planet, and it shows actually exactly the right distribution of ice ages and interglacials 11 12 in the past. This is kind of a funny axis. This is ice 13 14 volume here, where zero means no ice. So when this 15 goes up, that means a warmer world. 16 Now, if you use the same model that's been 17 calibrated to get the past just right and go into the future, it says for all intents and purposes almost no 18 19 ice out to about 55, 60,000 years. Okay? So all of 20 the documents that have been written involved in this project say we're going into an ice age some time 21 between the next 1,000 to 10,000 years, and it's just 22 23 not right.

24 Okay. Now, there are additional variables 25 you can play with. One of them is to effectively add

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	a little bit of CO_2 . That pushes you up on that red
2	line, and that absolutely gets rid of ice sheets.
3	Even the little ones that are left around go away.
4	One of the interesting things is that we
5	know with existing models if I were to take the
6	Greenland ice sheet today and remove it and then try
7	and grow another ice sheet, you couldn't grow it.
8	It's not cold enough in the Greenland area today to
9	actually grow an ice sheet.
10	That Greenland ice sheet is there as a
11	remnant from the last glacial maximum. Okay? So if
12	you melt these ice sheet, they're not coming back any
13	time soon.
14	Didier Paillard published a nice paper.
15	He had several on this subject. I just want to review
16	what it says. We can expect, again, based on a
17	calibrated model that the interglacial we're in right
18	now is going to last at least 50,000 years, and claims
19	that we're going into another ice age are simply
20	incorrect, and he also raises the issue that as we add
21	greenhouse gases, everything changes and we're really
22	in the warm end member of things.
23	Now, you may say this is one scientist,
24	this is two scientists. I mean, I'm going to show you
25	yet another group of scientists completely independent
I	1

(202) 234-4433

93 1 people to give you an idea that this really is the 2 consensus. Dave Archer has recently published a 3 4 They had a calibrated model that's sensitive paper. to orbital cyclicity and it has a carbon cycle 5 6 component. So now we're going to bring in the carbon 7 cycle interactively into this. 8 This starts in years before present. So 9 this is the past going into the future, and this is 10 the orbitally driven curve of incoming solar When that curve drops below this red line 11 radiation. 12 is when an ice age happens, boom, and that's what these little red lines are. Thee are model predicted 13 ice ages, and their model predicts every single one 14 15 with no difficulty. Now, if you add carbon dioxide, this is 16 17 another thing that as far as I know is incorrect in the existing Yucca Mountain literature. It's assumed 18 19 that as we add carbon dioxide this will just go away 20 before the next ice age. If you do carbon cycling modeling, you find that, yeah, most of it does go 21 away. We're only left with about 17 percent 1,000 22 23 years from now, but it has this long exponential tail. 24 We're left with ten percent at 10,000 years and seven 25 percent at 100,000 years. So this carbon doesn't

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	actually go away.
2	And the actual lifetime, if you wanted an
3	e-folding lifetime, it's something like 30,000.
4	This is the same curve starting back
5	500,000 years in the past, going into 500,000 years in
б	the future. This is the orbital insulation curve and
7	then convoluted with the model, and these lines here,
8	red line and blue line, are what happens when you add
9	carbon dioxide in different concentrations in a
10	stylized approach to this model, and the take-home
11	point is that when this line crosses either the blue
12	line or the red line is when you have a glacial.
13	So as you can see, save for the large
14	carbon release, you don't get any glacials 500,000
15	years. So we can summarize this. These little green
16	blebs (phonetic) here are interglacial periods
17	predicted by the model for the past 500,000 years.
18	If we did nothing with CO_2 , we would be in
19	this green bleb, and we'd be in it for about 50,000
20	years, and then we'd have glacial/interglacial cycles
21	not too much different than what this usually assumed.
22	If we add a bit of CO_2 , you end up interglacial all
23	the time, and in this paper, Dave Archer says we
24	should think about the fact that we're going to melt
25	back all of the ice sheets and the world is going to
I	1

(202) 234-4433

	95
1	start looking like the Eocene.
2	Now, that's the I'll tell you that's
3	the probably most likely scenario. There's a scenario
4	that's even worse from a global warming standpoint,
5	but I'll get into why it might actually be better from
б	a Yucca Mountain standpoint, and that's what happens
7	if this warming causes a positive feedback in which we
8	start releasing methane hydrates from the shelves of
9	the ocean.
10	So methane hydrates is a rather bizarre
11	chemical formula, but since they're a meta stable form
12	of methane that exists in ocean sediments in these red
13	dots basically all around the world, there is more
14	carbon in methane hydrates than there is in the entire
15	terrestrial biosphere. So if he burned everything on
16	the planet, there's more carbon just stored in this
17	methane.
18	It's meta stable. So it's sensitive to
19	temperature and pressure changes. If you warm up the
20	water, this stuff starts destabilizing, and we know of
21	several time periods in earth's history that were
22	global warming time periods. You crossed a threshold
23	and you started releasing this stuff.
24	It's a massively powerful greenhouse gas,
25	and it converts to carbon, which is another greenhouse
I	I

(202) 234-4433

	96
1	gas. And the cool thing about it is you can hold it
2	in your hand while it burns.
3	This is a record. Again, this is far back
4	in time, but this is a very good record of the last
5	time these methane hydrates went off. This is 56
6	million years ago coming towards 54 million years ago.
7	This is a record of temperature.
8	So you see it was a fairly warm world.
9	This is deep ocean temperatures of about eight
10	degrees, and then boom, they spike up by five or six
11	degrees, and then there's this exponential decay that
12	takes about 200,000 years.
13	And associated with that, we have carbon
14	isotopes, which the short version of it is this is why
15	we know it's methane. There's only one thing it could
16	be to explain that pattern. And in some sense this
17	validates everything that I already showed you. There
18	are very few negative feedbacks in the climate system.
19	If you cause a warming, it tends to cause more
20	warming, and there's very little to drag the system
21	back.
22	What there is is geochemical weathering.
23	Important to keep in mind this is weathering of rock
24	and soils, the earth's surface, which feeds back to
25	this issue of infiltration and the soil water that
	1

(202) 234-4433

	97
1	might be experienced here. But the only thing that
2	brings us back from these periods is increased
3	weathering, and that takes on the order of 100,000,
4	200,000 years.
5	And Archer has a nice, nifty little model,
6	which I won't really talk about, but it just says
7	there's a strong amplifying feedback. If human beings
8	pushed the world to five degrees warmer than it is
9	today, there'll be a certain amount of carbon release,
10	but once we do that, we'll cross a threshold. The
11	methane hydrates will degas, and then we'll double the
12	amount of carbon and double down our bets basically.
13	And that carbon is going to stick around
14	for a very, very long time. Okay.
15	So the results of that method indicate
16	that even if nothing happens, it will be 50,000 years
17	before the next ice age, and that maybe 400,000 years
18	before the next one. In the meantime, lots of other
19	things will change.
20	The ice age will melt. There will be sea
21	level rise. Temperatures will warm rather
22	drastically, and this may all be further fed back upon
23	by methane release.
24	So whether by arguing that just based on
25	model simulations and looking at the Eocene that, hey,
I	

(202) 234-4433

	98
1	maybe we're going to Eocene or using these other
2	methods, they all say it's going to get quite warm and
3	stay that way. So why is it that Method 1 predicated
4	that we're sliding into an ice age? One could ask are
5	Methods 2 and 3 incorrect.
6	I would argue that Method 1 is not
7	considered a sufficient way of modeling the next 100
8	or 1,000 years by anybody in the climate change
9	community. There's no reason to think it's an
10	effective way of modeling a million years into the
11	future. It's not based on any physics.
12	So if we want to move forward on this
13	problem of actually predicting what climate will be
14	like over the next million years, it's not up to me to
15	decide whether people want to make that choice, but if
16	they do, there's a very straightforward way to make
17	progress, and that is to use fully coupled climate
18	models that are validated in earth's past and use them
19	to predict the future.
20	And if we do that, we can actually talk
21	somewhat about accurate predictions of the future. So
22	this is a record of global climate change over the
23	past 60 million years. If we look at this curve, this
24	is a record of deep ocean temperatures, warm climates
25	of about 12 degrees C., deep ocean temperature at
I	

```
(202) 234-4433
```

	99
1	about 50 million years ago, and then eventually we get
2	to the icy world that we live in today.
3	There's a major transition where we put on
4	ice sheets for the first time right there, and that
5	has been linked to changes in the carbon cycle.
б	This here is a record of atmospheric
7	carbon dioxide. This is a modern day number here.
8	The CO_2 in the past was something like four to ten
9	times what it is today. So it looks like we can look
10	at records like this and line them up with greenhouse
11	gas changes and say, well, some of the major changes
12	have been driven by greenhouse gases. So we have a
13	world without ice sheets. We put one on, and
14	somewhere in there, there's a change between a lot of
15	CO_2 and low CO_2 , but there's a lot of other
16	interesting things that go on in between. But we're
17	going to be focusing on the orbital part of this and
18	on the CO_2 part of it.
19	So these are results that just came out,
20	a record of atmospheric carbon dioxide that goes
21	through the whole interval, and the modern day value
22	is down in around here.
23	So the last time CO_2 was as high as what
24	we're going to make it be was about 50 million years
25	ago, and when that happened, there were no ice sheets

(202) 234-4433

	100
1	on the planet. So it would be really interesting in
2	terms of validating a model for the future to see if
3	models can predict this kind of regime shift of going
4	from a world without ice sheets to one with ice sheets
5	with the right range of CO $_2$. And as I'll show you,
6	orbital forcing is important.
7	These are awful figures.
8	Paleocenaographers like them, and they're not much
9	different. All core people create legal plots that
10	look like this, and other people go to sleep, but the
11	important thing is this is 35 million years ago, going
12	to 31, and this is a record of ice volume. So not
13	much ice, and then putting a bunch of ice on the
14	planet. It's the first time the antarctic ice sheet
15	existed right there.
16	This is a carbon cycle record here, and
17	this is a record also of the carbon cycle. What these
18	records in toto tell us is that coincident with
19	placing that ice shield there's a major decrease in
20	atmosphere at CO_2 and a very high resolution sense.
21	Also, in this same figure is the orbit of
22	the earth, which like I said, this is calculable. We
23	can back at least 60 million years with this number,
24	and interestingly, this time period that shows up as
25	having this major ice sheet is an unusual time period

	101
1	in earth's orbital history, but it also coincides with
2	CO_2 changes.
3	So if you were to add up the results from
4	this work, it says that the orbit had to be just right
5	to put ice sheets on the planet, but also declining
6	CO ₂ .
7	So the key is do we have models that if
8	you put those inputs in, give us an ice sheet. So
9	this is a climate model that was run by Deconto and
10	Pollard, and this is effectively ice volume in their
11	model starting off with very little and growing an ice
12	sheet, and the key parameters that they used in their
13	model were changing carbon dioxide, more or less the
14	right amount as indicated by the data.
15	And what you're seeing here is ice sheets
16	growing on Antarctica, and this is a three million
17	year long simulation, is a fancy way they do this.
18	There's some slight of hand, but you can run these
19	models if you do it in an intelligent way for a
20	million years. Not a problem. We can do this.
21	What you see is that as you cross the
22	threshold o CO $_2$ you suddenly build an ice sheet, and
23	the bopping up and down you see is the orbitally
24	driven component.
25	Now I'm running it backwards in time for

(202) 234-4433

	102
1	a good reason. This is what it would look like if we
2	were to run this model into the future.
3	We can also pick other periods in earth's
4	history, some of them closer like, say, last glacial
5	maximum about 21,000 years ago, and see how well
6	models do. Let me show you one result for last
7	glacial maximum.
8	The red lines are simulated temperatures
9	taken in a slice from the south Atlantic, the
10	equatorial Atlantic, and the north Atlantic, and the
11	red lines are the models. The little dots are data.
12	This is annual mean, winter, summer.
13	This is a fully coupled model. We have an
14	interactive ocean component. That means we didn't
15	there's nothing forced about the fact that this model
16	gets exactly the right answer. The model does this
17	all on its own, if you put in the right orbital
18	parameters and the right carbon dioxide
19	concentrations.
20	So we can go to all sorts of periods in
21	earth's history, validate the models, and then project
22	in the future. In the Paleoclimate Working Group
23	that I'm co-chair of, we're doing this. We're doing
24	this for LGM, including predictive vegetation, dust,
25	aerosols, doing it for Holocene.
I	

(202) 234-4433

	103
1	We're currently engaged in a run that will
2	be 6,000 years long to go from the mid-Holocene to
3	today. During this period of time 55 million years
4	ago, 180 million years ago, we're doing it; we're
5	validating the model all sorts of places.
6	The model is also freely available. You
7	can download it off the Web. There are about 120
8	papers describing the results of the validation of
9	this model that are also available for the IPPC
10	report.
11	Now, what we can also do is do high
12	resolution planet modeling. So you may think that the
13	global models, yeah, those are great for large scale
14	patterns, but what does that have to do with Yucca
15	Mountain.
16	We now have the capacity to do simulations
17	down to, say, one kilometer grid scale and drive those
18	with the global climate model simulations. So we can
19	also solve the scale problem. This is a simple
20	problem to solve. And we can also validate those
21	models using paleoclimate observations.
22	So this is just one simulation that I'm
23	currently engaged in to try an take out some of these
24	high CO_2 runs further out than they've been done
25	before to see how hot it's going to get, and I'm just
	I

(202) 234-4433

plotting a precipitation in this run versus modern day observations, and there's two quick things to see, which is that if I didn't tell you which was which you wouldn't immediately say, "Oh, yeah, well, okay. You know, the global warming world is a whole lot wetter or dryer or whatever." They look actually kind of similar.

8 Specifically in the Southwest, if 9 anything, the model predicts a drying. Now, this is 10 interesting. I don't say this is an accurate prediction. You would need a whole bunch of models. 11 You need a lot of work, and a lot of people working on 12 this to really make this an accurate prediction. 13

Well, on the other hand, I'll now look at several simulations, and they all show a drying in this area. What that would suggest is if global warming conditions are dryer in this area, there's actually a bit of a monsoon to the east of this area, and that actually leads to a moistening. So there is a monsoon pickup. It just is not here.

But if global warming leads to a drying and we're not likely to go into another ice age for 400,000 years or something, maybe we don't need to worry about the glacial end member in the hydrological cycle component of these assessments. Maybe.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	105
1	What worries me about that statement is I
2	know the models aren't perfect, and I know that one of
3	the things that the models don't do very well is the
4	hydrological cycle. Okay? So I just told you this
5	whole spiel about how great the models are.
б	I also know the models do have problems
7	with the hydrological site. So that's one of the many
8	uncertainties that would have to be dealt with. But
9	I think this is a doable thing if people want to do
10	it. There's absolutely no challenge to moving forward
11	on this other than time and resources.
12	Thank you.
13	MR. HINZE: Thank you very much, Matt.
14	That was a very, very excellent presentation in terms
15	of logical order and understandability, and certainly
16	gives us some insight and gives us the insight into
17	Yucca Mountain region that we're looking for.
18	I'll ask the committee if they have
19	questions. Ruth, can we start with you again?
20	MS. WEINER: When you predict a monsoon or
21	a larger rainfall in any region, do you also take into
22	account the increase in vegetation and consequent
23	increase in evapotranspiration? Is that included in
24	the model?
25	DR. HUBER: You can. In the simulation
	I

(202) 234-4433

I'm show you, we don't have dynamic vegetation. So the vegetation distribution is fixed. You can flip a switch and you turn on interactive dynamic vegetation, and it includes everything from soil microbial respiration changes, soil moisture changes, vegetation, evapotranspiration changes.

7 It can get arbitrarily sophisticated very 8 easily. The question then is making sure that you've 9 validated that sophisticated model, and if you run 10 this model, that dynamic veg. model for today, it tends to put too much vegetation in the Sahel 11 12 (phonetic), for example. So it doesn't get it all wrong, but as with all of these things, it has a model 13 14 bias.

MS. WEINER: You get precision without
 accuracy.

17 DR. HUBER: Yes, yes. Now, you could always handle that in a stylized sense. 18 It's very 19 easy to say, well, let's assume for whatever reason 20 that at a subtropical rain forest there would that 21 drag in a monsoon, and do a consistency check. That's 22 the sort of thing I do all of the time. That's very 23 easy to do. That's actually the least computationally 24 expensive thing to do.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MS. WEINER: The other question I have is

25

1

2

3

4

5

6

completely disconnected from that one, and that is you show carbon dioxide cycles over very, very long --3 over eons. Does your model include both an increase 4 and a subsequent decrease in anthropogenic carbon dioxide? In other words, can you carry this out to a time when there is no more anthropogenic CO₂.

8 DR. HUBER: For the future climate change 9 predictions that have been done, partially because of 10 intergovernmental mandates, it's a stylized approach. So you have a separate group of social/economic models 11 12 as you model what the growth rate of the missions will be based on a whole variety of things. And then you 13 14 use that as a static input into these models.

15 There is substantial work that's going on 16 to actually link those two models so that as the 17 Midwest turns into a dust bowl, people change their practices and that affects the carbon input. 18

19 That isn't to the level of having been 20 vetted as this other work. People have emphasized the physical aspect of the system for 40 years. We're 21 22 just bringing in the human component, but people are 23 working on that.

24 MS. WEINER: Finally, do you think that 25 these models are at a position where you can bound the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

5

6

7

108 1 uncertainties in predicting the climate in the Yucca 2 Mountain region over the next million years? Yeah, if you used stylized 3 DR. HUBER: 4 approaches. To me the major area of uncertainty is 5 actually changes in the large scale sea surface temperature distribution that will affect things like 6 7 how warm is eastern equatorial Pacific, which will 8 affect weather patterns. 9 Now, if you tell me, "I have a theory and 10 I think that that cold tongue and the warm pool are going to go away," now my fully coupled model might 11 12 not support your theory, but I can just take my atmospheric model and take your theory and say, "Okay. 13 14 We're going to get rid of the cold tongue and the warm 15 What would the implications be?" pool. 16 So we can do stylized approaches and 17 sensitivity tests, no problem. The basic physics of getting the water from Point A to Point B with the 18 19 right boundary conditions is pretty straightforward. 20 It wasn't 20 years ago. Now we can do that. 21 MS. WEINER: Thank you. 22 Allen. MR. HINZE: 23 VICE CHAIRMAN CROFF: No, thank you. 24 MR. HINZE: Mike. 25 CHAIRMAN RYAN: When I think about it from

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	109
1	a performance assessment perspective, we're typically
2	thinking about water, not so much
3	MR. HINZE: We need
4	CHAIRMAN RYAN: of how it gets to the
5	Yucca Mountain area, but what happens to it once it
6	lands. So precipitation rates and infiltration rates,
7	the behavior in the near surface and subsurface water
8	systems are kind of the key issue.
9	How do we couple your climate models to
10	getting into the real specifics of infiltration,
11	precipitation, those kinds of things? Does that fall
12	out of your effort?
13	DR. HUBER: The models have pretty
14	sophisticated representations with anywhere between
15	four and 20 soil layers that handle infiltration,
16	runoff, river routing. So the models already have in
17	them a treatment of it.
18	Now, do they have the treatment that would
19	be the most appropriate to this region? Probably not.
20	What you would then do is use a high resolution
21	regional type climate model and couple that with
22	whatever infiltration model you felt would be best,
23	and again, that's immanently doable.
24	CHAIRMAN RYAN: Great. That's a good
25	answer. Thanks. Appreciate it.
I	I

(202) 234-4433

	110
1	MR. HINZE: James.
2	DR. CLARKE: A very interesting
3	presentation. A couple of questions. Get a little
4	more cord here.
5	You mentioned calibration several times,
6	and you also then mentioned validation. I'm assuming
7	you're using those pretty much in the same way. In
8	other words, if the model has the ability to predict
9	the past, that gives us confidence in its ability to
10	predict the future.
11	DR. HUBER: In the more simplified models,
12	the Method 3, those have these tunable parameters, and
13	a lot of the physics is just all a function of these
14	tunable parameters. So those ones usually what you
15	end up doing is you tune them so that reproduce the
16	observed time series over the past million years, and
17	then you don't change anything. You go into the
18	future.
19	So there that's what I mean by
20	calibration. The kind of model that I'm really
21	talking about, these fully coupled general circulation
22	models, not to say there's no tuning, but the tuning
23	is really of a completely different sort, and those yo
24	would not retune them to get the glacial/interglacial
25	transitions right. They either get it now or they
I	

(202) 234-4433

	111
1	don't. We are tuned for today.
2	And right now they do get the past right
3	without retuning, and in that sense it's a
4	verification and not a calibration, and so if they can
5	get those transitions right in the past, I think that
6	you can use them without any further jiggering into
7	the future.
8	DR. CLARKE: So just to follow up on what
9	you just said, I just want to hear you say it because
10	this is an area of controversy out there.
11	It is your feeling that these models are
12	sufficiently calibrated that they can be used
13	DR. HUBER: Yes.
14	DR. CLARKE: to predict the future with
15	confidence.
16	DR. HUBER: Yes.
17	DR. CLARKE: That's your feeling.
18	The other question and maybe asking Ruth's
19	question a different way is you go from global to
20	continental to North America to, you know, the West,
21	to Nevada. How do the uncertainties play out as you
22	go from large scale to the smaller scales?
23	And, again, as Ruth asked, you are
24	sufficiently confident that you can predict at the
25	much smaller scale.
I	I

(202) 234-4433

	112
1	DR. HUBER: Yeah, in general, I'll say one
2	thing and then I'll care to go back. In general, the
3	large scale distribution of the atmospheric highs and
4	lows and these sorts of things govern the amount of
5	water that will be input into the area and evaporate.
6	Now, the one area where that's really not a
7	justifiable statement is the Southwest monsoon, the
8	one area that's relevant to this, where for a long
9	time people couldn't get the Southwest monsoon right
10	unless they actually put water in. They had to
11	arbitrarily add water to the surface, and, oh, now we
12	get the monsoon. It was the consistency argument.
13	In the past two years or so, models have
14	gotten to the point where you can get a Southwest
15	monsoon, for example, without adding the water. Now
16	the models appear to be good enough to actually get
17	that component right.
18	So I would say that, yes, we can actually
19	do this scale argument across the scales and have
20	things work basically right, especially in this region
21	where the monsoon is not necessarily a dominant
22	influence, but I think the model is actually good
23	enough that if something were to change where the
24	monsoon were to become more important, that the model
25	would actually get that.
I	I

(202) 234-4433

	113
1	To me that's actually the key area of
2	uncertainty in these models at the local scale, is
3	where you can get the changes in the monsoon right.
4	DR. CLARKE: Okay. Thank you.
5	MR. HINZE: Bruce.
6	DR. MARSH: Matt, what about even during
7	the glacial times? I mean, how extreme will the
8	climates be? I mean, there's a lot of variability
9	north-south, and you know, the odd thing about glacial
10	time, everybody assumes it's very wet. I mean, you
11	know, but there's a lot of dryness, too, a lot of arid
12	conditions.
13	DR. HUBER: I mean, one of the things I
14	skipped over in the interest of time was we can do
15	things like predict where the storm tracks were in
16	past periods of time, and this is a comparison of
17	modern last glacial maximum, Eocene and Cretaceous of
18	where the storm tracks are.
19	And that's something especially at LGM we
20	can verify whether those predictions are correct or
21	not, and so we can look at dust loading. If we have
22	a model with interactive dust, we can actually see
23	does the model put chlorite in ice quarters in
24	Greenland in the right time, in the right place? So
25	we can actually validate all of this.
Į	

(202) 234-4433

There are so many prognostic variables in these models that we have almost an infinite room for verifying whether the models are good or not. So, yeah, you can actually get at that, and there's about four published papers on that LGM simulation comparing it with data, dust data, sea surface temperatures, land surface conditions.

8 One of the best tests is to run that model 9 with interactive dynamic vegetation and then see if 10 you can match the pollen record, and that's something 11 that's being done.

Let me ask Dr. Clarke's 12 HINZE: MR. question in a little different manner. We seem to be 13 14 coming back to that, and that's the enhanced resolving 15 power that you're achieving. And I think I heard you 16 say that this was largely a function of computational 17 efficiencies that you have today and will have even greater in the future. 18

19I'm wondering about the data and the data20resolution. How good are the data that permit you to21get to the resolving power? Are we really fooling22ourselves that we can do it at this kind of resolving23power?24And what is that resolving power? Is it

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 a degree or something like that?

(202) 234-4433

1

2

3

4

5

6

7

	115
1	DR. HUBER: Do you mean modern day
2	observational data set or the paleo ones?
3	MR. HINZE: Well, and also predictive into
4	the future. One of my next questions is you're
5	entering a graphic effect into this, and we know that
6	the elevations change with time. The Sierra Nevadas
7	went up about 600 meter in a million to two million
8	years.
9	Are you incorporating that kind of detail
10	into these models so that we can get the resolving
11	power that you're indicating?
12	DR. HUBER: To really resolve some of
13	these range shadows is a difficult issue, but it's not
14	a conceptually difficult one. It's simply do I have
15	a computer that I have access to that I can model at
16	that resolution.
17	MR. HINZE: Well, I'm going back even
18	further than that. Are you getting or do you have
19	access to the tectonic stability information that will
20	permit us to do that because there are these
21	uncertainties?
22	DR. HUBER: Yeah. Well, I mean, the issue
23	of the uplift of the Sierra Nevada or actually of the
24	laramide orogeny going further back, gosh, there are
25	huge error bars on that.
l	I

(202) 234-4433

	116
1	I'm actually funded to do a study to look
2	at the aridification of the West that happened in the
3	Miocene. What you see from various proxy records is
4	that regardless of whether you're on the up stream or
5	the downstream side of the mountain in these records,
6	they both have got more error in the Miocene.
7	Actually large parts of the West used to
8	be much more moist regardless of what side of the
9	mountain range they were on.
10	MR. HINZE: That was part of the Eocene.
11	DR. HUBER: Right. Well, it goes from the
12	Cretaceous all the way to the Miocene. In the Miocene
13	everything dries out and nobody knows why, and as far
14	as we know, it has nothing to do with orography
15	because it happens on the upstream side of the
16	mountain and the downstream. Okay?
17	So I actually I mean, that's an area of
18	active scientific research, but I think that the
19	orography arguments for why some parts of the West are
20	dry actually aren't right. I mean, if you look
21	historically, you'll see that they dried out
22	regardless of whether there was a mountain range
23	there.
24	MR. HINZE: Another question, if I might.
25	The gradient on the change is modest until you hit a
Į	

(202) 234-4433

	117
1	glacial period. Is this, the rapid change that we see
2	in temperatures, is this a feedback effect? What
3	causes that very rapid change?
4	DR. HUBER: Yeah, as I said, almost all of
5	the feedbacks in the climate system are positive. So
6	you add a little ice, it has a little gold (phonetic).
7	On the other hand, there's a massive
8	change in the carbon cycle right when you're putting
9	on these ice sheets. Nobody knows why. There's
10	apparently some kind of feedback going on with the
11	carbon cycle to bury carbon.
12	MR. HINZE: Sequester it.
13	DR. HUBER: Yeah. Nobody knows why that
14	happened. So that's another area of active research.
15	What's interesting though, again, is if
16	you take a stylized approach and you choose a profile
17	at CO_2 , the model gets the transition, no problem.
18	MR. HINZE: Just another point though. I
19	just want to make certain that we have it down, and
20	that is that if we in some way mitigated the increase
21	in the carbon in the atmosphere, carbon dioxide in the
22	atmosphere, this consistency over the next 50,000 or
23	400,000 years is still there as a major factor.
24	DR. HUBER: Well, so if we were to
25	mitigate and bring ourselves back down to a normal
I	I

(202) 234-4433

	118
1	level, then it would be probably in a 50,000 year long
2	interglacial and then glacials kicking in about 40-
3	some odd thousand years from now.
4	MR. HINZE: About 50,000 years.
5	DR. HUBER: Yeah.
6	MR. HINZE: Okay.
7	DR. HUBER: So well, within the one
8	million year.
9	MR. HINZE: Right. Okay. Can we open
10	that up to additional questions? Mike Scott, please.
11	MR. SCOTT: Thank you.
12	With regard to the feedback mechanisms you
13	were discussing, the press has carried various reports
14	that warmer world means wetter world overall in a
15	global scale, means more vegetation, means more
16	sequestration of carbon. Is that not a significant
17	negative mechanism?
18	DR. HUBER: Actually it's currently what
19	is preventing CO_2 from rising at a much higher rate
20	than we're releasing it. So, in other words, if you
21	look today, there's a component of the CO $_2$ that we're
22	releasing that's going into the ocean and a component
23	that's going into terrestrial vegetation, and that's
24	definitely there.
25	The thing is it's only a percentage of the
I	I

(202) 234-4433

	119
1	amount that's being released. So year after year,
2	this keeps on being more left in the atmosphere, and
3	how much more of the terrestrial biosphere can
4	continue to uptake is, again, one of these issues the
5	people debate. All existing estimates are, if
6	anything, conservative or optimistic in the sense that
7	some of these simulations that have been done with
8	interactive vegetation where, you know, the vegetation
9	is allowed to say, "I'm being fertilized. This is
10	great. I love CO_2 "; if you take those models and you
11	run them into the future, yeah, they draw down some of
12	the carbon. Most of it still stays in the atmosphere.
13	The problem is, say, in one of these
14	simulations that's been done is a change to a
15	permanent El Nino in the tropical Pacific. I mean,
16	you got to a permanent El Nino and you get rid of
17	precipitation in the Amazon rain forest, and most of
18	that dies back. So it's like you cut down the whole
19	Amazon.
20	So these things all kind of feed back on
21	each other, but none of the models that have been used
22	projecting into the future show that the ability of
23	the terrestrial biosphere to uptake carbon is going to
24	be sufficient to uptake all of it.
25	Just taking, you know, attacks, if you
I	1

(202) 234-4433

(202) 234-4433

	120
1	will, off of the amount that we're putting up there.
2	MR. SCOTT: I guess I was addressing the
3	question from the perspective of your statement that
4	there was all positive feedback or essentially all,
5	and I'm wondering was this not a somewhat significant
6	negative feedback mechanism.
7	DR. HUBER: Well, it's not a net feedback,
8	no. It is taking up some of the carbon, yes. Is it
9	drawing down more carbon than we're releasing? No.
10	So in other words, we're adding carbon,
11	and regardless of whether this is taking it up, it's
12	still going up. It's just a slightly lower amount.
13	MR. SCOTT: Okay. Thank you.
14	DR. HUBER: It doesn't change the
15	prediction.
16	MR. HINZE: Was there a question over
17	here? Neil.
18	MR. COLEMAN: Matt, what assumptions do
19	you make or some of your colleagues make on the time
20	of depletion, virtual depletion of fossil fuels on
21	earth?
22	DR. HUBER: Oh, I don't make those
23	arguments. I let other people decide when we're going
24	to stop burning fossil fuels.
25	MR. COLEMAN: I mean with the presumption
l	1

(202) 234-4433

	121
1	that they'll just all be used. I mean, that's
2	important for knowing when the atmospheric CO $_2$ would
3	reach an approximate peak and then start declining.
4	DR. HUBER: Well, I mean, the point in the
5	diagrams that I was showing is that, say, if we switch
6	from oil to coal to this, that, or the other thing,
7	we're going to basically burn up so much CO_2 and add
8	it to the atmosphere that that amount will be staying
9	with us for 100,000 years.
10	If we completely switched and went to
11	something else very rapidly, then that might not be
12	the case, but so far I haven't seen anybody suggest
13	we're going to stop burning fossil fuels altogether.
14	DR. MARSH: But even then it shuts off.
15	It goes 30 or 40,000 years afterwards.
16	DR. HUBER: Yeah.
17	DR. MARSH: This dissipation.
18	DR. HUBER: Yeah, yeah. It's an efolding
19	time scale. We're already committed to a fair amount
20	of this, in other words.
21	MR. COLEMAN: But what number is actually
22	used in the models? Is it 300 years, 400 years?
23	DR. HUBER: I could show you the emission
24	scenarios. They're the IPCC-ESRES scenarios, and
25	there's a variety of them. None of them involve going
I	I

(202) 234-4433

	122
1	completely away from fossil fuels. So even the lowest
2	emission scenario assumes that people are still
3	burning wood and other things. So you keep adding
4	carbon in all of the scenarios all the way out.
5	MR. COLEMAN: Another question. You
6	didn't get into the issue of the effects of large
7	scale ocean currents on the climate models, and there
8	have been. I don't know how speculative those ideas
9	have been. For example, brokers' commentary on the
10	Gulf Stream and dramatic effects, actually dramatic
11	cooling effects that would be possible in Europe due
12	to global warming.
13	What's your take on those sorts of
14	speculations?
15	DR. HUBER: They're blown entirely out of
16	proportion. When you look at simulations that have
17	been done of what the effect of that would be, they
18	are smaller than the signal of global warming.
19	So, in other words, let's say you shut
20	down the thermohaline circulation, and that leads by
21	itself to a cooling of three degrees. Well, that's
22	smaller than the warming due to CO_2 .
23	One of the simulations I was showing, it
24	actually has a thermohaline circulation slow-down, and
25	there's little blurbs of cooling in the North
I	

(202) 234-4433

	123
1	Atlantic, but the rest of the planet really doesn't
2	care, and there's lots of rebuttals to Wally's
3	arguments on this that have been published.
4	There's a couple of groups that really
5	strongly believe this, but even if you look at those
6	simulations where they've really hit the system with
7	a hammer and shut down the thermohaline circulation
8	and you look in western North America, it doesn't
9	care.
10	MR. COLEMAN: Okay. My last question, a
11	follow-up on the scavaging of CO_2 from the atmosphere.
12	What are the best references that are available?
13	Who's doing the best work in this area that you've
14	seen?
15	DR. HUBER: Well, for the near term or for
16	the long? Because, I mean, really there's a totally
17	different community that's trying to model this 50,000
18	years from now than 100 years from now.
19	MR. COLEMAN: Longer term would probably
20	be better.
21	DR. HUBER: Okay. Then the Archer
22	references, which I have sent a bunch of them to Bill
23	and Mike. So I'm sure we can hook you up with those.
24	There are not many people who are actually trying to
25	look at the carbon cycle that far into the future.
ļ	

(202) 234-4433

	124
1	Dave Archer did his postdoc with Wally Broker and set
2	the University of Chicago, one of the world's top
3	three carbon cycle modelers, and his work is pretty
4	canonical.
5	MR. HINZE: Okay. Let's move on.
6	DR. HUBER: Thank you.
7	MR. HINZE: Fred, you had a question.
8	DR. PHILLIPS: Yes. One was sort of a
9	follow-up on Neil's first question here.
10	You showed a graph extending into the
11	future with glacial initiations as a function of three
12	different carbon level scenarios. One was essentially
13	natural carbon extended on. Then you had a blue line
14	and a red line.
15	How did those carbon inventories that were
16	the basis for those simulations compare with the
17	current anthropogenic carbon inventory in the
18	atmosphere?
19	DR. HUBER: The 5,000 gigaton one is we
20	burn all available fossil fuel reserves, and the 1,000
21	one, which I think shows an egglaciation in 100,000 or
22	something, involves they correspond to different
23	ESRES scenarios, which I could pick it out for you,
24	but it involves one-fifth, if you will, of the total
25	fossil fuel reserves.
I	

(202) 234-4433

	125
1	As far as we can tell, those are very
2	likely numbers in terms of people who try and model
3	carbon use over the next two or 300 years.
4	MR. HINZE: I believe Abe Van Luik has a
5	question. Abe.
б	CHAIRMAN RYAN: Can I get somebody to
7	crank the lights up, please?
8	MR. VAN LUIK: Abe Van Luik, DOE.
9	In defense of the project, Saxton Sharp at
10	UNR did our modeling. She used Method 3, and if you
11	look at our EIS, she has a minor glacial coming in at
12	about 40,000 years, one at 100,000, and then it
13	follows the natural progression after that.
14	I asked her about the other modeling that
15	was being I was just exposed in Europe to the
16	European Union's model three years ago and said
17	they're moving out the next glacial to about 400,000
18	years, and she said she was a peer reviewer on that
19	work. She believed at that time and she may have
20	changed her mind now that it was speculative, and
21	she said, "Look. It's very self-serving to go to
22	their model. For your project, your worst performance
23	comes during those two early isglacial (phonetic)
24	occurrences.
25	And if you look at our EIS, that's
I	I

(202) 234-4433

	126
1	correct. When we basically what she handed us was
2	a deterministic model, you know, showing these peaks,
3	and we put it in exactly the way she gave us.
4	Now, when we make some uncertainty bounds
5	on the occurrence of these things and randomize it, it
6	looks more like a long-term average, and so that's the
7	stylization that we've gone to. Plus her model did
8	not include the monsoon. So we're throwing the
9	monsoon in as an expert judgment type of thing because
10	we think that it's a real possibility that before a
11	climate change you would have the monsoon.
12	Now, it looks like what has happened is
13	that the climate modeling community has made a lot of
14	progress in the last three years, and so we probably
15	want to revisit some of these things.
16	Now, a fly in the ointment is I talked to
17	Ike Winograd recently and said, "Ike, with all of this
18	global modeling going on, all of these foresting
19	functions seeming to pan out, what do you think of
20	Devil's Hole?"
21	And he says, "Devil's Hole shows that
22	there are local variations in ice ages that are not
23	explainable by orbital parameters," and I was
24	wondering what you thought of the Devil's Hole record.
25	DR. HUBER: First, for the Sharp report,
I	I

(202) 234-4433

	127
1	I mean, I've got the Sharp report and the most recent
2	DOE report on my desk, and they both say we're going
3	into a glacial within the next eight or 9,000 years.
4	So there may have been discussion at
5	various points about these other models being correct,
6	but what's in the document is actually very clear.
7	Yes, in 2002, 2001 I would say that the
8	Berger and Loutre work was I won't call it
9	speculative, but you know, you shouldn't believe what
10	you see in <u>Science</u> , right? I mean, this is there
11	because it's provocative and interesting and this,
12	that, and the other thing, which is why I've actually
13	previously steered clear from relying too much on it.
14	The fact that four other people who are
15	really completely independent, especially Dave Archer,
16	have reached the exact same conclusion, and it's one
17	that you really can sit down with a pencil and paper
18	and work out yourself.
19	I don't think it's I think it's fairly
20	believable now. I agree. In 2002 I would not have
21	hung my hat on it. Now, I would hang most of my hat
22	on it.
23	And with regards to the Winograd comment,
24	I found it very strange just having read the Sharp
25	report and the DOE report that there is four important
I	1

(202) 234-4433

(202) 234-4433

	128
1	papers by David Lee that aren't mentioned, and for
2	those of us in the paleoclimate community, I mean, I
3	give lectures on this. David Lee shared in 2001 that
4	the Devil's Hole record is very explainable in terms
5	of orbital forcing, but it's an expression in the
6	western Pacific. So that it's not 60 degrees north.
7	It's a teleconnection to the western Pacific, which as
8	I showed, that region is very much teleconnected to
9	the western Pacific. That doesn't mean that
10	glacial/interglacial cycles aren't I mean,
11	glacial/interglacial cycles, you grow ice sheets at
12	high latitudes. So those are orbital forcing at 65
13	degrees north.
14	But you can explain his record as orbital
15	forcing of the western Pacific, and then a
16	teleconnection there. So I agree that, you know, it's
17	not all what's going on at high latitudes. You have
18	to focus on the tropics, and that's what I'm trying to
19	suggest with these teleconnection mats. We should
20	really be thinking of how is the tropical Pacific
21	especially going to be changing over the next million
22	years. That's actually the key, large scale
23	uncertainty.
24	MR. HINZE: Thanks very much, Matt, and
25	thank you once again for a very excellently presented
I	

(202) 234-4433

(202) 234-4433

	129
1	and very informative talk.
2	And with that, we'll take a break until
3	1:15; is that right?
4	CHAIRMAN RYAN: We will be adjourned until
5	1:15.
6	(Whereupon, at 11:57 a.m., the meeting was
7	recessed for lunch, to reconvene at 1:15 p.m., the
8	same day.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I

	130
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:16 p.m.)
3	CHAIRMAN RYAN: It is time to get started,
4	folks. We will reconvene and reopen the record,
5	please.
6	Our next speaker is Professor Bruce Marsh
7	from Johnson Hopkins University, who is a consultant
8	to the ACNW.
9	Welcome again, Bruce, and he's going to
10	provide us with what I think will be a very
11	interesting talk in an approach to modeling of
12	magma/repository interactions.
13	Welcome.
14	DR. MARSH: Some people have referred to
15	me, in fact my past advisor, as an architect in the
16	field of magma dynamics, good or bad, and at the same
17	time though I augment that with the fact that I used
18	to tell my mother-in-law all the time that nothing I
19	ever did had any practical application, which I no
20	longer can say. Little did we know that all of the
21	work that we'd been doing in setting up a field in
22	magma dynamics would actually be very useful for a
23	human effort.
24	And it really comes to bear at Yucca
25	Mountain in terms of understanding what magma does and
Į	1

(202) 234-4433

	131
1	how it behaves in an integrated system.
2	And a year ago, those of you who were at
3	the meeting in Las Vegas, we talked in detail about
4	what was needed, and one of the things we said what's
5	needed is an understanding of the integratedness of
6	the system, how it all fits together and works
7	together.
8	I'd like to give you a little taste of
9	that today in terms of understanding specific parts of
10	the system and properties of the system that may be
11	very, very critical to understanding the system as a
12	whole, and one of these is the behavior of magma in
13	the systems.
14	We're all familiar with this, and this is
15	a very, at least the picture, it's a critical picture
16	in many ways. Here we have the drifts, and a dike
17	popping up through the system venting at the top and
18	entering in the system here, and so it's a complicated
19	process in many ways, and people who aren't familiar,
20	let's say, with magma in detail almost don't know
21	where to start on these things.
22	I'd like to give you some background today
23	into it, and we'll start off by looking at a system
24	that basically we know something about. This is the
25	Island of Hawaii, Mauna Loa. Kilauea is the active
I	I

(202) 234-4433

	132
1	part of the system, and you can see the lavas and
2	things down here.
3	this is about a million years old. It's
4	one million cubic kilometers of magma there, and of
5	course you know there's a whole string. And the next
6	volcano is under the water here, Luihi sea mount
7	active now two and a half thousand feet under the
8	water and growing up and to be a new chunk of real
9	estate here in no time.
10	Well, one of the things that's
11	interesting, and we've developed over the last, let's
12	say, five years or ten years, is the system of a
13	magmatic mush column, in talking about a system that
14	has a plumbing structure to it that may be consistent
15	and is consistent with seismology, geology, petrology,
16	what we see in the system.
17	And in a big system like Hawaii or systems
18	like even under Reunion Island, Yonmaon, other big
19	systems in the world, we have what we call a system.
20	It's an interconnected system of sheets and necks and
21	things and all kinds of other detail and dikes and
22	things in this system, and the important thing to
23	realize is there are all different kinds of time
24	scales in this, and what I mean by time scales, I mean
25	thermal time scales, for example. There are spatial
I	

(202) 234-4433

	133
1	time scales, and related to those spatial time scales
2	there are thermal relaxation times.
3	So something as large as this, buried as
4	deep as this down miles in the earth, maybe 30 or 40
5	miles down will have a long thermal residence time,
6	whereas things near the surface in flank eruptions and
7	things have a much shorter time.
8	And how the system is accessed, how it's
9	pumped, how it's forced is a great reflection of what
10	you get on the surface. So, for example, you know
11	when people work on your pipes in the street, your
12	plumbing, afterwards if you turn the water on really
13	hard you often gets sand and gravel and other things.
14	If you turn it on real gently, you don't get things
15	out of it like that. You get kind of clear water.
16	Volcanic systems, magmatic systems are
17	just like that. They work the same way. The higher
18	the flux of materials, like the higher flux of lava,
19	you get all kinds of stuff in the system. You start
20	bringing up deep seeded crystal out of these layers
21	down here. There's layers we call cumit layers
22	(phonetic), and you start bringing up that stuff, and
23	it all comes out.
24	And from looking at that, we can actually
25	learn a lot about the dynamics in the system, but
I	

(202) 234-4433

134 1 there are a lot of other things in detail, and this is 2 a coupled system together based on my model and Mike 3 Ryan put together from Seismology, some of the 4 seismicity in the region, and you see the character of 5 the system now. We can actually get an idea of what 6 it actually looks like at depth, and this is looking 7 down quite a ways. 8 This is the mantle in the crust, and we're 9 looking up further. 10 this shows the Kilauea area. This is the Halemaumau Fire Pit in Kilauea. In 1959, there was an 11 12 eruption right here into this pit. The eruption actually was right over here, and one of the things 13 14 that's very interesting, of course, in Yucca Mountain 15 sometime is the effective topography and stress fields and the topography eruptions, and we have heard; in 16 17 fact, it has been analyzed. DOE has analyzed some of the stresses in Yucca Mountain and things. 18 19 They're small stresses, but they're also small here. 20 This is an open pit. There's an open pit from withdrawal of magma underneath it in a lava tube, 21 and the whole thing sunk down almost like kind of a 22 23 quicksand hole. 24 The eruption would have took place and not 25 uncommon took place right on the height here, on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	135
1	cliff, and you can see where the wind blew things
2	around. But what happened is it fountained up a lot,
3	and the lava went down in here and filled this up to
4	over 100 meters, probably 135 to 40 meters deep. It
5	made a lake basically, and we call these lava lakes.
6	And some people of the USGS had the
7	foresight to actually go out on it after it was
8	starting to solidify because one of the big problems
9	we always have had dealing with magna is that we never
10	get a sufficiently large pool to do experiments at.
11	You can do experiments with little pieces of stuff in
12	the laboratory, but it's not like actually a big
13	system.
14	So this thing, we actually went out on it,
15	drilled holes through it, did experiments in it. This
16	shows drilling, when I was involved in it in the
17	middle '70s even. This thing now is just still about
18	1,000 degrees in the center of it. So it's just
19	getting solid, this lava lake, and it lasted for a
20	very long time. It erupted and placed there in 1959.
21	So one of the remarkable things drilling
22	into this, this is drilled out in the crust, is that
23	you can actually that's the hole. So that's a
24	drill hole. You can actually see the magmatic, for
25	those of you up close, that little red spot down
I	1

(202) 234-4433

	136
1	there. That's about 600 degrees, and the holes that
2	annex about a two inch core going down in there.
3	And one of the things that's very
4	surprising when you start drilling this thing is you
5	could drill down 600 degrees at well below the
6	solidness, in other words, the point at which the
7	magna is solid, which is about 1,000 degree. You can
8	drill out beyond 1,000 degrees and just keep on
9	drilling. It sounded just like you were in a rock.
10	You're drilling firmly in a rock.
11	Even now when you pull up the core, you're
12	actually pulling up quenched magma, and it kept
13	drilling. You can drill till you get out to about 50
14	percent crystals, and then you go through a transition
15	where you can fee the drill stem is no longer
16	drillable, and you can actually take the drill stem by
17	hand and push it in. You can feel is mushy going
18	through this stuff.
19	But at 50 percent crystals and higher,
20	this is a rigid, solid material. Even though it has
21	50 percent liquid in it, these crystals are tacked
22	together. And we know now that this tacking together
23	starts at about 25 percent crystals and fits together
24	like a chicken wire network and has strength, and the

strength increases and increases until it gets up to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	137
1	a certain point.
2	Now, this is what you see when you look at
3	this and you pull a core out. These are some of the
4	big crystals I told you about that are pulled out in
5	a big eruption, and they came out in the eruption. So
6	that's not and those usually fall out to the bottom
7	of the lava lake. A couple of them are trapped here
8	because we're going to the surface, but this brown
9	stuff is glass and those little, tiny small things are
10	crystals nucleating, and they grow in little clusters.
11	They're almost like little parasitic organizations.
12	One crystal that needs this and this components will
13	reject other components C, D, and E. Other crystals
14	will grow nearby who eat C, D, and E, et cetera, and
15	you get these little families, and you'll notice next
16	to these things you get just ground glass growing, and
17	then you get bigger and bigger.
18	This is titanium building up, and it gets
19	real like tannish, real brownish. Suddenly when the
20	iron-tame oxide is stabilized as a phase, it all
21	disappears. Here the rock is whole crystalline just
22	about down at 1,000 degrees.
23	So you see this remarkable transition that
24	you can sample in a real system that's true in there.
25	Now, many metallurgical systems and
l	I

(202) 234-4433

	138
1	systems that people think about a lot are dendritic
2	crystal growth. You take a bottle of wine. When
3	people are late for dinner, you put it in the freezer,
4	a bottle of white wine, and you forget about it. You
5	pull it out and it's get these great big needles and
6	things going through it, and people often think that's
7	how magmas crystallize.
8	They don't. they don't at all. Those are
9	dendritic systems where the fluid can easily circulate
10	around, and you get a long range chemical exchange.
11	Magma is out here. It comes in here. It circulates
12	back and forth. That's not at all how magma
13	crystallizes at all.
14	Magma has tiny, little crystals, and the
15	crystal sizes reflect the rate of cooling, the
16	nucleation rates, but they're within a bound. So when
17	things start cooling, the salts especially, if you set
18	a cooling rate, the salt will go to a whole
19	crystalline material.
20	How does it do it? If it can't do it just
21	through slow growing crystals, crystal growth is
22	governed by diffusion. So if it can't keep up with
23	the cooling rate, it just nucleates a lot of crystals,
24	and so as any geologist knows, you go to the edge of
25	a dike, a sill, a lava flow where it has been
I	

(202) 234-4433

(202) 234-4433

	139
1	quenched. We call those chilled margins.
2	If you look at them in detail, they're
3	full of tiny, tiny, little crystals, but you can see
4	now these fronts as they move, and these are called
5	solidification fronts. They're made up of a region
6	out here that has nuclei, but not many crystals at all
7	in it, and the crystals get larger and larger, and
8	they have their own little pocket of liquid attached
9	to all of these areas until you get in the back here,
10	and it's all solid.
11	Now, remember we can drill out to right in
12	the middle of this thing. You can drill it. You can
13	land on it with helicopters. You can do all of these
14	things. You're walking around in it. Out in here,
15	this is a mush. So we call this the rigid crust. The
16	middle section of much, this is called the suspension
17	zone out here. And so these are very important to
18	keep in mind geologically.
19	So here's how we have the divisions, and
20	the crystallinity then, which is enormously important
21	here, the crystallinity goes from zero to one in terms
22	of fraction. What you see in here, this is the
23	viscosity of the interstitial liquid.
24	The interstitial liquid changes its
25	viscosity remarkably partly due to the cooling and

(202) 234-4433

	140
1	temperature, but mostly due to the composition. The
2	liquid composition is actually changing. The crystals
3	that are being crystallized out have a composition
4	different than the bulk material, and they what we
5	call differentiate. It is still the interstitial
6	liquid such that the material out here, of course, is
7	very much basalt. This stuff in here is like a
8	granite, the interstitial liquid, and this is the key
9	to really understanding.
10	It's the simple process of separating
11	these crystals from this liquid is what gave rise to
12	the divisions of the earth and the continents and the
13	oceans and basins, et cetera. This is very important,
14	and we'll come back to this time and again, but this
15	is very important in this thing.
16	So remember we get a chicken wire network
17	setting out here of some strength, but we get back
18	here at about 50 percent crystals and this thing is
19	rigid. It's a rigid, drillable crust that has great
20	strength.
21	Now, if we model materials that have if
22	you just take an isothermal material, liquid, and
23	start putting in solids, it's a very, very interesting
24	problem mathematically. So here's the relative
25	viscosity we start out with. So let's just say this
I	

(202) 234-4433

	141
1	is like if you had a fluid like water and put in a
2	core label suspension and you kept bringing up the
3	concentration, bringing up the concentration.
4	What you will see is these are a whole
5	bunch of models that are used in the world. This is
6	a very important process because in all kinds of
7	factories we need to know how things could be
8	transported like this, the paper industry, pulp, all
9	kinds of different systems, any systems involving
10	slurries, all kinds, emulsions, all kinds of things.
11	We need this kind of information, but you'll see
12	there's a .6 value here more or less, .5 to .6 in
13	terms of this crystallinity where all of these models
14	show the viscosity goes up without end. In other
15	words, it basically goes infinite.
16	The rest of the whole world, and this is
17	what I'm telling you about in terms of the solid
18	build-up in a rock that's crystallizing, and the magma
19	is crystallizing, these crystals not only touch and
20	the viscosity goes up, but they actually tack together
21	and weld together forming this.
22	I talked a lot about these. This model up
23	here, this Roscoe model is probably the simplest of
24	all, and I've adapted that and changed it really to
25	fit rock systems some 20 years ago. It's used almost

(202) 234-4433

(202) 234-4433

	142
1	universally in the world today to model these things.
2	So when we look at a rock then in its
3	crystallinization range, this is crystallinity. You
4	don't have it going from zero to 100 percent. This is
5	temperature. This is a Hawaiian Tholeiitic Bassalt.
6	In this range out here, you can do things. In fact,
7	if you really want material to flow very, very
8	rapidly, you want to be out near what we call the
9	liquidus, the liquidus beyond which everything is
10	liquid, below which we start going crystals.
11	Processes that you want the magma to flow,
12	you don't want to get near this boundary in here
13	because in this region it's a rock for all intents and
14	purposes. It still has to cool down and either quench
15	or it's liquid out, but back in this point it is.
16	And this is what you see not only in the
17	lava lakes. You see it under any rheological models,
18	and it's very much a given.
19	Now, an absolutely interesting
20	manifestation of this in the world, that if you take
21	a plot up, for example, the crystallinity versus
22	silica content in a rock, and as you know, basalt has
23	about 50 percent silica. Rhyolite or granite has
24	about 70 percent, and these are important factors, of
25	course, in controlling the viscosity.
I	

(202) 234-4433

1 What do I mean by that? I just told you 2 that we can increase the solid content, increase the viscosity, but we also can increase the silica 3 4 content. The salts are very fluid. Grunetic (phonetic) rocks that have a high silica content on a 5 very sticky, gooey and have a much higher viscosity, 6 7 about 10,000 times to 100,000 times higher. 8 Now, the other observation when I first 9 started doing this work 20 years ago or more is that 10 you realize in the world there are no lavas that erupt out of any volcano in the world that has more than 50 11 12 percent crystals in it. I talked to an old volcanologist, and he said, "That's a mystery." He 13 14 said, "We wondered about this." 15 I said, well, now we know what it is. 16 When these things are at maximum packing, the 17 materials is called a dilatent solid, and that means when you try to sheer the material, for the particles 18 19 to move past each other they have to move out around 20 each other. So the whole thing dilates. And when you're in a volcanic neck and you 21 22 sheer this to dilate, there's nowhere to dilate. The 23 system is plugged. The volcano if it's near the 24 maximum packing and you sheer it unreasonably hard,

It explodes. It rips the top out of what happens?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	144
1	volcanos.
2	That's what you see on here, all of the
3	bad actors. It's a little hard to see. You can see
4	El Chichon and Mount Pele and all of these guys down
5	in here. They're all near the critical crystallinity,
6	55 to 60 percent crystals.
7	The barrier does go down a little bit as
8	we increase silica content.
9	These are basalts down here, and you see
10	on here one, two, three, four, five percent water, et
11	cetera, added to siliceous systems. Water is much
12	more prevalent usually in the big siliceous systems.
13	So this barrier moves on a bit, but this is a dramatic
14	show that this barrier controls basically what we see
15	coming out of volcanos.
16	It also controls the composition of
17	materials. If you go to a lava lake, for example, in
18	Hawaii and look at a phase diagram. This is a
19	diopside, one kind of mineral. Another mineral in a
20	silica, et cetera, SiO $_2$. You plot all of the
21	compositions on here and you basically get right
22	there. You get evolution down to that point, but it
23	stops dead there. It doesn't go beyond.
24	That's because if you crush up the whole
25	solidification front, that's where the point is right
I	

(202) 234-4433

	145
1	there. The interstitial liquid is in there, spans
2	this range. It is interstitial, however, and you
3	can't get it out by normal means. There are processes
4	obviously we got it out because we grew the
5	continents, but it's a dramatic also show, that if you
6	go to Hawaii, you basically stop right there. None of
7	this is ever shown, and that's another reflection of
8	the solidification fronts, this dramatic change in
9	viscosity as we go through this cooling range.
10	The other thing that happens in this
11	range, of course, if you have a system and it has some
12	water in it, as we get back into the system and we get
13	crystallization, even though we don't have a lot of
14	fluids out in here, it's dissolved in the system. We
15	can get bubbles forming back in here, back in the
16	system.
17	And magmas are like divers. When magmas
18	come up from great pressure even though they have
19	water dissolved in and the water is perfectly happy in
20	there, one, two, three percent of high pressure means
21	almost nothing, but as it comes up, as the pressure is
22	decreased, the solubility goes to zero.
23	In other words, at room pressure and high
24	temperatures, these vapors are insoluble in the
25	magmus. So any vapor that's in it, water, CO $_2$ for
I	I

(202) 234-4433

(202) 234-4433

	146
1	example, SO ₂ , must come out at low pressures. It must
2	go to a dry system because the solubility is zero.
3	But what happens at pressure then, when
4	this thing starts to crystallize, you can actually get
5	the saturation where you actually get bubbles forming
6	back in the solidification front, and this can be
7	important actually in modifying, mechanically pushing
8	around the liquid, et cetera.
9	Now, the next important thing that we want
10	to start to look at is the fact that the phase
11	relations that I just showed you at one atmosphere
12	down here, like an Hawaiian basalt, change as you go
13	up in pressure.
14	This is an Aleutian Island basalt in the
15	Aleutian Islands, and the pressure, here's 30
16	kilobars, which is equivalent to about 100 kilometers
17	down in the earth, and as we go back in pressure,
18	everything is liquid out here. You can see these are
19	the various field, the various minerals.
20	The stability fields change as we go up in
21	high pressure, and of course, if we wanted to put
22	water in the system and we raised it up to high
23	pressures, it would actually affect these phase
24	relationships.
25	So there's a general kind of process here.
	I

(202) 234-4433

	147
1	If we look at the phase relationships for a basalt,
2	for example, under pressure under a dry system that
3	has no vapors, no volatiles in it whatsoever, we have
4	a positive slope to these, from liquids and solids in
5	here.
б	Now, remember if we get out here at 50
7	percent crystals in the middle of this thing, this
8	thing becomes an immobile body. If it's rising up to
9	the earth's surface and it get to the point it's 50
10	percent crystals, it's over. It becomes a plutonic
11	contribution to the earth's interior. It's no longer
12	mobile.
13	In fact, the closer it gets to this
14	barrier, the less mobile it gets. Really mobile stuff
15	is out here on the edge, but this is a positive slope.
16	When magmas come up from deep and they're starting to
17	crystallize, they always want to rise out this way
18	because they want to risk adiabatically.
19	Adiabatically means they rise up and basically cool a
20	little bit by expansion.
21	Now, if we take the same material, add
22	some volatiles to it, two or three percent, four
23	percent water, what happens is that material is
24	saturated at low pressure. The melting points of
25	those minerals, the phase relations are dramatically
I	

(202) 234-4433

	148
1	affected. It lowers the phase relations up to a point
2	when this is saturated until a point when it's not
3	saturated anymore, and then it resumes its natural
4	progression up to high pressures.
5	But you will notice now when we have a
6	magma that's here, for example, and is going to erupt
7	on the surface, its temperature could be less than its
8	solid temperature is on the earth's surface.
9	How does it get to the earth's surface?
10	Well, as magma rises adiabatically and water dissolves
11	out of it, it can rise up in its temperature a little
12	bit. It can heat up a little bit, but it's a major
13	problem in getting that magma out on the earth's
14	surface. It can erupt explosively and things like
15	this, but undergoes a lot of solidification because it
16	is already cold. It's already colder than what it
17	will be at the earth's surface.
18	Now, if you look at one of the basalts at
19	Lathrop Wells, we see exactly these kind of
20	relationships. this is the dry magma. We have good
21	computational systems, and these are various phases
22	you don't have to pay attention to, but it's all
23	liquid out here. It's all solid back here, and here's
24	ten kilobars. So that would be up to the base of the
25	crust, and it has a liquidus about 1150, 1170, and
ļ	I

(202) 234-4433

	149
1	it's solid at about 1,000 degrees. So it has that
2	interval to work in.
3	Now, an actual piece of the Lathrop Wells
4	was worked on by Mack Rutherford at Brown, and they
5	were able to recreate the conditions, magmatic
6	conditions that they thought typified that material,
7	and they signaled this out. They found some hydrous
8	minerals, and they published a paper showing that was
9	the conditions there. It had something like 3.5
10	percent, 3.7 percent water in the system.
11	So the phase relationships of that then
12	are like this. Up here it would actually go up like
13	this again. So the preeruptive conditions are here.
14	Now, you'll notice that those conditions
15	are actually at or below the one atmosphere
16	solidification temperature. In fact, if you want to
17	get that out in the earth's surface now, remember
18	in fact, we make a plot. Here's the Hawaiian plot.
19	Here's the Lathrop Wells plot of data, the same kind
20	of crystallinity versus temperature. Here is the
21	liquidus. So we're talking about an all solid and an
22	intermediate temperature here of something like in
23	between of 1090 or something like this.
24	And we put those boundaries on here. This
25	is the region where it would be very fluid. There's
I	I

(202) 234-4433

150
the Lathrop Wells over here. It's fluid. It's quite
fluid, but it has to actually get to the surface, and
if it wants to erupt, there's a fluid, easy flowing
magma, it has to move way out in here, which is
impossible for it.
So it comes out basically as it starts
erupting up. It loses a lot of volatile material, and
this volatile material breaks it up into ash and
tephra and things like this, and that vaporization
phase propagates back down the column and dehydrates
the system a bit and the magma things come up.
However, the system is cool. It's cool
already. It's fairly cool. So lava can come out, but
it can't come out in a very, very fluid way. And we
see that very much.
So instead of having basalts that travel
across the countryside like in Hawaii that start off
at Kilauea and go for miles down the slope and off
into the ocean, which is a thing you can do when
you're a system like this, when you're a system like
this you're rising up to the earth's surface. Any
crystals that are in it, since it always tries to go
and it burns up all of the crystals, it burns crystals
all the time, and it rises up, and when it leaves at
the earth's surface, it's very near its maximum

б

temperature, about 1,200 degrees in Hawaii. Usually small loads of crystals, and it just flows fluidly down the slopes.

A lot of people have that in mind for volcanos in general, but we have this here in these alkalide basalts that we're looking at out there. Okay? So it's a very different situation, and that's why these guys don't go very far, and they're also small volumes of materials involved at the same time.

10 So when we're talking about a scenario like this now, these are kind of interesting factors 11 to take into effect, and it's probably a good time to 12 say a lot of the modeling I've seen in the dike-drift 13 14 interaction, nice modeling. Excellent very 15 calculations have been done, and some variable 16 viscosity has been put in, but only in cooling, only 17 as the temperature cools down, almost like pancake syrup you put in. It increases the viscosity a little 18 19 bit as you cool, but none of the real strong effects 20 of solidification is in.

21 So some of the things I'm mentioning today 22 could be used to knit together already existing good 23 pieces of research that have been done, and we could 24 actually do a tighter job on, I think.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Instead of seeing what we just saw there

(202) 234-4433

25

1

2

3

4

5

6

7

8

9

	152
1	of a large opening with a very thin little dike, for
2	example, back and forth in the small volcano in the
3	surface, perspective-wise we see many dikes, of
4	course, that are one to two kilometers long or at
5	least hundreds of meter long. And if we look at a
6	drive that's five and a half meters wide, it's really
7	a very, very tiny, little part of this system.
8	And magmatic systems, if they want to
9	move, they're just like us. They want to do it in the
10	least dissipation of energy. So they'll move up, and
11	if they run into an obstacle, they just go around and
12	keep on going, and we want to find out if there really
13	is an obstacle there.
14	Now, dikes. Dikes in general, they're
15	elastic cracks like you see in your windshield of your
16	car at times, except they're overpressured with magma,
17	and they move up and they do all kinds of dances and
18	things as they come up.
19	So very, very commonly the leading edge
20	will be broken up in a series of staves back and
21	forth, and these guys propagate back and forth and the
22	coalesce with depth, and because of the elastic
23	theory, is they propagate around each other to do
24	these kind of dances you can see.
25	Now, these are very local, delicate

1 features. I put in here to show you regional dikes 2 This is Hudson Bay. This is the Mackenzie forms. 3 dike swarm way up here that goes all the way down 4 through Canada, and you can see how it's steered by 5 the stress field in the continent, and this is not what we see out there. We'll see small, little 6 7 dikelet areas. We see more -- you're not going to 8 find that in your handout because I stuck that in at 9 the last moment. This is in Antarctica. 10 This is a big seal, but this is some of the preexisting dikes you 11 12 They're usually, you know, half a meter, a tenth see. 13 of a meter up to a meter or two wide, not generally 14 very large. You can see them propagating. We're 15 looking down now. In Antarctica here, we're three to 16 five kilometers down in the crust, beautifully exposed 17 areas, nothing on it in terms of any vegetation or anything, and you can see these dikes as 18 they 19 propagate around each other moving back and forth. 20 They're not this infinitely fissure sheet 21 that's coming up. So magma is moving around, trying 22 to fit its way up, and here's a very nice one. It's 23 a little hard to see here exactly, but you see these 24 guys curving around each other over here, and the 25 countryside is full of these things in some areas.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

153

	154
1	Small, and of course, they cool rapidly.
2	A dike this side has about an hour to live before it's
3	solid. It hits the 50 percent right away and it may
4	move a little bit in the middle, and then it's done
5	unless it is resupplied and has to propagate again.
6	These guys die a thermal death rather rapidly.
7	These dikes can be made in a viscoelastic
8	material. Here's me in a younger phase of my
9	existence and experiments doing at Cal Tech. Here's
10	Sven Mallo. We made a system of viscoelastic
11	material, and we actually propagated. Unfortunately,
12	you can't see it very well here, but it shows exactly
13	the finger pattern that we saw before.
14	Just for historical purposes, three people
15	who you'll probably never see standing shoulder to
16	shoulder, Jerry Wassaberg, Don Anderson, Lee Silver.
17	You know, Jerry and I don't want to be in the same
18	room.
19	And the nice thing about using some of
20	these, if you make it on Jello, you can eat it
21	afterwards, and especially when you use whipped cream
22	as the magma.
23	So dikes. Dikes undergo the same problem,
24	the same phase, of course, except that they have two
25	large fronts, and they have big cooling fronts, and
	I

(202) 234-4433

middle of this thing where the material is the most fluid.

1

2

3

4

5 However, it is a very, very tenuous 6 process of feeding the system as these fronts are 7 moving in. Now, those well versed in physics will 8 realize that this is a very interesting system because 9 what you get here is the fluid is going at right 10 angles orthogonal to the cooling field, and so because the fluid is flowing at right angles to it, the fluid 11 flow, no matter how fast you flow it, it's not going 12 to burn back the edges. The solidification front just 13 14 keeps marching right in.

15 There are orthogonal vectors. It's like 16 when you shoot a rifle bullet. You shoot a rifle 17 bullet. It drops to the ground the same amount of 18 time it takes you to drop it right here. Just the 19 velocity takes it somewhere.

Well, these things have only a certain amount of time before they propagate in, and what happens with these things a lot is that if the system is being pumped, the dike will actually try to keep pushing out the walls open. It is over pressured. As the front comes in, it will try to push it open, push

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

it open.

1

2

3

4

5

6

7

8

When the over pressure dies down and the
eruption is over, the dikes actually may seal up.
They actually may become much smaller. So when you
look at them later, dikes and small cones and things,
they look tiny. They might have been significantly
larger, tens of meters larger, I mean, just slightly
larger.

9 So when we're looking now at systems like 10 in the solidification, we should think about what 11 happens in the lava flows. What happens would be in 12 the system of Yucca Mountain. We'd worry about the 13 dikes going up, and these frosted areas on the outside 14 are called thermal entry effects.

15 As soon as the magma starts going up through this cool rock to a larger mass at depth, it 16 immediately starts to be quenched out in the margins. 17 The further it goes, the more these guys propagate 18 19 inward, and these thermal boundary layers on the margins get thicker and thicker with time. 20 The actual 21 active part of the dike is thinner and thinner. 22 So when a dike hits the repository, if it

does, it will already have established by it, around
it, some kind of a chilled margin. So it won't be
just pancake syrup at a high temperature just zipping

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	in immediately. You have to worry about these things.
2	As soon as it turns the corner and goes
3	into the drift, we also have thermal boundary layers
4	built up, and we also have the hole in that large
5	sheet. So material is going to start in here, and on
6	top of it, we're depressurizing the system. We're
7	very close to the earth's surface now. So we
8	depressured the system. This thing wants to be a
9	solid. It's starting to crystallize and solidify
10	enormously rapidly. So as soon as it hits the
11	opening, it has released pressure even more. This
12	thing will either go into a phase of forming tephra or
13	ask or, if it has been degassed, it will start forming
14	a very boldish, thick, viscous toothpaste-like
15	extrusion that will start pushing its way into the
16	front.
17	So this is what you see here, and I
18	started this out. This is the thermal entry factor of
19	well mixed tank, but it's not, of course. It comes
20	in. It already is cooled somewhat, and then it starts
21	hitting the system.
22	I've also shown you a system that will
23	actually start and stop. We can actually see this in
24	the rocks where a system will erupt for a while, stop,
25	the fronts will go in and it will start up again, open
I	

(202) 234-4433

	158
1	up, and we can actually read this in the rocks, and
2	this could actually be done at Lathrop Wells.
3	Now, what happens then is the system
4	starts closing in. Instead of the flux of material
5	going in via constant or increasing with time, because
б	it starts closing up, this flux is shut off. It
7	starts to shut itself down because the solidification
8	effects are moving in all the time. This thing has a
9	big bulbous front. It starts to plug itself.
10	It's a natural plugging material. It's
11	like we were kids, teenagers group up and old timers
12	would say, "You've got a hole in your radiator. Put
13	in a raw egg."
14	What do you mean put in a raw egg?
15	Well, as soon as the raw egg gets into the
16	opening, it's fried, it plugs the hole in your
17	radiator, and your radiator is sticking up. This is
18	kind of the raw egg treatment.
19	And you can see what I've done. I've
20	taken a canister filled holes, and the part near the
21	top is about three meters in diameter. These are
22	various viscosities. This is very low, ten to the
23	three, ten to the four, ten to the five. They could
24	be ten to the six, ten to the seven, ten to eight
25	poise. They could be even higher, which would mean
1	

(202) 234-4433

	159
1	the flux would drop off immediately over this time
2	span of hours here.
3	And this is just a schematic now. I don't
4	want you to take that too literally.
5	Now, to give you a feeling for what a flow
6	looks like, a manageable flow like you might have seen
7	at Crater Flats or Lathrop Wells, this is in Hawaii,
8	for example. This is a flow front, and this moves
9	along with a tractor tread. This thing is basically
10	a solid. It's incandescent. It's probably five, six,
11	seven, 800 degrees, but we're talking way below the
12	solvency of this thing.
13	This is moving. It's being pushed from
14	behind, and big blocks are falling off the front.
15	It's like a tractor tread. It's moving slowly,
16	pushing its way down through the vegetation things.
17	Okay. Now, if you're near a vent on the
18	earth's surface like near Kilauea and this liquid
19	magma is actually going through the air, I just want
20	to show you this is spatter. This is magma. It hit
21	on a tree, and it quenched on the tree. The tree
22	quenched it.
23	This is an important characteristic.
24	Magma is so hot it gets near anything and it will
25	quench and grow a rind on it instantaneously. We even
I	1

(202) 234-4433

	160
1	see this with human beings in Pompeii and things like
2	this.
3	Dramatic, a tree. These are tree casts.
4	A lava flow hit a tree in Hawaii. It just start
5	quenching around the tree. Of course the tree catches
6	fire, dries it out. It burns up the tree, but the
7	column of magma, the column of lava stays there. So
8	these are large. These things stick up and they're
9	tree casts.
10	So this just shows you. You don't need
11	something that's highly resistant in temperature. Any
12	time magma hits any kind of cool surface into this
13	room, anything, it starts quenching out. So the first
14	thing it does when it hits one of these drifts, it
15	quenches on everything that's around it. It starts
16	quenching out, and what do I mean by "quenching out"?
17	It becomes solid, and the motion has to go somewhere
18	else.
19	So this is a flow front that you see at
20	Lathrop Wells, and very, very similar to the one I
21	showed you before, and this is the front. And you can
22	see these big pieces of material had moved along,
23	squeezing along on it.
24	And we can predict very, very nicely the
25	cooling, the quenching time. This is the crust
I	I

(202) 234-4433

	161
1	thickness, for example on lava flows and lava lakes.
2	These are my calculated lines going through the data.
3	This is square root time in hours. There are days
4	here, and here's one day. You get a half a meter
5	basically with one day of cooling time.
6	And of course, it is exponential. So if
7	you stick something instantaneously into a vat, you
8	get a rind on it instantaneously of a couple inches
9	very, very quickly.
10	This is a dramatic case. this is an
11	alkali basalt from the San Bernardino volcanic field
12	in southern Arizona, very, very much like the stuff,
13	almost identical to the stuff that come sup at Lathrop
14	Wells and Crater Flats.
15	this thing in the middle is a piece of the
16	upper mantle. This came from over 30 miles down, and
17	you'll notice on the outside it has got a quench rind.
18	This thing here was over 1,000 degrees. It got caught
19	up. It's a piece of the upper mantle. It's a piece
20	of prototype, but it has a beautiful quench rind
21	around it.
22	I give this to students on an oral exam.
23	Based on this kind of information you can calculate
24	the original temperature of this thing, what it was in
25	when it was dropped in.
I	

(202) 234-4433

So this erupting material from Great Gap picked this thing up. We call it zenalis. It was slightly colder than magma. The magma quenched around it and brought it on up. So this thing has a quenched rind around it. The rest of this is vasiculated, in other words, brought it all the way up near the earth's surface.

8 So quench lines are very, very important, 9 and here's another one of these rubbly fronts that 10 Lathrop Wells, and that's what a five a nd a half 11 meter would more or less look, with a canister, would 12 look like around this thing. In other words, to force 13 this material into that opening would be a very job.

15 about an half hour and another one after another half 16 hour, for example, and I just schematically put it on. 17 We could actually do -- and I want to put out here to 18 people could actually do we а very nice --19 calculations here, numerical calculation, that would 20 actually do this, calculate this and figure it out 21 very, very nicely. We wouldn't have these little ears 22 sticking down with fill-in, but look at the opening 23 that you have to deal with in pushing material into 24 this thing.

Now, we're just talking about material

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

And this would be a quenched line after

1

2

3

4

5

6

7

14

25

entering into this or coming up even around a container. Quenching would be enormous. Now, the cooling off of these things, it doesn't really matter. I've put these in to show you how systems cool as opposed to really being on the earth's surface, being buried deep in the earth's surface. It doesn't really matter that much.

8 The important thing is, the incredible 9 thing is magma is so much hotter than anything it 10 encounters, it's such a foreign world for it to be on 11 top of the earth's surface that it just quenches out 12 everywhere it can possibly be.

It's a shame we can't see that brighter, 13 14 but these are large intrusions. You'll have to take 15 my word for it and look at it later, of antarctica 16 that we can actually see where they propagated out and 17 we can actually see the quenching around the margin of These are large. Even though these are 1,000 18 these. 19 feet thick and kilometers long, we can see this 20 phenomena happening there also.

And here. This is a large, integrated sheet sill, and not only does it quench out around the margins. These black areas quench around the margins, and I've simulated the magma where it would be in the bottom, and it goes along, and you actually don't get

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

1

2

3

4

5

6

7

	164
1	any more. It goes along. This piece goes out here,
2	and this things goes then from about 300 meters thick
3	out five kilometers, seven kilometers, down to about
4	one centimeter thick where it's totally quenched out
5	and stopped.
6	So to remind you then, these sumafication
7	fronts, they're everywhere, and if we do any realistic
8	calculations, we definitely want to take an account
9	for these.
10	I want to end up also with coming back to
11	what I said in the beginning about these thermal
12	relaxation times in this, in moving magma from one
13	place to another, and also of thinking of the system
14	as an integrated system, but not just drawing your
15	sheet at depth, but actually getting something that's
16	integrated into the system.
17	Why? Because these all have different
18	sumafication times. Different areas we look at, like
19	I told before, have different regions in them where we
20	have a hierarchy of cool-down times or sumafication
21	time.
22	So, for example, if we took the DOE
23	picture, for example, and we had the drift and had the
24	main repository added, we would be able to do an
25	analysis like this and lay this out in hierarchical
I	'

(202) 234-4433

	165
1	terms of saying what's going to seal first, second,
2	third, et cetera, in the system.
3	I want to touch on one last thing, and
4	actually this comes up in these modelings by various
5	folks, and that is the whole idea of convection in
6	magmas. People say in some modeling people have
7	convection in the drifts. I don't see it by DOE or
8	EPRI, but I've seen some other group and done some
9	modeling, and I want to show you a little bit about
10	that.
11	It's been a very, very interesting topic
12	because in big magma chambers, regions as big as this
13	room or ever huge regions that may have a thousand
14	cubic kilometers of magma and some systems we think
15	had 500,000 cubic kilometers. The idea of convection
16	comes up, and so I want to give you a little idea
17	here.
18	This is kind of a different diagram. This
19	is nondimensional time. This is time going off to the
20	right. It's time scaled with thermal diffusivity in
21	the link scale for the system. So you just think of
22	this as time going to the right.
23	This is temperature. This region above
24	here is what we calla super heated region. It's a
25	region where the magma is actually above its first
	I

(202) 234-4433

	166
1	crystallization point.
2	We never see any magmas that are up there
3	out of the earth above their liquidus, in other words,
4	above their point of crystallization. It's always at
5	or below it on earth.
6	However, there are metered impact sheets
7	like the Sudbury sheet in Canada because of an
8	extraterrestrial and large impact of something about
9	12 kilometers, it produced a sheet of magma 1,700
10	degrees, well above its liquidus.
11	And the cool down sequence has been very
12	important for us. What we have found experimentally
13	and I'll just show you in a minute, that one of
14	magma's superheated actually convects rapidly. As
15	soon as it gets to the liquidus, convection ceases
16	immediately, and I'll show you some of this in a
17	minute.
18	So we go on a range then. If we have a
19	superheated system, and these up here we're looking at
20	systems that are far from that. These systems are
21	systems that can hardly get out of the earth because
22	they have volatiles in them, but I wanted to show you
23	one thing that we want to make sure.
24	So once it's in this range then, we
25	actually talk about conduction cooling. It's all
I	

(202) 234-4433

	167
1	conductive cooling, and this makes your analysis so
2	much easier. These are all basically linear analysis.
3	Here's a system that we've been using at
4	Hopkins. This is a paraffin. This is in a decane.
5	It's a paraffin that has actually a liquidus and a
6	solidus in it, 25 square centimeter tank cubed, and
7	what you see at the top is a solidification front
8	growing in from the top. That real white area is the
9	mushy zone. Right at the margins is a thin mushy
10	zone, and the darker stuff is where it's all solid.
11	Now, you can see this is superheated, and
12	so the ray number that tells you about convection is
13	large to begin with and is within a few minutes of
14	starting to cool, it's insulated everywhere else. We
15	cool it strongly from above. It goes into very
16	vigorous thermal convection.
17	Within an hour or so, you can see this
18	thing. It is pumping out the superheat, and the
19	convection is waning, and any plumes that are falling
20	off are just falling off right at the roof there, and
21	as we go on further with the system, it actually dies
22	entirely after about four hours, and the whole system
23	then takes about ten days further to crystallize down,
24	in other words, this front to go all the way down to
25	the floor.

(202) 234-4433

	168
1	Because it pumps out all of the superheat.
2	Once it gets to the these little particles in here
3	are just little buoyant, neutral particles. So we
4	actually have a laser sheet going to the sides so that
5	we can tell what's going on in the system.
6	So you can see that this thing actually
7	becomes totally stagnant even though it has the
8	viscosity of water. Okay? So there's no convection
9	in this system. The system is not convecting this.
10	The last thing I wanted to say a couple of
11	words about is that this is a kind of funny diagram
12	where I talk about filling time for things, which is
13	the flux of the eruption in times, the duration of the
14	eruption. There's a couple of things on here. One is
15	the eruptive flux.
16	People have estimated eruptive fluxes
17	called large igneous provinces, provinces where they
18	can get out in and they can date whole big sequences.
19	So these are probably large fluxes.
20	But we're talking about here cubic
21	kilometer per year, ten a year, 20 a year.
22	The thing that's also important is Tom
23	Simpkins' analysis in the <u>Smithsonian</u> of how long, the
24	duration that these things last. And you'll notice
25	that the highest his stepping down here, the most
	I

(202) 234-4433

	169
1	common eruptions are from a tenth of a year to a year,
2	and so you combine these together, these kind of
3	rates, whatever you want to do, and I think we're at
4	a rate that's probably way up in here, a very small
5	rate. We can get an estimate for how much material is
6	in the system, how big the either sills, which are
7	horizontal sheets, or dikes will be in the system, and
8	we get a real feeling for it.
9	So we can put these things on the system.
10	We do know things that we can add in, take this cloth,
11	and weave it together a little more.
12	So I want to leave you. When you look at
13	a system like this, it's in antarctica where I've been
14	working for the last 15 years and other places I've
15	been working in the world. This is a system that's
16	full of magma. These were large sheets of magma
17	covering 10,000 square kilometers, for example. They
18	were sheets that were injected, and there were about
19	1,000 feet thick. There are four or five of these big
20	sheets going up and they're 180 million years old, and
21	the continent has broken up. Dikes around,
22	propagating edges, tips, all kinds of things. It's a
23	wonderful laboratory for this kind of thing.
24	And so we've had seven expeditions here.
25	It becomes so important in people's thinking that the
I	

(202) 234-4433

	170
1	National Science Foundation let me take 25 scientists
2	around the world down here last year, and you'll see
3	an entire session at the HU on these kinds of
4	processes that may be important. It's called
5	"Magmatic Processes: Antarctic Perspective," which
6	there will be 30 papers at AGU in the fall.
7	So the thing I want to leave you with, a
8	couple of things. Convection is out in these. These
9	are very sluggish systems. This magma is having a hard
10	time to get up into the earth.
11	Solidification is enormously important,
12	and it can be modeled. It can be handled, and we're
13	at the point really with all of the work that has been
14	done, I think, to do a little more careful modeling
15	and really get to some firm, firm, I think,
16	conclusions on some of these things.
17	So thanks very much.
18	CHAIRMAN RYAN: Thank you, Bruce. That's
19	a fascinating talk.
20	I'll start with questions. Jim Clarke.
21	DR. CLARKE: Thanks, Bruce.
22	You've given us what I guess I would call
23	a conceptual model supported by physics and analogues
24	for what you think would happen if magma were, in
25	fact, to reach a repository and interact with a waste
I	

(202) 234-4433

	171
1	package.
2	Can you design an experiment that would
3	support that?
4	DR. MARSH: Yeah. There's actually a
5	number of experiments that could be done. One is some
6	numerical modeling on this setting up, using these
7	geometries, using these real materials, and it's not
8	that difficult anymore to do this kind of thing.
9	Secondly, we can do some scale analogue
10	studies in small scale. In fact, we're doing some
11	right now for a different process. These processes
12	we're talking about where these solidification fronts
13	move in and laterally when magma is flowing is very
14	fundamental to how crystals are distributed in the
15	systems.
16	And so I have a graduate student, for
17	example, who is as part of her project working on one
18	of these big systems in antarctica.
19	We could do this on a small scale with the
20	right materials. There are solidification experiments
21	that actually use paraffins, tubes, sheets, and things
22	like this, and we can actually do this, I think on an
23	analogue, small, scaled down system, and we can also
24	do some large scale things, I think on some of these
25	systems.
I	I

(202) 234-4433

	172
1	So without a huge amount of labor, I think
2	some clever experiments, things could be done.
3	DR. CLARKE: Thank you.
4	CHAIRMAN RYAN: Bill Hinze.
5	MR. HINZE: Bruce, what are the
б	implications of the lack of convection to the
7	repository?
8	DR. MARSH: The fact that these things
9	don't convect at all, well, they're so sluggish they
10	can't convect, is that it makes the whole system much,
11	much easier to treat, but it also says that the
12	thermal relaxation time it goes right into a
13	solidification state very, very quickly. There's no
14	way you can have, for example, material coming into
15	the dike, circulating into the drift and back. That
16	would never ever happen in the systems at all, or
17	heaven forbid, this material going into the drift and
18	then sitting in there and convecting and stewing on
19	the canister, eating on the canisters.
20	As soon as this stuff encounters the
21	canister, the canister is a big lollipop. It just
22	quenches out all around this thing.
23	And there are analyses. You know, the
24	canister probably won't be moved by this. These are
25	so heavy the effective density is heavier than the
I	I

(202) 234-4433

	173
1	magma. The modeling I've done using all of the data
2	I can get on the canisters, and they're 15 tons.
3	And if you actually work up even with the
4	air inside and everything, they are heavier, much
5	denser, significantly denser than the magma. So
6	they're not really going to be moved by this stuff.
7	MR. HINZE: A parallel question. We see
8	these sills extending for kilometers. Why can't the
9	lava extend for a few hundred meters down a drift?
10	DR. MARSH: Yeah. The ones I've shown you
11	in Antarctica are down five kilometers in the earth.
12	there's a large amount of material. We're talking
13	about 10,000 cubic kilometers, for example, or
14	something like this in magma, not small little
15	batches.
16	The batches of stuff we see in these kinds
17	of regions, these small cinder cone regions, they're
18	up in a very foreign part of the world with very small
19	amounts of magma relatively speaking, and it is
20	solidifying rapidly. So we get these small, small
21	dikes and
22	MR. HINZE: The thermal reservoir isn't
23	there?
24	DR. MARSH: Yeah, the thermal reservoir
25	isn't there to keep these guys alive. this thing in

(202) 234-4433

	174
1	Antarctica was a continental rift, of course, as the
2	continents were moving apart. So material was part of
3	what was going to become an ocean reef system, in
4	effect an infinite bank account there to work with.
5	MR. HINZE: Thank you.
6	CHAIRMAN RYAN: Bruce, it's a fascinating
7	picture you've created for how the magma would
8	intersection waste packages and so forth. Is there
9	any way to think about a secondary process where a new
10	magma would come up and somehow intruse into this now
11	quenched material and reattack the waste packages?
12	Once it's isolated in that quench material, it's over?
13	DR. MARSH: Yeah, that's a very good
14	question, Mike. One of the things we find in these
15	systems is when magma has come in and solidified, what
16	I call it it trusses up the system. It basically and
17	even in the Antarctic case, those sills that we see in
18	Antarctica, there's one that came in that was kind of
19	in the middle of the package, large. It looked down.
20	It took 1,000 years to cool down. It basically
21	trussed up the crust. It put an I beam through the
22	crust.
23	Other bodies coming in had to basically
24	they're influenced by this strongly. So the short
25	answer is you get this material into the system. It
I	1

(202) 234-4433

	175
1	basically puts I beam constructions in the system, and
2	this is where magnum won't go again. It will go
3	somewhere else. The material out there, the trough is
4	much easier to propagate a dike in than whatever
5	propagated in this stuff.
6	CHAIRMAN RYAN: So from a fluid flow
7	standpoint, that first shot of magma into a system
8	really creates a higher resistance to flow so that it
9	has to find another path.
10	DR. MARSH: That's right. It would plug
11	up the system.
12	CHAIRMAN RYAN: The second part of the
13	question is, you know, people have suggested explosive
14	kinds of events. How does that fit into your view of
15	this?
16	DR. MARSH: Well, underground, when we're
17	talking about underground, the first thing I might say
18	is that a volcano is an attempt to cap a fountain of
19	magma near the surface. We've all heard of these Red
20	Adaire (phonetic) stories of capping run away oil
21	wells that are on fire. They go in with a big weight
22	and drop it on them. That's what volcanoes are
23	actually.
24	They work up a mound and mound and mound
25	until they cap themselves, and if they cool down and
ļ	I

(202) 234-4433

176 there's no more magma coming, that's it. It's over. If there is a new charge, like in large volcanoes like in the Cascades or Hawaii or something like this, it has to come out again at the same point. It will reactivate, and this is where we get explosive eruptions because the magma that's in it gets near the critical crystallinity point.

8 So this is a major factor then in thinking 9 about these systems. So how about underground? The 10 magma is going up to the surface. Let's say it hasn't reached the surface yet for some strange reason. 11 If you think about a dike oriented out there, a dike of 12 any consequence, any length, it's going to venting in 13 14 the valley before it vents anywhere, and that's where 15 most or all of those things are going to bleed off 16 immediately.

17 But let's say for argument's sake that it 18 goes up through the mountain. It hasn't propagated 19 anywhere else until then, and it hits the repository 20 So what happens is it's going to start a first. 21 volcano in the drift, and it's going to start with 22 pyroplastic materials, tephra materials which are like 23 popcorn sized, gravelly. It's going to build up in 24 angle of repose. It's going to be coming into this 25 It's going to pile up this. thing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	177
1	It's also hot. It tacks together. It
2	forms a solid block, again. The early scenarios you
3	heard some group saying that we could have a dike
4	propagate up and we could have a shock wave going into
5	it.
б	That's not going to happen. Shock waves
7	are when you build up something. You have a membrane,
8	you break the membrane, and you can actually have a
9	shock wave.
10	All of the dikes that we see, as I showed
11	you also, and even these bill sills start out as
12	little, tiny cracks, and they go for a couple hundred
13	meters. There's a little crack, opening stronger and
14	stronger and stronger until it opens up. So it's a
15	slight wedge opening up in this thing. So basically
16	it would dissipate anything like that at all.
17	So what would you get? You would get a
18	local little volcano build up in the five and a half
19	or seven meter drift, and that would basically in this
20	case where you didn't have any lava yet, you'd pile up
21	this pile. The heat in there would weld this
22	material together and plug up the opening, and the
23	magma would certainly go around it and go somewhere
24	else.
25	CHAIRMAN RYAN: Okay. Thanks, Bruce.
I	I

(202) 234-4433

	178
1	Allen.
2	VICE CHAIRMAN CROFF: Thanks.
3	To display my lack of knowledge in some of
4	this area, what is the source of the water that is in
5	these magmas and why does it vary so much among
6	magmas?
7	DR. MARSH: There's water everywhere in
8	the earth, strange as it may be, and the ultimate
9	origin of some of this water is from probably the
10	plate tectonic cycle where the ocean plate goes back
11	down inside the earth and it carries hydrated
12	minerals, minerals that have the hydroxyl radical in
13	them.
14	And then once they get trapped inside the
15	earth, it's in there and sometimes it's in there
16	locked up in a mineral or if it goes to real high
17	pressures, sometimes it is in there as some sort of
18	defect or dislocation structure.
19	When any melting takes place, any
20	volatiles that are in the mantle scream into the melt
21	because the partitioning, partition cultures,
22	enormously partitions this stuff into the melt. So it
23	scavenges anything around.
24	So we call normal mantle like under Hawaii
25	for very normal mantle material. Those things are
I	I

(202) 234-4433

	179
1	very, very dry. They carry less than a quarter of a
2	percent water. The ocean ridges in the world are also
3	like that.
4	Alkalide basalts, which can come from
5	quite a number of different kinds of sources depending
6	on where they are in terms of old lithospheric
7	material, et cetera, older earth that's not entirely
8	devolatilized, any number of sources melting at high
9	pressures can give you.
10	Now, these are not a huge amount of water.
11	You can get one or two percent by weight. A
12	hornblende crystal, a crystal of hornblende normal
13	mineral that has a hydroxyl mineral, it has two
14	percent water in it. So it's not as if there are huge
15	amounts.
16	As we get the siliceous material, like the
17	Pompeii type eruptions in some of these Mount St.
18	Helen's eruptions, you get some silicic material.
19	That material can contain a lot of water, and when you
20	bring this up and you undergo the diver's bins, this
21	material goes up and releases. It's like shaking up
22	a bottle of Coca-Cola. You take the cap off and it
23	really froths out, and that's exactly what happens in
24	some of these real silicious things.
25	We don't have that here. We don't have
I	I

(202) 234-4433

	180
1	these. These are basalts. Basalts don't form ash
2	flows.
3	Yucca Mountain itself is made of ash
4	flows. That is one of these things. It flows out as
5	a beer bottle froth at 1,000 degrees, collapses. Air
б	goes out. It welds together in place, turns into a
7	rock in place. So that's the fascinating aspect of
8	that.
9	VICE CHAIRMAN CROFF: Thanks.
10	CHAIRMAN RYAN: Ruth.
11	MS. WEINER: Bruce, thank you for a great
12	talk.
13	How much variation is there in the
14	heterogeneity or homogeneity of magma around the
15	earth, that is, the water content, the physical
16	behavior, and so on?
17	DR. MARSH: Well, there are classes of
18	magma, and they seem to hold together based on their
19	tectonic locations, for example, island arc magmas,
20	ocean ridge magmas, isolated hot spot magmas, et
21	cetera.
22	This stuff that we're seeing here is in a
23	class that we would call in the alkali basalts cinder
24	cones isolated areas, and for a basalt, these are some
25	of the more volatile rich. For a basalt, it may have
	I

(202) 234-4433

	181
1	one to three and a half percent. It's a little bit of
2	you want to check more than one.
3	We have one analysis basically on this
4	kind of thing, and it's a little dicey, a little bit,
5	about how you estimate the volatile contents, but we
6	do know that there are more volatiles in this stuff
7	just because of the style of eruptions, for example,
8	the big tephra piles and things like this that come
9	out.
10	So it's a lot volatile driven, and of
11	course, very deep in the earth CO_2 , we get CO_2 around,
12	and CO_2 is less soluble in magma than water. So it
13	comes out more rapidly.
14	MS. WEINER: What I'm getting at is to
15	what extent can you predict the behavior of one kind
16	of magma from another kind of magma.
17	DR. MARSH: Yeah.
18	MS. WEINER: Provided the volatile content
19	is similar.
20	DR. MARSH: Yeah. For example, cinder
21	cones. You don't see many big tephra cinder cone
22	sheet explosions in Hawaii. These are docile magmas,
23	by and large, and that's because they have a low
24	volatile content in general, and they're not. They're
25	out in this trend. They have very low crystal
I	I

(202) 234-4433

	182
1	entities. They're very hot. They're near 1,200
2	degrees, and they can flow a long way before they cool
3	down to their critical crystallinity.
4	These things that we see out here because
5	of their eruptive style and because of looking at the
6	phase equilibria, they have more volatiles in them,
7	and it reflects that.
8	However, instead of making and thinking of
9	them as being more dangerous in the earth surface,
10	it's more difficult for the magma to get out of the
11	earth's surface because their temperature as they
12	approach the earth's surface may be less than what it
13	needs to be to actually be a lava flow on the surface,
14	which is really an unappreciated fact a lot in
15	modeling.
16	CHAIRMAN RYAN: The other question I have
17	is how much pressure is exerted, would be exerted on
18	a canister if some magma flowed around it and
19	solidified and
20	DR. MARSH: Very little. There are some
21	contractions due to just the thermal cool-down, but
22	not much pressure would be due except for the weight
23	of the material on it.
24	The canister will heat up because there's
25	air in it. It may actually rent. It may actually
I	1

(202) 234-4433

	183
1	tear open a seam, but what would happen is you'd form
2	a vesicle, a bubble or something nearby in the magma,
3	and the magma would quench into that also.
4	I mean, you can't imagine a magma ever
5	going in and dripping around or anything. So it would
6	actually quench into the opening rapidly.
7	MS. WEINER: Thank you.
8	CHAIRMAN RYAN: Other questions? Latif.
9	DR. HAMDAN: Bruce, as you know, this is
10	not only agreement as to what consequences can take
11	place with the magma plus the drift. Can you based on
12	your tremendous experience very briefly identify
13	elements of the magma drift interactions that you
14	think scientists can agree on, should agree on, likely
15	to agreement, and elements of the interaction that
16	they might not and require further confirmation maybe?
17	DR. MARSH: Well, I think that these kind
18	of problems we're talking about are something that
19	everyone can get a hold of and agree on. I think the
20	things that you might want to think about a little bit
21	is the angles which may be a propagating dike would
22	hit the repository.
23	In other words, I show one five and a half
24	meter, but we're looking at a field, a farm of these
25	things out there, and whether it hits it at right
I	

(202) 234-4433

angles, hits it here, hits it there, this is something that we can do a probabilistic risk estimate on based on the regional stresses and how much stuff is available, things like this, but I think it would be easy once people see this to get all on the same page and to come up through this same kind of level of experience on these things.

8 You know, as it stands, I think there are 9 certain things we can rule out very strongly, and that 10 is like thermal convection and things like this, but it is important, I think, for everyone to get on the 11 same page in terms of the fluid that you're using to 12 model with and what magma really is like. 13

14 Now, you hear people talk about how 15 difficult it is to handle these problems, but they're 16 actually not that difficult because you deal with it 17 as a solid when it is immobile at 55 percent crystals or less or more, and beyond that you deal with a very 18 19 viscous fluid with solids in it and things.

20 Now, what you see, often there's very nice modeling in DOE's reports and EPRI's reports and 21 There are certain points, however, they get 22 things. 23 when, in fact, they either do not use the results to 24 in the future or don't knit them together like this. 25 Like I said, they use a fluid in the dike drift

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	185
1	interaction report. they use a fluid that has a
2	viscosity that increases with cooling, but no
3	solidification effects, where it actually just becomes
4	a solid snap through.
5	So these are little areas I think that
6	could be smoothed up a lot with all of the
7	researchers, and as I say, it's taking pieces of a
8	cloth and knitting them together.
9	A lot of the stuff is there. It's just
10	there are little enhancements that could be done.
11	DR. HAMDAN: So you do see the light at
12	the end of the tunnel?
13	DR. MARSH: Oh, yeah.
14	DR. HAMDAN: Thank you.
15	DR. MARSH: Yeah, and it's not magma.
16	CHAIRMAN RYAN: Other questions? Yes,
17	John Flack.
18	MR. FLACK: Yeah, Bruce. I'm thinking of
19	the relationship between igneous activities and
20	seismic events. Do you see this as a different kind
21	of situation having an igneous event be preceded by
22	a seismic event or do you believe the models could
23	still accommodate that type of situation?
24	DR. MARSH: Well, there's an intimate
25	relationship at some scales between seismicity in an
	I

(202) 234-4433

	186
1	event and magma. For example, there's hardly any
2	magma that moves if it's in a well documented system,
3	for example, in Iceland.
4	Magma often comes up in these big systems
5	and propagates out, is distributed out as dikes that
6	propagate horizontally. Some of these in Iceland you
7	can actually watch them propagate down over a several
8	day period, over 100 kilometers as they come down
9	through.
10	And how do you know? You can see that
11	seismic spreading down, and you can see the eruptions
12	start happening out of these fissures. so you can see
13	this happening. So that's one aspect of it.
14	In other words, when you're cracking open
15	the earth, it's a seismic event. No other way around
16	it. In active systems that are sitting there, in big
17	systems, we get things like harmonic tremor and all
18	kinds of unusual where the system seems to go into
19	just an oscillation mode, for example, and these are
20	now, we realize, we've coupled these together with
21	this mush column system. These are open conduits
22	where we basically get acoustic waves bouncing back
23	and forth, and it resonates out of this thing, and
24	there are certain styles of seismicity now that you
25	can actually identify with these things that actually
l	I

(202) 234-4433

	187
1	tell you that there's a reservoir of some limited
2	extent perhaps, but there's a reservoir there, and it
3	is told by this harmonic tremor.
4	So it's getting close and closer together,
5	but it's precursors certainly in an event, even Mount
6	St. Helen's, for example. The volcano started to
7	enlarge. There was seismic activity. There was
8	nothing on the surface until we started seeing over
9	steepening, some steam and things like this.
10	MR. FLACK: So how it behaves will be
11	certainly a function of the seismic activity that
12	precedes the event.
13	DR. MARSH: Well, they go hand in hand.
14	MR. FLACK: Yeah.
15	CHAIRMAN RYAN: Any other questions?
16	Just identify yourself and tell us.
17	MR. APTED: Mick Apted at Monitor
18	Scientific.
19	Bruce, I've seen proponents of the ideas
20	of very low viscosity, basaltic magma traveling very
21	far in these kind of intersected drifts, in a sense,
22	I think, arguing against solidification as an
23	important process.
24	But one of the things they point to as an
25	analogue is this is like lava tubes and so on that
I	

(202) 234-4433

	188
1	they see in Hawaii. Maybe you could comment on what
2	you think of those as appropriate analogues to this
3	kind of situation that you've been describing.
4	DR. MARSH: Yeah, the key there, Mick, is
5	the incredible difference in the Hawaiian system over
6	what we see here, and it's a fundamental, and it comes
7	down to this guy here a lot. If you don't appreciate
8	this kind of diagram anyway, you can see it pretty
9	much.
10	Here's the Hawaiian system. So anything
11	that you can see on the surface there it's right at
12	its liquidus. It's the most watery system, has a
13	viscosity of about 50 poise, ten to the two perhaps.
14	It is the most fluid stuff of all.
15	And if you don't appreciate this fact, and
16	I don't think many people appreciate this, the fact is
17	that this material is starting out down here. It's at
18	or below its temperature. It's actually a dramatic
19	region.
20	The trajectory of coming to the earth's
21	surface, we could calculate that in more detail. All
22	of the thermal properties are available now. It's a
23	thermodynamic calculation even without heat losses.
24	So that's the big factor.
25	If you actually do not understand the
I	I

(202) 234-4433

	189
1	difference between these two and realizing these
2	systems, how different it is in its preeruptive state,
3	in fact, that's a general statement I would make, is
4	the initial conditions for the problems that are
5	solved are very important in what you get for the
6	outcome, of course.
7	And I would say if anything, for everybody
8	to try to get the most realistic initial conditions
9	and to make sure that they have those and actually
10	worry a lot about their initial conditions before they
11	do the modeling.
12	That's primarily what happens. The whole
13	shock tube story, that was set up. The problem was
14	done perfectly fine, but it was set up as an initial
15	condition to generate a shock. You couldn't get to
16	there with the magma that way.
17	So it's the initial conditions in these
18	things, and that's like I say, these are subtle
19	things, but absolutely critical in understanding how
20	the system is going to work.
21	CHAIRMAN RYAN: There was one last
22	question. We were heading a little bit past schedule.
23	Well, Bruce, thanks again for a real
24	enlightening talk. We appreciate your insights.
25	Next up is Ms. Leah Spradley from
	1

(202) 234-4433

	190
1	Vanderbilt University, a summer intern at NRC, and
2	she's going to report on her project of modeling the
3	volcanic ash plume.
4	Leah, welcome. We'll take a couple of
5	minutes to let her get set up.
6	MS. SPRADLEY: Hopefully everyone has a
7	hard copy, too, and they can follow along if you can't
8	see very clearly.
9	My name is Leah Spradley, and I'm
10	currently a Ph.D. candidate at Vanderbilt University,
11	studying risk and reliability for an environmental
12	management systems, and I'm enrolled in two different
13	programs, VCEMS, the Vanderbilt Center for
14	Environmental Management Studies, and also the Risk
15	and Reliability Studies.
16	I'd like to take this opportunity to thank
17	the ACNW and the NRC, in general, for granting me the
18	opportunity to intern there this summer. I believe
19	even though I had a short period of time there I
20	learned a lot and met a lot of really good people. So
21	thank you for that.
22	Today I'm going to be discussing how to
23	use the HYSPLIT model to model the ash plume and
24	dispersion for a potential igneous event at Yucca
25	Mountain.
I	

(202) 234-4433

	191
1	I'd like to acknowledge the following
2	people. Excuse me. I have some animation on my
3	slides. So I'm probably going to be standing here.
4	To give you some background, igneous
5	activity has been identified as potentially
6	significant to contributing to risk for Yucca
7	Mountain, risk modeling, and especially the deposition
8	at the RMEI location and also in the Fortymile Wash
9	basin is of interest.
10	The HYSPLIT model has the potential to
11	incorporate more atmospheric realism into the ash
12	plume modeling that's currently being done.
13	To give you an idea of the event that we
14	are trying to model here, this shows you the mean
15	values of the parameters that we sampled, and this is
16	the mean over about 1,000 different realizations. So
17	you can see that we sampled the power and the duration
18	and also the diameter mean size distribution for the
19	ash particles, and from those you can calculate the
20	height and emission rate and mass ejected.
21	My objectives for the summer were to
22	explore the alternative ash model and then determine
23	potential importance of the phenomena included in
24	HYSPLIT that's not included in current models, such as
25	wet deposition, and then compare these results to the
I	

(202) 234-4433

	192
1	current model.
2	To give you an overview of today's
3	presentation, I'm going to discuss previous NRC
4	models, the key differences between HYSPLIT and the
5	current model called TEPHRA, my main simulation, and
6	then a separate wet deposition simulation, and
7	summarize the results.
8	So previous NRC models used an empirical
9	plume model or semi-empirical plume model with the
10	wind always blowing south towards the RMEI. So it was
11	a constant direction.
12	And then current models include a
13	redistribution of the ash, and they use a stratified
14	wind field.
15	The HYSPLIT model is called hybrid single
16	particle Lagrangian integrated trajectory model, sort
17	of a mouthful, but it was developed by NOAA and the
18	Air Research Laboratory there, and used at the Nevada
19	test site to forecast airborne transport of potential
20	plumes.
21	And it also makes use of the extensive
22	meteorological resources, the RAMS data that is
23	available.
24	To summarize the key differences between
25	TEPHRA and HYSPLIT sorry. My animation is
1	

(202) 234-4433

	193
1	different first you have the data. HYSPLIT has
2	hourly data available while TEPHRA has data based on
3	12-hour increments.
4	There are 24 elevation bins for HYSPLIT
5	and ten elevation bins for TEPHRA.
6	The forecasting data is initialized from
7	multiple weather stations in the HYSPLIT, and TEPHRA
8	uses data from one weather center at the Desert Rock
9	Airstrip.
10	HYSPLIT also incorporates precipitation
11	data, whereas TEPHRA does not have any precipitation
12	data.
13	The dispersion, the way the dispersion is
14	calculated is also different. HYSPLIT does not assume
15	a Gaussian plume, whereas TEPHRA does, and HYSPLIT
16	uses three dimensional time dependent wind field, and
17	TEPHRA only takes the wind field at the point of
18	release.
19	HYSPLIT incorporates wet deposition, as I
20	said earlier, as well as dry, and TEPHRA does not.
21	And HYSPLIT uses discrete sizes for ash particle sizes
22	and reports the depositions of all these sizes
23	separately. TEPHRA uses a continuous size
24	distribution, but only reports the total deposition.
25	So for my main simulation I used HYSPLIT
ļ	I

(202) 234-4433

	194
1	as the transport model, and I tried to make the same
2	assumptions that are used in the TEPHRA model based on
3	the information that we had. I ran approximately
4	1,000 Monte Carlo realizations, and I randomly sampled
5	the starting day and starting time of the igneous
6	event within a year's window data that I had.
7	And then finally I calculated the
8	deposition at the RMEI location and then all in the
9	Fortymile Wash basin area.
10	This shows you the area of the Fortymile
11	Wash basin that we used for HYSPLIT. All of these
12	dots represent approximately 400, over 400 stations
13	where I recorded the concentration after the event.
14	In TEPHRA, only this area between the
15	black outline of the basin and 20 kilometers from the
16	source was used as the capture window. Just to give
17	you a reference point, this is Yucca Mountain, the
18	center of Yucca Mountain, where the point source was
19	located.
20	So the main idea of this slide is that we
21	had a larger potential capture area for HYSPLIT.
22	I'm going to show you two measures of
23	comparison. One is the ash mass deposited, and the
24	other is the average surface concentration in the
25	Fortymile Wash basin.
	I

(202) 234-4433

	195
1	This slide shows you that the average mass
2	deposited in TEPHRA was larger. You can see that for
3	some of the runs here this is the PDF. It's a
4	histogram of the mass versus the probability of that
5	amount of mass being deposited for each run, and here
6	you see the CDF of the mass.
7	So you can see that in some of the TEPHRA
8	runs a much larger mass was deposited in the basin
9	area, and you can see that with these graphs.
10	MR. HINZE: Leah, was that because of the
11	size of the levitation of 20 kilometers?
12	MS. SPRADLEY: It's really too early to
13	tell the exact reasons why a lot of these differences
14	occurred. Like I said, I only had six weeks to
15	perform these experiments, and I'll get to that in a
16	couple of slides, potential reasons for these
17	differences.
18	I wanted to point out, too, that these
19	probability axes are different. So it's more fair to
20	look at these graphs for comparison.
21	So, in summary, more mass was deposited
22	using the TEPHRA model.
23	I apologize. My animation wasn't like
24	this before.
25	So here's the second measure of comparison
	1

	196
1	that shows the concentration in the Fortymile Wash
2	basin. You can see that concentration of TEPHRA was
3	smaller. I mean the concentration in HYSPLIT was
4	smaller, and again, I want to point out the difference
5	in these probability axes. It's more fair to compare
6	the CDFs here.
7	You can see that the CDFs are fairly
8	comparable in shape. It's just that the mean value
9	using HYSPLIT was smaller.
10	MS. WEINER: Leah.
11	MS. SPRADLEY: Yes.
12	MS. WEINER: On that last slide it's
13	concentrations in?
14	MS. SPRADLEY: Kilogram per kilometer
15	squared. Sorry.
16	So in summary, the total mass deposited in
17	HYSPLIT was found to be less than predicted by TEPHRA
18	despite the fact that HYSPLIT had that larger
19	potential capture area that we are looking at.
20	However, the differences are not fully
21	understood. Like I said, the inputs to the model, the
22	power and the duration of the event that we sampled
23	were as similar as we could make them, depending on
24	the information that we had at the time available to
25	us.
ļ	I

(202) 234-4433

	197
1	Also, the conceptual models could have
2	been different. there could have been simplifications
3	in either model that were not fully understood.
4	This shows you the concentration of ash at
5	the RMEI location. So the slides we were looking at
6	before were the concentration comparisons in the
7	Fortymile Wash basin. Now, out of all of the runs,
8	approximately, 1,000 for each, the frequency of
9	deposition at the RMEI location was comparable for
10	both. About 30 percent of the time you found
11	deposition at the RMEI location.
12	Here you can see that the mean for HYSPLIT
13	was slightly larger, but they're pretty much the same.
14	You can see that the HYSPLIT showed some large
15	outliers, and there was more variance near zero
16	deposition for TEPHRA, and that has to do with the way
17	that the deposition is calculated for TEPHRA.
18	The next three slides I'm going to show
19	you the behavior of the relative ash sizes, where they
20	fell in comparison to the source, and like I said
21	before, HYSPLIT models deterministic sizes of ashes.
22	So it has binned in two different sizes.
23	And there were seven different sizes we
24	used. They range anywhere from the mean of .02
25	microns to about 3,000 microns.
I	I

(202) 234-4433

198 1 This slide shows you the contours of ash 2 deposition by size for the Fortymile Wash basin, and 3 the main point of this slide is that you can see the 4 first four ash sizes that are the smallest ash sizes 5 behaved very similarly -- I apologize if it's hard to see on the printed handout because it's not in 6 7 color -- but these graphs all look very similar, and 8 as you get to larger sizes, you see that the 9 difference in behavior grows. This last plot is a plot of the total sum 10 of all seven ash sizes, and this shows you the 11 behavior of ask sizes for where they fell or which ash 12 sizes were more frequent, frequently fell at the RMEI. 13 14 You can see that the ash size six, which has a mean 15 diameter of approximately 500 microns, was the most frequent to fall at the RMEI location. 16 17 I also did an experiment finding out the effects of wet deposition on the results, and for this 18 19 experiment I found days with abnormally high rainfall

and then I fixed the power and the duration and the mean diameter for all of the runs, and I just varied the start day and the start time so that it would start correspondingly with those days of abnormally high rainfall. And then I ran the HYSPLIT model with and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

20

21

22

23

24

25

1 without wet deposition and compared the results. 2 So here you can see that wet deposition 3 affected the smaller ash sizes much more than it 4 affected the larger ash sizes. The horizontal axis 5 here is percent decrease in concentration when the wet deposition is turned off, and for the smaller ash 6 7 sizes it changed the concentration almost 100 percent, 8 and that's a result of there being no concentration in 9 certain locations, and then the wet deposition causing concentration to be in those locations. 10 So, again, it caused a larger effect on 11 12 the smaller ash sizes, and this is apparent in these contour plots as well. This is one day, February 3rd, 13 14 that had a high amount of rainfall, and this is 15 another day that had a high amount of rainfall. 16 Here is the source, and you can see with 17 wet deposition, a lot of the smaller ash sizes were brought down closer to the source, and without wet 18 19 deposition the wind carried these smaller sizes 20 And you can see the same thing on farther away. 21 This is the year 2004, by the way. February 21st. 22 So to summarize, wet deposition appears to 23 cause a significant difference, especially for the 24 smaller sizes, but given that Yucca Mountain is 25 relatively dry, we don't think that this will lead to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

199

	200
1	a significant or it will be a significant contributor
2	to risk.
3	So in summary, the HYSPLIT model has
4	potential for more realistic forecasting because it
5	uses this three dimensional time dependent data. It
6	relies less of empiricism for the dispersion
7	calculations, and it can simulate the impacts of wet
8	deposition.
9	However, there are a lot of uncertainties
10	still, and HYSPLIT like most other plume models does
11	not take into account volcanic momentum entrainment or
12	buoyancy, which can be very important in calculating
13	dispersion.
14	Also, the behavior of the plume models is
15	generally oversimplified.
16	And finally, volcanoes can have a
17	significant effect on the ambient meteorology, and
18	that's not currently included in the model.
19	So to continue this research, I think it's
20	important to incorporate the radionuclides into the
21	ash, and also modify the existing simulation
22	environment by coupling a vertical column source with
23	the model instead of using just a single point source.
24	And increasing the number of realizations
25	in the Monte Carlo simulation. Also determining if
ļ	I

(202) 234-4433

	201
1	there are systematic differences in the HYSPLIT and
2	TEPHRA models.
3	Are there any questions?
4	CHAIRMAN RYAN: Thank you.
5	Ruth, do you want to start?
6	MS. WEINER: Thank you, Leah. That was
7	very good.
8	And having played with the HYSPLIT model
9	myself, I can appreciate your problems with all of the
10	inputs.
11	On your Slide 9, which is the one with all
12	the colors
13	MS. SPRADLEY: The contour slide.
14	MS.WEINER: The contour slide. I'll wait
15	until you get it up.
16	MS. SPRADLEY: This one.
17	MS.WEINER: Okay. Was this a predominant
18	wind direction? What was the wind pattern for these
19	contours?
20	MS. SPRADLEY: Okay. It's important to
21	keep in mind this shape is the shape of the stations
22	at which I recorded the concentration on every run.
23	So I have virtually no information about the
24	concentrations in this white space. So it may seem
25	that the wind is blowing north here. As you can see,
I	

(202) 234-4433

	202
1	if you remember the wet versus without wet deposition
2	slide, sometimes the wind would cause the plume to go
3	in both directions from the source.
4	So you can't tell. Even though this is
5	averaged over all of the realizations, you can't tell
6	if it was causing the deposition to form here and here
7	as well as up here.
8	MS. WEINER: Yes. That's a very good
9	explanation. When you first see that slide, it looks
10	like the wind.
11	MS. SPRADLEY: It looks like the wind is
12	always going north or on average going north. That
13	would be more to add to the future research, to
14	increase the number of stations and get more of a
15	realistic wind rose.
16	MS. WEINER: How close in to the source do
17	you get on a HYSPLIT model?
18	MS. SPRADLEY: Well, if you go back to the
19	slide where I show you where I'm recording all of the
20	concentrations, here, this one. Here's the sources.
21	MS. WEINER: Yeah. I can't tell the size
22	of your grid from here.
23	MS. SPRADLEY: Oh, okay, okay. Well, here
24	is the source. So we are getting very close to the
25	source in all directions, but we don't get very far
I	

```
(202) 234-4433
```

	203
1	from the source in this direction.
2	Does that answer your question?
3	MS. WEINER: What kind of distance is
4	"very close"?
5	MS. SPRADLEY: Well, this gives you a
б	reference for distance. This circle is a 20 mile-
7	kilometer radius away from the sources. So here's 20
8	kilometers away from the sources.
9	MS. WEINER: So close in is a kilometer or
10	so?
11	MS. SPRADLEY: Yes. The stations here
12	that are farthest away from the source in this
13	direction are only a couple of kilometers at most.
14	MS. WEINER: Is there any difference
15	between how close to the source you can get with
16	HYSPLIT and how close you can get with TEPHRA? Do you
17	know?
18	MS. SPRADLEY: I'd have to defer that
19	question to somebody that is more experienced with
20	TEPHRA.
21	MS. WEINER: Yes, it was just a curiosity
22	question.
23	MS. SPRADLEY: I think Dick might be able
24	to answer that question.
25	MR. CODELL: I'm Dick Codell from NRC.
ļ	

204 1 Essentially with the HYSPLIT model you can 2 get right on top of the source, but it doesn't really 3 mean very much. We're more interested in the 4 deposition over the whole basin for subsequent models, and at the RMEI location, which is 18 kilometers away 5 6 from the event, we're only interested at that point, 7 and so we're not really using any more information 8 even though theoretically you could calculate it. 9 The TEPHRA model, from what I understand 10 of it, you can do essentially the same thing. It's problematic though because these are just models that 11 12 are looking at ambient transport of ash and tephra 13 from a vent, and as you get very close to the vent, of 14 course, the conditions toward your model assumptions 15 don't apply anymore because you have the momentum and 16 buoyancy and everything else that's going on very 17 close to the vent. Okay. Thanks. 18 MS. WEINER: 19 Thank you, Leah. 20 CHAIRMAN RYAN: Allen, any questions? 21 VICE CHAIRMAN CROFF: No, thank you. CHAIRMAN RYAN: Leah, just let me catch 22 23 one on the way by here. When you look at your future

work assumptions, one thought struck me, and I'd like

your thoughts. You said incorporate radionuclides

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	205
1	into the ash.
2	You know, thinking down the road when you
3	want to calculate a dose, I guess, are you thinking
4	about different distribution of models? For example,
5	biometric incorporation independent of particle size,
6	some sort of a biased model where you're looking at
7	radioactive material associate with smaller sizes or
8	bigger sizes or you're looking at a range of how
9	you'll make that distribution of the radioactive
10	material into the ash?
11	MS. SPRADLEY: For a short answer, I'd say
12	more of a range. Right now I believe they're just
13	using a fraction of the ash that has radioactive
14	material in it. I think there are a number of
15	different options that can be done for incorporating
16	the radionuclides into the ash, and I'll be discussing
17	those options with Dick Codell and others as far as
18	how to move forward.
19	CHAIRMAN RYAN: That's kind of critical
20	because that will drive your restorable fraction. If
21	you get more radioactivity or less in there by one
22	model or another, that can be a big driver of
23	estimated dose. So that's kind of a key one to me.
24	That was really my only question. Thanks.
25	MS. SPRADLEY: Thank you.
ļ	

(202) 234-4433

	206
1	CHAIRMAN RYAN: Nice job.
2	Bill Hinze.
3	MR. HINZE: A brief question. What's
4	NOAA's experience with this code? Have they validated
5	it, such as people have attempted to do with TEPHRA
6	and Saranegro (phonetic)?
7	MS. SPRADLEY: Yes. I have all of the
8	HYSPLIT documentation with me, and there are a number
9	of examples that they've used to validate the code.
10	We actually have a representative from ARL
11	in the audience. I don't know if he has anything to
12	add.
13	MR. HINZE: Well, one of the things I'd be
14	interested in is this being validated not only with
15	respect to the total thickness, but also in terms of
16	the size, distribution.
17	MS. SPRADLEY: Well, I'd be happy to show
18	you the examples of the validation in the
19	documentation that I brought along after the
20	presentation.
21	MR. HINZE: Okay.
22	MR. SCHALK: I'm Walt Schalk from NOAA Air
23	Resources Lab.
24	It was developed in Washington by Roland
25	Draxler. He's kind of the guru on the whole thing,
I	

(202) 234-4433

1 and the model has been around for quite some time and 2 validated against numerous real world events, tracer studies, in the Gulf War, the Chernobyl event, and 3 4 things like that for its transport and diffusion, and 5 the build in to use the model wind fields as Leah was using with the RAMS model. 6 7 It has also been recently incorporated 8 into the NOAA responsibility that they do ash proof 9 forecasting for the whole United States. It was 10 another code, but it's within the last two years been moved over into that capability. 11 So it has a wide breadth, and it has been 12 used for quite some time by NOAA, probably at least 13 14 ten years. 15 MR. HINZE: May I ask have you considered 16 flocculation as part of the concern with respect to 17 the distribution of the size of the particles? MR. SCHALK: No, I don't believe that's 18 19 included in the model. 20 Is that a factor in the wet MR. HINZE: Does flocculation -- is that part of the 21 case? process of the wet condition or is this just simply 22 23 the particles being caught up in the raindrops? 24 MR. SCHALK: I believe it's the particles 25 getting caught in the raindrops and being washed out

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	208
1	basically.
2	MR. HINZE: Thank you.
3	CHAIRMAN RYAN: Jim.
4	DR. CLARKE: Nice job, Leah. No
5	questions.
6	MS. SPRADLEY: Thank you.
7	CHAIRMAN RYAN: Any other questions?
8	DR. LARKINS: Just a comments on Dr.
9	Hinze's question. There's been a lot of experiments
10	that have been done, both dry and wet, to measure the
11	different modes or methods of agglomeration from the
12	amount of moisture in the system.
13	MR. HINZE: Where is that material?
14	DR. LARKINS: I can get you some
15	references.
16	MR. HINZE: Okay, great.
17	CHAIRMAN RYAN: Yes, Ashok Thadani.
18	MR. THADANI: Let me answer what John
19	said. There's also been considerable work in other
20	countries, and in particular in Russia, in terms of
21	accidents with high energies and different aerosol
22	sizes carrying certain radionuclides. You might want
23	to take a look at that.
24	CHAIRMAN RYAN: Okay. Thank you.
25	Again, I think all of those comments sort
1	1

	209
1	of summarize into realism for what particles have what
2	radioactive material and how they persist in the
3	respirable range over time. That's a mouthful, but
4	that's certainly what we're reaching for in all of
5	these thoughts, I think.
6	But thanks, again, for a great
7	presentation.
8	MS. SPRADLEY: Thank you.
9	CHAIRMAN RYAN: And for being with us
10	today.
11	With that, we are at our scheduled break
12	for 3:15 to 3:30. We're about on target. Well,
13	actually we're ahead of schedule.
14	MR. COLEMAN: I have an announcement
15	before anyone leaves. This is the first time we've
16	used this facility, and we do apologize for the
17	difficulty in seeing a lot of the graphics. We came
18	up with this system to do a little better job of it,
19	and because also we've had trouble getting as many
20	handouts as we would like to have for you, I've placed
21	a sign-up sheet in the back on the left, and we will
22	provide CDs after the meeting with the presentation
23	materials that were shown here because even some of
24	the handouts are very difficult to read because of the
25	resolution.
Į	I

(202) 234-4433

	210
1	So please sign up if you want to get those
2	CDs.
3	CHAIRMAN RYAN: Thank you, Neil.
4	We'll take a 15 minute break. I now have
5	five minutes of three. So we'll start again at ten
6	minutes after three.
7	Thank you.
8	(Whereupon, the foregoing matter went off
9	the record at 2:54 p.m. and went back on
10	the record at 3:18 p.m.)
11	CHAIRMAN RYAN: We'll go back on the
12	record at this point and take up the next item on our
13	agenda, which is a short report from the ACNW
14	subcommittee report on the August 2005 visit to the
15	Savannah River site and the Barnwell low level waste
16	disposal site.
17	And Allen, why don't you lead us off on
18	the Savannah River portion?
19	VICE CHAIRMAN CROFF: Thanks.
20	A group of three ACNW members visited the
21	SRS and chem nuclear sites on August 10 and 11 of this
22	year. We were accompanied by some ACNW staff members
23	and one member of the public.
24	I'll try and summarize the highlights of
25	what we learned at Savannah River, and then Mike is
l	1

(202) 234-4433

going to talk a little bit about the Barnwell site.

We toured the SRS facilities relevant to waste determination primarily and the mixed oxide fuel fabrication plant that's proposed down there, as well as the chem nuclear sites relevant to low level waste processing and disposal.

7 First, regarding the mixed oxide site, and 8 I'll make this real brief, our interest in this was 9 the waste handling from the plant, whether there might 10 be problems with it backing up or being received 11 because at one point there was a plan to transfer it 12 to the Savannah River site per se away from the 13 licensed mixed oxide facility for management.

What it appears down there is that is no longer the plan. They might still resurrect that, but this point they seem to be geared up to handle their own waste internally, which takes lot of that off the table, I think.

Moving on to the waste determination business, I'll just try to hit what I think are a few highlights here. First, it's not clear at this point how many waste determinations will be developed by DOE, which is another way of saying it's not clear how DOE will bundle the things that require a waste determination.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	212
1	For example, will they submit a waste
2	determination for one tank at a time, two, three, ten,
3	50? It's just not clear, and that sort of relates
4	back to the potential work load and the potential
5	number of issues that might come up.
6	The hints we got from them down there sort
7	of indicate that we will probably bundle together
8	fewer rather than more, on the theory that if they put
9	ten or 15 together, if anyone had problems that would
10	compromise the whole determination.
11	But I think that will be an ongoing
12	deliberation, but that is the trend.
13	Some of the things that I think are
14	important to think about is that more than tanks and
15	the salt stone are the immobilized low level waste may
16	eventually require a waste determination. Included in
17	this are piping, facilities and equipment that
18	generated the tank waste, such as some of the
19	equipment in the old canning facilities, and
20	facilities and equipment that have processed the tank
21	waste, such as the DWPF, the vitrification facility,
22	and some of the evaporators that they routinely use in
23	managing the tank waste.
24	Savannah River at this point seems to have
25	longer range plans for removal of key radionuclides
I	

(202) 234-4433

5 However, in the near term, due to limitations in capacity for waste storage in their 6 7 tanks -- and this is limitations for storage in 8 compliant tanks, meaning those that have double pursuing some 9 containment -- they are interim 10 processing of some of the waste that will result in greater concentrations of radionuclides going into the 11 12 salt stone facility, in the low active waste stream. And there has been some discussion there, 13 14 expect an increase in interest in that and Ι 15 particular topic as we go forward.

Class C limits continue to be important at 16 Savannah River site. This sort of relates to our 17 deliberations on low level waste that we'll see in the 18 19 Such limits are self-imposed limits by DOE on future. 20 what they can dispose of at the site. It's part of 21 some of their compliance agreements with the state and 22 in the new criteria they use for waste determinations 23 being greater than Class C needs to the need for 24 another plan onwhich the Nuclear Regulatory 25 Commission must consult.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

(202) 234-4433

213

At this point they haven't proposed any greater than Class C, and it's not clear at all what this plan would be, but that's the way it stands at this point.

Retrieval to date from the tanks has been quite good. They've retrieved a number of tanks, and they've gotten the residual layer thickness down to very low levels, and most of them you can see bare spots in the bottom of the tank.

10 However, these retrievals to date are focused on what I'll call uncomplicated tanks, no 11 internals and no other difficulties evident. 12 As they move forward a substantial fraction of their tanks can 13 14 be best viewed as having a forest, a verticle cooling 15 coils inside that tend to be coated with the waste and make it very difficult for the retrieval equipment 16 17 to maneuver. So we'll have to see how well they do on that, and it's something to think about. 18

Finally, I guess regarding monitoring, my sense in coming away is they see the need for it. Clearly, they're going to do it. What they're planning regarding monitoring just isn't really all that far along at this point. They just really haven't gotten serious about laying plans down about how they're going to do it and how far they're going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

	215
1	to go in it.
2	MR. HINZE: Excuse me. Is that monitoring
3	around the tanks then?
4	VICE CHAIRMAN CROFF: Yes, yes. Post
5	closure monitoring, I guess, to be clear about it.
6	With that, I guess that's my side. Do you
7	want to do your barnwell part?
8	CHAIRMAN RYAN: Sure, yeah. that's great.
9	Thanks, Allen.
10	I think one last comment on the monitoring
11	part of it. There's a pretty extensive environmental
12	monitoring network, and unlike other sites they have
13	a pretty good access to all of the history of
14	monitoring. So at least they've got a basis, which I
15	think they can move forward, but I agree with Allen.
16	They haven't really developed that.
17	The second day of our trip we visited the
18	chem nuclear low level waste disposal facility in
19	Barnwell County, South Carolina. It was first
20	licensed in 1969, with disposal commencing in '71.
21	The land that's currently licensed, the 235 acres, was
22	established by lease amendment in 1976. The
23	decommissioning trust funds that are in place and used
24	for decommissioning were established in '81, and then
25	of course, the South Carolina history of being in a
ļ	

(202) 234-4433

	216
1	compact and out of a compact and back in another
2	compact has all had an impact on the operation.
3	Their peak year of volume was about two
4	and a half million cubic feet of low level waste in
5	1980, and currently they're receiving in the range of
6	35,000 cubic feet of low level waste. Most of the
7	Class A waste is shifted to Envirocare, and Enviro now
8	focuses no BNC waste, although they are licensed to
9	take all three classes of waste.
10	Barnwell currently is in a compact with
11	Connecticut and New Jersey, where out of compact
12	generators will not be permitted at the current wave
13	of thinking to take waste from outside the compact
14	after 2008.
15	There is some, over a million, maybe even
16	a couple of million cubic feet of disposal capacity
17	and license that still remains. So there will be
18	unused capacity at that juncture of 2008 that's fairly
19	substantial.
20	The radioactive disposed has been, of
21	course in the millions of curies. Two-thirds of their
22	inventory is Cobalt 60, and then it falls off from
23	there in terms of percentage by radionuclide. Most of
24	the radioactivity is relatively short lived.
25	They have a pretty extensive environmental

(202) 234-4433

monitoring program and environmental modeling program with 240 groundwater monitoring wells on and off site a lot of indisposal cell standpipe monitoring for infiltration water and the like, and they've completed capping on seven or eight of the old disposal cell areas with the permanent multi-layered cap to shed essentially all of the surface water that hits the site so they can keep the disposal cells dry.

9 We had a thorough tour of the site, the 10 laboratory facilities and other activities on the We also were afforded the chance to visit with 11 site. the county council members, Barnwell city leaders and 12 other members of the business development community, 13 14 and so forth, and were pleased to learn that the 15 community holds the company in high regard and, in 16 fact, several times during our meeting said, you know, 17 "Do whatever you can do to help keep the site open and in place here in Barnwell County because we think it's 18 19 an asset to the community." They felt very strongly 20 that it was an important contributor and a business that they understood and felt comfortable about. 21 And they concluded it's safe and needed, 22 23 and they wanted to keep the facility open and running 24 in their community.

So with that we finished that day's tour

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

7

8

218 1 and traveled on from there. So that's the low level 2 waste part. 3 I want to also add that Latif Hamdan was 4 quite expert at getting our arrangements made for our 5 visits, with our contacts, and he's developing a 6 detailed trip report that will put all of the 7 materials together and we'll have a detailed trip 8 report for all of the members there. 9 Thank you, Latif, for all of your efforts. 10 There were a lot of folks, a lot of moving parts, and 11 a lot of places to go. So we appreciate your effort. 12 DR. HAMDAN: Thank you. 13 CHAIRMAN RYAN: You're welcome. 14 With that --15 VICE CHAIRMAN CROFF: I wanted to add one 16 thing on the Barnwell. In the discussions with the 17 chem nuclear staff, I guess by way of preamble the site has two identifiable institutional control funds 18 19 to watch the site after it's closed. One is held by 20 a third party trustee and the other was held by the 21 state. And some years ago the state found itself 22 23 little bit short of change and took a fairly а 24 substantial amount of the fund that it held -- I think 25 it was in the low hundred million and change, and they

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	219
1	took 80 or 90 percent of it to help balance the
2	budget.
3	Now, they are now on a course to reinstate
4	that, but I think the message for the committee and
5	for other sites decommissioning low level waste
6	disposal is the structure of these institutional
7	controls and the way they're protected is probably an
8	important thing to keep in mind. It's just not enough
9	to have a bucket of money someplace. It has to be
10	shielded.
11	So there was I think a case in point here.
12	CHAIRMAN RYAN: Yeah, again, Allen, I
13	appreciate you reminding me of that. That's a very
14	important aspect.
15	The closure fund was untouched. That's
16	the one that's using monies to cap as time goes along
17	and as the site evolves. It was the long term care
18	fund that Governor Hodges, who was in office at that
19	time, moved all but \$5 million of it, and it was more
20	like \$140 million, to the general fund.
21	The current governor has pledged a \$25
22	million payback for the schedule to return the monies
23	that were borrowed from the fund, and I agree with
24	your comment.
25	The thought was that it was untouchable,
I	

(202) 234-4433

	220
1	but clearly that wasn't the case. So that's an
2	important point to think about.
3	So thanks.
4	Any other comments or questions from
5	members?
6	Well, with that report, we'll have a full
7	trip report package that Latif will prepare and we'll
8	be happy to answer any other questions at a future
9	meeting.
10	Thanks.
11	With that item completed, our next task is
12	to consider the continuation of our discussion of
13	possible letters. We had left off with Allen going to
14	discuss some of the major points from the working
15	group. This is not the reading of the letter. This
16	is Allen's summary of the information so that we can
17	hear his views on major points and discuss those.
18	(Whereupon, the foregoing matter went off
19	the record at 3:32 p.m. and went back on
20	the record at 4:34 p.m.)
21	CHAIRMAN RYAN: We rearranged our schedule
22	a bit this afternoon to leave an opportunity before we
23	go off the record and take a break into our public
24	meeting this evening. So if there are any folks who
25	wish to make a comment to the committee at this time.
	l

(202) 234-4433

	221
1	(No response.)
2	CHAIRMAN RYAN: All caught up.
3	Again, we appreciate your participation
4	and will you be back this evening or no?
5	(Discussion was held away from the
б	microphone.)
7	CHAIRMAN RYAN: Well, we'll be happy to
8	have you even if it's a small group. We appreciate
9	your participation today and your comments, as always.
10	With that if there's no other business for
11	the open session and the on-the-record part of the
12	meeting, we'll adjourn.
13	Any last items?
14	(No response.)
15	CHAIRMAN RYAN: We stand adjourned and the
16	record is closed.
17	(Whereupon, the foregoing matter went off
18	the record at 4:35 p.m. and went back on
19	the record at 6:05 p.m.)
20	
I	NEAL R. GROSS
	(202) 234-4433 COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 (202) 234-4433

1EVENING SESSION2(6:05 p.m.)3CHAIRMAN RYAN: All right. I'd like to call our evening session into order if I may.5This is the evening session of the ACNW, and we're here again this evening from a busy day today to receive a comment from members of the public that want to be with us.9I was explaining to one of our guests that we've had several folks who have participated during the meeting today, and we've afforded them enough opportunities to offer their comments during the day.13Dr. Larkins.14Dr. Larkins:15Dr. Larkins:16Sohn Larkins. I serve as the Executive Director of the Advisory Committee on Nuclear Waste (speaking from an unmicked location).20CHAIRMAN RYAN: You might need to flip it on and just hold it in front.21Dr. LARKINS: Now I'll have to start all over again.22As I was saying, the NRC, one of its strategic goals is openness, and here we try to make		222
3 CHAIRMAN RYAN: All right. I'd like to 4 call our evening session into order if I may. 5 This is the evening session of the ACNW, 6 and we're here again this evening from a busy day 7 today to receive a comment from members of the public 8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	1	EVENING SESSION
4 call our evening session into order if I may. 5 This is the evening session of the ACNW, 6 and we're here again this evening from a busy day 7 today to receive a comment from members of the public 8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	2	(6:05 p.m.)
5 This is the evening session of the ACNW, 6 and we're here again this evening from a busy day 7 today to receive a comment from members of the public 8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	3	CHAIRMAN RYAN: All right. I'd like to
6 and we're here again this evening from a busy day 7 today to receive a comment from members of the public 8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	4	call our evening session into order if I may.
7 today to receive a comment from members of the public 8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	5	This is the evening session of the ACNW,
8 that want to be with us. 9 I was explaining to one of our guests that 10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	6	and we're here again this evening from a busy day
9I was explaining to one of our guests that10we've had several folks who have participated during11the meeting today, and we've afforded them enough12opportunities to offer their comments during the day.13They had satisfied their needs to do so. So we're on14the way.15Dr. Larkins.16DR. LARKINS: Good evening. My name is17John Larkins. I serve as the Executive Director of18the Advisory Committee on Nuclear Waste (speaking from19an unmicked location).20CHAIRMAN RYAN: You might need to flip it21on and just hold it in front.22Dr. LARKINS: Now I'll have to start all23over again.24As I was saying, the NRC, one of its	7	today to receive a comment from members of the public
10 we've had several folks who have participated during 11 the meeting today, and we've afforded them enough 12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	8	that want to be with us.
11the meeting today, and we've afforded them enough12opportunities to offer their comments during the day.13They had satisfied their needs to do so. So we're on14the way.15Dr. Larkins.16DR. LARKINS: Good evening. My name is17John Larkins. I serve as the Executive Director of18the Advisory Committee on Nuclear Waste (speaking from19an unmicked location).20CHAIRMAN RYAN: You might need to flip it21on and just hold it in front.22DR. LARKINS: Now I'll have to start all23over again.24As I was saying, the NRC, one of its	9	I was explaining to one of our guests that
12 opportunities to offer their comments during the day. 13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	10	we've had several folks who have participated during
13 They had satisfied their needs to do so. So we're on 14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	11	the meeting today, and we've afforded them enough
14 the way. 15 Dr. Larkins. 16 DR. LARKINS: Good evening. My name is 17 John Larkins. I serve as the Executive Director of 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	12	opportunities to offer their comments during the day.
15Dr. Larkins.16DR. LARKINS: Good evening. My name is17John Larkins. I serve as the Executive Director of18the Advisory Committee on Nuclear Waste (speaking from19an unmicked location).20CHAIRMAN RYAN: You might need to flip it21on and just hold it in front.22DR. LARKINS: Now I'll have to start all23over again.24As I was saying, the NRC, one of its	13	They had satisfied their needs to do so. So we're on
16DR. LARKINS: Good evening. My name is17John Larkins. I serve as the Executive Director of18the Advisory Committee on Nuclear Waste (speaking from19an unmicked location).20CHAIRMAN RYAN: You might need to flip it21on and just hold it in front.22DR. LARKINS: Now I'll have to start all23over again.24As I was saying, the NRC, one of its	14	the way.
 John Larkins. I serve as the Executive Director of the Advisory Committee on Nuclear Waste (speaking from an unmicked location). CHAIRMAN RYAN: You might need to flip it on and just hold it in front. DR. LARKINS: Now I'll have to start all over again. As I was saying, the NRC, one of its 	15	Dr. Larkins.
 18 the Advisory Committee on Nuclear Waste (speaking from 19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its 	16	DR. LARKINS: Good evening. My name is
19 an unmicked location). 20 CHAIRMAN RYAN: You might need to flip it 21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	17	John Larkins. I serve as the Executive Director of
 CHAIRMAN RYAN: You might need to flip it on and just hold it in front. DR. LARKINS: Now I'll have to start all over again. As I was saying, the NRC, one of its 	18	the Advisory Committee on Nuclear Waste (speaking from
21 on and just hold it in front. 22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	19	an unmicked location).
22 DR. LARKINS: Now I'll have to start all 23 over again. 24 As I was saying, the NRC, one of its	20	CHAIRMAN RYAN: You might need to flip it
 23 over again. 24 As I was saying, the NRC, one of its 	21	on and just hold it in front.
24 As I was saying, the NRC, one of its	22	DR. LARKINS: Now I'll have to start all
	23	over again.
25 strategic goals is openness, and here we try to make	24	As I was saying, the NRC, one of its
	25	strategic goals is openness, and here we try to make

```
(202) 234-4433
```

the processes and the decision making of the agency transparent to the public. I think one of the vital roles that the Advisory Committee on Nuclear Waste plays is making some of the processes and the decision making of the Commission, particularly in the area of waste disposal and high level waste, transparent to the public.

8 I've been coming out to Las Vegas now for 9 probably the last 12 years, and prior to that I had an 10 opportunity to come out -- well, I served as a technical assistant for Chairman Lando Zech during the 11 I had several opportunities to come out and 12 mid-'80s. 13 meet with representatives of the state and the 14 governor and others and talk about the role of the NRC 15 and waste management matters.

16 So I've been coming out here for the last, 17 well, what is it? Seventeen and five, 22, 22 years on 18 and off, and always manage to enjoy myself while I'm 19 here.

As part of this outreach goal, we're having this public session this evening to provide an opportunity, a forum for anyone who wants to come in and make comments to go on the record. The ACNW uses those comments to formulate any advice or comments it wants to send to the Commission on how it might

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	224
1	enhance its interactions with the public and also to
2	highlight any issues that the public may want to raise
3	during these outreach sessions.
4	What I'd like to do, first of all, is
5	introduce the members of the ACNW. First is our
6	Chairman, Dr. Michael T. Ryan. Mike has been on the
7	ACNW now for three years. It will be four years this
8	summer.
9	And to his left is Allen Crans Croff.
10	Sorry about that, Allen. Vice Chairman. Allen joined
11	the committee, I think, about a year, a year and a
12	half ago, a little bit over a year. Allen has worked
13	for Oak Ridge National Lab for a number of years.
14	I forgot to mention that Dr. Ryan has been
15	in the waste management or waste disposal business, I
16	guess, for 20?
17	CHAIRMAN RYAN: Twenty-five years.
18	DR. LARKINS: Twenty-five years. Brings
19	a lot of experience to the business.
20	To the left of Allen Croff is Dr. Ruth
21	Weiner. Dr. Weiner joined the committee what, three?
22	Two and a half years, approximately two and a half
23	years. Dr. Weiner is currently well, it says here
24	retired. I thought you were still work at San
25	MS. WEINER: I'm still working.
I	I

(202) 234-4433

	225
1	DR. LARKINS: Okay. It's a good thing I
2	didn't read the script.
3	Ruth is working at Sandia National Labs.
4	She's our resident expert on transportation issues and
5	has been doing a lot of things in the area of risk
6	analysis while at Sandia, and she also teaches at
7	University of Michigan.
8	Okay. To my immediate right is Dr. Bill
9	Hinze, William J. Hinze, Professor Emeritus at Purdue
10	University, and Bill was our resident earth science
11	expert. He handles everything from seismology to
12	volcanology to a little bit of everything, hydrology
13	included.
14	Bill formerly was on the committee for
15	eight years and only recently came back to the ACNW
16	this last year.
17	And to his immediate right is Dr. Jim
18	Clarke, who is a full professor at Vanderbilt
19	University and principally in the area of
20	environmental analysis; is that right?
21	DR. CLARKE: That's correct.
22	DR. LARKINS: Good. I got the script
23	correct.
24	And the rest of the people here are staff
25	for the ACNW.
I	

Let me just quickly mention the mission of the ACNW. It's up on the Board. It says to provide the NRC independent and timely technical advice on nuclear materials and waste management issues; to support the NRC in conducting an efficient and effective regulatory program that enables the nation to use nuclear materials in a safe manner for civilian purposes.

9 And the next viewgraph or chart tells how we accomplish our mission, and I won't go through all 10 of the bullets, but basically the committee collects 11 information through various forums, either meetings, 12 workshops, and hears comments both from the NRC staff, 13 14 licensees, applicants, industry, and others, and then 15 reaches conclusions and provides technical advice to 16 the Commission on this.

17This is basically how the committee18accomplishes its mission, and these things are done in19the public, and in a generally very collegial manner.

20 Maybe I should turn this part over to Dr. 21 Ryan, starting on page 5, the purpose of tonight's 22 meeting.

Anyway, thank you.

24CHAIRMAN RYAN: Thanks, Dr. Larkins.25The purpose of tonight's meeting is to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

23

	227
1	listen and consider comments from the public on
2	matters related to the committee's activities and to
3	support the committee in providing insights to the
4	Commission on public comments and concerns.
5	Another purpose is to obtain information
6	to support the advice to the Commission and
7	opportunities to enhance involvement of stakeholders
8	in the licensing and prelicensing activities.
9	Tonight's meeting is scheduled for two
10	hours, and we've had one speaker arrive already.
11	Other speakers will be invited to sign in, and then
12	will be provided the opportunity to make statements to
13	the committee.
14	And of course, we'd ask that we identify
15	each of these folks so that we can create a thorough
16	and complete record of the input that we receive
17	tonight.
18	As I mentioned earlier, we did have two
19	individuals, one from the State of Nevada and another
20	citizen representing a citizens group who participated
21	throughout the day with us and were afforded several
22	opportunities to make comment, and they both indicated
23	they had satisfied their needs during the day and
24	didn't need to come back this evening.
25	We found that to be effective because it's
ļ	I

(202) 234-4433

	228
1	helpful to get their comments at the time a particular
2	topic is being discussed, and it made it more
3	meaningful for them and also more insightful for us to
4	hear it more as a timely dialogue rather than a
5	comment made at the end of a long day.
6	The current ACNW activities include top
7	priority activities, including of course the proposed
8	Yucca Mountain repository and issues related to that;
9	the risk informing approach that the NRC takes to its
10	regulatory activities; decommissioning of nuclear
11	facilities; health physics or radiation protection;
12	and waste determination specific to materials that are
13	at DOE facilities for which NRC will make statutorily
14	required waste determination.
15	We also have a second tier of priority,
16	including waste management research issues that are
17	conducted by the Center for Nuclear Waste Research
18	Analysis in San Antonio, Texas; radioactive materials
19	transportation; low level radioactive waste, and fuel
20	cycle facilities.
21	Specifically on Yucca Mountain our current
22	involvement of the committee includes our continuing
23	to interact with DOE and NRC staff during the pre-
24	licensing phase; visits to the Center for Nuclear
25	Waste Regulatory Analysis on discussion of volcanism
I	1

(202) 234-4433

1 issues, in particular; review of the DOE waste 2 transportation activities. 3 We are following developments in the 4 preclosure design and safety analysis. We're 5 reviewing draft revised NRC Yucca Mountain regulations that are being developed under 10 CFR Part 63. 6 We 7 have observed workshops on the probabilistic volcanic 8 hazard assessment work that's going on for the Yucca 9 Mountain site in its vicinity, and we have provided or 10 plan to provide advice to the Commission on some or all of these topics. That's our current work 11 12 activities and work plan. I think on the screen you'll see two Web 13 14 We certainly have paper copies of these sites. 15 handouts for those who wish to carry them away where 16 you can download our letters to the Commission, our 17 meeting agendas, our transcripts, our action plan, our charter, and member information that we reviewed 18 19 briefly with you tonight. 20 Also, on a separate Web site is our most recent report and briefing to the Commission, which 21 occurs approximately every six months or so. 22 We might 23 have two face-to-face reports to the Commission each 24 year. 25 So those materials are available.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

229

	230
1	As all of the ACNW meetings, we conduct
2	all of our meetings, including our letter writing
3	sessions, in the public. We operate under the FACA
4	rules for open public meetings. All of our
5	information is gathered and discussed in public, and
6	we appreciate this opportunity to have members of the
7	community in Nevada and Las Vegas and Yucca Mountain
8	area and Nevada as a whole to come and speak with us
9	this evening. So we appreciate everybody's
10	participation as we go through.
11	With that, it's your turn to speak.
12	Our first speaker, I believe, will be Mr.
13	Mike Henderson, who works for the Office of
14	Congressman Jim Givens who is from the Second District
15	of Nevada, and without further ado, Mr. Henderson,
16	please join us.
17	MR. HENDERSON: Thank you, Mr. Chairman,
18	Mr. Larkins, Mr. Vice Chairman.
19	Mr. Vice Chairman, I have the advantage of
20	having hospitality of Oak Ridge several years ago for
21	a ten-day course called Nuclear Power and the Energy
22	Crisis. It seems to me things have evolved only
23	slightly since then.
24	On behalf of the Congressman, welcome to
25	Las Vegas once more. The following is his statement.
I	I

(202) 234-4433

1 Thank you, Chairman Michael T. Ryan, and 2 Vice Chairman, Allen G. Croff, for allowing me the 3 opportunity to submit these comments for the record. 4 I apologize for being unable to attend 5 this hearing in person. However, I am currently in 6 Washington, D.C., representing this great State of 7 Nevada. The Yucca Mountain project has been an 8 9 issue that has always been of the utmost concern to me 10 and to too many of my constituents. I represent every county in Nevada, including my county, which includes 11 12 the Yucca Mountain Waste Repository. While it should come as no surprise that 13 the entire Nevada delegation is in strong opposition 14 15 to Yucca Mountain, as an independent body, it is your 16 mission to report and to advise the Nuclear Regulatory 17 Commission on all aspects of nuclear waste management. This includes objective analysis regarding 18

19 the feasibility of the Yucca Mountain project as a 20 deep geologic repository. It is extremely disturbing 21 to see that since the birth of this project the 22 Department of Energy has consistently failed to use 23 science as its guide and has instead been blinded by 24 its obsession to do anything and everything to rubber 25 stamp this project so that it can be finished.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	While this might be acceptable to the
2	bureaucrats of the DOE, more than 2,400 miles away
3	from here, it is completely unacceptable to the people
4	throughout Nevada and this country.
5	When this project fails, and it is only a
6	matter of time, who will be held accountable with the
7	reality of a deadliest substance known to man
8	contaminating our water supply, traveling our roads,
9	and endangering our communities?
10	Last year the Federal Appeals Court
11	ordered that the federal government needed to develop
12	a plan for nuclear waste storage that protected the
13	public against radiation releases beyond the proposed
14	10,000 years. As a result of the court's decision,
15	the EPA needed to promulgate a new safety standard
16	that can show compliance well beyond 10,000 years.
17	Many experts and scientists argued that
18	the EPA could not realistically develop a plan that
19	could insure public safety past 10,000 years.
20	Unfortunately, many underestimated the extreme
21	measures the proponents of this project would take to
22	insure that the scientifically flawed project
23	continues.
24	Instead of playing by the rules of the
25	game, rules intended to protect public safety, the DOE
l	1

(202) 234-4433

1 and the EPA decided to simply change the game. In its 2 most shockingly disturbing ruling yet, the EPA decided that it was scientifically reasonable to increase its 3 4 radiation standard after 10,000 years from 15 5 millirems to 350 millirems. This means that the EPA has determined that once the clock hits 10,000 years 6 7 in one day, it is completely reasonable for the 8 radiation exposure to increase 23-fold. 9 fellow Nevadans Ι and mγ ardently 10 disagree. The EPA has an obligation to protect public safety today, tomorrow, and in a million years. 11 It should not speculate that a standard which is not 12 deemed safe today could miraculously become a state 13 14 standard in the future. 15 This decision was not based on any measure of public safety and instead just continues to 16 17 highlight the means the DOE will go to in order to insure that the Yucca Mountain project continues. 18 19 As an independent Commission, you must 20 closely review and scrutinize this illogical decision and show the DOE and EPA that just because you don't 21 22 like the rules you cannot change the game. 23 In the next few days many of you will 24 return to your homes thousands of miles away from 25 Nevada, but for many of us here in this room, Nevada

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

233

	234
1	is our home. Nevadans are the ones who have to live
2	here and be exposed to the deadly risk of the DOE's
3	culture of ignoring science in favor of expediency in
4	regard to this project.
5	And I remind you that we still have no
6	plan for transporting this deadly waste through our
7	communities for thousands of miles.
8	The safety of the American people along
9	the transportation routes is in jeopardy due to this
10	moving hazard that too easily could be a moving
11	target. It is our hope that when you fully examine
12	this project you fulfill your obligations as an
13	independent Commission and ignore the pressures to
14	rubber stamp this project.
15	It is our hope that you will see the flaws
16	and the risks associated with opening Yucca Mountain
17	and transporting high level nuclear waste. It is our
18	hope that you will protect the people of Nevada and of
19	this great nation.
20	I think you for your time today, and I
21	respectfully request that these comments be introduced
22	into the record.
23	Jim Givens, member of Congress, 2nd
24	District, Nevada.
25	At this point I will be happy to entertain
ļ	1

(202) 234-4433

	235
1	questions. I'm somewhat familiar with the
2	Congressman's views on this issue. If I do not have
3	the answers, I'll be happy to get them for you.
4	CHAIRMAN RYAN: Any questions?
5	I think not. Mike, I appreciate your
6	coming here. Mr. Henderson, thank you for reading the
7	statement into the record. We have the hard copy, and
8	we have a transcript of it. So we appreciate your
9	being with us tonight.
10	MR. HENDERSON: Thank you, Mr. Chairman.
11	CHAIRMAN RYAN: You're welcome to stay or
12	depart as your pleasure takes you.
13	MR. HENDERSON: Thank you, sir.
14	CHAIRMAN RYAN: Thank you very much.
15	MR. HENDERSON: Thank you all.
16	CHAIRMAN RYAN: Any other commenters or
17	questions?
18	(No response.)
19	CHAIRMAN RYAN: I guess we'll see if other
20	folks arrive. So why don't we just kind of suspend
21	the record for a moment, and when we have other
22	presenters or speakers we'll reconvene.
23	Thank you.
24	(Whereupon, the foregoing matter went off
25	the record at 6:24 p.m.)
I	1