

Operating Crew Performance with Advanced Technologies

Insights from Experiments and Simulator Training

March 12, 2020

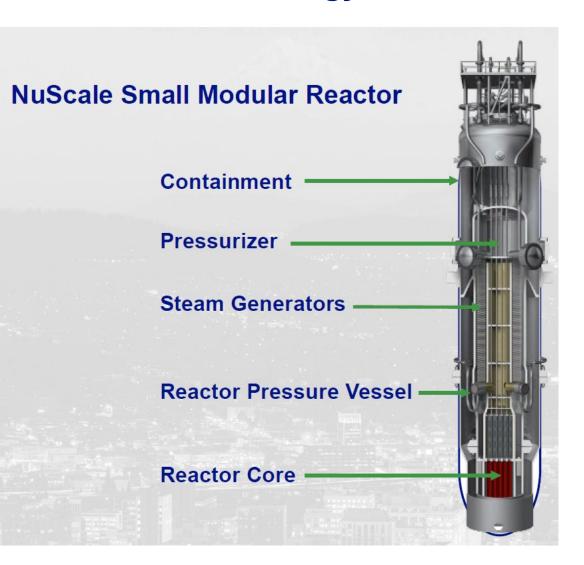
Tim Tovar Manager, Plant Operations

Doug Bowman
Supervisor, Plant Operations

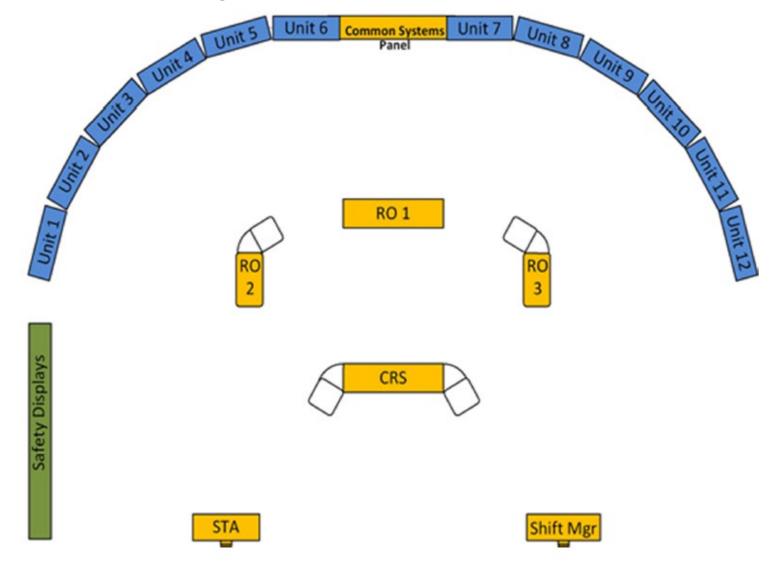
Agenda

- Background
 - NuScale technology
 - driving forces for extensive simulator development/training
- Staffing plan validation (SPV)
- Integrated system validation (ISV)
- Insights from NuScale simulator training and testing
- Remote simulator capabilities
- Live simulator demonstration

Template #: 0000-20955-F01 R11


Reactor building houses NuScale Power Modules™, spent fuel pool, and reactor pool

refueling machine biological shield reactor building crane ground surface spent fuel pool reactor vessel containment vessel **NuScale Power** reactor pool flange tool flange tool Module


NuScale Technology

- Passive safety systems
- Single safety positions
- Modules in direct contact with the ultimate heat sink
- No safety-related AC or DC power
- No operator action for design-basis events
- Two simple important human actions for beyonddesign-basis events

Control Room Layout / Concept of Operations

Licensed Operators for a 12-Unit Plant

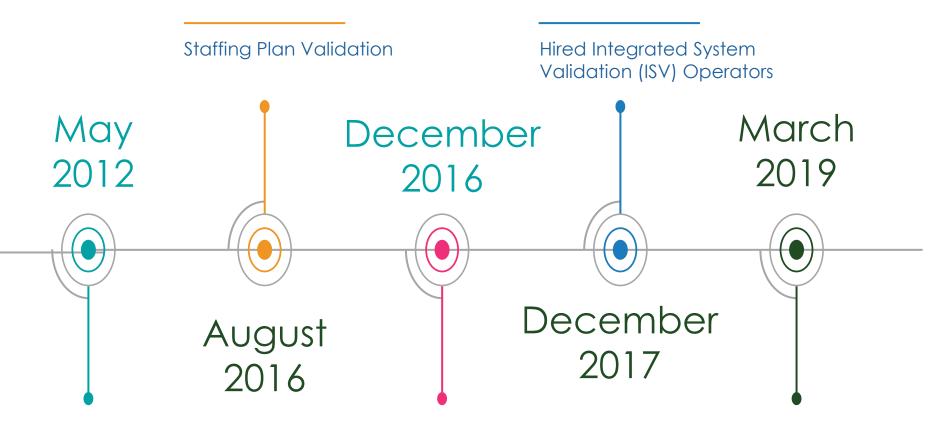
10 CFR 50.54(m) Staffing Requirements

Table 1. Minimum Requirements⁽¹⁾ Per Shift for On-Site Staffing of Nuclear Power Units by Operators and Senior Operators Licensed Under 10 CFR Part 55

Number of		One Unit	Two Units		Three Units	
Nuclear Power Units Operating ⁽²⁾	Position	One Control Room	One Control Room	Two Control Rooms	Two Control Rooms	Three Control Rooms
None	Senior Operator	1	1	1	1	1
	Operator	1	2	2	3	3
One	Senior Operator	2	2	2	2	2
	Operator	2	3	3	4	4
Two	Senior Operator		2	3	3(3)	3
	Operator		3	4	5 ⁽³⁾	5
Three	Senior Operator				3	4
	Operator				5	6

5 operators x 6 control rooms = 30

30 operators x 6 shifts = 180


Simulator

- GSE Systems simulator with 38 interacting models
- Human-system interface (HSI)
 human factors and operating experience integrated into the HSI
 - at-a-glance critical safety function / defense-in-depth displays
 - tiered notification system
 - alarms
 - cautions
 - notifications
 - trend display
 - process library (procedures and automations)
 - task ownership and status communication
 - human error precursor reduction

Human Factors Engineering (HFE) Timeline

12-Unit Control Room Simulator Commissioned Staffing & Qualification RSR Submitted with DCA

Verification and Validation RSR Submittal to NRC

Integrated System Validation (ISV)

- Verifies the integrated system supports safe operation
 - performance-based evaluation of hardware, software, and personnel
 - three crews of operators
 - trained similar to a license class
 - 12 full-scope scenarios

Classroom Training

- 56 classroom lectures over nine weeks including
 - systems training
 - conduct of operations
 - technical specifications
 - abnormal and emergency operating procedures (AOPs/EOPs)
 - emergency action levels (EALs)
- 11 simulator sessions to complement classroom training

Simulator Training

- 36 simulator sessions for each crew over 10 weeks
- three simulator proficiency exams
- one week of ISV-style practice scenarios
- final audit exam using ISV protocols

Results

- When the DCA is approved, the minimum licensed operator requirements will be codified such that 10 CFR 50.54(m) will not apply to the NuScale design
- Allows operation of 12 reactors from a single control room with six licensed operators

Insights from Simulator Training and Testing

- Simple design and human factors integrated into the HSI
 - human errors are reduced
 - operation is intuitive
 - safety is enhanced
 - training time is reduced
 - examination is simplified
 - entry requirements more appropriate to the design
 - costs are reduced

Remote Simulator

- DOE infrastructure awards to University of Idaho, Oregon State University, and Texas A&M
- SMR control room simulator for universities
 - research
 - educating next-generation nuclear workers
 - public outreach
- real-time, cloud-based, NuScale simulator

Acronyms

- AOP abnormal operating procedure
- CFR code of federal regulations
- DCA design certification application
- EAL emergency action level
- EOP emergency operating procedure
- HFE human factors engineer
- HSI human-system interface
- ISV integrated system validation
- RO reactor operator
- RSR results summary report
- SPV staffing plan validation
- SRO senior reactor operator
- SMR small modular reactor
- STA shift technical advisor

Tim Tovar

Manager, Plant Operations ttovar@nuscalepower.com

Doug Bowman

Supervisor, Plant Operations dbowman@nuscalepower.com

