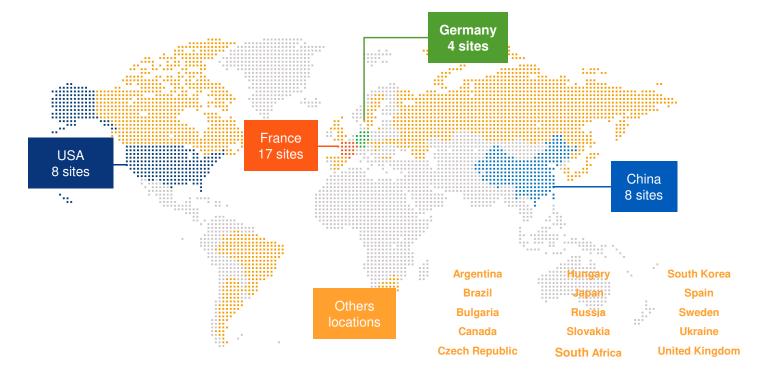

framatome

Regulatory Information Conference (RIC) 2020

Worldwide Advances in Equipment Qualification

Corey Faddish March 10th, 2020

Framatome Global Overview


framatome

For 60 years, Framatome's teams have been involved in developing safe and competitive nuclear power worldwide by:

- designing nuclear power plants
- supplying nuclear steam supply systems
- designing and manufacturing components and fuel
 assemblies
- integrating automation systems
- and servicing all types of nuclear reactors
- Original Equipment Manufacturer of 92 nuclear power plants
- 14,000 employees serving more than 380 reactors worldwide

© 2020 Framatome Inc. All rights reserved

14 000 employees working on more than 250 reactors worldwide at 53 locations in 20 countries

framatome

© 2020 Framatome Inc. All rights reserved

State of the Market

North America

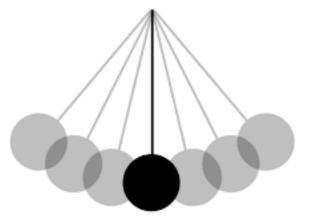
- ~60% of U.S. nuclear fleet expected to apply for Second License Renewal (SLR), major refurbishments in Canada
- Small Modular Reactor (SMR) and advanced reactor technology potential

Globally

Mixed bag of contraction and growth

Technology & Initiatives

- 50.69 impact on installed base
- Accident Tolerant Fuel
- Passive safety systems in new designs


Commercial Grade Dedication (CGD) & Equipment Qualification (EQ) programs will still be critical going forward

framatome

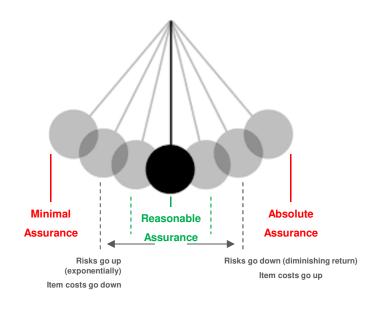
© 2020 Framatome Inc. All rights reserved

"State of the Original Equipment Manufacturer (OEM)"

""Reasonable Assurance Pendulum

framatome

© 2020 Framatome Inc. All rights reserved



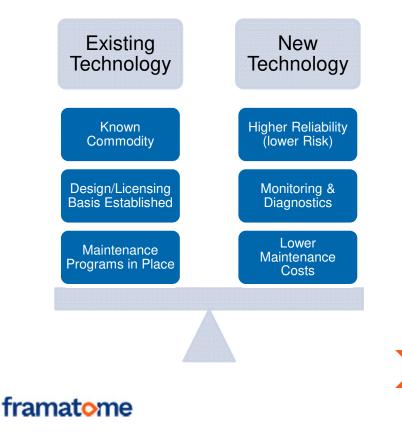
framatome

The "State of the OEM"

- History of the OEM quality program changes, M&As, technological advances, and obsolete parts
- Difficulty in getting and meeting acceptance criteria due to deviation of designs over time
- Challenges with design information and Intellectual Property access
- Difficulty and increased effort and cost of maintaining original EQ during the CGD acceptance process

framatome

The "Reasonable Assurance" pendulum


Key drivers:

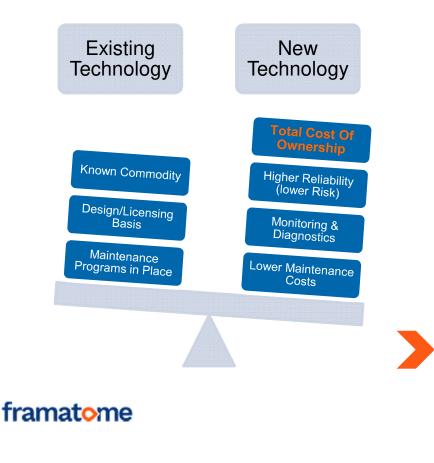
- Terminology, training, knowledge, experience gaps
- Regulations, regulatory involvement and positions

Key focus areas related to terminology, training, knowledge, and experience gaps:

- Dedication (CGD) vs. Qualification (EQ)
- Like-for-Like vs. Alternative Replacements
- Maintaining EQ during CGD

WHAT'S THE COST OF <u>NOT</u> CHANGING?

Existing Technology:


- CGD/EQ becoming increasingly difficult on dated technology
- Reliability declining, cost of managing the asset increasing

New Technology:

>

- Design advancements generally increase reliability and lower lifecycle costs
- Digital technology providing opportunity for Monitoring & Diagnostics
- Rest of general Industry progressing more rapidly (knowledge/resource issue)

There is a tipping point to answer the question, but in order to answer must consider...

Total Cost of Ownership (TCO) – does it tip the scale?

- Like-For-Like replacements becoming more challenging and costly to CGD and maintain EQ
- Total Cost of Ownership (\$'s) includes:
 - Parts, Training, Maintenance costs
 - Engineering Costs CGD, equivalencies, etc.
 - Failure/non-quality costs

Cost not just dollars, must also consider:

- Risk/Equipment Reliability
- Personnel & Plant Safety
- Knowledge Management
- Long-term support parts, design

Must emphasize TCO approach to better align our state of technology with the future of our market

9

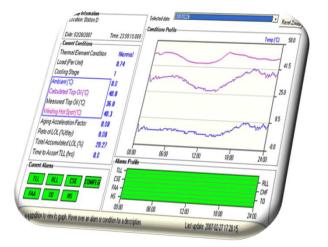
framatome

Total Cost of Ownership Example

Electro-Mechanical to Numerical (Digital) Relays

Electro-Mechanical Relays:

- Dated Technology
- Obsolescence increasing
- Reliability Decreasing
- Expertise disappearing
- Repair/Refurb costs increasing


Numerical (Digital) Relays:

- Not new technology to general industry
- Simplifies design/footprint
- Reliability Increasing
- Monitoring & Diagnostic ability
- No or little maintenance

Total Cost of Ownership Example

Electro-Mechanical to Numerical (Digital) Relays

Use cost-effective, data-driven maintenance schedules to drive Asset Management approach:

- Increase asset life
- Make informed decisions
- Maximize engineering resources

framatome

Conclusion

- CGD/EQ will be more critical than ever for the industry going forward given market evolvement and the "state of the OEM"
- Rate of technology advancement must drive consideration of asset management and total cost of ownership approach
- Importance of standardization of regulatory and industry guidance to appropriately achieve reasonable assurance

framatome

12