

Topics for discussion

- Background
- Overview of Fukushima Accidents
- Comparisons of SOARCA Study with Fukushima accidents
- Equipment functioning in real-world accidents
- Conclusions

Side 2 of 3

SNL Fukushima MELCOR Reactor Models

State-of-the-Art Reactor Consequence Analyses Project

Volume 1: Peach Bottom Integrated Analysis

Manuscript Completed: January 2012 Date Published: January 2012 Pregame 65y: Sanda Hational Laboratories All-opening. New Mexico 57183 Opening for the U.S. Department of Energy

- BWR Mk-I model from the NRC's State-of-the-Art Consequence Analysis (SOARCA) project used as a template
 - 20+ years of BWR model R&D
 - Current state-of-the-art/best practices
- Incorporated reactor-specific information into the template to create Fukushima reactor models
- Developed surrogate information for unavailable Fukushima information
- Analyses performed using MELCOR 2.1

Side 3 of 31

Earthquake Led to Loss of Offsite

Power

Seismic events disrupted roads and power lines

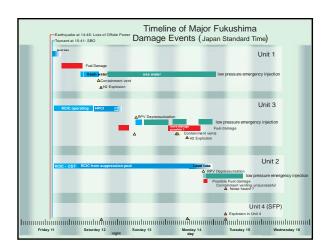
- Regional blackout isolated Fukushima station from power grid
- Reactors shut down
- Site operated by onsite diesel generators

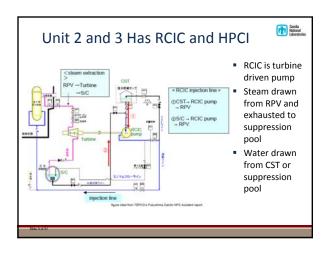
Circuit Breaker damaged

sed by permission from TEPCO Collapsed tower

Side 5 of 31

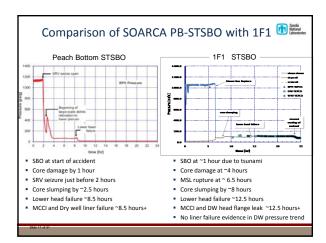
Daiichi Site was Inundated

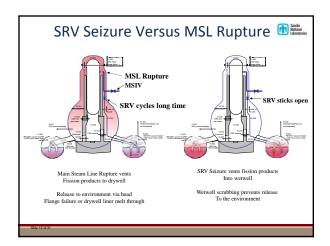


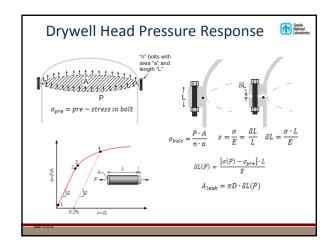


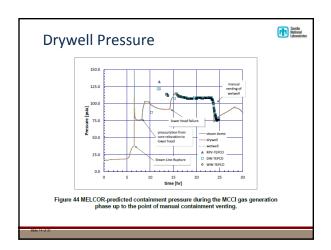
- Site flooding initiated "Station Blackout"
 - Diesel generators flooded
- Used by permission from TEPC
- Unit 1 lost all power (AC/DC) and had no ECCS available
- Unit 2 lost all power, but RCIC ran uncontrolled
- Unit 3 maintained some DC and ran RCIC and HPCI systems
- All reactors isolated from ultimate heat sink (Ocean)

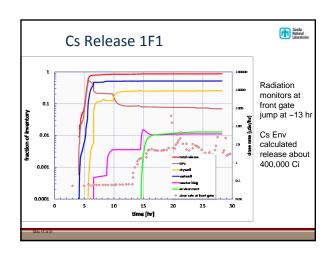
Side 6 of 31

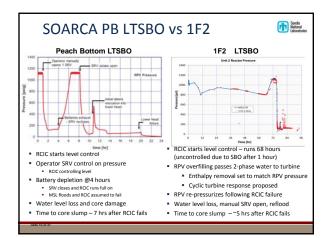


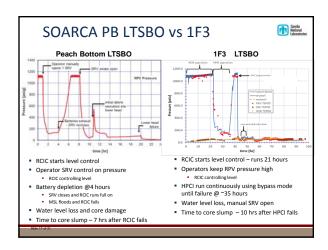


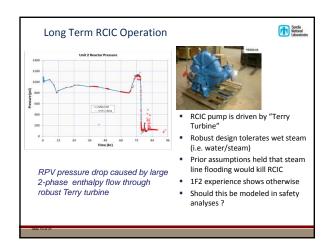


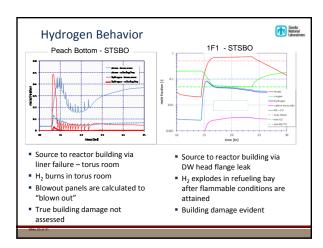



SOARCA PEACH BOTTOM VERSUS FUKUSHIMA ACCIDENTS








Summary of SOARCA-Fukushima Comparisons

- SOARCA BWR analyses included STSBO and LTSBO and were performed <u>before</u> Fukushima accidents
 - Both sequence types were observed in Fukushima accidents
 - These accidents are classic and among the collection of "usual suspects"
- While variants of STSBO and LTSBO are observed
 - Striking similar trends and operator responses
- More information to come from post-accident decommissioning activities
 - MSL creep rupture, SRV seizure, Liner failure
- Equipment performance brings new insights into realistic operation as seen in following slides

Side 18 of 3

Conclusions on Hydrogen Comparison

- Containment failure mode affects hydrogen behavior and has implications on hydrogen control
 - Implications on hydrogen control
 Liner failure releases hydrogen low in building
 - Uncontrolled release
 - DW head flange releases hydrogen to refueling bay
 - Release can be controlled by venting via hardened/reliable vent path
- Flammability or detonability affected by steam content and condensation
- MCCI progression is very important
 - Produced liner failure in PB but probably not in 1F1
 - MCCI calculated to sustain containment over-pressure in 1F1

Stat 22 of 3

Conclusions

- SOARCA STSBO and LTSBO were analyzed prior to Fukushima accidents
 - Real-world Fukushima accidents appear to be slight variants on SOARCA chiding.
 - While more data is forthcoming, comparisons are very encouraging
- RCIC and HPCI operation at Fukushima showed differences in idealized (modeled) performance
 - Equipment proved more robust than thought
- Potential bifurcation points in accident progression
 - MSL rupture versus SRV seizure
 - Containment liner failure versus DW head flange leak
- Hydrogen threat to reactor buildings is clear from Fukushima accidents
 - Burns/explosions could be either low in building or high in building
 - DW head flange leak can be controlled by venting via hardened pathway
 - Liner failure leak path is uncontrolled
- SOARCA is a methodology
 - Safety can be further increased by using computer codes (MELCOR/MAAP) to characterize accidents and potential mitigative actions

Side 23 of 31