paris of

INDIANA UNIVERSITY

BLOOMINGTON, INDIANA

STRUEASE THE TREASURER

March 0, 1961

Mr. James R. Mason, Chief Isotopes Branch Division of Licensing and Regulation United States Atomic Energy Commission Washington 25, D. C.

Re: Your DLR: IB: JEB (13-105-4)

Dear Mr. Mason:

Enclosed is an application for renewal of licenses 13-108-1-4-5 to be combined under one license number.

You will recall we talked about this procedure by telephone on January 10th. We hope that the application and forms submitted are sufficient and will allow you to issue one license number, and will still allow us to make our three different areas responsible to the professors under Item 5 - RADIATION PROTECTION OFFICER.

If there is any question concerning this application, please do not hesitate to get in touch with us immediately.

Yours very truly,

INDIANA UNIVERSITY
Purchasing Department

R. M. Priest

Associate Purchasing Agent

RMP/mj

Encls.

FOR A . S.F. LAMICE

8911170070 891102 PDR FOIA WOLFE89-401 PDR INDIVIDUAL USEL ..):

Henry R. Mahler, Professor

Felix Haurowitz, Professor

Lynne Merritt, Professor

Walter J. Moore, Professor

Ward B. Schaap, Associate Professor

Ralph L. Seifert, Associate Professor

John A. Thomas, Assistant Professor

A.C.G. Mitchell, Professor

L. M. Langer, Professor

R. G. Wilkinson, Professor

M. B. Sampson, Professor

D. W. Miller, Professor

ADDITION TO PREVIOUS USERS:

Applicant: Robert D. Bent

Research Experience - Institution and Rank

The Rica Institute	Research Associate	1954-1955
Columbia University	Research Associate	1955-1958
Indiana University	Assistant Professor	1950-present

Experience:

He has been doing research in the field of low energy nuclear physics, utilizing Van de Graaff and cyclotron accelerators, since 1952. This amounts to nine years of experience with sources of radiation. He is fully aware of the nazards involved, and the safety precautions that are necessary in the handling of radioactive materials.

4.

Carlos O. Miller - Associate Professor of Botany

No previous experience with isotopes other than a section of a biochemistry laboratory at Wisconsin. Will undertake studies with tritium-labelled kinetin and other adenosine derivatives.

David G. Frey - Professor of Zoology

Has worked with Carbon during two summers. Will use Carbon 14.

Thomas D. Brock - Assistant Professor of Bacteriology

Ohio State University	B.Sc.	1949
Ohio State University	M.Sc.	1950
Ohio State University	Ph.D.	1952
Upjohn Company		1952-1957
West Reserve University	Assistant Professor	1957-1960

Will use Cli sugar acetate, uricel and thymene, S35 inorganic sulfate, and P32 inorganic phosphate.

Howard V. Rickenberg - Associate Professor Bacteriology

Cornell University	B.Sc.	1950
Yale University	Ph.D.	1954
Pasteur Institute and	American Cancer	
London Medical Laboratory	Society	1954-56
University of Washington	Medical School In- structor & Assistant Professor	1956-60

Will use C14 compounds of sugar and amino acids, S35 sulfate mercaptan, and P32 inorganic phosphates.

ADVICE TO AEC RESPONSTBLE INVESTIGATORS IN JORDAN HALL

- 1. Orders for active materials must originate with individuals who are listed on the AEC license as "responsible investigators."
- 2. All snipments receive should be recorded immediately on "Product Record Forms" (a copy is attached). The upper portion of this form is sent immediately to the Radiation Safety U"fi. (C. W. Hagen). The lower portion should remain with the sample until decay or disposal is complete, then is sent to the Radiation Safety Officer.
 - 3. Active samples must be stored in locked rooms or locked cupboards.
- 4. All containers, waste cans, and areas housing radioactive materials must be labelled with approved cards or tape.
- 5. Responsible investigators must take full responsibility for safe procedure by subsidiary personnel and should be familiar with Federal regulations concerning safe handling practices.
- 6. The enclosed "Precautions," or a similar set of rules, should be posted in laboratories where work rith isotopes is allowed.
- 7. Dispos 2 of soluble materials is permitted through sink drains if accompanied by inert carrier and if the total amount involved is not greater than 1 mC in 24 hours.

Combustibles, including carcasses, may be incinerated in the Jordan Hail incinerator (with the permission and supervision of members of the Zoology Department) provided:

a. Ash is collected and stored for decay or disposal by burial, and b. The effluent stack discharge does not exceed in activity the limits specified for unrestricted areas in the Federal Register. With our incinerator the following rates should not be exceeded:

carbon-lu 1.0 mC each 4 days nodin-131 0.01 mC each 10 days tritium 12.0 mC each day.

Disposal must be proportionated, i.e., it is not permitted to dispose of the maximum activity of two isotopes during overlapping periods.

Non-combustibles, ash, papers, etc. may be disposed of by burial. Volume may be reduced by burning at the disposal area (in the burial pit). Such disposal will be accompanied to the site by a trained technician who will measure and record activity pefore and after burial.

Tolerable Exposure

No person should receive more than 100 mr/wk to any part of the body, summing exposure from all sources. Damage from such exposure is believe undetectable.

Sources of Exposure

- 1. Ingestion of active material.
- 2. Inhalation of active material.
- 3. Wounding with contaminated objects or contamination of open wounds with active material.
- h. External irradiation.

Detection of Exposure

- 1. Film badges or ionization chambers should be worn by those working with dangerously active materials or by persons working routinely under conditions permitting exposure.
- 2. Blood counts should be obtained routinely by continuously exposed personnel.
- 3. Assay activity in urine, feces, or nasal exudates whenever ingestion or innalation of active materials is suspected.

Avoidance of Exposure

- 1. Survey 'not' areas before beginning operations and calculate safe working times and distances.
- 2. Clean work area (wipe down and change papers) before and after operation.
- 3. Wear lab coats while working and check activity on coats and clothing after working.
- 4. Use appropriate shielding, secondary containers, and absorbers.
- 5. Dispose of wastes immediately and in appropriate containers.
- 6. Maintain greatest practical distance from sources.
- 7. Run all evaporations slowly and under effective hoods.
- 8. Do not smoke, eat, or apply lipstick in 'hot' areas. Do not bring such materials into 'hot' areas.
- 9. Do not papette by mouth an 'hot' areas.
- 10. Obtain hand counts after using active materials. Decontaminate as necessary.
- 11. Protect all open wounds while in 'not' areas.
- 12. Decontaminate any wound received in 'hot' areas and report the accident immediately.

PANCEDURES FOR HANDLING RADIOACTIVE MATERIALS

Department of Physics Indiana University

- 1. All orders for radioisotopes must be approved by the Chairman of the Isotope Committee (A. C. G. Mitchell).
- Shipments are received and opened only by responsible supervisory personnel (Professors Langer, Mitchell, Wilkinson, and Sampson). Aliquots for research are meted out by the above for use by themselves or by instructed personnel working under their supervision.
- 3. Areas in which radioisotopes are stored or used are so indicated by radiation warning signs. Isotopes are stored in lead enclosures in controlled areas.
- 4. Personnel working with radioactive materials wear film badges and pocket dosimeters to monitor the accumulated dose. Survey meters are used to determine the instantaneous rate of irradiation. No personnel are permitted to accept an integrated dosage in excess of 100mR in any one week. All personnel receive monthly blood counts.
- 5. Areas in which radioactive material is handled are surveyed periodically. All spills or surface contaminations are cleaned up at once. In the case of non-removable contamination, the contaminated surface is either removed or appropriately covered over.
- 6. Expended material is usually disposed of after having decayed to an insignificant level. Disposal is by means of controlled burning (to reduce the bulk) and then buried in an unfrequented area. During chemical processing small amounts (less than l.mc) of water soluble material are flushed into the sewer, usually highly diluted with inactive carrier isotopes of the same element.

USE OF RADIOACTIVE MATERIALS IN THE DEPARTMENT OF CHEMISTRY

(For information and regulations manual)

Effective Jemuary 1960

To promote safety and prevent unnecessary contamination of any area the users of radioactive materials must have adequate safety information, and regulations must be strictly observed which will assure proper use of such materials.

The Chemistry Committee on Radioisotopes (CCR) has the responsibility of (1, making information evailable, (2) providing regulations, and (3) assisting the departmental chairman in the enforcement of the regulations.

Authorisation to use radioisotopes

Under the conditions of our license no member of the department may use any radioisotope without authorisation by the CCR. Any prospective user and any new uses must be referred to the Committee for approval.

Procurement of radioisotopes

All requisitions for the procurement of isotopes must be prepared in accordance with the licensing regulations and they must receive action by the departmental chairman. He will not authorise procurement unless the specified user(s) has been approved by the CCR.

Supervision of use

Faculty members have responsibility for the proper use of radioisotopes by students, research technicians, and other workers in their research or instruc-tional groups. This responsibility must be implemented by making certain that all persons concerned satisfy the requirements for clearance by the CCR. Chemistry C507 is especially recommended. It should preceed actual participation in work requiring the use of isotopes.

Protection against radiation

Food and drink must not be consumed in areas where there is radioactivity that might be ingested.

Pipetting of radioactive material by mouth must not be allowed.

All other practices that might result in appreciable exposure to radiation must be prohibited.

Personnel mnitoring

- 1. Pocket dosimeters are available in the Radiochemistry building. The record of exposure of each worker must be recorded in a bound notebook kept in this building. The record is kept by worker's name so that cumulative exposure records are readily determined. Records must be entered in the notebook at least once per week. The book will be inspected at least once per week by the Safety Officer or his representative.
- 2. Film badge service will be provided for those workers whose supervisors deem it necessary or desirable. Pocket dosimeters should also be worn by such workers. Consult with the Safety Officer concerning this service.

33121

- 3. In case of any possible overexposure or accidents the Safety Officer should be notified immediately. He will also notify the Manager of the Chicago Operations Office, P.O. Box 59, Lamont, Illinois in accordance with the amendment to Title 10, Chapter 1, Part 20, Code of Federal Regulations, "Standards for Protection Against Radiation," May 13, 1957.
- 4. The permissible weekly dose of radiation is specified in Appendix A of the above-mentioned code (Federal Register 22, No. 19, p. 553, Jan. 29, 1957) but, for Indiana University, an exposure in excess of 150 mrem per week is considered excessive and must be reported to the Safety Officer.

Radiation symbols

Standard signs are available in the stockroom.

It is necessary to use the standard insignia at all "radiation areas" where there exists radiation in excess of 5 mrem per hour or where a person could receive a dose in excess of 150 mrem in any 5 consecutive days.

Restricted areas of use

The regulations prohibit use of redicactive material in an <u>unrestricted area</u> if the rediction levels will result in a person receiving a dose in excess of 2 mress per hour if continuously present in the area or a dose in excess of 100 mress in any seven consecutive days.

Bisposal

- 1. All burials of radioactive materials will be supervised by the Safety Officer and will be recorded by him in a book kept in the Chemistry Business Office.
- 2. Tables of permissible concentrations of isotopes which can be disposed in the sewage system are available in the Chemistry Business Office and from the Safety Officer. All disposals must be recorded on the forms furnished with each shipment of radioisotopes (attached to each package by the stockroom keepers).
- 3. All disposals of radioisotopes must be made in one sink, only, in each area and must be recorded, also, on a second record sheet kept at this sink. The special sink in the Hot Laboratory (Room 7) of the Radiochemistry Building is the proper sink for that building.
- 4. A record must also be made of all radioactive solids placed in the waste can in the Hot Laboratory (Room 7). The isotope, approximate quantity, date, and name of person making the disposal should be entered on the record sheet posted near the can. The volume of such disposals should be as small as possible.

 Non-active paper towels and glassware should not be placed in this waste can.

 Similar records must be kept for temporary waste cans that may be used outside the Radiochemistry building. All solid wastes, except animals, should eventually be placed in the waste can in the Hot Laboratory.
- 5. All radioactive biological material as well as other materials must be handled with dare and foresight. For example, some materials may be essentially harmless in the fresh state but during storage putrifactive processes may result in the liberation of C*H4, C*O2, S*H2, and other volatile forms of radioactive material. In general decomposition can be conveniently prevented by storage in the frozen state at about-15°C.

 33121

Radioactive excrete of animals should be collected by trained workers such as graduate students and made alkaline by the addition of CaO to prevent the evolution of SaHe or CaO. Alkaline urine should be concentrated, after the addition of permanganate, to reduce the volume before burying the material.

Records

1. The sheet furnished with each shipment of radioactive material is to be kept with the material at all times until the material is all gone. At this time; the sheet is to be returned to the Chemistry Business Office where it will be kept on file. This office will issue monthly requests for reports on the disposal of each shipment of radioactive materials received until it has been established that all the activity received has been accounted for.

Daily Sewage Distocal Limits

neterial	microcuries	material	microcuries
10	1,000	Bu284	10
V67.00	10	pe	500
Ag212	100	Po ⁶⁶	500
-	1,000	Pe ^{Se}	10
A670, A577	100	Ge.78	100
At ⁹¹¹	1,000	Ge72	500
Aulee	100	HS (HTO or TaO)	1,000
Au ^{2 po}	100	Horee	1,000
Bal 40 + Ial 40	10	Lyst	100
Be7	500	In ¹¹⁴	10
C24	500	It ₇₀ 0	1,000
Cade	100	It-703	100
Cdzos + Agzes 47	100	Kee .	100
Celes + Pries	10	La ¹⁴⁰	100
C130	10	Lu177	1,000
Can [®] 48	1,000	Mu ⁸³	10
Coeo	10	Nn ^{6.6}	500
Czes	500	Mo**	100
Cs137 + Bal37	10	Ne ² 2	100
Cue4	500	Na24	331621

material	nicrocuries	meterial	microcuries
Mos	100	Sr**	10
Nie.	10	Sreo + Yeo	1
N1 ⁶³	10	Teles	100
psa	::0	To**	10
Pbacs	3. KK 80	To**	10
Pdlos + Rhlos	500	Te ¹²⁷	1,000
Pd100	100	Tolae	1,000
Pm² 47	100	Th ²³⁴	1,000
Posto	1	Th(natural)	500
Pr2 10	100	17904	500
Pulase	10	2m ²⁷⁰	1,000
Rasse	1	U(netural)	500
Bbee	100	(Jasa	10
Relas	1,000	U ²³ 4_U235	500
Re100	100	740	10
Rh ¹⁰⁶	1,000	No.	100
Ru200 + Rh200	10	Xeras	1,000
S ³⁸	500	X9738	1,000
Sb284	10	Y°°	10
Sc46	10	Jos	70
Sm161	1,000	Zn ^{e8}	100
Smrs	100	Unidentified radioactive	
Snins	100	materials or any of the . shows in unknown mix-	
		tures	1

December 1959

H. G. Day