FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 16, 2009

VOLUME 1

APPENDIX B.2 SPT Energy Measurement Reports

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

North Anna 3 Project

MACTEC Project: 6468-09-2473

SPT Energy Report – Vendor A (supplement 2 – 29 borings) Dated Nov 16 and Dec 2 2009

Engineering and constructing a better tomorrow

November 16, 2009

From: Jon Honeycutt, Staff Professional

Reviewed By: Steve Kiser, Principal Professional

Subject:

Report of SPT Energy - MACTEC CME-550x ATV Hammer Serial No. MEC-05 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 2, 2009, during drilling of Boring M-9 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 8:30 AM to 10:00 AM on September 2 under clear skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Atlanta office. The drilling equipment consisted of a CME-550x model ATV drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Ruben Landeros. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the automatic SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 280 foot-pounds to 298 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 80.0% to 85.1% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 291.2 foot-pounds, with an average ETR of 83.2%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Pages 5 – 6 Work Instruction No. 8 DCN:NAP 077 – 2 Pages (without attachments)

Page 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
		D. L.				15.4 - 16.9	4 - 5 - 4	16	290	82.9%
MEC-05	MACTEC					17.9 - 19.4	5-6-6	17	295	84.3%
(CME-550x	Atlanta	Ruben Landeros	M-9	9/2/2009	AW-J	22.9 - 24.4	5 - 6 - 6	19	295	84.3%
ATV)	Atlanta	Landeros				27.8 - 29.3	5-7-7	19	298	85.1%
						32.8 - 34.3	5 - 8 - 8	22	280	80.0%
				36			Ave	rage for Rig:	291.2	83.2%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By:	Date:	11-1/-09	Checked By: SUL	Date: 11-16-09
rieparea 2). A	20001	11-16-07	one one of	

For Jon Janes H

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Stev	ve Kiser				_Rev. No	0
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09		_ Date:	August 31,	2009	
Valid From:	August 31, 2009		To:	August	31, 2010		

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

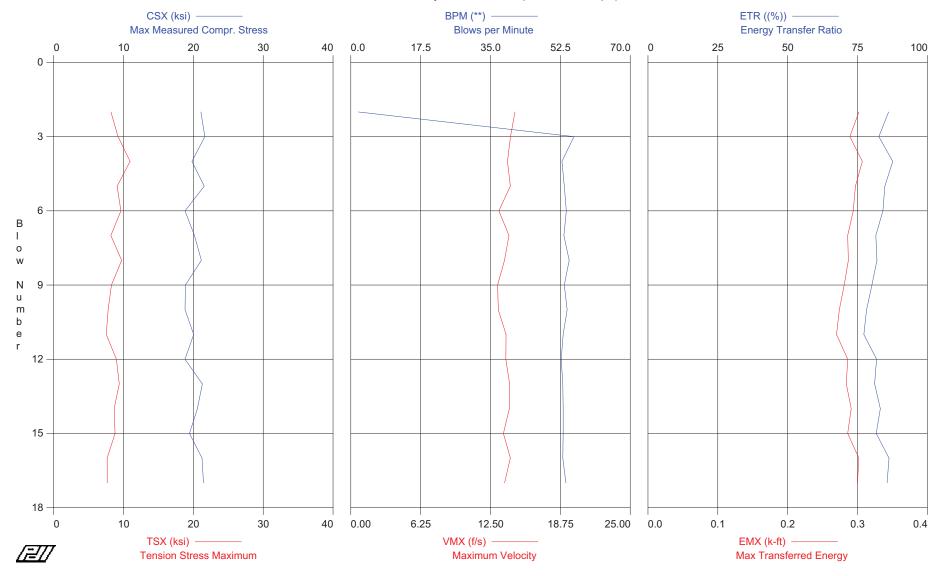
Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Page 1 of 15
DCN NAP077
Page 6 of 87
DBN#NAP302

Project Manager:	Date:
Principal Professional: D. Hour Coy	lay Date: 8-31-09
Site Manager:	Date:
No. of Pages:15	DCN: NAP077
OA Form 24-1 Revised 8/12/2009	rc



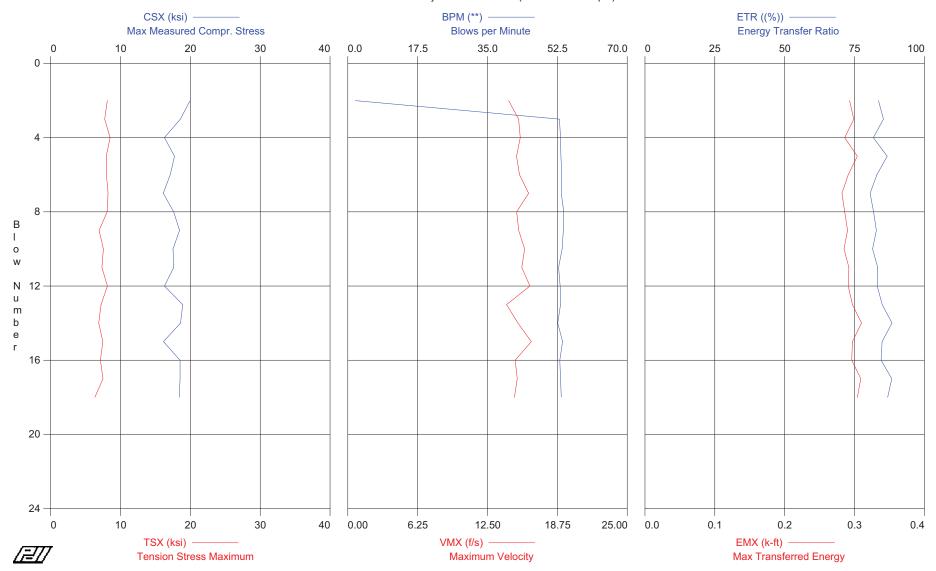
2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT

are the second and the second are the	TON	DRILL RIG DATA								
ROJECT:	North Anna 3 Project			MAKE:		-	ME			
OCATION:	Virginia			MODEL:			550 X 4+V			
ROJECT NO.:	6468-09-2473			SERIAL	NO.:	M	EC-05			
ATE:	9/2/2009			HAMMER TYPE: A		uto				
VEATHER:	650F SU	vv~		ROPE CO	ONDITION:	N/A				
NSPECTOR:	HVE			ROD SIZ	E:	AW-J				
RILLING COMPANY:	MACTEC -			NO. OF S	SHEAVES:	N/A				
VILLENO COM PART			00000	DATA						
	T #	B	ORING	DATA					Ange de	
BORING NUMBER:	M-9								-	
DEPTH DRILLED:	Vario									
TIME DRIVEN:	8:30 AM -	10:00 AM								
RIG OPERATOR:	R. HANDER	WS								
HAMMER OPERATOR:	N/A									
PDA PAK SERIAL NO.:	362	2L				4				
NSTR. ROD AREA:	1.22 in2									
ACCEL, SERIAL NOS.:	A1- K983	12- KO686								
STRAIN SERIAL NOS.:	75 AW #	1/2								-
	SAMPLE	SPT								
	DEPTH	N-VALUE								
**	(feet)	(bpf)								
	15.4-16.9	4-5-4		1					=	
**	137,70,7	-/		13					1	
	-			-		-				+
	17.9-19,4	5-6-6	-	. 1						
	22.9-24,4	5-6-6								
	# X # (- X //)	2 0 0	-	1					1	
				-		-				-
	27.8-29.3	6-7-7								
	32.8-34.3	5-8-8								
	34.0-37.2	500		-	1					
				-					-	-
										-
										T
				+-	_	-			1	
									-	-
						S S S S S S S S S S S S S S S S S S S				
				+	\dashv					
				-	-	-	-			+
										-
			O'CHING CO							
			100000000000000000000000000000000000000							
				-			-		1	1
							-		-	-
REMAR	KS: Testing performed in	accordance with			Jean March					
i statisti si s	ASTM D 4633-05	NE CONTROL OF THE CON					1			
	1.0.1						1		of FV	
									^	300

D8/44/4/49/03

FVP: Force/V	elocity proport	ionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	21.1	8.2	14.7	26	0.8	1.9	0.219	86.2	0.302
3	21.6	9.2	14.3	26	0.8	55.9	0.199	82.6	0.289
4	19.8	10.9	14.0	24	0.8	52.9	0.206	87.6	0.307
5	21.6	9.1	14.3	26	0.8	53.5	0.203	84.8	0.297
6	18.8	9.6	13.3	23	0.8	54.0	0.204	84.1	0.294
7	20.1	8.2	14.1	25	0.8	53.4	0.199	81.6	0.286
8	21.1	9.7	13.7	26	0.9	54.7	0.194	82.0	0.287
9	18.9	8.3	13.1	23	0.8	53.5	0.196	80.2	0.281
10	18.8	7.8	13.2	23	8.0	54.2	0.196	78.3	0.274
11	20.0	7.5	13.9	24	8.0	53.2	0.196	77.3	0.270
12	18.8	9.0	13.9	23	8.0	52.7	0.200	81.8	0.286
13	21.3	9.4	14.2	26	8.0	53.1	0.199	81.1	0.284
14	20.6	8.7	14.2	25	8.0	53.2	0.198	83.2	0.291
15	19.4	8.8	13.7	24	0.8	53.2	0.198	81.7	0.286
16	21.2	7.6	14.3	26	8.0	53.1	0.201	86.3	0.302
17	21.4	7.7	13.8	26	0.9	53.9	0.200	85.6	0.300
Average	20.3	8.7	13.9	25	0.8	50.4	0.200	82.8	0.290
				Total nur	nber of blows	analyzed: 16	i		


Time Summary

Drive 42 seconds 8:49:27 AM - 8:50:09 AM (9/2/2009) BN 1 - 17

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (17.9' - 19.4' sample)

23

22

22

0.6 50.4 Total number of blows analyzed: 17

0.7

0.5

53.3

53.5

0.189

0.188

0.191

88.3

86.9

84.2

0.309 0.304

0.295

Time Summary

Average

17

18

18.5

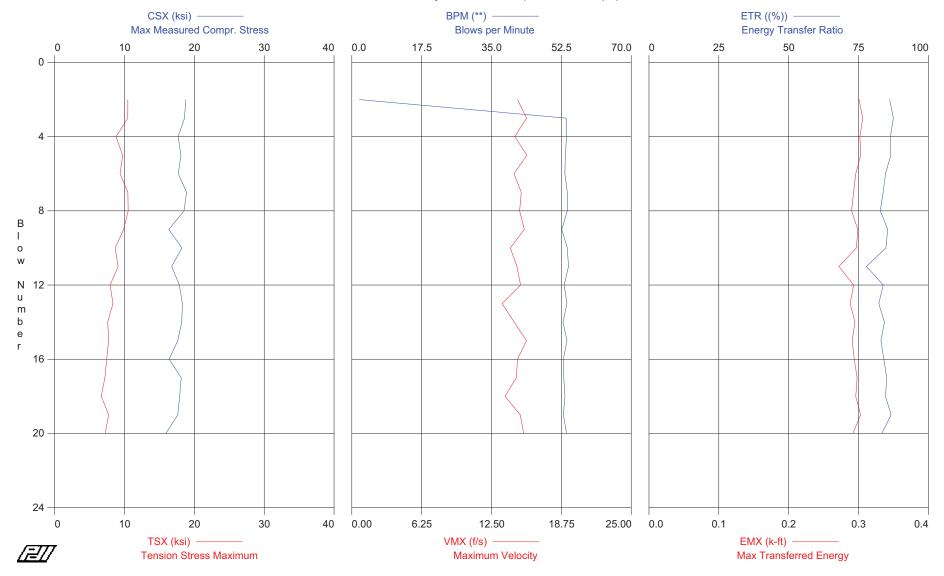
18.4

17.8

7.5

6.3

7.6


Drive 9:04:01 AM - 9:04:27 AM (9/2/2009) BN 1 - 18 26 seconds

15.2

14.9

15.3

NORTH ANNA 3 Project - BORING M9 (22.9' - 24.4' sample)

NORTH ANNA 3 Project - BORING M9 (22.9' - 24.4' sample)

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

Rig Serial No. MEC-05; CME 550 X (R.Landerous)

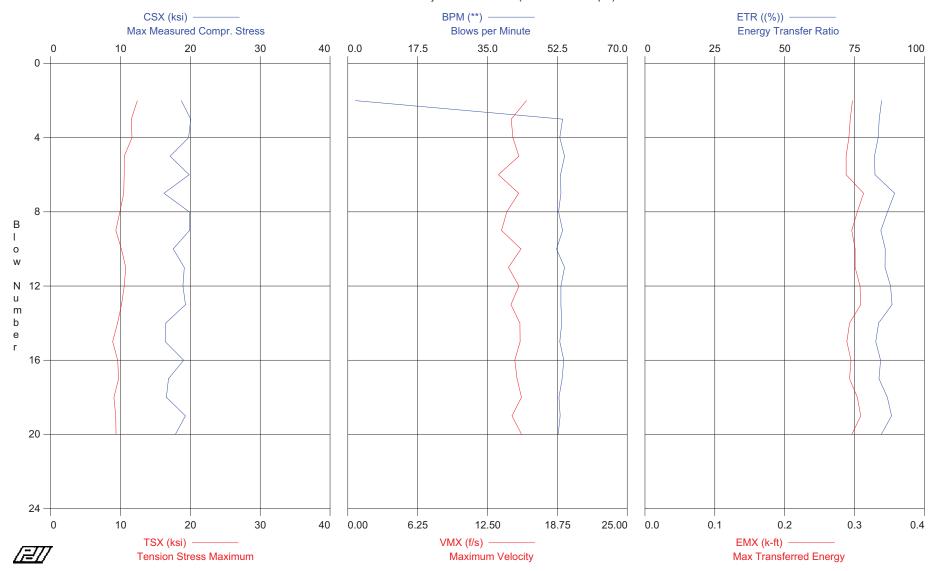
Test date: 2-Sep-2009

OP: JNH SP: 0.492 k/ft3 EM: 30,000 ksi AR: 1.22 in^2 28.40 ft LE: WS: 16,807.9 f/s JC: 0.70 BPM: Blows per Minute CSX: Max Measured Compr. Stress

EF2: Energy of F^2
ETR: Energy Transfer Ratio
EMX: Max Transferred Energy TSX: Tension Stress Maximum VMX: Maximum Velocity FMX: Maximum Force

FVP: Force/V	elocity proport	ionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	18.8	10.5	14.8	23	0.6	1.9	0.218	86.1	0.301
3	18.6	10.5	15.6	23	0.7	53.7	0.214	87.5	0.306
4	17.7	8.8	14.6	22	0.6	53.8	0.214	86.4	0.302
5	18.1	9.7	15.7	22	0.6	53.5	0.208	86.6	0.303
6	17.7	9.4	14.5	22	0.6	53.4	0.215	84.7	0.296
7	18.9	10.5	15.2	23	0.7	54.0	0.210	83.8	0.293
8	18.5	10.5	15.0	23	0.7	54.0	0.203	82.8	0.290
9	16.3	9.9	15.4	20	0.6	52.6	0.214	85.5	0.299
10	18.2	8.7	14.2	22	0.6	54.0	0.210	84.8	0.297
11	16.8	9.1	14.8	20	0.6	54.3	0.197	77.8	0.272
12	17.8	7.9	15.1	22	0.7	53.2	0.199	83.8	0.293
13	18.3	8.3	13.5	22	0.6	53.9	0.202	82.3	0.288
14	18.2	7.6	14.5	22	0.7	52.9	0.199	84.3	0.295
15	17.6	7.7	15.6	21	0.6	53.9	0.199	83.0	0.291
16	16.4	7.4	14.8	20	0.6	53.0	0.205	84.1	0.294
17	18.1	7.2	14.7	22	0.7	53.1	0.201	85.1	0.298
18	17.9	6.7	13.7	22	0.6	53.4	0.205	84.6	0.296
19	17.6	7.7	15.1	21	0.5	53.0	0.211	86.7	0.303
20	15.9	7.2	15.4	19	0.6	53.8	0.200	83.4	0.292
Average	17.8	8.7	14.9	22	0.6	50.8	0.207	84.4	0.295
-									

Total number of blows analyzed: 19


Time Summary

Drive 31 seconds 9:20:31 AM - 9:21:02 AM (9/2/2009) BN 1 - 20

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (27.8' - 29.3' sample)

NORTH ANNA 3 Project - BORING M9 (27.8' - 29.3' sample) OP: JNH

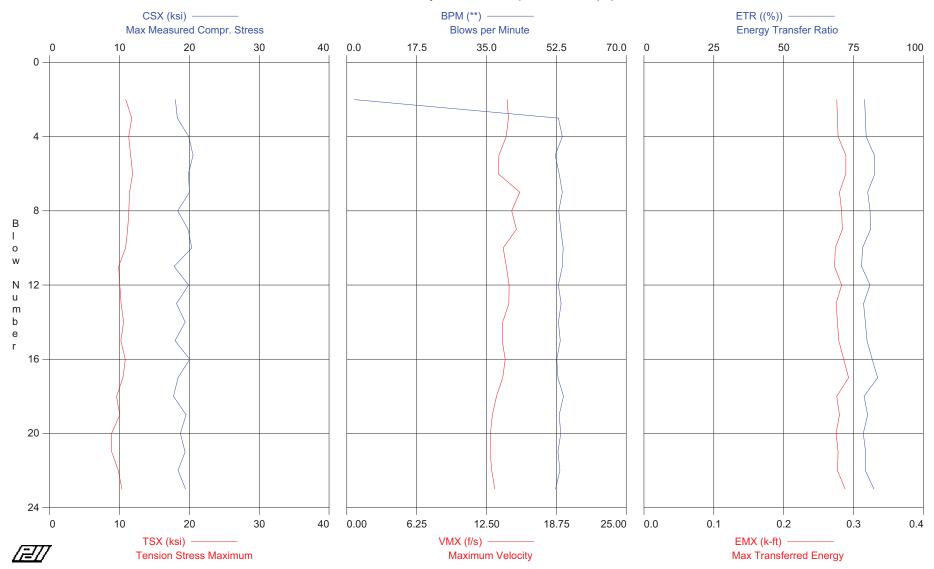
Rig Serial No. MEC-05; CME 550 X (R.Landerous)

41111A 3 F10Ject - BOKING 1818 (21.0 - 2	.a.a sample)	Rig Serial No. MEC-05, CIME 550 X (R.Landerous)
		Test date: 2-Sep-2009

AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 34.40 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F ²
VMX: Maximum Velocity	ETR: Energy Transfer Ratio

	FMX: Maximum Force EMX: Max Transferred Energy FVP: Force/Velocity proportionality											
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX			
BEII	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft			
2	18.7	12.4	16.0	23	0.6	1.9	0.224	84.7	0.297			
3	20.1	11.5	14.6	24	0.8	53.8	0.222	83.9	0.294			
4	19.7	11.6	14.8	24	0.7	53.1	0.218	83.5	0.292			
5	17.1	10.5	15.3	21	0.6	54.3	0.209	82.2	0.288			
6	19.8	10.5	13.5	24	8.0	53.3	0.217	82.3	0.288			
7	16.2	10.5	15.3	20	0.6	53.4	0.213	89.4	0.313			
8	19.8	9.9	14.2	24	0.5	52.8	0.223	86.8	0.304			
9	19.9	9.3	13.8	24	0.8	53.8	0.218	84.4	0.296			
10	17.5	10.1	15.5	21	0.6	52.3	0.221	86.0	0.301			
11	19.1	10.7	14.4	23	0.5	54.3	0.218	85.9	0.301			
12	18.9	10.5	15.3	23	0.7	53.4	0.215	87.9	0.308			
13	19.3	10.1	14.6	24	0.5	53.4	0.217	88.4	0.309			
14	16.5	9.6	15.4	20	0.6	53.6	0.212	83.6	0.293			
15	16.4	8.9	15.4	20	0.6	53.1	0.213	82.6	0.289			
16	19.0	9.6	14.9	23	0.7	54.1	0.210	84.3	0.295			
17	16.9	9.7	15.1	21	0.6	53.7	0.212	83.8	0.293			
18	16.6	9.1	15.5	20	0.6	52.9	0.213	86.8	0.304			
19	19.3	9.3	14.7	24	0.7	53.2	0.213	88.3	0.309			
20	17.9	9.4	15.6	22	0.6	52.7	0.214	84.6	0.296			
Average	18.4	10.2	14.9	22	0.6	50.7	0.216	85.2	0.298			
				Total nur	nhar of blowe	analyzed: 10	a a					

Total number of blows analyzed: 19


Time Summary

Drive 44 seconds 9:36:26 AM - 9:37:10 AM (9/2/2009) BN 1 - 21

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (32.8' - 34.3' sample)

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (32.8' - 34.3' sample)

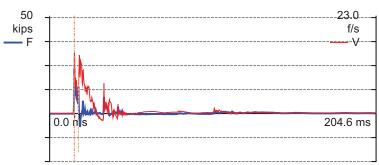
Rig Serial No. MEC-05; CME 550 X (R.Landerous) Test date: 2-Sep-2009

OP: JNH 1.22 in^2

SP: 0.492 k/ft3 EM: 30,000 ksi AR: 38.30 ft LE: WS: 16,807.9 f/s JC: 0.70

BPM: Blows per Minute CSX: Max Measured Compr. Stress EF2: Energy of F^2
ETR: Energy Transfer Ratio
EMX: Max Transferred Energy TSX: Tension Stress Maximum VMX: Maximum Velocity FMX: Maximum Force

FVP: Force/V	elocity proport	tionality							3,
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	18.0	10.9	14.3	22	0.8	1.9	0.222	79.0	0.276
3	18.3	11.7	14.5	22	8.0	53.0	0.231	79.2	0.277
4	19.9	11.3	14.3	24	1.0	54.0	0.230	79.6	0.278
5	20.5	11.6	13.6	25	0.9	52.2	0.238	82.4	0.289
6	19.9	11.9	13.5	24	0.9	53.2	0.241	82.7	0.289
7	20.0	11.4	15.5	24	0.9	54.0	0.234	80.1	0.280
8	18.3	11.3	14.7	22	0.9	53.1	0.240	80.9	0.283
9	19.8	11.2	15.2	24	0.9	53.6	0.236	81.1	0.284
10	20.3	10.9	14.0	25	1.0	54.2	0.235	78.2	0.274
11	17.8	9.9	14.3	22	0.9	54.0	0.231	77.9	0.273
12	19.9	10.0	14.5	24	1.0	53.0	0.235	80.9	0.283
13	18.2	10.2	14.5	22	0.8	53.7	0.236	78.6	0.275
14	19.4	10.6	13.9	24	0.9	53.0	0.231	79.2	0.277
15	17.9	10.2	13.9	22	0.8	53.5	0.228	79.8	0.279
16	20.0	10.8	14.2	24	1.0	52.6	0.238	81.7	0.286
17	18.4	10.5	14.0	22	0.9	52.9	0.235	83.6	0.293
18	17.7	9.6	13.4	22	0.8	54.3	0.231	78.8	0.276
19	19.5	10.0	13.0	24	1.0	53.2	0.230	80.0	0.280
20	18.7	8.9	12.9	23	0.8	53.6	0.229	78.5	0.275
21	19.4	8.9	12.8	24	1.0	52.9	0.232	79.3	0.278
22	18.4	9.8	13.0	22	8.0	53.4	0.228	79.2	0.277
23	19.5	10.3	13.2	24	0.9	52.3	0.232	82.3	0.288
Average	19.1	10.5	14.0	23	0.9	51.0	0.233	80.1	0.280


Total number of blows analyzed: 22

Time Summary

Drive 36 seconds 9:50:03 AM - 9:50:39 AM (9/2/2009) BN 1 - 23

Project: NORTH ANNA 3
Pile: BORING M9(17.9-19.4) - Description: CME 550X(R.LANDEROUS)

Operator: JNH

BN 1	3				
9/2/20	009 9:	04:21 AM			
LP	0.00	ft	LE	23.40	ft
CSX	18.9	ksi	AR	1.22	in^2
CSI	19.5	ksi	EM	30,000.0	ksi
TSX	7.2	ksi	SP	0.492	k/ft3
EMX	0.3	k-ft	WS	16,807.9	f/s
STK	4.80	ft	WC	16,807.9	f/s
FVP	0.75	П	JC	0.70	
SFR	3	kips	2L/c	2.78	ms
RX5	8	kips	EA/c	2.2	ksec/ft
RMX	6	kips	FR	5.000	kHz
		•			

Engineering and constructing a better tomorrow

November 16, 2009

From: Jon Honeycutt, Staff Professional

Reviewed By: Steve Kiser, Principal Professional

Report of SPT Energy – MACTEC CME-45c Track Hammer Serial No. MEC-12 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 2, 2009, during drilling of Boring M-8 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 11:20 AM to 12:50 PM on September 2 under clear skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME 45c model track drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Donnie Rhodes. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 292 foot-pounds to 305 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 83.4% to 87.1% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 297.1 foot-pounds, with an average ETR of 84.9%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Pages 5 - 6 Work Instruction No. 8 DCN:NAP 077-2 Pages (without attachments)

Page 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
						23.7 - 25.2	19 - 17 - 16	52	293	83.7%
MEC-12	MACTEC	Donnie				28.7 - 30.2	4-6-11	21	292	83.4%
(CME-45c	Raleigh	Rhodes	M-8	9/2/2009	AW-J	33.7 - 35.2	4-7-7	18	293	83.7%
Track)	Kaicigii	Middes				38.7 - 40.2	5 - 8 - 11	24	300	85.7%
						43.7 - 45.2	13 - 14 - 15	41	305	87.1%
					,		Ave	rage for Rig:	297.1	84.9%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By: £ C. Date: 11-16-09	Checked By:	Date: 11-16-09	

For John Mith Permission

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Stev	ve Kiser				_Rev. No	0
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09		_ Date:	August 31,	2009	
Valid From:	August 31, 2009		To:	August	31, 2010		

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

Hold Points or Witness Points: None

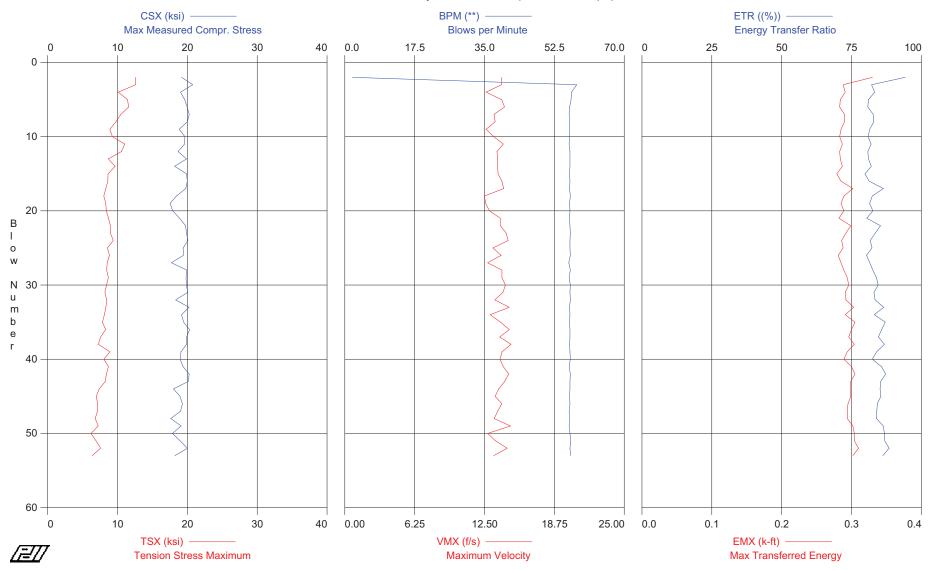
Records: All records generated shall be considered QA Records.

Page 1 of 15 DCN NAP077 Page 24 of 87 DGN#NAR309

Project Manager:	Date:
Principal Professional: D. Aguar Co	Date: 8-31-05
Site Manager:	Date:
No. of Pages: <u>15</u>	DCN: NAP077
OA Form 24-1 Revised 8/12/2009	

2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT


	GENERAL INFORMA			DRILL RIG DATA					
PROJECT:	North Anna 3 Project						СИБ		
OCATION:	Virginia			MODEL:		456 TRACK			
ROJECT NO.:	6468-09-2473			SERIAL NO).:		C-+3-12	SIL	11-16-09
ATE:	9/2/2009			HAMMER	TYPE:	A	to	- 10	
VEATHER:	SUNNY 6	SOF		ROPE CON		N/A			
NSPECTOR:	工小社			ROD SIZE:		AW-J			
RILLING COMPANY:	MACTEC - RATE	754		NO. OF SH	EAVES:	N/A			
			BORING	DATA					
ORING NUMBER:	M-8		DOMINO	DAIA					
EPTH DRILLED:		ious					WIENOTH PROPERTY.		
IME DRIVEN:	11:20 pm -								
IG OPERATOR:	D. BHODE				-				
AMMER OPERATOR:	N. N.								
DA PAK SERIAL NO.:	362		- 1000						
STR. ROD AREA:	1.22 in2								
CCEL. SERIAL NOS.:		42-40686							
TRAIN SERIAL NOS.:	75 AW #1								
*	SAMPLE	SPT					1		
**	DEPTH	N-VALUE		1					
	(feet)	(bpf)							
	23.7-25-2	19-17-14				1			
	327	11 1-10		 		1 .		_	_
	20 7: 7 :0	1		-	-			-	
555,000	28.7-30.2	4-6-11					- 1		
						,			
	33.7-35.2	4-7-7							
								_	
**	20.7-115 7	ار در سے		-	-	-		_	_
	38.7-40.2	2-8-11		-		-			
0%)	43.7-45.2	13-14-15							
							-		
8									
						-			
				-				_	-
						-		_	
						1			
				-		-			
	Testing performed in								

Reviewed By:

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (23.7' - 25.2' sample)

NORTH ANNA 3 Project - BORING M-8 (23.7' - 25.2' sample)

Rig Serial No. MEC-12; CME-45c Track (D. RHODES)

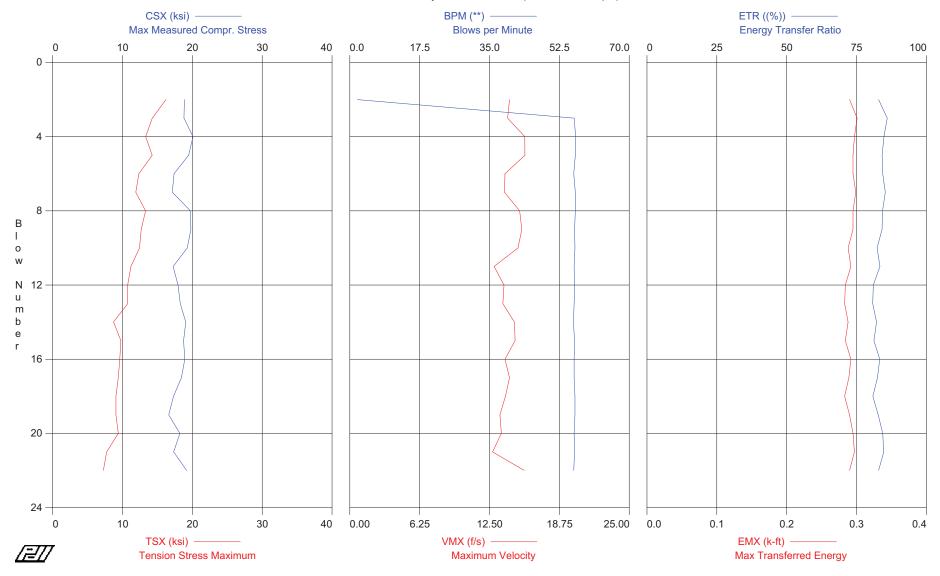
OP: JINH	rest date: 2-Sep-2009
AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 29.20 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	RPM: Blows per Minute

CSX: Max Measured Compr. Stress
TSX: Tension Stress Maximum
FMX: Maximum Velocity
FMX: Maximum Force

BPM: Blows per Minute
EF2: Energy of F^2
ETR: Energy Transfer Ratio
EMX: Max Transferred Energy

FVP: Force/V		tionality					EIVIX: IV	iax i ransterri	eu Energy
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
DLII	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	19.2	12.6	14.0	23	0.8	1.9	0.291	94.2	0.330
2 3	20.8	12.6	14.0	25	0.8	58.1	0.277	82.2	0.288
4	19.0	10.1	12.6	23	0.8	56.8	0.273	83.3	0.291
5	19.6	11.4	14.0	24	0.8	56.7	0.267	81.1	0.284
6	20.0	11.6	14.3	24	0.8	56.3	0.267	80.8	0.283
6 7	20.3	10.5	13.4	25	0.8	56.2	0.272	82.8	0.203
8	20.0	9.8	13.5	24	0.8	56.3	0.272	83.0	0.290
9	18.8	8.9	12.6	23	0.8	56.3	0.268	81.5	0.285
10	19.6	9.3	13.3	24	0.8	56.3	0.270	80.9	0.283
11	19.6	11.0	14.2	24	0.8	56.2	0.266	82.0	0.287
12	18.7	10.6	13.6	23	0.8	56.2 56.4	0.267	80.9	0.283
		8.7		23 24		56.4 56.4			
13	19.9		13.7		0.8		0.266	81.1	0.284
14 15	18.2	9.7	13.7	22	0.7	56.4	0.264	82.1	0.287
	19.9	8.6	13.7	24	8.0	56.3	0.267	79.8	0.279
16	20.0	8.6	14.0	24	0.8	56.4	0.270	81.4	0.285
17	19.8	8.3	14.2	24	8.0	56.3	0.266	86.4	0.302
18	18.4	8.0	12.5	22	0.8	56.5	0.266	82.4	0.289
19	17.5	8.3	12.6	21	0.8	56.3	0.270	81.5	0.285
20	17.9	8.4	12.9	22	0.8	56.4	0.264	82.6	0.289
21	18.9	8.7	13.9	23	0.8	56.3	0.268	80.5	0.282
22	19.7	9.0	13.9	24	0.8	56.4	0.265	85.4	0.299
23	19.9	9.0	14.4	24	0.8	56.5	0.263	83.5	0.292
24	20.1	9.4	14.6	24	0.8	56.4	0.266	81.7	0.286
25	19.4	8.6	13.3	24	0.8	56.4	0.269	82.3	0.288
26	19.4	8.8	14.0	24	0.8	56.5	0.263	80.4	0.281
27	17.7	8.5	12.8	22	8.0	56.1	0.272	81.5	0.285
28	19.9	8.4	14.1	24	8.0	56.5	0.268	82.7	0.289
29	19.8	8.7	14.1	24	0.8	56.2	0.267	83.9	0.294
30	19.9	8.4	14.4	24	8.0	56.5	0.266	84.6	0.296
31	20.0	8.2	14.2	24	8.0	56.4	0.270	83.0	0.291
32	18.3	8.4	13.4	22	8.0	56.5	0.265	83.4	0.292
33	20.2	8.3	14.7	25	8.0	56.3	0.267	86.5	0.303
34	19.2	8.1	13.0	23	0.8	56.4	0.268	83.1	0.291
35	19.5	7.8	13.9	24	0.8	56.3	0.266	87.1	0.305
36	20.3	8.3	14.7	25	0.8	56.4	0.268	85.8	0.300
37	19.9	7.6	13.9	24	0.8	56.4	0.272	84.6	0.296
38	19.9	7.3	14.9	24	0.8	56.3	0.265	86.8	0.304
39	19.1	8.9	14.1	23	0.8	56.4	0.271	84.0	0.294
40	19.0	8.0	13.9	23	0.8	56.5	0.268	82.4	0.289
41	19.4	8.7	14.2	24	8.0	56.2	0.268	85.7	0.300
42	20.3	8.4	14.7	25	0.8	56.5	0.271	87.2	0.305
43	20.1	8.2	14.3	25	0.8	56.4	0.274	85.5	0.299
44	18.0	7.4	13.8	22	0.7	56.4	0.264	85.2	0.298
45	18.9	7.0	13.4	23	0.8	56.3	0.277	85.5	0.299
46	19.3	7.1	14.0	24	0.8	56.4	0.272	84.2	0.295
47	19.0	7.1	13.7	23	0.8	56.2	0.271	84.1	0.294
48	17.6	6.8	13.4	21	0.7	56.3	0.268	83.9	0.294
49	19.1	7.2	14.8	23	0.7	56.2	0.267	86.4	0.302
50	17.9	6.2	12.8	22	0.8	56.4	0.273	86.8	0.304
51	19.0	6.9	13.5	23	0.8	56.6	0.273	86.9	0.304
52	20.0	7.6	14.5	24	0.8	56.4	0.272	88.5	0.310
53	18.2	6.4	13.3	22	0.8	56.6	0.268	86.2	0.302
	19.3	8.7	13.8	24	0.8	55.4	0.269	83.8	0.302
Average	19.3	0.7	13.0					03.0	0.293
				i otai nur	inel of blows	analyzed: 52	<u>-</u>		

Time Summary


Drive 1 minute 25 seconds

11:23:35 AM - 11:25:00 AM (9/2/2009) BN 1 - 53

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (28.7' - 30.2' sample)

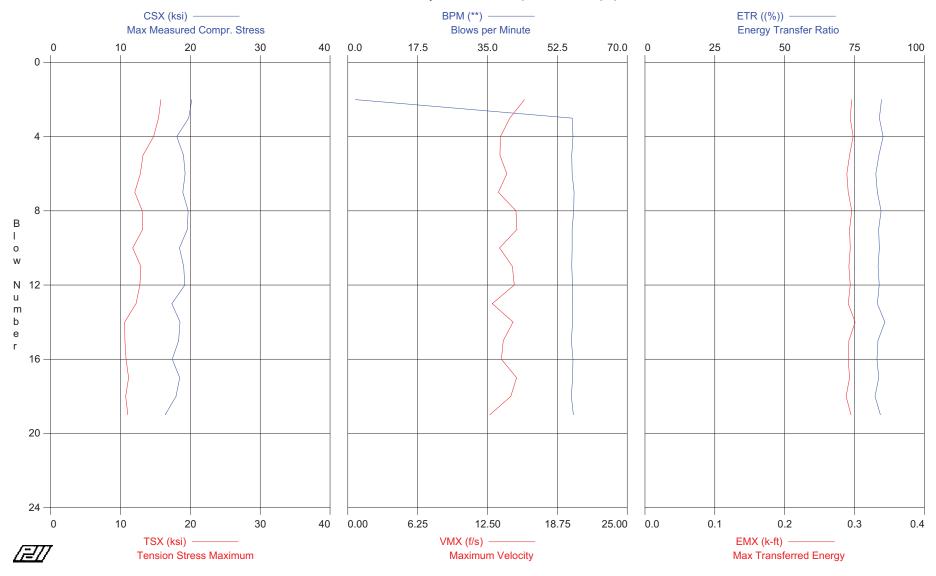
NORTH ANNA 3 Project - BORING M-8 (28.7' - 30.2' sample) OP: JNH

Rig Serial No. MEC-12; CME-45c Track (D.Rhodes) Test date: 2-Sep-2009

OP. J	NIT		
AR:	1.22 in^2		
LE:	34.20 ft		
WS: 1	6,807.9 f/s		
CCV.	May Maggured Com	or Stroce	DDM:

01 : 31411	1 est date. 2-0ep-2005
AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 34.20 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F^2
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
FMX: Maximum Force	EMX: Max Transferred Energy

BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EM>
22.,	ksi	ksi	f/s	kips		**	k-ft	(%)	k-f
2	18.9	16.2	14.3	23	0.8	1.9	0.274	82.9	0.290
3	18.8	14.3	14.1	23	0.8	56.2	0.273	86.0	0.30
4	20.1	13.3	15.7	25	0.7	56.6	0.272	84.8	0.297
5	19.5	14.2	15.7	24	0.7	56.5	0.263	84.2	0.295
6	17.4	12.3	13.9	21	0.7	56.1	0.263	84.4	0.295
7	17.1	11.9	13.8	21	0.7	56.5	0.259	85.3	0.299
8	19.7	13.3	15.2	24	0.7	56.5	0.267	84.3	0.295
9	19.8	12.7	15.4	24	0.7	56.3	0.268	84.1	0.295
10	19.3	12.4	15.1	24	0.7	56.4	0.258	82.4	0.288
11	17.2	11.2	12.9	21	8.0	56.2	0.259	83.4	0.292
12	17.9	10.7	13.8	22	0.7	56.3	0.261	81.0	0.284
13	18.3	10.7	13.7	22	0.7	56.2	0.260	80.8	0.283
14	19.0	8.7	14.7	23	0.7	56.0	0.256	82.2	0.288
15	18.7	9.8	14.8	23	0.7	56.3	0.258	81.2	0.284
16	18.9	9.6	13.9	23	0.8	56.2	0.255	83.3	0.292
17	18.4	9.4	14.3	22	0.7	56.2	0.256	82.5	0.289
18	17.3	9.1	13.9	21	0.7	56.4	0.254	80.9	0.283
19	16.6	9.0	13.4	20	0.7	56.4	0.255	82.8	0.290
20	18.2	9.4	13.6	22	0.8	56.2	0.256	84.4	0.295
21	17.3	7.7	12.8	21	0.7	56.3	0.259	84.8	0.297
22	19.2	7.3	15.6	23	0.7	56.1	0.254	82.9	0.290
age	18.5	11.1	14.3	23	0.7	53.7	0.261	83.3	0.292
-				Total nur	nber of blows	analyzed: 21			


Time Summary

Drive 35 seconds 11:47:18 AM - 11:47:53 AM (9/2/2009) BN 1 - 22

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (33.7' - 35.2' sample)

OP: JNH	to i roject - be	JI (1140 IVI-0 (3	13.7 - 33.2 3ai	ripie)		tig Geriai ivo.	IVILO-12, OIVIL	Test date: 2-	
AR: 1.22 i	in^2								0.492 k/ft3
LE: 39.20 f									0,000 ksi
WS: 16,807.9 f								JC:	0.70
CSX: Max Me		Stress					BPM· F	Blows per Mini	
TSX: Tension								Energy of F^2	ato
VMX: Maximu								Energy Transf	er Ratio
FMX: Maximu								Max Transferre	
FVP: Force/V	elocity proport	ionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	20.2	15.8	15.8	25	0.7	1.9	0.262	84.7	0.296
3	19.8	15.4	14.5	24	0.8	56.2	0.267	83.9	0.294
4	18.1	14.7	13.7	22	0.8	56.4	0.268	85.2	0.298
5	19.0	13.2	13.6	23	0.8	56.1	0.266	83.8	0.293
6	19.2	12.8	14.2	23	0.8	56.2	0.261	82.6	0.289
7	18.9	12.0	13.5	23	0.8	56.7	0.260	83.2	0.291
8	19.7	13.1	15.0	24	0.7	56.6	0.262	84.5	0.296
9	19.6	13.2	15.1	24	0.7	56.2	0.260	83.6	0.293
10	18.4	11.7	13.6	23	0.8	56.2	0.257	83.9	0.294
11	19.0	12.9	14.7	23	0.7	56.1	0.260	83.4	0.292
12	19.2	12.8	14.9	23	0.7	56.3	0.259	83.9	0.294
13	17.3	12.2	12.9	21	0.7	56.3	0.261	83.2	0.291
14	18.5	10.6	14.8	23	0.7	56.3	0.256	85.9	0.301
15	18.3	10.6	13.9	22	0.7	56.0	0.257	83.4	0.292
16	17.4	10.8	13.7	21	0.7	56.4	0.255	83.0	0.291
17	18.5	11.2	15.1	23	0.7	56.3	0.252	83.7	0.293
18	17.9	10.7	14.6	22	0.7	56.0	0.253	82.3	0.288

20

23 0.7 53.3 Total number of blows analyzed: 18

56.5

0.7

0.262

0.260

84.3

83.8

0.295

0.293

Time Summary

Average

19

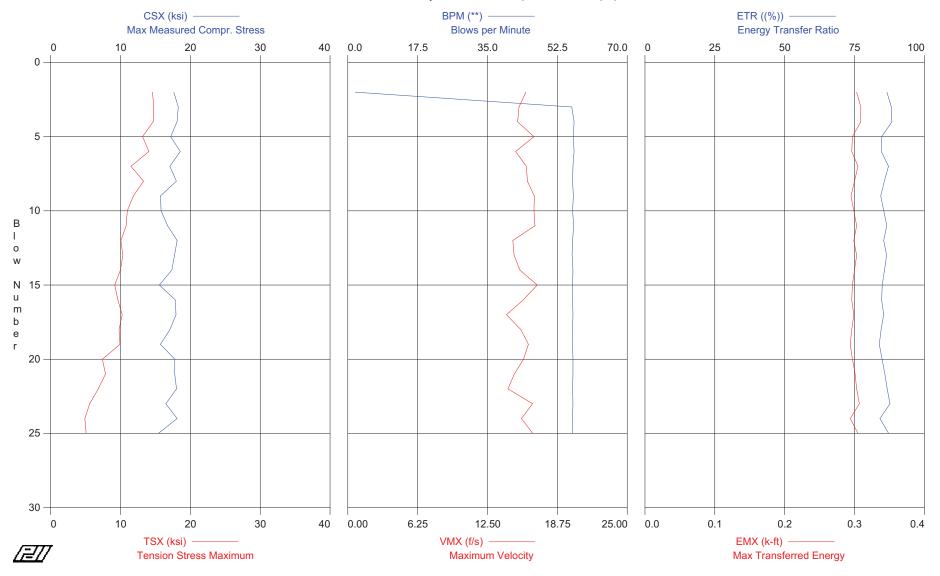
16.4

18.6

11.0

12.5

4 minutes 56 seconds 11:55:59 AM - 12:00:55 PM (9/2/2009) BN 1 - 20 Drive


12.7

14.2

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (38.7' - 40.2' sample)

Case Method Results

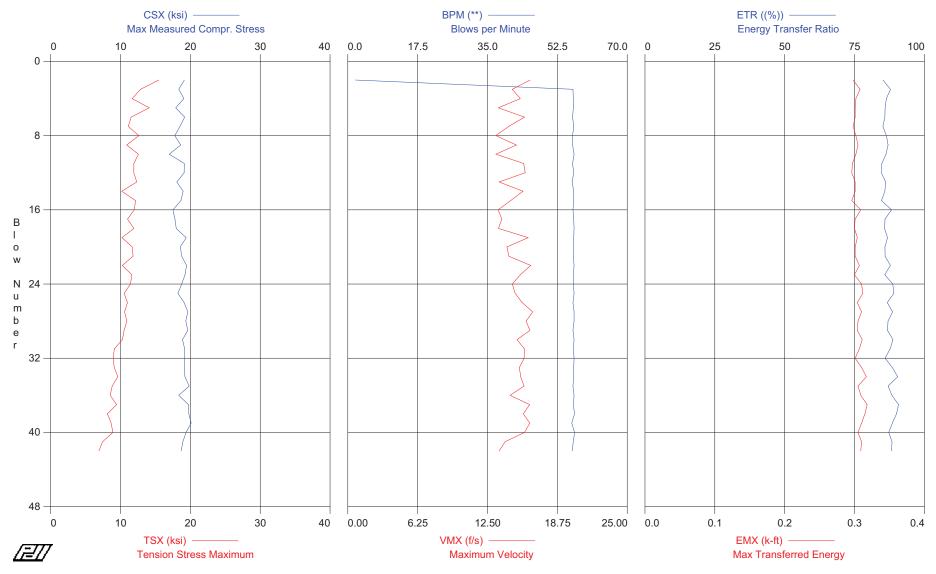
NORTH ANNA 3 Project - BORING M-8 (38.7' - 40.2' sample)

Rig Serial No. MEC-12; CME-45c Track (D. Rhodes) Test date: 2-Sep-2009

01:01411	1 CSt date: 2 CCP 2000
AR: 1.22 in/2	SP: 0.492 k/ft3
LE: 44.20 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F^2
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
FMX: Maximum Force	EMX: Max Transferred Energy

FMX: Maximum Force

FMX: Maximum Force EMX: Max Transferred Ene FVP: Force/Velocity proportionality										
	BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	DLπ	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
	2	17.6	14.6	15.9	22	0.6	1.9	0.274	86.6	0.303
	3	18.3	14.8	15.3	22	0.5	56.1	0.274	88.2	0.309
	4	18.1	14.7	15.2	22	0.5	56.7	0.269	88.4	0.309
	5	17.2	13.1	16.7	21	0.6	56.5	0.258	84.7	0.297
	6	18.6	14.1	15.0	23	0.7	56.7	0.260	84.6	0.296
	7	17.1	11.5	16.0	21	0.5	56.4	0.255	87.2	0.305
	8	18.0	13.3	16.1	22	0.6	56.3	0.258	85.7	0.300
	9	15.7	11.8	16.7	19	0.5	56.5	0.253	84.4	0.295
	10	15.8	11.0	16.7	19	0.5	56.3	0.257	85.5	0.299
	11	16.7	10.8	16.7	20	0.6	56.6	0.253	86.5	0.303
	12	18.1	10.1	14.8	22	0.7	56.3	0.257	85.5	0.299
	13	17.7	10.3	14.9	22	0.7	56.2	0.253	86.5	0.303
	14	17.3	10.0	15.4	21	0.5	56.4	0.257	85.7	0.300
	15	15.6	9.2	16.9	19	0.5	56.3	0.251	84.9	0.297
	16	17.8	9.6	15.7	22	0.6	56.3	0.248	84.7	0.296
	17	17.9	10.2	14.2	22	0.5	56.4	0.252	85.4	0.299
	18	17.1	9.8	15.5	21	0.5	56.3	0.253	84.5	0.296
	19	15.7	9.9	16.2	19	0.5	56.3	0.250	83.9	0.294
	20	17.8	7.4	15.7	22	0.6	56.4	0.247	84.9	0.297
	21	17.8	7.8	14.9	22	0.7	56.4	0.250	85.9	0.301
	22	18.0	6.8	14.3	22	0.5	56.3	0.250	86.7	0.303
	23	16.5	5.6	16.5	20	0.5	56.4	0.248	87.7	0.307
	24	18.1	4.9	15.5	22	0.6	56.3	0.247	84.1	0.294
	25	15.4	5.1	16.6	19	0.5	56.3	0.247	87.2	0.305
Averag	je	17.2	10.3	15.7	21 Total nur	0.6 mber of blows	54.1 analyzed: 24	0.255	85.8	0.300


Time Summary

12:10:11 PM - 12:14:33 PM (9/2/2009) BN 1 - 26 Drive 4 minutes 22 seconds

MACTEC Engineering and Consulting, Inc. - Case Method Results

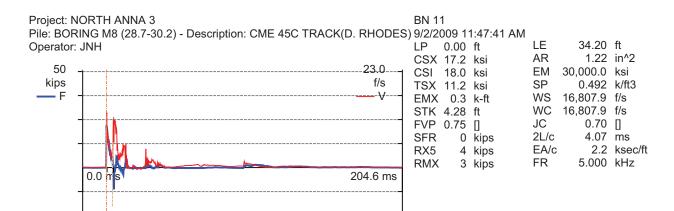
PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (43.7' - 45.2' sample)

NORTH ANNA 3 Project - BORING M-8 (43.7' - 45.2' sample) OP: JNH

Rig Serial No. MEC-12; CME-45c Track (D. Rhodes) Test date: 2-Sep-2009

OF. JINH	rest date. 2-3ep-2009
AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 49.20 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute


CSX: Max Measured Compr. Stress
TSX: Tension Stress Maximum
FMX: Maximum Velocity
FMX: Maximum Force
FMX: Maximum Force
FMX: Force/Velocity proportionality

EF2: Energy of F^2
Energy Transfer Ratio
EMX: Max Transferred Energy

FMX: Maximum Force EMX: Max Transferred En									
FVP: Force/V	elocity proport	tionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	19.1	15.5	16.3	23	0.7	1.9	0.254	85.2	0.298
3	18.3	12.9	14.7	22	0.7	56.4	0.268	87.9	0.308
4	19.1	11.7	15.4	23	0.7	56.5	0.261	86.4	0.302
5	17.9	14.1	13.5	22	8.0	56.5	0.260	86.0	0.301
6	19.2	11.5	15.8	23	0.7	56.3	0.261	85.9	0.301
7	18.5	11.1	14.4	23	0.7	56.6	0.262	85.2	0.298
8	17.8	12.6	13.2	22	0.7	56.3	0.261	86.4	0.302
9	18.6	10.9	15.1	23	0.7	56.3	0.259	87.0	0.305
10	17.0	12.6	13.3	21	0.7	56.7	0.258	86.3	0.302
11	19.1	11.9	15.7	23	0.7	56.3	0.258	84.8	0.297
12	19.1	11.9	15.9	23	0.7	56.6	0.259	84.6	0.296
13	18.1	12.3	13.5	22	0.7	56.2	0.261	86.1	0.301
14	19.0	10.2	15.7	23	0.7	56.6	0.261	85.9	0.301
15	18.7	12.2	14.6	23	0.7	56.6	0.256	84.7	0.296
16	17.5	12.0	13.4	21	0.7	56.4	0.261	88.3	0.309
17	17.8	11.0	13.8	22	0.7	56.6	0.264	85.9	0.301
18	18.0	11.9	13.5	22	0.7	56.7	0.264	85.8	0.300
19	19.4	10.2	16.1	24	0.7	56.6	0.264	86.8	0.304
20	18.6	11.7	14.2	23	0.7	56.5	0.266	85.9	0.301
21	18.8	11.8	14.4	23	0.7	56.5	0.263	86.0	0.301
22	19.4	10.3	16.4	24	0.7	56.7	0.265	87.8	0.307
23	19.2	11.6	15.4	23	0.7	56.5	0.261	85.8	0.300
24	18.8	11.4	14.7	23	0.7	56.5	0.260	88.7	0.310
25	18.2	10.5	15.0	22	0.7	56.7	0.262	89.1	0.312
26	19.1	11.0	15.6	23	0.7	56.4	0.262	86.7	0.304
27	19.6	10.6	16.6	24	0.7	56.7	0.265	88.6	0.310
28	19.4	10.9	16.0	24	0.7	56.7	0.258	87.0	0.305
29	19.6	10.5	16.3	24	0.7	56.4	0.265	86.8	0.304
30	18.9	10.3	15.1	23	0.7	56.7	0.269	88.8	0.311
31	19.2	9.1	15.8	23	0.7	56.5	0.261	87.8	0.307
32	19.2	9.0	15.8	23	0.7	56.7	0.262	85.9	0.301
33	19.1	9.1	15.3	23	0.7	56.6	0.263	88.6	0.310
34	19.2	9.6	15.5	23	0.7	56.6	0.264	90.4	0.317
35	19.8	8.8	15.8	24	0.7	56.4	0.260	87.0	0.305
36	18.3	8.5	14.5	22	0.7	56.7	0.261	88.4	0.309
37	19.7	9.4	16.3	24	0.7	56.5	0.265	90.8	0.318
38	19.8	8.1	15.7	24	0.7	56.8	0.263	90.1	0.315
39	20.1	8.7	16.3	25	0.7	56.1	0.262	88.6	0.310
40	19.4	8.9	15.8	24	0.7	56.8	0.263	87.2	0.305
41	18.9	7.4	14.1	23	0.8	56.5	0.259	88.4	0.310
42	18.7	6.9	13.5	23	0.8	56.2	0.265	88.3	0.309
Average	18.9	10.7	15.1	23	0.7	55.2	0.262	87.1	0.305
				Total nur	mber of blows	analyzed: 41			

Time Summary

Drive 1 minute 47 seconds 12:24:49 PM - 12:26:36 PM (9/2/2009) BN 1 - 42

Volume 1, Revision 0

Engineering and constructing a better tomorrow

November 16, 2009

From: Jon Honeycutt, Staff Professional

Reviewed By: Steve Kiser, Principal Professional

Subject: Report of SPT Energy - MACTEC CME 55 Track (RAL)

Hammer Serial No. MEC-21 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 1, 2009, during drilling of Boring M-30(DH) at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 4:05 PM to 4:45 PM on September 1 under clear skies with a temperature of about 75 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME 55 model track drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Thomas Hahn. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event,

measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 302 foot-pounds to 317 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 86.3% to 90.6% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 306.1 foot-pounds, with an average ETR of 87.4%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Page 5 - 6 Work Instruction No. 8 DCN:NAP 077-2 Pages (without attachments)

Pages 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)		
						11.1 - 12.6	4-6-6	16	304	86.9%		
MEC-21	MACTEC		M-30	9/1/2009 AW-J	9/1/2009		13.7 - 15.2	4-7-7	19	302	86.3%	
(CME 55	Raleigh	Thomas Hahn	(DH)			9/1/2009	9/1/2009)9 AW-J	18.7 - 20.2	6-7-6	19	317
Track)	Raioigh		(D11)		23.7 - 25.2	7 - 8 - 10	25	307	87.7%			
	<u> </u>	L				28.7 - 30.2	11 - 14 - 15	40	303	86.6%		
							Aver	age for Rig:	306.1	87.4%		

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By:	Date: 11-11-09	Checked Ry: A	Date: 11-11,-09
Prepared by.	Date: 11-16-09	Checked By: U-V_	Date: [[-[4-0]

For Janayau St. With Permission

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Stev		_Rev. No	0			
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09		_ Date:	August 31,	2009	
Valid From:	August 31, 2009		To:	August	31, 2010		

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

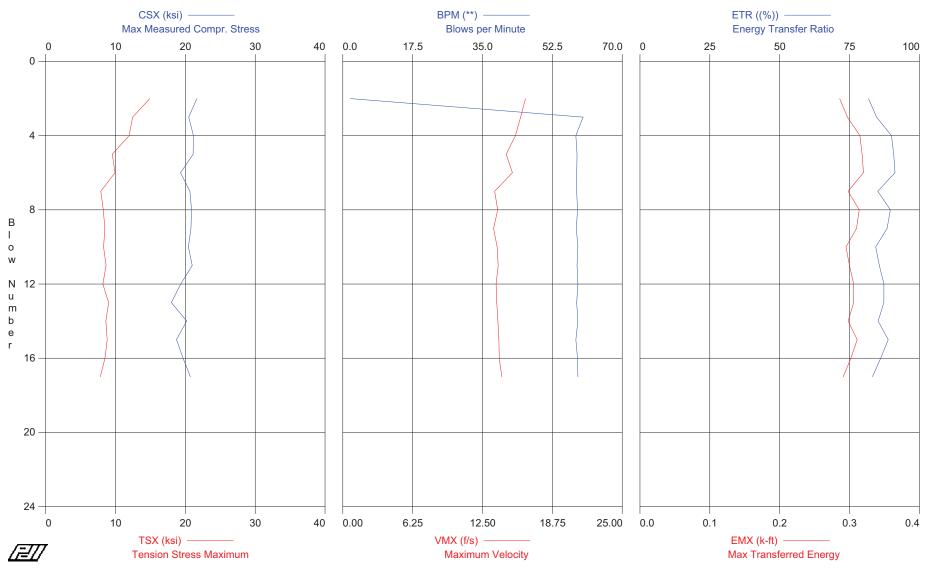
Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Page 1 of 15 DCN NAP077 Page 42 of 87 DGN#NAR309

Project Manager:	Date:
Principal Professional: D. Flour Co	ay Date: 8-31-09
Site Manager:	/ Date:
No. of Pages:15	DCN: NAP077
OA Form 24-1 Revised 8/12/2009	

2801 YORKMONT ROAD, SUITE 100 D CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638


RECORD OF SPT ENERGY MEASUREMENT

GENERAL INFORMA	TION		DRILL RIG DATA					
North Anna 3 Project		MAH	KE:	CME	ME			
Virginia		мог	DEL:	557	-RACL .			
6468-09-2473		SER	IAL NO.:					
9/1/200	9	HAN	MER TYPE:					
SUNNY	750F	ROF	E CONDITION:	N/A · ·				
		ROL	SIZE:	AW-J				
	sh	NO.	OF SHEAVES:	N/A				
		ORING DAT	Δ					
M- 30/13		OKINO DAI		————				
							-	
					3 3000		9.00	
75 AW #	1/2							
SAMPLE	SPT	•						
DEPTH	N-VALUE							
(feet)	(bpf)							
11,1-10,0	, , ,					-		
	11				_			
13.7-15,2	4-7-7							
19.7-20 2	6-7-6							
10:120:0	0 /				_			
23.7-25.2	7-8-10							
28.7-30.2	11-14-15							
7,30,8								
					-	-		
	×							
				 				
				-				
: Testing performed in	accordance with			-				
ASTM D 4633-05				(4			180	
Reviewed By:					Page	e 44 of 87	7]	
	North Anna 3 Project Virginia 6468-09-2473 9/1/207 SUNNY JUH MACTEC - RHJE M-30 (3) Vari 4:05 PM - THAUN N 362 /,22:N2 MI-K983: 75 AW # SAMPLE DEPTH (feet) 11.1-12.6 13.7-15.2 13.7-20.2 28.7-30.2	9/1/2009 SUNNY 750F JAH MACTEC - RALE: Sh E M-30 (BH) Various 4:05 pm - 4:45 pm T: HIAHN N/A 3622L /.22:N2 MI-K9R3: A2-K0686 75 AW #1/2 SAMPLE SPT DEPTH N-VALUE (bpf) 11.1-12.6 4-6-6 13.7-15.2 4-7-7 13.7-20.2 5-7-6 23.7-20.2 11-14-15 Testing performed in accordance with ASTM D 4633-05	North Anna 3 Project Virginia 6468-09-2473 SER 9/1/2009 HAM SUNNY 750F ROF JAH ROC MACTEC - RAJE: Sh NO. BORING DAT M-30(3H) Various 4:05 pm - 4:45 pm T: HIALM N/A 3622L /.22:N2 MI-K983: A2-V0686 75 AW # 1/2 SAMPLE DEPTH (feet) (bph) 11.1-12.6 1;-6-6 13.7-15.2 1;-4-7 13.7-20.2 6-7-6 28.7-30.2 11-14-15 Testing performed in accordance with ASTM D 4633-05	North Anna 3 Project Virginia 6468-09-2473 91	North Anna 3 Project Virginia 6488-09-2473 9/1/2007 HAMMER TYPE: MUTO SURVEY SERIAL NO: MODEL: SS 7 MECCON HAMMER TYPE: MUTO ROPE CONDITION: N/A ROD SIZE: AW-J NO. OF SHEAVES: N/A BORING DATA M - 30 (9 H) Various 4.05 pm - 4.45 pm Tr. HIALLA N/A 3622L // 22; N Z MI-K 2R3: M2 - K068 b 75 AW # 1/2 SAMPLE DEPTH NVALUE (feet) (feet) 13.7-15.2 4-7-7 13.7-20.2 1-14-15 Testing performed in accordance with ASTM D 483-05	North Anna 3 Project Name	North Anna 3 Project	

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-30(DH) (11.1' - 12.6' sample)

Test date: 1-Sep-2009

22

25

23

24

25

25

8.0 Total number of blows analyzed: 16

8.0

8.0

8.0

8.0

8.0

58.6

58.9

58.4

58.8

58.9

55.2

0.235

0.228

0.235

0.231

0.230

0.237

87.3

85.3

88.9

86.2

83.2

86.9

0.306

0.298

0.311

0.302

0.291

0.304

Time Summary

Average

13

14

15

16

18.0

20.2

18.7

19.7

20.7

20.3

3:54:35 PM - 3:56:19 PM (9/1/2009) BN 1 - 18 Drive 1 minute 44 seconds

13.8

13.9

14.0

14.0

14.2

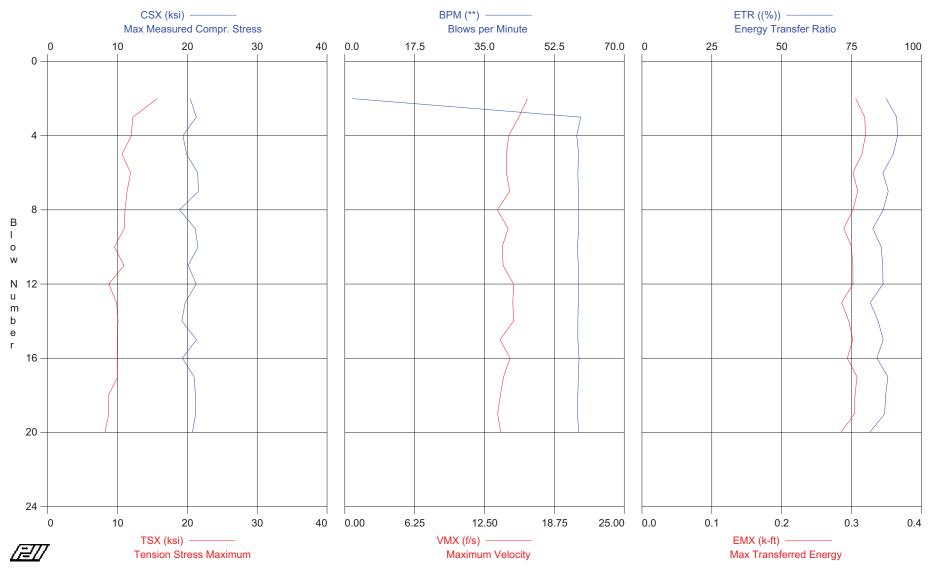
14.4

9.0

8.6

8.8

8.5


7.8

9.5

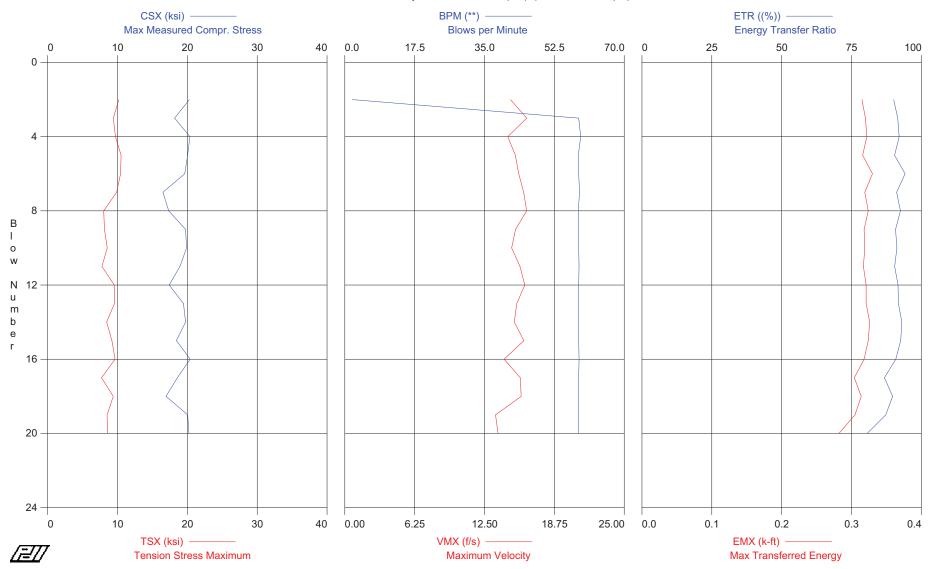
MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-30(DH) (13.7' - 15.2' sample)

Test date: 1-Sep-2009

FVP: Force/V	elocity proport	ionality					LIVIX. IV	iax IIalisiciii	ed Lifelgy
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	20.4	15.7	16.4	25	0.8	1.9	0.273	87.4	0.306
3	21.3	12.2	15.6	26	0.8	59.1	0.257	91.2	0.319
4	19.4	12.0	14.7	24	0.8	58.1	0.265	91.5	0.320
5	19.9	10.7	14.5	24	0.8	58.6	0.264	89.9	0.315
6	21.5	11.9	14.5	26	0.9	58.4	0.261	86.3	0.302
7	21.6	11.4	14.8	26	0.9	58.5	0.260	88.2	0.309
8	18.9	11.1	13.6	23	0.8	58.5	0.257	86.3	0.302
9	21.1	11.0	14.6	26	0.9	58.6	0.251	82.6	0.289
10	21.5	9.6	14.1	26	1.0	58.3	0.261	85.7	0.300
11	20.1	10.9	14.2	25	0.8	58.5	0.260	86.2	0.302
12	21.3	8.8	15.1	26	0.9	58.6	0.252	86.3	0.302
13	19.7	9.9	15.0	24	0.9	58.5	0.247	81.7	0.286
14	19.2	10.1	15.1	23	0.8	58.4	0.250	84.5	0.296
15	21.3	9.9	13.9	26	1.0	58.4	0.253	86.4	0.302
16	19.3	10.0	14.8	24	8.0	58.7	0.253	84.1	0.294
17	21.0	10.1	14.2	26	0.8	58.5	0.255	88.0	0.308
18	21.2	8.7	13.9	26	0.9	58.4	0.250	87.2	0.305
19	21.2	8.7	13.7	26	0.9	58.3	0.253	86.9	0.304
20	20.7	8.2	14.0	25	0.8	58.6	0.253	81.5	0.285
Average	20.5	10.6	14.5	25	0.9	55.5	0.257	86.4	0.302
				Total nur	mber of blows	analyzed: 19)		


Time Summary

Drive 34 seconds 4:05:23 PM - 4:05:57 PM (9/1/2009) BN 1 - 20

MACTEC Engineering and Consulting, Inc. - Case Method Results

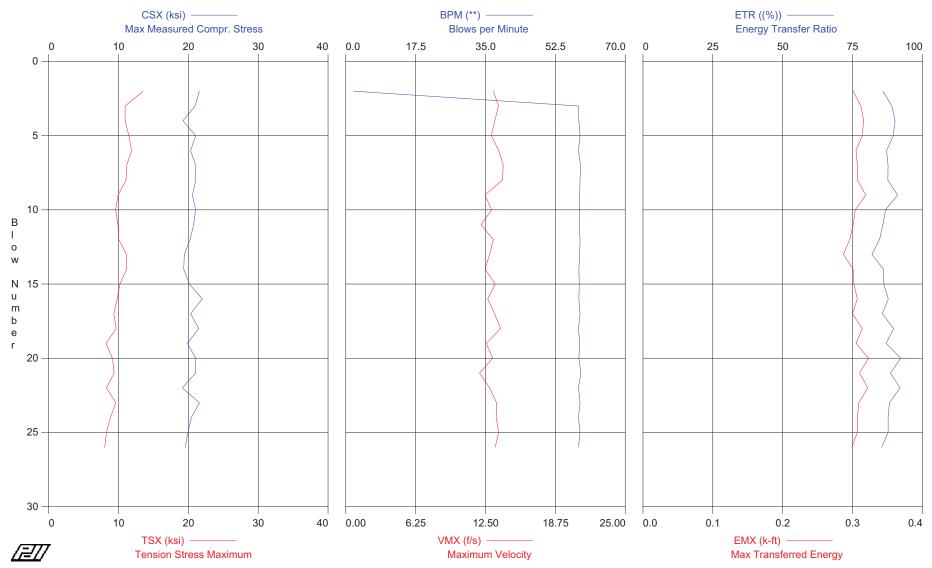
PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-30(DH) (18.7' - 20.2' sample)

Test date: 1-Sep-2009

Case Melilou P	results				FDIFLO	71 VEI. 2000. I	- Fillited. 10-	1101-2009	
NORTH ANNA OP: JNH	3 Project - B0	ORING M-30(I	OH) (18.7' - 20	0.2' sample)		Rig	Serial No. ME0	C-21; CME 55 Test date: 1-	
AR: 1.22 i	n^2							SP: (0.492 k/ft3
LE: 24.20 f									0,000 ksi
WS: 16,807.9 f								JC:	0.70
CSX: Max Me		r. Stress					BPM: E	Blows per Mini	
TSX: Tension								nergy of F^2	
VMX: Maximui								nergy Transfe	er Ratio
FMX: Maximui								/lax Transferre	
FVP: Force/Ve		ionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	20.3	10.2	14.8	25	0.5	1.9	0.239	90.1	0.315
3	18.2	9.4	16.3	22	0.6	58.6	0.234	91.6	0.320
4	20.4	9.7	14.6	25	0.8	59.1	0.237	92.0	0.322
5	20.0	10.5	15.3	24	0.5	58.5	0.241	90.4	0.316
6	19.6	10.4	15.6	24	0.7	58.6	0.234	94.2	0.330
7	16.5	9.9	16.0	20	0.6	58.8	0.235	91.2	0.319
8	17.3	8.0	16.3	21	0.6	58.5	0.230	92.5	0.324
9	19.7	8.1	15.3	24	0.7	58.6	0.234	90.8	0.318
10	19.9	8.5	14.9	24	0.5	58.6	0.233	91.3	0.319
11	18.9	7.8	15.7	23	0.5	58.7	0.233	90.4	0.317
12	17.4	9.5	16.1	21	0.6	58.6	0.234	91.7	0.321
13	19.4	9.6	15.4	24	0.5	58.6	0.237	91.8	0.321
14	19.7	8.4	15.2	24	0.7	58.6	0.230	93.0	0.326
15	18.4	9.2	16.0	22	0.6	58.6	0.232	92.6	0.324
16	20.4	9.6	14.3	25	0.5	58.7	0.235	90.9	0.318
17	18.6	7.7	15.7	23	0.7	58.6	0.228	86.8	0.304
18	16.9	9.4	15.8	21	0.6	58.6	0.231	89.7	0.314
19	20.0	8.5	13.5	24	0.8	58.5	0.227	87.3	0.305
20	20.2	8.5	13.7	25	0.8	58.5	0.228	80.6	0.282
Average	19.1	9.1	15.3	23	0.6	55.6	0.233	90.5	0.317
3				Total nur	nhar of blows	analyzad: 10	1		

0.6 Total number of blows analyzed: 19


Time Summary

Drive 31 seconds 4:15:08 PM - 4:15:39 PM (9/1/2009) BN 1 - 20

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-30(DH) (23.7' - 25.2' sample)

Page 51 of 87 DCN#NAP302

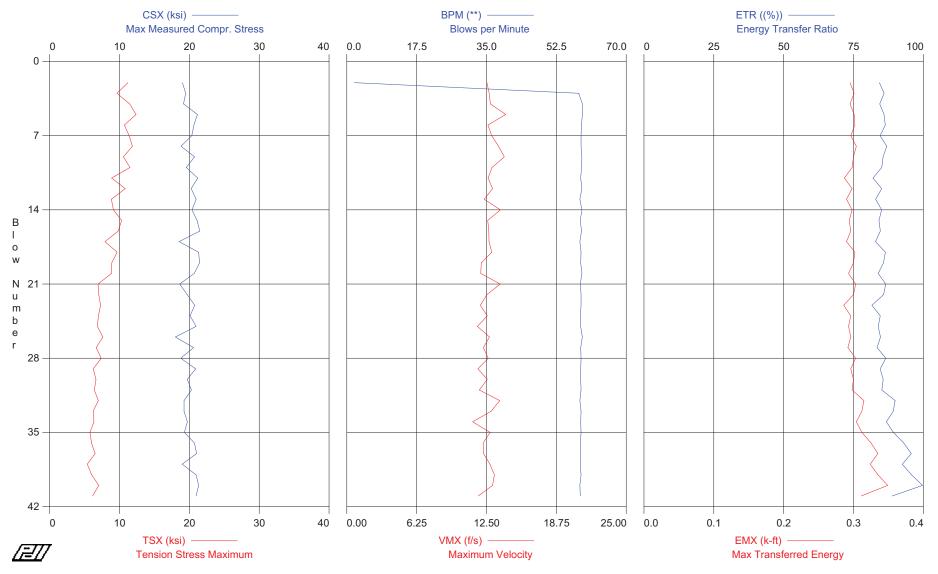
Test date: 1-Sep-2009

LE: 29.20) ft							EM: 30),000 ksi
WS: 16,807.9	9 f/s							JC:	0.70
CSX: Max M	leasured Comp	r. Stress					BPM: B	Blows per Minu	ute
TSX: Tension	n Stress Maxim	num					EF2: E	nergy of F^2	
VMX: Maximum Velocity							ETR: E	nergy Transfe	er Ratio
FMX: Maxim	um Force						EMX: N	lax Transferre	ed Energy
FVP: Force/	Velocity propor	tionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	koi	koi	f/c	king	п	**	L ft	(0/)	l√ ft

FVP: Force/V	elocity proport	tionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	21.6	13.5	13.2	26	0.9	1.9	0.249	85.9	0.301
3	21.0	10.9	13.7	26	0.9	58.3	0.251	89.1	0.312
4	19.2	10.9	13.3	23	8.0	58.4	0.256	90.3	0.316
5	21.0	11.5	13.0	26	0.9	58.7	0.255	89.6	0.314
6	20.3	11.9	13.7	25	0.8	58.3	0.254	87.2	0.305
7	21.0	11.2	14.1	26	8.0	58.8	0.251	87.7	0.307
8	21.1	11.1	14.0	26	0.8	58.7	0.255	87.7	0.307
9	20.6	9.9	12.5	25	0.9	58.6	0.254	91.2	0.319
10	21.0	9.6	13.1	26	0.9	58.6	0.253	86.8	0.304
11	20.7	9.9	12.1	25	1.0	58.5	0.252	85.9	0.301
12	20.2	10.0	13.2	25	0.9	58.7	0.249	84.7	0.296
13	19.4	11.1	12.9	24	0.8	58.6	0.255	82.0	0.287
14	19.3	11.2	12.5	24	8.0	58.4	0.252	86.0	0.301
15	20.1	10.2	13.4	25	0.8	58.5	0.257	86.2	0.302
16	22.0	9.8	12.7	27	1.0	58.4	0.257	87.8	0.307
17	20.3	9.3	13.3	25	0.9	58.7	0.252	85.7	0.300
18	21.5	9.7	13.9	26	0.9	58.3	0.258	89.7	0.314
19	19.9	8.2	12.6	24	0.8	58.6	0.261	87.0	0.305
20	21.1	9.1	13.1	26	0.9	58.4	0.251	92.3	0.323
21	21.0	9.4	12.0	26	0.8	58.9	0.255	88.6	0.310
22	19.1	8.3	12.9	23	0.8	58.3	0.257	92.0	0.322
23	21.6	9.6	13.5	26	0.9	58.7	0.254	88.2	0.309
24	20.4	8.8	13.5	25	0.8	58.3	0.260	87.7	0.307
25	19.9	8.3	13.7	24	8.0	58.7	0.257	87.8	0.307
26	19.5	8.0	13.4	24	0.8	58.3	0.259	85.5	0.299
Average	20.5	10.1	13.2	25 Total pur	0.9	56.3 analyzed: 25	0.255	87.7	0.307
				i otai nui	IIDEI OI DIOWS	analyzeu. 20)		

Time Summary

AR:


1.22 in^2

Drive 50 seconds 4:23:26 PM - 4:24:16 PM (9/1/2009) BN 1 - 27

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-30(DH) (28.7' - 30.2' sample)

Test date: 1-Sep-2009

NORTH ANNA 3 Project - BORING M-30(DH) (28.7' - 30.2' sample)

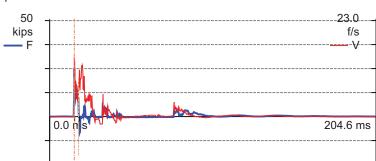
Page 1 of 1 PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

Rig Serial No. MEC-21; CME 55 (T.Hahn)

OP: JNH Test date: 1-Sep-2009 SP: 0.492 k/ft3 EM: 30,000 ksi AR: 1.22 in^2 34.20 ft LE: WS: 16,807.9 f/s JC: 0.70

BPM: Blows per Minute CSX: Max Measured Compr. Stress EF2: Energy of F^2
ETR: Energy Transfer Ratio
EMX: Max Transferred Energy TSX: Tension Stress Maximum VMX: Maximum Velocity FMX: Maximum Force

FVP: For	ce/Velocity propor	tionality						iar manorom	ou <u>o.</u> g,
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2		11.2	12.5	23	0.8	1.9	k-ft 0.273	84.2	0.295
3		9.6	12.7	24	0.8	58.1	0.285	85.9	0.301
4		11.4	12.8	23	0.8	59.0	0.285	84.4	0.295
5		12.4	14.2	26	0.8	59.0	0.273	85.9	0.301
6		10.7	12.6	25	0.8	58.8	0.279	86.4	0.302
7		11.4	13.0	25	0.9	58.7	0.275	84.5	0.296
8		11.8	13.6	23	0.8	58.7	0.277	86.9	0.304
9		10.5	14.1	25	0.8	58.9	0.272	85.6	0.300
10		11.5	13.0	24	0.8	58.8	0.276	85.1	0.298
11		8.9	12.6	26	0.9	58.6	0.271	82.0	0.287
12		10.8	13.0	25	0.8	58.9	0.273	85.1	0.298
13		8.8	12.3	26	1.0	58.4	0.274	82.9	0.290
14		9.1	13.7	25	0.8	58.9	0.267	85.1	0.298
15		10.3	12.6	26	0.9	58.5	0.269	84.1	0.294
16		9.8	12.7	26	0.9	58.8	0.273	84.6	0.296
17		7.9	12.7	23	0.8	58.4	0.277	82.9	0.290
18		9.7	13.0	26	0.9	58.7	0.270	86.4	0.302
19		8.9	12.0	26	0.8	58.6	0.272	85.7	0.300
20		8.9	12.0	25	1.0	58.9	0.266	83.8	0.293
21		6.9	13.7	23	0.8	58.5	0.270	86.5	0.303
22		7.0	12.5	24	0.8	58.7	0.270	85.8	0.300
23		7.3	11.9	25	0.8	58.7	0.272	81.6	0.286
24		7.0	12.6	25	0.7	58.5	0.268	84.6	0.296
25		6.8	11.7	26	0.7	58.6	0.270	83.8	0.293
26		7.6	12.8	22	0.8	59.0	0.269	84.6	0.296
27		6.7	12.2	25	0.9	58.6	0.262	83.5	0.292
28		7.4	12.7	23	0.8	58.7	0.273	86.6	0.303
29		6.2	11.7	25	1.0	58.6	0.266	84.6	0.296
30		6.6	12.6	24	0.9	58.6	0.266	85.6	0.300
31		6.4	11.9	25	1.0	58.7	0.263	85.1	0.298
32		7.0	13.7	23	0.8	58.4	0.269	89.9	0.315
33		6.2	12.9	23	0.8	58.7	0.270	89.2	0.312
34		6.3	11.3	24	1.0	58.6	0.263	86.7	0.304
35		5.8	12.8	24	0.8	58.7	0.266	89.3	0.312
36		6.0	12.2	25	0.7	58.5	0.262	93.0	0.325
37		6.5	12.2	26	0.7	58.5	0.264	95.7	0.335
38		5.4	12.8	23	0.8	58.5	0.266	92.5	0.324
39		6.0	13.2	26	0.7	58.7	0.264	95.8	0.335
40		7.0	13.0	26	0.7	58.4	0.270	99.7	0.349
41		6.1	11.8	26	0.8	58.5	0.269	88.8	0.311
Average	20.2	8.3	12.7	25	0.8	57.2	0.270	86.6	0.303
0		0.0			0.0	~··-	0.=. 0	00.0	0.000


Total number of blows analyzed: 40

Time Summary

2 minutes 41 seconds Drive

4:32:18 PM - 4:34:59 PM (9/1/2009) BN 1 - 41

Project: NORTH ANNA 3 Pile: BORING M30-DH(18.7-20.2) - Description: CME 55 (T.HAHN) Operator: JNH

DN 4	_				
BN 19	9				
9/1/20	009 4:	15:38 PM			
LP	0.00	ft	LE	24.20	ft
CSX	20.0	ksi	AR	1.22	in^2
CSI	20.4	ksi	EM	30,000.0	ksi
TSX	8.5	ksi	SP	0.492	k/ft3
EMX	0.3	k-ft	WS	16,807.9	f/s
STK	3.93	ft	WC	16,807.9	f/s
FVP	0.83	П	JC	0.70	[]
SFR	1	kips	2L/c	2.88	ms
RX5	5	kips	EA/c	2.2	ksec/ft
RMX	5	kips	FR	5.000	kHz

Engineering and constructing a better tomorrow

December 2, 2009

Subject:

Reviewed By: Steve Kiser, Principal Professional

Report of SPT Energy – MACTEC CME-55 Trailer (RAL)

Hammer Serial No. MEC-425 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 2, 2009, during drilling of Boring M-11 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 10:05 AM to 11:15 AM on September 2 under clear skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME-55 model trailer-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Phil Pitts. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

14 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Calibration Records

The calibration records for all the above are filed in DCN NAP-223

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less blows evaluated for ETR than what is shown on the boring logs. The test results collected at depths of 23.9 and 28.9 feet were not used in the determination of the ETR due to inconsistency in transferred energy between successive hammer blows.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 278 foot-pounds to 310 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 79.4% to 88.6% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 298.6 foot-pounds, with an average ETR of 85.3%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Pages 5-6 Work Instruction No. 8 – DCN:NAP-077 – 2 Pages (without attachments)

Page 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 13 PDIPLOT Output – 6 Pages Page 14 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
MEC-425	MACTEC					33.9 - 35.4	5-6-6	17	278	79.4%
(CME 55	MACTEC Raleigh	Phil Pitts	M-11	9/2/2009	AW-J	38.9 - 40.4	4 - 7 - 8	20	304	86.9%
Trailer)	Kaleigii					43.9 - 45.4	6 - 7 - 8	21	310	88.6%
							Ave	rage for Rig:	298.6	85.3%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By: \Sut	Date: 12/2/09	Checked By:	Date: \2-2-0°	
	/ / !			

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Stev	ve Kiser				_Rev. No	0
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09		_ Date:	August 31,	2009	
Valid From:	August 31, 2009		To:	August	31, 2010		

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

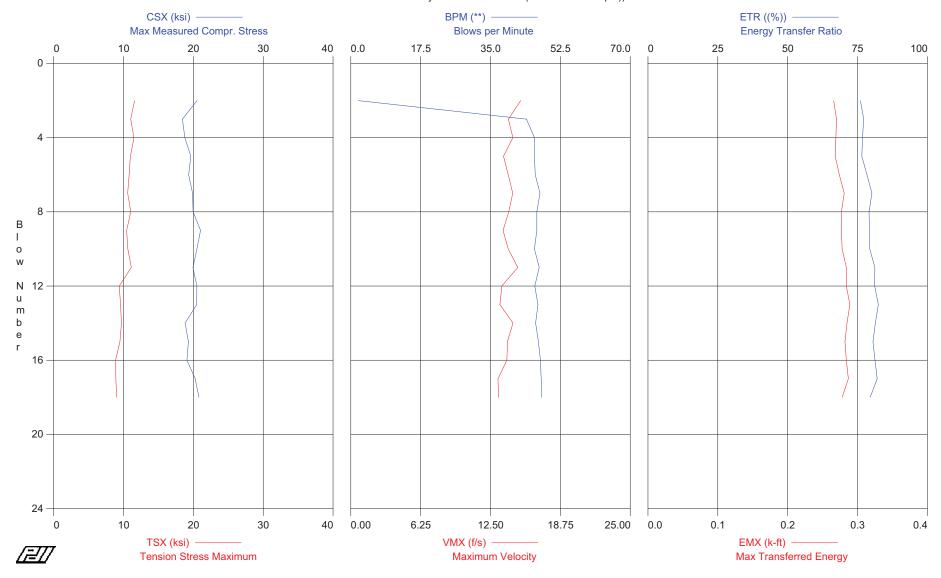
Page 1 of 15 DCN NAP077 Page 60 of 87 DGN#NAR309

Project Manager:	Date:
Principal Professional: D. Hour Coy	lay Date: 8-31-09
Site Manager:	Date:
No. of Pages:15	DCN: NAP077
OA Form 24-1 Revised 8/12/2009	rc

2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT

GENERAL INFORMATION				DRILL RIG DATA						
ROJECT: North Anna 3 Project			М	MAKE: CME MODEL: 55-TRA: KN MOUNT						
LOCATION:	Virginia			ODEL:					nounted	/
PROJECT NO.:	6468-09-2473		SI	ERIAL NO.:		ME	425			
DATE:	9/2/2009	-20212000000000	H	AMMER TY	PE:		to			
WEATHER:	31/2 (200 C SUNNY (50F	R	OPE COND	TION:	N/A				
INSPECTOR:	エンスタ		R	OD SIZE:		AW-J				
	MACTEC - RALES	gh	N	O. OF SHEA	AVES:	N/A				
		В	ORING DA	ATA						
BORING NUMBER:	M-11		1							
DEPTH DRILLED:	Vari	ous								Week water
TIME DRIVEN:	10:05 AM									
RIG OPERATOR:	P.PHS			10000			•			
HAMMER OPERATOR:	N/	A			70.00					
PDA PAK SERIAL NO.:	362									
INSTR. ROD AREA:	1.22in2							5412 CA COOLI-	1005/100-11	
ACCEL. SERIAL NOS.:	Al- K983:	A2-K0686						- Direct	2.75470 (P. 10 to 1	
STRAIN SERIAL NOS.:	75 AW#	1/2	10.504			1		-		
	SAMPLE	SPT		3000		2		9		
	DEPTH	N-VALUE	1	- 1		1				
	(feet)	(bpf)		1						
· 34	23.9-75.4	6-8-8							1.5	
**	Z - 1 73.T			- 4	- ;	1 ::			n -	
**		7 11 11							-	
	28.9-30.4	6-11-12				-			-	
•	33.9-35.4	5-6-6				7				
,	02/100.7									
20.9	- 1 1	1, 7 0			-	-				
30	38.4-40,4	4-1-8				-				
. /	·									
38.9 7/2/09	43.9-45.4	6-7-8								
1 1.9	10				11074					
9/2/00										
						+	-		 	
									-	-
									1	
							-		-	-
									1	
					-					
							-	-	-	-
									-	
REMARKS	Testing performed in ASTM D 4633-05	accordance with							R.	′ 0
	Reviewed By:	1						Page 6	62 of 87/	. 0
Volume 1, Rev	vision 0	Pag	ge 249 of	542				DENHI	NAT302	


Page 249 of 542

Volume 1, Revision 0

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - BORING M-11 (33.9' - 35.4' sample))

Test date: 2-Sep-2009

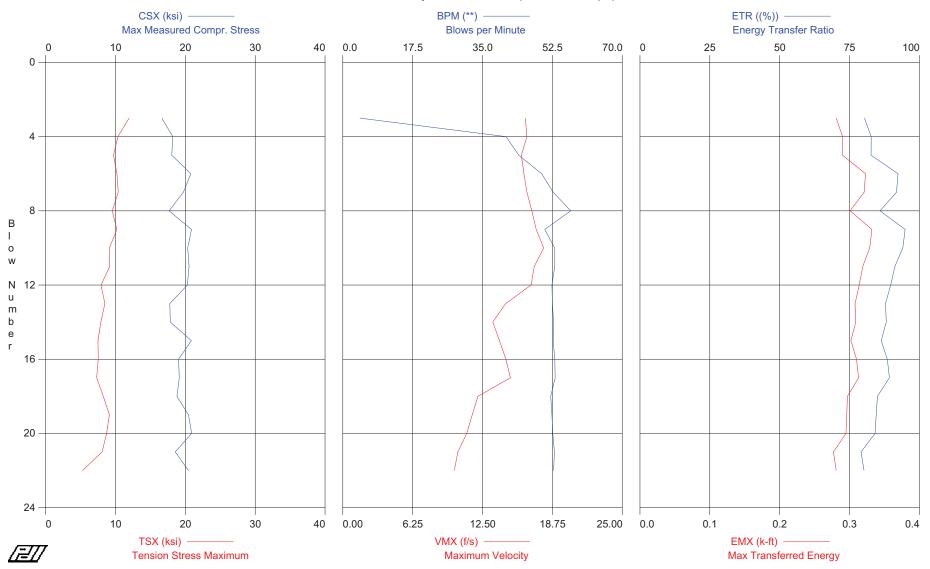
NORTH ANNA 3 Project - BORING M-11 (33.9' - 35.4' sample))

Rig Serial No. MEC-425; CME 55 TRAILER (RAL) (P.Pitts) Test date: 2-Sep-2009

AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 39.40 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F^2
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
FMX: Maximum Force	EMX: Max Transferred Energy

VMX: Maximum Velocity FMX: Maximum Force

FIVIA: Maximu							EIVIX: IV	nax rransierr	ea Energy
FVP: Force/V	elocity proport	tionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
2	20.5	11.6	15.2	25	0.9	1.9	0.217	76.1	0.266
3	18.4	11.0	14.1	22	0.8	44.0	0.221	77.2	0.270
4	18.8	11.5	14.5	23	0.8	46.0	0.217	76.8	0.269
5	19.6	11.0	13.7	24	0.8	46.0	0.221	76.5	0.268
6	19.3	10.8	14.1	24	0.8	46.2	0.224	78.4	0.274
7	19.9	10.6	14.5	24	0.8	47.4	0.219	80.2	0.281
8	20.0	11.0	14.1	24	0.8	46.6	0.219	79.1	0.277
9	21.0	10.4	13.6	26	0.9	46.6	0.221	79.3	0.277
10	20.5	10.6	14.1	25	8.0	46.0	0.220	79.4	0.278
11	19.9	11.1	14.9	24	0.7	47.2	0.221	81.2	0.284
12	20.5	9.4	13.5	25	0.9	46.1	0.220	81.2	0.284
13	20.5	9.6	13.3	25	0.9	46.9	0.222	82.4	0.289
14	18.8	9.7	14.5	23	0.7	46.3	0.224	81.4	0.285
15	19.3	9.5	14.0	24	8.0	47.0	0.224	80.5	0.282
16	19.1	8.9	14.0	23	0.7	47.5	0.228	81.3	0.284
17	20.3	8.9	13.2	25	0.7	47.7	0.224	82.0	0.287
18	20.8	9.0	13.2	25	0.9	47.8	0.222	79.5	0.278
Average	19.8	10.3	14.0	24	0.8	44.0	0.221	79.6	0.278
				Total nur	mber of blows	analyzed: 17	•		


Time Summary

Drive 27 seconds 10:44:52 AM - 10:45:19 AM (9/2/2009) BN 1 - 18

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

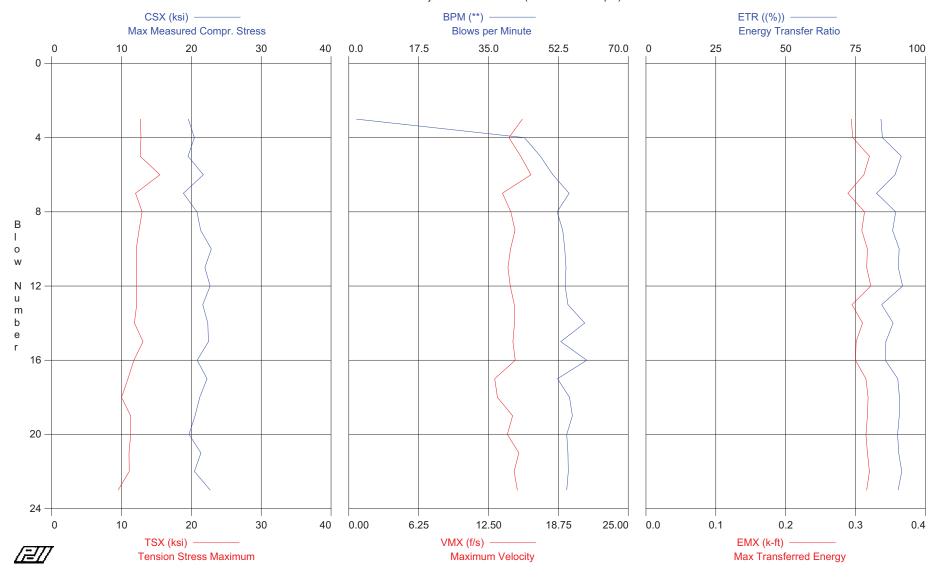
NORTH ANNA 3 Project - BORING M-11 (38.9' - 40.4' sample)

Test date: 2-Sep-2009

NORTH ANNA 3 Project - BORING M-11 (38.9' - 40.4' sample) OP: JNH

Rig Serial No. MEC-425; CME 55 TRAILER (RAL) (P.Pitts)
Test date: 2-Sep-2009

AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 44.40 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F^2
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
FMX: Maximum Force	EMX: Max Transferred Energy


FVP: Force/V	elocity proport	ionality					EIVIA. IV	iax IIalisielli	eu Energy
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-fl
3	16.6	11.9	16.3	20	0.6	4.3	0.202	80.4	0.281
4	18.2	10.3	16.5	22	0.6	40.9	0.203	82.8	0.290
5	18.1	9.7	16.0	22	0.6	44.1	0.207	82.7	0.290
6	20.8	10.2	16.2	25	0.4	49.8	0.233	92.4	0.323
7	19.7	10.4	16.5	24	0.7	52.7	0.227	91.8	0.321
8	17.7	9.5	16.9	22	0.6	57.1	0.212	85.9	0.301
9	20.9	10.2	17.3	25	0.4	50.6	0.231	94.9	0.332
10	20.3	9.1	18.0	25	0.5	53.1	0.230	94.1	0.329
11	20.5	9.2	17.1	25	0.4	53.1	0.228	91.3	0.319
12	20.3	7.9	16.8	25	0.5	52.4	0.229	89.7	0.314
13	17.8	8.5	14.6	22	0.7	52.5	0.226	87.9	0.308
14	17.8	7.9	13.4	22	0.4	52.8	0.227	88.2	0.309
15	20.9	7.5	14.0	25	0.5	52.7	0.229	86.3	0.302
16	19.0	7.5	14.6	23	0.4	53.1	0.222	88.5	0.310
17	19.1	7.3	15.0	23	0.4	53.2	0.220	89.3	0.313
18	18.8	8.2	12.1	23	0.5	52.1	0.224	85.0	0.297
19	20.4	9.1	11.6	25	0.6	52.4	0.227	84.6	0.296
20	20.9	8.7	11.1	26	0.6	52.6	0.229	84.2	0.295
21	18.5	8.1	10.3	23	0.5	53.0	0.217	79.2	0.277
22	20.4	5.3	10.0	25	0.7	52.8	0.212	80.2	0.281
Average	19.3	8.8	14.7	24	0.5	49.3	0.222	87.0	0.304
-				Total nur	mber of blows	analyzed: 20)		

Time Summary

Drive 1 minute 24 seconds

10:54:32 AM - 10:55:56 AM (9/2/2009) BN 1 - 22

NORTH ANNA 3 Project - BORING M-11 (43.9' - 45.4' sample)

Test date: 2-Sep-2009

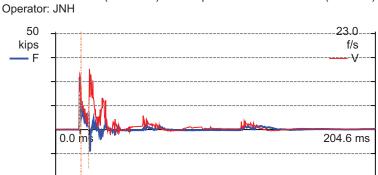
Case Method Results NORTH ANNA 3 Project - BORING M-11 (43.9' - 45.4' sample)

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009 Rig Serial No. MEC-425; CME 55 TRAILER (RAL) (P.Pitts)

OP: JNH	Test date: 2-Sep-2009
AR: 1.22 in^2	SP: 0.492 k/ft3
LE: 49.40 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSV: Tongian Strong Maximum	EE2: Energy of EA2

VVO. 10,001.0 I/3	00. 0.70
CSX: Max Measured Compr. Stress	BPM: Blows per Minute
TSX: Tension Stress Maximum	EF2: Energy of F^2
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
FMX: Maximum Force	EMX: Max Transferred Energy
EVD. Faran Valanity managina actionality	

FVP: Force/V	elocity proport	tionality							
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft
3	19.6	12.7	15.5	24	0.8	1.9	0.237	84.1	0.294
4	20.4	12.8	14.3	25	0.8	44.0	0.235	84.6	0.296
5	19.5	12.7	15.4	24	0.8	48.0	0.259	91.4	0.320
6	21.7	15.5	16.3	26	0.9	51.1	0.245	89.2	0.312
7	18.9	12.0	13.7	23	0.8	55.2	0.234	82.5	0.289
8	20.8	12.9	14.5	25	0.8	52.2	0.255	89.4	0.313
9	21.3	12.5	14.9	26	0.8	53.6	0.252	88.3	0.309
10	22.9	12.1	14.5	28	0.9	54.1	0.259	90.6	0.317
11	21.9	12.1	14.2	27	0.9	54.4	0.259	90.3	0.316
12	22.7	12.1	14.4	28	0.9	54.2	0.259	91.9	0.322
13	21.6	12.2	14.8	26	8.0	54.9	0.244	84.4	0.295
14	22.3	11.8	14.8	27	8.0	59.1	0.255	88.5	0.310
15	22.4	13.1	14.7	27	0.9	53.1	0.242	85.9	0.301
16	20.8	11.8	14.9	25	8.0	59.6	0.241	85.7	0.300
17	22.2	10.9	13.1	27	1.0	52.3	0.257	90.1	0.315
18	21.2	10.0	13.3	26	8.0	55.3	0.256	90.8	0.318
19	20.5	11.3	14.7	25	8.0	56.0	0.257	90.7	0.317
20	19.7	11.3	14.2	24	8.0	54.6	0.251	90.1	0.315
21	21.4	11.1	15.2	26	8.0	54.9	0.249	90.5	0.317
22	20.4	11.1	14.8	25	8.0	55.0	0.257	91.6	0.320
23	22.7	9.5	15.1	28	0.8	54.6	0.259	90.3	0.316
Average	21.2	12.0	14.6	26	0.8	51.3	0.251	88.6	0.310
				Total nu	wher of blowe	analyzadi 21			


Total number of blows analyzed: 21

Time Summary

Drive 1 minute 7 seconds

11:05:53 AM - 11:07:00 AM (9/2/2009) BN 1 - 23

Project: NORTH ANNA 3
Pile: BORING M-11 (43.9-45.4) - Description: CME 55 TRAILER(P.PITTS)

BN 11

9/2/2009 11:06:47 AM									
LP	0.00	ft	LE	49.40	ft				
CSX	21.9	ksi	AR	1.22	in^2				
CSI	22.6	ksi	EM	30,000.0	ksi				
TSX	12.1	ksi	SP	0.492	k/ft3				
EMX	0.316	k-ft	WS	16,807.9	f/s				
STK	4.59	ft	WC	16,807.9	f/s				
FVP	0.94	П	JC	0.70					
SFR	1	kips	2L/c	5.88	ms				
RX5	6	kips	EA/c	2.2	ksec/ft				
RMX	4	kips	FR	5.000	kHz				

Engineering and constructing a better tomorrow

December 2, 2009

From: Jon Honeycutt, Staff Professional Jan 12/2/09

Reviewed By: Steve Kiser, Principal Professional 212-2-09

Subject:

Report of SPT Energy - MACTEC CME 55-LC Track (RAL)

Hammer Serial No. MEC-02 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 1, 2009, during drilling of Boring M-10(DH) at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 2:30 PM to 4:00 PM on September 1 under clear skies with a temperature of about 75 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME 55-LC model track drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. David White. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 275 foot-pounds to 302 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 78.6% to 86.3% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 283.6 foot-pounds, with an average ETR of 81.0%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Page 5 - 6 Work Instruction No. 8 DCN:NAP 077–2 Pages (without attachments)

Pages 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)			
						11.7 - 13.2	3 - 4 - 5	9	302	86.3%			
MEC-02	MACTEC	ACTEC aleigh David White	M-10 (DH)	9/1/2009	9/1/2009 AW-J	9/1/2009 A	AW-J	AW-J	14.3 - 15.8	4 - 3 - 5	-5 12 2	280	80.0%
(CME 55-LC									AW-J	AW-J 19.2 - 20.7 4 - 4	4 - 4 - 5	13	275
Track)	Raioign							24.2 - 25.7	2 - 3 - 4	9	280	80.0%	
							29.2 - 30.7	2-3-5	10	286	81.7%		
1							Ave	rage for Rig:	283.6	81.0%			

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By:	Date: 12/2/09	Checked By: QUL	Date: [2-2-09	

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Stev	ve Kiser				_Rev. No	0_
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09		_ Date:	August 31,	2009	
Valid From: _	August 31, 2009		To:	August	31,2010		

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

<u>Specific Quality Assurance Procedures Applicable</u>: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

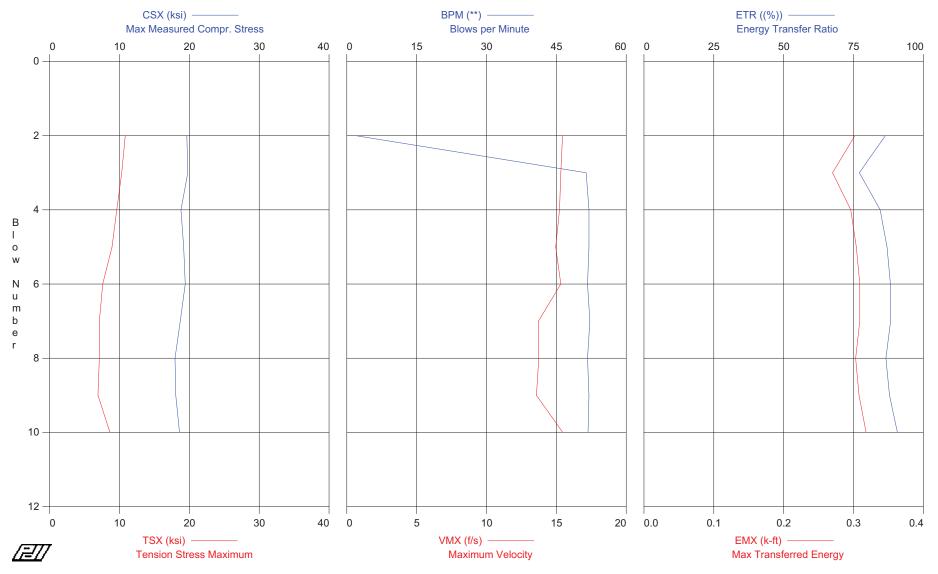
Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Page 1 of 15
DCN NAP077
Page 74 of 87
D6N#NAR302

Project Manager:	Date:
Principal Professional: D. Hour Coylo	Date: 8-31-09
Site Manager:	Date:
No. of Pages: <u>15</u>	DCN: NAP077

2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638


RECORD OF SPT ENERGY MEASUREMENT

	GENERAL INFORMA	TION		DRILL RIC	DATA	
PROJECT:	North Anna 3 Project		MAKE:	CME		
LOCATION:	Virginia		MODEL:	55LC TRACK		
PROJECT NO.:	6468-09-2473 .		SERIAL NO.:	mec-	02	
DATE:	9/1/200	9	HAMMER TYPE:	auto		
VEATHER:	SULVY 7	5-0#	ROPE CONDITION:	N/A		
NSPECTOR:	HNZ		ROD SIZE:	AW-J		
ORILLING COMPANY:	MACTEC- Ral	Eish .	NO. OF SHEAVES:	N/A		
		BOF	RING DATA			
SORING NUMBER:	M-10 (Det					
DEPTH DRILLED:	Vari	ous:				
IME DRIVEN:	2:30 pm -					
RIG OPERATOR:	D. WH: +1	= .				
HAMMER OPERATOR:	N/					
PDA PAK SERIAL NO.:	362					
NSTR. ROD AREA:	1.22 IN					
ACCEL, SERIAL NOS.:	41-6983	3 42-K0686	2		3272-21	
STRAIN SERIAL NOS.:	75W#	1/2				
	SAMPLE	SPT				
	DEPTH	N-VALUE				3
	(feet)	(bpf)				
	117-13.8	3-4-5				1 0155.0
*	7.5.0					
		1				
	14.3-15.8	4.3-5				
		15				
¥).	19.2-20.7	4-4-5				
	1.0					
	24.2-25.7	2 7 11				
	24.7-25.4	2-3-4				
	29.2.30,7	2-3-5				
						-
						_
						
REMARKS	: Testing performed in	accordance with		1		
	ASTM D 4633-05					
			(4)			
	Reviewed By:				Page 76 o	t 87

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - Boring M-10(DH) (11.7' - 13.2' sample)

Test date: 1-Sep-2009

23

0.7

0.7

Total number of blows analyzed: 9

51.8

46.3

0.215

0.218

90.7

86.3

0.302

Time Summary

Average

10

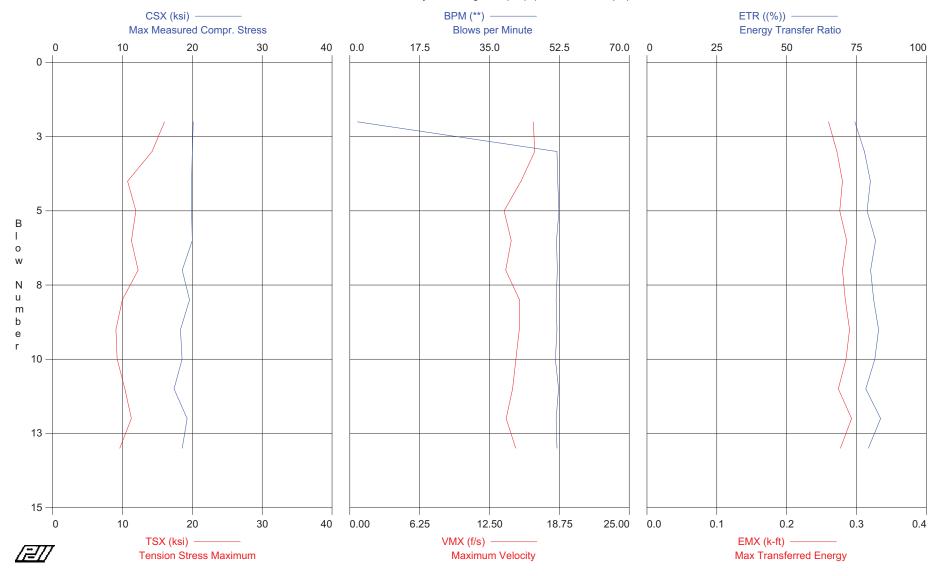
18.6

18.9

Drive 2:38:44 PM - 2:39:40 PM (9/1/2009) BN 1 - 10 56 seconds

15.5

14.7


8.6

8.6

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - Boring M-10(DH) (14.3' - 15.8' sample)

Test date: 1-Sep-2009

21

23

23

23 0.7 47.8 Total number of blows analyzed: 12

0.7

0.7

0.7

52.3

51.7

51.9

0.222

0.238

0.224

0.235

0.274

0.293

0.277

0.280

78.3

83.6

79.2

0.08

Time Summary

Average

11

12

13

17.4

19.2

18.5

19.2

10.3

11.3

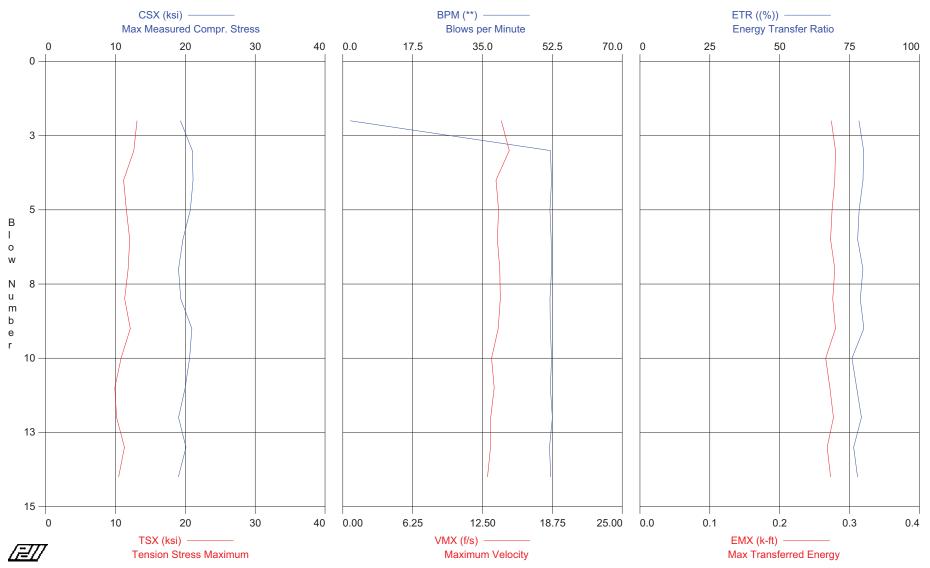
9.6

11.3

Drive 36 seconds 2:52:26 PM - 2:53:02 PM (9/1/2009) BN 1 - 13

14.6

14.0


14.8

14.9

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - Boring M-10(DH) (19.2' - 20.7' sample)

Test date: 1-Sep-2009

24

23

25

23

24

0.8 Total number of blows analyzed: 13

8.0

8.0

0.9

8.0

0.253

0.257

0.256

0.258

0.260

77.6

79.3

76.5

77.9

78.5

0.272

0.277

0.268

0.273

0.275

52.0

52.5

51.8

52.1

48.2

Time Summary

Average

11

12

13

14

20.0

19.0

20.1

19.0

20.0

9.9

10.2

11.3

10.4

11.4

3:08:11 PM - 3:08:31 PM (9/1/2009) BN 1 - 14 Drive 20 seconds

13.6

13.2

13.2


13.0

13.8

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - Boring M-10(DH) (24.2' - 25.7' sample)

Test date: 1-Sep-2009

23

23

Time Summary

Average

10

Drive 24 seconds

18.9

19.2

10.0

12.4

13.2

14.2

3:19:54 PM - 3:20:18 PM (9/1/2009) BN 1 - 10

8.0

0.8

Total number of blows analyzed: 9

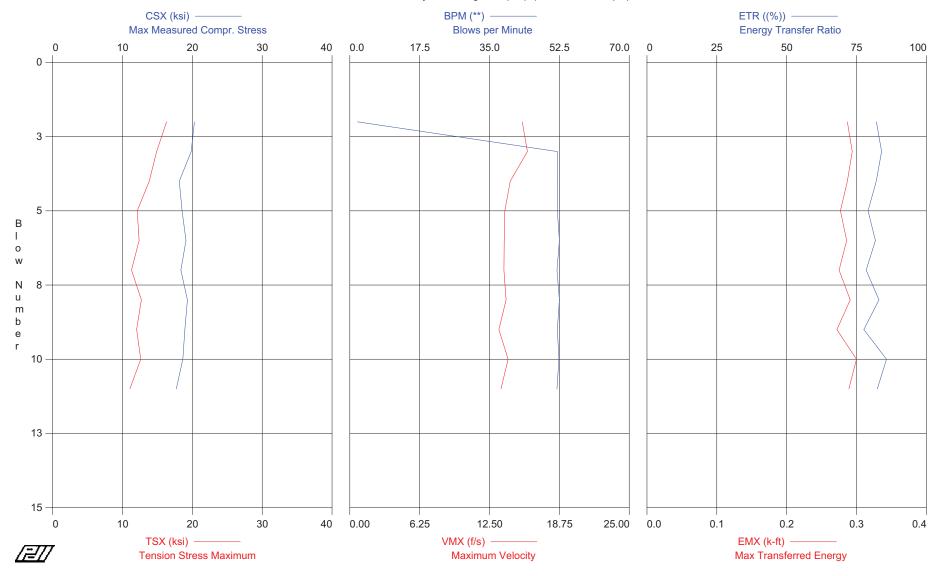
0.250

0.259

77.3

79.9

0.280


52.1

46.6

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 2-Dec-2009

NORTH ANNA 3 Project - Boring M-10(DH) (29.2' - 30.7' sample)

Test date: 1-Sep-2009

23

22

23

0.8 Total number of blows analyzed: 10

0.7

0.7

52.4

51.9

47.1

0.258

0.261

0.258

0.300

0.289

0.286

85.7

82.5

81.7

Time Summary

Average

10

11

Drive 1 minute 25 seconds

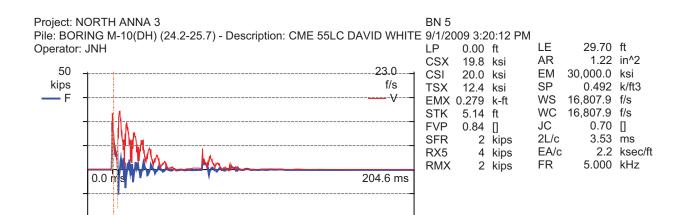
18.6

17.7

18.9

12.6

11.0


12.9

14.2

13.5

14.2

3:29:07 PM - 3:30:32 PM (9/1/2009) BN 1 - 11

FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 16, 2009

VOLUME 1

APPENDIX C.1
Geovision Downhole and P-S Logging Report

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

DOCUMENTATION OF TECHNICAL REVIEW SUBCONTRACTOR WORK PRODUCT

Project Name: NORTH ANNA 3 PROJECT

Project Number: 6468-09-2473

Project Manager: Steve Criscenzo

Project Principals: Al Tice and Steve Copley

The report described below has been prepared by the named subcontractor retained in accordance with the MACTEC QAPD. The work and report have been reviewed by a MACTEC technically qualified person. Comments on the work or report, if any, have been satisfactorily addressed by the subcontractor. The attached report is approved in accordance with section QS-7 of MACTEC's QAPD

The information and date contained in the attached report are hereby released by MACTEC for project use.

North Anna Project 3 GEOVision Report, Revision 0 11-3-2009	
SUBCONTRACTOR: GEOVision Geophysical Services	
TECHNICAL REVIEWER: Might B. L.	

DCN-NAP274

FINAL REPORT

BORING GEOPHYSICS BORINGS M-10DH AND M-30DH

NORTH ANNA 3 PROJECT NORTH ANNA NUCLEAR STATION

Report 9333-01 rev 0 November 3, 2009

FINAL REPORT

BORING GEOPHYSICS BORINGS M-10DH AND M-30DH

NORTH ANNA 3 PROJECT NORTH ANNA NUCLEAR STATION

Report 9333-01 rev 0 November 3, 2009

Prepared for:

MACTEC Engineering and Consulting, Inc.
3301 Atlantic Avenue
Raleigh, N. C. 27604
919-876-0416
MACTEC Job number 6468-09-2473

Prepared by

GEOVision Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	
INTRODUCTION	0
SCOPE OF WORK	6
INSTRUMENTATION	8
Suspension Instrumentation	
CALIPER / NATURAL GAMMA INSTRUMENTATION	
RESISTIVITY / SPONTANEOUS POTENTIAL / NATURAL GAMMA INSTRUMENTATION	
MEASUREMENT PROCEDURES	
Suspension Measurement Procedures	
CALIPER / NATURAL GAMMA MEASUREMENT PROCEDURES	
RESISTIVITY / SPONTANEOUS POTENTIAL MEASUREMENT PROCEDURES	
ACOUSTIC TELEVIEWER / BORING DEVIATION MEASUREMENT PROCEDURES	20
DATA ANALYSIS	21
SUSPENSION ANALYSIS	21
Caliper / Natural Gamma Analysis	
RESISTIVITY / NATURAL GAMMA / SPONTANEOUS POTENTIAL ANALYSIS	
ACOUSTIC TELEVIEWER / BORING DEVIATION ANALYSIS	
RESULTS	25
Suspension Results	
Caliper/ Natural Gamma Results	
RESISTIVITY / SPONTANEOUS POTENTIAL RESULTS	
ACOUSTIC TELEVIEWER / BORING DEVIATION RESULTS	
SUMMARY	28
DISCUSSION OF SUSPENSION RESULTS	
DISCUSSION OF CALIPER / NATURAL GAMMA RESULTS	
DISCUSSION OF RESISTIVITY / SPONTANEOUS POTENTIAL RESULTS	
DISCUSSION OF ACOUSTIC TELEVIEWER/ BORING DEVIATION RESULTS	
Suspension Data Reliability	

Table of Figures

Figure 1: Concept illustration of P-S logging system	32		
Figure 2. Example Calibration Curve for Caliper Probe	33		
Figure 3: Example of filtered (1400 Hz lowpass) record			
Figure 4. Example of unfiltered record			
Figure 5: Boring M-10DH, Suspension R1-R2 P- and S _H -wave velocities			
Figure 6: Boring M-10DH, Caliper, Natural gamma, Resistivity and SP logs			
Figure 7. Boring M-10DH, Deviation Projection			
Figure 8: Boring M-30DH, Suspension R1-R2 P- and S _H -wave velocities			
Figure 9. Boring M-30DH, Caliper, Natural gamma, Resistivity and SP logs			
Figure 10. Boring M-30DH, Deviation Projection			
Table of Tables			
Table 1 Boring locations and logging dates	34		
Table 2. Logging dates and depth ranges	34		
Table 3. Boring Bottom Depths and After Survey Depth Error (ASDE)			
Table 4. Boring Deviation Data Summary			
Table 5. Boring M-10DH, Suspension R1-R2 depths and P- and S _H -wave velocities	39		
Table 6 Boring M-30DH Suspension R1-R2 depths and P- and Su-wave velocities			

APPENDICES

APPENDIX A SUSPENSION VELOCITY MEASUREMENT COMPARISON

OF SOURCE TO RECEIVER 1 AND RECEIVER 1 TO

RECEIVER 2 ANALYSIS RESULTS

APPENDIX B CALIPER, NATURAL GAMMA, RESISTIVITY, AND

SPONTANEOUS POTENTIAL LOGS

APPENDIX C ACOUSTIC TELEVIEWER DIP LOGS

APPENDIX D GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE

CALIBRATION PROCEDURES AND CALIBRATION RECORDS

APPENDIX E BORING GEOPHYSICAL LOGGING FIELD DATA LOGS

APPENDIX F BORING GEOPHYSICAL LOGGING FIELD MEASUREMENT

PROCEDURES

Project 6468-09-2473

INTRODUCTION

Boring geophysical measurements were collected in two uncased borings located at the North

Anna Nuclear Power Station, located in Louisa County, Virginia. Geophysical data acquisition

was performed between September 15 and 17, 2009 by Charles Carter and Victor Gonzalez of

GEOVision. Data analysis and report preparation were performed by Robert Steller and

reviewed by John Diehl of GEOVision. The work was performed under subcontract with

MACTEC Engineering and Consulting, Inc., (MACTEC) with J. Allan Tice serving as the point

of contact for MACTEC.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of boring geophysical measurements collected between

September 15 and 17, 2009, in two uncased borings, as detailed in Table 1. The purpose of these

studies was to supplement stratigraphic information obtained during MACTEC's soil and rock

sampling program and to acquire shear wave velocities and compressional wave velocities as a

function of depth.

The OYO Suspension PS Logging System was used to obtain in-situ horizontal shear and

compressional wave velocity measurements at 1.6 foot intervals. The acquired data were

analyzed and a profile of velocity versus depth was produced for both compressional and

horizontally polarized shear waves.

A Robertson Geologging 3ACS 3-arm mechanical caliper probe was used to collect boring

diameter and natural gamma data at 0.05 foot intervals.

November 3, 2009 Page 6 of 217 DCN# NAP272 DCN NAP307

Project 6468-09-2473

A Robertson Geologging ELXG probe was used to collect long and short normal resistivity, single point resistance, self potential, and natural gamma data at 0.05 foot intervals.

A Robertson Geologging High Resolution Acoustic Televiewer (HiRAT) probe was used to collect Acoustic televiewer images of the boring walls, and boring deviation data, at 0.008 foot intervals.

A detailed reference for the velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

Project 6468-09-2473

INSTRUMENTATION

Suspension Instrumentation

Suspension soil and rock velocity measurements were performed using the suspension PS

logging system, manufactured by OYO Corporation. This system directly determines the

average in-situ horizontal shear and compressional wave velocity measurements of a 3.3 foot

high segment of the rock and soil column surrounding the boring of interest by measuring the

elapsed time between arrivals of a wave propagating upward through the rock and soil column.

The receivers that detect the wave, and the source that generates the wave, are moved as a unit in

the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal

shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a

flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet,

allowing average wave velocity in the region between the receivers to be determined by

inversion of the wave travel time between the two receivers. The total length of the probe as

used in these surveys is 19 feet, with the center point of the receiver pair 12.1 feet above the

bottom end of the probe.

The probe receives control signals from, and sends the digitized receiver signals to,

instrumentation on the surface via an armored 4 conductor cable. The cable is wound onto the

drum of a winch and is used to support the probe. Cable travel is measured to provide probe

depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled

directly to the boring walls; rather, the source motion creates a horizontally propagating

impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure

wave is converted to P and S_H-waves in the surrounding soil and rock as it impinges upon the

wall of the boring. These waves propagate through the soil and rock surrounding the boring, in

November 3, 2009 Page 8 of 21 DCN# NAP27 DCN NAP30

Project 6468-09-2473

turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H-waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- 3. The 6.3 foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In faster soils or rock, the isolation cylinder is extended to allow greater separation of the P- and S_H-wave signals.
- 4. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 5. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe (meter versus centimeter scale), preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

Page 9 of 217 DCN# NAP272 DCN NAP307

Project 6468-09-2473

The data from each receiver during each source activation are recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed every twelve months using a NIST traceable frequency source and counter, as outlined in Appendix D. An additional post-project calibration was performed following the field work, and is included in Appendix D.

Caliper / Natural Gamma Instrumentation

Caliper and natural gamma data were collected using a Model 3ACS 3-leg caliper probe, serial number 6621, manufactured by Robertson Geologging, Ltd. With the short arm configuration used in these surveys, the probes permitted measurement of boring diameters between 1.6 and 12 inches. With this tool, caliper measurements were collected concurrent with measurement of natural gamma emission from the boring walls. The probe was 6.82 feet long, and 1.5 inches in diameter.

Project 6468-09-2473

This probe is useful in the following studies:

Measurement of boring diameter and volume

Location of hard and soft formations

Location of fissures, caving, pinching and casing damage

Bed boundary identification

Strata correlation between borings

The probe receives control signals from, and sends the digitized measurement values to, a Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder. The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop computer where it is displayed and stored on hard disk.

The caliper consists of three arms, each with a toothed quadrant at their base, pivoted in the lower probe body. A toothed rack engages with each quadrant, thus constraining the arms to move together. Linear movement of the rack is converted to opening and closing of the arms. Springs hold the arms open in the operating position. A motor drive is provided to retract the arms, allowing the probe to be lowered into the boring. The rack is coupled to a potentiometer which converts movement into a voltage sensed by the probe's microprocessor.

Natural gamma measurements rely upon small quantities of radioactive material contained in all rocks to emit gamma radiation as they decay. Trace amounts of Uranium and Thorium are present in a few minerals, whereas potassium-bearing minerals such as feldspar, mica and clays will include traces of a radioactive isotope of Potassium. These emit gamma radiation as they decay with an extremely long half-life. This radiation is detected by scintillation - the production of a tiny flash of light when gamma rays strike a crystal of sodium iodide. The light is converted into an electrical pulse by a photomultiplier tube. Pulses above a threshold value of 60 KeV are counted by the probe's microprocessor. The measurement is useful because the

Project 6468-09-2473

radioactive elements are concentrated in certain rock types e.g. clay or shales, and depleted in

others e.g. sandstone or coal.

Resistivity / Spontaneous Potential / Natural Gamma Instrumentation

Resistivity, spontaneous potential and natural gamma data were collected using a Model ELXG

electric log probe, S/N 5490, manufactured by Robertson Geologging, Ltd. This probe measures

Single Point Resistance (SPR), short normal (16") resistivity, long normal (64") resistivity,

Spontaneous Potential (SP) and natural gamma. The probe is 8.20 feet long, and 1.73 inches in

diameter.

This probe is useful in the following studies:

Bed boundary identification

Strata correlation between borings

• Strata geometry and type (shale indication)

The probe receives control signals from, and sends the digitized measurement values to, a

Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound

onto the drum of a winch and is used to support the probe. Cable travel is measured to provide

probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder.

The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop

computer where they are displayed and stored on hard disk.

The resistivity section of the probe operates by driving an alternating current into the formation

from the central SPR/DRIVE electrode. The current returns via the logging cable armor. To

ensure adequate penetration of the formation the logging cable is insulated for approximately 30

feet from the cablehead. Voltages are measured between the 16" and 64" electrodes and the

remote earth connection at surface, as noted below:

November 3, 2009 Page 12 of 2 DCN# NAP2 DCN NAP3

Project 6468-09-2473

Single Point Resistance (SPR): The current flowing to the cable armor is measured along

with the voltage at the SPR electrode. The voltage divided by current gives resistance.

Self Potential (SP): This is the DC bias of the 16" electrode with respect to the voltage

return at the surface (ground stake).

Data quality is dependant upon good grounding at the surface. This is achieved with a metal

stake driven into the mud-pit or the soil adjacent to the boring.

Acoustic Televiewer / Boring Deviation Instrumentation

An acoustic image and boring deviation data were collected in all three borings using a High

Resolution Acoustic Televiewer probe (HiRAT), serial number 6641, manufactured by

Robertson Geologging, Ltd. The probe is 7.58 feet long, and 1.9 inches in diameter, and is fitted

with upper and lower four-band centralizers.

In this application, this probe is useful in the following studies:

Measurement of boring inclination and deviation from vertical

• Determination of need to correct soil and geophysical log depths to true vertical depths

Acoustic imaging of the boring wall to identify fractures, dikes, and weathered zones,

and determine dip and azimuth of these features

The probe receives control signals from, and sends the digitized measurement values to, a

Robertson Micrologger II on the surface via an armored 4 conductor cable. The cable is wound

onto the drum of a winch and is used to support the probe. Cable travel is measured to provide

probe depth data, using a 3.28 foot circumference sheave fitted with a digital rotary encoder.

The probe and depth data are transmitted by USB link from the Micrologger unit to a laptop

computer where it is displayed and stored on hard disk.

This system produces images of the boring wall based upon the amplitude and travel time of an ultrasonic beam reflected from the formation wall. The ultrasonic energy is generated by a piezoelectric transducer at a frequency of 1.4 MHz. A periodic acoustic energy wave is emitted by the transducer and travels through the acoustic head and boring fluid until it reaches the interface between the boring fluid and the boring wall. Here a portion of the energy is reflected back to the transducer, the remainder continuing on into the formation. By careful time sequencing, the piezoelectric transducer acts as both the transmitter of the ultrasonic pulse and receiver of the reflected wave. The travel time of the energy wave is the period between transmission of the source energy pulse and the return of the reflected wave measured at the point of maximum wave amplitude. The magnitude of the wave energy is measured in dB, a unit-less ratio of the detected echo wave amplitude divided by the amplitude of the transmitted wave. The strength of the reflected signal depends primarily upon the impedance contrast of the boring fluid and the boring wall formation. In these rock borings, the contrast between the clear water filling the boring and the rock formation generally provides high contrast. The changes in contrast between native rock and dikes provide imaging of fracture fillings.

The acoustic wave propagates along the axis of the probe and then is reflected perpendicular to this axis by a reflector that focuses the beam to a 0.1-inch diameter spot about 2 inches from the central axis of the probe. This reflector is mounted on the shaft of a stepper motor enabling the position of the measurement to be rotated through 360°. Sampling rates of 90, 180 and 360 measured points per revolution are available. During these surveys, data were collected at 360 samples per revolution. It should be noted that during logging the probe is moving in the boring, so that the measured points describe a very fine pitch spiral.

Project 6468-09-2473

The probe contains a fluxgate magnetometer to monitor magnetic north, and all raw televiewer data are referenced to magnetic north. Also, a three-axis accelerometer is enclosed in the probe, and boring deviation data are recorded during the logging runs, to permit correction of structure dip angle from apparent dip, (referenced to boring axis), to true dip (referenced to a vertical axis) in non-vertical borings.

The data are presented on a computer screen for operator review during the logging run, and stored on hard disk for later processing.

Project 6468-09-2473

MEASUREMENT PROCEDURES

Suspension Measurement Procedures

The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the surface casing down to the bottom of the boring, as listed in Table 2. 4-inch steel casing placed in the top 44 to 90 feet of softer soils above bedrock contact during the measurements in the lower rock portion of the borings. The casing was then removed, and measurements were performed in the upper soil portion of the borings, as indicated in Table 2. Measurements followed the GEOVision Procedure for P-S Suspension Seismic Velocity Logging, revision 1.4, as presented in Appendix F. This procedure was supplied to and

approved by MACTEC in advance of the work. In each boring, the probe was positioned with

the top of the probe at the top of the casing, and the electronic depth counter was set to the

specified length of the probe, minus the height of the casing stick-up, as verified with a tape

measure, and recorded on the field logs. The probe was lowered to the bottom of the boring,

stopping at 1.6 foot intervals to collect data, as summarized in Table 2.

At each measurement depth the measurement sequence of two opposite horizontal records and one vertical record was performed, and the gains were adjusted as required. The data from each depth was reviewed on the computer display, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the depth reference point was verified prior to removal from the boring, and the after survey depth error (ASDE) was calculated, as summarized in Table 3.

Calibration procedures and records for the suspension PS measurement system are presented in Appendix D. GEOVision standard field log sheets for all borings are reproduced in Appendix E and **GEO**Vision standard field procedures are reproduced in Appendix F.

Caliper / Natural Gamma Measurement Procedures

The borings were filled with bentonite or polymer based drilling mud and logged from the bottom of the boring up until the caliper entered the bottom of the surface casing, as listed in Table 2. Measurements followed ASTM D6167-97 (Re-approved 2004) Conducting Borehole

Geophysical Logging – Mechanical Caliper.

Prior to and following each logging run, the caliper tool was verified, using the manufacturer's supplied three point calibration jig, and a PVC coupling provided by MACTEC with an inside diameter traceable to NIST. The three point jig is a circular plate with a series of holes in the top surface into which the tips of the caliper arms fit. This has circles of diameters from 2 to 12 inches. The calibration jig is placed over a bucket with the probe standing upright with its nose section passing through the jig's central hole. The caliper probe arms are opened under program control, and a log is recorded as the tips of the arms are placed in the holes on the calibration jig and inside the PVC coupling. The measured dimensions, as displayed on the recording computer screen was recorded on the field log sheet, as well as in the digital files, and compared with the calibration jig dimensions. These files are presented in LAS 2.0 format in the boring specific sub-directories of the data disk (CD-R) labeled Report 9333-02 that accompanies this report. If the verification records did not fall within +/- 0.05 inches of the calibration jig values, the caliper tool was re-calibrated, using the three point calibration jig, and the log repeated. As with the verification, the tips of the caliper arms are placed in the holes marked with the required diameter. During calibration, the value of the current calibration point, as stamped on the jig, is entered via the control computer. The system counts for 15 seconds to make an average of the response. The procedure is repeated for the second and third required openings.

The computation and generation of the calibration coefficient file is entirely automatic. The calibration file is simply the set of coefficients of a quadratic curve which fits the three data points. Figure 2 shows the response of a caliper probe using data gathered during calibration.

Natural gamma was not calibrated in the field, as it is a qualitative measurement, not a quantitative value, and is used only to assist in picking transitions between stratigraphic units, as

Project 6468-09-2473

described in ASTM D6274-98 (Re-approved 2004), Conducting Borehole Geophysical Logging

- Gamma.

In each boring, the probe was positioned with the top of the probe at the top of the casing, and

the electronic depth counter was set to the specified length of the probe, minus the height of the

casing stick-up, as verified with a tape measure, and recorded on the field logs. The probe was

lowered to the bottom of the boring, where the caliper legs were opened, and data collection

The probe was then returned to the surface at 10 feet/minute, collecting data

continuously at 0.05 foot spacing, as summarized in Table 2.

Upon completion of the measurements, the probe zero depth indication at the depth reference

point was verified prior to removal from the boring, and the after survey depth error (ASDE) was

calculated, as summarized in Table 3.

Resistivity / Spontaneous Potential Measurement Procedures

The borings were filled with bentonite or polymer based drilling mud and logged from the

bottom of the boring up until the yoke electrode cleared the surface of the drilling mud at

nominal 39 foot depth, or the probe entered the surface casing, as summarized in Table 2. The

probe was connected to the logging cable using a 32.8 foot long insulating cable section or

"yoke". The probe head was insulated by wrapping all exposed metal of the cablehead and

probe with self-amalgamating insulation tape. The 32.8 foot insulating yoke was checked for

any damage, and repaired with self-amalgamating insulation tape as needed.

The reference ground stake was driven firmly into the mud pit, and connected to the ground

socket on the winch switch box.

This sonde was not calibrated in the field, as it is used to provide qualitative measurements, not

quantitative values, and is used only to assist in picking transitions between stratigraphic units,

as described in ASTM D5753-05, Planning and Conducting Borehole Geophysical Surveys. A

Project 6468-09-2473

functional test is performed prior to each logging run by applying fixed resistance values across

the probe electrodes, as well as a 100 millivolt signal across the SP electrodes, and recording the

resultant output of the system. These functional checks are presented in LAS 2.0 format in the

boring specific sub-directories of the data directory on the data disk (CD-R) labeled Report

9333-02 that accompanies this report.

Natural gamma was not calibrated in the field, as it is a qualitative measurement, not a

quantitative value, and is used only to assist in picking transitions between stratigraphic units, as

described in ASTM D6274-98 (Re-approved 2004), Conducting Borehole Geophysical Logging

- Gamma.

In each boring, the probe was positioned with the top of the yoke electrode at the top of the

casing, and the electronic depth counter was set to the specified length of the probe and yoke,

minus the height of the casing stick-up, as verified with a tape measure, and recorded in the field

logs. The probe was lowered to the bottom of the boring, where data collection was begun. The

probe was then returned to the surface at 10 feet/minute, collecting data continuously at 0.05 foot

spacing, until the yoke electrode cleared the surface of the drilling mud at nominal 39 foot depth,

or the probe entered the surface casing, as summarized in Table 2. The natural gamma data

collected in these logs is redundant with the data collected in the caliper / natural gamma logs,

and the caliper / natural data may be used to verify the natural gamma data collected in these

logs.

Upon completion of the measurements, the probe zero depth indication at the depth reference

point was verified prior to removal from the boring, and the after survey depth error (ASDE) was

calculated, as summarized in Table 3.

Project 6468-09-2473

Acoustic Televiewer / Boring Deviation Measurement Procedures

The borings were filled with bentonite or polymer based drilling mud and logged from the

bottom of the boring up to the surface, as listed in Table 2. Measurements followed the

GEOVision Hi-RAT Field Procedure, revision 1.0, as presented in Appendix F. This procedure

was supplied to and approved by MACTEC in advance of the work.

Prior to use, the HiRAT probe tiltmeter and compass functions were checked by comparison

with a Brunton surveyors' compass, and the results recorded on the field logs.

In each boring, the televiewer probe was positioned with the top of the probe at the top of the

casing, and the electronic depth counter was set to the specified length of the probe, minus the

height of the casing stick-up, as verified with a tape measure, and recorded on the field logs.

The probe was lowered to the bottom of the boring, and data collection begun. The probe was

then returned to the surface at 3.0 feet/minute, collecting data continuously at 0.008 foot

intervals, as summarized in Table 2.

Upon completion of the measurements, the probe zero depth indication at grade was verified

prior to removal from the boring and the after survey depth error (ASDE) was calculated, as

summarized in Table 3.

DATA ANALYSIS

Suspension Analysis

Using the proprietary OYO program PSLOG.EXE version 1.0, included on the data disk (CD-R) labeled Report 9333-02 that accompanies this report, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3 foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into an EXCEL template (EXCEL version 2003 SP2) to complete the velocity calculations based upon the arrival time picks made in PSLOG. The PSLOG pick files and the EXCEL analysis files are included in the boring specific directories on the data disk (CD-R) labeled Report 9333-02 that accompanies this report.

The P-wave velocity over the 6.3 foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in EXCEL, for comparison with the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 4.8 feet to correspond to the mid-point of the 6.3 foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting 0.3 milliseconds, the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H-wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H-wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT lowpass filtering was used to remove the higher frequency P-wave signal from the S_H-wave

Project 6468-09-2473

signal. Different filter cutoffs were used to separate P- and S_H-waves at different depths,

ranging from 600 Hz in the slowest zones to 4000 Hz in the regions of highest velocity. At each

depth, the filter frequency was selected to be at least twice the fundamental frequency of the S_H-

wave signal being filtered.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the

'reverse' signals, although other points on the waveform were used if the first pulse was distorted.

The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds,

due to differences in the actuation time of the solenoid source caused by constant mechanical

bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity

determinations, as the differential time is measured between arrivals of waves created by the

same source actuation. The final velocity value is the average of the values obtained from the

'normal' and 'reverse' source actuations.

As with the P-wave data, S_H-wave velocity calculated from the travel time over the 6.3 foot

interval from source to receiver 1 was calculated and plotted for comparison with the velocity

derived from the travel time between receivers. In this analysis, the depth values were increased

by 4.8 foot to correspond to the mid-point of the 6.3 foot S-R1 interval. Travel times were

obtained by picking the first break of the S_H-wave signal at the near receiver and subtracting 0.3

milliseconds, the calculated and experimentally verified delay from the beginning of the record

at the source trigger pulse to source impact.

Independent review of these data and analysis were performed by John Diehl of **GEO**Vision.

Figure 3 shows an example of R1 - R2 measurements on a sample filtered suspension record. In

Figure 3, the time difference over the 3.3 foot interval of 1.88 milliseconds for the horizontal

signals is equivalent to an S_H-wave velocity of 1745 feet/second. Whenever possible, time

differences were determined from several phase points on the S_H-waveform records to verify the

data obtained from the first arrival of the S_H-wave pulse. Figure 4 displays the same record

before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital lowpass filter,

Project 6468-09-2473

illustrating the presence of higher frequency P-wave energy at the beginning of the record, and

distortion of the lower frequency S_H-wave by residual P-wave signal.

Caliper / Natural Gamma Analysis

No analysis is required with the caliper or natural gamma data, however depths to identifiable

boring features were compared to verify compatible depth readings on all logs. Using WellCAD

software version 4.3, these data were combined with the resistivity, ELOG based natural gamma

and spontaneous potential (SP) logs, and converted to LAS and PDF formats for transmittal to

the client.

Resistivity / Natural Gamma / Spontaneous Potential Analysis

No analysis is required with the resistivity, natural gamma or spontaneous potential data,

however depths to identifiable boring features were compared to verify compatible depth

readings on all logs. Using WellCAD software version 4.3, these data were combined with the

caliper and caliper-based natural gamma logs, and converted to LAS and PDF formats for

transmittal to the client.

Project 6468-09-2473

Acoustic Televiewer / Boring Deviation Analysis

The collected Acoustic Televiewer data was processed with Robertson Geologging's RGLDIP

program, version 6.2, to identify boring features and to extract the deviation data and produce an

ASCII file and plots of deviation data.

Sinusoidal projections of both open and hairline fractures in the boring walls were interactively

picked on the acoustic reflection image or acoustic travel time image, and are presented on the

logs as red sinusoids superimposed over the televiewer images. Bedrock contact, and other

bedding planes, when visible, were picked on the same images and are presented on the logs as

green sinusoids. The sinusoidal projections were processed to correct for the plunge of the

borings using the recorded data from the accelerometers located in the probe, and presented

graphically, in what is referred to as "tadpole", or "arrow" format, with true dip indicated by the

position of the arrow head on the plot. Direction of dip (not strike) is indicated by the direction

of the arrow tail, with true north being "up". These values are presented numerically in columns

to the left of the arrow graphic plots. These depth and dip data of the joints and foliation are also

presented as .txt files in the boring specific sub-directories on the data disk (CD-R) labeled

Report 9333-02 that accompanies this report, and summarized in Table 4.

The televiewer images were processed to create a simulated core image of the borings. It should

be considered that the pseudo-core represents a core that would have the full 3.8-inch diameter

of the boring, not the 2.5-inch diameter of the cores removed during drilling, so that direct

comparison is not possible. Also, the unwrapped image is viewed from the perspective of an

observer in the center of the boring looking outward. The simulated core image is viewed from

the "outside" of the boring looking inward, so there is a reversal of the position of east and west

relative to north between the two images.

Project 6468-09-2473

RESULTS

Suspension Results

Suspension R1-R2 P- and S_H-wave velocities are plotted in Figures 5 and 8. The suspension

velocity data presented in these figures are presented in Tables 5 and 6. The PSLOG and

EXCEL analysis files for each boring are included in the boring specific directories on the data

disk (CD-R) labeled Report 9333-02 that accompanies this report, along with the raw and

filtered waveforms.

P- and S_H-wave velocity data from R1-R2 and S-R1 analysis, as discussed in the "Suspension

Analysis" section of this report, are plotted together in Figures A-1 and A-2 to aid in visual

comparison. It must be noted that R1-R2 data is an average velocity over a 3.3 foot segment of

the soil column; S-R1 data is an average over 6.3 feet, creating a significant smoothing relative

to the R1-R2 plots. S-R1 data are presented in Tables A-1 and A-2, and included in the EXCEL

analysis files for each boring on the data disk (CD-R) labeled Report 9333-02 that accompanies

this report.

Calibration procedures and records for the suspension measurement system are presented in

Appendix D.

The **GEO** Vision standard field log sheets for all borings are reproduced in Appendix E.

The **GEO***Vision* standard field procedures are reproduced in Appendix F.

Project 6468-09-2473

Caliper/ Natural Gamma Results

Caliper and natural gamma data are presented in combined log plots with resistivity and

spontaneous potential as single page logs in Figures 6 and 9, as well as multi-page logs in

Appendix B. LAS 2.0 data and Acrobat files of the plots for each boring are included in the

boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies

this report.

Resistivity / Spontaneous Potential Results

Resistivity and spontaneous potential data is presented in combined log plots with caliper and

natural gamma data as single page logs in Figures 6 and 9, as well as multi-page logs in

Appendix B. LAS 2.0 data and Acrobat files of the plots for each boring are included in the

boring specific sub-directories on the data disk (CD-R) labeled Report 9333-02 that accompanies

this report.

Acoustic Televiewer / Boring Deviation Results

Acoustic televiewer amplitude images and simulated core images are presented in Appendix C,

with identified features super-imposed on the images. Features were picked as hairline fractures

and bedding planes (as identified as features only present on the amplitude display) and open

fractures (as identified as features present on both amplitude and travel-time displays). The

same logs are presented in .pdf format in the boring specific sub-directories on the data disk

(CD-R) labeled Report 9333-02 that accompanies this report. Fracture and planar feature depth,

dip angle and azimuth of dip data are provided numerically on the log sheets, as well as in text

format on the data CD-R.

Page 26 of 217 DCN# NAP272 DCN NAP307 Boring deviation data is presented graphically in Figures 7 and 10, and summarized in Table 4. Deviation data plots in Acrobat format and deviation data at 1.0 foot stations are presented in text format in the boring specific sub-directories of the data disk (CD-R) labeled Report 9333-02 that accompanies this report.

SUMMARY

Discussion of Suspension Results

Suspension PS velocity data are ideally collected in an uncased fluid filled boring, drilled with rotary mud (rotary wash) methods. The lower portions of the borings at this site were ideal for collection of suspension PS velocity data.

Suspension PS velocity data quality is judged based upon 5 criteria:

- 1. Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1)data.
- 2. Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- 3. Consistency between data from adjacent depth intervals.
- 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations.
- 5. Consistency of profile between adjacent borings, if available.

M-10DH: These data show excellent correlation between R1 - R2 and S - R1 data, as well as excellent correlation between P-wave and S_H-wave velocities. S_H-wave onsets are generally clear, and later oscillations are well damped. P-wave arrivals are weak, as is generally the case in hard rock borings, and above water table in soil. In the hard rock, low velocity regions correspond well with fracture zones identified on the acoustic televiewer logs. This is an excellent rock velocity data set, with good soil velocity data.

M-30DH: These data show excellent correlation between R1 - R2 and S - R1 data, as well as excellent correlation between P-wave and S_H-wave velocities. S_H-wave onsets are generally clear, and later oscillations are well damped. P-wave arrivals are weak, as is generally the case in hard rock borings, and above water table in soil. In the hard rock, low velocity regions correspond well with fracture zones identified on the acoustic televiewer logs. This is an excellent rock velocity data set, with good soil velocity data.

Project 6468-09-2473

Discussion of Caliper / Natural Gamma Results

Caliper and natural gamma data was collected for the entire depth of each boring. The caliper

logs for all these borings show very consistent gauge in competent rock, with minor tapering

downhole due to bit wear. Some fracturing is noted, but below the rock contact, the borings are

generally tight. Natural gamma was collected with this tool in all the borings, as well as with the

ELOG probe, and the comparison between the two data sets provides an almost exact match,

verifying the performance of the natural gamma measuring systems.

Discussion of Resistivity / Spontaneous Potential Results

Both long and short normal resistivity and single point resistance provide clear delineation of

different lithologic units and changes within the bedrock, showing drops in resistivity at

weathered zones that correspond with changes in natural gamma and velocity data. The

electrical data is not valid above 40 feet, as the upper yoke electrode moves out of the boring

fluid at this depth. The natural gamma data agrees well with the natural gamma data collected

with the caliper probe. The comparison between the two data sets provides an almost exact

match, verifying the performance of the natural gamma measuring systems.

Discussion of Acoustic Televiewer / Boring Deviation Results

The acoustic televiewer data quality in the rock section of both borings is very good, providing

clear images of a number of fractures and beading planes. Many of the borings exhibit diagonal

banding (zebra striping) caused by rapid reaming down the boring with new core bits that are

slightly larger than the gauge of the original boring. This creates a spiral wear pattern in the

boring that alters the characteristic smooth surface of diamond cored borings. This wear pattern

can have a significant impact on acoustic televiewer image quality, and in these borings may

conceal smaller features. It will not conceal fractures, however.

Project 6468-09-2473

Location of fractures and weathered zones on the televiewer logs correspond precisely with

increases in caliper log diameter and suspension PS velocity drops.

The borings were inclined at 3.9 degrees, or less, from vertical, and the maximum error in depth

value was 0.5 feet in 200 ft, or less than 0.3 percent, as presented in Table 4. This error is less

than depth errors from other causes, and no adjustment of log depth is indicated.

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better

methods for measurements and analyses. All work was performed under GEOVision data

collection and processing procedures, which include:

Use of NIST-traceable calibrations, where applicable, for field and laboratory

instrumentation

• Use of standard field data logs

Use of independent verification of velocity data by comparison of receiver-to-receiver and

source-to-receiver velocities

Independent review of calculations and results by a registered professional engineer,

geologist, or geophysicist.

Suspension Data Reliability

P- and S_H -wave velocity measurement using the Suspension Method gives average velocities over a 3.3 foot interval of depth. This high resolution results in the scatter of values shown in the graphs. Individual measurements are very reliable with estimated precision of \pm 5%. Standardized field procedures and comparison checks contribute to the reliability of these data.

November 3, 2009

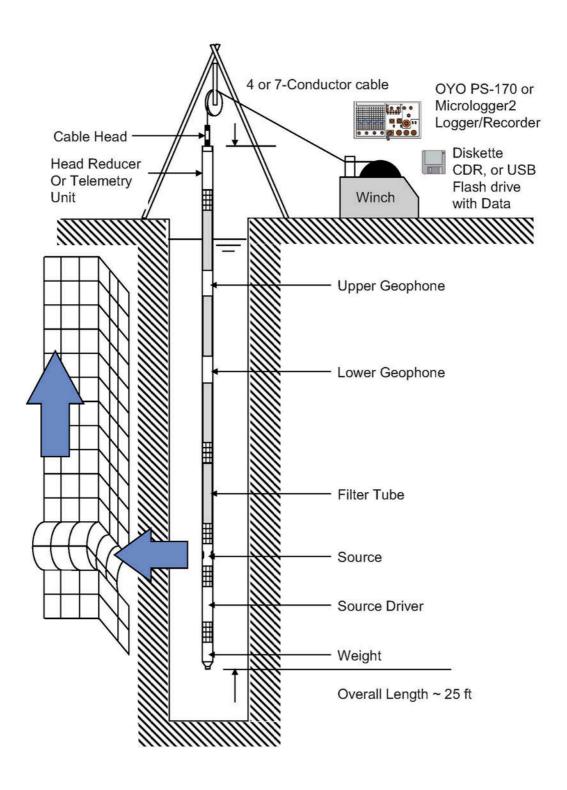


Figure 1: Concept illustration of P-S logging system

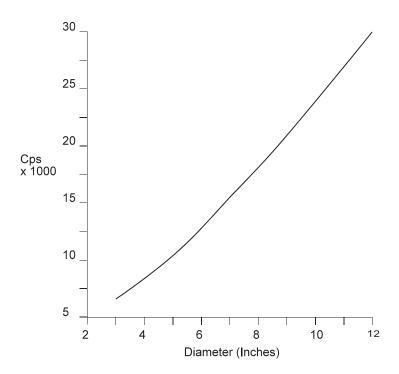


Figure 2. Example Calibration Curve for Caliper Probe

BORING	DATES		COORDINAT	ES* - FEET
DESIGNATION	LOGGED	ELEVATION*	NORTH (Y)	EAST (X)
M-10DH	9/16-17/2009	323.61	3909243.32	11685945.83
M-30DH	9/15-17/2009	313.34	3909694.92	11685381.66

^{*} All points referenced to Control Monument 7 and adjusted to reflect the following Datums Horizontal – VSPCS South Zone, NAD 83(CORS96)(EPOCH:2002) Elevation - NAVD88 (Geoid03) Survey data provided by MACTEC

Table 1 Boring locations and logging dates

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	OPEN HOLE (FEET)	DEPTH TO BOTTOM OF CASING (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
M-10DH	ELOG/GAMMA 1	200.1 - 86.0	200.1	89.8 STEEL	0.05	9/16/2009
M-10DH	SUSPENSION 1	91.9 – 187.0	-	89.8 STEEL	1.6	9/16/2009
M-10DH	ACOUSTIC TELEVIEWER 1	196.9 - 86.9	-	89.8 STEEL	0.008	9/16/2009
M-10DH	CALIPER/GAMMA 1	198.8 - 84.0	-	89.8 STEEL	0.05	9/16/2009
M-10DH	ELOG/GAMMA 2	105.6 – 36.6	-	7.0 STEEL	0.05	9/16/2009
M-10DH	SUSPENSION 2	8.2 – 98.4	-	7.0 STEEL	1.6	9/17/2009
M-10DH	CALIPER/GAMMA 2	100.9 – 3.9	-	7.0 STEEL	0.05	9/17/2009
M-10DH	ACOUSTIC TELEVIEWER 2	99.4 – 2.8	-	7.0 STEEL	0.008	9/18/2009
M-30DH	ELOG/GAMMA 1	200.5 - 39.6	200.5	44.0 STEEL	0.05	9/15/2009
M-30DH	ELOG/GAMMA 2	75.0 – 39.9	-	44.0 STEEL	0.05	9/15/2009
M-30DH	SUSPENSION 1	45.9 – 187.0	-	44.0 STEEL	1.6	9/15/2009
M-30DH	ACOUSTIC TELEVIEWER 1	200.2 – 40.2	-	44.0 STEEL	0.008	9/16/2009
M-30DH	ACOUSTIC TELEVIEWER 2	55.4 – 41.8	-	44.0 STEEL	0.008	9/16/2009
M-30DH	CALIPER/GAMMA 1	200.1 – 33.2	-	44.0 STEEL	0.05	9/16/2009
M-30DH	ELOG/GAMMA 3	65.4 – 34.3	-	7.0 STEEL	0.05	9/17/2009
M-30DH	SUSPENSION 2	8.2 – 52.5	-	7.0 STEEL	1.6	9/17/2009
M-30DH	ACOUSTIC TELEVIEWER 3	45.9 – 5.9	-	7.0 STEEL	0.008	9/17/2009
M-30DH	CALIPER/GAMMA 2	50.7 – 3.3	-	7.0 STEEL	0.05	9/17/2009

- PROBE DID NOT TOUCH BOTTOM OF BORING

Table 2. Logging dates and depth ranges

DCN# NAP272 DCN NAP307

BORING NUMBER	TOOL AND RUN NUMBER	TOOL HIT BOTTOM DEPTH (FEET)	DRILLER DEPTH (FEET)	STARTING DEPTH REF. (FEET)	ENDING DEPTH REF. (FEET)	ASDE (FEET)
M-10DH	ELOG/GAMMA 1	201.1	201.9	39.5	39.5	0
M-10DH	SUSPENSION 1	-		6.7	6.7	0
M-10DH	ACOUSTIC TELEVIEWER 1	-		3.2	3.2	0
M-10DH	CALIPER/GAMMA 1	-		5.3	5.3	0
M-10DH	ELOG/GAMMA 2	-		32.2	32.2	0
M-10DH	SUSPENSION 2	-		5.4	5.4	0
M-10DH	CALIPER/GAMMA 2	-		4.0	4.0	0
M-10DH	ACOUSTIC TELEVIEWER 2	-		2.8	2.7	0.1
M-30DH	ELOG/GAMMA 1	200.5	201.7	39.9	39.6	0.3
M-30DH	ELOG/GAMMA 2	-		39.9	40.0	0.1
M-30DH	SUSPENSION 1	-		7.1	7.1	0
M-30DH	ACOUSTIC TELEVIEWER 1	-		3.6	3.6	0
M-30DH	ACOUSTIC TELEVIEWER 2	-		3.6	3.6	0
M-30DH	CALIPER/GAMMA 1	-		5.7	5.7	0
M-30DH	ELOG/GAMMA 3	-		37.7	37.8	0.1
M-30DH	SUSPENSION 2	-		4.9	4.9	0
M-30DH	ACOUSTIC TELEVIEWER 3	-		1.4	1.4	0
M-30DH	CALIPER/GAMMA 2	-		3.5	3.5	0

⁻ PROBE DID NOT TOUCH BOTTOM OF BORING

Table 3. Boring Bottom Depths and After Survey Depth Error (ASDE)

BORING	MEAN DEVIATION	SURVEY	VERTICAL	DEPTH	HORIZONTAL
NUMBER	AND AZIMUTH	DEPTH	DEPTH	ERROR	OFFSET
NUMBER	(DEGREES)	(FEET)	(FEET)	(FEET)	(FEET)
M-10DH	3.9 – N328	196.9	196.4	0.5	13.3
M-30DH	1.6 – N159	200.2	200.2	0	5.5

Table 4. Boring Deviation Data Summary

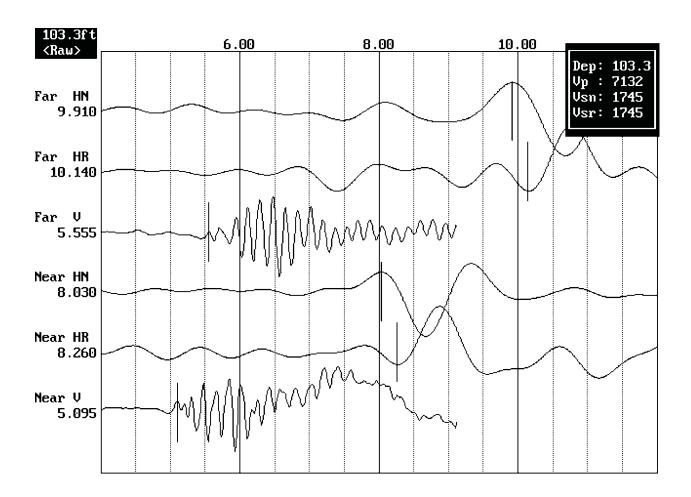


Figure 3: Example of filtered (1400 Hz lowpass) record

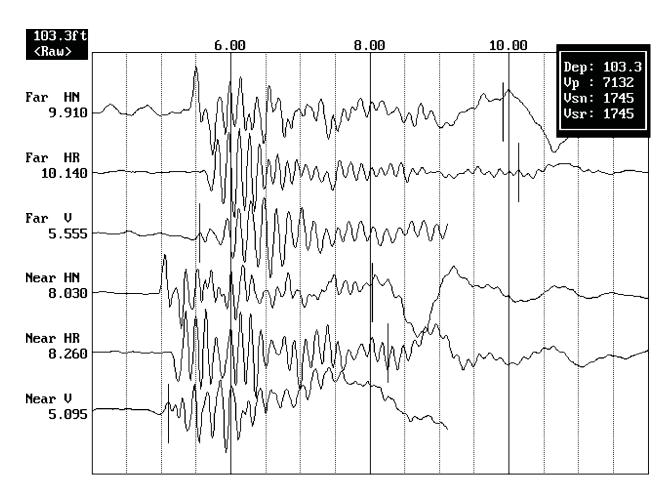


Figure 4. Example of unfiltered record

NORTH ANNA BORING M-10DH Receiver to Receiver V_s and V_p Analysis

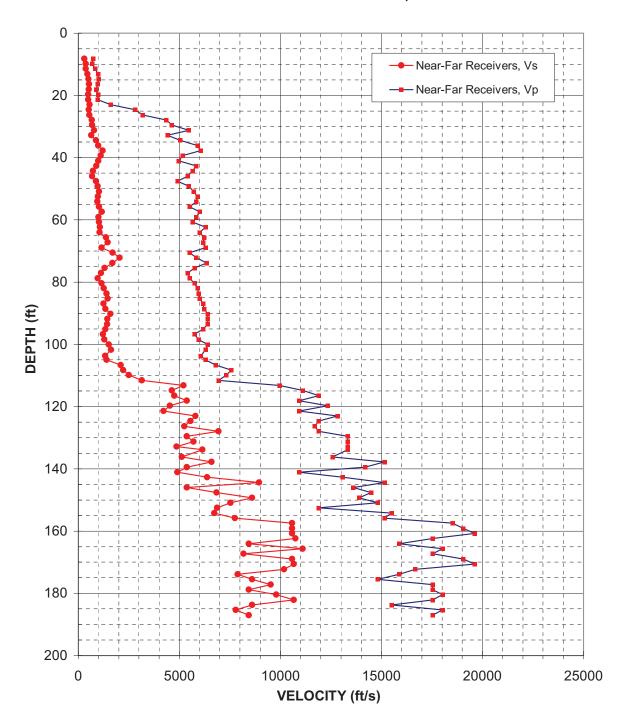


Figure 5: Boring M-10DH, Suspension R1-R2 P- and S_H-wave velocities

Table 5. Boring M-10DH, Suspension R1-R2 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH

,	American	Units	
Depth at	1	ocity	
Midpoint Between Receivers	V _s	V _p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
8.2	300	740	0.40
9.8	370	690	0.29
11.5	370	840	0.38
13.1	460	970	0.36
14.8	510	1010	0.33
16.4	530	960	0.28
18.0	520	890	0.24
19.7	500	980	0.32
21.3	490	960	0.32
23.0	560	1610	0.43
24.6	520	2800	0.48
26.3	550	3170	0.48
27.9	670	4360	0.49
29.5	690	4630	0.49
31.2	790	5460	0.49
32.8	650	4420	0.49
34.5	880	5050	0.48
36.1	1000	5900	0.49
37.7	1210	6060	0.48
39.4	1110	5170	0.48
41.0	1000	4980	0.48
42.7	890	5850	0.49
44.3	730	5650	0.49
45.9	690	5420	0.49
47.6	880	4900	0.48
49.2	970	5460	0.48
50.9	1030	5700	0.48
52.5	980	5900	0.49
54.1	960	5850	0.49
55.8	1030	5510	0.48
57.4	1170	6010	0.48
59.1	1000	5850	0.49
60.7	1030	5650	0.48
62.3	1070	6290	0.49
64.0	1060	6010	0.48
65.6	1370	6230	0.47

	Metric L	Jnits	
Depth at	Velo		
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
2.5	90	230	0.40
3.0	110	210	0.29
3.5	110	250	0.38
4.0	140	300	0.36
4.5	160	310	0.33
5.0	160	290	0.28
5.5	160	270	0.24
6.0	150	300	0.32
6.5	150	290	0.32
7.0	170	490	0.43
7.5	160	850	0.48
8.0	170	970	0.48
8.5	200	1330	0.49
9.0	210	1410	0.49
9.5	240	1670	0.49
10.0	200	1350	0.49
10.5	270	1540	0.48
11.0	300	1800	0.49
11.5	370	1850	0.48
12.0	340	1580	0.48
12.5	300	1520	0.48
13.0	270	1780	0.49
13.5	220	1720	0.49
14.0	210	1650	0.49
14.5	270	1490	0.48
15.0	290	1670	0.48
15.5	310	1740	0.48
16.0	300	1800	0.49
16.5	290	1780	0.49
17.0	310	1680	0.48
17.5	360	1830	0.48
18.0	300	1780	0.49
18.5	310	1720	0.48
19.0	330	1920	0.49
19.5	320	1830	0.48
20.0	420	1900	0.47

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH

	Americar	n Units	
Depth at	Depth at Velocity		
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
67.3	1460	6170	0.47
68.9	1150	6290	0.48
70.5	1710	5510	0.45
72.2	2040	5850	0.43
73.8	1690	6350	0.46
75.5	1310	5750	0.47
77.1	1130	5420	0.48
78.7	970	5510	0.48
80.4	1150	5750	0.48
82.0	1260	5900	0.48
83.7	1410	5950	0.47
85.3	1460	6010	0.47
86.9	1250	6170	0.48
88.6	1340	6230	0.48
90.2	1590	6410	0.47
91.9	1450	6410	0.47
93.5	1420	6410	0.47
95.1	1350	6170	0.47
96.8	1230	5750	0.48
98.4	1290	5950	0.48
100.1	1520	6410	0.47
101.7	1620	6290	0.46
103.7	1340	6060	0.47
105.0	1400	6290	0.47
106.6	2100	6800	0.45
108.3	2220	7580	0.45
109.9	2500	7330	0.43
111.6	3140	6940	0.37
113.2	5210	9950	0.31
114.8	4630	11110	0.39
116.5	4760	11900	0.40
118.1	5380	10930	0.34
119.8	4540	12350	0.42
121.4	4220	10930	0.41
123.0	5800	12820	0.37
124.7	5560	11900	0.36
126.3	5250	11700	0.37
128.0	6940	11900	0.24
129.6	5380	13330	0.40

Depth at	Metric U	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
20.5	450	1880	0.47
21.0	350	1920	0.48
21.5	520	1680	0.45
22.0	620	1780	0.43
22.5	520	1940	0.46
23.0	400	1750	0.47
23.5	340	1650	0.48
24.0	290	1680	0.48
24.5	350	1750	0.48
25.0	380	1800	0.48
25.5	430	1810	0.47
26.0	440	1830	0.47
26.5	380	1880	0.48
27.0	410	1900	0.48
27.5	490	1950	0.47
28.0	440	1950	0.47
28.5	430	1950	0.47
29.0	410	1880	0.47
29.5	370	1750	0.48
30.0	390	1810	0.48
30.5	460	1950	0.47
31.0	490	1920	0.46
31.6	410	1850	0.47
32.0	430	1920	0.47
32.5	640	2070	0.45
33.0	680	2310	0.45
33.5	760	2230	0.43
34.0	960	2120	0.37
34.5	1590	3030	0.31
35.0	1410	3390	0.39
35.5	1450	3630	0.40
36.0	1640	3330	0.34
36.5	1380	3760	0.42
37.0	1290	3330	0.41
37.5	1770	3910	0.37
38.0	1690	3630	0.36
38.5	1600	3560	0.37
39.0	2120	3630	0.24
39.5	1640	4060	0.40

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-10DH

Depth at	Velo	ocity	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(ft)	(ft/s)	(ft/s)	
131.2	5700	13330	0.39
132.9	4870	13330	0.42
133.9	6140	13330	0.37
136.2	5130	12580	0.40
137.8	6600	15150	0.38
139.4	5380	14180	0.42
141.1	4900	10930	0.37
142.7	6380	13070	0.34
144.4	8950	15150	0.23
146.0	5380	13610	0.41
147.6	6840	14490	0.36
149.3	8600	13890	0.19
150.9	7530	14810	0.33
152.6	6870	11900	0.25
154.2	6730	15500	0.38
155.8	7750	15150	0.32
157.5	10580	18520	0.26
159.1	10580	19050	0.28
160.8	10580	19610	0.29
162.4	10750	17540	0.20
164.0	8440	15870	0.30
165.7	11110	18020	0.19
167.3	8180	17540	0.36
169.0	10580	19050	0.28
170.6	10670	19610	0.29
172.2	10180	16670	0.20
173.9	7890	15870	0.34
175.5	8600	14810	0.25
177.2	9520	17540	0.29
178.8	8440	17540	0.35
180.5	9800	18020	0.29
182.1	10670	17540	0.21
183.7	8600	15500	0.28
185.4	7800	18020	0.38
187.0	8440	17540	0.35

	Metric L	Jnits	
Depth at	Velo	city	
Midpoint			
Between			Poisson's
Receivers	V _s	V _p	Ratio
(m)	(m/s)	(m/s)	
40.0	1740	4060	0.39
40.5	1480	4060	0.42
40.8	1870	4060	0.37
41.5	1560	3830	0.40
42.0	2010	4620	0.38
42.5	1640	4320	0.42
43.0	1490	3330	0.37
43.5	1940	3980	0.34
44.0	2730	4620	0.23
44.5	1640	4150	0.41
45.0	2080	4420	0.36
45.5	2620	4230	0.19
46.0	2300	4520	0.33
46.5	2090	3630	0.25
47.0	2050	4730	0.38
47.5	2360	4620	0.32
48.0	3230	5640	0.26
48.5	3230	5810	0.28
49.0	3230	5980	0.29
49.5	3280	5350	0.20
50.0	2570	4840	0.30
50.5	3390	5490	0.19
51.0	2490	5350	0.36
51.5	3230	5810	0.28
52.0	3250	5980	0.29
52.5	3100	5080	0.20
53.0	2400	4840	0.34
53.5	2620	4520	0.25
54.0	2900	5350	0.29
54.5	2570	5350	0.35
55.0	2990	5490	0.29
55.5	3250	5350	0.21
56.0	2620	4730	0.28
56.5	2380	5490	0.38
57.0	2570	5350	0.35

Notes: "-" means no data available at that particular interval of depth.

Page 41 of 217 DCN# NAP272 DCN NAP307

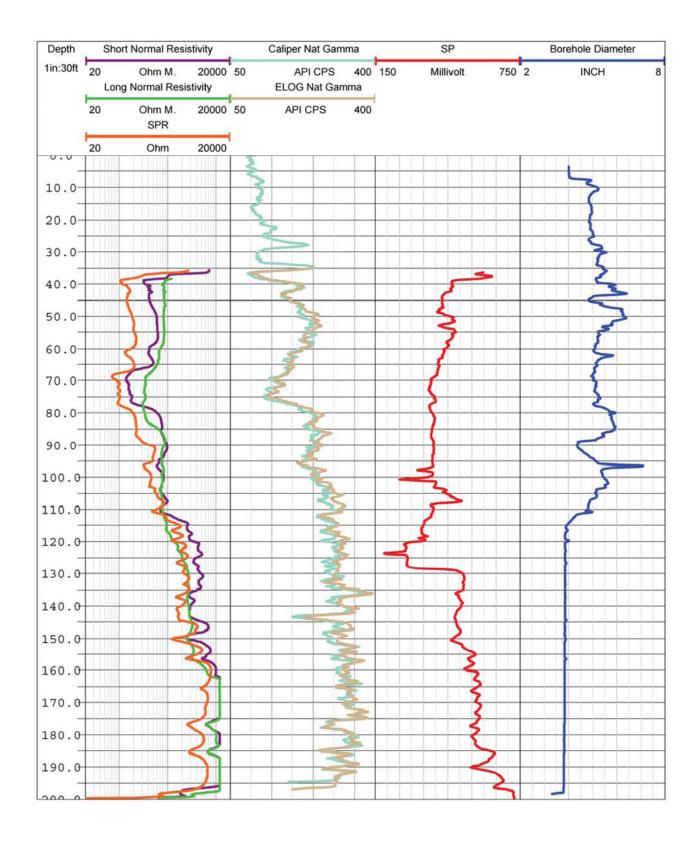


Figure 6: Boring M-10DH, Caliper, Natural gamma, Resistivity and SP logs

25 75 100 150 175 Borehole: M-10DH Sonde: BHTV Zone from: 0.000 to 196.860ft North ref is true Mean deviation: 3.88 to N327.60 Mean deviation: 3.88 to N32 End coordinates North: 11.251 East: -7.140 Down: 196.366 Azimuth of end: N327.60 Distance start-end: 13.326ft Viewpoint: N58

Deviated borehole in orthographic projection, viewed from N58

Figure 7. Boring M-10DH, Deviation Projection

Distances in feet, Deviation and Azimuths in degrees

Data extrapolated to the surface from 2.748ft

NORTH ANNA BORING M-30DH Receiver to Receiver V_s and V_p Analysis

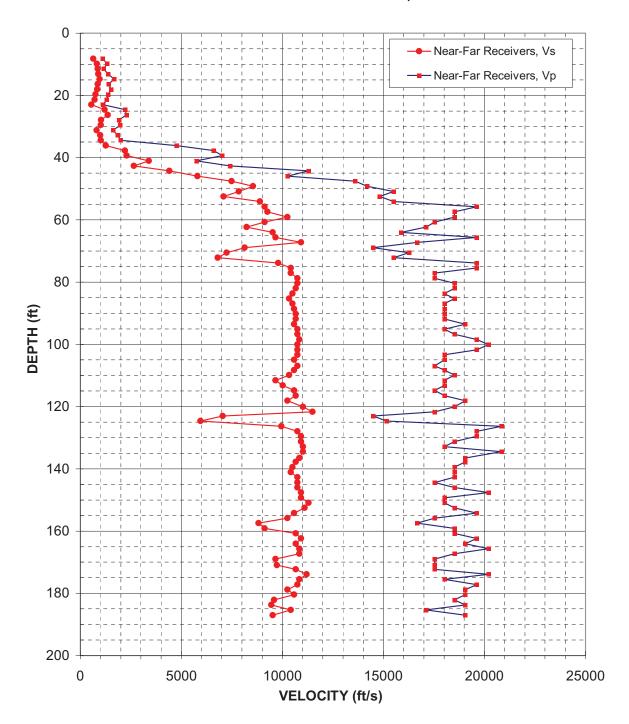


Figure 8: Boring M-30DH, Suspension R1-R2 P- and S_H-wave velocities

Table 6. Boring M-30DH, Suspension R1-R2 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH

	American Units					
Depth at		ocity				
Midpoint						
Between			Poisson's			
Receivers	V_s	V_p	Ratio			
(ft)	(ft/s)	(ft/s)				
8.2	650	1110	0.24			
9.8	830	1330	0.18			
11.5	870	1160	-			
13.1	890	1380	0.13			
14.8	960	1680	0.26			
16.4	870	1410	0.19			
18.0	840	1530	0.29			
19.7	760	1390	0.29			
21.3	710	1310	0.29			
23.0	560	1130	0.34			
24.6	1200	2220	0.29			
26.3	1370	2280	0.22			
27.9	1030	1900	0.29			
29.5	1020	1980	0.32			
31.2	810	1630	0.34			
32.8	990	1850	0.30			
34.5	1020	2010	0.33			
36.1	1270	4760	0.46			
37.7	2210	6600	0.44			
39.4	2300	7020	0.44			
41.0	3400	5750	0.23			
42.7	2660	7410	0.43			
44.3	4420	11300	0.41			
45.9	5800	10260	0.27			
47.6	7490	13610	0.28			
49.2	8550	14180	0.21			
50.9	7840	15500	0.33			
52.5	7090	14810	0.35			
54.1	8890	15500	0.26			
55.8	9130	19610	0.36			
57.4	9260	18520	0.33			
59.1	10260	18520	0.28			
60.7	9130	17540	0.31			
62.3	8230	17090	0.35			
64.0	9520	15870	0.22			
65.6	9660	19610	0.34			
67.3	10930	16670	0.12			

	Metric Units				
Depth at	1	city			
Midpoint					
Between			Poisson's		
Receivers	V _s	V _p	Ratio		
(m)	(m/s)	(m/s)			
2.5	200	340	0.24		
3.0	250	400	0.18		
3.5	260	350	-		
4.0	270	420	0.13		
4.5	290	510	0.26		
5.0	260	430	0.19		
5.5	260	470	0.29		
6.0	230	420	0.29		
6.5	220	400	0.29		
7.0	170	340	0.34		
7.5	370	680	0.29		
8.0	420	700	0.22		
8.5	310	580	0.29		
9.0	310	600	0.32		
9.5	250	500	0.34		
10.0	300	560	0.30		
10.5	310	610	0.33		
11.0	390	1450	0.46		
11.5	670	2010	0.44		
12.0	700	2140	0.44		
12.5	1040	1750	0.23		
13.0	810	2260	0.43		
13.5	1350	3440	0.41		
14.0	1770	3130	0.27		
14.5	2280	4150	0.28		
15.0	2610	4320	0.21		
15.5	2390	4730	0.33		
16.0	2160	4520	0.35		
16.5	2710	4730	0.26		
17.0	2780	5980	0.36		
17.5	2820	5640	0.33		
18.0	3130	5640	0.28		
18.5	2780	5350	0.31		
19.0	2510	5210	0.35		
19.5	2900	4840	0.22		
20.0	2940	5980	0.34		
20.5	3330	5080	0.12		

November 3, 2009

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH

American Units				
Depth at	Depth at Velocity			
Midpoint				
Between			Poisson's	
Receivers	V _s	V _p	Ratio	
(ft)	(ft/s)	(ft/s)		
68.9	8130	14490	0.27	
70.5	7250	16260	0.38	
72.2	6800	15500	0.38	
73.8	9800	19610	0.33	
75.5	10420	19610	0.30	
77.1	10420	17540	0.23	
78.7	10750	17540	0.20	
80.4	10750	18520	0.25	
82.0	10670	18520	0.25	
83.7	10500	18020	0.24	
85.3	10340	18520	0.27	
86.9	10500	18020	0.24	
88.6	10580	18020	0.24	
90.2	10670	18020	0.23	
91.9	10670	18020	0.23	
93.5	10580	19050	0.28	
95.1	10750	18020	0.22	
96.8	10750	18520	0.25	
98.4	10840	19610	0.28	
100.1	10750	20200	0.30	
101.7	10750	19610	0.28	
103.4	10750	18020	0.22	
105.0	10580	18020	0.24	
107.0	10750	17540	0.20	
108.3	10580	18020	0.24	
109.9	10340	18520	0.27	
111.6	9660	18020	0.30	
113.2	10030	18020	0.28	
114.8	10580	17540	0.21	
116.5	10670	18020	0.23	
118.1	10260	19050	0.30	
120.1	11020	18520	0.23	
121.7	11490	17540	0.12	
123.0	7050	14490	0.34	
124.7	5950	15150	0.41	
126.3	9950	20830	0.35	
128.0	10750	19610	0.28	
129.6	10930	19610	0.27	
131.2	10930	18520	0.23	

Depth at	Metric Units Depth at Velocity			
Midpoint				
Between			Poisson's	
Receivers	V _s	V_p	Ratio	
(m)	(m/s)	(m/s)		
21.0	2480	4420	0.27	
21.5	2210	4960	0.38	
22.0	2070	4730	0.38	
22.5	2990	5980	0.33	
23.0	3180	5980	0.30	
23.5	3180	5350	0.23	
24.0	3280	5350	0.20	
24.5	3280	5640	0.25	
25.0	3250	5640	0.25	
25.5	3200	5490	0.24	
26.0	3150	5640	0.27	
26.5	3200	5490	0.24	
27.0	3230	5490	0.24	
27.5	3250	5490	0.23	
28.0	3250	5490	0.23	
28.5	3230	5810	0.28	
29.0	3280	5490	0.22	
29.5	3280	5640	0.25	
30.0	3300	5980	0.28	
30.5	3280	6160	0.30	
31.0	3280	5980	0.28	
31.5	3280	5490	0.22	
32.0	3230	5490	0.24	
32.6	3280	5350	0.20	
33.0	3230	5490	0.24	
33.5	3150	5640	0.27	
34.0	2940	5490	0.30	
34.5	3060	5490	0.28	
35.0	3230	5350	0.21	
35.5	3250	5490	0.23	
36.0	3130	5810	0.30	
36.6	3360	5640	0.23	
37.1	3500	5350	0.12	
37.5	2150	4420	0.34	
38.0	1810	4620	0.41	
38.5	3030	6350	0.35	
39.0	3280	5980	0.28	
39.5	3330	5980	0.27	
40.0	3330	5640	0.23	

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Receiver-to-Receiver Travel Time Data - Borehole M-30DH

American Units				
Depth at	Depth at Velocity			
Midpoint				
Between			Poisson's	
Receivers	V _s	V_p	Ratio	
(ft)	(ft/s)	(ft/s)		
132.9	11020	18020	0.20	
134.5	11020	20830	0.31	
136.5	10840	19050	0.26	
137.8	10670	19050	0.27	
139.4	10500	18520	0.26	
141.1	10420	18520	0.27	
142.7	10750	18520	0.25	
144.4	10750	17540	0.20	
146.0	10750	18520	0.25	
147.6	10930	20200	0.29	
149.3	10930	18020	0.21	
150.9	11300	18020	0.18	
152.6	11110	18520	0.22	
154.2	10580	19610	0.29	
155.8	10260	17540	0.24	
157.5	8830	16670	0.30	
159.1	9130	18520	0.34	
160.8	10670	18520	0.25	
162.4	10930	19610	0.27	
164.0	10670	19050	0.27	
165.7	10840	20200	0.30	
167.3	10840	18520	0.24	
169.0	9660	17540	0.28	
170.9	9730	17540	0.28	
172.2	10670	17540	0.21	
173.9	11200	20200	0.28	
175.5	10840	18020	0.22	
177.2	10750	19610	0.28	
178.8	10260	19050	0.30	
180.5	10580	19050	0.28	
182.1	9590	18520	0.32	
183.7	9460	19050	0.34	
185.4	10420	17090	0.20	
187.0	9520	19050	0.33	

Metric Units				
Depth at	Velo			
Midpoint				
Between			Poisson's	
Receivers	V _s	V _p	Ratio	
(m)	(m/s)	(m/s)		
40.5	3360	5490	0.20	
41.0	3360	6350	0.31	
41.6	3300	5810	0.26	
42.0	3250	5810	0.27	
42.5	3200	5640	0.26	
43.0	3180	5640	0.27	
43.5	3280	5640	0.25	
44.0	3280	5350	0.20	
44.5	3280	5640	0.25	
45.0	3330	6160	0.29	
45.5	3330	5490	0.21	
46.0	3440	5490	0.18	
46.5	3390	5640	0.22	
47.0	3230	5980	0.29	
47.5	3130	5350	0.24	
48.0	2690	5080	0.30	
48.5	2780	5640	0.34	
49.0	3250	5640	0.25	
49.5	3330	5980	0.27	
50.0	3250	5810	0.27	
50.5	3300	6160	0.30	
51.0	3300	5640	0.24	
51.5	2940	5350	0.28	
52.1	2970	5350	0.28	
52.5	3250	5350	0.21	
53.0	3420	6160	0.28	
53.5	3300	5490	0.22	
54.0	3280	5980	0.28	
54.5	3130	5810	0.30	
55.0	3230	5810	0.28	
55.5	2920	5640	0.32	
56.0	2880	5810	0.34	
56.5	3180	5210	0.20	
57.0	2900	5810	0.33	

Notes: "-" means no data available at that particular interval of depth.

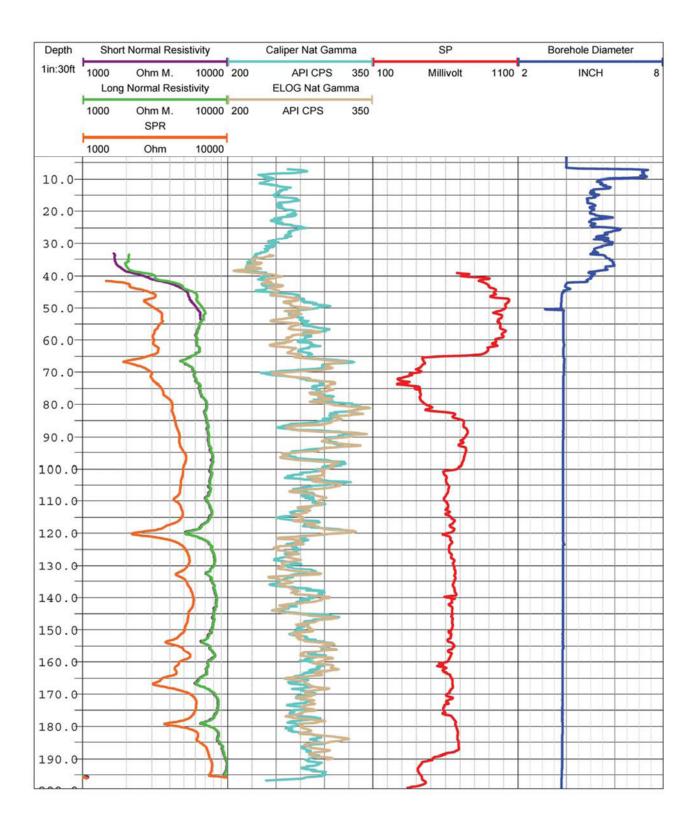


Figure 9. Boring M-30DH, Caliper, Natural gamma, Resistivity and SP logs

50 75 100 150 175 Borehole: M-30DH Sonde: BHTV Zone from: 0.000 to 200.248ft North ref is true Mean deviation: 1.58 to N158.98 Mean deviation: 1.58 to N1: End coordinates North: -5.151 East: 1.979 Down: 200.166 Azimuth of end: N158.98 Distance start-end: 5.519ft Viewpoint: N249 Data extrapolated to the surface from 15.000ft Distances in feet, Deviation and Azimuths in degrees

Deviated borehole in orthographic projection, viewed from N249

Figure 10. Boring M-30DH, Deviation Projection

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT COMPARISON OF SOURCE TO RECEIVER 1 AND RECEIVER 1 TO RECEIVER 2 ANALYSIS RESULTS

NORTH ANNA BORING M-10DH Source to Receiver and Receiver to Receiver Analysis

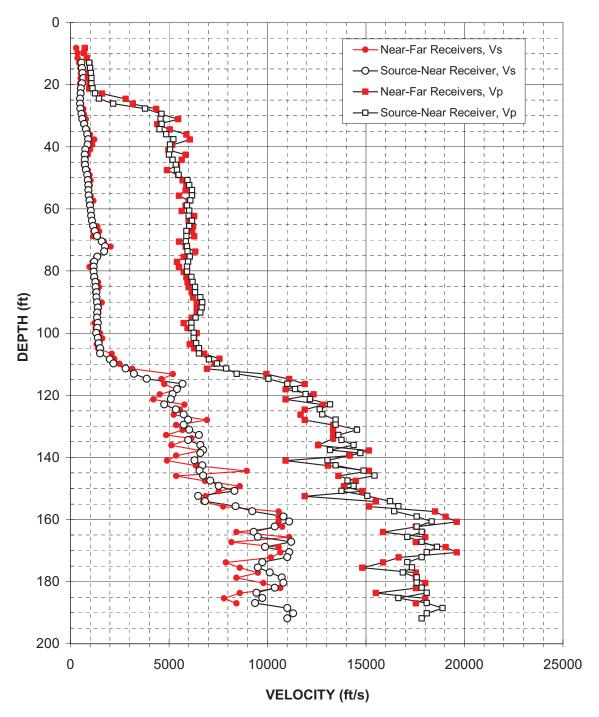


Figure A-1: Boring M-10DH, Suspension S-R1 P- and S_H-wave velocities

Table A-1. Boring M-10DH, Suspension S-R1 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH

American Units				
Depth at Midpoint		ocity		
Between Source and Near Receiver	V _s	V_p	Poisson's Ratio	
(ft)	(ft/s)	(ft/s)		
13.0	570	960	0.23	
14.7	590	1000	0.23	
16.3	620	1040	0.22	
18.0	660	1070	0.18	
19.6	590	1070	0.28	
21.2	540	1130	0.35	
22.9	520	1260	0.40	
24.5	490	1450	0.44	
26.2	490	2170	0.47	
27.8	510	3790	0.49	
29.4	570	4620	0.49	
31.1	600	4590	0.49	
32.7	710	4640	0.49	
34.4	790	4520	0.48	
36.0	860	4870	0.48	
37.6	910	5230	0.48	
39.3	880	5060	0.48	
40.9	760	5060	0.49	
42.6	730	5000	0.49	
44.2	730	5190	0.49	
45.8	750	5360	0.49	
47.5	780	5410	0.49	
49.1	860	5500	0.49	
50.8	890	5940	0.49	
52.4	910	6030	0.49	
54.0	910	6180	0.49	
55.7	920	6180	0.49	
57.3	980	6090	0.49	
59.0	1000	5920	0.49	
60.6	1040	6030	0.48	
62.2	1060	6000	0.48	
63.9	1100	6180	0.48	
65.5	1160	6030	0.48	
67.2	1230	5890	0.48	
68.8	1360	5890	0.47	
70.5	1590	5860	0.46	
72.1	1760	5920	0.45	
73.7	1720	5940	0.45	
75.4	1360	6060	0.47	
77.0	1210	5970	0.48	

Metric Units				
Depth at Midpoint				
Between Source	7010	city		
and Near Receiver	V _s	V _p	Poisson' s Ratio	
(m)	(m/s)	(m/s)		
4.0	170	290	0.23	
4.5	180	310	0.23	
5.0	190	320	0.22	
5.5	200	330	0.18	
6.0	180	330	0.28	
6.5	160	350	0.35	
7.0	160	380	0.40	
7.5	150	440	0.44	
8.0	150	660	0.47	
8.5	160	1160	0.49	
9.0	170	1410	0.49	
9.5	180	1400	0.49	
10.0	220	1410	0.49	
10.5	240	1380	0.48	
11.0	260	1480	0.48	
11.5	280	1590	0.48	
12.0	270	1540	0.48	
12.5	230	1540	0.49	
13.0	220	1530	0.49	
13.5	220	1580	0.49	
14.0	230	1640	0.49	
14.5	240	1650	0.49	
15.0	260	1680	0.49	
15.5	270	1810	0.49	
16.0	280	1840	0.49	
16.5	280	1880	0.49	
17.0	280	1880	0.49	
17.5	300	1860	0.49	
18.0	310	1800	0.49	
18.5	320	1840	0.48	
19.0	320	1830	0.48	
19.5	340	1880	0.48	
20.0	350	1840	0.48	
20.5	380	1790	0.48	
21.0	410	1790	0.47	
21.5	480	1790	0.46	
22.0	540	1800	0.45	
22.5	530	1810	0.45	
23.0	410	1850	0.47	
23.5	370	1820	0.48	

Page 52 of 217 DCN# NAP272 DCN NAP307

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH

American Units					
Depth at	.,.	.,			
Midpoint	Velocity				
Between Source and			Poisson's		
Near Receiver	V _s	V _p	Ratio		
(ft)	(ft/s)	(ft/s)			
78.7	1180	5920	0.48		
80.3	1180	5920	0.48		
81.9	1220	6150	0.48		
83.6	1270	6210	0.48		
85.2	1290	6330	0.48		
86.9	1320	6330	0.48		
88.5	1330	6590	0.48		
90.1	1360	6700	0.48		
91.8	1400	6660	0.48		
93.4	1370	6590	0.48		
95.1	1360	6360	0.48		
96.7	1400	6150	0.47		
98.3	1370	6150	0.47		
100.0	1320	6270	0.48		
101.6	1400	6270	0.47		
103.3	1440	6390	0.47		
104.9	1500	6530	0.47		
106.5	1510	6530	0.47		
108.5	2000	7030	0.46		
109.8	2180	7450	0.45		
111.5	2800	7910	0.43		
113.1	3230	8440	0.41		
114.7	3880	10050	0.41		
116.4	5700	11010	0.32		
118.0	5410	11410	0.35		
119.7	5190	11940	0.38		
121.3	5100	12170	0.39		
122.9	4760	13190	0.43		
124.6	5360	12660	0.39		
126.2	5750	12790	0.37		
127.9	5970	13470	0.38		
129.5	5750	13470	0.39		
131.1	6030	14550	0.40		
132.8	6530	13610	0.35		
134.4	5970	13760	0.38		
136.1	6590	14390	0.37		
137.7	6730	13190	0.32		
138.7	6590	14720	0.37		
141.0	6300	13050	0.35		
142.6	6700	13470	0.34		
144.3	6560	14890	0.38		
145.9	6730	15440	0.38		

Metric Units					
Depth at Midpoint	Velo	city			
Between Source and Near			Poisson'		
Receiver	V _s	V _p	s Ratio		
(m)	(m/s)	(m/s)			
24.0	360	1800	0.48		
24.5	360	1800	0.48		
25.0	370	1870	0.48		
25.5	390	1890	0.48		
26.0	390	1930	0.48		
26.5	400	1930	0.48		
27.0	400	2010	0.48		
27.5	410	2040	0.48		
28.0	430	2030	0.48		
28.5	420	2010	0.48		
29.0	410	1940	0.48		
29.5	430	1870	0.47		
30.0	420	1870	0.47		
30.5	400	1910	0.48		
31.0	430	1910	0.47		
31.5	440	1950	0.47		
32.0	460	1990	0.47		
32.5	460	1990	0.47		
33.1	610	2140	0.46		
33.5	670	2270	0.45		
34.0	850	2410	0.43		
34.5	980	2570	0.41		
35.0	1180	3060	0.41		
35.5	1740	3360	0.32		
36.0	1650	3480	0.35		
36.5	1580	3640	0.38		
37.0	1560	3710	0.39		
37.5	1450	4020	0.43		
38.0	1640	3860	0.39		
38.5	1750	3900	0.37		
39.0	1820	4110	0.38		
39.5	1750	4110	0.39		
40.0	1840	4440	0.40		
40.5	1990	4150	0.35		
41.0	1820	4190	0.38		
41.5	2010	4380	0.37		
42.0	2050	4020	0.32		
42.3	2010	4490	0.37		
43.0	1920	3980	0.35		
43.5 44.0	2040	4110 4540	0.34 0.38		
44.5	2050	4710	0.38		
44.0	2000	4/10	0.50		

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-10DH

American Units				
Depth at Midpoint	Velo	city		
Between Source and Near Receiver	V _s	V_p	Poisson's Ratio	
(ft)	(ft/s)	(ft/s)		
147.6	7110	14070	0.33	
149.2	7540	14390	0.31	
150.8	8330	13760	0.21	
152.5	6490	15070	0.39	
154.1	6840	16230	0.39	
155.8	8380	16660	0.33	
157.4	9240	16440	0.27	
159.0	10820	17580	0.20	
160.7	11110	18350	0.21	
162.3	10380	17580	0.23	
164.0	9310	17830	0.31	
165.6	9520	17110	0.28	
167.2	11200	17830	0.17	
168.9	9890	18620	0.30	
170.5	11110	18090	0.20	
172.2	11010	17830	0.19	
173.8	9740	17110	0.26	
175.4	9520	17340	0.28	
177.1	10130	16880	0.22	
178.7	10730	17580	0.20	
180.4	10820	17580	0.20	
182.0	10380	17830	0.24	
183.6	9450	18090	0.31	
185.3	9740	16660	0.24	
186.9	9380	18090	0.32	
188.6	11010	18900	0.24	
190.2	11300	18090	0.18	
191.8	11010	17830	0.19	

Metric Units					
Depth at Midpoint	Velo	city			
Between Source and Near Receiver	V _s	V _p	Poisson' s Ratio		
(m)	(m/s)	(m/s)			
45.0	2170	4290	0.33		
45.5	2300	4380	0.31		
46.0	2540	4190	0.21		
46.5	1980	4590	0.39		
47.0	2090	4950	0.39		
47.5	2560	5080	0.33		
48.0	2820	5010	0.27		
48.5	3300	5360	0.20		
49.0	3380	5590	0.21		
49.5	3160	5360	0.23		
50.0	2840	5430	0.31		
50.5	2900	5210	0.28		
51.0	3410	5430	0.17		
51.5	3010	5670	0.30		
52.0	3380	5510	0.20		
52.5	3360	5430	0.19		
53.0	2970	5210	0.26		
53.5	2900	5290	0.28		
54.0	3090	5150	0.22		
54.5	3270	5360	0.20		
55.0	3300	5360	0.20		
55.5	3160	5430	0.24		
56.0	2880	5510	0.31		
56.5	2970	5080	0.24		
57.0	2860	5510	0.32		
57.5	3360	5760	0.24		
58.0	3450	5510	0.18		
58.5	3360	5430	0.19		

Notes: "-" means no data available at that particular interval of depth.

November 3, 2009

NORTH ANNA BORING M-30DH Source to Receiver and Receiver to Receiver Analysis

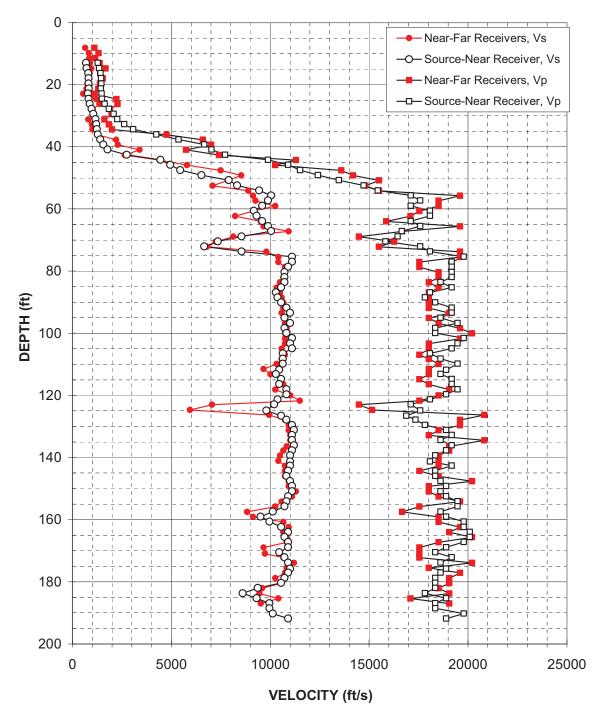


Figure A-2: Boring M-30DH, Suspension S-R1 P- and S_H-wave velocities

Table A-2. Boring M-30DH, Suspension S-R1 depths and P- and S_H-wave velocities

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH

American Units				
Depth at Midpoint Between		ocity		
Source and Near Receiver	V _s	V _p	Poisson's Ratio	
(ft)	(ft/s)	(ft/s)		
13.0	690	1280	0.30	
14.7	720	1350	0.30	
16.3	800	1430	0.27	
18.0	820	1460	0.27	
19.6	820	1470	0.27	
21.2	840	1440	0.24	
22.9	790	1480	0.30	
24.5	820	1500	0.29	
26.2	880	1630	0.30	
27.8	970	1850	0.31	
29.4	1060	2080	0.32	
31.1	1170	2270	0.32	
32.7	1220	2620	0.36	
34.4	1250	3070	0.40	
36.0	1280	4250	0.45	
37.6	1410	5360	0.46	
39.3	1570	6660	0.47	
40.9	1780	7030	0.47	
42.6	2750	7720	0.43	
44.2	4460	9890	0.37	
45.8	4950	10910	0.37	
47.5	5460	11510	0.35	
49.1	6530	12410	0.31	
50.8	7910	13470	0.24	
52.4	8330	14720	0.26	
54.0	9450	15440	0.20	
55.7	10050	17110	0.24	
57.3	9890	17580	0.27	
59.0	9590	17110	0.27	
60.6	9170	18090	0.33	
62.2	9310	18090	0.32	
63.9	9590	17110	0.27	
65.5	9890	17580	0.27	
67.2	10050	16660	0.21	
68.8	8550	16440	0.31	
70.5	7360	15830	0.36	
72.1	6660	17580	0.42	
73.7	8550	18090	0.36	
75.4	11110	19780	0.27	
77.0	11110	19180	0.25	

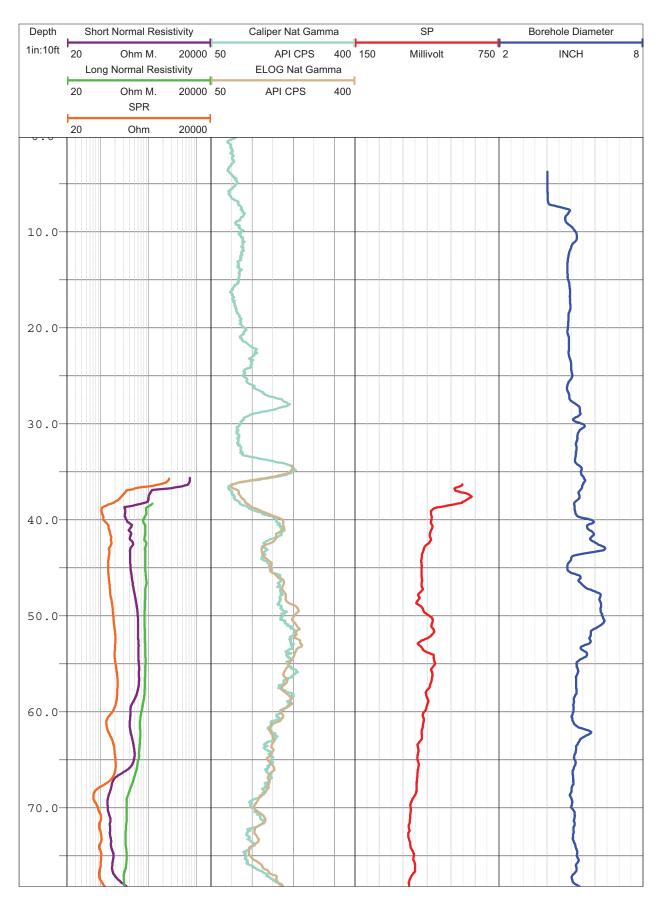
Metric Units			
Depth at Midpoint Between Source	Velocity		
and Near Receiver	V _s	V _p	Poisson' s Ratio
(m)	(m/s)	(m/s)	
4.0	210	390	0.30
4.5	220	410	0.30
5.0	240	430	0.27
5.5	250	440	0.27
6.0	250	450	0.27
6.5	260	440	0.24
7.0	240	450	0.30
7.5	250	460	0.29
8.0	270	500	0.30
8.5	300	560	0.31
9.0	320	630	0.32
9.5	360	690	0.32
10.0	370	800	0.36
10.5	380	940	0.40
11.0	390	1290	0.45
11.5	430	1640	0.46
12.0	480	2030	0.47
12.5	540	2140	0.47
13.0	840	2350	0.43
13.5	1360	3010	0.37
14.0	1510	3330	0.37
14.5	1660	3510	0.35
15.0	1990	3780	0.31
15.5	2410	4110	0.24
16.0	2540	4490	0.26
16.5	2880	4710	0.20
17.0	3060	5210	0.24
17.5	3010	5360	0.27
18.0	2920	5210	0.27
18.5	2800	5510	0.33
19.0	2840	5510	0.32
19.5	2920	5210	0.27
20.0	3010	5360	0.27
20.5	3060	5080	0.21
21.0	2610	5010	0.31
21.5	2240	4820	0.36
22.0	2030	5360	0.42
22.5	2610	5510	0.36
23.0	3380	6030	0.27
23.5	3380	5850	0.25

Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH

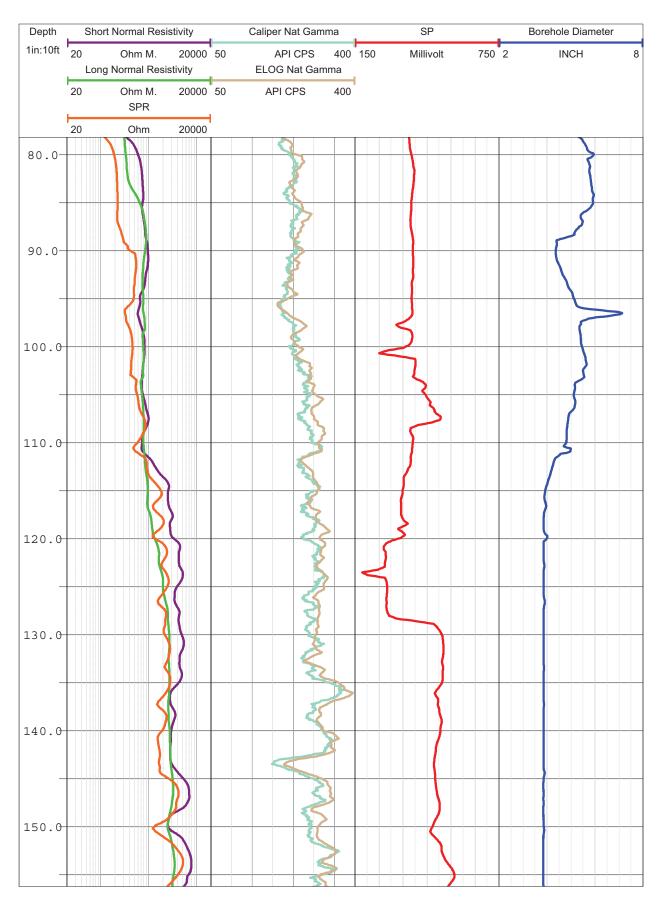
American Units			
Depth at			
Midpoint Between	Veic	city	
Source and			Poisson's
Near Receiver	V_s	V_p	Ratio
(ft)	(ft/s)	(ft/s)	
78.7	10910	19180	0.26
80.3	10730	19180	0.27
81.9	10730	19180	0.27
83.6	10730	18620	0.25
85.2	10550	19180	0.28
86.9	10290	18090	0.26
88.5	10380	17830	0.24
90.1	10550	18350	0.25
91.8	10820	19180	0.27
93.4	11010	19180	0.25
95.1	10730	18620	0.25
96.7	11010	19480	0.27
98.3	10730	18350	0.24
100.0	10820	18350	0.23
101.6	11110	19780	0.27
103.3	11010	19480	0.27
104.9	11110	19180	0.25
106.5	10640	18090	0.24
108.2	10640	18620	0.26
109.8	10640	19480	0.29
111.8	10460	18900	0.28
113.1	10290	18620	0.28
114.7	10550	19180	0.28
116.4	10460	19180	0.29
118.0	10820	19480	0.28
119.7	10820	18900	0.26
121.3	10380	18090	0.25
122.9	10210	17110	0.22
124.9	9810	17580	0.27
126.6	10550	16880	0.18
127.9	10820	17340	0.18
129.5	11110	17830	0.18
131.1	11200	18900	0.23
132.8	11110	19180	0.25
134.4	11110	18620	0.22
136.1	11200	19180	0.24
137.7	11110	18900	0.24
139.3	11010	18350	0.22
141.3	11010	18090	0.21
142.6	11010	19180	0.25
144.3	10910	18350	0.23
145.9	10820	18350	0.23

Metric Units				
Depth at Midpoint Between Source	Velocity			
and Near			Poisson'	
Receiver	V _s	V _p	s Ratio	
(m)	(m/s)	(m/s)		
24.0	3330	5850	0.26	
24.5	3270	5850	0.27	
25.0	3270	5850	0.27	
25.5	3270	5670	0.25	
26.0	3220	5850	0.28	
26.5	3140	5510	0.26	
27.0	3160	5430	0.24	
27.5	3220	5590	0.25	
28.0	3300	5850	0.27	
28.5	3360	5850	0.25	
29.0	3270	5670	0.25	
29.5	3360	5940	0.27	
30.0	3270	5590	0.24	
30.5	3300	5590	0.23	
31.0	3380	6030	0.27	
31.5	3360	5940	0.27	
32.0	3380	5850	0.25	
32.5	3240	5510	0.24	
33.0	3240	5670	0.26	
33.5	3240	5940	0.29	
34.1	3190	5760	0.28	
34.5	3140	5670	0.28	
35.0	3220	5850	0.28	
35.5	3190	5850	0.29	
36.0	3300	5940	0.28	
36.5	3300	5760	0.26	
37.0	3160	5510	0.25	
37.5	3110	5210	0.22	
38.1	2990	5360	0.27	
38.6	3220	5150	0.18	
39.0	3300	5290	0.18	
39.5	3380	5430	0.18	
40.0	3410	5760	0.23	
40.5	3380	5850	0.25	
41.0	3380	5670	0.22	
41.5	3410	5850	0.24	
42.0	3380	5760	0.24	
42.5	3360	5590	0.22	
43.1	3360	5510	0.21	
43.5	3360	5850	0.25	
44.0	3330	5590	0.23	
44.5	3300	5590	0.23	

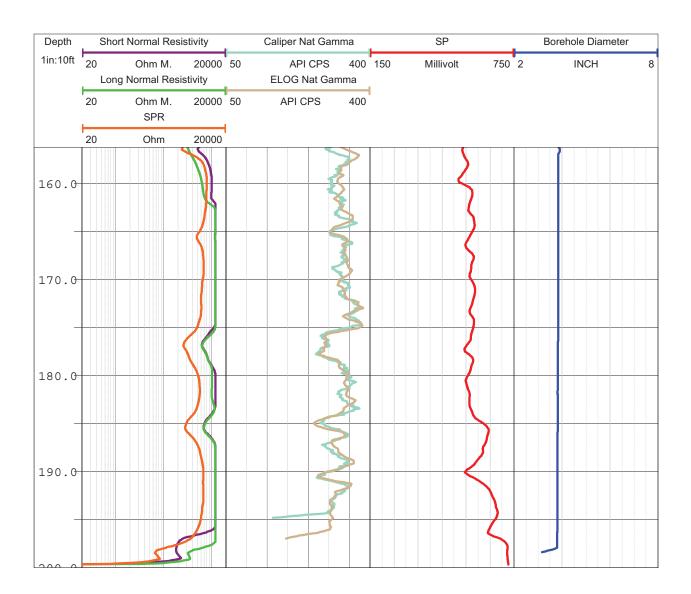
Summary of Compressional Wave Velocity, Shear Wave Velocity, and Poisson's Ratio Based on Source-to-Receiver Travel Time Data - Borehole M-30DH

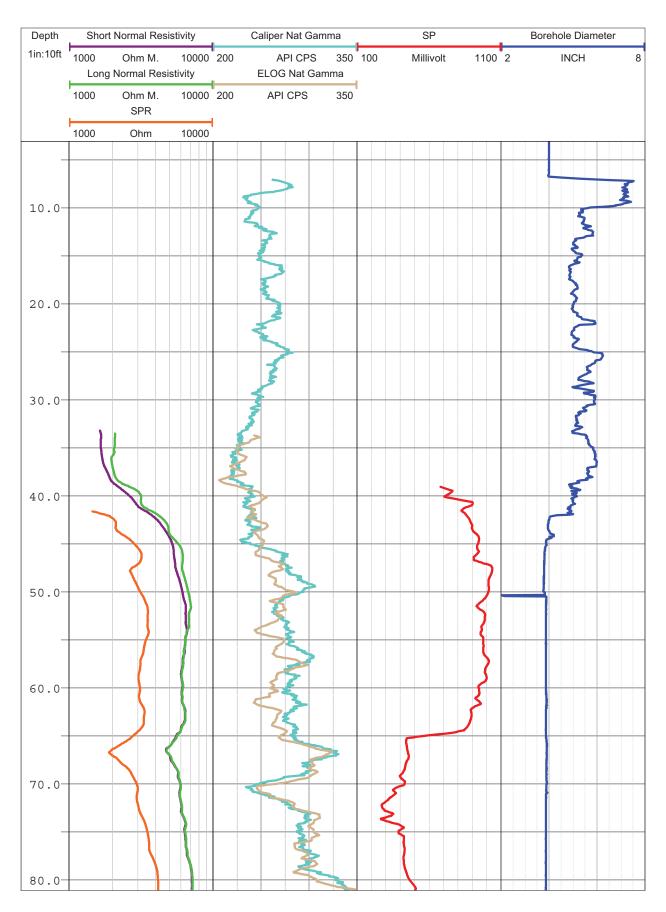

American Units			
Depth at Midpoint	Velocity		
Between Source and Near Receiver	V _s	V_p	Poisson's Ratio
(ft)	(ft/s)	(ft/s)	
147.6	11010	18620	0.23
149.2	11110	18900	0.24
150.8	11110	18620	0.22
152.5	10910	18900	0.25
154.1	10820	19480	0.28
155.8	10730	19480	0.28
157.4	10130	18620	0.29
159.0	9520	18900	0.33
160.7	9970	19780	0.33
162.3	10550	19780	0.30
164.0	10910	20100	0.29
165.6	10730	20100	0.30
167.2	10910	19780	0.28
168.9	10910	18900	0.25
170.5	10460	18350	0.26
172.2	10730	19180	0.27
173.8	10910	18620	0.24
175.8	11010	18900	0.24
177.1	10910	18620	0.24
178.7	10730	18350	0.24
180.4	10550	18350	0.25
182.0	9380	18350	0.32
183.6	8610	17830	0.35
185.3	9310	18900	0.34
186.9	9970	18350	0.29
188.6	9970	18350	0.29
190.2	10130	19780	0.32
191.8	10910	18900	0.25

Metric Units				
Depth at Midpoint	Velocity			
Between Source and Near Receiver	V _s	V _p	Poisson' s Ratio	
(m)	(m/s)	(m/s)		
45.0	3360	5670	0.23	
45.5	3380	5760	0.24	
46.0	3380	5670	0.22	
46.5	3330	5760	0.25	
47.0	3300	5940	0.28	
47.5	3270	5940	0.28	
48.0	3090	5670	0.29	
48.5	2900	5760	0.33	
49.0	3040	6030	0.33	
49.5	3220	6030	0.30	
50.0	3330	6130	0.29	
50.5	3270	6130	0.30	
51.0	3330	6030	0.28	
51.5	3330	5760	0.25	
52.0	3190	5590	0.26	
52.5	3270	5850	0.27	
53.0	3330	5670	0.24	
53.6	3360	5760	0.24	
54.0	3330	5670	0.24	
54.5	3270	5590	0.24	
55.0	3220	5590	0.25	
55.5	2860	5590	0.32	
56.0	2630	5430	0.35	
56.5	2840	5760	0.34	
57.0	3040	5590	0.29	
57.5	3040	5590	0.29	
58.0	3090	6030	0.32	
58.5	3330	5760	0.25	

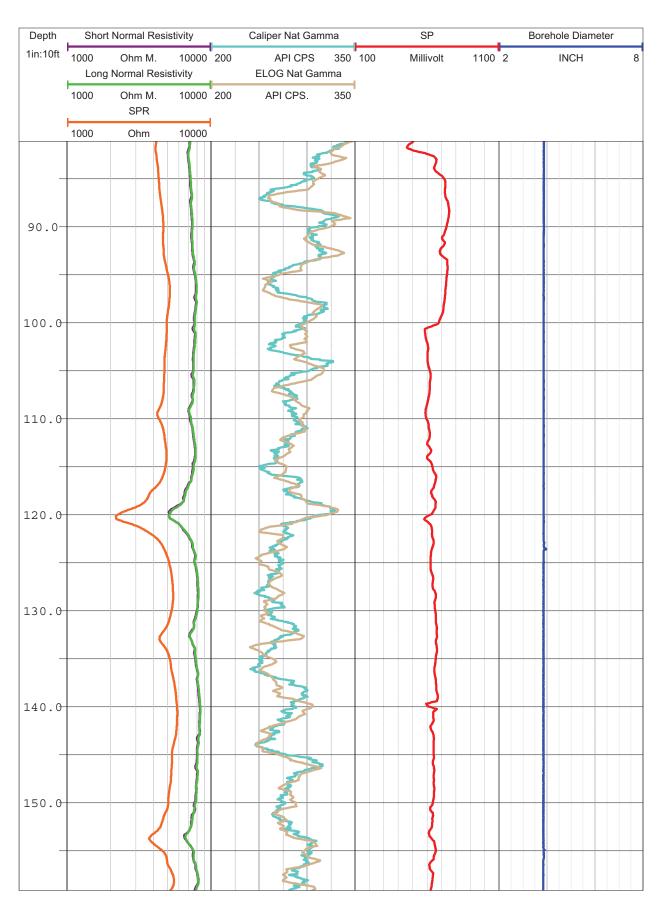

Notes: "-" means no data available at that particular interval of depth.

November 3, 2009

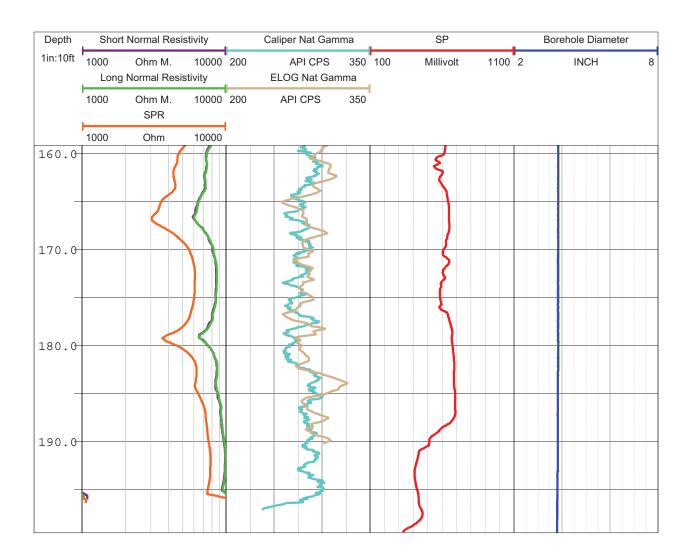

APPENDIX B CALIPER, NATURAL GAMMA, RESISTIVITY, AND SPONTANEOUS POTENTIAL LOGS

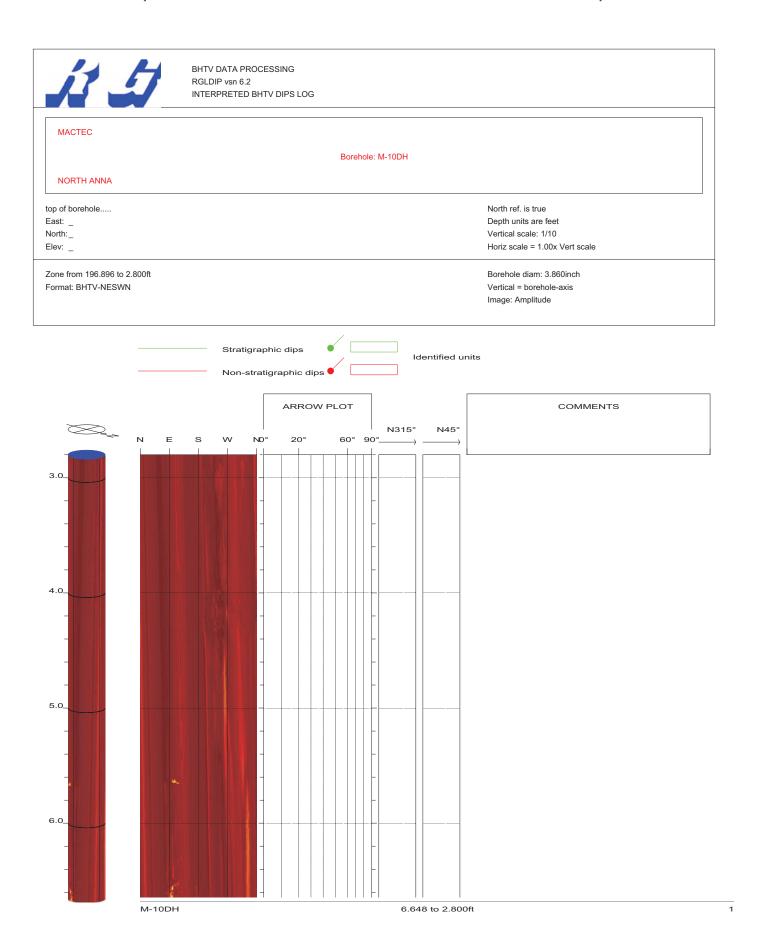


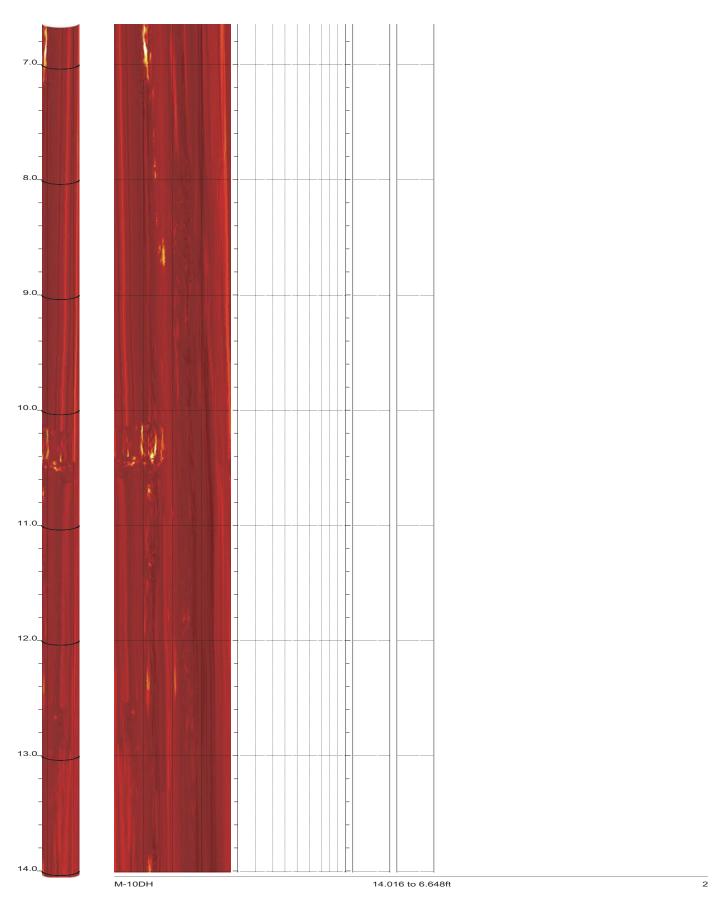
North Anna Boring M-10DH ELOG, Caliper and Natural Gamma rev 1 Sheet 1 of 3

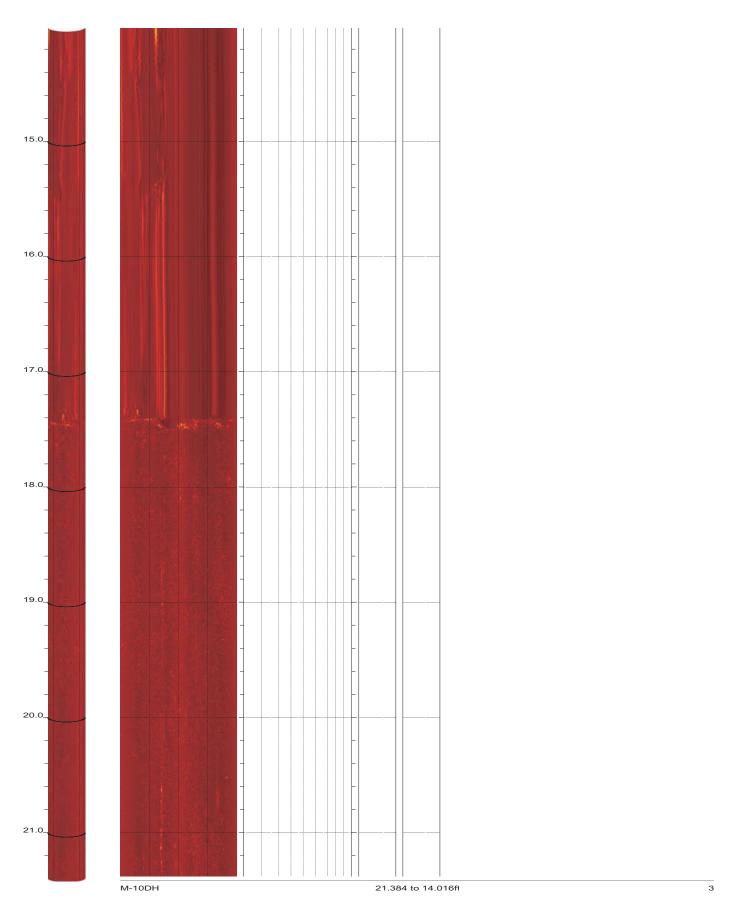


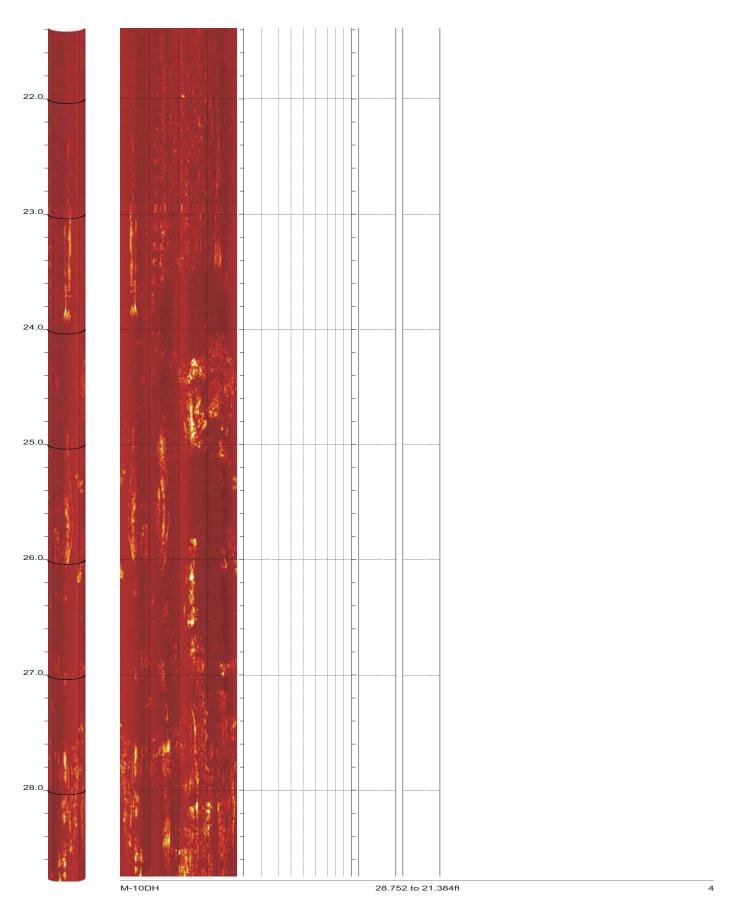
North Anna Boring M-10DH ELOG, Caliper and Natural Gamma rev 1 Sheet 2 of 3

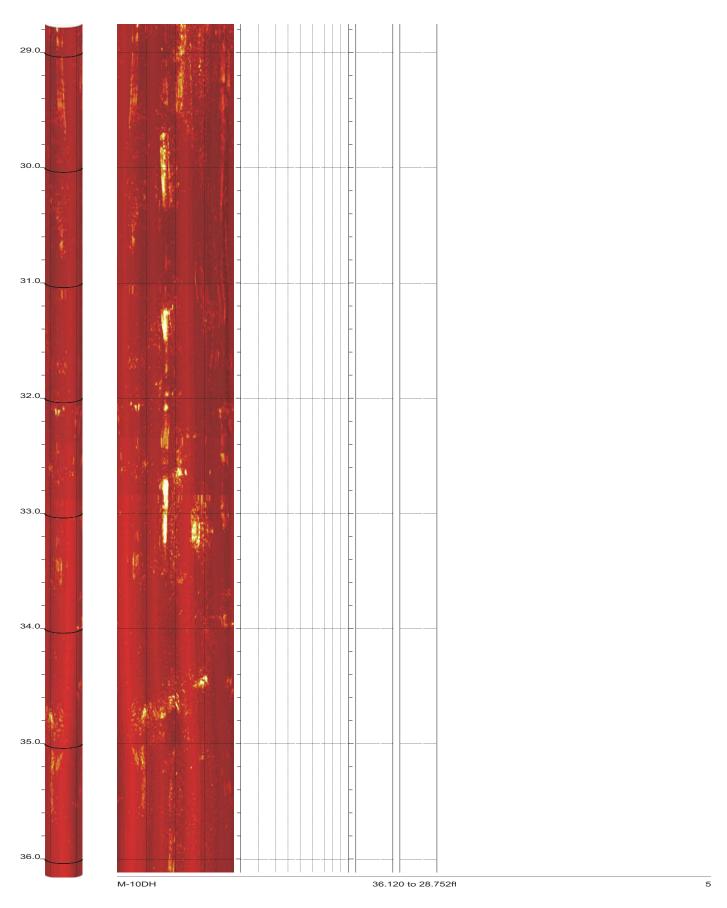


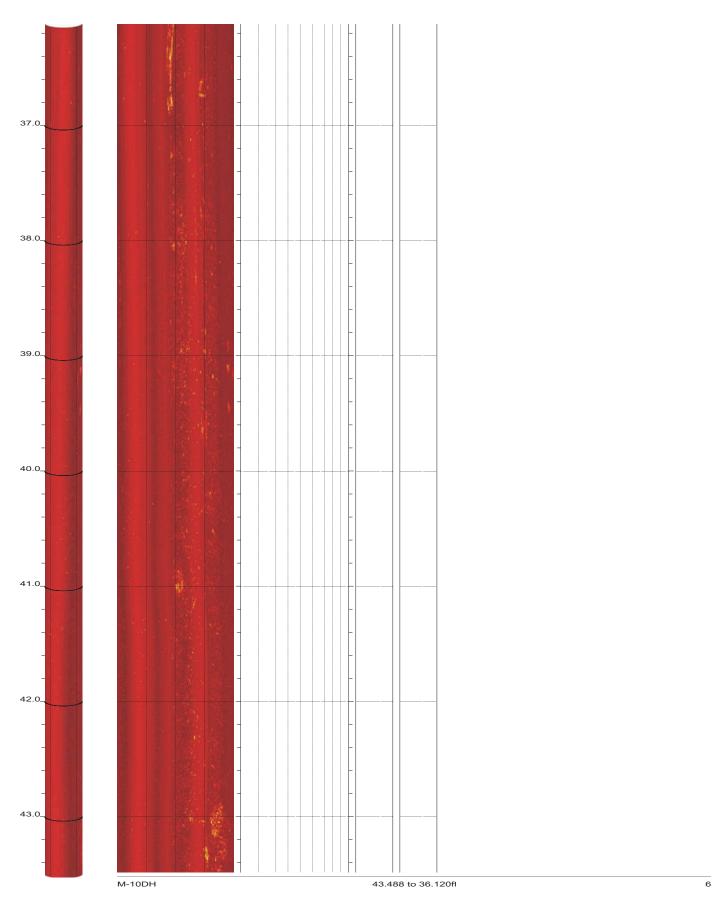

North Anna Boring M-30DH ELOG, Caliper and Natural Gamma rev 1 Sheet 1 of 3

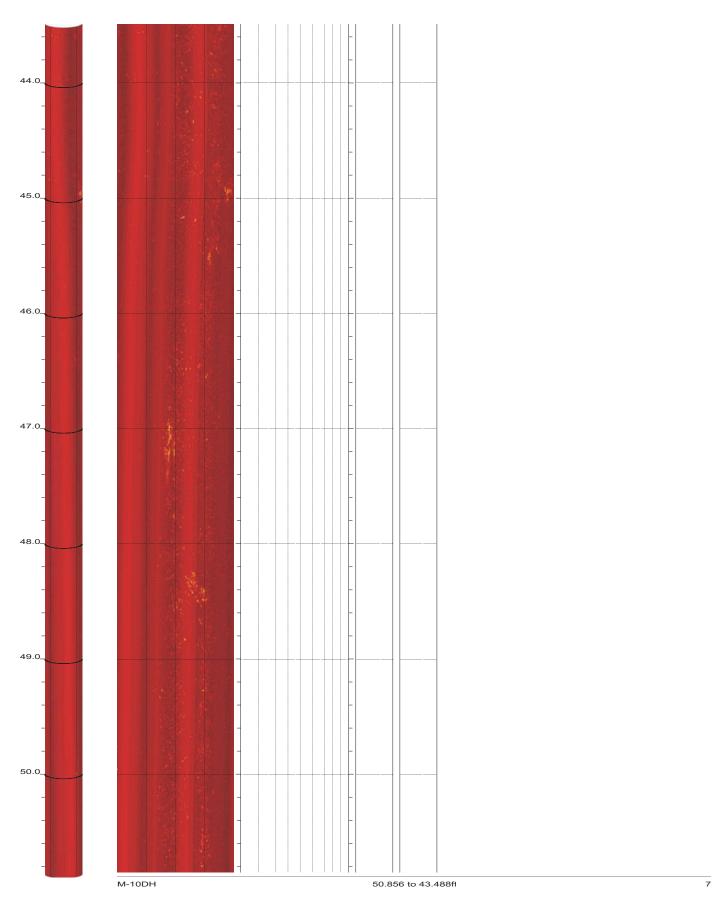

North Anna Boring M-30DH ELOG, Caliper and Natural Gamma rev 1 Sheet 2 of 3

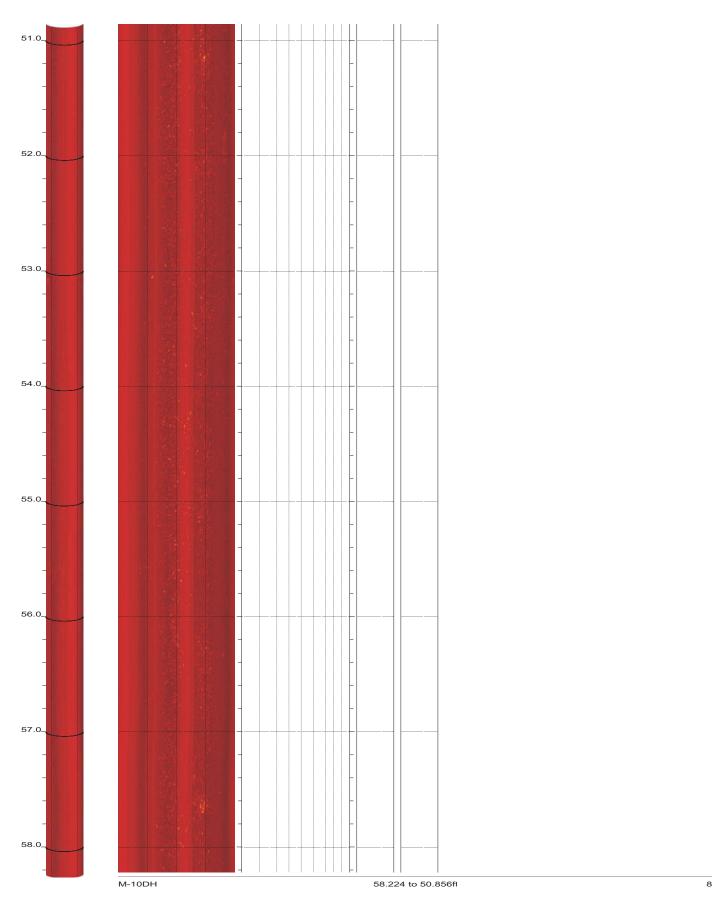

APPENDIX C ACOUSTIC TELEVIEWER DIP LOGS

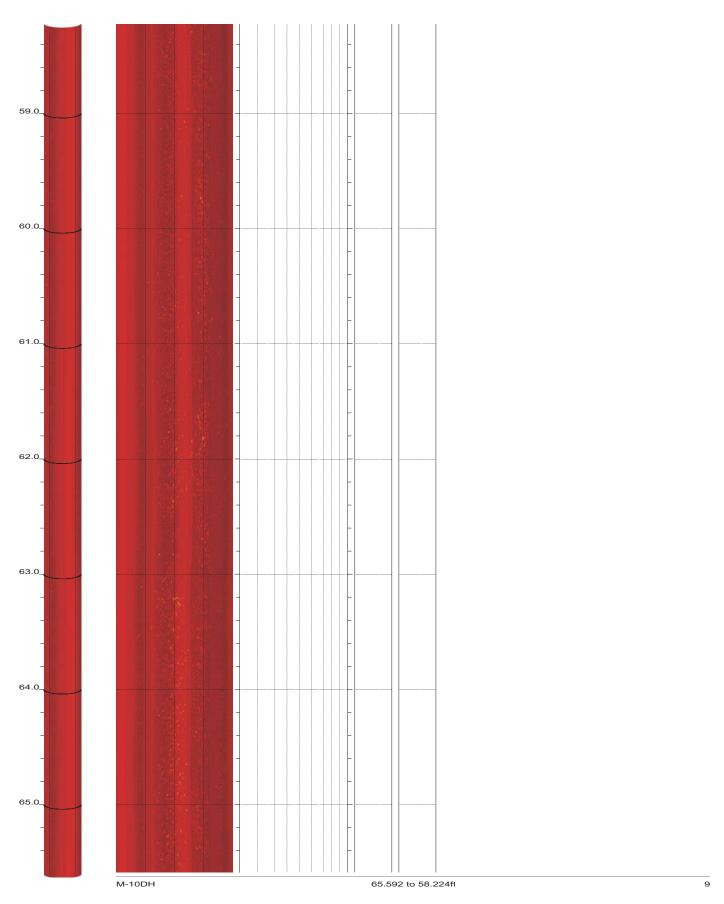

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 1 of 27

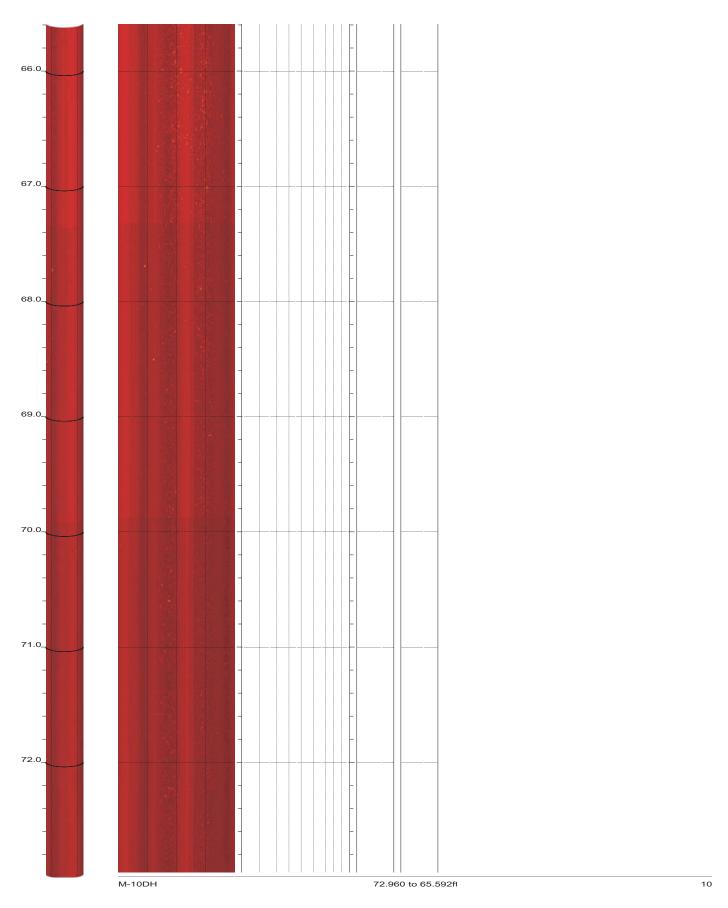

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 2 of 27

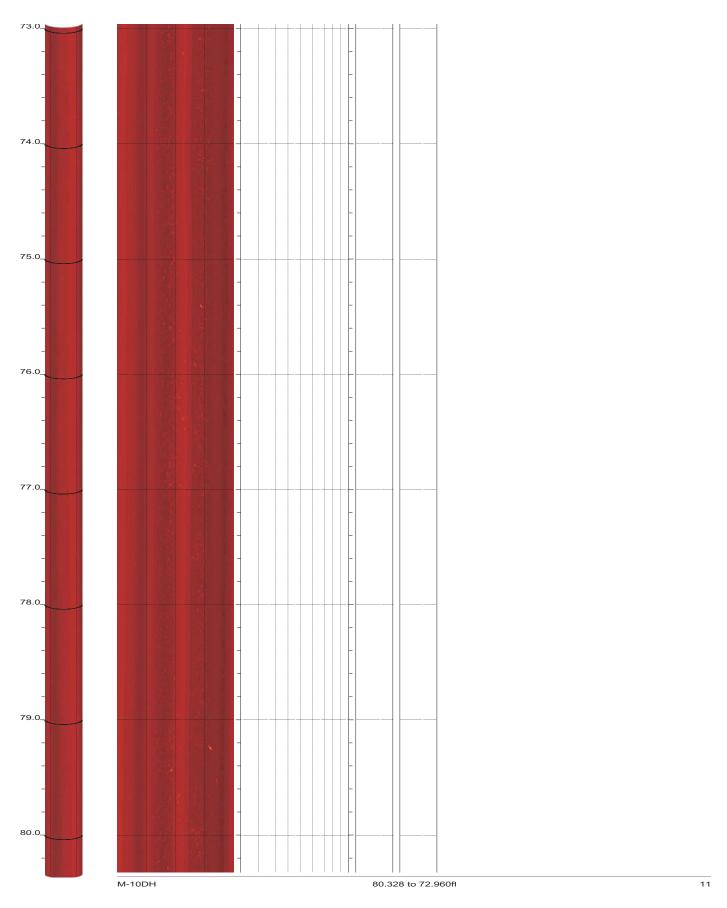

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 3 of 27

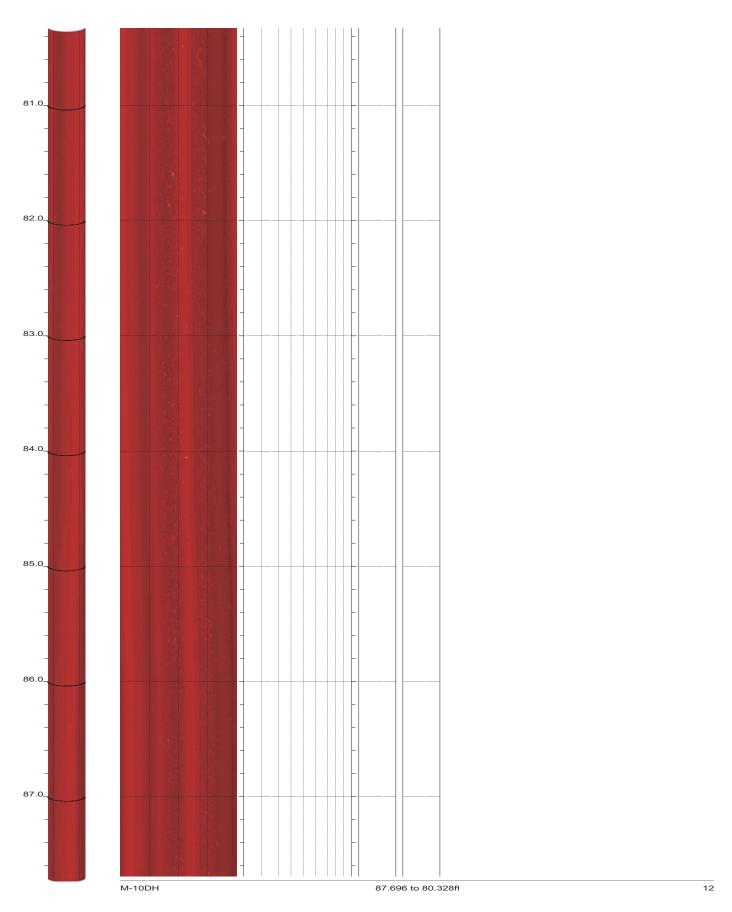

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 4 of 27

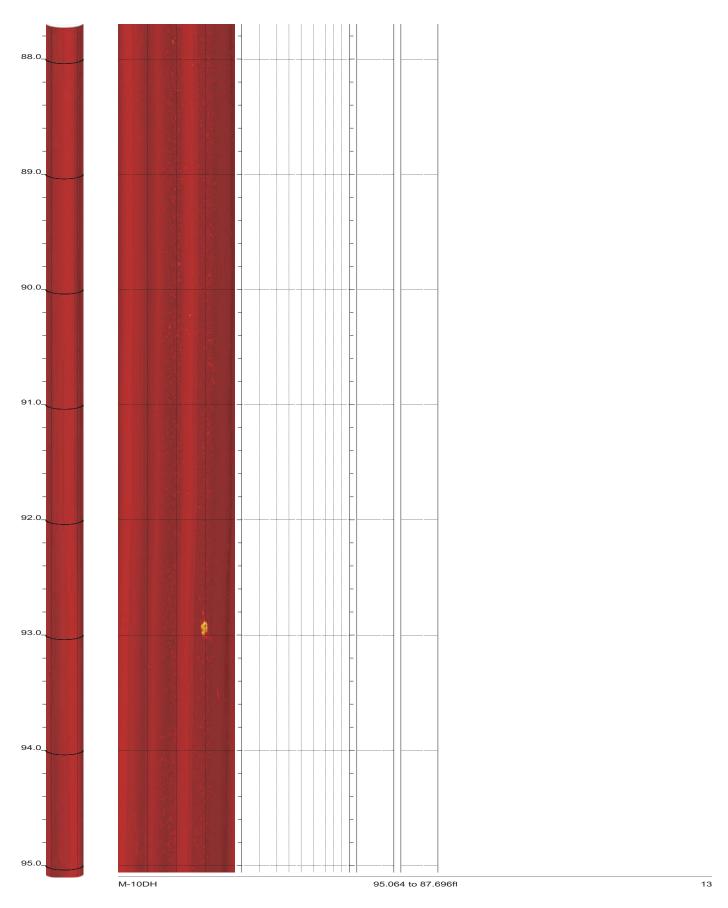

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 5 of 27

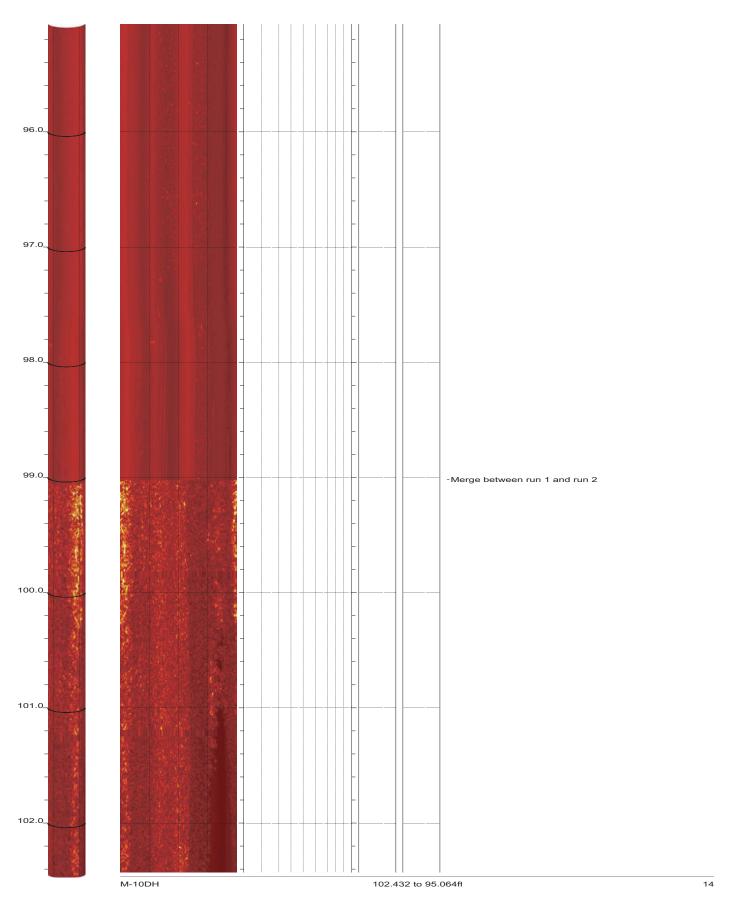

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 6 of 27

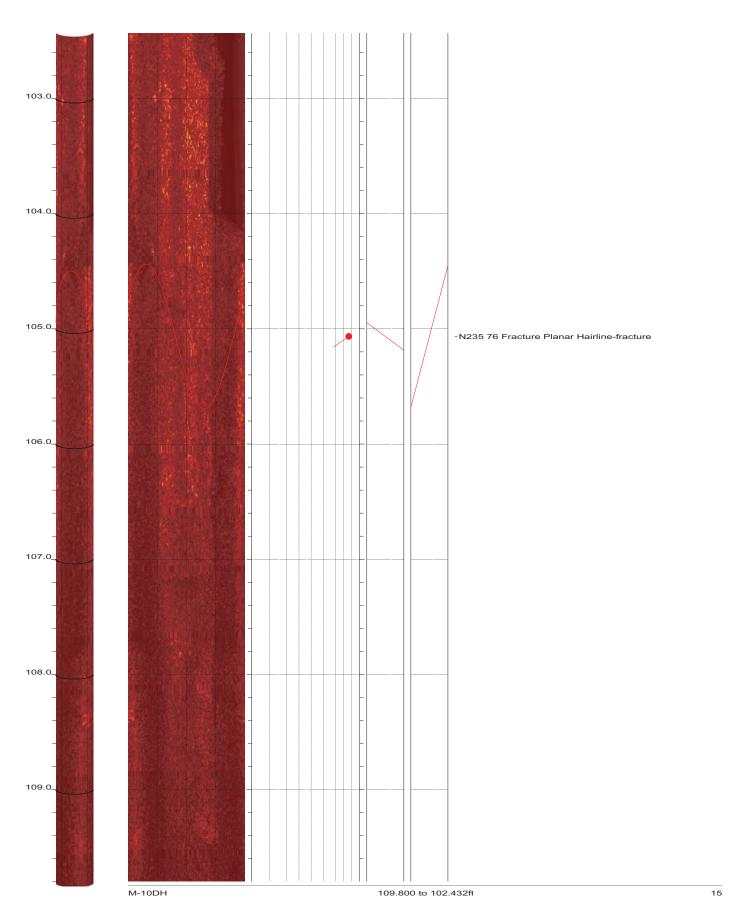

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 7 of 27

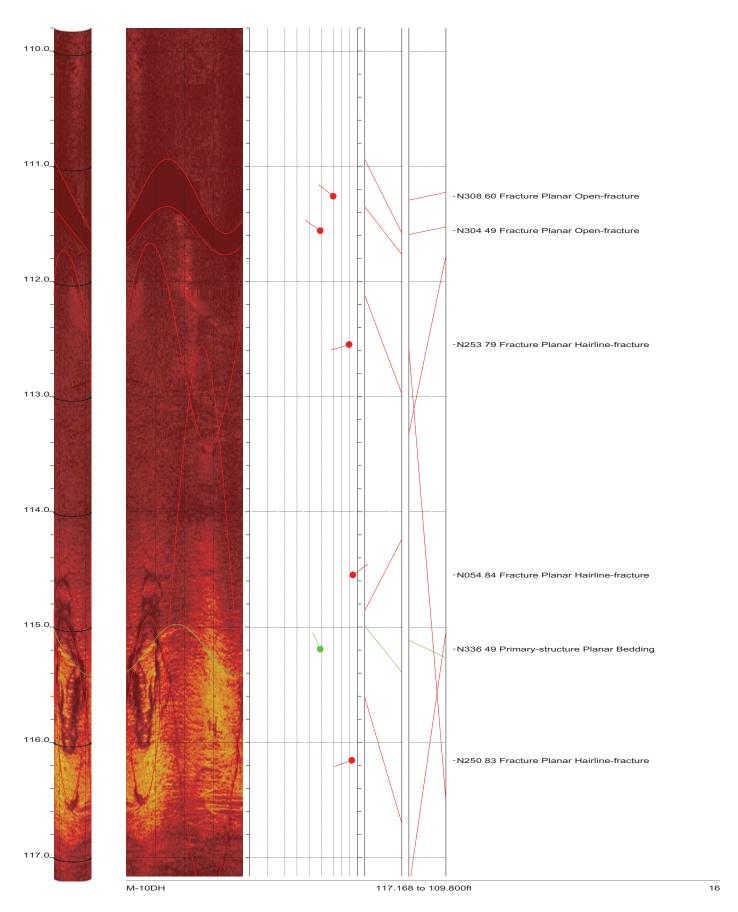

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 8 of 27

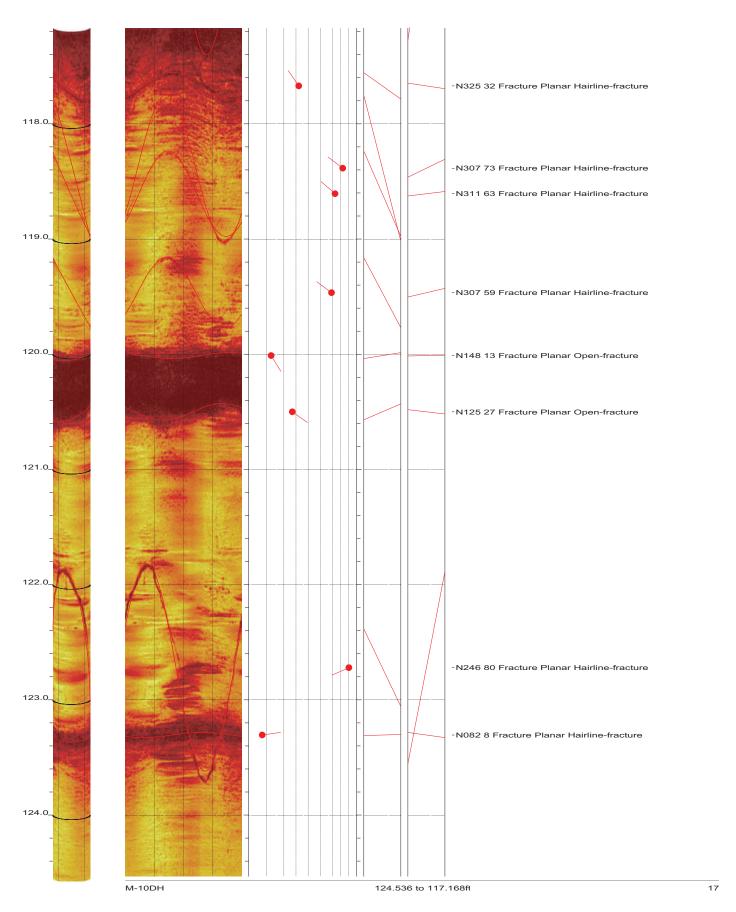

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 9 of 27

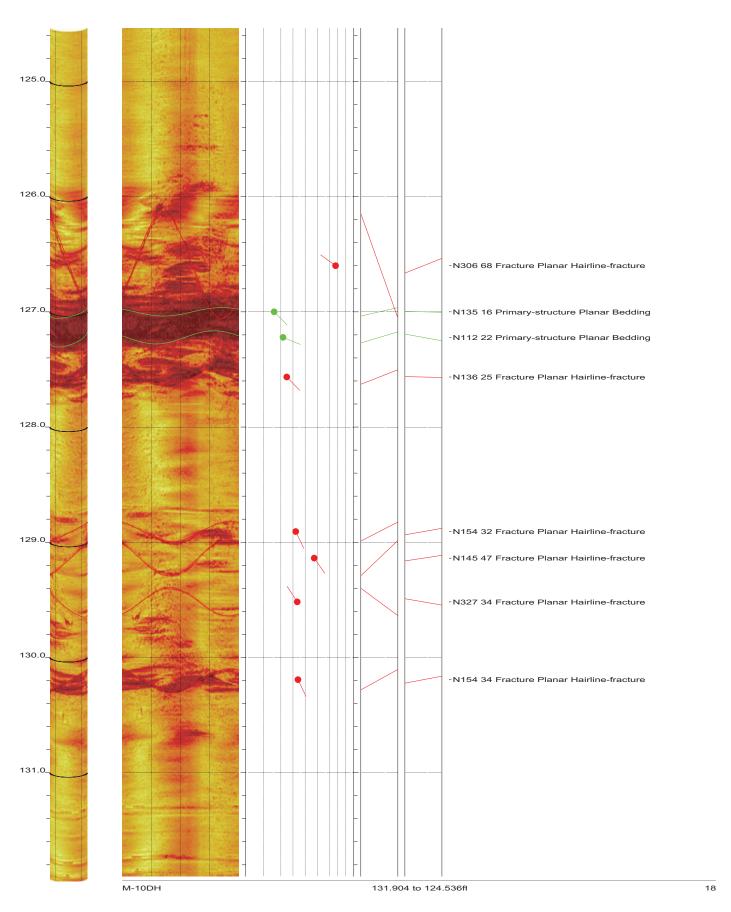

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 10 of 27

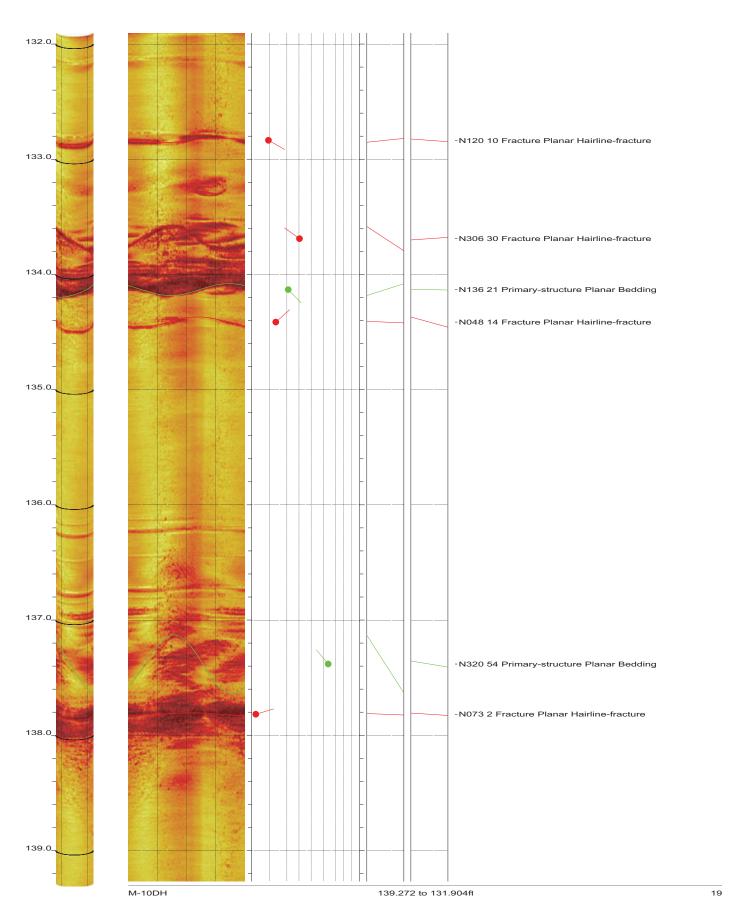

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 11 of 27

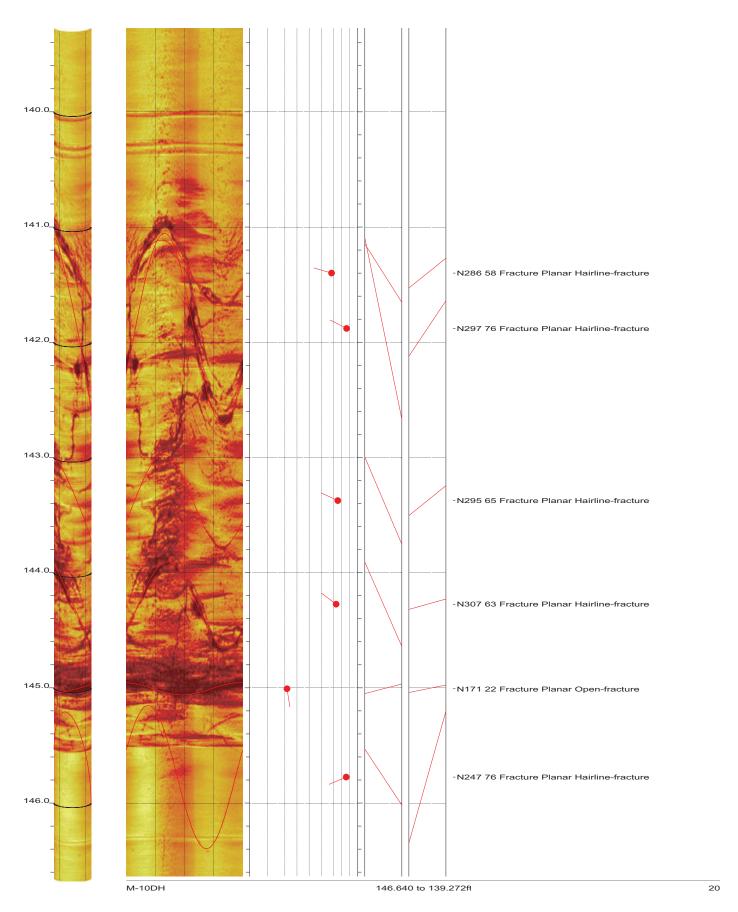

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 12 of 27

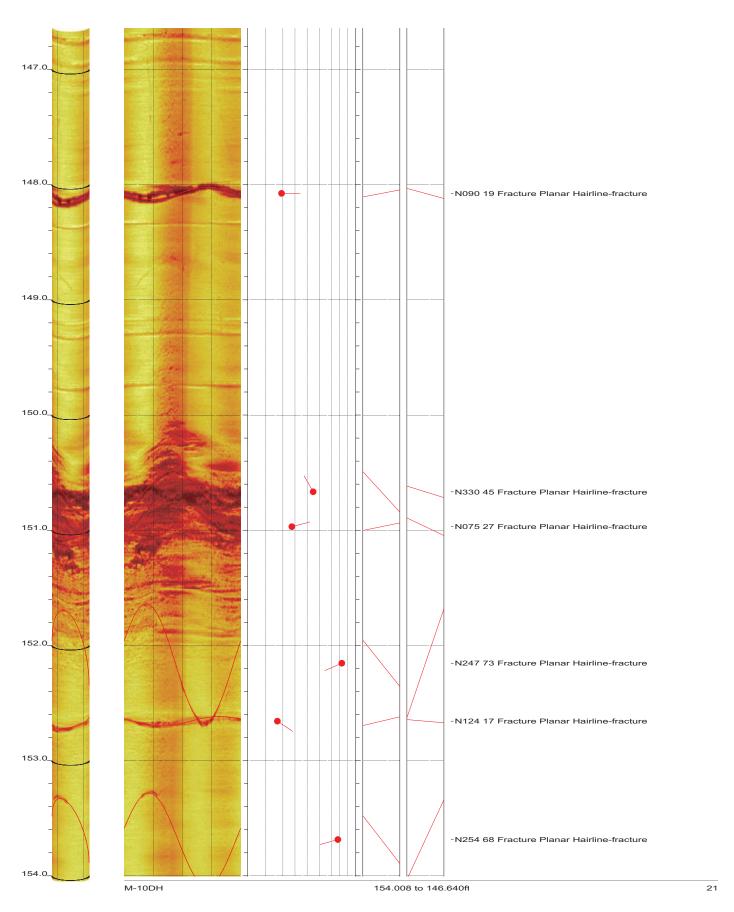

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 13 of 27

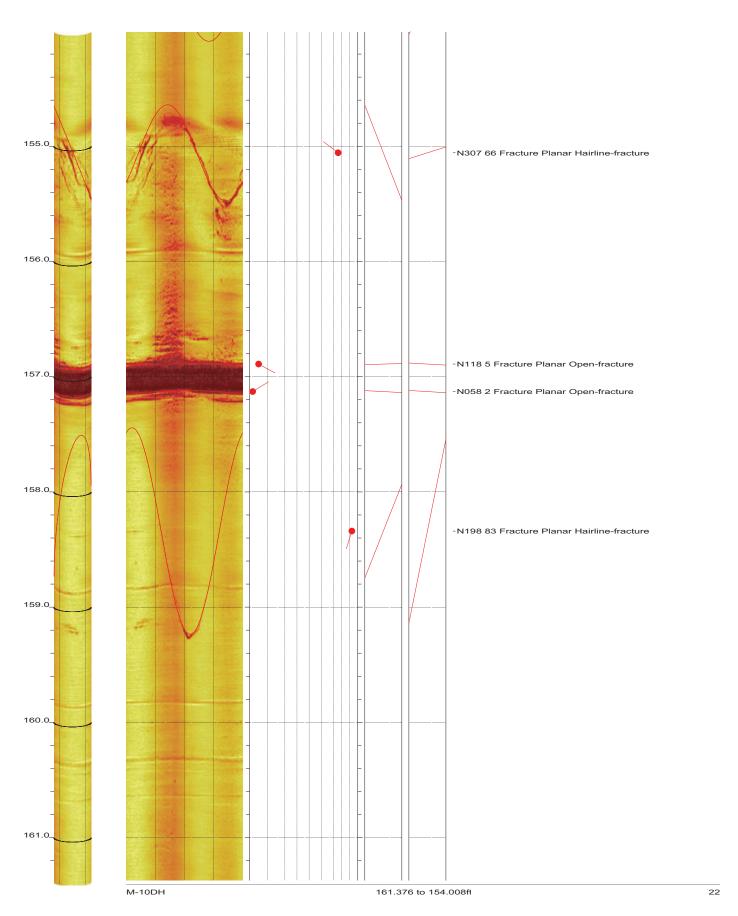

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 14 of 27

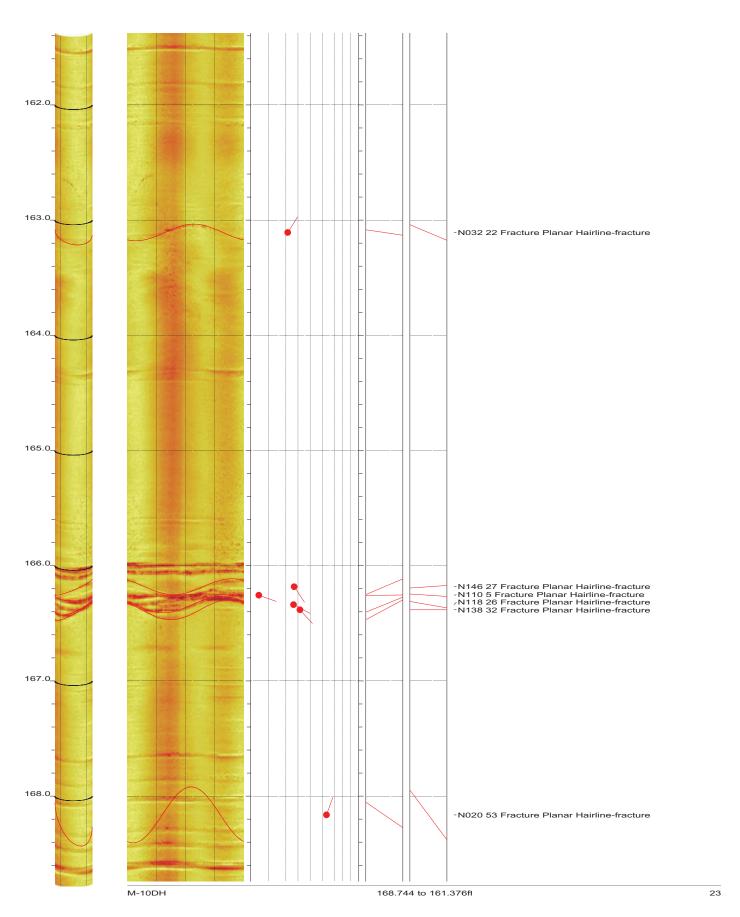

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 15 of 27

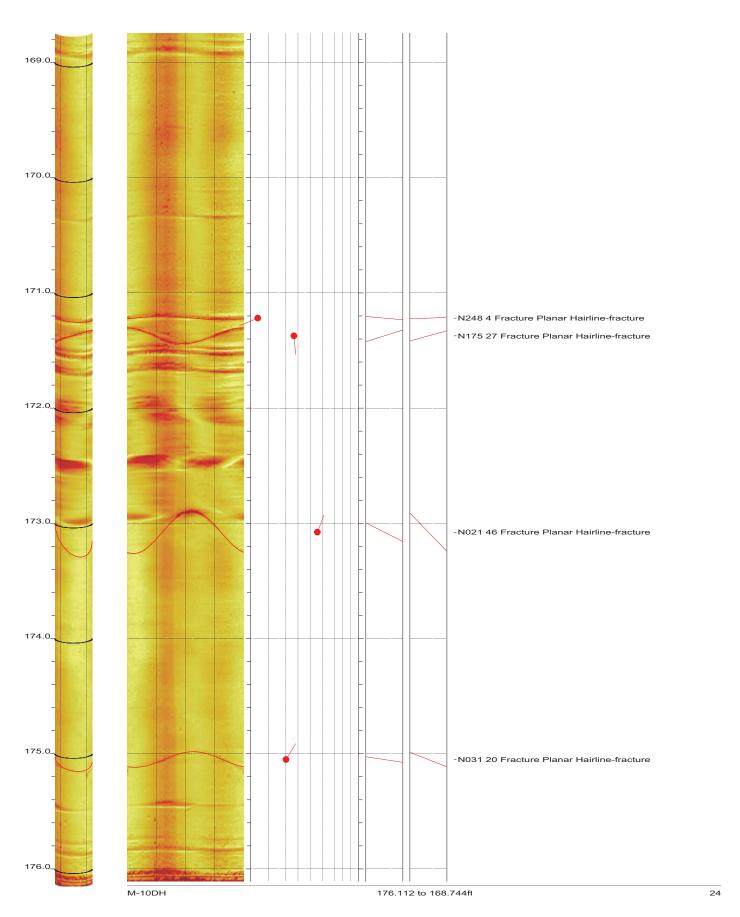

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 16 of 27

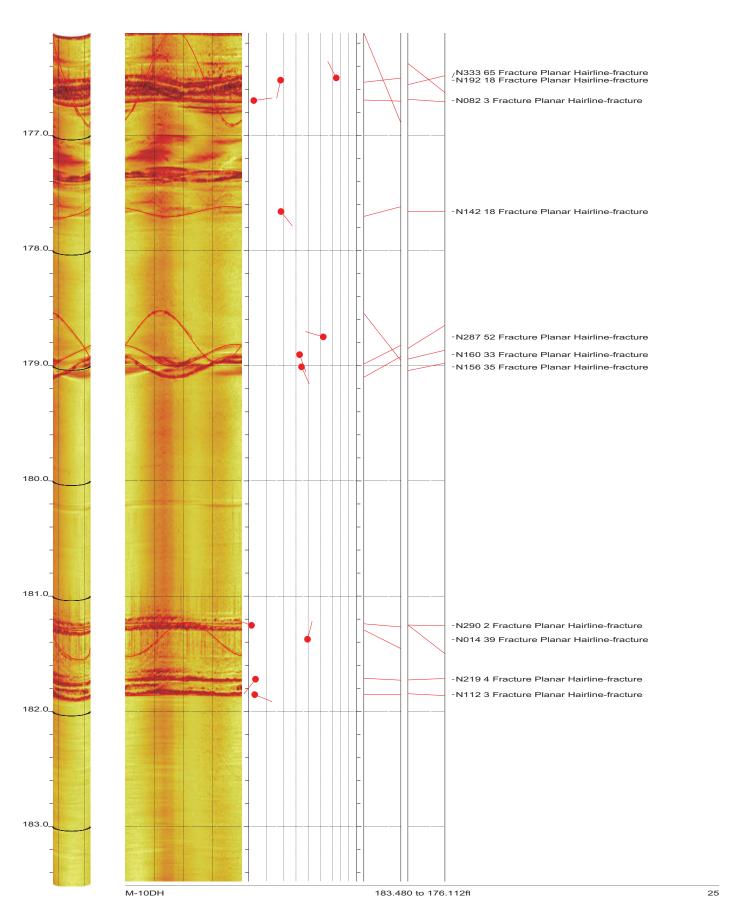

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 17 of 27

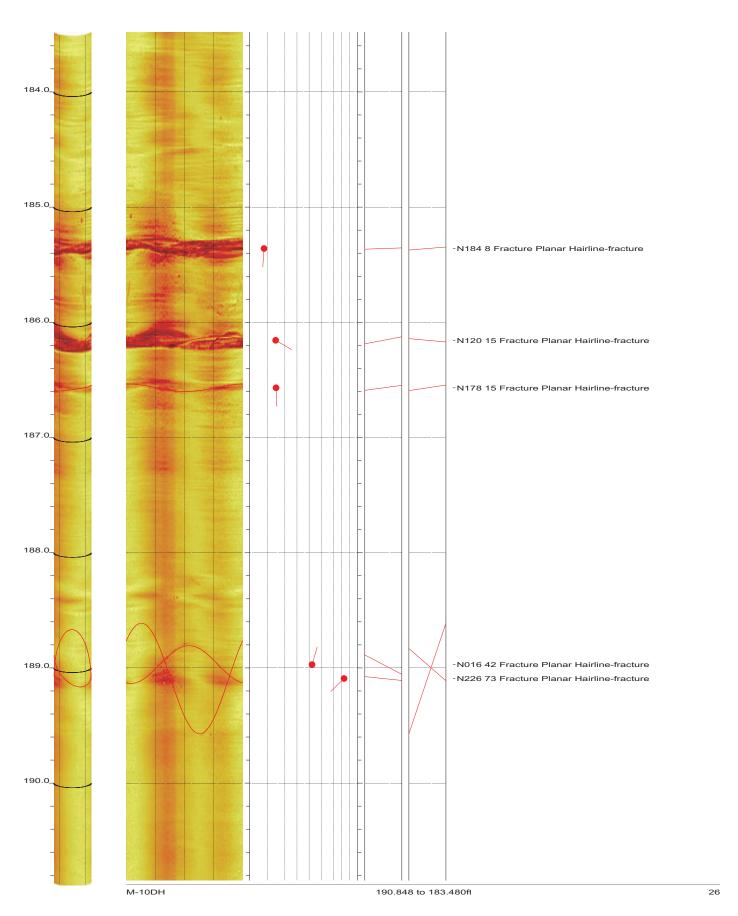

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 18 of 27


North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 19 of 27

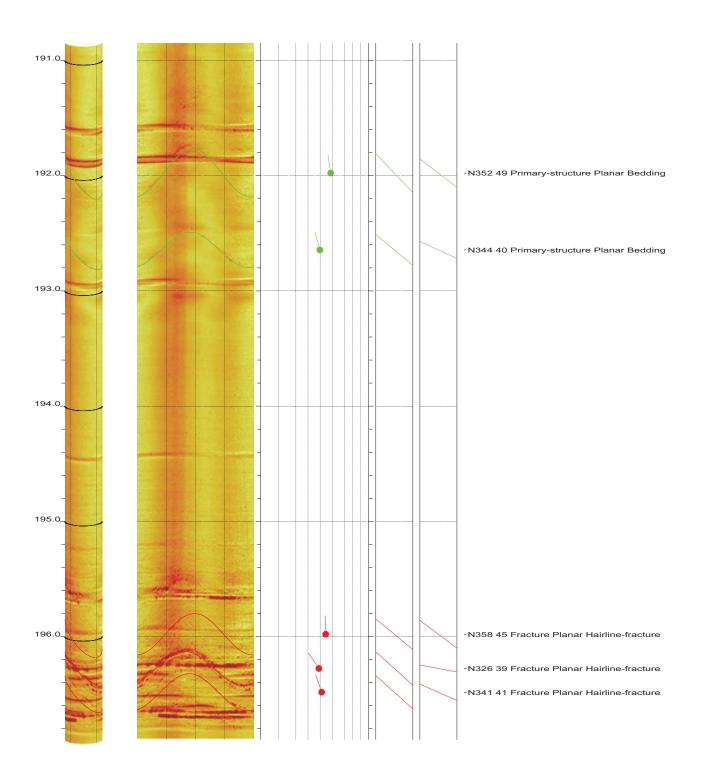

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 20 of 27


North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 21 of 27

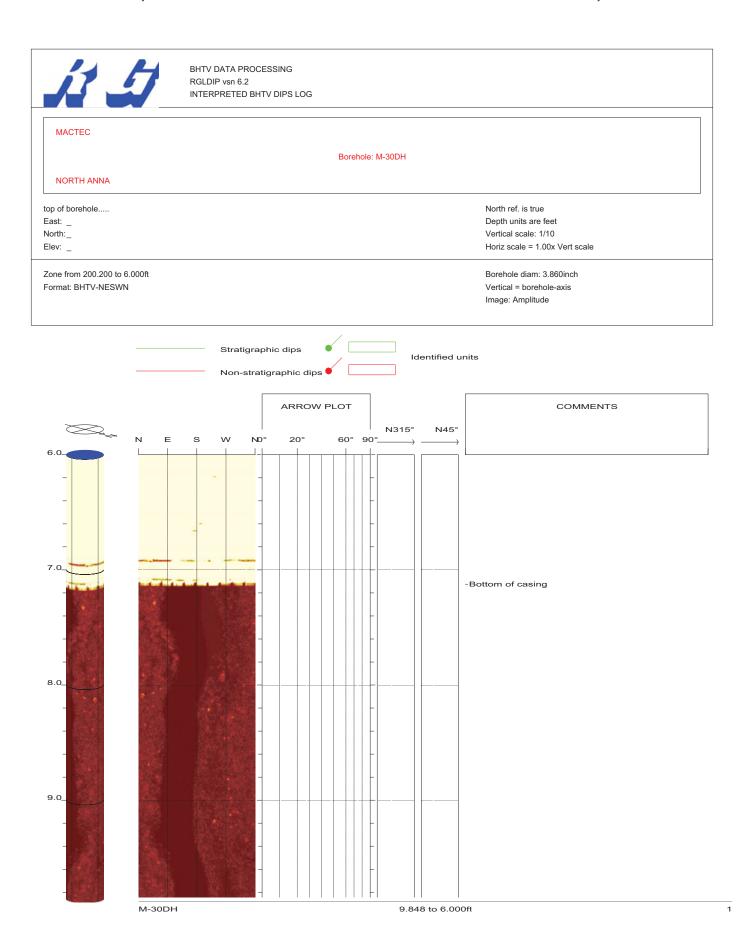

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 22 of 27

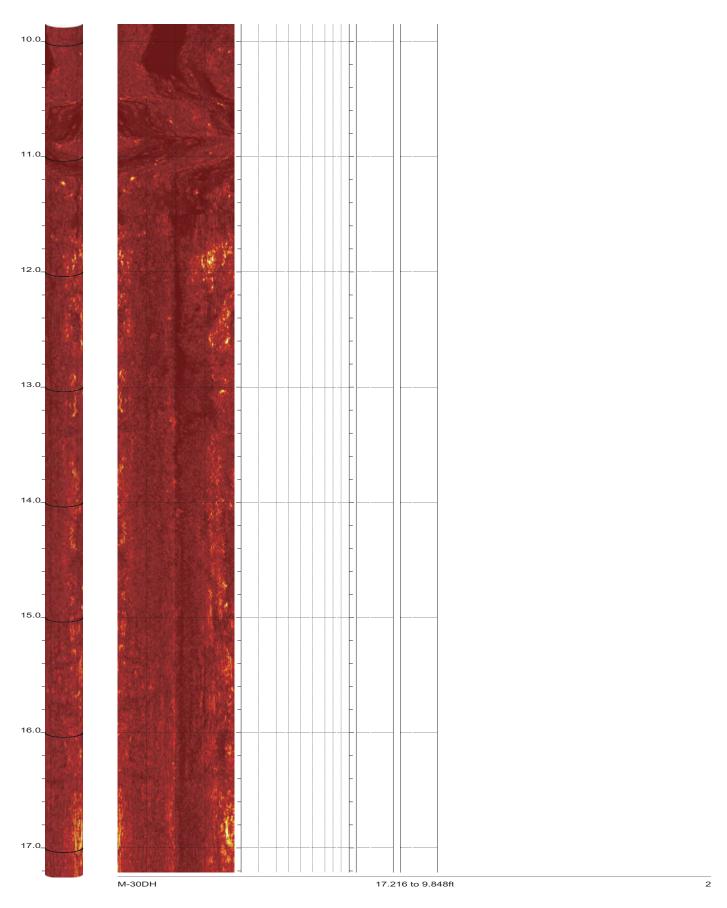


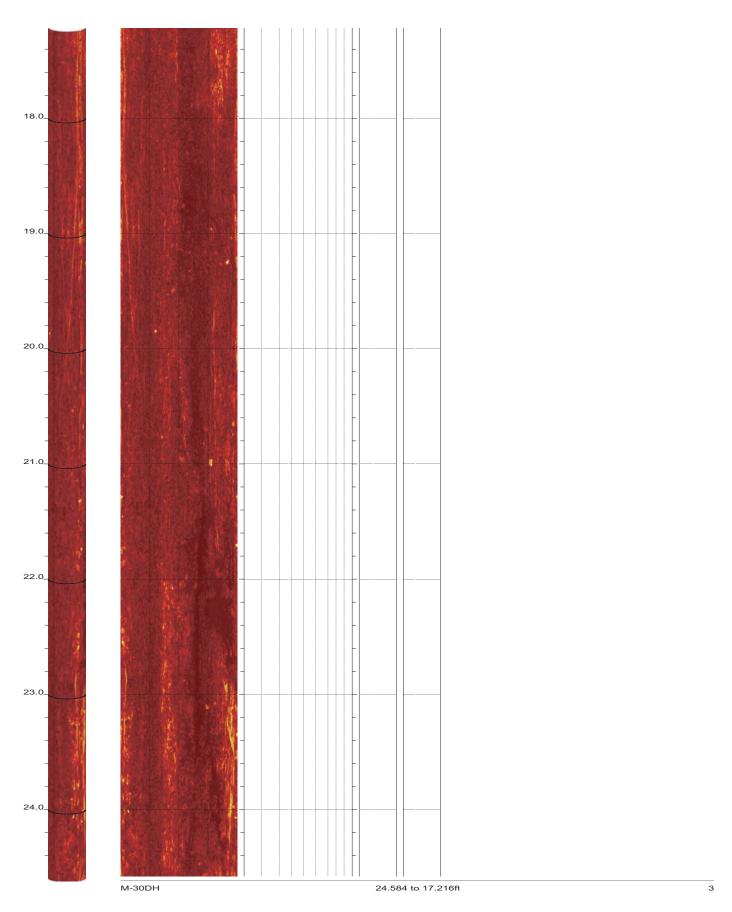
North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 23 of 27

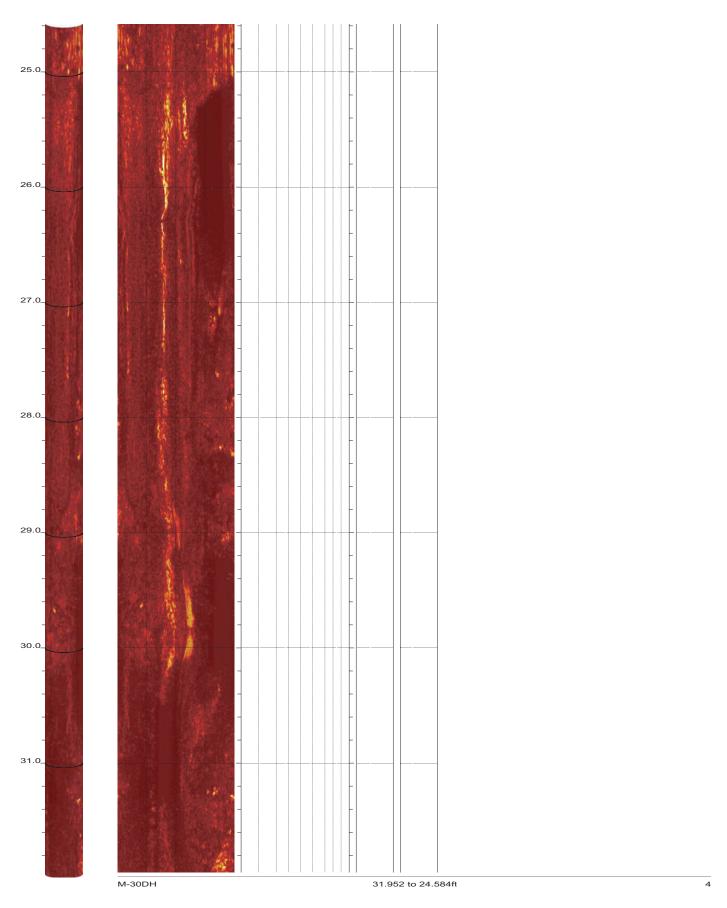


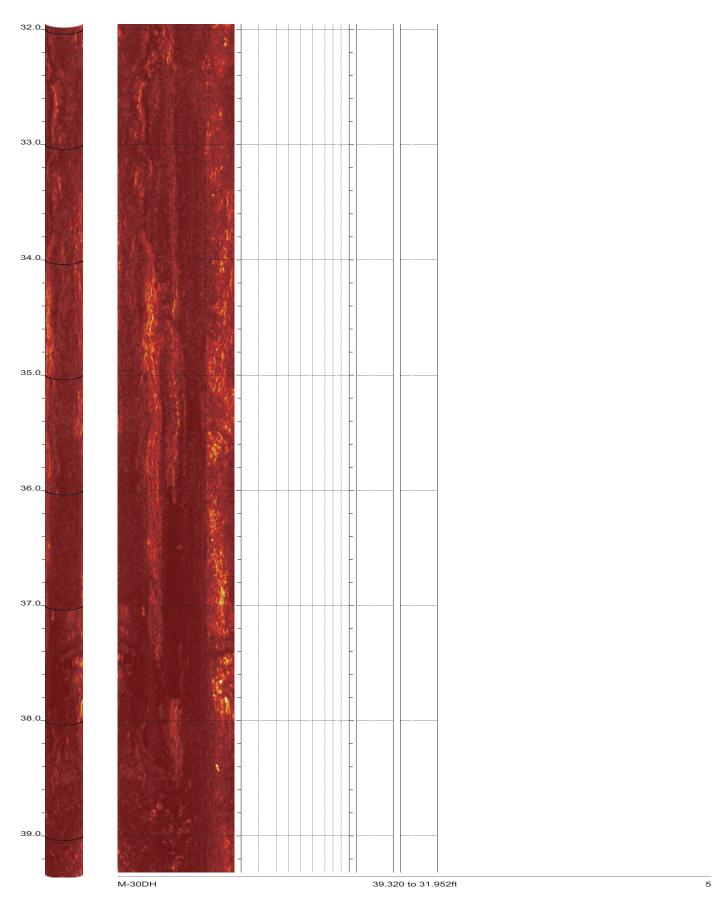
North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 24 of 27

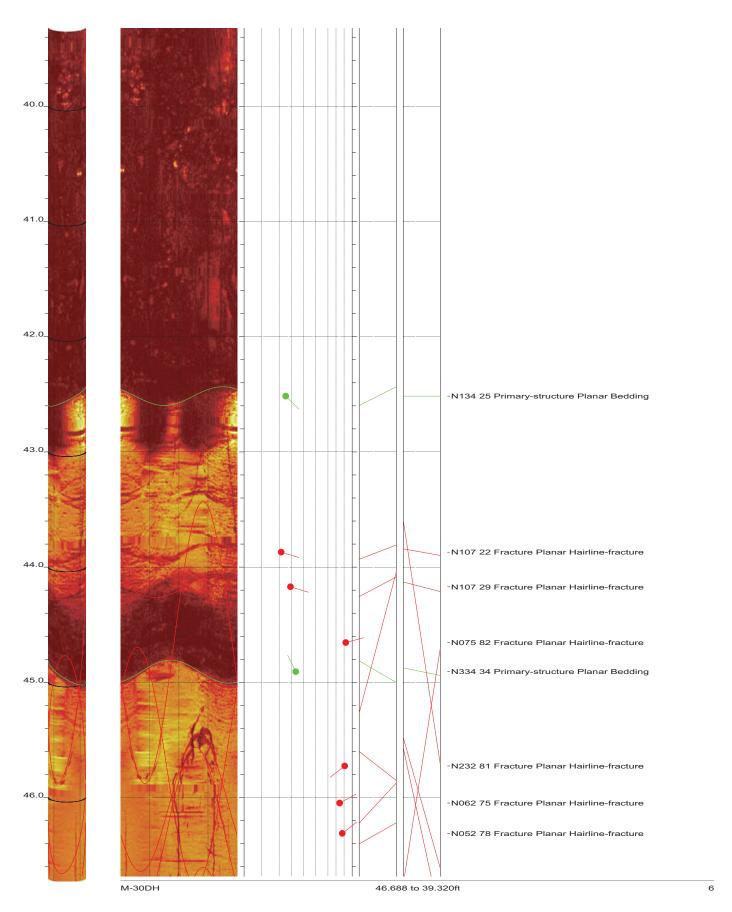


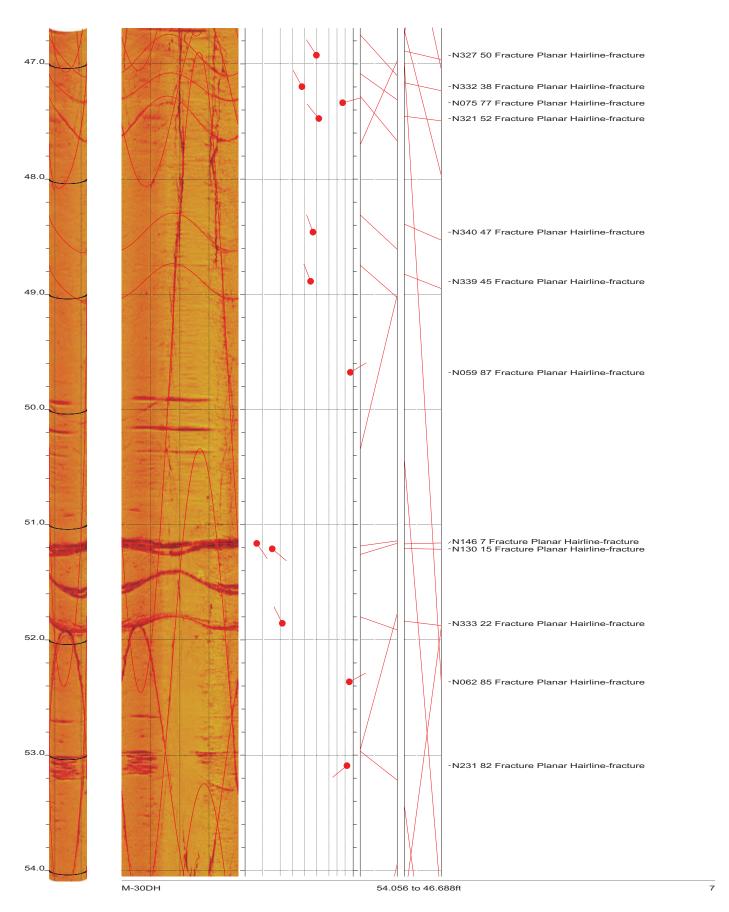

North Anna Boring M-10DH Acoustic Televiewer Dips rev 1 Sheet 26 of 27

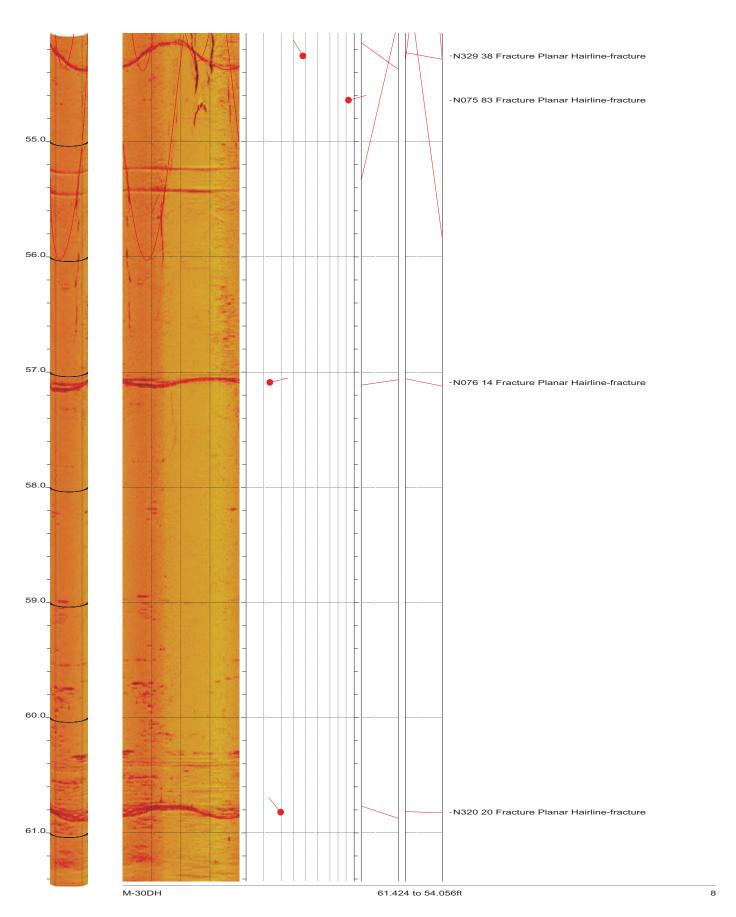

M-10DH 27 196.896 to 190.848ft

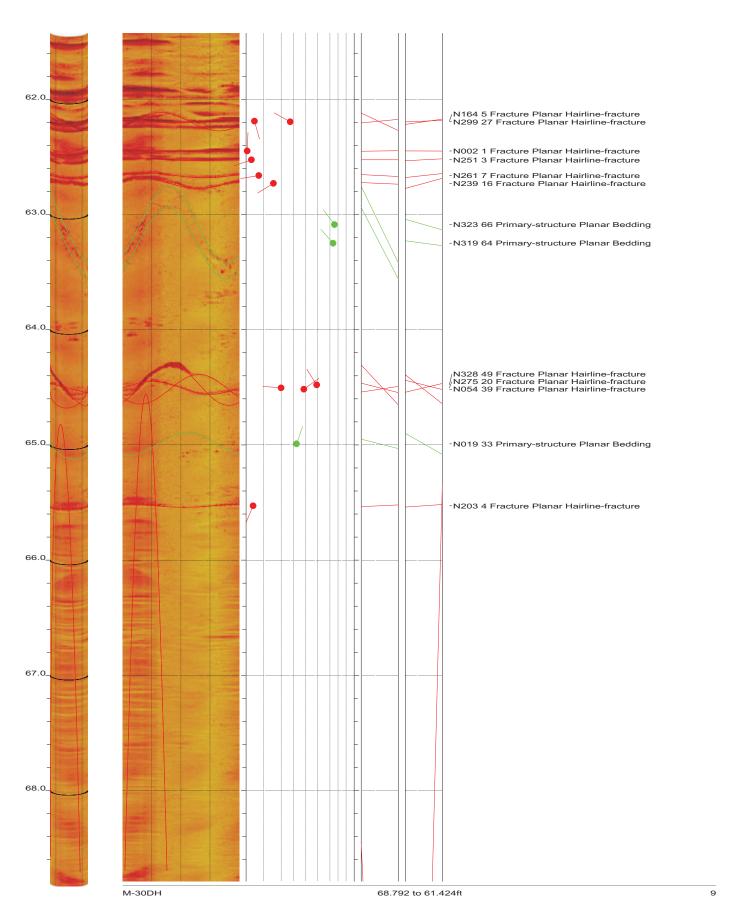

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 1 of 27

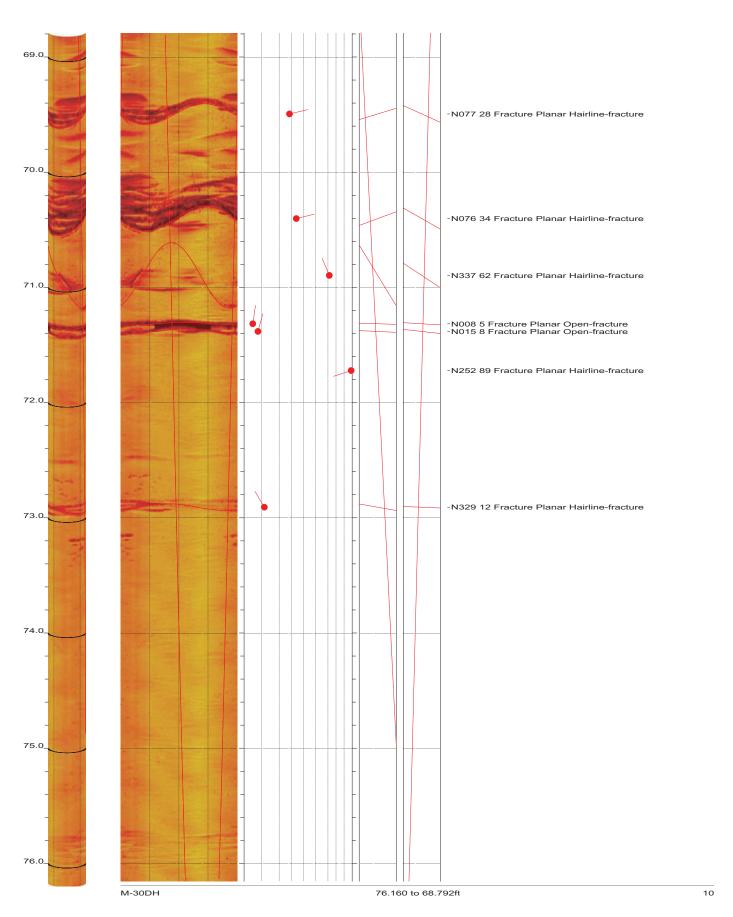

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 2 of 27

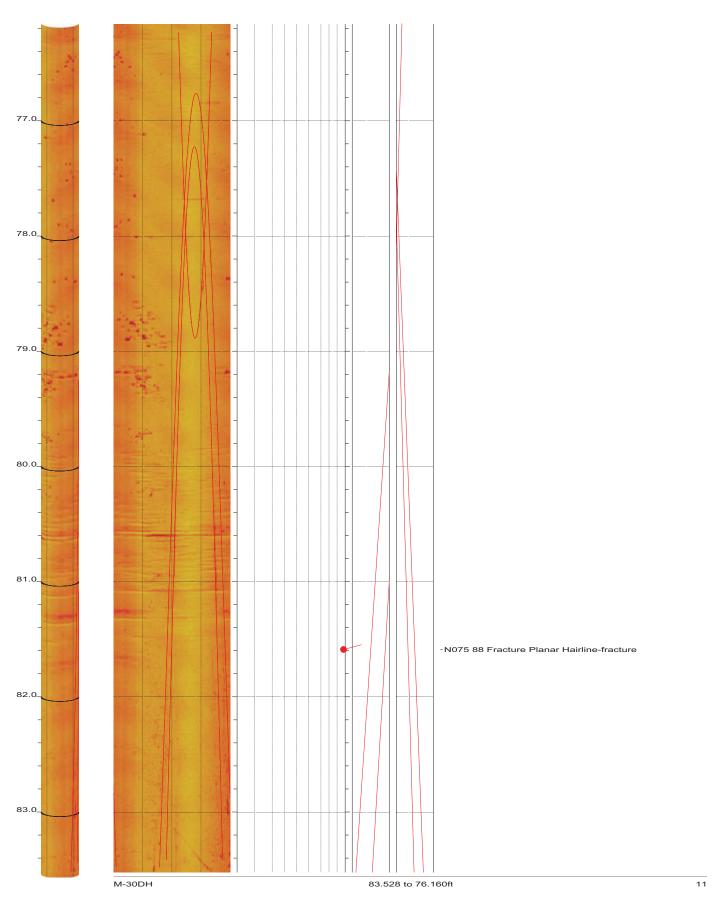

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 3 of 27

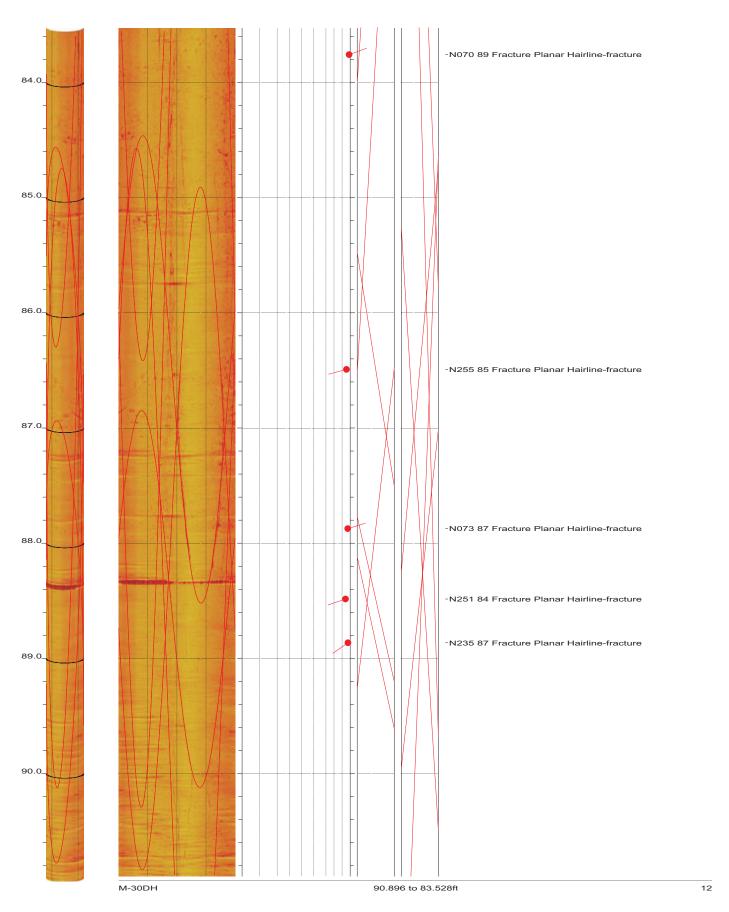

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 4 of 27

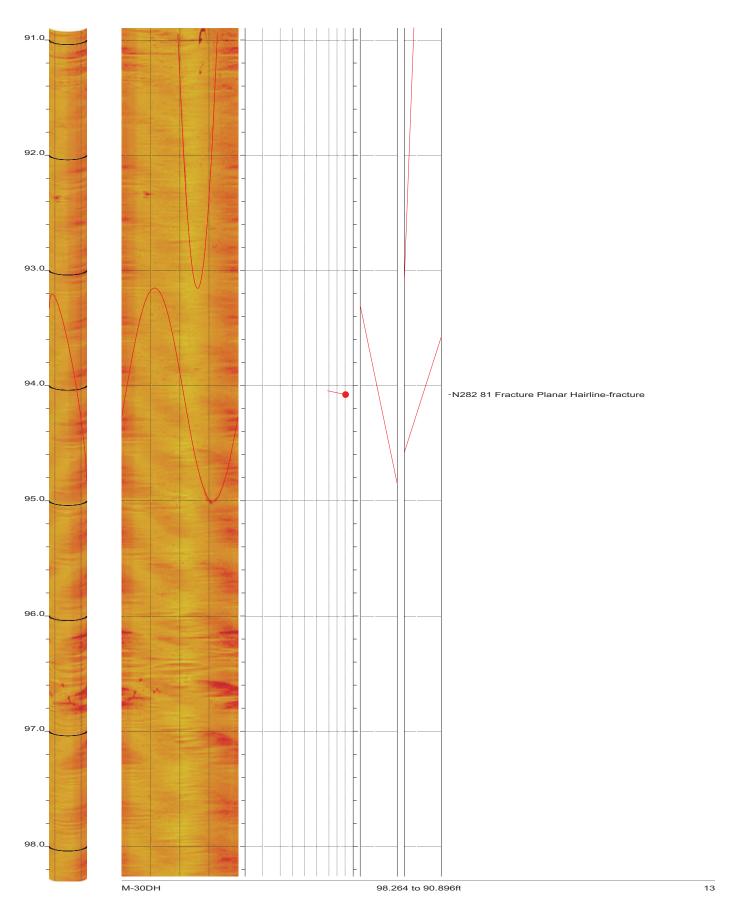

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 5 of 27

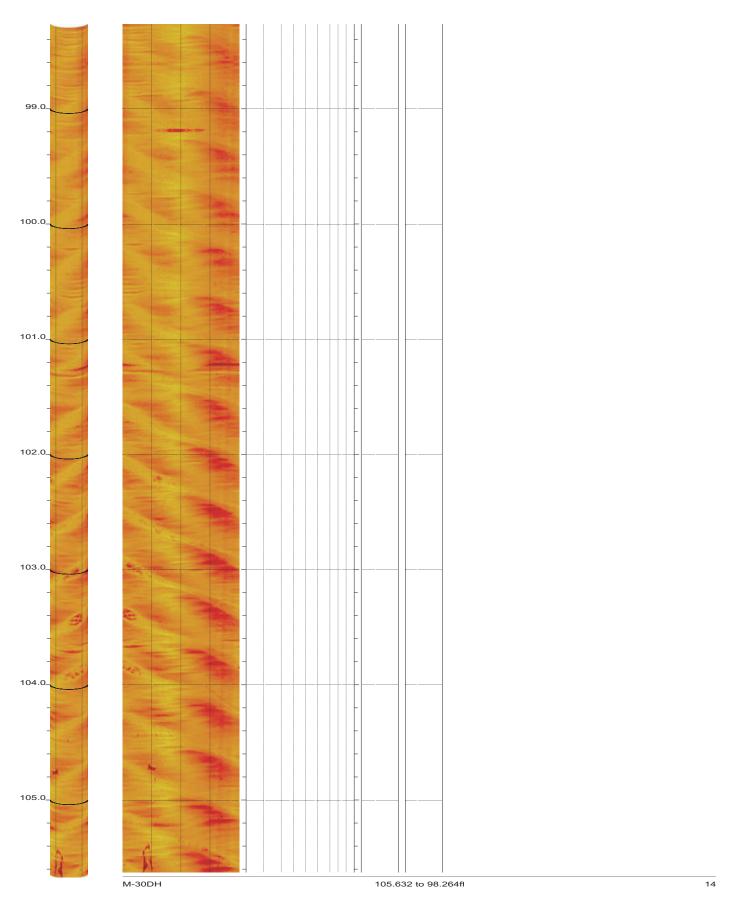

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 6 of 27

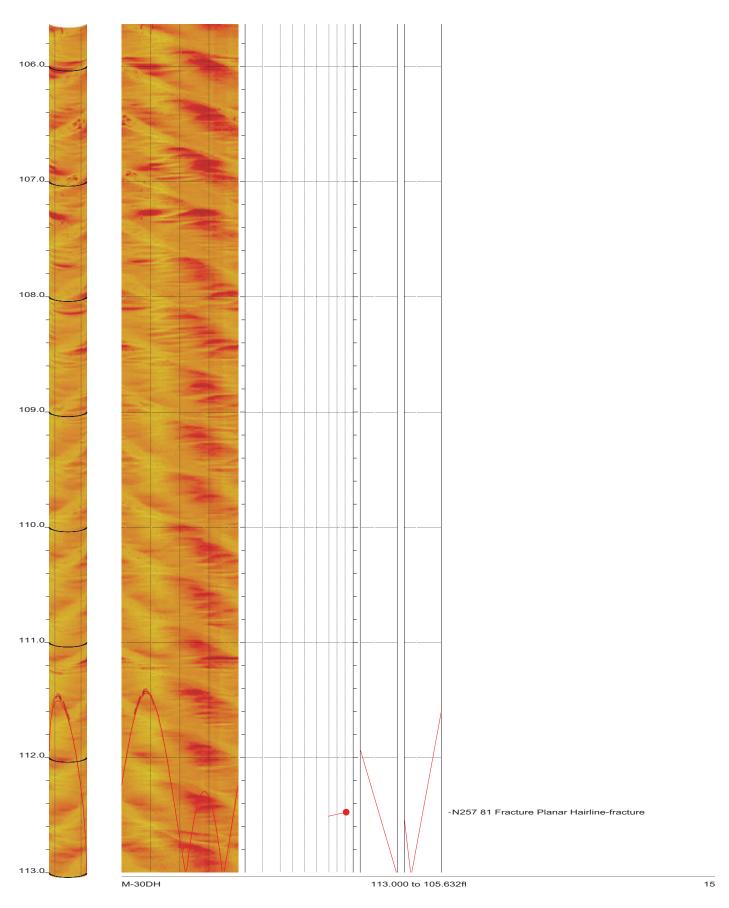

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 7 of 27

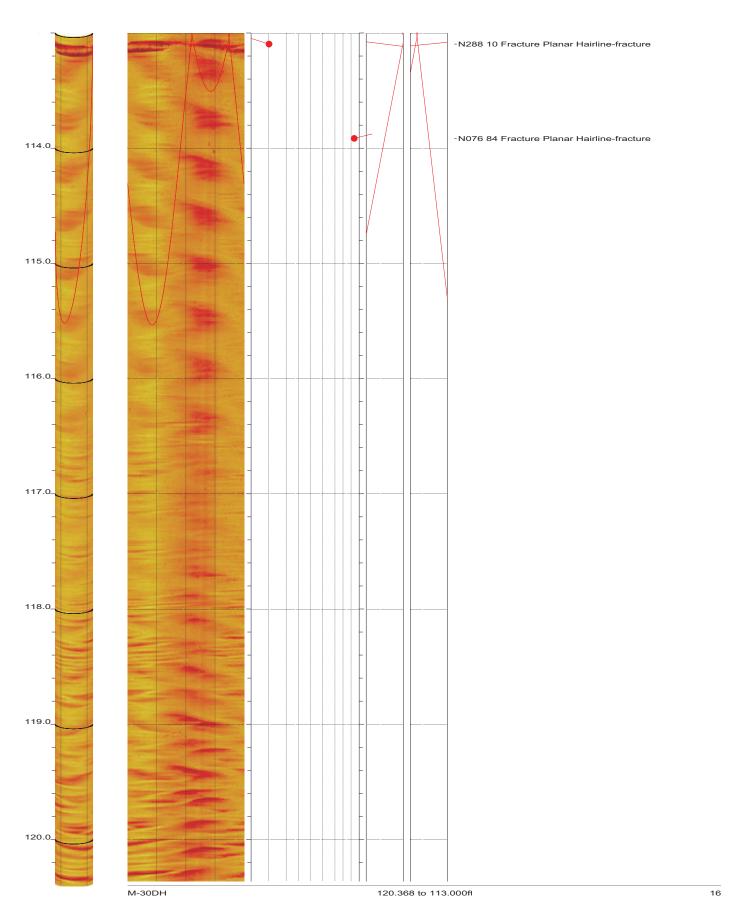

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 8 of 27

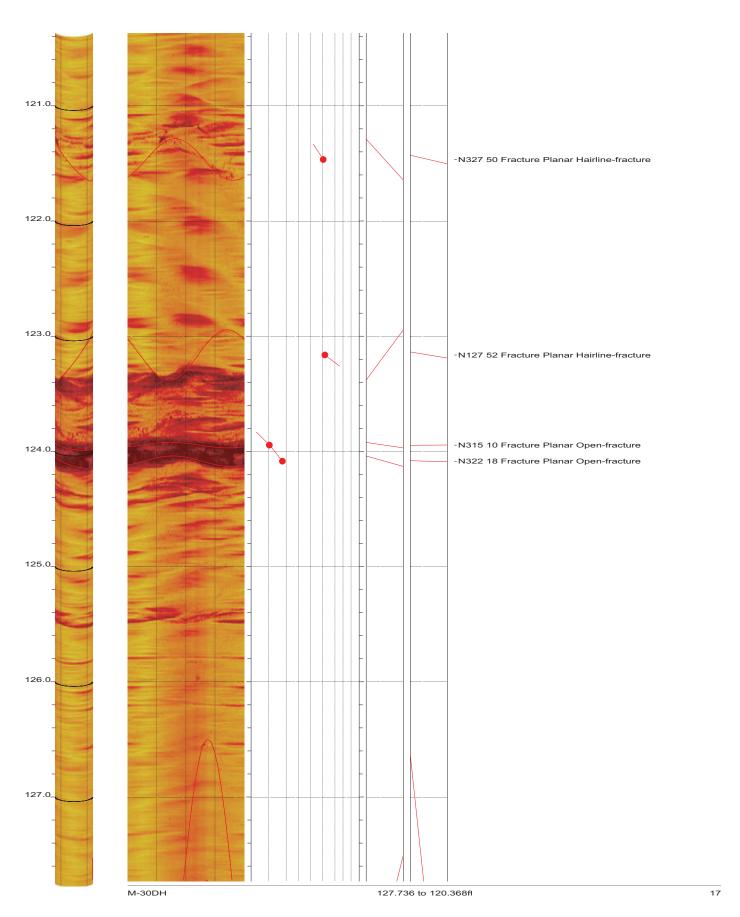

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 9 of 27

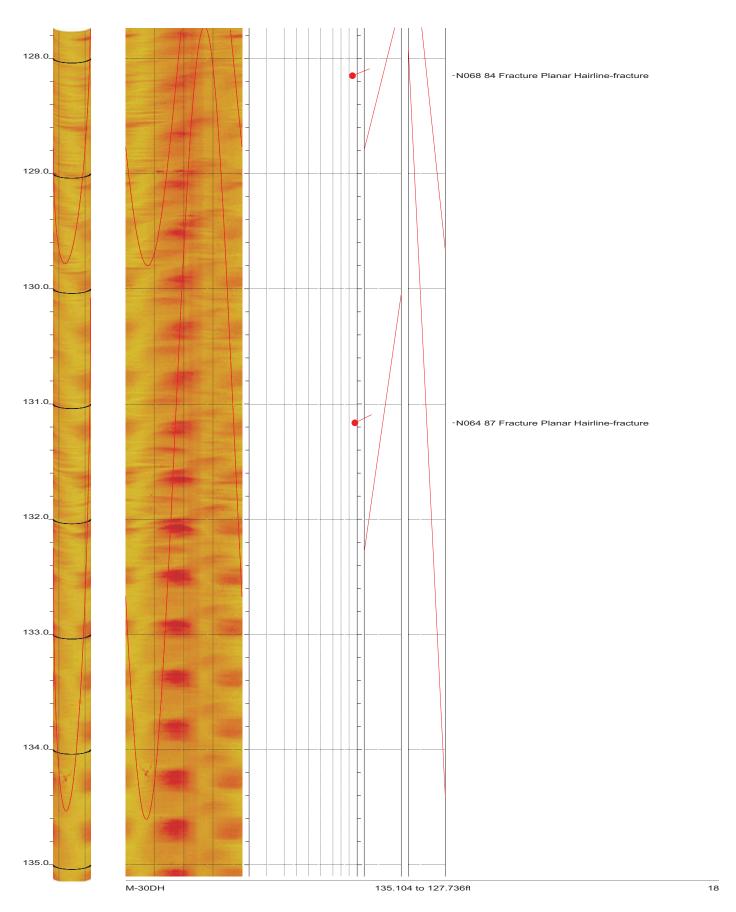

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 10 of 27

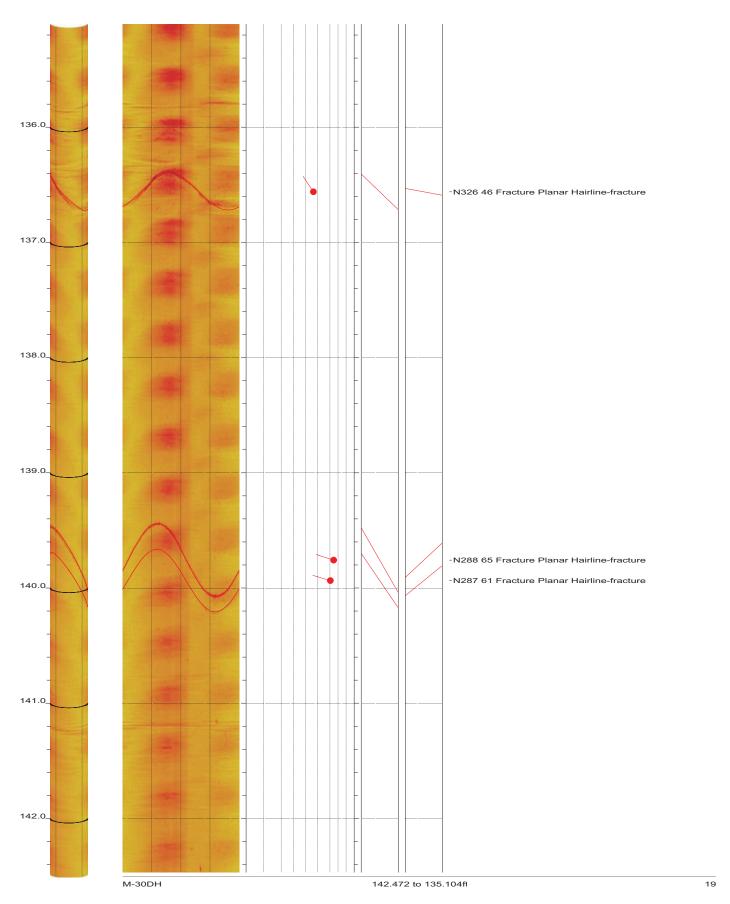

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 11 of 27

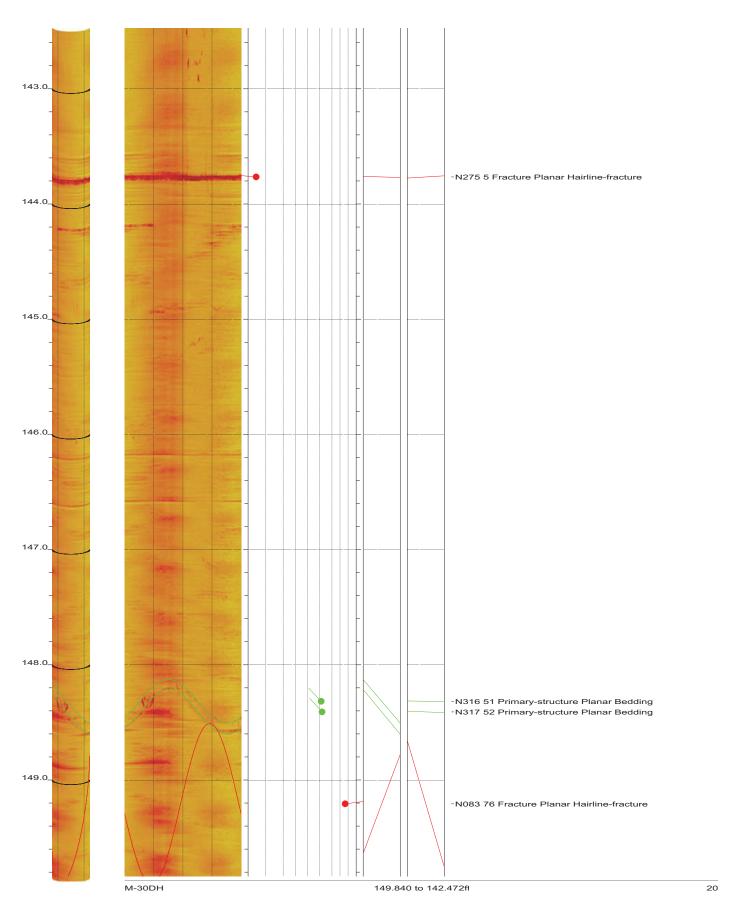

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 12 of 27

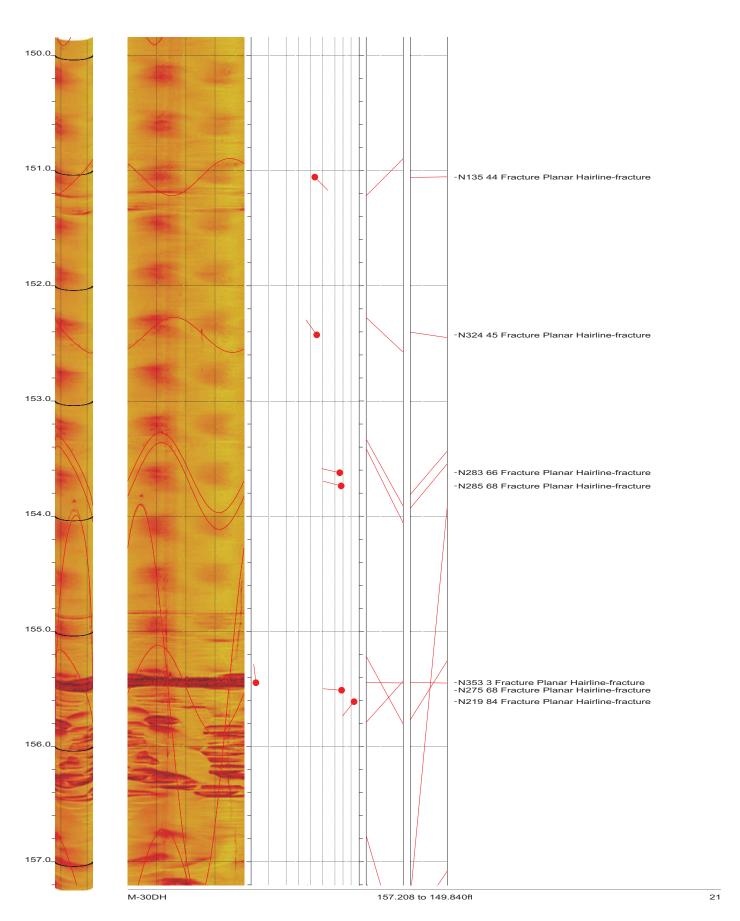

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 13 of 27

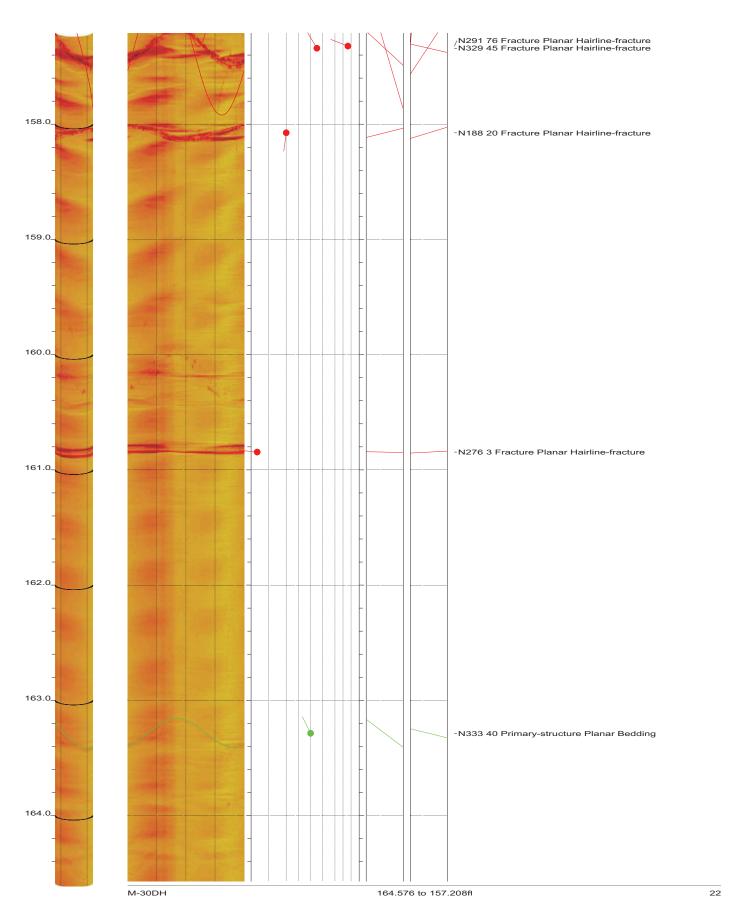

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 14 of 27

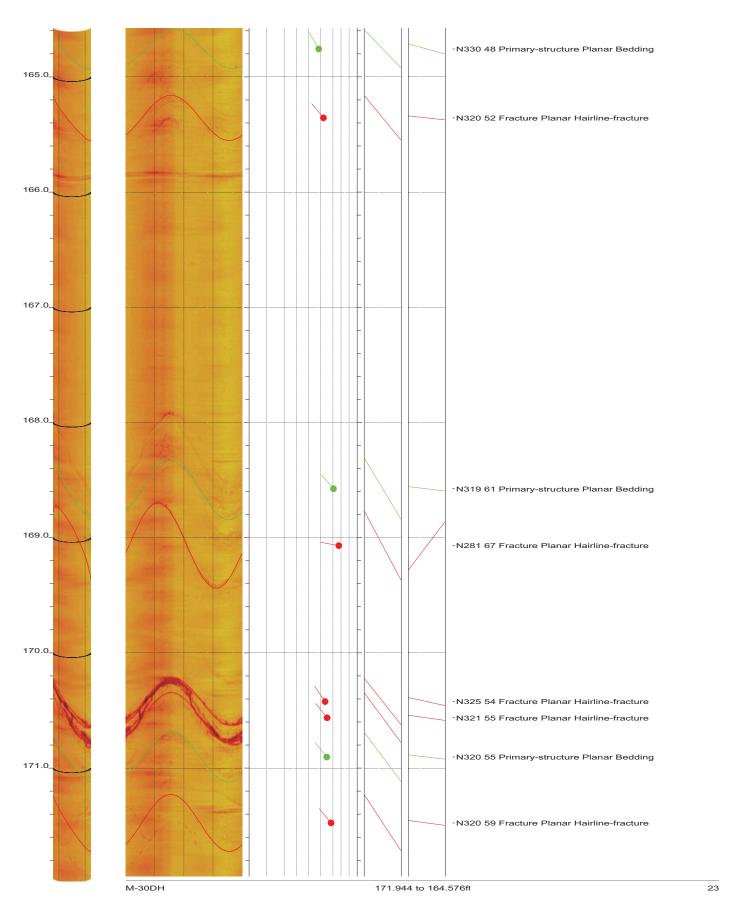

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 15 of 27

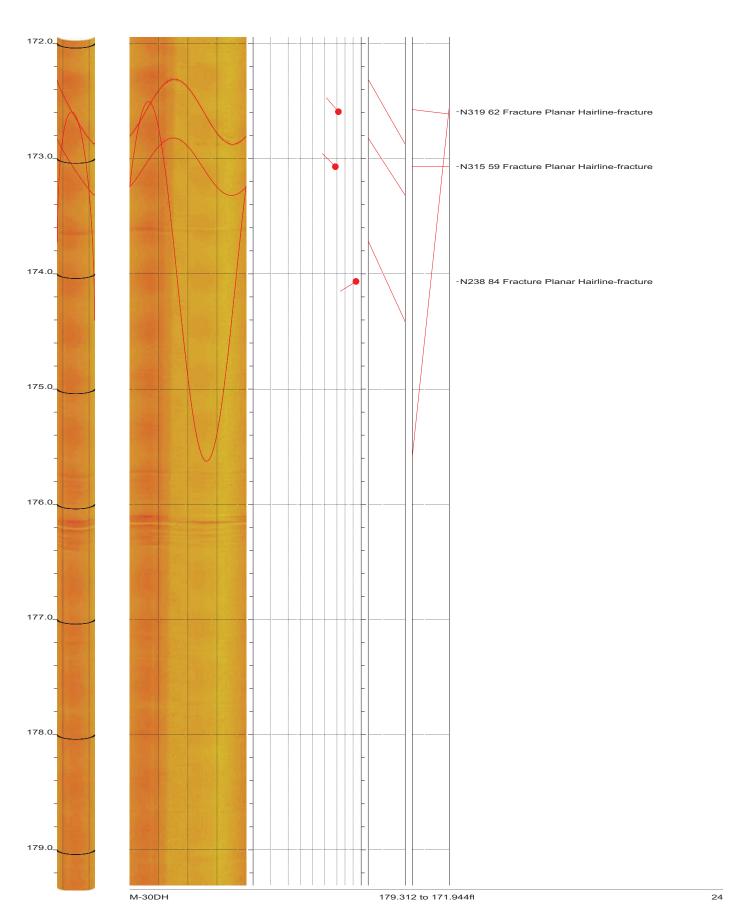

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 16 of 27

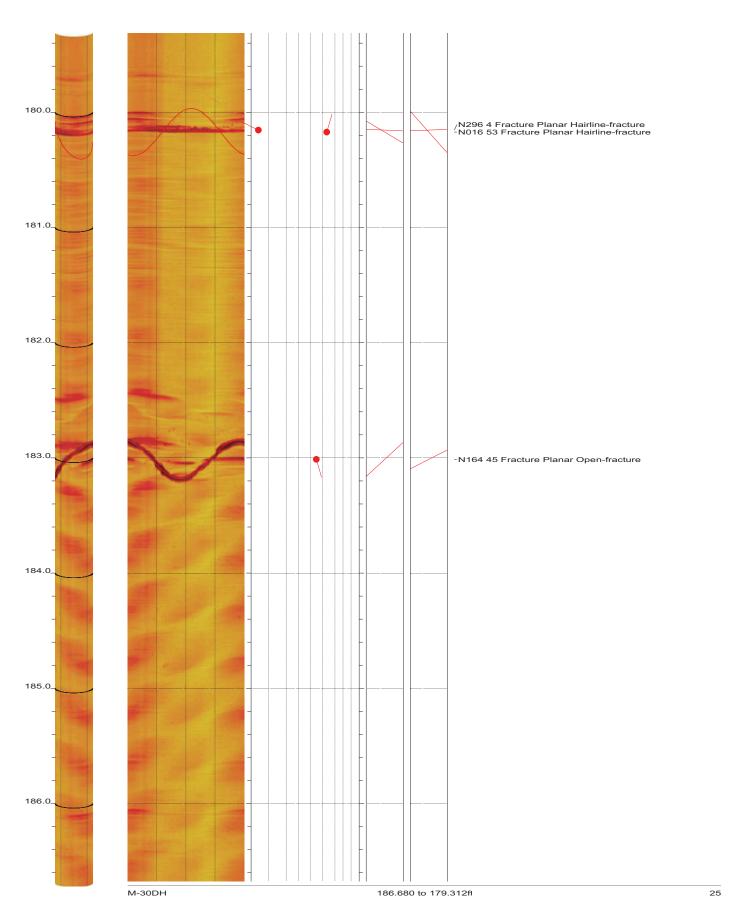

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 17 of 27

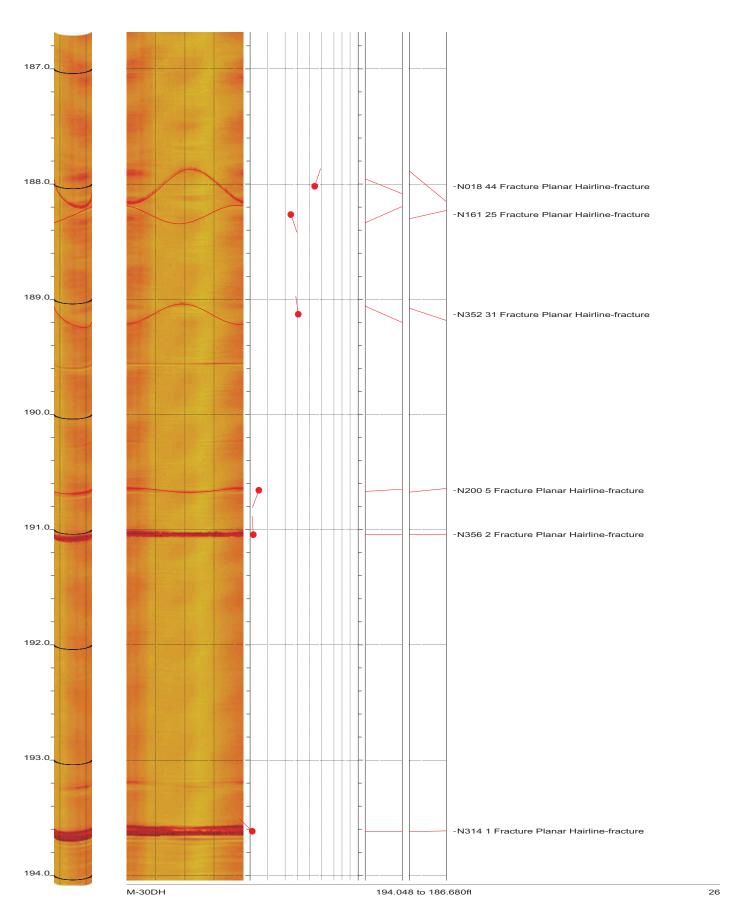

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 18 of 27

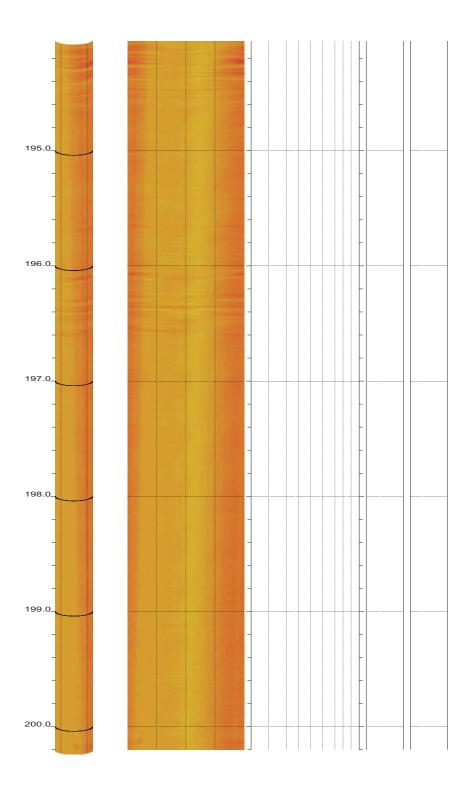

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 19 of 27


North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 20 of 27


North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 21 of 27


North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 22 of 27


North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 23 of 27


North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 24 of 27

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 25 of 27

North Anna Boring M-30DH Acoustic Televiewer Dips rev 1 Sheet 26 of 27

M-30DH 200.200 to 194.048fl 27

APPENDIX D

BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION PROCEDURES AND CALIBRATION RECORDS

GEOVision SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION PROCEDURE

Reviewed 7/21/08

Objective

The timing/sampling accuracy of seismic recorders or data loggers is required for several GEOVision field procedures including Seismic Refraction, Downhole P-S Seismic Velocity Logging, and Suspension P-S Seismic Velocity Logging. This procedure describes the method for measuring the timing accuracy of a seismic data logger, such as the OYO Model 170 or OYO/Robertson Model 3403. The objective of this procedure is to verify that the timing accuracy of the recorder is accurate to within 1%.

Frequency of Calibration

The calibration of each GEOVision seismic data logger is twelve (12) months. In the case of rented seismic logger/recorders, calibration must be performed prior to use.

Test Equipment Required

The following equipment is required. Item #2 must have current NIST traceable calibration.

- 1. Function generator, Krohn Hite 5400B or equivalent
- 2. Frequency counter, HP 5315A or equivalent
- 3. Test cables, from item 1 to item 2, and from item 1 to subject data logger.

Procedure

This procedure is designed to be performed using the accompanying Suspension P-S Seismic Logger/Recorder Calibration Data Form with the same revision number. All data must be entered and the procedure signed by the technician performing the test.

- 1. Record all identification data on the form provided.
- 2. Connect function generator to data logger (such as OYO Model 170) using test cable
- 3. Connect the function generator to the frequency counter using test cable.
- 4. Set signal generator to target frequency specified on data form, 0.25 volt (amplitude is approximate, modify as necessary to yield less than full scale waveforms on

Suspension PS Seismic Logger/Recorder Calibration Procedure Revision 2.0 Page 1

> Page 122 of 217 DCN# NAP272 DCN NAP307

logger display) peak sine wave. Verify frequency using the counter and note actual frequency on the data form.

- Set data logger to file length specified on data form and record a data file to disk. Note file name on data form.
- 6. Measure the duration of 9 complete sine wave cycles on the data file. This measurement must be made using the analysis program PSLOG.EXE version 1.00, and saved as a .sps pick file. Note the duration in milliseconds in the spaces provided on the data form. Calculate average recorded sine wave frequency for each channel pair (Hn, Hr, V) by dividing the duration by 9. Note the average frequency of each channel pair on the data form.
- 7. Repeat steps 4 through 6 until all target frequencies have been recorded, producing 6 separate data and pick files.

Criteria

Procedure Approval

The average frequency for the nine cycles (obtained by dividing 9 cycles by the duration in seconds) must be within plus or minus 1% of the actual frequency for each of the 6 records.

If the results are outside this range, the data logger must be marked with a GEOVision REJECT tag until it can be repaired and retested.

If results are acceptable affix label indicating the initials of the person performing the calibration, the date of calibration, and the due date for the next calibration (12 months).

Approved by:	
John G. Diehl	President
Name	Title
	July 21, 2008
Signature	Date
Calibration Laboratory Approval (if required):	
Name	Title
Signature	Date
Suspension F	S Seismic Logger/Recorder Calibration Procedure Revision 2.0 Page 2

DCN# NAP272 DCN NAP307

Page 1 of 4

A SOUTHERN CALIFORNIA EDISON® Company

Metrology

7300 Fenwick Lane Westminster, CA 92683 Toll Free: 866-723-2257

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881-3390

Lab Code: 105014-0

Manufacturer: Model Number:

Oyo

3403

Unit, Suspension Telemetry

Description: Asset Number: Serial Number:

160023 160023 Cal. Procedure: Customer

PO Number:

9200-090716-01

Ambient Temperature: 23° C 56% RH

Ambient Humidity: Condition As Found:

In Tolerance

Condition As Left:

In Tolerance - No Adjustment

Calibration Date: Calibration Due Date: 07/17/2010

07/17/2009

Calibration Interval:

12 Months

Remarks:

The unit was calibrated with the customer's procedure and specification's which have been reviewed by Metrology Engineering and documented in SCE Document M013987. The data can be found on pages 2 and 3 of this report with the original observation data on page 4.

Standards Utilized

ID No	Manufacturer	Model No.	Description	Cal. Date	Due Date
I.D. No.	Hewlett Packard	5335A OPT 010,203040	Counter, Universal	01/29/2009	07/29/2009
S1-01252 S1-01347	Hewlett Packard	3325A	Generator, Function, Synthesizer	05/04/2009	11/04/2009
S1-01347 S1-03686	Fluke	910	Standard, Frequency, Controlled, Gps	01/24/2009	01/24/2010

Calibration Performed By:			Quality Reviewer:	
Branson, Craig A	Metrologist	714-895-0714	Chrise & Shurrow	
Name	Title	Phone	Name	Date

This report may not be reproduced, except in full, without written permission of this laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. The results stated in this report relate only to the items tested or calibrated. Measurements reported herein are traceable to SI units via national standards maintained by NIST. This laboratory and calibration are in compliance with NVLAP laboratory accreditation criteria established by NIST/NVLAP under the specific scope of accreditation for lab code 105014-0, and in compliance with ISO/IEC 17025:2005, ANSI/NCSL 2540-1-1994 and 10CFR50, Appendix B. Where uncertainty is the avanable uncertainty of the measurement where k=2 the uncertainty stated is the expanded uncertainty of the measurement, where k=2.

Custom Specification Report Oyo 3403 Unit, Suspension Telemetry,

Test No. 573794 Asset No. 160023

Page 2 of 4

STEP NUM	FUNCTION TESTED	NOMINAL VALUE	AS FOUND	AS LEFT	Out of Tol	CALIBRATION TOLERANCE
50/2×81/8/2	CH HN Frequency Sine Wave	50.00 Hz	50.00	Same		49.50 to 50.50 Hz [EMU 0.000250]
	Ĩ	100.0 Hz	100.0	Same		99.0 to 101.0 Hz [EMU 0.000500]
	1	200.0 Hz	200.0	Same		198.0 to 202.0 Hz [EMU 0.001000]
	1	500.0 Hz	500.0	Same		495.0 to 505.0 Hz [EMU 0.002500]
	ī	1000 Hz	1000	Same		990 to 1010 Hz [EMU 0.005000]
	1	2000 Hz	2000	Same		1980 to 2020 Hz [EMU 0.010000]
	CH HR Frequency Sine Wave	50.00 Hz	50.00	Same		49.50 to 50.50 Hz [EMU 0.000250]
	1	100.0 Hz	100.0	Same		99.0 to 101.0 Hz [EMU 0.000500]
	1	200.0 Hz	200.0	Same		198.0 to 202.0 Hz [EMU 0.001000]
	į.	500.0 Hz	500.0	Same		495.0 to 505.0 Hz [EMU 0.002500]
	ĺ	1000 Hz	1000	Same		990 to 1010 Hz [EMU 0.005000]
	I	2000 Hz	2000	Same		1980 to 2020 Hz [EMU 0.010000]
	CH V Frequency Sine Wave	50.00 Hz	50.00	Same		49.50 to 50.50 Hz [EMU 0.000250]
	1	100.0 Hz	100.0	Same		99.0 to 101.0 Hz [EMU 0.000500]
	1	200.0 Hz	200.0	Same		198.0 to 202.0 Hz [EMU 0.001000]
	1	500.0 Hz	500.0	Same		495.0 to 505.0 Hz [EMU 0.002500]

Remarks:

MulCatr CPM: Version 2.2.2 (Professional)
Src DUI: [9548AF3D-C74D-4C9F-AEEF-21EF560BC451] (c)
Doc DUI: [AB10F47E-4C5F-4650-91CB-A05A72E361C1] (o)

ATTACHMENT 2 Page 1 of 2

Customer

Custom Specification Report

Test No. 573794 Asset No. 160023 Oyo 3403 Unit, Suspension Telemetry,

Page 3 of 4

FUNCTION TESTED CH V Frequency	NOMINAL VALUE	AS FOUND	AS LEFT	of Tol	CALIBRATION TOLERANCE
CH V Frequency				10.	
Frequency Sine Wave	1000 Hz	998.9	Same		990 to 1010 Hz [EMU 0.005000]
I	2000 Hz	2000	Same		1980 to 2020 Hz [EMU 0.010000]
	9				

MuilCats CPM: Version 2.2.2 (Professional) Src DUI: [9548.4F3D-C74D-4C9F-AEEF-21EF560BC451] (c) Doc DUI: [AB10F47E-4C5F-4650-91CB-A05A72E361C1] (o) ATTACHMENT 2 Page 2 of 2 Customer

INSTRUMENT DATA

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

System mfg.:	Oyo			Model no .:		3403		
Serial no.:	160023			Calibration	date:	7/17/2009		
Ву:	Craig Bra	nson		Due date:		7/17/2010		
Counter mfg.:	Hewlett-P	ackard		Model no.:		5335A		
Serial no.:	2626A098	381		Calibration	date:	1/29/2009		
Ву:	SCE #S1-	-01252		Due date:		7/29/2009		
Signal generator mfg.:	Hewlett-P	ackard		Model no.:		3325A		
Serial no.:	2652A256	647		Calibration	date:	5/4/2009		
By:	SCE #S1-	01347		Due date:		11/4/2009		3
SYSTEM SETTINGS:								
Gain:			8					
Filter			10KHz					
Range:			See sample	e period in	table below			
Delay:			0					
Stack (1 std)			1					
System date = correct d	ate and time	9	7/17/2009			10	19	
PROCEDURE:								
Set sine wave frequency	to target fro	equency	with amplitu	de of appro	ximately 0.2	25 volt peak		
Note actual frequency or								
Set sample period and r	ecord data f	ile to disl	k. Note file n	ame on dat	a form.			
Pick duration of 9 cycles						n, and save	as	
.sps file. Calculate aver								
Average fragues average	la a codebia d	/ 40/ 05	actual fragu	onov et ell d	lata nainta			
Average frequency must	be within +	/- 1% 01	actual frequ	ency at all d	iata points.			
Maximum error ((AVG-A	CTV/ACT*4	0010/	As found	_	0.11	/	As left	-0.111
Waximum end ((AVG-A	CI)/ACI II	00)76	AS IOUIIU			•	As left	
Target Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average
Frequency Frequenc		Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency
(Hz) (Hz)	(microS)		Hn (msec)		Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.00 50.00	200	401	180.00	50.00	180.00	50.00	180.00	50,00
100.0 100.0	100	402	90.00	100.0	90.00	100.0	90.00	100.0
200.0 200.0	50	403	45.00	200.0	45.00	200.0	45.00	200.0
500.0 500.0	20	404	18.00	500.0	18.00	500.0	18.00	500.0
1000 1000	10	405	9.000	1000	9.000	1000	9.010	998.9
2000 2000	5	406	4.500	2000	4.500	2000	4.500	2000
							0	
0-114-11	O'- D				7/47/0000	Craij	Bran	mer
Calibrated by:	Craig Bra	nson			7/17/2009	cay	Signature	
	Name				Date	.′	Signature	
						()	6	
Mitagas and burn	Dahad Or	allar			7/47/0000		Se	
Witnessed by:	Robert St	eller			7/17/2009	64	Signatura	-
	Name		er/Logger C	Calibration D	Date	Rev 2.0 Ju	Signature uly 21, 2008	-

MICRO PRECISION CALIBRATION, INC. 12686 HOOVER STREET GARDEN GROVE CA. 92841-1823 714.901.5659

Certificate of Calibration

Date: 10/16/2009 Lab # AC-1274 Certificate #: 749437

Customer:

GEOVISION

1124 OLYMPIC DRIVE Purchase Order: 9333-100601-001

CORONA, CA, 92881 Work Order: 61143

MPC Control #: AM6767 Serial Number: 160023 Asset ID: 160023 Department: N/A Performed By: **KYU HAN** Gage Type: **LOGGER** Received Condition: Manufacturer: OYO IN TOLERANCE Model Number: 3403 Returned Condition: IN TOLERANCE Size: N/A Cal Date: October 12, 2009 73 °F /45 Cal. Interval: 12 MONTHS Temp./RH: Cal. Due Date: October 12, 2010

Found conditions meet or exceed manufacturer specifications.

*Calibration Notes:

The UUT (unit under test) was calibrated using the customers procedures in our Garden Grove lab. The UUT was operated by the customers personnel and data collection was observed by MPC personnel. The UUT was found to be in tolerance to customer supplied specifications. The reference standards used are in complience with ISO/IEC 17025:2005, ISO9001:2000, ANSI/NCSL Z540-1-1994 and laboratory accreditation for lab code 935.11. Frequency is accredited. Measurement uncertainity is 0.2 x E12 Hz. Please see attached data sheet.

Standards Used To Calibrate Equipment

I.D.	Description	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
AM4000	WAVEFORM GENERATOR	33250A	MY40000703	AGILENT	7/15/2010	662404
T1100	COUNTER	53131A	3546A09912	HEWLETT PACKARD	1/12/2010	646688

Calibrating Technician:

KYLLHAN

QC Approval:

Tammy Webster

Unless Otherwise Noted, Uncertainty Estimated at >= 4 to 1. Uncertainties have been estimated at a 95 percent confidence level (k=2). Services rendered comply with ISO 17025:2005, ISO 9001:2000, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to the National Institute of Standards and Technology (NIST). Services rendered include proper manufacture's service instructions and are warranted for no less than (30) days. This report may not be reproduced in part or in whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

(CERT, Rev 0)

AM 6767

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

System mfg.:		Oyo			Model no.:		3403		
Serial no.:		160023	100		Calibration	date:	10/12/2009		
Ву:		Charles C	arter		Due date:		10/12/2010		
Counter mfg.:		Hewlett-P	ackard		Model no.:		53131A		
Serial no.:		3546a099	912		Calibration	date:	1/12/2009		
By:		Microprec	ision		Due date:		1/12/2010		
Signal genera	itor mfa.:	Agilent			Model no.:		33250A		
Serial no.:		MY40000	703		Calibration	date:	7/15/2009		
By:		Microprec	ision		Due date:		7/15/2010		
SYSTEM SE	TTINGS:								
Gain:				2					
Filter				10KHz					
Range:				See sample	e period in t	able below			
Delay:				0					
Stack (1 std)				1				1.6	
System date :	= correct dat	te and time)	10/12/2009	9				
.sps file. Calc Average frequ Maximum erro	uency must b	oe within +/	/- 1% of a		ency at all da		n.	As left	+ 0.20%
Waxiiridin Gire	טא-סיאט) ונ	71)//// 11	00)70	As louid		. 0.2070	8	Asion	1 0.2070
Target	Actual	Sample	File	Time for	Average	Time for	Average	Time for	Average
Frequency	Frequency	177 20 100 100 100	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency
(Hz)	(Hz)	(microS)		Hn (msec)		Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.00	50.00	200	2	180.2	49.94	179.8	50.06	180.2	49.94
100.0	100.0	100	3			90.10		90.00	100.0
200.0	200.0	50	4			44.95	200.2	44.95	
500.0	500.0	20	5			18.00	500.0	18.00	500.0
1000	1000	10	6			8.990	1001.1	9.000	1000.0 2000
2000	2000	5	7	4.495	2002	4.505	1998	4.500	2000
Calibrated by:		Charles C	arter			10/12/2009	0	harles (Enter
		Name				Date		Signature	
Witnessed by	:	Kyu Han				10/12/2009			
		Name				Date		Cianatura	
				1 - 0	Calibration		Rev 2.0 Ju	Signature ly 21, 2008	

APPENDIX E BORING GEOPHYSICAL LOGGING FIELD DATA LOGS

BORING SUMMARY LOG REVIT facods

Borehole* SITE*:	North Anna		DATE*	9/16/2009	
CLIENT*:	Mactec	10 00 00 00 00 00 00 00 00 00 00 00 00 0	JOB*:	9333	
AUTHOR*:	V Gonzales		PAGE*:	9333 OF	
			7/1		
CONTACT:			PHONE:		
BOREHOLE COL	NSTRUCTION: CAS	FD	UNCASED) ~	,
DIAMETERS AN	D DEPTH RANGES:	3.8" 0 TO 201.9	RF7 ;	, TO	
	TAL DEPTH AS DRIL				
SURFACE CASI	NG?: YES X DEF	РТН ТО ВОТТОМ ОР	CASING 89.8	€+; NO	
DEPTH TO BED	ROCK: ~90FT				
		RESH WATER MUD	; SALT V	VATER MUD;	
OCCINIC CDEV	V. 11 C- 22-1-2 C	Cartin .			
.OGGING CREV	V: V. Gonzalez, C.	arter	-		
5	T	(A)	1	T	_
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE*	TIMES*	
EL06	FILE NAME*		9)16 2009	13:35-13:45	
ELOG SUSP		200.1 - 86 FT 28.0 M- 57.0 M	9/16/2009	13:35-13:45	
ELOG SUSP	MIODH BLOGUP 01	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT	9/16/2009 9/16/2009	13:35-13:45 14:24-15:11 16:15-16:52	
ELOB SUSP ATV	MIODH ELOGUPO1	200.1 - 86 FT 28.0 M- 57.0 M	9)16/2009 9/16/2009 9/16/2009 1/16/2009	13:35-13:45	Va 4/16/0
ELOB SUSP ATV CALIPBR	MIODHELDGUPB1 MIODHSUSPDOWNOI	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT	9)16/2009 9/16/2009 9/16/2009 1/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05	Va 4/16/0
ELOB SUSP ATV CALIPER BLOG	MIODHELDGUPB1 MIODHSUSPDOWNOL MIODHAUUPOL MIODHCALUPOL	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 4/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELOGUPO1 MIODHSVSPDOWNO1 MIODHAUUPO1 MIODHCALUPO1 MIODHELOGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 196.9 FT 84 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05	Va 9/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 4/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 9/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	va a/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 4/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 9/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	va 4/16/0
ELOB SUSP ATV CALIPER BLOG CALIPER	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	Va 9/16/0
LOG TYPE* ELOB SUS P ATV CALIPBR ELOG CALIPBR CALIPBR	MIODHELDGUPB1 MIODHAUUPO1 MIODHAUUPO1 MIODHELDGTESTO1 MIODHELGGTESTO1	200.1 - 86 FT 28.0 M - 57.0 M 86.9 - 196.9 FT 84 - 198.8 FT 80.9 - 196.9 FT N/A	9)16/2009 9/16/2009 9/16/2009 1/16/2009 9/16/2009	13:35 - 13:45 14:24 - 15:11 16:15 - 16:52 17:27 - 17:38 13:03 - 13:05 17:09 - 17:11	va a/16/0

FLOG FIFLD LOG REV 1.1a

ELOG FIELD LOG M-10 DH Borehole* DATE*: 9/16/2009 North Anna SITE*: JOB*: **9333** PAGE: 1 OF 2 CLIENT*: Mactec AUTHOR*: VGonzalez PHONE: Off Cell CONTACT: PHONE: Off Cell CONTACT: PHONE: Off Cell CONTACT: PHONE: Off Cell CONTACT: COMPANY: GENERAL SITE CONDITIONS/LOCATION: COUNTY: RANGE: TOWNSHIP: BOREHOLE CONSTRUCTION: CASED UNCASED X
DIAMETERS AND DEPTH RANGES: 3.8" 0 TO 201.9 Fr; BOREHOLE TOTAL DEPTH AS DRILLED*: 201.9FT SURFACE CASING?: YES X DEPTH TO BOTTOM OF CASING 89.8 FF, NO. DEPTH TO BEDROCK: YOU DEPTH TO WATER TABLE: N/A
BOREHOLE FLUID: WATER X ; FRESH WATER MUD ; SALT WATER MUD DEPTH TO WATER TABLE: N/A OTHER: DEPTH TO BOREHOLE FLUID: N/A TIME SINCE LAST CIRCULATION: N/A LOGGING CREW: V.Gonzalez, C. Carter VEHICLE(S) USED AND MILEAGE: DEPARTURE TIME: 6:15 MOBILIZED FROM: Fredericksburg VA ARRIVED ON SITE: 7/15 CAUSE: STANDBY TIME: MA

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive, Corona, CA 92881 Ph (951) 549-1234 Fx (951) 549-1236

					ELOG FIEL	.D LOG REV 1.1a
	Visio.	n	M-IODH Borehole*	EL0	OG FIELD	LOG
SITE*: CLIENT*: AUTHOR*:	North Anna Mactec V Gonzaba		_DATE*: _JOB*: _PAGE:	9 16 200 9333 PAGE 2 OF 2	9	-
WINCH: MICROLOGELOG PRO	DBE* 5490 ➤	SILVER × 5772 🗷 OTHER	OTHER	RG		
SHEAVE*	PROBE LENGTH PLUS YOKE 10.0M (32. MINUS CASING STICK DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEPT	-UP* AT START* AT END*	2.50M(8.20 32.8 Ft 1.5 Fr 39.5 Fr 39.45 Ft 0.05 Fr	REF TO GROU	RG	
	MIDDH ELOG UPOL	START DEPTH* P.OO.(START TIME 13:03	END DEPTH* ~ 86FF	13:45 13:05	
MAINTENA	ANCE PERFORMED ON	SITE*:	N/A			(N/A if none)
EQUIPMEN	NT PROBLEMS OR FAIL	URES*:	N/A			(N/A if none)
SUGGEST	TIONS, ADDITIONS, CHA	NGES:				
ITEM	S WITH * <u>MUST BE CON</u>	<u>MPLETED</u> . OT	HER INFORI	MATION IS OP	TIONAL	
GEOVision Geo	ophysical Services 1	124 Olympic Drive	, Corona, CA 92	Ph (951,) 549-1234 Fx (951) 549-1236

	DATE*: 9/16/2009
CLIENT*: Macter	JOB*: <u>9</u> 333
AUTHOR*: V GONZALZ	PAGE 1 OF * 4
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
GENERAL SITE CONDITIONS/LOCAT	TION:
DENETIVE OFFE CONDITIONS OF CONTRACT	
COUNTY: RANGE:	TOWNSHIP: SECTION:
COUNTY: RANGE: BOREHOLE CONSTRUCTION*: CAS	TOWNSHIP: SECTION: ED UNCASED x
BOREHOLE CONSTRUCTION*: CAS DIAMETERS AND DEPTH RANGES*:	TOWNSHIP: SECTION:
BOREHOLE CONSTRUCTION*: CAS DIAMETERS AND DEPTH RANGES*:	3.8° 0 TO 201.9 F+ ; TO
DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILL SURFACE CASING?: X DI	3.6° 0 TO 201.9 F+ ; TO LED*: 201.9 F+ EPTH TO BOTTOM OF CASING 89.9 F+; NO
DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILL BURFACE CASING?: DEPTH TO BEDROCK: 20	10 UNCASED X 10 TO 201.9 F+ ; , TO LED*: 201.9 F+ EPTH TO BOTTOM OF CASING 89.9 F+ ; NO DEPTH TO WATER TABLE: ~/4
BOREHOLE CONSTRUCTION*: CAS DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILL SURFACE CASING?: X DI DEPTH TO BEDROCK: ~90 BOREHOLE FLUID: WATER ; FF	SED UNCASED X 3.61 0 TO 2019 F+ ; TO LED*: 201.9 F+ EPTH TO BOTTOM OF CASING 89.9 F+ ; NO DEPTH TO WATER TABLE: ~/4 RESH WATER MUD ; SALT WATER MUD;
BOREHOLE CONSTRUCTION*: CAS DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILL SURFACE CASING?: X DI DEPTH TO BEDROCK: ~90 BOREHOLE FLUID: WATER ; FF	10 UNCASED X 10 TO 201.9 F+ ; TO LED*: 201.9 F+ EPTH TO BOTTOM OF CASING 89.9 F+ ; NO DEPTH TO WATER TABLE: ~/La
BOREHOLE CONSTRUCTION*: CAS DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILL SURFACE CASING?: DEPTH TO BEDROCK: OTHER: DEPTH TO BOREHOLE FLUID*: DEPTH TO BOREHOLE FLUID*:	SED UNCASED X 3.6" 0 TO 201.9 F+ ; , TO LED*: 201.9 F+ EPTH TO BOTTOM OF CASING 89.9 F+ ; NO DEPTH TO WATER TABLE: ALL RESH WATER MUD ; SALT WATER MUD;

GE Vision
geophysical services

Borehole CORRESPONDING P-S SUSF		CITY FIE	ELD LOC	3 REV 1.4
	PENSION PRO	CEDURE REV		
SITE*: North Anna		_DATE*:	9/16/200	1
CLIENT*: nactec		_JOB*:	9833	
AUTHOR*: <u>U Gonzalez</u>	<u> </u>	PAGE 2 C	F * 4	_
LOGGING CREW*: VGonzalet., C. Carte	v			
MOBILIZED FROM: Fredericksburg, VA	DEPARTU	RE TIME:_	5:15	
ARRIVED ON SITE: 7:15	_			
STANDBY TIME: N/♣	_CAUSE:			
LOGGING STARTED: 14: 24	LOGGING	COMPLETE	ED: <u> </u>	
BATTERIES CHANGED BEFORE LOGGING: YUNCH COMPROBE INSTRUMENT* OYO 12004 15014 20042 ISOLATION TUBE S/N* 300083 24053 SHEAVE* COMPROBE OYO 101 MICROLOGGER* 5310 5772 PROBE OFFSET* OYO 2.0M MINUS CASING STICK-UP* O.46m DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* 9.01 m	GREY \(\) 19029 \(\) 26066 \(\) 28068 \(\) 102 \(\) 101 \(\) NOT APPI RG 2.5M	OYO RO 11001 28072 C LICABLE (O'	RG 3 160023 x 23053 3 2M RG 3	OTH
		To=+==	IEND	END
LOC NAME*	START	START		0.0000000000000000000000000000000000000
LOG NAME*	DEPTH*	TIME	DEPTH *	TIME
	25/2010/09/2016			0.0000000000000000000000000000000000000
	DEPTH*	TIME	DEPTH *	TIME
	DEPTH*	TIME	DEPTH *	TIME
MIPOHSVSPDOWNOL	DEPTH*	TIME	DEPTH *	TIME
MIPONSUSPDOWN D1 MAINTENANCE PERFORMED ON SITE*:	DEPTH*	TIME	DEPTH *	TIME IS:11
MAINTENANCE PERFORMED ON SITE*: EQUIPMENT PROBLEMS OR FAILURES*:	DEPTH* 28.0m	TIME	DEPTH *	(N/A if none)
MIPCHSUSPDOWN Ø1 MAINTENANCE PERFORMED ON SITE*:	DEPTH* 28.0m	TIME	DEPTH *	TIME IS:11 (N/A if none)

	Vorth A			_ DATE*: 9/16/200	7
	Macteo			JOB*: <u>9333</u>	
AUTHOR'	V GODE	alez		_ PAGE*_ 3	OF4
	ITEMS V	THE RESERVE TO THE PARTY OF THE	OMPLETED. OTHER IN		ONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS	
METERS	FEET	FILE NO*.	FILE NO*. (if any)	CASING, WATER,	ROCK, ETC
20.5	67.26	T		T	
21.0	68.90				-
21.5	70.54				
22.0	72.18				
22.5	73.82				
23.0	75.46				
23.5	77.10				
24.0	78.74				
24.5	80.38				
25.0	82.02				
25.5	83.66				
26.0	85.30				
26.5	86.94				
27.0	88.58				
27.5	90.22				
28.0	91.86	001		14:24	
28.5	93.50	002			
29.0	95.14	003			
29.5	96.78	004			
30.0	98.43	005			
30.5	100.07	006			
31.0	101.71	007			
31.5	103.35	008			
32.0	104.99	009			
32.5	106.63	010			
33.0	108.27	011			
33.5	109.91	012			
34.0	111.55	013			
34.5	113.19	014			
35.0	114.83	015			
35.5	116.47	016			
36.0	118.11	017			
36.5	119.75	D18			
37.0	121.39	019			
37.5	123.03	020			
38.0	124.67	021			
38.5	126.31	022			
39.0	127.95	023			
39.5	129.59	024			
40.0	131.23	025			

	orth A			DATE*: 9 16/20	
	Macte			JOB*: 1333	01
	· Vac			PAGE* 4	OF 4
	ITEMS V	NITH * MUST BE C	OMPLETED. OTHER IN	FORMATION IS OPTI	ONAL 4
DEPTH	DEPTH	THE RESERVE OF THE PERSON NAMED IN	FILTERED	COMMENTS	ONAL
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER,	BOOK ETC
OWEN THE PERSON NAMED IN COLUMN TO PERSON NA			TILL IVO . (II ally)	JOAGING, WATER,	ROCK, ETC
40.5	132.87	026			
41.0	134.51	625			
41.5	136.15	028			
42.0	137.80	029			
42.5	139.44	030			
43.0	141.08	831			
43.5	142.72	032			
44.0	144.36	033			
44.5	146.00	034			
45.0	147.64				
45.5	149.28	036			
46.0	150.92	037			
46.5 47.0	152.56 154.20	038			
47.5		039			
	155.84	040			
48.0	157.48	041			
48.5	159.12	042			
49.0	160.76	043			
49.5	162.40	044			
50.0	164.04	045			
50.5	165.68	046			
51.0	167.32	047			
51.5	168.96	848			
52.0	170.60	049			
52.5	172.24	050			
53.0	173.88	051			
53.5	175.52	052			
54.0	177.17	053			
54.5	178.81	054			
55.0	180.45	055			
55.5	182.09	056			
56.0	183.73	057			
56.5	185.37	059		1	
57.0		059		15:11	
57.5	188.65				
58.0	190.29				
58.5	191.93				
59.0	193.57				
59.5	195.21				

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

	DATE*: 9 16/2009
CLIENT*: Mactec AUTHOR*: V Gonzales	JOB*: 9333
AUTHOR*: V Gonzalez	PAGE 1 OF 2
REVIEWER: (post field	d work)
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER	PHONE: Off Cell
COMPANY:	
GENERAL SITE CONDITIONS/L	OCATION:
E	TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR
COUNTY:RAN	NGE: TOWNSHIP: SECTION:
COUNTY:RAN	NGE: TOWNSHIP: SECTION: SECTION: TO
COUNTY:RAN BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG	NGE: TOWNSHIP: SECTION: SECTION: SECTION: TO CASED UNCASED X GES: 5.5" 0 TO 20(.177; TO
COUNTY:RAN BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS	CASED UNCASED_X
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS	CASED UNCASED_X
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES *	CASED UNCASED_X
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS BURFACE CASING?: YES_* DEPTH TO BEDROCK: ~ 10 F1	CASED UNCASED_X
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS BURFACE CASING?: YES * DEPTH TO BEDROCK: ** 10 F1 BOREHOLE FLUID: WATER *	CASED UNCASED_X
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES * DEPTH TO BEDROCK: ~ 10 F1 BOREHOLE FLUID; WATER *	CASEDUNCASED_X GES: 5.6" 0 TO 20(.1FT;,TO DRILLED*: 201.9FT DEPTH TO BOTTOM OF CASING 81.8FT NO DEPTH TO WATER TABLE: N/A ; FRESH WATER MUD; SALT WATER MUD;
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES * DEPTH TO BEDROCK: ** 10 F1 BOREHOLE FLUID: WATER *	CASEDUNCASED_X GES: 5.6" 0 TO 20(.1FT;,TO DRILLED*: 201.9FT DEPTH TO BOTTOM OF CASING 81.8FT NO DEPTH TO WATER TABLE: N/A ; FRESH WATER MUD; SALT WATER MUD;
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS BURFACE CASING?: YES * DEPTH TO BEDROCK: ~ 10 F1 BOREHOLE FLUID: WATER * DEPTH TO BOREHOLE FLUID:	CASEDUNCASED_X GES: 5.6" 0 TO 20(.15T;,TO DRILLED*: 201.9 FT DEPTH TO BOTTOM OF CASING 81.8 FT NO DEPTH TO WATER TABLE: N/A; FRESH WATER MUD; SALT WATER MUD; N/A TIME SINCE LAST CIRCULATION: N/A
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES * DEPTH TO BEDROCK: ~ 10 F1 BOREHOLE FLUID: WATER * OTHER: DEPTH TO BOREHOLE FLUID: LOGGING CREW: V 6002442	CASEDUNCASED_X GES: 5.6" 0 TO 20(.9FT;,TO DRILLED*: 201.9FT DEPTH TO BOTTOM OF CASING 81.8FT NO DEPTH TO WATER TABLE: N/A; FRESH WATER MUD; SALT WATER MUD; N/A TIME SINCE LAST CIRCULATION: N/A, C. Carter
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES * DEPTH TO BEDROCK: ~ 10 F1 BOREHOLE FLUID: WATER * DEPTH TO BOREHOLE FLUID: DEPTH TO BOREHOLE FLUID: LOGGING CREW: V 6002462 VEHICLE(S) USED AND MILEAG	CASEDUNCASED_X GES: 5.6" 0 TO 20(.1FT;,TO DRILLED*: 201.9FT DEPTH TO BOTTOM OF CASING 81.8FT NO DEPTH TO WATER TABLE: N/A; FRESH WATER MUD; SALT WATER MUD; N/A TIME SINCE LAST CIRCULATION: N/A C. Carter GE:
BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RANG BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES * DEPTH TO BEDROCK: ~ 10 F1 BOREHOLE FLUID: WATER * OTHER: DEPTH TO BOREHOLE FLUID:	CASEDUNCASED_X GES: 5.6" 0 TO 20(.9FT;,TO DRILLED*: 201.9FT DEPTH TO BOTTOM OF CASING 81.8FT NO DEPTH TO WATER TABLE: N/A; FRESH WATER MUD; SALT WATER MUD; N/A TIME SINCE LAST CIRCULATION: N/A GE: GE: DEPARTURE TIME: 6:15

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

DOB: 1333 AUTHOR: V 400243 AUTHOR: V 400243 AUTHOR: V 400243 AUTHOR: V 400243 REVIEWER: (post field work) MINCH: COMPROBE SILVER V 0YO OTHER MICROLOGGER* 5310 5772 X FELEVIEWER* ACOUSTIC #5174 OTHER 664 SHEAVE* COMPROBE OYO 101 102X 103 RG PROBE TILT TEST* 88.22 BRUNTON TILT* 18 PROBE TILT TEST* 17.74 BRUNTON TILT* 18 PROBE AZIMUTH TEST* 17.75 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 180.5 BRUNTON AZIMUTH* 298 PROBE AZIMUTH TEST* 180.5 BRUNTON AZIMUTH* 298 PROBE AZIMUTH TEST* 180.5 BRUNTON AZIMUTH* 119 AFTER LOG* 1.50 PT MINUS CASING STICK-UP* 1.50 PT DEPTH REF. OFFSET AT START* 3.74 DEPTH REF. OFFSET AT END* 3.76 AFTER SURVEY DEPTH ERROR* 0.00 PT LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO I 196.9 FT 16:15 86.9 PT 16:52 MAINTENANCE PERFORMED ON SITE*: (N/A if none)		Vorth Anna			_ DATE*:_ 1/	14/2009	
REVIEWER: (post field work) WINCH: COMPROBE SILVER OYO OTHER MICROLOGGER* 5310 5772 x FELEVIEWER* ACOUSTIC #5174 OTHER 664 PROBE TILT TEST* ACOUSTIC #5174 OTHER 664 PROBE TILT TEST* 17.76 BRUNTON TILT* 18 PROBE AZIMUTH TEST* 42.90 BRUNTON TILT* 43 AFTER LOG* 1/2.5 PROBE AZIMUTH TEST* 258.7 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 278 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 179 AFTER LOG* 1/2.5 PROBE OFFSET* 1.44M(4.72FT) MINUS CASING STICK-UP* 1.50 PT DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* 0.06 PT LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 196.9 FT 16:15 86.9 FT 16:52	CLIENT*:	Mactec					
MINCH: COMPROBE SILVER OYO OTHER MICROLOGGER* 5310 5772 X TELEVIEWER* ACOUSTIC #5174 OTHER 664 SHEAVE* COMPROBE OYO 101 102X 103 RG PROBE TILT TEST* 88.22 BRUNTON TILT* 88 PROBE TILT TEST* 17.24 BRUNTON TILT* 18 PROBE AZIMUTH TEST* 14.90 BRUNTON TILT* 15 PROBE AZIMUTH TEST* 14.90 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 258.7 BRUNTON AZIMUTH* 278 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 119 AFTER LOG* 19.5 PROBE OFFSET* 1.44M(4.72FT) MINUS CASING STICK-UP* 1.50 FT DEPTH REF. OFFSET AT START* 3.2.2 AFTER SURVEY DEPTH ERROR* 0.06 FT LOG NAME* DEPTH* TIME DEPTH* TIME MODHAUUPO 1 196.9 FT 16:15 86.9 FT 16:52	AUTHOR	*: Vaonzalez			PAGE 2 OF 2	2	
MICROLOGGER* FELEVIEWER* ACOUSTIC #5174 OTHER 664 OYO 101 102X 103 RG PROBE TILT TEST* PROBE TILT TEST* 17.76 BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON AZIMUTH* PROBE AZIMUTH TEST* BRUNTON AZIMUTH* BRUNTON AZIMUTH* 179 AFTER LOG* PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* DEPTH* TIME MIODHAUUPO 1 196.9 FT 10:15 BROD END END LOG NAME* MIODHAUUPO 1 196.9 FT 10:15 BROD END END END LOG NAME* MIODHAUUPO 1 196.9 FT 10:15 BROD END END END END END END END E	REVIEWE	R: (post fiel	d work)				
MICROLOGGER* FELEVIEWER* ACOUSTIC #5174 OTHER 664 OYO 101 102X 103 RG PROBE TILT TEST* PROBE TILT TEST* 17.76 BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON TILT* BRUNTON AZIMUTH* PROBE AZIMUTH TEST* BRUNTON AZIMUTH* BRUNTON AZIMUTH* 179 AFTER LOG* PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* DEPTH* TIME MIODHAUUPO 1 196.9 FT 10:15 BROD END END LOG NAME* MIODHAUUPO 1 196.9 FT 10:15 BROD END END END LOG NAME* MIODHAUUPO 1 196.9 FT 10:15 BROD END END END END END END END E	MNCH:	COMPRORE	SILVED J	OVO	OTHER		
PROBE TILT TEST* 88.22 BRUNTON TILT* PROBE TILT TEST* 17.74 BRUNTON TILT* 18 BRUNTON AZIMUTH* 153 BRUNTON AZIMUTH* 179 BRUNTON AZIMUTH* 179 BRUNTON AZIMUTH* 179 AFTER LOG* 1/25 BRUNTON AZIMUTH* 179				_010	_OTHER		_
PROBE TILT TEST* 88.22 BRUNTON TILT* 88 PROBE TILT TEST* 17.74 BRUNTON TILT* 18 PROBE TILT TEST* 42.90 BRUNTON TILT* 18 PROBE AZIMUTH TEST* 17.75 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 248 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 179 AFTER LOG* 1.50 FT DEPTH REF. OFFSET AT START* 3.2.7 DEPTH REF. OFFSET AT END* 3.76 AFTER SURVEY DEPTH ERROR* 0.06 7T LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 196.9 FT 16:15 86.9 FT 16:52		[17] [17] [17] [17] [17] [17] [17] [17]		OTHER	6641		
PROBE TILT TEST* 17.74 BRUNTON TILT* 18 PROBE TILT TEST* 42.90 BRUNTON TILT* 13 AFTER LOG* 1/45 PROBE AZIMUTH TEST* 147.5 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 253.7 BRUNTON AZIMUTH* 2.78 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 179 AFTER LOG* 1/45 PROBE OFFSET* 1.44M(4.72FT) MINUS CASING STICK-UP* 1.50 FT DEPTH REF. OFFSET AT START* 3.22 DEPTH REF. OFFSET AT END* 3.16 AFTER SURVEY DEPTH ERROR* 0.06 FT START START END END LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO1 196.9 FT 16:15 86.9 TT 16:52	SHEAVE*	COMPROBE	OYO 101	102X	103	RG	
PROBE TILT TEST* 17.74 BRUNTON TILT* 18 PROBE TILT TEST* 42.90 BRUNTON TILT* 13 AFTER LOG* 1/45 PROBE AZIMUTH TEST* 147.5 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 253.7 BRUNTON AZIMUTH* 2.78 PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 179 AFTER LOG* 1/45 PROBE OFFSET* 1.44M(4.72FT) MINUS CASING STICK-UP* 1.50 FT DEPTH REF. OFFSET AT START* 3.22 DEPTH REF. OFFSET AT END* 3.16 AFTER SURVEY DEPTH ERROR* 0.06 FT START START END END LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO1 196.9 FT 16:15 86.9 TT 16:52	DDODE 7	# T T T T T T T T T T T T T T T T T T T	DDI INTON T	II T+ 80			
PROBE AZIMUTH TEST* 147.5 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 258.7 BRUNTON AZIMUTH* 248 PROBE AZIMUTH TEST* 180.5 BRUNTON AZIMUTH* 179 AFTER LOG* 1/25 PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* LOG NAME* START DEPTH* TIME MINUS CASING STICK-UP* 1.50 fr 3.22 REF TO GROUND SURFACE 0.06 ft LOG NAME* DEPTH* TIME DEPTH* TIME MINUS CASING STICK-UP* 1.50 fr 3.72 REF TO GROUND SURFACE 1.61 ft 1.62 ft 1.63 ft 1.64 ft 1.65		ILTTEST* 08.02	BRUNTON T	II T* 10			
PROBE AZIMUTH TEST* 147.5 BRUNTON AZIMUTH* 153 PROBE AZIMUTH TEST* 258.7 BRUNTON AZIMUTH* 248 PROBE AZIMUTH TEST* 180.5 BRUNTON AZIMUTH* 179 AFTER LOG* 1/25 PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* LOG NAME* START DEPTH* TIME MINUS CASING STICK-UP* 1.50 fr 3.22 REF TO GROUND SURFACE 0.06 ft LOG NAME* DEPTH* TIME DEPTH* TIME MINUS CASING STICK-UP* 1.50 fr 3.72 REF TO GROUND SURFACE 1.61 ft 1.62 ft 1.63 ft 1.64 ft 1.65		ILT TEST* 42.90	BRUNTON T	LT* 43	AFTER	LOG* Yes	
PROBE AZIMUTH TEST* 180.3 BRUNTON AZIMUTH* 179 AFTER LOG* 1/45 PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* START LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 1.44M(4.72FT) 1.450 FT 3.22 REF TO GROUND SURFACE 5.7/6 DEPTH* TIME	PROBE A	ZIMUTH TEST* 147.5	BRUNTON A	ZIMUTH*_/		1.0	
PROBE OFFSET* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* START LOG NAME* DEPTH* TIME MIODHAUUPO 1 1.44M(4.72FT) 1.50 fr 3.22 3.76 0.06 fr REF TO GROUND SURFACE END TIME DEPTH* TIME						1001 1/	
MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* START LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 1.50	PROBE A	ZIMUTH TEST* 180.3	BRUNTON A	ZIMUTH*_1	79 AFTER	LOG* YPS	
MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* START LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 1.50		PROBE OFFSET*		1.44M(4.7	72FT)		
DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR* START LOG NAME* DEPTH* TIME MIODHAUUPO 1 196.9 FT 10:15 B6.9 FT 10:52			CK-UP*				
AFTER SURVEY DEPTH ERROR* O.06 TT START LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 196.9 FT 16:15 B6.9 TT 16:52					REF TO GRO	OUND SURFACE	
LOG NAME* START START END DEPTH* TIME DEPTH* TIME MIODHAUUPO I 196.9 FT 16:15 86.9 FT 16:52				3./6	_ J		
LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 196.9 FT 16:15 86.9 FT 16:52		AFTER SURVEY DE	PIH ERROR	0.06 7	Τ		
LOG NAME* DEPTH* TIME DEPTH* TIME MIODHAUUPO 1 196.9 FT 16:15 86.9 FT 16:52			ISTART	START	IEND	IEND	
		LOG NAME*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No. 2010/10000	177.00126	
MAINTENANCE PERFORMED ON SITE*: (N/A if none)		MIODHAUUPO I	196.9 FT	16:15	86.911	16:52	
MAINTENANCE PERFORMED ON SITE*: (N/A if none)							
MAINTENANCE PERFORMED ON SITE*: (N/A if none)					-	1	
MAINTENANCE PERFORMED ON SITE*: (N/A if none)							
MAINTENANCE PERFORMED ON SITE*: (N/A if none)							
MAINTENANCE PERFORMED ON SITE*: (N/A if none)							
MAINTENANCE PERFORMED ON SITE*: (N/A if none)							
	MAINTEN	IANCE PERFORMED (ON SITE*:			(N	/A if none)
					- 6		
DEVIATION FROM PROCEDURE (IF ANY) OR EQUIPMENT PROBLEMS OR FAILURES*(N/A if none)	nmarke	d utilities and groun	iding grid arou	nd bore hol	and surroundi	nes which may h	ave affect
	robe con	apass during pre-log +	esting.			197	
nmarked utilities and grounding grid around bore holy and surroundings which may have affect robe compass during pre-log testing.	610441	sludge at ~ 197FT. su	BMERAGO PUBE	INITIALLY	AND THEN BALL	5 50 TO -100 PT 4	ind relow.
nmarked utilities and grounding grid around bore hold and surroundings which may have affectobe compass during pre-lag testing. 1 1 4 F/ 5 ludge at ~ 197 FT. SUBMERAGO PROBE IN ITIALLY AND THEN RAISED TO -100 FT and MIOW.		to clean offprobe win	low in borchole i	water, Res	et at ~194 to b	egin lagging run	upward
nmarked utilities and grounding grid around bore holy and surroundings which may have affect robe compass during pre-log testing.	40 ~197	ITEMS WITH * MIIST	RE COMPLETE	ED OTHER	INFORMATION	UIS OPTIONAL	
nmarked utilities and grounding grid around bore hold and surroundings which may have affect robe compass during pre-log testing. 11 + F sludge at ~ 197 FT. SUBMERAGD PERBE IN ITIALLY AND THEN RAISED TO ~100 FT and relow- 10 ~ 197 to clean off probe window in borchole water. Reset at ~ M7 to begin lagging ryn upward.	40 ~19 7	TILIVIS VVIIII IVIOSI	DE COMI LETE	D. OTTL	IIVI ONWATIOI	VIO OI TIOIVAL	
nmarked utilities and grounding grid around bore hold and surroundings which may have affectobe compass during pre-lag testing. 1 1 4 F/ 5 ludge at ~ 197 FT. SUBMERAGO PROBE IN ITIALLY AND THEN RAISED TO -100 FT and MIOW.	10 ~197						
nmarked utilities and grounding grid around bore hold and surroundings which may have affect robe compass during pre-log testing. 11 + F sludge at ~ 197 FT. SUBMERAGD PERBE IN ITIALLY AND THEN RAISED TO ~100 FT and relow- 10 ~ 197 to clean off probe window in borchole water. Reset at ~ M7 to begin lagging ryn upward.	+0 ~19 7						
nmarked utilities and grounding grid around bore hold and surroundings which may have affect robe compass during pre-log testing. 11 + F sludge at ~ 197 FT. SUBMERAGD PERBE IN ITIALLY AND THEN RAISED TO ~100 FT and relow- 10 ~ 197 to clean off probe window in borchole water. Reset at ~ M7 to begin lagging ryn upward.	10 ~19 7						

GE Vision geophysical services

CALIPER FIELD LOG REV 1.2.PDF

M-100H Borehole*

CALIPER FIELD LOG

Procedure ASTM D6167-97(2004)

SITE": IVOM	th Anna	DATE: 9/16/2009
AUTHOR*: V.GO	nza 162	JOB*: 9333 PAGE: 1 OF 2
CONTACT:		PHONE: Off Cell
CONTACT:		PHONE: Off Cell
DRILLER		PHONE: Off Cell
GENERAL SITE CO	ONDITIONS/LOCATION:	
		A CHIE
COUNTY: BOREHOLE CONS DIAMETERS AND	RANGE:	TOWNSHIP:SECTION: UNCASED TO,TO
BOREHOLE CONS DIAMETERS AND	RANGE: STRUCTION: CASED DEPTH RANGES: 3.8" L DEPTH AS DRILLED*: 2	UNCASED
BOREHOLE CONS DIAMETERS AND BOREHOLE TOTA SURFACE CASING	CASEDCETRUCTION: CASED_CETRUCTION:	UNCASED
BOREHOLE CONS DIAMETERS AND BOREHOLE TOTA SURFACE CASING DEPTH TO BEDRO BOREHOLE FLUID OTHER:	CASEDCETRUCTION: CASED_CETRUCTION:	UNCASED
BOREHOLE CONS DIAMETERS AND BOREHOLE TOTA SURFACE CASING DEPTH TO BEDRO BOREHOLE FLUID OTHER: DEPTH TO BOREH	CASED_DEPTH RANGES: 3.8" COLOR DEPTH AS DRILLED*: 2 G?: YES X DEPTH TO BOOCK: ~90 Fr D: WATER X FRESH WA HOLE FLUID: N/A	UNCASED
BOREHOLE CONS DIAMETERS AND BOREHOLE TOTA SURFACE CASING DEPTH TO BEDRO BOREHOLE FLUID OTHER: DEPTH TO BOREH LOGGING CREW: VEHICLE(S) USED MOBILIZED FROM	CTRUCTION: CASED	UNCASED

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

	ical services	M-10 pl			PER FIELD LO	
SITE*:	North Anna	J-100.51	DATE*:	9/11/2009		,
	Mactec		JOB*:	9333		
AUTHOR*	V. Gonzalez		PAGE:	PAGE 2 OF 2		
WINCH: MICROLO	GGER* 5310	SILVER X	OYO_ OTHER	RG	OTHER	-
CALIPER SHEAVE*	PROBE* 5368 COMPROBE	OTHER OYO 101	102 20 1	03	RG	
	PROBE OFFSET		2.08M(6.82	FT)	12 IN MAX	
	MINUS CASING STICK		1.50ft		12 II VIVION	
	DEPTH REF. OFFSET DEPTH REF. OFFSET		5.324		GROUND SURFACE	
	AFTER SURVEY DEPT		5,25ft 0,07ft	J		
	Land Control of the C					
		START	START	END	END	
	LOG NAME*	DEPTH*	TIME*	DEPTH*	TIME*	
	MIODHCALTEST BL	N/A 198.8	17:09	N/A	17:11	
	MIODHCALTESTOL	N/A	17:50	84 N/A	17:51	
			7133	7.4	17.5	
CALIBRAT	ION PLATE S/N 201		AS BUILT		PVC FITTING	
	FUENAME	1.968 IN	3.937 IN	8.000 IN	4.504 IN	
S MEAS.	FILE NAME	(50 MM)	(100 MM) 3, 96	(203.2 MM)	(114.4 MM)	
AS MEAS.	110011011010	2.02	4.00	8.03	4.59	
AS MEAS.	1110011 CAD 103/02	2102	7.00	8.00	9.3 7	
S MEAS.						
AS MEAS.						
AS MEAS.						
10 11127 101	NCE PERFORMED ON	SITE*:			(N/A	if none
	MOL PERFORMED ON					
	THOSE PERFORMED ON					
MAINTENA	NT PROBLEMS OR FAIL	JRES*:			(N/A	if none
MAINTENA		JRES*:			(N/A	if none
MAINTENA	NT PROBLEMS OR FAIL				(N/A	if none
MAINTENA					(N/A	if none
MAINTENA EQUIPMEN EUGGEST	NT PROBLEMS OR FAIL	NGES:	OTHER INFO	RMATION IS O		if none
MAINTENA EQUIPMEN SUGGEST	NT PROBLEMS OR FAIL	NGES:	OTHER INFO	PRMATION IS O		if none
MAINTENA EQUIPMEN SUGGEST	NT PROBLEMS OR FAIL	NGES:	OTHER INFO	PRMATION IS O		if none
MAINTENA EQUIPMEN SUGGEST	NT PROBLEMS OR FAIL	NGES:	OTHER INFO	PRMATION IS O		ifnone
MAINTENA EQUIPMEN SUGGEST	NT PROBLEMS OR FAIL	NGES: OMPLETED. (OTHER INFO			

BORING SUMMARY LOG REV 1.1a.pdf

Borehole*	BORING			0/12/19	
ITE*: North A				9/17/09	-
LIENT*: MAC			JOB*: 9333_	/ OF/	9/4/09
UTHOR*: C. C	arter		PAGE":		20 11-1
ONTACT:			PHONE:		-
OREHOLE COM	ISTRUCTION: CASE	ED	UNCASED	K	_
IAMETERS ANI	DEPTH RANGES:	3.18" OTO 201.9	# ;	к то	
OBELIOI E TOT	AL DEDTH AS DOLL	En* 201.9 4			_
URFACE CASIN	NG?: YES A DEP	тн то воттом ог	CASING 754	; NO	
EPTH TO BEDF	ROCK: ~90 4		~	and the second s	
OREHOLE FLU	ID: WATER; FI	RESH WATER MUD_	SALT W	ATER MUD;	
OGGING CREW	V: C. Carter, V. Gonza	alez		. 1.0	
			и	9h169	
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE* /	TIMES*	Date
106	MIODHELOGTESTOD		9/16/09/	3:48-3:49pm	9/17/09
LOG		105.55-36.6 4	9/16/09	4:02-4:08 pm	9/17/09
2-5 velocity oliper oliper oliper		02 2.5-30.0m	9/16/09	4:27-4:57pm	9/17/09
aliair	MIDDHCALTESTOS	NA	9/16/09	5:17-5:20pm	9/17/09
e liner	MIDDHCALUPUZ	100.9-3.854	9/16/69	5:33 - 5:44pm	9/17/09
aliner	MIODHCALTESTON	NA	9/16/19	5:50 - 5:51 pm	9/17/09
				•	

ELOG FIELD LOG REV 1.1a

geophysical services

		M-1004	ELOG FIELI	DLOG
	North	Borehole*	D. T. C.	12/19
SITE*:	Dan	Anna	DATE*: 9 JOB*: 9	111.0
CLIENT*: AUTHOR*:	C. Corter	,	PAGE: 10	F 2
CONTACT:			PHONE: Off C	ell
CONTACT:			PHONE: Off C	ell
CONTACT:			PHONE: Off C	ell
CONTACT: COMPANY	:		PHONE: Off C	ell
GENERAL	SITE CONDI	TIONS/LOCATION:_		
COUNTY:		RANGE:	TOWNSHIP:	SECTION:
RORFHOLD	F CONSTRU	CTION: CASED	UNCASED K	то
BOREHOLI	E TOTAL DE	PTH AS DRILLED*:_	102.946	
SURFACE	CASING?: Y	ES L DEPTH TO	BOTTOM OF CASING	7 P; NO .
DEPTH TO	BEDROCK:	- WU +6	DEPTH TO WA	TER TABLE: ~25 4
		TER; FRESH V	VATER MUD $ imes$; SA	ALT WATER MUD;
	CODELIOLE	FLUID.	TIME CINICE I	CT CIDCUII ATIONI. 1 M
	BOREHOLE			AST CIRCULATION: 164
LOGGING	CREW C	Carter V. C	DEPARTURE T	
VEHICLE(S	S) USED AND	MILEAGE:	0	
MOBILIZED	FROM: FY	edricks burg	DEPARTURE T	IME: 6715am
ARRIVED (ON SITE:	an		
STANDBY	TIME:	WA	CAUSE:	
ITEMS	S WITH * <u>MU</u>	ST BE COMPLETED	. OTHER INFORMATI	ION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive, Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

				ELOG FIELD LO	G REV 1.1a	
GE Visi	ion	M-10D*	μ ELC	OG FIELD LO	OG	
SITE*: North Anna CLIENT*: MICTEC AUTHOR*: C.Cortel		DATE*: JOB*: PAGE:	9/17/69 9333 PAGE 2 OF 2			
WINCH: COMPROBE_ MICROLOGGER* 5310 ELOG PROBE* 5490 SHEAVE* COMPROBE	SILVER 6 5772 S OTHER OYO 101	OYO_ OTHER	_RG	OTHER		
PROBE LENGTH PLUS YOKE 10.0M MINUS CASING ST DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY D	FICK-UP* SET AT START* SET AT END*	2.50M(8.20 72.8 2.83 38.17 38.20]	UND SURFACE		
MIO DHELOGUPE	START DEPTH* UNA 105.55\$	START TIME 3:48 4:02	END DEPTH* NA 36.65+	END TIME 3:49 4:08		į.
MAINTENANCE PERFORMED	ON SITE*:		4.0	(N/A	A if none)	
EQUIPMENT PROBLEMS OR	FAILURES*:		۶	(N/A	A if none)	
SUGGESTIONS, ADDITIONS,	CHANGES:					
ITEMS WITH * MUST BE		THER INFOR	MATION IS OP	TIONAL		
GEOVision Geophysical Services	1124 Olympic Driv	e, Corona, CA 92	2881 Ph (951)) 549-1234 Fx (951)	549-1236	

SITE*: North Anna	DATE*: 9/17/09	
CLIENT*: MICTES	DATE*: 9/17/69 JOB*: 9333 PAGE 1 OF * 4	
AUTHOR*: C. Carter	PAGE 1 OF * 4	
CONTACT:	PHONE: Off Cell	114717
CONTACT:	PHONE: Off Cell	
CONTACT:	PHONE: Off Cell	
CONTACT:	PHONE: Off Cell	
DIRECTIONS TO SITE:		
GENERAL SITE CONDITIONS/LOCATI	ION:	
GENERAL SITE CONDITIONS/LOCATI	ION:	
GENERAL SITE CONDITIONS/LOCATI	ION:	
COUNTY: RANGE:	TOWNSHIP: SECTION:	
COUNTY: RANGE:	TOWNSHIP: SECTION:	
COUNTY: RANGE:	TOWNSHIP: SECTION: DO 2019 St. TO	
COUNTY:RANGE: BOREHOLE CONSTRUCTION*: CASE DIAMETERS AND DEPTH RANGES*: _ BOREHOLE TOTAL DEPTH AS DRILLE	TOWNSHIP: SECTION:	
COUNTY: RANGE: BOREHOLE CONSTRUCTION*: CASE DIAMETERS AND DEPTH RANGES*: BOREHOLE TOTAL DEPTH AS DRILLE SURFACE CASING?:	TOWNSHIP: SECTION:	
BOREHOLE CONSTRUCTION*: CASE DIAMETERS AND DEPTH RANGES*: _ BOREHOLE TOTAL DEPTH AS DRILLE SURFACE CASING?:	TOWNSHIP: SECTION:	5 f †

P-S SUSPENSION Borehole CORRESPONDING P-S SUSPE				REV 1.4
SITE*: North Anna		DATE*:	2/17/09	
CLIENT*: MACTEC		JOB*:	9333	
AUTHOR*: C. Carter		PAGE 2 OF	* 4	•
MOBILIZED FROM: Fredricks burg ARRIVED ON SITE: Tam	DEPERTU	RE TIME:_6	ilsam	
STANDBY TIME: LA	CAUSE:			
LOGGING STARTED: 4:27	-	COMPLETE	D: 4:57	aw-
LOGGING STARTED. 712 (LOGGING	COMPLETE	D. (17)	<i>p</i>
BATTERIES CHANGED BEFORE LOGGING: Y WINCH COMPROBE INSTRUMENT* OYO 12004 15014 20042 15014 20042 15014 20042 15014 20042 15014 20042 20042 15014 20042	GREY X 19029 26066 28068 102 102 103 NOT APPL RG 2.5M	OYO RG 11001 28072 1 ICABLE (OY	RG 160023 2 23053 2 RG RG	160024 30086
LOG NAME*	START DEPTH*	START	END DEPTH *	END TIME
LOG NAME	2.5 m	4:27	30.0m	4:57 pm
		1	-	
MAINTENANCE PERFORMED ON SITE*:		1/4		(N/A if none)
EQUIPMENT PROBLEMS OR FAILURES*:		NA		(N/A if none)
DEVIATIONS FROM TEST PLAN*:		NA		(N/A if none)
ITEMS WITH * MUST BE COMPLETE GEOVision Geophysical Services 1124 Olympic Driv				

			SUSPENSION LO	OGGING FIELD NOTE
SITE*:	sorth du	na		DATE*: 9/17/09
CLIENT*:	MACTEC	- ,		JOB*: [333
AUTHOR'	: C.Cort	el		PAGE* 3 OF 4
			OMPLETED. OTHER IN	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
0.5	1.64			
1.0	3.28			
1.5	4.92			
2.0	6.56	CC 9/17/09		<u> </u>
2.5	8.20	05 200		4:27
3.0	9.84	201		
3.5	11.48	202		
4.0	13.12	203		
4.5	14.76	204		
5.0	16.40	205		
5.5	18.04	206		
6.0	19.69	207		
6.5	21.33	208		
7.0	22.97	209		
7.5	24.61	210		
8.0	26.25	211		
8.5	27.89	212		
9.0	29.53	213		
9.5	31.17	214		
10.0	32.81	215		
10.5	34.45	216		
11.0	36.09	217		
11.5	37.73	218		12/4/17
12.0	39.37	219		
12.5	41.01	220		
13.0	42.65	221		
13.5	44.29	222		
14.0	45.93	223		
14.5	47.57	224		
15.0	49.21	225		
15.5	50.85	226		
16.0	52.49	227		-
16.5	54.13	228		
17.0	55.77	229		
17.5	57.41	230		
18.0	59.06	237		
18.5	60.70 62.34			
19.5	63.98	233		
20.0	65.62	235		

M-ID		Anna	OCCI ENGION E	OGGING FIELD NOTE
	MACT			_DATE*: 9/17/69
ALITHOD:	*:_ CCa	Hox		_JOB*: 9333
AUTHUR			OMBI ETER OFFICE	_ PAGE*OF4
DEDTU	TIENS	WITH WUSTBEC		FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS	FEET	FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
20.5	67.26	236		T
21.0	68.90	237		
21.5	70.54	238		
22.0	72.18	239		
22.5	73.82	240		
23.0	75.46	241		
23.5	77.10	242		
24.0	78.74	2 43		
24.5	80.38	244		
25.0	82.02	245		
25.5	83.66	246		
26.0	85.30	247		
26.5	86.94	248		
27.0	88.58	249		
27.5	90.22	250		
28.0	91.86	251		
28.5	93.50	252		
29.0	95.14	253		
29.5	96.78	254		
30.0	98.43	285		4:57
30.5	100.07			
31.0	101.71			
31.5	103.35			
32.0	104.99			
32.5	106.63			
33.5	108.27			
34.0	109.91 111.55			
34.5	113.19			
35.0	114.83			
35.5	116.47			
36.0	118.11			
36.5	119.75			
37.0	121.39			
37.5	123.03			
38.0	124.67			
38.5	126.31			
39.0	127.95			
39.5	129.59		-	
40.0	131.23			

GE Vision
geophysical services

M-10 DH Borehole* CALIPER FIELD LOG REV 1.2.PDF

CALIPER FIELD LOG

Procedure ASTM D6167-97(2004)

SITE*: North Anna	DATE*: 9/17/69
CLIENT*: MACTEC AUTHOR*: C. Cortal	JOB*: 9333 PAGE: 1 OF 2
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER COMPANY:	PHONE: Off Cell
GENERAL SITE CONDITIONS/LOCATION:	
COUNTY: RANGE: TO BOREHOLE CONSTRUCTION: CASED UN DIAMETERS AND DEPTH RANGES: 3.78" 0 TO BOREHOLE TOTAL DEPTH AS DRILLED*: 201	CASED + TO TO
SURFACE CASING?: YES V DEPTH TO BOTT DEPTH TO BEDROCK: ~ 70 %C BOREHOLE FLUID: WATER ; FRESH WATE OTHER: DEPTH TO BOREHOLE FLUID: ~~15 \$\frac{1}{2}\$	TOM OF CASING 15 ; NO DEPTH TO WATER TABLE: ~25 R MUD x ; SALT WATER MUD;
LOGGING CREW: C. Carter, V. Gonza VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks burg. ARRIVED ON SITE: Your STANDBY TIME: MA	DEPARTURE TIME: 6:15

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

GF	Vision	,			CALIPER FIELD LOG REV 1.2.PDR
	cal services	M-10DH			PER FIELD LOG
		Boreh	nole*	Procedu	ire ASTM D6167-97(2004)
SITE*:	North Anna		DATE*:	9/17/69	
CLIENT*:	MICTEC		JOB*:	9333	
AUTHOR*:	acurber		PAGE:	PAGE 2 OF 2	
MICROLOG CALIPER F		5772 ♥ OTHER	OTHER 6621	_RG	OTHER
	PROBE OFFSET		2.08M(6.82	ET)	12 IN MAX
	MINUS CASING STICK DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEPT	AT START* AT END*	2.83 3.99 4.80	.)	O GROUND SURFACE
		START	START	END	END
	LOG NAME*	DEPTH*	TIME*	DEPTH*	TIME*
	MIDDICALTESTOS	MV	5:17	NA	5!20pm
	MIODHCALLEDZ	160.9 \$\$	5:33	3.85 \$+	5:44 pm
	MIODHEALTESTON	44	5:50	AN	5:51
			-		
			+		
CALIBRATI	ON PLATE S/N 201	1.069 INI	AS BUILT	0.000 IN	PVC FITTING
-2	FILE NAME	1.968 IN (50 MM)	3.937 IN (100 MM)	8.000 IN (203.2 MM)	4.504 IN (114.4 MM)
AS MEAS.*		1,94	3.92	8,00	4.50
AS MEAS.*		1.96	3.89	7.99	4.51
AS MEAS.					
AS MEAS.					
AS MEAS. AS MEAS.					
NICAS.					
MAINTENA	NCE PERFORMED ON	SITE*:		AW	(N/A if non
EQUIPMEN	T PROBLEMS OR FAIL	JRES*:		NA	(N/A if non
SUGGESTI	ONS, ADDITIONS, CHA	NGES:			
ITE	MS WITH * MUST BE C	OMPLETED. C	OTHER INFO	RMATION IS O	PTIONAL
GEOVision	Geophysical Services	1124 Olympic L	Orive Corona, CA	92881 Ph	(951) 549-1234 Fx (951) 549-1236

BORING SUMMARY LOG REV 1.1a.pdf

M-10Dt Borehole*			DATES	9/17/19 9/18/79	
SITE*: North A CLIENT*: MAC	A Company of the Comp		IOR* 9333	111101, 11.0101	_
AUTHOR*: C. C			PAGE*:	9/17/109, 9/18/09	_
CONTACT:					
2011/101.					-
SOREHOLE CON	NSTRUCTION: CASE	ED	UNCASED	TO	_
		A-1 G A+			
3OREHOLE TOT	AL DEPTH AS DRILL	TH TO BOTTOM OF	CASING 754	19-St	-
DEPTH TO BEDI	TAL DEPTH AS DRILING?: YES_K_ DEP ROCK: ~90 {	+ 10 BOTTOW OF	ONOINO_1-T	 , 	
BOREHOLE FLU	ID: WATER; FR	RESH WATER MUD_	X; SALT W	VATER MUD;	
OGGING CREV	V: C. Carter, V. Gonza	alez		1,1,0	
			a	118114	
			cc 11	118/09	
LOO TYPE*	FILE NAME*	DEDTU DANCE*			Date
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE*	TIMES*	9/17/
ELOG	MIOD HELOGTESPO	- NA	DATE*	TIMES* 3:48-3:49pm	9/17
ELOG ELOG	MIODHELOGUPOZ	- NA - 105.55-36.6 H	DATE*	TIMES*	9/17/
ELOG ELOG	MIODHELOGUPOZ	- NA	DATE* 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm	9/17/
ELOG ELOG	MIODHELOGTESTO? MIODHELOGUPOZ MIODHELOGUPOZ MIODHELTESTO? MIODHELLUPUZ	- NA - 105.55-366 ft 02 2.5-30.0m NA 100.9-3.85ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:02-4:08pm 4:27-4:57pm	9/17
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	- NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG	MIODHELOGTESTO? MIODHELOGUPOZ MIODHELOGUPOZ MIODHELTESTO? MIODHELLUPUZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm	9/17/ 9/17/ 9/17/ 9/17/ 9/17/ 9/17/ 9/18/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	- NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/
ELOG ELOG	MIODHELOGIESTOS MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ MIODHELOGUPOZ	NA - 105.55-36.6 ft 02 2.5-30.0 m NA 100.9-3.85ft NA 99.4-2.8 ft	DATE* 9/16/09 9/16/09 9/16/09 9/16/09 9/16/09	TIMES* 3:48-3:49pm 4:62-4:08pm 4:27-4:57pm 5:17-5:20pm 5:33-5:44pm 5:50-5:51pm	9/17/

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

M-10DH	■ 1 1474 (A.C.) (B.C.) (A.C.) (B.C.)		ELD LOG Rev 1	.1
Borehole*		DUSTIC TELEVIEWER PROCEDU		
TE": North Ann	a		E*: 9/18/09	_
LIENT*: MACTES UTHOR*: C.G. LU	/		9333	
EVIEWER:		PAG	E 1 OF 2	
LVILVVLIA.	(post field work)			
ONTACT:		PHONE: Off Ce	<u> </u>	
ONTACT:		PHONE: Off Ce	II	
RILLER		PHONE: Off Co	i -	
OMPANY:		THONE. OIL GE		
ENERAL SITE COND	ITIONS/LOCATION:			
OLINTY	RANGE:	TOWNSHIP:	SECTION	
OREHOLE CONSTRU	JCTION: CASED	UNCASED X	SECTION:	-
AMETERS AND DEP	TH RANGES: 3.18"	0 TO 201.95t :	. TO	
JRFACE CASING?: \\ EPTH TO BEDROCK: \\ DREHOLE FLUID: WA	PTH AS DRILLED*: YES K DEPTH TO I _ ~ 90 % ATER; FRESH W	BOTTOM OF CASING DEPTH TO WAT	ER TABLE: 125 ft	i
OTHER:EPTH TO BOREHOLE	FILID: 21 FF	TIME SINCE LAS	T CIRCULATION: 9am	
OGGING CREW: CEHICLE(S) USED ANI OBILIZED FROM: FR	Corter V. Go	mzalez DEPARTURE TIM		
ITEMS WITH	* MUST BE COMPLE		MATION IS OPTIONAL	
Vision Geophysical Service	s 1124 Olympic	Drive, Corona, CA 92881	Ph (951) 549-1234 Fx (95.	1) 549-1236

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

SITE*:	Aboth some	VISION HI-RES ACOUS		DATE*:9	118609	
	MACTEC 2*: C. Contex			JOB*: 933	3	
	ER: (post fie	ld work)		_ PAGE 2 OF 2	2	
VAUNIOUI.	COMPRODE	011.455	01/0			
WINCH: MICROLO		5772 K	OYO	OTHER		
	WER* ACOUS	TIC #5174	OTHER_	6641		
SHEAVE'	* COMPROBE	OYO 101	102_X	103	RG	
PROBE T	TILT TEST* 90.66	BRUNTON T	LT* _ 90			
PROBE T	TILT TEST* 24.10	BRUNTON T	ILT* 24		1001111	
	TILT TEST* <u>26.74</u> AZIMUTH TEST* (25.3	BRUNTON TO BRUNTON A	ZIMUTH* 1	AFTER	LOG* yes	-0
ROBE A	ZIMUTH TEST* 217,5	BRUNTON A	ZIMUTH* 2			
ROBE A	AZIMUTH TEST* 152.2	BRUNTON A	ZIMUTH*_[58AFTER	LOG* yus	<u>_</u>
	PROBE OFFSET*		1.44M(4.7	2FT)	U	
	MINUS CASING STI		1.92	_)		
	DEPTH REF. OFFSE DEPTH REF. OFFSE		2.74	REF TO GRO	OUND SURFAC	E
	AFTER SURVEY DE		,06	_ J		
		START	TOTA DT	TEND	Tevin	_
		ISTART	START	END	END	
	LOG NAME*	DEPTH*	TIME	DEPTH *	LINE	_
	LOG NAME*	DEPTH*	Q :.33	2.8H	16:04	
						-
INTEN		99.4 6+			16:04	(N/A if none)
NTEN	MIODHAUUPOZ	99.4 6+			16:04	(N/A if none)
NINTEN	MIODHAUUPOZ	99.4 6+			16:04	(N/A if none)
	NANCE PERFORMED CON FROM PROCEDURE	99.4 £† ON SITE*:	QUIPMENT	2.8H	16:04	
	MIDDHAUUPOZ IANCE PERFORMED C	99.4 £†	QUIPMENT	2.8H	16:04	
	NANCE PERFORMED CON FROM PROCEDURE	99.4 £† ON SITE*:	QUIPMENT ile runn	2.8.H	16:04	
	NANCE PERFORMED CON FROM PROCEDURE	99.4 £† ON SITE*:	QUIPMENT	2.8.H	16:04	
	NANCE PERFORMED CON FROM PROCEDURE	ON SITE*: E (IF ANY) OR E ~2 (If when we stable)	QUIPMENT ile runn lunter.	PROBLEMS OF My the log, and it was	R FAILURES! The who	(N/A if none) low gs 4 hole w/p
	NANCE PERFORMED CON FROM PROCEDURE	99.4 £† ON SITE*:	QUIPMENT	2.8.H	16:04	

BUIDNO SIRMARY LOG REVITABLE

M-30DH	BORING	GEOPHYSICS	S FIELD L	OG SUMMARY
Borehole*			DATE*	9/15/18
	Worth Anna		DATE":	9/15/169 1333 _/ OF_/
CLIENT*:	MACTEC		JOB".	1333
AUTHOR*:	C.Cartex		PAGE .	OF
CONTACT:			PHONE:	
BOREHOLE CON	STRUCTION: CAS	ED	UNCASED	×
DIAMETERS AND	DEPTH RANGES:	3.78" OTO 102.	70	201.7 ft
BOREHOLE TOTAL	AL DEPTH AS DRIL	LED*: 102-15	cc 11/3/09	201.7 ft
SURFACE CASIN	G?: YES X DEF	PTH TO BOTTOM OF	CASING 44.	다; NO
DEPTH TO BEDR	OCK: 45 M			
BOREHOLE FLUI	D: WATER : F	RESH WATER MUD_	K ; SALT W	ATER MUD;
				ordered erves a pre-subrate a testication in the second second second second second second second second second
LOGGING CREW	: C-Corter,	V. Gonzalez		
				25
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE*	TIMES*
ELOGITIFE	M300HELOGIESTOI	NA	9/15/109	3:05-3:07pm
ELOG	M30DHELOGUPI		9115/09	3149-4105pm
P-Suelerity	H30 DH545PDominio		9/15/109	
EL06		75-39.85 ft	9/15/09	4:11 - 4:15
P- Svelocity	M3DAZUSPOOWN	101 14.0-57.0m	9/15/69	4:52- 5:40pm
0.50				
ITEMS	WITH * MUST BE C	OMPLETED. OTHER	RINFORMATIC	ON IS OPTIONAL

GLOVision Geophysical Services 1151 Pomona Road, Unit P. Corona, CA 92882 Ph (951) 549-1234 Ex (951) 549-1236

ELOG FIELD LOG REV 1.1a

geophysical services

		M-30 DH	_ELOG FIE	ELD LOG
	SITE*: No	rth Anna	DATE*:	9/15/09
	AUTHOR*: C.	CONTEN	JOB*:_ PAGE:	1 OF 2
	CONTACT:		PHONE: Of	f Cell
	CONTACT:		PHONE: Of	f Cell
	CONTACT:	11/16-	PHONE: Of	f Cell
	CONTACT:		PHONE: Of	f Cell
	GENERAL SITE	CONDITIONS/LOCATION:		
	BOREHOLE CO DIAMETERS AN BOREHOLE TO	TAL DEPTH AS DRILLED*:	UNCASED X TO 102-14 02-14 cc	SECTION:
	SURFACE CAS DEPTH TO BED BOREHOLE FLI OTHER:	ING?: YES ₹ DEPTH TO BO	DTTOM OF CASI DEPTH TO V TER MUD	WATER TABLE: WA; SALT WATER MUD;
cc Qlishoq	VEHICLE(S) US MOBILIZED FRO ARRIVED ON S	W: C. Carter, V. Gon ED AND MILEAGE: <u>Fredrik</u> DM: 6:15 Deser Fredricksbu ITE: 7:15 am	hal (- th	CC 9/15/09 CC 9/15/09 ETIME: 7115,0000 6:15 am
	ITEMS WIT	TH * MUST BE COMPLETED.	OTHER INFORM	NATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive, Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

					ELOG FIEL	D LOG REV 1.1a
	EVISIO.	n	M - 30 Borehole*	odd ELC	G FIELD	LOG
SITE*: CLIENT*: AUTHOR*:	North Anna Mactee C. Carter		_DATE*: _JOB*: _PAGE:	9/15/69 9333 PAGE 2 OF 2	<u> </u>	1
WINCH: MICROLOGELOG PRO	GGER* 5310 DBE* 5490 V	SILVER X 5772 🔣 OTHER	OTHER	_RG	OTHER_	
SHEAVE*	PROBE LENGTH PLUS YOKE 10.0M (32. MINUS CASING STICK DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEPT	-UP* AT START* AT END*	2.50M(8.20 32.8 1.68 39.92 39.55 3	REF TO GROU	RG	
	LOG NAME* M30DHELOGTESTOI M30DHELOGUPOI M30DHELOGUPOI	START DEPTH* NA 200.45ft 75 ft	START TIME 3:05 3:49 4:11	END DEPTH* NA 39.55 ft 39.85 ft	END TIME 3:07 4:05 4:15	
MAINTENA	ANCE PERFORMED ON	SITE*:		NA	(N/A if none)
EQUIPMEN	NT PROBLEMS OR FAIL	URES*:	^	/A	(N/A if none)
SUGGEST	IONS, ADDITIONS, CHA	NGES:				
ITEMS	S WITH * <u>MUST BE COM</u>	<u>1PLETED</u> . OT			TIONAL	
GEOVision Geo	physical Services 1	124 Olympic Drive,		881 Ph (951)	549-1234 Fx (5	951) 549-1236

SITE*: North	Luna	21.0	DATE	*:	9/15/69
CLIENT*: MACTE	c		JOB*:		9333
SITE*: North CLIENT*: MACTE AUTHOR*: C.Cart	el		PAGE	1 OF	* 5
CONTACT:		PHONE:	Off	Cell_	
CONTACT:		PHONE:	Off	Cell_	
CONTACT:		PHONE:	Off	Cell_	
CONTACT:		PHONE:	Off	Cell_	
			-		
GENERAL SITE COND	OITIONS/LOCATION:				
GENERAL SITE COND	DITIONS/LOCATION:				
GENERAL SITE COND COUNTY: BOREHOLE CONSTRI DIAMETERS AND DEF					
COUNTY:	RANGE: JCTION*: CASED PTH RANGES*: 3.78	TOWNSHIP_ 	UNCA	SED Y	SECTION:
COUNTY:	_RANGE: 	TOWNSHIP	UNCA	SED I	SECTION:TO
COUNTY: BOREHOLE CONSTRI DIAMETERS AND DEF BOREHOLE TOTAL DE SURFACE CASING?: DEPTH TO BEDROCK	RANGE: JCTION*: CASED PTH RANGES*: 3.78 EPTH AS DRILLED*: JA DEPTH T : 45 St	TOWNSHIP 0 TO 201,7 201,7 \$t TO BOTTOM OF	: UNCA 와 ;	ING 4	SECTION:TOTO
COUNTY: BOREHOLE CONSTRU DIAMETERS AND DEF BOREHOLE TOTAL DE SURFACE CASING?: DEPTH TO BEDROCK BOREHOLE FLUID: W. OTHER: DEPTH TO BOREHOL	RANGE: JCTION*: CASED PTH RANGES*: 3.78 EPTH AS DRILLED*: JA DEPTH T : 45 St ATER X; FRESH V	TOWNSHIP OTO 201,7 201,7 St TO BOTTOM OF DEPTH TO V WATER MUD	: UNCA 와 ; CAS WATE	ING 4 ER TAB	SECTION: TO TO No LE: JATER MUD;

Volume 1, Revision 0

JEW
60024
0086 🗶
ND
IME
S:40pm
(N/A if none)
(IV/A II Horie)
(N/A if none)

			SUSPENSION LO		DINOTES
	No-th			DATE*:9/15/09	
CLIENT*:	MACTE	<u> </u>		_JOB*: 9333	
AUTHOR'	: C. Carl			_ PAGE*_3	OFS
	ITEMS V		OMPLETED. OTHER INI	FORMATION IS OPT	IONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS	
METERS	FEET	FILE NO*.	FILE NO*. (if any)	CASING, WATER,	ROCK, ETC
0.5	1.64	T		T	
1.0	3.28				
1.5	4.92				
2.0	6.56				
2.5	8.20				
3.0	9.84				
3.5	11.48				
4.0	13.12				
4.5	14.76				
5.0	16.40				
5.5	18.04				
6.0	19.69				
6.5	21.33				
7.0	22.97				value of the second
7.5	24.61				
8.0	26.25				
8.5	27.89				
9.0	29.53	A CONTRACTOR OF THE PARTY OF TH			
9.5	31.17				
10.0	32.81				
10.5	34.45				
11.0	36.09				
11.5	37.73				
12.0	39.37				
12.5	41.01			1	
13.0	42.65				24. 100 100 100 100 100 100 100 100 100 10
13.5	44.29				
14.0	45.93	001		4152	
14.5	47.57	2			
15.0	49.21	3			
15.5	50.85	4			P1-159.67 5 7 41
16.0	52.49	3			
16.5	54.13	6			
17.0	55.77	7			
17.5	57.41	8			
18.0	59.06	9			
18.5	60.70	10			
19.0	62.34	1)			
19.5	63.98	12			

			JSPENSION LO	OGGING FIELD NO	OTES
SITE*:	North	Inna		DATE*: 9/15/09	
CLIENT*:	MACTE	c ,		JOB*: 9333	
	: C. Car				- 5
			PLETED. OTHER IN	FORMATION IS OPTIONAL	
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS	
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK	ETC
20.5	67.26	14			
21.0	68.90	15			
21.5	70.54	16			-00
22.0	72.18	17			
22.5	73.82	18			
23.0	75.46	19			-
23.5	77.10	20			
24.0	78.74	21			
24.5	80.38	22			
25.0	82.02	2-3			
25.5	83.66	24			
26.0	85.30	25			
26.5	86.94	26			
27.0	88.58	27			
27.5	90.22	28			
28.0	91.86	29			
28.5	93.50	30			10.0
29.0	95.14	31			- P
29.5	96.78	32			
30.0	98.43	33	20/20		3.0
30.5	100.07	34			
31.0	101.71	35			
31.5	103.35	36			
32.0	104.99	37			
32.5	106.63	38			
33.0	108.27	39	A second second		
33.5	109.91	40			
34.0	111.55	4/			
34.5	113.19	42			100
35.0	114.83	43			
35.5	116.47	44			
36.0	118.11	45			
36.5	119.75	46			
37.0	121.39	47			
37.5	123.03	48			
38.0	124.67	49			
38.5	126.31	\$ 50 ch 9/15/69			
39.0	127.95	31			
39.5	129.59	52			

SITE*:	Jorth 1	nna		OGGING FIELD NOTES
CLIENT*:	MACTE	SC .		JOB*: 9333
UTHOR	: C.Cor	ter		PAGE* S OF_ S
			OMPLETED. OTHER IN	FORMATION IS OPTIONAL
EPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS	FEET	FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
40.5	400.07		in all in any	TOAGING, WATER, ROCK, ETC
40.5	132.87	74		
41.0	134.51	55		
41.5	136.15 137.80	54		
42.5	137.80	57		
43.0	141.08	58		
43.5	141.08	59		
44.0	144.36	60		
44.5	146.00	62		
45.0	147.64	63		
45.5	149.28	64		
46.0	150.92	65		
46.5	152.56	66		
47.0	154.20	67		
47.5	155.84	68		
48.0	157.48	69		+
48.5	159.12	70		
49.0	160.76	7)		
49.5	162.40	12		
50.0	164.04	73		
50.5	165.68	74		
51.0	167.32	75		
51.5	168.96	76		
52.0	170.60	77		
52.5	172.24	78		
53.0	173.88	79		
53.5	175.52	80		
54.0	177.17	81		
54.5	178.81	82		
55.0	180.45	83		
55.5	182.09	84		
56.0	183.73	85		
56.5	185.37	86		
57.0	187.01	87		5:40
57.5	188.65			
58.0	190.29			
58.5	191.93			
59.0	193.57			
59.5	195.21			

M-30DH	BORING	GEOPHYSIC	S FIELD L	OG SUMMARY
Borehole*				01 10 0/1/0
SITE*:	North Anna		DATE*:	9/15/109 9/16/109 1333 1 OF_/
CLIENT*:	MACTEC		JOB*:	1333
AUTHOR*:	C.Cartex		. PAGE*:	_/OF/
CONTACT:			PHONE:	
BOREHOLE COM	NSTRUCTION: CAS	ED	UNCASED	×
DIAMETERS AN	D DEPTH RANGES:	3.78" 0 TO 102	.7 87:	TO
BOREHOLE TOT	AL DEPTH AS DRIL	LED*: 102.75		
		PTH TO BOTTOM OF	CASING 44	<u>위</u> ; NO
DEPTH TO BEDF				
BOREHOLE FLU	ID: WATER; F	RESH WATER MUD_	X; SALT W	/ATER MUD;
	Cator	1/ (- 100		
LOGGING CREV	v: C-Corter,	V. Gonzalez		
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE*	TIMES*
ELOB	M3004ELOGTESTO1	AN	9/15/109	3:05-3:07pm
ELOG	M30DHELOGUPH	200.45-39.55 \$+	9115/09	3:49-4:05pm
P-Suchetty		21.71.		1. 11-11.02 bw
7	MSODHSUSPDANNO	The second secon	9/15/109	7. (1-1.05 pm
EL06	M30DH5USPDANINO			4:11 - 4:15
	M30DHELOGUPOL	75-39.85 ft 101 14.0-57.0m	9/15/169 9/15/169	
6606	M30DH700boom	75-39.8 5 ft	9/15/69 9/15/69 9/15/69 9/16/69	4:11 - 4:15
P-Svelocity ATV ATV	M30DH700605 M30DH700601 M30DH50260600	75-39.85 ft 101 14.0-57.0m	9/15/69 9/15/69 9/15/69 9/16/69	4:11 - 4:15 4:52- 5:40pm
P-Svelocity ATV ATV	M30DHELOGUPOZ M30DHAUUPOZ M30DHAUUPOZ M30DHAUUPOZ	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft	9/15/69 9/15/69 9/15/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am
P-Svelocity ATV ATV Caliper	M30DHELOGUPOL M30DHAUUPOl M30DHAUUPOl M30DHAUUPOl M30DHELOGUPOL	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft 55.4-41.8 ft NA 200.1-33.2 ft	9/15/69 9/15/69 9/15/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am 10:05 - 10:08am
P-Svelocity ATV ATV	M30DHELOGUPOZ M30DHAUUPOZ M30DHAUUPOZ M30DHAUUPOZ	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft 55.4-41.8 ft NA 200.1-33.2 ft	9/15/69 9/15/69 9/15/69 9/16/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am 10:05 - 10:08am 10:40 - 10:42
P-Svelocity ATV ATV Calipur Calipur	M30DHELOGUPOL M30DHAUUPOl M30DHAUUPOl M30DHAUUPOl M30DHELOGUPOL	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft 55.4-41.8 ft NA 200.1-33.2 ft	9/15/69 9/15/69 9/15/69 9/16/69 9/16/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am 10:05 - 10:08am 10:40 - 10:42 11:30 - 11:46
P-Svelocity ATV ATV Calipur Calipur	M30DHELOGUPOL M30DHAUUPOl M30DHAUUPOl M30DHAUUPOl M30DHELOGUPOL	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft 55.4-41.8 ft NA 200.1-33.2 ft	9/15/69 9/15/69 9/15/69 9/16/69 9/16/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am 10:05 - 10:08am 10:40 - 10:42 11:30 - 11:46
P-Svelocity ATV ATV Calipur Calipur	M30DHELOGUPOL M30DHAUUPOl M30DHAUUPOl M30DHAUUPOl M30DHELOGUPOL	75-39.85 ft 101 14.0-57.0m 200.2-40.2 ft 55.4-41.8 ft NA 200.1-33.2 ft	9/15/69 9/15/69 9/15/69 9/16/69 9/16/69 9/16/69	4:11 - 4:15 4:52 - 5:40pm 9:09 - 10:01 am 10:05 - 10:08am 10:40 - 10:42 11:30 - 11:46

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GLOCision (reoptivs)cal Services

1351 Pamona Raad, Unit P. Carona, CA 92882 Ph (951) 519-1254 Fy (951) 549-1236

November 3, 2009

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

SITE*: North dyna CLIENT*: MACTEC	DATE*: 9/16/69
AUTHOR*: C. Carreter	JOB*: 9353 PAGE 1 OF 2
REVIEWER: (post field	work)
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER COMPANY:	PHONE: Off Cell
GENERAL SITE CONDITIONS/LOG	CATION
	OATION.
COUNTY:RANG	E:TOWNSHIP:SECTION:
BOREHOLE CONSTRUCTION: CA	ASEDUNCASED X
DIAMETERS AND DEPTH RANGE	S: 3.78 0 TO 201.75 ;, TO
BOREHOLE TOTAL DEPTH AS DR	RILLED*: 201.7 St
SURFACE CASINGS: VESV D	EDTH TO POTTOM OF CARING 47 Lt
SURFACE CASING?: YES V DIEPTH TO BEDROCK: ~42 54	EPTH TO BOTTOM OF CASING 42 \$4; NO
BOREHOLE FLUID: WATER Z	EPTH TO BOTTOM OF CASING 42 \$\frac{42 \$\frac{1}{2} }{1}; NO
OTHER:;	; FRESH WATER MUD; SALT WATER MUD;
OTHER:;	FRESH WATER MUD; SALT WATER MUD;
OTHER:DEPTH TO BOREHOLE FLUID: 2.	FRESH WATER MUD; S St TIME SINCE LAST CIRCULATION: U-A
OTHER: DEPTH TO BOREHOLE FLUID: 2: LOGGING CREW: C. Color VEHICLE(S) USED AND MILEAGE:	TIME SINCE LAST CIRCULATION: NA V. Gonzolez
OTHER: DEPTH TO BOREHOLE FLUID: 2. LOGGING CREW: C. Cort or VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: FLUID: 100	TIME SINCE LAST CIRCULATION: NA V. Gonzoles
OTHER: OTHER: DEPTH TO BOREHOLE FLUID: 2: LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Franklish	TIME SINCE LAST CIRCULATION: NA V. Gonzolez DEPARTURE TIME: 6:15
OTHER: DEPTH TO BOREHOLE FLUID: 2. LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: FLUID: 100	TIME SINCE LAST CIRCULATION: NA V. Gonzolez
OTHER: DEPTH TO BOREHOLE FLUID: 2. OGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks by ARRIVED ON SITE: 7:05 STANDBY TIME: DVS	TIME SINCE LAST CIRCULATION: NA V. Gonzulez DEPARTURE TIME: 6:15 CAUSE:
OTHER: DEPTH TO BOREHOLE FLUID: 2. LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks by ARRIVED ON SITE: 7:45 STANDBY TIME: DV	TIME SINCE LAST CIRCULATION: NA V. Gonzolez DEPARTURE TIME: 6:15
OTHER: DEPTH TO BOREHOLE FLUID: 2. OGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks by ARRIVED ON SITE: 7:05 STANDBY TIME: DVS	TIME SINCE LAST CIRCULATION: NA V. Gonzulez DEPARTURE TIME: 6:15 CAUSE:
OTHER: DEPTH TO BOREHOLE FLUID: 2: LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks by ARRIVED ON SITE: 7:45 STANDBY TIME: DVA	TIME SINCE LAST CIRCULATION: NA V. Gonzalez DEPARTURE TIME: 6:15 CAUSE:
OTHER: OTHER: DEPTH TO BOREHOLE FLUID: 2. LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: FIEDRICLS by ARRIVED ON SITE: 7:55 STANDBY TIME: US	TIME SINCE LAST CIRCULATION: NA V. Gonzulez DEPARTURE TIME: 6:15 CAUSE:
DEPTH TO BOREHOLE FLUID: 2: DEPTH TO BOREHOLE FLUID: 2: LOGGING CREW: C. Cort of VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: Fredricks by ARRIVED ON SITE: 7:05 STANDBY TIME: 100	TIME SINCE LAST CIRCULATION: NA V. Gonzalez DEPARTURE TIME: 6:15 CAUSE:

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

	CLIENT*:	MICTER C. Cartel R: (post field	d work)		DATE*: 9/ JOB*: ?3 PAGE 2 OF 2	33	
		VER* ACOUST	5772 X FIC #5174 **-	OYOOYOOTHER102_ 	6641	RG	
9/16/19	PROBE AZ PROBE AZ	LI 1 LOI	BRUNTON T BRUNTON A BRUNTON A	ILT* <u>28+</u> ILT* <u>13</u> ZIMUTH* <u>2</u> ' ZIMUTH* <u>14</u>	81 10 cc 91	LOG* yes	4
		PROBE OFFSET* MINUS CASING STIG DEPTH REF. OFFSE DEPTH REF. OFFSE AFTER SURVEY DE	T AT START* T AT END*	1.44M(4.7 1.08 3.64 3.62 .02	-) ·	OUND SURFAC	CE
		M36DHAUUPOI M36DHAUUPOI	START DEPTH* 200.2 SS.Y	START TIME 9:09 LU:05	END DEPTH * 40.2 41.8	END TIME 10:0] 10:08	
					_	-	-
	MAINTEN	ANCE PERFORMED C	DN SITE*:		MA.		(N/A if none)
		ANCE PERFORMED C				DR FAILURES	

CALIPER FIELD LOG REV 1.2.PDF

M-30DH

CALIPER FIELD LOG

Procedure ASTM D6167-97(2004)

SITE*: North Anna	DATE*: 9/16/2009
CLIENT*: Mactec	JOB*: 133 3
AUTHOR*: V. Contales	
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER COMPANY:	PHONE: Off Cell
GENERAL SITE CONDITIONS/	LOCATION:
COUNTY:RA BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RAN	NGE:TOWNSHIP:SECTION: CASEDUNCASED IGES: 3.78* 0 TO 2017 (+ ;,TO
COUNTY:RA BOREHOLE CONSTRUCTION: DIAMETERS AND DEPTH RAN BOREHOLE TOTAL DEPTH AS	NGE:TOWNSHIP:SECTION: CASEDUNCASED IGES: 3.78° 0 TO 201.7 f+ ;,TO B DRILLED*:
BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES x DEPTH TO BEDROCK: \(\nu \) 42 BOREHOLE FLUID: WATER \(\nu \)	
BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES x DEPTH TO BEDROCK: ~421 BOREHOLE FLUID: WATER X OTHER:	DRILLED*: 201.7f+ DEPTH TO BOTTOM OF CASING 42FF; NO
BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES X DEPTH TO BEDROCK: YUZ 1 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID	DEPTH TO BOTTOM OF CASING 42 FT; NO DEPTH TO BOTTOM OF CASING 42 FT; NO DEPTH TO WATER TABLE: WA SET TIME SINCE LAST CIRCULATION: N/A
BOREHOLE TOTAL DEPTH AS SURFACE CASING?: YES X DEPTH TO BEDROCK: YES BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID	DEPTH TO BOTTOM OF CASING 42 FT; NO DEPTH TO BOTTOM OF CASING 42 FT; NO TO DEPTH TO WATER TABLE: 44 FRESH WATER MUD; SALT WATER MUD; 1. 25 FT TIME SINCE LAST CIRCULATION: 11/4 1. 26 C. Carter 1. 36 C. Carter 1. 37 C. Carter 1. 38 C. Carter 1. 48 C.

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

geopnys	ical services	M -30DH		CALIF	PER FIELD
		Boreh	nole*	- Procedu	re ASTM D6167-9
TE*:	North Anna		DATE*:	9/16/2009	
JENT*:	Mactec.		JOB*:	9333	
THOR'	V. Gonzalez		_PAGE:	PAGE 2 OF 2	
	COMPROBE GGER* 5310 PROBE* 5368	SILVER X 5772 X OTHER	OYO OTHER	RG_ Lb21- Ke 9/14/09	OTHER
	COMPROBE	OYO 101		03	RG
	PROBE OFFSET MINUS CASING STICK DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEPT	AT START* AT END*	2.08M(6.82 1.08 FT 5.74 FT 5.70 FT	j	12 IN MAX
		OTABT			
	LOG NAME*	START DEPTH*	START TIME*	END DEPTH*	END TIME*
	M30DH CALUPOL	200.1	11:30	33.20 FF	1),46
	M30 DH CALTESTOS	N/A	10:40	N/#	10:42
		N/A			12:01
LIBRAT	ION PLATE S/N 201 [AS BUILT		PVC FITTING
	50.511115	1.968 IN	3.937 IN	8.000 IN	4.504 IN
MEAS.	FILE NAME	(50 MM)	(100 MM)	(203.2 MM)	(114.4 MM)
MEAS.*	TO CHO IN CHIO 102 OT	2.00	3.96	8.02	4.55
MEAS.	100102	2.00	2.12	8.03	4.56
MEAS.					
EAS.					
IEAS.					
TENA	NCE PERFORMED ON S	SITE*:	NA		
PMEN	IT PROBLEMS OR FAILU	JRES*:	N/A		
GESTI	ONS, ADDITIONS, CHAN	IGES:			
ITE	MS WITH * MUST BE CO	OMPLETED C	THER INFO	RMATION IS O	PTIONAL
	MS WITH * MUST BE CO	OMPLETED. C			PTIONAL

BORING SUMMARY LOG REV 1.1a.pdf

M-303H	BORING	GEOPHYSIC	S FIELD L	OG SUMMARY
Borehole*				01-1-9
SITE*: North	-		_ DATE*:	9/17/09
CLIENT*: MAC			_JOB*: 9333	_/ OF/
AUTHOR*: C. C	Carter	-	PAGE*:	/ OF/
CONTACT:	r ë		PHONE:	
BOREHOLE COI	NSTRUCTION: CAS	ED	UNCASED	
DIAMETERS AN	D DEPTH RANGES:	3.18" OTO 201	.7 !!	TO
BOREHOLE TO	TAL DEPTH AS DRIL	LED*: 201.74		
SURFACE CASI	NG?: YES K DEF	ТН ТО ВОТТОМ ОБ	CASING 7 Ft	; NO
DEPTH TO BEDI	ROCK: ~42	ts.	_	
BOREHOLE FLU	JID: WATER; F	RESH WATER MUD	X ; SALT W.	ATER MUD;
LOGGING CREV	V: C. Carter, V. Gonz	alez	_	
	c alaba			
LOG TYPE*	FILE NAME*	DEPTH RANGE*	DATE*	TIMES*
6206	ZM30DHELOGIE		9/17/09	8:34 - 8:35am
6206		65.4 - 34.7 64	9/17/09	9:17 - 9:20 am
P-Svelocity	M30DHSUSPDOWN	102 2.5-16.0m	9/17/09	9:35-9:52am
ATV	M300HAUUPO3		9/17/09	10:26-10:38cm
Caliper	M30 DHCALTESTO		9/17/69	11:00-11:03 am
Caliper	MODALALTESTO	10000000	9117109	11:34 -11:36 am
Caliper	M300HCALUPOZ	50.7-3.3 5+	9/17/19	11:20 -11:26am
		Automorphic Company		
ITEMS	WITH * MUST BE C	COMPLETED. OTHE	R INFORMATIC	N IS OPTIONAL

Ph (951) 549-1234 Fx (951) 549-1236

GEOVision Geophysical Services

1151 Pomona Road, Unit P, Corona, CA 92882

ELOG FIELD LOG REV 1.1a

geophysical services

	M-30DH	ELOG FIEL	D LOG
SITE*: North	N Anna TEC	DATE*: 9	117/09
AUTHOR*: C. Can		PAGE: 10	DF 2
CONTACT:		PHONE: Off C	Cell
CONTACT:		PHONE: Off C	Cell
CONTACT:		PHONE: Off C	cell
CONTACT:COMPANY:		PHONE: Off C	cell
GENERAL SITE CO	NDITIONS/LOCATION:_		
BOREHOLE TOTAL SURFACE CASING? DEPTH TO BEDROO	DEPTH AS DRILLED*:_ P: YES メ DEPTH TO CK: 42 年 WATER ; FRESH	BOTTOM OF CASING	7 ft; NO
DEPTH TO BOREHO	DLE FLUID: ~2 FT	TIME SINCE LA	ST CIRCULATION: Pam
STANDBY TIME:	Fredricks burg	Gonzalez DEPARTURE TO CAUSE:	IME: 6:15 am
TIEMS WITH	WOST BE COMPLETED	. OTHER INFORMATI	ON IS OPTIONAL
EOVision Geophysical Serv	rices 1124 Olympic	Drive, Corona, CA 92881	Ph (951) 549-1234 Fx (951) 549-1236

		ELOG F	ELD LOG REV 1.1a
GE Vision geophysical services	M-300H Borehole*	ELOG FIEL	D LOG
SITE*: North Annoc CLIENT*: MACTEC AUTHOR*: C. Cortor	JOB*: 933	769 33 20F2	=
ELOG PROBE* 5490 V OTHER	OYO RG NOTHER 102 102 103 103 103 103 103 103 103 103 103 103	OTHER_	
PROBE LENGTH PLUS YOKE 10.0M (32.8 FT)* MINUS CASING STICK-UP* DEPTH REF. OFFSET AT START* DEPTH REF. OFFSET AT END* AFTER SURVEY DEPTH ERROR*	37.75	TO GROUND SURFAC	EE
LOG NAME* DEPTHY M30DHELOGUEOS M30DHELOGUEOS G5.4 \$	* TIME DE	END END TIME JA 8:35 au	
MAINTENANCE PERFORMED ON SITE*:	a	/ 1	(N/A if none)
EQUIPMENT PROBLEMS OR FAILURES*:	A.u		(N/A if none)
SUGGESTIONS, ADDITIONS, CHANGES:			
ITEMS WITH * <u>MUST BE COMPLETED</u> . (OTHER INFORMATION	I IS OPTIONAL	
GEOVision Geophysical Services 1124 Olympic Dr.	rive, Corona, CA 92881	Ph (951) 549-1234 Fx (951) 549-1236

P-S FIELD LOG REV V1.4

	North Anna		DATE	*.	9/17/19
CLIENT*:	MACTEC		JOB*:		9333
AUTHOR*:	North Anna MACTEC		PAGE	1 OF	* 3
CONTACT:		PHONE:	Off	Cell_	
CONTACT:		PHONE:	Off	Cell_	
CONTACT:	-	PHONE:	Off	Cell_	
	SITE CONDITIONS/LOCA	TION			
COUNTY:	RANGE:	TOWNSHIP	:	5	SECTION:
COUNTY:	RANGE:RONSTRUCTION*: CAS	TOWNSHIP	UNCA	SED	SECTION:
COUNTY: BOREHOLE DIAMETER:	RANGE: CONSTRUCTION*: CASS AND DEPTH RANGES*:	TOWNSHIP. 3.18" 0 TO 201.7	UNCA	SED	SECTION:
	RANGE: CONSTRUCTION*: CAS S AND DEPTH RANGES*: TOTAL DEPTH AS DRIL				
SURFACE (DEPTH TO	CASING?: 42 et BEDROCK: 42 et	EPTH TO BOTTOM OF	CAS WATE	ING_7	1 \$; NO
SURFACE (DEPTH TO BOREHOLE	CASING?: 42 & D BEDROCK: 42 & FLUID: WATER; FF	EPTH TO BOTTOM OF	CAS WATE	ING_7	1 \$; NO
SURFACE (DEPTH TO BOREHOLE OTHER:	CASING?: gra D BEDROCK: 42 et EFLUID: WATER; FF	EPTH TO BOTTOM OF DEPTH TO V RESH WATER MUD	CAS	ING_7 R TAB ALT W	LE: ~25.
SURFACE (DEPTH TO BOREHOLE OTHER:	CASING?: 42 & D BEDROCK: 42 & FLUID: WATER; FF	EPTH TO BOTTOM OF DEPTH TO V RESH WATER MUD	CAS	ING_7 R TAB ALT W	LE: ~25.
SURFACE (DEPTH TO BOREHOLE OTHER)	CASING?: gra D BEDROCK: 42 et EFLUID: WATER; FF	EPTH TO BOTTOM OF DEPTH TO VERESH WATER MUD	CAS WATE	ING_T R TAB ALT W	LE: -25.4 VATER MUD; ULATION: 9am

GE Vision
geophysical services

P-S FIELD LOG REV V1.4

M-306H P-S SUSPENSION	1 AETO	CITY FIE	LD LOG	REV 1.4
Borehole . CORRESPONDING P-S SUSP	ENSION PRO	CEDURE REV		_
SITE*: North Inna		_DATE*:	9/17/0	7
CLIENT*: MACTEC		_JOB*:	9333	
AUTHOR*: C-Carter		PAGE 2 OF	* 3	_
	nzalez		, ,	
MOBILIZED FROM: Fredricks bing	DEPART	RE TIME:	5:15	
ARRIVED ON SITE: 7am 0	_			
STANDBY TIME:	_CAUSE:			
LOGGING STARTED: 9:35 am	LOGGING	COMPLETE	D: 9:52	am
DEPTH REF. OFFSET AT START* (,48 M	GREY 19029 26066 28068 102 102 100 NOT APPI	OYO RG 11001 28072 2	RG 160023 23053 2M RG 0)	OTH16002430086 &
	START	START	END	END
LOG NAME*	DEPTH*		DEPTH *	TIME
M30DH5USPDOWNOZ	2.5 m	9:35am	16m	9:52 am
MAINTENANCE PERFORMED ON SITE*:		NA		(N/A if none)
EQUIPMENT PROBLEMS OR FAILURES*:		NA		(N/A if none)
DEVIATIONS FROM TEST PLAN*:		MY		(N/A if none)
ITEMS WITH * MUST BE COMPLETE	ED. OTHER	R INFORMAT	ION IS OPT	TIONAL

	eorth			OGGING FIELD NOTE
	MACT			JOB*: 9333
ALITHOR	: (.Co	Her		PAGE* 3 OF 3
TOTTOR	ITEMS	WITH * MUST BE C	OMPLETED. OTHER IN	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETG
		TILL NO .	111221101 (11311)/	
0.5	1.64			
1.0	3.28			
1.5	4.92			
2.0	6.56	10.00		9:35
2.5	8.20	200		1 132
3.0	9.84	201		
4.0	13.12	202		
4.0	14.76	204		
5.0	16.40	205		
5.5	18.04	206		
6.0	19.69	207		
6.5	21.33	208		
7.0	22.97	20.9		
7.5	24.61	210		
8.0	26.25	211		
8.5	27.89	212		
9.0	29.53	213		
9.5	31.17	214		
10.0	32.81	215		
10.5	34.45	216		
11.0	36.09	217		
11.5	37.73	218		,
12.0	39.37	219		
12.5	41.01	270		
13.0	42.65	221		
13.5	44.29	222		
14.0	45.93	223		
14.5	47.57	224		
15.0	49.21	225		
15.5	50.85 52.49	227		9152
16.0				7132
16.5 17.0	54.13 55.77			
17.5	57.41			
18.0	59.06			
18.5	60.70			
19.0	62.34	1		
19.5	63.98			
20.0	65.62			

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

	OVISION HI-RES ACOUSTIC TELEVIEWER PROCEDURE V1.0	
SITE*: North Anna		
CLIENT*: MICTEC AUTHOR*: C.Carter	JOB*: <u>9333</u> PAGE 1 OF 2	
REVIEWER: (post fi		
CONTACT:	PHONE: Off Cell	
CONTACT:	PHONE: Off Cell	
DRILLER	PHONE: Off Cell	
COMPANY:	THORE. OF OUR	
SENERAL SITE CONDITIONS	/LOCATION:	
COUNTY: RA	ANGE: TOWNSHIP: SECTION	N:
BOREHOLE CONSTRUCTION	: CASED UNCASED X	
		то
BOREHOLE TOTAL DEPTH AS	S DRILLED* 201.7 Et	
SOUTH TO THE DET THE	O DI VIELED I	
		<u>5 \$t</u>
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER:	DEPTH TO BOTTOM OF CASING 7 £+; NO	
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER:		
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER_ OTHER: DEPTH TO BOREHOLE FLUID	DEPTH TO BOTTOM OF CASING 7 £+; NO	
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID LOGGING CREW: C. Can VEHICLE(S) USED AND MILE	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MUD D: 5 ft TIME SINCE LAST CIRCULATION HER V. Gonzalia AGE:	
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Conversed C	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CLS burg DEPARTURE TIME: 6:15 as	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1am	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CLS burg DEPARTURE TIME: 6:15 as	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1am	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CLS burg DEPARTURE TIME: 6:15 as	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1 am STANDBY TIME: VA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CLS burg DEPARTURE TIME: 6:15 as	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1 am STANDBY TIME: VA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CAUSE: CAUSE:	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1 am STANDBY TIME: VA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CAUSE: CAUSE:	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID LOGGING CREW: C. Can VEHICLE(S) USED AND MILE, MOBILIZED FROM: Fredry ARRIVED ON SITE: 1 am STANDBY TIME: NA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CAUSE: CAUSE:	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can VEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry ARRIVED ON SITE: 1 am STANDBY TIME: VA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: ~2 ; FRESH WATER MUD \(\); SALT WATER MU D: 5 ft TIME SINCE LAST CIRCULATION AGE: CAUSE: CAUSE:	N: Pam
SURFACE CASING?: YES X DEPTH TO BEDROCK: ~42 BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID OGGING CREW: C. Can MEHICLE(S) USED AND MILE MOBILIZED FROM: Fredry STANDBY TIME: NA	DEPTH TO BOTTOM OF CASING 7 ft; NO DEPTH TO WATER TABLE: 22; FRESH WATER MUD 2; SALT	N: Pam

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

~ TT.
GE Vision
geophysical services

	Worth Inna			DATE*: 9 JOB*: 93	11769	
	MACTEC					
	ER: (post fie	old work)		PAGE 2 OF 2	2	
VE VIEVV	(post ne	eid WOIK)				
	COMPROBE		_OYO	OTHER		
	OGGER* 5310			((1)		
	WER* ACOUS * COMPROBE		OTHER_6	400	RG	
JILAVL	COMPROBE	010 101		103	RG	
PROBE T	TILT TEST* 91.4	1 BRUNTON TI	LT* 91			
	TILT TEST* 17.38	BRUNTON TII	LT* 17			
PROBE T		BRUNTON TII		AFTER	LOG* yes	•3
KORF A	AZIMUTH TEST* 315.3 AZIMUTH TEST* 249.	BRUNTON AZ	ZIMUTH* 37	<u> </u>	U	
ROBE A	AZIMUTH TEST* 244.	SO BRUNTON AZ	IMUTH* 29		LOG* yes	
NODE /	121WOTTTLOT	TO BROWTON AZ	INIOTH 30	AFIER	LOG gos	-
	PROBE OFFSET*	1000	1.44M(4.72	FT)		1
	MINUS CASING ST	ICK-LID*	3.35)′		
	MINTO ONO OT	ICK-OF	1.77			
	DEPTH REF. OFFS	ET AT START*	1.37	REF TO GRO	OUND SURFACE	
	DEPTH REF. OFFS DEPTH REF. OFFS	ET AT START* ET AT END*		REF TO GRO	OUND SÜRFACE	
	DEPTH REF. OFFS	ET AT START* ET AT END*	1.37	REF TO GRO	OUND SURFACE	
	DEPTH REF. OFFS DEPTH REF. OFFS	ET AT START* ET AT END* EPTH ERROR*	1.37	J		
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END*	1.37 1.37	END	END	
	DEPTH REF. OFFS DEPTH REF. OFFS	ET AT START* ET AT END* EPTH ERROR*	START TIME	END DEPTH *	END TIME	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	1.37 1.37	END DEPTH *	END	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	START TIME	END DEPTH *	END TIME	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	START TIME	END DEPTH *	END TIME	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	START TIME	END DEPTH *	END TIME	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	START TIME	END DEPTH *	END TIME	
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH*	START TIME	END DEPTH *	END TIME	
AINTEN	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.94	START TIME	END DEPTH * \$.9 \$+	END TIME 60:38 am	
AINTEN	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI LOG NAME* M300#400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.94	START TIME	END DEPTH*	END TIME 60:38 am	N/A if nor
AINTEN	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI LOG NAME* M300#400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.94	START TIME	END DEPTH * \$.9 \$+	END TIME 60:38 am	
	LOG NAME* M300H400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	1.37 1.37 START TIME 10:26am	END DEPTH*	END TIME 60:38 am	N/A if nor
	DEPTH REF. OFFS DEPTH REF. OFFS AFTER SURVEY DI LOG NAME* M300#400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	1.37 1.37 START TIME 10:26am	END DEPTH*	END TIME 60:38 am	N/A if nor
	LOG NAME* M300H400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	START TIME 10:26am	END DEPTH*	END TIME 60:38 am	N/A if nor
	LOG NAME* M300H400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	START TIME 10:26am	END DEPTH * \$.9 f+	END TIME 60:38 am	N/A if nor
	LOG NAME* M300H400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	START TIME 10:26am	END DEPTH * \$.9 f+	END TIME 60:38 am	N/A if nor
	LOG NAME* M300H400P03	ET AT START* ET AT END* EPTH ERROR* START DEPTH* 45.944 ON SITE*:	START TIME 10:26am	END DEPTH * \$.9 f+	END TIME 60:38 am	N/A if nor

GE Vision

M-30DH

Borehole*

CALIPER FIELD LOG REV 1.2.PDF

CALIPER FIELD LOG

	Procedure AS IN D6 167-97 (2004)
SITE*: North Anna CLIENT*: Mactec AUTHOR*: V Gonzalez	DATE*: 9/17/2009 JOB*: 9333 PAGE: 10F2
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER COMPANY:	PHONE: Off Cell
GENERAL SITE CONDITIONS/LOCATION:	
COUNTY:RANGE:BOREHOLE CONSTRUCTION: CASEDDIAMETERS AND DEPTH RANGES: 3.78 */ BOREHOLE TOTAL DEPTH AS DRILLED*:	TOWNSHIP:SECTION: UNCASED 0 TO 2017FT;,TO
SURFACE CASING?: YES \ DEPTH TO DEPTH TO BEDROCK: \(\frac{12.54}{2.54} \) BOREHOLE FLUID: WATER \(\frac{1}{2} \); FRESH OTHER:	
LOGGING CREW: V.Conzelez, C. Co VEHICLE(S) USED AND MILEAGÉ: MOBILIZED FROM: Fredericksburg, VA ARRIVED ON SITE: 715	

ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881 Ph (951) 549-1234 Fx (951) 549-1236

GE	Vision				CALIPER FIELD LC	OG REV 1.2.PDF
geophysi	cal services	M-3ap/H Boreh	ala*	2	PER FIELD	
SITE*: CLIENT*: AUTHOR*:	North Anna Mactec Vaon	Boren	_DATE*: _JOB*: _PAGE:	9 17/09 9333 PAGE 2 OF 2	ure ASTM D6167-97	~(2004) —
WINCH: MICROLOG CALIPER F SHEAVE*		SILVER X 5772 X OTHER OYO 101	OYO_ OTHER 662 (102 ★ 10	RG	OTHER	
	PROBE OFFSET MINUS CASING STICK DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEPT	AT START* AT END*	2.08M(6.82 3.35 3.47 3.45 D.DZ	j	12 IN MAX	E
149/17/19	LOG NAME* MOSOD MANDIKALTESTO; MSODH CALLIP & 2. MSODH CALTESTOY	START DEPTH* N/A 50.7 FT N/A	START TIME* 1100 11:20	END DEPTH* N/A 3.3	END TIME*	
ALIBRATI	ON PLATE S/N 201	1.968 IN	AS BUILT 3.937 IN	8.000 IN	PVC FITTING 4.504 IN	4-1
S MEAS.* S MEAS. S MEAS.	M30 DHCALTESTERS M30 DKCAUTESTERY	(50 MM) 1.96 1.95	(100 MM) 3.92 3.92	(203.2 MM) 7.99 8.00	(114.4 MM) 4.51 4.52	
S MEAS.						ja.
IAINTENA	NCE PERFORMED ON S	SITE*:	MA			(N/A if none)
QUIPMEN	T PROBLEMS OR FAILU	JRES*:	W/A			(N/A if none)
UGGESTI	ONS, ADDITIONS, CHAN	IGES:				
ITE	MS WITH * <u>MUST BE CO</u>	<u>OMPLETED</u> . C	THER INFO	RMATION IS C	PTIONAL	
GEOVision	Geophysical Services	1124 Olympic D	rive Corona, CA	92881 Ph	(951) 549-1234 Fx (951	1) 549-1236

APPENDIX F BORING GEOPHYSICAL LOGGING FIELD MEASUREMENT PROCEDURES

Work Instruction No. 9 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

<u> </u>				
1 · · · · · · · · · · · · · · · · · · ·		(8)	8.	-
Issued To: Charles Carter, John Di	ehl, Victor Gonzalez	Robert Stellar (GEOV	ision)	Rev. No0
Issued By: D. Steven Copley, P.E.	9-11-09	Date:Septembe	r 11, 2009	
Valid From: September 14, 2009	9-11 02	To:	September 14, 20	010
Annual management of the second	t months are the the	No security of a security of	Charles than the State Commission of the	
Task Description: Downhole Geophys point resistance, long-and short-normal of results; report preparation				
Applicable Technical Procedures or I	lans, or other refer	ence:		
MACTEC Geotechnical Work Plan (lat	est revision), on file	at the field office.		
Long- and short-normal resistivity, spor Three-arm caliper, ASTM D 6167 - 97	taneous potential, sin	ngle-point resistance, A	STM D 5753 – 05	(attached)
Natural gamma, ASTM D 6274 - 98 (R	eapproved 2004) (att	ached)		
Directional Survey, GeoVision Procedu GeoVision Procedure for OYO P-S Sus				
Geovision Procedure for OTO P-5 Sus	pension seismic ven	ocity Logging (Rev. 1.4	(attached)	
Specific Instructions (note attachments	where necessary):			
MACTEC will perform drilling of the rig will remain at the boring location to				
logging. The geophysical logging shou				
optimize data collection and data quality	y.			
Report Format: Use GeoVision field or report. Include electronic copies of dig			ed). Present result	s of logging in data
Specific Quality Assurance Procedur Noncompliances, per Federal Regulation	es Applicable: QAP on 10CFR21 and Sect	20-1, QAP-Reporting tion 206 of the Energy I	Nuclear-related De Reorganization Act	fects or of 1974.
Hold Points or Witness Points: None	**			
Records: All records generated shall	be considered QA	Records.		
Reviewed and Approved By (Note:	Only one signature	required for issuance):	
Project Manager:		Date:		
Principal: D. Stoven	Copley	Date:	9-11-09	
Site Manager:	. /	Date:		10-
No. of Pages: 66		×	DCN: N	1987 19137
QA Form 24-1 Revised 8/12/2009				Ship The

Page 1 of 66 DCN# NAP135

PROCEDURE FOR USING THE ROBERTSON GEOLOGGING HI-RESOLUTION ACOUSTIC TELEVIEWER (HIRAT)

Reviewed 2/13/06 Reviewed and Approved by MACTOR for use on North Anna 3

Background

The acoustic televiewer is a device for producing a qualitative image of the wall of a borehole. Because it uses ultrasound rather than visible light it is able to work in dirty or opaque borehole fluids, although heavy drilling mud will cause excessive dispersion of the acoustic beam. The picture below shows the sonde's lower nylon section, and one of the bowspring attachments which are used to centralize the sonde in the borehole.

Pulses of ultrasound (0.5 - 1.5MHz) are generated by a piezo-electric resonator. The pulses are transmitted through the oil in which the resonator is immersed, through the wall of the acoustic housing, then propagate through the borehole fluid and are reflected from the wall of the borehole. The reflected energy is picked up by the same transducer, from which is recorded both the amplitude of the returned pulse and the travel-time which have elapsed. Blanking must be applied to prevent the transducer from registering reflections from the inside surface of the acoustic housing. The material of the housing is chosen so that its acoustic properties are similar to the oil which fills it. The housing is not designed to withstand borehole fluid pressures, but has a piston device to allow equalization between inside and outside pressure.

The amplitude of the returned pulse is a function of the acoustic reflectivity of the borehole wall. If the beam strikes a hard borehole wall normally to the surface the energy will be returned to the transducer and a strong return will be recorded. If the formation is softer, then less energy will be reflected. Also, if the surface of the borehole is rough, or effectively missing because of the presence of a fracture or other structure, then energy will be dispersed and a poor return will be recorded.

The travel-time is a simple function of the diameter of the borehole and the velocity of sound in the borehole fluid (typically 1.5Km/sec). An A/D converter monitors the output from the transducer once the blanking period has expired and a comparator is used to detect the peak amplitude during the sampling window.

The coaxially-mounted transducer has a planar radiating surface, but the vibration characteristics are such that the acoustic pulse is emitted as a 'pencil' beam. The emitted beam is deflected by a planar mirror so that it leaves the acoustic housing at right angles to the sonde axis. The mirror is rotated to scan the borehole wall. The ultrasound pulses are synchronized with rotation of the mirror so that up to 360 pulses are emitted in every revolution. Because of the time which must elapse for the two-way transit of the borehole fluid, there is an upper limit upon the number of radial samples that may be acquired from a borehole of a particular radius. In larger boreholes, therefore, it may be necessary to reduce the number of radial samples. The sonde is able to operate at 90, 180 or 360 samples per revolution.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 1

> Page 28 of 66 DCN# NAP135

An image of the borehole wall is produced by moving the sonde along the borehole axis while it is scanning radially. By the same logic as shown above, it can be seen that any horizontal point will be imaged by more than one sweep of the acoustic beam so long as the axial movement of the sonde during one complete sweep is no greater than the beam diameter. An upper limit is therefore imposed upon the logging speed which will be a function of the rotational speed of the transducer, the radial sampling interval and borehole diameter.

Objective

The objective of this procedure is to provide a pseudo "core" of the borehole, and map the orientation and angles of cracks and voids in rock boreholes.

Instrumentation

This procedure is written specifically for the Robertson Geologging High-Resolution Acoustic Televiewer (HiRAT). The required equipment includes:

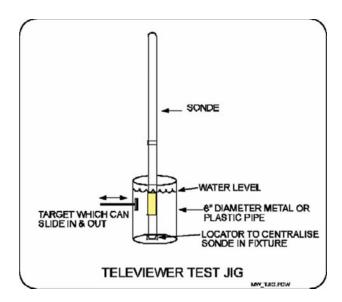
- 1. The Robertson High-Resolution Acoustic Televiewer (HiRAT) sonde with centralizers
- A 4-conductor wire-line winch with cable at least 30m (100ft) longer than the depth of the borehole (RG Smart Winch or equivalent. GEOVision has adapted all our 4-conductor winches)
- 3. A sheave with depth encoder with minimum 500 pulse/revolution
- 4. A Robertson Geologging Micrologger II
- 5. A laptop with Winlogger installed and the following minimum system requirements:
 - · Windows 98SE or above
 - 64M System memory
 - 800x600x24 SVGA Display with DirectX 8.0
 - 500Mhz CPU
 - USB 2.0 connection
- 6. Battery power supply with cables

Environmental Conditions

This tool is designed for fluid-filled boreholes between 67 and 150mm (3-6in) in rock. Since fine cracks are usually not visible in the walls of soil borings, the televiewers add very little information from a soil boring than a simple video. Now if the boring has soil AND rock, televiewer visuals in the soil may still be useful.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 2

Page 29 of 66 DCN# NAP135


> 9 Page 180 of 217 DCN# NAP272 DCN NAP307

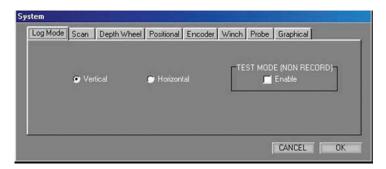
Calibration

The acoustic televiewer uses the variability in reflectance and the travel time to make an image of the borehole wall, mostly resulting from relative differences of materials and the physical characteristics of the wall. Since these are relative measurements, no field calibration of the sonde is required. However, it is important that the same location in the borehole be checked at the start and finish of the logging to make sure that the response or functionality haven't changed during the measurement.

A test fixture may be used to check function of the acoustic televiewer prior to use. This test fixture should comprise a plastic pipe, with a known internal diameter between 3 and 6 inches. This should be filled with water and the sonde stood upright in the fixture. A target made of metal or metal foil is glued on the inside of the container, or optionally on a seal and shaft so that it can be moved in and out on a line radial to the center-line of the pipe. A representation of this is shown in the figure below.

The purpose of this test fixture is to check the ability of the sonde to differentiate between materials of different acoustic reflectances, and different travel times, and to check the calibration of the caliper function of the sensor using the measured diameter of the pipe. However, if calibrated caliper measurements are required, it is recommended that a mechanical 3-arm caliper tool be used for this purpose because it can be calibrated in the field prior to use. The HiRAT will give very accurate results but this procedure does not cover calibration.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 3


Page 30 of 66 DCN# NAP135

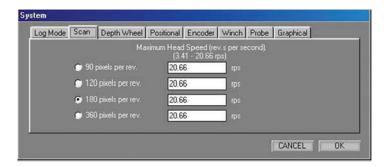
Hi-RAT Field Procedure

Because the logging software is a standalone module, there are a number of settings which must be initialized independently of the WinLogger software. These include the depth measurement subsystem and sonde operating modes. Click on 'System' on the menu bar to show the following dialog boxes:

1.0 Log Mode

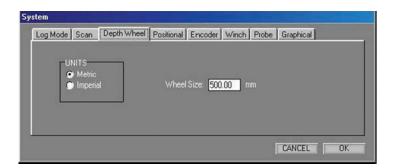
The sonde can operate in three distinct modes:

- Vertical mode is used for boreholes which are drilled from the surface and are deviated at less than 70 degrees from the vertical. Most exploration boreholes will fall into this class. In this mode the image is orientated according to compass directions (magnetic co-ordinates).
- Horizontal mode is used for boreholes which are sub-horizontal so their inclination will probably exceed 70 degrees from the vertical. Boreholes in this class would normally be drilled as part of ground investigations for tunneling and mining, drilling ahead of a drive to determine the nature and extent of fracturing. In this mode the image is orientated according to gravitational coordinates (up/down) since there is no unique point of the image circle which can be orientated to North with any precision.
- Test mode is used to exercise all sonde functions without creating a log. The image will scroll on the screen in the normal fashion, and orientation readouts will be refreshed continuously.


2.0 Scan Parameters

The scan parameters control the radial sampling of the borehole. The values will be retained between logging sessions, so the sonde will be initialized correctly at power-on. There are three parameters in the dialog:

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 4

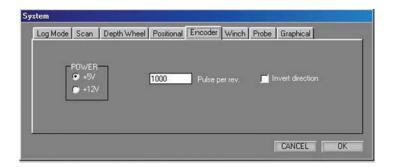

Page 31 of 66 DCN# NAP135

The radial sampling rate can be set to one of 90, 120, 180, 360 samples per revolution. There is a relationship between the logging speed and the radial sampling rate, since the time taken to send the dataset to the surface depends upon its length. The size of the log file is also determined by the radial sampling rate. The probe will always try to use the maximum head speed entered. If limited by a low Baud rate or a large 'window' setting then the probe will reduce its head speed automatically to compensate - see sonde operation section.

3.0 Depth Wheel Configuration

The depth measurement system is dependent upon the combination of depth measurement wheel with its calibrated groove, and the shaft encoder which translates rotation into pulses which are counted by the logging system controller. Two parameters are therefore required: depth wheel circumference and encoder pulse rate. The encoder parameters are covered in a subsequent topic.

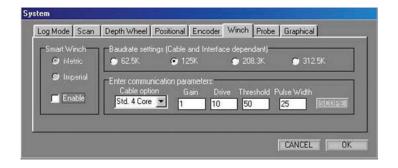
- Select Metric or Imperial depth measurement units from the left-hand pane.
- Type the circumference of the depth measurement wheel into the 'wheel size' box. The standard sizes of GEOVision wheels are 1000mm. If you are measuring in Imperial units (or changing back to metric units), the standard wheel size can be converted automatically by clicking the left mouse button and choosing the appropriate conversion. The size is always specified in units of 1/1000 of the depth unit i.e. millimetres (mm) or millifeet (mft).



Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 5

Page 32 of 66 DCN# NAP135

4.0 Encoder Configuration


The depth measurement system is dependent upon the combination of depth measurement wheel with its calibrated groove, and the shaft encoder which translates rotation into pulses which are counted by the logging system controller. The depth wheel circumference is covered in a previous topic. In order to accommodate a variety of encoders, their operational characteristics can be configured in the software.

- Select supply voltage from the radio buttons in the left-hand pane. The options are 5 Volt and 12 Volt. GEOVision encoders are always specified for 5 Volt operation.
- Type the number of pulses emitted per revolution into the central box. The standard values for all GEOVision winches are 500 pulses/rev.
- The logical direction of movement can be reversed if required to accommodate the directional characteristics (phase lead or lag) of the different encoder types.

5.0 Winch and Cable Configuration

Support for remote control of the RG Smart Winch is provided, and can be enabled by checking the **Enable** control in the left-hand Smart Winch pane. If the Smart Winch control is enabled, it is also necessary to select the measure units in force - select **Metric** or **Imperial** from the radio buttons on offer.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 6

Page 33 of 66 DCN# NAP135

> 9 Page 184 of 217 DCN# NAP272 DCN NAP307

The Baud settings can be chosen to match the quality of the communication channel. The channel will be effected by cable type and length. Typically a Baudrate of 312.5K is used. The remaining controls in the dialog relate to the communications parameters. The operation is entirely compatible with the WinLogger software operation and the values would be expected to be the same as those in force for logging sixchannel type sondes with that software. (Certain probe types may be fitted with a digital interface that does not require set-up and in this case the parameter edit boxes will not appear.)

- Cable Option is used to select the logging cable type which is available on the winch. The options are Not Connected, Std. 4 Core, Differential and Monocable. The only cable types used in GEOVision systems is Std. 4 Core. Select the appropriate type from the drop-down menu box. Note this value can only be changed when the probe power is turned off.
- Gain is related to cable length and uphole signal attenuation. Gain values range from 0-3 and control the amplification applied to the incoming signal. Use the Scope dialog to visualize the incoming signals. Gain should be set so that the signal reaches between 70% and 100% of the height of the display, generally obtained with a setting of 0 for GEOVision winches. If the peak height exceeds this level, clipping will result in artifacts which will be detected erroneously. Click Apply to set the parameters before proceeding to the Scope dialog.
- Threshold is the level at which the incoming signals are detected. Gain and Threshold are related, and can be visualized using the Scope dialog. Set the gain so that the signal reaches between 70% and 100% of the height of the display. Then adjust the threshold so that it is between 50% and 70% of the height of the pulses displayed and clear of any region of 'overshoot' of the positive and negative pulses. This will ensure that peaks are detected and noise is ignored. Generally a setting of 25 is used for GEOVision winches. When the scope dialog is displayed, the position of the mouse is reported as a threshold value to make it simpler to infer the correct setting. The scope option is greyed out when the probe power is turned off.
- **Drive** sets the strength of the downhole signal. It is not possible to visualize the downhole signal, but the effect of insufficient drive is to disable downhole communication, which will result in the commands being ignored by the sonde. Values range from 0 -127, and for GEOVision winches will be around 10. Increase the drive for longer cables.
- Pulse Width This is the width of the transmitted communication pulses in 100nS steps. The default is 25 equivalent to 2.5uS. The range is from 8 to 64. The pulse width can be reduced to prevent signal overshoot on short cables. The default value is used in most cases. Note any changes only come into effect during a log. (Note setting too large a pulse width when using the highest Baud rates will automatically be prevented within the probe and the pulse width reduced.)

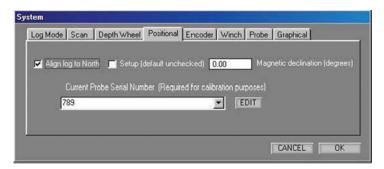
IMPORTANT Please note the effects of changing 'Baud' will not appear until the first new log is made. The setting for 'threshold' may be effected by an increase in the 'Baud' rate please recheck 'threshold' if 'Baud' is altered using the 'Scope' function after making a short test log.

The parameters which are entered will be applied automatically if you close the dialog with OK. The above parameters once set correctly will be remembered by the system and should never need to be altered.

6.0 Probe Configuration


The probe is normally energized at 90 Volts from the surface. However, it may be necessary to compensate for voltage drop on longer cables due to the higher power draw of this sonde. The voltage at

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 7


Page 34 of 66 DCN# NAP135

the surface may be increased in order to deliver 90 Volts at the sonde. Simply type the value into the text box provided. The voltage should be set at 90V for all GEOVision winches. Values outside the indicated range will be rejected.

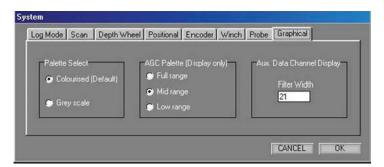
7.0 Positional Configuration

The probe includes a 3-axis orientation package, and is capable of producing a borehole image aligned to geographic North. This is achieved by determining and applying two image rotation parameters:

- Magnetic Declination is used to correct for the difference between Magnetic North and True
 North. The value varies from place to place, so the local value must be inserted here if you wish
 to perform this correction during data collection. This correction may also be made during
 processing. If the value is zero, the log will be referred to Magnetic North.
- Align to North is a check-box used to select image rotation to start at Magnetic North. If in
 addition a value is set for Magnetic Declination (see above) the image will be rotated to start at
 True North. If the box is not checked, the image will not be oriented to geographic co-ordinates,
 but will use the local co-ordinate frame of the sonde (X, Y, Z axis of the orientation module). This
 mode may be used to inspect the inside of magnetic casing, where an orientated image would be
 subjected to random effects caused by the metalwork.
- Set-up mode is selected by checking the Setup box, and is used to determine the required image rotation offset to correct for the angle between the axis of the orientation package and the index mark of the rotating transducer section. In set-up mode the normal sonde azimuth display is modified, and will instead show the 'relative bearing' which is measured between the high side of the borehole and the orientation sensor index. Check Setup, then OK to close the dialog. The icon adjacent to the sonde azimuth readout at the top of the screen is modified with the legend CAL when the system is in set-up mode. The sonde must now be placed in a stand or jig so that it

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 8

Page 35 of 66


DCN# NAP135

DCN# NAP272 DCN NAP307 is inclined at about 20 degrees to the vertical, and adjacent to a target fixed to the jig so that it is directly above the transducer in the vertical plane. Lower the sonde with its attachment into a large bucket of water so that the transducer and target are fully immersed. Start the radial amplitude display, when it will be possible to see the strong signal returning from the target. Rotate the sonde so that the image of the target moves to the top of the display. When the two are coincident, the 'relative bearing' reads out the image rotation offset. This value is fixed for the sonde unless it is disassembled and rebuilt, at which point the procedure MUST be repeated. Please see the additional topic on the Radial Amplitude Display for further details.

The Serial Number list box is used to select the sonde which is in use. When the appropriate
sonde is selected, the image rotation offset determined by the above procedure is selected. To
edit the image offset click the 'Edit' and enter the new offset. Several serial numbers and
associated offsets can be stored and selected as required.

8.0 Graphical

The palette can be changed between a colored and grey scale setting. The changes affect the log screen palette display and are also applied when replaying a log. Selecting Full range in the 'AGC Palette' will cause the software to spread the palette over the full 16bit signal. 'Mid range' will spread the palette over the first quarter of the 16bit range and 'Low range' will spread the palette over the first eighth of the 16 bit range. In most cases the 'Low range' selection is used. Note these settings do not affect the stored log data in any way. The 'Filter Width' is applied to the Natural Gamma trace data and is a simply running average filter. The range of the filter width is from 1 to 50 (x 10 millidepth units ie. mm or mft).

9.0 Sonde Operation

When the operations specified above have been reviewed and the correct settings have been selected, the system is ready for use. The main screen area is divided into 3 horizontal elements. At the top is the depth and orientation readout, together with the scale headings for the scrolling display of unwrapped borehole image.

On the left side of the depth track is the travel time display, with text boxes for sonde inclination, azimuth and head temperature.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 9

Page 36 of 66 DCN# NAP135

> 9 Page 187 of 217 DCN# NAP272 DCN NAP307

On the right side is the display of amplitude and indication of current operating mode. Located in the center above the depth track are the text boxes for depth and cable speed (computed at the surface). The ranges for the 'Natural Gamma' channel overlay (optional) are shown above the Amplitude.

The central area is utilized for the scrolling display of unwrapped borehole data. The display is orientated with the left edge corresponding to North point of the aligned image data (if orientation is selected) according to the outputs of the sonde's orientation package.

The lower area has controls for the winch (applicable to RG Smart Winch only), depth initialization and sonde control.

The winch control area is only displayed when RG SmartWinch operation is enabled - see section 5 - and has four controls. Set Target Speed by typing the required speed into the window and pressing Enter.

Cable movement is initiated by clicking on either the UP or DOWN arrow control.

Cable movement is halted by clicking on the square STOP control.

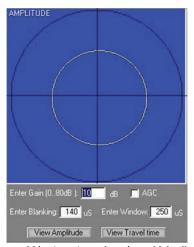
Depth is initialized by typing the required value into the entry box and pressing Enter. The entry box is not available at times when the system is in logging mode and the depth should not be changed by user entry.

Sonde power is applied by clicking on the green-colored 1 button. Power is turned off by clicking on the red-colored 0 button. There is no indicator for the state of the power supply on the desktop, so the external indicators should be observed for this purpose.

To make a log ensure that the Test Mode is disabled - see section 1, Log Mode setting. Click File|New Log and select a filename. Old logs may be overwritten if necessary -TAKE CARE. The header editor will be started automatically. A previous set of header data may be loaded by clicking LOAD and choosing a template.

To start logging, click on the red Record (circle) control. The log data will start to scroll down the screen after a brief pause for synchronization. The messages "DSP2: Detecting data stream" and "Updating probe settings" will be observed at the bottom of the screen during this process. Note that the screen scrolling direction is not affected by the actual direction of movement of the sonde. To cease logging, click on the black STOP control (square). The data should be immediately backed up to a USB drive, CD, or other data storage prior to beginning another log.

If the data display from a probe which is properly connected appears to occupy only half of the track area,



Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 10

Page 37 of 66 DCN# NAP135

> DCN# NAP272 DCN NAP307

with the remainder filled with random colors such as green which are not part of the regular palette, then it is most likely that the downhole data communication is not functioning properly. This symptom is due to the fact that the probe settings cannot be communicated properly, and it is operating in its default power-up mode. If this is the case, the Drive setting of the System|Winch dialog should be increased or decreased accordingly. See section 5 for full details.

To adjust the sonde gain it is necessary to use the Radial Amplitude plot, which is enabled by clicking on the circle with cross-hairs symbol. When the dialog is active a new window will open on top of the unwrapped data display. In this display, the data is presented as a 'polar' plot. Press the 'View Amplitude' button to display the amplitude plot. This plot shows amplitude increasing towards the outside of the circle and the compass direction following the sweep of the transducer. The line indicating the data is drawn in the regular palette, so that high amplitudes are drawn in white and low amplitudes in black/brown. The picture here shows the image of the inside of a cylinder.

If the data is concentrated in a small circle at the center, the gain is too low and should be increased. If the data is obviously clipped at the outside of the circle, then the gain should be reduced. Type the new gain value into the entry box and press Enter. The ideal

would be to set a gain value which allows the peak values to be displayed without clipping, with the majority of the data around the half-way level. It may also be necessary to adjust the blanking to ensure that internal reflections from the acoustic housing are not detected at the new gain value. This will be apparent in the unwrapped data display as pronounced patterning unrelated to the true target. The AGC option causes the probe to set gain automatically thus preventing signal saturation in most cases. (The gain is varied in 6dB steps

Blanking Period and window length can be set independently. Blanking is set to avoid reflections from the housing of the acoustic transducer or random reflections from a rugose borehole, and window length is set to accommodate the range of borehole radius that might be expected. An error will be indicated if the sum of the blanking period and window length would be greater than 409 microseconds, which is the maximum range of the timer. The default value for the blanking period is 145 microseconds, which is the minimum required for the two-way transit from the transceiver to the outer surface of the acoustic housing. It is not advisable to reduce this value beyond the default setting, although it may be increased for larger boreholes at the rate of 1.5mm of one-way travel per microsecond.

Window Length (sample time) defines the period during which the arrival gate remains open to detect the returned acoustic pulse. The acoustic pulse will travel in water at a speed of approximately 1.5mm per microsecond. The default window length is 150 microseconds, which is equivalent to 225 mm of (two-way) travel in the borehole fluid, or approximately 110mm of borehole diameter. If this is added to the default blanking period, which is equivalent to the outside diameter of the acoustic housing, it can be seen that the default set-up will be correct for boreholes up to 150mm. An error will be indicated if the sum of the blanking period and window length would be greater than 409 microseconds, which is the maximum range of the timer. Choose your window setting to best match the borehole diameter.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 11

Page 38 of 66 DCN# NAP135

> Page 189 of 217 DCN# NAP272 DCN NAP307

Enter Gain (0. 80d8): 10 ds AGC
Enter Blanking: 110 us Enter Window: 200 us

Pressing the 'View Travel time' button changes the display to that shown below:

The unhatched ring between the two cross hatched zones represents the sample window. The width of this ring will vary with window length value. The profile of a cylinder is represented here appearing as a circle in the sample window.

Pressing this button displays the following dialog box:

This box allows you to enable the Natural Gamma option by checking the 'Enable Overlay' check box. The Overlay appears as a trace upon the Amplitude plot. The trace range and color can also be set by

this dialog. The level of filtering can also be altered (see section 8) (note that any displayed trace data is automatically aligned with the acoustic scan data but only when logging up. The Natural Gamma sensor occupies a higher position in the probe so sufficient data has to be prebuffered so that the acoustic data can depth aligned with gamma. The prebuffering results in a delay at the start of a log before correct gamma data appears this is normal.)

Data Analysis and Interpretation

RG-DIP, the manufacturer's image interpretation package, offers manual and automatic feature recognition options. Feature orientations (dip/strike and azimuth) are automatically calculated. Display options include stereographic projections of zone axes, orientation frequency plots and 'synthetic cores' for comparison with real core data. The last option is invaluable for orientating core samples, particularly in the case of incomplete recovery.

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 12

Page 39 of 66 DCN# NAP135

2009 Page 190 of 21 DCN# NAP27 DCN NAP30

Reporting

The final report will include the objective and scope of the survey, location of the boreholes, discussion of instrumentation and procedures in the field and lab. For each borehole there will be a plot showing the dip/strike and azimuth of features. The next page shows an example.

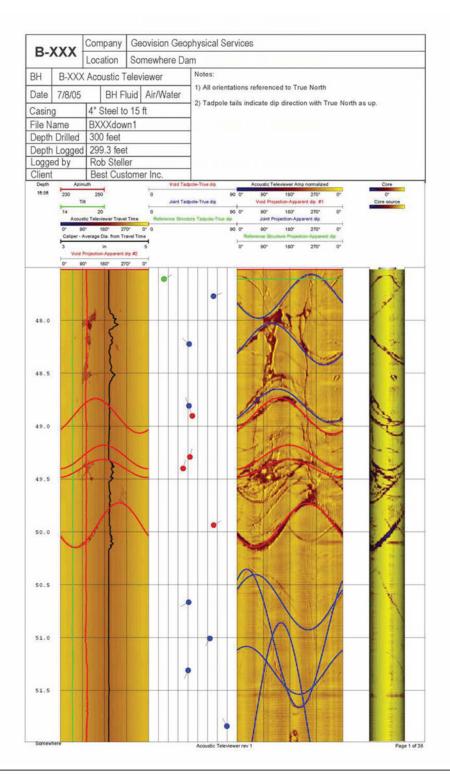
Assumptions and limitations of the results will be discussed. Supporting references will be listed as necessary

Required Field Records

Field log for each borehole showing

- a) Location and description of the borehole
- b) Date of test
- c) Field personnel
- d) Instrumentation
- e) Any deviations from test plan and action taken as a result

This procedure has been reviewed and approved by the undersigned:


Professional Geophysicist	antonyment	Date_	Feb 13. 2006
QA Review	M2-	Date_	Feb 13. 2006

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 13

Page 40 of 66 DCN# NAP135

> DCN# NAP272 DCN NAP307

Hi-RAT Field Procedure Rev 1.0 2-10-06 Page 14 Page 41 of 66

DCN# NAP135

PROCEDURE FOR

OYO P-S SUSPENSION SEISMIC VELOCITY LOGGING

Procedure Reviewed by MACTER and approved for use on North Anna 3 Project Allandi Principal Perfessional 8-17-09

Background

This procedure describes a method for measuring shear and compressional wave velocities in soil and rock. The OYO P-S Suspension Method is applied by generating shear and compressional waves in a borehole using the OYO P-S Suspension Logger borehole tool and measuring the travel time between two receiver geophones or hydrophones located in the same tool.

Objective

The outcome of this procedure is a plot and table of P and S_H wave velocity versus depth for each borehole. Standard analysis is performed on receiver to receiver data. Processed data is presented in report format, and transmitted in Excel, Word or ASCII format.

Instrumentation

- OYO Model 170 Digital Logging Recorder, Robertson Model 3403 Digital Telemetry, or equivalent
- OYO P-S Suspension Logger probe or equivalent, including two sets horizontal and vertical geophones or hydrophones (hereafter referred to simply as "geophones"), seismic source, and power supply for the source and receivers
- 3. Winch and winch controller, with logging cable
- 4. Batteries to operate P-S Logger and winch

The Suspension P-S Logger system, manufactured by OYO Corporation, or the Robertson Digital P-S Suspension Probe with the Robertson Micrologger2 are currently the only commercially available suspension logging systems. As shown in Figure 1, these systems consists of a borehole probe suspended by a cable and a recording/control electronics package on the surface.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave generator (S_H) and compressional-wave generator (P), joined to two biaxial geophones by a flexible isolation cylinder. The separation of the two geophones is one meter, allowing average wave velocity in the region between the geophones to be determined by inversion of the wave travel time between the two geophones. The total length of the probe is

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 1

> Page 42 of 66 DCN# NAP135

approximately 7 meters; the center point of the geophones is approximately 4 meters above the bottom end of the probe.

The probe receives control signals from, and sends the amplified geophone signals to, the instrumentation package on the surface via an armored 4 or 7 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured by a rotary encoder to provide probe depth data.

The entire probe is suspended by the cable and may be centered in the borehole by nylon "whiskers." Therefore, source motion is not coupled directly to the borehole walls; rather, the source motion creates a horizontally propagating pressure wave in the fluid filling the borehole and surrounding the source. This pressure wave produces a horizontal displacement of the soil forming the wall of the borehole. This displacement propagates up and down the borehole wall, in turn causing a pressure wave to be generated in the fluid surrounding the geophones as the soil displacement wave passes their location.

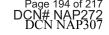
Environmental Conditions

The OYO P-S Suspension Logging Method can be used in either cased or uncased boreholes. For best results, the uncased borehole must be between 10 and 20 cm in diameter, or 4 to 8 inches. A cased borehole may be as small as 3 inches, if properly grouted (see below). The grout annulus may be up to 2 inches for a 4 inch casing. A smaller annulus is preferred for 3 inch casing.

Uncased boreholes are preferred because the effects of the casing and grouting are removed. It is recommended that the borehole be drilled using the rotary mud method. This method does little damage to the borehole wall, and the drilling fluid coats and seals the borehole wall reducing fluid loss and wall collapse. The borehole fluid is required for the logging, and must be well circulated prior to logging.

If the borehole must be cased, the casing must be PVC and properly installed and grouted. Any voids in the grout will cause problems with the data. Likewise, large grout bulbs used to fill cavities will also cause problems. The grout must be set before testing. This means the grouting must take place at least 48 hours before testing.

For borehole casing, applicable preparation procedures are presented in ASTM Standard D4428/D4428M-91 Section 4.1 (see ASTM website for copy).


Calibration

Calibration of the digital recorder is required. Calibration is limited to the timing accuracy of the recorder. GEOVision's "Suspension PS Logger Calibration Procedure" or equivalent should be used. Calibration must be performed on an annual basis.

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 2

Page 43 of 66

Measurement Procedure

The entire probe is lowered into the borehole to a specific measurement depth by the winch. A measurement sequence is then initiated by the operator from the instrumentation package control panel. No further operator intervention is then needed to complete the measurement sequence described below.

The system electronics activates the SH-wave source in one direction and records the output of the two horizontally oriented geophone axes which are situated parallel to the axis of motion of the source. The source is then activated in the opposite direction, and the horizontal output signals are again recorded, producing a SH-wave record of polarity opposite to the previous record. The source is finally actuated in the first direction again, and the responses of the vertical geophone axes to the resultant P-wave are recorded during this sampling.

The data from each geophone during each source activation is recorded as a different channel on the recording system. The seismograph has at least six channels (two simultaneous recording channels), each with at least a 12 bit 1024 sample record. Newer seismographs may have longer record lengths. The recorded data is displayed on a CRT or LCD display as six channels with a common time scale. Data is stored on digital media for further processing. Up to 8 sampling sequences can be stacked (averaged) to improve the signal to noise ratio of the signals.

Review of the data on the display allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and stacking number in order to optimize the quality of the data before recording. Digital media should be verified from time-to-time by opening saved files (at least one) and viewing stored data. This should also be done on transferred or back-up files (see item 2 under required Field Records).

Typical depth spacing for measurements is 1.0 meters, or 3.3 feet. Alternative spacing is 0.5 meter, or 1.6 feet.

Required Field Records

- 1) Field log for each borehole showing
 - a) Borehole identification
 - b) Date of test
 - c) Tester or data recorder
 - d) Description of measurement
 - e) Any deviations from test plan and action taken as a result
- 2) Data must be stored in at least 2 places, such as the laptop hard disk and CDRom, or hard disk and USB flash drive, or uploaded to FTP, prior to leaving the site.

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 3

> Page 44 of 66 DCN# NAP135

- 3) List of record ID numbers (for data on digital media) and corresponding depth
- 4) All removable digital media, such as CDRoms or USB flash drives with backup copies of data on hard disk, must be "labeled" with job number, borehole designation, record ID number range, date, and tester name. For USB flash drives or hard disks on separate computers, the "label" can be a .txt file with this information, or even a PSLOG .sps file with preliminary information stored. File directories should have job number, project name and borehole name.

An example Field Log is attached to this procedure.

Analysis

Following completion of field work, the recorded digital records are processed by computer using the OYO Corporation software program PSLOG and interactively analyzed by an experienced geophysicist to produce plots and tables of P and S_H wave velocity versus depth.

The digital time series records from each depth are transferred to a personal computer for analysis. Figure 2 shows a sample of the data from a single depth. These digital records are analyzed to locate the first minima on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between these arrivals is used to calculate the P-wave velocity for that 1-meter interval. When observable, P-wave arrivals on the horizontal axis records are used to verify the velocities determined from the vertical axis data. In addition, the soil velocity calculated from the travel time from source to first receiver is compared to the velocity derived from the travel time between receivers.

The digital records are studied to establish the presence of clear SH-wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the SH-wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT – IFFT lowpass filtering may be used to remove the higher frequency P-wave signal from the SH-wave signal.

The first maxima are picked for the 'normal' signals and the first minima are picked for the 'reverse' signals. The absolute arrival time of the 'normal' and 'reverse' signals may vary by +/- 0.2 milliseconds, due to differences in actuation time of the solenoid source caused by constant mechanical bias in the source or by borehole inclination. This variation does not affect the velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

In Figure 2, the time difference over the 1-meter interval of 1.70 millisecond is equivalent to a SH-wave velocity of 588 m/sec. Whenever possible, time differences are determined from several phase points on the $S_{\rm H}$ -wave pulse trains to verify the data obtained from the first arrival of the $S_{\rm H}$ -wave pulse. In addition, the soil velocity calculated from the travel time from source to first receiver is compared to the velocity derived from the travel time between receivers.

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 4

Page 45 of 66

Figure 3 is a sample composite plot of the far normal horizontal geophone records for a range of depths. This plot shows the waveforms at each depth, clearly showing the S-wave arrivals. This display format is used during analysis to observe trends in velocity with changing depth.

Once the proper picks are entered in PSLOG, the picks are transferred to an Excel spreadsheet where Vs and Vp are calculated. The spreadsheet allows output for presentation in charts and tables.

Standard analysis is performed on receiver 1 to receiver 2 data, with separate analysis performed on source to receiver data as a quality assurance procedure.

Registered Geophysicist_

Marton

Date 5/20/09

OA Review

Date <u>5/20/09</u>

References:

- "In Situ P and S Wave Velocity Measurement", Ohya, S. 1986. Proceedings of In-Situ '86, Use of In-Situ Tests In Geotechnical Engineering. an ASCE Specialty Conference sponsored by the Geotechnical Engineering Division of ASCE and co-sponsored by the Civil Engineering Dept of Virginia Tech.
- 2. Guidelines for Determining Design Basis Ground Motions, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.
- "Standard test Methods for Crosshole Seismic Testing", ASTM Standard D4428/D4428M-07, approved July 1, 2007.

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 5

> Page 46 of 66 DCN# NAP135

4 or 7-Conductor cable OYO PS-170 or Micrologger2 Logger/Recorder Cable Head Diskette Head Reducer CDR, or USB Or Telemetry Flash drive Winch Unit with Data Upper Geophone Lower Geophone Filter Tube Source Source Driver Weight Overall Length ~ 25 ft

OYO SUSPENSION P-S VELOCITY LOGGING SETUP

Figure 1. Suspension PS logging method setup

GE Vision

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 6

> Page 47 of 66 DCN# NAP135

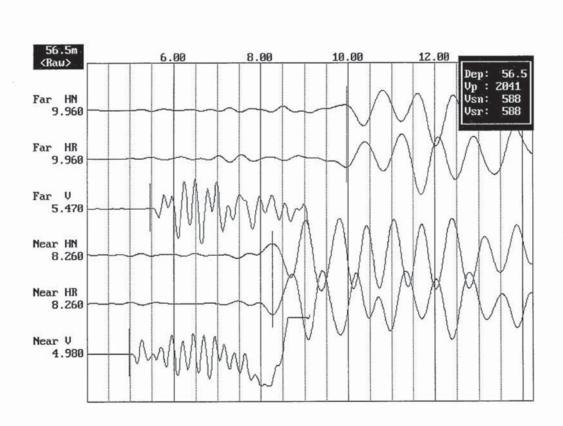


Figure 2. Sample suspension method waveform data showing horizontal normal and reversed (HR and HN), and vertical (V) waveforms received at the near (bottom 3 channels) and far (top 3 channels) geophones. The arrivals in milliseconds for each pick are shown on the left. The box in the upper right corner shows the depth in the borehole and the velocities calculated based on the picks.

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 7

> Page 48 of 66 DCN# NAP135

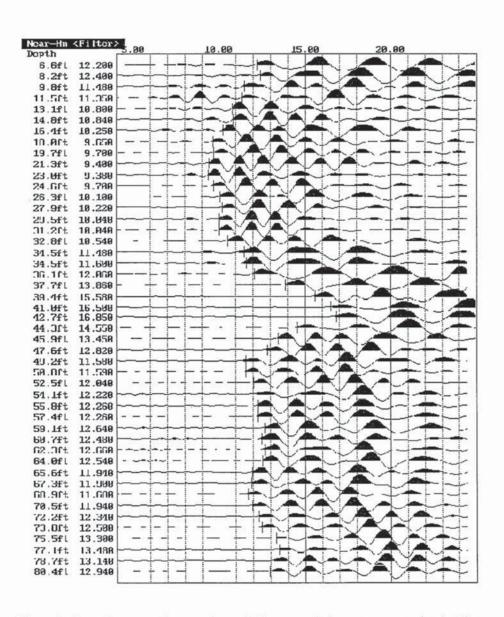


Figure 3. Sample composite waveform plot for normal shear waves received at the near geophone in a single borehole

Procedure for OYO P-S Suspension Seismic Velocity Logging Rev 1.4 5/20/09 Page 8

> Page 49 of 66 DCN# NAP135

P-S FIELD LOG REV V1.4

Borehole CORRESPO	ONDING P-S SUSPENSION PROCEDURE REV 1.4.
SITE*:	DATE*:
CLIENT*:	JOB*:
AUTHOR*:	PAGE 1 OF *
CONTACT:	PHONE: Off Cell
DIRECTIONS TO SITE:	
GENERAL SITE CONDITIONS/	/LOCATION:
BOREHOLE TOTAL DEPTH AS	E:TOWNSHIP:SECTION:
DEPTH TO BEDROCK:	DEPTH TO BOTTOM OF GASING, NO
BOREHOLE FLUID: WATER OTHER:	; FRESH WATER MUD; SALT WATER MUD;
DEPTH TO BOREHOLE FLUID	*:TIME SINCE LAST CIRCULATION:
ITEMS WITH * MUST	T BE COMPLETED. OTHER INFORMATION IS OPTIONAL
SEOVision Geophysical Services	1124 Olympic Drive, Corona, CA 92881 Ph (951) 549-1234 Fx (951) 549-1236
	Page 50 of 66 DCN# NAP135

GE Vision
geophysical services

P-S FIELD LOG REV V1.4

	P-S SUSPENSION PROCEDURE REV 1.4.
SITE*:	DATE*:
CLIENT*: AUTHOR*:	JOB*: PAGE 2 OF *
AOTHOR .	PAGE 2 OI
OGGING CREW*:	
MOBILIZED FROM:	DEPARTURE TIME:
ARRIVED ON SITE:	
STANDBY TIME:	CAUSE:
LOGGING STARTED:	LOGGING COMPLETED:
WINCH COMPROBE	014
LOG NAME*	START START END END DEPTH* TIME TIME
MAINTENANCE PERFORMED ON SIT	E*: (N/A if none
EQUIPMENT PROBLEMS OR FAILURI	ES*: (N/A if none
DEVIATIONS FROM TEST PLAN*:	(N/A if none
200 (100 (100 (100 (100 (100 (100 (100 (
ITEMS WITH * MUST BE CO	MPLETED. OTHER INFORMATION IS OPTIONAL
GEOVician Geophysical Services 1124 O	lympic Drive, Corona, CA 92881 Ph (951) 549-1234 Fx (951) 549-1236

Page 51 of 66 DCN# NAP135

SITE*:				DATE*:
CLIENT*:				JOB*:
AUTHOR'				PAGE* OF
7.0111011		NITH * MUST BE C	OMPLETED. OTHER IN	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
WILTERO	1	ITTLE IVO .	TILL NO . (II ally)	CACINO, WATER, ROCK, ETC
0.5	1.64			
1.0	3.28			
1.5	4.92			
2.0	6.56			
2.5	8.20			
3.0	9.84			
3.5	11.48			
4.0	13.12			
4.5	14.76			
5.0	16.40			
5.5	18.04			
6.0	19.69			
6.5	21.33			
7.0	22.97			
7.5	24.61			
8.0	26.25			
8.5	27.89			
9.0	29.53			
9.5	31.17			
10.0	32.81			
10.5	34.45	1		
11.0	36.09			
11.5	37.73			
12.0	39.37			
12.5	41.01			
13.0	42.65			
13.5	44.29			
14.0	45.93	ļ		
14.5	47.57			
15.0	49.21			
15.5	50.85			
16.0	52.49			
16.5	54.13			
17.0	55.77			
17.5	57.41			22
18.0	59.06			
18.5	60.70			
19.0	62.34			
19.5	63.98 65.62			
20.0	ו חבר חל	12	1	

Page 52 of 66 DCN# NAP135

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

ACOL	JSTIC TELEVIEWER FIE	LD LOG Rev 1.1
20.0	VISION HI-RES ACOUSTIC TELEVIEWER PROCEDURE	E V1.0
SITE*:	DATE*	
CLIENT*:	JOB*:_	
AUTHOR*:(post fie	PAGE	TOF 2
(post lie	id Work)	
CONTACT:	PHONE: Off Cell	
CONTACT:	PHONE: Off Cell	
DRILLER	PHONE: Off Cell	
COMPANY:		
GENERAL SITE CONDITIONS/I	LOCATION:	
	NOT , TOWNSHIP	OFOTION
COUNTY: RA	NGE:TOWNSHIP: CASEDUNCASED; GES:0TO;	SECTION:
DIAMETEDS AND DEDTH DAN	CASED UNCASED	TO
DIAMETERS AND DEFTH RAIN	GES,,,	, 10
BOREHOLE TOTAL DEPTH AS	DRILLED*:	
DEPTH TO BEDROCK:BOREHOLE FLUID: WATER	DEPTH TO BOTTOM OF CASING DEPTH TO WATEI; FRESH WATER MUD; SAL	R TABLE:; T WATER MUD;
LOGGING CREW:_ VEHICLE(S) USED AND MILEA MOBILIZED FROM:_ ARRIVED ON SITE:_ STANDBY TIME:_	DEPARTURE TIM	E;
ITEMS WITH * MUS	T BE COMPLETED. OTHER INFORM	MATION IS OPTIONAL
Approved by MACTEC for	or use on North Anna 3 pro	PRINCIPAL PROFESSIONS 8-20-09
GEOVision Geophysical Services	1124 Olympic Drive, Corona, CA 92881	

Page 53 of 66 DCN# NAP135

ACOUSTIC TELEVIEWER LOG FORM 1.1.pdf

		STIC TELE SION HI-RES ACOUSTIC			OG Rev 1	1.1
SITE*:	501011010			DATE*:		
CLIENT*:_				JOB*:		
AUTHOR*: REVIEWE	R: (post field	work)		PAGE 2 OF 2		
			0)/0	OTUED.		
MICROLO	COMPROBE GGER* 5310 /ER* ACOUSTI COMPROBE	5772	_010	_OTHER		_
TELEVIEW	/ER* ACOUSTI	C #5174	OTHER_	100	20	
SHEAVE*	COMPROBE	OYO 101	102	103	RG	
PROBE TI	LT TEST*	BRUNTON TIL				
PROBE TI	IT TEST*	BRUNTON TIL	T*	AFTER L	-OG*	
PROBE AZ	ZIMUTH TEST*ZIMUTH TEST*	BRUNTON AZ	IMUTH*			
PROBE AZ	ZIMUTH TEST* ZIMUTH TEST*	_BRUNTON AZ _BRUNTON AZ	IMUTH* IMUTH*	AFTER	LOG*	
	PROBE OFFSET* MINUS CASING STIC	:K-UP*	1.44M(4.7	2FT) }		
	DEPTH REF. OFFSET	T AT START*		_	UND SURFACE	
	DEPTH REF. OFFSET AFTER SURVEY DEF			_ J		
	THI TEN GOTTE TOET					
	LOG NAME*	START DEPTH*	START	END DEPTH *	END TIME	
	LOCITATIE	DEI III	THVIL	DEI III	THVIL	
				-		
		1.0175#				<u> </u>
MAINTEN	ANCE PERFORMED O	N SITE*:			(N/A if none)
DEVIATIO	N FROM PROCEDURE	(IE ANY) OR E	OUIPMENT	PROBLEMS OF	R FAII URES*	N/A if none)
	TTTTOM TROOLDONE	. (11 / 11 / 1) - 11 - 1	Q011 141E141	TROBLEMO		
-						
	ITEMS WITH * MUST	RE COMPLETE	D OTHER	INFORMATION	I IS OPTIONAL	
	TI ZING WITH MOOT	DE COMITEETE	D. OTTIER	IIVI OKWATION	D.	Stover Copley
Approv	red by MACTEC for	r use on No	rth Anna	3 project	Princ	Stoner Copley ipal Professions
GEOVision Ge	ophysical Services	1124 Olympic Driv	e, Corona, CA	92881 Ph (95	51) 549-1234 Fx (8-20-09

Page 54 of 66 DCN# NAP135

CALIPER FIELD LOG REV 1.2.PDF

CALIPER FIELD LOG

geophysical services	Borehole* Procedure ASTM D6167-97(2004)
SITE*:	DATE*
CLIENT*	IOD*
AUTHOR*:	PAGE: 1 OF 2
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER	PHONE: Off Cell
COMPANY:	
GENERAL SITE CONDITIONS/LC	OCATION:
COUNTY:RAN BOREHOLE CONSTRUCTION: (DIAMETERS AND DEPTH RANG	GE:TOWNSHIP:SECTION: CASEDUNCASED;,TO
BOREHOLE TOTAL DEPTH AS D	
DEPTH TO BEDROCK: BOREHOLE FLUID: WATER	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE: _; FRESH WATER MUD; SALT WATER MUD;
DEPTH TO BOREHOLE FLUID:	TIME SINCE LAST CIRCULATION:
LOGGING CREW:_ VEHICLE(S) USED AND MILEAG MOBILIZED FROM:_ ARRIVED ON SITE:_ STANDBY TIME:_	DEPARTURE TIME:
ITEMS WITH * <u>MUST BE</u>	E COMPLETED. OTHER INFORMATION IS OPTIONAL
Approved by MACTEC for	Principal Profess

1124 Olympic Drive Corona, CA 92881

Ph (951) 549-1234 Fx (951) 549-1236

Page 55 of 66 DCN# NAP135

GEOVision Geophysical Services

		Boreh	ıole*		PER FIELD Ire ASTM D6167-97(2	
SITE*:			DATE*:			
CLIENT*:			JOB*:			
AUTHOR*:			PAGE:	PAGE 2 OF 2		
WINCH: MICROLOG CALIPER F		SILVER5772	OYO OTHER	RG	OTHER	<u></u> 0
SHEAVE*	COMPROBE	OYO 101	102 1	03	RG	•
	PROBE OFFSET		2.08M(6.82	FT)	12 IN MAX	
	MINUS CASING STIC DEPTH REF. OFFSE DEPTH REF. OFFSE AFTER SURVEY DEF	T AT START* T AT END*		REF TO	O GROUND SURFACE	
	LOG NAME*	START DEPTH*	START TIME*	END DEPTH*	END TIME*	
CALIBRAT	ION PLATE S/N 201	1.968 IN	AS BUILT	141,000,9	PVC FITTING	
	FILE NAME	(50 MM)	(100 MM)	8.000 IN (203.2 MM)	4.504 IN (114.4 MM)	
AS MEAS.						
AS MEAS.	*	-				
AS MEAS.						
AS MEAS.			1			1
AS MEAS.	ANCE PERFORMED O	N SITE*:			(N/A if none)
AS MEAS.	ANCE PERFORMED O					
AS MEAS.	NT PROBLEMS OR FA	AILURES*:			(N/A if none)
AS MEAS. MAINTENA EQUIPMEI					(N/A if none)
AS MEAS. MAINTENA EQUIPMEI SUGGEST	NT PROBLEMS OR FA	HANGES:	OTHER INF	ORMATION IS		N/A if none)
AS MEAS. MAINTENA EQUIPMEI SUGGEST	NT PROBLEMS OR FA	HANGES: ECOMPLETED.			OPTIONAL	Capley Protestrone

ELOG FIELD LOG REV 1.1a

geophysical services
ELOG FIELD LOG
Borehole* SITE*:
CONTACT:PHONE: Off Cell
CONTACT:PHONE: Off Cell
CONTACT:PHONE: Off Cell
CONTACT:PHONE: Off Cell COMPANY:
GENERAL SITE CONDITIONS/LOCATION:
COUNTY: RANGE: TOWNSHIP: SECTION: BOREHOLE CONSTRUCTION: CASED UNCASED DIAMETERS AND DEPTH RANGES: 0 TO ; , TO
BOREHOLE TOTAL DEPTH AS DRILLED*:
SURFACE CASING?: YES DEPTH TO BOTTOM OF CASING; NO DEPTH TO BEDROCK: DEPTH TO WATER TABLE:_ BOREHOLE FLUID: WATER; FRESH WATER MUD; SALT WATER MUD; OTHER:
DEPTH TO BOREHOLE FLUID: TIME SINCE LAST CIRCULATION:
LOGGING CREW: VEHICLE(S) USED AND MILEAGE: MOBILIZED FROM: ARRIVED ON SITE: STANDBY TIME: CAUSE:
ITEMS WITH * MUST BE COMPLETED. OTHER INFORMATION IS OPTIONAL
Approved by MACTEC for use on North Anna 3 project D. Stoven Copley Principal Professional 8-20-09
GEOVision Geophysical Services 1124 Olympic Drive, Corona, CA 92881 Ph (951) 549-1234 Fx (951) 549-1236
Page 57 of 66 DCN# NAP135

	SVisio.	n	Borehole*		_ELO	G FIELD	LOG REV 1.1a
ITE*: LIENT*: UTHOR*:			_DATE*: _JOB*: _PAGE:	PAGE	2 OF 2		-
INCH: CROLOG OG PRO IEAVE*	GER* 5310	SILVER	OYOOTHER	RG		OTHER	-
	PROBE LENGTH PLUS YOKE 10.0M (32. MINUS CASING STICK DEPTH REF. OFFSET A DEPTH REF. OFFSET A AFTER SURVEY DEPT	-UP* AT START* AT END*	2.50M(8.20)	O GROU	ND SURFACE	=
	LOG NAME*	START DEPTH*	START TIME		ND PTH*	END TIME	
INTENA	NCE PERFORMED ON	SITE*:					(N/A if none)
UIPMEN	IT PROBLEMS OR FAIL	URES*:					(N/A if none)
JGGESTI	ONS, ADDITIONS, CHA	NGES:					
pproved	S WITH * <u>MUST BE COM</u> by MACTEC for un physical Services		h Anna 3	proje	ct	D. S Princis	tywer Capl pal Profess -20-09 (951) 549-1236
							nge 58 of 66 CN# NAP135

GE Vision

 $geophysical\ services$

INDUCTION FIELD LOG REV 1.1b.PDF

	INDUCTION FIELD LOG
Borehole	
SITE*:	
AUTHOR*:	PAGE: 1 OF 2
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
CONTACT:	PHONE: Off Cell
DRILLER	PHONE: Off Cell
GENERAL SITE CONDITIONS/L	OCATION:
	IGE:TOWNSHIP:SECTION:CASEDUNCASED;,TO
DEPTH TO BEDROCK: BOREHOLE FLUID: WATER OTHER:	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE:; FRESH WATER MUD; SALT WATER MUD; TIME SINCE LAST CIRCULATION:
ARRIVED ON SITE:	GE: DEPARTURE TIME: CAUSE:
	er use on North Anna 3 project Principal Profession

Page 59 of 66 DCN# NAP135

8-20-09

Ph (951) 549-1234 Fx (951) 549-1236

GEOVision Geophysical Services

1124 Olympic Drive Corona, CA 92881

	cal services					
SITE*: CLIENT*: AUTHOR*:			_DATE*: _JOB*: _PAGE:	PAGE 2 OF 2		
INDUCTIO	GGER* 5310 N PROBE* 3007	SILVER5772OTHER	OYO_ OTHER	RG		
SHEAVE*	COMPROBE	101	102	103	RG	
	PROBE OFFSET MINUS CASING STICK	/ LID*	2.56M(8.4 F	-T)		
	DEPTH REF. OFFSET DEPTH REF. OFFSET AFTER SURVEY DEP	AT START* AT END*			REF TO GROUND SURFACE	
		START	START	END	END	
	LOG NAME*	DEPTH*	TIME*	DEPTH*	TIME*	
TEST RIN			AS BUILT			
AS MEAS.	FILE NAME	0 ms/m	104 ms/m	415 ms/m		
AS MEAS.						
AS MEAS.						
AS MEAS.						
AS MEAS. AS MEAS.					-	
	ANCE PERFORMED ON	I SITE*:			(N/A if none)
EQUIPME	NT PROBLEMS OR FAI	LURES*:			(N/A if none)
SUGGES1	TIONS, ADDITIONS, CH.	ANGES:	-			
IT	EMS WITH * <u>MUST BE</u>	COMPLETED.	OTHER INFO	ORMATION IS		
					D. Stone	n Contey
SUGGEST	TIONS, ADDITIONS, CH.	ANGES:	OTHER INFO	ORMATION IS		

P-S FIELD LOG REV V1.4

	DATE*:
SITE*: CLIENT*:	DATE*: JOB*:
TOTTON .	PAGE 1 OF *
CONTACT:	PHONE: Off Cell
ONTACT:	PHONE: Off Cell
ONTACT:	PHONE: Off Cell
ONTACT:	PHONE: Off Cell
IDECTIONS TO SITE	×
INCOTIONS TO SITE.	
SENEDAL OUTS CONDITIONS	# COATION
ENERAL SITE CONDITIONS	LOCATION:
OUNTY:RANGI	E:TOWNSHIP:SECTION:
OUNTY: RANGE	E: TOWNSHIP: SECTION:
OUNTY:RANGI OREHOLE CONSTRUCTION IAMETERS AND DEPTH RAN	E:TOWNSHIP:SECTION:
OREHOLE TOTAL DEPTH AS	S DRILLED*:
OREHOLE TOTAL DEPTH AS URFACE CASING?:	S DRILLED*: DEPTH TO BOTTOM OF CASING; NO
OREHOLE TOTAL DEPTH AS URFACE CASING?: DEPTH TO BEDROCK:	DEPTH TO BOTTOM OF CASING; NO; NO
OREHOLE TOTAL DEPTH AS SURFACE CASING?: DEPTH TO BEDROCK: OREHOLE FLUID: WATER	S DRILLED*: DEPTH TO BOTTOM OF CASING; NO
OREHOLE TOTAL DEPTH AS URFACE CASING?: EPTH TO BEDROCK: OREHOLE FLUID: WATER_ OTHER:	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE:; FRESH WATER MUD; SALT WATER MUD;
OREHOLE TOTAL DEPTH AS URFACE CASING?: EPTH TO BEDROCK: OREHOLE FLUID: WATER_ OTHER:	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE:
COREHOLE TOTAL DEPTH AS SURFACE CASING?: DEPTH TO BEDROCK: COREHOLE FLUID: WATER_ OTHER: DEPTH TO BOREHOLE FLUID	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE:; FRESH WATER MUD; SALT WATER MUD;
OREHOLE TOTAL DEPTH AS SURFACE CASING?: DEPTH TO BEDROCK: DOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID ITEMS WITH * MUST	DEPTH TO BOTTOM OF CASING; NO
SOREHOLE TOTAL DEPTH AS SURFACE CASING?: DEPTH TO BEDROCK: BOREHOLE FLUID: WATER OTHER: DEPTH TO BOREHOLE FLUID ITEMS WITH * MUST EOVision Geophysical Services	DEPTH TO BOTTOM OF CASING; NO DEPTH TO WATER TABLE:; FRESH WATER MUD; SALT WATER MUD; TIME SINCE LAST CIRCULATION:

P-S FIELD LOG REV V1.4

	P-S SUSPENSI				REV 1.4
Borehole SITE*:	CORRESPONDING P-S S	USPENSION PROC	DATE*:	1.4.	
CLIENT*:			JOB*:		
AUTHOR*:			PAGE 2 OF	*	
	7 F 1 A / +				-
	REW*: FROM:				
	-ROM: SITE:		KE HIVIE:		
	ME: FARTED:			D:	
LOGGING ST	IARTED	LOGGING	COMPLETE	.D	
WINCH INSTRUMEN RECEIVER S ISOLATION T SHEAVE* C MICROLOGG PROBE OFF: MINUS CASI DEPTH REF.	CHANGED BEFORE LOGGIN COMPROBE T* OYO 12004 15014 5/N* 12008 24053 COMPROBE OYO 1 GER* 5310 SET* OYO 2.0M NG STICK-UP* OFFSET AT START* OFFSET AT END* VEY DEPTH ERROR*	GREY 19029 26066 28068 101 102 103 NOT APPL RG 2.5M	OYO RG 11001	RG 160023 23053 2M RG RG	OTH16002430086
LOG NA	ME*	START DEPTH*	START TIME	END DEPTH *	END TIME
MAINTENAN	CE PERFORMED ON SITE*:				(N/A if none)
EQUIPMENT	PROBLEMS OR FAILURES*:				(N/A if none)
DEVIATIONS	FROM TEST PLAN*:				(N/A if none)
					Ç (
GEOVision Geo	PMS WITH * <u>MUST BE COMP</u> physical Services 1124 Olympi py MACTEC for use on N	c Drive, Corona, CA	A 92881 Ph (95	51) 549-1234 F	

				OGGING FIELD NOTES
SITE*:				DATE*:
				JOB*:
NUTHOR'				PAGE*OF
	ITEMS V	VITH * <u>MUST BE C</u>	<u>OMPLETED</u> . OTHER INI	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
IETERS	FEET	FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
0.5	1.64			
1.0	3.28			
1.5	4.92			
2.0	6.56			
2.5	8.20			
3.0	9.84			
3.5	11.48			
4.0	13.12			
4.5	14.76			
5.0	16.40			
5.5	18.04			
6.0	19.69			
6.5	21.33			
7.0	22.97			
7.5	24.61			
8.0	26.25		<u> </u>	
8.5	27.89			
9.0	29.53			
9.5	31.17			
10.0	32.81			
10.5	34.45			
11.0	36.09			
11.5	37.73			
12.0	39.37			
12.5	41.01			
13.0	42.65			
13.5	44.29			
14.0	45.93			
14.5	47.57			
15.0	49.21			
15.5	50.85			
16.0 16.5	52.49			
17.0	54.13 55.77			
17.5	57.41			
18.0	59.06			
18.5	60.70			
19.0	62.34			
19.5	63.98			
20.0	65.62			

D. Stonen Contemporary Page 63 of 66 Principal CN#INAPASSional 8-20-09

SITE*:				DATE*:
				JOB*:
AUTHOR'				JOB*:OFOF
NOTTION	ITEMS W	/ITH * MUST BE C	OMPLETED OTHER INF	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	THE RESIDENCE OF THE PARTY OF T	COMMENTS
METERS		FILE NO*.	FILE NO*. (if any)	CASING, WATER, ROCK, ETC
VILTERO	1 661	ITTLE INO .	ITTLE INO . (IT arry)	CASINO, WATER, ROCK, ETC
20.5	67.26			
21.0	68.90			
21.5	70.54			
22.0	72.18			
22.5	73.82			
23.0	75.46			
23.5	77.10			
24.0	78.74			
24.5	80.38			
25.0	82.02			
25.5	83.66			
26.0	85.30			
26.5	86.94			
27.0	88.58			
27.5	90.22			-
28.0	91.86		*	
28.5	93.50			
29.0	95.14			
29.5	96.78			
30.0	98.43			+
30.5	100.07			
31.0 31.5	101.71			
32.0	103.35			
32.5	106.63			
33.0	108.27			
33.5	109.91			
34.0	111.55			
34.5	113.19			
35.0	114.83			
35.5	116.47			
36.0	118.11			
36.5	119.75			
37.0	121.39			
37.5	123.03			
38.0	124.67			
38.5	126.31			
39.0	127.95			
39.5	129.59			
40.0	131.23			

SITE*:				DATE*:
CLIENT*:				JOB*:
AUTHOR*				PAGE*OF
7.0111011		VITH * MUST BE CO	OMPLETED OTHER INI	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS	1	FILE NO*.	FILE NO*. (if any)	1
IVILILIA	1	ITTLE NO .	I ILL INO . (II ally)	CASING, WATER, ROCK, ETC
40.5	132.87			
41.0	134.51			
41.5	136.15			
42.0	137.80			
42.5	139.44			
43.0	141.08			
43.5	142.72			
44.0	144.36			
44.5	146.00			
45.0	147.64			
45.5	149.28			
46.0	150.92			
46.5	152.56			
47.0	154.20			
47.5	155.84			
48.0	157.48		· ·	
48.5	159.12			
49.0	160.76			
49.5	162.40			
50.0	164.04			
50.5	165.68			
51.0	167.32			
51.5	168.96			
52.0	170.60			
52.5	172.24			
53.0	173.88			
53.5	175.52			
54.0	177.17			
54.5	178.81			
55.0	180.45			
55.5	182.09			
56.0	183.73			
56.5	185.37			
57.0	187.01			
57.5	188.65			
58.0	190.29			
58.5	191.93			
59.0	193.57			
59.5	195.21			
60.0	196.85			

Approved by MACTEC for use on North Anna 3 project

SITE*:	7			DGGING FIELD NOTES DATE*:
				DATE": JOB*: PAGE*OF
AUTHOR'				PAGE* OF
ROTHOR		/ITH * MUST BE CO	OMPLETED OTHER IN	FORMATION IS OPTIONAL
DEPTH	DEPTH	UNFILTERED	FILTERED	COMMENTS
METERS	1	FILE NO*.	FILE NO*. (if any)	1
VIETERS	ILCCI	IFILE NO .	FILE NO . (II any)	CASING, WATER, ROCK, ETC
60.5	198.49			
61.0	200.13			
61.5	201.77			
62.0	203.41			
62.5	205.05			
63.0	206.69			
63.5	208.33			
64.0	209.97			
64.5	211.61			
65.0	213.25			
65.5	214.90			
66.0	216.54			
66.5	218.18			
67.0	219.82			
67.5	221.46			
68.0	223.10		5	
68.5	224.74			
69.0	226.38			
69.5	228.02			
70.0	229.66			
70.5	231.30			
71.0	232.94			
71.5	234.58			
72.0	236.22			
72.5	237.86			
73.0	239.50			
73.5	241.14			
74.0	242.78			
74.5	244.42			
75.0	246.06			
75.5 76.0	247.70			
	249.34			
76.5 77.0	250.98 252.62			
77.5	254.27			
78.0	255.91			
78.5	257.55			
79.0	259.19			
79.5	260.83			
80.0	262.47			

Page 217 of 217 DCN# NAP272 DCN NAP307

FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 16, 2009

VOLUME 1

APPENDIX D
Laboratory Test Data

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

GEOTECHNICAL LABORATORY TEST ASSIGNMENT

Date	9/28/ Assignm		 Rev. 1		Job	Nam	ie	North .	Anna S	S-COLA			Job No	.		25161	-		Reques	ted By			Johr	n Dav	rie				
	IPLE LO						PHY	SICAL	PROP	ERTIES	S	111000000			ST	RENGTH T	EST	S	·		5	COM			CC	ONSC	DLID/	ATIO	N
Boring No.	Sample Type (Tube Sample Length)	Top of Sample/Core Run Depth, Ft	Sample/Run Number	Moisture Content	Unit Weight	Specific Gravity	Atterberg Limits	Grain Anal		Chemical Analysis (pH, chloride, sulphate)	Organic Content		Unconsolidated- Undrained Triaxial	Consolidated-Undrained Triaxial (3-stage w/pore- pressure meas.)	Unconfined Compression (Soil)	Confining Pressures (psi)	Direct Shear	TSRC	Unconfined Compression (rock)	Unconfined Compression (rock) w/stress-strain measurements	Standard (A, B, C, D)	Modified (A, B, C, D)	CBR		Stres		creme	ents ycles	, ksf.
M-10(DH)	Jar	11.7	2	х			х		х																				
M-10(DH)	Jar	19.2	4	х			х		х																				
M-10(DH)	Jar	24.2	5	х			x		х																				
M-10(DH)	Jar	29.2	6	х			x		х																			_	
M-10(DH)	Jar	39.1	8	X.			x		х						:		ļ												
M-10(DH)	Jar	49.1	10	X_				х		ļ							 				_							_	
M-10(DH)	Jar	59.1	12	x				х					 				<u> </u>									_		_	
M-10(DH)	Jar	74.1	15_	х				х													-						\dashv		_
M-10(DH)	Jar	84.1	17	×				х									\vdash												_
M-10(DH)	Core	116.9	R-7	<u> </u>	х												├		X									\dashv	_
M-10(DH)	Core	133.4	R-10		х					-							┼		х									\dashv	
M-10(DH)	Core	153.4	R-15		Х														Х								-	\dashv	
M-10(DH)	Core	177.4	R-20		Х											-	<u> </u>		X									+	
M-10(DH)	Core	196.6	R-24	-	Х								 						х								_	\dashv	
				\vdash		\vdash																		\vdash	\dashv		-	-+	+
				\vdash																							1	\neg	
					-						l						<u> </u>				 						\neg	\dashv	
				<u> </u>																							$\neg \dagger$		

GEOTECHNICAL LABORATORY TEST ASSIGNMENT

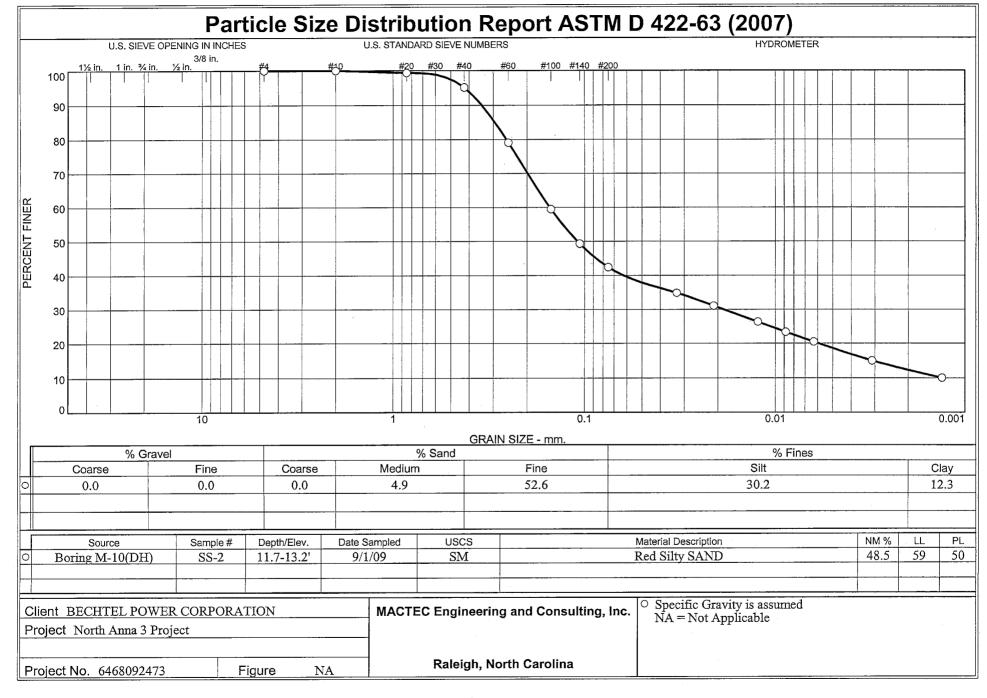
Date	9/28/ Assignm		Rev 1		Job	Nam	ie	North	Anna S	S-COLA	<u>. </u>	-	Job No) .		25161	_		Reques	ted By			Johi	n Dav	/ie					
	IPLE LO						PHY	SICAL	PROP	ERTIES	3				ST	rength t	EST	S				COM			CC	ONS	OLIDA	ATIO	N	
No.	Sample Type (Tube Sample Length)	Top of Sample/Core Run Depth, Ft	Sample/Run Number	Moisture Content	/eight	Specific Gravity	Atterberg Limits	Ana	Sieve + Hydrometer sieve	Chemical Analysis (pH, chloride, sulphate)	Organic Content		Unconsolidated- Undrained Triaxial	Consolidated-Undrained Triaxial (3-stage w/pore- pressure meas.)	Unconfined Compression (Soil)	Confining Pressures (psi)	Direct Shear		Unconfined Compression (rock)	Unconfined Compression (rock) w/stress-strain measurements	Standard (A, B, C, D)	Modified (A, B, C, D)					creme und c		s, ksf	r -
Boring No.	Sampl Sampl	Top of Depth	Sampl	Moist	Unit Weight	Specif	Atterb	Sieve Only	Sieve	Chem (pH, c	Organ		Uncor	Consc Triaxia pressu	Uncor (Soil)	Confir	Direct	TSRC	Uncon (rock)	Uncor (rock) meas	Stand	Modifi	CBR							
M-30(DH)	Jar	8.7	1	x				х				 											ŀ					$ \bot $		
M-30(DH)	Jar_	13.7	3	х				х													ļ	<u> </u>								
M-30(DH)	Jar	25.2	5	х				х													<u> </u>									
M-30(DH)	Jar	35.2	7	x				х														<u> </u>					Ш	_		
M-30(DH)	Core	56.7	R-4		x							 							х				<u> </u>							
M-30(DH)	Core	95.3	R-18		х														×			<u> </u>						_		
M-30(DH)	Core	134.7	R-26		х												<u> </u>		x				ļ							
M-30(DH)	Core	166.7	R-34		х														х					<u> </u>			Ш	_		
M-30(DH)	Core	196.7	R-40		x					<u> </u>					ļ				×				ļ				\sqcup			
																					ļ									
						<u> </u>			ļ									<u> </u>				<u> </u>	<u> </u>							
					ļ												<u> </u>	<u> </u>			<u> </u>	<u> </u>	ļ				Ш			
										ļ					ļ		ļ					<u> </u>		 			Ш	_		
											ļ. <u>.</u>											<u> </u>								
						<u> </u>											-										igwdap	-	-	
			_																											

FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 16, 2009

VOLUME 1

APPENDIX D.1 Soil Index and Particle Size Distribution Tests


Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

Tested By: CS Checked By: MDC DSC 11-12-09

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 11.7-13.2' Sample Number: SS-2

Material Description: Red Silty SAND

Date: 9/1/09 Natural Moisture: 48.5

Liquid Limit: 59 Plastic Limit: 50 USCS Class.: SM

Testing Remarks: Specific Gravity is assumed

NA = Not Applicable

Tested by: CS Checked by: MDC

			(8)	jewe llestibete	i i j	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
242.46	0.00	0.00	#4	0.00	100.0	
			#10	0.00	100.0	
52.63	0.00	0.00	#20	0.35	99.3	
			#40	2.59	95.1	
			#60	11.03	79.0	
			#100	21.36	59.4	
			#140	26.69	49.3	
			#200	30.28	42.5	

Hivoromater Test Date

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =52.62
Hygroscopic moisture correction:
Moist weight and tare = 29.31
Dry weight and tare = 29.06

Tare weight = 15.53 Hygroscopic moisture = 1.8%

Table of composite correction values:

Temp., deg. C: 10.2 29.5 Comp. corr.: -8.0 -4.0

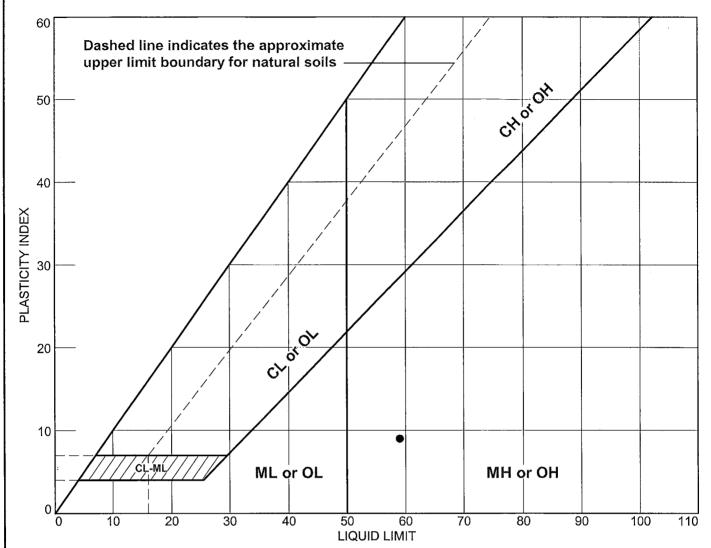
Meniscus correction only = 1.0Specific gravity of solids = 2.700

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164* x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.0	24.0	18.2	0.0133	25.0	12.2	0.0328	34.9
5.00	21.0	22.0	16.2	0.0133	23.0	12.5	0.0210	31.1
15.00	21.0	19.5	13.7	0.0133	20.5	12.9	0.0123	26.3
30.00	20.8	18.0	12.2	0.0133	19.0	13,2	0.0088	23.3
60.00	20.8	16.5	10.7	0.0133	17.5	13.4	0.0063	20.5
250.00	21.6	13.5	7.9	0.0132	14.5	13.9	0.0031	15.0
1440.00	21.1	11.0	5.3	0.0133	12.0	14.3	0.0013	10.1

MACTEC Engineering and Consulting, Inc.


		Gravel			Sa	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	4.9	52.6	57.5	30.2	12.3	42.5

	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
ľ		0.0031	0.0059	0.0186	0.1091	0.1526	0.2564	0,2943	0.3444	0.4232

Fineness
Modulus
0.57

MACTEC Engineering and Consulting, Inc.

				SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring M- 10(DH)	SS-2	11.7-13.2'	48.5	50	59	9	SM

MACTEC Engineering and Consulting, Inc.

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project

Raleigh, North Carolina

Project No.: 6468092473

Figure NA

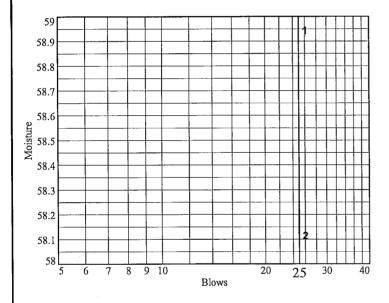
Tested By: CS

Checked By: MDC

DSC 11-12-09

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project **Project Number:** 6468092473 **Location:** Boring M-10(DH)

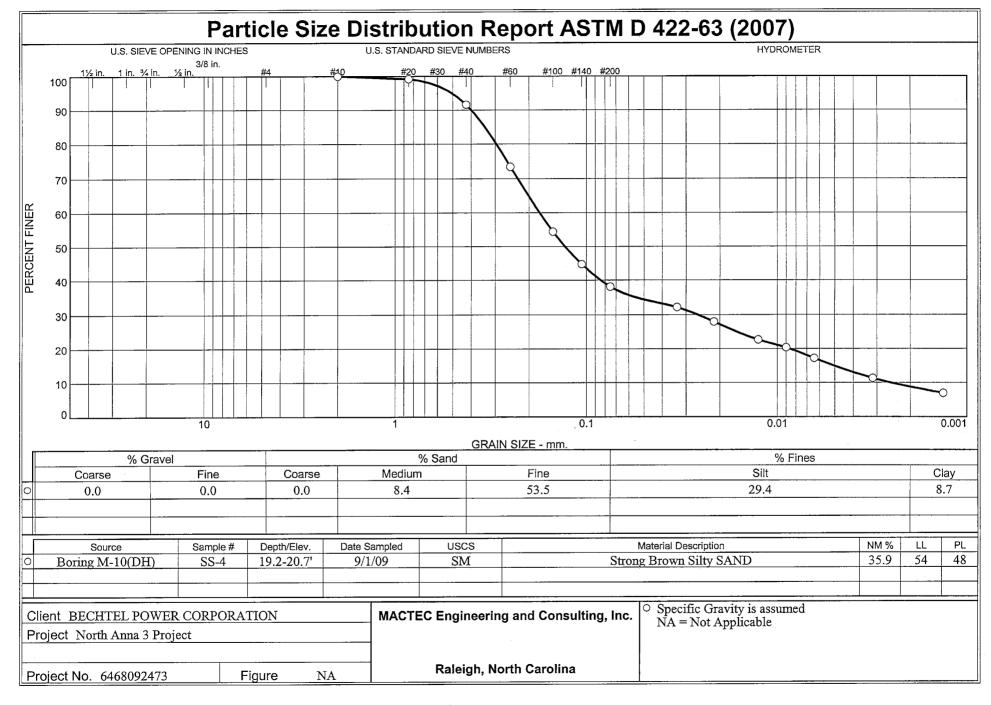

Depth: 11.7-13.2'

Sample Number: SS-2

Material Description: Red Silty SAND

USCS: SM Tested by: CS AASHTO: A-5(2) Checked by: MDC

		LiquidiLimit Dete								
Run No.	1	2	3	4	5	6				
Wet+Tare	26.74	25.12								
Dry+Tare	22.72	20.00								
Tare	15.90	11.19								
# Blows	26	26								
Moisture	58.9	58.1								



Liquid Limit= _	59
Plastic Limit= _	50
Plasticity Index= _	9
Natural Moisture= _	48.5
Liquidity Index=	-0.2

Plastic Limit Data								
Run No.	1	2	3	4				
Wet+Tare	23.21	24.95						
Dry+Tare	20.66	21.86						
Tare	15.62	15.68						
Moisture	50.6	50.0						

		Kato	ural Morsture Da	a
Wet+Tare	Dry+Tare	Tare	Moisture	- -
92.45	78.55	49.88	48.5	

MACTEC Engineering and Consulting, Inc. .

Tested By: CS Checked By: MDC DSC 11-12-09

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project **Project Number: 6468092473** Location: Boring M-10(DH)

Depth: 19.2-20.7'

Material Description: Strong Brown Silty SAND

Date: 9/1/09

Natural Moisture: 35.9

Liquid Limit: 54

Plastic Limit: 48

USCS Class.: SM

Testing Remarks: Specific Gravity is assumed

NA = Not Applicable

Tested by: CS

Checked by: MDC

Sample Number: SS-4

			8	jeve Test Det	a)	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
243.11	00,0	0.00	#10	0.00	100.0	
48,46	0.00	0.00	#20	0.39	99.2	
			#40	4.08	91.6	
			#60	12.88	73.4	
			#100	22.10	54.4	
			#140	26.78	44.7	
			#200	29.99	38.1	
			Hiyal	rometer Tesi l	Data .	Control of the Contro

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =48.46

Hygroscopic moisture correction: Moist weight and tare = 27.58

Dry weight and tare = 27.17 Tare weight = Hygroscopic moisture = 3.4%

Table of composite correction values:

Temp., deg. C: 10.2 29.5 Comp. corr.: -4.0

 $\label{eq:meniscus} \textbf{Meniscus correction only} = 1.0$ Specific gravity of solids = 2.700

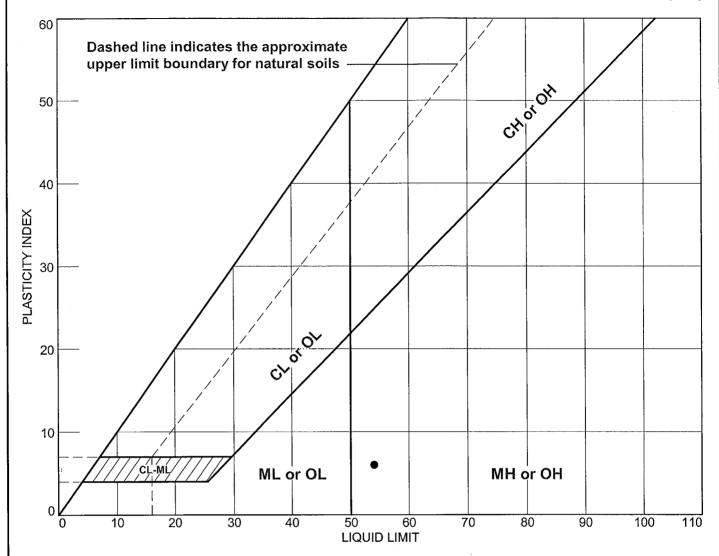
Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164* x Rm

,								
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.0	21.0	15.2	0.0133	22.0	12.7	0.0334	32.2
5.00	21.0	19.0	13.2	0.0133	20.0	13.0	0.0214	27.9
15.00	21.0	16.5	10.7	0.0133	17.5	13.4	0.0126	22.7
30.00	20.6	15.5	9.7	0.0133	16.5	13.6	0.0090	20.4
60.00	20.6	14.0	8.2	0.0133	15.0	13.8	0.0064	17.2
250.00	21.6	11.0	5.4	0.0132	12.0	14.3	0.0032	11.3
1440.00	21.2	9.0	3.3	0.0132	10.0	14.7	0.0013	6.9

MACTEC Engineering and Consulting, Inc.

Erran Africa					outel (countre					
0.11.	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	8.4	53.5	61.9	29.4	8.7	38.1


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0025	0.0051	0.0086	0.0261	0.1298	0.1764	0.2963	0.3404	0.3999	0.5038

Fineness Modulus	Cu	С _С
0.68	69.41	1.51

_ MACTEC Engineering and Consulting, Inc. _____

Volume 1, Revision 0 Page 506 of 542 DCN NAP307

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring M- 10(DH)	SS-4	19.2-20.7'	35.9	48	54	6	SM

MACTEC Engineering and Consulting, Inc.

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project

Raleigh, North Carolina

Project No.: 6468092473

Figure NA

Tested By: CS

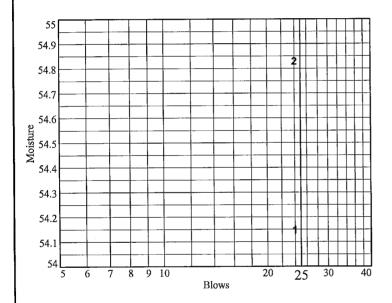
Checked By: MDC

DSC 11-12-09

LIQUID AND PLASTIC LIMIT TEST DATA

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

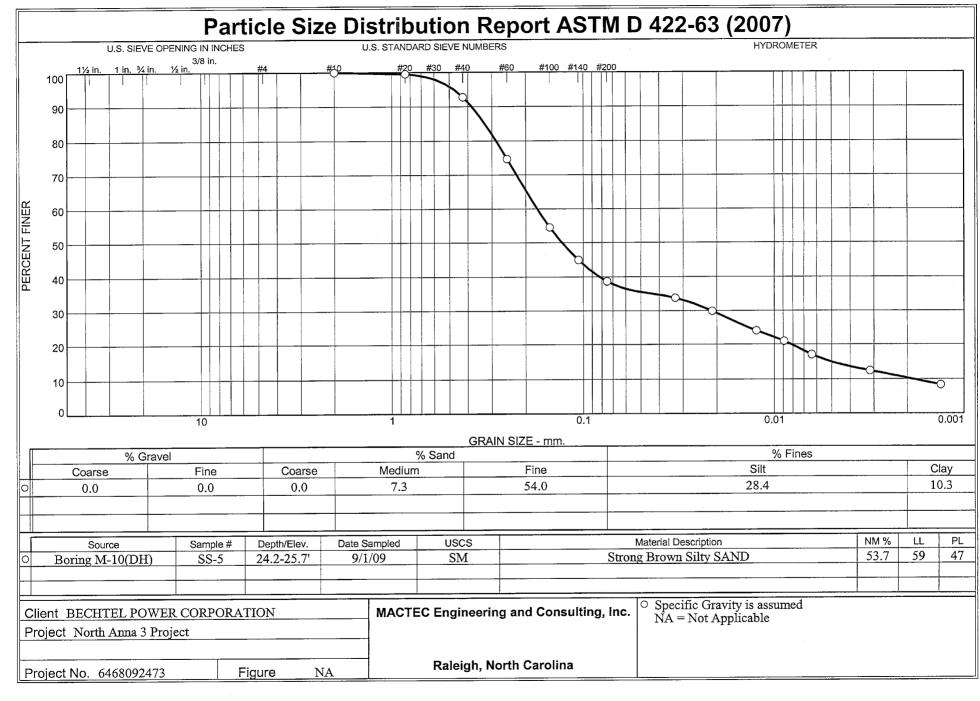

Depth: 19.2-20.7'

Sample Number: SS-4

Material Description: Strong Brown Silty SAND

USCS: SM Tested by: CS AASHTO: A-5(0) Checked by: MDC

Run No.	1	2	3	4	5	6
Wet+Tare	22.47	23.99				
Dry+Tare	18.49	19.45				
Tare	11.14	11.17				
# Blows	24	24				
Moisture	54.1	54.8				



Liquid Limit=_	54
Plastic Limit= _	48
Plasticity Index= _	6
Natural Moisture= _	35.9
Liquidity Index=	-2.0

Plastic Limit Data									
Run No.	1	2	3	4					
	25.61	26.84							
Wet+Tare Dry+Tare	22.38	23.20							
Tare	15.69	15.54							
Moisture	48.3	47.5							

**		Netti	nal Moisiure Dais	
Wet+Tare	Dry+Tare	Tare	Moisture	
105.76	90.93	49.59	35.9	

MACTEC Engineering and Consulting, Inc. .

Tested By: CS

Checked By: MDC

DSC 11-12-09

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 24.2-25.7' Sample Number: SS-5

Material Description: Strong Brown Silty SAND

Date: 9/1/09 Natural Moisture: 53.7

Liquid Limit: 59 Plastic Limit: 47 USCS Class.: SM

Testing Remarks: Specific Gravity is assumed NA = Not Applicable

Tested by: CS Checked by: MDC

			(\$	ieve Test Dat	a ·	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
272.86	0.00	0.00	#10	0.00	100.0	
50.98	0.00	0.00	#20	0.25	99.5	
			#40	3.70	92.7	
			#60	12.92	74.7	
			#100	23.21	54.5	
			#140	28.06	45.0	
			#200	31.24	38.7	

Hivercometer Test Date

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =50.98 Hygroscopic moisture correction:

Moist weight and tare = 24.35

Dry weight and tare = 24.24

Tare weight = 11.24 Hygroscopic moisture = 0.8%

Table of composite correction values:

Temp., deg. C: 10.2 29.5 Comp. corr.: -8.0 -4.0

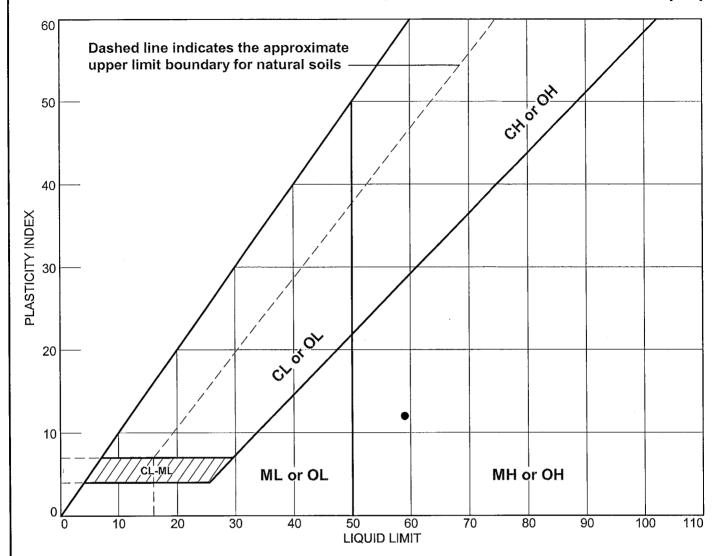
Meniscus correction only = 1.0 Specific gravity of solids = 2.700 Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164* x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	21.2	23.0	17.3	0.0132	24.0	12.4	0.0329	33.8
5.00	21.2	21.0	15.3	0.0132	22.0	12.7	0.0211	29.9
15.00	21.2	18.0	12.3	0.0132	19.0	13.2	0.0124	24.0
30.00	20.9	16.5	10.7	0.0133	17.5	13.4	0.0089	21.0
60.00	20.9	14.5	8.7	0.0133	15.5	13.8	0.0064	17.1
250.00	21.5	12.0	6.3	0.0132	13.0	14.2	0.0031	12.4
1440.00	21.2	10.0	4.3	0.0132	11.0	14.5	0.0013	8.4

MACTEC Engineering and Consulting, Inc.

		\$7 7 698,3883		in in Greati	ত্যানা। (<u>্</u> ত্যান্ত	aname)				
0-1-1-1	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	7.3	54.0	61.3	28.4	10.3	38.7


D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0019	0.0051	0.0082	0.0213	0.1296	0.1747	0.2857	0.3271	0.3825	0,4750

Fineness Modulus	Cu	С _с
0.66	93.28	1.39

MACTEC Engineering and Consulting, Inc.

Volume 1, Revision 0 Page 511 of 542 DCN NAP307

LIQUID AND PLASTIC LIMITS TEST REPORT ASTM D4318 (05)

				SOIL DATA	\			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring M- 10(DH)	SS-5	24.2-25.7'	53.7	47	59	12	SM

MACTEC Engineering and Consulting, Inc.

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project

Raleigh, North Carolina

Project No.: 6468092473

Figure NA

Tested By: CS

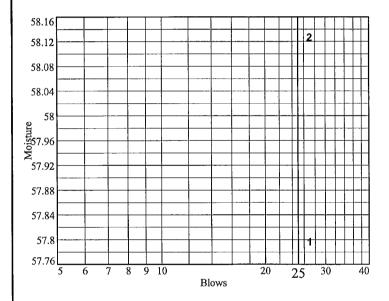
Checked By: MDC

LIQUID AND PLASTIC LIMIT TEST DATA

11/4/2009

Client: BECHTEL POWER CORPORATION

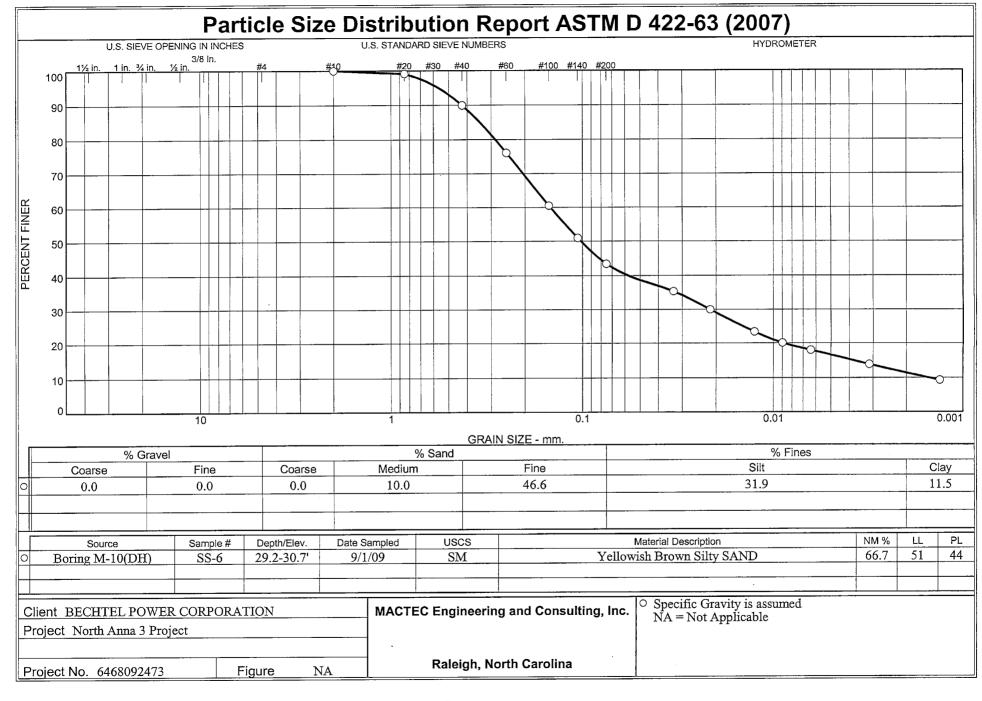
Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)


Depth: 24.2-25.7'

Sample Number: SS-5

Material Description: Strong Brown Silty SAND

 AASHTO: A-7-5(2) Checked by: MDC


Run No.	1	2	3	4	5	6
Wet+Tare	28.36	27.63				
Dry+Tare	23.69	23.16				
Tare	15.61	15.47				
# Blows	27	27				
Moisture	57.8	58.1	•			

Liquid Limit= _	59
Plastic Limit= _	47
Plasticity Index= _	12
Natural Moisture=	53.7
Liquidity Index= _	0.6

			Plastic Limit	Dalen	
Run No.	1	2	3	4	
Wet+Tare	26.36	36.56			
Dry+Tare	22.86	29.86			
Tare	15.49	15.50			
Moisture	47.5	46.7			

		Kaji	nal Moistue Da	a
Wet+Tare	Dry+Tare	Tare	Moisture	
126.23	99.69	50.29	53.7	- -

Tested By: CS Checked By: MDC DSC (1-12-99

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 29.2-30.7' Sample Number: SS-6

Material Description: Yellowish Brown Silty SAND

Date: 9/1/09 Natural Moisture: 66.7

Liquid Limit: 51 Plastic Limit: 44 USCS Class.: SM

Testing Remarks: Specific Gravity is assumed

NA = Not Applicable

Tested by: CS Checked by: MDC

			s	deve Test Dat	a	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
206.01	0.00	0.00	#10	0.00	100.0	
46.68	0.00	0.00	#20	0.43	99.1	
			#40	4.68	90.0	
			#60	11.17	76.1	
			#100	18.44	60.5	
			#140	22.90	50.9	
			#200	26.40	43.4	
			li lydi	hometer Test l	Data	

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

Weight of hydrometer sample =46.68 Hygroscopic moisture correction:

Moist weight and tare = 28.03

Dry weight and tare = 27.65

Tare weight = 15.56

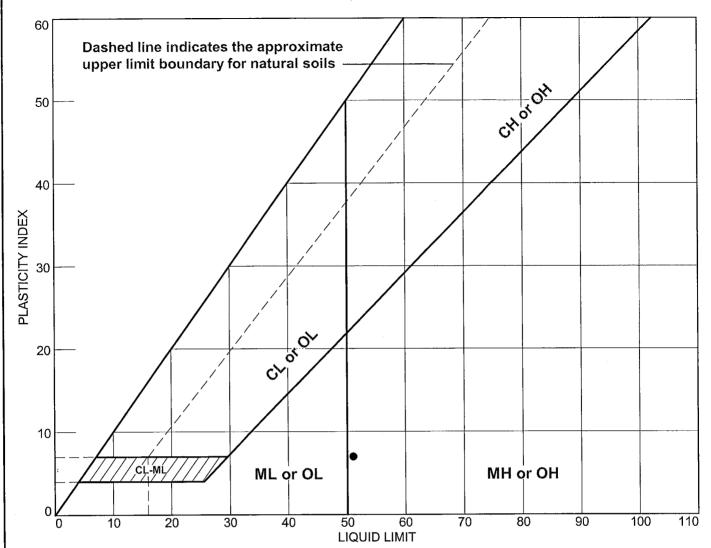
Hygroscopic moisture = 3.1%

Table of composite correction values:

Temp., deg. C: 10.2 29.5 Comp. corr.: -8.0 -4.0

Meniscus correction only = 1.0 Specific gravity of solids = 2.700 Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164* x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	20.8	22.0	16.2	0.0133	23.0	12.5	0.0333	35.4
5.00	20.8	19.5	13.7	0.0133	20.5	12.9	0.0214	29.9
15.00	20.8	16.5	10.7	0.0133	17.5	13.4	0.0126	23.4
30.00	20.8	15.0	9.2	0.0133	16.0	13.7	0.0090	20.1
60.00	21.0	14.0	8.2	0.0133	15.0	13.8	0.0064	18.0
250.00	21.6	12.0	6.4	0.0132	13.0	14.2	0.0031	13.9
1440.00	21.2	10.0	4.3	0.0132	11.0	14.5	0.0013	9.4

Cobbles Coarse Fine Total Coarse Medium Fine Total Silt Clay

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0015	0.0038	0.0089	0.0215	0.1021	0.1475	0.2859	0.3437	0.4255	0.5660

Fineness Modulus	c _u	С _с
0.63	97.76	2.08

				SOIL DATA	\			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	Boring M- 10(DH)	SS-6	29.2-30.7'	66.7	44	51	7	SM

MACTEC Engineering and Consulting, Inc.

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project

Raleigh, North Carolina

Project No.: 6468092473

Figure NA

Tested By: CS

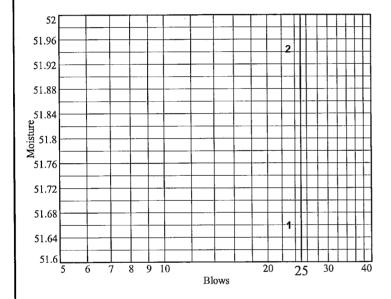
Checked By: MDC

11/4/2009

LIQUID AND PLASTIC LIMIT TEST DATA

Client: BECHTEL POWER CORPORATION

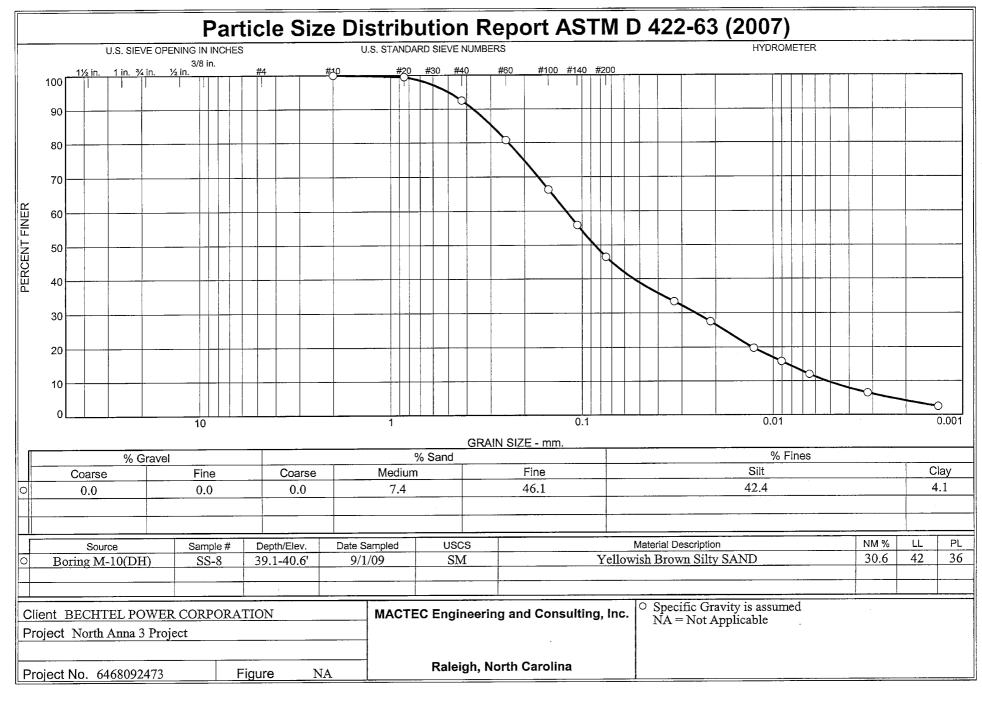
Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)


Depth: 29.2-30.7'

Sample Number: SS-6

Material Description: Yellowish Brown Silty SAND

USCS: SM Tested by: CS AASHTO: A-5(1) Checked by: MDC


			Litejute) (Literite)	Dete		
Run No.	1	2	3	4	5	6
Wet+Tare	30.08	27.59				
Dry+Tare	25.10	23.45				
Tare	15.46	15.48				
# Blows	23	23				
Moisture	51.7	51.9				

Liguid Limit= _	51
Plastic Limit= _	44
Plasticity Index= _	7
Natural Moisture=	66.7
Liquidity Index=	3.2
Liquidity index=	٠.۷

Plastic Limit Data							
Run No.	1	2	3	4	,		
Wet+Tare	27.30	26.68					
Dry+Tare	23.70	23.25					
Tare	15.47	15.55					
Moisture	43.7	44.5					

Wet+Tare	Dry+Tare	Tare	Moisture
185.01	131.20	50.54	66.7

Tested By: CS Checked By: MDC DSC 11-12-09

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project **Project Number: 6468092473** Location: Boring M-10(DH)

Sample Number: SS-8 Depth: 39.1-40.6'

Material Description: Yellowish Brown Silty SAND

Natural Moisture: 30.6 Date: 9/1/09

Liquid Limit: 42 Plastic Limit: 36 USCS Class.: SM

Testing Remarks: Specific Gravity is assumed NA = Not Applicable

Tested by: CS

Checked by: MDC

			\$	ieve Test Det	3	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
252.78	0.00	0.00	#10	0.00	100.0	
53.06	0.00	0.00	#20	0.26	99.5	
			#40	3.93	92.6	
			#60	10.23	80.7	
			#100	17.86	66.3	
			#140	23.39	55.9	
			#200	28,38	46.5	

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100.0

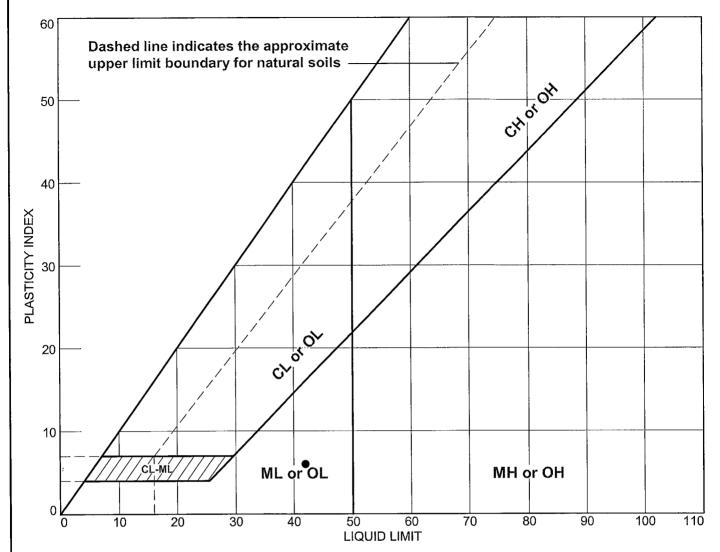
Weight of hydrometer sample =53.06 Hygroscopic moisture correction: Moist weight and tare = 25.26 Dry weight and tare = 24.76 Tare weight = 11.27 Hygroscopic moisture = 3.7%

Table of composite correction values: 10.2

29.5 Temp., deg. C: -4.0Comp. corr.: -8.0

Meniscus correction only = 1.0Specific gravity of solids = 2.700Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164* x Rm


Finer
33.4
27.6
19.8
15.9
12.0
6.5
2.5
33 27 19 15 12 6

		Gravel		Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	7.4	46.1	53.5	42.4	4.1	46.5

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0052	0.0084	0.0128	0,0253	0.0861	0.1215	0.2432	0.2962	0.3702	0.4974

Fineness Modulus	Cu	С _с
0.51	23.17	1.01

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Boring M- 10(DH)	SS-8	39.1-40.6'	30.6	36	42	6	SM

MACTEC Engineering and Consulting, Inc.

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project

Raleigh, North Carolina

Project No.: 6468092473

Figure NA

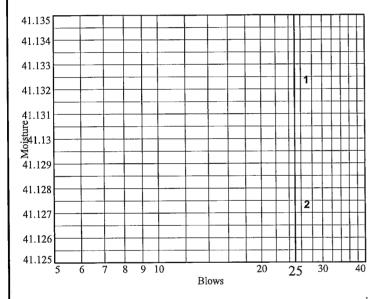
Tested By: CS

Checked By: MDC

LIQUID AND PLASTIC LIMIT TEST DATA

Client: BECHTEL POWER CORPORATION

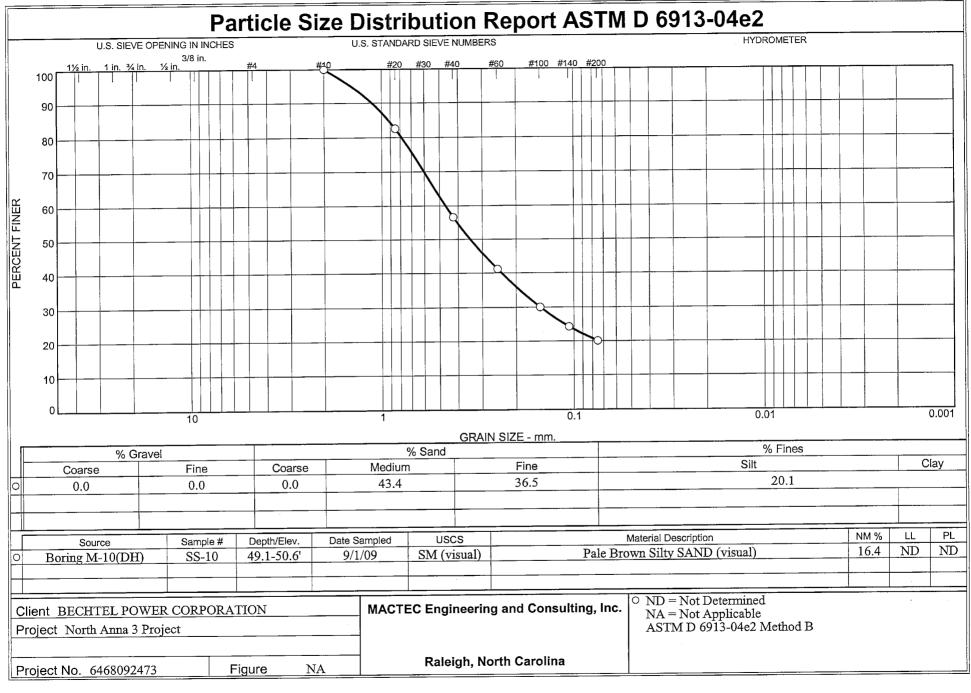
Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)


Depth: 39.1-40.6'

Sample Number: SS-8

Material Description: Yellowish Brown Silty SAND

USCS: SM Tested by: CS AASHTO: A-5(1)
Checked by: MDC


Liquid Limit Data							
Run No.	1	2	3	4	5	6	
Wet+Tare	28.18	24.64					
Dry+Tare	23.24	20.70					
Tare	11.23	11.12					
# Blows	27	27	· · · · · · · · · · · · · · · · · · ·				
Moisture	41.1	41.1					

Liquid Limit=	42
Plastic Limit=	36
Plasticity Index=	6
Natural Moisture=	30.6
Liquidity Index=	-0.9

Run No.	1	2	3	4	
Wet+Tare	19.71	26.14			
Dry+Tare	17.42	23.37			
Tare	11.08	15.60			
Moisture	36.1	35.6			

	WOT+LOTO LITV+LOTO LOTO WIGHSTUT	Vet+Tare Tare Moisture
--	--	------------------------

Tested By: CS

Checked By: MDC

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 49.1-50.6'

Sample Number: SS-10

Material Description: Pale Brown Silty SAND (visual)

Date: 9/1/09

Natural Moisture: 16.4

Liquid Limit: ND

Plastic Limit: ND

USCS Class.: SM (visual)

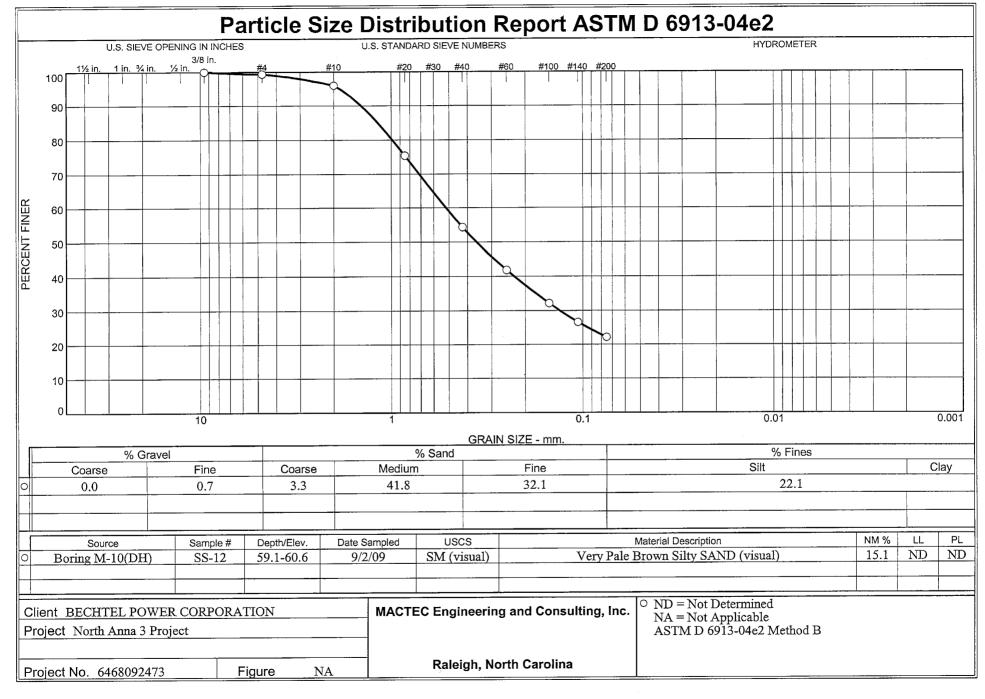
Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: MDC


			(Head Desir Date		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
294.04	0.00	0.00	#10	0.00	100.0	
54.09	0.00	0.00	#20	9.44	82.5	
			#40	23.50	56.6	
			#60	31.81	41.2	
			#100	37.84	30.0	
			#140	40.93	24.3	
			#200	43.23	20.1	

Fractional Components

	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	43.4	36.5	79.9			20.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1497	0.3471	0.4672	0.7872	0.9219	1.1221	1.4490

Fineness	
Modulus	
1.63	

Tested By: CS Checked By: MDC DSC 11-12-09

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 59.1-60.6

Liquid Limit: ND

Sample Number: SS-12

Material Description: Very Pale Brown Silty SAND (visual)

Date: 9/2/09

Plastic Limit: ND

Natural Moisture: 15.1

USCS Class.: SM (visual)

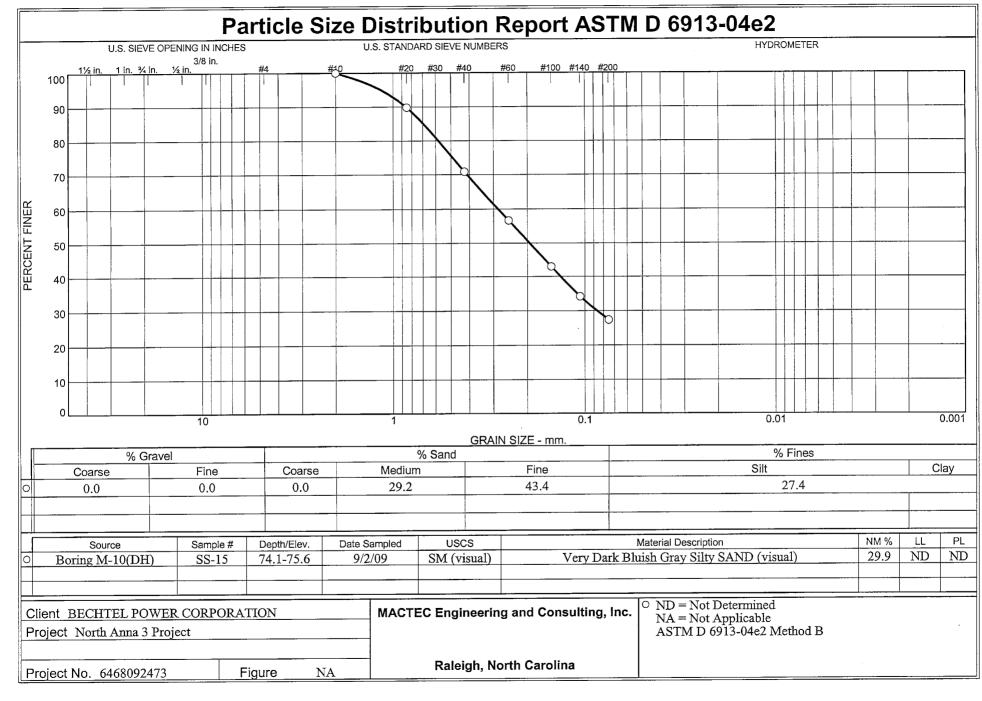
Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: MDC


				\$	and dead leaven	ā)	
Dr Sam and 1 (grar	ple Fare	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
365	5.85	0.00	0.00	3/8"	0.00	100.0	
				#4	2.42	99.3	
				#10	14.64	96.0	
103	3.77	0.00	0.00	#20	22.26	75.4	
				#40	45.15	54.2	
				#60	58.54	41.8	
				#100	69.02	32.1	
				#140	75.01	26.6	
				#200	79.83	22.1	

Fractional Components

		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.7	0.7	3.3	41.8	32.1	77.2			22.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1321	0.3606	0.5195	0.9889	1.1797	1.4410	1.8660

Fineness Modulus 1.76

Tested By: CS Checked By: MDC DSC 11-12-09

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 74.1-75.6 **Sample Number:** SS-15

Material Description: Very Dark Bluish Gray Silty SAND (visual)

Date: 9/2/09 Natural Moisture: 29.9

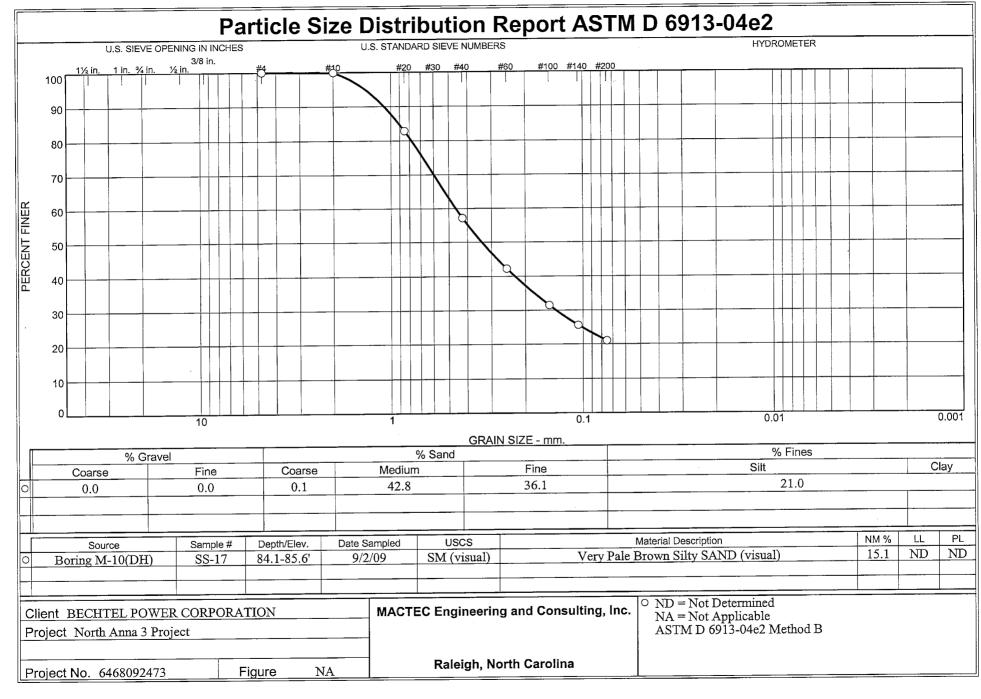
Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: MDC


			(Heve Test Date		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
346.65	0.00	0.00	#10	0.00	100.0	
102.83	0.00	0.00	#20	10.45	89.8	
			#40	30.00	70.8	
			#60	44.61	56.6	
			#100	58.62	43.0	
			#140	67.70	34.2	
			#200	74.67	27.4	

- Fractional Components

		Gravel			Sa	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	29.2	43.4	72.6			27.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0865	0.1948	0.2845	0.5812	0.6951	0.8566	1.1564

Fineness	
Modulus	
1.19	

Tested By: CS Checked By: MDC DSC 11-12-99

11/4/2009

GRAIN SIZE DISTRIBUTION TEST DATA

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-10(DH)

Depth: 84.1-85.6' **Sample Number:** SS-17

Material Description: Very Pale Brown Silty SAND (visual)

Date: 9/2/09

Liquid Limit: ND Plastic Limit: ND USCS Class.: SM (visual)

Testing Remarks: ND = Not Determined

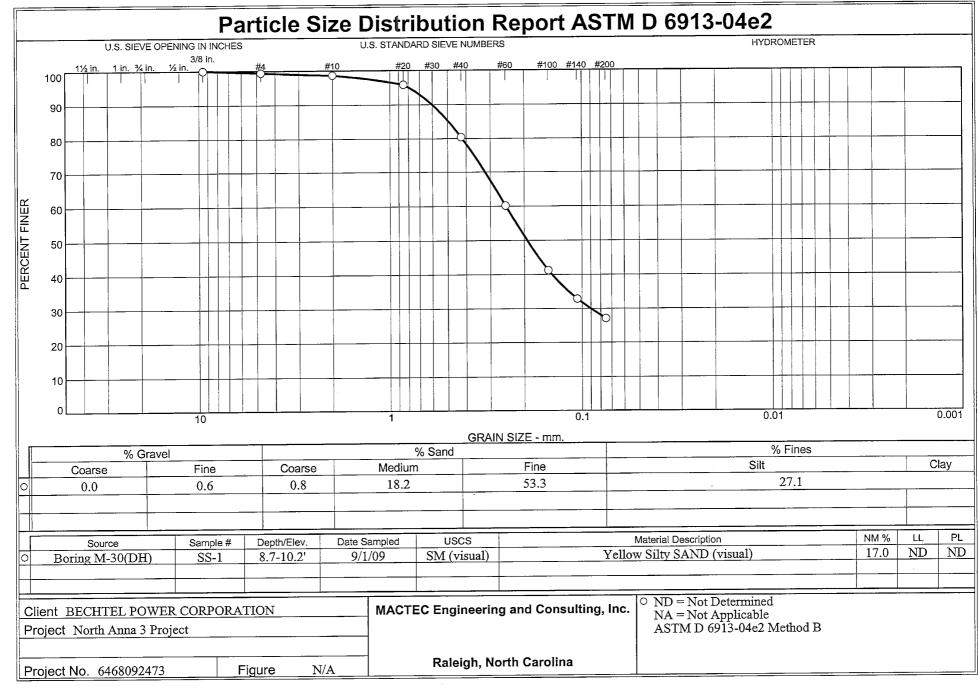
NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: MDC

Natural Moisture: 15.1


				ijeve Tiesti Dete	3	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
369.27	0.00	0.00	#4	0.00	100.0	
			#10	0.37	99.9	
49.68	0.00	0.00	#20	8.46	82.9	
			#40	21.26	57.1	
			#60	28.66	42.3	
			#100	34.03	31.5	
			#140	36.95	25.6	
			#200	39.24	21.0	

Freetonal Components

	Gravel			Sand					Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	42.8	36.1	79.0			21.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1385	0.3377	0.4608	0.7812	0.9082	1.0859	1.3676

Fineness	
<u> Modulus</u>	
1.60	

Tested By: CS

Checked By: BS

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-30(DH)

Depth: 8.7-10.2'

Sample Number: SS-1

Material Description: Yellow Silty SAND (visual)

Date: 9/1/09

Natural Moisture: 17.0

Liquid Limit: ND

Plastic Limit: ND

USCS Class: SM (visual)

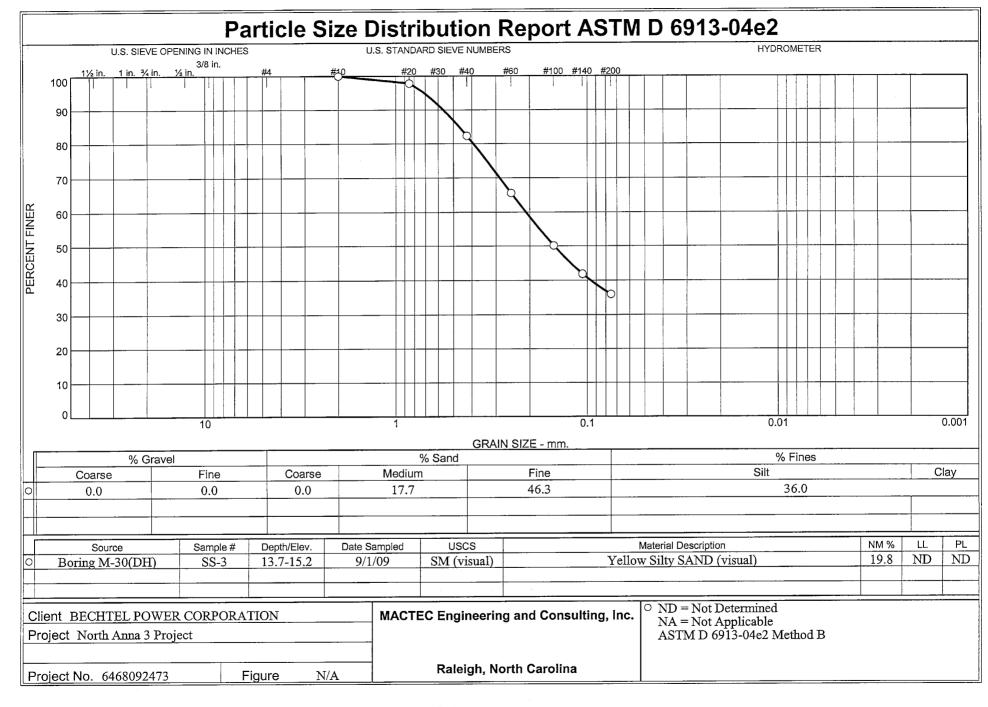
Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: BS


			9	iseli Reali eveli		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
233.76	0.00	0.00	3/8"	0.00	100.0	
			#4	1.50	99.4	
			#10	3.25	98.6	
100.91	0.00	0.00	#20	2.84	95.8	
			#40	18.65	80.4	
			#60	39.39	60.1	
			#100	58.65	41.3	
			#140	67.26	32.9	
			#200	73.21	27.1	

Fractional Components

		Gravel			Sa			Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.6	0.6	0.8	18.2	53.3	72.3	,		27.1

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0902	0.1935	0.2493	0.4201	0.4941	0.6020	0.7955

Fineness Modulus

Tested By: CS Checked By: BS DSC 11-12-09

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-30(DH)

Depth: 13.7-15.2 Sample Number: SS-3

Material Description: Yellow Silty SAND (visual)

Date: 9/1/09 Natural Moisture: 19.8

Liquid Limit: ND USCS Class.: SM (visual)

Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: BS

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
218.25	0.00	0.00	#10	0.00	100.0	
51.75	0.00	0.00	#20	1.12	97.8	
			#40	9.18	82.3	
			#60	17.81	65.6	
			#100	25.82	50.1	
			#140	30.09	41.9	
			#200	33.12	36.0	

Fractional Components

		Gravel			Sa	nd		Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	17.7	46.3	64.0			36.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.1494	0.2097	0.3940	0.4674	0.5646	0.7103

Fineness Modulus	
0.88	

Tested By: CS Checked By: BS

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project Project Number: 6468092473 Location: Boring M-30(DH)

Depth: 23.7-25.2'

Sample Number: SS-5

Material Description: Pale Yellow Silty SAND (visual)

Date: 9/1/09

Natural Moisture: 18.5

Liquid Limit: ND

Plastic Limit: ND

USCS Class.: SM (visual)

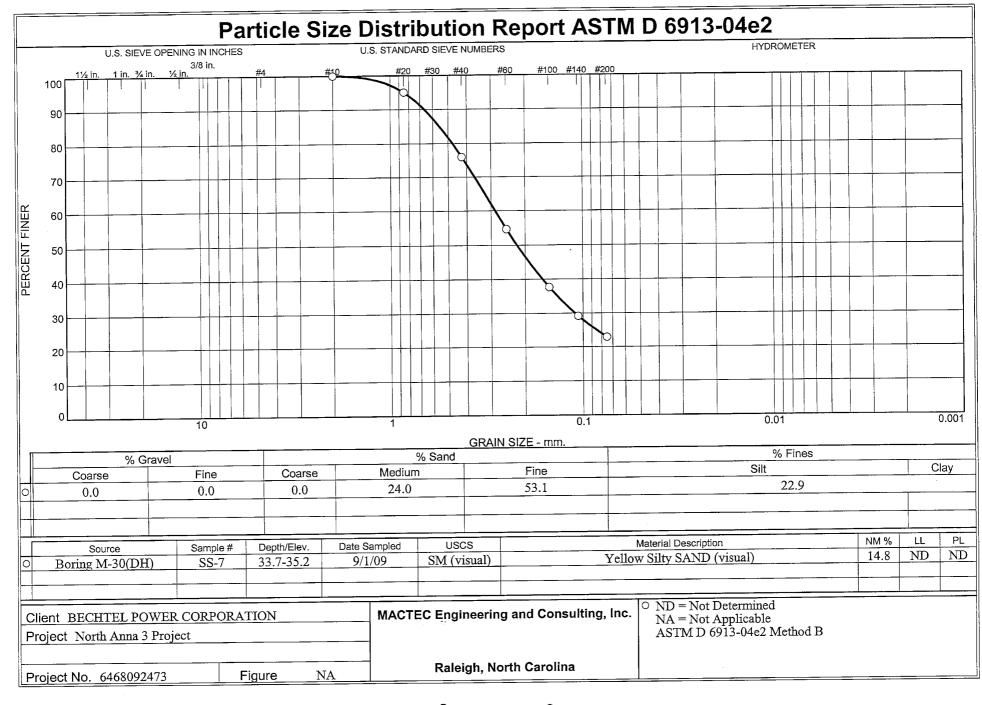
Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: BS


Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
346.85	0.00	0.00	#10	0.00	100.0	
102.89	0.00	0.00	#20	10.59	89.7	
			#40	36.14	64.9	
			#60	56.55	45.0	
			#100	72.09	29.9	
			#140	79.39	22.8	
			#200	84.41	18.0	

Previous Components

0.1.1.1	Gravel			Sand				Fines		
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	35.1	46.9	82.0			18.0

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0876	0.1504	0.2879	0.3756	0.6255	0.7230	0.8599	1.1087

Fineness	
Modulus	
1.44	

Tested By: CS

Checked By: BS

11/4/2009

Client: BECHTEL POWER CORPORATION

Project: North Anna 3 Project **Project Number:** 6468092473 **Location:** Boring M-30(DH)

Depth: 33.7-35.2

Sample Number: SS-7

Material Description: Yellow Silty SAND (visual)

Date: 9/1/09

Liquid Limit: ND

Natural Moisture: 14.8

Plastic Limit: ND

USCS Class.: SM (visual)

Testing Remarks: ND = Not Determined

NA = Not Applicable

ASTM D 6913-04e2 Method B

Tested by: CS

Checked by: BS

			Ş	fleve Tresti Deti	1)	
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	
384.34	0.00	0.00	#10	0.00	100.0	
51.82	0.00	0.00	#20	2.58	95.0	
			#40	12.45	76.0	
			#60	23.52	54.6	
			#100	32.29	37.7	
			#140	36.72	29.1	
			#200	39.95	22.9	

Fractional Components

Gravel			Sand				Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.0	24.0	53.1	77.1			22.9

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.1104	0.2208	0.2862	0.4750	0.5540	0.6647	0.8489

Fineness	
Modulus	
1.14	

FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 2 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 16, 2009

VOLUME 1

APPENDIX D.2 Rock Core Unconfined Strength Tests

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

North Anna 3 Project

MACTEC Project: 6468-09-2473

Summary Report for Rock Core Testing

Summary of Laboratory Testing Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures ASTM D7012-07e1

Project Name: North Anna 3
MACTEC Project No.: 6468-09-2473

				T			r
Boring Number	Run Number	Sample Depth (ft)	Diameter (in)	Length (in)	Time to Failure	Unconfined Compressive Strength (psi)	As Received Unit Weight (pcf)
M-10 (DH)	RS-1	117.45-117.9	2.41	5.15	5 min 6 sec	7960	160.1
M-10 (DH)	RS-2	133.75-134.2	2.41	5.09	15 min 13 sec	19640	161.9
M-10 (DH)	RS-3	153.7-154.15	2.41	5.08	16 min 0 sec	33830	163.5
M-10 (DH)	RS-4	177.6-178.05	2.39	5.14	26 min 44 sec	20880	163.3
M-10 (DH)	RS-5	196.7-197.15	2.39	5.18	12 min 59 sec	30780	163.7
M-30 (DH)	RS-6	57.0-57.45	2.40	5.18	14 min 8 sec	28650	162.8
M-30 (DH)	RS-7	95.4-95.85	2.39	5.06	9 min 39 sec	23700	162.7
M-30 (DH)	RS-8	134.9-135.35	2.39	5.26	9 min 47 sec	26200	163.7
M-30 (DH)	RS-9	166.9-167.35	2.40	5.06	7 min 5 sec	24820	164.6
M-30 (DH)	RS-10	197.05-197.5	2.40	5.16	10 min 29 sec	33040	162.6

Created By: <u>DAK 12-1-09</u>
Checked By: <u>JHA 12-1-09</u>
Reviewed By: <u>AC</u> 12-1-09