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6 
Fundamentals of 

convection 

6-1. The convective-heat-transfer coefficient 

In the preceding chapters, attention has been focused on heat trans­
fer by conduction and radiation. In an effort to simplify the work and to 
emphasize the methods for calculating heat transfer by conduction and 
radiation, an effort has been made to eliminate, as much as possible, 
problems related to heat transfer by convection. However, from the il­
lustrative examples it has probably become apparent already that there 
are hardly any practical problems which can be solved without a knowl­
edge of the mechanisms by which heat is transferred between the surface 
of a solid conductor and the surrounding medium. In our work so far we 
simply specified the unit convective surface conductance at the solid fluid 
interface and did not investigate the details of the transfer mechanism. 
We evaluated the rate of heat transfer by convection between a solid 
boundary and a fluid by means of the equation 

q surface to fluid = A he (Ts - T X> ) ( 1- 1 3) 

The convection equation in this form seems quite simple. The sim­
plicity is misleading, however, because Eq. 1-13 is a definition of the 
average unit thermal convective conductance he rather than a law of heat 
transfer by convection. The convective-heat-transfer coefficient is actually 
a complicated function of the fluid flow, the thermal properties of the fluid 
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medium, and the geometry of the system. Its numerical value is in general 
not uniform over a surface, and depends also on the location where the 
fluid temperature TO() is measured. 

Although Eq. 1-13 is generally used to determine the rate of heat 
flow by convection between a surface and the fluid in contact witll it, this 
relation is inadequate to explain the convective heat-flow mechanism. A 
meaningful analysis which will eventually lead to a quantitative evaluation 
of the convective heat-transfer coefficient must start with a study of the 
dynamics of the fluid flow. In this and the following chapters we shall 
follow this line of approach and investigate the influence of flow condi­
tions, fluid properties, and boundary shapes on the convective-heat-trans­
fer coefficient. 

6-2. Energy transport mechanism and fluid flow 

The transfer of heat between a solid boundary and a fluid takes place 
by a combination of conduction and mass transport. If the boundary is 
at a higher temperature than the fluid, heat flows first by conduction from 
the solid to fluid particles in the neighborhood of the wall. The energy 
thus transmitted increases the internal energy of the fluid and is carried 
away by the motion of the fluid. When the heated fluid particles reach a 
region at a lower temperature, heat is again transferred by conduction 
from warmer to cooler fluid. 

Since the convective mode of energy transfer is so closely linked to 
the fluid motion, it is necessary to know something about the mechanism 
of fluid flow before the mechanism of heat flow can be investigated. One 
of the most important aspects of the hydrodynamic analysis is to establish 
whether the motion of the fluid is laminar or turbulent. 

In laminar, or streamline, flow, the fluid moves in layers, each fluid 
particle following a smooth and continuous path. The fluid particles in 
each layer remain in an orderly sequence without passing one another. 
Soldiers on parade provide a somewhat crude analogy to laminar flow. 
They march along well-defined lines, one behind the other, and maintain 
their order even when they turn a corner or pass an obstacle. 

In contrast to the orderly motion of laminar flow, the motion of fluid 
particles in turbulent flow rather resembles a crowd of commuters in a 
railroad station during the rush hour. The general trend of the motion is 
from the gate toward the train, but superimposed upon this motion are 
the deviations of individuals according to their instantaneous direction 
and their ability to pass the less agile memoers of the crowd. Yet if one 
could obtain a statistical average of the motion of a large number of in­
dividuals, it would be steady and regular. The same applies to fluid par­
ticles in turbulent flow. The path of any individual particle is zigzag and 
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irregular, but on a statistical basis the overall motion of the aggregate 
of fluid particles is regular and predictable. 

When a fluid flows in laminar motion along a surface at a tempera­
ture different from that of the fluid, heat is transferred only by molecular 
conduction within the fluid as well as at the interface between the fluid and 
the surface. There exist no turbulent mixing currents or eddies by which 
energy stored in fluid particles is transported across streamlines. Heat is 
transferred between fluid layers by molecular motion on a submicroscopic 
scale. 

In turbulent flow, on the other hand, the conduction mechanism is 
modified and aided by innumerable eddies which carry lumps of fluid 
across the streamlines. These fluid particles act as carriers of energy and 
transfer energy by mixing with other particles of the fluid. An increase in 
the rate of mixing (or turbulence) will therefore also increase the rate of 
heat flow by convection. 

The fluid motion can be induced by two processes. The fluid may be 
set in motion as a result of density differences due to a temperature varia­
tion in the fluid. This mechanism is called free, or natural, convection. 
The motion observed when a pot of water is heated on a stove or the mo­
tion of air in the desert on a calm day after sunset are examples of free 
convection. When the motion is caused by some external energy, such as 
a pump or a blower, we speak of forced convection. The cooling of an 
automobile radiator by the air blown over it by the fan is an example of 
forced convection. (The term radiator is obviously poorly chosen be­
cause the heat flow is not primarily by radiation; convector would be a 
more appropriate term.) 

6-3. Boundary-layer fundamentals 

When a fluid flows along a surface, irrespective of whether the flow is 
laminar or turbulent, the particles in the vicinity of the surface are slowed 
down by virtue of viscous forces. The fluid particles adjacent to the sur­
face stick to it and have zero velocity rel,ative to the boundary. I Other 
fluid particles attempting to slide over them are retarded as a result of an 
interaction between faster- and slower-moving fluid, a phenomenon which 
gives rise to shearing forces .. In laminar flow the interaction, called vis­
cous shear, takes place between molecules on a submicroscopic scale. 
In turbulent flow an interaction between lumps of fluid on a macroscopic 
scale, called turbulent shear, is superimposed on the viscous shear. 

I This is strictly true only when the mean free path of the molecules is small compared 
to the boundary-layer thickness. In rarefied gases the molecules may slide or slip along a 
surface. 
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The effects of the viscous forces originating at the boundary extend 
into the body of the fluid,' but a short distance from the surface the ve­
locity of the fluid particles approaches that of the undisturbed free stream. 
The fluid contained in the region of substantial velocity change is called 
,the hydrodynamic boundary layer. The thickness of the boundary layer has 
been defined as the distance from the surface at which the local velocity 
reaches 99 percent of the external velocity u", . 

The concept of a boundary layer was introduced by the German 
scientist, Prandtl, in 1904. The boundary layer essentially divides the 
flow field around a body into two domains: a thin layer covering the sur­
face of the body where the velocity gradient is great and the viscous forces 
are large, and a region outside this layer where the velocity is nearly equal 
to the free-stream value and the effects of viscosity are negligible. By 
means of the boundary-layer concept, the equations of motion, usually 
'called the Navier-Stokes equations, can be reduced to a form in which 
they can be solved; the effects of viscosity on the flow can be determined; 
and the frictional drag along a surface can be calculated. The boundary­
layer concept is also of great importance, as we shall see, to an under­
standing of convective heat transfer. 

The shape of the velocity profile within the boundary layer depends 
on the nature of the flow. Consider, for example, the flow of air over a 
flat plate, placed with its surface parallel to the str,eam. At the leading 
edge of the plate (x = 0 in Fig. 6-1), only the fluid particles in immediate 
contact with the surface are slowed down, while the remaining fluid con­
tinues at the velocity of the undisturbed free stream in front of the plate. 
As the fluid proceeds along the plate, the shearing forces cause more and 
more of the fluid to be retarded, and the thickness of the boundary layer 
increases. The growth of the boundary layer and typical velocity profiles 
at various stations along the plate are shown in Fig. 6-1. 

The velocity profiles near the leading edge are representative of 
laminar boundary layers. However, the flow within the boundary layer 
remains laminar only for a certain distance from the leading edge and then 
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Fig. 6-1. Velocity profiles for laminar and -turbulent boundary 'layers 
in flow over a fi~ld plate. (Vertical scale enlarged for clarity.) 
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becomes turbulent. We do not know enough about the mechanism of 
transition to predict precisely when the transition will occur, but the phe­
nomenon leading to the growth of disturbances in a laminar boundary 
layer can be described (see Reference 1 for details). There are always 
small disturbances and waves in a flowing fluid, but as long as the viscous 
forces are large they will prevent disturbances from growing. As the lam­
inar boundary layer thickens, the ratio of viscous forces to inertia forces 
decreases, and eventually a point is reached at which disturbances will no 
longer decay, but will grow with time. Then the boundary layer becomes 
unstable and the transition from laminar to turbulent flow begins. Eddies 
and vortexes form and destroy the laminar regularity of the boundary­
layer motion. Quasi-laminar motion persists only in a thin layer in the 
immediate vicinity of the surface. This portion of a generally turbulent 
boundary layer is called the laminar sub layer. The region between the 
laminar sub layer and the completely turbulent portion of the boundary 
layer is called the buffer layer. The structure of the flow in a turbulent 
boundary layer is shown schematically on an enlarged scale in Fig. 6-2. 

The distance from the leading edge at which the boundary layer 
becomes turbulent is called the critical length Xc (Fig. 6-1). This distance 
is usually specified in terms of a dimensionless quantity called the local 
critic,al Reynolds number U oo pXc/ /-L, which is an indication of the ratio of 
inertial to viscous forces at which disturbances begin to grow. Experi­
mental results have shown that the point of transition depends on the sur­
face contour, the surface roughness, the disturbance level, and even on the 
heat transfer. When the flow is calm and no disturbances occur, laminar 
flow can persist in the boundary layer at Reynolds numbers\ as high as 
5 x 10 6

• If the surface is rough, or disturbances are intentionally intro­
duced into the flow, as for example by means of a grid, the flow may be­
come turbulent at Reynolds numbers as low as 8 x 10 4

• Under average 
conditions, the flow over a flat plate becomes turbulent at a distance from 
the leading edge Xc where the local Reynolds number upxc/ /-L is approx­
imately equal to 5 x 10 5

• 

In view of the difference in the flow characteristics, the frictional 

Turbulent Core 

Buffer Layer 

--- Laminar Sub layer 

Fig. 6-2. Structure of a turbulent flow field near a solid boundary. 
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forces as well as the heat transfer are governed by different relations in 
laminar and turbulent boundary layers. Also the limiting conditions 
under which the flow will follow a given contour, and the boundary-layer 
theory can be applied, depends on whether the flow is laminar or 
turbulent. 

Even when the contour of the surface over which the fluid flows is 
curved, the flow in the boundary layer is, at least qualitatively, similar to 
the flow in the boundary layer on a flat plate. The contour of the body 
becomes very important, however, in the determination of the point at 
which the boundary layer separates from the surface. The separation of 
flow occurs mainly because the kinetic energy of the fluid in the boundary 
layer is dissipated by viscosity within the layer. As long as the main 
stream is accelerating, the external pressure is decreasing along the direc­
tion of flow and the forces at the edge of the boundary layer oppose the 
retardation of the fluid by the wall shear. On the other hand, when the 
flow is decelerating, as for example in a low-speed diffuser, the external 
pressure as well as the shearing forces tend to decelerate the fluid. A 
local reversal of the flow in the boundary layer will then occur when the 
kinetic energy of the fluid in the boundary layer can no longer overcome 
the adverse pressure gradient. Near this point the boundary layer sepa­
rates as shown in Fig. 6-3. Beyond the point of separation, the flow near 

\ 

/ 

Fig. 6-3. Sketches illustrating separation of boundary layer. Top: streamlines and 
flow pattern near separation point of laminar boundary layer. Bottom: stream­
lines and flow pattern near separation point of turbulent boundary layer. 
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the surface consists of highly irregular eddies and vortexes and cannot be 
treated by boundary-layer theory. 

A more advanced boundary-layer theory allows us to calculate the 
point at which the flow separates from the surface (l). Generally speak­
ing, a turbulent boundary layer will not separate as easily as a laminar 
boundary layer because the kinetic energy of the fluid particles is larger in 
a turbulent layer. In flow over a streamlined object, separation takes place 
near the rear, if it occurs at all. In flow over bluff objects, on the other 
hand, separation occurs nearer to the front. The problem of separation is 
too complicated to be taken up in detail here, and the reader interested in 
additional information on this subject should consult References 1, 27, 
and 28 of the bibliography at the end of this chapter. 

6-4. The Nusselt modulus 

From the description of the mechanism of convective energy trans­
port, we recall that both conduction and mass transport playa role. Since 
the thermal conductivity· of fluids, except for liquid metals, is relatively 
small, the rapidity of the energy transfer depends largely on the mixing 
motion of the fluid particles. 

When the fluid velocity and the turbulence are small, the transport 
of energy is not aided materially by mixing currents on a macroscopic 
scale. On the other hand, when the velocity is large and the mixing be­
tween warmer and colder fluid contributes substantially to the energy 
transfer, the conduction mechanism becomes less important. Conse­
quently, to transfer heat by convection through a fluid at a given rate, a 
larger temperature gradient is required in a region of low velocity than in 
a region of high velocity. 

Applying these qualitative observations to heat transfer from a solid 
wall to a fluid in turbulent flow, we can roughly sketch the temperature 
profile. In the immediate vicinity of the wall, heat can only flow by con­
duction because the fluid particles are stationary relative to the boundary. 
We naturally expect a large temperature drop in this layer. As we move 
further away from the wall, the movement of the fluid aids in the energy 
transport and the temperature gradient will be less steep, eventually, 
leveling out in the main stream. For air flowing turbulently over a flat 
plate, the temperature distribution shown in Fig. 6-4 illustrates these ideas 
qualitatively. 

The foregoing discussion suggests a method for evaluating the rate of 
heat transfer between a solid wall and a fluid. Since at the interface (i.e., 
at y = 0) heat flows only by conduction, the rate of heat flow can be cal­
culated from the equation 
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q surface-->fiuid = - k f A ~ T I 
y y=o 

(6- 1) 

This approach has indeed been used, but for engineering purposes the 
concept of the convective-heat-transfer coefficient is much more con­
venient. In order not to lose sight of the physical picture, we shall relate 
the heat-transfer coefficient defined by Eq. 1-13 to the temperature gradi­
ent at the wall. Equating Eqs. 6-1 and 1-13 we obtain 

q surface-->fiuid = (6-2) 

Since the magnitude of the temperature gradient in the fluid will be the 
same regardless of the reference temperature, we can write aT = 
a (T - Ts). Introducing a significant length dimension of the system L to 
specify the geometry of the object from which heat flows, we can .write 
Eq. 6-2 in dimensionless form as 

- ~~IY=o a ( Ts - T) 
heL Ts - T 00 

(6-3) --= 
k f Ts - Too 

a (~) L y=o 

The combination of the convective heat-transfer coefficient he. the 
significan~ length L, and the thermal conductivity of the fluid k f in the 
form heLl k f is called the Nusselt modulus, or Nusselt number, Nu. The 
Nusselt number is a dimensionless quantity. 

Inspection of Eq. 6-3 shows that the Nusselt number could be in-

y 

t---Too--~ 

v 

f---------Ts --------...1 .. 1 

Fig. 6-4. Temperature distribution in a turbulent boundary layer for a 
fluid flowing over a heated plate. 
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terpreted physically as the ratio of the temperature gradient in the fluid 
immediately in contact with the surface to a reference temperature gradi­
ent (Ts - T 00)/ L. In practice the Nusselt number is a convenient measure 
of the convective heat-transfer coefficient because, once its value is known, 
the convective heat-transfer coefficient can be calculated from the relation 

- k f Nu­
L 

( 6.-4) 

We observe that, for a given value of the Nusselt number, the convective 
heat-transfer coefficient is directly proportional to the thermal conduc­
tivity of the fluid but inversely proportional to the significant length di­
mension describing the system. 

The temperature distribution for a fluid flowing past a hot wall, as 
sketched by the solid line in Fig. 6-4, shows that the temperature gradient 
in the fluid is confined to a relatively thin layer, 0(, in the vicinity of the 
surface. We shall now simplify the true picture by replacing the actual 
temperature distribution by the dashed straight line shown in Fig. 6-4. 
The dashed line is tangent to the actual temperature curve at the wall and 
physically represents the temperature distribution in a hypothetical layer 
of fluid of thickness 0; which, if completely stagnant, offers the same 
thermal resistance to the flow of heat as the actual boundary layer. In 
this stagnant layer, heat can flow only by conduction and the rate of heat 
transfer per unit area is 

q 

A 
k Ts - Too 

f 0/ 

An inspection of Eq. 6-5 shows that he may be expressed as 

and the Nusselt number as 

- L L h - = 
e k f 0/ 

(6-5) 

(6-6) 

(6-7) 

While this picture is considerably oversimplified, it does illustrate 
the fact that the thinner the boundary layer 0;, the larger will be the con­
vective conductance. To transfer large quantities of heat rapidly, one 
attempts to reduce the boundary-layer thickness as much as possible. 
This can be accomplished by increasing the velocity and/or the turbul­
ence of the fluid. If insulation of the surface is the desired aim, a thick 
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stagnant layer is beneficial. In fact, most commercial insulating materials 
simply trap air in small spaces to eliminate its mixing motion while at the 
same time taking advantage of its low thermal conductivity to reduce the 
transfer of heat. 

6-5. Evaluation of convection heat-transfer coefficients 

There are four general methods available for the evaluation of con­
vection heat-transfer coefficients: 

1. Dimensional analysis combined with experiments. 
2. Exact mathematical solutions of the boundary-layer equations. 
3. Approximate analyses of the boundary layer by integral methods. 
4. The analogy between heat, mass, and momentum transfer. 

All four of these techniques have contributed to our understanding 
of convective heat-transfer. Yet, no single method can solve all the prob­
lems because each one has limitations which restrict its scope of 
application. 

Dimensional analysis is mathematically simple and has found a wide 
range of application. The chief limitation of this method is that results 
obtained by it are incomplete and quite useless without experimental data. 
It contributes little to our understanding of the transfer process, but 
facilitates the interpretation and extends the range of application of ex­
perimental data by correlating them in terms of dimensionless groups. 

There are two different methods for determining dimensionless 
groups suitable to correlate experimental data. The first of these methods, 
discussed in the following section, requires only the listing of the variables 
pertinent to a phenomenon. This technique is simple to use, but if a 
pertinent variable is omitted, erroneous results ensue. In the second 
method the dimensionless groups and similarity conditions are deduced 
from the differential equations describing the phenomenon. This method 
is preferable when the phenomena can be described mathematically, but 
the solution of the resulting equations is too involved to be practical. An 
illustration of this technique is presented in Sec. 7-2. 

Exact mathematical analyses require the simultaneous solution of 
the equations describing the fluid motion and the transfer of energy in the 
moving fluid. The method presupposes that the physical mechanisms are 
sufficiently well understood to be described in mathematical language. 
This preliminary requirement limits the scope of exact solutions because 
complete mathematical equations describing the fluid flow and the heat­
transfer mechanisms can be written only for laminar flow. Even for 
laminar flow the equations are quite complicated, but solutions have been 
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obtained for a number of simple systems such as flow over a flat plate or 
a circular cylinder. 

Exact solutions are important because the assumptions made in the 
course of the analysis can be specified accurately and their validity can be 
checked by experiment. They also serve as a basis of comparison and as 
a check on simpler, but approximate methods. Furthermore, the develop­
ment of electronic computers has increased the range of problems ame­
nable to mathematical solution, and results of computations for different 
systems are continually being published in the literature. 

The details of the mathematical solution are quite complicated. 
They are, however, not essential to a correct application of the results. 
We shall here only derive the boundary-layer equations to introduce the 
fundamental concepts, indicate how they can be solved, and finally il­
lustrate the application of the results for the simple case of flow over a flat 
plate. For details regarding the. methods of solution of the boundary­
layer equations in geometrically more complex systems, the reader is re­
ferred to the translation of Schlichting's treatise on boundary-layer 
theory (1). 

The approximate analysis of the boundary layer avoids the detailed 
mathematical description of the flow in the boundary layer. Instead, a 
plausible but simple equation is used to describe the velocity and tempera­
ture distributions in the boundary layer. The problem is then analyzed 
on a macroscopic basis by applying the equation of motion and the energy 
equation to the aggregate of the fluid particles contained within the 
boundary layer. This method is relatively simple; moreover, it yields 
solutions to problems which can not be treated by an exact mathematical 
analysis. In those instances where other solutions are available, they agree 
within engineering accuracy with the solutions obtained by this approx­
imate method. The technique is not limited to laminar flow, but can also 
be applied to turbulent flow. 

The analogy between heat, mass, and momentum transfer is a useful 
tool for analyzing turbulent transfer processes. Our knowledge of turbu­
lent-exchange mechanisms is insufficient to write mathematical equations 
describing the temperature· distribution directly, but the transfer mech­
anism can be described in terms of a simplified model. According to one 
such model which has been widely accepted, a mixing motion in a direc­
tion perpendicular to the mean flow accounts for the transfer of mo­
mentum as well as energy. The mixing motion can be described on a 
statistical basis by a method similar to that used to picture the motion of 
gas molecules in the kinetic theory. There is by no means general agree­
ment that this model corresponds to conditions actually existing in nature, 
but for practical purposes its use can be justified by the fact that experi­
mental results are substantially in agreement with analytical predictions 
based on the hypothetical model. 
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6-6. Dimensional analysis 

Dimensional analysis differs from other methods of approach in that 
it does not yield equations which can be solved. Instead, it combines 
several variables into dimensionless groups, such as the Nusselt number, 
which facilitate the interpretation and extend the range of application of 
experimental data. In practice, convective heat-transfer coefficients are 
generally calculated from empirical equations obtained by correlating 
experimental data with the aid of dimensional analysis. 

The most serious limitation of dimensional analysis is that it gives no 
information about the nature of a phenomenon. In fact, to apply dimen­
sional analysis it is necessary to know beforehand what variables influence 
the phenomenon, and the success or failure of the method depends on the 
proper selection of these variables. It is therefore important to have at 
least a preliminary theory or a thorough physical understanding of a 
phenomenon before a dimensional analysis can be performed. However, 
once the pertinent variables are known, dimensional analysis can be ap­
plied to most problems by a routine procedure which is outlined below. 2 

Primary dimensions and dimensional formulas. The first step is to 
select a system of primary dimensions. The choice of the primary dimen­
sions is arbitrary, but the dimensional formulas of all pertinent variables 
must be expressible in terms of them. We shall use the primary dimen­
sions of length L, time 8, temperature T, and mass M. 

The dimensional formula of a physical quantity follows from defi­
nitions or physical laws. For instance, the dimensional formula for the 
length of a bar is [L] by definition. 3 The average velocity of a fluid par­
ticle is equal to a distance divided by the time interval taken to traverse it. 
The dimensional formula of velocity is therefore [Lj8], or [L8- 1

], i.e., a 
distance or length divided by a time. The units of velocity could be ex­
pressed in feet per second, miles per hour, or knots, since they all are a 
length divided by a time. 

The dimensional formulas and the symbols of physical quantities 
occurring frequently in heat-transfer problems are given in Table 6-1. The 
primary dimensions in the ML8T column of Table 6-1 avoid the use of 
dimensional constants such as g c or J. This standardizes the method, but 
conversion factors may have to be inserted in the final results (i.e., the 
dimensionless quantities) to comply with the system of units used (see 
Appendix II for conversion factors). For convenience the dimensional 

2The algebraic theory of dimensional analysis will not be developed here. For a 
rigorous and comprehensive treatment of the mathematicaf background, Chapters 3 and 4 
of Reference 2 are recommended. 

3 A square bracket [1 denotes that the quantity has the dimensional formula stated 
within the bracket. 
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Tobie 6-1. Some physico I quontities with ossocioted symbols, dimensions, ond units. 

DIMENSIONS 

QUANTITY SYMBOL 
UNITS IN THE 

MLOT MLOTFQ ENGINEERING SYSTEM 

System System 

Length .................... L, x L L ft 
Time ...................... fJ fJ fJ sec or hr 
Mass ...................... M M M Ibm 
Force ...................... F ML/fJ2 F lbf 
Temperature .. " ............. T T T F 
Heat ........... " ........... Q ML2/fJ2 Q Btu 
Velocity ................... V L/fJ L/fJ ft/sec 
Acceleration ................ a,g L/fJ2 L/fJ2 ft/sec2 

Dimensional conversion 
factor .................... gc None ML/fJ2F 32.2 Iblll ft/sec2 lbf 

Energy conversion factor ..... J None FL/Q 778 ft-Ibr/Btu 
Work ............ , ......... W ML2/fJ2 FL ft-Ibf 
Pressure ................... p M /fJ2L F/L2 lbr/sq ft 
Density .................... p M/L3 M/L3 lbm/cu ft 
In ternal energy. . ........... U L2/fJ2 Q/M Btu/Ibm 
Enthalpy .................. h L2/fJ2 Q/M Btu/Ibm 
Specific heat ................ c L2/fJ2T Q/MT Btu/Ibm F 
Dynamic viscosity .......... J.l.r M/LfJ FfJ/L2 lbf-sec/sq ft 
Absolute viscosity ........... J.I. M/LfJ M/LfJ lbrn/ft-sec 
Kinematic viscosity ......... 11 = J.I./p L2/fJ L2/fJ sq ft/sec 
Thermal conductivity ........ k ML/fJ3T Q/LTfJ Btu/hr ft F 
Thermal diffusivity .......... a L2/fJ L2/fJ sq ft/hr 
Thermal resistance .......... R TfJ3/ML2 TfJ/Q F hr/Btu 
Coefficient of expansion ...... {3 l/T l/T l/F 
Surface tension ..... ; ....... (J M/fJ2 F/L lbr/ft 
Shear per unit area .......... T M/LfJ2 F/L2 lbr/sq ft 
Unit surface conductance h M /fJ3T Q/fJL2T Btu/hr sq ft F 
Mass flow rate .............. m M/fJ M/fJ Iblll/sec 

formulas are also listed in the ML8TFQ system. In this system, sometimes 
called the engineering system, there are six primary dimensions. 4 

Buckingham 7r-theorem. To determine the number of independent 
dimensionless groups required to obtain a relation describing a physical 
phenomenon, the Buckingham 7r (pi) theorem may be used. 5 According 
to this rule, the required number of independent dimensionless groups 
which can be formed by combining the physical variables pertinent to a 

4Since the number of primary quantities is increased by two, the conversion constants 
gc and J, whose dimensional formulas can be derived from the primary dimensions, must 
be included among the physical quantities. 

5 A more rigorous rule, proposed by van Driest (3), shows that the 7r-theorem holds 
as long as the set of simultaneous equations formed by equating the exponents of each pri­
mary dimension to zero is linearly independent. If one equation in the set is a linear com­
bination of one or more of the other equations, i.e., if the equations are linearly dependent, 
then the number of dimensionless groups is equal to the total number of variables n minus 
the number of independent equations. 
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problem is equal to the total number of these physical quantities n (for 
example, density, viscosity, heat-transfer coefficient, etc.) minus the num­
ber of primary dimensions m required to express the dimensional formulas 
of the n physical quantities. If we call these groups 7f\, 7f2, etc., the 
equation expressing the relationship among the variables has a solution of 
the form 

(6-8) 

In a problem involving five physical quantities and three primary dimen­
sions, n - m is equal to two and the solution either has the form 

(6-9) 

or the form 

Experimental data for such a case can be presented conveniently by plot­
ting 7f\ against 7f2. The resulting empirical curve reveals the functional 
relationship between 7f\ and 7f2 which can not be deduced from dimen­
sional analysis. 

For a phenomenon which can be described in terms of three dimen­
sionless groups (i.e., if n - m = 3), Eq. 6-8 has the form 

(6-10) 

but can also be written as 

For such a case, experimental data can be correlated by plotting 7f\ against 
7f2 for various values of 7f3. Sometimes it is possible to combine two of 
the 7f'S in some manner and to plot this parameter against the remaining 7f 

on a single curve. 

Determination of dimensionless groups. A simple 'method for de­
termining dimensionless groups will now be illustrated by applying it to 
the problem of correlating experimental convection heat-transfer data for 
a fluid flowing across a heated tube. Exactly the same approach could be 
used for heat transfer in flow through a heated tube. 

From the description of the convective heat-transfer process, it is 
reasonable to expect that the physical quantities listed in Table 6-2 are 
pertinent to the problem. 

There are seven physical quantities and four primary dimensions. 
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Tobie 6-2 

Variable 

Tube diameter .............................. . 
Thermal conduetivit,Y of the fluid ............. . 
Velocity of the fluid ......................... . 
Density of the fluid ......................... . 
Viscosity of the fluid ........................ . 
Specific heat at constant. pressure ............. . 
Heat-tran::>fer coeffieient ...................... . 

Symbol 

D 
k 
V 
P 

It 
Cp 

lie 

Dimensional Equation 

[L] 
[MLI03 T] 

[LIo] 
[MIL3] 
[MILO] 

[VI02 T] 
[M 103 T] 

We therefore expect that three dimensionless groups will be required to 
correlate the data. To find these dimensionless groups, we write 7r as a 
product of the variables, each raised to an' unknown power 

(6- 1 1) 

and substitute the dimensional formulas 

7r [LJa[ML/0 3T]b[L/Or[M/L 3]d [M/Lo]e[L2jo2T]f[M/03T]g 

(6-12) 

For 7r to be dimensionless, the exponents of each primary dimension must 
separately add up to zero. Equating th~ sum of the exponents of each 
primary dimension to zero, we obtain the set of equations 

b+d+e+g= 0 for M 
a + b + c - 3d - e + 21 = 0 for L 

-3b c - e - 21 - 3g 0 for 0 
-b - 1 - g = 0 for T 

Evidently any set of values of a, b, c, d, and e that simultaneously satisfies 
this set of equations will make 7r dimensionless. There are seven un­
knowns, but only four equations. We can therefore choose values for 
three of the exponents in each of the dimensionless groups. The only re­
striction on the choice of the exponents is that each of the selected ex­
ponents be independent of the others. An exponent is independent if the 
determinant formed with the coefficients of the remaining terms does not 
vanish (i.e., is not equal to zero). 

Since he> the convective heat-transfer coefficient, is the variable we 
eventually want to evaluate, it is convenient to set its exponent g equal to 
unity. At the same time we let c = d = 0 to simplify the algebraic manip­
ulations. Solving the equations simultaneously, we obtain a = 1, b = -1, 
e = 1 = 0, and the first dimensionless group is 
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1fJ 

which we recognize as the Nusselt number, Nu. 
For 7r2 we select g.equal to zero, so that lie will not appear again, and 

let a = 1 and f = O. 'Simultaneous solution of the equations with these 
choices yields b = 0, ,c = d = 1, e = -1, and 

VDp 

This dimensionless group is a Reynolds number, ReD, with the tube di­
ameter as the length parameter. 

If we let e = 1 and c == g = 0, we obtain the third dimensionless 
group 

which is known as the Prandtl number, Pr. 
We observe that, although the heat-transfer coefficient is a function 

of six variables, with the aid of dimensional analysis, the seven original 
variables have been combined into three dimensionless groups. Accord­
ing to Eq. 6-10, the functional relationship can be written 

Nu = f(ReD, Pr) 

and experimental data can now be correlated in terms of three variables 
instead of the original seven. The importance of this reduction ·in the 
variables becomes apparent when we attempt to correlate experimental 
data. 

Correlation of experimental data. Suppose that, in a series of tests 
with air flowing over a 1-in.-OD pipe, the heat-transfer coefficient has 
been measured experimentally at velocities ranging from 0.1 to 100 fps. 
This range of velocities corresponds to Reynolds numbers based on the 
diameter, VDp/ j.L, ranging from 50 to 50,000. Since the velocity was the 
only variable in these tests, the results are correlated in Fig. 6-5 by plot­
ting the heat-transfer coefficient he against the velocity V. The resulting 
curve permits a direct determination of lie at any velocity for the system 
used in the tests, but it cannot be used to determine the heat-transfer 
coefficients for cylinders which are larger or smaller than the one used in 
the tests. Neither could the heat-transfer coefficient be evaluated if the air 
were under pressure and its density were different from that used in the 
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Fig. 6-5. Variation of heat-transfer coefficient with velocity for flow of air over a 
l-in.-OD pipe. 

tests. Unless experimental data could be correlated more effectively, it 
would be necessary to perform separate experiments for every cylinder 
diameter, every density, etc. The amount of labor would obviously be 
enormous. 

With the aid of dimensional analysis, however, the results of one 
series of tests can be applied to a variety of other problems. This is 
illustrated by Fig. 6-6, where the data of Fig. 6-5 are replotted in terms of 
pertinent dimensionless groups. The abscissa in Fig. 6-6 is the Reynolds 
number VDp/J.l, and the ordinate is the Nusselt number licD/k. This cor­
relation of the data permits the evaluation of the heat-transfer coefficient 
for air flowing over any size of pipe or wire as long as the Reynolds num­
ber of the system falls within the range covered in the experiment. 

Experimental data obtained with air alone do not reveal the de­
pendence of the N usselt number on the Prandtl number since the Prandtl 
number is a combination of physical properties whose value does not vary 
appreciably for gases. To determine the influence of the Prandtl number 
it is necessary to use different fluids. According to the preceding analysis, 
experimental data with several fluids whose physical properties yield a 
wide range of Prandtl numbers are necessary to complete the correlation 
(see Prob. 6-17). 

In Fig. 6-7 the experimental results of several independent investiga­
tions for heat transfer between air, water, and oils in cross-flow over a 
tube or a wire are plotted for a wide range of temperatures, cylinder sizes, 
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Fig. 6-6. Variation of a Nusselt number with a Reynolds number for flow of air over 
a l-in.-OD pipe. 

and velocities.· The ordinate in Fig. 6-7 is the dimensionless quantity 6 

Nu/Pro.3 and the abscissa is ReD. An inspection of the results shows that 
all of the data follow a single line reasonably well, so that they can be cor­
related empirically. For example, in the range of Reynolds numbers be­
tween 3 and 100 a straight line on the log-log plot is a satisfactory approx­
imation to the best correlation, shown by a heavy dotted line in Fig. 6-7. 
The slope of this straight line is approximately 0.4 and its ordinate value 
at ReD of unity is 0.82. The empirical correlation equation within the 
range of Reynolds numbers between 3 and 100 is therefore 

Principle of similarity. The remarkable result of Fig. 6-7 can be ex­
plained by the principle of similarity. According to this principle, often 
called the model law, the behavior of two systems will be similar if the 
ratios of their linear dimensions, forces, velocities, etc., are the same. 
Under conditions of forced convection in geometrically similar systems, 
the velocity fields will be similar provided the ratio of inertia forces to 
viscous forces is the same in both fluids. The Reynolds number is the 
ratio of these forces, and consequently we expect similar flow conditions 
in forced convection for a given value of the Reynolds number. The 
Prandtl number is the ratio of two molecular-transport properties, the 
kinematic viscosity v = J.L / p, which affects the velocity distribution, and 

6Combining the Nusselt number with the Prandtl number for plotting the data is 
simply a matter of convenience. As mentioned previously, any combination of dimension­
less parameters is satisfactory. The selection of the most convenient parameter is usually 
made on the basis of experience by trial and· error with the aid of experimental results, 
although sometimes the characteristic groups are suggested by the results of analytical 
analyses. 
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the thermal diffusivity kj pcp, which affects the temperature profile. In 
other words, it is a dimensionless group which relates the temperature 
distribution to the velocity distribution. Hence, in geometrically similar 
systems having the same Prandtl and Reynolds numbers, the temperature 
distribution will be similar. According to its definition (see Eq. 6-3), the 
Nusselt number is numerically equal to the ratio of the temperature 
gradient at a fluid-to-surface interface to a reference-temperature 
gradient. We expect therefore that, in systems having similar geometries 
and similar temperature fields, the numerical values of the Nusselt num­
bers will be equal. This fact is borne out by the experimental results in 
Fig. 6-7. 

6-7. Laminar boundary layer on a flat plate 7 

In the preceding section we determined dimensionless groups for 
correlating experimental data of he~t transfer by forced convection. We 
found that the Nusselt number depends on the Reynolds number and the 
Prandtl number, i.e., 

7 In the remainder of this chapter the mathematical details may be omitted 10 an 
introductory course without breaking the continuity of the presentation. 
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Nu = ¢(Re)if'(Pr) (6-13) 

To determine the functional relationship in this equation it IS necessary 
to resort either to experiments or to analytical methods. 

In this and the following sections of the chapter we shall consider 
analytical methods of approach and apply them to the problem of heat 
transfer between a flat plate and an incompressible fluid flowing parallel 
to its surface. This system has been selected primarily because it is the 
simplest to analyze. However, the results obtained from this analysis 
have many practical applications. They are good approximations to 
forced convection in flow over the surfaces of streamlined bodies or in the 
inlet regions of pipes and ducts. In some cases appropriate transforma­
tions can reduce the equations for the flow of a compressible fluid, or the 
equations for the flow over wedges and cones, to the same form as those 
of the boundary-layer equations for the flat plate. The results for this 
case are therefore of considerable value; for more advanced boundary­
layer problems and digital computer calculation methods, the reader 
should consult References 1 and 30. 

In view of the difference in the flow characteristics, the frictional 
forces as well as the heat transfer are governed by different relations for 
laminar and turbulent types of boundary layers. We will first consider the 
laminar boundary layer, which is amenable to both an exact mathematical 
treatment and an approximate boundary-layer analysis. The turbulent 
boundary layer is taken up in Sec. 6-9. 

Continuity and momentum equations. The equations of motion for 
boundary layer flow can be obtained by means of mass and force-and­
momentum balances. As any other dynamic process, the flow of a fluid is 
governed by Newton's second law of motion which states that the summa­
tion of forces acting on a body in a given direction is equal to the time 
rate of change of its momentum in that direction, or 

1 d(mV) 
"J:-F=-

gc dO 

In this form Newton's second law applies to a system of constant 
mass. In fluid dynamics, however, it is usually not convenient to deal with 
elements of mass; instead, one defines an elemental control volume, s,uch 
as that shown in Fig. 6-8. Mass can flow in and out of this volume which 
is fixed in space, and a force-and-momentum balance in the x-direction 
for this system can be written 

"J:- Fx = increase in momentum flux in x-direction 

where "J:- Fx are the external forces acting on the control volume and the 
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momentum flux in the x-direction is the product of the mass 
flow rate through the control volume and the component of 
the velocity in the x-direction there. 

To derive the equations governing the flow in the boundary layer, 
consider an elemental control volume having the shape of a parallelepiped 
with dimensions dx . dy . 1 (see Fig. 6-8) and assume 

y 

1. The flow is two-dimensional, i.e., the velocity distribution is the same 
in any plane perpendicular to the z axis (i.e., parallel to the surface of 
the paper). 

2. The fluid is incompressible. 
3. The flow is steady with respect to time. 
4. The pressure changes in the direction perpendicular to the surface are 

negligible. 
5. The physical properties are constant. 
6. Viscous 'shear forces in the y-direction are negligible. 

[PV + iJ~ (pv)d~ dx 

i~--~~t------l 
L Control Volume 

,- - --, V --"",~=t-----
dyl I 

I 
v 

pudy: [?u+ a~'(pu)d~ dy 
--- I ------t--------__ 

I I 
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Fig. 6-8. Notation for continuity and momentum equations. Upper left: control volume 
in boundary layer. Upper right: mass flow through surface of control, volume. 
lower left: momentum fluxes in x-direction through surface of control volume. 
low_er right: forces acting on surface of control volume. 
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The mass flow rate entering through the left face is 

pudy 

while the corresponding momentum flux is 

(pudy)u = pu 2dy. 

The mass flow rate leaving through the right face is 

and the corresponding momentum flux is 

The mass flow rate entering through the bottom face is 

pvdx 

and the mass flow rate leaving through the top is 

A mass balance on the control volume gives 

pudy + pvdx ~ p (U + ~~ dX) dy + P (v + :; dy ) dx 

or 

au av + = 0 ax ay (6-14) 

Equation 6-14 is the equation of continuity for an incompressible two­
dimensional flow. 

To complete the momentum analysis, note that the momentum in 
the x-direction entering through the bottom face is 

(pvdx)· u 
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and the momentum in the x-direction leaving through the top face is 

p (v + ;; dY) (U + :~ dy ) dx 

The forces in the x-direction acting on the elemental volume are due 
to pressure and viscous shear. The pressure force on the left face is pdy 

and that on the right face is [p + (:~) dx ] dy; thus, the net pressure 

force in the x-direction is 

ap - - dxdy ax 

Viscous shear is the result of molecular interaction between faster­
and slower-moving layers of fluid. It gives rise to a frictional stress T, 

which is proportional to the velocity gradient normal to the direction of 
flow. The factor of proportionality is a property of the fluid and is called 
the dynamic viscosity J.lf. For flow over a flat plate (Fig. 6-9) when the 
change of velocity occurs only in the y direction perpendicular to the sur­
face, the shearing stress in a plane parallel to the plate is 

where Tyx 

U 

Y 
J.lf 

J.l 

du 
Tyx = J.lf dy = 

shearing stress in lb f / sq ft; 
velocity, in ft / sec; 
distance, in ft; 

J.l du --
gc dy 

dynamic viscosity, in lb f sec/sq ft; 
absolute viscosity, in lb m / sec f1. 

(6- 15) 

The dynamic viscosity is physically the same property of the fluid as the 

T 
---- du _______________ -_-ryx r-J_ 

dy --~ dy 

y 

du 

Fig. 6-9. Shearing stress in a laminar boundary layer. 
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absolute viscosity. The difference between them is merely the system of 
units used in their evaluation and the reason for distinguishing between 
J.Lf and J.L is to avoid errors in numerical computations by calling atten­
tion to the fact that some references list numerical values of viscosity in 
lb f sec / sq ft, whereas this book uses the units Ibm / sec ft throughout. The 
subscript notation for the shearing stress T indicates the axis to which the 
shear-affected area is perpendicular by the first letter and the direction of 
the stress by the second letter, e.g., T yx is the shear in the x direction on a 
plane perpendicular to the y axis. 

At the lower face the shear acting on the fluid within the control 
volume is 

and at the upper face the shear is 

Since the wall,is stationary, the shear on the fluid at the lower face of the 
control volume (Fig. 6-8) acts in a direction opposite to that of the flow 
(i.e., in the negative direction), while the shear on the upper face is caused 
by fluid tending to pull in the direction of motion. The net positive shear 
force is thus 

[ (TYX + ~~x dy ) - TYX ] dx ~ a~ (~ :;) dxdy 

Equating the sum of the viscous shear and pressure forces to the net 
momentum transfer in the x-direction gives 

- - dxdy = p u + -'- dx ap (au )2 
ax ax 

- pu2 dy + P (v + :; dY) (u + :~ dY ) dx - pvudx 

Neglecting higher order terms and simplifying the above relation with the 
aid of Eq. 6-14 yields 

p ( u :: + v ~~ ) ~ JL !:~ - !~ (6- 16) 

For flow over a flat plate the pressure gradient is zero. 

332 FUNDAMENTALS OF CONVECTION 



Boundary-layer thickness and skin friction. Equation 6-16 must be 
solved simultaneously with the continuity equation (Eq. 6-14) in order to 
determine the velocity distribution, the boundary-layer thickness, and the 
friction force at the wall. These equations are solved by first defining a 
stream function, 1f/(x,y), which automatically satisfies the continuity 
equation, or 

atf/ u =-ay and v = atf/ 
ax 

Introducing the new variable 

we can let 

where f(1]) denotes a dimensionless stream function. In terms of f(1]), the 
velocity components are 

u = ay 

and 

v = ax 
! /vu. {d [f(1])] 1] - f(1]) } 
2 x d1] 

Expressing auf ax, auf ay, and a2u/ ay2 in terms of 1] and inserting the re­
sulting expressions in the momentum equation yields the ordinary, non­
linear, third-order differential equation 

which can be solved subject to the three boundary conditions that 

and 

at 1] = 0, f(1]) = 0, d[ ~~1])] = ° 

at 1] 
00 d[f(1])] 

d1] 
I 
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The solution to this differential equation was obtained numerically by 
Blasius, in 1908 (6). The significant results are shown in Figs. 6-10 and 
6-11. 

In Fig. 6-10 the Blasius velocity profiles in the laminar boundary on 
a flat plate are plotted in dimensionless form together with experimental 
data obtained by Hansen (13). The ordinate in Fig. 6-'10 is the local ve­
locity in the x direction u divided by the free stream velocity u oo , and the 
abscissa is a dimensionless distance parameter, (y/x)V(puoox)/J,l. We 
note that a single curve is sufficient to correlate the velocity distributions 
at all stations along the plate. The velocity u reaches 99 percent of the 
free-stream value U x at (y/x)V(puoox)/ J,l = 5.0. If we define the hydro­
dynamic boundary-layer thickness as that distance from the surface at 
which local velocity u reaches 99 percent of the free-stream value 
u x , the boundary-layer thickness 0 becomes 

o = 5x 
~ 

(6-17) 

where Rex (pu", x) / J,l, the local Reynolds number. Equation 6-17 

1.0 

u 
U oo 

0.5 

0.332 • 
)( ) 

.I-~ 

;t; 
k" 

'#i.~ ~ o <> 

F-"4</ 
~./ 

~ + 

• /e 0 + 
L 

/"-/ 0 

:/- + z: ;. -~ 
~:laSiUS Uoo=8m/s 

THIN PLATE (No.1) 

+ 

2 3 4 
r;--

Y\IPUOO X 

X P. 

1--' <> - 'V 

.... r= 1 em 

+ 2 

)( 2.5 

e 4.0 

• 5.0 

0 7.5 

0 10.0 

• 12.5 

A 15.0 

<> 17.5 

5 6 

Fig. 6-10. Velocity profile in the laminar boundary layer according to Blasius with 
experimental data of Hansen (13). (Courtesy of National Advisory Committee 
for Aeronautics, NACA TM 585) 
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Fig. 6-11. Variation of local friction coefficient with dimensionless distance from lead­
ing edge for laminar flow over a flat plate. 

satisfies the qualitative description of the boundary-layer growth, 0 being 
zero at the leading edge (x = 0) and increasing with x along the plate. 
At any station, i.e., a given value of x, the thickness of the boundary 
layer is inversely proportional to the square root of the local Reynolds 
number. Hence, an increase in velocity will result in a decrease of the 
boundary-layer thickness. 

The shear force at the wall can be obtained by substituting the 
velocity gradient at y = 0 into Eq. 6-15. From Fig. 6-10 we see that 

a (u/u oo ) = 0.332 
a(y/x)~ y=o 

and thus at any specified value of x the velocity gradient at the surface is 

aUj = 0.332 Ux ~ 
ay y=o x 

Substituting this velocity gradient in Eq. 6-15, the wall shear per unit area 
Ts becomes 

(6- 18) 

We note that the wall shear near the leading edge is very large and de­
creases with increasing distance from the leading edge. 
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For a graphical presentation it is more convenient to use dimension­
less coordinates. Dividing both sides of Eq. 6-18 by the velocity pressure 
of the free stream pu 00 2 j2g n we obtain 

C IS 
jx = 2 

puce j2gc 
0.664j~ (6-19) 

where C jx is a dimensionless number called the local drag or friction co­
efficient. Figure 6-11 is a plot of C jx against Rex and shows the variation 
of the local friction coefficient graphically. 

In many practical cases the average friction coefficient for a plate of 
finite length L is more important than the local friction coefficient. The 
average friction coefficient is obtained by integrating Eq. 6-19 between the 
leading edge, x = 0, and x = L. For laminar flow over the flat plate we 
get 

(6-20) 

Thus, the average friction coefficient C j is equal to twice the value of the 
local friction coefficient at x = L. 

Energy equation. To evaluate the rate of heat transfer by convec­
tion we must determine the temperature gradient at the surface. The 
equation governing the temperature distribution in the boundary layer is 
obtained with the aid of the first law of thermodynamics, the principle of 

(-k Z; )dx+ o~ [(-k Z; )dxJdY 
( 

U2+V2) pv h+ 2J dx+ 
u~ iJu dx+ 

Jgc ay 
a (u )i au dXld \: a -:r- ay /' Y d r - ---Y gc I - , 

I 
I 
1 
I 

pu (h + U;~:2 ) d Y---;-!--' 
I 
I 
I 
I 
I 

a L -----

(-kZ;)dx 

gc 
(J I. / u 2 + V2 ) ] oy ~v,h+ 2Jg

c 
dx dy 

------.,c 
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I 
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I ( U 2 +v2 ) 
I pu h+ 2Jgc dy+ 
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Fig. 6-12. Control volume in the boundary layer illustrating energy balance. 
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conservation of energy. Since we are dealing with a moving fluid, energy 
stored in fluid particles is transported by their motion. The rate of trans­
port depends on the velocity of the fluid particles, and it is therefore al­
ways necessary to solve the hydrodynamic problem before the tempera­
ture distribution can be obtained. 

To derive the equation governing the temperature distribution, con­
sider the elementary control volume in the boundary layer shown in Fig. 
6-12 .. Let the surfaces ab, be, ed, and da define the boundaries of the 
system, and make an energy balance under the same assumptions used 
previously for the hydrodynamic equations. The energy equation for the 
system can be expressed semantically as 

Influx of 
enthalpy 
and 
kinetic 
energy 

rate of 
heat in­

+ flow by 
conduc­
tion 

rate at 
which 

+ work is 
done by 
frictional 
shear on 
the fluid 
in control 
volume 

efflux of 
enthalpy 
and 
kinetic 
energy 

rate at 
heat out­

+ flow by 
conduc­
tion 

or in symbolic form as 

-k (aT)dX + .! [u 1!:...- au dx + ~ (u!:!:..- au dX)dY] 
ay J gc ay ay gc ay 

= pu (h + u
2 

+ V2) dy + ~ [pu (h + u
2 

+ V2) dY] dx 
2gcJ ax 2gcJ 

- - x + - - - dx dy + - u - -- dx k ( aT)d a [k(aT) ] 1 ( f.l au)" 
ay ay dy J g c ay 

rate at 
which 

+ work is 
done as 
a result 
of 
frictional 
shear by 
the fluid 
in control 
volume 

(6-21 ) 

The frictional work terms represent the work done by shearing forces on 
the surface of the control volume as faster fluid particles slide over slower 
ones. At the lower surface, the fluid inside the control volume exerts a 
force on the fluid outside because the former moves faster. The force 
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times distance per unit time (i.e., velocity) u (p./gc) (au/ay) represents 
the rate at which work is done by the fluid in the control volume. Sim­
ilarly, the last term in square brackets on the left-hand side of Eq. 6-21 
represents the rate at which work is done on the fluid in the control 
volume. 

Conduction along the x direction has been omitted because, in the 
boundary layer, the term -k(aT/ax is negligible compared to -k(aT/ay) 
and the convection terms. 

The term h + (u 2 + v2)/2gcJ can be written cp To for fluids having 
a constant specific heat. To is the stagnation temperature, i.e., the temper­
ature reached by the fluid when it is isentropically slowed down to zero 
velocity. For low-speed flow, T r-...J To because the kinetic energy of the 
flow is negligible. For high-speed flow, on the other hand, especially at 
supersonic velocities, this simplification is not permissible (see Sec. 6-12). 

Adding up the terms of Eq. 6-21 and dropping those of higher order 
(i.e., terms involving triple products of d quantities) we obtain after 
simplifying 8 

pc u -- + pc v -- = -- + - u - -a To a To k a 2 T a ( p. au ) 
p ax p ay ay2 ay g c ay 

(6-22) 

The last term of Eq. 6-22 represents the net rate at which shearing forces 
perform work on the fluid in the control volume. The mechanical energy 
or frictional power increases the internal energy of the fluid in the control 
volume appreciably only at high velocities, but for low subsonic flow in 
the main stream the frictional power term is small compared to the other 
terms and can be neglected. With these simplifications, Eq. 6-22 becomes 

aT aT u-+ v-
ax ay 

(6-23) 

where a = k/ pcp-
The velocities in the energy equation, u and v, have the same values 

at any point (x, y) as in the dynamic equation. For the case of the flat 
plate, Pohlhausen (7) used the velocities calculated previously by Blasius 
to obtain the solution of the heat-transfer problem. Without considering 
the details of this mathematical solution, we can obtain significant results 
by comparing Eq. 6-23, the heat-transfer equation for the boundary layer, 
with Eg. 6-16, the momentum equation for the boundary layer. The two 
equations are similar; in fact, a solution for the velocity distribution 

8 In this and III subsequent equations the work-to-heat conversion constant J has 
been ommitted. 
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u (x, y) is also a solution for the temperature distribution T(x, y) if v = a 
and if the temperature of the plate Ts is constant. We can easily verify 
this by replacing the symbol T in Eq. 6-23 by the symbol u and noting 
that the boundary conditions for both T and u are identical. If we use 
the surface temperature as our datum and let the variable in Eq. 6-23 be 
(T - Ts)/(T 00 - T s), then the boundary conditions are: 

aty 0: 
T- Ts 

° and 
u 

° = 
Too - Ts U oo 

at y --7 
T- Ts 1 and 

u 
1 00: 

Too - Ts U oo 

where Too is the free-stream temperature. 
The condition that v = a corresponds to a Prandtl number of unity 

sInce 

Pr v 
a 

For Pr = 1 the velocity distribution is therefore identical to the tempera­
ture distribution. An interpretation in terms of physical processes is that 
the transfer of momentum is analogous to the transfer of heat when 
Pr = 1. The physical properties of most gases are such that they have 
Prandtl numbers ranging from 0.65 to 1.0, and the analogy is therefore 
satisfactory. Liquids, on the other hand, have Prandtl numbers consider­
ably different from unity, and the preceding analysis cannot be applied 
directly (36). 

Using the analytical results of Pohlhausen's work, the temperature 
distribution in the laminar boundary layer for Pr = 1 can be modified 
empirically to include fluids having Prandtl numbers different from unity. 
In Fig. 6-13 theoretically calculated temperature profiles in the boundary 
layer are shown for values of Pr of 0.6,0.8, 1.0, 3.0, 7.0, 15, and 50. We 
now define a thermal boundary-layer thickness Oth as the distance from the 
surface at which the temperature difference between the wall and the fluid 
reaches 99 percent of the free-stream value. Inspection of the temperature 
profiles shows that the thermal boundary layer is larger than the hydro­
dynamic boundary layer for fluids having Pr less than unity, but smaller 
when Pr is larger than one. According to Pohlhausen's calculations, the 
relationship between the thermal and hydrodynamic boundary layer is 
approximately 

o/Pr'/3 (6-24) 
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Fig. 6-13. Temperature distribution in a fluid flowing over a heated plate 
for various Prandtl numbers. 

1.0 

T-Ts 
Too-Ts 

Temperature Distribution 

0.5 ~------+-~~--+-------+-------+---------1 

2.0 3.0 4.0 

Fig. 6-14. Dimensionless correlation of temperature profiles 
for flow over a flat plate at constant temperature. 

Using the same correction factor, i.e., Pr 1/3, at any distance from the sur­
face, the curves of Fig. 6-13 are replotted in Fig. 6-14. The new abscissa 
is Pr 1/3 (y/x)~ and the ordinate is the dimensionless temperature 
(T - Ts)/(T 00 - T s), where T is the local fluid temperature of the fluid, 
Ts the surface temperature of the plate, and Too the free-stream tempera­
ture. This modification of the ordinate brings the temperature profiles for 
a wide range of Prandtl numbers together on the curve for Pr = 1. 

. Evaluation of convective-heat-transfer coefficient. The rate of heat 
transfer by convection and the convective-heat-transfer coefficient can 
now be determined. The dimensionless temperature gradient at the sur­
face (i.e., at y = 0) is 
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( 
T - T ) 

a Too - ;s 
0.332 

Therefore, at any specified value of x 

_ = 0.332 ex r (T 00 - Ts) aT 
I 

R 1/2 P 1/3 

ay y=o x 
(6-25)' 

and the local rate of heat transfer by convection per unit area becomes on 
substituting aTlay from Eq. 6-25 in Eq. 6-1 

!L = -k - = -0.332k ex r (Too _. Ts) aTI R 1/2 P 1/3 

A ay y=o x 
(6-26) 

The total rate of heat transfer from a plate of width b and length L, ob­
tained by integrating q from Eq. 6-26 between x = 0 and x = L, is 

where ReL = U oo Lip. 
The local convective-heat-transfer coefficient is 

q 0.332 ~ Rex 1/2 Pr 1/3 

x 

and the corresponding local Nusselt number is 

hexx 
k 

0.332 Rex 1/2 Pr 1/3 

(6-27) 

(6-28) 

(6-29) 

The average Nusselt number, he L/ k, is obtained by integrating the right­
hand side of Eq. 6-28 between x = 0 and x = L and dividing the result 
by L to obtain he, the average value of hex; multiplying he by LI k gives 

(6-30) 

The average value of the Nusselt number over a length L of the plate 
is therefore twice the local value of Nux at x = L. It can easily be verified 
that the same relation between the average and local value holds also for 
the heat-transfer coefficient, that is, 
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(6-31 ) 

In practice, the physical properties in Eqs. 6-24 to 6-30 vary with 
temperature, while for the purpose of analysis it was assumed that the 
physical properties are constant. Experimental data have been found to 
agree satisfactorily with the results predicted analytically if the properties 
are evaluated at a mean temperature halfway between that of the wall and 
the free-stream temperature. 

EXAMPLE 6-7. Air at 60 F and at a pressure of 1 atm is flowing over a plate 
at a velocity of 10 fps. Ifthe plate is 1 ft wide and at 140 F, calculate the following 
quantities at x = 1 ft and x = xc. 

a) Boundary-layer thickness. 
b) Local friction coefficient. 
c) Average friction coefficient. 
d) Local drag or shearing stress due to friction. 
e) Thickness of thermal boundary layer. 
f) Local convective heat-transfer coefficient. 
g) Average convective heat-transfer coefficient. 
h) Rate of heat transfer by convection. 

Solution: Properties of air at 100 F from Table A-3 are: 

pO.07 1 Ibm / cu ft 
Cp 0.240 Btu/Ibm F 
f.L 1.285 X 10 -5 Ibm /ft sec 
k 0.0154 Btu/hrftF 

Pr 0.72 

The local Reynolds number at x = 1 ft is 

u oo px (10 ft/sec) (0.071 lbm/cu ft) (1 ft) 

1.285 x 10-5 Ib m/ftsec 
~ 55,200 

Assuming that the critical Reynolds number is 5 x 10 5
, the critical distance is 

(5 x 10 5
) (1.285 x 10 -5 lbm/ft sec) 

(10 ft/sec) (0.071 lbm/cu ft) 
9 ft 

The desired quantities are determined by substituting appropriate values of the 
variable into the pertinent equations. The results of the calculations are shown in 
Table 6-3, and it is suggested that the reader verify them. 

A useful relation between the local Nusselt number Nux and the cor­
responding friction coefficient C/x is obtained by dividing Eq. 6-29 by 
Re Pr l

/
3 or x , 
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Tobie 6-3 

Part Symbol Unit Eq. Used Result (x = 1 ft) Result (x = 9 ft) 

a 0 ft 6-17 0.0212 0.064 
b C jx ...... 6-19 0.00282 0.00094 
c Cj ...... 6-20 0.00564 0.00188 
d Ts Ibr/sq ft 6-18 3.12 X 10-4 1.04 X 10-4 

e Oth ft 6-24 0.0236 0.0715 
f hex Btu/hr sq ft F 6-28 1.03 0.36 
g he Btu/hr sq ft F 6-31 2.06 0.72 
h qe Btu/hr 6-27 206 648 

( 
Nux ) Pr 2 / 3 = 0.322 = C jx 

Re Pr Re 1/2 2 x X 

(6-32) 

The dimensionless ratio Nux/Rex Pr is known as the Stanton number, 
St x • According to Eq. 6-32 the Stanton number times the Prandtl raised 
to the two-thirds power is equal to one-half the value of the friction co­
efficient. This relation between heat transfer and fluid friction was pro­
posed by Colburn (4) and illustrates the interrelationship of the two 
processes. 

6-8. Approximate boundary-layer analysis 

The mathematical difficulties of an exact solution of the boundary 
layer equations in Sec. 6-7 can be circumvented by an approximate analy­
sis which simplifies the mathematical manipulations and whose results 
agree with satisfactory accuracy with exact solutions. Instead of writing 
the equations of motion and heat transfer for a differential control vol­
ume, in the approximate method we write these equations for the aggre­
gate of particles in the boundary layer. For this purpose we choose a 
control volume (Fig. 6-15) bounded by the two planes ab and cd which 
are perpendicular to the wall and a distance dx apart, the surface of the 
plate, and a parallel plane in the free stream at a distance I from the sur­
face. Under steady-state conditions the mass flow rate into the control 
volume through the face ab is 

1/ pudy 
o 

and the associated momentum flux is 
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Fig. 6-15. Control volume for approximate momentum analysis of a boundary layer. 

The mass flow rate out of the control volume through the face cd is 

[PUdY + ! ({PUdY)dX 
and the momentum flux out through cd is 

l' pu 2 dy + ! (1' pu 2 dy ) dx 
No mass can enter the control volume through the plate and the difference 
in the mass flow out through cd and the mass flow in through ab must, 
therefore, enter through the upper face bd. Since the velocity at y = 1 is 
approximately equal to the free stream velocity u 00' the x-momentum flux 
associated with the fluid entering through bd is 

The net x-momentum flux out of the control volume is therefore 

;X (['Pu 2dY)dX - U~ ;x ( [PUdY)dX 

We can recast the second term in this expression into a more useful form 
by using the so-called "product formula" of integral calculus 
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d (r. q) rdq + qdr 

or 

rdq = d (r .q) - q. dr 

If we treat the integral l' pudy as the q function and the free-stream 

velocity U oo (x) as the r function 

But since U oo (x) is not a function of y it can be placed under the integral 
sign and this gives 

u. ;x (1' pudy )dX ~ ;x ([' puu. dY ) dx - d;x· (1/ 
PUdY) dx 

The increase in x-momentum flux is equal to the summation of the forces 
in the x direction acting on the surface of the control volume. These 
forces, considered positive in the direction of flow, are 

1. The shearing stress at the bottom surface, - T s dx au I 
ay y=o 

2. The pressure on face ab, 11 pdy. 

3. The pressure on face cd. - [ [I pdy + :/x ([ I pdy ) dX] . 

Since the velocities on both sides of the face bc are equal, no shearing 
stress exists there. 

Equating the forces to the rate of momentum increase yields finally 

Ts + ~ (.1 1 

PdY ) = !L ( II J!... u (U oo - u) dY ) - duoo 
( II ~ UdY ) dx 

dx 0 dx 0 g c dx 0 g c 

(6-33) 

. Equation 6-33 is the von Karman momentum integral equation of the 
boundary layer for incompressible flow over a flat plate. It applies also to 
flow over slightly curved boundaries if x is measured along the surface and 
y normaf to it; but if the surface over which the fluid flows is curved, the 
free-stream velocity U oo and the pressure p 00 vary with x. For incompres-
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sible flow a relationship between u 00 and p 00 can be obtained from 
Bernouilli's equation 

or 
dpoo = 
dx 

constant 

_ pU oo du oo 
gc dx 

Since the boundary layer is very thin, it may be assumed (1) that the pres­
sure at any x location is constant throughout the boundary layer, I.e., 
p (x) = poo (x), and 

l ' dp dy = [' dp 00 dy = p 
o dx 0 dx gc 

(6-34) 

Substituting Eq. 6-34 for the pressure term in Eq. 6-33 gives 

I ' [' d pu p dux> 
IS = - - (u oo - u)dy + - -- (u oo - u)dy 

dx 0 gc gc dx 0 

Since the integrals in both terms on the right-hand side are zero for 
y > 0, their upper limits can be replaced by o. For flow over a flat plate 
u 00 does not vary with x and 

For the constant pressure condition, Eq. 6-33 becomes therefore simply 

d 
dx 

J'U(U oo - u)dy 

If one assumes a physically reasonable velocity distribution in the 
boundary layer, then the momentum integral equation can be used to 
determine the boundary-layer thickness and the wall friction for specified 
geometries and flow conditions. The results naturally become more ac­
curate the more closely the assumed velocity distribution resembles actual 
co.nditions. It has been found, however, that even a very rough assump­
tion for the velocity distribution will yield satisfactory results. For this 
reason the approximate method is a powerful tool in engineering analysis. 
Example 6-2 illustrates the method. 
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EXAMPLE 6-2. Determine the hydrodynamic boundary-layer thickness for 
laminar flow over a flat plate by means of the von Karman momentum equation 
of the boundary layer. Assume a straight-line velocity distribution in the 
boundary layer. 

Solution: The equation describing the velocity distribution for a linear in­
crease in velocity from u = 0 at y = 0 to u = U oo at y = 0 is U = uooy/o. The 
shearing stress at the wall T s is then 

J-LU oo 
o 

Substituting for U and Ts in Eq. 6-33 yields 

2 d 
P u -

00 dx 
y 
- dy = 
o 

Evaluating the integral above yields 

Then, we get 

which yields 

10 ~ dy _ IO y2 dy = 1 
o 0 0 0 2 0 

2 ° Y 

2 0 

pU x
2 do J-Lu x ---

6 dx 0 

(
0

2
) 6J-L odo = d - = -- dx 

2 pu"" 

3 {, 
Y 

3 o 

o 
6 

Integrating the above equation gives the boundary-layer thickness 0 as 

Ans. 

The boundary-layer thickness calculated by means of a linear ap­
proximation to the velocity distribution is about 30 percent less than the 
value obtained by Blasius (see Eq. 6-17). However, the approximate 
method can be considerably improved by taking a velocity distribution 
which resembles the true conditions more closely. Eckert (9) used a cubic 
parabola of the form 
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( 6-35) 

and obtained, by substituting the above relation for u in Eq. 6-33, 

o = 4.64x/~ (6-36) 

a value only 8 percent less than that of the exact analysis. Since most of 
the experimental measurements are only accurate to within 10 percent, the 
results of the approximate analysis are satisfactory in practice. 

To determine the rate of convective heat transfer to or from a sur­
face we make an energy balance for the aggregate of fluid particles within 
the control volume of Fig. 6-16. To simplify the problem we shall neglect 
the shear work due to the frictional forces along the wall and assume also 
that the physical properties are independent of the temperature. 

Energy is convected into and out of the control volume as a result of 
the fluid motion, and there is also heat flow by conduction across the 
interface. The energy flow rates across the individual faces of the con­
trol volume are listed in Table 6-4. To satisfy the principle of conserva­
tion of energy in the steady state, the rate of energy influx must equal the 
rate of energy efflux. Equating the net rate of convective energy outflow 
to the net rate of heat inflow by conduction we obtain 

a I' k aTI ~x 0 (Tooo - To) udy = - -
u pCp ay y=o 

Since the total temperature ~ equals the free-stream total temperature 

a 11 pCp dx ax 0 uTOe» dy 

b,--- ------,c 

: __ ----~I-------------o 
I I 

I 
I 
I 1 -1-1 +---.. -----j- pCp 1 uTody + 

pcp uTody I 1 

o : : pCp a~ (luTody) dx 

I I 

/777777~77777717777 /77j777777 T, "a .. 'o"aco 

-k aT I dx 
ay y=o 

Fig. 6-16. Control volume for approximate energy balance in a 
boundary layer. 
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Tobie 6-4 

Face Mass-Flow Rate Heat-Flow Rate 

ab p il udy pCp il uT ody 

a fl a II bc pdx - udy pCpdx - uTocody 
ax 0 ax 0 

cd p[J:Z udy + a: (IaZ udy )dX ] pCp J:ZUTody + pCp a~ (J:Z UTodY)dX 

da 0 _k
a
; )v=o dx 

Tooo outside the thermal boundary layer (i.e., y > Oth), the integrand be­
comes zero for values of y larger than Oth. We therefore replace I, the 
upper limit of the integral, by Oth, and the heat-transfer equation of the 
boundary layer becomes 

(6-37) 

If we restrict our analysis to low-speed flow in which the kinetic energy is 
negligible compared with the enthalpy, the total temperatures in Eq. 6-37 
are equal to the static temperatures for all practical purposes, i.e., To "-' T 
and Tooo "-' Too. 

To determine the convective heat-transfer coefficient we now select a 
suitable shape for the temperature distribution which meets the physical 
boundary conditions. Near the surface, where heat flows by conduction, 
the temperature gradient should be linear, and at y = 0, the fluid tempera­
ture should be equal to the plate temperature. At the edge of the thermal 
boundary layer (i.e., at y = Oth) the temperature should smoothly ap­
proach the free-stream temperature. Mathematically these boundary 
conditions are 

aT 
ay 

C and 

A cubic parabola of the form 

and 

aty o 

o aty 

(6-38) 

satisfies these boundary conditions if the constants C 1 and C 2 are selected 
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appropriately. The conditions at y = 0 are automatically satisfied for 
any value of C, and C 2 • At Y = Oth we have 

and 

Solving for C, and C 2 , and substituting these expressions In Eq. 6-38 
yields 

T - Ts 3 (y) 1 (y)3 
T 00 - Ts = 2 0 th - 2 0 th 

(6-39) 

Using Eqs. 6-39 and 6-35 for (T - Ts) and u respectively, the integral in 
Eq. 6-37 can be written as 

Performing the multiplication under the integral sign we obtain 

(T. - T.) u. l'''[Uo) Y - (4:0,.) y2 + (40~,.') y' 

-(2~3)y3 +CO~03) y' -(40~303)y6 dY] 
which yields after integrating 

(T. - T,) u. [~ 

1 Oth 
4 + 3 

8 0 3 20 

If we let r Oth/O, the above expression can be written 
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( T - T) U 8 (l r2 __ 3_ r4) 
00 S 00 20 ~ 280 ~ 

For fluids having a Prandtl number equal to or larger than unity, !: is 
eq ual to or less than unity and the second term in the bracket can be ne­
glected compared to the first. 9 Substituting this approximate form for 
the integral in Eq. 6-37, we obtain 

or 

From Eq. 6-36 we obtain 

and with this expression we get 

or 

aTI 
-a ay y=o 

10.75 v 

10 a 
10.75 v 

a 

8th = 0.98Pr -1/3 

3 
- a 
2 

(6-40) 

Except for the numerical constant (0.9 compared with 1.0) the foregoing 
result is in agreement with the exact calculations of Pohlhausen (Eq. 
6-24). 

The rate of heat flow by convection from the plate per unit area IS, 

from Eqs. 1-1 and 6-39, 

Substituting Eqs. 6-36 and 6-40 for 8th yields 

9 T his assumption is not valid for liquid metals, which have Pr < 1. 
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q 
A 

and 

3 k Pr l / 3 Re 1/2 

- 2: X (0.9) (4.64) (Too - Ts) 0.36 ~ Rex 1/2 Pr 1/3 (Ts - Too) 

(6-41 ) 

0.36 Re x
l / 2 Pr 1/3 (6-42) 

This result is in agreement with the exact analysis (Eq. 6-29) except for 
the numerical constant, which is about 9 percent larger. 

The foregoing example illustrates the usefulness of the approximate 
boundary-layer analysis. Guided by a little physical insight and intuition, 
this technique yields satisfactory results without the mathematical com­
plications inherent in the exact boundary-layer equations. The approxi­
mate method has been applied to many other problems, and the results 
are available in the literature. 

6-9. Analogy between heat and 
momentum transfer in turbulent flow 

In a majority of practical applications the flow in the boundary layer 
is turbulent rather than laminar. It is therefore not surprising that many 
famous scientists, such as Osborn Reynolds, G. I. Taylor, Ludwig Prandtl, 
and T. von Karman, hav~ studied problems dealing with turbulent­
exchange mechanisms. Although these men as well as many others have 
contributed considerably to our understanding of turbulent flow, so far no 
one has succeeded in predicting friction and heat-transfer coefficients by a 
direct analysis. The reason for this lack of success is the extreme com­
plexity of turbulent motion. In turbulent flow, irregular velocity fluctua­
tions are always superimposed upon the motion of the main stream, and 
the fluctuating components can not be described by simple equations. 
Yet, it is precisely these fluctuations which are primarily responsible for 
the transfer of heat as well as momentum in turbulent flow. 

Qualitatively the exchange mechanism in turbulent flow can be pic­
tured as a magnification of the molecular exchange in laminar flow. In 
steady laminar flow, physical properties such as temperature and pressure 
remain constant at any point and fluid particles follow well-defined 
stn~amlines. Heat and momentum are transferred across streamlines only 
by molecular diffusion. The amount of cross flow is so small that, when a 
colored dye is injected at some point into the fluid, it follows a streamline 
without appreciable diffusion. In turbulent flow, on the other hand, the 
color will be distributed over a wide area a short distance downstream 
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from the point of injection. The mIxmg mechanism consists of rapidly 
fluctuating eddies which transport blobs of fluid in an irregular manner. 
Groups of particles collide with each other at random, establish cross flow 
on a macroscopic scale, and effectively mix the fluid. Since the mixing in 
turbulent flow is on a macroscopic scale with groups of particles trans­
ported in a zigzag path through the fluid, the exchange mechanism is 
many times more effective than in laminar flow. As a result, the rates of 
heat and momentum transfer in turbulent flow and the associated friction 
and heat-transfer coefficients are many times larger than in laminar flow. 

Instantaneous streamlines in turbulent flow are highly jagged, and it 
would be a hopelessly difficult task to trace the path of individual fluid 
elements. However, if the flow at a point is averaged over a period of 
time, long as compared with the period of a single fluctuation, the time­
mean properties and the velocity of the fluid are constant if the average 
flow remains steady. It is therefore general practice to describe each 
fluid property and the velocity in turbulent flow in terms of a mean value 
which does not vary with time and a fluctuating component which is a 
function of time. To simplify the problem, consider a two-dimensional 
flow (Fig. 6-17) in which the mean value of velocity is parallel to the 
x direction. The instantaneous velocity components u and v can then be 
expressed in the form 

u u + u ' 
(6-43) 

V v' 

where the bar over a symbol denotes the temporal mean value, and the 
prime denotes the instantaneous deviation from the mean value. Ac­
cording to the model used to describe the flow, 

y 
r':~J1 --------r----
I // 

ii(y) 

I /' 
I v 
I 

I 
I 

7' I 
/,v I 

/ I 
L _____ L_ 

L,du~ 
dy 

+vrt +u~ 

x 

Fig, 6-17. Sketch illustrating mixing length for momentum transfer. 
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u 1 
8* 1

0* 

ud8 
o 

(6-44) 

where 8* is large compared with the period of the fluctuations. Figure 
6-18 shows qualitatively the time variation of u and u'. From Eq. 6-44 or 
from an inspection of the graph it is apparent that the time average of u' 
is zero, i.e. U' = O. A similar argument shows that v' and (pv)' are also 
zero. 

The fluctuating velocity components continuously transport mass, 
and consequently momentum, across a plane normal to the y direction. 
The instantaneous rate of transfer in the y direction of x-momentum per 
unit area at any point is 

-(pv)'(u + u') 

where the minus sign, as will be shown later, takes account of the statisti­
cal correlation between u' and v'. 

The time average of the x-momentum transfer gives rise to an ap­
parent turbulent shear or Reynolds stress 'T t defined by 

[

0* 

gc'Tt = - J* 0 (pv)'(u + u')d8 (6-45) 

Breaking this term up into two parts, the time average of the first is zero, 
or 

1 
8* 1

0* 

o (pv)'ud8 = 0 

since u is a constant and the time average of (pv)' is zero. Integrating the 
second term, Eq. 6-45 becomes 

u' 

u 11 
u u 

(J 

Fig. 6-18. Sketch illustrating time variation 
of instantaneous velocity. 
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or if p is constant 

1 
0* 1

0* 

o (pV)IU ' dO _(pV)IU' (6-450) 

(6-46) 

It is not difficult to visualize that the time averages of the mixed products 
of velocity fluctuations, such as for example v I u ' , differ from zero. From 
Fig. 6-17 we can see that the particles which travel upward (v' > 0) arrive 
at a layer in the fluid in which the mean velocity 11 is larger than in the 
layer from which they come. Assuming that the fluid particles preserve 
on the average their original velocity u during their migration, they will 
tend to slow down other fluid particles after they have reached their desti­
nation and thereby give rise to a negative component u ' . Conversely, if v' 
is negative, the observed value of u' at the new destination will be posi­
tive. On the average, therefore, a positive v'is associated with a negative 
u', and vice versa. The time average of u ' v I is therefore on the average not 
zero but a negative quantity. The turbulent shearing stress defined by 
Eq. 6-46 is thus positive and has the same sign as the corresponding lam­
inar shearing stress (Eq. 6-15), 

Tyx = 
dfi 

J..lf­
dy 

p dii 
- v 
gc dy 

It should be noted, however, that the laminar shearing stress is a true 
stress, whereas the apparent turbulent shearing stress is simply a concept 
introduced to account for the effects of the momentum transfer by turbu­
lent fluctuations. This concept allows us to express the total shear stress 
in turbulent flow as 

T = viscous force + ..L (turbulent momentum flux-) 
unit area g c 

(6-47) 

To relate the turbulent momentum flux to the time-average velocity 
gradient, dill dy, Prandtl (10) postulated that fluctuations of macroscopic 
blobs of fluid in turbulent flow are, on the average, similar to the motion 
of molecules in a gas, i.e., they travel on the average a distance I per­
pendicular to fi (Fig. 6-17) before coming to rest in another y plane. This 
distance I is known as Prandtl's mixing length and corresponds qualita­
tively to the mean free path of a gas molecule. Prandtl further argued 
that the fluid particles retain their identity and physical properties during 
the cross motion and that the turbulent fluctuation arises chiefly from the 
difference in the time-mean properties between y planes spaced a distance 
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1 apart. According to this argument, if a fluid particle travels from the 
layer y to the layer y + I, 

u' "'-' 1 di1 
dy 

(6-48) 

With this model we can write the turbulent shearing stress in a form anal­
ogous to the laminar shearing stress as 

(6-49) 

where the symbol fM is called the eddy viscosity or the turbulent exchange 
coefficient for momentum. The eddy viscosity fM is formally analogous to 
the kinematic viscosity 11, but whereas 11 is a physical property, fM depends 
on the dynamics of the flow. Combining Eqs. 6-48 and 6-49 shows that 
fM = -v'l. Substituting Eqs. 6-15 and 6-49 in Eq. 6-47 gives the total 
shearing stress in the form 

T = (6-50) 

In turbulent flow fM IS much larger than 11 and the VISCOUS term may 
therefore be neglected. 

The transfer of energy as heat in a turbulent flow can be pictured in 
an analogous fashion. Consider a two-dimensional time-mean tempera­
ture distribution as shown in Fig. 6-19. The fluctuating velocity com­
ponents continuously transport fluid particles and the energy stored in 

I 
I 
I I 

lJ _________________ _ 
L--IdT~ 

dy 

Fig. 6-19. Sketch illustrating mixing length for energy transfer. . 
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them across a plane normal to the y direction. The instantaneous rate 
of energy transfer per unit area at any point in the y direction is 

(pv')(Cp T) (6-51 ) 

where T = T + T'. Following the same line of reasoning which led to 
Eq. 6-46, the time average of energy transfer due to the fluctuations, called 
the turbulent rate of heat transfer q t, is 

(6-52) 

Using Prandtl's concept of mixing length, we can relate the temperature 
fluctuation to the time-mean temperature gradient by the equation 

T' ~ 1 dT 
dy 

(6-53) 

This means physically that, when a fluid particle migrates from the layer 
y to another layer a distance 1 above or below, the resulting temperature 
fluctuation is caused chiefly by the difference between the time-mean 
temperatures in the layers. Assuming that the transport mechanisms of 
temperature (or energy) and velocity are similar, the mixing lengths in 

Eqs. 6-48 and 6-53 are equal. The product v' T', however, is positive on 
the average because a positive v' is accompanied by a positive T', and vice 
versa. 

Combining Eqs. 6-52 and 6-53, the turbulent rate of heat transfer per 
unit area becomes 

(6-54) 

where the minus sign is a consequence of the second law of thermody­
namics (see Sec. 1-3). To express the turbulent heat flux in a form analo­
gous to the Fourier conduction equation we define EH, a quantity called 
the turbulent exchange coefficient for temperature, eddy diffusivity of 

heat, or eddy heat conductivity, by the equation EH = v'l. Substituting EH 

for v' 1 in Eq. 6-54, gives 

dT 
-c pEH -

p dy (6-55) 

The total rate of heat transfer per unit area normal to the mean stream 
velocity can then be written as 

q 
A 

molecular conduction 
unit area + 

turbulent transfer 
unit area 
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or in symbolic form as 

q dT 
- = -cpp(a + EH)-
A dy 

(6-56) 

where a = kj cpp, the molecular diffusivity of heat. The contribution to 
the heat transfer by molecular conduction is proportional to a, and the 
turbulent contribution is proportional to EH. For all fluids except liquid 
metals, EH is much larger than a in turbulent flow. The ratio of the 
molecular kinematic viscosity to the molecular diffusivity of heat v / a has 
previously been named the Prandtl number. Similarly, the ratio of the 
turbulent eddy viscosity to the eddy diffusivity EM / EH could be considered 
a turbulent Prandtl number Pr/. According to the Prandtl mixing-length 

theory, the turbulent Prandtl number is unity, since EM = EH = v'I. 

Although the model postulated by Prandtl in his treatment of turbu­
lent flow is certainly grossly oversimplified, experimental results indicate 
it is at least qualitatively correct. Isakoff and Drew (11) found that Pr I 
for the heating of mercury in turbulent flow inside a tube may vary from 
1.0 to 1.6, and Forstall and Shapiro (12) found that Pr I is about 0.7 for 
gases. The latter investigators also showed that Pr t is substantially inde­
pendent of the value of the laminar Prandtl number as well as of the type 
of experiment. For practical calculations it is usually satisfactory to as­
sume that Pr I is unity. With this simplification we can relate the turbulent 
heat flux to the turbulent shear stress by combining Eqs.· 6-49 and 6-55 
and obtain 

(6-57) 

This relation was originally drived in 1874 by the British scientist Osborn 
Reynolds and is called the Reynolds analogy in his honor. It is a good 
approximation whenever the flow is turbulent, and can be applied to 
turbulent boundary layers as well as to turbulent flow in pipes or ducts. 
However, the Reynolds analogy does not hold in the laminar sublayer. 
Since this layer offers a large thermal resistance to the flow of heat, Eq. 
6-57 does in general not suffice for a quantitative solution. Only for fluids 
having a Prandtl number of unity can it be used directly to calculate the 
rate of heat transfer. This special case will now be considered. 

6~ 1 O. Reynolds analogy for turbulent flow over a flat plate 

In this section we shall derive for flow over a plane surface a relation 
between the heat transfer and the skin friction for a Prandtl number of 
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unity. In the following se'ction we shall show how to calculate the skin 
friction and consider some improvements over the simple analogy. 

In two-dimensional flow the shearing stress in the laminar sublayer 
Tyx is (Eq. 6-15) 

and the rate of heat flow per unit area across any plane perpendicular to 
the y direction is (Eq. 1-1) 

q -k dT 
A dy 

Combining Eqs. 1-1 and 6-15 yields 

q 
A 

-gcTyx 
k dT 
/-L du (6-58) 

An inspection of Eqs. 6-57 and 6-58 shows that if cp = kj /-L (i.e., for 
Pr = 1), the same equation of heat flow applies in the laminar and turbu­
lent layers. 

To determine the rate of heat transfer from a flat plate to a fluid with 
Pr = 1 flowing over it in turbulent flow, we replace kj /-L by cp and separate 
the variables in Eq. 6-58. Assuming that q and T are constant, we get the 
equation 

qs 
---du = -dT 
ATsCpgc 

(6-59) 

where the subscript s is used to indicate that both q and T are taken at the 
surface of the plate. Integrating Eq. 6-59 between the limits u = 0 when 
T = T s , and u = U oo when T =T 00' yields 

But since by definition 

and Tsx 

Eq. 6-60 can be written as 

pu 2 
= C

fx 
__ 00_ 

2gc 

(6-60) 

(6-61 ) 
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Equation 6-61 is satisfactory for gases in which Pr is approximately unity. 
Colburn (4) has shown that Eq. 6-61 can also be used for fluids having 
Prandtl numbers ranging from 0.6 to about 50 if it is modified in ac­
cordance with experimental results to read 

(6-62) 

where the subscript x denotes the distance from the leading edge of the 
plate. 

6-77. Turbulent flow over plane surfaces 

To apply the analogy between heat transfer and momentum transfer 
in practice it is necessary to know the skin-friction coefficient C fx • For 
turbulent flow over a plane surface the empirical equation for the local 
friction coefficient 

( )

-1/5 
C fx = 0.0576 u: x (6-63) 

is in good agreement with experimental results (1) in the Reynolds number 
range between 5 x 10 5 and 10 7 as long as no separation occurs. Assuming 
that the turbulent boundary layer starts at the leading edge, the average 
friction coefficient over a plane surface of length L can be obtained by 
integrating Eq. 6-63, or 

(6-64) 

In reality, however, a laminar boundary layer precedes the turbulent 
boundary layer between x = 0 and x = xc. Since the local frictional drag 
of a laminar boundary layer is less than the local frictional drag of a 
turbulent boundary layer at the same Reynolds number, the average drag 
calculated from Eq. 6-64 without correcting for the laminar portion of 
the boundary layer is too large. The actual drag can be closely estimated, 
however, by assuming that, behind the point of transition, the turbulent 
boundary layer behaves as though it had started at the leading edge. 

. Adding the laminar friction drag between x = 0 and x = Xc to the 
turbulent drag between x = Xc and x = L gives, per unit width, 
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For a critical Reynolds .number of 5 x 10 5 this yields 

(6-65) 

Substituting Eq. 6-63 for Cjx in Eq. 6-62 yields the local Nusselt 
number at any value of x larger than xc, or 

Nux ~ hot ~ 0.0288 Pri/3 (u;x) 0.8 (6-66) 

We observe that the local heat-transfer coefficient hex for heat transfer by 
convection through a turbulent boundary layer decreases with the dis­
tance x as hex ex:: 1/ XO.

2
• Equation 6-66 shows that, in comparison with 

laminar flow where hex ex:: 1/ X 1/2, the heat-transfer coefficient in turbulent 
flow decreases less rapidly with x and that the turbulent-heat-transfer co­
efficient is much larger than thelaminar heat-transfer coefficient at a given 
value of the Reynolds number. 

The average conductance in turbulent flow over a plane surface of 
length L can be calculated to a first approximation by integrating Eq. 
6-66 between x = 0 and x = L, or 

In dimensionless form we get 

0.036 Pr 1/3 ReLO.8 (6-67) 

Equation 6-67 neglects the existence of the laminar boundary layer and is 
therefore valid only when L »Xe. The laminar boundary layer can be 
included in the analysis if Eq. 6-28 is used between x = 0 and x = xc, and 
Eq. 6-66 between x = Xc and x = L for the integration of hex. This yields 
for Ree = 5 x 105 

NUL = 0.036 Pr l
/ 3 (ReLO.8 

- 23,200) (6-68) 

EXAMPLE 6-3. The crankcase of an automobile is approximately 30 in. 
long, 12 in. wide, and 4 in. deep. Assuming that the surface temperature of the 
crankcase is 160 F, estimate the rate of heat flow from the crankcase to at­
mospheric air at 40 F at a road speed of 60 mph. Assume that the vibration of the 
engine and the chassis induce the transition from laminar to turbulent flow so near 
to the leading edge that, for practical purposes, the boundary layer is turbulent 
over the entire surface. Neglect radiation and use for the front and rear surfaces 
the same average convective heat-transfer coefficient as for the bottom and sides. 
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Solution: Using physical properties of air at 100 F from Table A-3 in Ap­
pendix III, the Reynolds number is 

(88 ftjsec)(0.0711bm jcu ft)(30/12 ft) 

1.285 x 1O-5 1b m /ftsec 

= 1.21 x 106 

From Eq. 6-67 the average Nusselt number is 

(0.036) (0.896) (73,480) = 2370 

and the average convective heat-transfer coefficient becomes 

(2370)(0.0154 Btu/hr ft F) 
30/12 ft 

14.55 Btu/hr sq ft F 

The overall area is 4.84 sq ft and the rate of heat loss is therefore 

q = hcA (Ts - Too) = (14.55) (4.84) (160-40) = 8430 Btu/hr Ans. 

The thickness of a turbulent boundary layer in flow over a plane 
surface can be calculated by means of the Karman integral relations. To 
improve the accuracy of the calculations, we shall use a velocity distribu­
tion determined by experiment. Figure 6-20 shows several velocity pro­
files measured by Van der Hegge-Zynen (14). Near the wall the velocity 
increases linearly with the distance from the surface. This is the region 
called the laminar sublayer, although some recent measurements suggest 
that it is not completely devoid of turbulence. In the fully turbulent por­
tion of the boundary layer the velocity increases with the one-seventh 
power of distance and can be represented by the equation 

~ = (~)1/7 
U oc (j 

(6-69) 

Between the laminar sub layer and the turbulent portion of the boundary 
layer is a transition region where the turbulence level is variable. Because 
the laminar sublayer as well as the transition layer are very thin we shall, 
as a first approximation, neglect both of them and use Eq. 6-69 to evaluate 
the momentum change in the integral equations. This approximation can­
not be used, however, to determine the shearing stress because, accord­
ing to Eq. 6-69, the velocity gradient is 

du 

dy 
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Fig. 6-20. Velocity distribution in turbulent boundary layers over plane surfaces 
after Van der Hegge-Zynen (14). 

which would lead to infinitely large shearing stress at the wall (i.e., at 
y = 0). To overcome this difficulty we shall use an experimehtally de­
termined relation for the shearing stress~ 

In the Reynolds-number range between 105 and 107 the relation 

is in good agreement with experimental results obtained by 
Grunow (15). Substituting Eq. 6-70 for the shearing stress and 
for the velocity distribution in the integral of Eq. 6-33 gives 

- pu - = 0 0228 pu -7 2 do 2~ V )1/4 
72 ~ dx' "" u""o 

Separation of the variables yields 

OI/4do ~ 0.235 (:.) 1/4 dx 

from which we obtain the boundary-layer thickness in the form 

o = 0.376 :~ X
4

/
5 

( )

1/5 

(6-70) 

Schultz­
Eq. 6-69 
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or 

o = 0.376Rex- I / 5 

x 
(6-71 ) 

where Rex = (Uocx/v). It can be seen from Eqs. 6-36 and 6-71 that, at 
any given value of x, a turbulent boundary layer increases at a faster rate 
than a laminar boundary layer. Despite its greater thickness, the turbu­
lent boundary layer offers less resistance to heat flow than a laminar layer 
because the turbulent eddies produce continuous mixing between warmer 
and cooler fluids on a macroscopic scale. An inspection of the velocity 
profiles in Fig. 6-20 shows, however, that the eddies diminish in intensity 
in the buffer layer and hardly penetrate the laminar sub layer. Unless the 
Prandtl number equals unity, the relative magnitudes of the eddy conduc­
tivity and the molecular conductivity in the vicinity of the surface have a 
pronounced effect on the heat-transfer coefficient. 

The effect of the diminution of the turbulent mixing near the surface 
on the heat-transfer coefficient for fluids having Prandtl numbers larger 
than unity was considered by Prandtl (16,17), von Karman (18), and most 
recently also by Deissler (19) in their respective improvements of the 
Reynolds analogy. Martinelli (20) also treated the problem of heat trans­
fer to liquid metals, which have very small Prandtl numbers. 

Prandtl divided the flow field into a laminar and a turbulent layer 
but neglected the buffer layer in his analysis. The relation for flow over 
plane surfaces, derived in detail in Ref. 21, i~ 

1 + 2.1 Rex-001(Pr - 1) 
(6-72) 

We observe that, for Pr = 1, Eq. 6-72 reduces to the simple Reynolds 
analogy. The second term in the denominator is a measure of the thermal 
resistance in the laminar sublayer. We see that this portion of the total 
thermal resistance increases as the Prandtl number becomes larger and 
accounts for most of the thermal resistance when the Prandtl number is 
very large. 

Prandtl's analysis was later refined by von Karman (18), who di­
vided the flow field into three zones: a laminar sublayer adjacent to the 
surface in which the eddy diffusivity is zero and heat flows only by con­
duction; next to it a buffer layer in which both conduction and convection 
contribute the heat-transfer mechanism (i.e., k/ cp and EH are of the same 
order of magnitude); and, finally, a turbulent region in which conduction 
is negligible compared to convection, and the Reynolds analogy applies. 
He used experimental data for the velocity distribution and the shear 
stress to evaluate EM from Eq. 6-50 and assumed EM = EH in his analysis. 
He also postulated that the physical properties of the fluid are indepen-
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dent of the temperature. With these simplifications he determined the 
thermal resistances in each of the three zones. The results of von Kar­
man's analysis are given below for flow over a flat plate: 

Thermal resistance 
of laminar sub layer 

Thermal resistance 
of buffer layer 

Thermal resistance 
of the turbulent region 

5 Pr 

5ln (5 Pr + 1) 
cpV pge'Ts 

5 ( 1 + In 6) + u co / vi 'T s g c / p 

cp-V pge'Ts 

Adding the thermal resistances and introducing the definitions for the 
Stanton number St and the local drag-friction coefficient C fx yields, after 
some rearrangement, the expression 

1 + 5 vCfx /2 f(pr - 1) 
... 

1 5 Pr + 1] + n 6 

(6-73) 

for the local value of the Stanton number for fl~w over a plane surface at 
a given value ofx. The average value of St or he over a surface of length 
L can be obtained by numerical or graphical integration. 

To apply any of the equations relating the Stanton number and the 
friction coefficient in practice, the physical properties must be evaluated at 
some appropriate mean temperature. It is general practice to evaluate 
the physical properties at the mean film temperature Tf defined as Tf = 
(Ts + T co) /2. This procedure is purely empiriGal, but has been found 
satisfactory for moderate-temperature ranges. 

The three-distinct-Iayer concept is somewhat of an oversimplifica­
tion of the real situation but is satisfactory for Prandtl numbers less than 
25 or 30. For larger Prandtl numbers it is preferable to assume turbulent 
eddy generation near the outer edges of turbulent boundary layers and 
continuous damping of these eddies as they approach the wall. Some 
progress has been made recently with this approach (19,22), and the 
reader is referred to the original papers for details. An extensive review 
of the analogies is presented in Ref. 23. 

6-12. Heat transfer in high-speed flow 

Convection heat transfer in high-speed flow is important for systems 
such as aircraft and missiles when the velocity approaches or exceeds the 
velocity of sound. For a perfect gas the accoustical velocity, a, can be 
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obtained from the relation 

where 1" 
R 
T= 
~= 

a = V'YRT/~ 

specific heat ratio, cp / Cu (about 1.4 for air) 
universal gas constant 
absolute temperature, and 
molecular weight of the gas. 

(6-74) 

When the velocity of a gas flowing over a heated or cooled surface is of 
the order of the accoustical velocity or larger, the flow field can no longer 
be described solely in terms of the Reynolds number, but also the ratio of 
the gas flow-velocity to the accoustical velocity, i.e., the Mach number 
M = uoo/a oo ' must be considered. When the gas velocity in a flow system 
reaches a value of about one-half of the speed of sound, the effects of 
viscous dissipation in the boundary layer become important. Under such 
conditions the temperature of a surface over which a gas is flowing can 
actually exceed the free-stream temperature. For flow over an adiabatic 
surface, e.g., a perfectly insulated wall, Fig. 6-21 shows the velocity· and 
temperature distributions schematically. The high temperature at the sur­
face is the combined result of the heating due to viscous dissipation and 
the temperature rise of the fluid as the kinetic energy of the flow is con­
verted to internal energy while the flow decelerates through the boundary 
layer. The actual shape of the temperature profile depends on the rela­
tion between the rate at which viscous shear work increases the internal 
energy of the fluid and the rate at which heat is conducted towards the 
free stream. 

Although the processes in a high-speed boundary layer are not 
adiabatic, it is general practice to relate them to adiabatic processes. The 
conversion of kinetic energy in a gas being slowed down adiabatically to 
zero velocity is described by the relation 

(6-75) 
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where ;0 is the stagnation enthalpy and; 00 is the enthalpy of the gas in the 
free stream. For an ideal gas Eq. 6-75 becomes 

or in terms of the Mach number 

(6-76) 

where To is the stagnation temperature and Too is the free-stream tem­
perature. 

In a real boundary layer the fluid is not brought to rest reversibly 
because the viscous shearing process is thermodynamically irreversible. 
To account for the irreversibility in a boundary-layer flow we define a 
recovery factor r as 

r 
Tas - Too 
To - Too 

where Y'as is the adiabatic surface temperature. 
Experiments (31) have shown that in laminar flow, 

r = Pr 1
/ 2 

whereas in turbulent flow 

r = Pr 1/ 3 

(6-77) 

(6-78) 

(6-79) 

When a surface is not insulated, the rate of heat transfer by convec­
tion between a high-speed gas and that surface is governed by the relation 

The influence of heat transfer to and from the surface on the temperature 
distribution is illustrated in Fig. 6-22. We observe that in high-speed flow 
heat can be transferred to the surface even when the surface temperature 
is above the free-stream temperature. This phenomenon is the result of 
viscous shear, often called aerodynamic heating. The heat transfer in 
high-speed flow over a flat surface can be predicted (1) from the bound­
ary-layer energy equation 

aT aT 
u-+ v-

ax ay 
a2 T 

a --+ 
ay2 

/-L (auy 
pCp ax) 
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where the last term accounts for the viscous dissipation. However, for 
most practical purposes the rate of heat transfer can be calculated with 
the same relations used for low speed flow, if the average convection heat­
transfer coefficient is redefined by the relation 

(6-80) 

which will yield a zero heat flow when the surface temperature Ts equals 
the adiabatic surface temperature. 

Since in high-speed flow the temperature gradients in a boundary 
layer are large, also variations in the physical properties of the fluid will 
be substantial. Eckert (32) has shown, however, that the constant prop­
erty heat-transfer equations can still be used if all the properties are 
evaluated at a reference temperature T* given by the relation 

(6-81 ) 

The local values of the heat-transfer coefficient, defined by the 
relation 

can be obtained from the following equations: 

Laminar Boundary Layer (Rex* < 105 ): 

Stx* = ( hex) * = 0.332(Re/)-1/2(Pr*)-2/3 
cppu= 

Turbulent Boundary Layer (l05 < Rex * < 10 7): 
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Turbulent Boundary Layer (10 7 < Rex* < 109
): 

2.46 (P *) -2/3 

(lnRe/) 2.584 r 
(6-84) 

because experimental data for local friction coefficients in high-speed gas 
flow (32) in the Reynolds number range between 10 7 and 109 are cor­
related by the relation 

c _ 4.92 . 
fx - (lnRe x *) 2.584 

(6-85) 

If the average value of the heat-transfer coefficients is to be determined, 
the above expressions must be integrated between x = 0 and x = L as 
shown in Sec. 6-7 for low-speed flow. However, the integration may have 
to be done numerically in most practical cases because the reference tem­
perature T* is not the same for the laminar and turbulent portions of the 
boundary layer, as shown by Eqs. 6-78 and 6-79. 

When the speed of a gas is exceedingly high the boundary layer may 
become so hot that the gas begins to dissociate. In such situations Eckert 
(32) recommends that the heat-transfer coefficient be based of). the en­
thalpy difference and be defined by the relation 

If an enthalpy recovery factor is defined by 

ias - i"" 
io - i", 

(6-86) 

(6-87) 

the same relation used previously to calculate the reference temperature 
can be used to calculate a reference enthalpy, or 

(6-88) 

The local Stanton number is then redefined as 

St .* = he•i 
X,l " 

P U oo 

(6-89) 

and used in Eqs. 6-83, 6-84, and 6-85 to calculate the heat-transfer coef­
ficient. It should be noted that the enthalpies in the above relations are 
the total values, which include the chemical energy of ·dissociation as well 
as the internal energy. As shown in Ref. 32, this method of calculation 
is in excellent agreement with experimental data. 
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Fig. 6-23. Flow regimes. 

In some situations, e.g., extremely high altitudes, the fluid density 
may be so small that the distance between gas molecules becomes of the 
same order of magnitude as the boundary layer. In such cases the fluid 
cannot be treated as a continuum and it is necessary to subdivide the flow 
processes into regimes. These flow regimes are characterized by the ratio 
of the molecular free path to a significant physical scale of the system, 
called the Knudsen number, Kn. Continuum flow corresponds to small 
values of Kn, while at larger values of Kn, molecular collisions occur 
primarily at the surface and in the main stream. Since energy transport 
is by free motion of molecules between the surface and the main stream, 
this regime is called "free-molecule." Between the free-molecule and the 
continuum regime is a transition range, called the "slip-flow" regime be­
cause it is treated by assuming temperature and velocity "slip" at fluid­
solid interfaces. Fig. 6-23 shows a map of these flow regimes. For a treat­
ment of heat transfer and friction in these specialized flow systems the 
reader is referred to Refs. 33, 34, and 35. 

6-13. Closure 

In this chapter we have studied the principles of heat transfer by 
forced convection. We have seen that the transfer of heat by convection 
is intimately related to the mechanics of the fluid flow, particularly to the 
flow in the vicinity of the heat-transfer surface. We have also observed 
that the nature of heat transfer as well as flow phenomena depend greatly 
on whether the fluid far away from the surface is in laminar or in turbu­
lent flow. 

To become familiar with the basic principles of boundary layer 
theory and forced-convection heat transfer, we have considered the prob­
lem of convection in flow over a flat plate in some detail. This .system is 
geometrically very simple, but it illustrates the most important features of 
forced convection. In subsequent chapters we shall treat heat transfer by 
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Table 6-5. Summary of useful equations for calculating friction and heat-transfer coefficients in flow over flat surfaces.* 

LAMINAR FLOW 

Local friction coefficient 

Local Nusselt number at 
distance x from leading edge 

A verage friction coefficient 

Average Nusselt number 
between x = 0 and x = L 

TURBULENT FLOW 

Local friction coefficient 

Local Nusselt number at 
distance x from leading edge 

Average friction coefficient 

Average N usselt num ber 
between x = 0 and x = L 
with transition at 
Rex,crit = 5 x 105 

Cfx = 0.664 Rex -0.5 

Nux = 0.332 Rex°.5 Pr°.33 
Nux = 0.565 (Rex Pr)O.5 
- -05 Cf = lJ3ReL . 

NUL = 0.664 Re/5 Pr°.33 
NUL = l.l3(ReL Pr)O.5 

Rex < 5 x 10 5 

Pr > 0.1, Rex > 5 x 105 

Pr < 0.1, Rex < 5 x 105 

ReL < 5 x 105 

Pr > 0.1, ReL < 5 x 105 

Pr < 0.1, ReL < 5 x 105 

Cfx = 0.0576 Rex-o.2 
} 

Nux = 0.0288 Rexo.8 PrOJ Rex> 5 x 10
5
, Pr > 0.5 

_ (For Pr < 0.1 use Eq. 6-73 or see Ref. 20) 

Cf = 0.072 [ReL -0.2 - 0.0464(xcrit/L )] } 
NUL = 0.036 Pr0.33[ReLo.8 _ 23,200] ReL > 5 x 10

5
, Pr > 0.5 

* Applicable to low-speed flow (Mach number < 0.5) of gases and liquids if all physical properties at the mean film temperature, Tf = (Ts + T", )/2. 

Cfx = Ts/(pu}/2gc), 

Nux = hc x/ k, 

Rex = pU",x//J-, 

Cf ~ (IlL) ;"I 
Nu = hcL/k, 

ReL = pU",L//J-, 

Cfxdx 

h, ~ (IlL) lL h,(x)dx 

Pr = cp/J-/k 



convection in geometrically more complicated systems. In the next chap­
ter we shall examine free-convection phenomena. In Chapter 8, heat 
transfer by convection to and from fluids flowing inside of pipes and ducts 
will be taken up. In Chapter 9, forced convection in flow over the ex­
terior surfaces of bodies such as cylinders, spheres, tubes, and tube 
bundles will be considered. The application of the principles of forced­
convection heat transfer to the selection and design of heat-transfer 
equipment will be taken up in Chapter 11. 

For the convenience of the reader, a summary of the equations used 
to calculate the heat-transfer and the friction coefficients in low-speed flow 
of gases and liquids over flat, or only slightly curved, plane surfaces is 
presented in Table 6-5. 

PROBLEMS 

The problems below have been organized in the following manner: Prob­
lems 6-1 through 6-5 deal with the evaluation of dimensionless parameters, 6-6 
through 6-17 with dimensional analysis, 6-18 through 6-33 with the evaluation of 
heat transfer and friction coefficients in flow over a flat plate, 6-34 through 6-40 
with boundary layers, 6-41 through 6-48 with thermal design, and 6-49 through 
6-54 with high-speed flow. 

6-7. Evaluate the Reynolds number from the following data: 

D 

P 

J.L 

6 in. 
1.0 ftl sec. 
30slug/ft 3 

90 Ibm 1ft hr 

6-2. Evaluate the Prandtl number from the data below: 

Cp 0.5 Btullbm F 
k 2 Btu 1ft hr F 
J.L 5 dyne sec I cm 2 

6-3. Evaluate the Nusselt number for the following condition: 

D 
k 
h 

6 in. 
2 Kcal/m hr C 
18 Btu/ft2 hr F 

6-4. Evaluate the Stanton number for the data below: 

D = 4 in. ' 
V = 12 ft/sec. 
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P 12801b m/ft 3 

/-L 30 slug /ft hr 
cp 0.95 Btu/Ibm 
Fie 3.0 Btu/hr ft 2 F 

_ 6-5. Evaluate the dimensionless groups heD/k, U'" Dp//-L, cp/-L/k, and 
h e / cp G for water, ethyl alcohol, mercury, hydrogen, air, and saturated steam over 
as wide a temperature range as possible and plot the results vs. temperature. For 
the purpose of these calculations let D = 1 ft, V = 1 ft / sec, and lie = 1 Btu / hr 
sq ft F. . 

6-6. Replot the data points of Fig. 6-6 on a log-log paper and find an 
equation approximating the best correlation line. Compare your results with 
Fig. 6-7. Then, suppose steam at 1 atm and 212 F is flowing across a 2-in.-OD 
pipe at a velocity of 20 fps. Using the data in Fig. 6-7 estimate the Nusselt num­
ber, the heat-transfer coefficient, and the rate of heat transfer per ft length of pipe 
if the pipe is at 400 F. 

6-7. The average Reynolds number for air passing in turbulent flow over a 
60-in.-Iong flat plate is 2.4 x 106

. Under these conditions the average Nusselt 
number was found to be equal to 4150. Determine the average heat-transfer 
coefficient for an oil having a thermal conductivity of 0.11 Btu/hr sq ft F, a spe­
cific heat of 0.8 Btu/ lb, and a viscosity of 22 lb / ft hr at the same Reynolds num­
ber in flow over the same plate. 

6-8. A long solid cylinder of radius r o , initially at a uniform temperature To> 
is suddenly immersed in a fluid at temperature Too with a unit-surface conductance 
h. Show by means of dimensional analysis that the temperature distribution can 
be expressed in terms of the following four parameters: 

aO/r/, 

6-9. The dimensionless ratio VI vrg, called Froude number, is a measure 
of similarity between the shapes of the waves produced by a ship model and by 
its prototype. A 500 ft long cargo ship is designed to run at 20 knots, and a 5 ft. 
geometrically similar model is towed in a water channel to study the wave re­
sistance. What should be the towing speed? 

6-10. The torque due to the frictional resistance of the oil film between a 
rotating shaft and its bearing is found to be dependent on the force F normal to 
the shaft, the speed of rotation N of the shaft, the dynamic viscosity /-L of the 
oil, and the shaft diameter D. Establish a correlation between the variables by 
using dimensional analysis. Ans. [T/(F3/N/-L)1/2 = ¢(N/-LD2/F) 

6-11. When a sphere falls freely through a homogeneous fluid, it reaches a 
terminal velocity at which the weight of the sphere is balanced by the buoyant 
force and the frictional resistance of the fluid. Make a dimensional analysis of 
this problem and indicate how experimental data for this problem could be cor­
related. Neglect compressibility effects and the influence of surface roughness. 
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6-12. Experiments have been performed on the temperature distribution in 
a homogeneous long cylinder (0.40 ft diameter, thermal conductivity of 0.12 Btu/ 
hr ft F) with uniform internal heat generation. By dimensional analysis determine 
the relation between the steady-state temperature at the center of the cylinder T e , 

the diameter, the thermal conductivity, and the rate of heat generation. Take the 
temperature at the surface as your datum. What is the equation for the center tem­
perature if the difference between center and surface temperature is 80 F when the 
heat generation rate is 960 Btu/hr cu ft? 

6-13. Experimental data for the transient cooling of a thick slab are to be 
correlated by dimensional analysis. The temperature of the slab is originally uni­
form at To. At time 0 = 0, the temperature at face x = 0 is suddenly lowered to 
Ts. Thermocouples are imbedded at various depths. Determine dimensionless 
groups relating T x , the temperature at x, to the cooling timeO. 

6-14. The convection equations relating the Nusselt, Reynolds, and Prandtl 
numbers can be rearranged to show that for gases the heat-transfer coefficient fix 
depends on the absolute temperature T and the group vUoo/x. This formulation 
is of the form Jix = CTn VUoo/x, where nand C are constants. Indicate clearly 
how such a relationship could be obtained for the laminar flow case from Nux = 
0.332 Rex 0.5 PrO.333 for the condition 0.5 < Pr < 5.0. State restrictions on method 
if any such restrictions are necessary. 

6-15. Experimental pressure-drop data obtained in a series of tests in which 
water was heated while flowing through an electrically heated tube of 0.527 in. ID, 
38.6 in. long, are tabulated below. 

Mass Fluid Bulk Surface Pressure Drop with 
Flow Rate m Temperature Tb Telnperature T. Heat Transfer D.Phl 

(lb/sec) (F) (F) (psi) 

3.04 90 126 9.56 
2.16 114 202 4.74 
1.82 97 219 3.22 
3.06 99 248 8.34 
2.15 107 283 4.45 

Isothermal pressure-drop date for the same tube are given in terms of the di­
mensionless friction coefficient f = (b.p/ p V2)(D/2L)ge and the Reynolds num­
ber based on the pipe diameter, ReD = VD/ll below. 

ReD 

f 
1. 71 X 106 

,0.00472 
1.05 X 105 

0.00513 
1.9 X 105 

0.00463 
2.41 X 106 

0.00445 

By comparing the isothermal with the non isothermal friction coefficients at 
similar bulk Reynolds numbers, derive a dimensionless equation for the non­
isothermal friction coefficients in the form 

where /-Ls 

/-Lb 
nandm 

viscosity at surface temperature; 
viscosity at bulk temperature; 
empirical constants. 

374 FUNDAMENTALS OF CONVECTION 



6-16. Tabulated below are some experimental data obtained by heating 
n-butyl alcohol at a bulk temperature of 60 F while flowing over a heated flat 
plate (l ft long, 3 ft wide, surface temperature of 140 F). Correlate the experi­
mental data by appropriate dimensionless numbers and compare the line which 
best fits the data with Eq. 6-30. 

Velocity (fps) . 0.26 1.0 1.6 3.74 
Unit-Surface Conductance (Btu/hI' sq ft F) 11.4 23 34.6 69 

6-17. Tabulated below are reduced test data from measurements made to 
determine the heat-transfer coefficient inside tubes at Reynolds numbers only 
slightly above transition and at relatively high Prandtl numbers (as associated 
with oils). Tests were made in a double-tube exchanger with a counterflow of 
water to provide the cooling. The pipe used to carry the oils was i-in. OD, 18 
BWG, 121 in. long. Correlate the data in terms of appropriate dimensionless 
parameters. 

Test No. 

11 
19 
21 
23 
24 
25 
36 
39 
45 
48 
49 

where hc 

pV = 
Cp 

k 

f.tb 

f.tf = 

Fluid he pV Cp lc J.Lb J.Lf 

lOC oil 87.0 1,072,000 0.471 0.0779 13.7 19.5 
lOC oil 128.2 1,504,000 0.472 0.0779 13.3 19.1 
lOC oil 264.8 2,460,000 0.486 0.0776 9.60 14.0 
lOC oil 143.8 1,071,000 0.495 0.0773 7.42 9.95 
lOC oil 166.5 2,950,000 0.453 0.0784 23.9 27.3 
lOC oil 136.3 1,037,000 0.496 0.0773 7.27 11.7 
1488 pyranol 140.7 1,795,000 0.260 0.0736 12.1 16.9 
1488 pyranol 133.8 2,840,000 0.260 0.0740 23.0 29.2 
1488 pyranol 181.4 1,985,000 0.260 0.0735 10.3 12.9 
1488 pyranol 126.4 3,835,000 0.260 0.0743 40.2 53.5 
1488 pyranol 105.8 3,235,000 0.260 0.0743 39.7 45.7 

mean surface heat-transfer coefficient, based on the mean temperature 
difference, Btu/hr sq ft F; 
mass velocity, lbm/hr sq ft; 
specific heat, Btu/Ibm F; 
thermal conductivity, Btu/hr ft F (based on average bulk tempera­
ture); 
viscosity, based on average bulk (mixed mean) temperature, Ibm /hr ft; 
viscosity, based on average film temperature, Ibm / hr ft. 

Hint: Start by correlating Nu and ReD irrespective of the Prandtl numbers, 
since the influence of the Prandtl number on the Nusselt number is expected to be 
relatively small. By plotting Nu vs. Re on log-log paper, one can guess the nature 
of the correlation equation, Nu = fl (Re). A plot of Nu/ fl(Re) vs. Pr will then 
reveal the dependence upon Pr. For the final equation, the influence of the vis­
cosity variation should also be considered. 

One possible answer: NUD = 0.0067 p VD 
f.tb 

6-18. The average friction coefficient for flow over a 2-ft-Iong plate is 
0.01. What is the value of the drag force in lb f per foot width of the plate for the 
following fluids: (a) air at 60 F, (b) steam at 212F and 15 psia, (c) water at 100 F, 
(d) mercury at 200 F, and (e) ethyl alcohol at 2l2F? 
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6-19. The average Nusselt number for flow over a 2-ft-long plate is 100. 
What is the value of the average surface conductance for the following fluids: (a) 
air at 60 F, (b) steam at 212 F and 15 psia, (c) water at 100 F, and (d) mercury at 
200 F, and (e) ethyl alcohol at 212 F. 

6-20. Plot the velocity and temperature distributions in the laminar bound­
ary layer for air at 60 F flowing over a flat plate at Rex = 104 if the free-stream 
velocity is 1.0 fps and the surface temperature is 160 F using (a) the Blasius solu­
tion, (b) an assumed straight line, and (c) a cubic parabola. 

6-21. Hydrogen at 60 F and at a pressure of 1 atm is flowing along a flat 
plate at a velocity of 10 fps. If the plate is 1 ft wide and at 160 F, calculate the 
following quantities at x = 1 ft and at the distance corresponding to the transition 
point, i.e., Rex = 5 x 105 • (Take properties at 110 F.) . 

a) Hydrodynamic boundary layer thickness, in inches. 
b) Local friction coefficient, dimensionless. 
c) Average friction coefficient, dimensionless. 
d) Drag force, in lb r . 
e) Thickness of thermal boundary layer, in inches. 
f) Local convective-heat-transfer coefficient, in Btufhr sq f1. F. 
g) Average convective-heat-transfer coefficient, in Btufhr sq ft F. 
h) Rate of heat transfer, in Btufhr. 

6-22. Repeat Prob. 6-21 for x = 10 ft and U x = 200 fps, (a) taking the 
laminar boundary layer into account and (b) assuming that the turbulent 
boundary layer starts at the leading edge. 

6-23. Determine the rate of heat loss in Btu f hr from the wall of a building 
in a 10-mph wind blowing parallel to its surface. The wall is 80 ft long, 20 ft high, 
its surface temperature is 80 F, and the temperature of the ambient air is 40 F. 

6-24. Plot the local heat-tr.ansfer coefficient as a function of length for aIr 
at 1000 F flowing over a 5-ft-Iong flat plate at 3000 F with a velocity of 100 fps. 

6-25. A spacecraft heat exchanger is to operate in a nitrogen atmosphere at 
a pressure of about 1.5 psia and 100 F. For a flat-plate heat exchanger designed to 
operate on earth in a standard atmosphere of 14.7 psi and 100 F in turbulent flow, 
estimate the ratio of heat-transfer coefficients on the earth to that in nitrogen 
assuming forced circulation cooling of the plate surface at the same velocity in 
both cases. 

6-26. A thin flat plate 6 in. square is suspended from a balance into a uni­
formly flowing stream of glycerin in such a way that the glycerin flows parallel to 
and along the top and bottom surfaces of the plate. The total drag on the plate is 
measured and found to be 13 lb r. If the glycerin flows at the rate of 50 fps and is 
ata temperature of 112 F, what is the heat-transfer coefficient he in Btufhr sq ft F? 

6-27. Mercury at 60 F flows over and parallel to a flat surface at a velocity 
of 10 fps. Calculate the thickness of the hydrodynamic boundary layer at a dis­
tance 12 in. from the leading edge of the surface. 
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6-28. A thin flat plate 6 in. square is tested for drag in a wind tunnel with 
air at 100 fps, 14.7 psia, and 60 F flowing across and parallel to the top and bottom 
surfaces. The observed total drag force 'is 0.0150 lb. Calculate the rate of heat 
transfer from this plate when the surface temperature is maintained at 250 F. Ne­
glect radiation. Ans. 370 Btu/hr 

6-29. Mercury at 60 F flows parallel to the short side of a thin flat smooth 
plate with a velocity of 1 ft / sec. The plate is 6 in. wide and 1 ft long and its sur­
face temperature is 160 F. Find: 

a) the local friction coefficient at the middle point of the plate, and the 
total drag force on the plate 

b) the temperature of the mercury at a point 4 in. from the leading edge 
and 0.05 in. from the surface of the plate 

c) the Nusselt number at the end of the plate. 

6-30. Water at a velocity of 8 ft/sec flows parallel to the surface of a 3-ft­
long horizontal, smooth and thin flat plate. Determine the local thermal and 
hydrodynamic boundary-layer thicknesses, and the local friction coefficient, at the 
midpoint of the plate. What is the rate of heat transfer from the plate to the water 
per ft width of the plate, if the surface temperature is kept uniformly at 300 F, and 
the temperature of the main water stream is 60 F? 

6-37. A thin flat plate is placed in an atmospheric pressure air stream flow­
ing parallel to it at a velocity of 15 ft/ sec. The temperature at the surface of the 
plate is maintained uniformly at 400 F, and that of the main air stream is 70 F. 
Calculate the temperature and horizontal velocity at a point 1 ft from the leading 
edge and 0.03 in. above the surface of the plate. Ans. 340.5 F 

6-32. Find the horizontal component of the force required to hold in po­
sition in the air stream the plate of Problem 31. Consider only 1 ft length of the 
plate measured along the leading edge, and assume the plate to be 2 ft wide. 

6-33. The surface temperature of a thin flat plate located parallel to an air 
stream is 196 F. The free stream velocity is 200 ft/sec and the temperature of the 
air is 32 F. The plate is 24 in. wide and 18 in. long in the direction of the air 
stream. Neglecting the end effect of the plate and assuming that the flow in the 
boundary layer changes abruptly from laminar to turbulent at a transition 
Reynolds number of N Re = 4.105, find: 

Ir 

a) the average heat transfer coefficient in the laminar and turbulent regions 
b) the rate of heat transfer for the entire plate, considering both sides 
c) the average friction coefficient in the laminar and turbulent regions 
d) the total drag force. 

Also, plot the heat transfer coefficient and local friction coefficient as a function 
of the distance from the leading edge of the plate. 
[Ans. a) 15.9, 50.4 Btu/ft2 hr F; b) 28,340 Btu/hr; c) 0.0021,0.0041; d) 0.934 lby] 

6-34. The thickness of the laminar sublayer has been estimated to be 
given by y ~/ v = 5.0. Compare this estimate with the experimental 
data shown in Fig. 6-20. 
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6-35. The boundary-layer-displacement thickness 0* is defined as the dis­
tance by which a plane surface, past which a fluid is flowing, would have to be 
shifted into the stream to obtain the same flow rate with an inviscid fluid as with 
the real fluid. Mathematically 0* is defined by the equation 

Show that 0* '"'-' 0/3 for laminar flow past a flat plate. 

6-36. Assuming a linear velocity distribution and a linear temperature 
distribution in the boundary layer over a flat plate, derive a relation between 
the thermal and hydrodynamic boundary-layer thicknesses and the Prandtl 
number. 

6-37. Derive the integral momentum boundary-layer equation for steady 
incompressible two-dimensional flow over a flat porous wall through which fluid 
is injected with a velocity Vo normal to the surface. 

6-38. Assuming a velocity distribution of the type u = a + by + cy2, de­
rive by means of the integral method for flow over a flat plate a relation between 
the boundary-layer thickness and the Reynolds number. 

6-39. Show that the energy equation CEq. 6-21) can be expressed In the 
form 

aT aT u ap a2 T I-l (au)2 
pucp - + pvcp - = - - + k --2 + - -

ax ay gc ax ay gc ay 

Hint: Multiply Eq. 6-16 by u and subtract the resulting expression from 
Eq.6-21 

6-40. A fluid at temperature T co is flowing at a velocity u co over a flat plate 
which is at the same temperature as the fluid for a distance Xo from the leading 
edge, but at a temperature Ts beyond this point. Show by means of the integral 
boundary-layer equations that 5, the ratio of the thermal boundary-layer thickness 
to the hydrodynamic boundary-layer thickness, over the heated portion of the 
plate is approximately 

5 ~ Pr -1/3 [1 _ 
(Xxo) 3/4J 1/3 

if the flow is laminar. 

Hint: Assume that the temperature distribution is a cubic parabola and use 
Ts as your datum to simplify the boundary conditions, i.e., let 

T - Ts = a y + c y3 
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Also, inspect each equation and drop those terms which are small in comparison 
with others. Show also that, for the partially heated plate, the Nusselt number at 
x, if x > x o, is approximately 

( 
Pr ) 1/3 R 1/2 

Nux ~ 0.33 1 3/4 ex 
- (xojx) 

xxxXXYxx 

I---xo---­
r· ------~------------, x 

Prob. 6-40 

6-41. A refrigeration truck is traveling at 50 mph on a desert highway 
where the air temperature is 140 F. The body of the truck may be idealized as a 
rectangular box, 10 ft wide, 7 ft high, and 20 ft long, at a surface temperature 
of 50 F. Assume that the heat transfer from the front and back of the truck may 
be neglected, that the stream does not separate from the surface, and that the 
boundary layer is turbulent over the whole surface. If, for every 12,000 Btujhr of 
heat loss one ton capacity of the refrigerating unit is necessary, calculate the 
required tonnage of the refrigeration unit. 

6-42. Wind at 50 mph is blowing in a direction parallel to the short side of 
the flat roof of a ranch house. The temperature at the surface of the roof is 35 F 
and the air temperature is -5 F. The roof measures 30 ft by 60 ft. Neglecting the 
end effect and assuming no separation of the air stream from the roof, calculate 
the heat loss through the roof. 

6-43. The wing of an airplane has a polished chromium skin. At a 1O,000-ft 
altitude it receives 200 Btujhr sq ft by solar radiation. Assuming that the interior 
surface of the wing's skin is well insulated and the wing has a chord of 20-ft length, 
i.e., L ~ 20 ft, estimate the equilibrium temperature of the wing at a flight speed 
of 500 fps. 

6-44. A cooling fin for a heat exchanger, situated parallel to an atmospheric 
pressure air stream, measures 3 in. along the leading edge and 18 in. in the flow 
direction. Its base temperature is 190 F, and the air is at 50 F. The velocity of 
the air is 90 ftjsec. Determine the total drag force and the total rate of heat trans­
fer from the fin to the air. 

6-45. A l-in.-diam, 6-in.-long transite rod (k = 0.56 Btujhr ft F, p = 100 
Ib jcu ft, c = 0.20 Btujlb F) on the end of a l-in.-diam wood rod at a uniform 
temperature of212 F is suddenly placed into a 60 F, 100 ftjsec air stream flowing 
parallel to the axis of the rod. Estimate the center line temperature of the transite 
rod 8 min after cooling starts. Assume radial heat conduction, but include radia­
tion losses, based on an emissivity of 0.90, to black surroundings at air 
temperature. 
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6-46. Air at 100 fps flows between two parallel flat plates spaced 2 in. 
apart. Estimate the distance from the entrance where the boundary layers meet. 

6-47. For Prob. 6-13 estimate the frictional pressure drop in the entrance 
section, taking into account the pressure drop due to the frictional drag as well as 
the pressure drop due to the momentum change. Assume that the velocity at the 
inlet is uniform and that the velocity profiles of both boundary layers can be ap­
proximated by cubic parabolas. 

6-48. A preliminary design study for a nuclear moon-rocket reactor is to 
be made. The reactor under consideration consists of a stack of parallel flat plates 
which are 2 ft square, 2 in. apart, and heated to 3000 F. Gaseous hydrogen at 
20-atm pressure and a temperature of 0 F enters at one end at a velocity of 200 fps 
and is heated as it passes between the plates. (a) Calculate the average heat-trans­
fer coefficient assuming that transition occurs at a Reynolds number of 5 x 10 5

. 

(b) Estimate the average heat-transfer coefficient assuming that a turbulence screen 
is placed at the entrance so that the entire boundary layer is turbulent. (c) For the 
turbulent flow conditions, determine the temperature of the hydrogen at the exit 
assuming that the surface temperature of the plate is uniformly at 3000 F. State 
all your assumptions clearly. (d) If the plates are lo-in. thick and have a thermal 
conductivity of 10 Btu/hr ft F, determine the required rate of heat generation 
within the plate and the maximum temperature at the center of the plate assuming 
that uniform heat generation by nuclear fission occurs within the plates. (e) How 
many times would the hydrogen have to pass between the two plates in order to 
heat it to an average temperature of 2000 F? 

6-49. A long plate at a uniform temperature T J moves at a velocity Vi rela­
tive to a stationary insulated plate placed parallel to the moving plate at a dis­
tance h. (a) Show that the temperature of the insulated surface will exceed the 
temperature of the moving plate by Pr (VJ 2 /2cp ) if the space between the plates 
is filled by an ideal gas and the velocity profile of the gas is linear, and (b) derive 
an equation for the rate of heat transfer to each of the plates. 

6-50. A flat plate is exposed to air with a temperature of 0 F, a pressure of 
5 psia, and a velocity parallel to the plate of 2000 fps. How long is the laminar 
boundary layer, and what is the adiabatic wall temperature in the laminar region? 

6-57. Air at a static temperature of 70 F and a static pressure of 0.1 psi a 
flows at zero angle of attack over a thin electrically heated flat plate at a velocity 
of 800 fps. If the plate is 4-in. long in the direction of flow and 24 in. in the direc­
tion normal to the flow, determine the rate of electrical heat dissipation necessary 
to maintain the plate at an average temperature of 130 F. 

6-52. Air at 50 F and 14.7 psia flows at 800 fps over a thermally noncon­
ducting flat plate. What is the plate temperature 10 ft downstream from the lead­
ing edge? How much does this temperature differ from thatwhich exists 1 in. from 
the leading edge? 

6-53. Air at 65 F and 0.1 psia flows over a thin flat strip of metal, 1 in. 
long in the direction of flow, at a velocity of 900 fps. Determine (a) the surface 
temperature of the plate at equilibrium and (b) the rate of heat removal required 
per foot length if the surface temperature is to be maintained at 100 F. 
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6-54. An airplane model wing can be idealized as a flat plate, 2 ft long in 
the direction of flow and 3 ft wide. The wing is placed in an air flow at Moo = 3.0, 
p 00 = 0.05 atm, and 1'00 = 420 R. Determine the temperature of this wing at a dis­
tance of 0.5 and 1.5 ft from the leading edge, if no cooling were provided, and 
estimate the rate at which heat must be removed from the surface of the wing to 
maintain its temperature at 100 F. Ans. 1056 and 1093 R, 5 x 104 Btu/hr 
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7 
Free convection 

7- 1. Introduction 

Free-convection heat transfer occurs whenever a body is placed in a 
fluid at a higher or a lower temperature than that of the body. As a result 
of the temperature difference, heat flows between the fluid and the body 
and causes a change in the density of the fluid layers in the vicinity of the 
surface. The difference in density leads to downward flow of the heavier 
fluid and upward flow of the lighter. If the motion of the fluid is caused 
solely by differences in density resulting from temperature gradients, with­
out the aid of a pump or a fan, the associated heat-transfer mechanism is 
called natural or free convection. Free-convection currents transfer in­
ternal energy stored in the fluid in essentially the same manner as forced­
convection current. However, the intensity of the mixing motion is gen­
erally less in free convection, and consequently the heat-transfer 
coefficients are lower than in forced convection. 

Although free-convection heat-transfer coefficients are relatively low, 
many devices depend largely on this mode of heat transfer for cooling. 
In the electrical-engineering field, transmission lines, transformers, recti­
fiers, and electrically heated wires such as the filament of an incandescent 
lamp or the heating elements of an electric furnace are cooled by free 
convection. A~ a result of the heat generated internally, the temperature 
of these bodies rises above that of the surroundings. As the temperature 
difference increases, the rate of heat flow also increases until a state of 
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equilibrium is reached where the rate of heat generation IS equal to the 
rate of heat dissipation. 

Free convection is the dominant heat-flow mechanism from steam 
radiators, walls of a building, or the stationary human body in a quiescent 
atmosphere. The determination of the heat load on air-conditioning or 
refrigeration equipment requires, therefore, a knowledge of free-convec­
tion heat-transfer coefficients. Free convection is also responsible for heat 
losses from pipes carrying stearn or other heated fluids. Recently natural 
convection has been proposed in nuclear-power applications to cool the 
surfaces of bodies in which heat is generated by fission (1). 

In all of the aforementioned examples the body force responsible for 
the convection currents is the gravitational attraction. Gravity, however, 
is not the only body force which can produce free convection. In certain 
aircraft applications there are components such as the blades of gas tur­
bines and helicopter ramjets which rotate at high speeds. Associated with 
these rotative speeds are large centrifugal forces whose magnitudes, like 
the gravitational force, are also proportional to the fluid density and hence 
can generate strong free-convection currents. Cooling of rotating com­
ponents by free convection is therefore feasible even at high heat fluxes. 

The fluid velocities in free-convection currents, especially those gen­
erated by gravity, are generally low, but the characteristics of the flow in 
the vicinity of the heat-transfer surface are similar to those in forced 
convection. A boundary layer forms near the surface and the fluid ve­
locity at the interface is zero. Figure 7-1 shows the velocity and tempera­
ture distributions near a heated flat plate placed in a vertical position 
in air (3). At a given distance from the bottom of the plate, the local 
upward velocity increases with increasing distance from the surface to 
reach a maximum value at a distance between 0.1 and 0.2 in., then de­
creases and approaches zero again about 1 to 2 in. from the surface. Al­
though the velocity profile is different from that observed in forced con­
vection over a flat plate where the velocity approaches the free-stream 
velocity asymptotically, in the vicinity of the surface the characteristics 
of both types of boundary layer are similar. In free convection, as in 
forced convection, the flow may be laminar or turbulent, depending on the 
distance from the leading edge, the fluid properties, the body force, and 
the temperature difference between the surface and the fluid. 

The temperature field in free convection (Fig. 7-1) is similar to that 
observed in forced convection. Hence, the physical interpretation of th~ 
Nusselt number presented in Sec. 6-4 applies. For practical application 
however, Newton's equation (Eq. 1-13) 

is generally used. The reason for writing the equation for a differential 
area dA is that, in free convection, the heat-transfer coefficient he is not 
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Fig.7-1. Temperoture and velocity distributions in the vicinity of a 
heated flat plate placed vertically in still air. (After E. 
Schmidt and W. Beckman, Ref. 3) .. 

uniform over a surface. As in forced convection over a flat plate, we sball 
therefore distinguish between a local value of he and an average value he 
obtained by averaging he over the entire surface. The temperature Too 
refers to a point in the fluid sufficiently removed from the body that the 
temperature of the fluid is not affected by the presence of a heating (or 
cooling) source. 

An exact evaluation of the heat-transfer coefficient for free convec­
tion from the boundary layer is very difficult. The problem has only been 
solved for simple geometries, such as a vertical flat plate and a horizontal 
cylinder (3,4,19). We shall not discuss these specialized solutions here. 
Instead, we shall set up the differential equations for free convection from 
a vertical flat plate using only fundamental physical principles. From 
these equations, without actually solving them, we shall determine the 
similarity conditions and associated dimensionless moduli which cor­
relate experimental data. In Sec. 7-3 pertinent experimental data for 
various shapes of practical interest will be presented in terms of these 
dimensionless moduli, and their physical significance will be discussed. 

7-2. Similarity parameters for free convection 

In the analysis of free convection we shall make use of a phehome­
non observed by the Greeks over 2000 years ago and phrased by Archi-
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Fig. 7-2. Sketch illustrating forces acting on a fluid 
element in free-convection flow. 

medes somewhat as follows: A body immersed in a fluid experiences a 
buoyant or lifting force equal to the mass of the displaced fluid. Hence, a 
submerged body rises when its density is less than that of the surrounding 
fluid and sinks when its density is greater. The buoyant effect is the 
driving force in free convection. 

For the purpose of analysis, consider a domestic heating panel which 
can be idealized by a vertical flat plate, very long and wide in the plane 
perpendicular to the floor so that the flow is two-dimensional (Fig. 7-2). 
When the heater is turned off, the panel is at the same temperature as the 
surrounding air. The gravitational or body force acting on each fluid 
element is in equilibrium with the hydrostatic pressure gradient, and the 
air is motionless. When the heater is turned on, the fluid in the vicinity 
of the panel will be heated and its density will decrease. Hence, the body 
force (defined as the force per unit mass) on a unit volume in the heated 
portion of the fluid is less than in the unheated fluid. This imbalance 
causes the heated fluid to rise, a phenomenon which is well-known from 
experience. In addition to the buoyant force, there are pressure forces 
and also frictional forces acting when the air is in motion. Once steady­
state conditions have been established, the total force on a volume ele­
ment, dxdydz in the positive x direction perpendicular to the floor consists 
of the following: 
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1. The force due to the pressure gradient 

pdydz - (p + :~ dX) dydz = - :: (dxdydz) 

2. The body force rxp (dxdydz), where rx = -g/gc, since gravity alone 
is active. 

3. The frictional shearing forces due to the velocity gradient 

Since Tyx 

( 

dTyx \ 
(- Tyx) dxdz + Tyx + ay dYj dxdz 

J.L (au/ ay)/ g c in laminar flow, the net frictional force is 

(
l:!:..- a2~) dxdydz 
gc ay 

Forces due to the deformation of the fluid element will be neglected in 
view of the low velocity. 1 

The rate of change of momentum of the fluid element is pdxdydz 
[u (au/ ax) + v (au/ ay)] as shown in Sec. 6-7. Applying Newton's second 
law to the elemental volume yields 

P (u :~ + v :;) = - g c :~ - pg + J.L ~:~ (7-1 ) 

after canceling dxdydz. The unheated fluid far removed from the plate 
is in hydrostatic equilibrium, or g c (ape/ ax) = - Peg where the sub­
script e denotes equilibrium conditions. At any elevation the pressure is 
uniform and therefore ap/ax = ape/ax. Substituting Peg for -Cap/ax) 
in Eq. 7-1 gives 

~ au au) ) a
2
u P u - + v - = (Pe - P g + J.L --2 

ax ay ay 
(7-2) 

A further simplification can be made by assuming that the density P de­
pends only on the temperature, and not on the pressure. For an incom­
pressible fluid this is self-evident, but for a gas it implies that the vertical 
dimension of the body is small enough that the hydrostatic density Pe is 

1 The effects of the compression work and frictional heating are discussed in 
Reference 1. 
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constant. With these assumptions the buoyant term can be written 

g(Pe - p) = g(poo - p) = -gp(3 (Too - T) 

where (3 is the coefficient of thermal expansion, defined as 

For an ideal gas (i.e., P = p/ffiT) the coefficient of expansion is 

and 

(3 = Pro /p - 1 
T - Too 

(7-3) 

(7-4) 

(7-5) 

The equation of motion for free convection is obtained finally by substi­
tuting the buoyant term as expressed by Eq. 7-3 into Eq. 7-2 and we get 

(7-6) 

Equation 7-6 is identical to the boundary-layer equation for forced con­
vection over a fiat plate except for the term gp(3 (T - Too), which appears 
as a result of the body force which was ignored in forced convection. 

The problem now is to determine the conditions for which the ve­
locity field in one free-convection system is similar to the velocity field in 
another. The boundary conditions are the same for all free-convection 
systems, that is the velocity is zero both at the surface and a distance far 
removed from the surface. Hence, dynamic similarity for different sys­
tems exists if Eq. 7-6 applies. 

Let us first write Eq. 7-6 for system A as 

N ow consider another system, B, related to system A, by the equations 

UB CVUA (3B C tJ (3A 

VB CVVA (T - Tooh CT(T - Too )A 

XB CLXA /-LB C JJ. /-LA 

YB CLYA PB CpPA 
gB CggA 

FREE CONVECTION 



These equations state that a velocity in system B is equal to C v, a velocity 
constant or reference quantity, times the velocity in system A; the viscosity 
in system B is equal to a constant C J.L times the viscosity in system A; etc. 
Equation 7-6 applies also to system B, or 

(7-70) 

We can express the equation of motion for system B in terms of the quan­
tities pertaining to system A by inserting the relations previously listed. 
Then Eq. 7-7a becomes 

The next step is crucial in this type of analysis and should be noted 
carefully. Equation 7-8, the equation of motion for system B, is identical 
to the equation of motion of system A if the coefficients of each of the 
terms in square brackets are identical. Then, the solutions of the equa­
tions of motion for both systems (the boundary conditions being similar) 
will be the same and the systems are said to be dynamically similar. 
Therefore, the dynamic similarity requirements are that 

(7-9) 

To see the physical significance of Eq. 7-9, we substitute for the reference 
quantities (i.e., the C's), the equalities relating systems A and B in the 
tabulation (for instance C{3 = (3B/{3A,CJ.L = /.LB//.LA, etc.). To simplify the 
relationships we shall use the symbol V for the significant velocity and 
L for the significant length. Then we have 

PB VB
2
/L B 

PA VA
2 / LA 

PBgB{3B(T - Too)B 

PAgA{3A(T - Too)A 

/.LB V B/ LB2 

/.LA VAl LA2 
(7-10) 

Any combination of terms in the above similarity equation IS per­
missible, but only those combinations which have some physical signifi­
cance are of practical use. However, it is not always obvious which of the 
many possibilities is most convenient and significant. Often a trial-and­
error approach, with some experimental data as a guide, is required to 
find the right combination. 
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If we combine the first and the last term of Eq. 7-10 we get 

(7 - 1 1) 

which are equivalent expressions of the Reynolds number. The equality 
of the Reynolds numbers means that the ratios of inertia forces to fric­
tional forces are identical at corresponding points. 

Combining the second and the third term of Eq. 7-10 we obtain 

PBgB{3B(T - Too)sLB2 

f..LB VB 

PAgA{3A(T - T oo )ALA
2 

f..LA VA 

that is, the ratios of buoyant to frictional forces are equal. 

(7-12) 

From the physical aspects of the problem we recall that the velocity 
of the fluid is not an independent quantity, but depends upon the buoyant 
driving force. Hence, we can eliminate V from Eq. 7-12 by substituting 
its value from the Reynolds number. We then obtain 

PB2gB{3B(T- Too)BL B3 

2 f..LB 

PA 2gA{3A (T - T oo )ALA3 

2 f..LA 
(7-13) 

The dimensionless modulus p2g{3(T - T oo )L 3 /f..L2 is called the Grashof 
number, Gr, and represents the ratio of buoyant to viscous forces. 2 Con­
sistent units are: 

Engineering System SI System 

P Ibm/cu ft L ft P kg/cu m L m 

f..L Ibm/sec ft (T - Too) F f..L kg/m sec (T - Too) K 
{3 I/R g ft/sec 2 {3 I/K g m/sec 2 

When the buoyancy is the only driving force, the fluid velocity is de­
termined entirely by the quantities contained in the Grashof modulus. 
Therefore, the Reynolds number is superfluous for free convection, and 
equality of the Grashofnumbers establishes dynamic similarity. 

The equation (6-23) describing the temperature field in free convec­
tion is 

pcp u - + v - = k --2 (
aT aT) a

2
T 

ax ay ay 

This equation is identical to the heat-transfer equation for forced convec-

2In Table A-3 the combination p2 g(:J / J..l2 is listed to facilitate numerical computations. 
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tion over a flat plate, and its derivation has been presented previously 
(Sec. 6-7). For similarity of temperature fields in forced convection, we 
found that the Prandtl numbers, CpJ.l./ k, must be equal. This applies also 
to free convection. Therefore, when geometrically similar bodies are 
cooled or heated by free convection, both the velocity and temperature 
fields are similar provided Gr and Pr are equal at corresponding points. 
It follows also from the same arguments used in the case of forced convec­
tion that, when the Grashof and Prandtl numbers are equal, the Nusselt 
numbers for the bodies are the same. . Hence, experimental results for 
free-convection heat transfer can be correlated by an equation of the type 

Nu = c/> (Gr) "" (Pr) (7-14) 

where c/> and if/ denote functional relationships. 
The Prandtl number of gases having the same number of atoms per 

molecule is nearly constant. For a group of gases having the same number 
of atoms, Eq. 7-14 can therefore be reduced to 

Nu = c/> (Gr) (7-15) 

As a first approximation, data for different fluids can also be cor­
related on a single curve. If the velocities are sufficiently small that inertia 
forces can be neglected in comparison with the forces of friction and 
buoyancy, the left-hand side of Eq. 7-9,which represents the inertia 
forces, can be discarded (see Prob. 7-15). Then, the similarity condition 
IS 

(7-16) 

By substituting the equality relations for systems A and B it can easily 
be verified that the dimensional similarity parameter is (Gr Pr). The 
product of Gr and Pr is called the Rayleigh number, Ra. Hence, when 
the inertia forces are negligible, the Nusselt number becomes a function of 
a single variable and we have 

Nu = c/> (Gr Pr) (7 - 17) 

Using an equation of this type, experimental data from vanous sources 
for free convection from horizontal wires and tubes are correlated in 
Fig. 7-3 by plotting lieD / k, the average Nusselt number, against 
cpp2gfJ.6. T D 3/ J.l.k, the product of the Grashof and Prandtl numbers. The 
physical properties are evaluated at the arithmetic mean temperature. We 
observe that data for fluids as different as air, glycerine, and water are 
well correlated over a range of Grashof numbers from 10-5 to 107 for 
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Fig. 7-3. Correlation of data for free-convection heat transfer from horizontal cylin-
ders in gases and liquids. (By permission from W. H. McAdams, Heat Trans­
mission, 3d ed., New York: McGraw-Hili Book Company Inc., 1954). 

8 9 

cylinders ranging from small wires to large pipes. King (9) has shown 
that the correlation in Fig. 7-3 gives approximate results also for three­
dimensional shapes such as short cylinders and blocks if the characteristic 
length dimension is determined by the equation 

1 
L + L hor L vert 

1 1 

where L vert is the height and L hor the average horizontal dimension of the 
body. 

A similar correlation for free convection from vertical plates and 
vertical cylinders is shown in Fig. 7-4. 3 The ordinate is heLl k, the average 

3 According to Ref. 31, a vertical cylinder of diameter D may be treated as a flat plate 
of height L when Dj L > 35 Gr i 1/4. 
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Fig. 7-4. Correlation of data for free-convection heat transfer from vertical plates 
and cylinders. 

Nusselt number based on the height of the body, and the abscissa is the 
product ofGr and Pr, i.e., cp p2(3g6..TL3/J-Lk. We note that there is a 
change in the slope of the line correlating the experimental data at a 
Grashof Number of 10 9

• The reason for the change in slope is that the 
flow is laminar up to a Grashof number of about 108

, passes through a 
transition regime between 108 and 10 10

, and becomes fully turbulent at 
Grashof numbers above 1010. This behavior of the flow is illustrated in 
the photographs of Fig. 7-5. These pictures show lines of constant density 
in free convection from a vertical flat plate to air at atmospheric pressure 
obtained with a Mach-Zehnder (6, 7) optical interferometer. This instru­
ment produces interference fringes which are recorded by a camera. The 
fringes are the result of density gradients caused by temperature gradients 
in gases. The spacing of the fringes is a direct measure of the density dis­
tribution, which is related to the temperature distribution. Figure 7-5 
shows the fringe pattern observed near a heated vertical flat plate ih air, 
3 ft. high and 1.5 ft. wide. We observe that the flow is laminar for about 
20 in. from the bottom of the plate. Transition to turbulent flow begins 
at 21 in., corresponding to a critical Grashof number of about 4 x 108

. 

Near the top of the plate, turbulent flow is approached. This type of be­
havior is typical of free convection on vertical surfaces, and under normal 
conditions the critical value of Grashof number is usually taken at 109

. 
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Fig. 7-5. Interference photograph illustrating laminar and turbulent 
free-convection flow of air along a vertical flat plate. (Cour­
tesy of Professor E. R. G. Eckert). 
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When the physical properties of the fluid vary considerably with 
temperature and the temperature difference between the body surface Ts 
and the surrounding medium Too is large, satisfactory results can be ob­
tained by evaluating the physical properties in Eq. 7-14 at the mean tem­
perature (Ts + Too) /2. However, when the surface temperature is not 
known, a value must be assumed initially. It can then be used to calculate 
the unit-surface conductance to a first approximation. The surface tem­
perature is then recalculated with this value of the surface conductance 
and if there is a discrepancy between the assumed and the calculated value 
of T s , the latter is used to recalculate the heat-transfer coefficient for the 
second approximation. 

7-3. Evaluation of unit-surface conductance 

After experimental data have been correlated by dimensional 
analysis, it is general practice to write an equation for the line faired 
through the data and to compare the experimental results with those ob­
tained by analytic means. In this section the results of some experimental 
studies on free convection for a number of geometric shapes of practical 
interest are presented. Each shape is identified by a characteristic dimen­
sion, such as its distance from the leading edge x, length L, diameter D, 
etc. The characteristic dimension is attached as a suffix to the dimension­
less parameters Nu and Gr. Average values of the Nusselt number for a 
given surface are identified by a bar, i.e., Nu; local values are without a 
bar. All physical properties are to be evaluated at the arithmetic mean 
between the surface temperature Ts and the temperature of the undis­
turbed fluid Too. The temperature difference in the Grashof number i::l.T 
represents the absolute value of the difference between the temperatures 
Ts and Too. All of the equations to be discussed apply strictly to bodies 
immersed in an effectively infinite medium in which the flow pattern is in­
fluenced only by the body transferring the heat. The accuracy with which 
in practice the unit-surface conductance can be predicted from any of the 
equations is generally no better than 20 percent, because most experi­
mental data scatter by as much as ±15 percent or more and in a majority 
of engineering applications stray currents due to some interaction with 
surfaces other than the one transferring the heat are unavoidable. 

Vertical planes and cylinders. The local value of the heat-transfer 
coefficient for laminar free convection from an isothermal vertical plate 
or cylinder at a distance x from the leading edge is 

(7 -18) 
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Eq. 7-18 shows that the heat transfer coefficient decreases with the dis­
tance from the leading edge to the 1/4 power. The leading edge is the 
lower edge for a heated surface and the upper edge for a surface cooler 
than the surrounding fluid. The average value of the heat-transfer co­
efficient for a height L is obtained by integrating Eq. 7-18 and dividing 
by L, or 

(7-190) 

In dimensionless form, the average Nusselt number is 

(7-19b) 

in the range 10 < Gr L Pr < 109 (30). For a vertical plane submerged in a 
liquid metal (Pr < 0.03), the average Nusselt number in laminar flow is 
(28) 

N,UL (7-19c) 

In the turbulent region, the value of hex, the local heat-transfer 
coefficient, is nearly constant over the surface. In fact, McAdams (9) 
recommends for Gr > 109 the equation 

(7-20) 

according to which the heat-transfer coefficient is independent of the 
length L. 

A theoretical analysis by Sparrow and Gregg (10), supported by ex­
perimental data by Dotson (11), indicates that the equations for laminar 
free convection from a vertical flat plate apply to a constant surface tem­
perature as well as to a uniform heat flux over the surface. In the latter 
case the surface temperature Ts is to be taken at one-half of the total 
height of the plate. Other types of correlations for constant heat flux are 
presented in Refs. (33) and (34). 

If a heated plane is inclined somewhat from the vertical, as shown in 
Fig. 7-6, the body force along the x-axis is [gfJ (T - Too) cos a] and the 
average Nusselt number for the upper surface can be obtained by using 
an effective Grashof number (p 2gfJ~ Tcos aL 3/ /-L 2) in Eqs. 7-19 or 7-20. 

EXAMPLE 7- 7. The maximum allowable surface temperature at the center 
of an electrically heated vertical plate, 6 in. high and 4 in. wide, is 270 F. Esti-
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Fig. 7-6. Sketch illustrating body force acting on a 
fluid on or near an inclined surface. 

mate the maximum rate of heat dissipation from both sides of the plate in 70 F 
atmospheric air if the unit-surface conductance for radiation fir is 1.5 Btu / hr sq 
ft F for the specified maximum surface temperature. 

Solution: The arithmetic mean temperature is 170 F and the correspond­
ing value of Gr L is found to be 1.2 x 106 L 3 (Ts - T =), from the last column in 
Table A-3 by interpolation. For the specified conditions we get 

Since the Grashof number is less than 109
, the flow is laminar. For air at 170 F the 

Prandtl number is 0.71 and GrPr is therefore 2.1 x 107
. From Fig. 7-4 the aver­

age Nusselt number is 38 at GrPr of2.1 x 107 and therefore 

38 0.0172 Btu/hr ft F 
0.5 ft 

1.31 Btu/hr sq ft F 

The maximum total heat-dissipation rate is therefore 

q = A (he + hr)(Ts - T=) 

[ (2\~: (4) sq ft] [(1.31 + 1.5) Btu / hr sq ft F ](200 F) 

= 187 Btu/hr Ans. 

Note that more than half of the heat is transferred by radiation. 

Horizontal plates. For square plates with a surface warmer than 
the surrounding medium facing upward or a cooler surface facing down­
ward, McAdams (9) recommends the equation 

(7 -21) 
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in the turbulent range, Gr L from 2 x 10 7 to 3 x 10 10
, and 

(7-22) 

in the laminar range, Gr L from 105 to 2 x 10 7
, where L is length of the 

side of the square. For heated plates facing downward and cooled plates 
facing upward, the equation 

0.27 (Gr L Pr)1/4 (7-230) 

is recommended (9) in the laminar range, (i.e., Gr from 3 x 105 to 3 x 
10 10

). Data in the turbulent range are lacking. As a first approximation, 
the foregoing three equations can be applied to horizontal circular disks 
if Lis replaced by 0.9 D, where D is the diameter of the disk, and to rec­
tangular surfaces if L is taken as the mean between the two sides. 

Experimental data for a cooled circular horizontal plate facing down 
in a liquid metal are correlated by the relation (29) 

(7-23b) 

Horizontal cylinders, spheres, and cones. The temperature field 
around a horizontal cylinder heated in air is illustrated in Fig. 7-7, which 
shows interference fringes photographed by Eckert and Soehnghen (7). 
The flow is laminar over the entire surface. The closer spacing of the 
interference fringes over the lower portion of the cylinder indicates a 
steeper temperature gradient and consequently a larger local unit-surface 
conductance than over the top portion. The variation of the surface 
conductance with angular position a is shown in Fig. 7-8 for two Grashof 
numbers. The experimental results do not differ appreciably from the 
theoretical calculations of Herman (4) who derived the equation 

(7-24) 

for air, i.e., Pr = 0.74. The angle a is measured from the horizontal posi­
tion and numerical values of the function ¢ (a) are as follows: 

a -90 

I 
-60 

I 
-30 0 

I 
30 60 

I 
75 90 

q,(a) 0.76 0.75 0.72 0.66 0.58 0.46 0.36 0 

Bottom half Top half 

An equation for the average heat-transfer coefficient from single hori­
zontal wires or pipes in free convection, recommended by McAdams (9) 
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Fig. 7-7. Interference photograph illustrating temperature 
field around a horizontal cylinder in laminar flow. 
(Courtesy of Professor E. R. G. Eckert). 

on the basis of the experimental data in Fig. 7-3, is 

NUD = 0.53 (Gr D Pr)I/4 (7-25) 

This equation is valid for Prandtl numbers larger than 0.5 and Grashof 
numbers ranging from 103 to 109

• For very small diameters, Langmuir 
has shown that the rate of heat dissipation per unit length is nearly inde­
pendent of the wire diameter, a phenom~non he applied in his invention of 
the coiled filaments in gas-filled incandescent lamps. The average unit­
surface conductance for Gr D less than 103 is most conveniently evaluated 
from the curve A-A drawn through the experimental points in Fig. 7-3 
in the low Grashof-number range. 

The onset of turbulence in free-convection flow over horizontal 
cylinders for fluids other than liquid metals occurs at a value of 
Gr D Pr/D 3 of about lOll (12). In turbulent flow it has been observed (12) 
that the heat flux can be increased substantially without a corresponding 
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Fig. 7-8. locol dimensionless unit-surface conductance along the circumference of 0 

horizontal cylinder in laminar free convection (dashed line according to Ref. 4). 
(Courtesy of U.S. Air Force, from "Studies on Heat Transfer in laminar Free Con­
vection with the Zehnder-Mach Interferometer," by E. R. G. Eckert and E. E. 
Soehngen, Ref. 7). 

increase in the surface temperature. It appears that in free convection the 
turbulent-exchange mechanism increases in intensity as the rate of heat 
flow is increased and thereby reduces the thermal resistance. 

Simplified equations for horizontal cylinders at moderate surface 
temperatures are given in Reference 9 for air at atmospheric pressure. 
They are 

0.18 D.. T 1/3 (7-26) 

for GrD from 10 9 to 10 12
, and 

h = 0.27(D.. T)1/4 
C D (7-27) 

for Gr D from 10 3 to 109
, where he is in Btu/hr sq ft F and D.. T is in F. 

For liquid metals in laminar flow the equation 

(7-28) 

correhites the available data (12) for horizontal cylinders. 
For free convection to or from spheres of diameter D the empirical 

equation 
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(7-29) 

is recommended (35). For very small spheres, as the Grashof number ap­
proaches zero, the Nusselt number approaches a value of 2, i.e. 
(he D / k) ~ 2. This condition corresponds to pure conduction through a 
stagnant layer of fluid surrounding the sphere. 

EXAMPLE 7-2. A Ii-in. OD pipe carrying slightly wet steam at 15 psig is 
installed in a location where it is covered by water after a heavy rain but is ex­
posed to air under normal conditions. Compare the rate of heat transfer to air 
with the rate of heat transfer to water, assuming that both fluids are at 50 F. 

Solution: From steam tables we find that the temperature of the steam at 
15 psig is 250 F. Assuming that the pipe temperature equals the steam tempera­
ture because the heat-transfer coefficient inside the pipe is large (Table 1-2), the 
mean film temperature is 150 F. From Table A-3, the product of the Grashof and 
Prandtl numbers is 

GrDPr (1.2 x 109)(200) (\;0) 3 4.7 X 108 for water 

GrDPr (0.85 x 106 )(200) (11·g) 3 = 3.3 X 105 for air 

From Fig. 7-3 the respective Nusselt numbers are therefore 

77 

12.6 

for water 

for air 

The respective heat-transfer coefficients are therefore 

k 
he = Nu­

D 
0.384 Btu/ hr ft F 

77 1.5/12 ft = 23.6 Btu/hr sq ft F 
\ 

126 0.0164 = 1.66 Btu/hr sq ft F 
. 1.5/12 for air 

The rate of heat loss by convection per foot length of pipe is therefore 

-
qe = heA(Ts - Too) = (236)7r(1.5/12)(200) = 18,500Btu/hrft 

qe = (1.66)7r(1.5/12)(200) = 130Btu/hrft In alr 

for water 

in water 

There is no appreciable radiation in water, but in air the heat transfer by radia­
tion is from Eq. 1-7. 

qr = (0.171)(0.9)7r(1.5/12) [(7.lO)4 - (5.10)4] = 115Btu/hrft 
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if the emissivity of the pipe is 0.9. The total heat-transfer rate in air is therefore 
245 Btu/hr ft, which is only a small fraction of the heat-transfer rate when the pipe 
is covered by water. A ns. 

Experimental data for free convection from vertical cones with vertex 
angles between 3 and 12 degrees have been correlated (36) by the equation 

where t: 

NUL = 0.63(1 + 0.72t:)GrL I
/
4 

2 
Gr L 1/4 tan (1)/2) 

1> vertex angle 

L slant height of the cone. 

An extensive treatment of transition and stability In natural convection 
systems is presented in Ref. 31. 

Free convection in enclosed spaces. Empirical formulas for calcula­
tion of free-convection heat transfer in an enclosed air space between 
vertical walls can be presented in the following form (14): 

(
L)-1/9 0.18 Grlil/4 b 

(L) -1/9 
0.065 Grol/3 b 

where Grli is defined by 

for 2000 < Gr Ii < 20,000 

for 20,000 < Grli < 11 x 106 

p2gf3(Tl - T 2){)3 

JL2 

(7-30) 

(7-31 ) 

(7-32) 

where Tl and T2 are the temperatures of the walls on either side of the 
enclosed space and () is the thickness of the air space as shown in Fig. 7-9. 
The height of the air space is designated by L. It should be noted that the 
length in the Grashof number is the thickness of the air space. For 
Grashof numbers below 2000, the heat transfer is essentially all conduc­
tion, so that NUIi = 1.0 for this region. 

For free convection in horizontal air spaces the following relations 
are recommended (14): 

_ {0.195 Gr1i1/4 
Nu = 

Ii 0.068 Gr //3 
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for 4 x 105 < Gr Ii 

(7-33) 

(7-34) 



T, 

. ~';~:?/\./; ql··.·· .. ········.···.·.······ .. ···.···.············· .............. : .... . 
Fig. 7-9. Nomenclature for free convection in enclosed vertical spaces. 

The experiments of Globe and Dropkin (27) are useful for calcula­
tion of free convection through liquids in horizontal spaces. The results 
of their work indicate that 

for 3 x 105 < GroPr < 7 x 109 (7-35) 

For free convection inside spherical cavities of diameter D the relation 
(13) 

-

~hc = C(Gr D • Pr)n (7-36) 

is recommended with the constants C and n selected from the tabulation 
below 

GrD·Pr C 

0.59 

0.13 

7-4. Convection from rotating cylinders, 
disks, and spheres 

n 

1/4 

1/3 

Heat transfer by convection between a rotating body and a sur­
rounding fluid is of importance in the thermal analysis of shafting, fly­
wheels, turbine rotors, and other rotating components of various ma­
chines. Convection from a heated rotating horizontal cylinder to ambient 
air has been studied by Anderson and Saunders (15). Turbulence begins 
to appear at a critical peripheral-speed Reynolds number, Rew = W7r D2 lv, 
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of about 50, where w is the rotational speed in rad/sec. With heat transfer 
the critical speed is reached when the circumferential speed of the cylinder 
surface becomes approximately equal to upward free-convection velocity 
at the side of a heated stationary cylinder. 

Below the critical velocity simple free convection, characterized by 
the conventional Grashof number fJg(Ts - Too) D3 /v 2

, controls the rate 
of heat transfer. At speeds greater than critical (Re", > 8000 in air) the 
peripheral speed Reynolds number 7rD 2w/v becomes the controlling 
parameter. The combined effects of the Reynolds, Prandtl, and Grashof 
numbers on the average Nusselt number for a horizontal cylinder rotat­
ing in air above the critical velocity can be expressed by the empirical 
equation (16) 

liD 
k 

0.11 [0.5 Re",2 + Gr D ) Pr]O.35 (7-37) 

Heat transfer from a rotating disk has been investigated experi­
mentally by Cobb and Saunders (17) and theoretically, among others, by 
Millsaps and Pohlhausen (18) and Kreith and Taylor (19). The boundary 
layer on the disk is laminar and of uniform thickness at rotational 
Reynolds numbers WD2/V below about 10 6 • At higher Reynolds num­
bers the flow becomes turbulent and the boundary layer thickens with 
increasing radius (see Fig. 7-10). The average Nusselt number for a disk 
rotating in air is (17, 20) 

0.35 (W:/)1/2 (7-38) 

for ReD < 5 x 105
• 

In the turbulent flow regime of a disk rotating in air (17), the local 
value of the Nusselt number at a radius r is approximately given by 

I) laminar-=:::==::::r-'-'" 

(a) (b) 

Fig. 7-10. Velocity ond boundory loyer profiles for 0 disk rototing in on infinite 
environment. 
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(7-39) 

and the average value of the Nusselt number for laminar flow between 
r = 0 and re> and turbulent flow in the outer ring between r = re and ro 
is approximately 

(7-40) 

For a disk rotating in a fluid having a Prandtl number larger than 
unity, the loc.al Nusselt number can be obtained according to Reference 
21 from the equation 

SPr + Sln(SPr + 1) + (V2/C Dr ) - 14 
(7-41 ) 

where CDr is the local drag coefficient at radius r which, according to Ref­
erence 22, is given by the relation 

k = -2.0S + 4.07 log 10 Re r v-c;;; 
CDr 

(7-42) 

For a sphere of diameter D rotating in an infinite environment with 
Pr > 0.7 in the laminar flow regime (ReD = wD2/v < S X 10 4 ) the average 
Nusselt number (heD/ k) can be obtained from the equation 

while in the Reynolds-number range between S x 10 4 and 7 x 10 5 the 
equation 

(7-44) 

correlates the available experimental data. 

7-5. Combined forced and free convection 

In Chapter 6 forced convection in flow over a flat surface was 
treated, and the preceding sections of this chapter dealt with heat transfer 
in natural-convection systems. In this section the interaction between 
free- and forced-convection processes will be considered. 
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In any heat-transfer process density gradients occur and in the pres­
ence of a force field natural-convection currents arise. If the forced-con­
vection effects are very large, the influence of natural-convection currents 
may be negligible and, similarly, when the natural-convection forces are 
very strong, the forced-convection effects may be negligible. The ques­
tions we wish to consider now are under what circumstances can either 
forced or free convection be neglected and what are the conditions when 
both effects are of the same order of magnitude. 

To obtain an indication of the relative magnitudes of free- and 
forced-convection effects, we consider the differential equation describing 
the uniform flow over a vertical flat plate with the buoyancy effect and the 
free-stream velocity U 00 going in the same direction. This would be the 
case when the plate is heated and the flow is upward, or when the plate is 
cooled and the flow is downward. Taking the flow direction as x and 
assuming that the physical properties are uniform except for the tempera­
ture effect on the density, the Navier-Stokes boundary-layer equation for 
uni-dimensional flow with free convection is 

au au 
u- + v-

ax ay 
1 a p + J.l a u + gf3 (T _ Too) 
p ax p ay2 

(7-45) 

This equation can be generalized by a method similar to that outlined in 
Sec. 7-2. Substituting X for x/ L, Y for y / L, e for (T - Too )/(To - Too), 
P for (p - poo)/ p u 00 2 /2g c), U for u/ U 00 and V for v / U 00 in Eq. 7-45 gives 

(7-46) 

In the region near the surface, i.e., in the boundary layer, au/ax and U 
are of the order of unity. Since U changes from 1 at x = 0 to a very small 
value at x = 1, and u is of the same order of magnitude as U 00' the left­
hand side of Eq. 7-46 is of the order of unity. Similar reasoping indicates 
that the first two terms on the right-hand side as well as e are of the order 
of unity. Consequently, the buoyancy effect will influence the velocity 
distribution, on which, in turn, the temperature distribution depends, if 
the coefficient of e is of the order of 1 or larger, i.e., if 

[gf3L3 (To - T 00)]/v 2 

(U ooL/V)2 
(7-47) 

/ 

In other words, the ratio of Gr /Re 2 gives a qualitative indication of the 
influence of buoyancy on forced convection, and when the Grashof num-
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ber is of the same order of magnitude or larger than the square of the 
Reynolds number, free convection effects cannot be ignored, compared to 
forced convection. Similarly, in a natural-convection process the influence 
of forced convection becomes significant when the square of the Reynolds 
number is of the same order of magnitude as the Grashof number. 

Several special cases have been treated in the literature (24, 25, 26). 
For example, for laminar forced convection over a vertical flat plate 
Sparrow and Gregg (24) showed that for Prandtl numbers between 0.01 
and 10 the effect of buoyancy on the average heat-transfer coefficient for 
pure forced convection will be less than 5 per cent if Gr L S 0.225 ReL 2. 

Acrivos (26) showed that for Prandtl numbers between 0.07 and 10, 
forced convection has negligible effects on natural convection from a 
vertical flat plate if the Grashof number is at least ten times larger than 
the square of the Reynolds number. In the region where both free- and 
forced-convection effects are of the same order of magnitude, heat trans­
fer is increased by buoyancy effects acting in the direction of flow and de­
creased when acting in the opposite direction. 

PROBLEMS 

7-7. An empirical equation proposed by Heilman (Trans. ASME, Vol. 51, 
1929, p. 287) for the unit-surface conductance in free convection from long 
horizontal cylinders to air is 

1.016 (Ts - Too )0.266 

DO.2T/·181 

The corresponding equation in dimensionless form is 

C Gr mPr n f f 

By comparing the two equations, determine those values of the constants C, m, 
and n in the latter equation which will give the same results as the first equation. 

7-2. Consider a design for a nuclear reactor using free-convection heating 
of liquid bismuth. The reactor core is to be constructed of parallel vertical plates, 
6 ft tall and 4 ft wide, in which heat is generated uniformly. Estimate the maxi­
mum possible heat-dissipation rate from each plate if the surface temperature of 
the plate is not to exceed 1600 F and the lowest allowable bismuth temperature is 
600F. 

7-3. A lO-gal tank full of water at 60 F is to be heated to 120 F by means of 
a i-in. OD copper steam coil having 10 turns of 12 in. diameter. The steam is at 
atmospheric pressure, and its thermal resistance is negligibly small. Neglecting 
heat losses from the tank, estimate the heating time required. 
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7-4. An 8-in. diameter sphere containing liquid air (-220 F) is covered with 
2-in.-thick glass wool. Estimate the rate of heat transfer to the liquid air from the 
surrounding air at 70 F by convection and radiation. How would you reduce the 
heat transfer? 

7-5. A horizontal 2~-in. OD, 2 /6 -in. ID steam pipe carrying saturated 
steam at 50 psia is covered by I-in.-thick molded-asbestos insulation. Estimate the 
rate of heat loss to surrounding air at 70 F for a 100-ft length. What would be the 
quality of the steam at the outlet if it is saturated at the inlet? The unit-surface 
conductance at the steam side is 2000 Btu/hr sq ft F and the average velocity is 
10 fps. 

7-6. Calculate the rate of heat transfer from a 10-in. diameter sphere 
suspended from a fine wire in air at 70 F if the sphere is rotating at 2000 rpm and 
has a surface temperature of 300 F. 

7-7. Estimate the rate of heat transfer by free convection and radiation 
across a ~-in. air space formed between two horizontal 24-ST aluminum sheets, 
the upper one of which is maintained at 300 F while the lower one remains at 70 F. 

7-8. Repeat Prob. 7-7 for the case in which the air space is divided in half 
by a very thin sheet of bright aluminum foil, placed parallel to the surface. 

7-9. A vertical isothermal plate I ft high is suspended in an atmospheric 
air stream flowing at 6 fps in a vertical direction. If the air is at 60 F, .estimate the 
plate temperature for which the free-convection effect on the heat-transfer co­
efficient will be less than 5 percent. A ns. 250 F 

7-10. If the plate in Example 7-9 is at a surface temperature of 100 F, de­
termine the maximum air velocity for which forced-convection effects on the heat­
transfer coefficient are negligible. A ns. 0.5 fps 

7-11. Starting with the equation 

NUD = 0.53 ( Pr
2 

Gr) 1/4 
0.452 + Pr 

show that, if Pr is much larger than unity, 

Nu ~ (Gr Pr) 1/4 

and when Pr is much less than unity (e.g., liquid metals) 

7-12. Consider a thin vertical flat plate L feet high and 1 ft wide at a 
temperature difference between surrounding medium (Pr = 1) and plate surface of 
t::,. T. If heat exchange is taking place by free convection in laminar flow, derive an 
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expression for the lifting force acting on the plate as a result of the temperature 
difference ~ T. 

7-13. A light oil is maintained at 150 F in a 2-ft-square sump tank by ten 
2-ft-Iong, !-in. OD tubes which are widely spaced and arranged horizontally in 
the lower third of the 6 ft tank depth. The tube surface temperature is main­
tained at 50 F by cooling water circulated at a high rate through the tubes. 
Estimate the oil cooling rate in Btu/hr if the heat-transfer area is 2.62 sq ft. 

Ans. "'-'6500 Btu/hr 

7-14. A thermocouple (3
1
2 -in. OD) is located horizontally in a large en­

closure whose walls are at 100 F. The enclosure is filled with a transparent 
quiescent gas which has the same properties as air. The electromotive force (emf) 
of the thermocouple indicates a temperature of 450 F. Estimate the true gas 
temperature if the emissivity of the thermocouple is 0.8. 

7-15. Starting with Eqs. 7-2 and 7-6 verify the validity of Eq. 7-16 under 
the assumption that inertia forces are negligible. 

7-16. Show-from Eq. 7-39 that if Vr 0.162wr(y/o)I/7 [1 - (Y/D»), 
15 = 0.526r(r2 w/v)-1/5 (see ZAMM, Vol. 1, 1921, p. 231), and (T - T;",) = 
(Ts - Too) [1 - (Y/D)1), the average Stanton number for turbulent flow of a fluid 
with Pr = 1 on a rotating disk of radius r 0 is given by 

7-17. A mild steel, I-in. OD shaft, rotating in 70 F air at 20,000 rpm, is 
attached to two bearings, 2 ft apart. If the temperature at the bearings is 200 F, 
determine the temperature distribution along the shaft. HINT: Show that for high 
rotational speeds Eq. 7-38 approaches NUD = 0.076 (7rD 2 w/v)O.7. 

7- 78. Estimate the rate of heat transfer from one side of a 6-ft-diameter 
disk rotating at 600 rpm in 70 F air, if its surface temperature is 120 F. 

7-19. A 4 ft by 4 ft flat, chromeplated plate, supported horizontally on 6-ft 
legs, is exposed to the sun at 12 o'clock noon on May 1. If the air temperature is 
80 F, (a) determine the equilibrium temperature on an average day; (b) determine 
the equilibrium temperature for an irradiation of 350 Btu/sq ft hr. 

7-20. Estimate the equilibrium temperature of a polished aluminum plate 
mounted on an insulating pad when exposed on a clear day to the noon sun. The 
irradiation is 255 Btu/sq ft hr and the ambient temperature is 80 F. Assume that 
the effective sky temperature is also 80 F. 

7-21. A cubical furnace having external dimensions of 20 ft on a side rests 
on a concrete floor. If the sides and the top are at 200 F and the surrounding air 
is 70 F, find the total rate of heat loss from the furnace neglecting any losses from 
the base to the concrete. Assume that the emissivity of the surface is 0.9. 
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7-22. A I-in. OD electrical transmission line carrying 5000 amp and having 
a resistance of 1 x 10-6 ohms per foot of length is placed horizontally in still air 
at 95 F. Determine the surface temperature of the line in the steady state (a) if 
radiation is neglected, and (b) if radiation is taken into account. Ans. (a) 290 F 

7-23. A flat metal plate 4 in. square is mounted in a vertical position in a 
milling machine. While a rotating cutter is shaping the plate, a coolant coil at 90 F 
(Pr = 450,/-L = 700 x 10-7 Ib/ft sec, p = 50 lb/cuft,/3 = 0.38 x 1O-3 F- 1, k = 0.7 
Btu hr ft F) is flowing down over both sides of the plate at a velocity of 0.2 fps. 
I[ under these conditions the plate temperature is 140 F, determine the rate of heat 
generation due to friction by the cutting tool. 

7-24. A thin sheet of galvanized iron 2 ft square is placed vertically in air 
at 40 F on a clear day. I[ the solar irradiation is 100 Btu/hr sq ft, estimate the 
equilibrium temperature of the plate. 

]-25. The needles of conifers may be idealized as small horizontal cylin­
ders. I[ a conifer needle has an average diameter of l2 in. and is at a temperature 
of 90 F, estimate its rate of heat loss by free convection to air at 60 F per inch 
length of needle. Express your answer in calories per second. 

7-26. Assuming a temperature distribution given by (T - Too )/( T w - Too) 
= (l y/a)2 and a velocity distribution given by u/u oo = (y/a)(1 - y/a)2, 
show by means of the integral momentum equation that for a vertical wall at a 
uniform temperature of T w, the ratio of the boundary-layer thickness to the dis­
tance from the leading edge can be expressed in the form 

a/x = 3.93 Pr- I/ 2 (0.952 + Pr)I/4Grx -1/4 

and that the Nusselt number at a given distance x from the leading edge is gIven 
by the equation 

7-27. A 1000-watt tungsten heating element is mounted inside a I-ft-diame­
ter polished copper container having a spherical shape. The container is filled 
with argon under 2 atm pressure and is suspended in a large room filled with 
atmospheric air at 70 F. Estimate the temperature of the surface of the container 
for steady-state conditions. 

7-28. An 8- by 8-ft steel sheet l6 in. thick is removed from an annealing 
oven at a uniform temperature of 800 F and placed into a large .room at 70 F in a 
horizontal position. (a) Calculate the rate of heat transfer from the steel sheet 
immediately after its removal from the furnace, considering both radiation and 
convection. (b) Determine the time required for the steel sheet to cool to a temper­
ature of 100 F. HINT: This will require numerical integration. 

Ans. (a) About 625,000 Btu/hr; (b) About 17 min 

7-29. A so-called swimming-pool nuclear reactor consists of 20 parallel 
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vertical plates 1 ft wide and 2 ft high, spaced a distance of 2 in. apart. Calculate 
the power level at which the reactor may operate safely in 80 F water if the plate 
surface is not to exceed a temperature of 200 F. State all your assumptions. 

7-30. Find the temperature at the center of a horizontal brass rod 4 in. long 
and i in. in diameter. One end of the rod is at 100 F and the other end protrudes 
into air at 60 F. The total unit-surface conductance by free convection and by 
radiation may be assumed to be uniform over the entire surface of the rod, and the 
emissivity of the surface may be taken as 0.9. Ans. 89 F 

7-37. The maxim urn allowable surface temperature at the center of an 
electrically heated vertical plate, 6 in. high and 4 in. wide, is 270 F. Estimate 
maximum rate of heat dissipation from both sides of the plate in 70 F atmospheric 
air if the unit-surface conductance for radiation heat transfer is 1.5 Btu/hr sq ft F 
at the maximum specified temperature. 
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