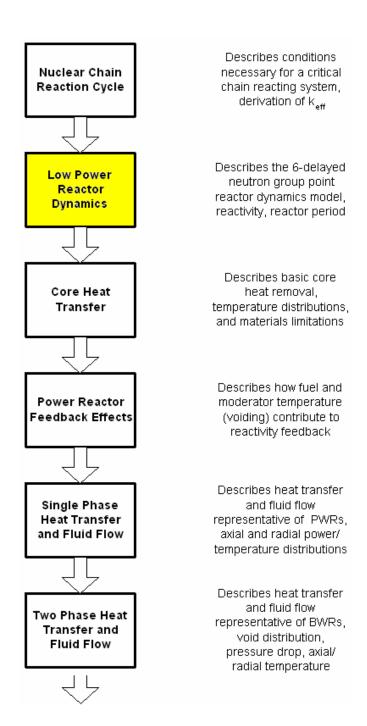
Fundamentals of Nuclear Engineering

Module 8: Low Power Reactor Dynamics

Dr. John H. Bickel



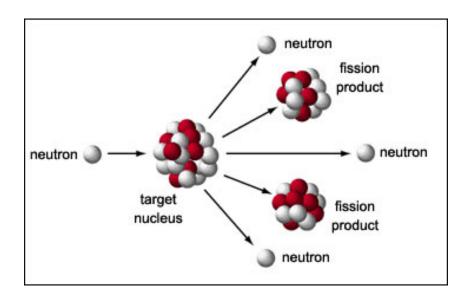
Objectives:

Previous lectures described origins of neutron diffusion equation and balance required for reactor criticality. This lecture will:

- Describe time dependent fission neutron source via 6-Delayed Neutron Group Model
- 2. Develop Point Reactor Dynamics neutron density model
- 3. Define: reactivity, delayed neutron fraction, neutron lifetime
- 4. Describe low power (Zero Feedback) reactor dynamics response to step and ramp changes in reactivity
- 5. Demonstrate simulated startup and low power operation

Time Dependent Neutron Sources

Each Fission produces multiple neutrons:



- Fission yields on average: "v" total neutrons
- Fission yield increases slightly with neutron energy
- For U^{235} : $v(E) \approx 2.44$
- For U^{233} : $v(E) \approx 2.50$
- For Pu²³⁹: $v(E) \approx 2.90$
- In discussions of steady state criticality: <u>timing</u> of neutron emission was not necessary to describe

Physics of Neutron Emission

- Neutron flux *promptly emitted* at fission: $\nu \Sigma_f (1-\beta) \phi(t)$
- Delayed neutron flux, characterized by β : $\nu \sum_{f} \beta \chi(t)$
- Overall fission neutron source can be described as:

$$S(t) = \nu \sum_{f} [(1 - \beta)\phi(t) + \beta \chi(t)]$$

- Delayed neutron emission: combination of:
 - physical insight (known Isotope decay half-lives)
 - experimental observation
- β -decay of Br^{87} and I^{137} are known to be sources of longest delayed neutrons
- Other β-decay reactions have been lumped together in groups with roughly equivalent decay constants

Origin of ~55 sec. Delayed Neutron

•
$$_{0}$$
n¹ + $_{92}$ U²³⁵ \rightarrow fission

₃₅Br⁸⁷ is a fission product

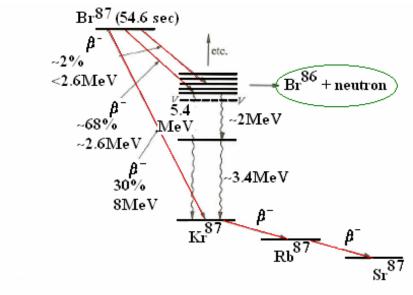
•
$$_{35}Br^{87} \rightarrow {}_{36}Kr^{87} + {}_{0}\beta^{-1} + v$$

• $_{35}\text{Br}^{87} \rightarrow {}_{36}\text{Kr}^{87} + {}_{0}\beta^{-1} + v \quad \beta\text{-decay (neutron decays to proton)}$

• $_{35}Br^{87} \rightarrow _{35}Br^{86} + _{0}n^{1}$

neutron emission

Sr86	Sr87	Sr88	Sr89	Sr90	Sr91	Sr92	Sr93
0+	9/2+	0+	50.53 d 5/2+	28.79 y 0+	9.63 h 5/2+	2.71 h 0+	7.423 m 5/2+
9.86	7.00	82.58	β-	β-	β-	β-	β-
Rb85	Rb86	Rb87	Rb88	Rb89	Rb90	Rb91	Rb92
5/2-	18,631 d 2-	4.75E10 y 3/2-	17.78 m 2-	15.15 m 3/2-	158 s 0-	58.4 s 3/2(-)	4.492 s 0-
72.165	EC,β- *	β-	β-	β-	β- *	β-	β-n
Kr84	Kr85	Kr86	Kr87	Kr88	Kr89	Kr90	Kr91
0+	10.756 y 9/2+	0+	76.3 m 5/2+	2.84 h 0+	3.15 m (3/2+,5/2+)	32.32 s 0+	8.57 s (5/2+)
57.0	β-	17.3	β-	β-	β-	β-	β-
Br83	Br84	Br85	Br86	Br87	Br88	Br89	Br90
2.40 h 3/2-	31.80 m 2-	2.90 m 3/2-	55.1 s (2-)	55.60 s 3/2-	16.34 s (1,2-)	4.348 s (3/2-,5/2-)	1.91 s
β-	β-	β-	β-	βm	βъ	β-n	βъ
Se82	Se83	Se84	Se85	Se86	Se87	Se88	Se89
1.08E+20 y 0+	22.3 m 9/2+	3.10 m 0+	31.7 s (5/2+)	15.3 s 0+	5.29 s (5/2+)	1.53 s 0+	0.41 s (5/2+)
β-β- 8.73	β- *	β-	β-	β-	βm	β-n	βm
As81	As82	As83	As84	As85	As86	As87	As88
33.3 s 3/2-	19.1 s (1+)	13.4 s (5/2-,3/2-)	4.5 s (3-)	2.021 s (3/2-)	0.945 s	0.48 s (3/2-)	500000000
β-	β-	β-	β·n	β-n	β-п	β-n	



Taken from J. Lamarsh, "Nuclear Reactor Theory", p. 98

Delayed Neutrons Grouped into 6-Groups

Delayed-Neutron Precursors. Uncertain Quantities are Indicated by Parentheses.*

Precursor	Precursor half-life (sec) and group assignment		
Br ⁸⁷	54.5	Group 1	
I ¹³⁷ Br ⁸⁸	24.4 16.3	Group 2	
I ¹³⁸ Br ^(\$9) Rb ^(93, 94)	6.3 4.4 ~6	Group 3	
I ¹³⁹ (Cs, Sb or Te) Br ^(90, 92) Kr ⁽⁹³⁾	2.0 (1.6-2.4) 1.6 ~1.5	Group 4	
$(I^{140} + Kr?)$	0.5	Group 5	
(Br, Rb, As + ?)	0.2	Group 6	

^{*} From G. R. Keepin, Physics of Nuclear Kinetics, Reading, Mass.: Addison-Wesley, 1965.

Delayed Neutron Groups show slight differences for U^{233} , U^{235} , Pu^{239}

		U^{233}		
Group	Half-life (sec)	Decay constant λ_i (sec ⁻¹)	Yield (neutrons per fission)	Fraction β _i
1	55.00	0.0126	0.00057	0.000224
2	20.57	0.0337	0.00197	0.000777
	5.00	0.139	0.00166	0.000655
3 4	2.13	0.325	0.00184	0.000723
5	0.615	1.13	0.00034	0.000133
6	0.277	2.50	0.00022	0.000088
		Total	/ield: 0.0066	
	\$2.603	Total o	felayed fraction (β) :	0.0026
		Π ₃₃ 2		
124	Half-life	Decay constant	Yield (neutrons	Fraction
Group	(sec)	$\lambda_i (\text{sec}^{-1})$	per fission)	β_i
1	55.72	0.0124	0.00052	0.000215
2	22.72	0.0305	0.00346	0.001424
3	6.22	0.111	0.00310	0.001274
4	2.30	0.301	0.00624	0.002568
5	0.610	1.14	0.00182	0.000748
6	0.230	3.01	0.00066	0.000273
			rield: 0.0158	
		Total o	lelayed fraction (β):	0.0065
		Pu ²³⁰		
Crown	Half-life	Decay constant	Yield (neutrons	Fraction
Group	(sec)	$\lambda_i \text{ (sec}^{-1}\text{)}$	per fission)	β_i
1	54.28	0.0128	0.00021	0.000073
2	23.04	0.0301	0.00182	0.000626
3	5.60	0.124	0.00129	0.000443
4	2.13	0.325	0.00199	0.000685
5	0.618	1.12	0.00052	0.000181
6	0.257	2.69	0.00027	0.000092
		Total	rield: 0.0061	
			lelayed fraction (8):	0.0021

^{*} Based on G. R. Keepin, Physics of Nuclear Kinetics, Reading, Mass.: Addison-Wesley, 1965.

6-Delayed Neutron Groups Model:

• Each delayed neutron precursor group " C_i " is modeled via buildup (proportional to: β_i) and decay (with rate: λ_i):

$$\frac{\partial C_i(r,t)}{\partial t} = \beta_i v \Sigma_f \phi(r,t) - \lambda_i C_i(r,t)$$

Overall fission neutron source is expressed as:

$$S(r,t) = (1-\beta)\nu \sum_{f} \phi(r,t) + \sum_{i=1}^{6} \lambda_{i} C_{i}(r,t)$$

$$-where: \beta = \sum_{i=1}^{6} \beta_{i}$$

Substituting Neutron Source Term into Time-Dependent Diffusion Equation:

Recall:

$$\frac{\partial N(r,t)}{\partial t} = \frac{1}{V} \frac{\partial \phi(r,t)}{\partial t} = S(r,t) - \Sigma_a \phi(r,t) + D\nabla^2 \phi(r,t)$$

 Substituting 6-Delayed Neutron Group Model yields following system of 7 equations:

$$\begin{split} &\frac{1}{V}\frac{\partial\phi(r,t)}{\partial t} = (1-\beta)v\Sigma_{f}\phi(r,t) + \sum_{i=1}^{6}\lambda_{i}C_{i}(r,t) - \Sigma_{a}\phi(r,t) + D\nabla^{2}\phi(r,t) \\ &\frac{\partial C_{i}(r,t)}{\partial t} = \beta_{i}v\Sigma_{f}\phi(r,t) - \lambda_{i}C_{i}(r,t) \\ &-where: i = 1...6 \end{split}$$

For Simplification: Separation of Variables

• Assume: $\Phi(r,t) = \varphi(r) \ VN(t)$ and: $C_i(r,t) = \varphi(r) \ c_i(t)$

$$\varphi(r)\frac{dN(t)}{dt} = \varphi(r)[(1-\beta)v\Sigma_{f}V - \Sigma_{a}V + \frac{D\nabla^{2}\varphi(r)}{\varphi(r)}]N(t) + \varphi(r)\sum_{i=1}^{6}\lambda_{i}c_{i}$$

$$\varphi(r)\frac{dc_{i}(t)}{dt} = \varphi(r)\beta_{i}v\Sigma_{f}N(t) - \varphi(r)\lambda_{i}c_{i}(t)$$

• Dividing out the spatial flux distribution from all equations, and substitution of the Geometrical Buckling coefficient: *B*² yields:

$$\frac{dN(t)}{dt} = \left[\frac{(1-\beta)v\Sigma_f}{\Sigma_a} - 1 - L^2B^2\right]\Sigma_a VN(t) + \sum_{i=1}^6 \lambda_i c_i(t)$$

$$\frac{dc_i(t)}{dt} = \beta_i v\Sigma_f N(t) - \lambda_i c_i(t)$$

Further Simplifications:

Define average neutron lifetime as:

$$l = [V\Sigma_a (1 + L^2 B^2)]^{-1}$$

Recognize full multiplication factor corrected for leakage:

$$k = \frac{v\Sigma_f / \Sigma_a}{(1 + L^2 B^2)}$$

System of equations becomes:

$$\frac{dN(t)}{dt} = \frac{(1-\beta)k - 1}{l}N(t) + \sum_{i=1}^{6} \lambda_{i}c_{i}(t)$$

$$\frac{dc_i(t)}{dt} = \frac{\beta_i k}{l} N(t) - \lambda_i c_i(t)$$

Limitations in Point Reactor Dynamics Model

- 6-Delayed Neutron Group Model was derived assuming fission product β-decay as the source
- Delayed neutron production via 2.2MeV Deuterium photonuclear (n, γ) reactions would be significant in any D₂O moderated reactor such as CANDU. Overall dynamics would be slower than in PWR/BWR.
- 6-Delayed Neutron Group Model is function of assumed fissionable isotopes
- Buildup of Pu^{239} decreases β from 0.0065 but never reaches pure Pu^{239} β value of: 0.0021
- Neutron lifetime is for thermal reactors and is typically on order of 10⁻⁴ - 10⁻⁵ sec. Neutron lifetime in fast reactor is on order of: 10⁻⁶ - 10⁻⁷ sec.

Low Power Reactor Dynamics

- Following discussions pertain to scenarios typical of very low power reactor operation
- Non-linear Feedback Effects on multiplication factor become significant when usable power (heat) is being generated
- Feedback effects will be discussed in subsequent lecture
- Previously calculation showed:

 $(1W_t) / (2.0x10^8 eV/fission)(1.6x10^{-19}W_t-sec/eV) = 3.1x10^{10}fissions/sec.$

- 4000MW_t reactor with core loading of: 1.2x10⁵kg 3.5% enriched Uranium would require an average neutron flux of ~ 10¹³ 10¹⁴ neutrons/cm2-sec.
- THUS: following discussion of low power reactor dynamics will relate to $\Phi \le 10^{10} \ neutrons/cm2-sec$.
- In start-up range all reactors (PWR, BWR) behave same.

Steady State Solution

Steady state solution is obtained by setting:

$$\frac{dN}{dt} = \frac{dc_i}{dt} = 0$$

Solving for precursor concentrations yields:

$$c_{i}(t) = \frac{\beta_{i}kN(t)}{l\lambda_{i}}$$

$$\frac{dN}{dt} = 0 = \frac{(1-\beta)k-1}{l}N(t) + \sum_{i=1}^{6} \lambda_{i} \frac{\beta_{i}kN(t)}{l\lambda_{i}}$$

$$0 = \frac{(1-\beta)k-1}{l} + \frac{\beta k}{l}$$

• Which is simply: k = 1 - or in a state of *criticality*

Point Reactor Dynamics Solutions

- Most applications of Point Reactor Dynamics involve time dependent changes to multiplication factor: k(t)
- This generally implies solution of a messy system of non-linear differential equations.

$$\frac{dN(t)}{dt} = \frac{(1-\beta)k(t)-1}{l}N(t) + \sum_{i=1}^{6} \lambda_i c_i(t)$$

$$\frac{dc_i(t)}{dt} = \frac{\beta_i k(t)}{l}N(t) - \lambda_i c_i(t)$$

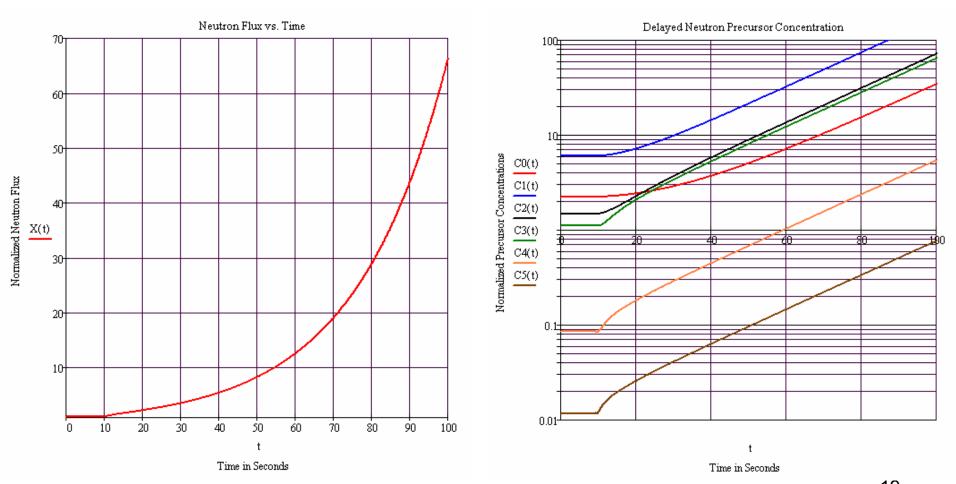
- Several "simplified" cases exist which allow hand solution when k(t) is a step or ramp
- However: Objective is not solving differential equations
 but understanding reactor dynamics
- Thus: use MATHCAD

Transition from Critical to Supercritical

- Consider situation where system is initially critical: k = 1.0
- Adjustment made at 10 seconds and system becomes slightly supercritical: k = 1.002
- Initial conditions: $\frac{dN}{dt} = \frac{dc_i}{dt} = 0$ $c_i(0) = \frac{\beta_i k N(0)}{l \lambda_i}$ $N(0) = N_0$

Numerical simulation of this scenario yields following

Transition to Supercritical with k = 1.002

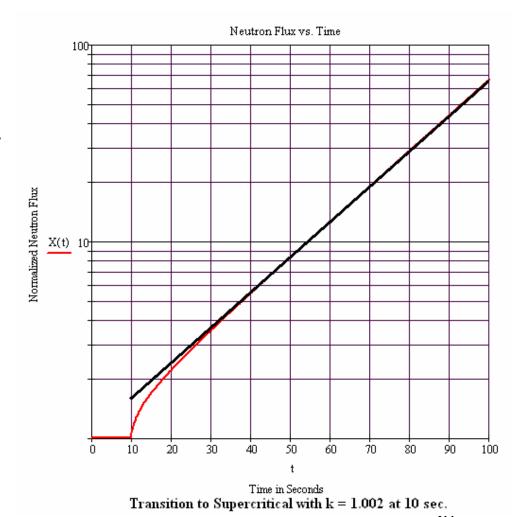


Transition to Supercritical with k = 1.002

- Log N(t) gives different perspective
- Note "prompt jump" with "exponential tail"
- This is related to physics of prompt vs. delayed neutrons
- After prompt neutron transients die out, N(t) can be modeled as:

$$N(t) = A_o exp(\omega t)$$

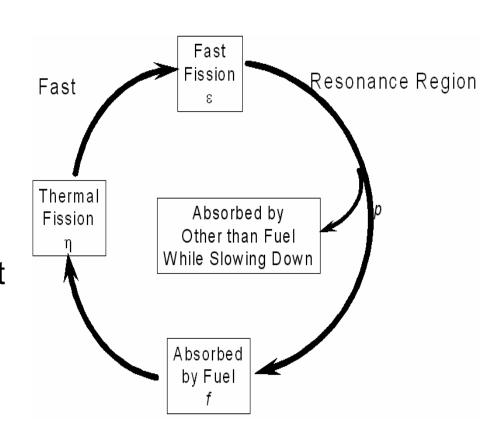
• Reactor period: $T = 1/\omega$ depends on magnitude of change in k



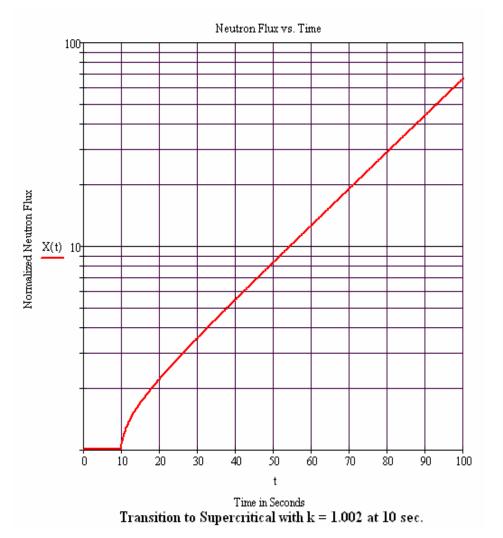
Delayed Neutrons: Key to Reactor Control

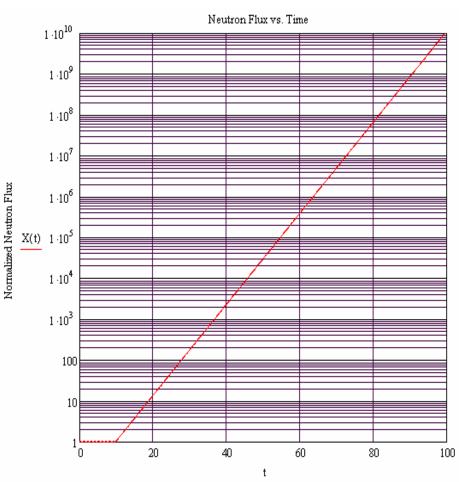
- Neutron life-cycle was previously described as →
- Time constant of one cycle: $\ell = 10^{-4} 10^{-5} sec$.
- No mechanical device known could operate to intervene in chain reaction growing this fast
- Removing between

 0.0021 0.0065 neutrons in each 10⁻⁴ 10⁻⁵ sec. cycle dramatically cuts back on neutron in growth of chain reaction.



Reactor Dynamics With vs. Without Delayed Neutrons



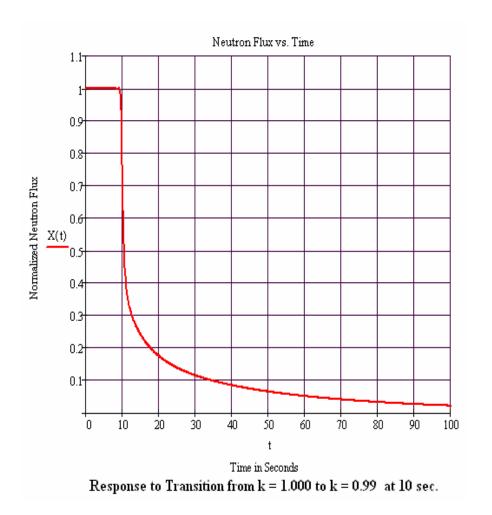


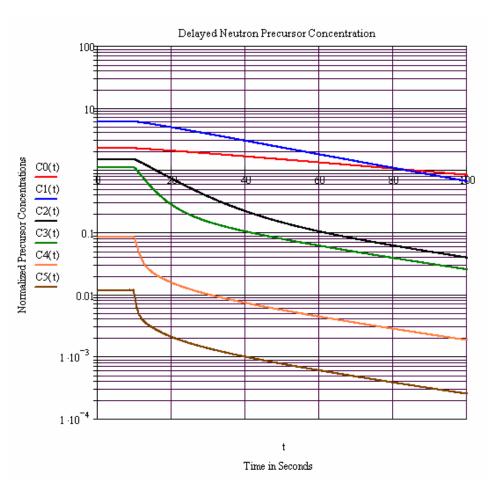
 $\label{eq:Time in Seconds} Transition to Supercritical with $k=1.002$ at 10 sec. \\ - No Delayed Neutrons Assumed -$

Transition to Subcritical

- Consider situation where system is initially critical: k = 1.0
- Adjustment made at 10 seconds and system becomes subcritical: k = 0.99
- Initial conditions: $\frac{dN}{dt} = \frac{dc_i}{dt} = 0$ $c_i(0) = \frac{\beta_i k N(0)}{l \lambda_i}$ $N(0) = N_0$
- Numerical simulation yields following

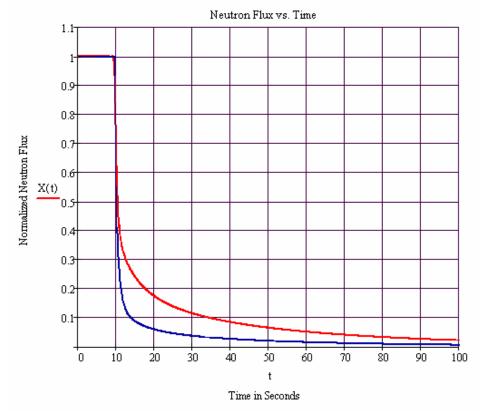
Transition to Subcritical Simulation





Transition to Subcritical Simulation

- Previous calculation was: k = 1.00 to k = 0.99
- Suppose reduction was 3x
- Change: k = 1.00 to k = 0.97
- Observe shape combination of "prompt drop" and "exponential tail"
- Again this is caused by differences between prompt vs. delayed neutrons



Comparison with:

Response to Transition from k = 1.0 to k = 0.97 at 10 sec.

Concept of Reactivity

Reactivity is Fractional "k" Deviation from 1.0

- Reactivity is defined: $\rho(t) = (k(t) 1) / k$
- Neutron Lifetime is slightly redefined: $\Lambda = \ell / k$
- This formalism works well in vicinity of critical system conditions – where studying deviations of: ~ +/- 0.03
- Substituting these changes into Point Reactor Dynamics equations yield following system of equations:

$$\frac{dN(t)}{dt} = \frac{(\rho(t) - \beta)}{\Lambda} N(t) + \sum_{i=1}^{6} \lambda_i c_i(t)$$

$$\frac{dc_i(t)}{dt} = \frac{\beta_i}{\Lambda} N(t) - \lambda_i c_i(t)$$

Comparison of $k_{\it eff}$ vs. ρ

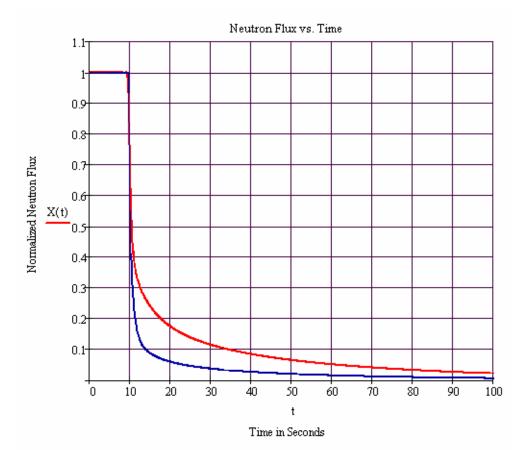
Parameter:	Multiplication Factor: k_{eff}	Reactivity:
	r dotorr weff	ρ
Subcritical:	< 1.0	< 0.0
Critical:	= 1.0	= 0.0
	1.0	0. 0
Supercritical:	> 1.0	> 0.0

Expression of Reactivity Units

- Reactivity can be expressed directly as: $\Delta k/k$ or, as comparison to: β
- Old texts such as Glasstone & Sesonske: "Nuclear Reactor Engineering" (1967) used units of: \$, ¢
- $\rho = 1$ \$ is reactivity change to/from critical conditions equivalent to $\rho = \beta$, or $\rho = 0.0065$
- $\rho = 1$ ¢ is 1/100th of this, or: $\rho = \sim 6.5 \times 10^{-5}$
- 80's SARs use: $\Delta k/k$, or $\% \Delta k/k$
- 90's SARs use: "pcm" (per cent milli-rho) $1pcm = 1x10^{-5}$
- In Europe, or former Soviet Countries reactivity is expressed directly in units of β , example: $\rho = .12\beta$
- Problem with using units of β : it is not constant
- Recall that with: U^{235} burnup/ Pu^{239} buildup, β decreases

Prompt Drop From Control Rod Insertion

- Sudden change in reactivity results in "Prompt Drop"
- Followed by exponential decay
- Magnitude of initial drop can be directly related to reactivity change



Comparison with:

Response to Transition from k = 1.0 to k = 0.97 at 10 sec.

Prompt Drop From Control Rod Insertion

- Assume control rod reactivity change: -ρ_{CR} is made faster than shortest delayed neutron precursor response time
- Initially precursor populations would be given by:

$$c_i(t) \approx \frac{\beta_i N(0)}{\lambda_i \Lambda}$$

 Upon substitutions, summing precursor contributions, point reactor dynamics equation becomes:

$$\frac{dN(t)}{dt} = \frac{(-\rho_{CR} - \beta)}{\Lambda} N(t) + \frac{\beta}{\Lambda} N(0)$$

• Expression is linear differential equation solvable as:

$$N(t) = \frac{\beta}{\rho_{CR} + \beta} N(0) + \frac{\rho_{CR}}{\rho_{CR} + \beta} N(0) \exp[-\frac{(\rho_{CR} + \beta)t}{\Lambda}] \approx \frac{\beta}{\rho_{CR} + \beta} N(0)$$

Prompt Drop From Control Rod Insertion

 Doing a little rearranging, ratio of before/after flux immediately after control rod drop would be:

$$\frac{N_0}{N_1} \approx \frac{\rho_{CR} + \beta}{\beta}$$

$$\rho_{CR} \approx \left(\frac{N_0}{N_1} - 1\right)\beta$$

- This is historic method of checking individual control rod reactivity worth during low power startup testing.
- Example: $\rho_{CR} = 100pcm = 10^{-3}\Delta k/k = 0.154\beta = 0.154\$$
- Dropping control rod would result in immediate drop to:

$$N_0/N_1 = (\rho_{CR} + \beta)/\beta = (1.154 \beta)/\beta = 1.154$$

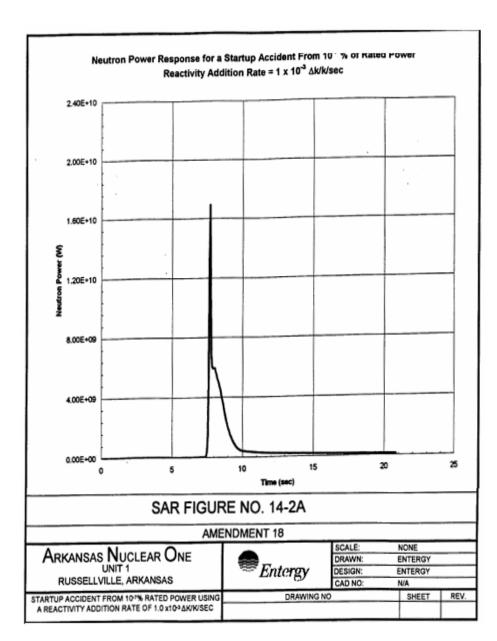
 $N_1 = N_0/1.154 = 0.866 N_0$

Reactivity Excursions from Low Power

- Normal process of reactor startup involves slow, controlled evolution to increase $k_{\it eff}$ to point of criticality
- Prior to reaching criticality flux increases linearly as reactivity increased
- When criticality reached, flux increases exponentially up to point of power/heat generation
- Heat production results in non-linear feedback that will slow down and halt further power increase until reactivity added
- Sudden spike in neutron flux, with corresponding spike in fuel/coolant temperatures obviously needs to be avoided³³

Reactivity Excursions from Low Power

- Example taken from ANO-1 FSAR
- Assumed initial flux: 10⁻⁷%
- Assumed reactivity insertion rate: $d\rho/dt = 1x10^{-3}\Delta k/k/sec$. = 100pcm/sec. = $0.154\beta/sec$
- Note: prompt drop followed by exponential decay tail
- To avoid startup power excursions, automatic trips provided on: hi flux, hi log power.
- Better to avoid hi dp/dt additions!



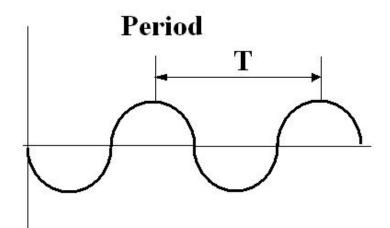
Limiting Rates of Reactivity Addition

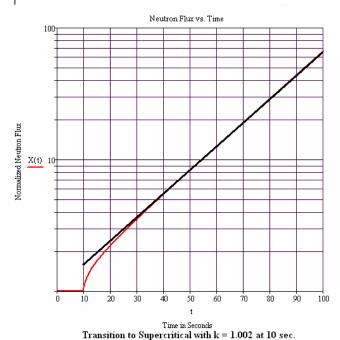
- Given that operators bring reactor to criticality using control rods (BWRs/PWRs) or dilution of soluble Boron (PWRs)
- Features should exist to:
- Alarm to operator if too much reactivity is being added
- Terminate adding further reactivity
- Initiate automatic shutdown if addition rate is excessive
- Measuring reactivity is difficult
- Measuring reactor period is actually straight forward given ability to measure log N(t)
- Desire is to limit/control reactivity addition rates based upon reactor period

"Reactor Period" is **NOT** about periodic or cyclic type phenomenon

- Many mechanical and electrical systems involve simple harmonic systems
- Period: $T = 1/\omega$
- Reactor Period is inverse of exponential rate constant
- Reactor Period: $T = 1/\omega$
- In reactor physics "period" is inverse rate of exponential growth:

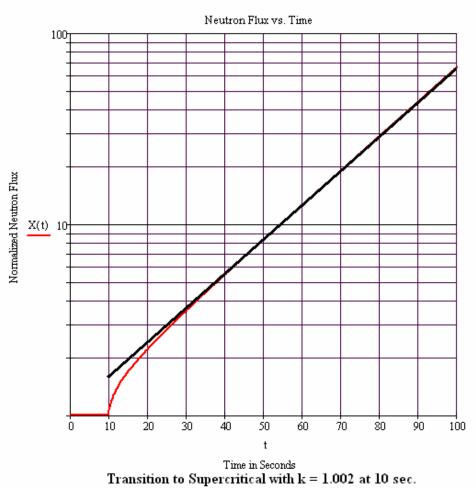
$$N(t) \sim N_0 \exp(t/T)$$





Reactor Period and Reactivity

- Previous simulations of supercritical show long term exponential growth
- Exponential growth is expected because of chain multiplication, k > 1.0
- Rate of exponential growth or "inverse of period" is directly related to Δρ
- Larger changes from critical (Δρ) result in shorter periods.



Reactor Period and Reactivity

- Assume overall solution of form: $N(t) = \sum A_i \exp(\omega_i t)$
- Assume unique long term relationship between reactivity change: " $\Delta \rho$ " and reactor period: "T"
- With: $\omega = 1/T$, assume after short term transients die out, that: $N(t) \sim A_o exp(\omega t)$ all higher order terms gone
- After initial transients, precursor concentrations can be expressed: $C_i(t) = A_o exp(\omega t)\beta_i / \Lambda \lambda_i$
- Substituting into point reactor dynamics equation yields following:

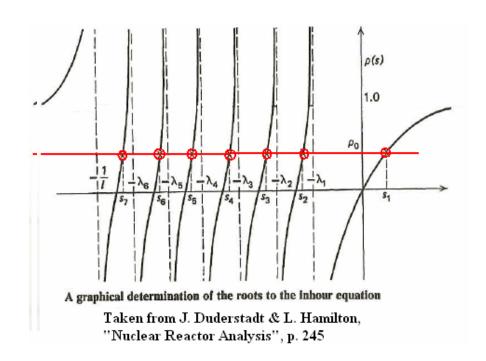
$$\omega = \left(\frac{\rho(\omega) - \beta}{\Lambda}\right) + \sum_{i=1}^{6} \frac{\lambda_{i} \beta_{i}}{(\omega + \lambda_{i})}$$

$$\Lambda \omega = \rho(\omega) - \Lambda \sum_{i=1}^{6} \frac{\beta_{i} (\omega + \lambda_{i})}{(\omega + \lambda_{i})} - \frac{\lambda_{i} \beta_{i}}{(\omega + \lambda_{i})} = \rho(\omega) - \Lambda \sum_{i=1}^{6} \frac{\beta_{i} \omega}{(\omega + \lambda_{i})}$$

$$\rho(\omega) = \Lambda \omega + \Lambda \sum_{i=1}^{6} \frac{\beta_{i} \omega}{(\omega + \lambda_{i})}$$
38

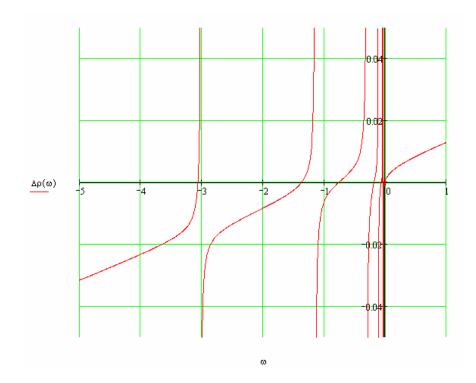
Reactor Period and Reactivity Graphical Solution

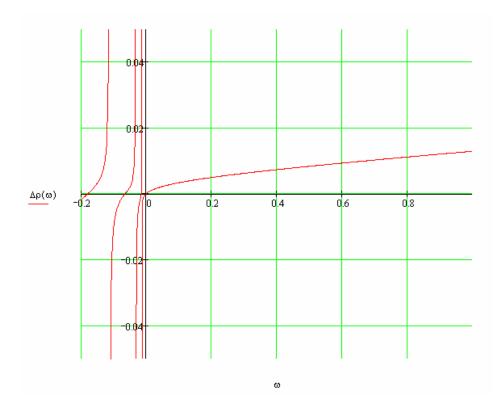
- Specific reactivity value ρ chosen
- Horizontal line drawn to find intersection with roots
- Roots identified: 6 always negative, 1 root dependent on whether ρ is positive/negative



MATHCAD Plot of Negative/Positive Roots

- Six negative valued roots are associated with delayed neutron precursor group decay processes (ω_i is always negative)
- Most right-hand root can be positive/negative depending on whether $\Delta \rho$ is positive or negative
- General solution is of form: $N(t) = \sum A_i \exp(\omega_i t)$



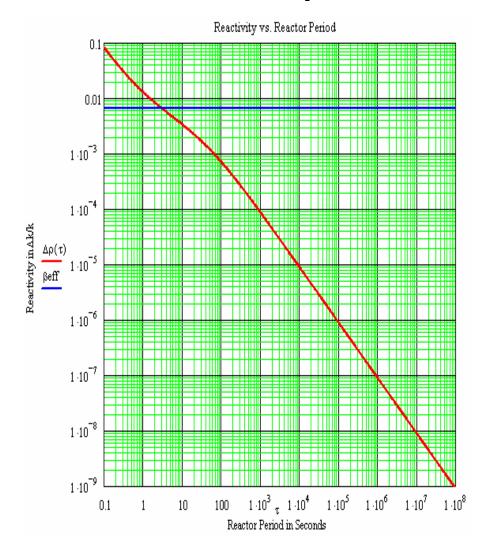


How Reactor Period and Reactivity Used to Control Reactor Startup

- Reactivity not measurable
- Log power rate is measurable
- Log power rate can be converted to Reactor Period: T
- Reactivity can be computed from:

 $\Delta \rho(\tau) := \frac{\Lambda}{\tau} + \sum_{i=0}^{5} \frac{\beta_i}{1 + \lambda_i \cdot \tau}$

- Prompt Critical Period ~ 2.993
 sec. (for assumed: Λ,β values)
- Operator displays and Control Rod Withdrawal Prohibit features are quite common



Period Meters on Russian RBMK-1500

Reactimeter Panel on Russian RBMK-1500

Direct Indication of Startup Reactivity (like shown above) was added on all Russian Reactors following April 1986 Accident at Chornobyl Unit 4

Summary: Low Power Reactor Dynamics

- Delayed neutron fraction: β plays key role in ability to control dynamics of nuclear reactors
- Point reactor dynamics model is commonly used as basis for all safety analysis work – subject to assumed limitations
- Low power reactor dynamics not subject to feedback effects found at power operation
- Subcritical: $k_{eff} < 1.000, \, \rho < 0.0, \, T \sim \infty sec.$
- Critical: $k_{eff} = 1.000, \, \rho = 0.0, \, T \sim \infty sec.$
- Supercritical: $k_{eff} > 1.000, \, \rho > 0.0, \, 10 \, sec. < T < \infty \, sec.$
- Prompt Supercritical: $k_{eff} > \beta + 1.000$, $\rho \ge \beta$, T < 2.993 sec.
- Reactor startup involves slow controlled evolution from subcritical to critical operation followed by controlled exponential rise to point where heat is being generated.