3H Details and Evaluation Results of Seismic Category 1 Structures

The information in this appendix of the reference ABWR DCD, including all subsections, tables, and figures as modified by the STP Nuclear Operating Company Application to Amend the Design Certification rule for the U.S. Advanced Boiling Water Reactor (ABWR), "ABWR STP Aircraft Impact Assessment (AIA) Amendment Revision 3," dated September 23, 2010 is incorporated by reference with the following departures and supplement.

STD DEP T1 2.15-1

STP DEP T1 5.0-1

STD DEP 1.8-1

STD DEP 3H-1

STP DEP Admin

3H.1 Reactor Building

3H.1.4.2 Site Design Parameters

STP DEP T1 5.0-1

(1) Soil Parameters:

—Minimum static bearing capacity demand: Š718.20 kPa

—In addition for the load combinations involving seismic/dynamic loads, the dynamic bearing capacity demand shall also be met.

—Minimum shear wave velocity: <u>305 m/s(See FSAR Subsections 2.5S.4.4</u> and 2.5S.4.7)

-Poisson's Ratio: 0.30 to 0.38

—Unit Weight: 1.9 to 2.2 t/m^3

(3) Maximum Design Basis Flood Level

(9) Maximum Rainfall

—Design rainfall is <u>493503</u> mm/h. Roof parapets are furnished with scuppers to supplement roof drains, or are designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provision of ASCE 7-88 Section 8.

3H.1.4.4.3 Liner Plate

STD DEP 3H-1

- Liner plate for RCCV in the wetted area shall be stainless steel conforming to ASME SA-240, Type 304L.
- Liner plate for the RCCV in the non-wetted area shall be 6.35 mm thick and conform to ASME SA-516 GR. 70.
- Liner Anchors: ASTM A 633 GR. C ASME SA-36.
- Stainless steel cladding to conform to ASME SA-264.

3H.1.5.2 Foundation Soil Springs

STP DEP T1 5.0-1

The foundation soil is represented by soil springs. The spring constants for rocking and translations are determined based on the following soil parameters:

- Shear wave velocity 305 m/s(See FSAR Subsections 2.5S.4.4 and 2.5S.4.7)
- Unit weight <u>1.92 t/m³ 121 pcf (1.94 t/m³) to 140 pcf (2.24 t/m³)</u>
- Shear modulus $\frac{1.8 \times 10^4 \text{ t/m}^3 3,011 \text{ ksf} (1.47 \times 10^4 \text{ t/m}^2) \text{ to } 9,324 \text{ ksf} (9.55 \times 10^4 \text{ t/m}^2)}{1000 \text{ t/m}^2)}$
- Poisson's Ratio 0.38 0.46 to 0.48

For the undrained condition (i.e. Poisson's Ratio 0.46 to 0.48, the calculated vertical spring constant under the mat foundation of the Reactor Building (RB) for STP site conditions ranges from 132 kips/ft³ to 288 kips/ft³ with 197 kips/ft³ for best estimate case. The calculated horizontal spring constant for the STP site conditions ranges from 94 kips/ft³ to 211 kips/ft³ with minimum of 141 kips/ft³ for best estimate case. The potential degree of variability is indicated by the spread of values from lower range to upper range. The soil properties used to compute these spring constants are strain-compatible and were developed from the site response analyses described in Section 2.5S.2.5. Soil depths for the vertical and horizontal mode spring calculations are 2500 ft and 1300 ft, respectively. Soil layers at depths greater than these depths were ignored due to their insignificant contribution to the spring values.

The above calculated STP site-specific soil spring constants are higher than the soil spring constants used for the ABWR DCD design. For the drained condition with Poisson's Ratio of 0.15, the lower range site-specific spring constants are nearly the same as those for the standard design with a maximum difference of about 5%. Considering that the layer weighted Poisson's Ratio is between 0.15 for clay layers and 0.30 for sand layers, even for the drained condition the STP site-specific spring constants will be either the same or higher than the spring constants for the standard design. Higher soil spring constants at the STP site will result in mat design forces

smaller than those used for the ABWR DCD design. Therefore, the ABWR DCD mat design is adequate for the STP site.

3H.1.6 Site Specific Structural Evaluation

The following site specific supplement addresses the structural evaluation of the site specific design parameters for STP 3 & 4.

As documented in Section 3.3 the ABWR Standard Plant Reactor Building (RB) wind loads, and tornado loads bound these site parameters for STP 3 & 4.

As documented in Subsections 2.5S.4.4 and 2.4S.4.7, the shear wave velocity at STP 3&4 site varies both horizontally in a soil stratum and vertically with elevation, and is lower than the 1,000 ft/sec minimum stated in the DCD. A site specific soil-structure interation (SSI) analysis has been performed using the measured values of shear wave velocity, with appropriate variation to represent the variability at the site, and site specific SSE, to demonstrate that the results of the site-specific SSI are bounded by the standard plant results included in the DCD. This SSI analysis is described in Appendix 3A.

The foundation spring constants for mat design are based on settlement calculations. In the development of settlement estimates, the representative shear wave velocity value for intervals within a soil column is only one input used in the derivation of the elastic modulus for layers within that column. Since this derived elastic modulus value is first adjusted for strain and then weighted with estimated values derived from either SPT tests (for garanular material) or undrained shear strength tests (for cohesive soils) the effect of variability of shear wave velocity upon settlement calculations is significantly attenuated.

Impact of shear wave velocity on foundation spring constants and mat design is described in Section 3H.1.5.2 where it is concluded that the standard ABWR mat design is adequate for the STP site.

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the RB is 1/1697.

As documented in Subsection 3.4, the STP 3 & 4 site has a design basis flood elevation that is 182.9 cm (6 ft) above grade. This results in an increase in the flood level over what was used in the ABWR Standard Plant, however the load due to the revised flood level, including hydrodynamic drag load due to flood water flow and hydrodynamic load due to wind generated wave action as described in Section 3.4.2, on the exterior RB walls is less than the ABWR Standard Plant RB seismic or tornado loads. The design of above grade RB exterior walls for design basis tornado loading per Tier 1 Table 5.0, including tornado generated missiles, bounds the design for flood loading including impact due to floating debris. The design of below grade RB exterior walls for design basis seismic loading bounds the design for flood loading. Hence the increased flood loading it doesn't affect the Standard Plant RB structural design. Increased flood level also increases the buoyancy force resulting in a revised flotation factor of safety of 2.24. This factor exceeds required factor of safety of 1.1.

The factor of safety against floatation has been calculated and is shown in revised Table 3H.1-23.

Therefore the STP 3 & 4 RB utilizing the Standard Plant design is structurally adequate.

3H.2 Control Building

STP DEP T1 5.0-1

3H.2.4.2.1 Soil Parameters

- Minimum shear wave velocity:
- Poisson ratio:
- Unit weight
- Liquefaction potential:
- Minimum Static Soil Bearing Capacity Demand:

- 305 m/s See FSAR Subsections 2.5S4.4 and 2.5S.4.7
- 0.3 to 0.38
- 1.9 to 2.2 t/m³
- None
- Š 718.20 KPa

3H.2.4.2.3 Design <u>Basis</u> Flood Level

Design <u>basis</u> flood level is at 0.305m <u>182.9 cm</u> <u>below</u> <u>above</u> grade level.

3H.2.4.2.5 Maximum Rainfall

Design rainfall is <u>493-503</u> mm/h. Roof parapets are furnished with scuppers to supplement roof drains, or are designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provision of ASCE 7-88 Section 8.

3H.2.4.3.1.4 Lateral Soil Pressures (H and H')

The following parameters are used in the computation of lateral soil pressures:

- Dry unit weight:
- Shear wave velocity:

Internal friction angle:

- 1.9 to 2.2 t/m³
- 305 m/s See FSAR Subsections 2.5S.4.4 and 2.5S.4.7
- 30° to 40°
- Details and Evaluation Results of Seismic Category 1 Structures

3H.2.6 Site Specific Structural Evaluation

The following site specific supplement addresses the structural evaluation of the site specific design parameters for STP 3 & 4.

As documented in Subsection 3.3, the ABWR Standard Plant Control Building (CB), wind loads, and tornado loads bound these site specific parameters for STP 3 & 4.

Soil spring constants for the undrained condition (i.e. Poisson's Ratio 0.46 to 0.48) are higher than spring constants for drained condition (i.e. Poisson's ratio of 0.15 for clay layers and 0.30 for sand layers). The calculated vertical spring constant under the mat foundation of the Control Building (CB) for STP site conditions using drained Poisson's ratio of 0.15 ranges from 113 kips/ft³ to 251 kips/ft³ with 169 kips/ft³ for best estimate case. The calculated horizontal spring constant for the STP site conditions using drained Poisson's ratio of 0.15 ranges from 101 kips/ft³ to 241 kips/ft³ with minimum of 152 kips/ft³ for best estimate case. The potential degree of variability is indicated by the spread of values from lower range to upper range. The soil properties used to compute these spring constants are strain-compatible and were developed from the site response analyses described in Section 2.5S.2.5. Soil depths for the vertical and horizontal mode spring calculations are 1500 ft and 700 ft, respectively. Soil layers at depths greater than these depths were ignored due to their insignificant contribution to the spring values.

While the calculated best estimate and upper range STP site-specific soil spring constants are higher than the best estimate calculated DCD soil spring constants, the lower range STP site-specific vertical and horizontal soil spring constants are lower by about 20% and 30%, respectively.

Considering the size and geometry of the CB, arrangement of the exterior and interior shear walls, thickness of shear walls, and the basemat thickness, the CB basemat is quite rigid and not significantly sensitive to the soil spring constant values. To demonstrate this, a three dimensional parametric study was performed where the CB was subjected to its dead load along with significant seismic moments about the two horizontal axes and vertical excitation. The CB model was analyzed for two cases, once with best estimate calculated DCD soil spring constants and the second time with calculated lower range STP site-specific soil spring constants. Comparison of the resulting out-of-plane shears and moments from these two analyses show that there is no significant change in basemat design forces. Based on this parametric study and the fact that STP site-specific SSE is less than half the standard design SSE, the ABWR DCD mat design is adequate for the STP site.

As documented in Subsections 2.5S.4.4 and 2.5S.4.7, the shear wave velocity at STP 3&4 site varies both horizontally in a soil stratum and vertically with elevation, and is lower than the 1,000 ft/sec minimum stated in the DCD. A site specific soil-structure interaction (SSI) analysis has been performed using the measured values of shear wave velocity, with appropriate variation to represent the variability at the site, and site specific SSE, to demonstrate that the results of the site-specific SSI are bounded by the standard plant results included in the DCD. This SSI analysis is described in Appendix 3A.

At-rest seismic lateral earth pressure on the Control Building exterior walls are determined using the method described in Section 2.5S.4.10.5.2. In this method, the at-rest seismic lateral earth pressure computation will utilize site-specific shear wave velocity. The impact of site-specific shear wave velocity on the design of exterior walls is expected to be insignificant because their designs are controlled by the combination of requirements for in-plane and out-of-plane loads. The at-rest seismic lateral earth pressure only affects the out-of-plane loads. Also, the at-rest pressure includes the effect of hydrostatic load, surcharge load etc, in addition to the dynamic pressure caused by the earthquake.

As noted in Section 2.5S.4.10.5.4, actual surcharge loads, structural fill properties, and final configurations of structures are not known at this time. Final earth pressure calculations are prepared at the project detailed design stage based on the actual design conditions at each structure, on a case-by-case basis. STP commits to include the final earth pressure calculations, including actual surcharge loads, structural fill properties, and final configuration of structures, following completion of the project detailed design in an update to the FSAR in accordance with 10CFR 50.71(e) (COM 2.5S-3).

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the CB is 1/928.

As documented in Subsection 3.4, the STP 3 & 4 site has a basis flood elevation that is 182.9 cm (6 ft) above grade. This results in an increase in the flood level over what was used in the ABWR Standard Plant, however the load due to the revised flood level, including hydrodynamic drag load due to flood water flow and hydrodynamic load due to wind generated wave action as described in Section 3.4.2, on the exterior CB walls is less than the ABWR Standard Plant seismic or tornado loads. The design of above grade CB exterior walls for design basis tornado loading per Tier 1 Table 5.0, including tornado generated missiles bounds the design for flood loading including impact due to floating debris. The design of below grade CB exterior walls for design basis seismic loading bounds the design for flood loading. Hence the increased flood loading does not affect the Standard Plant CB structural design. Increased flood level also increases the buoyancy force resulting in a revised floation factor of safety of 1.3. This factor exceeds required factor of safety of 1.1.

The factor of safety against floatation has been calculated and is shown in revised Table 3H.2-5.

Therefore the STP 3 & 4 CB utilizing the Standard Plant design is structurally adequate.

3H.3 Radwaste Building

This section of the reference ABWR DCD including all subsections, figures, and tables is replaced completely. This is due to departures taken in the design of the liquid and solid radioactive waste system.

STD DEP T1 2.15-1 STD DEP 11.2-1 STD DEP 11.4-1 STD DEP 3.8-1

The Radwaste Building is a reinforced concrete structure located about 20 feet west of the Reactor building. It is designed in accordance with the requirements of RG 1.143. Also, since the above grade height of this building exceeds the distance to the Reactor Building, to ensure that the integrity of the Reactor Building is maintained, the Radwaste Building design shall satisfy II/I requirements (i.e. it can not collapse or come in contact with the Reactor Building under SSE and tornado loads).

The RWB is classified as RW-IIb (Hazardous) in accordance with RG 1.143. A summary of the extreme environmental design parameters is presented in Table 3H.9-1.

The analysis and design of the Radwaste building are based on the following:

A) Criteria for Design Basis:

- Design basis analysis and design are per requirements of Revision 2 of RG 1.143 for RW-IIb classification.
- Loads, load combinations, codes & standards, and capacity criteria are in accordance with Tables 1, 2, 3, and 4 of RG 1.143.
- Design of structural components is per ACI 349-97 and AISC/N690 (1984).

B) Criteria for II/I evaluation:

- The II/I evaluations are performed for both SSE and Tornado.
- The II/I evaluations are based on elastic design.
- The seismic response spectra are the envelop of 0.3g RG 1.60 response spectra and the resulting SSE response spectra at the foundation level of the Radwaste Building considering the effect of presence of the Reactor Building when subjected to site-specific SSE. This satisfies the requirement noted in item (3) of DCD Tier 2 Section 3.7.2.8.
- Tornado design parameters will be those for the Standard Plant Seismic Category I structures (i.e. 300 mph tornado).

3H.3.1 Objective and Scope

The scope of this subsection is to document the structural design and analysis of the Radwaste Building (RWB) for STP Units 3 & 4. The RWB is a not a Seismic Category I structure. The RWB is classified as RW-IIb (Hazardous) for STP 3 & 4 site per Section 5 of Regulatory Guide (RG) 1.143 Revision 2 and designed to meet or exceed applicable requirements of RG 1.143 Revision 2. <u>The determination of the RWB</u> classification is based on an evaluation of an unmitigated release from the RWB. The unmitigated release results in an annual dose outside the protected area of less than 500 mrem/yr and an annual dose to site personnel of less than 5 rem/yr. This results in a RW-IIb classification for the structure in accordance with Section 5.2 of RG 1.143. Although, the RWB is classified as RW-IIb, it is designed conservatively for earthquake, tornado and wind loadings based on the requirements for RW-IIa classification. Design for other loads is based on the requirements for RW-IIb classification.

Due to its close proximity to safety-related seismic category I structures, the RWB structure is also designed to meet Seismic II/I requirements to ensure that the building does not collapse on the nearby safety-related buildings.

3H.3.2 Summary

The following are the major summary conclusions on the design and analysis of the Radwaste Building:

- The provided concrete reinforcement listed in Tables 3H.3-3 and 3H.3-4 meet the requirements of the design codes and standards listed in Section 3H.3.4.
- The provided structural steel listed in Table 3H.3-5 meets the requirements of the design codes and standards listed in Section 3H.3.4.
- The factors of safety against flotation, sliding, and overturning of the structure under various loading combinations are higher than the required minimum factors of safety as shown in Table 3H.6-14.

3H.3.3 Structural Description

The Radwaste Building (RWB) for each STP unit houses the liquid and solid radwaste treatment and storage facilities, and radwaste processing and handling areas. The RWB is a reinforced concrete structure consisting of walls and slabs supported by a mat foundation. Liquid radwaste storage tanks are housed inside concrete cubicles located below grade at basement level. These cubicles are lined with steel liner plates to eliminate migration of any liquid outside the concrete cubicles. Metal decking supported by steel framing is used as form work to support the slabs during construction.

3H.3.4 Structural Design Criteria

3H.3.4.1 Design Codes and Standards

The RWB is designed to meet the design requirements of RG 1.143 Revision 2 and also satisfy the Seismic II/I requirements that it does not collapse on the adjacent safety related structures in the proximity of the RWB under seismic and tornado loadings. The following codes, standards, and regulatory documents are applicable for the design of the RWB.

- ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures and Commentary"
- ACI 349-97, "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary"
- ANSI/AISC N690, 1984 "Specifications for the Design, Fabrication and Erection of Steel Safety-Related Structures for Nuclear Facilities"
- AWS D1.1 "Steel Structural Welding Code", 2000
- ASCE 7-95, "Minimum Design Loads for Buildings and Other Structures"
- NRC RG 1.143, "Design Guidance for Radioactive Waste Management Systems, Structures, and Components Installed in Light-Water-Cooled Nuclear Power Plants," Rev. 2, November 2001
- NUREG-0800 SRP 3.3.2, "Tornado Loadings," Rev. 2, July 1981
- NRC RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)," Rev 2, November 2001
- NRC RG 1.76, "Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants," Rev 1, March 2007.

3H.3.4.2 Site Design Parameters

3H.3.4.2.1 Soil Parameters

•	Poisson's ratio (above groundwater)0.42
•	Poisson's ratio (below groundwater) 0.47
•	Unit Weight (moist)120 pcf
•	Unit Weight (saturated)140 pcf
•	Liquefaction potentialNone
•	Static Soil Bearing Pressure (plus weight of 2 ft of fill concrete):

Rev. 07

•	Ultimate Static Soil Bearing Capacity	91.1 ksf
•	Static Soil Bearing Capacity Factor of Safety	≥ 9.3
•	Dynamic Soil Bearing Pressure:	11.0 ksf
•	Ultimate Dynamic Soil Bearing Capacity	71.4 ksf
•	Dynamic Soil Bearing Capacity Factor of Safety	≥ 6.5

The soil bearing pressure capacities noted above are determined using the methodology described in Section 2.5S.4.

3H.3.4.2.2 Design Ground Water Level

Design groundwater level is at elevation 32 feet MSL, as shown in DCD, Tier 1, Table 5.0. This value bounds the groundwater elevations discussed in Section 2.4S.12.

3H.3.4.2.3 Design Flood Level

Design flood level is 33 feet MSL, as shown in DCD, Tier 1, Table 5.0. This flood level is above the level derived from ASCE 7-95 (RG 1.143 requirement) for the STP 3 & 4 site.

3H.3.4.2.4 Maximum Snow Load

Roof snow load is 50 psf (2.39 kPa) as shown in DCD Tier 1 Table 5.0. This snow load is above the value derived from ASCE 7-95 (RG 1.143 requirement) for the STP 3 & 4 site. This load is not combined with normal roof live load.

3H.3.4.2.5 Maximum Rainfall

Design rainfall is 19.4 in/hr (50.3 cm/hr) as shown in COLA Part 2 Tier 1 Table 5.0. This load is not combined with normal roof live load.

3H.3.4.3 Design Load and Load Combinations

The RWB is not subjected to any accident temperature or pressure loading.

3H.3.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.3.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure, permanent equipment, and other permanent static loads. An additional 50 psf (2.39 kPa) uniform load is considered to account for dead loads due to piping, raceways, grating, and HVAC duct work.

3H.3.4.3.1.2 Live Loads (L)

Live loads include floor and roof area live loads, movable loads, and laydown loads. A minimum normal floor live load of 200 psf (9.6 kPa) is considered for all floors of the RWB. A normal live load of 50 psf (2.39 kPa) is considered for the roof. The floor area live load shall be omitted from areas occupied by equipment whose weight is included in the dead load.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.3.4.3.1.3 Snow Loads

The normal roof snow load is 50 psf. This load is not combined with normal roof live load.

3H.3.4.3.1.4 Lateral Soil Pressures (H)

Lateral soil pressures are calculated using the following soil properties.

•	Unit weight (moist):	120 pcf (1.92 t/m ³)
-	Unit weight (saturated):	.140 pcf (2.24 t/m ³)
-	Internal friction angle:	30°
-	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47

Figure 3H.3-1 shows the at-rest lateral soil pressures. Figure 3H.3-2 shows the dynamic at-rest lateral soil pressures. Figure 3H.3-3 shows the active lateral earth pressures. Figure 3H.3-4 shows the passive lateral earth pressures.

The RWB east and west walls are also designed for lateral seismic soil pressures shown in Figures 3H.3-50 and 3H.3-51, respectively. These soil pressures consider the structure-soil-structure interaction (SSSI) between the RWB, RSW piping Tunnel, and RB. For details of this SSSI analysis, see Section 3H.6.5.3.

3H.3.4.3.2 Severe Environmental Load

Severe environmental loads consist of loads generated by wind and earthquake.

3H.3.4.3.2.1 Wind Load (W)

The following parameters are used in the computation of the wind loads.

STP 3 & 4

- Exposure:D
- Velocity pressure exposure coefficient per ASCE 7 Table 6-3, but ≥ 0.87

Wind loads are calculated in accordance with the provisions of Chapter 6 of ASCE 7-95.

3H.3.4.3.2.2 Earthquake (E_o)

The earthquake loads are those due to one-half of the Safe Shutdown Earthquake (SSE) defined in DCD Tier 1, Table 5.0. This corresponds to the Regulatory Guide 1.60 response spectra anchored to 0.15g. The earthquake loads are applied in all three orthogonal directions. The total structural response is predicted by combining the applicable maximum co-directional responses by the square root of the sum of the squares (SRSS) method.

3H.3.4.3.2.3 Flood Load (FL)

The flood level is at 33 feet MSL, as stated in Section 3H.3.4.2.3 above.

3H.3.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by tornado.

3H.3.4.3.3.1 Tornado Loads

The tornado load effects consist of wind pressure, differential pressure, and tornado generated missile loads. The tornado parameters are as follows:

- Tornado parameters are equal to three-fifths of the Region 1 tornado parameters defined in Table 1 of RG 1.76, Rev. 1. The Region 1 maximum tornado wind speed and pressure drop per Table 1 of RG 1.76, Rev. 1 are 230 mph and 1.2 psi, respectively. Three-fifths of 230 mph equals 138 mph and three-fifths of 1.2 psi equals 0.72 psi.
- Tornado missile parameters are in accordance with Table 2 of RG 1.143 Revision 2 for RW-IIa classification

3H.3.4.3.4 Load Combinations

3H.3.4.3.4.1 Notations

- S = Normal allowable stress for allowable stress design method
- U = Required strength for strength design method
- D = Dead load
- F = Load due to weight and pressure of fluid with well-defined density and controllable maximum height
- FL = Hydrostatic and hydrodynamic load due to flood
- L = Live load
- R_o = Piping and equipment reaction under normal operating condition (excluding dead load, thermal expansion and seismic)
- T_o = Normal operating thermal expansion loads from piping and equipment
- T_b = Upset thermal expansion loads from piping and equipment
- H = Lateral soil pressure and groundwater effects
- H' = Lateral soil pressure and groundwater effects, including dynamic effects
- W = Wind load
- W_t = Total tornado load, including missile effects
- E_o = Earthquake load

3H.3.4.3.4.2 Structural Steel Load Combinations

 $S = D + L + F + H + R_{o} + T_{o}$ $1.33S = D + L + F + H + R_{o} + T_{b}$ $1.33S = D + L + F + H + R_{o} + T_{o} + W$ $1.33S = D + L + F + H' + R_{o} + T_{o} + E_{o}$ $1.33S = D + L + F + H + R_{o} + T_{o} + FL$ $1.6S^{(Note 1)} = D + L + F + H + R_{o} + T_{o} + W_{t}$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

I

3H.3.4.3.4.3 3H.3.4.3.5.3 Reinforced Concrete Load Combinations

 $U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_{o} + 1.7T_{o}$ $U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_{o} + 1.7T_{b}$ $U = 1.4D + 1.7L + 1.4F + 1.7H + 1.7R_{o} + 1.7T_{o} + 1.7W$ $U = 1.4D + 1.7L + 1.4F + 1.7H' + 1.7R_{o} + 1.7T_{o} + 1.7E_{o}$ $U = D + L + F + H + R_{o} + T_{o} + FL$ $U = D + L + F + H + R_{o} + T_{o} + W_{t}$

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load

3H.3.4.4 Materials

Structural materials used in the design of RWB are as follows:

3H.3.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

•	Compressive strength	4.0 ksi (27.6 MPa)
•	Modulus of elasticity	3,597 ksi (24.8 GPa)
•	Shear modulus	1,537 ksi (10.6 GPa)
-	Poisson's ratio	

3H.3.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

	Yield strength		60	ksi ((414 N	/IPa))
--	----------------	--	----	-------	--------	-------	---

3H.3.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design for wide-flange sections. The steel design properties are:

•	Yield strength	50 ksi (345 MPa)
-	Tensile strength	. 65 ksi (448 MPa)

3H.3.4.4.4 Steel Grating

Bearing bars conforming to ASTM A1011 are considered in the design. The design property is:

3H.3.4.4.5 Anchor Bolts

Material for anchor bolts conforms to the requirements of ASTM F1554, Grade 36. Its design properties are:

3H.3.5 Structural Design and Analysis Summary

3H.3.5.1 Seismic Analysis

Two types of seismic analyses are performed for the RWB. The analysis and design of the RWB as well as the II/I design is performed using response spectrum analysis of a SAP2000 3D finite element model described in Section 3H.3.5.2. The II/I stability evaluation of the RWB is performed using the base shears and moments obtained from response spectrum analysis of a fixed base stick model described below. This fixed base stick model is also used for obtaining the seismic in-plane shears and moments of the exterior walls reported in Table 3H.3-1 and the structural frequencies reported in Table 3H.3-2.

The seismic analysis of the RWB is performed using a fixed base stick model. The <u>In</u> the fixed base stick model, the structure is represented by a lumped-mass model consisting of structural masses lumped at selected nodes which are connected by massless elements representing the stiffness properties of the shear walls between the nodes. The building masses are lumped at elevations where the building weights are concentrated such as the floors and roof.

For modeling reinforced concrete shear wall elements, the shear walls in each particular vibration direction are identified. The stiffness of a shear wall along its length consists of a combination of its shear stiffness and its flexural stiffness, both of which are calculated individually and combined to obtain the stiffness of the wall.

The input motion of the seismic analysis is the Regulatory Guide 1.60 responsespectra for 0.15g.

The RWB seismic design loads are shown in Table 3H.3 1. The RWB structural frequencies are shown in Table 3H.3 2.

3H.3.5.2 Analysis and Design

The analysis and design of the RWB is performed using a SAP2000 3D finite element model with shell and frame elements, as shown in Figures 3H.3-5 through 3H.3-7. The

seismic loads are obtained from response spectrum analysis of this model. The input motion for this response spectrum analysis is the Regulatory Guide 1.60 response spectra for 0.15g.

Per Table 1 of RG 1.143 Revision 2, all concrete and steel designs are in accordance with the ACI 349-97 and ANSI/AISC N690, 1984 code requirements, respectively.– Also, for II/I design, the structure is conservatively designed to remain elastic.-

The forces and moments at critical locations in the Radwaste Building along with the provided longitudinal and transverse reinforcement are included in Table 3H.3-3 for the exterior walls and Table 3H.3-4 for the basemat, roof slab, and operating floor (elevation 35'-0") slab. Figures 3H.3-8 through 3H.3-27 show the location of the reinforcement zones listed in Table 3H.3-3 for the exterior walls. Figures 3H.3-28 through 3H.3-42 show the location of the reinforcement zones listed in Table 3H.3-4 for the reinforcement zones listed in Table 3H.3-3 for the exterior walls. Figures 3H.3-28 through 3H.3-42 show the location of the reinforcement zones listed in Table 3H.3-4 for the basemat, roof slab, and operating floor slab.

The structural steel member sizes, critical forces, safety margins, and governing load combinations for the operating floor beams, roof truss members, and roof purlins are shown in Table 3H.3-5. The layout of the operating floor steel beams is shown in Figures 3H.3-43 through 3H.3-46. The layout of the roof truss members and roof purlins are shown in Figure 3H.3-47. The typical east-west spanning truss and typical north-south spanning truss are shown in Figures 3H.3-48 and 3H.3-49, respectively.

3H.3.5.3 Seismic II/I Evaluation

The seismic II/I evaluation for the RWB is performed to ensure that the RWB will not collapse on the nearby Category I structures. The structure is conservatively designedto remain elastic for this evaluation. The analysis and design for II/I is performed using a SAP2000 3D finite element model with shell and frame elements. as shown in Figures 3H.3-5 through 3H.3-7. The seismic loads are obtained from response spectrum analysis of this model. The earthquake input used at the foundation level is the envelope of 0.3g RG 1.60 response spectrum and the induced acceleration response spectrum due to site-specific SSE that is determined from an SSI analysis which accounts for the impact of the nearby Reactor Building (RB). In this SSI analysis, five interaction nodes at the depth corresponding to the bottom elevation of the RWB foundationground surface are added to the three dimensional SSI model of the RWB foundation. The average response of these five interaction nodes is enveloped with the 0.3g RG 1.60 spectra to determine the SSE input at the foundation level. The structure is conservatively designed to remain elastic for this evaluation.

For tornado parameters, including the missiles, the same parameters as those defined in DCD Tier 1 Table 5.0 are used. For flood, the extreme flood level of 40 ft (12.2 m) MSL is used, which is caused by the Main Cooling Reservoir dike breach. The evaluation requirements for this flood, including hydrodynamic and flooding debris loading, are included in Section 3.4.2.

The II/I stability evaluations for sliding and overturning are performed using the site specific SSE seismic input motion described in Section 3.7.2.8 and 3.7.3.16 and

other site-specific parameters such as soil properties. <u>The seismic demands for II/I</u> <u>stability evaluation are determined by response spectrum analysis of the fixed base</u> <u>stick model described in Section 3H.3.5.1.</u> Figure 3H.3-52 outlines the methodology followed for the seismic II/I stability evaluation of the RWB.

Rev. 07

3H.3.5.3.1 Load Combinations

The following load combinations, in addition to the extreme environmental load combinations from Sections 3H.3.4.3.4 are used for Seismic II/I considerations.

3H.3.5.3.1.1 Notations

E' = Safe Shutdown Earthquake load (as discussed in Section 3H.3.5.3 above) Other loads are as defined in Section 3H.3.4.3.4.1.

3H.3.5.3.1.2 Structural Steel Load Combinations

1.6S<u>(Note 1)</u> = D + L + F + H' + Ro + To + E'

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads.

Note 1: The stress limit coefficient in shear shall not exceed 1.4 in members and bolts.

3H.3.5.3.1.3 Reinforced Concrete Load Combinations

U = D + L + F + H' + Ro + To + E'

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads.

3H.5 Structural Analysis Reports

STD DEP T1 2.15-1

3H.5.3 Structural Analysis Report for the Reactor Building, and Control Building and Radwaste Building Substructure (Including Seismic Category 1 Tunnels) (Including Seismic Category I Tunnels)

- 3H.5.4 Structural Analysis Report For the Reactor Building, and Control Building and Radwaste Building
- 3H.5.5 Structural Analysis Report For The <u>Radwaste Building (Including Radwaste</u> <u>Tunnels) and The</u>Turbine Building

STD DEP 1.8-1

STD DEP T1 2.15-1

The RW/B (including Radwaste Tunnels) and T/B is are not classified as a-Seismic Category 1 structures. However, the buildings The T/B is are designed such that damage to safety-related functions does not occur under seismic loads corresponding to the safe shutdown earthquake (SSE) ground acceleration. The RW/B (including Radwaste Tunnels) is designed per Regulatory Guide 1.143.

For material properties and dimensions, assess compliance of the as-built structure with design requirements in <u>Section 3.7.3.16</u>. Table 3.2-1 and the <u>International</u>. <u>Building Code (IBC)</u>*Uniform Building Code (UBC)* for the Turbine Building and <u>Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels)</u> and in the Table 3.2-1 and paragraph 3.7.3.16.

Construction deviations and design changes will be assessed to determine appropriate disposition.

This disposition will be accepted "as-is," provided the following acceptance criteria are met:

 The structural design meets the acceptance criteria and load combinations of Section 3.7.3.16 and the IBCUBC code for the Turbine Building and Regulatory Guide 1.143 for the Radwaste Building (including Radwaste Tunnels).

The <u>RW/B (including Radwaste Tunnels) and T/B isare</u> not classified as <u>a</u> Seismic-Category 1 structures. However, the buildings is<u>are</u> designed such that damage to safety related functions does not occur under seismic loads corresponding to the safeshutdown earthquake (SSE) ground acceleration.

3H.5.6 Structural Analysis Report For The Ultimate Heat Sink/ Reactor Service Water Pump House Structure, Reactor Service Water Piping Tunnel and Diesel Generator Fuel Oil Storage Vault

A structural analysis report will be prepared. It will document the following activities associated to the construction materials and as-built dimensions of the structures:

- Review of construction records for material properties used in construction (i.e., in-process testing of concrete properties and procurement specifications for structural steel and reinforcing bars).
- (2) Inspection of as-built structure dimensions.

For material properties and dimensions, assess compliance of the as-built structure with design requirements in the Subsection 3H.6 and in the detail design documents.

Construction deviations and design changes will be assessed to determine appropriate disposition.

This disposition will be accepted "as-is," provided the following acceptance criteria are met:

- The structural design meets the acceptance criteria and load combinations of Appendix 3H, Section 3H.6.
- The dynamic responses (i.e., spectra, shear forces, axial forces and moments) of the as-built structure are bounded by the spectra in Appendix 3H, Section 3H.6.

Depending upon the extent of the deviation or design changes, compliance with the acceptance criteria can be determined by either:

- (a) Analyses or evaluations of construction deviations and design changes, or
- (b) The design basis analyses will be repeated using the as-built condition.

3H.6 Site-Specific Seismic Category I Structures

The following site-specific supplement addresses site specific Seismic Category I structures.

3H.6.1 Objective and Scope

The objective of this appendix is to describe the structural analysis and design of the STP 3 & 4 site-specific seismic Category I structures that are identified below.

- (1) Ultimate Heat Sink (UHS) for each unit consists of a water retaining basin with enclosed cooling towers situated above the basin and a Reactor Service Water (RSW) pump house that is integral with the UHS basin.
- (2) RSW piping tunnel for each unit.
- (3) Diesel Generator Fuel Oil Storage Vault for each unit.

The details of analysis and design for Items (1) and (2) are provided in Sections 3H.6.2 through 3H.6.6. The details for Item (3) are provided in Section 3H.6.7.

3H.6.2 Summary

A summary of the extreme environmental design parameters is presented in Table 3H.9-1.

For the design of the UHS basin and the pump house of each unit, the seismic effects were determined by performing a soil-structure interaction (SSI) analysis, as described in Subsection 3H.6.5. The free-field ground response spectra used in the analysis are described in Subsection 3H.6.5.1.1.1. The resulting seismic loads were used in combination with other applicable loads to develop designs of the structures. Hydrodynamic effects of the water in the basin were considered. The following results for the UHS/RSW Pump House are presented in tables and figures, as indicated. Results for the RSW Piping Tunnel are presented in Sections 3H.6.5.3 and 3H.6.6.2.2.

Natural frequencies (Table 3H.6-3).

- Seismic accelerations (Table 3H.6-4).
- Seismic displacements (Table 3H.6-4).
- Floor response spectra (Figures 3H.6-16 through 3H.6-39).
- Factors of safety against sliding, overturning, and flotation (Table 3H.6-5).
- Combined forces and moments at critical locations in the structures along with required and provided rebar (Tables 3H.6-7 through 3H.6-9 and Figures 3H.6-51 through 3H.6-136).
- Lateral soil pressures for design (Figures 3H.6-41 through 3H.6-43, Figures 3H.6-218 through 3H.6-220, and Figures 3H.6-232 through 3H.6-240).
- Lateral soil pressures for stability evaluation during normal operation (Figures 3H.6-45 through 3H.6-50)
- Tornado evaluation results (Table 3H.6-10)

The final combined responses are used to evaluate the designs against the following criteria:

- Stresses in concrete and reinforcement are less than the allowable stresses in accordance with the applicable codes listed in Subsection 3H.6.4.1.
- The factors of safety against flotation, sliding, and overturning of the structures under various loading combinations are higher than the required minimum values identified in Subsection 3H.6.4.5.
- The calculated static and dynamic soil bearing pressures/displacements are less than the allowable values.
- The thickness of the roof slabs and exterior walls are more than the minimum required to preclude penetration, perforation, or spalling resulting from impact of design basis tornado missiles. In addition, the passage of tornado missiles through openings in the roof slabs and exterior walls is prevented by the use of missile-proof covers and doors, or the trajectory of missiles through ventilation openings is limited by labyrinth walls configured to prevent safety-related substructures and components from being impacted.

The RSW piping tunnel seismic analysis has been performed using SSI analysis, as discussed in Section 3H.6.5.3.

3H.6.3 Structural Descriptions

The site-specific Seismic Category I structures at STP 3 & 4 consist of one set of the following for each unit: UHS basin, enclosed UHS cooling towers located on top of the basin, RSW pump house contiguous with and adjacent to the UHS basin, and buried RSW piping tunnels and access shafts to the tunnels (see Figures 1.2-34 through

1.2-36). Each UHS basin and RSW pump house has a 10-ft (3.05-m) thick foundation mat and are connected at a common wall; and the RSW piping tunnels extend from the pump house to the Control Buildings. Each of these structures is described in more detail in the following subsections.

3H.6.3.1 Ultimate Heat Sink Basin

The UHS basin is a rectangular reinforced concrete structure with inner dimensions of 280 ft (85.34 m) by 132 ft (40.23 m) and serves as the reservoir for the RSW system. The walls of the basin are 6 ft (1.83 m) thick and extend from an elevation of 97.5 ft (29.72 m) MSL down to an elevation of 14 ft (4.27 m) MSL. The walls are braced by buttresses spaced at a maximum of 50 ft (15.24 m) and are supported on a 312 ft (95.10 m) by 164 ft (49.99 m) by 10 ft (3.05 m) thick mat foundation, poured on a lean concrete mud mat. The mud mat is poured directly on the in-situ soil. Each UHS includes three independent divisions of mechanical cooling towers, with two dedicated cooling towers in each division . The pump house is contiguous with the UHS basin and its walls extend from an elevation of -18 ft (-5.49 m) MSL to an elevation of 50 ft (15.24 m) MSL.

As noted in Subsection 9.2.5.5.2, the seepage loss estimated during the 30 days of operation following a design basis accident, with no makeup available, is within the acceptance criteria for standard hydrostatic test HST-025, as defined in ACI 350.1.

3H.6.3.2 Ultimate Heat Sink Cooling Tower Enclosures

The_cooling tower enclosure for each unit is a reinforced concrete structure housing the equipment used to cool the water for the RSW system. The enclosure is located above the UHS basin and is supported by reinforced concrete columns anchored to the basin mat foundation. The enclosure is 292 ft (89.0 m) long by 52 ft (15.85 m) wide and extends from the top of the UHS basin walls to elevation 153 ft (46.63 m) MSL. Each enclosure is divided into six compartments or cells, with each compartment housing a fan and associated equipment. Openings are provided at the base of each compartment to allow for the flow of water. Each compartment includes a common basin at the base of the structure, air intake, and substructures and components used to cool the water (fill, drift eliminators, spray system piping and nozzles, and the associated concrete support beams). The air intakes for each compartment are located at the bottom of the enclosures and are configured to eliminate the trajectory of tornado missiles into the enclosures, thereby preventing damage to safety-related components. In addition, each compartment includes a reinforced concrete fan deck that supports the fan and the associated motor. Finally, heavy steel grating, which is supported by structural steel beams, is installed at the top of each compartment. This grating allows for the passage of air out of the compartment and prevents the intrusion of tornado wind-borne missiles.

3H.6.3.3 Reactor Service Water Pump Houses

The two RSW pump houses are reinforced concrete structures that are continguous with the UHS basins and house the RSW pumps (six pumps per pump house, with three RSW divisions, and two pumps per division) and their associated auxiliaries.

Each set of pumps extracts water for the RSW system from the basin. The operating floor of each pump house is divided into three separate rooms (one per RSW division), each containing two pump drivers and associated equipment, including self-cleaning strainers. There is also an access tunnel through which the RSW system piping is routed to and from the corresponding control building.

The exterior walls of each pump house and the interior walls dividing the pump bay are integral with the UHS basin walls. The pump bay for each pump house measures approximately 44 ft (13.41 m) by 72 ft (21.95 m) in plan with the top of the bay slab being located at elevation -18ft (-5.49 m). The operating floor is at elevation 14 ft (4.27 m) and measures 138 ft (42.06 m) by 72 ft (21.95 m) in plan. Covered openings are provided in the roof of each pump house, which is located at elevation 50 ft (15.24 m), to allow for the removal of the six pumps.

3H.6.3.4 Reactor Service Water Piping Tunnels

The three RSW piping tunnels, one for each RSW division, are reinforced concrete structures configured in a stacked arrangement. The tunnel is 17'-0" (5.18 m) wide and has an overall height of 40'-0" (12.2 m) high. They extend from each pump room to the control building. The three tunnels are separated by reinforced concrete slabs, which serve to isolate the supply and return lines and associated equipment for each of the three divisions. Access to the tunnels from the surface, for inspections and maintenance activities, is provided by reinforced concrete personnel access shafts. The interfaces between the tunnels and the pump houses and control buildings are configured to allow relative movement between the tunnels and structures.

3H.6.4 Structural Design Criteria

3H.6.4.1 Design Codes and Standards

- Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349), as supplemented by RG 1.142
- Code Requirements for Environmental Engineering Concrete Structures (ACI 350)
- American National Standard Specification for the Design, Fabrication, and Erection of Steel Safety-Related Structures for Nuclear Facilities (ANSI/AISC N690)
- Tightness Testing of Environmental Engineering Concrete Structures (ACI 350.1)
- Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7)
- Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4)
- Structural Welding Code Steel (AWS D1.1)
- Regulatory Guide 1.76, Design Basis Tornado and Tornado Missiles for Nuclear Power Plants

 Regulatory Guide 1.61 – Damping Values for Seismic Design of Nuclear Power Plants

3H.6.4.2 Site Design Parameters

3H.6.4.2.1 Soil Parameters

 Poisson's ratio (above groundwater): 	
 Poisson's ratio (below groundwater): 	0.47
 Unit weight (moist): 	120 pcf (1.92 t/m ³)
 Unit weight (saturated): 	140 pcf (2.24 t/m ³)
Liquefaction potential:	None
Static Soil Bearing Capacity:	See FSAR Subsection 2.5S.4.10
 *Dynamic Soil Bearing Capacity: 	See FSAR Subsection 2.5S.4.10

3H.6.4.2.2 Design Groundwater Level

Design groundwater level is at elevation 28 (8.53 meters) MSL. This elevation bounds the groundwater elevation defined in FSAR Subsection 2.4S.12.

3H.6.4.2.3 Design Flood Level

Design flood basis level is at 12.2 meters MSL. This elevation is defined in Subsection 2.4S.2.2.

3H.6.4.2.4 Maximum Snow Load

Normal roof snow load is 6.6 psf. Extreme roof snow load is 13.2 psf.

3H.6.4.2.5 Maximum Rainfall

Design rainfall is 19.8 in/hr (503 mm/hour) in accordance with Subsection 2.3S.1.3.4. The roof of each pump house is designed without parapets so that excessive ponding of water cannot occur. Such roof design meets the provisions of RG 1.102.

3H.6.4.3 Design Loads and Load Combinations

3H.6.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.6.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure, permanent equipment, and other permanent static loads. An additional 50 psf (2.39 kPa) uniform load is considered to account for dead loads due to piping, raceways, grating, and HVAC duct work.

3H.6.4.3.1.2 Live Loads (L and L_o)

Live loads include floor and roof area loads, movable loads, and laydown loads. The only areas of the site-specific Category I structures requiring consideration of a live load are the floors of RSW Tunnels and the operating floor and roof of the pump houses. While a normal live load of 200 psf (9.6 kPa) is defined for the floors of RSW Tunnels and the operating floor of pump houses, a live load of 50 psf (2.4 kPa) is defined for the roof of pump houses.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation, L_0 . This load has been defined as 25% of the operating floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.6.4.3.1.3 Snow Loads

The normal roof snow load is 6.6 psf.

3H.6.4.3.1.4 Lateral Soil Pressures (H)

Lateral soil pressures are calculated using the following soil properties.

∎ U	Init weight (moist):	120) pcf (1.92 t/m ³)	
-----	----------------------	-----	--------------------------------	--

- Poisson's ratio (above groundwater)......0.42
- Surcharge load including the effect of adjacent structures, where applicable.

The calculated lateral soil pressures are presented in figures as indicated:

- Lateral soil pressures for design of UHS/RSW Pump House: Figures 3H.6-232 through 3H.6-240.
- Lateral Soil pressures for design of RSW Piping Tunnels: Figure 3H.6-44 and Figures 3H.6-245 through 3H.6-247.
- Lateral soil pressures for stability evaluation of UHS/RSW Pump House during normal operation: Figures 3H.6-45 through 3H.6-50.

3H.6.4.3.1.5 Thermal Loads (T_o)

The RSW piping tunnels are not subjected to any thermal loads. Thermal gradient loads and thermal axial loads are applied to the UHS/RSW Pump House finite element model for six (6) separate thermal conditions.

The following temperature values are applicable to all six (6) thermal conditions:

- Reference concrete placement temperature60°F
- Pump house inside air temperature......90°F

The basin water temperature and the outside air temperature for the six (6) thermal conditions are as follows:

(1) Winter – Accident Basin Water Temperature

	 Basin water temperature	F
	Outside air temperature24°	F
(2)	Winter – Minimum Basin Water Temperature	

- Outside air temperature......24°F
- *(3)* Winter Typical Operating Temperatures

 - Outside air temperature......45°F

This thermal condition is applicable only for the basin basemat and basin walls below the 71 ft maximum water level with ACI 350-01 durability factors. Per Section 9.2.7 of ACI 350-01, estimation of contraction, expansion, and temperature change should be based on realistic assessment of such effects occurring in service. Section R.9.2.7 of ACI 350-01 specifically states that the term "realistic assessment" is used to indicate the most probable values rather than the upper bound values.

(4) Summer - Accident Basin Water Temperature

 Basin water temperature 	95°F
 Outside air temperature. 	

(5) Summer – Minimum Basin Water Temperature

	 Basin water temperature60°l 	F
	Outside air temperature90°l	F
(6)	Summer – Typical Operating Temperatures	
	 Basin water temperature	F
	 Outside air temperature90°l 	F

This thermal condition is applicable only for the basin basemat and basin walls below the 71 ft maximum water level with ACI 350-01 durability factors. Conservatively, the summer accident temperatures are considered as the typical summer operating temperatures.

3H.6.4.3.1.6 Hydrostatic Loads(F)

This load is only applicable to UHS/RSW Pump House. The hydrostatic load due to water inside the UHS basin is calculated considering the maximum water height of 71 ft above the top of the UHS basin basemat. The maximum hydrostatic pressure is 4.43 ksf at the top of UHS basin basemat elevation. An empty basin case is also considered with the UHS basin conservatively considered completely empty.

3H.6.4.3.2 Severe Environmental Load

The severe environmental load considered in the design is that generated by wind. The following parameters are used in the computation of the wind loads:

- Exposure:C

(Importance Factor of 1.15 is used to convert the velocity pressure due to 50-year wind speed to the velocity pressure due to the 100-year wind speed of 134 mph in accordance with the requirements of ASCE 7-05. In calculating the velocity pressure with the ASCE 7-05 Equation 6-15, Importance Factor of 1.0 is used with the 100-year wind speed of 134 mph.)

- Velocity pressure exposure coefficient as per ASCE 7 Table 6-3, but ≥ 0.87

Wind loads will be calculated in accordance with the provisions of Chapter 6 of ASCE 7.

3H.6.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by the tornado, extreme snow load, flooding and safe shutdown earthquake (SSE).

3H.6.4.3.3.1 Tornado Loads (Wt)

The following tornado load effects are considered in the design:

 Wind speed	1
Differential pressure(W _p)	I
 Missile impact	I
Parameters used in computation of tornado loads are as follows (see Tables 1 and 2 of RG 1.76, for Region II):	
 Maximum wind speed:	1
 Maximum rotational speed:	1
 Maximum translational speed:	1
 Radius of maximum rotational speed:	1
 Differential pressure:	1
 Pressure differential rate:0.4 psi/s (2.8 kPa/s) 	1
 Missile spectrum:)
 Missile spectrum:)
)
 (1) Tornado Wind Pressure (W_w) With the exception of the RSW piping tunnel, which does not require the consideration of a tornado wind pressure, tornado wind pressures are computed using the procedure described in Chapter 6 of ASCE 7, in conjunction with the maximum wind speed defined above and the following 	
 (1) Tornado Wind Pressure (W_w) With the exception of the RSW piping tunnel, which does not require the consideration of a tornado wind pressure, tornado wind pressures are computed using the procedure described in Chapter 6 of ASCE 7, in conjunction with the maximum wind speed defined above and the following parameters: 	ì
 (1) Tornado Wind Pressure (W_w) With the exception of the RSW piping tunnel, which does not require the consideration of a tornado wind pressure, tornado wind pressures are computed using the procedure described in Chapter 6 of ASCE 7, in conjunction with the maximum wind speed defined above and the following parameters: Importance factor	;
 (1) Tornado Wind Pressure (W_w) With the exception of the RSW piping tunnel, which does not require the consideration of a tornado wind pressure, tornado wind pressures are computed using the procedure described in Chapter 6 of ASCE 7, in conjunction with the maximum wind speed defined above and the following parameters: Importance factor	;

STP 3 & 4

The designs of the UHS basin, UHS cooling tower, and the RSW piping tunnel do not require the consideration of a tornado differential pressure. RSW pump house and RSW piping tunnel access shafts are evaluated for the specified differential pressure.

(3) Tornado Missile Impact (W_m)

All structures are evaluated for the effects of missile impact.

Rev. 07

Tornado missile impact effects on the UHS basin and cooling tower enclosures, RSW pump houses, and RSW tunnels including access shafts are evaluated for the following two conditions:

- (a) For concrete barriers, local damage in terms of penetration, perforation, and spalling, is evaluated using the TM 5-855-1 formula (Reference 3H.6-1). For steel barriers, local damage prediction is performed using the Ballistic Research Laboratory (BRL) formula (Reference 3H.6-2).
- (b) Global overall damage evaluations are performed in accordance with Revision 3 of SRP 3.5.3. In these evaluations, the tornado loads (i.e. W_t) to be included in combination with other applicable loads are per combination $W_t = W_w + 0.5W_p + W_m$.

For any critical missile hit location considered, the structure is analyzed for the resulting equivalent static load due to tornado missile impact in conjunction with tornado wind pressure and 50% of tornado differential pressure. The resulting induced forces and moments from this analysis are combined with the induced forces and moments due to other applicable loads within the load combination to determine the total demand for design of the structural elements.

(4) Tornado Load Combinations

Tornado load effects are combined as follows:

$$W_t = W_p$$
$$W_t = W_w + 0.5 W_p + W_m$$

3H.6.4.3.3.2 Safe Shutdown Earthquake Loads (E')

The SSE loads are applied in three mutually orthogonal directions— two horizontal directions and the vertical direction. The total structural response is predicted by combining the applicable maximum co-directional responses in accordance with RG 1.92.

The SSE loads are based on seismic analysis using the ground motion response spectra defined in Subsection 3H.6.5.1.1.1. The loads consist of vertical forces, horizontal forces, torsional moments, and overturning moments.

The SSE induced loads also include the hydrodynamic effect of the water in the UHS basin. This hydrodynamic effect was calculated based on the methodology included in Section 3.1.6.3 of ASCE 4 and TID 7024, referenced in the commentary section of ASCE 4.

3H.6.4.3.3.3 Lateral Soil Pressures Including the Effects of SSE (H')

The calculated lateral soil pressures including the effects of SSE are presented in figures as indicated:

- Lateral soil pressures for design of UHS/RSW Pump House: Figures 3H.6-41 through 3H.6-43 and Figures 3H.6-218 through 3H.6-220.
- Lateral Soil pressures for design of RSW Piping Tunnels: Figure 3H.6-44 and Figures 3H.6-212 through 3H.6-217.
- Lateral soil pressures for stability evaluation of UHS/RSW Pump House during normal operation: Figures 3H.6-45 through 3H.6-50.

3H.6.4.3.3.4 Extreme Environmental Flood (FL)

The design basis flood level is 40.0 ft MSL, in accordance with Subsections 2.4S.2.2 and 3H.6.4.2.3. The flood water unit weight, considering maximum sediment concentration, is 63.85 pcf per Section 2.4S.4.2.2.4.3. The design requirements for this flood, including hydrostatic, hydrodynamic, and floating debris loading, are included in Section 3.4.2.

3H.6.4.3.3.5 Extreme Snow Load (S_E)

Per FSAR Section 2.3S.1.3.4, the ground snow load for both normal winter precipitation event and extreme frozen winter precipitation is 5.5 psf. ISG-7 provides guidance for converting the ground snow load to roof snow load using methodology provided in ASCE 7-05. ASCE 7-05 utilizes an exposure factor (C_e), a thermal factor (C_t), and an importance factor (I) as multipliers for converting ground snow load to roof snow load using Equation 7-1 in Section 7.3. ISG-7 also provides recommended values for these three coefficients to be used in Equation 7-1. As noted in ISG-7, pages 9 and 10, the coefficients to be used in Equation 7-1 of ASCE 7-05 are (C_e =1.1), (C_t =1.0), and (I=1.2). Using these values for the coefficients in Equation 7-1 of ASCE 7-05, the roof snow load is determined to be 6.6 psf, corresponding to a ground snow load of 5.5 psf.

Per ISG-7, the extreme winter precipitation shall be the larger of the following two cases:

Case 1: Normal winter precipitation + Extreme frozen winter precipitation

Case 2: Normal winter precipitation + Extreme liquid winter precipitation

Per FSAR Section 2.3S.1.3.4, the extreme liquid winter precipitation is 34 inches (or 177 psf). Assuming that both the roof drains and scuppers are clogged, Case 1 will yield a loading of 6.6 + 6.6 = 13.2 psf and Case 2 will yield a loading of 6.6 + 177 = 183.6 psf. However, since the roofs of site-specific structures are designed without parapets (see Section 3H.6.4.2.5), for site-specific Category I structures, the extreme winter precipitation can not exceed Case 1 loading of 13.2 psf

3H.6.4.3.3.6 Accident Temperature (T_a)

UHS Basin Water temperature (95°F) during accident condition.

3H.6.4.3.4 Load Combinations

The load combinations and structural acceptance criteria used to evaluate the sitespecific Category I concrete structures are consistent with the provisions of ACI 349, as supplemented by RG 1.142 as well as ACI 350. Loads R_a , P_a , Y_r , Y_j , and Y_m , as defined in ACI 349, are not applicable to the evaluation of the site-specific seismic Category I structures since there are no high energy line breaks associated with the site-specific Category I concrete structures; therefore these loads are not included in the load combinations defined below.

3H.6.4.3.4.1 Notation

S	=	Allowable stress for allowable stress design method
U	=	Required strength for strength design method
D	=	Dead load
F	=	Hydrostatic load
L	=	Live load
Lo	=	Live load concurrent with SSE
FL	=	Static and dynamic effects due to extreme environmental flood
S _E	=	Extreme snow load
Н	=	Lateral soil pressure and groundwater effects
H'	=	Lateral soil pressure and groundwater effects, including dynamic effects of SSE
W	=	Wind load
Wt	=	Tornado load

E' = SSE load, including associated hydrodynamic loads

- R_o = Piping and equipment reactions
- T_0 = Internal moments and forces caused by temperature distributions
- T_a = Accident temperature

3H.6.4.3.4.2 Structural Steel Load Combinations

S	=	D + L + H + F + R _o + T _o
S	=	$D + L + W + R_{o} + H + F + T_{o}$
1.6S	=	$D + L + Wt + H + R_o + F + T_o$
1.6S	=	$D + L + FL + H + R_{o} + F + T_{o}$
1.6S	=	$D + L + E' + H' + R_0 + F + T_0$
1.6S	=	$D + L + S_E + R_o + H + F + T_o$

For the computation of global seismic loads the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the operating floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.6.4.3.4.3 Reinforced Concrete Load Combinations

U	=	1.4D + 1.4F + 1.7L + 1.7H + 1.7 R _o
U	=	1.4D + 1.4F + 1.7L + 1.7H + 1.7W + 1.7 R _o
U	=	D + F + L + H' + T _a + E'
U	=	$D + F + L + H + T_o + R_o + W_t$
U	=	D + F + L + H'+ T _o + R _o + E'
U	=	1.05D + 1.05F + 1.3L + 1.3H+ 1.2T _o + 1.3R _o
U	=	1.05D + 1.05F + 1.3L + 1.3H + 1.3W + 1.2T _o + 1.3R _o
U	=	$D + F + L + H + T_{o} + R_{o} + FL$
U	=	$D + F + L + H + T_o + R_o + S_E$

For the computation of global seismic loads the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the operating floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

3H.6.4.3.4.4 ACI 350 Reinforced Concrete Load Combinations for UHS Basin Design

ACI 350 requirements are applicable to portions of environmental engineering concrete structures where durability, liquid-tightness, or similar serviceability are considerations. Therefore, the ACI 350 requirements and load combinations listed in this section are applicable only to the UHS basemat and basin walls below the maximum water level elevation.

Per ACI 350, although fluid densities and heights are usually well known, the load factor for fluid loads should be taken as 1.7 as part of the concept of environmental durability and long-term serviceability. ACI 350 states that the required strength from ACI 350 load combinations shall be multiplied by the following environment durability factors:

•	Flexural strength	1.	3
---	-------------------	----	---

- Axial tension (including hoop tension)...... 1.65

In addition to the reinforced concrete load combinations listed in Section 3H.6.4.3.4.3, the UHS basemat and basin walls below the maximum water level elevation are also designed for the load combinations listed below with ACI 350 durability factors applied. Except durability factors need not be applied for the hydrostatic leak-tightness testing condition, which is a temporary loading where environmental durability and long term serviceability are not required. The hydrostatic leak-tightness testing load combination uses a load factor of 1.4 on the fluid load because it is not a long-term serviceability condition that requires a load factor of 1.7. Per ACI 350, durability factors need not be applied to load combinations that include earthquake loads. As stated in Section 3H.6.4.3.1.5, the design thermal loads used in ACI 350 load combinations should be based on most probable temperature values, rather than the upper bound temperature values.

- U = 1.4D + 1.7F + 1.7L + 1.7H
- U = 1.4D + 1.7F + 1.7L + 1.7H + 1.7W
- U = 1.4D + 1.4F + 1.7W (Hydrostatic leak-tightness testing)

U = $1.4D + 1.7F + 1.4 T_0 + 1.3H$

3H.6.4.4 Materials

Structural materials used in the design of the site-specific Category I structures are as follows:

3H.6.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

- Shear modulus 1,537 ksi (10.6 GPa)

3H.6.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

3H.6.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design. The steel design properties are:

- Yield strength 50 ksi (345 MPa)

3H.6.4.4.4 Steel Grating

Bearing bars conforming to ASTM A1011 are considered in the design. The design property is:

3H.6.4.4.5 Anchor Bolts

Material for anchor bolts conforms to the requirements of ASTM F1554, Grade 36. Its design properties are:

3H.6.4.5 Stability Requirements

The following minimum factors of safety are required against overturning, sliding, and flotation:

Load Combination	Overturning	Sliding	Flotation
D + F'	_	_	1.1
D + H + W	1.5	1.5	_
$D + H + W_t$	1.1	1.1	_
D + H' + E'	1.1	1.1	_

Loads D, H, H', W, W_t, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the flood water level.

3H.6.5 Seismic Analysis

3H.6.5.1 Seismic Design Parameters

3H.6.5.1.1 Design Ground Motion

3H.6.5.1.1.1 Design Response Spectra

Site-specific horizontal and vertical ground motion response spectra (GMRS) for the SSE are developed for the STP 3 & 4 site. The development of these spectra is documented in Subsection 2.5S.2.

For the seismic analysis of the site-specific structures, free field ground surface response spectra (Input Spectra) were developed, in the horizontal and vertical directions, by modifying the 0.13g Regulatory Guide 1.60 response spectra. The Input Spectra are the same as the 0.13g Regulatory Guide 1.60 spectra for frequencies equal to and higher than 2.5 Hz for the horizontal spectrum, and 3.5 Hz for the vertical spectrum. For frequencies lower than 2.5 Hz for the horizontal spectrum, and 3.5 Hz for the vertical spectrum, the Regulatory Guide spectra were increased to envelop the GMRS. These Input Spectra are defined as the site specific design SSE spectra (see Section 3.7.1) and were developed to meet the following requirements:

- a. The Input Spectra shall envelop the GMRS. See Figures 3H.6-1 and 3H.6-2 showing that the Input Spectrum envelops the GMRS in the horizontal and vertical directions, respectively.
- b. When a deconvolution analysis is performed in the SHAKE program with the Input Spectrum applied at the free field ground surface, the resulting response spectrum at the outcrop of each Seismic Category I foundation will envelop the foundation input response spectrum (FIRS) developed using the same probabilistic approach and model which was used to develop the GMRS. A detailed description of the seismic wave transmission of the site, and the procedure used to calculate the GMRS, which is the same for the development of FIRS, is provided in FSAR Sections 2.5S.2.5 and 2.5S.2.6, respectively. See Figures 3H.6-3 through 3H.6-11 for a comparison of the outcrop response spectra, resulting from the application of the time histories consistent with the Input Spectra at the free field ground surface in SHAKE,

and the FIRS for the UHS basin, RSW tunnel, and RSW pump house foundations, in the two horizontal and vertical directions. These figures show that the FIRS are enveloped by the foundation outcrop spectra in all cases.

c. The response spectrum at the SHAKE outcrop of each Seismic Category I foundation envelops a broad band spectrum anchored at 0.1g. This is the minimum requirement as stated in SRP 3.7.1 and Appendix S to 10 CFR 50, "Earthquake Engineering Criteria for Nuclear Power Plants". The broad band spectrum used in our analysis is conservatively defined as the Regulatory Guide 1.60 spectrum anchored at 0.1g. See Figures 3H.6-3 through 3H.6-11, which demonstrate that this requirement is met for the UHS basin, RSW tunnel, and RSW pump house foundations, in the two horizontal and vertical directions.

It should be noted that the embedment depths shown in Section 3H.6.5.1.3 for the RSW Pump House and RSW Piping Tunnel are based on the current design. For the SSI analysis of UHS/RSW Pump House these elevations were used. However, the comparisons shown in Figures 3H.6-3 through 3H.6-11 are at elevations based on the design when the FIRS were developed. Although there is some difference in these elevations, from the review of Figures 3H.6-3 through 3H.6-11, and Figures 3A-233 through 3A-250 in Appendix 3A, it is evident that the requirements stated in (b) and (c) above are met for a wide range of elevations, starting from the deepest embedment of the Reactor Building to the shallowest embedment of the UHS Basin. Therefore, it is concluded that these two requirements are also met for the current embedment depths for the RSW Pump House and RSW Piping Tunnel, shown in Section 3H.6.5.1.3.

3H.6.5.1.1.2 Design Time Histories

Synthetic acceleration time histories consistent with the Input Spectra defined and discussed in Subsection 3H.6.5.1.1.1 were developed, using the 1952 Taft Earthquake Time Histories as seed, for use as input to the seismic analysis. A single set of time histories (two horizontal and one vertical) was developed satisfying the enveloping requirements of Option 1, Approach 2 of SRP 3.7.1, Section II (Acceptance Criteria), Revision 3. Per paragraph 2(d) of Approach 2, in lieu of the power spectrum density requirement, the requirement that the computed 5% damped response spectrum of the Synthetic time history does not exceed the target response spectrum at any frequency by more than 30% was met. In the time history method of analysis, the two horizontal and the vertical time histories were applied separately (not applied simultaneously) and the maximum responses were combined using the square-root-of-the-sum-of-the-squares (SRSS) or the 100-40-40 percent spatial combination rule. Therefore, per Regulatory Guide 1.92, Revision 2, statistical independence of the three time histories (cross-correlation coefficient requirement) is not required.

Figures 3H.6-12 through 3H.6-14 show the comparison of the response spectrum for the Synthetic time history, the Input Spectrum, and 1.3 times the Input Spectrum, in the two horizontal and vertical directions. The response spectra of synthetic time histories were calculated for comparison with target spectra at 275 frequency points with spacing as shown in Tables 3H.6-2d through 3H.6-2f. As shown in Tables 3H.6-2d

through 3H.6-2f, the 5% damped response spectra of the synthetic time histories do not fall more than 10% below the target response spectrum at any frequency.

The time step and duration of the synthetic time histories are 0.005 seconds and 22 seconds, respectively. When the time histories are input in SSI analysis using SASSI2000 program, trailing zeros are added at the end of 22 seconds to yield a total duration of 40.96 seconds (the time step of trailing zeros is also 0.005 seconds).

The duration of the time histories for Arias Intensity to rise from 5% to 75% is 11.2 seconds for the two horizontal design time histories and 12.2 seconds for the vertical design time history. For the characteristic earthquake time history this duration is calculated to be 20 to 45 seconds. The shorter duration for the design time histories is acceptable because:

- (a) The SRP requires that synthetic time histories be derived from recorded time histories from recorded earthquakes. Strong motion recorded earthquake with a 20 – 45 seconds duration of the time histories for Arias Intensity to rise from 5% to 75% are not readily available to be used for the seed time histories to generate the synthetic time histories.
- (b) The time histories are being used for linear elastic analyses. For linear analysis, the duration of the time histories is not critical provided the duration is comparable to recorded strong motion earthquakes and the time history spectra closely matches the target response spectra. For the design time histories, the duration is consistent with the Taft Earthquake and the time history closely matches the target response spectra.

For the characteristic earthquake V/A is calculated as 52 to115 cm/sec/g and AD/V² is calculated as 2.03 to 5.28. For the design time histories, the V/A is 230, 288, and 167 cm/sec/g for the two horizontal and the vertical time histories respectively and the AD/V² values are 2.08, 1.89, and 3.02 respectively. This variation between the design time histories and the characteristic earthquake is due to the conservative design response spectra described in Section 3H.6.5.1.1.1. The design response spectra is a 0.13g RG 1.60 spectra with enhanced low frequency content to account for the very deep soil site. The comparison of the V/A and the AD/V² value of the characteristic earthquake and the conservative design response spectra shows that the design response spectra has a higher energy (greater maximum Velocity).

3H.6.5.1.2 Percentage of Critical Damping Values

The percentages of critical damping values considered in the seismic analysis for sitespecific seismic Category I structures and associated systems and components are the same as listed in DCD Table 3.7-1. The damping values are the same as in Regulatory Guides 1.61 and 1.84, except for the cable trays and conduits, as explained in DCD Section 3.7.1.3. The OBE damping values were used for the generation of in-structure response spectra (ISRS) for all site-specific seismic Category I structures. The only exception is the cracked case SSI analysis for the Reactor Service Water (RSW) Piping Tunnels where SSE damping (i.e. 7%) was used because of high stress levels. All other SSI analysis cases of RSW Piping Tunnels used OBE damping (i.e. 4%) damping.

The strain-compatible, soil-damping values considered in the seismic analysis are discussed in Subsection 3H.6.5.2.4.

3H.6.5.1.3 Supporting Media for Seismic Category I Structures

Soil conditions at the STP 3 & 4 site are described in Subsection 2.5S.4. The soil at the site extends down several thousand feet and consists of alternating layers of clay, silt, and sand. Soil layering characteristics, geophysical shear wave velocity, unit weight, and Poisson's ratio are included in Table 2.5S.4-27. Based on the site groundwater conditions originally described in Section 2.4S.12, the groundwater elevation of approximately 8 ft below grade (26 feet MSL) was used in computing soil properties for the SSI analysis. Subsection 2.4S.12 and Table 2.0-2 now state the groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed, which showed no significant effect on the analysis results. The implementation of this change in the seismic analysis is discussed in Sections 3H.6.5.2.4.3 and 3H.6.5.3.

The SASSI2000 soil model, for the UHS basin and RSW pump house, included soil down to a minimum of two times the maximum plan dimension of the building below the basemat. The bottom boundary of the model was considered to have an elastic half space condition.

The characteristic dimensions of the above grade site-specific seismic Category I structures are summarized below:

Structure	Embedment Depth to Bottom of Foundation Mat [1]	Maximum Height[1]	Base Dimensions
UHS Basin	32 ft (9.75 m)	95.5 ft (29.1 m)	312 ft (95.10 m) x 164 ft (49.99 m) x 10 ft (3.05 m) thick foundation
UHS Cooling Towers	[2]	151 ft (46.0 m)	N/A
RSW Pump Houses Pump Bays	64 ft (19.5 m)	80 ft (24.4 m)	94 ft (28.65 m) x 170 ft (51.82 m)
RSW Piping Tunnel	44 ft (13.4 m)	42 ft (12.8 m) [3]	17 ft (5.2 m) wide

[1] As measured from the bottom of the foundation mudmat.

[2] Located above the basin and supported on columns.

[3] The access shafts for the tunnels extends to a maximum height of approximately 66 ft above the bottom of the foundation mudmat.

3H.6.5.2 Seismic System Analysis

The following Subsections 3H.6.5.2.1 through 3H.6.5.2.14 describe the seismic analysis of the UHS and RSW pump house structures. Subsection 3H.6.5.3 describes the seismic analysis of the RSW piping tunnel.

3H.6.5.2.1 Seismic Analysis Methods

The seismic analysis of the UHS basin and RSW pump house structures was performed using a frequency-domain time history analysis as described in DCD Appendix 3A using SASSI2000. Analyses were performed for three orthogonal (two horizontal and one vertical) directions and account for the translational, rocking, and torsional responses of the structures and foundations.

3H.6.5.2.2 Natural Frequencies and Responses

The natural frequencies up to 33 Hz for the UHS/RSW Pump House are presented in Table 3H.6-3. Accelerations and displacements at key locations are provided in Table 3H.6-4. The SSE loads at select locations are provided in Table 3H.6-4a. Response spectra at the major equipment elevations and support points are provided in Figures 3H.6-16 through 3H.6-39. Combined forces and moments at critical locations, along with required and provided reinforcements, are provided in Tables 3H.6-7 through 3H.6 9.

The analysis of RSW Piping Tunnels is presented in Section 3H.6.6.2.2.

3H.6.5.2.3 Procedures for Analytical Modeling

The seismic analysis of the UHS basin and enclosed cooling tower as well as RSW pump house for each unit was performed using a three-dimensional finite element model presented in Figure 3H.6-40. The material properties for concrete elements of the model are presented in Section 3H.6.4.4.1. Uncracked concrete section was used for member stiffness. Another case with cracked concrete section properties was analyzed. The section modulus of the cracked concrete was based on 50% of the uncracked section modulus. For structural steel elements the Young's Modulus of 29x10₆ psi and Poisson's ratio of 0.3 was used. The model consists primarily of plate elements that represent the reinforced concrete walls, buttresses, and foundation as well as the walls and slabs of the basin, cooling towers, and pump house. Beam elements were used to represent concrete columns and beams. Finally, solid elements were used to represent the basin and pump houses house basemat. The floor and wall flexibility was modeled in the finite element model. The structural model mesh size is detailed enough to model the principal features of the structure and transmit frequencies of at least 33 Hz. The analysis was performed in the frequency domain as described in DCD Appendix 3A. The input time histories were defined at a time step of 0.005 seconds. The same time step was used for generation of the instructure response spectra.

Rev. 07

The mass of the structures was represented primarily by the density of the plate, beam, and solid elements comprising the model. The dead load of the structures and major equipment (fans and pumps) was included along with a 50 psf load to account for the attached piping, grating, electrical cable trays and conduits, HVAC duct work etc., as described in Section 3H.6.4.3.1.1. In addition, as described in Section 3H.6.4.3.1.2, 25% of the floor live load was also included. The damping values consistent with Regulatory Guide 1.61 were used as described in Section 3H.6.5.1.2. The impulsive water mass was calculated using the procedure described in Commentary Subsection C3.5.4 of ASCE 4-98, and was included in the model.

3H.6.5.2.4 Soil-Structure Interaction

The following describes the soil-structure-interaction (SSI) analysis for the UHS/RSW Pump House.

SSI effects were accounted for by the use of the SASSI2000 computer program using subtraction method of analysis, in conjunction with time histories described in Subsection 3H.6.5.1.1.2 and the structural model described in Subsection 3H.6.5.2.3 and shown in Figure 3H.6-15. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. The input ground motion time histories described in Section 3H.6.5.1.1.2 were applied at the finished grade in the free field. SASSI2000 implicitly considers transmitting boundaries in the formulation of impedance calculation. SASSI2000 sub-structuring method was used and no boundary condition besides the standard SASSI2000 elastic half space at the bottom of the site soil layering was used. The SASSI2000 analysis addresses the embedment of the structure, groundwater effects, the layering of the soil, and variations of the strain-dependent soil properties. A separate SSI analysis for effects of side soil-wall separation during the seismic event was performed for mean in-situ soil profile using the method in Section 3.3.1.9 of ASCE 4-98. Results of this analysis were enveloped with other SSI analyses.

The strain-compatible soil shear wave velocity and damping values for the SSI analysis were obtained from the same site response analysis which was used to develop the GMRS, as described in Section 2.5S.2.5. The seismic site response analysis was conducted using P-SHAKE computer program, which also provided the strain-compatible soil properties for the SSI analysis. A set of mean strain-compatible shear wave velocity and damping profiles along with the associated standard deviations was calculated. The calculated mean properties and associated standard deviations were used to develop the best estimate (BE), upper bound (UB), and lower bound (LB) profiles. While the BE profile is the mean profile, the UB and LB profiles are the median +/- one standard deviation, respectively, maintaining the minimum variation of 1.5 on soil shear modulus, per the guidance provided in SRP 3.7.2. The corresponding compression wave velocity profiles were calculated using the shear wave velocity and the Poisson's ratio.

For saturated soil, the Poisson's ratio was capped at 0.48 to avoid any potential numerical instability that might be caused if a larger value is used in soil-structure interaction analysis using the SASSI2000 program. A sensitivity study was performed

to assess the effect of capping the Poisson's ratio in the seismic SSI results. Control Building (CB) SSI model was used to perform this sensitivity study. SSI analysis results using Poisson's ratio limit of 0.495 were compared with the analyses results which used the Poisson's ratio limit of 0.48. The responses compared were (a) transfer functions, (b) total seismic forces, (c) maximum nodal accelerations and (d) response spectra. The comparisons were performed for the lower bound soil and the upper bound soil.

Based on these comparisons, it was concluded that the results obtained from Poisson's ratio capped at 0.495 are in general close to the corresponding enveloped responses obtained from the Poisson's ratio capped at 0.48, except for some of the responses in the vertical direction, especially for the vertical responses of the floor slabs. The following considerations apply to these exceedances.

- For the Control and Reactor Buildings, where the original site-specific SSI analyses used 0.48 as the Poisson's ratio cut-off, as described in Appendix 3A, it was shown that the DCD responses were higher than the site-specific responses. Even the modified responses, with 0.495 as the Poisson's ratio cut-off, show similar margins in comparison to the DCD responses. Therefore, the increases in vertical responses shown in this sensitivity study, as discussed above, are not significant to the conclusion that the DCD responses significantly envelop the site-specific responses for the Reactor and Control Buildings.
- For the new SSI analyses of the site-specific structures, a Poisson's ratio of 0.495 has been used. Therefore, the conclusions derived from the new analyses include the effect of higher Poisson's ratio cut-off.

The resulting strain-compatible properties for the three profiles, which were used in the SSI analysis, are presented in Table 3H.6-1. The soil layer thicknesses used in the SSI model were sufficiently small to transmit frequencies up to 33 Hz for mean soil properties in the vertical direction (i.e. SASSI2000 interaction nodes spacing in the vertical direction).

The layer thicknesses used for both in-situ soil and back fill soil, in the SSI model, were modified from those shown in Tables 3H.6-1 and 3H.6-2 to have thicknesses sufficiently small enough to conservatively transmit frequencies up to 33 Hz in the vertical direction for the corresponding mean soil properties. Tables 3H.6-1a, b, and c provide the actual layer thicknesses, along with the strain-compatible soil properties data and passing frequency values for the three in-situ soil profiles, i.e., mean, upper bound, and lower bound, respectively. Similar data for the backfill are provided in Tables 3H.6-2a, b, and c. The layer thicknesses, H, were computed using the following equation:

$$H = V_s / (5*F_{t-s})$$

where V_s is the shear wave velocity and F_{t-s} is the transmittal frequency.

In the SSI model, the layer thicknesses used for the mean soil case were also used for the lower bound in-situ and back fill soil. Based on the above equation, the transmittal frequencies for the lower bound soil layers are 26 Hz or higher in the vertical direction. ASCE 4-98, Section 3.3.3.5 recommends that "The cutoff frequency may be taken as twice the highest dominant frequency of the coupled soil-structure system for the direction under consideration, but not less than 10 Hz." The dominant frequency of coupled soil-structure system has been calculated using the procedure recommended in ASCE 4-98, Section 3.3.3.5. Based on this calculation the highest frequency of the coupled soil-structure system is less than 6 Hz. Thus, the cutoff frequency is required to be at least 12 Hz. The lower bound soil model's lowest transmittal frequency of 26 Hz is larger than the required 12 Hz, and therefore is acceptable.

In order to account for the backfill placed adjacent to the walls, an additional set of SSI analyses was performed by modeling the backfill as the soil horizon above the foundation level in the SASSI2000 model. The soil layer thicknesses used for the back fill were sufficiently small to transmit the required frequencies as explained in the above paragraph. The responses obtained from this set of SSI analyses and the analyses using in-situ soil as the horizon were enveloped.

The following properties were used for the backfill to obtain shear wave and compression wave velocities, and damping ratios used in the SSI analysis:

- Poisson's Ratio:.....0.42 above water table, 0.47 below water table

Based on the physical properties of the backfill described above, its strain compatible dynamic soil properties are estimated using the following steps:

(1) Determine SSE compatible soil shear strains in the backfill

It is assumed that the strains in the backfill are same as in the surrounding soil (in-situ soil). This assumption is reasonable because the extent of the backfill is small as compared to the surrounding soil and the primary motion of the backfill will be about the same as the surrounding soil. The strain in the in-situ soil is calculated using the following steps:

(a) The ratio G / Gmax for an in-situ stratum is calculated using the mean strain compatible shear wave velocity (V_{- strain}) in layers (from Table 3H.6 1) within the stratum and the average field measured shear wave velocity (V_{-field}, from Table 2.5S.4-27) in the following equation:

 $G / Gmax = [V_{-strain} / V_{-field}]^2$

- (b) Using the shear modulus degradation curve (see Table 2.5S.4-32) of the soil stratum and the above calculated G / Gmax ratio, the SSE induced shear strain is calculated for the stratum.
- (c) An average value of shear strain is calculated for the entire backfill depth by averaging the strain values for all the strata.
- (2) Determine the strain compatible shear modulus and damping values of the backfill

The backfill is granular soil compacted to 95% Modified Proctor (85% relative density). Based on this, shear modulus degradation curve for the 85% relative density sand from Earthquake Engineering Research Center (EERC) Report 70–10 (Soil Moduli and Damping Factors for Dynamic Response Analysis, by Seed and Idriss) is used for calculating the strain compatible shear modulus, for the strain calculated in Step 1. The strain compatible shear modulus of the backfill, G_{backfill} is calculated using the following equation:

 $G_{\text{backfill}} = 1000 \text{ K}_2 \sigma_m^{\frac{1}{2}} \text{ psf}$ (EERC Report 70-10)

Where the coefficient K₂ is from the EERC Report 70-10 degradation curve for the calculated shear strain, and σ_m is the effective mean principal stress in the soil.

The damping value of the backfill is estimated using the sand strain dependent damping curve provided in EERC Report 70-10.

The above strain compatible shear modulus is the best estimate values (G_m). To consider the variability in shear modulus values, the lower bound (G_{LB}) and upper bound (G_{UB}) values are calculated using SRP Section 3.7.2 criteria.

 $G_{LB} = G_m / 1.5$ $G_{UB} = 1.5 \times G_m$

The corresponding strain compatible shear wave velocities (V_S) and compression wave velocities (V_P) are calculated using the general equations:

 V_S = [G / ρ] $^{1/2}~$ where G is the shear modulus and ρ is the mass density of soil.

$$V_{P} = V_{S} [(2 - 2v) / (1 - 2v)]^{1/2}$$

Where, v is the Poisson's Ratio values equal to 0.42 and 0.47 for the backfill above groundwater and below groundwater table, respectively.

The strain-compatible shear wave and compression wave velocities, and damping ratios calculated as above are used in the three backfill models (mean, upper bound, and lower bound) are shown in Table 3H.6-2.

3H.6.5.2.4.1 Soil-Structure Interaction Analysis for Empty UHS Basin

Section 3H.6.5.2.4 describes the SSI analysis for the full UHS basin case. An additional SSI analysis was performed for the empty UHS basin case. This analysis uses the same model and methodology as the analysis described in Section 3H.6.5.2.4 except that analyses for mean and lower bound backfill soil cases were excluded because their properties are bounded by the lower and upper bound in-situ soil cases. Also Poisson's ratio limit was set at 0.495 for calculation of compression wave velocity for soil layers below the ground water table. Results of this analysis and the analysis for the full basin case were enveloped.

3H.6.5.2.4.2 Additional Sensitivity Analysis for Refined Mesh

Additional SSI analyses were performed using a refined mesh for the soil and structural model. These analyses are described below.

Two additional UHS/RSW Pump House SSI analyses were performed for the upper bound soil profile case (UB soil case) considering both full and empty UHS basin, with a refined model shown in Figure 3H.6-15h.

The refined SSI model used for these analyses has the following passing frequency capability (passing frequency, $f = V_s / 5$ h, where Vs is the shear wave velocity of the soil layer and h is the vertical or horizontal distance between the adjacent interaction nodes):

Vertical direction: 40.4 Hz

Horizontal direction: 23.5 Hz

For soil layers below groundwater level, the Poisson's ratio was capped at 0.495 for determining the compression wave velocity. A cut-off frequency of 33 Hz was used in these analyses for transfer function calculation.

The passing frequency of about 24 Hz in the horizontal direction was selected since the site has a deep soil profile and the SSI frequencies are below 6 Hz. Also, as noted in SRP 3.7.1 Revision 3, Appendix A, the energy content of the earthquake time histories above 24 Hz is inconsequential.

Based on the results of the above refined SSI analyses, and additional structural mesh sensitivity analyses, <u>envelope modification factors were determined for increase of</u> the following in-structure response spectra obtained from the SSI analyses described in Section 3H.6.5.2.4 and 3H.6.5.2.4.1 were modified by multiplying them with the modification factors shown in Table 3H.6 17. Then, the results of the full and empty-basin analyses were enveloped.

• Vertical direction spectra at the center of the Pump House Roof

- Vertical direction spectra at the center of the Pump House Operating Floor
- Vertical direction spectra of the Cooling Tower Walls
- Out-of-plane horizontal spectra of the Basin Walls

The final in structure response spectra are shown in Figures 3H.6-16 through 3H.6-39.

3H.6.5.2.4.3 Final In-Structure Response Spectra

In response to issues with the subtraction method of analysis identified by the Defense. Nuclear Facilities Board (DNFSB) discussed in Section 3H.10, the SSI analysis for the upper bound in-situ soil case was repeated for both full and empty basin cases using the modified subtraction method of analysis. Also, in these analyses the groundwater table was changed to 6 ft below grade. Based on comparison of the resulting response spectra from these analyses to those from the subtraction method of analysis additional modification factors were determined for increase of in-structure response spectra from the subtraction method of analysis to account for the effect of using the modified subtraction method. The product of these modification factors and those described in Section 3H.6.5.2.4.2 as shown in Table 3H.6-17 were used to increase the in-structure response spectra described in Sections 3H.6.5.2.4 and 3H.6.5.2.4.1. Then, the results of the full and empty basin analyses were enveloped.

The final in-structure response spectra are shown in Figures 3H.6-16 through 3H.6-39.

3H.6.5.2.5 Development of In-Structure Response Spectra

In-structure response spectra (ISRS), shown in Figures 3H.6-16 through 3H.6-39 were developed as part of the SSI analysis in accordance with RG 1.122. The ISRS in a given direction was obtained by combining the three ISRS in that direction (developed from the separate analyses of the three directions of input motion) by the square-root-of-the-sum-of-the-squares (SRSS) method. The frequency increment for the calculation of ISRS was either smaller than or the same as provided in Table 1 of Regulatory Guide 1.122. The ISRS were broadened by $\pm 15\%$ based on the guidance provided in Regulatory Guide 1.122. See Section 3H.6.5.2.9 for the treatment of the effects due to concrete cracking.

3H.6.5.2.6 Three Components of Earthquake Motion

Separate analyses were performed in three orthogonal (two horizontal and one vertical) directions. Total structural responses (accelerations, displacements, and forces) were calculated by combining the co-directional responses as described in Subsection 3H.6.5.1.1.2.

3H.6.5.2.7 Combination of Modal Responses

Since a frequency-domain seismic analysis was performed, there were no modal responses to be combined.

3H.6.5.2.8 Interaction of Non-Category I Structures with Category I SSCs

There are no non-Category I structures near the site-specific seismic Category I structures. Consequently, there is no interaction between non-Category I and the site-specific seismic Category I structures.

3H.6.5.2.9 Effects of Parameter Variations on Floor Responses

The soil property variation described in Subsection 3H.6.5.2.4 is accounted for in the generation of the ISRS. In addition, the impact of variations in the input parameters to the seismic analysis is accounted for by broadening the FRS in accordance with RG 1.122. To account for concrete cracking, in addition to other uncertainties, the ISRS are developed with structural properties based on cracked concrete stiffness and the mean soil properties. These spectra are enveloped with the spectra from the uncracked analysis and, then, widened by $\pm 15\%$ to obtain final ISRS for use in design.

3H.6.5.2.10 Use of Equivalent Vertical Static Factors

Since a separate seismic analysis was performed for the vertical direction, equivalent static factors were not used to define the vertical seismic responses.

3H.6.5.2.11 Methods Used to Account for Torsional Effects

Inherent torsion (i.e. torsion resulting from eccentricity between the locations of the center of mass and the center of rigidity) is accounted for in the seismic analysis. Note that the structural model in the SSI analysis of the UHS/RSW pump house is a detailed 3-D finite element model which incorporates torsional degrees of freedom and eccentricities. The SSI analysis does not account for accidental torsion.

The accidental torsion is computed in accordance with the SRP Acceptance Criteria 3.7.2.II.11 considering an additional eccentricity of $\pm 5\%$ of the maximum building dimension for both horizontal directions. The magnitude and location of the eccentricities in the two horizontal directions are determined separately at each floor elevation. The induced member forces due to this accidental torsion are obtained from static analysis of the structure and are added to the induced forces due to other applicable loads whether the analysis predicts positive or negative results (i.e. absolute sum).

3H.6.5.2.12 Comparison of Responses

Since only a frequency-domain analysis is performed, comparison of responses is presented.

3H.6.5.2.13 Analysis Procedure for Damping

The SSI analysis accounts for the structural and soil-damping described in Subsection 3H.6.5.1.2.

3H.6.5.2.14 Determination of Seismic Overturning Moments and Sliding Forces for Seismic Category I Structures

The evaluation of seismic overturning moments and sliding accounts for the simultaneous application of seismic forces in three directions using 100%, 40%, 40% combination rule as shown below:

±100% X-excitation ±40% Y-excitation +40% Z-excitation ±40% X-excitation ±100% Y-excitation +40% Z-excitation

(Note: X & Y are horizontal axes and Z is vertical axis. Positive Z is upward. Also, $\pm 40\%$ X-excitation $\pm 40\%$ Y-excitation $\pm 100\%$ Z-excitation is not critical for the UHS/RSW Pump House).

The resisting forces and moments due to dead load are calculated using a reduction factor of 0.90. Resisting forces and moments due to soil are based on at-rest soil pressure, or passive soil pressure, as appropriate. The friction coefficients used for the sliding evaluation are 0.30 under the RSW Pump House and 0.40 under the UHS Basin. See Figure 3H.6-137 for formulations used for calculation of factors of safety against sliding and overturning. The calculated stability safety factors for the UHS/RSW Pump House are provided in Table 3H.6-5.

3H.6.5.2.15 Plant Shutdown Criteria

The plant shutdown criteria described in DCD Section 3.7.4.4 will be used based on the site-specific SSE response spectra shown in Figures 3.7-1a and 3.7-2a.

3H.6.5.2.16 Seismic Category I Substructures

Analysis and design of site-specific Seismic Category I substructures (e.g., platforms, support frame structures, buried piping, tunnels, etc.) are in accordance with DCD Tier 2 Section 3.7.3, except that the site-specific SSE is used as seismic input. There is no site-specific Seismic Category I above ground tank at STP 3 & 4.

3H.6.5.3 Seismic Analysis of RSW Piping Tunnels

The RSW Piping Tunnel runs north from the UHS/RSW Pump House to Control Building (CB) and passes between the Reactor Building (RB) and Radwaste Building (RWB). Since, the tunnel is a long structure, two dimensional (2D) SSI analyses have been performed for this tunnel. The following three sections of the RSW Tunnel have been used in the SSI analyses:

- An east-west typical 2D section of the tunnel between the UHS/RSW Pump House and the RB for SSI analysis of the RSW tunnel.
- An east-west 2D section of the tunnel between the RWB and RB, for structure-soil-structure interaction (SSSI) analysis to determine the SSSI effect on the seismic soil pressures.

 A north-south 2D section of the tunnel between the Diesel Generator Fuel Oil Storage Vault (DGFOSV) and the UHS/RSW Pump House, for SSSI analysis to determine the SSSI effect on the seismic soil pressures.

All of the above SSI analyses have been performed using SASSI2000 computer program. The following summarizes the details of the above stated SSI and SSSI analyses.

SSI Analysis of the Typical 2D Section of RSW Tunnel (using the direct method of analysis)

Figure 3H.6-209 shows the structural part of the 2D plane-strain model of the reinforced concrete RSW Piping Tunnel with 2 ft thick mud mat under the base slab. The top of the tunnel is 1.75 ft below grade. The model uses 4-node plane-strain elements to model the 3 ft thick exterior walls, 3 ft thick base slab, two 2 ft thick intermediate floors, 2 ft thick mud mat and the 1.75 ft soil above the tunnel. As shown in Figure 3H.6-209, spring elements are added on the side walls of the tunnel to calculate the seismic soil pressures on the tunnel walls.

The Specifics of this 2D SSI model are as follows:

- The structural properties (i.e. mass and stiffness) for the 2D model correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the tunnel.
- Layered soil is modeled up to 124 ft depth with half space below it (more than two times the horizontal dimension of RSW Piping Tunnel plus its embedment depth).
- Six cases of strain dependent soil properties representing in-situ lower bound, mean and upper bound; and backfill lower bound, mean and upper bound are considered.
- Analysis cases also include one case with cracked concrete (50% concrete modulus value) and one case with soil separation (20 ft depth). Backfill upper bound soil case was used in these analyses.
- Concrete and mud mat damping are assigned 4% for all cases, except 7% damping is assumed for the cracked case.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.

- Model is capable of passing frequencies for both vertical and horizontal directions at least up to 32.9 Hz.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is the amplified site specific SSE motion considering the effect of nearby heavy RB and UHS/RSW Pump House structures. These amplified motions were obtained from three dimensional (3D) SSI analyses of the RB and UHS/RSW PH SSI analyses as described below. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10.
- In the three dimensional SSI analysis of the RB for site-specific SSE, one interaction node at the ground surface and one interaction node at the depth corresponding to the bottom elevation of the RSW Piping Tunnel were located at six locations along the centerline of the RSW Piping Tunnel.
- In the three dimensional SSI analysis of the UHS/RSW Pump House for site-specific SSE, one interaction node at the ground surface and one interaction nodeat the depth corresponding to the bottom elevation of the RSW Piping Tunnel were located at one location at centerline of the Tunnel.
- The resulting amplified response spectra at the interaction nodes, representing the response of the RSW Piping Tunnel, from the above SSI analyses of RB and UHS/RSW Pump House were obtained. In order to find a reasonable envelop of these response spectra, to be used in the SSI analysis of the RSW Piping Tunnels, these spectra were compared to 1.15 x site-specific SSE to identify those exceeding 1.15 x site-specific SSE. Figures 3H.6-209a through 3H.6-209d include the response spectra which exceed 1.15 x site-specific SSE.
- Based on the comparison of the response spectra shown in Figures 3H.6-209a through 3H.6-209d, six motions were selected as envelop amplified motions for SSI analysis. These six motions correspond to 1.15 x site-specific SSE andamplified motion time histories for Nodes 29378, 29379, 29390, 29392, and 15129.
- SSI analyses of the RSW Piping Tunnel were performed, for each soil case, using 1.15 x site-specific SSE input and acceleration time histories for the five nodes, noted above, obtained from the RB and UHS/RSW Pump House SSI analyses for the corresponding soil cases.
- The horizontal direction and vertical direction input motions were applied at the grade elevation.
- The responses from the horizontal and vertical direction excitations were combined using square root of sum of square (SRSS) method.

- The responses from all SSI analyses from the six soil cases, concrete cracked case and soil separation case were enveloped.
- The in-structure response spectra were peak widened by ± 15% at frequency scale.
- Envelope of the resulting response spectra for the base slab, intermediate floors and the roof slab shown in Figures 3H.6-138 and 3H.6-139 are used as the design in-structure response spectra for the RSW Piping Tunnel.

SSSI Analysis of the East-West 2D section of the RSW piping tunnel between the RWB and RB

Figure 3H.6-210 shows the structural part of the 2D plane-strain model of RB + RSW Piping Tunnel + RWB. Specifics of this SSSI analysis are as follows:

- <u>Subtraction method of analysis is used</u>. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10.
- The structural properties (mass and stiffness) for the 2D model of the individual structures correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the respective structure.
- Layered soil is modeled up to 551 ft depth with halfspace below it (more than two times the maximum horizontal dimension of any of the buildings plus their embedment depth).
- Lower bound in-situ, upper bound in-situ, and upper bound in-situ with upper bound backfill strain-dependent soil properties were used in the SSSI analysis.
- The damping of structural part of the model is 4%.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.
- Model is capable of passing frequencies of at least up to 35.9 Hz in the vertical direction and 61.6 Hz in the horizontal direction.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is site specific SSE motion.
- The horizontal (E-W) input motion is applied at the grade elevation.

• Figures 3H.6-212 and 3H.6-213 show the resulting soil pressures.

SSSI Analysis of the North-South 2D section of the RSW piping tunnel between the DGFOSV and UHS/RSW PH

Figure 3H.6-211 shows the structural part of the 2D plane-strain model of RB + two DGFOSVs + RSW Piping Tunnel (adjacent to UHS/RSW Pump House) + UHS/RSW PH. Specifics of this SSI analysis are as follows:

- <u>Subtraction method of analysis is used. For resolution of issues with the</u> <u>subtraction method of analysis identified by the Defense Nuclear Facilities</u> <u>Safety Board (DNFSB) see Section 3H.10.</u>
- The structural properties (mass and stiffness) for the 2D model of the individual structures correspond to per unit depth (1 ft dimension in the out-of-plane direction) of the respective structure.
- Layered soil is modeled up to 546 ft depth with halfspace below it (more than two times the maximum horizontal dimension of any of the buildings plus their embedment depth).
- Lower bound in-situ and upper bound in-situ strain-dependent soil properties were used in the SSSI analysis.
- The damping of structural part of the model is 4%.
- Groundwater was considered at 8 ft depth (26 feet MSL). Subsection 2.4S.12 and Table 2.0-2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results. The ground water effect is included by using minimum P-wave velocity of 5000 ft/sec except for cases where use of this minimum P-wave velocity results in Poisson's ratio in excess of 0.495.
- Model is capable of passing frequencies of at least up to 35.9 Hz in the vertical direction and 61.6 Hz in the horizontal direction.
- Cut-off frequency for transfer function calculation is 33 Hz.
- Input motion is site specific SSE motion.
- The horizontal (N-S) input motion is applied at the grade elevation.
- Figures 3H.6-214 and 3H.6-215 show the resulting soil pressures.

3H.6.6 Structural Analysis and Design Summary

3H.6.6.1 Analytical Models

The structural analysis and design of the UHS basin and the RSW pump house was performed using a finite element model (FEM). The FEM model is shown in Figure 3H.6-40. Two SAP2000 3D FEA models are used to calculate the element design forces; one model for short term loading (seismic) and one model for long term loading (non-seismic). The only differences between the two FEA models are the loading and soil springs applied in the global Z (i.e. vertical) direction. The stiffness of the soil springs for both the short term loading and long term loading models are determined by multiplying the corresponding foundation subgrade modulus for the short term and long term loading by the tributary area of mat elements for each spring.

The resulting element forces from the short term loading model for X, Y, and Z seismic loads are combined by the SRSS method. These SRSS'd element forces constitute the E' term in the third and fifth load combinations in Section 3H.6.4.3.4.3. The element forces that comprise the E' term are added and subtracted from the other applicable resulting element forces from the long term loading model in the load combinations defined in Section 3H.6.4.3.4.3, in a database outside of the FEA model to determine final element design forces for each load combination. Since both the accidental torsional moment and soil loads (H') are directional in nature, they are added algebraically to the seismic load combinations.

The envelope of the seismic accelerations from the refined and original SSI models considering both the full basin and the empty basin were used in the short term loading model. The enveloping SSI nodal accelerations in the global X, Y, and Z directions for both the full basin case and the empty basin case were averaged by group for each of nine groups based on the locations in the UHS / RSW pump house. The final group accelerations used in the full basin seismic load case and the empty basin seismic load case represent the envelope of the original mesh accelerations and the refined mesh accelerations.

The mass of the structure, equipment weights, seismic live loads, and hydrodynamic forces were normalized by a factor of 1 g in the equivalent static seismic FEA model. Depending on their location in the structure, these loads were multiplied by the group acceleration corresponding to their location in the structure and combined with other seismic loads by first adding the seismic loads in each direction and then combining the X, Y, and Z components by the SRSS method. Forces and moments determined from horizontal section cuts from the equivalent static FEA model are compared to similar forces and moments determined from the horizontal section cuts from the SSI analysis model to ensure that the design forces used in the equivalent static FEA model envelope the maximum SSI analysis forces.

For the portions of the UHS basin where liquid-tightness is required (i.e., exterior walls and basemat of the basin), in addition to satisfying ACI 349 strength requirements, the required strength was increased by the environmental durability factors noted in Subsection 3H.6.4.3.4.3 per Section 9.2.8 of ACI 350-01. Detailed stability evaluations were performed for sliding, overturning, and flotation for normal operating cases and

for the case of an empty UHS basin. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for consideration of the X, Y, and Z seismic excitations.

3H.6.6.2 Analytical Approach

3H.6.6.2.1 UHS Basin, UHS Cooling Tower Enclosure, and RSW Pump House

The analysis described in Subsection 3H.6.6.1 considers the following loads, combined in accordance with Subsection 3H.6.4.3.4:

- Dead and live loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses as specified in Subsection 3H.6.4.3.1, plus the weight of the UHS cooling tower fill, equipment and commodities in the RSW pump house.
- Hydrostatic and hydrodynamic (impulsive and convective) loads corresponding to the water in the basin, and on the walls and the piers of the UHS basin. The hydrodynamic loads are calculated in accordance with Subsection C3.5.4 of ASCE
 4 and meet the guidance provided in SRP 3.7.3, Acceptance Criterion 14.
- Specifically the "Housner method" described in TID-7024 is used to determine the hydrodynamic impulsive and convective masses.
- The impulsive masses are applied to the walls of the UHS Soil-Structure Interaction (SSI) model. Therefore, the horizontal impulsive-mode spectral acceleration is based on consideration of the flexibility of the tank.
- The seismically induced hydrodynamic pressures on the tank walls are determined by the modal and spatial combination methods outlined in SRP Section 3.7.2 including the effects of soil-structure interaction.
- Since the fundamental sloshing (convective) frequency is so low (0.135 cycles per second in the N-S direction and 0.078 cycles per second in the E-W direction), the convective mass is not included in the SSI model but is considered in the design by employing the spectral acceleration of the horizontal convective frequency at 0.5 percent damping.
- The hydrodynamic pressure is added to the hydrostatic pressure to account for the induced tension and compression forces on basin walls in the design.
- At-rest lateral soil pressure on the walls of the UHS basin and RSW pump houses.
- Hydrostatic pressures on the walls of the UHS basin and RSW pump houses due to groundwater.
- Envelope of dynamic lateral soil pressures on the walls of the UHS basin and RSW pump houses due to an SSE, calculated from (a) methodology defined in Subsection 3.5.3.2.2 of ASCE 4, (b) SSI analysis, and (c) structure-soil-structure (SSSI) analysis. At rest lateral soil pressures are presented in Figures 3H.6-41 through 3H.6-43. Figures 3H.6-218 through 3H.6-220 provide a comparison of

lateral soil pressures from SSI and SSSI analysis to those from ASCE 4 methodology.

Rev. 07

- Surcharge pressure of 300 psf (14.4 kPa) is applied to the UHS basin and RSW pump houses.
- SSE forces corresponding to the weight of the structures being acted on by the accelerations established by the SSI analysis.
- Wind loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses calculated as indicated in Subsection 3H.6.4.3.2.
- Tornado wind and pressure loads on the UHS basin, UHS cooling tower enclosures, and RSW pump houses calculated as specified in Subsection 3H.6.4.3.3.1.
- The design flood loads on the RSW pump houses and tunnels are as stated in Subsection 3H.6.4.2.3.

3H.6.6.2.2 RSW Piping Tunnels

The individual components of the RSW Piping Tunnels (roof slab, intermediate slabs, base mat and walls) have out-of-plane frequency in excess of 33 Hz and their out-of-plane seismic loads are determined using a conservative acceleration of 0.21g which exceeds the maximum Zero Period Acceleration (ZPA) of response spectra Figures 3H.6-138 and 3H.6-139. Manual calculations are used for the analysis and design of individual components of the RSW Piping Tunnels (roof slab, intermediate slab, base mat, walls) considering all applicable loads and load combinations including dead load, live load, earth pressure loads, wind and tornado loads, SSE seismic loads, internal flood loads.

In general the walls and slabs are designed as one-way slabs with walls spanning in the vertical direction and the slabs spanning in the East-West direction (normal to the tunnel axis). All connections are conservatively considered pinned except for those connecting to the base mat, which are considered fixed. The resulting moments and shears from this simplified analysis along with any induced axial tension or compression due to dead load and/or reactions from adjoining elements are used to determine the required rebar in accordance with the requirements of ACI 349-97. Table 3H.6-6 provides the design summary for RSW Piping Tunnels.

The tensile axial strain on the RSW Tunnel due to Safe Shutdown Earthquake (SSE) wave propagation is determined based on the equations and commentary outlined in Section 3.5.2.1 of ASCE 4-98. Equation 3.5-1 of ASCE 4-98 is used to compute the axial strain. As this equation gives the upper bound, Equation 3.5-2 from Section 3.5.2.1.2 of ASCE 4-98 is conservatively neglected.

The maximum curvature is computed based on Equation 3.5-3 in Section 3.5.2.1.3 of ASCE 4 98. The maximum curvature is then converted into additional axial strain by multiplying the curvature by the distance from the centroid of the RSW Piping Tunnels

to the extreme fiber of the RSW Tunnel. For these computations, the following parameters are considered:

- An apparent wave velocity of 3,000 ft/sec (as recommended in appendix C3.5.2.1 of ASCE 4-98)
- A maximum ground velocity of 6.24 in/sec (which is based on 48 in/sec/g and sitespecific SSE maximum ground acceleration of 0.13g)
- A triangular soil pressure distribution on the transverse leg of the tunnel near the bend which is limited by the maximum passive pressure using passive pressure coefficient Kp = 3

The tensile axial strain and strain due to maximum curvature are conservatively added together to obtain the actual strain in the longitudinal direction of the RSW Tunnel. The actual strain is then compared to the cracking strain of concrete and maximum allowable strain of the reinforcing. The maximum computed tensile axial strain is 1.8 x 10^{-4} in/in which is about 9% of the rebar yield strain of 2.069 x 10^{-3} in/in. The design also accounts for the induced forces at tunnel bends due to SSE wave propagation. These forces are determined in accordance with Section 3.5.2.2 of ASCE 4-98 by considering the structure as a beam on elastic foundation. To determine the required reinforcement, the induced forces at the tunnel bends are considered to act simultaneously with all other applicable loads (including dynamic soil pressures) in the seismic load combinations.

This analysis considered the loads identified below, combined in accordance with Subsection 3H.6.4.3.4.

- Dead load of the tunnel walls and the soil above the tunnel.
- Live load of 200 psf (9.6 kPa) applied to the floor of the tunnels.
- At-rest lateral soil pressure on the tunnel walls.
- Hydrostatic pressures on the tunnel walls due to groundwater.
- Envelope of dynamic lateral soil pressures on the tunnel walls, due to an SSE, calculated from: (a) using the methodology defined in Subsection 3.5.3.2.2 of ASCE 4-98, (b) soil-structure interaction (SSI) analysis, and (c) the structure-soil-structure interaction (SSI) analysis. At rest lateral soil pressures for typical section of the RSW Piping Tunnels using ASCE 4-98 methodology are presented in Figure 3H.6-44. Figures 3H.6-212 through 3H.6-215 provide comparison of lateral seismic soil pressures from SSSI analysis described in Section 3H.6.5.3 to those from ASCE 4-98 methodology.
- Surcharge pressure of 500 psf (23.9 kPa) applied to the ground above the tunnels.
- SSE forces corresponding to the weight of the tunnels being acted on by the accelerations established by the SSI analysis.

3H.6.6.3 Structural Design

The strength design criteria defined in ACI 349 as supplemented by RG 1.142 as well as ACI 350 (note: ACI 350 is applicable only to the exterior walls below the 71 ft maximum water level and basemat of UHS basin), was used to design the reinforced concrete elements making up the UHS basin and cooling tower enclosures as well as the RSW pump houses and piping tunnels. Concrete with a compressive strength of 4.0 ksi (27.6 MPa) and reinforcing steel with a yield strength of 60 ksi (414 MPa) are considered in the design.

3H.6.6.3.1 UHS Basin/UHS Cooling Tower/RSW Pump House Concrete Wall and Slab Design

The design forces and provided reinforcement for UHS basin, UHS cooling tower, and RSW pump house walls and slabs are shown in Tables 3H.6-7 and 3H.6-8. Each face and each direction of each wall and slab has a corresponding longitudinal reinforcement zone figure. Each wall and slab also has a corresponding transverse shear reinforcement zone figures (Figures 3H.6-51 through 3H.6-136) show the various zones used to define the provided reinforcement based on the finite element analysis results. Actual provided reinforcement, based on final rebar layout, may exceed the reported provided reinforcement and the zones with higher reinforcement may be extended beyond their reported zone boundaries.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the provided reinforcement in each reinforcement zone. For each reinforcement zone, the following out-of-plane moment and axial force couples with the corresponding load combination are reported in Tables 3H.6-7 and 3H.6-8:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has a corresponding axial tension acting simultaneously in the same load combination.
- The maximum moment that has a corresponding axial compression in the same load combination.

For each reinforcement zone, the following-in-plane and transverse shears shear with the corresponding load combination are reported in Tables 3H.6-7 and 3H.6-8. The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone. The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Tables

<u>3H.6-7 and 3H.6-8 correspond to the maximum required transverse reinforcement for</u> an element within that transverse reinforcement zone.

- The in plane shear is the maximum average in plane shear along a plane that crosses the longitudinal reinforcement zone.
- The transverse shear is the maximum average transverse shear along a plane inthat transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination. The UHS basin and RSW pump house basemats were also evaluated for punching shear at critical locations under buttresses and columns.

The forces in the structure caused by differential settlements due to the flexibility of the basin and pump house basemats and supporting soil were accounted for through the use of foundation soil springs in the finite element model. The soil spring stiffness values used in the finite element model were based on the calculated soil subgrade modulus, which is a function of the foundation settlement.

The UHS basin basemat is supported by area springs with the following uniform spring constants in the finite element model:

Vertical springs (with static loads)			
Vertical springs (with seismic loads) 80 kips/ft/ft ²			
North-south springs (with static and seismic loads)			
East-west springs (with static and seismic loads)			
The RSW pump house basemat is supported by area springs with the following uniform spring constants in the finite element model:			
Vertical springs (with static loads)			
Vertical springs (with seismic loads) 170 kips/ft/ft ²			
North-south springs (with static and seismic loads) 112 kips/ft/ft ²			
East-west springs (with static and seismic loads) 104 kips/ft/ft ²			

The RSW pump house operating floor and roof were designed with composite steel beams and concrete slabs for vertical loading. The composite beams span in the eastwest direction with the concrete slab designed as spanning one-way between the composite beams. The operating floor and roof slabs also act as diaphragms to transfer lateral loads. The provided reinforcing for the operating floor and roof slabs is reported in Table 3H.6-8.

3H.6.6.3.2 UHS Basin Beam and Column Design

The beams and columns in the UHS basin were represented with frame elements in the finite element model. The frame forces for every load combination in the finite element model were evaluated to determine the provided reinforcement for each beam and column in Table 3H.6-9. For each beam and column, the following forces and the corresponding load combination are reported in Table 3H.6-9:

- The maximum axial compression force with the corresponding biaxial bending moments (M2 and M3) acting simultaneously from the same load combination.
- The maximum axial tension force with the corresponding biaxial bending moments (M2 and M3) acting simultaneously from the same load combination. Note that the columns do not have an axial tension case.
- The maximum M2 bending moment with the corresponding M3 bending moment and axial force acting simultaneously from the same load combination.
- The maximum M3 bending moment with the corresponding M2 bending moment and axial force acting simultaneously from the same load combination.
- The maximum shear V2.
- The maximum shear V3.
- The maximum torsion.

The provided longitudinal reinforcing in Table 3H.6.9 is determined based on the axial force, biaxial moments (M2 and M3), and torsion. The provided stirrup reinforcing is determined based on the axial force, shears (V2 and V3), and torsion.

3H.6.6.4 Foundations

The foundations for the UHS basin, cooling towers, and pump house consist of a reinforced concrete mat and a lean concrete mud mat supported on undisturbed soil. The RSW piping tunnels, which extend from each pump house to the corresponding control building locations, are provided with flexible connections at the building interfaces that prevent any potential movement of the buildings from creating forces or moments in the tunnels.

The loads and load combinations considered in the design of the common foundation mat are as defined in Subsection 3H.6.4.3. The design is in accordance with the strength design criteria defined in ACI 349 as supplemented by RG 1.142 as well as ACI 350, and considered concrete with a compressive strength of 4.0 ksi (27.6 MPa) and reinforcing steel with a yield strength of 60 ksi (414 MPa).

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs. The most common approach for this analysis is the Winkler Method. In this approach, the soil is considered to have a uniform subgrade modulus under the entire mat and the springs representing the soil are considered to be linear and act independently. In this method, the uniform subgrade modulus is calculated as the average of the subgrade moduli calculated using the settlements for nine points presented in Table 2.5S.4-42. Using the Winkler Method, a uniformly loaded flexible mat foundation will exhibit uniform settlement under the entire mat. Whereas, in reality, due to overlapping stress bulbs beneath the foundation, the springs representing the soil are not independent of each other and thus the settlement at the center of the mat will be greater than the settlement along the mat edges. To account for this effect a "Coupled Method" may be used where dependence of adjacent soil springs is represented by additional springs. Since implementation of this approach is rather complicated and may require development of custom software, use of alternate methods such as the "Pseudo-Coupled Method", described in Section 10.2 of Reference 3H.6-3, where different subgrade modulus values are assigned to different areas (zones) of the mat foundation, have been found to yield acceptable results.

For design, both the Winkler Method and the "Pseudo-Coupled Method" were used and the results were enveloped.

The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the UHS, Pump House, and the RSW Piping Tunnel are as follows:

- Ultimate Heat Sink basin foundation 1/860
- Reactor Service Water Pump House foundation 1/1200
- Reactor Service Water Piping Tunnel foundation 1/3900

To prevent seepage of groundwater through the common foundation or through the walls of the basin and pump houses, a waterproofing membrane is applied to the exposed concrete surface of the mudmat. In addition, a waterproof membrane is installed on the walls up to one foot below grade, with a water proof coating being applied from that level up to the flood level. While, as indicated in FSAR Subsection 3.8.6.1, the waterproofing of the mudmat will not reduce the ability of the foundation to transfer horizontal shear forces to the underlying soil, the waterproof membrane will protect the walls from any possible deleterious effects from aggressive groundwater. To prevent seepage of groundwater into the tunnels, a waterproof membrane is used.

3H.6.6.5 Stability Evaluations

The factors of safety of the combined UHS basin and RSW pump house against sliding, overturning, and flotation are provided in Table 3H.6-5. The factors of safety of the RSW Piping tunnel against sliding, overturning and flotation are provided in Table 3H.6-16.

3H.6.7 Diesel Generator Fuel Oil Storage Vaults (DGFOSV)

The Diesel Generator Fuel Oil Storage Vaults (DGFOSV) are reinforced concrete structures, located below grade with an access room above grade. The DGFOSV house fuel oil tanks and transfer pumps. The DGFOSV are buried in the structural back-fill. The embedment depth to the bottom of the 2 ft thick mudmat is approximately 45 ft, the maximum height from the bottom of the mudmat is approximately 61 ft, and the basemat dimensions are approximately 81.5 ft by 48 ft. Properties of the backfill are described in Section 3H.6.5.2.4.

A summary of the extreme environmental design parameters is presented in Table 3H.9-1.

Two DGFOSV are located about 53 feet away from the south face of the Reactor Building (RB), which is a heavy multistory structure. The third DGFOSV is located approximately 40 feet away from the north face of the Reactor Service Water (RSW) Pump House. Figure 3H.6-221 shows the DGFOSV locations relative to other structures. Considering the soil profile at the STP Units 3 & 4 site, the induced acceleration at the foundation level of the DGFOSV during a safe-shutdown earthquake (SSE) event may be amplified due to their close proximity to the RB (for the two) or the RSW Pump House (for the third). To establish the input motion for the soil-structure interaction (SSI) analysis of the DGFOSV, considering the impact of the nearby heavy RB (for the two) and RSW Pump House (for the third) structures, an analysis as described below was performed.

Five interaction nodes at the ground surface and five at the depth corresponding to the bottom elevation of the DGFOSV foundations are added to the three dimensional SSI SASSI2000 model of the RB for obtaining free field responses for the three DGFOSV. These five nodes correspond to the four corners and the center of the DGFOSV. This RB SSI model is analyzed for the STP site-specific SSE. For each of these three DGFOSV, first an average of the spectra at five nodes at the surface and foundation each is calculated and then envelope of the two average spectra is calculated. Similarly, in the SSI analysis for the RSW Pump House, interaction nodes are added in the model and amplified motion for the DGFOSV close to the RSW Pump House is obtained. Since the diesel oil tank is a standard plant equipment, the input motion for the SSI analysis also considers the 0.3g Regulatory Guide 1.60 response spectra. Therefore, the envelope of the envelope average spectra for the three DGFOSV and the 0.3g Regulatory Guide 1.60 response spectra are used as the input response spectra for the SSI analysis of the DGFOSV. As shown in Figures 3H.6-222a through 3H.6-222 c, the 0.3g Regulatory Guide 1.60 response spectra were found to be the bounding spectra. The DGFOSV and the equipment and components inside the vault are designed using the results of the SSI analysis.

The comparison of response spectra (the minimum required 0.1g Regulatory Guide 1.60 spectra, the FIRS, and the deconvolved SHAKE outcrop spectra) at the foundation level of the DGFOSV is presented in Figures 3H.6-11d through 3H.6-11L. As can be seen from these figures, the deconvolved SHAKE outcrop spectra envelop the minimum required spectra and FIRS for the three sets of soil properties.

The following two types of soil-structure interaction (SSI) analyses are performed for DGFOSV:

Rev. 07

- 3D SSI analyses of DGFOSV alone for calculating in-structure response spectra and design accelerations/forces of the structure. These analyses were performed considering both full and empty fuel oil tanks.
- 2D structure-soil-structure interaction (SSSI) analysis of DGFOSV and adjacent structures to obtain seismic soil pressures.

3D SSI Analysis

The SSI analyses of the 3D model of DGFOSV are performed using SASSI2000 computer program (using <u>the modified</u> subtraction method).

Structural Model:

The structural part of the model consists of shell elements to model the exterior walls, and the roof slabs and 3D solid elements to model the basemat and the mud mat. Structure self weight and other applicable weights of equipment, live load, piping, metal decking, missile barrier cover are included in the structural model. The fuel tank is modeled with the fuel and tank weight lumped at the center of gravity of the tank and the tank lumped weight rigidly connected to the base mat at tank saddle locations. The fuel tank procurement specification will require that the fuel tank with fuel in it should have predominant frequencies greater than 33 Hz in horizontal and vertical directions. The fuel tank portion of the model has been assigned a damping value of 0.5%. For the other parts of the structure two damping values are used; 7% damping and 4% damping. The results from the 7% structural damping are used for design of the DGFOSV. The results from the 4% damping are used for generation of in-structure response spectra. Both full and empty fuel oil tank conditions are considered in the analysis. Figure 3H.6-222 shows the typical 3D structural model of the DGFOSV for various SSI analyses. The following provides the details of the SSI model and method of analysis.

Strain Dependent Soil Properties Used in SSI Analyses:

The strain dependent soil properties used in the model are in accordance with the properties provided in Table 3H.6-1 for the in-situ soil and Table 3H.6-2 for the backfill soil, with the exception that the groundwater table is changed to 6 <u>ft below grade and for soil layers below the ground water table, the Poisson's ratio is capped at 0.495 for determining the compression wave velocity. The shear wave velocities in backfill are also adjusted as described in Section <u>3H.6.5.2.4 for groundwater table at 6 ft below grade</u>. The thickness of soil layers are adjusted to provide a vertical direction passing frequency of at least 33 Hz (based on one fifth of shear wave length criterion).</u>

Analysis Cases, Passing Frequency and Cutoff Frequency for the SSI Analyses:

The following cases are analyzed for both 4% and 7% structural damping cases:

For full fuel oil tank case:

- Lower Bound (LB) in-situ soil
- Mean in-situ Soil
- Upper Bound (UB) in-situ soil
- LB backfill over LB in-situ soil
- Mean backfill over mean in-situ soil
- UB backfill over UB backfill
- UB in-situ soil with soil separation
- UB in-situ soil with cracked concrete

For Empty fuel oil tank case:

- UB in-situ soil with empty fuel tank

Note: For soil separation, cracked concrete and empty fuel oil tank cases, the UB in-situ soil is used because the UB in-situ soil case in general governed.

- A cut-off frequency of <u>3533</u> Hz was used for all SSI analyses for transfer function calculation.
- Vertical direction passing frequencies (based on one fifth of shear wave length criterion and considering lower bound in-situ soil) are equal to or greater than 33 Hz.
- Horizontal direction passing frequencies are equal to or greater than 33 Hz, except at following locations:
 - For LB in-situ soil, the passing frequency for the top 4 ft soil layer is 30.3 Hz.
 - At the foundation toe, the passing frequencies for in situ soil are 20 Hzfor LB, 25.8 Hz for mean, 31.6 Hz for UB; and for backfill are 23.1 Hzfor LB, 28.3 Hz for mean and 34.7 Hz for UB.

To evaluate the effect of 20 Hz passing frequency for LB in situ case, the foundation toe was divided into two elements, thus increasing the passing frequency to 40 Hz. This refined model with LB in situ soil properties was analyzed and 5% damped spectra from this model were compared with the

spectra from the original model with passing frequency of 20 Hz. The comparison shows that:

- In the X direction, there is insignificant difference between the responsespectra from the two models
- In the Y direction, the response spectra from the two models matched wellexcept at frequency of about 3.8 Hz where the refined model producedhigher spectra. However, spectra from both the models are enveloped bythe spectra for UB in situ soil case
- In the vertical direction, the spectra from the two models matched well-(insignificant difference)

Based on the above evaluation it is concluded that the horizontal directionpassing frequencies are acceptable.

Input Motion:

In the SSI analysis, acceleration time histories, consistent with 0.3g Regulatory Guide 1.60, are used as input at the grade elevation. The response spectra from these time histories envelop the amplified response spectra at the DGFOSV locations considering the effect of nearby heavy RB and UHS/RSW Pump House structures.

Response Combination, Enveloping and Spectra Peak Widening:

For all analysis cases, the responses due to two horizontal directions and vertical direction input motions are combined using square-root sum of squares (SRSS) method. Then, the responses from all analysis cases and all locations considered for spectra generation are enveloped to determine one set of un-widened horizontal and vertical response spectra. Finally, per Regulatory Guide 1.122, the enveloped un-widened response spectra are peak widened by plus-minus 15% on the frequency scale to obtain the final response spectra for DGFOSV. The resulting enveloping response spectra for DGFOSV are shown in Figures 3H.6-223 and 3H.6-224.

2D SSSI Analysis

Two 2D SSSI models are developed and analyzed to evaluate the effects of nearby structures on the three DGFOSV and to calculate the seismic soil pressures on the structures.

The first SSSI model is for a section cut in the North-South direction, consisting of UHS/RSW Pump house, RSW Piping Tunnel, DGFOSV 1B, DGFOSV 1C and RB. The details of this SSSI analysis are provided in Section 3H.6.5.3.

The second SSSI model is for a section cut in the East-West direction consisting of diesel generator fuel oil tunnel (DGFOT), DGFOSV 1A and the Crane Foundation Retaining Wall. The model for this SSSI analysis is shown in Figure 3H.6-225 and the details of the model are provided below.

Structural Models:

DGFOSV Model:

East-West direction of 2D DGFOSV model is idealized by a stick model of beam elements. Axial, flexural, and shear deformation effects are included in beam element stiffness. The fuel oil tank is also modeled using beam elements and its mass is lumped at its CG. The basemat and the mud mat are modeled using four node plain strain elements. The model properties (stiffness and mass) for the 2D plane analysis correspond to per unit depth (one foot dimension in the out-of-plane direction) of the DGFOSV.

Rev. 07

DGFOT Model:

Four node plane strain elements are used to model the exterior walls, base slab, the top slab and the mud mat. Applicable weights are included at appropriate locations in the model. The structural model properties (stiffness and mass), for the 2D plane strain model correspond to per unit depth (one foot dimension in out-of-plane direction).

Crane Wall:

The Crane Wall is modeled using beam elements with nodes located 17 ft away from the DGFOSV east wall (clear distance between the DGFOSV 1A exterior wall face and the west face of the Crane Wall). Beam section properties (stiffness and mass), for the 2D plane strain model correspond to per unit depth (one foot dimension in out-of-plane direction).

The SSSI analysis of the 2D model of DGFOSV with other structures, which affects the DGFOSV in the East-West direction is performed using SASSI2000 computer program, using subtraction method. For resolution of issues with the subtraction method of analysis identified by the Defense Nuclear Facilities Safety Board (DNFSB) see Section 3H.10. The following provides the details of this SSSI analysis.

Strain Dependent Soil Properties Used in SSSI Model:

The strain dependent soil properties used in the model are in accordance with the properties provided in Table 3H.6-1 for the in-situ soil, and Table 3H.6-2 for the backfill soil, with the exception that for soil layers below the ground water table, the Poisson's ratio is capped at 0.495 for determining the compression wave velocity. The thickness of soil layers are adjusted to provide a vertical direction passing frequency of at least 33 Hz (based on one fifth of shear wave length criterion).

Based on the site groundwater conditions originally described in FSAR. Subsection 2.4S.12, the groundwater elevation of approximately eight feet below grade (26 feet MSL) was used in the analysis to determine the soil properties. Subsection 2.4S.12 and Table 2.0-2 now state the groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed using the Diesel Generator Fuel Oil Storage Vault SSI model, which showed no significant effect on the analysis results.

To evaluate the effects of the soil variation, six soil cases are considered:

- UB in-situ soil
- UB in-situ soil with UB backfill between the structures.
- LB in-situ soil with LB backfill between the structures.
- Mean in-situ soil with Mean backfill between the structures.
- Mean in-situ soil with LB backfill between the structures.
- Mean in-situ soil with UB backfill between the structures.

Passing Frequency and Cut-off Frequency for SSSI Model:

- Cut-off frequency of 33 Hz is used in the analysis.
- Vertical direction passing frequencies are equal to or greater than 33.5 Hz.
- Horizontal direction passing frequencies are equal to or greater than 30.48 Hz.

Input Motion:

STP 3&4 site specific SSE motion, as described in Subsection 3H.6.5.1.1.2, is applied at the grade elevation, in the East-West direction.

The incremental seismic soil pressures used in design, which envelope the incremental seismic soil pressures from the SSSI analyses and those computed per Subsection 3.5.3.2 of ASCE 4-98, are shown in Figures 3H.6-226 through 3H.6-231.

The settlement information on the DGFOSV is included in Section 2.5S.4.10.

The effect of settlement due to the flexibility of the structure/basemat and supporting soil is accounted for through the use of finite element analysis in conjunction with foundation soil springs, as described in Section 3H.6.6.4. The resulting maximum calculated ratio of differential foundation settlements (between adjacent points in the mat finite element model) within the boundary of the DGFOSV is 1/4860.

Stability evaluations were performed for sliding, overturning, and flotation. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for consideration of the X, Y, and Z seismic excitations. Since the orientation of the DGFOSVs in the horizontal plane can be along the East-West or North-South axes, the horizontal seismic values used in the stability calculation envelope the SSI accelerations in the X and Y directions. The calculated factors of safety against sliding, overturning, and flotation for the DGFOSV are included in Table 3H.6-12.

The tornado missile impact evaluation results for the DGFOSV are included in Table 3H.6-13.

Lateral soil pressures used in design are shown in Figures 3H.6-241 through 3H.6-244.

The Large Equipment Access Building Foundation will be designed such that the surcharge load on the walls of the adjacent DGFOSV is insignificant.

3H.6.7.1 Applicable Codes, Standards, Specifications and Load Combinations and Materials

Rev. 07

The applicable codes, standards, and specifications from Section 3H.6.4 are used for analysis and design of the DGFOSV.

The DGFOSV are designed to the applicable loads and load combinations specified in Section 3H.6.4.

The structural materials used in the design of the DGFOSV are specified in Section 3H.6.4.4.

3H.6.7.2 Structural Design

The structural analysis and design of the Diesel Generator Fuel Oil Storage Vault (DGFOSV) was performed using a finite element analysis (FEA). The finite element model (FEM) for this FEA is Figure 3H.6-140. The analysis for the seismic loads was performed using equivalent static seismic loads. The maximum nodal accelerations from the SSI analysis in the X, Y, and Z direction for the subgrade and above grade roofs were averaged and used as the accelerations in the X, Y, and Z directions for the entire structure to obtain the equivalent static seismic loads. The induced forces due to the X, Y, and Z seismic excitations were combined using the square-root-sum-of squares (SRSS) method.

Comparison of the seismic in-plane shear forces, axial forces and in-plane moments for the shear walls of this structure from the equivalent static method and those from the SSI analyses at a section cut just above the basemat shows that the forces and moments from the equivalent static method are in excess of those from the SSI analyses.

The strength design criteria of ACI 349, as supplemented by RG 1.142, were used for the design of the reinforced concrete elements of the DGFOSV. Concrete with minimum compressive strength of 4.0 ksi (27.6 MPa) and reinforcing steel with yield strength of 60 ksi (414 MPa) are considered in the design.

Due to difference in soil spring constants for seismic and non-seismic loads, the FEA analyses for the non-seismic loads and equivalent static seismic loads were run on different FEA models and the results from these models were combined and adjusted per Section 3H.6.7.3.1 outside the SAP2000 model to obtain the combined total design forces and moments for the seismic load combinations.

3H.6.7.2.1 Wall and Slab Design

The revised design forces and provided reinforcement for the DGFOSV walls and slabs are shown in Table 3H.6-11. Each face and each direction of each wall and slab has a corresponding longitudinal reinforcement zone figure. Each wall and slab also has a corresponding transverse shear reinforcement zone figures (Figure 3H.6-142 through 3H.6-208) show the various zones used to define the provided reinforcement based on the finite element analysis results. Actual provided reinforcement, based on final rebar layout, may exceed the reported provided reinforcement and the zones with higher reinforcement may be extended beyond their reported zone boundaries.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the provided reinforcement in each reinforcement zone. For each reinforcement zone, the following out-of-plane moment and axial force coupled with the corresponding load combination are reported in Table 3H.6-11:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has a corresponding axial tension acting simultaneously in the same load combination.
- The maximum moment that has a corresponding axial compression acting simultaneously in the same load combination.

For each reinforcement zone, the following-in-plane and transverse shears shear with the corresponding load combination are reported in Table 3H.6-11: The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone.

The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Tables 3H.6-11 correspond to the maximum required transverse reinforcement for an element within that transverse reinforcement zone.

- The in plane shear is the maximum average in plane shear along a plane that crosses the longitudinal reinforcement zone.
- The transverse shear is the maximum average transverse shear along a planein that transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination.

The DGFOSV below grade roof was designed with composite steel beams and concrete slabs for vertical loading. The composite beams span in the SAP2000 model Y-direction with the concrete slab designed as spanning one-way between the composite beams. The below grade roof slab acts as a diaphragm to transfer lateral loads. The provided reinforcing for the below grade roof slab is reported in Table 3H.6-11.

3H.6.7.3 Foundation

The foundation for the DGFOSV consists of a reinforced concrete mat and a lean concrete mud mat. The basemat deflections due to the flexibility of the basemat and supporting soil were accounted for through the use of foundation soil springs in the SAP2000 FEA models. Both the Winkler and the Pseudo-Coupled Methods were used to model the foundation soil springs, and the results of the two analyses were enveloped for design purposes.

Two different subgrade reactions (soil spring constants) are used, one for seismic loads and one for non-seismic loads. The following soil spring constants were used in the FEA models of the DGFOSVs:

Vertical springs (with static loads)	60 kips/ft/ft ²
Vertical springs (with seismic loads)	314 kips/ft/ft ²
North-south springs (with static and seismic loads)	229 kips/ft/ft ²
East-west springs (with static and seismic loads)	213 kips/ft/ft ²

3H.6.7.3.1 Uplift Analysis

The SAP2000 finite element models were checked for uplift effects by reviewing the joint reaction at the basemat. It was determined that under seismic loading the DGFOSV experiences uplift. Using the 100%, 40%, 40% rule for combination of three seismic excitations, non-linear analysis was run on each model with uniform Winkler soil springs and pseudo-coupled soil springs to determine an enveloping adjustment factor for forces and moments from the linear analysis for the foundation mat and the connecting walls. The non-linear analysis iterates multiple times removing soil springs that go into tension during each iteration until no soil springs are in tension. For the directional earthquake loading required for the nonlinear analysis, the DGFOSV critical loading, a safe shutdown earthquake (SSE) from the southwest in combination with static active and passive loads for SSE, is considered.

Comparing resultant foundation mat and wall reactions from the linear analysis with mat and wall reactions from the nonlinear analysis, there is a maximum reaction increase of approximately 67221% for the foundation mat <u>out-of-plane</u> shear forces. 0.1% increase for the foundation mat in-plane shear and axial forces, 17212% increase for the foundation mat bending moments, 4% increase for the connecting walls shear forces and axial forces. and 610% increase for the connecting walls shear forces, and bending moments (enveloping cases with Winkler and pseudo-coupled soil springs) in the nonlinear analysis. To account for this, the resulting forces and moments from the linear analyses were adjusted by applying an increase factor of 1.673.21 to <u>allout-of-plane</u> shear forces in the foundation mat, an increase factor of 1.1 to in-plane shear and axial forces in the foundation mat, an increase factor of 1.473.12 to all moments in the foundation mat, an increase factor 1.07 to all forces in the connecting walls for the DGFOSV design.

3H.6.8 Seismic Gaps at the Interface of Site-Specific Seismic Category I Structures and the Adjoining Structures

The joints (i.e. separation gaps) at the interface of site-specific seismic category I structures (Reactor Service Water Tunnels and Diesel Generator Fuel Oil Storage Vaults) with the adjoining structures (Control Buildings, Reactor Service Water Pump Houses, and Diesel Generator Fuel Oil Tunnels) are designed to accommodate the expected movements without transmitting significant forces. These separation gaps are sized at least 50% larger than the absolute sum of the maximum calculated displacements due to seismic movements and long term settlement. The joint material used as flexible filler will be polyurethane foam impregnated with a waterproofing sealing compound, or a similar material, capable of being compressed to 1/3 of its thickness without subjecting the structures to more than 25 psi. The walls of the Reactor Service Water Pump House and the Diesel Generator Fuel Oil Storage Vaults have been evaluated and found to be adequate for this out-of-plane load.

Table 3H.6.15 provides summary of the required and provided gaps at the interface of site-specific seismic category I structures with adjoining structures.

3H.6.9 References

- 3H.6-1 US Department of Army, Fundamentals of Protective Design for Conventional Weapons, TM 5-855-1, November 1986.
- 3H.6-2 C. R Russell, "Reactor Safeguards," published by MacMillian, New York, 1962.
- 3H.6-3 Coduto, Donald P., "Foundation Design Principles and Practices", Second Edition, Prentice Hall: New Jersey, 2001.

3H.7 Diesel Generator Fuel Oil Tunnel

3H.7.1 Objective and Scope

The scope of this section is to document the structural design and analysis of the Diesel Generator Fuel Oil Tunnels (DGFOTs) for STP Units 3 & 4.

3H.7.2 Summary

The following are the major summary conclusions on the design and analysis of the DGFOT:

- The provided concrete reinforcement listed in Table 3H.7-1 meets the requirements of the design codes and standards listed in Section 3H.7.4.1.
- The factors of safety against flotation, sliding and overturning of the structure under various loading combinations as shown in Table 3H.7-2 are higher than the required minimum factors of safety.
- The thickness of the exterior walls and roof slabs are more than the minimum required to preclude penetration, perforation, or spalling due to impact of design basis tornado missiles.

3H.7.3 Structural Description

The layout of the Diesel Generator Fuel Oil Tunnels (DGFOTs) is as shown in Figure 3H.6-221. There are three (3) reinforced concrete DGFOTs approximately 50 ft, 200 ft, and 220 ft long for each unit. Each DGFOT is connected at one end to the Reactor Building (RB) and at the other end to a Diesel Generator Fuel Oil Storage Vault (DGFOSV). There is a seismic gap between each of the DGFOT and the adjoining RB and DGFOSV. Table 3H.6-15 provides the magnitude of the required and provided seismic gaps at interface of DGFOTs and the adjoining RB and DGFOSVs.

Each DGFOT has two access regions which extend above grade; one access region is located where the tunnel interfaces with the DGFOSV and another where the tunnel interfaces with the RB. The access regions provide access to the below grade portions of the DGFOTs during maintenance and inspection. The overall above grade dimensions of the access regions are approximately 7.5 ft wide by 7.5 ft long and 15 ft high.

The top of the DGFOT is located approximately at grade. The DGFOT No. 1B, which is the shortest tunnel, running approximately 50 ft between the RB and DGFOSV No. 1B, has a wall thickness of 2'-0" on both sides. The interior below grade dimensions of this tunnel are approximately 7 ft high by 3.5 ft wide. The other two longer DGFOTs (approximately 200 ft and 220 ft long) have a wall thickness of 2'-0" on one side and 2'-6" on the other side to allow for placement of embedded conduits. The interior below grade dimensions of these tunnels are approximately 7 ft high by 3 ft wide. Any fuel leak from the fuel oil lines or water infiltration within the tunnels will be collected in a sump and removed by pumps. The tunnels slope away from the DGFOSV and the RB towards the sump located at the center of the tunnel runs.

Rev. 07

3H.7.4 Structural Design Criteria

3H.7.4.1 3H.7.4.1 Design Codes and Standards

The DGFOTs are designed to meet the design requirements of standard plant structures. The following codes, standards, and regulatory documents are applicable for the design of the DGFOT.

- ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures and Commentary"
- ACI 349-97, "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary"
- ASCE 7-88, "Minimum Design Loads for Buildings and Other Structures"
- NUREG-0800 SRP 3.3.2, "Tornado Loadings," Rev. 2, July 1981
- NRC RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor Vessels and Containments)," Rev 2, November 2001
- NRC RG 1.76, "Design-Basis Tornado and Tornado Missiles for Nuclear Power Plants," Rev 0, April 1974
- NUREG 0800 SRP 3.5.3 "Barrier Design Procedure", Revision 1, July 1981
- NUREG 0800 SRP 3.5.1.4 "Missiles Generated by Natural Phenomena", Rev. 2, July 1981

3H.7.4.2 Site Design Parameters

3H.7.4.2.1 Soil Parameters

-	Poisson's ratio (above groundwater)	0.42
•	Poisson's ratio (below groundwater)	0.47
•	Unit Weight (moist)	120 pcf
•	Unit Weight (saturated)	140 pcf
•	Liquefaction potential	None

3H.7.4.2.2 Design Ground Water Level

Consistent with the DCD Tier 1, Table 5.0, design groundwater level is at elevation 32 feet MSL. This value bounds the site groundwater elevations discussed in Section 2.4S.12.

3H.7.4.2.3 Design Flood Level

Design flood level is 33 feet MSL, as shown in DCD, Tier 1, Table 5.0. The external flood level due to MCR breach is shown in 3H.7.4.3.3.3.

3H.7.4.2.4 Maximum Snow Load

Roof snow load is 50 psf as shown in DCD Tier 1 Table 5.0. This snow load is above the value derived from ASCE 7-88 for the STP 3&4 site. This load is not combined with normal roof live load.

3H.7.4.2.5 Maximum Rainfall

Design rainfall is 19.4 in/hr (50.3 cm/hr) as shown in DCD Tier 1 Table 5.0. This load is not combined with normal roof live load.

3H.7.4.3 Design Load and Load Combinations

The DGFOT is not subjected to any accident temperature or pressure loading.

3H.7.4.3.1 Normal Loads

Normal loads are those that are encountered during normal plant startup, operation, and shutdown.

3H.7.4.3.1.1 Dead Loads (D)

Dead loads include the weight of the structure and other permanent static loads. An additional 50 psf uniform load is considered to account for dead loads due to piping on the DGFOT and access region walls.

3H.7.4.3.1.2 Live Loads (L)

Live loads include floor and roof area live loads and movable loads. A minimum normal floor live load of 200 psf is considered for the floor of the DGFOT. A normal live load of 50 psf is considered for the roof.

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load.

A surcharge load of 500 psf is applied to the top of the DGFOT at grade and the ground on either side of the tunnel for lateral soil pressure calculation.

3H.7.4.3.1.3 Lateral Soil Pressures (H)

Lateral soil pressures are calculated using the following soil properties.

- Poisson's ratio (above groundwater)0.42
- Poisson's ratio (below groundwater)0.47

Lateral soil pressure values are shown in Figures 3H.7-2 through 3H.7-4.

3H.7.4.3.1.4 Internal Flood Load

The DGFOT contains sump pumps to keep the structure from flooding. The internal flooding condition is not applicable for the structural design of the DGFOT.

3H.7.4.3.2 Severe Environmental Load

Severe environmental loads consist of loads generated by wind.

3H.7.4.3.2.1 Wind Load (W)

The following parameters are used in the computation of the wind loads.

- Basic wind speed (50 year recurrence interval, fastest mile).....110 mph (177 km/h)
- Exposure:.....D
- Importance factor I:.....1.11
- Velocity pressure exposure:0.00256Kz (IV)²

Wind loads are calculated in accordance with the provisions of Chapter 6 of ASCE 7-88.

3H.7.4.3.3 Extreme Environmental Load

Extreme environmental loads consist of loads generated by tornado, SSE earthquake, extreme snow and flooding.

3H.7.4.3.3.1 Tornado Loads (W_t)

The following tornado load effects are considered in the design:

- Wind pressure:W_w
- Differential pressure:W_p
- Missile Impact:W_m

The tornado parameters used in the calculations of tornado loads are as follows:

•	Pressure differential:	psi

- Missile spectrum (per DCD Tier 2 Table 2.0-1) :

A: 4000 lbs automobile (16.4ft x 6.6ft x 4.3ft)

- B: 276 lbs, 8" diameter armor piercing artillery shell
- C: 1" diameter solid steel sphere

Notes:

- (1) Tornado wind pressure (W_w)
 - (a). Wind velocity and wind pressure are constant with height.
 - (b) Wind velocity and wind pressure vary with horizontal distance from the center of the tornado.
- (2) Tornado differential pressure (W_p)

The differential pressure is applied to the top of the tunnel slab and access region. The differential pressure causes suction on the exterior walls.

(3) Tornado missile impact (W_m)

Tornado missile impact effects on the structure are assessed as noted below:

- (a) Local damage in terms of penetration, perforation, and spalling.
- (b) Structural response in terms of deformation limits, strain energy capacity, structural integrity and structural stability.
- (c) All missiles are considered to impact at 35% of the maximum horizontal tornado wind speed horizontally and 70% of horizontal impact velocity vertically.
- (d) Barrier design is evaluated assuming a normal impact at the surface for the schedule 40 pipe and automobile missiles.
- (e) The automobile missile is considered to impact at all attitudes less than 30 feet above grade level.
- (4) Table 3H.7-3 contains the results of the tornado missile impact evaluation.
- Tornado load combinations

Tornado load effects are combined per USNRC Standard Review Plan, NUREG-0800 Section 3.3.2 as follows:

 $W_t = W_w$ $W_t = W_p$ $W_t = W_m$ $W_t = W_w + 0.5 W_p$ $W_t = W_w + W_m$ $W_t = W_w + 0.5 W_p + W_m$

3H.7.4.3.3.2 Earthquake (E')

The Safe Shutdown Earthquake (E') loads are applied in three mutually orthogonal directions - two horizontal directions and the vertical direction. The total structural response is predicted by combining the applicable maximum co-directional responses by the SRSS method.

3H.7.4.3.3.3 Extreme Environmental Flood (FL)

The design basis flood level is 40 feet, in accordance with Subsection 2.4S.2.2. The flood water unit weight, considering maximum sediment concentration, is 63.85 pcf per Section 2.4S.4.2.2.4.3. The design requirements for this flood, including hydrostatic, hydrodynamic, and floating debris loading, are included in Section 3.4.2.

3H.7.4.3.3.4 Lateral Soil Pressures Including the Effects of SSE (H')

The calculated lateral soil pressures including the effects of SSE are presented in Figures 3H.7-5 through 3H.7-8.

3H.7.4.3.3.5 Accident Temperature

There are no accident scenarios for the DGFOT which would cause consideration of an accident temperature.

3H.7.4.3.4 Load Combinations

3H.7.4.3.4.1 Notations

- U = Required strength for strength design method
- D = Dead load
- F' = Hydrostatic and hydrodynamic load due to flood
- L = Live load
- H = Lateral soil pressure and groundwater effects

H' = Lateral soil pressure and groundwater effects, including dynamic effects

W = Wind load

W_t = Total tornado load, including missile effects

Rev. 07

E' = SSE seismic load

FL = Extreme environmental flood

3H.7.4.3.4.2 Reinforced Concrete Load Combinations

U = 1.4D + 1.7L + 1.7H U = 1.4D + 1.7L + 1.7H + 1.7W U = D + L + H + FL $U = D + L + H + W_{t}$ U = D + L + H + E' U = 1.05D + 1.3L + 1.3HU = 1.05D + 1.3L + 1.3H + 1.3W

For the computation of global seismic loads, the live load is limited to the expected live load present during normal plant operation which is defined as 25% of the normal floor and roof live loads. However, design of local elements such as beams and slabs is based on consideration of full normal live load

3H.7.4.4 Materials

Structural materials used in the design of DGFOT are as follows:

3H.7.4.4.1 Reinforced Concrete

Concrete conforms to the requirements of ACI 349. Its design properties are:

- Compressive strength......4.0 ksi (27.6 MPa)
- Shear modulus......1,537 ksi (10.6 GPa)
- Poisson's ratio......0.17

3H.7.4.4.2 Reinforcement

Deformed billet steel reinforcing bars are considered in the design. Reinforcement conforms to the requirements of ASTM A615. Its design properties are:

- Yield strength......60 ksi (414 MPa)

3H.7.4.4.3 Structural Steel

High strength, low-alloy structural steel conforming to ASTM A572, Grade 50 is considered in the design for wide-flange sections. The steel design properties are:

- Yield strength......50 ksi (345 MPa)
- Tensile strength......65 ksi (448 MPa)

3H.7.4.5 Stability Requirements

The following minimum factors of safety are required against overturning, sliding, and flotation:

Load Combination	Overturning	Sliding	Flotation
D + F _b	-	-	1.1
D + H + W	1.5	1.5	-
$D + H + W_t$	1.1	1.1	-
D + H' + E'	1.1	1.1	-

Loads D, H, H', W, W_t, and E' are defined in Subsection 3H.7.4.3.4.1. F_b is the buoyant force corresponding to the flood water level.

3H.7.5 Structural Analysis and Design Summary

3H.7.5.1 Analytical Model Analysis and Design

The DGFOTs are Seismic Category I structures. The structural analysis and design of the DGFOT is performed using a three-dimensional (3D) SAP 2000 finite element analysis (FEA) with shell elements representing the walls, slabs and mat. The foundation soil is represented by vertical and horizontal springs. The FEA finite element model (FEM) is shown in Figure 3H.7-1.

The DGFOT No. 1B, which is the shortest tunnel, running approximately 50 ft between the RB and the DGFOSV No. 1B, has a wall thickness of 2'-0" on both sides. The interior below grade dimensions of this tunnel are approximately 7 ft high by 3.5 ft wide. The other two longer DGFOTs (approximately 200 ft and 220 ft long) have a wall thickness of 2'-0" on one side and 2'-6" on the other side to allow for placement of embedded conduits. The interior below grade dimensions of these tunnels are approximately 7 ft high by 3 ft wide. The DGFOT No. 1B, with a wall thickness of 2'-0" on both sides and shorter tunnel length for resisting torsion effects, is selected as the critical tunnel for the FEA.

The Safe Shutdown Earthquake (SSE) design forces (E') are conservatively determined using equivalent static seismic loads. The mass of the structure, equipment weights, and seismic live loads are excited in the X, Y, and Z directions using the enveloping maximum nodal accelerations in the X, Y, and Z directions from the soil-structure interaction (SSI) analysis. A comparison between the maximum accelerations from the SSI analysis and the design accelerations for the DGFOT shows the design accelerations envelope the SSI analysis accelerations. The resulting element forces and moments due to X, Y, and Z excitations are combined using the SRSS method.

Figures 3H.7-5 through 3H.7-8 show a comparison of the SSI soil pressures, the SSSI soil pressures, the ASCE 4-98 soil pressures and the total enveloping soil pressure used in design on the walls of the DGFOT.

The forces at tunnel bends due to SSE wave propagation are determined per Section 3H.7.5.2.4 and are included as additional loads in the SAP2000 models.

Multiple SAP2000 FEA models were created to represent different conditions and load combinations for the DGFOTs. The following is a breakdown of the different FEA models:

(1) Normal (Operating Condition, Heavy Load Condition, and Flood Load Condition):

The purpose of these models is to consider the effects of operating load conditions (i.e. dead loads, minimum live loads, etc.), the heavy load condition (when heavy vehicles and cargo are moved across the top of the tunnel), and the flood load condition (the extreme flood loads due to a MCR breach).

(2) SSE (SSE loads without SSE Wave Propagation):

The purpose of these models is to consider the effects of SSE loads without the effects of the SSE wave propagation, which are considered in a separate model. The dead loads, live loads, soil loads, and accidental eccentricity loads are applied to the static (non-seismic) model. The SSE loads are combined using the SRSS method in the dynamic (seismic) model.

(3) SSE (SSE loads with SSE Wave Propagation per ASCE 4-98):

The purpose of these models is to consider the effects of SSE loads with the effects of the SSE wave propagation and additional forces and moments due to bends in the tunnel per ASCE 4-98. The dead loads, live loads, soil loads, accidental eccentricity loads, SSE wave propagation loads and additional forces and moments due to bends in the tunnel are applied to the static (non-seismic) model. The SSE loads are combined using the SRSS method in the dynamic (seismic) model. (4) Tornado Missile:

The purpose of these models is to consider the effects of vertical tornado missiles. The full tornado load combinations, outlined in Section 3H.7.4.3.4.2, are applied to the model considering a vertical tornado missile. The results of this SAP2000 model are combined with those from a manual calculation which considers the full tornado load combination and a horizontal tornado missile.

(5) Effect of Uplift:

The purpose of this model is to consider the effects of uplift on the basemat during a seismic event. All loads are simultaneously applied to a single static model. The models described above are developed to determine the reinforcement required for their specific loading conditions. The results are post-processed as described in Section 3H.7.5.3.1.

The required reinforcement (longitudinal, in-plane shear and transverse) reported in Table 3H.7-1 is based on the envelop of the required reinforcement determined from all the SAP2000 FEA analyses and the required reinforcement determined via the manual calculation for the full tornado load combination.

3H.7.5.2 Analysis

3H.7.5.2.1 Seismic Analysis

The DGFOTs are long reinforced concrete tunnels with above grade access regions at the two ends of each tunnel. The widened envelop spectra of the resulting in-structure response spectra from the following two seismic analyses are used as the final instructure response spectra for these tunnels and their access regions.

- Two-dimensional (2D) soil-structure-interaction (SSI) analysis of a typical cross section of the DGFOT
- Three-dimensional (3D) fixed base seismic analysis of the DGFOT No. 1B (approximately 50 ft long) including its access regions at the two ends of the tunnel.

The details of the above two seismic analyses are provided below.

A. 2D SSI Analysis of a Typical Cross section of DGFOT

SASSI2000 computer code is used for the SSI analysis, using the direct method. Figure 3H.7-20 shows the structural part of the 2D plane-strain model of the DGFOT with 2 ft thick mud mat under the base mat. The top of the tunnel is at the grade elevation. The specifics of the 2D SSI model are as follows:

 The structural properties (i.e. mass and stiffness) for the 2D model correspond to per unit depth (1 ft dimension in out-of-plane direction) of the tunnel.

- Layered soil is modeled up to 74 ft depth (more than two times the horizontal cross section dimension of the tunnel plus its embedment depth) with halfspace below it.
- Sixteen cases of strain dependent soil properties representing the in-situ lower bound, mean and upper bound; lower bound backfill over in-situ lower bound, mean backfill over in-situ mean and upper bound backfill over in-situ upper bound; cracked concrete wall with in-situ upper bound soil, soil separation with in-situ upper bound soil; ABWR DCD/Tier 2 generic soil profiles UB1D, VP3D, VP4D, VP5D, VP7D, R, R with soil separation and R with cracked wall.
- Concrete and mud mat damping are assigned 4% for all cases (conservatively 4% damping is also used for cracked concrete cases).
- GroundwaterIn accordance with Subsection 2.4S.12 and Table 2.0-2 groundwater was considered at 86 ft depth (2628 feet MSL) for site-specific soil and backfill cases. Subsection 2.4S.12 and Table 2.0 2 now state the site groundwater elevation as 28 feet MSL. Therefore, a sensitivity analysis of this change in groundwater elevation was performed, which showed nosignificant effect on the analysis results. Groundwater was considered at 2 ft depth for DCD cases. In site-specific and backfill cases, the groundwater effect is included by using a minimum P-wave velocity of 5000 ft/sec, as explained in Section 3A.15, except that Poisson's ratio is capped at 0.495. In DCD cases, the groundwater effect is similarly included, except that, consistent with DCD Section 3A.3.3, a minimum P-wave velocity of 4800 ft/sec is used.
- The models are capable of passing frequencies up to at least 33 Hz, in both the vertical and horizontal directions.
- For all SSI cases analyzed, a cut-off frequency of 35 Hz is used for transfer function calculations.
- Acceleration time histories consistent with Regulatory Guide 1.60 response spectra anchored at 0.3g peak ground acceleration are used as input at the grade elevation.

The foundation input response spectra (FIRS) for the DGFOT were calculated and were compared to the outcrop spectra at the foundation level of the DGFOT. The outcrop spectra were calculated from a deconvolution analysis performed in the SHAKE program with the site-specific SSE motion applied at the free field ground surface. Figures 3H.7-22 through 3H.7-30 show the comparison of the outcrop response spectra and the FIRS, in the two horizontal directions and the vertical direction for the lower bound, mean and upper bound in-situ soil properties. These figures show that the FIRS are enveloped by the foundation outcrop spectra in all cases. The figures also show that the response spectra at the SHAKE outcrop of DGFOT foundation level also envelop a broad band

spectrum anchored at 0.1g. This is the minimum requirement as stated in SRP 3.7.1 and Appendix S to 10 CFR 50. The broadband spectrum used in this comparison is conservatively defined as the Regulatory Guide 1.60 spectrum anchored at 0.1g.

- Since the tunnels run along both East-West and North-South directions, the horizontal input motions from both East-West and North-South time histories are considered. East-West input motion is applied to the tunnel sections running North-South and North-South input motion is applied to the tunnel sections running East-West. To account for the impact of nearby heavy RB, in the three dimensional SSI analysis of the RB for site-specific SSE, one interaction node at the ground surface and one interaction node at the depth corresponding to the bottom elevation of the DGFOT are located at several locations along each of the three DGFOTs. The envelope of the amplified motions at these interaction nodes and 0.3g Regulatory Guide 1.60 response spectra are used for SSI analysis of the DGFOT. As shown in Figures 3H.7-30a through 3H.7-30c, the 0.3g Regulatory Guide 1.60 response spectra are found to be the bounding spectra.
- In-structure response spectra are generated at the top of floor slab (middle of span), at the top of the roof slab (middle of span) and at the mid-height of two walls of the tunnel cross-section.
- The responses from the horizontal and vertical directions are combined using the square-root-of-sum-of-square (SRSS) method.
- The responses from all SSI analyses cases are enveloped.
- The in-structure response spectra at the top of the floor slab (middle of span), at the roof of slab (middle of span) and at the mid-height of two walls of the tunnel cross-section are enveloped to conservatively provide the in-structure response spectra for the entire 2D cross-section of the tunnel.

B. 3D Fixed Base Analysis of DGFOT No. 1B Including its Two Access Regions

A 3D fixed base seismic (basemat fixed) analysis of the DGFOT No. 1B running between the RB and DGFOSV No. 1B is performed. The following provides the details of this fixed base analysis:

- SAP2000 computer code is used to perform the seismic analysis.
- Modal time history method of analysis is used.
- Shell elements are used for modeling the reinforced concrete tunnel section and the access regions at the two end of the tunnel.
- 4% damping is used for the shell elements.

- Acceleration time histories (two horizontal directions and a vertical direction) consistent with Regulatory Guide 1.60 response spectra anchored at 0.3g peak ground acceleration are used as input motions.
- Nodal acceleration time history responses obtained from the SAP2000 analysis are processed using the RSG computer code to calculate in-structure response spectra at selected nodes. The nodes selected for the in-structure response spectra generation are; four nodes on top of each access regions (middle of four walls) and three nodes at the top of tunnel (middle of the tunnel).
- The maximum co-directional responses from each of the three directions of excitations are combined using the SRSS method.
- The in-structure response spectra at the selected nodes are enveloped to conservatively provide the in-structure response spectra from fixed base analysis, for the entire tunnel and the access regions.

The corresponding in-structure response spectra obtained from the 2D SSI analysis and in-structure response spectra obtained from the 3D fixed base analysis described in parts A and B above are enveloped and peak widened by + 30%. The 30% peak widening is used to cover any frequency shift due to the foundation soil flexibility, which is not included in the fixed base seismic analysis. The final widened in-structure response spectra for the horizontal and vertical directions of the DGFOTs and their access regions are provided in Figures 3H.7-31 and 3H.7-32, respectively. The spectra in Figures 3H.7-31 and 3H.7-32 provide the in-structure response spectra for the entire SDGFOTs and their access towers at the two ends.

3H.7.5.2.2 Structure-Soil-Structure Interaction (SSSI) Analysis for Seismic Soil Pressures

Two 2D section cuts are taken for site-specific SSSI analyses; one East-West section cut through DGFOT No. 1C, DGFOSV No. 1A and the Crane Foundation Retaining Wall (CFRW) and one East-West section cut through the RB, DGFOT No. 1A and the CFRW. These SSSI analyses are used to obtain seismic soil pressures on the walls of DGFOT considering the effect of nearby structures.

The SSSI model and analyses details for the section cut through DGFOT No. 1C, DGFOSV No. 1A and the CFRW are provided in Section 3H.6.7.

The structural part of SSSI model for the section cut through the RB, DGFOT No. 1A and the CFRW is shown in Figure 3H.7-21. The methodology for the SSSI model including strain dependent soil properties; soil cases analyzed; and method of analyses are same as those for the section cut through DGFOT No. 1C, DGFOSV No. 1A and the CFRW described in Section 3H.6.7. This SSSI model is capable of passing frequencies up to at least 33 Hz in both the vertical and horizontal directions and the analysis uses a cut-off frequency 33 Hz for calculation of transfer functions.

Figures 3H.7-5 through 3H.7-8 show a comparison of the SSI, SSSI, ASCE 4-98 seismic soil pressures and the enveloping seismic soil pressures used for the design of the DGFOT walls.

The design of the DGFOTs also accounts for the axial tensile strain and the seismic induced forces at the tunnel bends due to SSE wave propagation as described in section 3H.7.5.2.4.

3H.7.5.2.3 Torsional Effects

The accidental torsion is computed in accordance with ASCE 4-98 considering an additional eccentricity of +/- 5% of the maximum building dimension for both horizontal directions. The induced member forces due to this accidental torsion are obtained from static analysis of the structure and are added to the induced forces to other applicable loads whether the analysis predicts positive or negative results (ie: absolute sum).

3H.7.5.2.4 SSE Wave Propagation Effects

The design of the DGFOT accounts for the axial tensile strain and induced forces at tunnel bends due to SSE wave propagation. The axial strain on the DGFOT due to SSE wave propagation is determined based on the equations and commentary outlined in Section 3.5.2.1 of ASCE 4-98. The maximum curvature is computed based on Equation 3.5-3 in Section 3.5.2.1.3 of ASCE 4-98.

For SSE wave propagation computations, the following parameters are considered:

- An apparent wave velocity of 3,000 ft/sec (as recommended in Section C3.5.2.1 of ASCE 4-98)
- A maximum ground velocity of 6.24 in/sec (which is based on 48 in/sec/g and site-specific SSE maximum ground acceleration of 0.13g)
- Soil pressure distribution on the transverse leg of the tunnel near the bend is limited by the maximum passive pressure using passive pressure coefficient Kp = 3

The tensile axial strain and strain due to maximum curvature are conservatively added together to obtain the actual strain in the longitudinal direction of the DGFOT. The actual strain is then compared to the cracking strain of concrete and maximum allowable strain of the reinforcing. The maximum computed tensile axial strain is 1.75 x 10^{-4} in/in which is about 8.5% of the rebar yield strain of 2.069 x 10^{-3} in/in. The design also accounts for the induced forces at tunnel bends due to SSE wave propagation. These forces are determined in accordance with Section 3.5.2.2 of ASCE 4-98 by considering the structure as a beam on elastic foundation. To determine the required reinforcement, the induced forces at the tunnel bends are considered to act simultaneously with all other applicable loads (including dynamic soil pressures) in the seismic load combinations.

3H.7.5.3 Structural Design

3H.7.5.3.1 Reinforced Concrete Elements

The strength design criteria defined in ACI 349, as supplemented by RG 1.142, was used to design the reinforced concrete elements making up the DGFOT. Concrete with a compressive strength of 4.0 ksi and reinforcing steel with a yield strength of 60 ksi are considered in the design. All loads and load combinations listed in Section 3H.7.4 are considered in the design.

The design forces and provided longitudinal and transverse reinforcement for the DGFOT and access region walls and slabs are shown in Table 3H.7-1.

The shell forces from every element for every load combination in the finite element analysis were evaluated to determine the required reinforcement. The following out-of-plane moment and axial force coupled with the corresponding load combination are reported in Table 3H.7-1 when the governing forces, moments and reinforcement is from the SAP2000 models:

- The maximum tension axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum compression axial force with the corresponding moment acting simultaneously from the same load combination.
- The maximum moment that has corresponding axial tension acting simultaneously in the same load combination.
- The maximum moment that has corresponding axial compression acting simultaneously in the same load combination.

For each surface, the following in-plane and transverse shears hear with the corresponding load combination are reported in Table 3H.7-1 when the governing forces, moments and reinforcement is from the SAP2000 models. The in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone. The shell forces from every element for every load combination in the finite element model were evaluated to determine the required transverse reinforcement. The transverse shear and axial force reported in Table 3H.7-1 correspond to the maximum required transverse reinforcement for an element within that transverse reinforcement zone.

- The in plane shear is the maximum average in plane shear along a plane that crosses the longitudinal reinforcement zone.
- The transverse shear is the maximum average transverse shear along a planein that transverse reinforcement zone.

The provided longitudinal reinforcing for each face and each direction is determined based on the out-of-plane moments, axial forces, and in-plane shears occurring simultaneously for every load combination.

The provided transverse shear reinforcing (as required) is determined based on the transverse shears and axial forces perpendicular to the shear plane occurring simultaneously for every load combination.

3H.7.5.3.2 Foundation Design

The foundation for the DGFOT consists of a reinforced concrete mat and a lean concrete mud mat. The basemat deflections due to the flexibility of the basemat and supporting soil were accounted for through the use of foundation soil springs in the SAP2000 finite element analysis models. Both the Winkler and the Pseudo-Coupled Methods were used to model the foundation soil springs. The results of the two analyses were enveloped for design purposes.

Two different subgrade reactions (soil spring constants) are used, one for seismic loads and one for non-seismic loads. The following soil spring constants were used in the FEA models of the DGFOTs:

Vertical springs (with static loads)	260 kips/ft/ft ²
Vertical springs (with seismic loads)	531 kips/ft/ft ²
North-south springs (with static and seismic loads)	318 kips/ft/ft ²
East-west springs (with static and seismic loads)	318 kips/ft/ft ²

3H.7.5.3.3 Uplift Analysis

The effect of uplift on the basemat during a seismic event was considered through the use of a SAP2000 design model which simulated the uplift condition. The seismic design accelerations applied to the SAP2000 design uplift model are adjusted by a scale factor which scales the seismic forces to the maximum level possible during an uplift condition of the DGFOT. The scaled seismic accelerations along with applicable loads described in Section 3H.7.4 are then combined. The results of the uplift model and the design models were enveloped for design purposes.

3H.7.5.3.4 Stability Evaluation

The DGFOT stability evaluations are performed for the various load combination listed in Section 3H.7.4.5. The DGFOT factors of safety against sliding, overturning, and flotation are provided in Table 3H.7-2. For sliding and overturning evaluations, the 100%, 40%, 40% rule was used for combination of the X, Y, and Z seismic excitations.

Restraints are provided around the Access Regions to limit movement and rotation due to a tornado missile.

3H.8 Development of Standard Plant SSE Time Histories

The seismic analysis of the Diesel Generator Fuel Oil Storage Vaults and Diesel Generator Fuel Oil Tunnels use the SSE ground motion included in Tier 1 Table 5.0, in addition to the site-specific SSE ground motion, as described in Sections 3H.6.7 and 3H.7, respectively. Since the DCD does not include the digitized information for the SSE time histories, new time histories consistent with Regulatory Guide 1.60 response spectra anchored to peak ground acceleration of 0.3g were developed for use in these analyses. Acceleration time history records obtained from 1994 Northridge Earthquake were used as seed time histories in generating these synthetic time histories. The time histories were developed in accordance with the criteria described in Section 3.7.1.2, using computer programs SYNQKE-R, HIST, and QUAKE described in Appendix 3C.

The plots of the acceleration, velocity, and displacement time histories of the two horizontal and the vertical components are shown in Figures 3H.8-1 through 3H.8-3. The plots of response spectra for 2%, 3%, 4%, 5%, and 7% damping, showing the comparison of the target response spectra (Regulatory Guide 1.60 spectra) with the spectra of the synthetic time histories, are shown in Figures 3H.8-4 through 3H.8-18. The plots of power spectral density functions (PSD) showing the comparison of the target PSD, corresponding to the Regulatory Guide 1.60 spectra, with the PSD of the synthetic time histories are shown in Figures 3H.8-19 through 3H.8-21.

3H.9 Extreme Environmental Design Parameters for Seismic Analysis, Design, Stability Evaluation and Seismic Category II/I Design

Table 3H.9-1 shows the extreme environmental design parameters used for seismic analysis, structural design, stability evaluation, and Seismic Category II/I design for the Ultimate Heat Sink/Reactor Service Water Pump House, Reactor Service Water Piping Tunnel, Diesel Generator Fuel Oil Storage Vault, Diesel Generator Fuel Oil Tunnel, Radwaste Building, Control Building Annex, Turbine Building, and Service Building.

3H.10 <u>STP 3 & 4 Resolution of Issues with Subtraction Method of Analysis</u> Identified by DNFSB

The Defense Nuclear Facilities Safety Board (DNFSB) in its letter from Peter S. Winokur to Daniel B. Poneman of DOE, dated April 8, 2011, has identified a technical issue in SASSI that when the Subtraction Method (SM) is used to analyze embedded structures, the results may be non-conservative. To address this issue an extensive evaluation was performed and, where required, in-structure response spectra and/or structural designs based on SM were modified to ensure STP 3 & 4 designs are conservative. This evaluation took into account the recommendations for reviewing past SASSI SM analyses, and advice on avoiding SM errors in future analyses that DOE provided in a letter from Daniel B. Poneman to Peter S. Winokur dated July 29, 2011, responding to the DNFSB. The following is a summary of this evaluation.

Modified Subtraction Method:

For new analyses where use of the Direct Method (DM) of analysis is not feasible, in its July 29, 2011 letter to the DNFSB, DOE has recommended using the Modified Subtraction Method (MSM) of analysis. For analyses performed for STP 3 & 4, the

interaction nodes for MSM are comprised of all those at the soil-structure interface and all those at the top of excavated soil elements. Based on a project specific validation and verification, in-structure response spectra, maximum accelerations, and forces from MSM were verified against those from DM.

Generation of In-structure Response Spectra (ISRS):

- Reactor Service Water (RSW) Piping Tunnel ISRS were generated using DM. Initially the amplified site specific SSE motions considering the effect of nearby heavy structures were obtained from SSI analyses of the Reactor Building (RB) and Ultimate Heat Sink (UHS)/RSW Pump House using SM. The SSI analyses of the RB (for all soil cases) and UHS/RSW Pump House (for upper bound in-situ soil case) were repeated using MSM. Based on the comparison of the RSW Piping Tunnel ISRS obtained from SSI analysis of RSW Piping Tunnel using amplified site specific SSE motions from MSM analyses to those from SM, increase scale factors were determined to account for the effect of MSM on amplified site specific SSE motions. The ISRS based on amplified site specific SSE motions from SM analyses were increased by these increase scale factors to obtain the final RSW Piping Tunnel ISRS.
- Diesel Generator Fuel Oil Tunnel (DGFOT) ISRS were generated using DM.
- <u>Diesel Generator Fuel Oil Storage Vault (DGFOSV) ISRS were initially generated</u> <u>using SM. DGFOSV ISRS have been revised based on new SSI analysis using</u> <u>MSM.</u>
- Ultimate Heat Sink (UHS)/RSW Pump House ISRS were initially generated using SM. The SSI analysis for the upper bound in-situ soil case was repeated using MSM. The ISRS from MSM were compared to the corresponding ISRS from SM to determine modification factors (only increases were considered, reductions were ignored) to account for MSM effect. The product of the modification factors for MSM and envelope of the modification factors accounting for the cumulative effect of structural and SSI mesh refinements discussed in Section 3H.6.5.2.4.2 were used as the final modification factors for adjusting the ISRS from SM to obtain the final UHS/RSW Pump House ISRS.

SSSI Soil Pressures used in Structural Design:

Based on an extensive SSSI study, the following were concluded:

- <u>The method of SSSI analysis (SM, MSM, or DM) has negligible impact on the total</u> force due to seismic soil pressure.
- <u>The method of SSSI analysis (SM, MSM, or DM) has negligible impact on location</u> (i.e. C.G.) of the total force due to seismic soil pressure.
- <u>DM analytical results show some changes in the distribution of seismic soil</u> pressure for exterior walls.

 <u>The method of SSSI analysis (SM, MSM, or DM) has negligible impact on the soil</u> pressure distribution for interior walls (walls facing adjacent structure).

Considering the above and the available margins between the seismic soil pressures used for design and those from SM, the designs based on SM were found to be adequate for possible changes in soil pressure distribution due to use of DM.

SSI Soil Pressures used in Structural Design:

- <u>RSW Piping Tunnel SSI soil pressures were obtained from DM.</u>
- DGFOT SSI soil pressures were obtained from DM.
- DGFOSV SSI soil pressures were obtained from MSM. Based on available margin between the seismic soil pressures used for design and SSI soil pressures from MSM, the design was found to be adequate for possible changes in soil pressure distribution due to use of DM.
- <u>UHS/RSW Pump House SSI soil pressures were obtained from SM. MSM SSI soil pressures for upper bound in-situ soil case were found to be comparable to those from SM. Based on available margin between the seismic soil pressures used for design and SSI soil pressures from SM, the design was found to be adequate for possible changes in soil pressure distribution due to use of DM.
 </u>

Maximum Accelerations / Section Cut Forces used in Structural Design:

- <u>RSW Piping Tunnel SSI is based on DM.</u>
- DGFOT SSI is based on DM.
- DGFOSV SSI is based on MSM.
- <u>UHS/RSW Pump House SSI is based on SM. The maximum accelerations from MSM SSI analysis for upper bound in-situ soil case were used for evaluation of design which is based on SM. Based on the results of this evaluation, the conservative UHS/RSW Pump House design, using equivalent static method for determination of seismic loads, was found to have adequate margin to account for possible changes in maximum accelerations from MSM SSI analysis for all soil cases.
 </u>

Table 3F	1.1-23 Facto	ors of Safet	ly for Foun	dation Stat	onity"		
	Overt	urning	Slic	ding	Floatation		
Load Combination	Req'd.	Actual	Req'd.	Actual	Req'd.	Actual	
D + F'					1.1	2.43 2.24	
$D + L_o + F + H + E_{ss}$	1.1	490	1.1	1.11			

Table 3H.1-23	Factors	of Safety	for Foundation	Stability*
---------------	---------	-----------	----------------	------------

Here:

F = Buoyant Forces from Design Ground Water (0.61m Below Grade)

$$F' = Buoyant$$
 Forces from Design Basis Flood (0.3m Below 1.83m Above Grade)

H = Lateral Soil Pressure

 L_o = Live Load Acting During an Earthquake (Zero Live Load is Considered).

E_{ss} = SSE Load

D = Dead Load

* Based on the calculation for shear forces due to tornado loads, it was found that it is less than 10% of the shear forces due to the seismic effects. Hence it was concluded that the load combinations comprising of wind and tornado loadings will not be the governing load combinations for the evaluation of overturning and sliding effects of the R/B stability and therefore, were not evaluated.

Load	Overtu	urning	Slid	ing	Flota	ation
Combination	Required	Actual	Required	Actual	Required	Actual
D+F'	-	-	-	-	1.1	1.42 1.30
D+F+H+W	1.5	2.79	1.5	2.74	-	-
D+F+H+W _t	1.1	2.66	1.1	2.69	-	-
D+L _o +F+H'+E'**	1.1	123*	1.1	1.14	-	-

Table 3H.2-5 Stability Evaluation–Factors of Safety

* Based on the energy technique

** Zero live load is considered.

<u>F' = Buoyant Forces from Design Basis Flood (1.83m Above Grade)</u>

I

Wall	Elevation (ft)	In-Plane Forces ⁽¹⁾ 1/2 SSE (0.15g) (kips)	In-Plane Moments ⁽¹⁾ 1/2 SSE (0.15g) (kips-ft)
	95'-0"	5963	0
North Wall	35'-0"	4133	351845
	(-)11'-0"	9328	770605
	95'-0"	5351	0
South Wall	35'-0"	2888	315719
	(-)11'-0"	7186	635566
	95'-0"	4555	0
East Wall	35'-0"	3276	268725
	(-)11'-0"	7282	595912
	95'-0"	5481	0
West Wall	35'-0"	4362	323390
	(-)11'-0"	9125	732302

Table 3H.3-1	Radwaste Building	Design Seismic Loads
	Rauwaste Dunung	Design Deisinic Ludus

Vortical E Maximum A	Direction: Acceleration
Elevation- (ft)	Acceleration- (g)
(-)11'-0"	0.150
35'-0"	0.151
95'-0"	0.331

Notes:

(1) The forces and moments reported are the maximum calculated for all time steps. Therefore, the summation of the forces at Elevation 35'-0" and Elevation 95'-0" is not equal to the force at Elevation (-)11'-0".

Mode No.	Frequency (Hz)	Direction
1	2.60	Vertical
2	8.44	Vertical
3	9.10	North-South
4	10.84	East-West
5	12.39	East-West
6	15.48	North-South
7	18.40	East-West
8	23.01	North-South
9	23.95	Vertical
10	27.90	Vertical

Table 3H.3-2 Natural Frequencies of the Radwaste Building - Fixed Base Condition

ation	9	ction	cement rout Number 1)	Thickness (ft)	Reinforcement Zone Number ⁽²⁾	Forces	nent	Axial and Flexu		Reinforcement	Design Loads In-Plane Shear Load	ds	Longitudinal Reinforcement Provided			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Rema
20	2	Die	ving ving	1 He	infor Ne Ni	E E	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load		ontal Section		ical Section	(in ² /ft ²)	
			Re Dra		Re Zoi	Maxi		Combination	(kips / ft)		Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	29421	1.4D + 1.7L + 1.7H' + 1.7Eo	51	-60										
Near Solo				1-H-L	MCCM	30216	1.4D + 1.7L + 1.7H + 1.7Eo	-101	-57	1.4D + 1.7L + 1.7H + 1.7Eo	72	1.56								
					MMAT	29728	1.4D + 1.7L + 1.7H + 1.7Eo	13	-102											
						MMAC	29971	1.4D + 1.7L + 1.7H	-38	-104										
					мтсм	26467	1.4D + 1.7L + 1.7H' + 1.7Eo	112	-19											
	Nex Son Horsona 3434		3	2-H-L	MCCM	34323	1.4D + 1.7L + 1.7H + 1.7Eo	-207	-22	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12								
				2	MMAT	30238	1.4D + 1.7L + 1.7H' + 1.7Eo	1	-244	100 100 100										
						MMAC	26476	D + L + H + E	-96	-291										
	Page Page Page Page Page Page Page Page				МТСМ	32312	1.4D + 1.7L + 1.7H' + 1.7Eo	118	-103											
				3-H-L	MCCM	26429	1.4D + 1.7L + 1.7H' + 1.7Eo	-255	-107	1.4D + 1.7L + 1.7H + 1.7Eo	89	4.68								
				0.112	MMAT	26429	1.4D + 1.7L + 1.7H' + 1.7Eo	6	-274	the states that states		4.00		-						
						MMAC	26461	D + L + H' + E'	-201	-370										
					MTCM	23479	1.4D + 1.7L + 1.7H' + 1.7Eo	118	-46											
	0				4-H-L	MCCM	34327	1.4D + 1.7L + 1.7H' + 1.7Eo	-228	-65	1.4D + 1.7L + 1.7H + 1.7Eo	140	3.12							
					-	MMAT	23468	D + L + H' + E'	6	-134	ind - the - thin - theo	140	0.14		-		-	-		
						MMAC	23468	1.4D + 1.7L + 1.7H' + 1.7Eo	-44	-230										
Ten Near Side					МТСМ	23456	1.4D + 1.7L + 1.7H' + 1.7Eo	76	-223											
				5-H-L	MCCM	23447	1.4D + 1.7L + 1.7H + 1.7Eo	-198	-466	1.4D + 1.7L + 1.7H' + 1.7Eo	140	4.68								
					- SHIC	MMAT	23448	D + L + H' + E'	1	-399	100 - 100 - 104 - 1060	140	4.00		-		-			
Near Side			4		MMAC	23447	1.4D + 1.7L + 1.7H' + 1.7Eo	-198	-466											
			1		MTCM	11709	D + L + H' + E'	124	-434											
	Near Side	Horizontal	214 2.4		6-H-L	MCCM	23440	1.4D + 1.7L + 1.7H' + 1.7Eo	-292	-519	1.4D + 1.7L + 1.7H + 1.7Eo	140	6.24							
		T IST LOT THE	511.5-0		0.112	MMAT	19506	D + L + H' + E'	12	-697		140								
						MMAC	19507	D + L + H' + E'	-159	-780										
	Near Side Horizontal				MTCM	23472	1.4D + 1.7L + 1.7H + 1.7Eo	75	-258											
		éear Side Horizontal			7-H-L	MCCM	23472	1.4D + 1.7L + 1.7H' + 1.7Eo	-193	-794	1.4D + 1.7L + 1.7H' + 1.7Eo 119	9.36								
					1410	MMAT	23472	1.4D + 1.7L + 1.7H + 1.7Eo	11	-739	ing - the - third theo									
						MMAC	23472	D + L + H' + E'	-163	-1000										
						МТСМ	4565	1.4D + 1.7L + 1.7H' + 1.7Eo	27	-46										
					8-H+L	MCCM	8902	D + L + H' + E'	-272	-536	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12	-						
					0.112	MMAT	8194	1.4D + 1.7L + 1.7H' + 1.7Eo	7	-148		100								
						MMAC	8902	D + L + H' + E'	-272	-540										
						МТСМ	2717	1.4D + 1.7L + 1.7H + 1.7Eo	46	-70										
					9-H-L	MCCM	8940	1.4D + 1.7L + 1.7H + 1.7Eo	-233	-695	1.4D + 1.7L + 1.7H' + 1.7Eo	164	4.68							
						MMAT	2724	1.4D + 1.7L + 1.7H + 1.7Eo	0	-296										
				5.5		MMAC	8940	D + L + H' + E'	-216	-804										
						мтсм	2716	1.4D + 1.7L + 1.7H' + 1.7Eo	53	-76										
					10-H-L	MCCM	8901	D + L + H' + E'	-205	-763	1.4D + 1.7L + 1.7H + 1.7Eo	164	6.24							
						MMAT	2716	D + L + H' + E'	5	-358										
						MMAC	7183	D + L + H' + E'	-177	-846										
						МТСМ	2787	1.4D + 1.7L + 1.7H + 1.7Eo	57	-97										
					11-84	MCCM	8972	D + L + H' + E'	-314	-1406	1.4D + 1.7L + 1.7H + 1.7Eo	164	7.8							
						MMAT	2772	1.4D + 1.7L + 1.7H + 1.7Eo	4	-442										
						MMAC	8972	D + L + H' + E'	-307	-1430										

3H-92

Rev. 07

Final Safety Analysis Report

-			mber	2	tiont (S	Loss (1)			Longitudinal Reinf	forcement	-		Longitudinal			Transverse Shear Design Loads (8)						
cation	Face	rection	orcen ayout 19 Nui	Thicknest (ft)	Orcen	E E	ement	Axial and Flexure Loads		In-Plane Shear Loads			Reinforcement Provided		Hadas	ntal Section		al Section	Transverse Shear ⁽⁷⁾ Reinforcement Provideo	Remarks		
2	-	ā	Reinf L Drawir	Ŧ	Reinforceme Zone Numbe	Maximu	Ele	Load Combination	Axial ⁽⁴⁾ Fle (kips / ft) (ft-	exure ⁽⁴⁾ -kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kins / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kin / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)			
						мтсм	27258	1.4D + 1.7L + 1.7H + 1.7Eo	70	-18		(Kips / It)			(K)p/ Ity	(K() / R)	(69710)	(KI) / II)				
					1-V-L	MCCM	27258	1.4D + 1.7L + 1.7H' + 1.7Eo	-260	-39	1.4D + 1.7L + 1.7H' + 1.7Eo	74	1.56						-			
					····L	MMAT	27002	D + L + H' + E'	21	-94	140+170+178+1780		1.30	-	-	-		-		-		
						MMAC	27002	D + L + H' + E'	-141	-99												
						MTCM	26405	1.4D + 1.7L + 1.7H' + 1.7Eo	109	-53												
					2-V-L	MCCM	26405	1.4D + 1.7L + 1.7H + 1.7Eo	-306	-24	1.4D + 1.7L + 1.7H + 1.7Eo	107	3.12									
						MMAT	27520	1.4D + 1.7L + 1.7H + 1.7Eo		-218												
							29969	1.4D + 1.7L + 1.7H		-258	-											
						MTCM	34324	1.4D + 1.7L + 1.7H + 1.7Eo	110	-15												
					3-V-L		34323	1.4D + 1.7L + 1.7H + 1.7Eo		-15	1.4D + 1.7L + 1.7H + 1.7Eo	266	4.68									
							26417	1.4D + 1.7L + 1.7H + 1.7Eo		-335												
							26417	1.4D + 1.7L + 1.7H + 1.7Eo		-335												
							26445	D + L + H' + E'		-265	_											
				3	4-V-L		27219	1.4D + 1.7L + 1.7H	-209	-97	1.4D + 1.7L + 1.7H + 1.7Eo	83	6.24									
						MMAT	26430	1.4D + 1.7L + 1.7H + 1.7Eo		-466												
							16429 / 26430 26437	1.4D + 1.7L + 1.7H + 1.7Eo		-478												
							26437	D+L+H+E'		-472												
					5-V-L		26436	1.4D + 1.7L + 1.7H 1.4D + 1.7L + 1.7H + 1.7Eo		-1/1	1.4D + 1.7L + 1.7H + 1.7Eo	75	7.8		-			-	-	-		
							26436	1.4D + 1.7L + 1.7H + 1.7E0		-548												
						10701	64287	1.4D + 1.7L + 1.7H + 1.7E0		-579												
Wall							26429 26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo		-680												
North	Near Side	Vertical	3H.3-9		6-V-L		26429 16428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo		-702	1.4D + 1.7L + 1.7H + 1.7Eo	68	12.48		-					(8),(9)		
					-		26429 16428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo		-705												
							26685	D+L+H+E		-399												
						MCCM	28574	1.4D + 1.7L + 1.7H + 1.7Eo		-179												
					7-V-L	MMAT	26685	1.4D + 1.7L + 1.7H + 1.7Eo	103	-465	1.4D + 1.7L + 1.7H + 1.7Eo	78	12.48	-	-					(8),(9)		
						MMAC	26685	1.4D + 1.7L + 1.7H + 1.7Eo	-133	-465												
						мтсм	12452	1.4D + 1.7L + 1.7H + 1.7Eo	118	-20												
					8-V-L	мссм	12452	1.4D + 1.7L + 1.7H + 1.7Eo	-433	-62	1.4D + 1.7L + 1.7H' + 1.7Eo	184	3.12									
						MMAT	23420	D + L + H' + E'	8	-245	10011021011100	104	3.14					-		-		
						MMAC	23420	1.4D + 1.7L + 1.7H + 1.7Eo	-297	-326												
							11724	1.4D + 1.7L + 1.7H + 1.7Eo	126	-58												
					9-V-L		11655	1.4D + 1.7L + 1.7H + 1.7Eo		-132	1.4D + 1.7L + 1.7H + 1.7Eo	239	4.68		-				-			
							23433	1.4D + 1.7L + 1.7H + 1.7Eo	-	-385												
				4			23468	1.4D + 1.7L + 1.7H + 1.7Eo														
							13208	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	-455	-28 -118												
					10-V-L		23455	D+L+H'+E'	-	-401	1.4D + 1.7L + 1.7H + 1.7Eo	226	6.24							-		
							23451	1.4D + 1.7L + 1.7H + 1.7Eo		-515												
							22806	1.4D + 1.7L + 1.7H + 1.7Eo		-216												
						мссм	21630	1.4D + 1.7L + 1.7H + 1.7Eo	-265	-92												
					11-V-L	MMAT	23447	D + L + H' + E'	1	-626	1.4D + 1.7L + 1.7H + 1.7Eo	239	7.8									
								MMAC	23447	1.4D + 1.7L + 1.7H + 1.7Eo	-97	-706		1							1	

3H-93

Rev. 07

Final Safety Analysis Report

_

c		ç	t		nent Der ⁽²⁾	rces			Longitudinal Re	einforcement			Longitudinal Reinforcement			Transverse Shear Design Loads (8)				
ocatio	Face	Directio	forcer ayout ng Nu	Thickness (ft)	forcer	e e	Elemen	Axial and Flexure			In-Plane Shear Loads		Provided -		Horizo	intal Section	Vertic	al Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
2		^	Drawi	É	Reinforci Zone Nun	Maxim	w.	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
						MTCM	23439	1.4D + 1.7L + 1.7H + 1.7Eo	79	-332										
					12-V-L	MCCM	23439	1.4D + 1.7L + 1.7H + 1.7Eo	-261	-470	1.4D + 1.7L + 1.7H + 1.7Eo	230	9.36							
					12-1-1	MMAT	23440	1.4D + 1.7L + 1.7H + 1.7Eo	2	-777	100 - 170 - 176 - 1760	2.00					-			
						MMAC	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-163	-823										
						MTCM	4552	1.4D + 1.7L + 1.7H + 1.7Eo	111	-74										
					13-V-L	MCCM	8190	1.4D + 1.7L + 1.7H + 1.7Eo	-399	-33	1.4D + 1.7L + 1.7H + 1.7Eo	173	3.12						-	
						MMAT	4524	1.4D + 1.7L + 1.7H + 1.7Eo	72	-134										
						MMAC	4524	1.4D + 1.7L + 1.7H + 1.7Eo	-213	-134										
						MTCM	4498	1.4D + 1.7L + 1.7H + 1.7Eo	227	-84										
					14-V-L	MCCM	4498	1.4D + 1.7L + 1.7H + 1.7Eo	-665	-76	1.4D + 1.7L + 1.7H + 1.7Eo	216	4.68							
						MMAT	8901	1.4D + 1.7L + 1.7H + 1.7Eo	151	-214										
						MMAC	8901	D+L+H+E	-484	-307										
						MTCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	308	-307										
	Near Side	Vertical	3H.3-9		15-V-L	MCCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	-738	-368	1.4D + 1.7L + 1.7H + 1.7Eo	238	6.24							
						MMAT	2725	D + L + H' + E'	53	-880										
				5.5		MMAC	2725	D+L+H+E	-245	-880										
						MTCM	2771	1.4D + 1.7L + 1.7H + 1.7Eo	133	-436										
					16-V-L	MCCM MMAT	2756	1.4D + 1.7L + 1.7H + 1.7Eo	-439 57	-438	1.4D + 1.7L + 1.7H + 1.7Eo	238	7.8							
						MMAT	2755	D+L+H+E D+L+H+E		-796										
						MINAL	2755	1.4D + 1.7L + 1.7H + 1.7Eo	-279 339	-790										
Wall						MCCM	2787	1.4D + 1.7L + 1.7H + 1.7E0	-744	-278										
lorth W					17-V-L	MOOM	2787	D+L+H+E	-/44	-430	1.4D + 1.7L + 1.7H + 1.7Eo	216	9.36						-	
ž						MMAC	2780	D+L+H+E	-260	-1331	-									
						MTCM	2778	1.4D + 1.7L + 1.7H + 1.7Eo	86	-301										
						мссм	2778	1.4D + 1.7L + 1.7H + 1.7Eo	-364	-630										
					18-V-L	MMAT	2778	D+L+H+E	43	-1322	1.4D + 1.7L + 1.7H + 1.7Eo	171	10.92							
						MMAC	2778	D+L+H+E	-250	-1322										
		-	<u> </u>			MTCM	36041	1.4D + 1.7L + 1.7H + 1.7Eo	45	55										
						мссм	36041	1.4D + 1.7L + 1.7H + 1.7Eo	-105	60										
					1-H-L	MMAT	29132	1.4D + 1.7L + 1.7H + 1.7Eo	10	107	1.4D + 1.7L + 1.7H + 1.7Eo	72	1.56							
						MMAC	29132	1.4D + 1.7L + 1.7H + 1.7Eo	-10	107										
						MTCM	31787	1.4D + 1.7L + 1.7H + 1.7Eo	97	82										
						мссм	34323	1.4D + 1.7L + 1.7H + 1.7Eo	-224	70										
					2-H-L	MMAT	31545	1.4D + 1.7L + 1.7H + 1.7Eo	11	191	1.4D + 1.7L + 1.7H + 1.7Eo	133	3.12	-			-		-	
	-			3		MMAC	31545	1.4D + 1.7L + 1.7H + 1.7Eo	-67	191										
	Far Side	Horizontal	3H.3-10	3		MTCM	32312	1.4D + 1.7L + 1.7H + 1.7Eo	118	180										
					3-H-L	MCCM	26429	1.4D + 1.7L + 1.7H + 1.7Eo	-255	82	1.4D + 1.7L + 1.7H + 1.7Eo	89	4.68							
					STIL	MMAT	32070	1.4D + 1.7L + 1.7H + 1.7Eo	14	326	140 + L/E + L/H + L/E0	00	4.00							
						MMAC	32070	1.4D + 1.7L + 1.7H + 1.7Eo	-78	326										
						MTCM	26467	1.4D + 1.7L + 1.7H + 1.7Eo	142	179										
					4-H-L	мссм	26468	1.4D + 1.7L + 1.7H + 1.7Eo	-77	60	1.4D + 1.7L + 1.7H + 1.7Eo	89	6.24							
						MMAT	26467	D + L + H + E	119	233										
						MMAC	26467	D + L + H + E	-6	233										

3H-94

Rev. 07

Final Safety Analysis Report

		1	ent iber		nt (2)	(C) 500		Longitudinal	Reinforcement	Design Loads		the state of the state			Towns the Dealer Look (
ace		Direction	Inforceme Layout wing Num (1)	Thickness (ft)	Orceme	ment	Axial and Flexu	e Loads		In-Plane Shear Load	ls	Longitudinal Reinforcement Provided			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remark
-	·	Dire	Drawing	Thic (Reinfo Zone N	flem .	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Horizo Transverse Shear Force (kip / ft)	ontal Section Corresponding Axial Force (kip / ft)	Vertic Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	(in²//t²)	
						MTCM 23472	1.4D + 1.7L + 1.7H + 1.7Eo	75	118		(kips / It)			(K)p / I()	(KID 7 II)	(KID / H)	(KID / II)		
						MCCM 34327	1.4D + 1.7L + 1.7H + 1.7Eo	-244	144										
					5-H-L	MMAT 23446	1.4D + 1.7L + 1.7H + 1.7Eo	30	177	1.4D + 1.7L + 1.7H' + 1.7Eo	140	3.12			-			-	-
						MMAC 34328	D+L+H+E	-143	372	-									
						MTCM 23440	1.4D + 1.7L + 1.7H + 1.7Eo	89	308										
						MCCM 23440	1.4D + 1.7L + 1.7H + 1.7Eo	-292	130										
				4	6-H-L	MMAT 23440	1.4D + 1.7L + 1.7H + 1.7Eo	80	321	1.4D + 1.7L + 1.7H' + 1.7Eo	140	4.68						-	
						MMAC 15538	D+L+H+E	-152	485										
						MTCM 23479	1.4D + 1.7L + 1.7H + 1.7Eo	118	147										
						MCCM 34326	1.4D + 1.7L + 1.7H + 1.7Eo	-250	137										
					7-H-L	MMAT 23478	D + L + H' + E'	4	543	1.4D + 1.7L + 1.7H' + 1.7Eo	119	6.24			-			-	-
						MMAC 23478	D+L+H+E	-162	544										
	H	lorizontal	3H.3-10			MTCM 8953	1.4D + 1.7L + 1.7H' + 1.7Eo	25	51										
						MCCM 8902	D+L+H+E	-266	226										
					8-H-L	MMAT 8927	1.4D + 1.7L + 1.7H + 1.7W	1	177	1.4D + 1.7L + 1.7H' + 1.7Eo	133	3.12			-			-	-
						MMAC 5568	D+L+H+E	-159	535										
						MTCM 2787	1.4D + 1.7L + 1.7H + 1.7Eo	57	27										
						MCCM 3515	1.4D + 1.7L + 1.7H + 1.7Eo	-153	211										
				5.5	9-H-L	MMAT 8937	1.4D + 1.7L + 1.7H + 1.7W	4	241	1.4D + 1.7L + 1.7H' + 1.7Eo	164	4.68	-		-			-	-
						MMAC 8937	D+L+H'+E'	-63	545										
						MTCM 4565	1.4D + 1.7L + 1.7H + 1.7Eo	27	82										
						MCCM 7251	D+L+H+E	-171	438										
Fart	Side				10-H-L	MMAT 8962	1.4D + 1.7L + 1.7H + 1.7Eo	6	221	1.4D + 1.7L + 1.7H' + 1.7Eo	133	6.24			-			-	
						MMAC 8964	D+L+H'+E'	-84	970										
						MTCM 27258	1.4D + 1.7L + 1.7H + 1.7Eo	70	15										
						MCCM 27258	1.4D + 1.7L + 1.7H + 1.7Eo	-250	35										
					1-V-L	MMAT 26997	D+L+H'+E'	6	71	1.4D + 1.7L + 1.7H' + 1.7Eo	74	1.56	-		-	-		-	-
						MMAC 26997	D + L + H' + E'	-188	73	-									
						MTCM 26405	1.4D + 1.7L + 1.7H + 1.7Eo	109	70										
						MCCM 26405	1.4D + 1.7L + 1.7H + 1.7Eo	-306	103										
					2-V-L	MMAT 26446	1.4D + 1.7L + 1.7H + 1.7Eo	25	220	1.4D + 1.7L + 1.7H' + 1.7Eo	107	3.12	-	-	-	-	-	-	-
						MMAC 31507	1.4D + 1.7L + 1.7H + 1.7Eo	-68	249	1				1					
						MTCM 34324	1.4D + 1.7L + 1.7H + 1.7Eo	110	47										
						MCCM 34323	1.4D + 1.7L + 1.7H + 1.7Eo	-387	81	1				1					
	\ \	Vertical	3H.3-11	3	3-V-L	MMAT 26430	1.4D + 1.7L + 1.7H + 1.7Eo	30	335	1.4D + 1.7L + 1.7H' + 1.7Eo	266	4.68		-	-			-	-
						MMAC 26430	1.4D + 1.7L + 1.7H + 1.7Eo	-99	345	1				1					
						MTCM 32318	1.4D + 1.7L + 1.7H + 1.7Eo	54	446										
						MCCM 26420	1.4D + 1.7L + 1.7H	-192	119										
					4-V-L	MMAT 32319	1.4D + 1.7L + 1.7H + 1.7Eo	53	447	1.4D + 1.7L + 1.7H + 1.7Eo	85	6.24						-	
						MMAC 32319	1.4D + 1.7L + 1.7H + 1.7Eo	-37	447	1									
						MTCM 32306	1.4D + 1.7L + 1.7H + 1.7Eo	59	462										
						MCCM 32053	1.4D + 1.7L + 1.7H + 1.7Eo	-117	448	1									
					5-V-L	MMAT 32306	1.4D + 1.7L + 1.7H' + 1.7Eo	59	463	1.4D + 1.7L + 1.7H' + 1.7Eo	97	7.8	-	-	-			-	-
						MMAC 32306	14D + 17L + 17H + 17Fo	-35	463	1	1				1				

Rev. 07

Final Safety Analysis Report

			ther		<u>ت</u> 8_	(1) es			Longitudinal	Reinforcement	Design Loads					The second se				
ation	Face	Direction	rceme vout	Thickness (ft)	umbe	1 Forc	nent	Axial and Flexure	e Loads		In-Plane Shear Load	is	- Longitudinal Reinforcement Provided			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
2	ű	5 Si	teinforcen Layout awing Nur (1)	Thic	Reinforceme Zone Number	ximun	Ele	Load Combination	Axial (4)	Flexure ⁽⁴⁾	Load Combination	In-plane (5) Shear	(in ² / ft)	Load Combination	Horiz Transverse Shear Force	Corresponding Axial Force	Vertice Transverse Shear Force	al Section Corresponding Axial Force	(in²/ft²)	
			* č		4 2	Ma	264287		(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MTCM	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	99	465										
					6-V-L	MCCM	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	-285	473	1.4D + 1.7L + 1.7H + 1.7Eo	68	12.48					-		(8),(9)
						MMAT	26428 / 26429 26428 /	1.4D + 1.7L + 1.7H + 1.7Eo	56	540										
				3		MMAC	26428 / 26429	1.4D + 1.7L + 1.7H + 1.7Eo	-181	640										
						MTCM	26685	D+L+H+E	111	286										
					7-V-L	MCCM	28574	1.4D + 1.7L + 1.7H + 1.7Eo	-313	211	1.4D + 1.7L + 1.7H + 1.7Eo	78	12.48	-	-			-		(8),(9)
						MMAT	26685	1.4D + 1.7L + 1.7H + 1.7Eo	-210	348 348										
						MMAC	26685	1.4D + 1.7L + 1.7H + 1.7Eo												
						MTCM	11656 11655	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	123 -430	51										
					8-V-L	MCCM	20149		-430	9 259	1.4D + 1.7L + 1.7H + 1.7Eo	184	3.12							
						MMAT	20149	D+L+H+E D+L+H+E	-183	259										
						MINHC	11724	1.4D + 1.7L + 1.7H + 1.7Eo	-183	201										
						MCCM	11724	1.4D + 1.7L + 1.7H + 1.7E0		68										
					9-V-L	MOOM	13698	D+L+H+E	-423	365	1.4D + 1.7L + 1.7H' + 1.7Eo	239	4.68	-	-			-	-	-
						MMAC	13698	D+L+H+E	-226	365										
				4		MTCM	13208	1.4D + 1.7L + 1.7H + 1.7Eo	117	22										
						MCCM	11654	1.4D + 1.7L + 1.7H + 1.7E0	-435	44										
					10-V-L	MMAT	23441	1.4D + 1.7L + 1.7H + 1.7E0	6	415	1.4D + 1.7L + 1.7H + 1.7Eo	239	6.24		-					
						MMAC	11694	1.4D + 1.7L + 1.7H + 1.7E0	-227	440										
	Far Side	Vertical	3H.3-11		<u> </u>	MTCM	23439	1.4D + 1.7L + 1.7H + 1.7E0	79	235										
						MCCM	23439	1.4D + 1.7L + 1.7H + 1.7E0	-261	45										
					11-V-L	MMAT	23440	1.4D + 1.7L + 1.7H + 1.7Eo	12	532	1.4D + 1.7L + 1.7H + 1.7Eo	230	7.8	-	-			-	-	
						MMAC	23440	1.4D + 1.7L + 1.7H + 1.7Eo	-121	532										
						MTCM	2742	1.4D + 1.7L + 1.7H + 1.7Eo	85	66										
						MCCM	2742	1.4D + 1.7L + 1.7H + 1.7Eo	-410	149										
					12-V-L	MMAT	5517	D+L+H+E	2	337	1.4D + 1.7L + 1.7H + 1.7Eo	172	3.12	-	-			-	-	-
						MMAC	6436	D+L+H+E	-280	366										
						MTCM	3514	1.4D + 1.7L + 1.7H + 1.7Eo	203	83										
						MCCM	3514	1.4D + 1.7L + 1.7H + 1.7Eo	-610	225										
					13-V-L	MMAT	7248	D+L+H+E	1	623	1.4D + 1.7L + 1.7H + 1.7Eo	212	4.68							
						MMAC	7248	D+L+H+E	-284	623										
				5.5		МТСМ	2716	1.4D + 1.7L + 1.7H + 1.7Eo	306	103										
						MCCM	2716	1.4D + 1.7L + 1.7H + 1.7Eo	-738	158										
					14-V-L	MMAT	7242	D + L + H + E	29	660	1.4D + 1.7L + 1.7H + 1.7Eo	238	6.24					-	· · ·	-
						MMAC	7242	D + L + H' + E'	-287	662										
						MTCM	2787	1.4D + 1.7L + 1.7H + 1.7Eo	339	60										
					15-V-L	MCCM	3584	1.4D + 1.7L + 1.7H + 1.7Eo	-676	186	1.4D + 1.7L + 1.7H + 1.7Eo	171	7.8							
					1.5ML	MMAT	8961	D + L + H' + E'	37	704	0.00 - 0.00 - 0.00								· · · · · · · · · · · · · · · · · · ·	
						MMAC	8961	D + L + H' + E'	-267	712										
Ī				3	1-T	-	•			-	-			D + L + H' + E'	48	-46	77	-96	0.20 (#4@12)	-
					2-T				1.1					1.4D + 1.7L + 1.7H + 1.7Eo	-62	83	-2	9	0.31 (#5@12)	
		Transverse			3-T	-		-	1.1	-	-			D + L + H' + E'	-9	-8	-95	-69	0.20 (#4@12)	
		Transverse (Horizontal and Vertical)	3H.3-12		4-T				1.1	1.1		1.1		D + L + H + E	34	-32	106	43	0.31 (#5@12)	
				4	5-T				1.1	-				D + L + H + E	-11	-65	-130	-89	0.44 (#6@12)	
					6-T		1.1		1.1					D + L + H + E	100	53	102	-30	0.60 (#7@12)	1.1
					7-T									D+L+H+E	-143	-45	143	-191	1.76 (#6@6)	

Rev. 07

STP 3 & 4

c		e	mber	2	Der (2)	rces (1			-	Reinforcement	-		Longitudinal Reinforcement			Transverse Shear Design Loads (8)			Transverse Shear ⁽⁷⁾	
ocatio	Face	Direction	Inforcen Layout /ing Nur	Thickness (ft)	forcer	2 E	Elemen	Axial and Flexure			In-Plane Shear Load	In-plane (5)	Provided		Horiz	contal Section	Monthe	cal Section	Reinforcement Provided	Remarks
2		a	Rein L Drawi	£	Reinforceme Zone Number	Maximu	Image: Constraint of the state of						(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
					8-T	-		-			-	-	-	D + L + H' + E'	-121	45	3	-44	0.20 (#4@12)	
		Transverse (Horizontal	3H.3-12	5.5	9-T		1.1			1.1		1.1		D + L + H' + E'	15	-131	166	-120	0.31 (#5@12)	
ULION		and Vertical	0	5.5	10-T	1.1	1.1		1.1	1.1		1.1		D + L + H' + E'	0	-44	194	-95	0.44 (#6@12)	1.1
					11-T									D + L + H' + E'	154	-18	226	-316	0.79 (#8@12)	
						MTCM	34675	1.4D + 1.7L + 1.7H' + 1.7Eo	52	-8										
					1-H-L	MCCM	34147	1.4D + 1.7L + 1.7H + 1.7Eo	-109	-48	1.4D + 1.7L + 1.7H + 1.7Eo	67	1.56							
					Inte	MMAT	29252	1.4D + 1.7L + 1.7H + 1.7Eo	10	-113	140 + 172 + 178 + 1780	67	1.50							
						MMAC	29252	1.4D + 1.7L + 1.7H' + 1.7Eo	-11	-113										
						MTCM	31645	1.4D + 1.7L + 1.7H + 1.7Eo	103	-83										
					2-H-L	MCCM	28431	1.4D + 1.7L + 1.7H + 1.7Eo	-198	-52	1.4D + 1.7L + 1.7H + 1.7Eo	124	3.12							
					2004	MMAT	31092	1.4D + 1.7L + 1.7H' + 1.7Eo	11	-243	140 + 170 + 178 + 1780	1.24	3.12							
				3		MMAC	31092	1.4D + 1.7L + 1.7H + 1.7Eo	-9	-243										
				3		MTCM	34156	1.4D + 1.7L + 1.7H + 1.7Eo	122	-66										
					3-H-L	MCCM	34156	1.4D + 1.7L + 1.7H' + 1.7Eo	-259	-66	1.4D + 1.7L + 1.7H' + 1.7Eo	124	4.68							
					3-#+6	MMAT	26246	1.4D + 1.7L + 1.7H' + 1.7Eo	11	-318	1.4D + 1.7E + 1.7H + 1.7E0	124	4.00	-	-			-		
						MMAC	26246	1.4D + 1.7L + 1.7H + 1.7Eo	-104	-322										
						MTCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	111	-210										
					4.H-L	MCCM	26237	1.4D + 1.7L + 1.7H' + 1.7Eo	-270	-200	1.4D + 1.7L + 1.7H + 1.7Eo	112	6.24							
					4-H-L	MMAT	26238	1.4D + 1.7L + 1.7H' + 1.7Eo	20	-295	1.4D + 1.7L + 1.7H + 1.7E0	112	0.24							
						MMAC	26238	1.4D + 1.7L + 1.7H + 1.7Eo	-229	-332										
						MTCM	23291	1.4D + 1.7L + 1.7H + 1.7Eo	70	-118										
						MCCM	14586	1.4D + 1.7L + 1.7H' + 1.7Eo	-194	-252										1
					5-H-L	MMAT	23316	1.4D + 1.7L + 1.7H' + 1.7Eo	38	-196	1.4D + 1.7L + 1.7H + 1.7E0	135	3.12							· ·
Wall						MMAC	19367	D + L + H' + E'	-97	-362										1
South Wall	Near Side	e Horizontal	3H.3-13			MTCM	11561	1.4D + 1.7L + 1.7H' + 1.7Eo	39	-49										
**				4	6-H-L	MCCM	14323	1.4D + 1.7L + 1.7H' + 1.7Eo	-186	-282	1.4D + 1.7L + 1.7F + 1.7E0	135	4.68							1
				4	6-H-L	MMAT	11561	D + L + H' + E'	7	-382	1.4D + 1.7L + 1.7H + 1.7E0	135	4.68	-	-	-	-	-		· ·
						MMAC	11570	D + L + H' + E'	-92	-579										
						MTCM	23297	1.4D + 1.7L + 1.7H + 1.7Eo	113	-344										
						MCCM	23297	1.4D + 1.7L + 1.7H + 1.7Eo	-296	-491										1
					7-H+L	MMAT	23305	1.4D + 1.7L + 1.7H' + 1.7Eo	2	-630	1.4D + 1.7L + 1.7H + 1.7Eo	115	6.24							· ·
						MMAC	23305	1.4D + 1.7L + 1.7H' + 1.7Eo	-97	-677										1
						MTCM	4126	1.4D + 1.7L + 1.7H + 1.7Eo	27	-56										
						MCCM	8521	1.4D + 1.7L + 1.7H' + 1.7Eo	-224	-215										1
					8-H-L	MMAT	7748	1.4D + 1.7L + 1.7H + 1.7W	1	-148	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12							· ·
						MMAC	6003	D + L + H' + E'	-73	-425										1
						MTCM	2345	1.4D + 1.7L + 1.7H + 1.7Eo	47	-87										
						MCCM	3142	1.4D + 1.7L + 1.7H' + 1.7Eo	-168	-241										1
				5.5	9-H-L	MMAT	2288	1.4D + 1.7L + 1.7H + 1.7Eo	4	-198	1.4D + 1.7L + 1.7H + 1.7Eo	160	4.68			•		-		
						MMAC	3085	D + L + H' + E'	-109	-303										
						МТСМ	2346	1.4D + 1.7L + 1.7H + 1.7Eo	62	-82										
						MCCM	8531	D + L + H' + E'	-355	-1157										
					10-H-L	MMAT	2287	D + L + H + E'	8	-403	1.4D + 1.7L + 1.7H + 1.7Eo	160	6.24							· ·
						MMAC	8531	D+L+H+E	-355	-1165										1

3H-97

Rev. 07

Final Safety Analysis Report

			ent		a g	ces (3				Reinforcement	-		Longitudinal			Transverse Shear Design Loads (6)				
cation	Face	ection	inforcem Layout wing Nun (1)	Thickness (ft)	orcem	n For	ment	Axial and Flexur	Loads		In-Plane Shear Load	is	Reinforcement Provided			•			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Ê		Dired	Reinfo	1	Reinforcement Zone Number ⁽²⁾	ximu	E E	Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Transverse Shear Force	ontal Section Corresponding Axial Force	Transverse Shear Force	al Section Corresponding Axial Force	(in²/ft²)	
			-			ž MTCM	26214	1.4D + 1.7L + 1.7H' + 1.7Eo	93	-51		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	26584	1.4D + 1.7L + 1.7H' + 1.7Eo	-269	-29										
					1-V-L	MMAT	31135	1.4D + 1.7L + 1.7H + 1.7Eo	7	-231	1.4D + 1.7L + 1.7H' + 1.7Eo	130	3.12							(8)
						MMAC	31135	1.4D + 1.7L + 1.7H' + 1.7Eo	-48	-231										
						мтсм	34164	1.4D + 1.7L + 1.7H' + 1.7Eo	79	-203										
						MCCM	34156	1.4D + 1.7L + 1.7H' + 1.7Eo	-187	-190										
					2-V-L	MMAT	32162	1.4D + 1.7L + 1.7H' + 1.7Eo	51	-287	1.4D + 1.7L + 1.7H' + 1.7Eo	97	4.68							
						MMAC	32162	1.4D + 1.7L + 1.7H' + 1.7Eo	-41	-287										
						MTCM	26220	1.4D + 1.7L + 1.7H' + 1.7Eo	42	-216										
						MCCM	27076	1.4D + 1.7L + 1.7H	-197	-91										
					3-V-L	MMAT	26238 / 26239	1.4D + 1.7L + 1.7H' + 1.7Eo	19	-466	1.4D + 1.7L + 1.7H' + 1.7Eo	89	6.24							-
						MMAC	26238 / 26239	1.4D + 1.7L + 1.7H' + 1.7Eo	-156	-493										
						MTCM	26229	D + L + H' + E'	24	-423										
						мссм	27377	1.4D + 1.7L + 1.7H	-190	-74										
				3	4-V-L	MMAT	26229	1.4D + 1.7L + 1.7H' + 1.7Eo	4	-509	1.4D + 1.7L + 1.7H' + 1.7Eo	87	7.8							
						MMAC	26229	1.4D + 1.7L + 1.7H' + 1.7Eo	-120	-511										
						MTCM	26237	1.4D + 1.7L + 1.7H' + 1.7Eo	112	-852										
					5-V-L	MCCM	26237	1.4D + 1.7L + 1.7H + 1.7Eo	-351	-904	1.4D + 1.7L + 1.7H' + 1.7Eo	69	12.48							(8),(9)
					D-V-L	MMAT	26237	1.4D + 1.7L + 1.7H' + 1.7Eo	31	-899	1.4D + 1./L + 1./H + 1./E0	69	12.48							(8),(9)
						MMAC	26237	1.4D + 1.7L + 1.7H' + 1.7Eo	-351	-904										
						MTCM	26237 / 26238	D * L * H' * E'	70	-680										
P.A.	Near Side	Vertical	3H.3-14		6-V-L	MCCM	26548 / 26549	1.4D + 1.7L + 1.7H	-262	-681	1.4D + 1.7L + 1.7H' + 1.7Eo	73	12.48							(8),(9)
South						MMAT	26237 / 26238	1.4D + 1.7L + 1.7H' + 1.7Eo	17	-820			12.40							(0).(0)
						MMAC	26237 / 26238	1.4D + 1.7L + 1.7H' + 1.7Eo	-261	-825										
						MTCM	26542	D + L + H' + E'	112	-485										
					7-V-L	MCCM	28431	1.4D + 1.7L + 1.7H' + 1.7Eo	-303	-204	1.4D + 1.7L + 1.7H' + 1.7Eo	82	7.8							(8),(9)
						MMAT	26556 / 26557	1.4D + 1.7L + 1.7H' + 1.7Eo	5	-567										
						MMAC	26556 / 26557	1.4D + 1.7L + 1.7H' + 1.7Eo	-14	-568										
						MTCM	11512	1.4D + 1.7L + 1.7H' + 1.7Eo	102	-62										
					8-V-L	MCCM	11513	1.4D + 1.7L + 1.7H + 1.7Eo	-389	-65	1.4D + 1.7L + 1.7H' + 1.7Eo	183	3.12							(8)
						MMAT	11518	D + L + H' + E'	19	-218										
						MMAC	16496	D + L + H' + E'	-152	-280										
						мтсм	23273	1.4D + 1.7L + 1.7H' + 1.7Eo	109	-72										
					9-V-L	MCCM	16528	1.4D + 1.7L + 1.7H + 1.7Eo	-357	-66	1.4D + 1.7L + 1.7H' + 1.7Eo	223	4.68							-
						MMAT	22077	1.4D + 1.7L + 1.7H + 1.7Eo	8	-411										
				4	<u> </u>	MMAC	22078	1.4D + 1.7L + 1.7H + 1.7Eo	-149	-471		-			-					
						MTCM MCCM	11569	1.4D + 1.7L + 1.7H + 1.7Eo	115	-97										
					10-V-L				-425		1.4D + 1.7L + 1.7H' + 1.7Eo	277	6.24		-					-
						MMAT	23304	1.4D + 1.7L + 1.7H + 1.7Eo	-151	-632										
					<u> </u>	MMAC	23304	1.4D + 1.7L + 1.7H' + 1.7Eo	-151 81	-699										
						MICM	22631	1.4D + 1.7L + 1.7H + 1.7Eo		-365										
					11-V-L	MCCM	22631	1.4D + 1.7L + 1.7H + 1.7Eo	-308	-533	1.4D + 1.7L + 1.7H' + 1.7Eo	157	7.8		-					-
						MMAT	23297	1.4D + 1.7L + 1.7H' + 1.7Eo	-236	-732										
						MMAG	25291	1.40 * 1.70 * 1.7H * 1.7E0	-236	-023		1								

3H-98

Rev. 07

Final Safety Analysis Report

Ę		5	ment t umber	\$	ment ber ⁽²⁾	orces ⁽³⁾			Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	
ocatio	Face	irectio	sinforcer Layou wing Nu (1)	Thicknes (ft)	Reinforcer Zone Numl	tum Fo	Axial and Flexu	_	(0)	In-Plane Shear Load	In-plane ⁽⁵⁾	Provided		Horizo	ontal Section	Vertic	al Section	Reinforcement Provided (in ² /ft ²)	Remarks
-		-	Braw	F	Reir Zone	Maxim	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	Shear (kips / ft)	(in²/ π)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(18-78-)	
						MTCM 407		100	-129										
					12-V-L	MCCM 310) 1.4D + 1.7L + 1.7H' + 1.7Eo	-347	-111	1.4D + 1.7L + 1.7H + 1.7Eo	164	3.12							
						MMAT 312	D + L + H' + E'	6	-275										
						MMAC 310	D + L + H' + E'	-237	-281										
						MTCM 405) 1.4D + 1.7L + 1.7H' + 1.7Eo	218	-88										
					13-V-L	MCCM 406) 1.4D + 1.7L + 1.7H' + 1.7Eo	-650	-121	1.4D + 1.7L + 1.7H' + 1.7Eo	235	4.68							
					1.512	MMAT 312	D + L + H' + E'	15	-292								-		
						MMAC 312	D+L+H'+E'	-213	-292										
						MTCM 228	1.4D + 1.7L + 1.7H' + 1.7Eo	301	-291										
	Near Side	Vertical	3H.3-14	5.5	14-V-L	MCCM 228	1.4D + 1.7L + 1.7H' + 1.7Eo	-747	-323	1.4D + 1.7L + 1.7H + 1.7Eo	285	6.24							
	Near side	venical	3H.3-14	0.0	14-V-L	MMAT 229	D+L+H'+E'	18	-874	1.4D + 1./L + 1./H + 1./E0	280	0.24	-				-		-
						MMAC 229	D + L + H' + E'	-268	-874										
						MTCM 233) 1.4D + 1.7L + 1.7H' + 1.7Eo	114	-249										
					15-V-L	MCCM 233) 1.4D + 1.7L + 1.7H' + 1.7Eo	-346	-254	1.4D + 1.7L + 1.7H + 1.7Eo	224	7.8							
					15-V-L	MMAT 232	D + L + H' + E'	33	-551	1.4D + 1.7L + 1.7H + 1.7E0	224	7.8	-						-
						MMAC 232	D + L + H' + E'	-217	-551										
						MTCM 234	i 1.4D + 1.7L + 1.7H' + 1.7Eo	295	-224										
					16-V-L	MCCM 234	1.4D + 1.7L + 1.7H' + 1.7Eo	-697	-600	1.4D + 1.7L + 1.7H + 1.7Eo	285	9.36							
					10-V-L	MMAT 234	D+L+H'+E'	20	-816	1.4D + 1./L + 1./H + 1./E0	285	9.30							
						MMAC 234	D+L+H'+E'	-277	-816	1									
						MTCM 3467	5 1.4D + 1.7L + 1.7H' + 1.7Eo	52	18										
					1-H-L	MCCM 3414	7 1.4D + 1.7L + 1.7H' + 1.7Eo	-109	56	1.4D + 1.7L + 1.7H + 1.7Eo	67	1.56							
					1-H-L	MMAT 2925	2 1.4D + 1.7L + 1.7H' + 1.7Eo	11	104	1.4D + 1.7L + 1.7H + 1.7E0	67	1.00	-	-		-			-
Mall						MMAC 2925	2 1.4D + 1.7L + 1.7H' + 1.7Eo	-11	104										
south						MTCM 3112	3 1.4D + 1.7L + 1.7H' + 1.7Eo	98	100										
						MCCM 284	1 1.4D + 1.7L + 1.7H' + 1.7Eo	-198	53										
					2-H-L	MMAT 2956	4 1.4D + 1.7L + 1.7H' + 1.7Eo	31	207	1.4D + 1.7L + 1.7H + 1.7Eo	124	3.12					-		-
						MMAC 2950	4 1.4D + 1.7L + 1.7H' + 1.7Eo	-38	207										
						MTCM 2623	7 1.4D + 1.7L + 1.7H' + 1.7Eo	111	172										
						MCCM 2623	7 1.4D + 1.7L + 1.7H' + 1.7Eo	-270	161										
				3	3-H-L	MMAT 3087	3 1.4D + 1.7L + 1.7H' + 1.7Eo	25	250	1.4D + 1.7L + 1.7H + 1.7Eo	124	4.68							-
						MMAC 3067	3 1.4D + 1.7L + 1.7H' + 1.7Eo	-141	251										
						MTCM 3217	0 1.4D + 1.7L + 1.7H' + 1.7Eo	120	77										
						MCCM 3190		-200	321	1									
	Far Side	Horizonta	al 3H.3-15		4-H-L	MMAT 3190	0 1.4D + 1.7L + 1.7H' + 1.7Eo	58	361	1.4D + 1.7L + 1.7H + 1.7Eo	46	6.24	-				-		-
						MMAC 3190	0 1.4D + 1.7L + 1.7H' + 1.7Eo	-187	361	1									
						MTCM 3415		122	63										
						MCCM 3415	6 1.4D + 1.7L + 1.7H' + 1.7Eo	-259	64	1									
					5-H-L	MMAT 3416	2 1.4D + 1.7L + 1.7H' + 1.7Eo	54	196	1.4D + 1.7L + 1.7H + 1.7Eo	67	7.8				•			
						MMAC 3410		-71	196										
				<u> </u>		MTCM 232	1 1.4D + 1.7L + 1.7H' + 1.7Eo	70	108										
						MCCM 115		-199	114	1									
					6-H-L	MMAT 232		0	186	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12	-				-		-
						MMAC 115		-162	292										
				4	<u> </u>	MTCM 232		113	306										
						MCCM 2325		-296	190										
					7-H-L	MMAT 2330		34	485	1.4D + 1.7L + 1.7H + 1.7Eo	115	6.24	-				-		
					1	MMAC 2330		-35	485	+	1								

Rev. 07

Final Safety Analysis Report

Rei

5		5	ment it umber	5	ber 2	souces ⁽³	Ŧ			Reinforcement	-		Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	
ocatic	Face	Directio	Reinforceme Layout Drawing Num (1)	Thicknes (ft)	force	m Fo	Elemee	Axial and Flexur	1		In-Plane Shear Load		Provided		Horizo	ntal Section	Verti	cal Section	Reinforcement Provided	Remar
ž		ā	Reini L Drawi	f	Reinforceme Zone Number	laxim		Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
		<u> </u>				2 MTCM	8514	1.4D + 1.7L + 1.7H' + 1.7Eo	32	23		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	8521	1.4D + 1.7L + 1.7H + 1.7Eo	-224	126										
					8-H-L	MMAT	8518	1.4D + 1.7L + 1.7H + 1.7W	8	190	1.4D + 1.7L + 1.7H + 1.7Eo	135	3.12	-		-			-	-
						MMAC	8529	D + L + H' + E'	-125	545										
		Horizontal	3H.3-15	5.5		MTCM	2345	1.4D + 1.7L + 1.7H' + 1.7Eo	47	65										<u> </u>
						MCCM	3141	1.4D + 1.7L + 1.7H + 1.7Eo	-153	250										
					9-H-L	MMAT	8475	1.4D + 1.7L + 1.7H' + 1.7Eo	7	164	1.4D + 1.7L + 1.7H + 1.7Eo	160	4.68							
						MMAC	8477	D+L+H'+E'	-55	627										
		<u> </u>				MTCM	26214	1.4D + 1.7L + 1.7H + 1.7Eo	93	63										<u> </u>
						MCCM	26584	1.4D + 1.7L + 1.7H + 1.7Eo	-269	58										
					1-V-L	MMAT	29788	1.4D + 1.7L + 1.7H' + 1.7Eo	0	233	1.4D + 1.7L + 1.7H + 1.7Eo	130	3.12							
						MMAC	29788	1.4D + 1.7L + 1.7H ⁺ + 1.7Eo	-88	252										
						MTCM	34164	1.4D + 1.7L + 1.7H ⁻ + 1.7Eo	79	224										<u> </u>
						MCCM	27076	1.4D + 1.7L + 1.7H	-200	65										
					2-V-L	MMAT	29803	1.4D + 1.7L + 1.7H + 1.7Eo	6	359	1.4D + 1.7L + 1.7H + 1.7Eo	97	4.68	-		-		-		
						MMAC	31628	1.4D + 1.7L + 1.7H + 1.7Eo	-46	379										
						MTCM	32181	1.4D + 1.7L + 1.7H + 1.7Eo	42	463										-
						MCCM	26239	1.4D + 1.7L + 1.7H	-192	104										
					3-V-L	MMAT	31634	1.4D + 1.7L + 1.7H + 1.7Eo	1	485	1.4D + 1.7L + 1.7H' + 1.7Eo	97	6.24							
						MMAC	31634	1.4D + 1.7L + 1.7H + 1.7Eo	-90	485										
				3		MTCM	32162	1.4D + 1.7L + 1.7H + 1.7Eo	56	560										
						мссм	26244	1.4D + 1.7L + 1.7H	-161	86										
	Far Side				4-V-L	MMAT	32162	1.4D + 1.7L + 1.7H + 1.7Eo	56	560	1.4D + 1.7L + 1.7H + 1.7Eo	97	7.8							
						MMAC	32162	1.4D + 1.7L + 1.7H + 1.7Eo	-36	560										
						MTCM	26542	D + L + H' + E'	112	375										
						MCCM	28431	1.4D + 1.7L + 1.7H ⁺ + 1.7Eo	-303	237										
		Vertical	3H.3-16		5-V-L	MMAT	26542	1.4D + 1.7L + 1.7H + 1.7Eo	10	437	1.4D + 1.7L + 1.7H + 1.7Eo	82	12.48							Ø
						MMAC	26542	1.4D + 1.7L + 1.7H' + 1.7Eo	-195	437										
						MTCM	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	70	563										
						MCCM	26548 / 26549	1.4D + 1.7L + 1.7H + 1.7Eo	-262	484										
					6-V-L	MMAT	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	69	644	1.4D + 1.7L + 1.7H + 1.7Eo	69	12.48							(
						MMAC	26237 / 26238	1.4D + 1.7L + 1.7H + 1.7Eo	-181	644										
						MTCM	11512	1.4D + 1.7L + 1.7H + 1.7Eo	111	63										
					7-V-L	мссм	11513	1.4D + 1.7L + 1.7H + 1.7Eo	-389	80	1.4D + 1.7L + 1.7H + 1.7Eo	213	3.12							
					7+V+L	MMAT	22079	1.4D + 1.7L + 1.7H + 1.7Eo	11	247	1.4D + 1.7E + 1.7H + 1.7E0	213	3.12							
						MMAC	22079	1.4D + 1.7L + 1.7H + 1.7Eo	-114	247										
						MTCM	16528	1.4D + 1.7L + 1.7H + 1.7Eo	90	7										
				4	8-V-L	MCCM	16528	D + L + H' + E'	-315	25	14D + 17L + 17H + 17Eo	277	4.68							
				•	0-V-L	MMAT	23304	1.4D + 1.7L + 1.7H + 1.7Eo	3	509	1.40 + 1.72 + 1.78 + 1.760	211	4.00							
						MMAC	23304	1.4D + 1.7L + 1.7H + 1.7Eo	-110	509										
						MTCM	11569	1.4D + 1.7L + 1.7H + 1.7Eo	115	67										
					9-V-L	MCCM	11569	1.4D + 1.7L + 1.7H" + 1.7Eo	-425	42	1.4D + 1.7L + 1.7H + 1.7Eo	213	6.24							
					3-Y-L	MMAT	23297	1.4D + 1.7L + 1.7H + 1.7Eo	43	520	1.40 T 1.70 T 1.7H T 1.7E0	213	0.24							
						MMAC	23297	1.4D + 1.7L + 1.7H + 1.7Eo	-154	520										

3H-100

Rev. 07

Final Safety Analysis Report

ç		ç	t t mber	\$	her ⁽²⁾	succes (3			inal Reinforcen	ent Design Loads		Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾	
catio	Face	Direction	orcer ayour ng Nu (1)	Thicknes: (ft)	Orcer	num Fon		Flexure Loads		In-Plane Shear Loa		Provided		Havin	ontal Section	Varia	cal Section	Reinforcement Provided	Remar
ž		ā	Reinforceme Layout Drawing Numl (1)	Ē	Reinforcem Zone Numbe	Maximu	Load Combination	Axia (kips	(4) Flexure (ft) (ft-kips)	(4) Load ft) Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
						MTCM 30	1.4D + 1.7L + 1.7H + 1.7E	19	60										
					10-V-L	MCCM 22	1.4D + 1.7L + 1.7H + 1.7E	-59	4 172	1.4D + 1.7L + 1.7H' + 1.7Eo	224	4.68							
					10-V-L	MMAT 67	2 D+L+H'+E'	16	682	1.4D + 1.7L + 1.7H + 1.7E0	224	4.68	-						
						MMAC 60	19 D+L+H'+E'	-23	3 718										
						MTCM 22	37 1.4D + 1.7L + 1.7H + 1.7E	30	67										
	Far Side	Vertical	3H.3-16	5.5	11-V-L	MCCM 22	37 1.4D + 1.7L + 1.7H + 1.7E	-74	7 221	1.4D + 1.7L + 1.7H' + 1.7Eo	203	6.24							
	T al Oloc	- Crocar	511.5-10			MMAT 67	51 D + L + H' + E'	19	711		100	0.14						-	
						MMAC 67	31 D + L + H' + E'	-26	3 739										
						MTCM 23	16 1.4D + 1.7L + 1.7H + 1.7E	29	161										
					12-V-L	MCCM 31	13 1.4D + 1.7L + 1.7H + 1.7E	-66	3 103	1.4D + 1.7L + 1.7H' + 1.7Eo	285	7.8							
						MMAT 77	52 D + L + H' + E'	20	671										
						MMAC 77	32 D + L + H' + E'	-25	7 671										
1					1-T						1.1	1.1	1.4D + 1.7L + 1.7H + 1.7Eo	-64	48	-29	18	0.20 (#4@12)	
A the					2-T								D + L + H' + E'	-59	57	-20	-16	0.31 (#5@12)	
ž				3	3-T								1.4D + 1.7L + 1.7H + 1.7Eo	-48	208	-13	135	0.44 (#6@12)	-
					4-T			-					1.4D + 1.7L + 1.7H + 1.7Eo	-149	3	-101	-64	1.76 (#6@6)	-
					5-T								1.4D + 1.7L + 1.7H + 1.7Eo	-178	14	-125	-83	2.40 (#7@6)	
					6-T								1.4D + 1.7L + 1.7H + 1.7Eo	91	-60	5	-81	0.20 (#4@12)	
		Transverse			7-T		-	-			-		D + L + H' + E'	103	52	-4	-90	0.31 (#5@12)	-
		Transverse (Horizontal and Vertical	3H.3-17	4	8-T							100 A	1.4D + 1.7L + 1.7H' + 1.7Eo	136	-58	8	-89	0.44 (#6@12)	
					9-T				_		1.1	1.00	D + L + H' + E'	116	-7	94	-17	0.60 (#7@12)	
					10-T		-		-			-	1.4D + 1.7L + 1.7H' + 1.7Eo	236	-43	90	-84	1.24 (#5@6)	-
					11-T								1.4D + 1.7L + 1.7H' + 1.7Eo	196	-59	168	-86	1.76 (#6@6)	-
					12-T	-			_				D + L + H' + E'	-132	-16	0	-17	0.20 (#4@12)	
				5.5	13-T			-			-		D + L + H' + E'	145	-40	18	-28	0.31 (#5@12)	-
					14-T 15-T			-					D+L+H'+E'	-191	-22	0	-13	0.44 (#6@12)	
					15-T	-		-	_				D+L+H+E	180	-30	132	-71	0.60 (#7@12)	-
						MTCM 32 MCCM 29			_	1.4D + 1.7L + 1.7H + 1.7Eo 67									
					1-H-L	MCCM 29 MMAT 29			_		67	1.56							
						MMAC 27		-24	_										
					<u> </u>	MILLIO 21 MTCM 31-			_										
						MCCM 26		-90	-										
				3	2-H-L	MMAT 34				- 1.4D + 1.7L + 1.7H' + 1.7Eo 121	3.12					•		-	
						MMAC 34			_										
					<u> </u>	MTCM 31			-		-								
Vall						MCCM 31			_	-									
cast wa	Near Side	Horizontal	3H.3-18		3-H-L	MMAT 32					1.4D + 1.7L + 1.7H' + 1.7Eo 121	4.68		-					
-						MMAC 26		-81	-										
						MTCM 23	07 1.4D + 1.7L + 1.7H + 1.7E	33	-60										
						MCCM 11		-18	_										
					4-H-L	MMAT 23	07 1.4D + 1.7L + 1.7H + 1.7E	28	-95	1.4D + 1.7L + 1.7H' + 1.7Eo	160	3.12							-
						MMAC 11	76 D + L + H' + E'	-17	5 -295	1									
				4		MTCM 23	08 1.4D + 1.7L + 1.7H + 1.7E	47	-97										
						MCCM 11	49 D+L+H'+E'	-19	9 -289										
					5-H-L	MMAT 23	11 1.4D + 1.7L + 1.7H + 1.7E	3	-177	1.4D + 1.7L + 1.7H' + 1.7Eo	178	4.68							
		1			1	MMAC 11	49 D+L+H'+E'	-19	9 -289										

Rev. 07

Final Safety Analysis Report

			per ut		18 19	es ⁽³⁾		Longitudinal	Reinforcement	Design Loads									
ation	Face	Direction	ainforceme Layout wing Num (1)	Thickness (ft)	ceme	num Forc	Axial and Flex	ure Loads		In-Plane Shear Load	ds	Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
S L	a de la compañía de	Dire	Reinfol La) Drawing	Pirt C	Reinforcemer Zone Number	Eler	Load	Axial ⁽⁴⁾	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load	Transverse Shear Force	Ontal Section Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
			- 0		- 4	MTCM 22108	1.4D + 1.7L + 1.7H' + 1.7Eo	(KIPS / IL) 22	(m-kips / m) -40		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM 13553	D+L+H+E	-111	-391										
					6-H-L	MMAT 22108	1.4D + 1.7L + 1.7H + 1.7Eo	3	-188	1.4D + 1.7L + 1.7H' + 1.7Eo	178	6.24			-				
						MMAC 14597	D+L+H+F	-104	-418										
				4		MTCM 22750	1.4D + 1.7L + 1.7H' + 1.7Eo	21	-209		-								
						MCCM 11651	D + L + H' + E'	-225	-209										
					7-H-L	MMAT 23415	D + L + H' + E'	9	-588	1.4D + 1.7L + 1.7H' + 1.7Eo	178	7.8			-		-	•	
						MMAC 16659	D + L + H' + E'	-146	-722										
						MTCM 5470	1.4D + 1.7L + 1.7H' + 1.7Eo	12	-57										
						MCCM 8125	D + L + H' + E'	-240	-464										
					8-H-L	MMAT 5470	1.4D + 1.7L + 1.7H' + 1.7Eo	10	-83	1.4D + 1.7L + 1.7H + 1.7Eo	148	3.12	-		-	-	-		
						MMAC 8125	D + L + H' + E'	-235	-473										
		Horizontal	3H.3-18			MTCM 2352	1.4D + 1.7L + 1.7H' + 1.7Eo	48	-34										
					9-H-L	MCCM 8890	D + L + H' + E'	-246	-509	1.4D + 1.7L + 1.7H + 1.7Eo	181								
					9-H-L	MMAT 2352	1.4D + 1.7L + 1.7H + 1.7W	5	-98	1.4D + 1.7L + 1.7H + 1.7E0	181	4.68			-		-	•	-
				5		MMAC 8890	D + L + H' + E'	-243	-510										
				•		MTCM 2348	1.4D + 1.7L + 1.7H' + 1.7Eo	55	-67										
					10-H-L	MCCM 7768	D + L + H' + E'	-254	-1005	1.4D + 1.7L + 1.7H' + 1.7Eo	181	6.24			-		-		
						MMAT 2348	D + L + H' + E'	0	-393	190 - 196 - 191 - 1960		0.24				-			
						MMAC 6815	D + L + H' + E'	-242	-1009										
						MTCM 2715	1.4D + 1.7L + 1.7H' + 1.7Eo	55	-82										
East wall	Near Side				11-H-L	MCCM 8895	D + L + H' + E'	-286	-816	1.4D + 1.7L + 1.7H' + 1.7Eo	181	9.36							
Eas						MMAT 2715	1.4D + 1.7L + 1.7H' + 1.7Eo	2	-377										
						MMAC 8135	D + L + H' + E'	-270	-1221										
						MTCM 26586	1.4D + 1.7L + 1.7H' + 1.7Eo	75	-27										
					1-V-L	MCCM 26586	1.4D + 1.7L + 1.7H' + 1.7Eo	-268	-19	1.4D + 1.7L + 1.7H' + 1.7Eo	74	1.56							
						MMAT 28234	1.4D + 1.7L + 1.7H' + 1.7Eo	6	-104										
						MMAC 28234	1.4D + 1.7L + 1.7H' + 1.7Eo	-150	-161										
						MTCM 26384	D + L + H' + E'	95	-29										
				3	2-V-L	MCCM 26393	1.4D + 1.7L + 1.7H + 1.7Eo	-338	-34	1.4D + 1.7L + 1.7H' + 1.7Eo	85	3.12			-	-			
						MMAT 26305	D + L + H' + E'	10	-216										
						MMAC 26306	1.4D + 1.7L + 1.7H + 1.7Eo	-227	-291										
						MTCM 32279	1.4D + 1.7L + 1.7H + 1.7Eo	190	-53										
		Vertical	3H.3-19		3-V-L	MCCM 26310	1.4D + 1.7L + 1.7H' + 1.7Eo	-225	-303	1.4D + 1.7L + 1.7H' + 1.7Eo	85	4.68			-				
						MMAT 33710 MMAC 33710	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-115	-270										
								_			-								
						MTCM 11576	1.4D + 1.7L + 1.7H' + 1.7Eo 1.4D + 1.7L + 1.7H' + 1.7Eo	129 -484	-26										
					4-V-L	MCCM 115/6 MMAT 16173	D+L+H+E	23	-128	1.4D + 1.7L + 1.7H' + 1.7Eo	188	3.12			-	-	-		-
						MMA1 16173 MMAC 22706	1.4D + 1.7L + 1.7H + 1.7Eo	-241	-190										
				4		MTCM 11651	1.4D + 1.7L + 1.7H + 1.7Eo	-241	-202										
						MCCM 11651	1.4D + 1.7L + 1.7H + 1.7Eo	-474	-151										
					5-V-L	MMAT 14356	D+L+H+E	31	-394	1.4D + 1.7L + 1.7H' + 1.7Eo	188	4.68							-
						MMAC 14364	1.4D + 1.7L + 1.7H + 1.7Eo	-320	-436			1							

Rev. 07

STP 3 & 4

_		-	ent nber		ent sr ⁽²⁾	ces ⁽³⁾			Longitudinal	Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads (6)				
cation	Face	Direction	forcem Layout ing Nun (1)	Thickness (ft)	forcemen	nFon	ment	Axial and Flexure	Loads		In-Plane Shear Load		Reinforcement Provided						Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remark
P.	-	Dir	Reinfo La Drawin	Ē	Reinfo Zone h	aximu	Elor	Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force (kip / ft)	(in ² /ft ²)	
_			_			MTCM	8632	1.4D + 1.7L + 1.7H' + 1.7Eo	33	-9		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	4258	1.4D + 1.7L + 1.7H' + 1.7Eo	-386	-51										
					6-V-L	MMAT	4259	1.4D + 1.7L + 1.7H' + 1.7Eo	21	-118	1.4D + 1.7L + 1.7H' + 1.7Eo	187	3.12							
						MMAC	4258	1.4D + 1.7L + 1.7H' + 1.7Eo	-176	-118										
						MTCM	4474	1.4D + 1.7L + 1.7H' + 1.7Eo	111	-85										
					7-V-L	MCCM	4474	1.4D + 1.7L + 1.7H' + 1.7Eo	-400	-116	1.4D + 1.7L + 1.7H' + 1.7Eo	235	4.68							
					1.V.L	MMAT	4451	D + L + H' + E'	16	-199	140+170+178+1780	230	4.00							
						MMAC	4451	D + L + H' + E'	-228	-199										
						MTCM	4497	1.4D + 1.7L + 1.7H' + 1.7Eo	223	-27										
	Near Side	Vertical	3H.3-19	5	8-V-L	MCCM	4130	1.4D + 1.7L + 1.7H' + 1.7Eo	-619	-68	1.4D + 1.7L + 1.7H' + 1.7Eo	225	6.24							
						MMAT	4138	D + L + H' + E'	24	-194										
						MMAC	8895	D + L + H' + E'	-363	-205										
						MTCM	2715	1.4D + 1.7L + 1.7H' + 1.7Eo	321	-95										
					9-V-L	MCCM	2715	1.4D + 1.7L + 1.7H' + 1.7Eo	-691	-165	1.4D + 1.7L + 1.7H' + 1.7Eo	187	7.8							
						MMAT	2531	D + L + H' + E'	-196	-1107										
						MMAC	2531 2348	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-196	-1108 -143										
						MCCM	2348	1.4D + 1.7L + 1.7H + 1.7E0	-671	-143										
					10-V-L	MMAT	2583	D+L+H'+E'	10	-1058	1.4D + 1.7L + 1.7H' + 1.7Eo	235	9.36							
						MMAC	2583	D + L + H' + E'	-199	-1072										
	<u> </u>					MTCM	32260	1.4D + 1.7L + 1.7H' + 1.7Eo	74	13										
lall						MCCM	33752	1.4D + 1.7L + 1.7H' + 1.7Eo	-65	19										
East V					1-H-L	MMAT	28549	1.4D + 1.7L + 1.7H' + 1.7Eo	0	121	1.4D + 1.7L + 1.7H' + 1.7Eo	67	1.56		•					
						MMAC	28549	1.4D + 1.7L + 1.7H' + 1.7Eo	-23	121										
						MTCM	31453	1.4D + 1.7L + 1.7H' + 1.7Eo	124	40										
				з	2-H-L	MCCM	26384	D + L + H' + E'	-92	39	1.4D + 1.7L + 1.7H' + 1.7Eo	121	3.12							
				3	2-H-L	MMAT	34108	1.4D + 1.7L + 1.7H' + 1.7Eo	8	237	1.4D + 1.7E + 1.7H + 1.7E0	121	3.12							
						MMAC	34108	1.4D + 1.7L + 1.7H' + 1.7Eo	-19	237										
						MTCM	31192	1.4D + 1.7L + 1.7H' + 1.7Eo	168	61										
					3-H-L	MCCM	31192	1.4D + 1.7L + 1.7H' + 1.7Eo	-126	62	1.4D + 1.7L + 1.7H' + 1.7Eo	60	4.68							
						MMAT	34107	1.4D + 1.7L + 1.7H' + 1.7Eo	14	272										
	Far Side	Horizontal	3H.3-20			MMAC	34107	1.4D + 1.7L + 1.7H' + 1.7Eo	-22	272										
						MTCM	23408	1.4D + 1.7L + 1.7H' + 1.7Eo	47	62										
					4-H-L	MCCM	11576	D + L + H' + E'	-175	200	1.4D + 1.7L + 1.7H + 1.7Eo	160	3.12							
						MMAT	23408	1.4D + 1.7L + 1.7H' + 1.7Eo	1	109										
						MMAC	13561	D + L + H' + E' 1.4D + 1.7L + 1.7H + 1.7W	-102	314										
						MTCM	14415	1.4D + 1.7L + 1.7H + 1.7W D + L + H' + E'	-152	17										
				4	5-H-L	MCCM	14407	0 + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-152	22	1.4D + 1.7L + 1.7H + 1.7Eo	178	4.68	-						-
						MMAC	14380	D+L+H'+E'	-91	162										
						MTCM	14334	1.4D + 1.7L + 1.7H + 1.7W	17	28										
						MCCM	14338	D+L+H'+E'	-102	175										
					6-H-L	MMAT	14601	1.4D + 1.7L + 1.7H' + 1.7Eo	4	71	1.4D + 1.7L + 1.7H + 1.7Eo	178	6.24		-			-	-	
						MMAC	14605	D + L + H' + E'	-86	382										

3H-103

Rev. 07

STP 3 & 4

			ber	-	t ^e	(3)			Longitudinal	Reinforcement	Design Loads		t and the starts			Transverse Shear Design Loads (6)				
	Face	Direction	inforceme Layout wing Num (1)	Thickness (ft)	rceme	Ford	ment	Axial and Flexure	Loads		In-Plane Shear Load	ts	Longitudinal Reinforcement Provided			Transverse snear Design Loads ***			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
	e.	Dire		1 T	Reinforceme Zone Number	u u u	ŝ	Load Combination	Axial (4)	Flexure (4)	Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Horiz Transverse Shear Force	Corresponding Axial Force	Vertic Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
_			a 5		^L N	Max	_		(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						мтсм	5190	1.4D + 1.7L + 1.7H + 1.7Eo	14	39										
					7-H-L	MCCM	6823 5446	D + L + H' + E'	-198	214	1.4D + 1.7L + 1.7H + 1.7Eo	148	3.12		-					
						MMAT	5446	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	-168	387										
		Horizontal	3H.3-20	5		MMAC	2715	1.4D + 1.7L + 1.7H' + 1.7Eo	-168	25										
						MCCM	8537	D+L+H'+E'	-230	163										
					8-H-L	MMAT	3149	1.4D + 1.7L + 1.7H' + 1.7Eo	1	70	1.4D + 1.7L + 1.7H' + 1.7Eo	181	4.68							
						MMAC	8591	D+L+H'+E'	-160	409										
						MINOC	26849	1.4D + 1.7L + 1.7H' + 1.7Eo	69	26										
						MCCM	26849	14D + 17L + 17H + 17Eo	-241	34										
					1-V-L	MMAT	30916	1.4D + 1.7L + 1.7H' + 1.7Eo	3	110	1.4D + 1.7L + 1.7H' + 1.7Eo	74	1.56		-			-		1.1
						MMAC	26895	1.4D + 1.7L + 1.7H' + 1.7Eo	-151	163										
						MTCM	26384	D+L+H'+E'	95	73										
						MCCM	26393	1.4D + 1.7L + 1.7H' + 1.7Eo	-340	40										
				3	2-V-L	MMAT	30920	1.4D + 1.7L + 1.7H' + 1.7Eo	9	206	1.4D + 1.7L + 1.7H + 1.7Eo	85	3.12		-	-	-	-	-	
						MMAC	26626	1.4D + 1.7L + 1.7H' + 1.7Eo	-151	240										
						MTCM	32279	1.4D + 1.7L + 1.7H' + 1.7Eo	190	64										
						MCCM	32279	1.4D + 1.7L + 1.7H' + 1.7Eo	-191	80										
					3-V-L	MMAT	29615	1.4D + 1.7L + 1.7H' + 1.7Eo	56	198	1.4D + 1.7L + 1.7H + 1.7Eo	79	4.68		-			-		
						MMAC	29615	1.4D + 1.7L + 1.7H' + 1.7Eo	-138	198										
	Far Side					мтсм	11651	1.4D + 1.7L + 1.7H' + 1.7Eo	129	21										
						MCCM	13564	1.4D + 1.7L + 1.7H' + 1.7Eo	-390	114										
					4-V-L	MMAT	13564	D + L + H' + E'	14	199	1.4D + 1.7L + 1.7H + 1.7Eo	188	3.12		-			-		(8)
						MMAC	14637	1.4D + 1.7L + 1.7H' + 1.7Eo	-271	235										
		Vertical	3H.3-21	4		MTCM	11576	1.4D + 1.7L + 1.7H' + 1.7Eo	129	34										
					5-V-L	MCCM	11576	1.4D + 1.7L + 1.7H' + 1.7Eo	-476	44	1.4D + 1.7L + 1.7H + 1.7Eo	188	4.68							
					5-V-L	MMAT	11614	D + L + H' + E'	28	426	1.40 + 1.72 + 1.7H + 1.7E0	100	4.00							
						MMAC	11614	D + L + H' + E'	-193	426										
						MTCM	4481	1.4D + 1.7L + 1.7H' + 1.7Eo	137	44										
					6-V-L	MCCM	4481	1.4D + 1.7L + 1.7H' + 1.7Eo	-461	201	1.4D + 1.7L + 1.7H + 1.7Eo	190	4.68							
					0.112	MMAT	3495	D + L + H' + E'	24	263	190 - 190 - 191 - 1910	1.00						-		
						MMAC	2699	1.4D + 1.7L + 1.7H' + 1.7Eo	-453	298										
						мтсм	4497	1.4D + 1.7L + 1.7H' + 1.7Eo	223	12										
				5	7-V-L	MCCM	4130	1.4D + 1.7L + 1.7H' + 1.7Eo	-614	86	1.4D + 1.7L + 1.7H + 1.7Eo	235	6.24							
						MMAT	6938	D + L + H' + E'	22	731										
					L	MMAC	6938	D + L + H' + E'	-268	739										
						мтсм	2715	1.4D + 1.7L + 1.7H' + 1.7Eo	321	89										
					8-V-L	MCCM	2715	1.4D + 1.7L + 1.7H' + 1.7Eo	-691	23	1.4D + 1.7L + 1.7H + 1.7Eo	225	7.8							
						MMAT	6909	D + L + H' + E'	30	718										
						MMAC	6909	D + L + H' + E'	-271	725										
					1-T						•			1.4D + 1.7L + 1.7H' + 1.7Eo	9	82	13	230	0.20 (#4@12)	
				3	2-T	-				-				1.4D + 1.7L + 1.7H' + 1.7Eo	50	31	42	103	0.31 (#5@12)	
				<u> </u>	3-T	-			•	•				1.4D + 1.7L + 1.7H' + 1.7Eo	87	-63	0	-18	0.44 (#6@12)	
		Transverse (Horizontal and Vertical)	3H.3-22		4-T			•		-	•			D + L + H' + E'	-2	-25	91	-105	0.20 (#4@12)	
		und vertical)			5-T	-								D + L + H' + E'	103	28		-57	0.31 (#5@12)	
				4	6-T 7-T	-	•	•	•	-	•			D + L + H' + E'	125	30	-1	-61	0.44 (#6@12)	-
					7-T 8-T		1.1	-	1.1	1.1				D + L + H' + E'	-120	-34	-102	-120	0.60 (#7@12)	

Rev. 07

STP 3 & 4

		nent mber	8	nent her ⁽²⁾	rces ⁽³⁾	_			Reinforcement			Longitudinal			Transverse Shear Design Loads ⁽⁶⁾				
catio	Face	Inforcem Layout ving Nur	Thickness (ft)	forcemen	m Fo	Element	Axial and Flexure			In-Plane Shear Load		Provided		Masia	ontal Section	Vertie	al Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Ľ	ā	Reint	Ē	Reinfi Zone	laximu		Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
				9-T				-			(kips / tt)		D + L + H' + E'	-7	-36	123	-124	0.20 (#4@12)	
_				10-T									D + L + H' + E'	14	-63	151	-202	0.31 (#5@12)	
tt Wall	- (Horizo and Ver	erse intal 3H.3-22	5	11-T									D + L + H' + E'	-166	12	0	-72	0.44 (#6@12)	
1982	and Ver	tical)		12-T				-					D + L + H' + E'	-205	10	0	-21	0.60 (#7@12)	
				13-T				-					D + L + H' + E'	107	-24	-212	-184	0.79 (#8@12)	
					MTCM	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	46	-41										
					мссм	31715	1.4D + 1.7L + 1.7H + 1.7Eo	-65	-48										
				1-H-L	MMAT	31426	1.4D + 1.7L + 1.7H ² + 1.7Eo	21	-91	1.4D + 1.7L + 1.7H' + 1.7Eo	75	1.56							
					MMAC	31426	1.4D + 1.7L + 1.7H' + 1.7Eo	-29	-91										
			3		MTCM	32204	1.4D + 1.7L + 1.7H' + 1.7Eo	61	-173										
					MCCM	32243	1.4D + 1.7L + 1.7H + 1.7Eo	-87	-153										
				2-H-L	MMAT	31152	1.4D + 1.7L + 1.7H' + 1.7Eo	25	-210	1.4D + 1.7L + 1.7H' + 1.7Eo	108	3.12							
					MMAC	31152	1.4D + 1.7L + 1.7H' + 1.7Eo	-42	-210										
			<u> </u>		MTCM	22696	1.4D + 1.7L + 1.7H + 1.7Eo	25	-46										
					MCCM	11573	D+L+H'+E'	-278	-461										
				3-H-L	MMAT	11573	1.4D + 1.7L + 1.7H + 1.7Eo	3	-142	1.4D + 1.7L + 1.7H + 1.7Eo	143	3.12					-	-	-
					MMAC	11573	D+L+H+E	-274	-484										
			4		MTCM	23343	1.4D + 1.7L + 1.7H + 1.7Eo	87	-24										
					MCCM	11633	D+L+H+E	-166	-112										
	Horizor	ntal 3H.3-23		4-H-L	MMAT	23333	14D + 17L + 17H + 17Fo	8	-136	1.4D + 1.7L + 1.7H + 1.7Eo	143	4.68							
					MMAC	13167	D+L+H+E	-116	-130										
					MTCM	4184	1.4D + 1.7L + 1.7H' + 1.7Eo	29	-79										
					мссм	8891	D+L+H+E	-240	-419										
				5-H-L	MMAT	8711	1.4D + 1.7L + 1.7H + 1.7Eo	6	-111	1.4D + 1.7L + 1.7H' + 1.7Eo	135	3.12							
=					MMAC	8587	D+L+H+E	-181	-111										
west wall	Near Side				MTCM	2353	1.4D + 1.7L + 1.7H' + 1.7Eo	45	-26										
3					MCCM	3199	1.4D + 1.7L + 1.7H + 1.7Eo	-176	-324										
			5	6-H-L	MCCM	8628	1.4D + 1.7L + 1.7H + 1.7W	-176	-324	1.4D + 1.7L + 1.7H' + 1.7Eo	164	4.68					-		
					MMAT	8628	1.4D + 1.7L + 1.7H + 1.7W	-116	-270										
					MTCM	2711	14D+17L+17H+17Fo	53	-75										
						+ +		-											
				7-H-L	MCCM	8534	D+L+H'+E'	-241	-658	1.4D + 1.7L + 1.7H' + 1.7Eo	164	6.24			-		-		-
					MMAT	8532		-											
					MMAC	26402	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-73	-896										
					MICM	26402	1.4D + 1.7L + 1.7H + 1.7Eo	-303	-39										
				1-V-L	MCCM			-		1.4D + 1.7L + 1.7H + 1.7Eo	90	3.12	-		-		-		
					MMAT	26341 32226	1.4D + 1.7L + 1.7H* + 1.7Eo	-23	-217 -243										
			3	<u> </u>	MMAC	32226	1.4D + 1.7L + 1.7H + 1.7Eo	-23	-										
					MTCM	32241 32243	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-32	-101										
	Vertic	tal 3H.3-24		2-V-L	MCCM	32243		-32	-341 -273	1.4D + 1.7L + 1.7H + 1.7Eo	90	4.68							
					MMAT	32243	D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-32	-273										
					MMAC	32243	1.4D + 1.7L + 1.7H' + 1.7Eo	-32	-341										
					MTCM	-	1.4D + 1.7L + 1.7H + 1.7Eo	_	-9 -37										
			4	3-V-L	MCCM	13129 21538	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	-411	-37	1.4D + 1.7L + 1.7H + 1.7Eo	177	3.12							
					MMAT	21538	D+L+H'+E'	-120	-176										

3H-105

Rev. 07

Final Safety Analysis Report

	Face		mber	2	Reinforcement Zone Number ⁽²⁾	ces ⁽³⁾		Longitudinal Reinforcement Design Loads					Longitudinal	Transverse Shear Design Loads ⁽⁸⁾						
		Direction	Layout Layout wing Nurr (1)	Thickness (ft)		e E	Element	Axial and Flexur			In-Plane Shear Loads		Longitudinal Reinforcement Provided	Iransverse snear uesign Loads Horizontal Section Vertical Section				al Castion	Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Location		ā	Reinf. L. Drawin	Ê		aximur	l i i	Load Combination	Axial (4) (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force (kip / ft)	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
_						мтсм	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	178	-63		(kips / ft)			(kip / ft)	(Kip / It)	(kip / ft)	(kip / ft)		
					4-V-L	MCCM	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	-589	-314	1.4D + 1.7L + 1.7H + 1.7Eo									
						MMAT	23385	D + L + H' + E'	3	-376		212	4.68							
				4		MMAC	23385	D + L + H' + E'	-128	-411										
				4		MTCM	22696	D + L + H' + E'	46	-55	1.4D + 1.7L + 1.7H + 1.7Eo	212								
					5-V-L	MCCM	22131	1.4D + 1.7L + 1.7H + 1.7Eo	-204	-129			6.24							
					0-V-L	MMAT	23361	D + L + H' + E'	0	-349			0.24		-	-				
						MMAC	23367	1.4D + 1.7L + 1.7H' + 1.7Eo	-165	-377										
						МТСМ	5196	1.4D + 1.7L + 1.7H' + 1.7Eo	71	-29	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo									
		Vertical	3H.3-24		6-V-L	MCCM	4195	1.4D + 1.7L + 1.7H' + 1.7Eo	-309	-25		152	3.12							-
					6-V-L	MMAT	4195	D + L + H' + E'	12	-139		1.04								
	Near Side					MMAC	4312	D + L + H' + E'	-168	-158		205								
						МТСМ	4132	1.4D + 1.7L + 1.7H' + 1.7Eo	183	-35			4.68							
				5	7-V-L	MCCM	4132	1.4D + 1.7L + 1.7H' + 1.7Eo	-559	-36										
						MMAT	8535	1.4D + 1.7L + 1.7H' + 1.7Eo	18	-215										
						MMAC	8535	1.4D + 1.7L + 1.7H' + 1.7Eo	-418	-270								<u> </u>		
						МТСМ	4129	1.4D + 1.7L + 1.7H' + 1.7Eo	208	-19	1.4D + 1.7L + 1.7H + 1.7Eo	149								
					8-V-L	MCCM	4129	1.4D + 1.7L + 1.7H' + 1.7Eo	-623	-103			6.24							
						MMAT	8534	1.4D + 1.7L + 1.7H' + 1.7Eo	5	-211										
						MMAC	8534	D + L + H' + E'	-332	-351										
					9-V-L	MTCM	2347	1.4D + 1.7L + 1.7H + 1.7Eo	312	-63	1.4D + 1.7L + 1.7H + 1.7Eo									
						MCCM	2347	1.4D + 1.7L + 1.7H' + 1.7Eo	-741	-178		205	7.8						-	
						MMAT	2443	D + L + H' + E'	55	-750								[
						MMAC	2582	D + L + H' + E'	-184	-775							+			
						МТСМ	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	46	22	1.4D + 1.7L + 1.7H + 1.7E0									
					1-H-L	MCCM	31715	1.4D + 1.7L + 1.7H' + 1.7Eo	-65	16		75	1.56			-				
					()	MMAT	31159	1.4D + 1.7L + 1.7H' + 1.7Eo	25	94									-	
				3		MMAC	31159 26287	1.4D + 1.7L + 1.7H + 1.7Eo	-32	94										
		Horizontal				мтсм	32243		63	53			3.12							
					2-H-L	MCCM	32243	1.4D + 1.7L + 1.7H' + 1.7Eo 1.4D + 1.7L + 1.7H' + 1.7Eo	-87	49					-	-				
						MMAC	31152	1.4D + 1.7L + 1.7H + 1.7Eo	-38	1/1										
						MMAC	31152 22696	1.4D + 1.7L + 1.7H' + 1.7Eo	-38	1/1										
						MCCM	11650	D+L+H'+E'	-225 14											
	Far Side				3-H-L	MMAT	11625	1.4D + 1.7L + 1.7H + 1.7W	2	1/0	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	143	3.12					-		
			3H.3-25			MMAC	11625	D+L+H+E'	-70	303										
	. ar oide	1 ren sover field	0110 20	4		мтсм	23343	1.4D + 1.7L + 1.7H' + 1.7Eo	87	146		143						+		
					4-H-L	MCCM	23343	D + L + H' + E'	-86	126			6.24							
					4-H-L	MMAT	23343	1.4D + 1.7L + 1.7H' + 1.7Eo	39	221		143	0.24							
						MMAC	23343	1.4D + 1.7L + 1.7H' + 1.7Eo	-68	221										
						MTCM	4190	1.4D + 1.7L + 1.7H' + 1.7Eo	26	34										
					5-H-L	MCCM	8891 8730	D + L + H' + E'	-239	176	1.4D + 1.7L + 1.7H' + 1.7Eo	135	3.12							(8)
						MMAT	8730	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	-174	99										
				5		MILAC	2711	1.4D + 1.7L + 1.7H' + 1.7Eo	53	14										
						MCCM	3199	1.4D + 1.7L + 1.7H + 1.7E0	-169	14	1									
					6-H-L	MMAT	3205	D+L+H'+E'	7	64	1.4D + 1.7L + 1.7H' + 1.7Eo	164	4.68							
						MMAC	3205	D+L+H'+E'	-139	258	1									
		1	1						1						I					

Rev. 07

STP 3 & 4

			ent iber		r (g)	(3)		Longitudinal Reinforcement Design Loads					to the second second			Transverse Shear Design Loads (6)				Τ
ation	Face	Direction	yout Num	Thickness (ft)	Reinforcemen Zone Number ⁽	Forc	ment	Axial and Flexure Loads In-Plane			In-Plane Shear Load	ts	Longitudinal Reinforcement			Transverse Shear Design Loads ***			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
2	<i>2</i>	Dire	Reinforcem Layout Drawing Nun (1)	Thiof.	einfoi me N	imur	Elor	Load	Axial (4) Flexure (4)		Load	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load	Horizo Transverse Shear Force	Corresponding Axial Force	Vertic Transverse Shear Force	al Section Corresponding Axial Force	Reinforcement Provided (in ² /ft ²)	
			e 5		хх	May		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
							29048	1.4D + 1.7L + 1.7H' + 1.7Eo	62	46										
					1-V-L	MCCM	29050	1.4D + 1.7L + 1.7H' + 1.7Eo	-121	33	1.4D + 1.7L + 1.7H ⁻ + 1.7Eo 77	77	1.56	-						
						MMAT	32206	1.4D + 1.7L + 1.7H' + 1.7Eo	3	101										
						MMAC	32206	1.4D + 1.7L + 1.7H' + 1.7Eo	-11	101										
						мтсм	26402	1.4D + 1.7L + 1.7H' + 1.7Eo	111	30	1.40 + 1.7L + 1.7K + 1.7Eo 1.40 + 1.7L + 1.7K + 1.7Eo	90								
				3	2-V-L	MCCM	26402	1.4D + 1.7L + 1.7H' + 1.7Eo	-303	38			3.12		-	-		-		
						MMAT	26890	D + L + H' + E'	4	196										
			34.3-26			MMAC	26890	1.4D + 1.7L + 1.7H' + 1.7Eo	-55	220										
		Vertical				МТСМ	26300	1.4D + 1.7L + 1.7H' + 1.7Eo	43	122			4.68							
					3-V-L	MCCM	26377	1.4D + 1.7L + 1.7H' + 1.7Eo	-143	164		90								
						MMAT	26344	1.4D + 1.7L + 1.7H' + 1.7Eo	9	282										
						MMAC	26344	1.4D + 1.7L + 1.7H' + 1.7Eo	-57	309										
					4-V-L	мтсм	13204	1.4D + 1.7L + 1.7H' + 1.7Eo	126	39	1.4D + 1.7L + 1.7F + 1.7Eo 1.4D + 1.7L + 1.7F + 1.7Eo	177								
						MCCM	13204	1.4D + 1.7L + 1.7H' + 1.7Eo	-467	64			3.12							-
						MMAT	14385	D + L + H' + E'	8	253										
	Far Side			4		MMAC	14385	D + L + H' + E'	-180	254										
						мтсм	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	178	97										
					5-V-L	MCCM	11573	1.4D + 1.7L + 1.7H' + 1.7Eo	-529	67		212	4.68							
						MMAT	11623	D + L + H' + E'	-232	288										
								D + L + H' + E' 1.4D + 1.7L + 1.7H' + 1.7Eo			234 74 50 340 340 27 27 140 - 1 7L - 1 7K - 1 7E0 300 307 309 440 - 1 7L - 1 7K - 1 7E0 140 - 1 7L - 1 7K - 1 7E0 309 309 309 309 309 309									
						MTCM	2350 2350		214			205								
					6-V-L	MMAT	5196	1.4D + 1.7L + 1.7H' + 1.7Eo	-08/				4.68							
					7-V-L	MMAT	6247	D+L+H'+E'	-188				6.24							
						MMAC	2402	0+L+H+E 1.4D+1.7L+1.7H'+1.7Eo	-188											
						MCCM	3199	1.4D + 1.7L + 1.7H + 1.7E0	-405											
				5		MMAT	5191	D+L+H'+E'	10									-		
						MMAC	4190	D+L+H'+E'	-281	-								-		
						MTCM	2347	1.4D + 1.7L + 1.7H' + 1.7Eo	312					+						
					8-V-L	MCCM	2347	1.4D + 1.7L + 1.7H' + 1.7Eo	-735			149	7.8							
						MMAT		1.4D + 1.7L + 1.7H' + 1.7Eo	5	219	1.4D + 1.7L + 1.7H' + 1.7Eo				-					
						MMAC	8534	1.4D + 1.7L + 1.7H' + 1.7Eo	-251	219										
F					1-T									1.4D + 1.7L + 1.7H' + 1.7Eo	18	20	21	116	0.20 (#4@12)	
				3	2-T									1.4D + 1.7L + 1.7H' + 1.7Eo	47	10	44	28	0.31 (#5@12)	
					3-T									D + L + H' + E'	6	-63	-91	-89	0.20 (#4@12)	
			3H.3-27		4-T									D + L + H' + E'		-68	-115	-110	0.31 (#5@12)	
				4	5-T									D + L + H' + E'	-4	-66	120	-99	0.44 (#6@12)	
		Transverse			6-T									D + L + H' + E'	-135	-35	126	-366	0.79 (#8@12)	
	-	Transverse (Horizontal and Vertical)			7-T									D + L + H' + E'	-188	-66	-171	-259	1.76 (#6@6)	
					8-T			-						D + L + H' + E'	18	-40	84	-110	0.20 (#4@12)	
					9-T									D + L + H' + E'	-135	31	-12	-15	0.31 (#5@12)	
				5	10-T									D + L + H' + E'	-165	-6	-2	-17	0.44 (#6@12)	
					11-T									D + L + H' + E'	-92	-56	-122	185	0.60 (#7@12)	-
					12-T									D+L+H'+E'	147	-22	-229	-251	1.24 (#5食6)	

3H-107

Rev. 07

Final Safety Analysis Report

3H-1		Table 3H.3-3 Results of Radwaste Building Concrete Wall Design (Continued)
80		
	Notes:	(1) The reinforcement layout datavings show the values are based on finite element avalysis results. Actual provided reinforcement dataving development length may exceed the reported provided reinforcement and the zones with higher reinforcement may be extended byood their reported boundaries. The dimensions in the reinforcement datavings are based on the dimensions of the dimensions.
		(2) Each reinforcement layoud drawing is divided into reinforcement zone naming convention is as bibles: "I* = horizontal, "V* = vertical, "V* = horizontal," + horizontal corresponds to Horizontal corresponds to Horizontal corresponds to East-West direction.
		(1) The maximum lension (MTCM) and compression (MACM) and approved with the corresponding moment from the same lead combination and maximum moment that has a corresponding tension (MMAT) in the same lead combination and a also provided. For the roof, the maximum lension and maximum moment (MTMM) are reported.
		(4) Negative axial load is compression and positive axial load is tension. Negative moment applies tension to the top bace of the shell element and positive moment applies tension to the top bace of the shell element. If the axial and fearing load is tension. Negative moment applies tension to the top bace of the shell element and positive moment applies tension to the top bace of the shell element. If the axial and fearing load is tension. Negative moment applies tension to the top bace of the shell element and positive moment applies tension to the top bace of the shell element. For wals or statios where the same reinforcement is provided on toth faces, the moment applies tension to the top bace of the shell element adoption are used for design (effective with considered). The element mesh is sufficiently refined for this design approach.
		(d) The reported in-plane shear is the maximum average in-plane shear along a plane that cosses the longitudinal reinforcement zone.
		(6) The transverse shear reinforcement loads are reported for the critical element requiring the targest area of steel for transverse reinforcement within the zone. The shear force and the corresponding axial force in the same load combination for each direction is reported for the critical element.
		(1) The reported transverse shear reinforcement is the summation of the required shear reinforcement in the horizontal direction and the required shear reinforcement in the horizontal direction.
		(i) For certain areas of the shucture, the standard element post-processing methods were too conservative. For such cases, detailed manual design as performed and the design are provided in the table.

(9) The longitudinal reinforcement shown is required to be tied

(10) The reported forces are from the FEM analysis. The provided longitudinal reinforcement includes additional reinforcement required due to manual one-way design calculations

(11) The reported axial and in-plane forces are from the FEM analysis. The reported flexural forces are from manual one-way design calculations.

STP

ω

		t t		± 6,	6.89			Longitudinal	Reinforcement De	sign Loads									
Face	ction	rceme /out	ssource a	reme	Forei	Element	Axial and Flexu	ure Loads		In-Plane Shear Load	5	Longitudinal Reinforcement Provided			Transverse Shear Design Loads (8)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
2	Directio	Reinfor Lay rawing	Thickne (ft)	Reinforce Zone Num	- mimuma	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in ² / π)	Load Combination	Transverse Shear Force	tal Section Corresponding Axial Force	Vertical Transverse Shear Force	Corresponding Axial Force	(in ² /ft ²)	
	-			- ~		1269	D + L + H' + E'	(κips / π) 79	(π-κips / π) -218	Companyation	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		<u> </u>
					MCCM	1073	1.4D + 1.7L + 1.7H + 1.7Eo	-126	-54										l .
				1-H-L	MMAT	277	1.4D + 1.7L + 1.7H' + 1.7Eo	1	-1162	1.4D + 1.7L + 1.7H + 1.7Eo	68	6.24							
					MMAC	514	1.4D + 1.7L + 1.7H' + 1.7Eo	-25	-1480										i i
	Horizon	ntal 3H.3-2I	12		MTCM	26158	1.4D + 1.7L + 1.7H' + 1.7Eo	86	-403										
					MCCM	26186	1.4D + 1.7L + 1.7H + 1.7Eo	-102	-273										l .
				2-H-L	MMAT	29850	1.4D + 1.7L + 1.7H + 1.7Eo	21	-1377	1.4D + 1.7L + 1.7H" + 1.7Eo	75	7.8							-
					MMAC	29850	1.4D + 1.7L + 1.7H + 1.7Eo	-28	-1377										l .
Near Sic	e				мтсм	944	1.4D + 1.7L + 1.7H + 1.7Eo	42	-179										í
					MCCM	880	D + L + H' + E'	-189	-126										l .
				1-V-L	MMAT	880	1.4D + 1.7L + 1.7H + 1.7Eo	67	-1136	1.4D + 1.7L + 1.7H" + 1.7Eo	66	6.24	-						-
					MMAC	26810	1.4D + 1.7L + 1.7H + 1.7Eo	-26	-1059										i i
	Vertica	al 3H.3-2	12		MTCM	27828	1.4D + 1.7L + 1.7H + 1.7Eo	125	-1615										
				2-V-L	MCCM	27828	1.4D + 1.7L + 1.7H' + 1.7Eo	-166	-643	1.4D + 1.7L + 1.7H + 1.7Eo	62	7.8							i i
				2-V-L	MMAT	27828	1.4D + 1.7L + 1.7H' + 1.7Eo	125	-1615	1.4D + 1.7L + 1.7H + 1.7Eo	62	7.8							
					MMAC	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-63	-1615										i i
					мтсм	29586	1.4D + 1.7L + 1.7H + 1.7Eo	83	1105										
				1-H-L	MCCM	933	1.4D + 1.7L + 1.7H + 1.7Eo	-72	1593	1.4D + 1.7L + 1.7H + 1.7Eo	68	6.24							
				1-0-L	MMAT	415	1.4D + 1.7L + 1.7H + 1.7Eo	26	1579	140 • 172 • 178 • 1760	60	0.24							i i
					MMAC	933	1.4D + 1.7L + 1.7H + 1.7Eo	-67	1623										i
					мтсм	603	1.4D + 1.7L + 1.7H + 1.7Eo	63	1642										
				2-H-L	MCCM	645	D + L + H' + E'	-18	480	1.4D + 1.7L + 1.7H + 1.7Eo	75	7.8							
				2.00	MMAT	463	1.4D + 1.7L + 1.7H' + 1.7Eo	1	2329										
	Horizon	ntal 3H.3-3	12		MMAC	604	1.4D + 1.7L + 1.7H' + 1.7Eo	-87	2510										i
					мтсм	27384	D + L + H' + E'	114	1049										-
				3-H-L	MCCM	27348	1.4D + 1.7L + 1.7H + 1.7Eo	-227	2252	1.4D + 1.7L + 1.7H' + 1.7Eo	68	9.36							
					MMAT	29849	1.4D + 1.7L + 1.7H + 1.7Eo	34	2642								-		
					MMAC	27347	1.4D + 1.7L + 1.7H + 1.7Eo	-207	3199										
					мтсм	26185	1.4D + 1.7L + 1.7H' + 1.7Eo	91	634										i i
				4-H-L	MCCM	26159	1.4D + 1.7L + 1.7H + 1.7Eo	-168	1429	1.4D + 1.7L + 1.7H' + 1.7Eo	75	10.92							
					MMAT	26185	1.4D + 1.7L + 1.7H' + 1.7Eo	15	3252										i i
Far Sid	,	_			MMAC	26185	1.4D + 1.7L + 1.7H + 1.7Eo	-134	3259										<u> </u>
					мтсм	880	1.4D + 1.7L + 1.7H + 1.7Eo	67	1062										i i
				1-V-L	MCCM	880	1.4D + 1.7L + 1.7H' + 1.7Eo	-190	2096	1.4D + 1.7L + 1.7H + 1.7Eo	66	6.24						-	
					MMAT	880	1.4D + 1.7L + 1.7H' + 1.7Eo	35	1666										i .
				<u> </u>	MMAC	880	1.4D + 1.7L + 1.7H' + 1.7Eo	-190	2096										
					мтсм	1261 32363	D+L+H+E	93	1051										i .
				2-V-L	MCCM	32363	1.4D + 1.7L + 1.7H' + 1.7Eo 1.4D + 1.7L + 1.7H' + 1.7Eo	-171	1458 2039	1.4D + 1.7L + 1.7H' + 1.7Eo	36	7.8		•					
					MMAT	32362	1.4D + 1.7L + 1.7H + 1.7Eo 1.4D + 1.7L + 1.7H + 1.7Eo	-163	2039										ĺ
	Vertica	al 3H.3-3	12	<u> </u>	MMAC	32363	1.4D + 1.7L + 1.7H' + 1.7Eo	-163 92	2104										
					MICM	28433	D+L+H'+E'	-228	437 2034										l
				3-V-L	MCCM	32371	1.4D + 1.7L + 1.7H + 1.7Eo	-228	3045	1.4D + 1.7L + 1.7H + 1.7Eo	66	9.36	-	· ·	-			·	
					MMAC	20	1.4D + 1.7L + 1.7H + 1.7Eo	-144	2912										ĺ
			1	<u> </u>	MILAC	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-144	1572		-								. <u> </u>
					MCCM	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-224	3713										l
				4-V-L	MMAT	27828	1.4D + 1.7L + 1.7H + 1.7Eo	6	3675	1.4D + 1.7L + 1.7H' + 1.7Eo	62	10.92						-	-
					MMAC	27828	1.4D + 1.7L + 1.7H + 1.7Eo	-224	3713										i .
	Transve	erse		1-T									1.4D + 1.7L + 1.7H' + 1.7Eo	21	32	288	0	0.20 (#4@12)	
1 -	Transve (Horizon and Verti	ntal 3H.3-3	12	2-T		-							1.4D + 1.7L + 1.7H' + 1.7Eo	178	41	288	-31	0.31 (#5@12)	

Table 3H.3-4 Results of Radwaste Building Concrete Slab Design

3H-109

Rev. 07

Final Safety Analysis Report

			ent nber		ent ar ⁽²⁾	ces ⁽³⁾			Longitudinal	Reinforcement D	lesign Loads		Longitudinal			Transverse Shear Design Loads ⁽⁶⁾				
Location	Face	Direction	nforcem Layout /ing Nun (1)	Thickness (ft)	fumpe	n For	ment	Axial and Flexi	ure Loads		In-Plane Shear Load		Longitudinal Reinforcement Provided						Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
ğ		- Sig	Reinfo La Drawin	Thic	Reinforceme Zone Number	Asximur	E	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Horizo Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Vertical Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
	<u> </u>					мтсм	37891	1.4D + 1.7L + 1.7H' + 1.7Eo	99	-45		(Kipa / K)			(60776)	(6973)	(60) 7 (6)	(6971)		
					1-H-L	MCCM	37891	1.4D + 1.7L + 1.7H + 1.7Eo	-291	-110	1.4D + 1.7L + 1.7H + 1.7Eo	122	3.12							
					inter.	MMAT	36339	1.4D + 1.7L + 1.7H' + 1.7Eo	1	-266	140 + 170 + 178 + 1780	122	3.12							
						MMAC	38166	1.4D + 1.7L + 1.7H + 1.7Eo	-190	-354										
						MTCM	35329	1.4D + 1.7L + 1.7H' + 1.7Eo	64	-298										
				5	2-H-L	MCCM	36144	1.4D + 1.7L + 1.7H' + 1.7Eo	-224	-390	1.4D + 1.7L + 1.7H + 1.7Eo	107	4.68				-			
						MMAT	35340	1.4D + 1.7L + 1.7H + 1.7Eo	19	-405										
						MMAC	38231	1.4D + 1.7L + 1.7H' + 1.7Eo	-70	-366										
						MTCM	37838	1.4D + 1.7L + 1.7H + 1.7Eo	67	-144	_									
		Horizontal	3H.3-33		3-H-L	MCCM	37838	1.4D + 1.7L + 1.7H' + 1.7Eo	-302	-627	1.4D + 1.7L + 1.7H + 1.7Eo	73	6.24							
						MMAT	37838	D + L + H' + E'	13	-428	_									
						MMAC	37838	1.4D + 1.7L + 1.7H' + 1.7Eo	-273	-634										
						MTCM	38193 37895	1.4D + 1.7L + 1.7H' + 1.7Eo 1.4D + 1.7L + 1.7H' + 1.7Eo	-203	-8										
				4	4-H-L	MCCM	37895	1.4D + 1.7L + 1.7H' + 1.7Eo	-203	-188	1.4D + 1.7L + 1.7H + 1.7Eo	97	3.12							
						MMAT	377788	1.4D + 1.7L + 1.7H' + 1.7Eo 1.4D + 1.7L + 1.7H' + 1.7Eo	-89	-308	_									
						MTCM	25335	1.4D + 1.7L + 1.7H + 1.7E0	73	-347										
						MCCM	25335	1.4D + 1.7L + 1.7H + 1.7Eo	-195	-30	_									
				2	5-H-L	MMAT	39029	1.4D + 1.7L + 1.7H' + 1.7E0	6	-115	1.4D + 1.7L + 1.7H' + 1.7Eo	102	3.12							(8),(10)
						MMAC	39029	1.4D + 1.7L + 1.7H' + 1.7Eo	-44	-115	-									
						MTCM	35934	1.4D + 1.7L + 1.7H' + 1.7Eo	50	-66										
						MCCM	38394	D+L+H+E	-143	-143										
					1-V-L	MMAT	38395	1.4D + 1.7L + 1.7H' + 1.7Eo	27	-160	1.4D + 1.7L + 1.7H + 1.7Eo	1.4D + 1.7L + 1.7H + 1.7Eo 72	3.12							
						MMAC	38395	1.4D + 1.7L + 1.7H' + 1.7Eo	-114	-223	-									
						MTCM	36062	1.4D + 1.7L + 1.7H' + 1.7Eo	145	-180			4.59						++	
b.						MCCM	37024	D + L + H' + E'	-184	-164	-									
EL 35"-0"	Near Side	•		5	2-V-L	MMAT	34304	1.4D + 1.7L + 1.7H' + 1.7Eo	2	-371	1.4D + 1.7L + 1.7H + 1.7Eo	52	4.68				-	-	-	-
						MMAC	37023	1.4D + 1.7L + 1.7H' + 1.7Eo	-177	-531	-									
						MTCM	35810	1.4D + 1.7L + 1.7H' + 1.7Eo	160	-135										
					3-V-L	MCCM	35810	1.4D + 1.7L + 1.7H + 1.7Eo	-319	-37	1.4D + 1.7L + 1.7H + 1.7Eo	72	6.24				-			
					3-V-L	MMAT	35273	1.4D + 1.7L + 1.7H' + 1.7Eo	34	-590	1.40 + 1.7L + 1.7H + 1.7E0	12	0.24							
						MMAC	37824	1.4D + 1.7L + 1.7H + 1.7Eo	-167	-764										
						MTCM	38187	1.4D + 1.7L + 1.7H' + 1.7Eo	62	-79										
					4-V-L	MCCM	38161	1.4D + 1.7L + 1.7H' + 1.7Eo	-185	-256	D+L+H+E	66	3.12							
						MMAT	38302	1.4D + 1.7L + 1.7H + 1.7Eo	7	-275			0.14							
		Vertical	3H.3-34			MMAC	38258	1.4D + 1.7L + 1.7H' + 1.7Eo	-38	-344										
						MTCM	38143	1.4D + 1.7L + 1.7H + 1.7Eo	44	-240	_									
				4	5-V-L	MCCM	38143	1.4D + 1.7L + 1.7H' + 1.7Eo	-189	-412	D+L+H+E	66	4.68							
						MMAT	38143	D + L + H' + E'	9	-473	_									
						MMAC	38143	1.4D + 1.7L + 1.7H' + 1.7Eo	-97	-693										
						MTCM	38165	1.4D + 1.7L + 1.7H' + 1.7Eo	66	-211	_									
					6-V-L	MCCM	38165	1.4D + 1.7L + 1.7H' + 1.7Eo	-236	-747	1.4D + 1.7L + 1.7H + 1.7Eo	52	6.24							
							38165	1.4D + 1.7L + 1.7H' + 1.7Eo			_									
				<u> </u>		MMAC	38165	1.4D + 1.7L + 1.7H' + 1.7Eo	-211	-786		-			-				-	
						MTCM MCCM	25310 25333	1.4D + 1.7L + 1.7H' + 1.7Eo D + L + H' + E'	33	-19 -27	-									
					7-V-L	MCCM	39027	D + L + H + E' 1.4D + 1.7L + 1.7H' + 1.7Eo	-64	-27	1.4D + 1.7L + 1.7H + 1.7Eo	41	1.56		-		-	-		(10)
						MMAC	39027	1.4D + 1.7L + 1.7H + 1.7Eo	-21	-50	-									
				2	<u> </u>	MMAC	39027	1.4D + 1.7L + 1.7H + 1.7E0	-21	-00		-								
						MCCM	34574	D+L+H+E	-80	-25	-									
					8-V-L	MMAT	34573	1.4D + 1.7L + 1.7H' + 1.7Eo	20	-52	1.4D + 1.7L + 1.7H + 1.7Eo	50	3.12				-			(10)
						MMAC	34573	1.4D + 1.7L + 1.7H' + 1.7Eo	-69	-52	1	1								

Table 3H.3-4 Results of Radwaste Building Concrete Slab Design (Continued)

3H-110

Rev. 07

STP 3 & 4

Final Safety Analysis Report

			ber t		₹8,	(c) ⁵⁰			Longitudinal	Reinforcement De	sign Loads									
tion	Face	ction	ceme out Num	t) to	ceme	<u>.</u>		Axial and Flexure	Loads		In-Plane Shear Load	s	Longitudinal Reinforcement			Transverse Shear Design Loads (6)			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remarks
Locati	2	Direc	einforcen Layout swing Nu (1)	Thicknes: (ft)	Reinforces Zone Numl	E C		Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear (kips / ft)	Provided (in ² / ft)	Load	Horizon Transverse Shear Force	tal Section Corresponding Axial Force	Vertica	Section	(in ² /ft ²)	Remarka
			« 5		e ñ	Wax		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
							_	• 1.7L + 1.7H + 1.7Eo	44	50										
					1-H-L			1.7L + 1.7H + 1.7Eo	-194	78	1.4D + 1.7L + 1.7H + 1.7Eo	122	3.12							
								+ 1.7L + 1.7H + 1.7Eo	5	252										
				5			_	+ 1.7L + 1.7H + 1.7Eo	-23	165										
								+ 1.7L + 1.7H' + 1.7Eo	98	68										
					2-H-L		_	+ 1.7L + 1.7H' + 1.7Eo	-195	46	1.4D + 1.7L + 1.7H + 1.7Eo	107	4.68							
								+ 1.7L + 1.7H + 1.7Eo	6	374										
		Horizontal	3H.3-35				_	+ 1.7L + 1.7H + 1.7Eo	-99	416										
							_	+ 1.7L + 1.7H' + 1.7Eo	81	58										
				4	3-H-L			+ 1.7L + 1.7H + 1.7Eo	-239	173	1.4D + 1.7L + 1.7H + 1.7Eo	97	3.12							
							_	+ 1.7L + 1.7H' + 1.7Eo	1	227										
				<u> </u>			_	+ 1.7L + 1.7H + 1.7Eo	-139	237										
							_	1.7L + 1.7H + 1.7Eo	96	15										
				2	4-H-L		_	1.7L + 1.7H + 1.7Eo	-247	11	1.4D + 1.7L + 1.7H + 1.7Eo	102	3.12							(10)
							_	+ 1.7L + 1.7H + 1.7Eo	-11	61										
							_													
							_	+ 1.7L + 1.7H' + 1.7Eo	-230	73										
					1-V-L			1.7L + 1.7H' + 1.7Eo	-230	208	1.4D + 1.7L + 1.7H + 1.7Eo	72	3.12							-
							_	+ 1.7L + 1.7H + 1.7Eo	-139	308										
								+ 1.7L + 1.7H + 1.7E0	-139	308										
							_	D+L+H'+E'	-144	82										
	Far Side			5	2-V-L			+ 1.7L + 1.7H + 1.7Eo	-144	231	1.4D + 1.7L + 1.7H + 1.7Eo	72	4.68							
0								+ 1.7L + 1.7H + 1.7Eo	-149	557										
EI. 35'-I								1.7L + 1.7H + 1.7E0	160	173										
ш								1.7L + 1.7H + 1.7E0	-319	240										
					3-V-L		_	+ 1.7L + 1.7H + 1.7Eo	76	536	1.4D + 1.7L + 1.7H + 1.7Eo	43	6.24							
							_	+ 1.7L + 1.7H + 1.7Eo	-103	536										
				<u> </u>				+ 1.7L + 1.7H' + 1.7Eo	66	89										
							_	D+L+H'+E'	-191	40										
		Vertical	3H.3-36		4-V-L			• 1.7L + 1.7H + 1.7Eo	21	201	D + L + H' + E'	66	3.12			-				
								+ 1.7L + 1.7H' + 1.7Eo	-135	408										
				4			_	• 1.7L + 1.7H + 1.7Eo	20	85										
							_	+ 1.7L + 1.7H + 1.7Eo	-159	395										
					5-V-L		_	+ 1.7L + 1.7H' + 1.7Eo	7	121	1.4D + 1.7L + 1.7H + 1.7Eo	52	4.68							
						MMAC 3	_	• 1.7L + 1.7H + 1.7Eo	-147	441										
						MTCM 2	810 1.4D +	+ 1.7L + 1.7H' + 1.7Eo	33	6		1								
						MCCM 2	814	D + L + H' + E'	-64	6										
					6-V-L	MMAT 3	1.4D +	+ 1.7L + 1.7H + 1.7Eo	3	31	1.4D + 1.7L + 1.7H + 1.7Eo	41	1.56			-				(10)
						MMAC 3	1.4D +	+ 1.7L + 1.7H' + 1.7Eo	-3	31										
				2		мтсм 3	573 1.4D +	+ 1.7L + 1.7H' + 1.7Eo	41	21										
						MCCM 3	1.4D +	+ 1.7L + 1.7H + 1.7Eo	-79	10	1									
					7-V-L	MMAT 3	525 1.4D +	+ 1.7L + 1.7H' + 1.7Eo	5	45	1.4D + 1.7L + 1.7H + 1.7Eo	50	3.12		-	-				(10)
						MMAC 3	576 1.4D +	+ 1.7L + 1.7H' + 1.7Eo	-47	57	1									
					1-T						-		-	1.4D + 1.7L + 1.7H + 1.7Eo	94	-35	-3	-1	0.20 (#4@12)	
		Transverse (Horizontal and Vertical)	3H 3-37a	5	2-T					-	-			1.4D + 1.7L + 1.7H + 1.7Eo	53	123	54	120	0.31 (#5@12)	
		(Horizontal and Vertical)	3H.3-37a		3-T				1.1					1.4D + 1.7L + 1.7H' + 1.7Eo	117	169	68	115	0.80 (#4@6)	1.1
				2	4-T						-			1.4D + 1.7L + 1.7H' + 1.7Eo	26	26	62	48	0.80 (#4@6)	
		Horizontal	3H.3-38	1	1-H-L	мтмм	1.4D +	+ 1.7L + 1.7H' + 1.7Eo	27		1.4D + 1.7L + 1.7H + 1.7Eo		0.79					-		
6	Near Side	Vertical	3H.3-39	1	1-V-L	мтмм	1.4D +	+ 1.7L + 1.7H' + 1.7Eo	22	16	1.4D + 1.7L + 1.7H + 1.7Eo	61	1.20					-		(11)
Roof	Ear Pic-	Horizontal	3H.3-40	1	1-H-L	мтмм	1.4D +	+ 1.7L + 1.7H + 1.7Eo	27		1.4D + 1.7L + 1.7H + 1.7Eo		0.79							(11)
	Far Side	Vertical	3H.3-41	1	1-V-L	МТММ		+ 1.7L + 1.7H + 1.7Eo	22	16	1.4D + 1.7L + 1.7H + 1.7Eo	61	1.20							

Table 3H.3-4 Results of Radwaste Building Concrete Slab Design (Continued)

3H-111

Rev. 07

Final Safety Analysis Report

	Table 3H.3-4 Results of Radwaste Building Concrete Slab Design (Continued)
Notes:	(1) The reinforcement layout drawings above the various zones used to define the minimum reinforcement that will be provided based on fine dement analysis results. Actual provided reinforcement drawings are based on final rebar layout and including development length may exceed the reported provided reinforcement and the zones with higher reinforcement that will be provided based on final entering are based on final rebar layout and including development length may exceed the reported provided reinforcement and the zones with higher reinforcement may be selended beyond their reported boundaries. The dimensions of the 64/2000 stellar development length may exceed the reported provided reinforcement and the zones with higher reinforcement may be selended beyond their reported boundaries. The dimensions of the 64/2000 stellar development length may exceed the reported provided reinforcement and the zones with higher reinforcement may be selended beyond their reported boundaries. The dimensions of the 64/2000 stellar development length may exceed the reported provided reinforcement and the zones with higher reinforcement flat will be provided based on final rebar layout and including development length may exceed the reported provided reinforcement and the zones with higher reinforcement flat will be provided based on final rebar layout and including development length may exceed the reported provided reinforcement and the zones with higher reinforcement dawing dimensions.
	(2) Each reinforcement layoud drawing is divided into eninforcement.zones. The reinforcement layou drawing convertion is as follows: "\" + honoradul, "\" + verifical, "\" + verifical, "\" + verifical, "verifical corresponds to Hanh-South direction and honoradul is divided into eninforcement. For state, verifical, "verifical, "ve
	(3) The maximum tension (MTCM) and compression (NCCM) and forces are provided with the corresponding tension (AMAT) in the same load combination and the maximum moment that has a corresponding tension (AMAT) in the same load combination are also provided. For the not, the maximum moment (ATIMA) are reported.
	(4) Negative axial load is compression and positive axial load is tension. Negative moment applies tension to be top face of the anter applies tension to the top face of the anter applies tension to the top face of the anter applies tension. To the top face of the anter applies tension to the top face of the anter applies tension. To the anter applies tension to the top face of the anter applies tension to the top face of the anter applies tension. To the top face of the anter applies tension to the top face of the anter applies tension to the top face of the anter applies tension to the top face of the anter applies tension. To the state deement applies tension to the top face of the anter applies tension to the top face of the anter applies tension to the top face of the anter applies tension. To the state deement applies tension to the top face of the anter applies tension to the application approximate tension tension tension tensing tension tensio
	(5) The reported in-plane shear is the maximum average in-plane shear along a plane that crosses the longitudinal reinforcement zone.
	(6) The knowness bear reinforcement loads are reported for the critical element requiring the largest area of steel for functionent within the zone. The shear force and the corresponding axial force in the same load combination for each direction in reported for the critical element.
	(7) The reported transverse shear reinforcement is the summation of the required shear reinforcement in the horizontal direction and the required shear reinforcement in the vertical direction.
	(8) For certain annus of the shuckure, the standard element pool processing methods were too conservative. For such cases, defailed manual design was performed and the design forces determined by the defailed manual design are provided in the table.
	(9) The longitudinal reinforcement allowin a required to be Bed
	(10) The reported forces are from the FEM analysis. The provided longitudinal reinforcement includes additional reinforcement required due to manual one-way design calculations

3H-112

Table 3H.3-5 Summary of Structural Steel Design

Rev. 07

		Elevatio	on 35'-0" Floor Stee	Beams			
Location ⁶	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand		Max. Moment (kip-ft)	Governing Load Combination	
		W10X54	2.0		81.7	D+L	
Elevation 35'-0" Formwork Steel Beams		W14X193	1.5		565.8	D+L	
Steel Deallis	3H.3-39	W14X283	1.8		700.4	D+L	
	3H.3-40	W14x82	1.5		629.5	D+L+E'	
Elevation 35'-0" Composite	3H.3-41 3H.3-42	W36x210	1.3		577.4	Construction	
Steel Beams	01110 12	W36x231	1.2		4540.4	D+L+E'	
		W36x262	1.1		5511.0	D+L+E'	
			Roof Truss Member	s			
Location	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand	Max. Axial Load ¹ (kip)		Governing Load Combination	
Location	Figure Mulliber	3126	Capacity/Demand	(Kiþ)		Governing Load Combination	
North-South Spanning Truss		W14X120	1.6	705.0		D+L+E'	
Top Chord Member		114/120	1.6	-962.0		D+L+E'	
North-South Spanning Truss				002.0		0.0.0	
North-South Spanning Truss Bottom Chord Member		W14X311	1.4	2161.0		D+L+E'	
Soution Chord member			4.3	-908.0		D+E'	
North-South Spanning Truss		W12X136	14	910.0		D+L+E'	
Outer Diagonal Members		11127100	4.5	-329.0		D+E'	
North-South Spanning Truss	3H.3-43						
Outer Vertical Members	3H.3-44	2L8X8X1	2.6	241.0		D+E'	
			1.3	-667.0		D+L+E'	
North-South Spanning Truss		2L8X6X3/4LLBB	1.4	284.0		D+L+E'	
Inner Diagonal Members			3.7	-139.0		D+E'	
North-South Spanning Truss		0.52524.0					
Inner Vertical Members		2L5X5X1/2	2.0 1.3	91.0 -185.0		D+E' D+L+E'	
			1.5	-165.0		DTLTC	
North-South Spanning Truss Lateral Bracing Members		2L8X4X1LLBB	1.1	386.0		D+L+E'	
Eateral bracing members			1.1	-316.0		D+L+E'	
East-West Spanning Truss		2L5X5X1/2	3.8	47.0		0.9D+E'	
Top Chord Member		223/3/112	1.9	-152.0		D+L+E'	
East-West Spanning Truss							
Bottom Chord Member		2L8X4X1LLBB	1.4	316.0		D+L+E'	
			7.1	-94.0		0.9D+E'	
East-West Spanning Truss		L8X8X7/8	1.3	208.0		D+L+E'	
Outer Diagonal Members			8.3	-51.0		0.9D+E'	
East-West Spanning Truss	3H.3-43	Levente					
Outer Vertical Members	3H.3-45	L6X6X1/2	3.3	35.0		D+L+E' D+L+E'	
F			1.3	-143.0		טיניכ	
East-West Spanning Truss Inner Diagonal Members		L4X4X3/8	4.3	14.0		D+L+E'	
miler pragonal members			11.1	-7.0		0.9D+E'	
East-West Spanning Truss		L6X6X1/2	5.0	23.0		0.9D+E'	
Inner Vertical Members		LONGATZ	2.9	-63.0		D+L+E'	
East-West Spanning Truss							
Lateral Bracing Members		L5X5X3/8	3.8	18.0		D+L+E'	
			2.6	-21.0		D+L+E'	
			Roof Purlins				
Location	Figure Number	Size ^{2,3,4}	Safety Margin = Capacity/Demand	Max. Axial Load ¹ (kip)	Max. Moment ⁷ (kip-ft)	Governing Load Combination	
	- igure number	JILC	Supusity/Demailu	(sip)	(mp-it)		
North-South Spanning Roof Purlins		W12X210	1.3	-1299.3	-13.2	D+L+E'	
East-West Spanning	3H.3-43	WOX67	1.9	260.6	2.5	Del +E'	
Roof Purlins		W8X67	1.8	-269.6	-2.5	D+L+E'	

Positive axial load is tension and negative axial load is compression.
 W-shapes : ASTM A572 Gr. 50 (Fy = 50ksi)
 Angles and Double Angles : ASTM A36 Gr. 36 (Fy = 36ksi)
 Member sizes reported are based on analysis results. Actual member sizes used will have the same or greater capacity, but size and shape may vary based on connection design requirements.

5. $E_{o}\,\text{is}$ the design basis earthquake load (1/2 SSE). E' is the II/I earthquake load (SSE).

6. The steel beams located between column lines W1-W7 and WA-WE are required for concrete formwork only. Once the concrete cures, the concrete alone is designed for all design basis loading. The formwork steel will remain in-place unless commodity routing required

the formwork steel to be removed.

Maximum moment for governing load combination is based on bending about the minor-axis.

6.5
_
т.
× .
4
-
4

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis

	Soil Layers		L	ower Boun	d		Mean		ι	Jpper Boun	d
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Dampin
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
1	4.00	0.124	419.1	1128.4	1.6698	548.1	1475.9	1.2224	677.2	1823.4	0.7749
2	5.00	0.124	474.4	1277.4	1.9487	600.1	1615.8	1.4113	735.0	1979.0	0.8738
3	5.00	0.124	470.6	2399.5	2.1614	596.5	3041.5	1.5678	730.5	3725.1	0.9743
4	5.00	0.124	470.0	2396.7	2.3119	599.2	3055.2	1.6698	733.8	3741.9	1.0277
5	5.00	0.124	466.9	2380.6	2.4295	598.3	3050.9	1.7540	732.8	3736.6	1.0785
6	5.00	0.121	578.1	2947.9	2.8987	730.0	3722.5	2.0647	894.1	4559.1	1.2307
7	5.00	0.121	581.3	2964.2	3.0535	733.4	3739.4	2.1657	898.2	4579.8	1.2778
8	5.00	0.122	606.6	3093.0	2.1873	778.2	3968.1	1.4972	953.1	4859.9	0.8072
9	5.00	0.122	602.2	3070.6	2.3098	774.6	3949.6	1.5804	948.7	4837.3	0.8509
10	5.00	0.122	598.1	3049.7	2.4308	771.2	3932.2	1.6566	944.5	4816.0	0.8824
11	5.00	0.122	600.0	3059.2	2.5321	771.9	3935.9	1.7154	945.4	4820.4	0.8986
12	5.00	0.122	719.8	3670.5	2.2554	924.5	4714.1	1.6695	1132.3	5000.0	1.0836
13	5.00	0.122	720.6	3674.4	2.2824	925.0	4716.5	1.6893	1132.9	5000.0	1.0962
14	5.00	0.122	719.8	3670.4	2.3079	924.3	4712.9	1.7112	1132.0	5000.0	1.114
15	5.00	0.122	719.1	3666.7	2.3275	923.6	4709.5	1.7260	1131.2	5000.0	1.124
16	5.00	0.123	827.3	4218.4	2.0584	1013.2	5000.0	1.4280	1241.0	5215.9	0.797
17	5.00	0.123	825.7	4210.5	2.1082	1011.3	5000.0	1.4603	1238.6	5206.1	0.8123
18	5.00	0.123	824.2	4202.7	2.1636	1009.5	5000.0	1.4988	1236.3	5196.6	0.8340
19	5.00	0.123	822.8	4195.2	2.2125	1007.7	5000.0	1.5321	1234.1	5187.3	0.8516
20	5.00	0.125	850.3	4335.6	2.2666	1041.4	5000.0	1.6792	1275.4	5360.8	1.0917
21	5.00	0.125	849.9	4333.5	2.2780	1040.9	5000.0	1.6904	1274.8	5358.3	1.1027
22	5.00	0.125	849.5	4331.5	2.2969	1040.4	5000.0	1.7027	1274.2	5355.8	1.108
23	5.00	0.125	874.5	4459.3	2.0113	1085.2	5000.0	1.4063	1329.1	5586.6	0.8014
24	5.00	0.125	873.3	4452.8	2.0424	1084.2	5000.0	1.4290	1327.9	5581.2	0.8157
25	5.00	0.125	872.1	4446.7	2.0761	1083.2	5000.0	1.4485	1326.6	5576.1	0.8209
26	7.00	0.125	914.5	4663.0	2.3111	1120.0	5000.0	1.6966	1371.7	5765.6	1.0822
27	7.00	0.125	914.0	4660.8	2.3253	1119.5	5000.0	1.7081	1371.1	5762.9	1.0909
28	7.00	0.125	911.5	4647.8	2.3428	1117.8	5000.0	1.7197	1369.1	5754.5	1.0966

Final Safety Analysis Report

	Soil Layers		L	ower Boun	d		Mean		l	Jpper Boun	d
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
29	7.00	0.125	910.9	4644.9	2.3545	1117.4	5000.0	1.7287	1368.5	5751.9	1.1029
30	7.00	0.125	910.4	4642.2	2.3693	1116.9	5000.0	1.7403	1367.9	5749.4	1.1114
31	5.00	0.125	883.7	4506.2	2.2271	1102.4	5000.0	1.5420	1350.1	5674.8	0.8568
32	5.00	0.125	881.5	4494.7	2.2467	1101.0	5000.0	1.5575	1348.4	5667.5	0.8683
33	5.00	0.125	880.6	4490.3	2.2764	1100.2	5000.0	1.5770	1347.4	5663.6	0.8775
34	9.00	0.125	919.6	4689.0	2.3842	1126.3	5000.0	1.7519	1379.4	5797.7	1.1196
35	9.00	0.125	919.1	4686.8	2.3984	1125.7	5000.0	1.7608	1378.7	5795.0	1.1231
36	9.00	0.125	922.5	4703.8	2.4066	1129.8	5000.0	1.7673	1383.7	5816.1	1.1281
37	9.00	0.125	922.8	4705.5	2.4195	1130.2	5000.0	1.7795	1384.2	5818.2	1.1394
38	9.00	0.125	919.2	4687.1	2.4362	1125.8	5000.0	1.7917	1378.8	5795.4	1.1472
39	9.00	0.124	921.5	4698.6	2.4066	1146.4	5000.0	1.7870	1404.0	5901.3	1.1674
40	9.00	0.124	931.4	4749.0	2.4129	1157.6	5000.0	1.7862	1417.8	5959.3	1.1595
41	5.00	0.127	986.2	5000.0	2.2903	1222.6	5138.7	1.5360	1497.4	6293.7	0.7818
42	5.00	0.127	985.7	5000.0	2.2989	1222.1	5136.6	1.5447	1496.7	6291.0	0.7905
43	5.00	0.127	985.1	5000.0	2.3165	1221.6	5134.5	1.5554	1496.1	6288.4	0.7943
44	5.00	0.127	984.6	5000.0	2.3275	1221.1	5132.4	1.5619	1495.5	6285.9	0.7963
45	5.00	0.127	984.0	5000.0	2.3410	1220.6	5130.4	1.5697	1494.9	6283.4	0.7984
46	5.00	0.125	1025.7	5000.0	2.3496	1256.3	5280.3	1.7372	1538.6	6467.1	1.1247
47	15.00	0.127	1010.5	5000.0	2.1171	1237.7	5202.1	1.5316	1515.8	6371.2	0.9461
48	11.80	0.123	1034.4	5000.0	2.3607	1266.9	5324.9	1.7527	1551.6	6521.6	1.1447
49	11.80	0.123	1034.0	5000.0	2.3685	1266.4	5323.0	1.7581	1551.0	6519.3	1.1477
50	11.80	0.123	1033.7	5000.0	2.3815	1266.0	5321.2	1.7665	1550.5	6517.1	1.1516
51	11.80	0.123	1037.2	5000.0	2.3948	1270.3	5339.2	1.7726	1555.8	6539.1	1.1505
52	11.80	0.123	1036.9	5000.0	2.4048	1269.9	5337.6	1.7792	1555.3	6537.2	1.1536
53	17.00	0.128	1252.4	5264.0	1.8381	1575.1	6620.6	1.2897	1929.1	8108.5	0.7413
54	8.00	0.123	1301.7	5471.3	2.1463	1607.2	6755.4	1.6064	1968.4	8273.7	1.0664
55	16.50	0.128	1310.3	5507.2	1.7999	1604.7	6744.9	1.2702	1965.4	8260.8	0.7405
56	16.50	0.128	1309.5	5503.9	1.8246	1603.7	6740.8	1.2855	1964.2	8255.8	0.7465

Final Safety Analysis Report

ω
Ŧ
4
-
6

Details

and

Evaluation Results of Seismic Category 1 Structures

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued) Upper Bound Soil Layers Lower Bound Mean S-Wave S-Wave Unit P-Wave **P-Wave** S-Wave **P-Wave** Thickness Weight Vel. Vel. Damping Vel. Vel. Damping Vel. Vel. Damping Layer (kcf) (ft) (%) (%) (%) No. (ft/sec) (ft/sec) (ft/sec) (ft/sec) (ft/sec) (ft/sec) 57 8.00 1290.5 2.2004 1580.5 6643.2 1.6357 1935.7 8136.2 1.0711 0.123 5424.1 0.128 1156.1 5000.0 2.0671 1417.2 5956.7 1735.7 7295.4 0.8761 58 19.00 1.4716 2.5251 6276.0 5124.3 59 15.00 0.123 995.4 5000.0 1219.2 1.8573 1493.2 1.1895 0.123 995.2 2.5283 15.00 5000.0 1218.9 5123.3 1492.8 6274.7 1.1910 60 1.8597 61 0.128 970.0 4946.2 2.6235 1188.1 5000.0 1.8389 1455.1 6115.9 1.0543 8.00 0.123 990.9 5000.0 2.5359 6247.5 62 18.00 1213.6 5101.1 1.8669 1486.4 1.1980 63 0.123 990.6 5000.0 2.5391 5099.7 1.8706 6245.8 18.00 1213.3 1486.0 1.2021 64 0.123 999.5 5000.0 2.5358 1224.1 1.8672 6301.4 18.00 5145.1 1499.2 1.1986 65 0.123 1196.2 5027.7 6157.6 1794.2 7541.5 0.9024 18.00 2.0970 1465.0 1.4997 0.123 5000.0 2.3353 6035.4 1.7343 1758.6 7391.8 1.1332 66 14.60 1172.4 1435.9 0.123 1172.2 5000.0 2.3381 6034.3 1.7362 1758.3 7390.5 67 14.60 1435.6 1.1343 1172.0 5000.0 1435.4 1758.0 7389.2 1.1382 68 14.60 0.123 2.3411 6033.3 1.7397 1171.8 69 14.60 0.123 5000.0 2.3468 1435.2 6032.3 1.7427 1757.7 7388.0 1.1386 0.123 1171.7 5000.0 2.3531 1435.0 6031.5 1.7455 1757.5 7387.0 1.1379 70 14.60 71 45.50 0.129 1378.7 5065.8 0.9127 1688.6 6204.3 0.5883 2068.1 7598.6 0.2639 72 45.50 0.129 1378.7 5065.8 0.9127 1688.6 6204.3 0.5883 2068.1 7598.6 0.2639 73 0.128 1388.7 5102.3 0.9127 6249.0 0.5883 2083.0 7653.4 0.2639 100.00 1700.8 74 0.128 5102.3 0.9127 6249.0 7653.4 100.00 1388.7 1700.8 0.5883 2083.0 0.2639 0.130 1533.0 1877.6 6227.2 2299.5 7626.7 75 100.00 5084.5 0.9127 0.5883 0.2639 76 100.00 0.130 1533.0 5084.5 0.9127 1877.6 6227.2 0.5883 2299.5 7626.7 0.2639 6772.1 100.00 0.130 1667.2 5529.4 0.9127 2041.9 0.5883 2500.8 77 8294.1 0.2639 78 0.130 5093.3 2041.9 100.00 1667.2 0.9127 6238.0 0.5883 2500.8 7640.0 0.2639 100.00 0.130 1735.4 5301.6 0.9127 2125.4 6493.1 2603.0 7952.4 79 0.5883 0.2639 80 100.00 0.130 1735.4 5301.6 0.9127 2125.4 6493.1 0.5883 2603.0 7952.4 0.2639 81 0.130 1870.7 5338.3 0.9127 2291.2 6538.0 0.5883 8007.4 0.2639 100.00 2806.1 82 100.00 0.130 1870.7 5338.3 0.9127 2291.2 6538.0 0.5883 2806.1 8007.4 0.2639 83 100.00 0.130 1912.1 5456.3 0.9127 2341.8 6682.6 0.5883 2868.1 8184.4 0.2639 84 100.00 0.130 1912.1 5148.5 0.9127 2341.8 6305.6 0.5883 2868.1 7722.7 0.2639

4

				•	le Soil Pro			naiy313 (00	intinueu)		
	Soil Layers		L	ower Boun.	d		Mean		l	Jpper Boun	d
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
85	100.00	0.135	2042.5	5499.7	0.9127	2501.6	6735.7	0.5883	3063.8	8249.6	0.2639
86	100.00	0.135	2051.1	5522.8	0.9127	2512.1	6764.0	0.5883	3076.7	8284.2	0.2639
87	100.00	0.135	2259.9	5786.1	0.9127	2767.8	7086.5	0.5883	3389.8	8679.2	0.2639
88	100.00	0.135	2259.9	5786.1	0.9127	2767.8	7086.5	0.5883	3389.8	8679.2	0.2639
89	100.00	0.135	2402.8	6152.0	0.9127	2942.8	7534.6	0.5883	3604.1	9228.0	0.2639
90	100.00	0.135	2402.8	5885.6	0.9127	2942.8	7208.3	0.5883	3604.1	8828.3	0.2639
91	100.00	0.140	2402.8	5885.6	0.9127	2942.8	7208.3	0.5883	3604.1	8828.3	0.2639
92	100.00	0.140	2409.5	5902.0	0.9127	2951.0	7228.5	0.5883	3614.3	8853.1	0.2639
93	100.00	0.140	2496.3	5878.5	0.9127	3057.3	7199.6	0.5883	3744.4	8817.7	0.2639
94	100.00	0.140	2496.3	5878.5	0.9127	3057.3	7199.6	0.5883	3744.4	8817.7	0.2639
95	100.00	0.140	2531.9	5962.2	0.9127	3100.9	7302.2	0.5883	3797.8	8943.3	0.2639
96	100.00	0.140	2531.9	5755.0	0.9127	3100.9	7048.4	0.5883	3797.8	8632.5	0.2639
97	100.00	0.140	2789.2	6340.0	0.9127	3416.1	7764.8	0.5883	4183.8	9509.9	0.2639
98	100.00	0.140	2789.2	6340.0	0.9127	3416.1	7764.8	0.5883	4183.8	9509.9	0.2639
99	100.00	0.140	3055.6	6726.6	0.9127	3742.3	8238.4	0.5883	4583.4	10089.9	0.2639
100	100.00	0.140	3055.6	6726.6	0.9127	3742.3	8238.4	0.5883	4583.4	10089.9	0.2639
101	100.00	0.140	3144.4	6922.0	0.9127	3851.0	8477.7	0.5883	4716.5	10383.0	0.2639
102	100.00	0.140	3144.4	6722.9	0.9127	3851.0	8233.9	0.5883	4716.5	10084.4	0.2639
103	100.00	0.140	3245.3	6938.8	0.9127	3974.7	8498.3	0.5883	4868.0	10408.3	0.2639
104	100.00	0.140	3245.3	6938.8	0.9127	3974.7	8498.3	0.5883	4868.0	10408.3	0.2639
105	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.7	0.5883	4920.2	10242.1	0.2639
106	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.7	0.5883	4920.2	10242.1	0.2639
107	100.00	0.140	3280.1	6828.1	0.9127	4017.3	8362.6	0.5883	4920.1	10242.1	0.2639
108	100.00	0.140	3280.1	6661.9	0.9127	4017.3	8159.1	0.5883	4920.1	9992.8	0.2639
109	100.00	0.140	3337.8	6779.1	0.9127	4088.0	8302.7	0.5883	5006.7	10168.6	0.2639
110	100.00	0.140	3337.8	6779.1	0.9127	4088.0	8302.7	0.5883	5006.7	10168.6	0.2639
111	100.00	0.140	3395.5	6740.9	0.9127	4158.6	8255.9	0.5883	5093.3	10111.3	0.2639
112	100.00	0.140	3395.5	6740.9	0.9127	4158.6	8255.9	0.5883	5093.3	10111.3	0.2639

Rev. 07

Final Safety Analysis Report

Sc

3H-118

Table 3H.6-1 Strain-Compatible Soil Properties Used in SSI Analysis (Continued)

	Soil Layers		L	ower Boun	d		Mean		l	Jpper Boun	d
		Unit	S-Wave	P-Wave		S-Wave	P-Wave		S-Wave	P-Wave	
Layer	Thickness	Weight	Vel.	Vel.	Damping	Vel.	Vel.	Damping	Vel.	Vel.	Damping
No.	(ft)	(kcf)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)	(ft/sec)	(ft/sec)	(%)
113	100.00	0.140	3425.0	6799.4	0.9127	4194.7	8327.6	0.5883	5137.5	10199.1	0.2639
114	100.00	0.140	3425.0	6657.0	0.9127	4194.7	8153.1	0.5883	5137.5	9985.5	0.2639
115	100.00	0.140	3609.5	7015.6	0.9127	4420.7	8592.3	0.5883	5414.2	10523.4	0.2639
116	100.00	0.140	3609.5	7015.6	0.9127	4420.7	8592.3	0.5883	5414.2	10523.4	0.2639
117	100.00	0.140	3815.4	7271.0	0.9127	4672.9	8905.1	0.5883	5723.2	10906.5	0.2639
118	100.00	0.140	3815.4	7271.0	0.9127	4672.9	8905.1	0.5883	5723.2	10906.5	0.2639
119	100.00	0.140	3828.5	7295.9	0.9127	4689.0	8935.6	0.5883	5742.8	10943.9	0.2639
120	100.00	0.140	3828.5	7162.5	0.9127	4689.0	8772.3	0.5883	5742.8	10743.8	0.2639
121	100.00	0.140	3995.3	7474.4	0.9127	4893.2	9154.3	0.5883	5992.9	11211.7	0.2639
122	100.00	0.140	3995.3	7474.4	0.9127	4893.2	9154.3	0.5883	5992.9	11211.7	0.2639
123	100.00	0.140	4042.3	7562.4	0.9127	4950.8	9262.1	0.5883	6063.4	11343.7	0.2639
124	100.00	0.140	4042.3	7562.4	0.9127	4950.8	9262.1	0.5883	6063.4	11343.7	0.2639
125	100.00	0.140	4057.2	7590.4	0.9127	4969.1	9296.2	0.5883	6085.8	11385.5	0.2639
126	100.00	0.140	4057.2	7590.4	0.9127	4969.1	9296.2	0.5883	6085.8	11385.5	0.2639
127	100.00	0.140	4064.5	7604.1	0.9127	4978.0	9313.0	0.5883	6096.8	11406.1	0.2639
128	100.00	0.140	4064.5	7604.1	0.9127	4978.0	9313.0	0.5883	6096.8	11406.1	0.2639
129	100.00	0.140	3997.4	7478.4	0.9127	4895.8	9159.2	0.5883	5996.1	11217.7	0.2639
130	100.00	0.140	3997.4	7478.4	0.9127	4895.8	9159.2	0.5883	5996.1	11217.7	0.2639
131	100.00	0.140	3779.9	7071.5	0.9127	4629.4	8660.8	0.5883	5669.8	10607.3	0.2639
132	100.00	0.140	3779.9	7071.5	0.9127	4629.4	8660.8	0.5883	5669.8	10607.3	0.2639
133	100.00	0.140	3164.0	5919.4	0.9127	3875.1	7249.7	0.5883	4746.1	8879.1	0.2639
134	100.00	0.140	3164.0	5919.4	0.9127	3875.1	7249.7	0.5883	4746.1	8879.1	0.2639
135	100.00	0.140	2974.8	5565.3	0.9127	3643.3	6816.0	0.5883	4462.1	8347.9	0.2639
136	100.00	0.140	2974.8	5565.3	0.9127	3643.3	6816.0	0.5883	4462.1	8347.9	0.2639
137	100.00	0.140	2942.9	5505.7	0.9127	3604.3	6743.0	0.5883	4414.4	8258.5	0.2639
138	100.00	0.140	2942.9	5505.7	0.9127	3604.3	6743.0	0.5883	4414.4	8258.5	0.2639
139	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
140	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639

Soil Layers			L	ower Boun	d	operties Used in SSI Analysis (Continued) Mean Upper Bound				d	
Layer No.	Thickness (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)
141	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
142	100.00	0.140	2914.5	5452.5	0.9127	3569.5	6677.9	0.5883	4371.7	8178.7	0.2639
143	100.00	0.140	2875.7	5379.9	0.9127	3522.0	6589.1	0.5883	4313.6	8069.9	0.2639
144	100.00	0.140	2875.7	5379.9	0.9127	3522.0	6589.1	0.5883	4313.6	8069.9	0.2639
145	100.00	0.140	2875.9	5380.4	0.9127	3522.3	6589.6	0.5883	4313.9	8070.6	0.2639
146	100.00	0.140	2875.9	5380.4	0.9127	3522.3	6589.6	0.5883	4313.9	8070.6	0.2639

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.124	548.1	1475.9	1.22	39.9
2	3.25	53.3	50.0	0.124	579.0	1559.0	1.34	35.6
3	3.50	50.0	46.5	0.124	599.6	1731.8	1.43	34.3
4	3.50	46.5	43.0	0.124	596.5	3041.5	1.57	34.1
5	3.50	43.0	39.5	0.124	598.4	3051.3	1.64	34.2
6	3.50	39.5	36.0	0.124	598.9	3054.0	1.69	34.2
7	3.00	36.0	33.0	0.124	598.3	3050.9	1.75	39.9
8	3.00	33.0	30.0	0.122	680.1	3468.0	1.96	45.3
9	4.00	30.0	26.0	0.121	730.8	3726.7	2.09	36.5
10	2.00	26.0	24.0	0.121	733.4	3739.4	2.17	73.3
11	4.00	24.0	20.0	0.122	755.1	3850.4	1.83	37.8
12	4.00	20.0	16.0	0.122	777.3	3963.5	1.52	38.9
13	4.00	16.0	12.0	0.122	774.6	3949.6	1.58	38.7
14	4.00	12.0	8.0	0.122	771.2	3932.2	1.66	38.6
15	4.00	8.0	4.0	0.122	771.7	3935.0	1.70	38.6
16	5.00	4.0	-1.0	0.122	856.8	4368.6	1.69	34.3
17	5.00	-1.0	-6.0	0.122	924.8	4715.5	1.68	37.0
18	2.00	-6.0	-8.0	0.122	925.0	4716.5	1.69	92.5
19	5.50	-8.0	-13.5	0.122	924.2	4712.6	1.71	33.6
20	5.60	-13.5	-19.1	0.122	939.9	4763.9	1.67	33.6
21	6.10	-19.1	-25.2	0.123	1012.5	5000.0	1.44	33.2
22	6.10	-25.2	-31.3	0.123	1010.3	5000.0	1.48	33.1
23	6.10	-31.3	-37.4	0.123	1008.2	5000.0	1.52	33.1
24	6.10	-37.4	-43.5	0.125	1037.9	5000.0	1.58	34.0
25	6.30	-43.5	-49.8	0.125	1040.8	5000.0	1.69	33.0
26	6.40	-49.8	-56.2	0.125	1062.3	5000.0	1.55	33.2
27	6.50	-56.2	-62.7	0.125	1084.5	5000.0	1.42	33.4
28	6.60	-62.7	-69.3	0.125	1090.3	5000.0	1.28	33.0
29	6.75	-69.3	-76.1	0.125	1119.9	5000.0	1.70	33.2

Table 3H.6-1aLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Mean)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	1119.3	5000.0	1.71	33.2
31	6.75	-82.8	-89.6	0.125	1117.8	5000.0	1.72	33.1
32	6.75	-89.6	-96.36	0.125	1117.4	5000.0	1.73	33.1
33	6.75	-96.3	-103.1	0.125	1116.8	5000.0	1.74	33.1
34	6.50	-103.1	-109.6	0.125	1102.1	5000.0	1.55	33.9
35	6.50	-109.6	-116.1	0.125	1100.6	5000.0	1.57	33.9
36	6.75	-116.1	-122.8	0.125	1118.6	5000.0	1.70	33.1
37	6.75	-122.8	-129.6	0.125	1126.1	5000.0	1.76	33.4
38	6.75	-129.6	-136.3	0.125	1125.9	5000.0	1.76	33.4
39	6.75	-136.3	-143.1	0.125	1129.8	5000.0	1.77	33.5
40	6.75	-143.1	-149.8	0.125	1130.1	5000.0	1.78	33.5
41	6.75	-149.8	-156.6	0.125	1128.5	5000.0	1.78	33.4
42	6.75	-156.6	-163.3	0.125	1126.7	5000.0	1.79	33.4
43	6.80	-163.3	-170.1	0.124	1146.4	5000.0	1.79	33.7
44	6.90	-170.1	-177.0	0.124	1154.5	5000.0	1.79	33.5
45	7.10	-177.0	-184.1	0.125	1185.1	5059.6	1.68	33.4
46	7.40	-184.1	-191.5	0.127	1222.2	5137.0	1.48	33.0
47	7.30	-191.5	-198.8	0.127	1221.4	5133.7	1.56	33.5
48	7.30	-198.8	-206.1	0.127	1221.2	5133.0	1.55	33.5
49	7.50	-206.1	-213.6	0.126	1249.8	5252.9	1.67	33.3
50	7.40	-213.6	-221.0	0.127	1237.7	5202.1	1.53	33.5
51	7.50	-221.0	-228.5	0.126	1247.3	5242.4	1.61	33.3
52	7.60	-228.5	-236.1	0.123	1266.9	5324.9	1.75	33.3
53	7.60	-236.1	-243.7	0.123	1266.5	5323.4	1.76	33.3
54	7.60	-243.7	-251.3	0.123	1266.3	5322.6	1.76	33.3
55	7.60	-251.3	-258.9	0.123	1266.0	5321.2	1.77	33.3
56	7.60	-258.9	-266.5	0.123	1268.9	5333.3	1.77	33.4
57	7.60	-266.5	-274.1	0.123	1270.3	5339.0	1.77	33.4
58	7.60	-274.1	-281.7	0.123	1269.9	5337.6	1.78	33.4

Table 3H.6-1aLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1443.5	6067.4	1.48	33.2
60	9.50	-290.4	-299.9	0.128	1575.1	6620.6	1.29	33.2
61	9.50	-299.9	-309.4	0.124	1600.0	6725.1	1.54	33.7
62	9.50	-309.4	-318.9	0.128	1604.9	6745.6	1.29	33.8
63	9.50	-318.9	-328.4	0.128	1604.5	6744.1	1.27	33.8
64	9.50	-328.4	-337.9	0.128	1603.7	6740.8	1.29	33.8
65	9.50	-337.9	-347.4	0.126	1592.9	6695.2	1.45	33.5
66	8.90	-347.4	-356.3	0.126	1479.0	6216.6	1.54	33.2
67	8.50	-356.3	-364.8	0.128	1417.2	5956.7	1.47	33.3
68	8.10	-364.8	-372.9	0.126	1339.3	5629.3	1.61	33.1
69	7.30	-372.9	-380.2	0.123	1219.2	5124.3	1.86	33.4
70	7.30	-380.2	-387.5	0.123	1219.1	5124.0	1.86	33.4
71	7.30	-387.5	-394.8	0.123	1218.9	5123.3	1.86	33.4
72	7.30	-394.8	-402.1	0.124	1209.9	5087.2	1.85	33.1
73	7.20	-402.1	-409.3	0.127	1192.6	5018.0	1.84	33.1
74	7.30	-409.3	-416.6	0.123	1213.6	5101.1	1.87	33.2
75	7.30	-416.6	-423.9	0.123	1213.6	5101.1	1.87	33.2
76	7.30	-423.9	-431.2	0.123	1213.4	5100.1	1.87	33.2
77	7.30	-431.2	-438.5	0.123	1213.3.	5099.7	1.87	33.2
78	7.30	-438.5	-445.8	0.123	1215.9	5110.8	1.87	33.3
79	7.40	-445.8	-453.2	0.123	1224.1	5145.1	1.87	33.1
80	7.40	-453.2	-460.6	0.123	1224.1	5145.1	1.87	33.1
81	8.50	-460.6	-469.1	0.123	1419.0	5964.3	1.56	33.4
82	8.80	-469.1	-477.9	0.123	1465.0	6157.6	1.50	33.3
83	8.70	-477.9	-486.6	0.123	1442.8	6064.5	1.68	33.2
84	8.70	-477.9	-495.3	0.123	1435.9	6035.3	1.73	33.0
85	8.70	-495.3	-504.0	0.123	1435.6	6034.3	1.74	33.0
86	8.70	-504.0	-512.7	0.123	1435.5	6033.9	1.74	33.0
87	8.60	-512.7	-521.3	0.123	1435.4	6033.3	1.74	33.4

Table 3H.6-1aLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1435.3	6032.6	1.74	33.4
89	8.60	-529.9	-538.5	0.123	1435.2	6032.3	1.74	33.4
90	8.60	-538.5	-547.1	0.123	1435.0	6031.5	1.75	33.4
91	9.10	-547.1	-556.2	0.125	1515.0	6091.2	1.34	33.3
92	10.20	-556.2	-566.4	0.129	1688.6	6204.3	0.59	33.1
93	10.20	-566.4	-576.6	0.129	1688.6	6204.3	0.59	33.1
94	10.20	-576.6	-586.8	0.129	1688.6	6204.3	0.59	33.1
95	10.20	-586.8	-597.0	0.129	1688.6	6204.3	0.59	33.1
96	10.20	-597.0	-607.2	0.129	1688.6	6204.3	0.59	33.1
97	10.20	-607.2	-617.4	0.129	1688.6	6204.3	0.59	33.1
98	10.20	-617.4	-627.6	0.129	1688.6	6204.3	0.59	33.1
99	10.20	-627.6	-637.8	0.129	1688.6	6204.3	0.59	33.1
100	10.20	-637.8	-648.0	0.129	1693.4	6221.8	0.59	33.2
Halfspace	•	•		0.129	1693.4	6221.8	0.588-	-

Table 3H.6-1aLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Mean) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)			
1	2.75	56.0	53.3	0.124	677.2	1823.4	0.77	49.3			
2	3.25	53.3	50.0	0.124	711.6	1916.1	0.84	43.8			
3	3.50	50.0	46.5	0.124	734.4	2121.0	0.89	42.0			
4	3.50	46.5	43.0	0.124	730.5	3725.1	0.97	41.7			
5	3.50	43.0	39.5	0.124	732.9	3737.1	1.01	41.9			
6	3.50	39.5	36.0	0.124	733.5	3740.4	1.04	41.9			
7	3.00	36.0	33.0	0.124	732.8	3736.6	1.08	48.9			
8	3.00	33.0	30.0	0.122	833.0	4247.5	1.18	55.5			
9	4.00	30.0	26.0	0.121	895.1	4564.3	1.24	44.8			
10	2.00	26.0	24.0	0.121	898.2	4579.8	1.28	89.8			
11	4.00	24.0	20.0	0.122	924.8	4715.7	1.04	46.2			
12	4.00	20.0	16.0	0.122	952.0	4854.2	0.82	47.6			
13	4.00	16.0	12.0	0.122	948.7	4837.3	0.85	47.4			
14	4.00	12.0	8.0	0.122	944.5	4816.0	0.88	47.2			
15	4.00	8.0	4.0	0.122	945.2	4819.3	0.89	47.3			
16	5.00	4.0	-1.0	0.122	1049.3	4926.6	1.01	42.0			
17	5.00	-1.0	-6.0	0.122	1132.7	5000.0	1.09	45.3			
18	2.00	-6.0	-8.0	0.122	1132.9	5000.0	1.10	113.3			
19	5.50	-8.0	-13.5	0.122	1131.9	5000.0	1.12	41.2			
20	5.60	-13.5	-19.1	0.122	1151.2	5041.0	1.06	41.1			
21	6.10	-19.1	-25.2	0.123	1240.1	5212.4	0.80	40.7			
22	6.10	-25.2	-31.3	0.123	1237.4	5201.0	0.82	40.6			
23	6.10	-31.3	-37.4	0.123	1234.7	5189.9	0.85	40.5			
24	6.10	-37.4	-43.5	0.125	1271.2	5343.0	1.05	41.7			
25	6.30	-43.5	-49.8	0.125	1274.6	5357.6	1.10	40.5			
26	6.40	-49.8	-56.2	0.125	1301.1	5468.8	0.95	40.7			
27	6.50	-56.2	-62.7	0.125	1328.2	5582.7	0.81	40.9			
28	6.60	-62.7	-69.3	0.125	1335.3	5612.7	0.84	40.5			
29	6.75	-69.3	-76.1	0.125	1371.6	5765.2	1.08	40.6			

Table 3H.6-1bLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Upper Bound)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	1370.9	5761.9	1.09	40.6
31	6.75	-82.8	-89.6	0.125	1369.1	5754.3	1.10	40.6
32	6.75	-89.6	-96.3	0.125	1368.5	5751.8	1.10	40.5
33	6.75	-96.3.	-103.1	0.125	1367.8	5748.8	1.11	40.5
34	6.50	-103.1	-109.6	0.125	1349.7	5673.1	0.86	41.5
35	6.50	-109.6	-116.1	0.125	1347.9	5665.7	0.87	41.5
36	6.75	-116.1	-122.8	0.125	1370.0	5758.3	1.05	40.6
37	6.75	-122.8	-129.6	0.125	1379.1	5796.7	1.12	40.9
38	6.75	-129.6	-136.3	0.125	1378.9	5795.9	1.12	40.9
39	6.75	-136.3	-143.1	0.125	1383.7	5816.1	1.13	41.0
40	6.75	-143.1	-149.8	0.125	1384.1	5817.6	1.14	41.0
41	6.75	-149.8	-156.6	0.125	1382.2	5809.6	1.14	41.0
42	6.75	-156.6	-163.3	0.125	1379.9	5800.0	1.15	40.9
43	6.80	-163.3.	-170.1	0.124	1404.0	5901.3	1.17	41.3
44	6.90	-170.1	-177.0	0.124	1414.0	5943.2	1.16	41.0
45	7.10	-177.0	-184.1	0.125	1451.5	6100.8	0.99	40.9
46	7.40	-184.1	-191.5	0.127	1496.8	6291.5	0.82	40.5
47	7.30	-191.5	198.8	0.127	1495.9	6287.4	0.80	41.0
48	7.30	-198.8	-206.1	0.127	1495.7	6286.6	0.80	41.0
49	7.50	-206.1	-213.6	0.126	1530.6	6433.5	1.06	40.8
50	7.40	-213.6	-221.0	0.127	1515.8	6371.2	0.95	41.0
51	7.50	-221.0	-228.5	0.126	1527.5	6420.6	1.01	40.7
52	7.60	-228.5	-236.1	0.123	1551.6	6521.6	1.14	40.8
53	7.60	-236.1	-243.7	0.123	1551.1	6519.8	1.15	40.8
54	7.60	-243.7	-251.3	0.123	1550.9	6518.8	1.15	40.8
55	7.60	-251.3	-258.9	0.123	1550.5	6517.1	1.15	40.8
56	7.60	-258.9	-266.5	0.123	1554.1	6531.8	1.15	40.9
57	7.60	-266.5	-274.1	0.123	1555.7	6538.9	1.15	40.9
58	7.60	-274.1	-281.7	0.123	1555.3	6537.2	1.15	40.9

Table 3H.6-1bLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Upper Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1767.9	7431.0	0.90	40.6
60	9.50	-290.4	-299.9	0.128	1929.1	8108.5	0.74	40.6
61	9.50	-299.9	-309.4	0.124	1959.6	8236.6	0.99	41.3
62	9.50	-309.4	-318.9	0.128	1965.6	8261.6	0.76	41.4
63	9.50	-318.9	-328.4	0.128	1965.2	8259.8	0.74	41.4
64	9.50	-328.4	-337.9	0.128	1964.2	8255.8	0.75	41.4
65	9.50	-337.9	-347.4	0.126	1950.9	8200.0	0.90	41.1
66	8.90	-347.4	-356.3	0.126	1811.4	7613.7	0.95	40.7
67	8.50	-356.3	-364.8	0.128	1735.7	7295.4	0.88	40.8
68	8.10	-364.8	-372.9	0.126	1640.3	6894.5	0.99	40.5
69	7.30	-372.9	-380.2	0.123	1493.2	6276.0	1.19	40.9
70	7.30	-380.2	-387.5	0.123	1493.1	6275.6	1.19	40.9
71	7.30	-387.5	-394.8	0.123	1492.8	6274.7	1.19	40.9
72	7.30	-394.8	-402.1	0.124	1481.8	6228.2	1.15	40.6
73	7.20	-402.1	-409.3	0.127	1460.7	6139.2	1.08	40.6
74	7.30	-409.3	-416.6	0.123	1486.4	6247.5	1.20	40.7
75	7.30	-416.6	-423.9	0.123	1486.4	6247.5	1.20	40.7
76	7.30	-423.9	-431.2	0.123	1486.1	6246.3	1.20	40.7
77	7.30	-431.2	-438.5	0.123	1486.0	6245.8	1.20	40.7
78	7.30	-438.5	-445.8	0.123	1489.2	6259.4	1.20	40.8
79	7.40	-445.8	-453.2	0.123	1499.2	6301.4	1.20	40.5
80	7.40	-453.2	-460.6	0.123	1499.2	6301.4	1.20	40.5
81	8.50	-460.6	-469.1	0.123	1737.9	7304.7	0.95	40.9
82	8.80	-469.1	-477.9	0.123	1794.2	7541.5	0.90	40.8
83	8.70	-477.9	-486.6	0.123	1767.1	7427.4	1.08	40.6
84	8.70	-486.6	-495.3	0.123	1758.6	7391.7	1.13	40.4
85	8.70	-495.3	-504.0	0.123	1758.3	7390.5	1.13	40.4
86	8.70	-504.0	-512.7	0.123	1758.2	7390.0	1.14	40.4
87	8.60	-512.7	-521.3	0.123	1758.0	7389.2	1.14	40.9

Table 3H.6-1bLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Upper Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1757.8	7388.3	1.14	40.9
89	8.60	-529.9	-538.5	0.123	1757.7	7388.0	1.14	40.9
90	8.60	-538.5	-547.1	0.123	1757.5	7387.0	1.14	40.9
91	9.10	-547.1	-556.2	0.125	1855.5	7460.1	0.83	40.8
92	10.20	-556.2	-566.4	0.129	2068.1	7598.6	0.26	40.6
93	10.20	-566.4	-576.6	0.129	2068.1	7598.6	0.26	40.6
94	10.20	-576.6	-586.8	0.129	2068.1	7598.6	0.26	40.6
95	10.20	-586.8	-597.0	0.129	2068.1	7598.6	0.26	40.6
96	10.20	-597.0	-607.2	0.129	2068.1	7598.6	0.26	40.6
97	10.20	-607.2	-617.4	0.129	2068.1	7598.6	0.26	40.6
98	10.20	-617.4	-627.6	0.129	2068.1	7598.6	0.26	40.6
99	10.20	-627.6	-637.8	0.129	2068.1	7598.6	0.26	40.6
100	10.20	-637.8	-648.0	0.129	2073.9	7620.0	0.26	40.7
Halfspace		•		0.129	2073.9	7620.0	0.264	-

Table 3H.6-1bLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used for
the SSI Analysis (Upper Bound) (Continued)

SSI Analysis (Lower Bound)										
Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)		
1	2.75	56.0	53.3	0.124	419.1	1128.4	1.67	30.5		
2	3.25	53.3	50.0	0.124	451.5	1215.7	1.84	27.8		
3	3.50	50.0	46.5	0.124	473.9	1368.8	1.98	27.1		
4	3.50	46.5	43.0	0.124	470.6	2399.5	2.16	26.9		
5	3.50	43.0	39.5	0.124	470.2	2397.5	2.27	26.9		
6	3.50	39.5	36.0	0.124	469.1	2392.1	2.35	26.8		
7	3.00	36.0	33.0	0.124	466.9	2380.6	2.43	31.1		
8	3.00	33.0	30.0	0.122	535.6	2731.0	2.74	35.7		
9	4.00	30.0	26.0	0.121	578.9	2952.0	2.94	28.9		
10	2.00	26.0	24.0	0.121	581.3	2964.2	3.05	58.1		
11	4.00	24.0	20.0	0.122	593.7	3027.2	2.62	29.7		
12	4.00	20.0	16.0	0.122	605.5	3087.4	2.22	30.3		
13	4.00	16.0	12.0	0.122	602.2	3070.6	2.31	30.1		
14	4.00	12.0	8.0	0.122	598.1	3049.7	2.43	29.9		
15	4.00	8.0	4.0	0.122	599.5	3056.8	2.51	30.0		
16	5.00	4.0	-1.0	0.122	666.6	3398.8	2.37	26.7		
17	5.00	-1.0	-6.0	0.122	720.3	3672.8	2.27	28.8		
18	2.00	-6.0	-8.0	0.122	720.6	3674.4	2.28	72.1		
19	5.50	-8.0	-13.5	0.122	719.7	3670.1	2.31	26.2		
20	5.60	-13.5	-19.1	0.122	738.1	3763.4	2.27	26.4		
21	6.10	-19.1	-25.2	0.123	826.7	4215.5	2.08	27.1		
22	6.10	-25.2	-31.3	0.123	824.9	4206.3	2.14	27.0		
23	6.10	-31.3	-37.4	0.123	823.2	4197.3	2.20	27.0		
24	6.10	-37.4	-43.5	0.125	847.5	4321.2	2.11	27.8		
25	6.30	-43.5	-49.8	0.125	849.8	4332.9	2.28	27.0		
26	6.40	-49.8	-56.2	0.125	861.8	4394.5	2.15	26.9		
27	6.50	-56.2	-62.7	0.125	873.6	4454.6	2.03	26.9		
28	6.60	-62.7	-69.3	0.125	880.2	4488.0	1.75	26.7		
29	6.75	-69.3	-76.1	0.125	914.4	4662.7	2.31	27.1		

Table 3H.6-1cLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the
SSI Analysis (Lower Bound)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
30	6.75	-76.1	-82.8	0.125	913.7	4659.3	2.33	27.1
31	6.75	-82.8	-89.6	0.125	911.5	4647.6	2.34	27.0
32	6.75	-89.6	-96.3	0.125	910.9	4644.8	2.36	27.0
33	6.75	-96.3	-103.1	0.125	910.2	4641.2	2.37	27.0
34	6.50	-103.1	-109.6	0.125	883.2	4503.5	2.23	27.2
35	6.50	-109.6	-116.1	0.125	881.1	4492.6	2.26	27.1
36	6.75	-116.1	-122.8	0.125	908.0	4629.8	2.35	26.9
37	6.75	-122.8	-129.6	0.125	919.4	4688.2	2.39	27.2
38	6.75	-129.6	-136.3	0.125	919.3	4687.6	2.40	27.2
39	6.75	-136.3	-143.1	0.125	922.5	4703.8	2.41	27.3
40	6.75	-143.1	-149.8	0.125	922.7	4705.0	2.42	27.3
41	6.75	-149.8	-156.6	0.125	921.4	4698.5	2.43	27.3
42	6.75	-156.6	-163.3	0.125	919.3	4687.6	2.43	27.2
43	6.80	-163.3	-170.1	0.124	921.5	4698.6	2.41	27.1
44	6.90	-170.1	-177.0	0.124	928.7	4735.0	2.41	26.9
45	7.10	-177.0	-184.1	0.125	954.6	4855.4	2.36	26.9
46	7.40	-184.1	-191.5	0.127	985.8	5000.0	2.17	26.6
47	7.30	-191.5	-198.8	0.127	984.9	5000.0	2.32	27.0
48	7.30	-198.8	-206.1	0.127	984.7	5000.0	2.31	27.0
49	7.50	-206.1	-213.6	0.126	1020.4	5000.0	2.27	27.2
50	7.40	-213.6	-221.0	0.127	1010.5	5000.0	2.12	27.3
51	7.50	-221.0	-228.5	0.126	1018.3	5000.0	2.20	27.2
52	7.60	-228.5	-236.1	0.123	1034.4	5000.0	2.36	27.2
53	7.60	-236.1	-243.7	0.123	1034.1	5000.0	2.37	27.2
54	7.60	-243.7	-251.3	0.123	1033.9	5000.0	2.37	27.2
55	7.60	-251.3	-258.9	0.123	1033.7	5000.0	2.38	27.2
56	7.60	-258.9	-266.5	0.123	1036.0	5000.0	2.39	27.3
57	7.60	-266.5	-274.1	0.123	1037.2	5000.0	2.40	27.3
58	7.60	-274.1	-281.7	0.123	1036.9	5000.0	2.40	27.3

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
59	8.70	-281.7	-290.4	0.126	1160.9	5160.6	2.05	26.7
60	9.50	-290.4	-299.9	0.128	1252.4	5264.0	1.84	26.4
61	9.50	-299.9	-309.4	0.124	1290.5	5424.1	2.08	27.2
62	9.50	-309.4	-318.9	0.128	1309.8	5504.9	1.82	27.6
63	9.50	-318.9	-328.4	0.128	1310.1	5506.5	1.80	27.6
64	9.50	-328.4	-337.9	0.128	1309.5	5503.9	1.82	27.6
65	9.50	-337.9	-347.4	0.126	1300.6	5466.7	2.00	27.4
66	8.90	-347.4	-356.3	0.126	1206.9	5163.3	2.12	27.1
67	8.50	-356.3	-364.8	0.128	1156.1	5000.0	2.07	27.2
68	8.10	-364.8	-372.9	0.126	1092.9	5000.0	2.23	27.0
69	7.30	-372.9	-380.2	0.123	995.4	5000.0	2.53	27.3
70	7.30	-380.2	-387.5	0.123	995.3	5000.0	2.53	27.3
71	7.30	-387.5	-394.8	0.123	995.2	5000.0	2.53	27.3
72	7.30	-394.8	-402.1	0.124	987.8	4984.4	2.56	27.1
73	7.20	-402.1	-409.3	0.127	973.7	4955.8	2.61	27.0
74	7.30	-409.3	-416.6	0.123	990.9	5000.0	2.54	27.1
75	7.30	-416.6	-423.9	0.123	990.9	5000.0	2.54	27.1
76	7.30	-423.9	-431.2	0.123	990.7	5000.0	2.54	27.1
77	7.30	-431.2	-438.5	0.123	990.6	5000.0	2.54	27.1
78	7.30	-438.5	-445.8	0.123	992.8	5000.0	2.54	27.2
79	7.40	-445.8	-453.2	0.123	999.5	5000.0	2.54	27.0
80	7.40	-453.2	-460.6	0.123	999.5	5000.0	2.54	27.0
81	8.50	-460.6	-469.1	0.123	1158.6	5023.1	2.17	27.3
82	8.80	-469.1	-477.9	0.123	1196.2	5027.7	2.10	27.2
83	8.70	-477.9	-486.6	0.123	1178.1	5006.7	2.28	27.1
84	8.70	-486.6	-495.3	0.123	1172.4	5000.0	2.34	27.0
85	8.70	-495.3	-504.0	0123	1172.2	5000.0	2.34	26.9
86	8.70	-504.0	-512.7	0.123	1172.1	5000.0	2.34	26.9
87	8.60	-512.7	-521.3	0.123	1172.0	5000.0	2.34	27.3

Table 3H.6-1c Layer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the SSI Analysis (Lower Bound) (Continued)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
88	8.60	-521.3	-529.9	0.123	1171.9	5000.0	2.35	27.3
89	8.60	-529.9	-538.5	0.123	1171.8	5000.0	2.35	27.3
90	8.60	-538.5	-547.1	0.123	1171.7	5000.0	2.35	27.2
91	9.10	-547.1	-556.2	0.125	1237.0	5022.9	1.85	27.2
92	10.20	-556.2	-566.4	0.129	1378.7	5065.8	0.91	27.0
93	10.20	-566.4	-576.6	0.129	1378.7	5065.8	0.91	27.0
94	10.20	-576.6	-586.8	0.129	1378.7	5065.8	0.91	27.0
95	10.20	-586.8	-597.0	0.129	1378.7	5065.8	0.91	27.0
96	10.20	-597.0	-607.2	0.129	1378.7	5065.8	0.91	27.0
97	10.20	-607.2	-617.4	0.129	1378.7	5065.8	0.91	27.0
98	10.20	-617.4	-627.6	0.129	1378.7	5065.8	0.91	27.0
99	10.20	-627.6	-637.8	0.129	1378.7	5065.8	0.91	27.0
100	10.20	-637.8	-648.0	0.129	1382.6	5080.1	0.91	27.1
Halfspace				0.129	1382.6	5080.1	0.913	-

Table 3H.6-1cLayer Thicknesses and Strain Compatible In-Situ Soil Properties Used or the
SSI Analysis (Lower Bound) (Continued)

	Lower Bound Soil				Mean So	il	Upp	per Bound	l Soil
Soil Depth (ft)	Vs (ft/sec)	Vp (ft/sec)	Dampin g (%)	Vs (ft/sec)	Vp (ft/sec)	Dampin g (%)	Vs (ft/sec)	Vp (ft/sec)	Damping (%)
0 to 8	449	1208	3	550	1480	2	673	1813	1
8 to 13	553	2323	3	677	2845	2	829	3485	1
13 to 18	586	2462	3	717	3015	2	879	3693	1
18 to 23	614	2580	3	752	3160	2	921	3870	1
23 to 28	639	2684	3	782	3288	2	958	4027	1
28 to 33	661	2778	3	809	3402	2	991	4166	1
33 to 38	681	2862	3	834	3506	2	1021	4294	1
38 to 43	699	2940	3	857	3601	2	1049	4410	1
43 to 48	717	3012	3	878	3689	2	1075	4518	1
48 to 53	733	3079	3	897	3771	2	1099	4619	1
53 to 58	748	3142	3	916	3849	2	1121	4714	1
58 to 63	762	3202	3	933	3922	2	1143	4803	1
63 to 68	775	3258	3	949	3991	2	1163	4888	1
68 to 73	788	3312	3	965	4056	2	1182	4968	1
73 to 78.25	800	3364	3	980	4120	2	1201	5046	1
78.25 to 83.25	812	3414	3	995	4182	2	1218	5121	1
83.25 to 88.25	823	3461	3	1009	4239	2	1235	5192	1
88.25 to 94.25	835	3510	3	1023	4299	2	1253	5266	1

Table 3H 6-2	Strain-Com	natible Pro	perties of F	Backfill Material

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)
1	2.75	56.0	53.3	0.120	550.0	1480.0	2.00	40.0
2	3.25	53.3	50.0	0.120	550.0	1480.0	2.00	33.8
3	3.50	50.0	46.5	0.120	598.1	1863.1	2.00	34.2
4	3.50	46.5	43.0	0.120	677.0	2845.0	2.00	38.7
5	3.50	43.0	39.5	0.120	717.0	3015.0	2.00	41.0
6	3.50	39.5	36.0	0.120	736.6	3096.2	2.00	42.1
7	3.00	36.0	33.0	0.120	752.0	3160.0	2.00	50.1
8	3.00	33.0	30.0	0.120	782.0	3288.0	2.00	52.1
9	4.00	30.0	26.0	0.120	795.3	3344.0	2.00	39.8
10	2.00	26.0	24.0	0.120	809.0	3402.0	2.00	80.9
11	4.00	24.0	20.0	0.120	827.6	3479.4	2.00	41.4
12	4.00	20.0	16.0	0.120	845.3	3552.9	2.00	42.3
13	4.00	16.0	12.0	0.120	862.2	3622.6	2.00	43.1
14	4.00	12.0	8.0	0.120	878.0	3689.0	2.00	43.9
15	4.00	8.0	4.0	0.120	897.0	3771.0	2.00	44.9
16	5.00	4.0	-1.0	0.120	912.1	3833.1	2.00	36.5
17	5.00	-1.0	-6.0	0.120	929.5	3907.2	2.00	37.2
18	2.00	-6.0	-8.0	0.120	940.9	3956.2	2.00	94.1

Table 3H.6-2aLayer Thicknesses and Strain-Compatible Backfill Soil Properties Used for
the SSI Analysis (Mean)

Layer No.	Thickness (ft)	Top Elevation of Layer (ft)	Bottom Elevation of Layer (ft)	Unit Weight (kcf)	S-Wave Vel. (ft/sec)	P-Wave Vel. (ft/sec)	Damping (%)	Passing Freq. for S-Wave Vel. (Hz)		
1	2.75	56.0	53.3	0.120	673.0	1813.0	1.00	48.9		
2	3.25	53.3	50.0	0.120	673.0	1813.0	1.00	41.1		
3	3.50	50.0	46.5	0.120	732.0	2282.3	1.00	41.8		
4	3.50	46.5	43.0	0.120	829.0	3485.0	1.00	47.4		
5	3.50	43.0	39.5	0.120	879.0	3693.0	1.00	50.2		
6	3.50	39.5	36.0	0.120	902.5	3792.1	1.00	51.6		
7	3.00	36.0	33.0	0.120	921.0	3870.0	1.00	61.4		
8	3.00	33.0	30.0	0.120	958.0	4027.0	1.00	63.9		
9	4.00	30.0	26.0	0.120	974.2	4095.3	1.00	48.7		
10	2.00	26.0	24.0	0.120	991.0	4166.0	1.00	99.1		
11	4.00	24.0	20.0	0.120	1013.3	4261.3	1.00	50.7		
12	4.00	20.0	16.0	0.120	1034.8	4351.2	1.00	51.7		
13	4.00	16.0	12.0	0.120	1055.4	4436.5	1.00	52.8		
14	4.00	12.0	8.0	0.120	1075.0	4518.0	1.00	53.8		
15	4.00	8.0	4.0	0.120	1099.0	4619.0	1.00	55.0		
16	5.00	4.0	-1.0	0.120	1116.5	4694.7	1.00	44.7		
17	5.00	-1.0	-6.0	0.120	1138.5	4784.9	1.00	45.5		
18	2.00	-6.0	-8.0	0.120	1152.9	4845.1	1.00	115.3		

Table 3H.6-2bLayer Thicknesses and Strain-Compatible Backfill Soil Properties Used for
the SSI Analysis (Upper Bound)

		Top Elevation	Bottom Elevation	Unit	S-Wave	P-Wave		Passing Freq. for			
Layer No.	Thickness (ft)	of Layer (ft)	of Layer (ft)	Weight (kcf)	Vel. (ft/sec)	Vel. (ft/sec)	Damping (%)	S-Wave Vel. (Hz)			
1	2.75	56.0	53.3	0.120	449.0	1208.0	3.00	32.7			
2	3.25	53.3	50.0	0.120	449.0	1208.0	3.00	27.6			
3	3.50	50.0	46.5	0.120	488.4	1520.8	3.00	27.9			
4	3.50	46.5	43.0	0.120	553.0	2323.0	3.00	31.6			
5	3.50	43.0	39.5	0.120	586.0	2462.0	3.00	33.5			
6	3.50	39.5	36.0	0.120	601.7	2528.1	3.00	34.4			
7	3.00	36.0	33.0	0.120	614.0	2580.0	3.00	40.9			
8	3.00	33.0	30.0	0.120	639.0	2684.0	3.00	42.6			
9	4.00	30.0	26.0	0.120	649.8	2730.2	3.00	32.5			
10	2.00	26.0	24.0	0.120	661.0	2778.0	3.00	66.1			
11	4.00	24.0	20.0	0.120	675.9	2840.5	3.00	33.8			
12	4.00	20.0	16.0	0.120	689.9	2900.5	3.00	34.5			
13	4.00	16.0	12.0	0.120	703.4	2957.7	3.00	35.2			
14	4.00	12.0	8.0	0.120	717.0	3012.0	3.00	35.9			
15	4.00	8.0	4.0	0.120	733.0	3079.0	3.00	36.7			
16	5.00	4.0	-1.0	0.120	745.0	3129.2	3.00	29.8			
17	5.00	-1.0	-6.0	0.120	759.2	3189.8	3.00	30.4			
18	2.00	-6.0	-8.0	0.120	768.4	3229.8	3.00	76.8			

Table 3H.6-2cLayer Thicknesses and Strain-Compatible Backfill Soil Properties Used for
the SSI Analysis (Lower Bound)

	Synthetic Time History Spectrum (E-W Time History)										
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target				
0.1	0.0106	0.0119	-	0.224	0.0757	0.0777	-				
0.102	0.0112	0.0123	-	0.229	0.08	0.0845	-				
0.105	0.0119	0.0129	-	0.234	0.0846	0.0919	-				
0.107	0.0126	0.0136	-	0.24	0.0895	0.0996	-				
0.11	0.0133	0.0147	-	0.246	0.0947	0.107	-				
0.112	0.014	0.016	-	0.251	0.0994	0.113	-				
0.115	0.0148	0.0175	-	0.257	0.1014	0.1171	-				
0.118	0.0157	0.0193	-	0.263	0.1034	0.1195	-				
0.12	0.0166	0.0211	-	0.269	0.1055	0.1215	-				
0.123	0.0176	0.0231	-	0.275	0.1076	0.1235	-				
0.126	0.0186	0.025	-	0.282	0.1098	0.1255	-				
0.129	0.0196	0.0268	-	0.288	0.112	0.1281	-				
0.132	0.0208	0.0283	-	0.295	0.1142	0.1314	-				
0.135	0.022	0.0295	-	0.302	0.1165	0.1344	-				
0.138	0.0232	0.0302	-	0.309	0.1189	0.1349	-				
0.141	0.0246	0.0305	-	0.316	0.1212	0.1318	-				
0.145	0.026	0.0305	-	0.324	0.1237	0.1219	1.5%				
0.148	0.0275	0.0303	-	0.331	0.1261	0.1329	-				
0.151	0.0291	0.0302	-	0.339	0.1287	0.1436	-				
0.155	0.0308	0.0305	1.0%	0.347	0.1313	0.1513	-				
0.159	0.0326	0.0313	4.2%	0.355	0.1339	0.1573	-				
0.162	0.0345	0.033	4.5%	0.363	0.1366	0.1606	-				
0.166	0.0365	0.0354	3.1%	0.371	0.1393	0.1622	-				
0.17	0.0385	0.0385	-	0.38	0.1421	0.1583	-				
0.174	0.0408	0.042	-	0.389	0.145	0.1508	-				
0.178	0.0431	0.0453	-	0.398	0.1479	0.1641	-				
0.182	0.0457	0.0483	-	0.407	0.1509	0.1779	-				
0.186	0.0483	0.0511	-	0.417	0.1539	0.1824	-				

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History)

	Synthetic Time History Spectrum (E-W Time History) (Continued)											
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target					
0.191	0.051	0.055	-	0.427	0.157	0.1842	-					
0.195	0.054	0.059	-	0.436	0.1601	0.1897	-					
0.2	0.0571	0.0622	-	0.447	0.1633	0.1956	-					
0.204	0.0604	0.065	-	0.457	0.1666	0.1925	-					
0.209	0.0639	0.0674	-	0.468	0.1699	0.1756	-					
0.214	0.0676	0.07	-	0.479	0.1733	0.1889	-					
0.219	0.0715	0.073	-	0.49	0.1768	0.2054	-					
0.5	0.18	0.2133	-	1.096	0.268	0.3131	-					
0.501	0.1802	0.2133	-	1.122	0.2712	0.306	-					
0.513	0.1823	0.2061	-	1.148	0.2743	0.304	-					
0.525	0.1845	0.194	-	1.175	0.2776	0.3014	-					
0.537	0.1866	0.2049	-	1.202	0.2808	0.2998	-					
0.55	0.1888	0.2104	-	1.23	0.2841	0.3034	-					
0.562	0.191	0.2173	-	1.259	0.2874	0.3143	-					
0.575	0.1933	0.2228	-	1.288	0.2908	0.3137	-					
0.589	0.1956	0.2271	-	1.318	0.2942	0.3295	-					
0.603	0.1979	0.2313	-	1.349	0.2977	0.3442	-					
0.617	0.2002	0.2354	-	1.38	0.3012	0.3366	-					
0.631	0.2025	0.2385	-	1.412	0.3047	0.3276	-					
0.646	0.2049	0.2402	-	1.445	0.3083	0.3508	-					
0.661	0.2073	0.2402	-	1.479	0.3119	0.3524	-					
0.676	0.2097	0.2387	-	1.514	0.3156	0.3555	-					
0.692	0.2122	0.2364	-	1.549	0.3193	0.3626	-					
0.708	0.2147	0.2353	-	1.585	0.323	0.3688	-					
0.724	0.2172	0.237	-	1.622	0.3268	0.3755	-					
0.741	0.2198	0.2393	-	1.659	0.3307	0.377	-					
0.759	0.2224	0.2429	-	1.698	0.3345	0.3599	-					
0.776	0.225	0.2527	-	1.738	0.3385	0.3894	-					
0.794	0.2276	0.2595	-	1.778	0.3425	0.3968	-					

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Details and Evaluation Results of Seismic Category 1 Structures

	Synthetic Time History Spectrum (E-W Time History) (Continued)											
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target					
0.813	0.2303	0.2569	-	1.82	0.3465	0.3994	-					
0.832	0.233	0.2622	-	1.862	0.3505	0.4027	-					
0.851	0.2357	0.2669	-	1.905	0.3547	0.3804	-					
0.871	0.2385	0.2702	-	1.95	0.3588	0.3969	-					
0.891	0.2413	0.2711	-	1.995	0.363	0.4157	-					
0.912	0.2441	0.2703	-	2.042	0.3673	0.42	-					
0.933	0.247	0.2697	-	2.089	0.3716	0.4167	-					
0.955	0.2499	0.2664	-	2.138	0.376	0.4158	-					
0.977	0.2528	0.2605	-	2.188	0.3804	0.4123	-					
1	0.2558	0.2614	-	2.239	0.3848	0.4421	-					
1.023	0.2588	0.279	-	2.291	0.3894	0.442	-					
1.047	0.2618	0.2846	-	2.344	0.3939	0.4312	-					
1.071	0.2649	0.3019	-	2.399	0.3986	0.4344	-					
2.455	0.4032	0.4561	-	5.249	0.3661	0.4155	-					
2.5	0.407	0.458	-	5.371	0.3649	0.3992	-					
2.512	0.4067	0.4548	-	5.495	0.3637	0.3969	-					
2.571	0.4054	0.4526	-	5.624	0.3625	0.4013	-					
2.63	0.4041	0.4573	-	5.754	0.3613	0.4031	-					
2.692	0.4027	0.4499	-	5.889	0.3602	0.3971	-					
2.754	0.4014	0.4415	-	6.024	0.359	0.3893	-					
2.818	0.4001	0.437	-	6.165	0.3578	0.3906	-					
2.884	0.3988	0.4532	-	6.309	0.3566	0.3964	-					
2.952	0.3975	0.4547	-	6.456	0.3555	0.4052	-					
3.02	0.3962	0.449	-	6.605	0.3543	0.3992	-					
3.09	0.3949	0.4376	-	6.761	0.3531	0.3775	-					
3.163	0.3936	0.4301	-	6.92	0.352	0.3885	-					
3.236	0.3923	0.4464	-	7.077	0.3508	0.4094	-					
3.311	0.391	0.4537	-	7.246	0.3497	0.4119	-					
3.389	0.3897	0.4431	-	7.413	0.349	0.4112	-					

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

	Synthetic Time History Spectrum (E-W Time History) (Continued)											
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target					
3.467	0.3884	0.4255	-	7.587	0.347	0.4092	-					
3.549	0.3872	0.434	-	7.764	0.346	0.3939	-					
3.631	0.3859	0.4236	-	7.943	0.345	0.3753	-					
3.715	0.3846	0.4266	-	8.13	0.344	0.3744	-					
3.802	0.3834	0.4346	-	8.319	0.343	0.3821	-					
3.891	0.3821	0.4275	-	8.511	0.342	0.3825	-					
3.981	0.3809	0.416	-	8.711	0.341	0.3792	-					
4.073	0.3796	0.4262	-	8.913	0.339	0.3773	-					
4.168	0.3784	0.426	-	9.124	0.336	0.3774	-					
4.266	0.3771	0.4199	-	9.328	0.33	0.3785	-					
4.365	0.3759	0.4244	-	9.551	0.324	0.3648	-					
4.466	0.3746	0.4249	-	9.775	0.319	0.3598	-					
4.57	0.3734	0.421	-	10	0.314	0.3565	-					
4.677	0.3722	0.4029	-	10.235	0.308	0.3522	-					
4.787	0.371	0.4141	-	10.471	0.303	0.3331	-					
4.897	0.3698	0.4194	-	10.718	0.298	0.3288	-					
5	0.3687	0.4188	-	10.965	0.293	0.3356	-					
5.013	0.3685	0.4181	-	11.223	0.288	0.324	-					
5.128	0.3673	0.4196	-	11.481	0.283	0.3146	-					
11.751	0.278	0.3073	-	25.707	0.1563	0.1683	-					
12.019	0.274	0.2985	-	26.316	0.1537	0.1658	-					
12.3	0.269	0.2821	-	26.882	0.1511	0.1622	-					
12.594	0.265	0.3001	-	27.548	0.1485	0.1599	-					
12.887	0.26	0.3014	-	28.169	0.146	0.1643	-					
13.175	0.256	0.2846	-	28.818	0.1436	0.1656	-					
13.495	0.252	0.2863	-	29.499	0.1412	0.1628	-					
13.812	0.247	0.2711	-	30.211	0.1388	0.1631	-					
14.124	0.243	0.2659	-	30.864	0.1365	0.1616	-					
14.451	0.239	0.2621	-	31.646	0.1342	0.1585	-					

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Details and Evaluation Results of Seismic Category 1 Structures

Synthetic Time History Spectrum (E-W Time History) (Continued)											
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History – (E-W)	Percentage Less than Target				
14.793	0.235	0.2534	-	32.362	0.1319	0.1542	-				
15.129	0.231	0.2577	-	33.113	0.13	0.1496	-				
15.48	0.227	0.253	-	33.898	0.13	0.1454	-				
15.848	0.223	0.251	-	34.722	0.13	0.1426	-				
16.207	0.22	0.2464	-	35.461	0.13	0.1398	-				
16.584	0.216	0.2412	-	36.364	0.13	0.1394	-				
16.978	0.212	0.2305	-	37.175	0.13	0.1434	-				
17.391	0.209	0.2316	-	38.023	0.13	0.1438	-				
17.794	0.205	0.2273	-	38.911	0.13	0.1444	-				
18.182	0.202	0.2253	-	39.841	0.13	0.143	-				
18.622	0.198	0.2368	-	40.816	0.13	0.1419	-				
19.048	0.195	0.2353	-	41.667	0.13	0.1428	-				
19.493	0.1917	0.2275	-	42.735	0.13	0.1436	-				
19.96	0.1884	0.2073	-	43.668	0.13	0.1449	-				
20.408	0.1853	0.1903	-	44.643	0.13	0.1399	-				
20.877	0.1821	0.1951	-	45.662	0.13	0.1425	-				
21.368	0.1791	0.1997	-	46.729	0.13	0.1447	-				
21.882	0.176	0.2008	-	47.847	0.13	0.1461	-				
22.371	0.1731	0.1974	-	49.02	0.13	0.146	-				
22.883	0.1702	0.2031	-	50.251	0.13	0.1454	-				
23.419	0.1673	0.1967	-				-				
23.981	0.1645	0.1908	-				-				
24.57	0.1617	0.1788	-				-				
25	0.1595	0.1709	-				-				
25.126	0.159	0.1705	-				-				

Table 3H.6-2d Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (E-W Time History) (Continued)

Synthetic Time History Spectrum (N-S Time History)										
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target			
0.1	0.0106	0.0111	-	0.224	0.0757	0.0801	-			
0.102	0.0112	0.0121	-	0.229	0.08	0.08	-			
0.105	0.0119	0.0133	-	0.234	0.0846	0.0864	-			
0.107	0.0126	0.0145	-	0.24	0.0895	0.0916	-			
0.11	0.0133	0.0158	-	0.246	0.0947	0.0933	1.5%			
0.112	0.014	0.0173	-	0.251	0.0994	0.0981	1.3%			
0.115	0.0148	0.0187	-	0.257	0.1014	0.1062	-			
0.118	0.0157	0.0203	-	0.263	0.1034	0.1128	-			
0.12	0.0166	0.0217	-	0.269	0.1055	0.1168	-			
0.123	0.0176	0.0232	-	0.275	0.1076	0.1182	-			
0.126	0.0186	0.025	-	0.282	0.1098	0.118	-			
0.129	0.0196	0.0277	-	0.288	0.112	0.1189	-			
0.132	0.0208	0.0303	-	0.295	0.1142	0.1235	-			
0.135	0.022	0.0326	-	0.302	0.1165	0.1265	-			
0.138	0.0232	0.0345	-	0.309	0.1189	0.1279	-			
0.141	0.0246	0.036	-	0.316	0.1212	0.1294	-			
0.145	0.026	0.037	-	0.324	0.1237	0.1342	-			
0.148	0.0275	0.0374	-	0.331	0.1261	0.1387	-			
0.151	0.0291	0.0374	-	0.339	0.1287	0.1429	-			
0.155	0.0308	0.0375	-	0.347	0.1313	0.147	-			
0.159	0.0326	0.0373	-	0.355	0.1339	0.1507	-			
0.162	0.0345	0.0371	-	0.363	0.1366	0.154	-			
0.166	0.0365	0.0369	-	0.371	0.1393	0.1569	-			
0.17	0.0385	0.0373	3.2%	0.38	0.1421	0.1592	-			
0.174	0.0408	0.0394	3.6%	0.389	0.145	0.1609	-			
0.178	0.0431	0.0421	2.4%	0.398	0.1479	0.1621	-			
0.182	0.0457	0.0457	-	0.407	0.1509	0.1628	-			
0.186	0.0483	0.0502	-	0.417	0.1539	0.163	-			

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History)

Frequency Spectral History - Less than Frequency Spectral History - Le	Synthetic Time History Spectrum (N-S Time History) (Continued)								
0.195 0.054 0.0617 - 0.436 0.1601 0.1886 0.2 0.0571 0.0668 - 0.447 0.1633 0.1903 0.204 0.0604 0.0702 - 0.457 0.1666 0.1804 0.209 0.0639 0.0708 - 0.468 0.1699 0.1804 0.214 0.0676 0.073 - 0.479 0.1733 0.1773 0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.55 0.1845 0.2028 - 1.175 0.2776 0.3031 0.55 0.1888 0.2112 - 1.233 0.2841 0.313 0.562 0.191 0.1992 <th></th> <th>Spectral</th> <th>Acceleration from Time History -</th> <th>Less than</th> <th></th> <th>Spectral</th> <th>Acceleration from Time History -</th> <th>Percentage Less than Target</th>		Spectral	Acceleration from Time History -	Less than		Spectral	Acceleration from Time History -	Percentage Less than Target	
0.2 0.0571 0.0668 - 0.447 0.1633 0.1903 0.204 0.0604 0.0702 - 0.457 0.1666 0.1804 0.209 0.0639 0.0708 - 0.468 0.1699 0.1804 0.214 0.0676 0.073 - 0.479 0.1733 0.1773 0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.55 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.233 0.2874 0.3161 0.562 0.191 0.1992 </td <td>0.191</td> <td>0.051</td> <td>0.0557</td> <td>-</td> <td>0.427</td> <td>0.157</td> <td>0.1748</td> <td>-</td>	0.191	0.051	0.0557	-	0.427	0.157	0.1748	-	
0.204 0.0604 0.0702 - 0.457 0.1666 0.1804 0.209 0.0639 0.0708 - 0.468 0.1699 0.1804 0.214 0.0676 0.073 - 0.479 0.1733 0.1773 0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2841 0.313 0.562 0.191 0.1992 - 1.288 0.2908 0.3043 0.575 0.1933 0.2024<	0.195	0.054	0.0617	-	0.436	0.1601	0.1886	-	
0.209 0.0639 0.0708 - 0.468 0.1699 0.1804 0.214 0.0676 0.073 - 0.479 0.1733 0.1773 0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2814 0.313 0.562 0.191 0.1992 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2219 </td <td>0.2</td> <td>0.0571</td> <td>0.0668</td> <td>-</td> <td>0.447</td> <td>0.1633</td> <td>0.1903</td> <td>-</td>	0.2	0.0571	0.0668	-	0.447	0.1633	0.1903	-	
0.214 0.0676 0.073 - 0.479 0.1733 0.1773 0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2814 0.313 0.562 0.191 0.1992 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2219 - 1.349 0.2977 0.3322 0.617 0.2002 0.2257 </td <td>0.204</td> <td>0.0604</td> <td>0.0702</td> <td>-</td> <td>0.457</td> <td>0.1666</td> <td>0.1804</td> <td>-</td>	0.204	0.0604	0.0702	-	0.457	0.1666	0.1804	-	
0.219 0.0715 0.0782 - 0.49 0.1768 0.1868 0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2841 0.313 0.562 0.191 0.1992 - 1.259 0.2874 0.3161 0.575 0.1933 0.2094 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2219 - 1.349 0.2977 0.3322 0.617 0.2025 0.2263<	0.209	0.0639	0.0708	-	0.468	0.1699	0.1804	-	
0.5 0.18 0.1939 - 1.096 0.268 0.2904 0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2841 0.313 0.562 0.191 0.1992 - 1.259 0.2874 0.3161 0.575 0.1933 0.2094 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2257 - 1.38 0.3012 0.3329 0.617 0.2002 0.2257 - 1.445 0.3083 0.3396 0.664 0.2049 0.2249<	0.214	0.0676	0.073	-	0.479	0.1733	0.1773	-	
0.501 0.1802 0.1948 - 1.122 0.2712 0.2979 0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2874 0.313 0.562 0.191 0.1992 - 1.259 0.2874 0.3161 0.575 0.1933 0.2094 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2977 0.3322 0.603 0.1979 0.2219 - 1.349 0.2977 0.3322 0.617 0.2022 0.2257 - 1.38 0.3012 0.3329 0.631 0.2025 0.2263 - 1.412 0.3047 0.3266 0.664 0.2049 0.	0.219	0.0715	0.0782	-	0.49	0.1768	0.1868	-	
0.513 0.1823 0.2027 - 1.148 0.2743 0.3035 0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2841 0.313 0.562 0.191 0.1992 - 1.259 0.2874 0.3161 0.575 0.1933 0.2094 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2219 - 1.349 0.2977 0.3322 0.617 0.2022 0.2257 - 1.38 0.3012 0.3329 0.631 0.2025 0.2263 - 1.412 0.3047 0.3266 0.646 0.2049 0.2249 - 1.445 0.3083 0.3396 0.661 0.2073 0.	0.5	0.18	0.1939	-	1.096	0.268	0.2904	-	
0.525 0.1845 0.2028 - 1.175 0.2776 0.3031 0.537 0.1866 0.2029 - 1.202 0.2808 0.3058 0.55 0.1888 0.2112 - 1.23 0.2874 0.313 0.562 0.191 0.1992 - 1.259 0.2874 0.3161 0.575 0.1933 0.2094 - 1.288 0.2908 0.3043 0.589 0.1956 0.218 - 1.318 0.2942 0.3225 0.603 0.1979 0.2219 - 1.349 0.2977 0.3322 0.617 0.2002 0.2257 - 1.38 0.3043 0.3329 0.631 0.2025 0.2263 - 1.412 0.3047 0.3266 0.646 0.2049 0.2249 - 1.445 0.3083 0.3396 0.661 0.2073 0.2251 - 1.479 0.3119 0.3465 0.676 0.2097 0.	0.501	0.1802	0.1948	-	1.122	0.2712	0.2979	-	
0.5370.18660.2029-1.2020.28080.30580.550.18880.2112-1.230.28410.3130.5620.1910.1992-1.2590.28740.31610.5750.19330.2094-1.2880.29080.30430.5890.19560.218-1.3180.29420.32250.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.33290.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6980.33450.3723	0.513	0.1823	0.2027	-	1.148	0.2743	0.3035	-	
0.550.18880.2112-1.230.28410.3130.5620.1910.1992-1.2590.28740.31610.5750.19330.2094-1.2880.29080.30430.5890.19560.218-1.3180.29420.32250.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.32990.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33450.3723	0.525	0.1845	0.2028	-	1.175	0.2776	0.3031	-	
0.5620.1910.1992-1.2590.28740.31610.5750.19330.2094-1.2880.29080.30430.5890.19560.218-1.3180.29420.32250.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.33290.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5850.3230.35770.7080.21470.2359-1.6220.32680.36440.7410.21980.247-1.6980.33450.3723	0.537	0.1866	0.2029	-	1.202	0.2808	0.3058	-	
0.5750.19330.2094-1.2880.29080.30430.5890.19560.218-1.3180.29420.32250.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.32990.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.6220.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6980.33450.3723	0.55	0.1888	0.2112	-	1.23	0.2841	0.313	-	
0.5890.19560.218-1.3180.29420.32250.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.32990.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.6220.32680.36440.7240.21720.2348-1.6590.33070.37020.7590.22240.2383-1.6980.34550.3723	0.562	0.191	0.1992	-	1.259	0.2874	0.3161	-	
0.6030.19790.2219-1.3490.29770.33220.6170.20020.2257-1.380.30120.33290.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.6850.3230.35770.7240.21720.2348-1.6220.33070.37020.7590.22240.2383-1.6980.33450.3723	0.575	0.1933	0.2094	-	1.288	0.2908	0.3043	-	
0.6170.20020.2257-1.380.30120.33290.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.589	0.1956	0.218	-	1.318	0.2942	0.3225	-	
0.6310.20250.2263-1.4120.30470.32660.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6980.33450.3723	0.603	0.1979	0.2219	-	1.349	0.2977	0.3322	-	
0.6460.20490.2249-1.4450.30830.33960.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.617	0.2002	0.2257	-	1.38	0.3012	0.3329	-	
0.6610.20730.2251-1.4790.31190.34650.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.631	0.2025	0.2263	-	1.412	0.3047	0.3266	-	
0.6760.20970.228-1.5140.31560.34970.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.646	0.2049	0.2249	-	1.445	0.3083	0.3396	-	
0.6920.21220.2327-1.5490.31930.35260.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.661	0.2073	0.2251	-	1.479	0.3119	0.3465	-	
0.7080.21470.2359-1.5850.3230.35770.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.676	0.2097	0.228	-	1.514	0.3156	0.3497	-	
0.7240.21720.2348-1.6220.32680.36440.7410.21980.247-1.6590.33070.37020.7590.22240.2383-1.6980.33450.3723	0.692	0.2122	0.2327	-	1.549	0.3193	0.3526	-	
0.741 0.2198 0.247 - 1.659 0.3307 0.3702 0.759 0.2224 0.2383 - 1.698 0.3345 0.3723	0.708	0.2147	0.2359	-	1.585	0.323	0.3577	-	
0.759 0.2224 0.2383 - 1.698 0.3345 0.3723	0.724	0.2172	0.2348	-	1.622	0.3268	0.3644	-	
	0.741	0.2198	0.247	-	1.659	0.3307	0.3702	-	
0.776 0.225 0.2463 - 1.738 0.3385 0.3694	0.759	0.2224	0.2383	-	1.698	0.3345	0.3723	-	
	0.776	0.225	0.2463	-	1.738	0.3385	0.3694	-	
0.794 0.2276 0.2468 - 1.778 0.3425 0.365	0.794	0.2276	0.2468	-	1.778	0.3425	0.365	-	

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

	Synthetic Time History Spectrum (N-S Time History) (Continued)								
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target		
0.813	0.2303	0.2496	-	1.82	0.3465	0.3724	-		
0.832	0.233	0.2574	-	1.862	0.3505	0.4028	-		
0.851	0.2357	0.2647	-	1.905	0.3547	0.4082	-		
0.871	0.2385	0.2705	-	1.95	0.3588	0.4003	-		
0.891	0.2413	0.2718	-	1.995	0.363	0.3918	-		
0.912	0.2441	0.2646	-	2.042	0.3673	0.393	-		
0.933	0.247	0.2701	-	2.089	0.3716	0.4265	-		
0.955	0.2499	0.2714	-	2.138	0.376	0.422	-		
0.977	0.2528	0.2732	-	2.188	0.3804	0.4103	-		
1	0.2558	0.279	-	2.239	0.3848	0.4202	-		
1.023	0.2588	0.2851	-	2.291	0.3894	0.4271	-		
1.047	0.2618	0.2907	-	2.344	0.3939	0.4331	-		
1.071	0.2649	0.294	-	2.399	0.3986	0.4345	-		
2.455	0.4032	0.4309	-	5.249	0.3661	0.4074	-		
2.5	0.407	0.4462	-	5.371	0.3649	0.4083	-		
2.512	0.4067	0.4494	-	5.495	0.3637	0.4079	-		
2.571	0.4054	0.4537	-	5.624	0.3625	0.4027	-		
2.63	0.4041	0.4421	-	5.754	0.3613	0.3928	-		
2.692	0.4027	0.4258	-	5.889	0.3602	0.3905	-		
2.754	0.4014	0.4424	-	6.024	0.359	0.3932	-		
2.818	0.4001	0.4351	-	6.165	0.3578	0.3929	-		
2.884	0.3988	0.4337	-	6.309	0.3566	0.3938	-		
2.952	0.3975	0.445	-	6.456	0.3555	0.3905	-		
3.02	0.3962	0.4484	-	6.605	0.3543	0.3839	-		
3.09	0.3949	0.4447	-	6.761	0.3531	0.3916	-		
3.163	0.3936	0.4247	-	6.92	0.352	0.3922	-		
3.236	0.3923	0.4246	-	7.077	0.3508	0.3964	-		
3.311	0.391	0.4452	-	7.246	0.3497	0.3951	-		
3.389	0.3897	0.4372	-	7.413	0.349	0.3768	-		

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Details and Evaluation Results of Seismic Category 1 Structures

Synthetic Time History Spectrum (N-S Time History) (Continued)								
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	
3.467	0.3884	0.4171	-	7.587	0.347	0.375	-	
3.549	0.3872	0.4115	-	7.764	0.346	0.38	-	
3.631	0.3859	0.428	-	7.943	0.345	0.3788	-	
3.715	0.3846	0.425	-	8.13	0.344	0.3709	-	
3.802	0.3834	0.4256	-	8.319	0.343	0.386	-	
3.891	0.3821	0.4153	-	8.511	0.342	0.3889	-	
3.981	0.3809	0.4184	-	8.711	0.341	0.3783	-	
4.073	0.3796	0.4156	-	8.913	0.339	0.3706	-	
4.168	0.3784	0.4101	-	9.124	0.336	0.3642	-	
4.266	0.3771	0.4034	-	9.328	0.33	0.3599	-	
4.365	0.3759	0.4171	-	9.551	0.324	0.359	-	
4.466	0.3746	0.4159	-	9.775	0.319	0.3422	-	
4.57	0.3734	0.4077	-	10	0.314	0.344	-	
4.677	0.3722	0.4088	-	10.235	0.308	0.3423	-	
4.787	0.371	0.4147	-	10.471	0.303	0.3321	-	
4.897	0.3698	0.4036	-	10.718	0.298	0.3252	-	
5	0.3687	0.3998	-	10.965	0.293	0.3213	-	
5.013	0.3685	0.4018	-	11.223	0.288	0.3137	-	
5.128	0.3673	0.4093	-	11.481	0.283	0.3232	-	
11.751	0.278	0.3143	-	25.707	0.1563	0.1846	-	
12.019	0.274	0.3016	-	26.316	0.1537	0.1887	-	
12.3	0.269	0.2917	-	26.882	0.1511	0.1815	-	
12.594	0.265	0.2816	-	27.548	0.1485	0.1703	-	
12.887	0.26	0.2812	-	28.169	0.146	0.1643	-	
13.175	0.256	0.2844	-	28.818	0.1436	0.1599	-	
13.495	0.252	0.2854	-	29.499	0.1412	0.1563	-	
13.812	0.247	0.2787	-	30.211	0.1388	0.1556	-	
14.124	0.243	0.2722	-	30.864	0.1365	0.1554	-	
14.451	0.239	0.2643	-	31.646	0.1342	0.1549	-	

Table 3H.6-2e Comparison of Spectral Accelerations for Target 5% Damped Spectrum and Synthetic Time History Spectrum (N-S Time History) (Continued)

Synthetic Time History Spectrum (N-S Time History) (Continued)								
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History - (N-S)	Percentage Less than Target	
14.793	0.235	0.2558	-	32.362	0.1319	0.1553	-	
15.129	0.231	0.2519	-	33.113	0.13	0.1548	-	
15.48	0.227	0.2476	-	33.898	0.13	0.1538	-	
15.848	0.223	0.2449	-	34.722	0.13	0.1529	-	
16.207	0.22	0.2422	-	35.461	0.13	0.1517	-	
16.584	0.216	0.2401	-	36.364	0.13	0.1506	-	
16.978	0.212	0.2359	-	37.175	0.13	0.1501	-	
17.391	0.209	0.2288	-	38.023	0.13	0.1502	-	
17.794	0.205	0.2221	-	38.911	0.13	0.1505	-	
18.182	0.202	0.2195	-	39.841	0.13	0.1502	-	
18.622	0.198	0.2181	-	40.816	0.13	0.1502	-	
19.048	0.195	0.2124	-	41.667	0.13	0.1499	-	
19.493	0.1917	0.2048	-	42.735	0.13	0.1493	-	
19.96	0.1884	0.1989	-	43.668	0.13	0.1491	-	
20.408	0.1853	0.2104	-	44.643	0.13	0.1489	-	
20.877	0.1821	0.2076	-	45.662	0.13	0.1485	-	
21.368	0.1791	0.2035	-	46.729	0.13	0.1483	-	
21.882	0.176	0.2014	-	47.847	0.13	0.1482	-	
22.371	0.1731	0.1952	-	49.02	0.13	0.1482	-	
22.883	0.1702	0.1882	-	50.251	0.13	0.148	-	
23.419	0.1673	0.184	-				-	
23.981	0.1645	0.1778	-				-	
24.57	0.1617	0.1704	-				-	
25	0.1595	0.1742	-				-	
25.126	0.159	0.1767	-				-	

	Syr	nthetic Time I	nistory spec	urum (veru		ory)	
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target
0.1	0.0071	0.0101	-	0.224	0.0506	0.0534	-
0.102	0.0075	0.0108	-	0.229	0.0535	0.0552	-
0.105	0.0079	0.0115	-	0.234	0.0566	0.0582	-
0.107	0.0084	0.0123	-	0.24	0.0599	0.0617	-
0.11	0.0088	0.0129	-	0.246	0.0633	0.0652	-
0.112	0.0094	0.0135	-	0.251	0.0665	0.0683	-
0.115	0.0099	0.0141	-	0.257	0.068	0.071	-
0.118	0.0105	0.0146	-	0.263	0.0695	0.073	-
0.12	0.0111	0.0149	-	0.269	0.0711	0.0778	-
0.123	0.0117	0.0152	-	0.275	0.0727	0.0822	-
0.126	0.0124	0.0154	-	0.282	0.0744	0.0847	-
0.129	0.0131	0.016	-	0.288	0.0761	0.0845	-
0.132	0.0139	0.0166	-	0.295	0.0778	0.0812	-
0.135	0.0147	0.0173	-	0.302	0.0796	0.0854	-
0.138	0.0155	0.018	-	0.309	0.0814	0.0895	-
0.141	0.0164	0.0184	-	0.316	0.0832	0.0921	-
0.145	0.0174	0.0186	-	0.324	0.0851	0.0932	-
0.148	0.0184	0.0186	-	0.331	0.087	0.0935	-
0.151	0.0194	0.0195	-	0.339	0.089	0.0939	-
0.155	0.0206	0.0206	-	0.347	0.091	0.0959	-
0.159	0.0217	0.0222	-	0.355	0.0931	0.099	-
0.162	0.023	0.0236	-	0.363	0.0952	0.103	-
0.166	0.0243	0.0249	-	0.371	0.0974	0.1069	-
0.17	0.0257	0.026	-	0.38	0.0996	0.109	-
0.174	0.0272	0.0272	-	0.389	0.1018	0.1092	
0.178	0.0288	0.0287	0.35%	0.398	0.1041	0.1096	-
0.182	0.0305	0.0305	-	0.407	0.1065	0.1124	-
0.186	0.0322	0.0327	-	0.417	0.1089	0.1183	-
0.191	0.0341	0.0354	-	0.427	0.1114	0.1238	-

Synthetic Time History Spectrum (Vertical Time History) (Continued)									
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target		
0.195	0.0361	0.0385	-	0.436	0.1139	0.1264	-		
0.2	0.0381	0.0418	-	0.447	0.1165	0.129	-		
0.204	0.0404	0.0452	-	0.457	0.1191	0.1269	-		
0.209	0.0427	0.0481	-	0.468	0.1218	0.1199	1.58%		
0.214	0.0452	0.0506	-	0.479	0.1246	0.1203	3.57%		
0.219	0.0478	0.0524	-	0.49	0.1274	0.1376	-		
0.5	0.13	0.1467	-	1.096	0.2019	0.2192	-		
0.501	0.1302	0.1473	-	1.122	0.2045	0.2209	-		
0.513	0.1319	0.1506	-	1.148	0.2072	0.2163	-		
0.525	0.1336	0.1484	-	1.175	0.2099	0.2277	-		
0.537	0.1353	0.138	-	1.202	0.2126	0.2264	-		
0.55	0.1371	0.1486	-	1.23	0.2154	0.229	-		
0.562	0.1388	0.1578	-	1.259	0.2182	0.238	-		
0.575	0.1407	0.1568	-	1.288	0.221	0.2453	-		
0.589	0.1425	0.1451	-	1.318	0.2239	0.2505	-		
0.603	0.1443	0.1558	-	1.349	0.2268	0.2532	-		
0.617	0.1462	0.1615	-	1.38	0.2297	0.2529	-		
0.631	0.1481	0.1624	-	1.412	0.2327	0.2504	-		
0.646	0.15	0.1613	-	1.445	0.2357	0.2466	-		
0.661	0.152	0.1599	-	1.479	0.2388	0.2494	-		
0.676	0.154	0.1597	-	1.514	0.2419	0.2577	-		
0.692	0.156	0.1632	-	1.549	0.245	0.2626	-		
0.708	0.158	0.1774	-	1.585	0.2482	0.2612	-		
0.724	0.16	0.1746	-	1.622	0.2514	0.263	-		
0.741	0.1621	0.1669	-	1.659	0.2547	0.2671	-		
0.759	0.1642	0.1656	-	1.698	0.258	0.2677	-		
0.776	0.1663	0.1654	0.54%	1.738	0.2614	0.271	-		
0.794	0.1685	0.169	-	1.778	0.2648	0.2946	-		
0.813	0.1707	0.1762	-	1.82	0.2682	0.2794	-		

	Synthetic Time History Spectrum (Vertical Time History) (Continued)									
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target			
0.832	0.1729	0.1823	-	1.862	0.2717	0.2976	-			
0.851	0.1752	0.19	-	1.905	0.2752	0.3047	-			
0.871	0.1775	0.192	-	1.95	0.2788	0.2924	-			
0.891	0.1798	0.1986	-	1.995	0.2824	0.3099	-			
0.912	0.1821	0.1913	-	2.042	0.2861	0.3248	-			
0.933	0.1845	0.2081	-	2.089	0.2898	0.3319	-			
0.955	0.1868	0.205	-	2.138	0.2936	0.3319	-			
0.977	0.1893	0.1905	-	2.188	0.2974	0.3102	-			
1	0.1917	0.2056	-	2.239	0.3012	0.3101	-			
1.023	0.1942	0.2134	-	2.291	0.3052	0.3294	-			
1.047	0.1967	0.2171	-	2.344	0.3091	0.337	-			
1.071	0.1993	0.2166	-	2.399	0.3131	0.335	-			
2.455	0.3172	0.3366	-	5.249	0.3656	0.3918	-			
2.5	0.3205	0.3425	-	5.371	0.3645	0.387	-			
2.512	0.3213	0.3443	-	5.495	0.3633	0.3886	-			
2.571	0.3255	0.3509	-	5.624	0.3621	0.396	-			
2.63	0.3297	0.3536	-	5.754	0.3609	0.3873	-			
2.692	0.334	0.3613	-	5.889	0.3598	0.3866	-			
2.754	0.3384	0.367	-	6.024	0.3586	0.4048	-			
2.818	0.3427	0.3586	-	6.165	0.3575	0.406	-			
2.884	0.3472	0.3755	-	6.309	0.3563	0.4029	-			
2.952	0.3517	0.3927	-	6.456	0.3552	0.3828	-			
3.02	0.3563	0.3983	-	6.605	0.354	0.3716	-			
3.09	0.3609	0.3991	-	6.761	0.3529	0.3809	-			
3.163	0.3656	0.4006	-	6.92	0.3517	0.3851	-			
3.236	0.3703	0.4073	-	7.077	0.3506	0.3867	-			
3.311	0.3752	0.4222	-	7.246	0.3495	0.3685	-			
3.389	0.38	0.4347	-	7.413	0.348	0.3488	-			
3.467	0.385	0.4162	-	7.587	0.347	0.3884	-			

	Synthetic Time History Spectrum (Vertical Time History) (Continued)									
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target			
3.549	0.3863	0.3931	-	7.764	0.346	0.3934	-			
3.631	0.385	0.419	-	7.943	0.345	0.3712	-			
3.715	0.3838	0.4216	-	8.13	0.344	0.367	-			
3.802	0.3825	0.4112	-	8.319	0.343	0.3804	-			
3.891	0.3813	0.4072	-	8.511	0.342	0.3669	-			
3.981	0.3801	0.3966	-	8.711	0.341	0.3589	-			
4.073	0.3788	0.4033	-	8.913	0.339	0.3563	-			
4.168	0.3776	0.4212	-	9.124	0.336	0.3603	-			
4.266	0.3764	0.4112	-	9.328	0.33	0.3554	-			
4.365	0.3752	0.3923	-	9.551	0.324	0.347	-			
4.466	0.374	0.3998	-	9.775	0.319	0.3497	-			
4.57	0.3728	0.4	-	10	0.314	0.3288	-			
4.677	0.3716	0.4118	-	10.235	0.308	0.3309	-			
4.787	0.3704	0.4134	-	10.471	0.303	0.3334	-			
4.897	0.3692	0.3894	-	10.718	0.298	0.3315	-			
5	0.3681	0.395	-	10.965	0.293	0.325	-			
5.013	0.368	0.3967	-	11.223	0.288	0.3163	-			
5.128	0.3668	0.3969	-	11.481	0.283	0.3117	-			
11.751	0.278	0.2999	-	25.707	0.1563	0.1818	-			
12.019	0.274	0.2913	-	26.316	0.1537	0.1875	-			
12.3	0.269	0.2869	-	26.882	0.1511	0.1815	-			
12.594	0.265	0.2927	-	27.548	0.1485	0.1748	-			
12.887	0.26	0.2874	-	28.169	0.146	0.16	-			
13.175	0.256	0.275	-	28.818	0.1436	0.1496	-			
13.495	0.252	0.2691	-	29.499	0.1412	0.1518	-			
13.812	0.247	0.259	-	30.211	0.1388	0.1547	-			
14.124	0.243	0.2489	-	30.864	0.1365	0.1535	-			
14.451	0.239	0.25	-	31.646	0.1342	0.1592	-			
14.793	0.235	0.2586	-	32.362	0.1319	0.1541	-			

Synthetic Time History Spectrum (Vertical Time History) (Continued)								
Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	Frequency (Hz)	Target Spectral Acceleration	Spectral Acceleration from Time History –V1	Percentage Less than Target	
15.129	0.231	0.2559	-	33.113	0.13	0.1483	-	
15.48	0.227	0.2509	-	33.898	0.13	0.143	-	
15.848	0.223	0.2382	-	34.722	0.13	0.1367	-	
16.207	0.22	0.2358	-	35.461	0.13	0.1336	-	
16.584	0.216	0.239	-	36.364	0.13	0.1332	-	
16.978	0.212	0.2318	-	37.175	0.13	0.1362	-	
17.391	0.209	0.22	-	38.023	0.13	0.1393	-	
17.794	0.205	0.2173	-	38.911	0.13	0.1423	-	
18.182	0.202	0.2192	-	39.841	0.13	0.1447	-	
18.622	0.198	0.2165	-	40.816	0.13	0.1461	-	
19.048	0.195	0.2141	-	41.667	0.13	0.1425	-	
19.493	0.1917	0.2073	-	42.735	0.13	0.1389	-	
19.96	0.1884	0.2038	-	43.668	0.13	0.1358	-	
20.408	0.1853	0.2047	-	44.643	0.13	0.1318	-	
20.877	0.1821	0.2039	-	45.662	0.13	0.1332	-	
21.368	0.1791	0.2043	-	46.729	0.13	0.1337	-	
21.882	0.176	0.1998	-	47.847	0.13	0.1338	-	
22.371	0.1731	0.1925	-	49.02	0.13	0.1341	-	
22.883	0.1702	0.1813	-	50.251	0.13	0.1346	-	
23.419	0.1673	0.175	-				-	
23.981	0.1645	0.165	-				-	
24.57	0.1617	0.169	-				-	
25	0.1595	0.1752	-				-	
25.126	0.159	0.1783	-				-	

	Dominant Modes in the Global X Direction								
	Mass Participation Ratios								
Mode	Frequency	UX	UY	UZ					
	(Hz)	Unitless	Unitless	Unitless					
1	2.1333	0.1708	0.0000	0.0000					
177	14.6380	0.0624	0.0002	0.0006					
106	9.5127	0.0369	0.0000	0.0000					
105	9.3212	0.0289	0.0172	0.0001					
78	7.2357	0.0250	0.0001	0.0000					
128	11.2070	0.0199	0.0000	0.0000					
76	7.1367	0.0186	0.0001	0.0000					
108	9.7128	0.0128	0.0057	0.0016					
126	11.0900	0.0126	0.0000	0.0000					
113	10.2520	0.0115	0.0001	0.0001					
175	14.5110	0.0110	0.0014	0.0015					
110	9.9664	0.0082	0.0258	0.0011					

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies

	Dominant Modes in the Global Y Direction							
		Mass Participation Ratios						
Mode	Frequency	UX	UY	UZ				
	(Hz)	Unitless	Unitless	Unitless				
4	3.1868	0.0000	0.1540	0.0000				
100	8.6950	0.0000	0.0333	0.0005				
110	9.9664	0.0082	0.0258	0.0011				
8	3.4590	0.0000	0.0245	0.0000				
147	12.2000	0.0005	0.0242	0.0000				
5	3.2757	0.0000	0.0203	0.0000				
206	16.5550	0.0001	0.0200	0.0000				
102	8.9222	0.0004	0.0197	0.0000				
105	9.3212	0.0289	0.0172	0.0001				
10	3.7385	0.0000	0.0114	0.0000				
66	6.5724	0.0005	0.0109	0.0000				
16	4.2676	0.0000	0.0106	0.0000				

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies (Continued)

	Dominant Modes in the Global Z Direction							
		Mass Participation Ratios						
Mode	Frequency	UX	UZ					
	(Hz)	Unitless	Unitless	Unitless				
116	10.7170	0.0000	0.0000	0.0447				
120	10.8670	0.0006	0.0000	0.0107				
307	21.5020	0.0000	0.0001	0.0067				
121	10.8740	0.0001	0.0000	0.0043				
99	8.6652	0.0001	0.0076	0.0042				
298	20.7030	0.0002	0.0001	0.0041				
323	22.2650	0.0000	0.0001	0.0037				
131	11.3300	0.0001	0.0009	0.0033				
363	24.9310	0.0002	0.0001	0.0032				
273	19.4390	0.0001	0.0000	0.0030				
203	16.3860	0.0008	0.0000	0.0027				
184	15.2450	0.0005	0.0000	0.0026				

Table 3H.6-3 Dominant UHS and RSW Pump House Natural Frequencies (Continued)

Table 3H.6-4 Maximum Accelerations and Displacements for UHS and RSW Pump Ho	use
--	-----

Description of Location	Elevation with Respect to Top of Pump House Mat	Maxim	um Accelera	ation (g)		isplacement House Mat (ts Relative to (inches)
		E-W (X)	N-S (Y)	Vertical (Z)	E-W (X)	N-S (Y)	Vertical (Z)
Top of Pump House Mat	0	0.117	0.128	0.137	0.03	0.05	0.10
Pump House Operating Floor	32'-0"	0.122	0.140	0.541	0.07	0.09	0.11
Pump House Roof	68'-0"	0.121	0.149	0.417	0.09	0.17	0.11
Top of UHS Mat	32'-0"	0.125	0.144	0.133	0.12	0.14	0.12
Top of UHS Basin Walls	115'-6"	0.145	0.175	0.137	0.17	0.27	0.13
Bottom of Cooling Tower Walls	115'-6"	0.438	0.391	0.291	1.65	0.86	0.13
Mid-Level of Cooling Tower Walls	143'-3"	0.657	0.459	0.303	2.14	0.95	0.14
Top of Cooling Tower Walls	171'-0"	0.460	0.499	0.330	1.72	1.01	0.14

and RSW Pump House							
Load Combination -	Ca	Notes					
	Overturning	Sliding	Flotation	NOICES			
D + F'			1.77				
D + H + W	2.15	11.5		2, 3			
D + H + Wt	2.11	7.2					
D + H + E'	1.47	1.11		2, 3, 4, 5 <u>, 6</u>			

Table 3H.6-5 Factors of Safety Against Sliding, Overturning, and Flotation for UHS Basin

Rev. 07

Notes:

- (1) Loads D, H, W, Wt, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the design basis flood.
- (2) Reported safety factors are conservatively based on considering empty weight of the UHS Basin.
- (3) Coefficients of friction for sliding resistance are 0.3 under the RSW Pump House and 0.4 under the **UHS Basin**
- (4) The calculated safety factor for sliding requires less than half of the available passive pressure to be engaged for sliding resistance
- (5) The seismic values considered for stability are based on the full basin case and the empty basin case.
- (6) The seismic sliding forces and overturning moments from SSI analysis are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Details and Evaluation Results of Seismic Category 1 Structures

3H-156

							Area of Reinforce	ement (in ² /ft)	
Location (4)	Item	Thickness (ft)	Governing Load Combination	Design Moment	Design Shear	Moment Reir	nforcement ⁽¹⁾	Shear Reir	nforcement
				(kip-ft/ft)	(kip/ft)	Required	Provided (both faces)	Required	Provided
	Exterior Wall	3'-0"	D+Lo+F+H'+E'	226.78	36.52	1.56 (vertical)	1.56 (vertical)	None	None
innel	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	55.90	11.29	0.7 (east-west)	0.79 (east-west)	None	None
Main Tunnel	Interior Slab	2'-0"	D+Lo+F+H'+E' ⁽²⁾	95.22	13.16	1.13 (east-west)	1.27 (east-west)	None	None
-	Basemat	3'-0"	D+Lo+F+H'+E ^{, (2)}	123.94	19.10	0.97 (east-west)	1.00 (east-west)	None	None
_	Exterior Wall	3'-0"	D+Lo+F+H'+E'	543.34	59.39	4.27 (east-west)	4.68 (east-west)	0.19	0.20
unnel uilding)	Interior Wall	2'-0"	D+Lo+F+H'+E' ⁽²⁾	152.15	19.96	1.69 (east-west)	2.25 (east-west)	None	None
Main Ti ontrol B	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	86.64	15.29	0.70 (east-west)	0.79 (east-west)	None	None
End of <u>est of</u> C	Interior Slab	2'-0"	D+Lo+F+H'+E ^{, (2)}	136.30	18.03	1.49 (east-west)	2.25 (east-west)	None	None
North End of Main Tunnel (near<u>West of</u> Control Building)	Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	70.42	28.27	0.36 (north-south)	0.79 (north-south)	None	None
C	Dasemat	3-0	1.4D+1.7L+1.4F+1.7H	155.74	36.39	1.16 (east-west)	1.27 (east-west)	None	None
Main Tunnel (near i <u>n</u> Access Region 1)	Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	46.60	20.54	0.70 (north-south)	0.79 (north-south)	None	None

Table 3H.6-6 Results of RSW Piping Tunnel Design

STP 3 & 4

Final Safety Analysis Report

Rev. 07

		Та	able 3H.6-6 Results of R	SW Piping	Tunnel Desi	gn (Continu	ed)		
							Area of Reinforc	ement (in ² /ft)	
Location_(4)	ltem	Thickness (ft)	Governing Load Combination	Design Moment	Design Shear	Moment Reir	nforcement ⁽¹⁾	Shear Reir	nforcement
Looution_				(kip-ft/ft)	(kip/ft)	Required	Provided (both faces)	Required	Provided
on 2)	Exterior Wall	3'-0"	D+Lo+F+H'+E'	321.96	29.22	2.21 (vertical)	2.25 (vertical)	None	None
unnel ss Regi	Exterior wai	5-0		214.84	29.22	1.40 (horizontal)	1.56 (horizontal)	None	None
Main Tunnel (near ⊡ Access Region	Basemat	6'-0"	D+Lo+F+H'+E' ⁽²⁾	530.76	66.74	1.66 (east-west)	2.25 (east-west)	None	None
(near	Basemat	0-0	1.4D+1.7L+1.4F+1.7H / D+Lo+F+H'+E' ⁽²⁾	500.50	66.74	1.78 (north-south)	2.25 (north-south)	None	None
on 3) use	Exterior Wall	3'-0"	D+Lo+F+H'+E'	245.29	36.52	1.76 (vertical)	3.12 (vertical)	None	None
unnel ss Regi imp Hou	Roof Slab	3'-0"	1.4D+1.7L+1.4F+1.7H	344.53	37.20	2.56 (north-south)	4.68 (north-south)	None	None
Main Tunnel (near I <u>n</u> Access Region 3) North of Pump House	Interior Slab	2'-0"	D+Lo+F+H'+E' ⁽²⁾	150.97	19.29	1.70 (north-south)	3.12 (north-south)	None	None
(near] Norf	Basemat	3'-0"	1.4D+1.7L+1.4F+1.7H	236.52	38.12	1.74 (north-south)	3.12 (north-south)	0.18	0.20

Notes:

3H-157

(1) Unless noted otherwise, the required reinforcement in the direction not reported in the table is controlled by the minimum required reinforcement. The minimum required reinforcement for 2'-0" thick and 3'-0" thick elements is 0.36 in²/ft and 0.54 in²/ft. For such casees the provided reinforcement is 0.79 in²/ft.

(2) The loading also includes loads due to internal flooding.

							Area of Reinforc	ement (in ² /ft)	
Location (4)	(4) Item Thickness (ft) Governing Load Combination Design Moment (kip-ft/ft) Design Shear (kip/ft) Moment ft Idewing additional reinforcement is required due to SSE Wave Propagation: In additional reinforcement is required due to SSE Wave Propagation: In addition to the reinforcement shown within the Vave Propagation: In the Main Tunnel, #8 bars at 12" o.c. in the longitudinal direction of the Main Tunnel for 84' 0 (measured north from the cent in Tunnel, 0.79 in2/ft (applied to both faces of the walls and slabs) in the north-south direction of the Main Tunnel for 84'-0" he Main Tunnel and Access Region 3) Access Region 3 from 0' 0" to 56' 0" (measured east from the centerline of the intersection of the Main Tunnel and Access	Moment Re	inforcement ⁽¹⁾	Shear Rein	nforcement				
					(kip/ft)	Required	Provided (both faces)	Required	Provided
		nforcement is req	uired due to SSE Wave Propagation	n: In addition to t	the reinforcement s	hown within this	table, the following	reinforcement is	required due to
								–	
				onn-south direc			leasured north from	the centenine of	the intersection
		Access Region 3							
_ Eor Acco	ee Pogion 3 fro	m 0' 0" to 56' 0" /	moscured east from the conterline	of the intersection	on of the Main Tun	nol and Accose	Pogion 3)For Access	Region 3 from	0'-0" to 56'-0"
<u>(measur</u>	ed east from the		measured east from the centerline intersection of the Main Tunnel and						
<u>(measur</u> south dii	ed east from the ection	e centerline of the	intersection of the Main Tunnel and	Access Region	n 3), 1.56 in2/ft (app				
<u>(measur</u> south dii (i) S	ed east from the ection econd layer of #	e centerline of the #11 bars at 12" o.		<u>l Access Regior</u> d to both faces o	<u>n 3), 1.56 in2/ft (app</u> of the roof				
<u>(measur</u> <u>south dii</u> (i) S (ii) S	ed east from the ection econd layer of / econd layer of /	e centerline of the #11 bars at 12" o. #11 bars at 12" o.	intersection of the Main Tunnel and c. in the transverse direction applied	l Access Regior d to both faces o d to both faces o	<u>1 3), 1.56 in2/ft (app</u> o f the roof o f the interior slab				
<u>(measur</u> <u>south dii</u> (i) S (ii) S (iii) S	ed east from the ection econd layer of / econd layer of / econd layer of /	e centerline of the #11 bars at 12" o. #11 bars at 12" o. #11 bars at 12" o.	intersection of the Main Tunnel and c. in the transverse direction applied c. in the transverse direction applied	I Access Region d to both faces o d to both faces o d to both faces o	<u>1 3), 1.56 in2/ft (app</u> o f the roof of the interior slab of the basemat	olied to both face	es of the roof, interior	slab, and baser	mat) in the north-
(measur south dir (i) S (ii) S (iii) S – For Acco	ed east from the ection econd layer of # econd layer of # econd layer of # ess Region 3 fro	e centerline of the #11 bars at 12" o. #11 bars at 12" o. #11 bars at 12" o. m 56' 0" to 103' (intersection of the Main Tunnel and c. in the transverse direction applied c. in the transverse direction applied c. in the transverse direction applied	Access Region d to both faces of d to both faces of d to both faces of the of the interse	n 3), 1.56 in2/ft (app of the roof of the interior slab of the basemat vetion of the Main T	unnel and Acce	es of the roof, interior	slab. and baser	mat) in the north- om 56'-0" to 103'-
(measur south dir (i) S (ii) S (iii) S – For Acco	ed east from the ection econd layer of # econd layer of # econd layer of # ess Region 3 fro	e centerline of the #11 bars at 12" o. #11 bars at 12" o. #11 bars at 12" o. m 56' 0" to 103' (intersection of the Main Tunnel and c. in the transverse direction applied c. in the transverse direction applied c. in the transverse direction applied " (measured east from the centerling	Access Region d to both faces of d to both faces of d to both faces of the of the interse	n 3), 1.56 in2/ft (app of the roof of the interior slab of the basemat vetion of the Main T	unnel and Acce	es of the roof, interior	slab. and baser	mat) in the north- om 56'-0" to 103'-
(measur south din (i) \$ (ii) \$ (iii) \$ - For Accor 0" (meas direction (i) \$	ed east from the ection econd layer of # econd layer of # econd layer of # ess Region 3 fro sured east from econd layer of #	e centerline of the #11 bars at 12" o. #11 bars at 12" o. #11 bars at 12" o. m 56' 0" to 103' (the centerline of t #11 bars at 12" o.	intersection of the Main Tunnel and c. in the transverse direction applied c. in the transverse direction applied c. in the transverse direction applied " (measured east from the centerling	Access Region d to both faces of d to both faces of d to both faces of the of the interse and Access Reg d to both faces of	n 3), 1.56 in2/ft (app of the roof of the interior slab of the basemat retion of the Main T gion 3), 1.56 in2/ft (of the roof	unnel and Acce	es of the roof, interior	slab. and baser	mat) in the north- om 56'-0" to 103'-

				εĒ	*8	8 ⁽³⁾		Longitudinal	Reinforcement D	Nesign Loads									
sec	~	9	tion	out	mber ⁶	Force	Axial and Flexure			In-Plane Shear Load	5	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear	
Thickne	£	Face	Direction	Reinforcem Layout awing Numl	Reinforc Zone Nur	mum Forc	Load	Axial ⁽⁴⁾	Flexure (4)		In-plane (5)	Provided (in²/ ft)	Load		ontal Section		ical Section	Reinforcement Provided (in ² /ft ²)	Remark
				Rc Draw	Zo	Maxi	Load Combination	(kips / ft)	(ft-kips / ft)	Load Combination	Shear (kips / ft)		Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM 29		371	-413										
					1-H-L	MCCM 29		-179	-25	D + L + F + H' + T + E'	32	7.8							
						MMAT 29		128	-548										
			Horizontal	3H.6-51		MMAC 29		-56	-528										
						MTCM 54		149	-16										
					2-H-L	MCCM 54		-297	-615	D + L + F + H + T + E'		4.68		-	-	-		-	
						MMAT 40		0	-734										
		North (outside)				MMAC 55 MTCM 55		-131	-774										
						MTCM 55 MCCM 36		-244	-199 -180										
					1-V-L	MMAT 55		-244	-180	D + L + F + H' + T + E'	126	4.68				-		-	
						MMAC 55		-63	-499										
			Vertical	3H.6-52		MTCM 55		271	-539										
						MCCM 36		-281	-382										
					2-V-L	MMAT 55		3	-1198	D + L + F + H' + T + E'	126	7.8							
	6 Sout					MMAC 41		-149	-1229										
						MTCM 29	2 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	324	126										
						MCCM 54	1 D+L+F+H'+T+E'	-288	108										
					1-H-L	MMAT 29	4 D + L + F + H + To + Wt	86	348	D + L + F + H + T + E'	33	6.24		-					
			Horizontal	3H.6-53		MMAC 37	8 D + L + F + H' + T + E'	-139	360										
			Horizontal	3H.6-53		MTCM 52	2 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	114	13										
		South			2-H-L	MCCM 54	7 D + L + F + H' + T + E'	-239	151	D + L + F + H + T + E	118	3.12							
		(inside)			2115	MMAT 37	7 D + L + F + H' + T + E'	9	324	0.0.1.1.1.1.2	110	0.12			-				
						MMAC 36		-70	441										
						MTCM 36		207	55						· · · ·				
			Vertical	3H.6-54	1-V-L	MCCM 36		-281	56	D + L + F + H' + T + E'	126	4.68							
						MMAT 54		6	468										
	-					MMAC 36		-147	481										
			Transverse (Horizontal	3H.6-55	1-T								D + L + F + H + T + E' 1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-11	15	-121	-46	0.20	
			(Honzonial and Vertical)	311.0-00	2-T 3-T			•	•	•	· ·		1.4D + 1.7L + 1.7F + 1.7H + 1.7W 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-65	437 218	-4	77 446	0.31	
-					31	MTCM 32		657	-170				1.000 + 1.3E + 1.00P + 1.3H + 1.2T + 1.3W	30	210	-110	440	0.44	
						MCCM 32		-750	-67										
					1-H-L	MMAT 32	2 D+L+F+H'+T+E'	657	-816	D + L + F + H' + T + E'	155	12.48		-		-		-	(8)
						MMAC 32		-337	-816										
						MTCM 30	9 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	246	-20										
						MCCM 30	9 D + L + F + H' + T + E'	-352	-31										
			Horizontal	3H.6-56	2-H-L	MMAT 31	1 D + L + F + H' + T + E'	61	-271	D + L + F + H + T + E'	155	4.68		-	-				-
		East				MMAC 31	1 D + L + F + H' + T + E'	-51	-404										
	6	East (outside)				MTCM 88	3 D + L + F + H' + T + E'	163	-65										
	6 (ot				3-H-L	MCCM 88	7 D+L+F+H'+T+E'	-645	-77	D + L + F + H + T + E	263	6.24		-		-			
						MMAT 88	9 D + L + F + H' + T + E'	62	-678	2-2-1-11-1-2			-	-		-			-
						MMAC 88		-112	-906										
						MTCM 32		484	-197										
			Vertical	3H.6-57	1-V-L	MCCM 88		-884	-159	D + L + F + H + T + E	308	10.92							(8)
						MMAT 88		120	-681										
						MMAC 88	4 D + L + F + H' + T + E'	-144	-705		1								

3H-159

Rev. 07

Final Safety Analysis Report

		-	ber (er ⁽²⁾	ces ⁽³				Reinforcement			Longitudinal			Transverse Shear Design Loads				
Thickness (ft)	Face	Direction	inforcem Layout ing Numb	orcen	m For	Element	Axial and Flexure L			In-Plane Shear Load		Longitudinal Reinforcement Provided		Under	tal Section	March.	al Section	Transverse Shear Reinforcement Provided	R
Ē		ā	Reinf L rawing	Reinforceme Zone Number	laximu	ü	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Vertix Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
					MTCM	3226	D + L + F + H' + T + E'	215	-134		(κips / π)			(KIP / TL)	(KIP / TL)	(Kip / ft)	(Kip / Tt)		
					MCCM	8853	D + L + F + H' + T + E'	-521	-162	-									
				2-V-L	MMAT	8854	D + L + F + H' + T + E'	62	-531	D + L + F + H' + T + E'	247	6.24	-			-			
					MMAC	8854	D + L + F + H' + T + E'	-349	-842										
					MTCM	6526	D + L + F + H' + T + E'	76	-30										T
				3-V-L	MCCM	6359	D + L + F + H' + T + E'	-306	-61	D+L+F+H'+T+E'	175	3.12							
				3-V-L	MMAT	3097	D + L + F + H' + T + E'	36	-299	D+L+F+H+I+E	1/5	3.12							
	East (outside)	Vertical	3H.6-57		MMAC	6491	D + L + F + H' + T + E'	-112	-344										
	(outside)	verucar	34.0-07		MTCM	6556	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	190	-97										Γ
				4-V-L	MCCM	6528	D + L + F + H' + T + E'	-264	-92	D+L+F+H'+T+E'	115	6.24							
				47.2	MMAT	6568	D + L + F + H' + T + E'	109	-229		110	0.24			-			-	
					MMAC	6547	D + L + F + H' + T + E'	-50	-221										
					MTCM	6520	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	242	-411										
				5-V-L	MCCM	6349	D + L + F + H' + T + E'	-440	-653	D + L + F + H' + T + E'	247	6.24							
					MMAT	6518	D + L + F + H' + T + E'	9	-536										
					MMAC	8869	D + L + F + H' + T + E'	-251	-884										4
					MTCM	3222	D + L + F + H' + T + E'	605	40										
				1-H-L	MCCM	3222	D + L + F + H' + T + E'	-814	868	D + L + F + H' + T + E'	155	12.48							
					MMAT	3222	D + L + F + H' + T + E'	180	868	-									
					MMAC	3222	D + L + F + H' + T + E'	-814	868										
					MTCM	3088	D + L + F + H' + T + E'	262	129										
6				2-H-L	MCCM	3088	D + L + F + H' + T + E'	-301 27	46 357	D + L + F + H' + T + E'	155	4.68							
					MMAT		D+L+F+H+T+E												
		Horizontal	3H.6-58		MMAC	3100 8894	D + L + F + H' + T + E'	-92 168	357										+
					MCCM	8829	D+L+F+H+T+E D+L+F+H'+T+E	-514	502	-									
				3-H-L	MMAT	8922	D+L+F+H+T+E	-514	415	D + L + F + H' + T + E'	194	4.68		-	-		-	-	
					MMAC	8829	D+L+F+H+T+E	-493	582	-									
					MTCM	8827	1.4D + 1.4F + 1.7H + 1.7W	62	65										1
					MCCM	8827	D+L+F+H'+T+E'	-645	204										
	West (inside)			4-H-L	MMAT	8851	D+L+F+H'+T+E'	6	617	D + L + F + H' + T + E'	263	6.24							
					MMAC	8881	D+L+F+H'+T+E'	-470	982	-									
	ł				MTCM	3222	D + L + F + H' + T + E'	640	146										ţ
					MCCM	8825	D + L + F + H' + T + E'	-884	1232	-									
				1-V-L	MMAT	8825	D+L+F+H'+T+E'			D + L + F + H' + T + E'	308	15.6					•	-	
					MMAC	8825	D + L + F + H' + T + E'	-283	1815										
					MTCM	3226	D + L + F + H' + T + E'	199	51										1
					MCCM	8853	D + L + F + H' + T + E'	-535	833										
		Vertical	3H.6-59	2-V-L	MMAT	8854	D + L + F + H' + T + E'	2	1176	D + L + F + H' + T + E'	247	9.36							
					MMAC	8853	D + L + F + H' + T + E'	-491	1604	1									
					MTCM	3241	D + L + F + H' + T + E'	60	40										Ī
				3-V-L	MCCM	8900	D + L + F + H' + T + E'	-367	62	D+L+F+H'+T+E'	234	6.24							1
				2.4.6	MMAT	6397	D + L + F + H' + T + E'	1	590		2.04	0.24				-			
					MMAC	8880	D + L + F + H' + T + E'	-294	651										

Rev. 07

Final Safety Analysis Report

				nt 3r ⁽¹⁾	ut (2)	** ⁽³⁾			Longitudinal	Reinforcement I	Design Loads									
	Thickness (ft)	Face	Direction	/out Numb	rceme	Fore	nent	Axial and Flexure	Loads		In-Plane Shear Load	ds	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Rema
	Thic T	e e	Dire	Reinforcem Layout awing Numt	Reinforceme Zone Number	ximur	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure (4)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load Combination	Horize Transverse Shear Force	ontal Section Corresponding Axial Force	Verti Transverse Shear Force	cal Section Corresponding Axial Force	(in²/ft²)	
-					- N		6444	D+L+F+H'+T+E	(Kips / ft) 46	(ft-kips / ft) 202	Compilation	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	6355	D+L+F+H+T+E	-328	202										
					4-V-L	MMAT	6456	D+L+F+H'+T+E'	1	533	D + L + F + H' + T + E'	175	4.68							
						MMAC	3097	D+L+F+H'+T+E'	-86	551										
						MTCM	6526	D+L+F+H'+T+E'	76	35										
						MCCM	6522	D+L+F+H'+T+E'	-244	217										
		West (inside)	Vertical	3H.6-59	5-V-L	MMAT	6503	D+L+F+H'+T+E'	4	308	D + L + F + H' + T + E'	120	3.12		•		-			
						MMAC	3106	D+L+F+H'+T+E'	-46	321										
						MTCM	6520	D+L+F+H'+T+E'	211	118		-								
	6					MCCM	6520	D + L + F + H' + T + E'	-300	164										
					6-V-L	MMAT	6520	D+L+F+H+T+E	2	222	D + L + F + H' + T + E'	115	4.68				-		-	
						MMAC	6520	D + L + F + H' + T + E'	-239	228										
					1-T									D + L + F + H' + T + E'	41	34	154	542	0.60	
					2-T									D + L + F + H' + T + E'	-130	-205	-354	-47	1.24	
			Transverse		3-T									D + L + F + H' + T + E'	49	23	78	476	0.44	
			(Horizontal and Vertical)	3H.6-60	4-T									D + L + F + H' + T + E'	43	32	37	436	0.31	
					5-T									D + L + F + H' + T + E'	327	-118	328	-308	1.76	
					6-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-58	363	2	89	0.20	
						мтсм	5788	D + L + F + H' + T + E'	249	-63										
			Horizontal	3H.6-61	1-H-L	MCCM	5611	D + L + F + H' + T + E'	-1115	-117	D+L+F+H'+T+E'	235	6.24							
			rioteonia	511.0-01	1414	MMAT	5784	D + L + F + H' + T + E'	6	-639	5.2.1.11.1.2	200	0.14				-	-		
						MMAC	5784	D + L + F + H' + T + E'	-89	-639										
					мтсм	5784	D + L + F + H' + T + E'	149	-192											
		North			1-V-L	MCCM	5607	D + L + F + H' + T + E'	-767	-238	D + L + F + H' + T + E'	222	6.24						-	
		(inside)				MMAT	5783	D + L + F + H' + T + E'	0	-492										
			Vertical	3H.6-62		MMAC	5783	D + L + F + H' + T + E'	-230	-663										
						МТСМ	5786	D + L + F + H' + T + E'	243	-611										
					2-V-L	MCCM	5609	D + L + F + H' + T + E'	-1036	-801	D + L + F + H' + T + E'	222	9.36							
	6					MMAT	5786	D + L + F + H' + T + E'	126	-1204										
						MMAC	5786	D + L + F + H' + T + E'	-605	-1401										
						МТСМ	5783	D + L + F + H' + T + E'	97	205										
			Horizontal	3H.6-63	1-H-L	MCCM	5608	D + L + F + H' + T + E'	-628	192	D + L + F + H' + T + E'	235	6.24							
						MMAT	5784	D + L + F + H' + T + E'	25	712										
		South (outside)				MMAC	5784	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-163	785		_								
						MTCM	5607	D+L+F+H'+T+E'	164	186										
			Vertical	3H.6-64	1-V-L	MCCM		D+L+F+H'+T+E'	-722	17	D + L + F + H' + T + E'	222	6.24				-			
						MMAT	5774	D+L+F+H'+T+E' 1.4D+1.7L+1.7F+1.7H+1.7W	-281	578										
			T		1-T	MMAC	5757		-281	. 1198				D + L + F + H' + T + E'	42	-178	142	51	0.31	
			Transverse (Horizontal and Vertical)	3H.6-65	1-1 2-T						•		•	D+L+F+H'+T+E'	42	-178	142	46	0.31	
+					4-1	мтсм	3273	- D+L+F+H'+T+E'	462	-105				010111111	13	-140	120	40	0.20	
						MCCM	6229	D+L+F+H'+T+E'	-252	-105										
	6	West (outside)	Horizontal	3H.6-66	1-H-L	MMAT	3028	D+L+F+H'+T+E'	-202	-00	D + L + F + H + To + Wt	124	6.24				-		-	
						MMAC	6169	D+L+F+H'+T+E'	-122	-704		1							1	

Rev. 07

Final Safety Analysis Report

			ent ber ⁽¹⁾	ent ³⁴ (2)	ces ⁽³⁾			Longitudina	I Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads				
(ft)	Face	Direction	ayout Numi	Start and Axial ⁽¹⁾ Fincure ⁽¹⁾ Load Axial ⁽¹⁾ Fincure ⁽¹⁾ Live and Combination (Lips / ft) (H-kips / ft) Comb						In-Plane Shear Loads		Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Rema
Ĕ	"	ē	Reinfe La rawing	Reinfo Zone N	anijore	ä	Load Combination			Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	ontal Section Corresponding Axial Force	Transverse Shear Force	al Section Corresponding Axial Force	(in²/ft²)	
			0		2 MTCM	3291	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	974	-529		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					MCCM	3291	D + L + F + H' + T + E'	-360	-356										
				2-H-L	MMAT	3291	D + L + F + H' + T + E'	712	-743	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	98	14.04	-				•	-	
					MMAC	3290	D + L + F + H' + T + E'	-19	-591										
					MTCM	9052	D + L + F + H' + T + E'	84	-34										
					MCCM	9052	D + L + F + H' + T + E'	-309	-59	1									
			3H.6-66	3-H-L	MMAT	6125	D + L + F + H' + T + E'	4	-200	D+L+F+H+T+E	129	3.12	-					-	
					MMAC	6145	D + L + F + H' + T + E'	-158	-742										
					MTCM	3280	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	429	-56										
					MCCM	9136	D + L + F + H' + T + E'	-735	-468										
				4-H-L	MMAT	9138	D + L + F + H' + T + E'	7	-803	D+L+F+H*+T+E* 129	129	6.24	-				•	-	
					MMAC	9138	D + L + F + H' + T + E'	-171	-900										
	1				MTCM	6125	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	317	-384										
					MCCM	6157	D + L + F + H' + T + E'	-233	-26										
				1-V-L	MMAT	6126	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	69	-458	D+L+F+H+T+E	75	7.8	-						
	West				MMAC	6126	D + L + F + H' + T + E'	-41	-341										
	West (cutside)				MTCM	6151	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	84	-75										
					MCCM	9042	D + L + F + H' + T + E'	-202	-8	-									
				2-V-L	MMAT	3073	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	19	-348	D + L + F + H' + T + E'	132	3.12	-					-	
					MMAC	6321	D + L + F + H' + T + E'	-127	-406										
					MTCM	6131	D + L + F + H' + T + E'	64	-101										
					MCCM	9037	D + L + F + H' + T + E'	-315	-206	-									
6		Vertical	3H.6-67	3-V-L	MMAT	6127	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	26	-528	D+L+F+H'+T+E'	132	4.68	-			•	-	-	
					MMAC	6293	D + L + F + H' + T + E'	-165	-696										
					MTCM	3283	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	222	-188										
					MCCM	9110	D + L + F + H' + T + E'	-285	-315										
				4-V-L	MMAT	9105	D + L + F + H' + T + E'	5	-694	D + L + F + H' + T + E'	115	4.68						-	
					MMAC	9105	D + L + F + H' + T + E'	-92	-704										
					MTCM	3290	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	549	-213										
					MCCM	9134	D + L + F + H' + T + E'	-780	-364										
				5-V-L	MMAT	9134	D + L + F + H' + T + E'	256	-916	D+L+F+H'+T+E'	144	9.36	-					-	
					MMAC	9138	D + L + F + H' + T + E'	-340	-1271										
					MTCM	3276	D + L + F + H' + T + E'	485	49										
					MCCM	9089	D + L + F + H' + T + E'	-315	97	-									
				1-H-L	MMAT	3268	D+L+F+H'+T+E'	2	261	D + L + F + H + To + Wt	124	6.24				•			
					MMAC	9061	D+L+F+H'+T+E'	-145	292	1									
					MTCM	3291	D + L + F + H' + T + E'	922	153										
	East				MCCM	3291	D + L + F + H' + T + E'	-360	217	1									
	(inside)	Horizontal	3H.6-68	2-H-L	MMAT	3291	D + L + F + H' + T + E'	226	820	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	98	12.48	-				-	-	
					MMAC	3291	D + L + F + H' + T + E'	-126	820	1									
					MTCM	9087	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	135	57										
					MCCM	9079	D + L + F + H' + T + E'	-422	175	1									
				3-H-L	MMAT	9077	D + L + F + H' + T + E'	0	267	D+L+F+H'+T+E'	129	3.12	-					-	
1					MMAC	9077	D+I+F+H'+T+F'	-355	288	1	1								

3H-162

Rev. 07

Final Safety Analysis Report

				nt er ⁽¹⁾	t C	e8 ⁽³⁾			Longitudinal	Reinforcement D	Design Loads									
ation	Thickness (ft)	Face	Direction	nforceme Layout ng Numb	rceme	1 Fore	ment	Axial and Flexure L	oads.		In-Plane Shear Load	5	Longitudinal Reinforcement			Transverse Shear Design Loads			Transverse Shear Reinforcement Provided	Remarks
Loc	Pier C	ũ.	Dire	Reinfo	Reinforceme Zone Numbe	nimun	Ele	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Provided (in²/ ft)	Load Combination	Transverse Shear Force	ontal Section Corresponding Axial Force (kip / ft)	Vertic Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
				ă		S MTCM	3280	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	424	17		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	9134	D+L+F+H'+T+E'	-607	222										
			Horizontal	3H.6-68	4-H-L	MMAT	9134	D+L+F+H'+T+E'	21	359	D + L + F + H' + T + E'	129	6.24							
						MMAC	9134	D + L + F + H' + T + E'	-408	377										
						MTCM	6125	D+L+F+H'+T+E'	209	33										
						MCCM	6161	D+L+F+H'+T+E'	-199	12										
					1-V-L	MMAT	3029	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	7	122	D + L + F + H' + T + E'	75	4.68							
						MMAC	3029	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-4	121										
	6					MTCM	6134	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	126	55										
		Feet				MCCM	9067	D + L + F + H' + T + E'	-244	68										
		(inside)			2-V-L	MMAT	6285	D + L + F + H' + T + E'	0	402	D + L + F + H' + T + E'	132	3.12	-	-					
			Vertical	3H.6-69		MMAC	3073	D + L + F + H' + T + E'	-54	425										
6		Verbcal	34.6-69		MTCM	9116	D + L + F + H' + T + E'	125	57											
	6				3-V-L	MCCM	9102	D + L + F + H' + T + E'	-295	308	D + L + F + H' + T + E'	115	4.68							
					3444	MMAT	9105	D + L + F + H' + T + E'	13	437	DILIPIANTE	115	4.00							
					MMAC	9106	D + L + F + H' + T + E'	-218	739											
						MTCM	3291	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	664	95										
					4-V-L	MCCM	9134	D + L + F + H' + T + E'	-866	1406	D + L + F + H' + T + E'	144	9.36							
						MMAT	9134	D + L + F + H' + T + E'	4	1105										
						MMAC	9134	D + L + F + H' + T + E'	-866	1406										
			Transverse		1-T	-	•	-		-		-		1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-58					
			(Horizontal and Vertical)	3H.6-70	2-T	-	•	-		•	-	-		D + L + F + H' + T + E'	16					
					3-T		•							D + L + F + H' + T + E'	-61	343	-82	1213	0.60	
						MTCM	3246	D + L + F + H' + T + E'	351	-94						00 77 300 0.20 100 204 1 0.44 343 42 1213 0.00 				
					1-H-L	MCCM	3246	D + L + F + H' + T + E'	-477	-19	D + L + F + H' + T + E'	109	6.24					1 0.44 1213 0.60		
						MMAT	3246	D + L + F + H' + T + E'	194	-119										
			Horizontal	3H.6-71		MMAC	3246	D+L+F+H+T+E D+L+F+H+T+E	-304 130	-119 -23										
						MCCM	3251 8939	D+L+F+H+T+E'	-545	-23										
					2-H-L	MMAT	7016	D + L + F + H + I + E D + L + F + H (Internal Flood)	-040	-19	D + L + F + H' + T + E'	186	3.12							
						MMAC	6984	D + L + F + H (Internal Flood) D + L + F + H (Internal Flood)	-28	-147										
		East (top)				MTCM	3246	D+L+F+H'+T+E'	188	-7										
						MCCM	3246	D+L+F+H'+T+E'	-487	-14										
					1-V-L	MMAT	3246	D+L+F+H'+T+E'	58	-21	D + L + F + H' + T + E'	236	6.24							
						MMAC	8925	D+L+F+H'+T+E'	-191	-199										
	4		Vertical	3H.6-72		MTCM	3248	D+L+F+H'+T+E'	100	-10										
						MCCM	6800	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-409	-24										
					2-V-L	MMAT	6968	D + L + F + H' + T + E'	38	-99	D + L + F + H' + T + E'	199	3.12			•				•
						MMAC	6800	D + L + F + H (Internal Flood)	-226	-343										
						MTCM	3246	D + L + F + H' + T + E'	333	8										
						MCCM	3246	D + L + F + H' + T + E'	-477	74										
					1-H-L	MMAT	3246	D + L + F + H' + T + E'	198	95	D + L + F + H' + T + E'	109	6.24		-					
		West	Horizontal	3H.6-73		MMAC	3246	D + L + F + H' + T + E'	-310	95										
		(bottom)	Honzontal	3H.6-73		MTCM	3254	D + L + F + H' + T + E'	126	10										
					241	MCCM	8937	D + L + F + H' + T + E'	-565	102	Dalasar	186	2.12							
					2-H-L	MMAT	7016	D + L + F + H (Internal Flood)	9	121	D + L + F + H' + T + E'	100	3.12		-					
						MMAC	6984	D + L + F + H (Internal Flood)	-21	197										

3H-163

Rev. 07

Final Safety Analysis Report

Rev

				ber ⁽¹	er (2) te	ces (3				I Reinforcemen	t Design Loads		Longitudinal			Transverse Shear Design Loads				
	Thickness (ft)	Face	Direction	inforcem Layout ing Numt	orcen	m For	ement	Axial and Flexu	_		In-Plane Shear Loz		Reinforcement Provided			antal Section		al Section	Transverse Shear Reinforcement Provided	Rer
	Ē	-	ā	Reinf	Reinforcem Zone Numb	aximu	Ele	Load Combination	Axial ⁽⁴⁾ (kips / ft)		Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
+				ā		MTCM	3246	D+L+F+H'+T+E'	188	7		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip/ft)		-
						MCCM	3246	D+L+F+H+T+E	-467	5	_									
					1-V-L	MMAT	3245	D+L+F+H+T+E	74	16	D + L + F + H' + T + E'	236	6.24		-					
						MMAC	8937	D+L+F+H'+T+E'	-244	146	_									
	(bi	West ottom)	Vertical	3H.6-74		MTCM	3248	D + L + F + H' + T + E'	98	4										-
	4					MCCM	8946	D+L+F+H+T+E	-392	16	-									
					2-V-L	MMAT	6968	D + L + F + H' + T + E'	15	54	D + L + F + H' + T + E'	199	3.12							
						MMAC	6853	D + L + F + H (Internal Flood)	-109	327	-									
		-	Transverse (Horizontal																	+
		•	(Horizontal ind Vertical)	3H.6-74A	1-T			•			•			D * L + F + H' + T + E'	-8	100	-26	377	0.20	
						MTCM	3294	D + L + F + H + T + E'	275	-46										
					1-H-L	MCCM	3294	D + L + F + H + T + E'	-410	-57	D + L + F + H' + T + E'	94	4.68		-					
						MMAT	3171	D + L + F + H' + T + E'	12	-130										
			Horizontal	3H.6-75		MMAC	3171	D + L + F + H' + T + E'	-6	-130										
						MTCM	3299	D + L + F + H' + T + E'	99	-8										
					2-H-L	MCCM	9163	D + L + F + H' + T + E'	-552	-25	D+L+F+H'+T+E'	161	3.12							
Ea (to						MMAT	6792	D + L + F + H (Internal Flood)	8	-127										
	East (top)				MMAC	6760	D + L + F + H (Internal Flood)	-20	-201										_	
	(10)/7				MTCM	3294	D + L + F + H' + T + E'	139	-16											
				1-V-L	MCCM	9165	D + L + F + H' + T + E'	-465	-29	D + L + F + H' + T + E'	206	4.68								
					MMAT	3294 9161	D+L+F+H+T+E D+L+F+H+T+E	93	-21	_										
			Vertical	3H.6-76		MMAC	_	D+L+F+H'+T+E'	-112	-181										-
						MCCM	3296	D+L+F+H+T+E'	-											
					2-V-L	MUCM	6601	D+L+F+H+T+E D+L+F+H+T+E	-393	-7 -57	D + L + F + H' + T + E'	173	3.12		-				-	
						MMAC	6576	D+L+F+H (Internal Flood)	-103	-3/	_									
	-					MTCM	3294	D+L+F+H'+T+E'	275	42										-
	4					MCCM	3294	D+L+F+H+T+E	-410	17	_									
					1-H-L	MMAT	3171	D+L+F+H+T+E	12	101	D + L + F + H' + T + E'	94	4.68		-					
						MMAC	3171	D+L+F+H+T+E	-176	113	_									
			Horizontal	3H.6-77		MTCM	3299	D+L+F+H+T+E	99	7										-
						MCCM	9161	D+L+F+H'+T+E	-576	104	_									
					2-H-L	MMAT	6792	D + L + F + H (Internal Flood)	1	137	D + L + F + H' + T + E'	161	3.12							
		West				MMAC	6760	D + L + F + H (Internal Flood)	-28	203	-									
	(bi	vitest				MTCM	3294	D + L + F + H' + T + E'	139	6										-
						MCCM	9165	D + L + F + H' + T + E'	-465	84	_									
					1-V-L	MMAT	3294	D + L + F + H' + T + E'	24	23	D + L + F + H' + T + E'	206	4.68							
						MMAC	9161	D + L + F + H' + T + E'	-325	201										
			Vertical	3H.6-78		MTCM	3296	D + L + F + H' + T + E'	70	6										\square
						MCCM	9168	D + L + F + H + T + E'	-394	33	D+L+F+H'+T+E'	173	3.12							
					2-V-L	MMAT	6744	D + L + F + H' + T + E'	44	89	0+L+F+M+1+E	1/3	3.12		-					
	L					MMAC	6576	D + L + F + H (Internal Flood)	-220	343										
		•	Transverse (Horizontal ind Vertical)	3H.6-78A	1-T									D + L + F + H' + T + E'	6	93	15	399	0.20	

3H-164

Rev. 07

Final Safety Analysis Report

		_	bert ⁽¹⁾	er (2)	(2) coes				Reinforcement			Longitudinal			Transverse Shear Design Loads				
Thickness (ft)	Face	Direction	Inforcems Layout ing Numb	orcent		Element	Axial and Flexure L	.oads		In-Plane Shear Loads		Longitudinal Reinforcement Provided			ntal Section		al Section	Transverse Shear Reinforcement Provided	Remark
F		ō	Reind	Reinforceme Zone Number	Maximu		Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
					MTCM 1	3330 1.	05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	220	9		1.11.11			(ap - a)		6.47.04	(ob each		
			3H.6-79	1-H-L	MCCM 1	3461	D + L + F + H + T + E	-276	53	D+L+F+H'+T+E'	218	4.68							
		Horizontal	3H.6-79	1-H-L	MMAT 1	3445	D + L + F + H + T + E	89	198	D+L+F+H'+T+E'	218	4.68							-
					MMAC 1	3451	D + L + F + H + T + E	-50	142										
					MTCM 1	3320	D + L + F + H' + T + E'	188	-90										
	North (to South (bottom	op)		1-V-L	MCCM 1	3420	D + L + F + H + T + E	-281	-99	D + L + F + H' + T + E'	92	4.68							
6	(bottom	n)			MMAT 1	3414	D + L + F + H + T + E	103	145	0.0.1.11.1.2		*							
		Vertical	3H.6-80		MMAC 1	3414	D + L + F + H + T + E'	-48	143										
					MTCM 1	3410	D + L + F + H + T + E	471	72										
				2-V-L		3437	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-321	288	D + L + F + H' + T + E'	92	7.8							
						3437	D + L + F + H + T + E	7	475										
					MMAC 1	3437	D + L + F + H + T + E	-127	477										
		Transverse (Horizontal and Vertical	3H.6-81	1-T									D + L + F + H' + T + E'	38	470	0	76	0.20	
					MTCM	177	D + L + F + H' + T + E'	1005	-246										
				1-H-L	мссм	873	D + L + F + H' + T + E'	-294	-499	D+L+F+H'+T+E'	42	12.48							
				1-H-L	MMAT	801	D + L + F + H + T + E'	57	-1311	D+L+F+H+I+E.	42	12.48							
					MMAC	601	D + L + F + H + T + E	-133	-1311										
					MTCM	006	1.4D + 1.7F + 1.3H + 1.4To	648	-139										
		Horizontal	3H.6-82	2-H-L	мссм	678 1.	05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-512	-182	D+L+F+H'+T+E'	176	9.36							
		Honzontai	341.0-02	2-11-6	MMAT :	1939	D + L + F + H' + T + E'	39	-968	Decerentie	176	9.36			-				
					MMAC :	1939	D + L + F + H' + T + E'	-190	-1036										
					MTCM	796	1.4D + 1.7F + 1.3H + 1.4To	282	-335										
				3-H-L	MCCM :	600	D + L + F + H' + T + E'	-608	-86	D+L+F+H'+T+E'	153	6.24							
					MMAT	975	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	66	-533										
					MMAC :	1574	1.4D + 1.7F + 1.3H + 1.4To	-48	-477										
						977	D + L + F + H' + T + E'	248	-129										
				1-V-L		108	D + L + F + H' + T + E'	-334	-101	D + L + F + H' + T + E'	139	4.68							
						108	D + L + F + H' + T + E'	26	-664										
6	North (outside					108	D + L + F + H + T + E	-200	-664										
	looning	.,				980	D + L + F + H' + T + E'	259	-190										
				2-V-L		109	D + L + F + H' + T + E'	-320	-41	D + L + F + H' + T + E'	175	6.24							
						113	D + L + F + H + T + E'	0	-713										
						113	D+L+F+H+T+E	-144	-713										
						1004	D + L + F + H + T + E' D + L + F + H + T + E'	313 -332	-184										
		Vertical	3H.6-83	3-V-L		116	D+L+F+H'+T+E'	-332	-149 -736	D + L + F + H' + T + E'	258	7.8							
						116	D+L+F+H+T+E'	-189	-736										
						1027	D+L+F+H+T+E	473	-7.30										
						1998	D+L+F+H+T+E D+L+F+H'+T+E	4/3	-089										
				4-V-L		124	D+L+F+H+T+E	133	-800	D + L + F + H' + T + E'	249	12.48							
						124	D+L+F+H+T+E	-49	-800										
						1003	D+L+F+H+T+E	281	-59										
						1003	D + L + F + H + T + E'	-284	-61										
				5-V-L		149	D + L + F + H + T + E'	133	-372	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	214	6.24						-	-
						149	D + L + F + H' + T + E'	-5	-303										

3H-165

Rev. 07

Final Safety Analysis Report

				ent er ⁽¹⁾	ent (2)				Longitudinal	Reinforcement	Design Loads					Transverse Shear Design Loads				
cation	Thickness (ft)	Face	Direction	Reinforcem Layout awing Numt	Reinforcem Zone Numbe	m Fore	Element	Axial and Flexure	Loads		In-Plane Shear Load		Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remarks
2	Ê	-	ā	Reinf	Reinf	aximu	ă	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure (4) (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	ntal Section Corresponding Axial Force	Transverse Shear Force	cal Section Corresponding Axial Force	(in²/ft²)	
	-	-	-	-		MTCM	6005	D + L + F + H' + T + E'	373	-744		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		<u> </u>
						MCCM	2469	D+L+F+H'+T+E'	-602	-352										
					6-V-L	MMAT	6005	D+L+F+H+T+E	373	-744	D + L + F + H' + T + E'	222	9.36					-	-	
		North				MMAC	6005	D + L + F + H' + T + E'	-189	-744										
		(outside)	Vertical	3H.6-83		MTCM	2859	1.4D + 1.7F + 1.3H + 1.4To	143	-152										
						MCCM	2460	D + L + F + H' + T + E'	-558	-157		000								
					7-V-L	MMAT	3624	D + L + F + H + T + E'	3	-589	D+L+F+H'+T+E'	222	6.24						-	
						MMAC	3600	D + L + F + H' + T + E'	-272	-597										
						MTCM	2959	1.4D + 1.7F + 1.3H + 1.4To	350	326										
					1-H-L	MCCM	3942	D + L + F + H' + T + E'	-255	368	D+L+F+H'+T+E'	113	9.36					-		
						MMAT	2950	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	172	1113										
						MMAC	3938	D + L + F + H' + T + E'	-3	1062										
						MTCM	6177	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	1025	209										
					2-H-L	MCCM	5873	D + L + F + H' + T + E'	-294	193	D+L+F+H+T+E	42	14.04							
						MMAT	7021	D + L + F + H' + T + E'	108	1219										
						MMAC	7021	D + L + F + H' + T + E'	-77	1219										
						MTCM	4005	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	525	417										
					3-H-L	MCCM	3963	D + L + F + H' + T + E'	-344	210	D + L + F + H' + T + E'	93	9.36						-	
						MMAT	3002 3002	1.4D + 1.7F + 1.3H + 1.4To 1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-4	900										
(p,yac			Horizontal	3H.6-84		MMAC	5847	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-4	227										
Vall (C						MICM	3600	D+L+F+H'+T+E'	-608	182										
North V	6				4-H-L	MMAT	5992	14D+17I+17E+17H+17W	-608	943	D + L + F + H' + T + E'	149	6.24				-		-	-
Basin						MMAC	5992	1.4D + 1.7F + 1.3H + 1.4To	-128	975										
SHU						MTCM	6005	1.4D + 1.7F + 1.3H + 1.4To	664	777										<u> </u>
						MCCM	2610	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-495	99										
		South (inside)			5-H-L	MMAT	3027	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	127	1401	D + L + F + H' + T + E'	176	12.48					-	-	
						MMAC	3027	D + L + F + H' + T + E'	-94	1347										
						MTCM	6093	1.4D + 1.7F + 1.3H + 1.4To	522	61										
						MCCM	3641	D + L + F + H' + T + E'	-384	263										
					6-H-L	MMAT	6964	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	149	1296	D + L + F + H' + T + E'	176	12.48							
						MMAC	4150	D + L + F + H' + T + E'	-9	1163	1									
						MTCM	2977	D + L + F + H' + T + E'	248	53										
					1-V-L	MCCM	5846	D + L + F + H' + T + E'	-268	141	D+L+F+H'+T+E'	139	4.68	-						
						MMAT	5856	D + L + F + H' + T + E'	28	341	UTLIFTHITE	139	4.00	•						
						MMAC	5828	1.4D + 1.7F + 1.3H + 1.4To	-87	358										
						MTCM	3001	D + L + F + H' + T + E'	309	35										
			Vertical	3H.6-85	2-V-L	MCCM	5918	D + L + F + H' + T + E'	-269	183	D+L+F+H'+T+E'	211	6.24						-	
						MMAT	5900	1.4D + 1.7F + 1.3H + 1.4To	23	423										
					L	MMAC	5900	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-87	476										<u> </u>
						MTCM	3027	D + L + F + H' + T + E'	473	411	-									
					3-V-L	MCCM	5998	D+L+F+H+T+E	-507	713	D + L + F + H' + T + E'	258	10.92						-	
						MMAT	5998	D + L + F + H' + T + E'	39	713										
						MMAC	5998	D + L + F + H' + T + E'	-507	713										L

Rev. 07

Final Safety Analysis Report

STP 3 &

4

			er ⁽¹⁾	18 E	(3) Sec ⁽³⁾		Longitudina	Reinforcemen	it Design Loads					Transverse Shear Design Loads				
Thickness (ft)	Face	Direction	inforceme Layout Ang Numb	rceme	Forc	Axial and Flexure	Loads		In-Plane Shear Loads		Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remark
F F	ŭ	Dire	ceinfo La Ming I	Reinforcel Zone Numi	mmix	Load Combination	Axial ⁽⁴⁾	Flexure (4)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Horizo Transverse Shear Force	ontal Section Corresponding Axial Force	Verti Transverse Shear Force	cal Section Corresponding Axial Force	(in²/ft²)	
 			Pra	H N	Wa		(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					MTCM 5		243	338	_									
				4-V-L	MCCM 6		-352	451	D+L+F+H'+T+E'	258	9.36							
					MMAT 6 MMAC 6		-12	1265										
					MMAC 6		-12 281	1296										
					MCCM 6		-284	130	_									
				5-V-L	MILLIN 0		-204	350	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	214	6.24							
					MMAC 4		-83	366	_									
	South (inside)	Vertical			MINOC 4		373	523										
6					MCCM 2		-802	591	_									
-				6-V-L	MMAT 6		39	793	D + L + F + H' + T + E'	222	9.36		•					-
					MMAC 6		-506	793										
					MTCM 2		142	50										
					MCCM 2	30 D + L + F + H' + T + E'	-558	147	_									
				7-V-L	MMAT 34	36 D + L + F + H' + T + E'	19	450	D + L + F + H' + T + E'	222	6.24					-		-
					MMAC 34	15 1.4D + 1.7F + 1.3H + 1.4To	-277	945	_									
f				1-T								1.4D + 1.7F + 1.3H + 1.4To	-5	-19	101	138	0.20	
		Transverse (Horizontal and Vertical)	3H.6-86	2-T								1.4D + 1.7F + 1.3H + 1.4To	16	35	74	362	0.31	
		and vertical)		3-T			-					1.4D + 1.7F + 1.3H + 1.4To	-103	238	-100	429	0.80	
					MTCM 4	73 D + L + F + H' + T + E'	607	-301										
				1-H-L	MCCM 4	32 D + L + F + H' + T + E'	-329	-544	D+L+F+H'+T+E'	33	10.92							-
					MMAT 4:	18 D + L + F + H' + T + E'	61	-1117			10.24	-			-	-		-
					MMAC 4	18 D + L + F + H' + T + E'	-128	-1117										
					MTCM 3	15 D + L + F + H' + T + E'	275	-187										
		Horizontal	3H.6-87	2-H-L	MCCM 3		-362	-250	D+L+F+H'+T+E'	68	6.24							
					MMAT 3		28	-844										
					MMAC 3		-31	-844										
					MTCM 2		399	-230										
				3-H-L		37 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-	-110	D+L+F+H'+T+E'	98	7.8							
					MMAT 2		185	-606	_									
					MMAC 11 MTCM 38		-19	-530										
					MTCM 38 MCCM 11		-354	-102										
6	South (outside)			1-V-L	MOUM 1		-304	-508	D + L + F + H' + T + E'	131	4.68	-				-		-
					MMAC 1		-176	-616	-									
					MTCM 3			-91									+ +	
					MCCM 1		-326	-14	-									
				2-V-L	MMAT 1		49	-283	D + L + F + H' + T + E'	169	6.24							
						4 D+L+F+H'+T+E'	-164	-587	-									
		Vertical	3H.6-88		MTCM 2		238	-111										
					MCCM 1	34 D+L+F+H'+T+E'	-388	-69	1									
				3-V-L	MMAT 1		29	-656	D + L + F + H' + T + E'	149	4.68		•					-
					MMAC 1		-211	-656	1									
					MTCM 2	42 D + L + F + H' + T + E'	240	-164										
					MCCM 1	35 D + L + F + H' + T + E'	-388	-85	1									
				4-V-L	MMAT 1	35 D + L + F + H' + T + E'	26	-655	D + L + F + H' + T + E'	174	6.24						-	-
					MMAC 1	35 D + L + F + H' + T + E'	-216	-655										

3H-167

Rev. 07

Final Safety Analysis Report

2			e	thent (1	bent (2)	roes ⁽³	2		Longitudinal Reinforcement			Longitudinal			Transverse Shear Design Loads				
cknes	£	Face	Direction	Reinforcem Layout awing Num	Reinforcem Zone Numb	e E	Elemen	Axial and Flexure		In-Plane Shear Loa	1 10	Longitudinal Reinforcement Provided			ntal Section	M. al	al Section	Transverse Shear Reinforcement Provided	Ren
Ē		-	ā	Reinf L Tawing	Reinf	aximu		Load Combination	Axial ⁽⁴⁾ Flexure ⁽⁴⁾ (kips / ft) (ft-kips / ft)	Load Combination	In-plane ⁽⁷⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
				ő		≥ MTCM	2163	D+L+F+H'+T+E'	217 -103		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	1873	D+L+F+H'+T+E'	-365 -38										
					5-V-L	MMAT	1872	D+L+F+H+T+E	7 -637	D+L+F+H'+T+E'	148	4.68						-	
						MMAC	1858	D+L+F+H'+T+E'	-175 -661										
	(o	South sutside)	ertical	3H.6-88		MTCM	1880	D+L+F+H'+T+E'	227 -308										-
						MCCM	1880	D + L + F + H + T + E'	-237 -125										
					6-V-L	MMAT	1880	14D + 1.7L + 1.7E + 1.7H + 1.7W	165 -370	D+L+F+H'+T+E'	88	6.24						-	
						MMAC	1880	D+L+F+H+T+E	-52 -355										
			-			MTCM	2032	1.4D + 1.7F + 1.3H + 1.4To	351 424										-
						MCCM	3531	D+L+F+H'+T+E'	-249 438										
					1-H-L	MMAT	4318	D+L+F+H+T+E	108 1408	D + L + F + H' + T + E'	98	10.92						-	
						MMAC	4318	D+L+F+H'+T+E'	.79 1408										
						MTCM	4473	D+L+F+H'+T+E'	607 384										-
						MCCM	4382	D+L+F+H+T+E	-329 339										
					2-H-L	MMAT	4497	D+L+F+H+T+E	70 698	D+L+F+H'+T+E'	33	9.36						-	
						MMAC	4497	D + L + F + H' + T + E'	-99 698										
				-		MTCM	3815	D + L + F + H + T + E'	275 280										+
						MCCM	3557	D+L+F+H'+T+E'	-362 193										
					3-H-L	MMAT	4436	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	98 713	D + L + F + H' + T + E'	64	6.24						-	
						MMAC	4436	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-37 729										
		н	rizontal	3H.6-89		MTCM	2188	1.4D + 1.7F + 1.3H + 1.4To	360 154										-
						MCCM	2118	1.4D + 1.7F + 1.3H + 1.4To	-191 671										
1	6		Horizontal		4-H-L	MMAT	2140	1.4D + 1.7F + 1.3H + 1.4To	286 848	D+L+F+H'+T+E'	76	9.36						-	
						MMAC	2092	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-21 852										
				-		MTCM	1705	1.4D + 1.7F + 1.3H + 1.4To	232 69										+
						MCCM	1066	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-244 214										
	6	North inside)			5-H-L	MMAT	1687	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	64 720	D+L+F+H'+T+E'	98	6.24						-	
						MMAC	1687	1.4D + 1.7F + 1.3H + 1.4To	-83 728										
				-		MTCM	2204	1.4D + 1.7F + 1.3H + 1.4To	386 568										-
						MCCM	3836	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-246 38										
					6-H-L	MMAT	4505	D + L + F + H' + T + E'	111 1546	D+L+F+H'+T+E'	98	10.92						-	
						MMAC	4505	D+L+F+H'+T+E'	-76 1546										
		-				MTCM	3550	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	187 42										+
						MCCM	1014	D+L+F+H'+T+E'	-273 120										
					1-V-L	MMAT	4317	D+L+F+H+T+E	12 328	D + L + F + H' + T + E'	131	4.68						-	
						MMAC	1119	1.4D + 1.7F + 1.3H + 1.4To	-127 451										
						MTCM	3587	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	204 15										-
						MCCM	1197	D+L+E+H+T+F	-290 142										
		1	'ertical	3H.6-90	2-V-L	MMAT	4375	D+L+F+H+T+E	24 255	D + L + F + H' + T + E'	169	6.24						-	
		Ver				MMAC	1197	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-239 308										
				1		MTCM	2139	D+L+F+H'+T+E'	238 25										+
						MCCM	1536	D+L+F+H'+T+E'	-324 170										
					3-V-L	MMAT	1380	D+L+F+H+T+E	6 344	D + L + F + H' + T + E'	149	4.68						-	
						MMAC	1291	1.4D + 1.7F + 1.3H + 1.4To	-129 447									1	1

Rev. 07

STP 3 & 4

		_	ent ber ⁽¹⁾	ent M ⁽²⁾	ces ⁽³⁾		Loi	ngitudinal	Reinforcement [Design Loads		Langitudinal			Transverse Shear Design Loads				
Thickness (ft)	Face	Direction	inforcem Layout ing Numt	Treem	n For	ment	Axial and Flexure Loa	ads		In-Plane Shear Loa		Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remark
μ.	"	ā	Reinfo	Reinforcen Zone Numb	ximu	ee Ee	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Horizo Transverse Shear Force	ntal Section Corresponding Axial Force	Vertic Transverse Shear Force	al Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
		-		- N	E MTCM	2142	D+L+F+H'+T+E'			Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					MCCM	1553	D+L+F+H+T+E'	240 -323	67 183										
				4-V-L	MCCM	1553	D+L+F+H'+T+E'	-323	263	D + L + F + H' + T + E'	174	6.24		-	-				-
					MMAC	1553	D+L+F+H'+T+E'	-311	263										
				-	MTCM	2163	D+L+F+H'+T+E'	217	32										
					MCCM	1700	D+L+F+H'+T+E'	-299	137										
	North (inside)	Vertical		5-V-L	MMAT	4504	D+L+F+H'+T+E	14	375	D + L + F + H' + T + E'	148	4.68							-
6					MMAC	3838	D+L+F+H'+T+E'	-75	402										
					MTCM	1880	D+L+F+H'+T+E'	227	38										
					MCCM	1864	D+L+F+H'+T+E'	-388	568										
				6-V-L	MMAT	1868	D+L+F+H'+T+E'	27	937	D + L + F + H' + T + E'	174	7.8							-
					MMAC	1781	1.4D + 1.7F + 1.3H + 1.4To	-130	1307										
		Transverse		1-T									1.4D + 1.7F + 1.3H + 1.4To	-10	-29	-103	128	0.20	
		(Horizonta and Vertica	3H.6-91	2-T									1.4D + 1.7F + 1.3H + 1.4To	-41	-2	-91	260	0.31	
					MTCM	5234	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	410	-98										
				1-H-L	MCCM	5235	D + L + F + H' + T + E'	-311	-1619	D+L+F+H'+T+E'	40	12.48							
				1-H-L	MMAT	5241	D + L + F + H' + T + E'	64	-2078	D+C+F+H+1+F.	40	12.48			-		-		-
					MMAC	5241	D + L + F + H' + T + E'	-222	-2130										
					MTCM	2611	1.4D + 1.7F + 1.3H + 1.4To	216	-508										
				2-H-L	MCCM	3504	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-348	-25	D+L+F+H'+T+E'	71	6.24							
				2446	MMAT	3936	D + L + F + H' + T + E'	27	-968	5.2.1.11.1.2							-		-
		Horizontal	3H.6-92		MMAC	3936	D + L + F + H' + T + E'	-190	-1033										
					MTCM	2300	1.4D + 1.7F + 1.3H + 1.4To	393	-216										
	East			3-H-L	MCCM	2822	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-230	-136	D + L + F + H' + T + E'	78	7.8							
	(outside)				MMAT	1995	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	103	-658										
					MMAC	1998	D + L + F + H' + T + E'	-21	-578										
					MTCM	2649	1.4D + 1.7F + 1.3H + 1.4To	275	-248										
				4-H-L	MCCM	2820	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-192	-111	D + L + F + H' + T + E'	106	6.24			-				-
					MMAT	2649	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	162	-505										
6					MMAC	2627	D + L + F + H' + T + E'	-101	-489										
					MTCM	2375	D+L+F+H'+T+E'	266	-222										
		Vertical	3H.6-93	1-V-L	MCCM	2832	D+L+F+H'+T+E'	-460	-157 -983	D + L + F + H' + T + E'	129	6.24							
					MMAT	5234	D+L+F+H'+T+E'	-283	-1073										
		-	-	-	MINAC	4266		410	1073		-								
					MCCM	5235	D+L+F+H'+T+E'	-311	471										
				1-H-L	MMAT	5235	D+L+F+H'+T+E'	209	2186	D + L + F + H' + T + E'	40	15.6	-	-					
					MMAC	5235	D+L+F+H'+T+E'	-67	2124										
					MTCM	2297	1.4D + 1.7F + 1.3H + 1.4To	386	546										
	Wart				MCCM	3893	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-255	96										
	West (inside)	Horizontal	3H.6-94	2-H-L	MMAT	3890	D+L+F+H'+T+E'	128	1469	D + L + F + H' + T + E'	106	10.92							
					MMAC	3890	D + L + F + H' + T + E'	-7	1413										
					MTCM	2528	1.4D + 1.7F + 1.3H + 1.4To	204	101										
					MCCM	3507	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-346	20	D + L + F + H' + T + E'	71								
				3-H-L	MMAT	2494	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	81	801	D + L + F + H' + T + E'	71	6.24							-
					MMAC	5236	D + L + F + H' + T + E'	-59	756										

3H-169

Rev. 07

Final Safety Analysis Report

Details and Evaluation	UNS Bain Ent Val Confé	ē	West (inside
Details and Evaluation Results of Seismic Category 1 Structures	UHS Banin West Nat	6	West (outside
Structures			
ŝ			

				nt (1)	# 6	*8 ⁽³⁾			Longitudina	I Reinforcement	Design Loads									
tion	Does Class	8	tion	out	ceme	Force	tent	Axial and Flexure	Loads		In-Plane Shear Load	•	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	Remarks
Loca	Thickness (ft)	Face	Direction	Reinforcem Layout swing Numl	Reinforcen Zone Numb	mm	Elerr	Load	Axial ⁽⁴⁾	Flexure (4)	Load	In-plane (5)	Provided (in ² / ft)	Load		ontal Section		cal Section	Reinforcement Provided (in ² /ft ²)	Remarks
				Re Draw	Zoi	Maxi		Combination	(kips / ft)	(ft-kips / ft)	Load Combination	Shear (kips / ft)		Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	2327	1.4D + 1.7F + 1.3H + 1.4To	348	247										
					4-H-L	MCCM	2414	D + L + F + H' + T + E'	-128	124	D + L + F + H' + T + E'	77	9.36							
					4-H-L	MMAT	1980	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	75	885	D+L+F+H+I+E		9.36							
						MMAC	1980	1.4D + 1.7F + 1.3H + 1.4To	-65	800										
						MTCM	2693	1.4D + 1.7F + 1.3H + 1.4To	239	164										
				3H.6-94	5-H-L	MCCM	2879	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-240	233	D + L + F + H' + T + E'	106	6.24							
			Horizontal	3H.6-94	5-H-L	MMAT	2492	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	58	749	D+L+F+H+1+E.	106	6.24							
						MMAC	2492	1.4D + 1.7F + 1.3H + 1.4To	-94	707										
						MTCM	2436	1.4D + 1.7F + 1.3H + 1.4To	341	334										
						MCCM	3933	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-256	74										
					6-H-L	MMAT	2441	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	176	1101	D + L + F + H' + T + E'	106	9.36		-					-
						MMAC	3935	D + L + F + H' + T + E'	-1	1070										
						MTCM	2328	D + L + F + H' + T + E'	195	173										
(par		West				MCCM	2689	D + L + F + H' + T + E'	-338	277	D+L+F+H'+T+E'	100	4.68							
8		(inside)			1-V-L	MMAT	5208	D + L + F + H' + T + E'	13	546	D+L+F+H+I+E	100	4.08		-					
East W	6					MMAC	5208	D + L + F + H' + T + E'	-4	546										
Basin						MTCM	2349	D + L + F + H' + T + E'	251	166										
ISH I					2-V-L	MCCM	2690	D + L + F + H' + T + E'	-375	254	D + L + F + H' + T + E'	129	6.24							
					2-V-L	MMAT	4267	D + L + F + H' + T + E'	25	1097	D+C+F+H+1+E	129	0.24							
			Vertical	3H.6-95		MMAC	4267	D + L + F + H' + T + E'	-188	1138										
			verocal	34.0-95		MTCM	2375	D + L + F + H' + T + E'	266	136										
					3-V-L	MCCM	2707	D + L + F + H' + T + E'	-366	242	D+L+F+H'+T+E'	128	4.68							
					3-V-L	MMAT	4295	D + L + F + H' + T + E'	20	795	DTCTFTHTITE	120	4.00							
						MMAC	4295	D + L + F + H' + T + E'	-180	798										
						MTCM	2825	D + L + F + H' + T + E'	232	138										
					4-V-L	MCCM	2832	D + L + F + H' + T + E'	-460	679	D + L + F + H' + T + E'	129	7.8							
					4-V-L	MMAT	2955	D + L + F + H' + T + E'	9	1176	DTETTTHTTE	120	1.0							
						MMAC	2955	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-185	1331										
					1-T									1.4D + 1.7F + 1.3H + 1.4To	-9	-33	99	130	0.20	
			Transverse (Horizontal and Vertical)	3H.6-96	2-T		•							1.4D + 1.7F + 1.3H + 1.4To	-39	-2	89	263	0.31	
					3-T									D + L + F + H' + T + E'	-204	105	-294	428	1.76	
						MTCM	5176	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	402	-124										
					1-H-L	MCCM	5171	D + L + F + H' + T + E'	-416	-857	D + L + F + H' + T + E'	37	14.04							
					1444	MMAT	5177	D + L + F + H' + T + E'	52	-2201	0.0.0.0.0.0		14.04							
						MMAC	5177	D + L + F + H' + T + E'	-137	-2201										
						MTCM	4514	1.4D + 1.7F + 1.3H + 1.4To	368	-286										
					2-H-L	MCCM	3477	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-356	-143	D + L + F + H' + T + E'	64	7.8							
Wall						MMAT	3866	D + L + F + H + T + E	32	-864										
West	6	West	Horizontal	3H.6-97		MMAC	3866	D + L + F + H' + T + E'	-275	-909										
6 Basin		(outside)				MTCM	2222	1.4D + 1.7F + 1.3H + 1.4To	846	-208										
SHU					3-H-L	MCCM	2220	D + L + F + H' + T + E'	-156	-195	D + L + F + H' + T + E'	117	12.48							(8)
					1	MMAT	2329	D + L + F + H' + T + E'	240	-517										
						MMAC	2329	D + L + F + H + T + E'	-113	-416										
						MTCM	1956	1.4D + 1.7F + 1.3H + 1.4To	431	-402										
					4-H-L	MCCM	1953	D + L + F + H + T + E'	-150	-259	D + L + F + H' + T + E'	117	7.8							
						MMAT	1923	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	109	-651										
						MMAC	2167	D + L + F + H + T + E'	-17	-634										

3H-170

Rev. 07

STP 3 &

4

			er ⁽¹⁾	1(2) (2)	(c) ⁵⁰⁰		L	ongitudinal	Reinforcement D	Design Loads					Transverse Shear Design Loads				
Thickness (ft)	Face	Direction	forceme Layout ng Numb	rceme	a Forc	ment	Axial and Flexure L	oads		In-Plane Shear Loads	s	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remark
diff.	L.	Dire	Reinfo La Tawing	Reinforceme Zone Number	aximun	Elerr	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force	ntal Section Corresponding Axial Force	Transverse Shear Force	al Section Corresponding Axial Force	(in²/ft²)	
	-		ā		S MTCM	2315	1.4D + 1.7F + 1.3H + 1.4To	466	-360		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					MCCM	2314	D+L+F+H'+T+E'	-271	-337										
				5-H-L	MMAT	2314	D+L+F+H'+T+E'	3	-614	D + L + F + H' + T + E'	141	7.8			-	-			
					MMAC	2314	D+L+F+H'+T+E'	-40	-614										
		Horizonta	3H.6-97		MTCM	2582	1.4D + 1.7F + 1.3H + 1.4To	290	-295										
					MCCM	2458	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-214	-44	D.1. C. W. T. C.	141								
				6-H-L	MMAT	1903	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	72	-514	D + L + F + H' + T + E'	141	6.24							
					MMAC	1903	1.4D + 1.7F + 1.3H + 1.4To	-49	-481										
					MTCM	2219	1.4D + 1.7F + 1.3H + 1.4To	617	-67										
				1-V-L	MCCM	2596	D + L + F + H' + T + E'	-172	-183	D + L + F + H' + T + E'	190	9.36							
				1.110	MMAT	2596	D + L + F + H' + T + E'	73	-904	DICIPINITE	180	5.50			-		-		
					MMAC	2596	D + L + F + H' + T + E'	-32	-904										
					MTCM	2604	D + L + F + H' + T + E'	238	-115										
	West (outside)			2-V-L	MCCM	2406	D + L + F + H' + T + E'	-278	-99	D+L+F+H'+T+E'	133	6.24							
	(outside)				MMAT	2604	D + L + F + H' + T + E'	40	-704										
					MMAC	3860	D + L + F + H' + T + E'	-75	-725										
					MTCM	2239	D + L + F + H' + T + E'	284	-236										
		Vertical	3H.6-98	3-V-L	MCCM	2606	D + L + F + H' + T + E'	-379	-150	D + L + F + H' + T + E'	162	7.8							
					MMAT	2320	D + L + F + H' + T + E'	75	-791										
					MMAC	5170	D + L + F + H' + T + E'	-296	-1069										
					MTCM	2242	D + L + F + H' + T + E'	254	-203										
6				4-V-L	MCCM	2607	D+L+F+H'+T+E'	-463	-63	D + L + F + H' + T + E'	151	6.24			-	-			
					MMAT	4263	D + L + F + H' + T + E'	4	-1011										
					MMAC	5176	D+L+F+H'+T+E'	-286	-1036										
					MTCM	2246	D+L+F+H'+T+E'	195	-211										
				5-V-L	MCCM	2612	D+L+F+H'+T+E'	-370	-110	D + L + F + H' + T + E'	116	4.68							
					MMAT	5184	D+L+F+H'+T+E'	1	-646										
					MTCM		D + L + F + H' + T + E' 1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-73	-770										
					MCCM	5171	D+L+F+H'+T+E'	-416	1733										
				1-H-L	MCCM	5171	D+L+F+H+T+E'	288	2357	D + L + F + H' + T + E'	37	15.6		-	-	-	-		
					MMAC	5171	D+L+F+H+T+E	-100	2357										
					MTCM	4515	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	228	128										
					MCCM	3857	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-353	60										
				2-H-L	MMAT	3842	D+L+F+H'+T+E'	108	1263	D + L + F + H' + T + E'	61	7.8							
	East				MMAC	3887	D+L+F+H'+T+E'	-73	1233										
	East (inside)	Horizonta	3H.6-99		MTCM	2220	1.4D + 1.7F + 1.3H + 1.4To	868	1126										
					MCCM	2314	D + L + F + H' + T + E'	-271	402										
				3-H-L	MMAT	2329	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	732	1286	D + L + F + H' + T + E'	120	15.6	-		-	-	-		(8
					MMAC	2329	D + L + F + H' + T + E'	-33	1199										
					MTCM	2236	1.4D + 1.7F + 1.3H + 1.4To	521	332										
					MCCM	2183	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	-226	276										
				4-H-L	MMAT	2293	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	183	1221	D + L + F + H' + T + E'	120	10.92	-		-	-	-	-	-
					MMAC	2291	D+L+F+H'+T+E'	-18	854										

Rev. 07

Final Safety Analysis Report

			t e	ent '	8	ces ⁽³			Longitudinal	Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads			
Thickness	e j	Face	inforcem Layout	Numi Drcem	quinte	n For	ment	Axial and Flexure	Loads		In-Plane Shear Load	is	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provides
ŧ		ā	Reinfo	Reinfo	Zone Number	aximu	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Horizo Transverse Shear Force (kip / ft)	ntal Section Corresponding Axial Force (kip / ft)	Transverse Shear Force	cal Section Corresponding Axial Force (kip / ft)	(in ² /ft ²)
-			-	<u> </u>		a MTCM	2311	1.4D + 1.7F + 1.3H + 1.4To	244	275		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)	
						MCCM	2310	D + L + F + H' + T + E'	-193	242									
		Horizo	tal	5-	H4 -	MMAT	2310	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	130	729	D+L+F+H'+T+E'	141	6.24						
						MMAC	2577	D + L + F + H' + T + E'	-2	534									
						MTCM	2219	1.4D + 1.7F + 1.3H + 1.4To	655	61									
						MCCM	2596	D + L + F + H' + T + E'	-172	310									
				1-	-V-L	MMAT	2596	D + L + F + H' + T + E'	85	775	D + L + F + H' + T + E'	190	10.92			-			
						MMAC	2596	D + L + F + H' + T + E'	-21	775									
						MTCM	2237	D + L + F + H' + T + E'	228	144									
						MCCM	2410	D + L + F + H' + T + E'	-247	174									
				2-	-V-L	MMAT	3848	D + L + F + H' + T + E'	2	380	D+L+F+H+T+E	133	4.68						
						MMAC	5168	D + L + F + H' + T + E'	-79	440									
						MTCM	2239	D + L + F + H' + T + E'	284	145									
		MMAT 4235 D+L+F+H+T+E' 8 1073																	
				3-	-V-L	MMAT	4235	D + L + F + H' + T + E'	8	1073	D+L+F+H'+T+E'	162	7.8						
	E	inet.				MMAC	4235	D + L + F + H' + T + E'	-204	1160									
	(ins	side)				MTCM	1834	D + L + F + H' + T + E'	220	244									
						MCCM	2173	D + L + F + H' + T + E'	-293	212									
6		Verti	al 3H.6-1	4-	-V-L	MMAT	4251	D + L + F + H' + T + E'	2	394	D+L+F+H+T+E	83	4.68						
						MMAC	4239	D + L + F + H' + T + E'	-112	763									
						MTCM	2242	D + L + F + H' + T + E'	254	113									
						MCCM	2455	D + L + F + H' + T + E'	-359	174									
				5-	-V-L	MMAT	4263	D + L + F + H' + T + E'	25	839	D + L + F + H' + T + E'	151	6.24						
						MMAC	4263	D + L + F + H' + T + E'	-173	841									
						MTCM	2246	D + L + F + H' + T + E'	195	138									
					🗖	MCCM	2456	D + L + F + H' + T + E'	-309	219									
				6-	-V-L	MMAT	5185	D + L + F + H' + T + E'	7	486	D + L + F + H' + T + E'	116	4.68						
						MMAC	5179	D + L + F + H' + T + E'	-21	538									
						MTCM	2320	D + L + F + H' + T + E'	255	681									
					🗖	MCCM	2607	D + L + F + H' + T + E'	-463	708									
				7-	-V-L	MMAT	2324	1.4D + 1.7F + 1.3H + 1.4To	24	1235	D + L + F + H' + T + E'	162	9.36		-		-	-	
						MMAC	2324	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-139	1298									
				1	1-T									1.4D + 1.7F + 1.3H + 1.4To	-10	-73	-100	143	0.20
		. Transv (Horiza	nso ntal 3H.6-1	2	2-T									D + L + F + H' + T + E'	-208	80	-307	306	1.76
		- (Honzo and Ver	ical)	3	3-Т					-				D + L + F + H' + T + E'	98	315	71	-73	0.31
				4	4-T			-		-				1.4D + 1.7F + 1.3H + 1.4To	-50	600	81	746	0.79
						MTCM	7788	D + L + F + H' + T + E'	638	-1066									
					н. 🗆	MCCM	7788	D + L + F + H' + T + E'	-408	-981	D+L+F+H'+T+E'	331	15.6						
						MMAT	7812	D + L + F + H' + T + E'	350	-1240	Decerentie	331	10.0						
6	East	t and Horizo	ital 3H.6-1			MMAC	7812	D + L + F + H' + T + E'	-112	-1240									
l °	We	/est Polizo		-		MTCM	7417	D + L + F + H' + T + E'	603	-466									
				2	н. 🗌	MCCM	7417	D + L + F + H' + T + E'	-534	-275	D+L+F+H'+T+E'	369	9.36						
						MMAT	7650	D + L + F + H' + T + E'	188	974	0.01111111	505		-		-	-		
						MMAC	7650	D + L + F + H' + T + E'	-149	954									

3H-172

Rev. 07

STP 3 & 4

			ent ber ⁽¹⁾	ent sr(2)	ces ⁽³⁾			Longitudinal	Reinforcement D	lesign Loads		Langitudinal			Transverse Shear Design Loads				
knes	(ft) Face	Direction	brcem tyout Numt	umbe	n For	ment	Axial and Flexur	e Loads		In-Plane Shear Load	s	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Rem:
Ě		ā	Reinforcem Layout rawing Numl	Reinforceme Zone Number	laximur	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force	Ontal Section Corresponding Axial Force (kip / ft)	Transverse Shear Force	Corresponding Axial Force	(in²/ft²)	
					≥ MTCM	7424	D + L + F + H' + T + E'	742	-114		(kips / ft)			(kip / ft)	(Kip / ft)	(kip / ft)	(kip / ft)		
					MCCM	7212	D + L + F + H' + T + E'	-897	103										
				1-V-L	MMAT	7845	D + L + F + H' + T + E'	124	-1010	D + L + F + H' + T + E'	237	9.36							
	East	and			MMAC	7845	D + L + F + H' + T + E'	-122	-1010										
	Wes	and Vertica	3H.6-103		MTCM	7032	D + L + F + H' + T + E'	991	397										
	6			2-V-L	MCCM	7032	D + L + F + H' + T + E'	-692	412	D + L + F + H' + T + E'	237	15.6					-		6
				2-V-L	MMAT	7032	D + L + F + H' + T + E'	964	555	0+2+++++++	231	10.0		-			-		,
					MMAC	7032	D + L + F + H' + T + E'	-411	555										
				1-T									D + L + F + H' + T + E'	-30	433	-4	47	0.20	
	-	(Horizon) and Vertic	al 3H.6-104	2-T									D + L + F + H' + T + E'	19	107	68	445	0.31	
				3-T									D + L + F + H' + T + E'	209	138	205	739	1.76	
					MTCM	7674	D + L + F + H' + T + E'	599	274										
				1-H-L	MCCM	7674	D + L + F + H' + T + E'	-1110	-475	D + L + F + H' + T + E'	278	9.36							
				1412	MMAT	7681	D + L + F + H' + T + E'	246	607	0.0.1.11.1.0	210	5.55		-			-	-	
					MMAC	7681	D + L + F + H' + T + E'	-527	607										
					MTCM	7511	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	166	189										
		Horizont	al 3H.6-105	2-H-L	MCCM	7491	D + L + F + H' + T + E'	-96	155	D + L + F + H' + T + E'	243	6.24					-		
					MMAT	7856	D + L + F + H' + T + E'	116	-486										
					MMAC	7865	D + L + F + H' + T + E'	-42	298										
					MTCM	7066	D + L + F + H' + T + E'	417	-74										
				3-H-L	MCCM	7065	D + L + F + H' + T + E'	-382	114	D + L + F + H' + T + E'	332	9.36							
					MMAT	7335	D + L + F + H' + T + E'	125	351										
	North	and			MMAC	7276	D + L + F + H' + T + E'	-3	-277										
	6				MTCM	7489	D + L + F + H' + T + E'	418	-98										
				1-V-L	MCCM	7674	D + L + F + H' + T + E'	-692	108	D + L + F + H' + T + E'	284	6.24		-			-		
					MMAT	7489	D + L + F + H' + T + E'	29	-251										
					MMAC	+ +	D+L+F+H'+T+E'	-675	-251										
					MICM	7345	D+L+F+H'+T+E'	674	165 213										
		Vertica	3H.6-106	2-V-L	MNAT	7289	D+L+F+H'+T+E'	-697	213	D + L + F + H' + T + E'	284	9.36		-			-		
					MMAC	7289	D+L+F+H'+T+E'	-834	276										
				<u> </u>	MTCM	7067	D+L+F+H'+T+E'	974	-421		-								
					MCCM	7065	D+L+F+H'+T+E'	-916	502										
				3-V-L	MMAT	7065	D + L + F + H' + T + E'	626	587	D + L + F + H' + T + E'	284	15.6		-			-		
					MMAC	7065	D + L + F + H' + T + E'	-700	587										
		Transver (Horizon) and Vertic	al 3H.6-107	1-T		-		-					D + L + F + H' + T + E'	22	889	1	35	0.20	
					MTCM	1147	D + L + F + H' + T + E'	220	-8		+								
					MCCM	1127	D + L + F + H' + T + E'	-171	-34										
	Nort	th		1-H-L	MNAT	468	D + L + F + H' + T + E'	77	-169	D + L + F + H' + T + E'	31	6.24		-			-		
	(outsid	te of Wall)			MMAC	468	D + L + F + H' + T + E'	-12	-169										
	2 and Se (outside	outh Horizont	al 3H,6-108		MTCM		D + L + F + H' + T + E'	360	-103										
	Sou Wal	I)			MCCM		D + L + F + H' + T + E'	-547	-107										
				BEAM 1	MMAT		D + L + F + H' + T + E'	99	-239	D + L + F + H' + T + E'	28	7.49			•				
					MMAC		D + L + F + H' + T + E'	-151	-239										

3H-173

Rev. 07

Final Safety Analysis Report

	2		c	ther	nent ber ⁽²⁾	roes				Reinforcement			Longitudinal			Transverse Shear Design Loads			Transverse Shear	
	Thickness (ft)	Face	Direction	Reinforcem Layout awing Numt	Reinforceme Zone Number	m Fo	Elemen	Axial and Flexure			In-Plane Shear Loan		Longitudinal Reinforcement Provided		Horizo	ntal Section	Vert	ical Section	Reinforcement Provided	1
	ŧ		õ	Rein	Rein	Maxim	w l	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽³⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
						MTCM	580	D + L + F + H' + T + E'	282	-23					(apr og	Cole Cole	1041103	4.44.4.44		\square
					1-V-L	MCCM	580	D + L + F + H' + T + E'	-297	-32	D+L+F+H'+T+E'	87	6.24							
					1-V-L	MMAT	580	D + L + F + H' + T + E'	124	-45	D+L+F+H+T+E	87	6.24							
						MMAC	580	D + L + F + H' + T + E'	-242	-45										
						MTCM	615	D + L + F + H' + T + E'	52	-3										T
					2-V-L	MCCM	552	D + L + F + H' + T + E'	-40	-4	D+L+F+H'+T+E'	59	1.56							
		North			2.7.2	MMAT	444	D + L + F + H' + T + E'	1	-21	5.2.1.1.1.2		1.50						-	
		North (outside of North Wall) and South (outside of South Wall)	Vertical	3H.6-109		MMAC	356	D + L + F + H' + T + E'	-16	-24										
		(outside of South	verosar	011.0-100		MTCM	644	D + L + F + H + T + E'	167	-56										Τ
		Wall)			3-V-L	MCCM	459	D + L + F + H' + T + E'	-239	-67	D+L+F+H+T+E	59	4.68							
						MMAT	651	D + L + F + H' + T + E'	143	-117										
						MMAC	452	D + L + F + H' + T + E'	-96	-112										
						MTCM	523	D + L + F + H' + T + E'	292	-38										
					4-V-L	MCCM	523	D + L + F + H' + T + E'	-303	-12	D + L + F + H' + T + E'	92	6.24							
						MMAT	1135	D + L + F + H' + T + E'	285	-39										
						MMAC	1135	D + L + F + H' + T + E'	-88	-39										_
						MTCM	1147	D + L + F + H' + T + E'	220	18										
					1-H-L	MCCM	1127	D + L + F + H' + T + E'	-171	62	D + L + F + H' + T + E'	31	4.68							
						MMAT	667	D + L + F + H' + T + E'	48	175										
			Horizontal	3H.6-110		MMAC	667	D + L + F + H' + T + E'	-44	175										+
	2					MTCM		D + L + F + H' + T + E'	360	-103										
					BEAM 1	MCCM		D + L + F + H' + T + E'	-547	107	D + L + F + H' + T + E'	28	7.49							
						MMAT		D + L + F + H' + T + E' D + L + F + H' + T + E'	99 -151	-239 -239										
						MIMAC		D+L+F+H+T+E D+L+F+H'+T+E'				-								+
						MICM	580	D+L+F+H'+T+E'	282	24										
					1-V-L	MUCOM	1	D+L+F+H'+T+E'	110	48	D + L + F + H' + T + E'	87	6.24							
		South (inside of North Wall) and North (inside of South Wall)				MMAC	1	D+L+F+H'+T+E'	-263	40										
		and North (inside of				MILAC	1164	D+L+F+H'+T+E'	-263	*0										+
		South Wall)				MCCM	552	D+L+F+H'+T+E'	-38	3										
					2-V-L	MMAT	795	D+L+F+H'+T+F'	1	22	D + L + F + H + T + E'	59	1.56							
						MMAC	683	D+L+F+H'+T+E'	-19	24										
			Vertical	3H.6-111		MTCM	392	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	168	5										t
						MCCM	459	D + L + F + H' + T + E'	-239	81										
					3-V-L	MMAT	860	D + L + F + H' + T + E'	108	131	D + L + F + H' + T + E'	59	4.68			-				
						MMAC	860	D + L + F + H' + T + E'	-186	136										
						MTCM	523	D + L + F + H' + T + E'	292	47										t
						MCCM	523	D + L + F + H' + T + E'	-303	26										
					4-V-L	MMAT	1135	D + L + F + H' + T + E'	249	50	D + L + F + H' + T + E'	92	6.24							
						MMAC	1135	D + L + F + H' + T + E'	-124	50										
			Transverse		1-T						-			D + L + F + H' + T + E'	-2	17	-15	153	0.80	t
			Transverse (Horizontal and Vertical)	3H.6-112	2-T									D + L + F + H' + T + E'	34	118	41	178	1.12	t
T						MTCM	289	D + L + F + H' + T + E'	41	-304										T
	6	East	Horizontal	3H.6-113	1-H-L	MCCM	294	D + L + F + H + To + Wt	-60	-19	D+L+F+H'+T+E'	33	3.12							
	0	(outside)	Honzoniai	38.6-113	1-H-C	MMAT	273	D + L + F + H' + T + E'	1	-395	DTLTFTHTTTE	33	3.12							
						MMAC	273	D + L + F + H' + T + E'	-42	-395										

3H-174

Rev. 07

Final Safety Analysis Report

STP 3 &

4

	5		e .	hent ber ⁽¹⁾	er ⁽²⁾	ces ⁽³⁾			Reinforcement [Longitudinal			Transverse Shear Design Loads				
	Thickness (ft)	Face	Direction	Reinforcem Layout awing Numl	orcen	num Forc	Axial and Flex			In-Plane Shear Loan		Longitudinal Reinforcement Provided		Marke	ontal Section	N	tical Section	Transverse Shear Reinforcement Provided	Remark
í	F		ö	Reinf	Reinforceme Zone Number	E taxim	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	(in ² /ft ²)	
-				<u> </u>		2 MTCM 23		143	-481		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM 23	D+L+F+H'+T+E'	-146	-744										
			Horizontal	3H.6-113	2-H-L	MMAT 28	D + L + F + H' + T + E'	26	-1246	D + L + F + H' + T + E'	37	9.36							
						MMAC 28	D + L + F + H' + T + E'	-103	-1287										
						MTCM 28	D + L + F + H' + T + E'	31	-171										
		East (outside)			1-V-L	MCCM 29	D + L + F + H' + T + E'	-115	-74	D + L + F + H' + T + E'	118	3.12							
		(outside)				MMAT 28	D + L + F + H' + T + E'	7	-195										
			Vertical	3H.6-114		MMAC 27		-42	-197										
						MTCM 28		121	-799										
					2-V-L	MCCM 23		-297	-152	D + L + F + H' + T + E'	118	6.24							
						MMAT 28 MMAC 28		-197	-1099										
						MTCM 27 MCCM 23		-62	189 256										
					1-H-L	MMAT 28		3	295	D + L + F + H' + T + E'	33	3.12							
	6					MMAC 28		-61	295										
			Horizontal	3H.6-115		MTCM 23	D + L + F + H' + T + E'	143	343										
						MCCM 23	D + L + F + H' + T + E'	-146	239										
					2-H-L	MMAT 23		126	1397	D + L + F + H' + T + E'	37	9.36			•				
		West				MMAC 23	D + L + F + H' + T + E'	-9	1394										
		West (inside)				MTCM 29	D + L + F + H' + T + E'	31	151										
					1-V-L	MCCM 23	D + L + F + H' + T + E'	-120	71	D + L + F + H' + T + E'	118	3.12							
					11112	MMAT 28	D + L + F + H' + T + E'	3	243	0.01111111	110	0.12						-	
			Vertical	3H.6-116		MMAC 27	D + L + F + H' + T + E'	-35	288										
						MTCM 28		121	486										
					2-V-L	MCCM 23		-297	309	D + L + F + H' + T + E'	118	6.24							
						MMAT 23		6	1173										
					1-T	MMAC 23	D + L + F + H' + T + E'	-160	1212	-			D+L+F+H'+T+E'	177	-75	125	5	0.60	
			Transverse (Horizontal and Vertical)	3H.6-116A	2-T								D+L+F+H'+T+E'	-131	-75	-32	43	0.44	
-					2.1	MTCM 19	D+L+F+H'+T+E'	42	-266	-			0.01111111			-02	10		
						MCCM 22		-60	-23										
					1-H-L	MMAT 20		6	-388	D + L + F + H' + T + E'	31	3.12					•	-	-
						MMAC 20	D + L + F + H' + T + E'	-49	-391										
			Horizontal	3H.6-117		MTCM 21	D + L + F + H' + T + E'	133	-283										
					2-H-L	MCCM 25	D + L + F + H' + T + E'	-172	-706	D + L + F + H' + T + E'	35	7.8							
					2-H-L	MMAT 21	D + L + F + H' + T + E'	10	-1296	D+F+E+H+I+E,	35	7.8							-
	6	West (outside)				MMAC 21	D + L + F + H' + T + E'	-117	-1306										
	-	(outside)				MTCM 22		35	-173										
					1-V-L	MCCM 22		-118	-53	D + L + F + H' + T + E'	112	3.12							
						MMAT 21		7	-198										
			Vertical	3H.6-118		MMAC 20		-45	-200										
						MTCM 22 MCCM 22		-295	-770										
					2-V-L				-148	D + L + F + H' + T + E'	112	6.24							
						MMAT 21 MMAC 21		-193	-1083										
						MMAG 21	D+L+F+H+1+E	-193	-1094										

3H-175

Rev. 07

STP 3 & 4

3H-176

Details and Evaluation Results of Seismic Category 1 Structures

Loss Combination .	Transveras Shar Force (k/p / ft)	And Section Corresponding Asiat Force (big. / f)	Vente Transverse Shara Fore pop / fb	La Section Conresponding Axiat Porce (kip / ft)	Transvers Shar Reinforcement Provided (m/m)	Remat
	Transveras Shar Force (k/p / ft)	Corresponding Atal Force (kip /t)	Transvers Shear Force (kip / ft)	Corresponding Axia Force (kip / ft)		-
D+L+F+H+T+E	· · ·					-
D+L+F+H+T+E	· · ·					-
D+L+F+H+T+E	· · ·					-
D+L+F+H+T+E						
D+L+F+H+T+E						
D+L+F+H+T+E						
- D+L+F+H+T+E						-
- D+L+F+H+T+E						-
D+L+F+H+T+E						
D+L+F+H+T+E						-
D+L+F+H'+T+E'						
D+L+F+H'+T+E'		-				
D+L+F+H'+T+E'						
D+L+F+H'+T+E'		-				1
						-
						1
		-70	124	5	0.60	<u> </u>
D+C+F+H+T+E	-123	239	-42	40	0.00	
	123	230	72	40	0.01	
						1
	-					-
						1
						1
						(8)
						1
						1
-				-	-	
						1
				-		
D + L + F + H' + T + E'	15	128	11	270	0.80	1
		Image: Constraint of the constraint. 1	Image: Constraint of the same with higher reinforcement may be extended beyond their reported bounderles. 1	Image: Constraint of the zones with higher reinforcement may be extended beyond that reported boundaries.	Image: series of the

				ent Sor ⁽¹⁾	ت 3	(E) 500			Longitudinal	Reinforcement Des	sign Loads		Longitudinal			Transverse Shear Design Loads				
Thickness (ft)	Face		Direction	Inforcem Layout Ing Numt	aumb	a Foe	Element	Axial and Flexure			In-Plane Shear Loan		Longitudinal Reinforcement Provided		_				Transverse Shear Reinforcement Provided	Remarks
	-		ā	Reinf L Drawing	Reinforceme Zone Numbe	Maximu	1	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	tal Section Corresponding Axial Force (kip / ft)	Vertical Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
						мтсм	9644	1.05D + 1.3L + 1.06F + 1.3H + 1.2T + 1.3W	330	-17							(April 19			
					1-H-L	MCCM	9637	D + L + F + H' + T + E'	-95	-79	D+L+F+H'+T+E'	33	7.8						-	
						MMAT	13467	D + L + F + H + T + E	7	-950										
		Ea	sst-West	3H.6-123		MMAC MTCM	13467 13481	1.4D + 1.7L + 1.7F + 1.7H + 1.7W D + L + F + H' + T + E'	-16 227	-1027 -30		_								
						MCCM	13461	D+L+F+H'+T+E'	-181	-30										
					2-H-L	MMAT	10584	1.4D + 1.4F + 1.7H + 1.7W	1	.776	D + L + F + H' + T + E'	138	6.24							
						MMAC	10553	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-104	-1213										
						мтсм	13535	D + L + F + H + T + E	303	-113										
	Тор				1-V-L	MCCM	13490	D + L + F + H' + T + E'	-135	-39	D+L+F+H'+T+E'	35	7.8							
	Top				1-V-L	MMAT	13467	D + L + F + H + T + E	10	-1256	D+L+F+H'+T+E'	35	7.8							
						MMAC	13467	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-31	-1355										
						мтсм	9651	D + L + F + H + T + E'	40	-265										
		Nor	rth-South	3H.6-124	2-V-L	MCCM	9659	D + L + F + H' + T + E'	-197	-206	D+L+F+H'+T+E'	124	6.24							
						MMAT	9614	D + L + F + H + T + E'	9	-953										
						MMAC	9614	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-23	-1101										
						MTCM MCCM	13550 13470	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W D + L + F + H' + T + E'	318	-102 -434										
					3-V-L	MMAT	13470	D+L+F+H+T+E	-155	-834	D + L + F + H' + T + E'	50	7.8							
						NMAC	13470	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-41	-1046										
						MTCM	9645	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	373	142										
					1-H-L	MCCM	9637	D + L + F + H' + T + E'	-79	23	D+L+F+H'+T+E'	33	7.8							
					1-H-L	MMAT	13470	1.4D + 1.4F + 1.7H + 1.7W	15	1047	D+L+F+H'+T+E'	33	7.8						-	
10						MMAC	13470	D + L + F + H' + T + E'	-24	938										
						мтсм	10645	D + L + F + H + T + E'	64	357										
					2-H-L	MCCM	13549	D + L + F + H' + T + E'	-181	377	D+L+F+H'+T+E'	53	6.24							
						MMAT	10633	1.4D + 1.4F + 1.7H + 1.7W	0	1068										
				-		MMAC	10633 13564	D+L+F+H'+T+E' D+L+F+H'+T+E'	-150	1935 519		_								
						MICM	13564	D+L+F+H+T+E D+L+F+H'+T+E	-199	2116	-									
		Ea	ast-West	3H.6-125	3-H-L	MMAT	10615	1.4D + 1.4F + 1.7H + 1.7W	0	1399	D + L + F + H' + T + E'	97	7.8							
						MMAC	10617	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-164	2525										
						мтсм	10776	D + L + F + H' + T + E'	61	484										
	Bottom				4-H-L	MCCM	10699	D + L + F + H' + T + E'	-154	123	D+L+F+H'+T+E'	115	6.24							
					*****	MMAT	10833	1.4D + 1.4F + 1.7H + 1.7W	1	1113	Dirtinitie.	110	0.24							
				ļ		MMAC	10833	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-130	1927										
						мтсм	13481	D + L + F + H + T + E'	227	288										
					5-H-L	MCCM	10695	D + L + F + H' + T + E'	-113	67	D+L+F+H'+T+E'	138	7.8							
						MMAT	13646	D+L+F+H'+T+E'	-8	926										
		-				MMAC	13646	1.4D + 1.4F + 1.7H + 1.7W	-8	200		-								
						MCCM	13490	D+L+F+H+T+E	-136	135										
					1-V-L	MMAT	13549	D+L+F+H+T+E	225	621	D + L + F + H' + T + E'	35	7.8							
						MMAC	13467	1.4D + 1.4F + 1.7H + 1.7W	-54	685	-									
		Nor	rth-South	3H.6-126		мтсм	10517	D + L + F + H' + T + E'	62	449										
					2-V-L	MCCM	9659	D + L + F + H + T + E	-197	282	D+L+F+H'+T+E'	124	6.24							
					e	MMAT	10775	D + L + F + H + T + E'	1	915	DECEMBER	124	0.44							
						MMAC	10791	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-143	1959										

Table 3H.6-8 Results of UHS/RSW Pump House Concrete Slab Design

3H-177

Rev. 07

Final Safety Analysis Report

seu		tion	out	ement mber ⁽²⁾	Forces	eut	Axial and Flexu		al Reinforcement Design Loads		ds	Longitudinal Reinforcement		Transverse Shear	Re				
Thickness	Face	Directio	einforcem Layout wing Numl	Reinforc Zone Nu	mmu	Elem	Load	Axial (4)	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load Combination	Horizonta Transverse Shear Force	I Section Corresponding Axial Force	Vertical Section Transverse Shear Force Corresponding Axial Force		Reinforcement Provided (in²/ft²)	Re
_		_	R Dra	ε ų	Wa:		Combination	(kips / ft)	(ft-kips / ft)	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					MTCM MCCM	13552	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W D + L + F + H' + T + E'	315	288										
	Botton	m North-Sou	h 3H.6-126	3-V-L	MCCM	13470		-155	965	D + L + F + H' + T + E'	50	7.8							
10					MMAT	13470	D + L + F + H' + T + E' 1.4D + 1.4F + 1.7H + 1.7W	-65	892										
	_	Transvers		1-T	MMAC .	134/0	1.4D + 1.4F + 1.7H + 1.7W	-65					1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-155	-37	199	-31	0.31	
		(East-Wes and North South)	3H.6-126A	2-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-155	-37	-6	-31	0.31	
_	_	South)		21	MTCM	13046	D+L+F+H'+T+E'	49	-16				IND THE THE THE INTERN	2.74	-141	-0	-55	0.6	-
					MCCM	13105	D+L+F+H'+T+E'	-332	-16										
		East-Wes	3H.6-127	1-H-L	ммат	12434	1.4D + 1.4F + 1.7H + 1.7W		-64	D + L + F + H + T + E'	98	3.81							
					MMAC	12434	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-34	-68										
	Тор	·	-		MTCM	13129	D+L+F+H'+T+E'	31											-
					MCCM	12660	D+L+F+H'+T+E'	-294	-6										
		North-Sou	h 3H.6-128	1-V-L	MMAT	12389	1.4D + 1.4F + 1.7H + 1.7W	0	-32	- D+L+F+H'+T+E'	87	2.54							
						13046	D+L+F+H'+T+E'	-126	-36										
1.75	-				MTCM	12649	D + L + F + H (Internal Flood)	74	7										-
					MCCM	13105	D+L+F+H'+T+E'	-332	0		98								
		East-Wes	3H.6-129	1-H-L	MMAT	12907	1.4D + 1.4F + 1.7H + 1.7W	1	18	D + L + F + H' + T + E'		2.54							
					MMAC	12970	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-42	19										
	Bottor	m			MTCM	13129	D + L + F + H' + T + E'	31	5										
					MCCM	12660	D + L + F + H' + T + E'	-294	4										
		North-Sou	h 3H.6-130	1-V-L	MMAT	13052	D + L + F + H (Internal Flood)	1	15	D + L + F + H + T + E' 87	87	2.54		· · · · · · ·					
					MMAC	13052	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-103	25										
					MTCM	13149	D + L + F + H' + T + E'	381	-399										
					MCCM	13149	D + L + F + H' + T + E'	-281	-241										
				1-H-L	MMAT	13149	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	42	-1286	D + L + F + H' + T + E' 187	8		•				-		
					MMAC	13147	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-80	-1134										
					MTCM	13197	1.4D + 1.7F + 1.3H + 1.4To	926	-377										
					MCCM	13251	D + L + F + H' + T + E'	-701	-1499										
				2-H-L	MMAT	13251	D + L + F + H' + T + E'	402	-2467	D + L + F + H' + T + E'	63								(8)
					MMAC	13251	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-93	-2443										
					MTCM	11989	1.4D + 1.7F + 1.3H + 1.4To	562	-572	D+L+F+Hf+T+E' 101									
				3-H-L	MCCM	12117	D + L + F + H' + T + E'	-858	-542										
				3-H-L	MMAT	11319	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	77	-3055		101								
10	Тор	East-Wes	3H.6-131		MMAC	11319	D + L + F + H' + T + E'	-17	-3014										
10	rop	. 635-YV69			MTCM	11961	1.4D + 1.7F + 1.3H + 1.4To	447	-1446										
				4-H-L	MCCM	12124	D + L + F + H' + T + E'	-229	-351	D+L+F+H+T+E'	104	16							
					MMAT	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	166	-4436			10							
					MMAC	11317	D + L + F + H' + T + E'	-44	-3565										
					MTCM	11465	1.4D + 1.7F + 1.3H + 1.4To	200	-580										
				5-H-L	MCCM	11467	D + L + F + H' + T + E'	-112	-121	D+L+F+H+T+E	104	8	.	.					
					MMAT	11463	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	171	-1140	-									
					MMAC	11933	D + L + F + H' + T + E'	-25	-979										
					MTCM	11958	1.4D + 1.7F + 1.3H + 1.4To	662	-2670										
				6-H-L	MCCM	11958	D + L + F + H' + T + E'	-310	-1252	D+L+F+H'+T+E'	104	24							
					MMAT	11958	D + L + F + H' + T + E'	410	-4583										
					MMAC	11958	D + L + F + H' + T + E'	-17	-4200										

3H-178

Rev. 07

STP 3 & 4

				er ⁽¹⁾	ent (2)	(3)		Longitudinal Reinforcement Design Loads							Transverse Shear Design Loads					
Thickness (ft)	£	Face	Direction	yout Numb	umbe	a Forc	mont	Axial and Flexe	ure Loads	In-Plane Shear Loads			Longitudinal Reinforcement Provided		Transverse Shear Design Loads				Transverse Shear Reinforcement Provided	Remarks
The state	-		Dire	Reinforcem Layout rawing Numb	Reinforceme Zone Number	faximur	Elen	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Horizon Transverse Shear Force (kip / ft)	tal Section Corresponding Axial Force (kip / ft)	Vertica Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)	
				-		MTCM	11511	1.4D + 1.7F + 1.3H + 1.4To	344	-1199		(Kips / ft)			(KIP / TT)	(kip / tt)	(kip / π)	(kip / π)		
					7-H-L	MCCM	11511	D + L + F + H' + T + E'	-146	-724		78	16							
					7-11-L	MMAT	11500	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	187	-2818	D + L + F + H' + T + E'	/0	10							
							11510	D + L + F + H' + T + E'	-9	-2432										
						MTCM	11764	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	534	-3021										
					8-H-L		11764	D + L + F + H' + T + E'	-307	-1268	D+L+F+H'+T+E'	77	24							
							11764	D + L + F + H' + T + E'	337	-4002										
							11764	D + L + F + H' + T + E' 1.4D + 1.7F + 1.3H + 1.4To	-19 247	-3665 -502										
							10977	D+L+F+H'+T+E'	-172	-502			4 8							
					9-H-L		10971	D+L+F+H'+T+E'	90	-1467	D+L+F+H'+T+E'	104								
							10971	D+L+F+H'+T+E'	-49	-1467										
						MTCM	11407	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	538	-3374	-									
10						мссм	11407	D + L + F + H' + T + E'	-340	-1048										
					10-H-L	MMAT	11407	D + L + F + H' + T + E'	335	-4724	D+L+F+H'+T+E'	104	24		Image: selection of the selection					
						MMAC	11407	D + L + F + H' + T + E'	-10	-4724										
						MTCM	11004	1.4D + 1.7F + 1.3H + 1.4To	233	-745										
					11-H-L		11004	D + L + F + H' + T + E'	-160	D + L + F + H' + T + E'	77	12								
							11005	D + L + F + H' + T + E'	101											
							11005	D + L + F + H' + T + E'	-2	-2616										
							11245	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	505	-3592										
					12-H-L		11245	D + L + F + H' + T + E'	-310	-1643	D + L + F + H' + T + E'	77	24							
							11245	D + L + F + H' + T + E'	326	-4418										
	> ·	Тор	East-West	3H.6-131			11050	1.4D + 1.7F + 1.3H + 1.4To	-4	-4410										
							11048	D+L+F+H'+T+E'	-118	-343			8							
					13-H-L	MMAT	11050	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	187	-1179	D + L + F + H' + T + E'	104	8						· ·	
						MMAC	11048	D + L + F + H' + T + E'	-6		-986									
						MTCM	11776	1.4D + 1.7F + 1.3H + 1.4To	262	-1079	D+L+F+H'+T+E' 72									
						мссм	11776	D + L + F + H' + T + E'	-127	-643		72	16							
					14-H-L	MMAT	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	209	-3554										
						MMAC	11158	D + L + F + H' + T + E'	H' + T + E' -4 -2709											
						MTCM	11771	1.4D + 1.7F + 1.3H + 1.4To	174	-178										
[15-H-L		11718	D + L + F + H' + T + E'	-114	-569	D+L+F+H'+T+E'	69	8							
							11773	D + L + F + H' + T + E'	58	-1791										1
							11773	D + L + F + H' + T + E'	-5		-1791	_			· · · · · · · · · · · · · · · · · · ·					
[11914	1.4D + 1.7F + 1.3H + 1.4To	244	-538										
					16-H-L		11139	D + L + F + H' + T + E' 1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-105	-137 -2315	D+L+F+H'+T+E'	69	12		Image: selection of the se				· · ·	
							11852	D+L+F+H'+T+E'	-5	-2315										
					<u> </u>		11157	1.4D + 1.7F + 1.3H + 1.4To	164	-705		-								
							11205	D+L+F+H'+T+E'	-98	-81										
					17-H-L	MMAT	11157	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	66	-1269	D + L + F + H' + T + E'	69	8						· · ·	
						MMAC	11205	D + L + F + H' + T + E'	-24	-1222										
						MTCM	11225	1.4D + 1.7F + 1.3H + 1.4To	232	-751										
					18-H-L	мссм	11263	D + L + F + H' + T + E'	-165	-756	D+L+F+H'+T+E'	72	12							
					10-M-L	MMAT	11222	D + L + F + H' + T + E'	106	-2950	D+L+F+H+1+E	12	12						· · · · · · · · · · · · · · · · · · ·	
						MMAC	11222	D + L + F + H' + T + E'	-9	-2950 -2868	-							1		

Rev. 07

STP 3 & 4

	.	Face	-	ent ()	¥ 8,	5e8 ⁽³⁾		Longitudinal Reinforcement Design Loads						Texaningen Chave Dealers Landa						
cation	£		Direction	yout Numb	umbe	n Fort	l ment	Axial and Flexure Loads		In-Plane Shear Loads		Longitudinal Reinforcement Provided	Transverse Shear Design Loads							
Thic			ā	Reinforcen Layout swing Num	Reinfc Zone h	laximur	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load In-plane (5) Combination Shear	(in²/ ft)	Load Combination	Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	Reinforcement Provider (in²/ft²)		
		_		<u> </u>		≥ MTCM	11635	1.4D + 1.7F + 1.3H + 1.4To	930	-199		(kips / ft)			(kip / ft)	(kip/ft)	(kip / ft)	(kip / ft)		
						MCCM	10961	D+L+F+H'+T+E'	-674	-88										
			East-West	3H.6-131	19-H-L	MMAT	11041	1.4D + 1.7F + 1.3H + 1.4To	442	-966	D + L + F + H' + T + E'	21	16						· ·	
						MMAC	11041	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-100	-1191										
						MTCM	4577	1.4D + 1.7F + 1.3H + 1.4To	899	-105										
						мссм	8336	D + L + F + H' + T + E'	-740	-67	-								1	
					1-V-L	MMAT	13146	D + L + F + H' + T + E'	125	-1388	D + L + F + H' + T + E'	39	16							
						MMAC	13146	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-648	-1840	-									
						MTCM	11956	1.4D + 1.4F + 1.7H + 1.7W	213	-40										
						MCCM	11940	D+L+F+H'+T+E'	-179	-950										
					2-V-L	MMAT	11944	D+L+F+H+T+F		-1261	D + L + F + H' + T + E'	51	8		· ·	· ·				
						MMAC	11746	D+L+F+H'+T+E'	-36	-1236	-									
						MTCM	13246	D+L+F+H'+T+E'	250	-523							+			
						MCCM	13246	D+L+F+H'+T+E'	-539	-748	D + L + F + H' + T + E'	184	8							
					3-V-L	MMAT	13246	D+L+F+H'+T+E'	53	-1003										
						MMAC	13246	D+L+F+H'+T+E'	-150	-1003	-									
						MTCM	12085	14D+14E+17H+17W	261	-1003										
						MCCM	12117	D+L+F+H+T+E	-304	-780	-									
					4-V-L	MCCM	12097	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-304	-760	D + L + F + H' + T + E'	184	8							
						MMAT	12097	1.4D + 1.7E + 1.7F + 1.7H + 1.7W	-186	-1609										
						MTCM MCCM	12060	1.4D + 1.4F + 1.7H + 1.7W D + L + F + H' + T + E'	-450	-2087 -629										
Confd					S-V-L	MCCM	12060	D+L+F+H'+T+E'	-450	-629	D + L + F + H' + T + E'	117	16						· ·	
n Mat						MMAT	12060													
ndato 1	10	Тор						D + L + F + H' + T + E'	-22	-2756										
an Fou						MTCM	12109	1.4D + 1.4F + 1.7H + 1.7W	494	-2535										
HS Bar			North-South	3H.6-132	6-V-L	MCCM	12109	D + L + F + H' + T + E'	-475	-724	D + L + F + H' + T + E'	184	24							
2						MMAT	12109	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	398	-3394	-									
						MMAC	12109	D + L + F + H' + T + E'	-6	-3043		_								
						MTCM	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	696	-4489										
					7-V-L	мссм	11332	D + L + F + H' + T + E'	-322	-512	D + L + F + H' + T + E'	148	24							
						MMAT	11317	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	696	-4489	-									
						MMAC	11317	D + L + F + H' + T + E'	-3	-3949										
						MTCM	11395	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	274	-1481	-									
					8-V-L	MCCM	11393	D + L + F + H' + T + E'	-158	-771	D+L+F+H'+T+E'	60	16							
						MMAT	11245	D + L + F + H' + T + E'	99	-3775	-									
						MMAC	11407	D + L + F + H' + T + E'	-2	-3520										
						MTCM	11776	1.4D + 1.7F + 1.3H + 1.4To	257	-1507										
					9-V-L	MCCM	11974	D + L + F + H' + T + E'	-191	-231	D + L + F + H' + T + E'	61	16							
						MMAT	11958	D + L + F + H' + T + E'	133	-3670	-									
						MMAC	11958	D + L + F + H' + T + E'	-54	-3326										
						MTCM	11794	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	324	-824										
					10-V-L	MCCM	11975	D + L + F + H' + T + E'	-211	-36	D+L+F+H'+T+E'	88	12							
						MMAT	11779	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	274	-2157	-									
						MMAC	11779	D + L + F + H' + T + E'	-24	-1771										
						MTCM	11775	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	520	-2762	1									
					11-V-L	MCCM	11775	D + L + F + H' + T + E'	-282	-590	D+L+F+H'+T+E'	88	24							
						MMAT	11790	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	494	-3795			-							
							MMAC	11775	D+L+F+H+T+E	-22	-3398	1	1							

3H-180

Rev. 07

Final Safety Analysis Report

				int er ⁽¹⁾	t S	(t) 800			Longitudinal	Reinforcement De	sign Loads					Transverse Shear Design Loads				
kness	£	Face	Direction	yout Numb	rcemo	a Fore	ment	Axial and Flex	ure Loads		In-Plane Shear Loa	ds	Longitudinal Reinforcement Provided						Transverse Shear Reinforcement Provided	Remark:
Ě		۴. 	Die	Reinforceme Layout rawing Numb	Reinforcemo Zone Numbe	aximur	Eler	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	tal Section Corresponding Axial Force (kip / ft)	Vertica Transverse Shear Force (kip / ft)	Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
	-			<u> </u>		MTCM	11602	1.4D + 1.4F + 1.7H + 1.7W	251	-245		(kips / ft)			(kip / ft)	(kip / tt)	(kip / ft)	(kip / ft)		
					12-V-L	MCCM	11608	D + L + F + H' + T + E'	-202	-52	D+L+F+H'+T+E'	67	8							
					12-1-6	MMAT	11602	D + L + F + H' + T + E'	65	-953	D+C+F+H+I+E	67	0	•						
						NMAC	11602	D + L + F + H' + T + E'	-81	-953										
						мтсм	11842	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	342	-1802										
					13-V-L	MCCM	11842	D + L + F + H' + T + E'	-173	-432	D+L+F+H'+T+E'	67	16							
						MMAT	11838	D + L + F + H' + T + E'	95	-2785										
						MMAC	11838	D + L + F + H' + T + E'	-8	-2785										
				MTCM	11858	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	447	-474												
				14-V-L	MCCM	12054	D+L+F+H'+T+E'	-231	-43 -2066	D + L + F + H' + T + E'	117	16								
					MMAC	11858	D+L+F+H+T+E	-30	-2066											
					MTCM	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	687	-5307											
					MCCM	11839	D + L + F + H' + T + E'	-303	-311											
				15-V-L	MMAT	11854	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	675	-5331	D + L + F + H' + T + E'	117	28								
						MMAC	11839	D + L + F + H' + T + E'	-4	-3967										
						MTCM	11311	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	330	-343										
					16-V-L	MCCM	12118	D + L + F + H' + T + E'	-264	-43	D+L+F+H'+T+E'	184	8							
					10.04	MMAT	10846	D + L + F + H' + T + E'	75	-992	5-2-7-11-12	104	Ū							
	10 Top Nor					MMAC	11702	D + L + F + H' + T + E'	-121	-1085										
						мтсм	11859	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	354	-1316										
	10 Тор Ног			17-V-L	MCCM	11861	D + L + F + H' + T + E'	-177	-326	D+L+F+H'+T+E'	96	16								
						MMAT	11855	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	227	-3419										
1	10	Тор	North-South	3H.6-132		MMAC	11855	D + L + F + H' + T + E' 1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-4 724	-3071 -5436										
						MICM	11918	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-307	-5436										
					18-V-L	MMAT	11903	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	720	-5506	D + L + F + H' + T + E'	184	28							
						MMAC	11903	D+L+F+H'+T+E'	-3	-4321										
					<u> </u>	MTCM	11326	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	361	-686										
						MCCM	11326	D+L+F+H'+T+E'	-176	-159										
					19-V-L	MMAT	11390	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	260	-1488	D + L + F + H' + T + E'	120	12							-
						MMAC	10996	D + L + F + H' + T + E'	-21	-1322										
	10 Тор				MTCM	10922	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	308	-419											
				20-V-L	MCCM	11210	D + L + F + H' + T + E'	-124	-648	D+L+F+H'+T+E'	96	12								
						MMAT	11206	D + L + F + H' + T + E'	107	-2552										
						MMAC	11206	D + L + F + H' + T + E'	0	-2085										
						MTCM	11222	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	524	-2690										
					21-V-L	MCCM	11222	D + L + F + H' + T + E'	-262	-1058	D+L+F+H'+T+E'	85	24							
						MMAT	11222	D + L + F + H' + T + E'	308	-3746										
						MMAC	11222	D + L + F + H + T + E'	-16	-3617										
					MTCM	11801	1.4D + 1.7F + 1.3H + 1.4To D + L + F + H' + T + E'	-91	-884											
					22-V-L	MMAT	11880	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-91	-215	D + L + F + H' + T + E'	184	8						-	
					MMAC	11737	D+L+F+H'+T+E'	-3	-1024											
				<u> </u>	MTCM	11423	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	171	-242											
					MCCM	11263	D+L+F+H'+T+E'	-158	-822											
					23-V-L	MMAT	11253	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	3	-1518	D+L+F+H'+T+E'	42	8						-	-
						MMAC	11251	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-2	-1482					1					

3H-181

Rev. 07

Final Safety Analysis Report

Rev

É					l õ				Reinforcement Desi			Longitudinal			Transverse Shear Design Loads			
	Face	Direction	orcem ayout s Num	orcem	m For	Element	Axial and Flex			In-Plane Shear Loa		Longitudinal Reinforcement Provided			al Section	M	al Section	Transverse Shear Reinforcement Provided
		ő	Reinf L Drawing	Reinf Zone	Maximu	-	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)
					MTCM	5064	1.4D + 1.7F + 1.3H + 1.4To	856	-118		(oper op			(option)	(400p. 00p.	(of each	
	Тор		3H.6-132	24-V-L	MCCM	5041	D + L + F + H' + T + E'	-647	-76	D + L + F + H' + T + E'	29	16						
	гор	North-South	381.0-132	24-Y-L	MMAT	8318	1.4D + 1.7F + 1.3H + 1.4To	427	-1051	0*2********	29	16						
					MMAC	8318	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-109	-1322									
					MTCM	13149	D + L + F + H' + T + E'	381	843									
				1-H-L	MCCM	13149	D + L + F + H' + T + E'	-281	564	D + L + F + H' + T + E'	187	12						
					MMAT	13149	D + L + F + H' + T + E'	250	1101									
					MMAC	8344	1.4D + 1.4F + 1.7H + 1.7W	-10	919									
					MTCM	13205	1.4D + 1.7F + 1.3H + 1.4To	936	447									
		2-H-L	MCCM	13251	D + L + F + H' + T + E'	-701	606	D + L + F + H' + T + E'	63	16								
			MMAT	13150	1.4D + 1.4F + 1.7H + 1.7W	23	1666						-					
				MNAC	13150	1.4D + 1.7F + 1.3H + 1.4To	-74	1537										
					MTCM	12004	1.4D + 1.7F + 1.3H + 1.4To	585	74									
			3-H-L	MCCM	12117	D + L + F + H' + T + E'	-858	600	D + L + F + H' + T + E'	104	12							
					MMAT	11981	D + L + F + H' + T + E'	13	2884									
					MMAC	11981	D + L + F + H' + T + E'	-86	2884									
					MTCM	11325	1.4D + 1.7F + 1.3H + 1.4To	201	651									
				4-H-L	MCCM	12130	D + L + F + H' + T + E'	-237	109	D + L + F + H' + T + E'	101	8						
10		MMAT	8549	1.4D + 1.4F + 1.7H + 1.7W	33	1417												
		MMAC	8549	1.4D + 1.7F + 1.3H + 1.4To	-70	1320												
					MTCM	12123	1.4D + 1.7F + 1.3H + 1.4To	229	665									
10	5-H-L	MCCM	12124	D + L + F + H' + T + E'	-230	1608	D + L + F + H' + T + E'	104	12									
			MMAT	11317	D + L + F + H' + T + E'	14	2464											
10					MMAC	11317	D + L + F + H' + T + E'	-69	2464									
			MTCM	11464	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	197	210											
в		3H.6-133	6-H-L	MCCM	11486	D + L + F + H' + T + E'	-113	509	D + L + F + H' + T + E'	104	8							
					MMAT	11944	D + L + F + H' + T + E'	26	1268									
				MMAC	11944	D + L + F + H' + T + E'	-29	1268										
				MTCM	11958	D+L+F+H'+T+E'	429	947										
				7-H-L	MCCM	11958	D + L + F + H' + T + E'	-310	2798	D + L + F + H' + T + E'	104	16						
					MMAT	11958 11958	D+L+F+H'+T+E'	-102	3328 3328									
				MINAC	11958	1.4D + 1.7F + 1.3H + 1.4To	-102											
10 East-West 3H-6-132							278											
		8-H-L	MCCM MMAT	11511	D+L+F+H'+T+E' D+L+F+H'+T+E'	-146 60	2167	D + L + F + H' + T + E'	78	12								
					MMAI	11546	D+L+F+H'+T+E'	-57	2167									
					MTCM	11546	D+L+F+H+T+E	-57	1776									
					MCCM	11/64	D+L+F+H'+T+E'	-307	2660									
				9-H-L	MICOM	11764	D+L+F+H'+T+E'	229	3272	D + L + F + H' + T + E'	77	16						
		MMAC	11764	D+L+F+H'+T+E'	-82	3272												
					MTCM	11775	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	210	1506									
					MCCM	11763	D+L+F+H'+T+E'	-170	1119									
		10-H-L	MMAT	11762	D+L+F+H'+T+E'	87	2273	D + L + F + H' + T + E'	72	12								
			MMAC	11762	D+L+F+H+T+E	-11	2273											
				<u> </u>	MTCM	11993	1.4D + 1.7F + 1.3H + 1.4To	372	357									
					MCCM	10977	D+L+F+H'+T+E'	-172	156									
				11-H-L	MMAT	11143	D+L+F+H'+T+E	-172	2215	D + L + F + H' + T + E'	104	12		· ·				
					MMAT	11143	D+L+F+H'+T+E'	-44	2215									

3H-182

Details and Evaluation Results of Seismic Category 1 Structures

Rev. 07

Final Safety Analysis Report

Re

STP

3 & 4

				ent 101 (1)	ant 2)	oes ⁽³⁾			Longitudinal	Reinforcement Desig	an Loads		1			Transverse Shear Design Loads				
hicknee	£	Face	Direction	yout Numt	umbe	n Foe	ment	Axial and Flexi	re Loads		In-Plane Shear Loa		Longitudinal Reinforcement Provided (in ² / ft)						Transverse Shear Reinforcement Provided	Remarks
		-	ă	Reinforcem Layout Drawing Numl	Reinforcem Zone Numb	Maximu	Elen	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in ² / ft)	Load Combination	Horizon Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	Vertical Transverse Shear Force (kip / ft)	Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
						MTCM	11407	D + L + F + H' + T + E'	343	2208										
					12-H-L	мссм	11407	D + L + F + H' + T + E'	-340	3102	D+L+F+H'+T+E'	104	16							
					124PL	MMAT	11407	D + L + F + H' + T + E'	238	3436	0+0+0+0+0+0	104								
						MMAC	11407	D + L + F + H' + T + E'	-103	3436										
						MTCM	10994	1.4D + 1.7F + 1.3H + 1.4To	217	454										
					13-H-L	MCCM	11014	D + L + F + H' + T + E'	-173	1025	D + L + F + H' + T + E'	78	12							
						MMAT	10990	D + L + F + H' + T + E'	59	1891										
		East-West 34.6-132				MMAC	10990	D + L + F + H' + T + E'	-34	1891										
						MTCM	11245	D + L + F + H' + T + E'	333	1780										
		East-West 3H-6-13		14-H-L	мссм	11245	D + L + F + H' + T + E'	-310	2419	D + L + F + H' + T + E'	77	16								
					MMAT	11245	D + L + F + H' + T + E'	212	3412											
		East-Wes		3H.6-133		MMAC	11245	D + L + F + H' + T + E' 1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-114	3412 543										
						MICM	11051	1.4D+1.7L+1.7F+1.7H+1.7W	-121	461										
					15-H-L	MMAT	5042	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-121	1244	D + L + F + H' + T + E'	104	8						-	
						MMAC	8324	14D + 14F + 17H + 17W	-12	1514										
						MTCM	11912	1.4D + 1.7F + 1.3H + 1.4To	233	119										
						MCCM	11263	D+L+F+H'+T+E'	-165	115										
					16-H-L	MMAT	8118	1.4D + 1.4F + 1.7H + 1.7W	42	1701	D + L + F + H' + T + E'	60	8						-	-
						MMAC	8118	1.4D + 1.7F + 1.3H + 1.4To	-33	1636										
						MTCM	11616	1.4D + 1.7F + 1.3H + 1.4To	933	456										
						мссм	11555	D + L + F + H' + T + E'	-684	223										
				17-H-L	MMAT	4586	1.4D + 1.4F + 1.7H + 1.7W	21	1827	D + L + F + H' + T + E'	21	16								
						MMAC	5036	1.4D + 1.7F + 1.3H + 1.4To	-20	1769										
	10 1	Bottom				MTCM	4576	1.4D + 1.7F + 1.3H + 1.4To	904	132										
					1-V-L	мссм	8336	D + L + F + H' + T + E'	-740	124	D+L+F+H'+T+E'	39	16							
					11110	MMAT	4586	1.4D + 1.4F + 1.7H + 1.7W	9	1902	010111111									-
						MMAC	4586	1.4D + 1.7F + 1.3H + 1.4To	-23	1848										
						MTCM	11958	1.4D + 1.4F + 1.7H + 1.7W	219	157										
					2-V-L	MCCM	11940	D + L + F + H' + T + E'	-162	222	D + L + F + H' + T + E'	51	8							
						MMAT	11458	1.4D + 1.4F + 1.7H + 1.7W	23	1784										
						MMAC	11456	1.4D + 1.7F + 1.3H + 1.4To	-58	1723										
						MTCM	11957	1.4D + 1.4F + 1.7H + 1.7W	256	30										
					3-V-L	мссм	12110	D + L + F + H' + T + E'	-264	1522	D + L + F + H' + T + E'	117	8							
						MMAT	12111	D+L+F+H'+T+E' D+L+F+H'+T+E'	-162	1690										
			North-South	3H.6-134		MNAC	12111	D+L+F+H'+T+E'	-162 250	1792		-								
						MCCM	13246	D+L+F+H'+T+E'	-539	165										
					4-V-L	MMAT	113246	D+L+F+H'+T+E'	-0.30	2223	D + L + F + H' + T + E'	184	12	-						
						MMAC	11319	D+L+F+H'+T+E'	-23	2223										
					<u> </u>	MTCM	11373	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	202	415		+								
						MCCM	11353	D+L+F+H'+T+E'	-95	537										
					5-V-L	MMAT	13208	1.4D + 1.4F + 1.7H + 1.7W	2	1481	D + L + F + H' + T + E'	96	8	-						-
						MMAC	13206	1.4D + 1.4F + 1.7H + 1.7W	-9	1498										
						MTCM	11981	1.4D + 1.4F + 1.7H + 1.7W	394	751										
						мссм	11996	D + L + F + H' + T + E'	-389	1947										
					6-V-L	MMAT	11958	D + L + F + H' + T + E'	68	3269	D + L + F + H' + T + E'	88	12					•		
						MMAC	11958	D + L + F + H' + T + E'	-26	3269										

Rev. 07

Final Safety Analysis Report

ssau ()	8	tion	cement out umber ⁽¹	sement mber ⁽²⁾	Forces ⁽³	eut	Axial and Flexur		Reinforcement Des	sign Loads In-Plane Shear Load	\$	Longitudinal Reinforcement Provided			Transverse Shear Design Loads			Transverse Shear	Re
Thicknes (ft)	Face	Direc	Reinforcem Layout awing Num	Reinforcer Zone Numi	aximum	Elem	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Provided (in ² / ft)	Load Combination	Transverse Shear Force	tal Section Corresponding Axial Force	Vertica Transverse Shear Force	Corresponding Axial Force	Reinforcement Provided (in²/ft²)	Re
			ő		≦ MTCM	11332	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	566	860		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		+
					MCCM	12109	D+L+F+H'+T+E'	-475	2095										
				7-V-L	MMAT	11317	D+L+F+H'+T+E	249	3608	D + L + F + H' + T + E'	184	16				-			
					MMAC	11317	D+L+F+H+T+E	-82	3608										
					MTCM	10936	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	316	1268										+
					MCCM	11376	D+L+F+H'+T+E'	-153	758										
				8-V-L	MMAT	10923	D+L+F+H'+T+E'	134	1979	D + L + F + H' + T + E'	96	12	•				•	•	
					MMAC	10937	D+L+F+H'+T+E	-1	1778										
					MTCM	11396	1.4D + 1.7L + 1.7F + 1.7H + 1.7W	433	721										+
					MCCM	11396	D+L+F+H'+T+E'	-305	2430										
				9-V-L	MMAT	11407	D+L+F+H'+T+E'	103	3498	D + L + F + H' + T + E'	85	16							
					MMAC	11396	D+L+F+H'+T+E	-47	3039										
	Bottom	North-South	3H.6-134		MTCM	11799	1.4D + 1.7F + 1.3H + 1.4To	187	246										+
	Softom North				MCCM	11853	D+L+F+H'+T+E'	-118	862										
				10-V-L	MMAT	11220	D+L+F+H'+T+E'	94	1660	D + L + F + H' + T + E'	184	8							
10					MMAC	11220	D+L+F+H'+T+E'	-2	1449										
					MTCM	11423	1.4D + 1.7F + 1.3H + 1.4To	191	124										+
					MCCM	11263	D + L + F + H' + T + E'	-146	33										
				11-V-L	MMAT	11041	1.4D + 1.4F + 1.7H + 1.7W	39	1625	D + L + F + H' + T + E'	42	8					•	•	
					MMAC	11041	1.4D + 1.7F + 1.3H + 1.4To	-41	1557										
					MTCM	5048	1.4D + 1.7F + 1.3H + 1.4To	870	293										+
					MCCM	5063	D + L + F + H' + T + E'	-657	208										
				12-V-L	MMAT	5036	1.4D + 1.4F + 1.7H + 1.7W	11	1867	D + L + F + H' + T + E'	29	16					-		
					MMAC	5036	1.4D + 1.7F + 1.3H + 1.4To	-18	1834										
				1-T									D+L+F+H'+T+E'	-274	391	45	22	0.44	+
				2-T									1.4D + 1.4F + 1.7H + 1.7W	-199	19	-197	35	0.31	+
	Transa (East-) and N Sout	-		3-T									D+L+F+H'+T+E'	-455	143	-481	627	1.76	t
		(East-West and North-	3H.6-134A	4-T									D + L + F + H' + T + E'	-171	311	-78	103	0.2	1
		South)		5-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-270	157	-231	127	0.79	t
				6-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-273	427	-17	74	0.6	t
				7-T									1.4D + 1.7L + 1.7F + 1.7H + 1.7W	-235	309	350	147	2.4	T
					MTCM	9892	D + L + F + H' + T + E'	130	-3										T
		East-West	3H.6-135	1-H-L	MCCM	10495	D + L + F + H' + T + E'	-121	-20	D+L+F+H'+T+E'	69	3.81							
		East-west	38.6-135	1-0-6	MMAT	9849	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	24	-65		60	3.01							
	Тор				MMAC	10508	D + L + F + H' + T + E'	-38	-68										
	Top				MTCM	10495	D + L + F + H' + T + E'	311	-104										Γ
		North-South	3H.6-138A	1-V-L	MCCM	10495	D + L + F + H' + T + E'	-337	-26	D + L + F + H' + T + E'	67	3.81							
		NOTOPOODE	5110-150K	1.1.1.	MMAT	10495	D + L + F + H' + T + E'	286	-105	Dictrinitie	0,	0.01							
1.75					MMAC	10495	D + L + F + H' + T + E'	-198	-105										
1.75					MTCM	10317	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	149	36										
		East-West	3H.6-1368	1-H-L	MCCM	9824	D + L + F + H' + T + E'	-123	4	D+L+F+H'+T+E'	69	3.81							
		Eastweet	311,01300	1446	MMAT	10318	1.05D + 1.3L + 1.05F + 1.3H + 1.2T + 1.3W	91	54	Deception	00								
	Bottom				MMAC	10496	D + L + F + H' + T + E'	-1	45										
	pound				MTCM	10495	D + L + F + H' + T + E'	311	44										
		North-Source	3H.6-136C	1-V-L	MCCM	10495	D + L + F + H' + T + E'	-330	107	D+L+F+H'+T+E'	67	3.81							
		- Shursouth			MMAT	10495	D + L + F + H' + T + E'	132	112	DICITION									
					MMAC	10495	D + L + F + H' + T + E'	-297	112										

3H-184

Details and Evaluation Results of Seismic Category 1 Structures

Rev. 07

Final Safety Analysis Report

STP 3 &

4

ssau (8 5	cement out lumber (1)	Forces ⁽³⁾	Element	Axial and Fi	-	forcement Design Loads	s In-Plane Shear Loa	ds R	Longitudinal Reinforcement Provided (in ² / ft)			Transverse Shear Design L	oads			Transverse Shear Reinforcement Provided	Remarks
Thickness (ft)	Face	Reinfor Lay Trawing N	Zone Ni Zone Ni ñaximum	Eler	Load Combination		Flexure ⁽⁴⁾ ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Provided (in²/ ft)	Load Combination	H Transverse Shear Force (kip / ft)	Horizontal Section e Corresponding Axial Fo (kip / ft)	Force Transverse 5 (kip	Vertical Sectio Shear Force C	on Corresponding Axial Force (kip / ft)	(in ² /ft ²)	-cemarks
_																		
зө. ieri	einforcement layout c	awing is dividend	zones used to define the	ne minimum reinforceme.	nt that will be provided based on f	n finite element analysis resi " = horizontal, "V" = vertical,		rnent. "T" = +	bar layout may exceed th.	reported provided reinfc	roement and the zones with highs	r reinforcement may be extended b	beyond their reported boundaries.					
The n	reinforcement layout o maximum tension (MTC nding cell.	drawing is divided into rein CM) and compression (MC	CM) axial forces are pr	rovided with the correspo	ning convention is as follows: "H" = conding moment from the same los			mesponding tension (MMA	T) in the same load comb	sination and the maximum	m moment that has a correspondin	g compression (MMAC) in the sam	he load combination are also provided. H	For zones where either axial tens	ion or axial compression of	toes not occur for any load con	ombination, dashes are input into the	
Negal	tive axial load is comp		il load is tension. Negativ		ion to the top face of the shell elen	ment and positive moment	applies tension to the both	om face of the shell elemer	nt.									
	eported in-plane shear USED.	τ is the maximum average.	ր in-plane shear along շ	a plane that crosses the I.	longitudinal reinforcement zone.													
The P	Pump House Operating	g Floor and Roof slab thick																
For o	ertain areas of the stru	ucture, the standard element	ent post-processing met	sthods were too conservat	ative. For such cases, detailed man		d and the design forces de	vtermined by the detailed m	tanual design are provide	d in the table.								
ne	verse reinforcem	ror me UHS Basin and	Pump House Bu		a maximum center-to-center spacin	ng 01 #°.												

Rev. 07

		Number					Design Lo	oads			I	Reinforcement		1
		t Nur			Axial (kips)	Mo	ments (ft-	kips)	Shear	r (kips)	Longitudinal	Tran	sverse	
Location	Item	Critical Element	Load Combination	Maximum Forces	р	M2	M3	Torsion	V2	V3	Provided (in ²)	Provided x-direction	Provided y-direction	Remarks
		516	1.4D+1.7L+1.7F+1.7H+1.7W	Maximum axial compression with corresponding forces	-2687	-1473	904	-		9	148.5	7#5 @4"0.C	7#5 @4"0.C	
		487	D+Lo+F+H'+To+E"	Maximum axial tension with corresponding forces	348	1148	465	1.4	-		148.5	7#5 @4"0.C	7 # 5 @ 4" O.C	
	Columns	510	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	-1066	-9127	1990	4	÷	-	148.5	7#5 @4"0.C	7#5 @4*0.C	Local Axis definition: 1 = vertical 2 = east-west
	io.	506	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-630	834	7298			14	148.5	7.#5 @ 4" O.C	7#5 @4"0.C	3 = north-south Transverse reinforcement
	5' X	506	D+Lo+F+H'+To+E'	Maximum V2	2411	3		- 64	212	-	148.5	7#5 @4"0.C	7#5 @4"0.C	 includes one closed loop what accounts for two legs in eac direction.
		510	D+Lo+F+H'+To+E'	Maximum V3	DO STAT	191		40	4	-278	148.5	7 # 5 @ 4" O.C	7#5 @4"0.C	
		505	D+Lo+F+H'+To+E'	Maximum Torsion	1.00	4	-	-652	6	4	148.5	7#5 @4"0.C	7#5 @4" O.C	
		518	1.4D+1.7L+1.7F+1.7H+1.7W	Maximum axial compression with corresponding forces	-4746	-2484	822		L.	-	175.5	13#5 @ 4" O.C	7#5 @4*0.C	
		497	D+Lo+F+H'+To+E'	Maximum axial tension with corresponding forces	645	2639	2900		•	-	175.5	13 # 5 @ 4" O.C	7#5 @4"0.C	
sin	Columns	496	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	-2509	-13456	-10148	1.9	-		175.5	13#5 @4"0.C	7#5 @4"0.C	Local Axis definition: 1 = vertical 2 = east-west
UHS Basin	x 12' Col	518	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-3435	3346	30990	i e	120	16.1	175.5	13#5 @ 4" O.C	7 # 5 @ 4" O.C	3 = north-south Transverse reinforcement includes one closed loop with
	5' X	518	D+Lo+F+H'+To+E'	Maximum V2	1 a.c.	0	8	1	453		175.5	13#5 @4"0.C	7#5 @4*0.C	accounts for two legs in eac direction.
		496	D+Lo+F+H'+To+E'	Maximum V3		$\langle \cdot \rangle$	- +)	•	•	-398	175.5	13#5 @4"0.C	7 # 5 @ 4" O.C	
		497	D+Lo+F+H'+To+E'	Maximum Torsion		-		-980		94	175.5	13 # 5 @ 4" O.C	7#5 @4*0.C	
		16	D+Lo+F+H'+To+E'	Maximum axial compression with corresponding forces	-3313	-2968	-3215	4.1	÷	÷	155.16	8#5 @4" O.C.	6#5 @4" O.C.	
		16	D+Lo+F+H'+To+E'	Maximum axial tension with corresponding forces	5158	1054	2155		7	9	155.16	8#5 @4° O.C.	6 # 5 @ 4" O.C.	
	Beams	36	D+Lo+F+H'+To+E'	Maximum M2 moment with corresponding forces	947	-6596	44	16	4	13	155.16	8#5 @4*0.C.	6#5 @4" O.C.	Local Axis definition: 1 = north-south 2 = vertical
	x 4'-6" Be	16	D+Lo+F+H'+To+E'	Maximum M3 moment with corresponding forces	-1848	2332	6486	i e	÷	Q. (155.16	8#5 @4" O.C.	6#5 @4" O.C.	3 = east-west Transverse reinforcement
	4' X 4	16	D+Lo+F+H'+To+E'	Maximum V2	Tool C	-			663		155.16	8#5 @4*0.C.	6 # 5 @ 4" O.C.	includes one closed loop will accounts for two legs in eac direction.
		36	D+Lo+F+H'+To+E'	Maximum V3	0.00	10	+	1.34		798	155.16	8#5 @4*0.C.	6#5 @4" O.C.	
		403	D+Lo+F+H'+To+E'	Maximum Torsion		100	1.040	698		100	155.16	8#5 @4" O.C.	6#5 @4" O.C.	

Table 3H.6-9 Results of UHS/RSW Pump House Beams and Columns Design

3H-186

Rev. 07

STP 3 & 4

Final Safety Analysis Report

	Table 3H.	6-10 Tornado Missile	Impact Evaluations for UHS/RSW Pump House
Local Check		SW Pump House	Minimum Required Thickness to Prevent Penetration, Perforation and Scabbing = 12.9"
	vva	ans and Root	Minimum Provided Thickness = 18"
	Pump	Roof	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 168 Kips Minimum capacity = 188 Kips
Overall Check of	House	Walls	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 900 Kips Minimum capacity = 1772 Kips
Impacted Element		Fan Enclosure Walls	Flexure controls. Ductility demand = 0.522 < Ductility limit = 10
	UHS Basin	Basin Walls	Shear controls. Maximum impact load including Dynamic Load Factor (DLF) = 319 Kips Minimum capacity = 402 Kips
	Global Che	eck	Equivalent static impact forces are applied to the FEM analysis of the UHS/RSW Pump House. The analysis results presented in Tables 3H.6-7 and 3H.6-8 provide summary of the results for all load combinations including those applicable to tornado load combinations which include missile impact.

				the f	er ⁽²⁾				Longitudinal	Reinforcement I	Design Loads		Longitudinal			Transverse Shear Design Loads ⁽⁶⁾			
cation	Thickness (ft)	Face	Direction	ayout g Nur (1)	Aumb	Maximum Forces ⁽³⁾	Element	Axial and Flexu	re Loads		In-Plane Shear Loa		Longitudinal Reinforcement Provided			-			Transverse Shear ⁽⁷⁾ Reinforcement Provide
P	Ē	-	ā	Reinforcem Layout Drawing Nun (1)	Reinforcerr Zone Numb	Ma	ă	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	Vertic: Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(in²/ft²)
						мтсм	244	D+F+L+H+E	34	-71		(kips / ty			(0)/10/	(4)/10	(op / it)	(sp) sy	
					-	MCCM	2278	D+F+L+H+E	-78	-104									
					1441	MMAT	283	D+F+L+H+E	1	-374	D+F+L+H'+E'	24	3.12					-	
						MMAC	243	D+F+L+H+E	-15	-412									
						мтсм	2260	D+F+L+H'+E'	55	-220									
			utal	3		MCCM	34	D+F+L+H'+E'	-52	-39									
			Horize	3HB-	2.H-L	MMAT	99	D+F+L+H'+E'	5	-748	D+F+L+H+E	24	4.68						
						MMAC	99	D+F+L+H'+E'	-1	-748									
						мтсм	344	D+F+L+H'+E'	38	-341									
					4	MCCM	364	D+F+L+H'+E'	-00	-610									
					3-H-L	MMAT	363	D+F+L+H+E	8	-1693	D+F+L+H'+E'	24	9.36						
		en				MMAC	363	D+F+L+H+E	-11	-1693									
		Near				мтсм	2524	D+F+L+H+E	35	-85									
						мссм	174	D + F + L + H' +E'	-174	-61									
		Mer 104			1-14	MMAT	2525	D+F+L+H'+E'	20	-322	D + F + L + H +E'	27	3.12						
	Need Voted					MMAC	115	D+F+L+H'+E'	-63	-516									
						мтсм	377	D+F+L+H'+E'	38	-52									
				143	_	MCCM	231	D+F+L+H'+E'	-147	-9									
	Meri Veñid Stel-to				2-VL	MMAT	35	D+F+L+H'+E'	24	-416	D+F+L+H +E	27	4.68					-	-
						MMAC	225	1.4D + 1.4F +1.7L + 1.7H + 1.7W	-82	-688									
						мтсм	18	D + F + L + H' +E'	41	-123									
					_	мссм	117	1.4D + 1.4F +1.7L + 1.7H + 1.7W	-123	-432									
	۵				3-VL	MMAT	344	D+F+L+H'+E'	18	-966	D+F+L+H+E	27	6.24						
						MMAC	99	D+F+L+H'+E'	-36	-1131									
						мтсм	253	D+F+L+H'+E'	23	185									
					4	MCCM	2269	D + F + L + H' +E'	-52	138									
					1441	MMAT	109	D + F + L + H' +E'	13	388	D+F+L+H+E	24	3.12						
						MMAC	158	D + F + L + H' +E'	-22	445									
						MTCM	2299	D + F + L + H' +E'	82	512									
					4	MCCM	354	D+F+L+H'+E'	-83	853									
					2.H-L	MMAT	116	D+F+L+H'+E'	- 11	748	D+F+L+H+E	24	4.68					-	-
			Intel	4		MMAC	355	D + F + L + H' +E'	-74	940									
			Horizo	3H6-144		мтсм	40	D + F + L + H' +E'	64	688									
		ete			4	MCCM	377	D + F + L + H' +E'	-66	321									
		Fars			3.H-L	MMAT	40	D + F + L + H' +E'	48	918	D + F + L + H +E'	24	6.24						
						MMAC	378	D+F+L+H'+E'	-24	1215									
						мтсм	340	D + F + L + H' +E'	73	935									
					4	MCCM	364	D + F + L + H' +E'	-00	498									
					4H-L	MMAT	99	D+F+L+H'+E'	9	1437	D+F+L+H +E	24	7.8						-
						MMAC	99	D+F+L+H+E	-5	1437									
		1				мтсм	340	D+F+L+H+E	81	660									
				145	3	MCCM	194	D + F + L + H +E	-191	675	D+F+L+H +E'	27							
			Vert	3H6-	1-44	MMAT	61	D+F+L+H+E	18	1001	D+F+L+H+E	27	6.24						
						MMAC	295	D+F+L+H+E	-15	1102									

Table 3H.6-11 Results of DGFOS Vault Concrete Design

Final Safety Analysis Report

	-			per ent	ent .				Longitudina	Reinforcement	Design Loads		1			Transverse Shear Design Loads ⁽⁶⁾				
Location	Thickness (ft)	Face	Direction	binforcem Layout wing Num (1)	Aumbe	Maximum Forces ⁽³⁾	Element	Axial and Flexu	re Loads		In-Plane Shear Loan		Longitudinal Reinforcement Provided						Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remark
2	1 ⁴	-	ā	Reinfo Drawin	Reinforcen Zone Numt	Fe Wa		Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Transverse Shear Force	tal Section Corresponding Axial Force	Transverse Shear Force	I Section Corresponding Axial Force	(in²/₶²)	
	-		-			мтсм	2521	D+F+L+H+E	80	575		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
					-	MCCM	225	D+F+L+H'+E'	-300	1143										
					2.V·L	MMAT	383	D+F+L+H'+E'	67	978	D+F+L+H+E'	19	9.36		-				•	
						MMAC	243	D+F+L+H'+E'	-135	1808										
						MTCM	359	D+F+L+H+E	119	1130										
					3-4-1	MCCM	117	D+F+L+H+E	-285	1289	D+F+L+H+E'	27	10.92							
					3	MMAT	71	D + F + L + H' +E'	21	1812		-	10.92	-						
		Far side	Vertical	3HB-145		MMAC	221	D + F + L + H' +E'	-245	2135										
		2	-	SHE		мтсм	267	D+F+L+H+E	4	177										
	10				T,	MCCM	231	D+F+L+H+E	-303	1378	D+F+L+H+E	17	14.04							
					+	MMAT			-	-										
						MMAC	125	D+F+L+H'+E'	-248	2465										
						MTCM			1.1											
					74	MCCM	215	D + F + L + H' +E'	-268	2308	D+F+L+H+E	11	15.6							(8)
		· · · · · · · · · · · · · · · · · · ·				MMAT				•										
						MMAC	197	D+F+L+H'+E'	-246	2453										
					2	•	•	-	•	-		-		D+F+L+H+E	172	-123	27	-21	0.31 (5@12')	
			Trair (Nort	4HS	21	-		-	•	-	-	-		D+F+L+H'+E'	195	18	119	5	0.80 (4@6")	
						мтсм	553	D+F+L+H+E	70	-40										
			trontal	6-147	Ŧ	MCCM	553	D + F + L + H' +E'	-172	-14	D+F+L+H+E	40	3.12							(9)
			Hot	3H6	÷	MMAT	553	D+F+L+H'+E'	21	-53										
						MMAC	539	D+F+L+H'+E'	-92	-70										
						MTCM	401	D+F+L+H'+E'	41	-16										
					1-KT	MCCM	565	D+F+L+H+E	-141	-32	D+F+L+H+E'	60	1.58		-			-		
						MMAT	401	D + F + L + H' +E'	24	-31										
		Joar Side				MMAC MTCM	511	D+F+L+H+E D+F+L+H+E	-105	-118										
		2	_			MICM	554	D+F+L+H+E D+F+L+H+E	-185	-68										
			Vertical	3H6-148	2.VL	MMAT	539	D+F+L+H+E D+F+L+H+E	2	-00	D+F+L+H+E'	60	3.12		-		-	-		
						MMAC	539	D+F+L+H+E D+F+L+H+E	-85	-178										
	~	~				MTCM	566	D+F+L+H+E D+F+L+H+E	-00	-12										
						MCCM	566	D+F+L+H+E	-152	-152										
					3-ML	MMAT	566	D+F+L+H+F	3	-14	D+F+L+H+E	22	6.24		•					(8)
						MMAC	506	D+F+L+H+E	-104	-221										
		-	+			мтсм	399	D+F+L+H+E	18	4		+								
			in the second se	140	2	MCCM	553	D+F+L+H+E	-172	28										
			Horizo	3H.B-1	144	MMAT	556	D+F+L+H+E	3	67	D+F+L+H+E'	40	3.12		-	· ·	-	•		(9)
		\$				MMAC	565	D+F+L+H +E	-21	81										
		Fars				MTCM	554	D+F+L+H+E	81	24										
			3	12	1×1	MCCM	565	D+F+L+H+E	-114	- 11	D+F+L+H'+E'	60	1.50							
			Vertical	346	1	MMAT	565	D + F + L + H +E	71	24	U+F+L+R+E		1.00				-			
						MMAC	566	D+F+L+H'+E'	-35	24										
						мтсм	650	D+F+L+H'+E'	29	-13										
	5	Ste	zontal	3H6-151	Ŧ	MCCM	638	D + F + L + H +Wt	-58	-21	D+F+L+H+Wt	24	1.58							
		Near	Horia	3HE	2	MMAT	643	D+F+L+H+Wt	2	-38		-								
						MMAC	638	D+F+L+H+Wt	-54	-57										

Details and Evaluation Results of Seismic Category 1 Structures

3H-189

Rev. 07

Final Safety Analysis Report

Details and
and Evaluation
n Results of Seism
Seismic Ca
ategory 1
Structures

ion	500		ų	sement sut	amont nbor ⁽²⁾	₩6.	t	Axial and Flexu		Reinforcement	Design Loads In-Plane Shear Loa	ds	Longitudinal Reinforcement Provided			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾
Locat	Thickness (ft)	Face	Direction	Reinforceme Layout Drawing Numl (1)	Reinforcem Zone Numb	M admum Forces ⁽³⁾	Beme	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in²/ ft)	Load Combination	Transverse Shear Force	tal Section Corresponding Axial Force	Transverse Shear Force	Section Corresponding Axial Force	Reinforcement Provide (in ² /ft ²)
					- N	MTCM	574	D+F+L+H+E	(kips / ft) 7	(ft-kips / ft) -19	Combination	(kips / ft)		Combination	(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)	
			а	5		MCCM	574	D+F+L+H'+E'	-8	-0									
			łońzor	3H6-151	2HL	MMAT	574	D+F+L+H'+E'	7	-19	D+F+L+H+Wt	24	3.12	•	-				
						MMAC	574	D+F+L+H+E	-3	-13									
						мтсм	575	D+F+L+H+Wt	25	-8									
		ę			4	MCCM	575	D+F+L+H+E	-73	-8									
		Near			1-V-L	MMAT	588	D+F+L+H+E	16	-25	D + F + L + H +Wt	10	1.56					•	
			Vertical	3H6-152		MMAC	588	D + F + L + H' +E'	-6	-25									
			Men	3H6		мтсм	574	D+F+L+H'+E'	38	-36									
					2	MCCM	574	D+F+L+H'+E'	-84	-11	D+F+L+H+Wt	15	3.12						
					2-V-L	MMAT	574	D+F+L+H'+E'	34	-38	Derection	10	0.12						
						MMAC	574	D + F + L + H' +E'	-3	-38									
						мтсм	638	D+F+L+H+Wt	30	5									
					Ŧ	MCCM	651	D+F+L+H'+E'	-50	1	D+F+L+H+Wt	24	1.50						
0.0000	~	2 Neutronal			÷	MMAT	643	D+F+L+H'+E'	3	28									
0		46 Hectoorta				MMAC	672	D + F + L + H +Wt	-5	31									
			He	동		мтсм	574	D + F + L + H' +E'	5	6									
		es es			2HL	MCCM	574	D+F+L+H+Wt	-15	14	D+F+L+H+Wt	24	3.12						
					5	MMAT	574	D+F+L+H'+E'	2	18									
						MMAC	573	D+F+L+H+Wt	-8	35		_							
						мтсм	575	D+F+L+H+Wt	30	0									
					1-V-L	MCCM	575 575	D+F+L+H+E D+F+L+H+E	-73	8	D+F+L+H+Wt	16	1.56		-				
				<		MMAT	5/5	D+F+L+H+Wt	-65										
			Vertical	3H6-154A		MMAC	574	D+F+L+H+Wt	-00	24 21									
				÷		MCCM	574	D+F+L+H+Wt	-114	41									
					2-V-L	MMAT	574	D+F+L+H+Wt	1	28	D+F+L+H+Wt	15	3.12						
						MMAC	574	D+F+L+H+Wt	-114	41									
			South Vost	1548	5									D+F+L+H+E	-18	51	-28		0.44 (3@6")
		Tonoverie (Narth-South East-Weet)		3H6-	2									D+r+L+n+E	-10	51	-20	, ,	044 (380)
						мтсм	690	D+F+L+H+Wt	44	-12									
			rizott	3H.6-155	Ŧ	MCCM	695	D+F+L+H+Wt	-47	-8	D+F+L+H+Wt	37	1.56						
			Ť	ň		MMAT	771 768	D+F+L+H'+E D+F+L+H'+E	-8	-28									
		Mar Edu				MTCM	769	D+F+L+H+Wt	-0 63	-1									
		Mear Side Horizontal				MCCM	693	D+F+L+H+Wt	-63	2									
			Vertica		1-V-L	MMAT	731	D+F+L+H+E	0	-19	D+F+L+H+E	18	1.50						
						MMAC	768	D+F+L+H+Wt	-31	-19									
	2	A New Glass				MTCM	704	D+F+L+H+Wt	32	5									
				6		MCCM	787	D+F+L+H+Wt	-145	16									
				3H.6-1	Ŧ	MMAT	698	D+F+L+H+Wt	1	19	D+F+L+H+Wt	37	1.56						
						MMAC	732	D+F+L+H+Wt	-22	49									
		Far side Horiz			мтсм	711	D+F+L+H+Wt	27	0										
		Let side		8	7	MCCM	732	D+F+L+H+Wt	-170	15									
				3H.6-158	1-V-L	MMAT	732	D+F+L+H'+E'	5	17	D+F+L+H'+E'	18	1.56						
						MMAC	697	D+F+L+H+Wt	-43	43									

3H-190

Final Safety Analysis Report

Rev. 07

tion	Thickness (ft)	Face	tion	coment out Number	cement mber ⁽²)	unu 10	Element	Axial and Flexu		Reinforcement I	Design Loads In-Plane Shear Loa	ds	Longitudinal Reinforcement Provided			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾	Remark
001	Thick	•2	Direction	Reinforcer Layout Drawing Nu (1)	Reinforcer Zone Numt	Maximum Forces ⁽³⁾	- Fe	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	Provided (in ² / ft)	Load Combination	Transverse Shear Force	tal Section Corresponding Axial Force (kip / ft)	Transverse Shear Force	Corresponding Axial Force (kip / ft)	Reinforcement Provided (in²/ft²)	Keman
						мтсм	684	D+F+L+H+Wt	43	-7		(kips / ft)			(kip / ft)	(kip / h)	(kip / ft)	(kip / tt)		
			Inter	8	¥	MCCM	689	D+F+L+H+Wt	-107	-29	D+F+L+H+Wt	52	1.50							
			Horia	346	ž	MMAT	687	D+F+L+H+Wt	2	-48	D+F+L+H+Wt	62	1.00							
		Side				MMAC	689	D+F+L+H+Wt	-30	-74										
		Near				мтсм	689	D+F+L+H+Wt	29	-8										
			Antical	516	1.4.1	MCCM	689	D+F+L+H+Wt	-86	-2	D+F+L+H+Wt	87	1.58							
			3	3HB	- 2	MMAT	666	D+F+L+H+Wt	5	-24										
	8					MMAC	656	D+F+L+H+Wt	-38	-25										
						MTCM	673	D+F+L+H+Wt	45	9										
			izontal	6-161	Ŧ	MCCM	657	D+F+L+H+Wt	-230	25	D+F+L+H+Wt	52	1.50							
			£	Ŧ	-	MMAT	657	D+F+L+H+Wt	2	53										
		Far side	<u> </u>			MMAC	666	D + F + L + H +Wt	-21	62										
						мтсм	663	D+F+L+H+Wt	15	6										
			Vertical	H.6-162	1-V-L	MCCM MMAT	000 000	D+F+L+H+Wt D+F+L+H+Wt	-287	30	D + F + L + H +Wt	87	1.58						-	
			-			MMAC	656	D+F+L+H+Wt	-37	75										
						MTCM	875	D+F+L+H+E	118	-38			+ +							
						MCCM	1044	D+F+L+H+E	-187	-40										
					ž	MMAT	811	D+F+L+H+E	5	-223	D+F+L+H+E'	61	3.12							
						MMAC	1089	D+F+L+H+E	-163	-366										
						мтсм	1048	D + F + L + H +E	21	-80		-	+ +							
						MCCM	1052	D+F+L+H'+E'	-184	-554										
					244	MMAT	1016	D+F+L+H'+E'	2	-118	D+F+L+H+E	61	4.68		•		•			
			an a	5		MMAC	1070	D+F+L+H'+E'	-165	-594										
			Horizontal	346-1		мтсм	891	D+F+L+H'+E'	150	-234										
					7	MCCM	1042	D + F + L + H' +E'	-223	-205	D+F+L+H+E'	61	0.24							
					3441	MMAT	1042	D+F+L+H+E	98	-298	D+F+L+H+E	01	0.24							
						MMAC	1041	D+F+L+H+E	-179	-765										
						мтсм														
		Side			Ŧ	MCCM	1053	D + F + L + H' +E'	-192	-888	D+F+L+H+E	4	7.8							
		Near			1	MMAT	-	-	-	-	0trn TE	"								
						MMAC	1065	D+F+L+H'+E'	-185	-930										
						мтсм	798	D+F+L+H +E	76	-70										
					1	MCCM	1041	D + F + L + H +E	-188	-61	D+F+L+H+E	92	3.12							
					÷.	MMAT	1059	D + F + L + H' +E'	1	-219										
						MMAC	1059	D + F + L + H +E	-54	-219										
			Wintcal			мтсм	796	D+F+L+H +E	157	-175										
				3H/0-164	2.V.L	MCCM	1029	D+F+L+H +E	-213	-81	D+F+L+H+E'	92	4.68							
			3	÷		MMAT	891	D+F+L+H'+E'	1	-378										
					<u> </u>	MMAC	804	D+F+L+H +E	-88	-457										-
						MTCM	812 1014	D+F+L+H+E D+F+L+H+E	-131	-434 -88										
					3-V-L	MCCM	1014		-131		D+F+L+H+E	74	9.36							
						MMAT	820	D+F+L+H+E D+F+L+H+E	-49	-988 -988										

3H-191

Rev. 07

Final Safety Analysis Report

STP

3 & 4

Details
and
Evaluation
n Results o
f Seismic
Category 1
1 Structures

ioi	Thickness (ft)		ų	amont out Vumber	ament nber ⁽²⁾	5 G	t	Axial and Flexu		Reinforcement	Design Loads In-Plane Shear Load	ds	Longitudinal			Transverse Shear Design Loads $^{(6)}$			Transverse Shear ⁽⁷⁾
00	Thick	Face	Direction	Reinforcemer Layout Drawing Numb (1)	Reinforcer Zone Numt	Madmum Forces ⁽³⁾	Element	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	Longitudinal Reinforcement Provided (in ^{2/} ft)	Load Combination	Transverse Shear Force	al Section Corresponding Axial Force	Transverse Shear Force	Corresponding Axial Force	Reinforcement Provideo (in²/ft²)
						мтсм	828	D+F+L+H'+E'	38	-629		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip/ft)	
					-	MCCM	828	D + F + L + H' +E'	-118	-40	D+F+L+H'+E'								
					144	MMAT	838	D+F+L+H'+E'	1	-1217	D+F+L+H+E	63	10.92						
		Side	10	5		MMAC	836	D+F+L+H+E	-54	-1224	1								
		Near	Vertical	346		MTCM	844	D+F+L+H'+E'	23	-717									
					745	MCCM	844	D + F + L + H' +E'	-112	-38	D+F+L+H+E'	56	12.48						
					3	MMAT	868	D + F + L + H' +E'	1	-1227	0+++++++++		12.40				•		
						MMAC	852	D + F + L + H' +E'	-64	-1281									
						MTCM	859	D+F+L+H+E	108	19									
					¥	MCCM	891	D + F + L + H' +E'	-304	264	D+F+L+H'+E'	61	3.12						
					-	MMAT	1047	D+F+L+H+E	9	194									
			zonta	0-105		MMAC	815	D+F+L+H'+E'	-123	380									
			Hor	3H0		MTCM													
					Ŧ	MCCM	1049	D + F + L + H' +E'	-155	148	D+F+L+H'+E'	50	4.68						
					~	MMAT	•	-											
						MMAC	814	D + F + L + H' +E'	-111	418									
						MTCM	1028	D + F + L + H' +E'	75	94									
					1-4-1	мссм	1029	D + F + L + H' +E'	-203	19	D+F+L+H+E	92	3.12						
					-	MMAT	1058	D + F + L + H' +E'	-87	169									
					<u> </u>	MMAC	1014	D+F+L+H+E		273									
						MICM	798	D+F+L+H'+E'	138	56									
		Far side			2-V-L	MCCM		D+F+L+H'+E'	-256	190	D+F+L+H+E'	92	4.68	-					
							810		1	300									
					<u> </u>	MMAC	1028 1042	D+F+L+H'+E' D+F+L+H+Wt	-90	450									
			_			MCCM	1042	D+F+L+H+E D+F+L+H+E	-211	39									
			Vertical	H6-165	3-V-L	MMAT	880	D+F+L+H+E	7	663	D+F+L+H+E'	70	6.24						
				°		MMAC	880	D+F+L+H+E	-51	669									
					-	MTCM	839	D+F+L+H+E	19	258									
						мссм	871	D+F+L+H+E	-75	354									
					4-V-L	MMAT	856	D+F+L+H+E	7	755	D+F+L+H+E	56	7.8			•			•
						MMAC	858	D+F+L+H'+E'	-27	755									
						MTCM													
					_	MCCM	844	D+F+L+H+E	-112	44									
					544	MMAT					D+F+L+H'+E'	56	12.48	-	-			-	•
						MMAC	808	D+F+L+H+E	-72	116									
			3		5									D+F+L+H+E	8	-1	95	-159	0.20 (4@12")
			forizon	19	2.1									D+F+L+H+E	5	1	-103	-163	0.31 (5@12')
		1.1	verse (Hor &Vertical)	3H6-10	5									D+F+L+H+E	60	88	-129	144	0.80 (4@6")
			Transv		* 5				-	-				D+F+L+H+E	-209	-7	1	-13	
					4								•	D+F+L+H+E	-209	-7	1	-13	1.24 (5@6")
						MTCM MCCM	1124	D+F+L+H+E	115	-38									
	4	Near Side	Horizont	3H.6-168	¥	MCCM		D+F+L+H'+E	-173	-289	D+F+L+H+E	60	3.12						
		ž	ž	÷		MMAT	1188 1301	D+F+L+H'+E' D+F+L+H'+E'	-163	-198 -398									
						MMAC	1301	D+F+L+H+E	-163	-398									

3H-192

Rev. 07

Final Safety Analysis Report

ş			5	ment at umber	ment ber ⁽²⁾	Ę 6,		Axial and Flexur		Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾	
Thickness		Face	Direction	inforcem Layout wing Num (1)	Reinforcem Zone Numb	Madmum Forces ⁽³⁾	Element	Load	Axial ⁽⁴⁾	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Longitudinal Reinforcement Provided (in ² / ft)	Load	Horizont	al Section	Vertica	al Section	Reinforcement Provided (in ² /ft ²)	Rem
				Re Dra	Ψĝ			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)		
						MTCM	1278	D+F+L+H'+E'	20	-114										
					2.HL	MCCM	1306	D+F+L+H'+E'	-183	-524	D+F+L+H'+E'	60	4.68							
						MMAT	1288	D+F+L+H'+E'	3	-123										
				.		MMAC	1300	D+F+L+H+E	-164	-621										
						MTCM	1108	D+F+L+H+E D+F+L+H+E	-217	-274										
			alizonte	3H6-168	3HL	MCCM			-		D+F+L+H+E	60	6.24							
			¥	ē		MMAC	1280	D+F+L+H+E	-137	-339										
						MMAC	1287	D+F+L+H'+E'	-137	-763										
						MCCM	1305	D+F+L+H'+E'	-192	-903										
					Ŧ	MMAT		0+F+L+H +E	-162	-803	D + F + L + H' +E'	44	7.8	-	-	-	-	-	-	
						MMAC	1311	D+F+L+H'+E'	-184	-948										
		ł				MTCM	1191	D+F+L+H+E D+F+L+H+E	-104	-940										-
						MCCM	1293	D+F+L+H'+E'	-184											
					1-1-1	MMAT	1288	D+F+L+H+E	2	-196	D+F+L+H+E	93	3.12						•	
		epi				MMAC	1287	D+F+L+H'+E'	-53	-145										
		Near St				мтсм	1189	D+F+L+H'+E'	158	-180										-
		2				MCCM	1281	D+F+L+H'+E'	-210	-43										
					2-V-L	MMAT	1108	D+F+L+H'+E'	3	-415	D+F+L+H'+E'	93	4.68	•		•	•		•	
						MMAC	1181	D+F+L+H'+E'	-80	-405										
						MTCM	1173	D+F+L+H'+E'	53	-438										-
				8		MCCM	1272	D+F+L+H'+E'	-129	-85										
4			Vertical	3H6-16	3-V-L	MMAT	1165	D+F+L+H'+E'	2	-993	D+F+L+H'+E'	72	9.36							
						MMAC	1165	D+F+L+H'+E'	-47	-963										
				.		MTCM	1157	D+F+L+H+E	39	-632										-
						MCCM	1157	D+F+L+H'+E'	-118											
					4.V.L	MMAT	1149	D+F+L+H'+E'	6	-1222	D+F+L+H+E	61	10.92	•		•	•	· · ·	•	
						MMAC	1149	D+F+L+H'+E'	-55	-1229										
						MTCM	1141	D+F+L+H'+E'	21	-720										
						MCCM	1141	D+F+L+H'+E'	-110	-38										
					5-V-L	MMAT	1117	D+F+L+H'+E'	0	-1229	D+F+L+H+E	54	12.48					· ·		•
						MMAC	1133	D+F+L+H+E	-86	-1284										
	\vdash					мтсм	1140	D+F+L+H'+E'	106	12		-								
						MCCM	1108	D+F+L+H'+E'	-291	288										
					Ŧ	MMAT	1275	D+F+L+H'+E'	9	225	D+F+L+H+E	60	3.12							
			ą	22		MMAC	1104	D+F+L+H'+E'	-134	378										
			Horizo	3H6-1		мтсм			-	-										
		8 0 9			_	MCCM	1184	D+F+L+H'+E'	-167	260										
		2			2.HL	MMAT			-		D+F+L+H+E	50	4.68							
						MMAC	1175	D+F+L+H'+E'	-111	429										
		t				мтсм	1282	D + F + L + H' +E'	76	74										
				5		MCCM	1281	D+F+L+H+E	-201	19	1									
			Vertical	3H6-171	1-V-L	MMAT	1288	D+F+L+H+E	5	201	D+F+L+H+E	93	3.12						•	
						MMAC	1272	D+F+L+H'+E'	-81	257										

Rev. 07

Final Safety Analysis Report

Details and E
valuation
Results of Seismi
Seismic C
ategory 1
Structures

u	550		u	ment at umber	ment ber ⁽²⁾	Ę ĉ	ŧ	Axial and Flexu		Reinforcemen	Design Loads	4-	Longitudinal			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾
Locati	Thickness (ft)	Face	Direction	Reinforceme Layout Drawing Numl (1)	Reinforcer Zone Numl	Maximum Forces ⁽³⁾	Element	Load	Axial ⁽⁴⁾	Flexure (4)	Load	In-plane ⁽⁵⁾ Shear	Longitudinal Reinforcement Provided (in ² / ft)	Load	Horizont	al Section	Vertica	I Section	Reinforcement Provided (in ² /ft ²)
				Draw Re	a S			Combination	(kips / ft)	(ft-kips / ft)	Combination	Shear (kips / ft)		Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	
						MTCM	1189	D+F+L+H'+E'	140	59	-								
					2-4-1	MCCM	1269	D+F+L+H'+E'	-250	179	D+F+L+H+E	83	4.68		-			-	
						MMAT	1297	D+F+L+H'+E'	2	477	-								
					<u> </u>	MMAC	1297	D+F+L+H+E D+F+L+H+E	-67 72	489									
						MCCM	1280	D+F+L+H+E D+F+L+H+E	-189	79	-								
					3-V-L	MOCM	1280	D+F+L+H+E D+F+L+H+E	-169	667	D+F+L+H+E	65	6.24						
				-		MMAC	1101	D+F+L+H'+E'	-24	667	-								
		Far side	Vertical	3H6-171	-	MTCM	1152	D+F+L+H+E	19	200									-
						MCCM	1120	D+F+L+H+E	-72	351	-								
	4				4.V-L	MMAT	1145	D+F+L+H+E	7	754	D+F+L+H +E'	54	7.8			-			
•						MMAC	1145	D+F+L+H'+E'	-28	754	-								
					<u> </u>	MTCM													
						MCCM	1141	D+F+L+H'+E'	-110	50	-								
					1-1-12	MMAT			-		D+F+L+H'+E'	54	12.48		-				
						MMAC	1117	D+F+L+H'+E'	-67	114									
			3		5	-								D+F+L+H'+E'	6	0	-94	-159	0.20 (4@12')
			()	12	5.1		· ·							D+F+L+H+E	-104	20	22	-75	0.31 (5@12')
		1.1	Averse (Hori &Vertical)	3H6-11	5									D+F+L+H+E	-171	20	-8	-25	0.80 (4@6")
			Transv				-		_			-							
					17	MTCM		D+F+L+H+Wt						D+F+L+H+E	-209	-10	4	-12	1.24 (5@6")
						MCCM	959	D+F+L+H+Wt	43	4	-								
					Ŧ	MCCM	987	D+F+L+H+W D+F+L+H+E	-98	-38	D+F+L+H+Wt	58	1.50						
						MMAT	992	D+F+L+H+E D+F+L+H+E	-18	-38	-								
					<u> </u>	MTCM	1019	D+F+L+H+Wt	48	-02									+
			з	2		MCCM	1019	D+F+L+H+Wt	-73	-7	-								
			orizon	34.6-173	2-HL	MMAT	1018	D+F+L+H'+E'	20	-79	D+F+L+H+Wt	58	3.12		-				
			-			MMAC	1035	D+F+L+H+E	-36	-101	-								
					<u> </u>	MTCM	1030	D+F+L+H+Wt	83	-18									+
						MCCM	1030	D+F+L+H+E	-108	-8	-								
					344	MMAT	1030	D+F+L+H+E	58	-95	D+F+L+H+Wt	68	4.68						
		956				MMAC	1030	D+F+L+H+E	-18	-95									
	3	Near				мтсм	993	D+F+L+H+Wt	45	-5									1
					7	MCCM	974	D+F+L+H+Wt	-81	-1	D. 5. (
					1-1-1	MMAT	1033	D+F+L+H'+E'	11	-61	D+F+L+H+Wt	47	1.58						
						MMAC	1033	D+F+L+H+E	-23	-61	1								
						MTCM	1035	D+F+L+H+E	67	-9									
			Vertoal	3H.6-174	2.4.1	MCCM	1019	D + F + L + H' +E'	-116	-14	D+F+L+H+Wt	47	3.12						
			×er	3H/B	12	MMAT	1031	D + F + L + H' +E'	9	-97	DTTTCTNTM.	1	0.12						
						MMAC	1031	D + F + L + H' +E'	-60	-97									
						MTCM	1030	D+F+L+H+E	154	-102									
					344	MCCM	1030	D+F+L+H+E	-255	-50	D+F+L+H+Wt	45	6.24						
					8	MMAT	1030	D+F+L+H+E	60	-179									
						MMAC	1030	D + F + L + H' +E'	-101	-179		1							

3H-194

Rev. 07

Final Safety Analysis Report

ç	:		ç	ment t mber	ment ber ⁽²⁾	EÊ	Ŧ			Reinforcement [Longitudinal			Transverse Shear Design Loads ^(©)			Transverse Shear ⁽⁷⁾	
ocatio	Thickness (ft)	Face	Nrectio	forcer Layour ing Nu (1)	Reinforcer Zone Numl	Madmu Forces	Element	Axial and Flexu Load	Axial ⁽⁴⁾		In-Plane Shear Loa		Longitudinal Reinforcement Provided (in ² / ft)	Load	Horizont	tal Section	Vertic	al Section	Reinforcement Provided (in ² /ft ²)	Rema
-	F			Pres Rei	Zon		_	Combination	(kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in / ty	Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
						MTCM	1032	D + F + L + H' +E'	31	17										
					Ŧ	MCCM	995	D+F+L+H+Wt	-181	18	D+F+L+H+Wt	58	1.56							
					2	MMAT	956	D + F + L + H +Wt	8	49		-	1.44							
			zontal	5-175		MMAC	983	D + F + L + H +Wt	-41	68										
			10 H	3H6-		MTCM	1030	D+F+L+H+Wt	56	9										
					2HL	MCCM	1030	D + F + L + H' +E'	-100	29	D+F+L+H+Wt	58	3.12							
					~	MMAT	1011	D + F + L + H' +E'	2	37										
		r side				MMAC	1000	D+F+L+H'+E'	-42	45										
	~	2				мтсм	992	D+F+L+H'+E'	48	4										
					1-44	MCCM	983	D + F + L + H +Wt	-120	7	D+F+L+H+Wt	47	1.50							
				<		MMAT	1008	D+F+L+H+E	1	18										
			erical	3H6-176		MMAC MTCM	995 1035	D+F+L+H+Wt D+F+L+H'+E'	-39 65	69										
			ĺ -	34		MICM	1035	D+F+L+H+E D+F+L+H+E	-236											
					2.V.L	MOCM	1030	D+F+L+H+E D+F+L+H+E	-230	2	D + F + L + H +Wt	45	3.12							
						MMAC	1023	D+F+L+H+E D+F+L+H+E	-107	5 27										
		<u> </u>	230		Ę	-		-						D+F+L+H'+E'	-31	123	-14	4	0.44 (3@6")	
			Transverse (Horizontal & Vertica)	3H.6-178					-											
			는 E M	ē	2.1	•	•			•		•	•	D+F+L+H+E	-43	114	-56	-8	1.24 (5@6')	
						MTCM	1233	D+F+L+H'+E'	35	-31										
					Ŧ	MCCM MMAT	1216	D+F+L+H+Wt D+F+L+H'+E'	-98	-4	D+F+L+H+Wt	59	1.50							
						MMAT	1201	D+F+L+H+E D+F+L+H+E	-18	-43										
						MTCM			-			-								
			э	F		MCCM	1248 1248	D+F+L+H+E' D+F+L+H+Wt	40	-43 -8										
			orizon	3H6-177	2-H-L	MMAT	1258	D+F+L+H'+E'	18	-78	D+F+L+H+Wt	59	3.12							
			-			MMAC	1197	D+F+L+H'+E'	-30	-98										
						MTCM	1257	D+F+L+H+E	74	-89										
						MCCM	1257	D+F+L+H'+E'	-155	-10										
					341	MMAT	1257	D+F+L+H+E	54	-98	D + F + L + H +Wt	59	4.68			•				
		Side				MMAC	1257	D+F+L+H+E	-11	-98										
		Near S				МТСМ	1262	D+F+L+H+E	53	- 5										
2					_	MCCM	1243	D+F+L+H+Wt	-82	-4										
	2				1-VL	MMAT	1234	D+F+L+H+E	13	-61	D+F+L+H+Wt	38	1.56							
						MMAC	1234	D + F + L + H +E	-25	-81										
						мтсм	1259	D+F+L+H+E	103	-55										
			Artcal	3H6-178	3	MCCM	1259	D+F+L+H+E	-145	-0	D+F+L+H+Wt	38	3.12							
			M	3H6	2.WL	MMAT	1245	D + F + L + H +E	11	-103	D+F+C+H+W	30	3.12							
						MMAC	1245	D + F + L + H +E	-45	-103										
						MTCM	1257	D+F+L+H'+E'	144	-108										
					3.41	MCCM	1257	D+F+L+H'+E	-217	-58	D+F+L+H+Wt	35	6.24							
					9	MMAT	1257	D + F + L + H' +E'	51	-188										
						MMAC	1257	D+F+L+H'+E'	-78	-188										
						MTCM	1233	D + F + L + H' +E'	31	21										
		Far side	ficontal	3H6-179	Ŧ	MCCM	1265	D+F+L+H+Wt	-179	19	D+F+L+H+Wt	59	1.50							
		2 I	¥	ž	÷	MMAT	1264	D+F+L+H+Wt	0	49										
						MMAC	1232	D+F+L+H+Wt	-41	66			1		1	1				

Rev. 07

Final Safety Analysis Report

Vertical Horizontal Direction	Reinforceme Layout 3H6-179 Drawing Num	2-HL Zone Numbe	Maximum Forces ⁽³⁾	Element	Axial and Flexure			In-Plane Shear Load		Longitudinal Reinforcement Provided			Transverse Shear Design Loads ^(©)			Transverse Shear ⁽⁷⁾
Horizontal	Re Dra	Zor	For	å (Load											Reinforcement Provided
Vertical	3H6-179	2.HL		I	Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ^(S) Shear (kips / ft)	(in²/ ft)	Load Combination	Horizont Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	Vertica Transverse Shear Force (kip / ft)	I Section Corresponding Axial Force (kip / ft)	(in²/ft²)
Vertical	3H6-179	2.HL	MTCM	1257	D+F+L+H+Wt	51	7									
Vertical	9HC	2.9	MCCM	1257	D + F + L + H' +E'	-155	25	D+F+L+H+Wt	59	3.12						
Verfical		1	MMAT	1199	D + F + L + H' +E'	0	40							-	-	-
Vertical			MMAC	1198	D + F + L + H' +E'	-5	46									
Vertical			MTCM	1261	D+F+L+H'+E'	62	4									
Vertical		1-V-L	MCCM	1244	D + F + L + H +Wt	-120	5	D+F+L+H+Wt	38	1.58						
Vertical		-	MMAT	1235	D + F + L + H' +E'	D+F+L+H+E 1 20 D+F+L+H+W1 -47 09 D+F+L+H+E 00 3										
>	3H.6-180A		MMAC	1265												
	×		MTCM	1198		D+F+L+H+E -191 4										
		2-V-L	MCCM MMAT	1257				D+F+L+H+Wt	38	3.12						
			MMAT	1199 1259		D+F+L+H+E 53 7 D+F+L+H+E -140 27 		-								
110		-				-										
Transverse (Horizontal &Vertical)	3H.6-100	2	•	•				•	•		D+F+L+H+E	-31	120	10	3	0.44 (3@6")
물문의	ā	2.1		•			•		•	•	D+F+L+H'+E'	-32	102	57	-12	0.80 (4@6")
			MTCM MCCM	951 939	D+F+L+H+Wt D+F+L+H+Wt	43	-7	-								
orizont	3H/0-181	1 H	MCCM	939	D+F+L+H+Wt	-80	-1 -44	D+F+L+H+Wt	55	1.58						
I	°		MMAC	947	D+F+L+H+Wt	-2	-38	-								
	+		MTCM	944	D+F+L+H+Wt	37										
	182		MCCM	908	D+F+L+H+Wt	-84	-25	-								
Vertical	11-9H6	1-WL	MMAT	935	D+F+L+H+Wt		-38	D+F+L+H+Wt	43	1.56		•				
			MMAC	907	D+F+L+H+Wt	D+F+L+H+Wt -80 -33 D+F+L+H+Wt 31 5 D+F+L+H+Wt -210 25		-								
	-		MTCM	934	D+F+L+H+Wt											
10	8		MCCM	907				1								
Horize	3H/6-183	141	MMAT	947	D+F+L+H+Wt			D+F+L+H+Wt	55	1.58						
			MMAC	935	D+F+L+H+Wt	D+F+L+H+Wt 5 45	1									
			MTCM	944	D + F + L + H +Wt	34	4									
Vertical	10	1.vL	MCCM	927	D+F+L+H+Wt	-184	23	D+F+L+H+Wt	43	1.56						
Ver	3H6-1	2	MMAT	935	D + F + L + H +Wt	0	69		~					-		-
			MMAC	907	D+F+L+H+Wt	-79	99									
			MTCM	1437	D + F + L + H' +E'	24	-168									
		Ŧ	MCCM	1345	D+F+L+H'+E'	-199	-379	D+F+L+H+E	108	3.12						
		- T	MMAT	1349	D+F+L+H+E 14 -210	-										
		<u> </u>	MMAC	1432	D+F+L+H+E	-188	-474									
			MTCM	-				-								
orizont	3H.6-185	2H-L	MCCM	1433	D+F+L+H+E	-199	-533	D+F+L+H+E	85	4.68						
Ĩ	ē		MMAT	-	-	- 100	-	-								
		<u> </u>														
								1								
		344	MMAT		D+F+L+H+E	D+F+L+H+E 18 -228 D+F+L+H+E -201 -831			108	7.8			· ·	· ·	· ·	-
			MMAC	1337												
	+	+	MTCM	1432	D+F+L+H+E											
			MCCM	1440	D+F+L+H+E	-190	-75	1								
	8	1-14	MMAT	1365	D+F+L+H+E	4	-222	D+F+L+H+E	100	3.12			· ·	· ·	· ·	
Vertical	3H.6-186	1	MMAC	1373	D+F+L+H+E	-23	-230	1								
I		901	00	уче ммас уче мпсм ммас мпсм ммас ммас ммас ммас ммас ммас ммас ммас ммас ммас ммас ммас ммас мсом мсом мосм	MIGAC 1434 MTCM 1341 MCOM 1331 MCOM 1337 MMAR 1454 MMAR 1337 MINAC 1337 MICM 1424 MIAR 1454 MIAR 1454 MIAR 1337 MICM 1420 MOOM 1001 MIAR 1001	MMAC 1434 D + F + L + H + E MCM 1341 D + F + L + H + E MCM 1341 D + F + L + H + E MCM 1342 D + F + L + H + E MMAC 1332 D + F + L + H + E MMAC 1332 D + F + L + H + E MMAC 1332 D + F + L + H + E MCM 1422 D + F + L + H + E MCM 1420 D + F + L + H + E MCM 1420 D + F + L + H + E MMAR 1035 D + F + L + H + E	MIMAG 1454 D+F+L+H*4E -188 MTCM 141 D+F+L+H*4E 24 MCOM 1337 D+F+L+H*4E 201 MMCM 1337 D+F+L+H*4E 201 MMAR 1337 D+F+L+H*E 201 MMAR 1337 D+F+L+H*E 201 MMAR 1337 D+F+L+H*E 201 MMAR 1337 D+F+L+H*E 101 MODM 440 D+F+L+H*E 101 MMAR 108 D+F+L+H*E 102	MMC HM D+F+LH+4E -188 -660 MCM 194 D=F+LH+4E -188 -175 MCM 1937 D+F+LH+4E -201 -481 MMC 1937 D+F+LH+4E -201 -481 MMC 1937 D+F+LH+4E -201 -401 MMC 1937 D+F+LH+4E -201 -401 MMC 1937 D+F+LH+4E -401 -411 MMCM 1932 D=F+LH+4E -100 75 MMCM 1936 D+F+LH+4E -40 -221	MMAC 1544 D.F.L.H.H.EF -188 -540 MTCM 1541 D.F.L.H.H.EF 541 -175 MECM 1537 D.F.F.L.H.H.EF 541 -175 MMCM 1537 D.F.F.L.H.H.EF -201 421 MMAC 1537 D.F.F.L.H.H.EF -201 -431 MMAC 1537 D.F.F.L.H.EF -201 -431 MMAC 1537 D.F.F.L.H.EF 301 -431 MMAC 1542 D.F.F.L.H.H.EF 301 -431 MC0M 1640 D.F.F.L.H.H.EF 161 -41 MMAT 1580 D.F.F.L.H.H.EF 41 -222	MMAC 154 ConFileNTE 158 640 MMC 154 ConFileNTE 24 .175 MCCM 137 ConFileNTE 24 .175 MMC 137 ConFileNTE .00 .00 MMMC 137 ConFileNTE .201 .431 MMC 137 ConFileNTE .201 .431 MMC 142 ConFileNTE .201 .431 MCCM 460 CoFileNTE .201 .431 MMC 157 ConFileNTE .201 .431 MMC 156 CoFileNTE .201 .431 MMC 157 ConFileNTE .201 .431 MMC 158 CoFileNTE .201 .431 MMC 158 CoFileNTE .201 .411 MMC 158 CoFileNTE .40 .202	MM6C M34 D+F+L+H4E -188 -540 MC0 154 D+F+L+H4E 34 -175 MC0 133 D+F+L+H4E 34 -175 MC0 1337 D+F+L+H4E 201 4301 MMAC 1327 D+F+L+H4E 201 4301 MMAC 1327 D+F+L+H4E 201 -431 MMAC 1327 D+F+L+H4E 411 -411 MC00 490 0+F+L+H4E 610 -421 MC01 190 0+F+L+H4E 611 -411 MMAT 198 0+F+L+H4E 4 -222	MMAC MMA D+F+L+H+E -188 -643 M00 101 D+F+L+H+E 34 -175 M004 102 D+F+L+H+E 34 -175 M004 1037 D+F+L+H+E 34 -431 MMAT 146 D+F+L+H+E -201 -431 MMAC 137 D+F+L+H+E -301 -431 MMAC 132 D+F+L+H+E -301 -431 MMAC 143 -0+F+L+H+E -411 MO04 440 -0+F+L+H+E -900 -9.2 MMAT 108 -0.F+L+H+E 4 -222	MARC MARA MARA <t< td=""><td>MAC MMC MMC<td>Image: Normal System Space System Spac</td><td>Image: Normal System Space System Space</td></td></t<>	MAC MMC MMC <td>Image: Normal System Space System Spac</td> <td>Image: Normal System Space System Space</td>	Image: Normal System Space System Spac	Image: Normal System Space

3H-196

Rev. 07

Final Safety Analysis Report

-				ent	and and				Longitudinal	Reinforcement	Design Loads					T (6)				
ation	Thickness (ft)	Face	Direction	yout 1 Num	Iumbe	Madmum Forces ⁽³⁾	Element	Axial and Flexure	Loads		In-Plane Shear Load	ds	Longitudinal Reinforcement Provided			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Remark
Ľ	Ē		ă	Reinfo	Reinforcem Zone Numb	For	ů 🕯	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear	(in²/ ft)	Load Combination	Horizonta Transverse Shear Force	Corresponding Axial Force	Transverse Shear Force	Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
	-		-	5		MTCM	1439	D+F+L+H'+E'	125	47		(kips / ft)			(kip / ft)	(kip / ft)	(kip / ft)	(kip / ft)		
						MCCM	1439	D+F+L+H+E	-210	-27	-									
					2.V.L	MMAT	1415	D+F+L+H'+E'	10	-200	D+F+L+H+E'	100	4.68		•					
						MMAC	1415	D+F+L+H+E	-49	-200	1									
						MTCM	1438	D + F + L + H' +E'	194	-118										
		Side	Vertical	188	3.V.L	MCCM	1438	D+F+L+H'+E'	-270	-22	D+F+L+H+E	100	6.24							
		New	Ner I	3H6-	6	MMAT	1408	D+F+L+H +E	41	-502										
						MMAC	1406	D+F+L+H +E	-12	-502										
						MTCM	1382	D+F+L+H'+E'	92	-892										
					1.14	MCCM	1398	D+F+L+H'+E'	-86	-47	D+F+L+H'+E'	90	7.8							
					*	MMAT	1374	D+F+L+H'+E'	85	-714										
						MMAC	1398	D + F + L + H' +E'	-1	-677										
						мтсм	1341	D+F+L+H+E	20	13	4									
			rizonta	3H6-187	Ŧ	MCCM	1409	D+F+L+H'+E'	-194	54	D+F+L+H+E	108	3.12							
2			£	÷		MMAT	1349	D+F+L+H'+E	1	80	-									
Wall 12			<u> </u>			MMAC MTCM	1393 1343	D+F+L+H'+E' D+F+L+H'+E'	-170 98	339 57										
						MICM	1343	D+F+L+H+E D+F+L+H+E	-201	11	-									
					1-41	MMAT	1423	D+F+L+H+E	-201	184	D+F+L+H'+E'	100	3.12		-	-	-	-	-	
						MMAC	1423	D+F+L+H+E	-109	212	-									
		Far side				MTCM	1430	D+F+L+H+E	134	43										
				88		MCCM	1438	D+F+L+H+E	-270	48										
			Vertical	3H6-1	2-V-L	MMAT	1385	D+F+L+H+E	50	339	D+F+L+H'+E'	100	4.68			•				
						MMAC	MMAC 1400 D	D+F+L+H+E	-10	324										
						MTCM	1383	D+F+L+H'+E'	78	275										
					-	MCCM	1391	D + F + L + H' +E'	-62	70										
					3.V.L	MMAT	1384	D+F+L+H+E	66	356	D+F+L+H+E'	90	6.24				-			
						MMAC	1388	1.4D + 1.4F +1.7L + 1.7H + 1.7W	-4	235	1									
			e erfcal)		1	-	•					-		D+F+L+H+E	13	28	-87	-186	0.20 (4@12')	
			Transverse iz ontal &Verts	3H.6-180	21		•			-		-		D+F+L+H+E	7	1	-109	-162	0.31 (5@12')	1
			Honizo	8	1				-					D+F+L+H+E	8	-57	174	-189	0.80 (4@6")	1
	1		Ť			мтсм	1874	D+F+L+H+Wt	2	-17		1								
	1				4	мссм	1953	D+F+L+H'+E'	-200	-462	1									
	1				Ŧ	MMAT	1873	D+F+L+H+E	0	-82	D+F+L+H+E'	105	3.12			•				
						MMAC	1953	D+F+L+H+E	-200	-462	1									
						MTCM	1872	D + F + L + H' +E'	25	-16										
					2.HL	MCCM	1942	D+F+L+H+E	-200	-597	D+F+L+H'+E'	105	4.68							
					31	MMAT	1872	D+F+L+H+E	5	-199										
21	-	Near Side	Horizonta	3H.6190		MMAC	1958	D+F+L+H+E	-189	-813										
		New	Hot	æ		мтсм	1871	D+F+L+H'+E'	33	-48			μ Τ							
					3HL	MCCM	1926	D + F + L + H' +E'	-192	-737	D+F+L+H+E	105	6.24							
	1				°	MMAT	1894	D + F + L + H' +E'	11	-354	4									
	1				<u> </u>	MMAC	1912	D+F+L+H'+E'	-120	-765										-
	1					MTCM	•				4									
					4HL	MCCM	1954	D+F+L+H+E	-202	-881	D+F+L+H+E	80	7.8							
	1										4									
						MMAC	1968	D + F + L + H' +E'	-190	-925										

3H-197

Rev. 07

Final Safety Analysis Report

Details and Evaluation Results of Seismic Cate	
n Results of Seis	
mic Category	
1 Structures	

-	5		-	hent	ser ⁽²⁾	5.0				Reinforcemen	Design Loads		Longitudinal			Transverse Shear Design Loads ⁽⁶⁾			m
Location	Thickness (ft)	Face	Direction	Inforcem Layout ing Nur (1)	nforcen e Numb	Maximum Forces ⁽³⁾	Element	Axial and Flexu Load	are Loads	Flexure ⁽⁴⁾	In-Plane Shear Lo Load		Longitudinal Reinforcement Provided (in ² / ft)	Land	Horizont	I Section		cal Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided (in ² /ft ²)
-	-		_	Draw	Rei Zon			Combination	(kips / ft)	(ft-kips / ft)	Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in 7 h)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	
						мтсм	1871	D + F + L + H +Wt	75	-27	-								
					7~1	MCCM	1913	D+F+L+H'+E'	-185	-110	D+F+L+H'+E'	101	3.12						-
						MMAT	1899	D+F+L+H'+E' D+F+L+H'+E'	3 -53	-174	-								
						MTCM	1857	D+F+L+H+E	155	-74									
		ę	-	5		мссм	1857	D+F+L+H'+E'	-260	-31	-								
		Near Side	Vertical	3H6-1	2-WL	MMAT	1860	D+F+L+H+E	24	-422	D+F+L+H+E'	101	4.68						-
						MMAC	1860	D + F + L + H' +E'	-48	-422	1								
						мтсм	1864	D + F + L + H' +E'	89	-724									
					7-7-7	MCCM	1868	D + F + L + H' +E'	-119	-30	D+F+L+H'+E'	77	9.36						
					2	MMAT	1865	D+F+L+H'+E'	82	-750									-
						MMAC	1867	D + F + L + H' +E'	-2	-625									
						MTCM	1871	D+F+L+H'+E'	37	152	-								
					ž	MCCM	1945	D+F+L+H+E D+F+L+H+E	-198	95	D+F+L+H+E	105	3.12						
			7			MMAT	1983	D+F+L+H+E D+F+L+H+E	4	205	-								
	*		forizont	3H6-19		MTCM	1882	D+F+L+H+E	13	105									
			-			MCCM	1904	D+F+L+H'+E'	-112	170	-								
					2.51	MMAT	1882	D+F+L+H'+E'	8	115	D+F+L+H+E'	53	4.68				-	-	
		e co				MMAC	1905	D+F+L+H'+E'	-109	384	-								
		ž				MTCM	1887	D+F+L+H+E	82	83									
					144	MCCM	1885	D + F + L + H' +E'	-201	3	D+F+L+H+E	101	3.12						
					5	MMAT	1887	D+F+L+H+E	5	179									
			Vertical	H6-193		MMAC	1887	D + F + L + H' +E'	-118	209									
			3	×		мтсм	1857	D+F+L+H+E	141	17	-								
					2-V-L	MCCM	1857	D+F+L+H+E D+F+L+H+E	-260	41	D+F+L+H'+E'	101	4.68				-		
						MMAC	1922	D+F+L+H+E D+F+L+H+E	-7	330	-								
			8		2			-			-			D+F+L+H'+E'	-73	81	-9	-101	0.20 (4@12")
			fransverse contal ‖	8	2.1			-						D+F+L+H'+E'	5	2	107	-127	0.31 (5@12')
			Trans	0 HE	31 2									D+F+L+H+E	1	-40	-178	-180	0.80 (4@6")
		-	Ē		*	мтсм	1579	- D+F+L+H+Wt	55	-10		•		0++++++++	1	-10	-1/0	-100	0.60(486)
						MCCM	1508	D+F+L+H+E	-118	-24	-								
					Ŧ	MMAT	1501	D+F+L+H+E	4	-36	D+F+L+H+Wt	28	1.56					-	-
			anta	8		MMAC	1509	D+F+L+H'+E'	-64	-27	-								
			Horize	3H.6.1		MTCM	1653	D+F+L+H+E	38	-44									
					2-HL	MCCM	1498	D+F+L+H+E	-154	-34	D+F+L+H+Wt	28	3.12						
					5	MMAT	1653	D + F + L + H' +E'	7	-68			0.12				-		-
	~	r Side				MMAC	1652	D + F + L + H' +E'	-127	-81									
		Near				мтсм	1501	D+F+L+H+Wt	42	-8									
					1-4-1	MCCM	1657	D+F+L+H+Wt	-71	-1	D+F+L+H+Wt	39	1.56					-	-
			_				1589	D+F+L+H+Wt	15	-42	-								
			Vertical	3H.6 196	<u> </u>	MMAC MTCM	1617	D+F+L+H+Wt D+F+L+H'+E'	-1	-32 -23									
						MCCM	1498	D+F+L+H+E D+F+L+H+E	-114	-11	-								
					2-V-L	MMAT	1544	D+F+L+H+E	22	-80	D+F+L+H+Wt	39	3.12						-
						MMAC	1498	D+F+L+H+E	-38	-58	1								

3H-198

Rev. 07

Final Safety Analysis Report

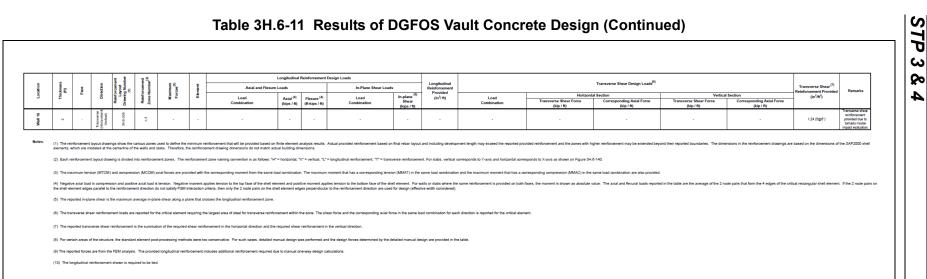
				ont nber	er 2				Longitudinal	Reinforcement	Design Loads		Longitudinal			Transverse Shear Design Loads ⁽⁶⁾				
	Thickness (ft)	Face	rection	orcem ayout g Nur (1)	orcem	Madmun Forces	Element	Axial and Flexu			In-Plane Shear Loa		Longitudinal Reinforcement Provided			Intal Section			Transverse Shear ⁽⁷⁾ Reinforcement Provided	Re
	Ē		ā	Reinf L Drawir	Reinforci Zone Nun	an s		Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(in²/ ft)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	al Section Corresponding Axial Force (kip / ft)	(in²/ft²)	
						мтсм	1652	D+F+L+H'+E'	113	-34		(Kips / II)			(op) (q	(op) (v)	(opring)	(april)		
		Near Side	Vertical	-196	3-V-L	MCCM	1054	D+F+L+H'+E'	-157	-10	D+F+L+H+E'	35	4.68							
		Near	1	346-1	8	MMAT	1652	D+F+L+H +E	87	-74										
						MMAC	1652	D + F + L + H' +E'	-49	-74										
						MTCM	1628	D + F + L + H' +E'	50	20										
					Ŧ	MCCM	1503	D+F+L+H+Wt	-174	28	D+F+L+H+Wt	28	1.58							
					-	MMAT	1628	D+F+L+H'+E'	45	35										
			zonta	6-197		MMAC	1543	D + F + L + H +Wt	-75	66										
			Her	3H6		MTCM	1498	D+F+L+H'+E'	53	40										
					2.HL	MCCM	1498	D+F+L+H+E	-150	15	D + F + L + H +Wt	28	3.12							
	8				~	MMAT	1852	D+F+L+H+E	50	56										
		Far side				MMAC	1852	D + F + L + H' +E'	-10	58		_								-
		<i>a</i>				мтсм	1857	D+F+L+H+Wt	31	3										
					1-1-1	MCCM	1567	D+F+L+H+Wt	-105	8	D + F + L + H +Wt	39	1.50							
			_			MMAT	1628	D+F+L+H'+E' D+F+L+H'+E'	-61	62 70										
			Antical	H6-198		MWAC	1028	D+F+L+H'+E'	-01	9		-								┝
			-			MCCM	1852	D+F+L+H+E	-221	99										
					2-V-L	MMAT	1852	D+F+L+H+E	1	66	D + F + L + H +Wt	39	3.12							
						MMAC	1852	D+F+L+H'+E'	-221	99										
	ŀ		83g	8	ţ		-		-					D+F+L+H+E	-22	90	13	16	0.44 (3@6 ⁻)	⊢
		Transver	Framsver (Horizon & Vertica	34.6-11	2.1									D+F+L+H+E		202	16	-122	0.80 (4@6")	
_			464	.,	2	MTCM	1808	D+F+L+H+Wt	65	-0		_	<u> </u>					-		+
						MCCM	1840	D+F+L+H+Wt	-90	-2										
					Ŧ	MMAT	1833	D+F+L+H +E	0	-50	D+F+L+H+E'	28	1.58							
			ą	8		MMAC	1093	D+F+L+H'+E'	-14	-83										
			Horizo	3H6-200		MTCM	1689	D+F+L+H+E	21	-5										F
						MCCM	1689	D+F+L+H+E	-33	-43										
					2-HL	MMAT	1845	D + F + L + H' +E'	16	-86	D+F+L+H+E'	28	3.12							
		Side				MMAC	1845	D+F+L+H'+E'	-27	-102										
		Near				MTCM	1703	D+F+L+H +E	53	-15										F
					144	MCCM	1798	D+F+L+H+Wt	-107	-10	D . C . L . U . W									
					1-1	MMAT	1770	D+F+L+H'+E'	0	-32	D+F+L+H+Wt	34	1.50							
	8		te a	346-201		MMAC	1798	D + F + L + H' +E'	-11	-44										
	1		Nec 1	3H6		MTCM	1689	D + F + L + H +Wt	75	-26										
					7·//	MCCM	1689	D+F+L+H +E	-85	-5	D+F+L+H+Wt	34	3.12							
					2	MMAT	1689	D+F+L+H'+E'	49	-39										
						MMAC	1689	D+F+L+H'+E'	-1	-39										
						MTCM	1843	D+F+L+H+Wt	24	1										
					Ŧ	MCCM	1090	D + F + L + H +Wt	-194	20	D+F+L+H+E	28	1.50							
			_		-	MMAT	1741	D+F+L+H+E	3	43										
		Far side	fizontal	3H.6-202		MMAC	1784	D + F + L + H +Wt	-86	67		_								1
		2	7	æ		мтсм	1689	D+F+L+H'+E'	22	26										
					2.HL	MCCM	1713	D+F+L+H'+E'	-29	3	D + F + L + H +E'	28	3.12							
						MMAT	1845	D+F+L+H+E	13	38										
						MMAC	1714	D + F + L + H' +E'	-4	34										\bot

Details and Evaluation Results of Seismic Category 1 Structures

3H-199

Rev. 07

Final Safety Analysis Report


S.	-		s	ment inber	ber ⁽³⁾	E 6.	1			Reinforcement			Longitudinal Reinforcement			Transverse Shear Design Loads ⁽⁶⁾			Transverse Shear ⁽⁷⁾	
ocatio	Thickness (ft)	Face	Direction	Inforcem Layout wing Nur (1)	Reinforcem Zone Numb	Madmum Forces ⁽³⁾	Element	Axial and Flexu	_		In-Plane Shear Load		Provided (in ² / ft)		Horizont	al Section	Vertica	I Section	Reinforcement Provided (in ² /ft ²)	Rem
-	F			Praw Page	Zon		-	Load Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Load Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	(m ^{-/} π)	Load Combination	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	Transverse Shear Force (kip / ft)	Corresponding Axial Force (kip / ft)	(
						MTCM	1093	D+F+L+H'+E'	54	10										
					1-1-1	MCCM	1798	D + F + L + H +Wt	-106	0	D+F+L+H+Wt	34	1.50							
					1	MMAT	1773	D+F+L+H'+E'	1	55				-			-	-		
		epis	Vertical	3H6-203A		MMAC	1696	D + F + L + H +Wt	-29	79										
	~	ž	*	346		MTCM	1702	D + F + L + H' +E'	58	6										
	~				2-V-L	MCCM	1689	D+F+L+H+Wt	-80	18	D+F+L+H+Wt	34	3.12							
					31	MMAT	1714	D + F + L + H' +E'	1	18			0.12		-	-				
						MMAC	1845	D + F + L + H' +E'	-70	32										
			Transverse Horiz ortal & Vertical)	3H6-2038	14		-							D+F+L+H+E	-22	86	-38	-20	0.44 (3@6'')	
						MTCM	1484	D+F+L+H+Wt	7	-5										+
						MCCM	1458	D+F+L+H+Wt	-12	4										
					Ĩ	MMAT	1492	D+F+L+H+Wt	5	-15	D+F+L+H+Wt	41	1.58							
			Isi	3		MMAC	1492	D+F+L+H+Wt	-8	-13										
			Horizo	3H.6-204		мтсм	1455	D+F+L+H+E	13	-2										t
					_	MCCM	1447	D+F+L+H+Wt	-48	-8										
					2#F	MMAT	1494	D+F+L+H+Wt	0	-12	D+F+L+H+Wt	51	3.12			•				
		ę				MMAC	1470	D+F+L+H+Wt	-41	-25										
		Near S				MTCM	1450	D+F+L+H+Wt	81	-0										t
						MCCM	1491	D+F+L+H+Wt	-51	-28										
					1-4-1	MMAT	1449	D+F+L+H+E	5	-12	D+F+L+H+Wt	35	1.58							
			7	8		MMAC	1491	D+F+L+H+Wt	-51	-28										
			Vertical	3H.6-205		MTCM	1448	D+F+L+H+Wt	37	-18										t
					-	мосм	1447	D+F+L+H+Wt	-40	-28										
					2-V-L	MMAT	1455	D+F+L+H+Wt	6	-25	D+F+L+H+Wt	35	3.12	-		•				
						MMAC	1447	D+F+L+H+Wt	-31	-43										
	~					мтсм	1468	D+F+L+H+Wt	13	8										T
		ricortal			7	мосм	1490	D+F+L+H+Wt	-185	45										
					ž	MMAT	1489	D+F+L+H+Wt	2	31	D+F+L+H+Wt	41	1.58							
			ortal	8		MMAC	1490	D+F+L+H+Wt	-184	45	1									
			Horiz	3H.6-206		MTCM	1447	D+F+L+H+E	21	3										Γ
					7	MCCM	1478	D+F+L+H+Wt	-54	10	D+F+L+H+Wt	51	3.12							
					241	MMAT	1494	D + F + L + H +Wt	3	11	D+F+C+H+W	51	3.12							
		e de				MMAC	1470	D+F+L+H+Wt	-40	77										
		- Ear				MTCM	1451	D + F + L + H +Wt	82	11										Γ
					1-1-1	MCCM	1491	D + F + L + H +Wt	-110	14	D+F+L+H+Wt	35	1.58							
					- 2	MMAT	1452	D + F + L + H +Wt	9	16		30	1.30							
			Vertical	-81		MMAC	1491	D + F + L + H +Wt	-50	79										
			Ver	3H.6-207		МТСМ	1453	D+F+L+H+Wt	47	15									Γ	
					2-V-L	MCCM	1478	D + F + L + H +Wt	-138	38	D+F+L+H+Wt	35	3.12							
					5	MMAT	1462	D+F+L+H+Wt	0	38		-								
						MMAC	1478	D + F + L + H +Wt	-8	41										

STP

3 & 4

Rev. 07

Final Safety Analysis Report

Rev. 07

Generator Fuel Oil Storage Vaults									
	Ca	Notos							
Load Combination	Overturning	Sliding	Flotation	- Notes					
D + F'			1.28	2, 3					
D + H + W	1.5	5.84		2, 3, 4					
D + H + Wt	1.41	19.75		2, 3					
D + H + E'	1.1	1.1		3, 4 <u>, 5</u>					

Table 3H.6-12 Factors of Safety Against Sliding, Overturning, and Flotation for DieselGenerator Fuel Oil Storage Vaults

Rev. 07

Notes:

- 1) Loads D, H, W, Wt, and E' are defined in Subsection 3H.6.4.3.4.1. F' is the buoyant force corresponding to the design basis flood.
- 2) Reported safety factors are conservatively based on considering empty weight of the fuel oil tank.
- 3) Coefficients of friction for sliding resistance are 0.58 for static conditions and 0.39 for dynamic conditions for the Diesel Generator Fuel Oil Storage Vault.
- The calculated safety factors consider less that half of the full passive pressure. The calculated safety factors increase if full passive pressure (Kp = 3.0) is considered.
- 5) The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the seismic sliding forces and overturning moments used in the stability evaluations.

Table 3H.6-13 Tornado Missile Impact Evaluation for Diesel Generator Fuel Oil Storage Vault								
Local Check	DGFOS Vault	Minimum required thickness to prevent penetration, perforation, and scabbing = 13.6"						
LUCAI CHECK	DGF03 Vault	Minimum provided thickness = 18"						
		Flexure controls.						
	Roof	Maximum impact load including Dynamic Load Factor (DLF) = 432 kips						
		Ductility demand = 0.5 < Ductility limit = 10						
		Flexure controls						
	Protection Hood	Maximum impact load including Dynamic Load Factor (DLF) = 432 kips						
		Ductility demand = 5 < Ductility limit = 10						
Overall Check of		Flexure controls.						
Impacted Element	Walls	Maximum impact load including Dynamic Load Factor (DLF) = 938 kips						
		Ductility demand = 0.7 < Ductility limit = 10						
		Shear controls.						
		Maximum impact load including Dynamic Load Factor (DLF) = 617 kips						
	Entry Way Wall	Minimum capacity = 929 kips						
		Shear ties are required locally to withstand a missile strike near the top and bottom panel supports. See Table 3H.6-11 and Figure 3H.6-208 for reinforcement size and location.						
Global Check		Equivalent static impact forces are applied to the FEM analysis of the DGFOS Vault. The analysis results presented in Table 3H.6-11 provide a summary of the results for all load combinations including those affected by the tornado missile impact.						

Table 3H 6-13 Tornado Missile Impact Evaluation for Diesel Generator Fuel Oil Storage Vault

Rev. 07

I

I

SSI	E and Flotation	<u>i Factors of Sa</u>	<u>afety</u> for TB, SE	B, RWB and CB	Α
	Calcu	lated Factor of	Minimum	Coefficient of	
Structure	Overturning	Sliding	or of SafetyMinimum Required Factor of SafetygFlotationRequired Factor of Safety1.461.1111.401.1681.511.1	Friction for Sliding Evaluation	
Turbine Building (TB)	2.18	1.11	<u>1.46</u>	1.1	0.30 (dynamic)
Service Building (SB)	<mark>2.65</mark> 2.11	1.81 1.11	<u>1.40</u>	1.1	0.39 (dynamic)
Radwaste ¹ Building (RWB)	<mark>4.23</mark> 3.24	1.92 1.68	<u>1.51</u>	1.1	0.39 (dynamic)
Control Building Annex (CBA)	2.03	1.16	<u>1.18</u>	1.1	0.58 (static)

Table 3H.6-14 Calculated Overturning and Sliding Factors of Safety Under Site-Specific SSE and Flotation Factors of Safety for TB, SB, RWB and CBA

Notes:

(1) <u>The seismic sliding forces and overturning moments from SSSI analysis are less than the seismic sliding</u> <u>forces and overturning moments used in the stability evaluations.</u>

Interfacing Structures	Required and Provided Gaps (inches)			
	Required Gap	Provided Gap		
RSW Piping Tunnels and Control Building	4.54	5.0		
RSW Pump House and RSW Piping Tunnel A	3.99	5.0		
RSW Pump House and RSW Piping Tunnel B	4.92	5.0		
RSW Pump House and RSW Piping Tunnel C	3.07	5.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 1 and its Diesel Generator Fuel Oil Tunnel	2.37	3.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 2 and its Diesel Generator Fuel Oil Tunnel	2.60	3.0		
Diesel Generator Fuel Oil Storage Vault (DGFOSV) No. 3 and its Diesel Generator Fuel Oil Tunnel	2.42	3.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1A	2.65	4.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1B	3.77	4.0		
Reactor Building and Diesel Generator Fuel Oil Tunnel (DGFOT) No. 1C	3.24	4.0		

Table 3H.6-15 Required and Provided Gaps at the Interface of Site-Specific Seismic Category I Structures and Diesel Generator Fuel Oil Tunnels with Adjoining Structures

Rev. 07

Note: See Figure 3H.6-221 for layout of the above structures

	Service Water Tunnel									
	Ca	Notes								
Load Combination	Overturning	Sliding	Flotation							
D + F'			1.18							
D + H + W	2.29	50.76		2						
D + H + W _t	2.23	21.31								
D + H + E'	1.1	1.29		2,3 <u>, 4</u>						

Table 3H.6-16 Factors of Safety Against Sliding, Overturning, and Flotation for Reactor Service Water Tunnel

Rev. 07

Notes

(1) Loads D, H, W, Wt, and E` are defined in Subsection 3H.6.4.3.4.1. F` is the buoyant force corresponding to the design basis flood.

(2) Coefficients of friction for sliding resistance are 0.45 for static conditions and 0.30 for dynamic conditions for the RSW Tunnel.

(3) The calculated safety factors consider less than half of the full passive pressure. The calculated safety factors increase if full passive pressure (Kp = 3.0) is considered.

(4) <u>The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the</u> seismic sliding forces and overturning moments used in the stability evaluations.

		20% D	amping	15% D	amping	10% D	amping	7% Da	mping	5% Da	imping
Location	Direction	1-30 Hz	30-33 Hz								
Pump House Roof	Vertical	1.444	1.331	1.495	1.346	1.577	1.372	1.629	1.409	1.667	1.463
Pump House Operating Floor	Vertical	1.223	1.190	1.243	1.194	1.294	1.198	1.362	1.202	1.469	1.204
Mid Level of Basin- Walls	Horizontal	1.310	1.113	1.338	1.110	1.404	1.112	1.461	1.117	1.458	1.129
CTSS Walls	Vertical	1.405	1.197	1.441	1.191	1.433	1.205	1.450	1.231	1.478	1.264
		4% Da	mping	3% Da	amping	2% Da	umping	1% Da	mping	0.5% D	amping
Location	Direction	1-30 Hz	30-33 Hz								
Pump House Roof	Vertical	1.686	1.511	1.793	1.588	2.038	1.718	2.682	1.926	2.769	2.165
Pump House Operating Floor	Vertical	1.550	1.206	1.678	1.209	1.914	1.217	2.486	1.241	2.826	1.373
Mid Level of Basin- Walls	Horizontal	1.502	1.153	1.563	1.186	1.835	1.237	2.372	1.326	2.922	1.370

Rev. 07

I

I

Crown	Direction	Domaina		Frequency Range(Hz)								
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>		
group1			1.255	1.255	<u>1.472</u>	<u>2.195</u>	<u>2.195</u>	<u>1.837</u>	1.837	<u>1.047</u>		
group2			<u>1.432</u>	<u>1.432</u>	<u>1.882</u>	<u>2.348</u>	<u>2.348</u>	<u>1.888</u>	<u>1.367</u>	<u>1.021</u>		
group3			1.321	1.321	1.868	2.083	2.083	<u>1.775</u>	1.697	<u>1.097</u>		
group4			<u>1.193</u>	<u>1.193</u>	1.858	<u>2.630</u>	2.630	<u>2.136</u>	1.677	<u>1.020</u>		
group5	X	0.005	1.195	<u>1.195</u>	1.864	1.838	<u>1.838</u>	1.317	<u>1.219</u>	<u>1.000</u>		
group6	X	<u>0.005</u>	1.449	1.590	<u>3.253</u>	<u>3.849</u>	<u>3.270</u>	<u>3.763</u>	<u>3.639</u>	<u>1.514</u>		
group7			1.230	1.230	<u>1.814</u>	1.582	<u>1.553</u>	<u>2.234</u>	1.202	<u>1.003</u>		
group8			1.660	4.430	4.430	1.734	<u>1.372</u>	1.237	1.222	<u>1.136</u>		
group9			1.660	<u>2.138</u>	<u>1.859</u>	1.734	<u>1.413</u>	1.237	<u>1.192</u>	<u>1.117</u>		
group10			<u>1.660</u>	<u>2.138</u>	<u>1.770</u>	<u>1.734</u>	<u>1.753</u>	<u>1.275</u>	<u>1.192</u>	<u>1.117</u>		
group1			<u>1.273</u>	<u>1.273</u>	<u>1.423</u>	<u>1.754</u>	<u>1.754</u>	<u>1.340</u>	<u>1.298</u>	<u>1.047</u>		
group2			<u>1.381</u>	<u>1.381</u>	<u>1.729</u>	<u>1.917</u>	<u>1.917</u>	<u>1.424</u>	<u>1.235</u>	<u>1.019</u>		
group3		0.01	<u>1.285</u>	<u>1.285</u>	<u>1.734</u>	<u>1.728</u>	<u>1.728</u>	<u>1.384</u>	<u>1.184</u>	<u>1.097</u>		
group4			1.207	<u>1.207</u>	<u>1.700</u>	<u>2.164</u>	<u>2.164</u>	<u>1.692</u>	<u>1.385</u>	<u>1.021</u>		
group5	~		<u>1.166</u>	<u>1.166</u>	<u>1.760</u>	<u>1.567</u>	<u>1.567</u>	<u>1.216</u>	<u>1.059</u>	<u>1.000</u>		
group6	X	<u>0.01</u>	<u>1.483</u>	<u>1.514</u>	2.566	<u>2.856</u>	<u>2.274</u>	<u>2.672</u>	<u>2.672</u>	1.467		
group7			<u>1.192</u>	<u>1.192</u>	<u>1.727</u>	<u>1.347</u>	<u>1.532</u>	<u>1.553</u>	<u>1.110</u>	<u>1.002</u>		
group8			<u>1.417</u>	<u>3.653</u>	<u>3.653</u>	<u>1.464</u>	<u>1.231</u>	<u>1.228</u>	<u>1.149</u>	<u>1.136</u>		
group9			<u>1.417</u>	<u>2.072</u>	<u>1.662</u>	<u>1.464</u>	<u>1.301</u>	<u>1.149</u>	<u>1.149</u>	<u>1.117</u>		
group10			<u>1.417</u>	<u>2.072</u>	<u>1.637</u>	<u>1.464</u>	<u>1.429</u>	<u>1.215</u>	<u>1.149</u>	<u>1.117</u>		
group1			<u>1.264</u>	<u>1.264</u>	<u>1.363</u>	<u>1.505</u>	<u>1.505</u>	<u>1.181</u>	<u>1.181</u>	<u>1.047</u>		
group2			<u>1.317</u>	<u>1.317</u>	<u>1.518</u>	<u>1.587</u>	<u>1.587</u>	<u>1.292</u>	<u>1.085</u>	<u>1.018</u>		
group3			<u>1.252</u>	<u>1.252</u>	<u>1.535</u>	<u>1.377</u>	<u>1.377</u>	<u>1.113</u>	<u>1.097</u>	<u>1.097</u>		
group4			<u>1.247</u>	<u>1.247</u>	<u>1.497</u>	<u>1.708</u>	<u>1.708</u>	<u>1.358</u>	<u>1.164</u>	<u>1.021</u>		
group5	~	0.02	<u>1.151</u>	<u>1.151</u>	<u>1.576</u>	<u>1.348</u>	<u>1.348</u>	<u>1.118</u>	<u>1.016</u>	<u>1.000</u>		
group6	X	<u>0.02</u>	<u>1.441</u>	<u>1.479</u>	<u>2.039</u>	<u>2.277</u>	<u>1.938</u>	<u>1.879</u>	<u>1.893</u>	<u>1.369</u>		
group7			<u>1.205</u>	<u>1.205</u>	<u>1.561</u>	<u>1.303</u>	<u>1.334</u>	<u>1.158</u>	<u>1.078</u>	<u>1.001</u>		
group8			<u>1.251</u>	<u>2.770</u>	<u>2.770</u>	<u>1.300</u>	<u>1.151</u>	<u>1.194</u>	<u>1.156</u>	<u>1.136</u>		
group9			<u>1.251</u>	<u>1.843</u>	<u>1.483</u>	<u>1.300</u>	<u>1.197</u>	<u>1.122</u>	<u>1.123</u>	<u>1.117</u>		
group10			<u>1.251</u>	<u>1.843</u>	<u>1.364</u>	<u>1.300</u>	<u>1.195</u>	<u>1.151</u>	<u>1.123</u>	<u>1.117</u>		

I

STP 3 & 4

Crown	Direction	Domning	-	Frequency Range(Hz)								
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>		
group1			<u>1.227</u>	<u>1.227</u>	<u>1.326</u>	<u>1.342</u>	<u>1.312</u>	<u>1.152</u>	<u>1.152</u>	<u>1.048</u>		
group2			<u>1.338</u>	<u>1.338</u>	<u>1.395</u>	<u>1.426</u>	<u>1.436</u>	<u>1.186</u>	<u>1.068</u>	<u>1.018</u>		
group3			<u>1.274</u>	<u>1.274</u>	<u>1.413</u>	<u>1.272</u>	<u>1.272</u>	<u>1.054</u>	<u>1.097</u>	<u>1.097</u>		
group4			<u>1.274</u>	<u>1.274</u>	<u>1.382</u>	<u>1.415</u>	<u>1.415</u>	<u>1.203</u>	<u>1.116</u>	<u>1.021</u>		
group5	×	0.03	<u>1.123</u>	<u>1.123</u>	<u>1.459</u>	<u>1.217</u>	<u>1.217</u>	<u>1.055</u>	<u>1.000</u>	<u>1.000</u>		
group6	X	<u>0.03</u>	<u>1.416</u>	<u>1.507</u>	<u>1.871</u>	<u>1.958</u>	<u>1.718</u>	<u>1.673</u>	<u>1.697</u>	<u>1.311</u>		
group7			<u>1.181</u>	<u>1.181</u>	<u>1.456</u>	<u>1.247</u>	<u>1.247</u>	<u>1.104</u>	<u>1.073</u>	1.000		
group8			<u>1.221</u>	<u>2.315</u>	<u>2.315</u>	<u>1.182</u>	<u>1.151</u>	<u>1.174</u>	<u>1.162</u>	<u>1.136</u>		
group9			<u>1.221</u>	<u>1.672</u>	<u>1.317</u>	<u>1.182</u>	<u>1.151</u>	<u>1.117</u>	<u>1.120</u>	<u>1.117</u>		
group10			<u>1.221</u>	<u>1.672</u>	<u>1.293</u>	<u>1.182</u>	<u>1.151</u>	<u>1.130</u>	<u>1.120</u>	<u>1.117</u>		
group1			<u>1.202</u>	<u>1.202</u>	<u>1.269</u>	<u>1.256</u>	<u>1.233</u>	<u>1.122</u>	<u>1.122</u>	<u>1.047</u>		
group2			<u>1.283</u>	<u>1.283</u>	<u>1.318</u>	<u>1.319</u>	<u>1.322</u>	<u>1.126</u>	<u>1.079</u>	<u>1.017</u>		
group3			<u>1.236</u>	<u>1.236</u>	<u>1.336</u>	<u>1.239</u>	<u>1.239</u>	<u>1.061</u>	<u>1.097</u>	<u>1.097</u>		
group4			<u>1.250</u>	<u>1.250</u>	<u>1.312</u>	<u>1.286</u>	<u>1.286</u>	<u>1.113</u>	<u>1.070</u>	1.022		
group5	×	0.04	<u>1.102</u>	<u>1.102</u>	<u>1.379</u>	<u>1.121</u>	<u>1.121</u>	<u>1.012</u>	<u>1.000</u>	<u>1.000</u>		
group6	X	<u>0.04</u>	<u>1.402</u>	<u>1.498</u>	<u>1.755</u>	<u>1.834</u>	<u>1.566</u>	<u>1.580</u>	<u>1.595</u>	<u>1.274</u>		
group7			<u>1.159</u>	<u>1.159</u>	<u>1.381</u>	<u>1.223</u>	<u>1.207</u>	<u>1.048</u>	<u>1.045</u>	<u>1.000</u>		
group8			<u>1.173</u>	2.009	2.009	<u>1.154</u>	<u>1.145</u>	<u>1.163</u>	<u>1.163</u>	<u>1.136</u>		
group9			<u>1.173</u>	<u>1.595</u>	<u>1.282</u>	<u>1.154</u>	<u>1.145</u>	<u>1.115</u>	<u>1.118</u>	<u>1.116</u>		
group10			<u>1.173</u>	<u>1.595</u>	<u>1.282</u>	<u>1.154</u>	<u>1.145</u>	<u>1.115</u>	<u>1.118</u>	<u>1.116</u>		
group1			<u>1.191</u>	<u>1.191</u>	<u>1.230</u>	<u>1.245</u>	<u>1.188</u>	<u>1.103</u>	<u>1.103</u>	<u>1.047</u>		
group2			<u>1.245</u>	<u>1.245</u>	<u>1.267</u>	<u>1.241</u>	<u>1.248</u>	<u>1.089</u>	<u>1.081</u>	<u>1.017</u>		
group3			<u>1.208</u>	<u>1.208</u>	<u>1.283</u>	<u>1.219</u>	<u>1.219</u>	<u>1.064</u>	<u>1.096</u>	<u>1.096</u>		
group4			<u>1.240</u>	<u>1.240</u>	<u>1.265</u>	<u>1.244</u>	<u>1.244</u>	<u>1.058</u>	<u>1.036</u>	1.022		
group5	×	0.05	<u>1.127</u>	<u>1.127</u>	<u>1.324</u>	<u>1.089</u>	<u>1.087</u>	<u>1.000</u>	<u>1.000</u>	1.000		
group6	<u>X</u> <u>0.</u>	<u>0.05</u>	<u>1.391</u>	<u>1.476</u>	<u>1.692</u>	<u>1.732</u>	<u>1.460</u>	<u>1.515</u>	<u>1.520</u>	<u>1.248</u>		
group7			<u>1.140</u>	<u>1.140</u>	<u>1.326</u>	<u>1.207</u>	<u>1.166</u>	<u>1.018</u>	<u>1.018</u>	<u>1.000</u>		
group8			<u>1.157</u>	<u>1.809</u>	<u>1.809</u>	<u>1.146</u>	<u>1.141</u>	<u>1.161</u>	<u>1.161</u>	<u>1.135</u>		
group9			<u>1.157</u>	<u>1.545</u>	<u>1.224</u>	<u>1.146</u>	<u>1.141</u>	<u>1.114</u>	<u>1.117</u>	<u>1.116</u>		
group10			<u>1.157</u>	<u>1.545</u>	<u>1.224</u>	<u>1.146</u>	<u>1.141</u>	<u>1.114</u>	<u>1.117</u>	<u>1.116</u>		

Table 3H.6-17 Response Spectra Modification Factors (Continued)

I

1

Crown	Direction	Domning	-	-	Fr	equency	Range(I	<u></u>		
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1			<u>1.191</u>	<u>1.191</u>	<u>1.124</u>	<u>1.157</u>	<u>1.128</u>	<u>1.075</u>	<u>1.075</u>	<u>1.046</u>
group2			<u>1.212</u>	<u>1.212</u>	<u>1.177</u>	<u>1.140</u>	<u>1.140</u>	<u>1.090</u>	<u>1.039</u>	<u>1.016</u>
group3			<u>1.190</u>	<u>1.190</u>	<u>1.216</u>	<u>1.185</u>	<u>1.185</u>	<u>1.072</u>	<u>1.096</u>	1.096
group4			1.234	<u>1.234</u>	<u>1.198</u>	<u>1.187</u>	<u>1.187</u>	<u>1.055</u>	<u>1.024</u>	1.022
group5	V	0.07	1.095	<u>1.095</u>	<u>1.239</u>	<u>1.057</u>	<u>1.000</u>	1.000	<u>1.000</u>	1.000
group6	X	<u>0.07</u>	<u>1.383</u>	<u>1.457</u>	<u>1.604</u>	<u>1.597</u>	<u>1.373</u>	<u>1.404</u>	<u>1.404</u>	<u>1.223</u>
group7			<u>1.112</u>	<u>1.112</u>	<u>1.255</u>	<u>1.174</u>	<u>1.141</u>	1.000	<u>1.000</u>	1.000
group8			<u>1.147</u>	<u>1.582</u>	<u>1.582</u>	<u>1.138</u>	<u>1.135</u>	<u>1.152</u>	<u>1.152</u>	<u>1.135</u>
group9			<u>1.147</u>	<u>1.460</u>	<u>1.184</u>	<u>1.138</u>	<u>1.135</u>	<u>1.114</u>	<u>1.116</u>	<u>1.116</u>
group10			<u>1.147</u>	<u>1.460</u>	<u>1.184</u>	<u>1.138</u>	<u>1.135</u>	<u>1.114</u>	<u>1.116</u>	<u>1.116</u>
group1			<u>1.164</u>	<u>1.164</u>	<u>1.081</u>	<u>1.087</u>	<u>1.084</u>	<u>1.054</u>	<u>1.054</u>	<u>1.044</u>
group2			<u>1.163</u>	<u>1.163</u>	<u>1.118</u>	<u>1.080</u>	<u>1.091</u>	<u>1.086</u>	<u>1.032</u>	<u>1.014</u>
group3			<u>1.153</u>	<u>1.153</u>	<u>1.148</u>	<u>1.144</u>	<u>1.144</u>	<u>1.079</u>	<u>1.095</u>	<u>1.095</u>
group4			<u>1.182</u>	<u>1.182</u>	<u>1.109</u>	<u>1.155</u>	<u>1.150</u>	<u>1.037</u>	<u>1.022</u>	<u>1.021</u>
group5	V	0.1	<u>1.091</u>	<u>1.091</u>	<u>1.163</u>	<u>1.063</u>	<u>1.000</u>	<u>1.003</u>	<u>1.000</u>	1.000
group6	X	<u>0.1</u>	<u>1.362</u>	<u>1.401</u>	<u>1.559</u>	<u>1.486</u>	<u>1.393</u>	<u>1.306</u>	<u>1.306</u>	<u>1.217</u>
group7			<u>1.083</u>	<u>1.083</u>	<u>1.187</u>	<u>1.145</u>	<u>1.092</u>	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>
group8			<u>1.135</u>	<u>1.416</u>	<u>1.416</u>	<u>1.151</u>	<u>1.130</u>	<u>1.141</u>	<u>1.141</u>	<u>1.134</u>
group9			<u>1.135</u>	<u>1.371</u>	<u>1.164</u>	<u>1.132</u>	<u>1.130</u>	<u>1.113</u>	<u>1.115</u>	<u>1.115</u>
group10			<u>1.135</u>	<u>1.371</u>	<u>1.164</u>	<u>1.132</u>	<u>1.130</u>	<u>1.113</u>	<u>1.115</u>	<u>1.115</u>
group1			<u>1.153</u>	<u>1.153</u>	<u>1.073</u>	<u>1.066</u>	<u>1.058</u>	<u>1.040</u>	<u>1.042</u>	<u>1.041</u>
group2			<u>1.130</u>	<u>1.130</u>	<u>1.079</u>	<u>1.055</u>	<u>1.058</u>	<u>1.058</u>	<u>1.008</u>	<u>1.010</u>
group3			<u>1.122</u>	<u>1.122</u>	<u>1.108</u>	<u>1.104</u>	<u>1.104</u>	<u>1.083</u>	<u>1.094</u>	<u>1.094</u>
group4			<u>1.152</u>	<u>1.152</u>	<u>1.100</u>	<u>1.086</u>	<u>1.086</u>	<u>1.021</u>	<u>1.021</u>	<u>1.020</u>
group5	×	0.15	<u>1.088</u>	<u>1.088</u>	<u>1.087</u>	<u>1.058</u>	<u>1.002</u>	<u>1.007</u>	<u>1.001</u>	<u>1.000</u>
group6	X	<u>0.15</u>	<u>1.324</u>	<u>1.339</u>	<u>1.493</u>	<u>1.390</u>	<u>1.373</u>	<u>1.259</u>	<u>1.260</u>	<u>1.211</u>
group7			<u>1.068</u>	<u>1.068</u>	<u>1.116</u>	<u>1.118</u>	<u>1.040</u>	<u>1.000</u>	<u>1.000</u>	<u>1.000</u>
group8			<u>1.122</u>	<u>1.350</u>	<u>1.350</u>	<u>1.180</u>	<u>1.124</u>	<u>1.134</u>	<u>1.134</u>	<u>1.132</u>
group9			<u>1.122</u>	<u>1.292</u>	<u>1.151</u>	<u>1.125</u>	<u>1.124</u>	<u>1.112</u>	<u>1.115</u>	<u>1.115</u>
group10			<u>1.122</u>	<u>1.292</u>	<u>1.151</u>	<u>1.125</u>	<u>1.124</u>	<u>1.112</u>	<u>1.115</u>	<u>1.115</u>

I

I

|

Crown	Direction	Domning		Frequency Range(Hz)									
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>			
group1			<u>1.101</u>	<u>1.101</u>	<u>1.067</u>	<u>1.056</u>	<u>1.049</u>	<u>1.034</u>	<u>1.038</u>	<u>1.038</u>			
group2			<u>1.111</u>	<u>1.111</u>	<u>1.054</u>	<u>1.028</u>	<u>1.040</u>	1.034	<u>1.007</u>	1.009			
group3			<u>1.105</u>	<u>1.105</u>	<u>1.072</u>	1.080	<u>1.082</u>	<u>1.085</u>	<u>1.094</u>	<u>1.094</u>			
group4			<u>1.116</u>	<u>1.116</u>	1.090	<u>1.053</u>	<u>1.052</u>	<u>1.019</u>	<u>1.020</u>	<u>1.020</u>			
group5	V	0.0	<u>1.059</u>	1.059	1.061	<u>1.040</u>	<u>1.000</u>	<u>1.004</u>	<u>1.000</u>	1.000			
group6	X	<u>0.2</u>	<u>1.300</u>	<u>1.308</u>	<u>1.481</u>	<u>1.350</u>	<u>1.341</u>	<u>1.246</u>	<u>1.242</u>	<u>1.209</u>			
group7			<u>1.063</u>	1.066	1.090	1.061	<u>1.006</u>	<u>1.000</u>	<u>1.000</u>	1.000			
group8			<u>1.122</u>	<u>1.305</u>	<u>1.305</u>	1.201	<u>1.120</u>	<u>1.130</u>	<u>1.131</u>	<u>1.131</u>			
group9			<u>1.122</u>	<u>1.269</u>	<u>1.145</u>	<u>1.120</u>	<u>1.120</u>	<u>1.112</u>	<u>1.115</u>	<u>1.115</u>			
group10			<u>1.122</u>	<u>1.269</u>	<u>1.145</u>	<u>1.120</u>	<u>1.120</u>	<u>1.112</u>	<u>1.115</u>	<u>1.115</u>			
group1			<u>1.017</u>	<u>1.229</u>	<u>1.290</u>	<u>1.742</u>	<u>1.742</u>	<u>1.416</u>	<u>1.210</u>	<u>1.033</u>			
group2			<u>1.051</u>	<u>1.116</u>	<u>2.071</u>	<u>2.424</u>	<u>2.424</u>	<u>5.938</u>	<u>3.282</u>	<u>1.055</u>			
group3			<u>1.088</u>	<u>1.153</u>	<u>1.939</u>	<u>2.213</u>	<u>2.213</u>	<u>2.398</u>	<u>1.289</u>	<u>1.061</u>			
group4			<u>1.082</u>	<u>1.113</u>	<u>2.647</u>	<u>1.855</u>	<u>1.687</u>	<u>2.427</u>	<u>1.666</u>	<u>1.031</u>			
group5	V	0.005	<u>1.544</u>	<u>1.544</u>	<u>2.718</u>	<u>1.550</u>	<u>1.550</u>	<u>1.513</u>	<u>1.173</u>	<u>1.040</u>			
group6	Ϋ́	<u>0.005</u>	<u>1.394</u>	<u>1.639</u>	<u>5.529</u>	<u>3.093</u>	<u>3.093</u>	<u>3.693</u>	<u>2.794</u>	<u>1.370</u>			
group7			<u>1.184</u>	<u>1.425</u>	<u>1.801</u>	<u>1.801</u>	<u>1.699</u>	<u>1.605</u>	<u>1.474</u>	<u>1.081</u>			
group8			<u>2.327</u>	<u>9.258</u>	<u>1.967</u>	<u>2.941</u>	<u>1.801</u>	<u>1.495</u>	<u>1.485</u>	<u>1.485</u>			
group9			<u>2.327</u>	<u>9.258</u>	<u>1.967</u>	<u>2.941</u>	<u>1.801</u>	<u>1.495</u>	<u>1.485</u>	<u>1.485</u>			
group10			<u>2.327</u>	<u>9.258</u>	<u>1.967</u>	<u>2.941</u>	<u>2.357</u>	<u>1.495</u>	<u>1.485</u>	<u>1.485</u>			
group1			<u>1.020</u>	<u>1.203</u>	<u>1.280</u>	<u>1.513</u>	<u>1.513</u>	<u>1.275</u>	<u>1.153</u>	<u>1.033</u>			
group2			<u>1.046</u>	<u>1.102</u>	<u>1.877</u>	<u>2.089</u>	<u>2.089</u>	<u>4.171</u>	<u>2.709</u>	<u>1.049</u>			
group3			<u>1.091</u>	<u>1.134</u>	<u>1.788</u>	<u>1.793</u>	<u>1.753</u>	<u>1.764</u>	<u>1.209</u>	1.062			
group4			<u>1.077</u>	<u>1.098</u>	<u>2.223</u>	<u>1.479</u>	<u>1.360</u>	<u>1.639</u>	<u>1.179</u>	1.031			
group5	V	0.01	<u>1.303</u>	<u>1.303</u>	<u>2.137</u>	<u>1.348</u>	<u>1.348</u>	<u>1.241</u>	<u>1.096</u>	<u>1.040</u>			
group6	<u>Y</u>	<u>0.01</u>	<u>1.372</u>	<u>1.533</u>	<u>4.155</u>	<u>2.303</u>	<u>2.290</u>	<u>2.520</u>	<u>2.246</u>	<u>1.326</u>			
group7			<u>1.250</u>	<u>1.318</u>	<u>1.456</u>	<u>1.512</u>	<u>1.512</u>	<u>1.362</u>	<u>1.153</u>	<u>1.081</u>			
group8			<u>2.195</u>	<u>5.394</u>	<u>1.666</u>	<u>2.278</u>	<u>1.588</u>	<u>1.480</u>	<u>1.482</u>	<u>1.484</u>			
group9			<u>2.195</u>	<u>5.394</u>	<u>1.666</u>	<u>2.278</u>	<u>1.588</u>	<u>1.480</u>	<u>1.482</u>	<u>1.484</u>			
group10			<u>2.195</u>	<u>5.394</u>	<u>1.666</u>	<u>2.278</u>	<u>1.847</u>	<u>1.480</u>	<u>1.482</u>	<u>1.484</u>			

Table 3H.6-17	Response Spectra Modification Factors (Continued)
---------------	---

I

1

Crown	Direction	Domning	Frequency Range(Hz)							
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1	-		<u>1.023</u>	<u>1.108</u>	<u>1.156</u>	<u>1.233</u>	<u>1.233</u>	<u>1.157</u>	<u>1.123</u>	<u>1.033</u>
group2			<u>1.044</u>	<u>1.079</u>	<u>1.575</u>	<u>1.736</u>	<u>1.807</u>	<u>2.625</u>	<u>2.053</u>	<u>1.038</u>
group3			<u>1.074</u>	<u>1.110</u>	<u>1.488</u>	<u>1.430</u>	<u>1.416</u>	<u>1.260</u>	<u>1.117</u>	<u>1.062</u>
group4			<u>1.078</u>	<u>1.078</u>	<u>1.653</u>	<u>1.284</u>	<u>1.142</u>	<u>1.214</u>	<u>1.053</u>	<u>1.031</u>
group5	V	0.00	<u>1.163</u>	<u>1.163</u>	<u>1.715</u>	<u>1.194</u>	<u>1.194</u>	<u>1.131</u>	<u>1.093</u>	<u>1.040</u>
group6	Y	<u>0.02</u>	<u>1.317</u>	<u>1.422</u>	2.837	<u>1.931</u>	<u>1.931</u>	<u>1.820</u>	<u>1.752</u>	<u>1.237</u>
group7			<u>1.191</u>	<u>1.258</u>	<u>1.207</u>	<u>1.207</u>	<u>1.207</u>	<u>1.175</u>	<u>1.090</u>	<u>1.081</u>
group8			1.962	<u>3.812</u>	1.647	1.697	1.552	1.487	1.483	<u>1.485</u>
group9			1.962	<u>3.812</u>	1.647	1.697	1.552	1.487	1.483	<u>1.485</u>
group10			1.962	<u>3.812</u>	1.647	1.697	1.552	1.487	1.483	<u>1.485</u>
group1			1.014	1.077	1.138	1.132	<u>1.132</u>	<u>1.101</u>	1.101	<u>1.033</u>
group2		0.02	1.046	<u>1.073</u>	1.335	<u>1.711</u>	<u>1.767</u>	<u>1.973</u>	1.762	<u>1.038</u>
group3			1.073	1.091	<u>1.279</u>	<u>1.313</u>	1.285	<u>1.113</u>	1.058	<u>1.062</u>
group4			<u>1.076</u>	<u>1.076</u>	1.385	<u>1.183</u>	<u>1.084</u>	1.091	1.035	<u>1.031</u>
group5	V		<u>1.117</u>	<u>1.117</u>	<u>1.447</u>	<u>1.132</u>	<u>1.132</u>	<u>1.104</u>	<u>1.098</u>	<u>1.040</u>
group6	Y	<u>0.03</u>	<u>1.307</u>	<u>1.379</u>	<u>2.238</u>	<u>1.726</u>	<u>1.644</u>	<u>1.574</u>	<u>1.522</u>	<u>1.186</u>
group7			<u>1.163</u>	<u>1.221</u>	<u>1.154</u>	<u>1.130</u>	<u>1.069</u>	<u>1.124</u>	<u>1.101</u>	<u>1.081</u>
group8			<u>1.793</u>	<u>3.145</u>	<u>1.696</u>	<u>1.537</u>	<u>1.537</u>	<u>1.493</u>	<u>1.483</u>	<u>1.485</u>
group9			<u>1.793</u>	<u>3.145</u>	<u>1.696</u>	<u>1.537</u>	<u>1.537</u>	<u>1.493</u>	<u>1.483</u>	<u>1.485</u>
group10			<u>1.793</u>	<u>3.145</u>	<u>1.696</u>	<u>1.537</u>	<u>1.537</u>	<u>1.493</u>	<u>1.483</u>	<u>1.485</u>
group1			<u>1.012</u>	<u>1.077</u>	<u>1.131</u>	<u>1.093</u>	<u>1.092</u>	<u>1.080</u>	<u>1.080</u>	<u>1.033</u>
group2			<u>1.047</u>	<u>1.068</u>	<u>1.210</u>	<u>1.691</u>	<u>1.691</u>	<u>1.641</u>	<u>1.542</u>	<u>1.038</u>
group3			<u>1.072</u>	<u>1.072</u>	<u>1.189</u>	<u>1.251</u>	<u>1.251</u>	<u>1.073</u>	<u>1.059</u>	<u>1.063</u>
group4			1.071	<u>1.071</u>	1.243	1.157	1.059	1.059	1.034	<u>1.031</u>
group5	V	0.04	<u>1.099</u>	<u>1.117</u>	<u>1.301</u>	<u>1.101</u>	<u>1.103</u>	<u>1.103</u>	<u>1.103</u>	<u>1.040</u>
group6	Ϋ́	<u>0.04</u>	1.283	<u>1.383</u>	<u>1.953</u>	<u>1.632</u>	<u>1.458</u>	<u>1.473</u>	<u>1.430</u>	<u>1.153</u>
group7			<u>1.143</u>	<u>1.206</u>	<u>1.135</u>	<u>1.133</u>	<u>1.076</u>	<u>1.110</u>	<u>1.107</u>	<u>1.082</u>
group8			<u>1.770</u>	2.845	<u>1.710</u>	<u>1.521</u>	1.521	1.494	<u>1.483</u>	<u>1.485</u>
group9			<u>1.770</u>	<u>2.845</u>	<u>1.710</u>	<u>1.521</u>	<u>1.521</u>	<u>1.494</u>	<u>1.483</u>	<u>1.485</u>
group10			<u>1.770</u>	<u>2.845</u>	<u>1.710</u>	<u>1.521</u>	<u>1.521</u>	<u>1.494</u>	<u>1.483</u>	<u>1.485</u>

I

STP 3 & 4

Crown	Direction	Domning	Frequency Range(Hz)							
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1	-		<u>1.015</u>	<u>1.078</u>	<u>1.122</u>	<u>1.086</u>	<u>1.087</u>	<u>1.067</u>	<u>1.067</u>	<u>1.033</u>
group2			1.055	<u>1.055</u>	<u>1.140</u>	<u>1.571</u>	<u>1.571</u>	<u>1.449</u>	<u>1.398</u>	<u>1.038</u>
group3			<u>1.070</u>	<u>1.070</u>	<u>1.143</u>	<u>1.216</u>	<u>1.216</u>	<u>1.062</u>	<u>1.062</u>	<u>1.063</u>
group4			<u>1.067</u>	1.067	<u>1.177</u>	<u>1.157</u>	<u>1.057</u>	<u>1.053</u>	<u>1.033</u>	<u>1.031</u>
group5	V	0.05	<u>1.092</u>	<u>1.105</u>	1.228	1.088	<u>1.098</u>	<u>1.105</u>	<u>1.105</u>	<u>1.041</u>
group6	Ϋ́	<u>0.05</u>	<u>1.260</u>	<u>1.394</u>	<u>1.791</u>	<u>1.570</u>	<u>1.452</u>	<u>1.386</u>	<u>1.363</u>	<u>1.129</u>
group7			<u>1.126</u>	<u>1.198</u>	<u>1.132</u>	<u>1.124</u>	<u>1.081</u>	<u>1.106</u>	<u>1.106</u>	<u>1.082</u>
group8			<u>1.751</u>	2.636	<u>1.720</u>	<u>1.512</u>	<u>1.512</u>	<u>1.495</u>	<u>1.484</u>	<u>1.485</u>
group9			1.751	2.636	1.720	<u>1.512</u>	<u>1.512</u>	<u>1.495</u>	<u>1.484</u>	<u>1.485</u>
group10			1.751	2.636	1.720	<u>1.512</u>	<u>1.512</u>	1.495	1.484	<u>1.485</u>
group1			1.022	<u>1.075</u>	<u>1.101</u>	1.089	1.089	1.059	1.059	<u>1.034</u>
group2		0.07	1.055	1.055	<u>1.123</u>	1.389	1.389	1.246	1.234	<u>1.038</u>
group3			1.068	1.088	<u>1.135</u>	<u>1.163</u>	<u>1.163</u>	1.072	1.072	<u>1.064</u>
group4			<u>1.053</u>	<u>1.053</u>	<u>1.162</u>	<u>1.162</u>	<u>1.061</u>	<u>1.052</u>	<u>1.037</u>	<u>1.031</u>
group5	X		1.048	1.087	<u>1.168</u>	1.083	1.086	1.097	1.097	<u>1.041</u>
group6	Ϋ́	<u>0.07</u>	<u>1.228</u>	1.321	<u>1.578</u>	<u>1.549</u>	<u>1.420</u>	<u>1.259</u>	<u>1.259</u>	<u>1.117</u>
group7			<u>1.134</u>	<u>1.168</u>	<u>1.124</u>	<u>1.116</u>	<u>1.086</u>	<u>1.097</u>	<u>1.097</u>	<u>1.082</u>
group8			<u>1.818</u>	2.384	<u>1.744</u>	1.502	<u>1.502</u>	<u>1.495</u>	<u>1.484</u>	<u>1.485</u>
group9			<u>1.818</u>	2.384	<u>1.744</u>	1.502	<u>1.502</u>	<u>1.495</u>	<u>1.484</u>	<u>1.485</u>
group10			<u>1.818</u>	2.384	<u>1.744</u>	1.502	<u>1.502</u>	<u>1.495</u>	<u>1.484</u>	<u>1.485</u>
group1			<u>1.025</u>	1.067	<u>1.083</u>	1.098	<u>1.098</u>	<u>1.044</u>	<u>1.044</u>	<u>1.034</u>
group2			<u>1.049</u>	1.062	1.092	1.250	<u>1.250</u>	<u>1.116</u>	<u>1.115</u>	<u>1.038</u>
group3			1.063	1.087	<u>1.111</u>	<u>1.112</u>	<u>1.114</u>	1.075	1.075	<u>1.065</u>
group4			1.048	1.087	1.114	1.110	1.052	1.051	1.039	<u>1.032</u>
group5	X	0.1	1.035	<u>1.079</u>	<u>1.146</u>	1.069	1.070	1.078	1.078	<u>1.043</u>
group6	Ϋ́	<u>0.1</u>	1.190	1.231	<u>1.466</u>	1.467	<u>1.379</u>	1.241	1.177	<u>1.112</u>
group7			1.129	<u>1.139</u>	<u>1.123</u>	<u>1.105</u>	<u>1.086</u>	1.089	<u>1.090</u>	<u>1.083</u>
group8			1.886	2.277	<u>1.741</u>	1.550	<u>1.503</u>	<u>1.498</u>	<u>1.484</u>	<u>1.486</u>
group9			1.886	2.277	<u>1.741</u>	1.550	<u>1.503</u>	<u>1.498</u>	<u>1.484</u>	<u>1.486</u>
group10			<u>1.886</u>	<u>2.277</u>	<u>1.741</u>	<u>1.550</u>	<u>1.503</u>	<u>1.498</u>	<u>1.484</u>	<u>1.486</u>

Table 3H.6-17 Response Spectra Modification Factors (Continued)

I

I

1

Group	Direction	Domning	Frequency Range(Hz)							
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1			<u>1.017</u>	<u>1.055</u>	<u>1.066</u>	<u>1.082</u>	<u>1.082</u>	<u>1.049</u>	<u>1.033</u>	<u>1.035</u>
group2			1.036	<u>1.060</u>	<u>1.075</u>	<u>1.166</u>	<u>1.166</u>	<u>1.058</u>	<u>1.037</u>	<u>1.038</u>
group3			<u>1.028</u>	<u>1.068</u>	<u>1.084</u>	<u>1.081</u>	<u>1.081</u>	<u>1.070</u>	<u>1.070</u>	1.066
group4			<u>1.018</u>	<u>1.078</u>	<u>1.079</u>	<u>1.079</u>	<u>1.054</u>	<u>1.046</u>	<u>1.040</u>	<u>1.033</u>
group5	V	0.45	<u>1.029</u>	1.062	<u>1.093</u>	1.056	<u>1.056</u>	<u>1.062</u>	<u>1.062</u>	<u>1.045</u>
group6	Y	<u>0.15</u>	<u>1.180</u>	1.242	1.362	<u>1.410</u>	<u>1.329</u>	<u>1.228</u>	<u>1.139</u>	<u>1.110</u>
group7			<u>1.105</u>	<u>1.114</u>	1.090	1.090	<u>1.075</u>	<u>1.085</u>	<u>1.085</u>	<u>1.083</u>
group8			1.762	<u>1.988</u>	1.761	1.598	1.522	1.500	1.485	<u>1.486</u>
group9			1.762	<u>1.988</u>	1.761	1.598	1.522	1.500	1.485	<u>1.486</u>
group10			1.762	<u>1.988</u>	1.761	1.598	1.522	1.500	1.485	<u>1.486</u>
group1			<u>1.016</u>	<u>1.049</u>	1.071	1.069	1.069	1.052	1.035	<u>1.036</u>
group2			1.017	1.028	1.068	1.119	<u>1.119</u>	1.055	1.036	<u>1.038</u>
group3			1.029	1.061	1.096	1.096	1.074	1.076	1.074	<u>1.067</u>
group4			<u>1.015</u>	<u>1.048</u>	1.062	1.062	1.055	<u>1.045</u>	1.039	<u>1.033</u>
group5	V		1.024	<u>1.046</u>	1.066	1.048	<u>1.049</u>	1.054	1.054	<u>1.046</u>
group6	Ϋ́	<u>0.2</u>	<u>1.187</u>	<u>1.233</u>	1.354	<u>1.381</u>	1.289	<u>1.218</u>	1.125	<u>1.113</u>
group7			<u>1.090</u>	<u>1.103</u>	1.086	1.087	<u>1.073</u>	<u>1.080</u>	<u>1.082</u>	<u>1.083</u>
group8			<u>1.659</u>	<u>1.812</u>	1.692	1.607	<u>1.537</u>	<u>1.503</u>	<u>1.487</u>	<u>1.487</u>
group9			<u>1.659</u>	<u>1.812</u>	1.692	1.607	<u>1.537</u>	<u>1.503</u>	<u>1.487</u>	<u>1.487</u>
group10			1.659	<u>1.812</u>	1.692	1.607	1.537	<u>1.503</u>	1.487	<u>1.487</u>
group1			1.024	1.025	1.307	1.522	<u>1.410</u>	<u>1.819</u>	<u>1.819</u>	<u>1.115</u>
group2			1.009	1.024	<u>1.458</u>	2.802	2.802	2.301	1.480	<u>1.093</u>
group3			1.054	<u>1.183</u>	1.922	<u>6.446</u>	<u>5.706</u>	<u>3.806</u>	<u>3.825</u>	<u>3.535</u>
group4			1.043	1.126	2.323	4.021	<u>3.146</u>	4.902	3.262	<u>1.346</u>
group5	7	0.005	<u>1.145</u>	1.145	1.230	1.655	1.467	1.867	<u>1.374</u>	<u>1.018</u>
group6	<u>Z</u>	<u>0.005</u>	1.027	1.042	<u>1.210</u>	1.562	<u>2.041</u>	<u>2.041</u>	1.589	<u>1.145</u>
group7			1.121	<u>1.173</u>	<u>1.193</u>	1.655	1.636	1.724	1.555	1.072
group8			1.109	1.534	<u>2.401</u>	4.285	<u>3.959</u>	<u>3.979</u>	2.855	<u>1.919</u>
group9			1.109	1.534	<u>2.401</u>	4.285	<u>3.959</u>	<u>3.979</u>	2.855	<u>1.919</u>
group10			<u>1.109</u>	<u>1.534</u>	<u>2.401</u>	4.285	<u>3.959</u>	<u>3.979</u>	<u>2.855</u>	<u>1.919</u>

Table 3H.6-17	Response Spectra	Modification	Factors	(Continued)

I

I

1

STP 3 & 4

Group	Direction	Domning	Frequency Range(Hz)							
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1			<u>1.021</u>	<u>1.025</u>	<u>1.244</u>	<u>1.489</u>	<u>1.274</u>	<u>1.308</u>	<u>1.308</u>	<u>1.113</u>
group2			1.008	<u>1.023</u>	<u>1.322</u>	<u>2.493</u>	<u>2.493</u>	<u>2.042</u>	<u>1.385</u>	<u>1.092</u>
group3			1.052	<u>1.196</u>	<u>1.826</u>	<u>5.703</u>	<u>4.015</u>	<u>3.481</u>	<u>3.326</u>	<u>3.099</u>
group4			<u>1.046</u>	<u>1.131</u>	<u>2.326</u>	<u>3.602</u>	2.459	<u>3.543</u>	<u>2.841</u>	<u>1.310</u>
group5	7	0.01	<u>1.109</u>	<u>1.109</u>	<u>1.187</u>	<u>1.521</u>	<u>1.391</u>	<u>1.471</u>	<u>1.387</u>	<u>1.018</u>
group6	<u>Z</u>	<u>0.01</u>	1.022	1.028	<u>1.169</u>	<u>1.519</u>	<u>1.660</u>	<u>1.660</u>	<u>1.539</u>	<u>1.096</u>
group7			<u>1.094</u>	1.094	<u>1.155</u>	<u>1.571</u>	<u>1.456</u>	<u>1.406</u>	<u>1.395</u>	<u>1.036</u>
group8			<u>1.109</u>	<u>1.374</u>	<u>2.351</u>	<u>3.517</u>	<u>2.936</u>	<u>2.936</u>	2.405	<u>1.670</u>
group9			<u>1.109</u>	<u>1.374</u>	<u>2.351</u>	<u>3.517</u>	<u>2.936</u>	<u>2.936</u>	2.405	<u>1.670</u>
group10			<u>1.109</u>	<u>1.374</u>	<u>2.351</u>	<u>3.517</u>	<u>2.936</u>	<u>2.936</u>	2.405	<u>1.670</u>
group1		0.02	1.022	<u>1.024</u>	<u>1.211</u>	<u>1.407</u>	<u>1.288</u>	<u>1.291</u>	<u>1.120</u>	<u>1.093</u>
group2			1.008	<u>1.026</u>	<u>1.228</u>	<u>2.051</u>	<u>2.051</u>	<u>1.621</u>	<u>1.219</u>	<u>1.092</u>
group3			<u>1.051</u>	<u>1.152</u>	<u>1.962</u>	<u>3.999</u>	<u>3.028</u>	<u>3.417</u>	<u>3.004</u>	<u>2.767</u>
group4			<u>1.042</u>	<u>1.121</u>	<u>2.180</u>	<u>2.856</u>	<u>1.873</u>	<u>2.338</u>	<u>1.979</u>	<u>1.286</u>
group5	7		<u>1.073</u>	<u>1.073</u>	<u>1.143</u>	<u>1.360</u>	<u>1.268</u>	<u>1.274</u>	<u>1.274</u>	<u>1.018</u>
group6	<u>Z</u>	<u>0.02</u>	<u>1.013</u>	<u>1.020</u>	<u>1.169</u>	<u>1.352</u>	<u>1.473</u>	<u>1.473</u>	<u>1.420</u>	<u>1.065</u>
group7			<u>1.053</u>	<u>1.059</u>	<u>1.158</u>	<u>1.409</u>	<u>1.282</u>	<u>1.275</u>	<u>1.271</u>	<u>1.033</u>
group8			<u>1.107</u>	<u>1.213</u>	<u>1.836</u>	<u>3.179</u>	<u>2.113</u>	<u>2.248</u>	<u>2.248</u>	<u>1.607</u>
group9			<u>1.107</u>	<u>1.213</u>	<u>1.836</u>	<u>3.179</u>	<u>2.113</u>	<u>2.248</u>	<u>2.248</u>	<u>1.607</u>
group10			<u>1.107</u>	<u>1.213</u>	<u>1.836</u>	<u>3.179</u>	<u>2.113</u>	<u>2.248</u>	<u>2.248</u>	<u>1.607</u>
group1			<u>1.019</u>	<u>1.024</u>	<u>1.197</u>	<u>1.330</u>	<u>1.293</u>	<u>1.307</u>	<u>1.099</u>	<u>1.093</u>
group2			<u>1.009</u>	<u>1.027</u>	<u>1.202</u>	<u>1.778</u>	<u>1.778</u>	<u>1.435</u>	<u>1.134</u>	<u>1.091</u>
group3			<u>1.048</u>	<u>1.166</u>	<u>2.136</u>	<u>3.599</u>	<u>2.822</u>	<u>3.220</u>	<u>2.737</u>	<u>2.571</u>
group4			<u>1.042</u>	<u>1.128</u>	<u>1.901</u>	<u>2.413</u>	<u>1.755</u>	<u>1.986</u>	<u>1.808</u>	<u>1.278</u>
group5	7	0.02	1.064	<u>1.064</u>	<u>1.132</u>	<u>1.274</u>	<u>1.204</u>	<u>1.164</u>	<u>1.164</u>	<u>1.018</u>
group6	<u>Z</u>	<u>0.03</u>	<u>1.012</u>	<u>1.020</u>	<u>1.184</u>	<u>1.305</u>	<u>1.449</u>	<u>1.449</u>	<u>1.396</u>	<u>1.055</u>
group7			<u>1.039</u>	<u>1.049</u>	<u>1.162</u>	<u>1.292</u>	<u>1.217</u>	<u>1.243</u>	<u>1.220</u>	<u>1.036</u>
group8			<u>1.101</u>	<u>1.144</u>	<u>1.685</u>	<u>2.767</u>	<u>1.878</u>	<u>2.120</u>	<u>2.120</u>	<u>1.557</u>
group9			<u>1.101</u>	<u>1.144</u>	<u>1.685</u>	<u>2.767</u>	<u>1.878</u>	<u>2.120</u>	<u>2.120</u>	<u>1.557</u>
group10			<u>1.101</u>	<u>1.144</u>	<u>1.685</u>	<u>2.767</u>	<u>1.878</u>	<u>2.120</u>	<u>2.120</u>	<u>1.557</u>

Table 3H.6-17 Response Spectra Modification Factors (Continued)

1

Group	Direction	Domning	Frequency Range(Hz)							
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1	-		<u>1.016</u>	<u>1.023</u>	<u>1.210</u>	<u>1.277</u>	<u>1.294</u>	<u>1.294</u>	<u>1.093</u>	<u>1.093</u>
group2			<u>1.009</u>	<u>1.027</u>	<u>1.194</u>	1.606	<u>1.606</u>	<u>1.359</u>	<u>1.112</u>	<u>1.091</u>
group3			<u>1.047</u>	<u>1.166</u>	<u>2.248</u>	<u>3.545</u>	<u>2.811</u>	<u>3.012</u>	<u>2.626</u>	<u>2.439</u>
group4			<u>1.039</u>	<u>1.115</u>	<u>1.712</u>	<u>2.124</u>	<u>1.640</u>	1.832	<u>1.661</u>	<u>1.275</u>
group5	7	0.04	<u>1.054</u>	<u>1.054</u>	<u>1.123</u>	<u>1.224</u>	<u>1.180</u>	<u>1.112</u>	<u>1.096</u>	<u>1.017</u>
group6	<u>Z</u>	<u>0.04</u>	<u>1.010</u>	<u>1.021</u>	<u>1.194</u>	<u>1.301</u>	<u>1.411</u>	<u>1.411</u>	<u>1.375</u>	<u>1.051</u>
group7			<u>1.031</u>	<u>1.041</u>	<u>1.165</u>	1.235	<u>1.210</u>	<u>1.205</u>	<u>1.205</u>	<u>1.036</u>
group8			1.096	<u>1.125</u>	<u>1.571</u>	2.496	<u>1.870</u>	<u>1.793</u>	<u>1.793</u>	<u>1.519</u>
group9			<u>1.096</u>	<u>1.125</u>	<u>1.571</u>	<u>2.496</u>	<u>1.870</u>	<u>1.793</u>	<u>1.793</u>	<u>1.519</u>
group10			<u>1.096</u>	<u>1.125</u>	<u>1.571</u>	<u>2.496</u>	<u>1.870</u>	<u>1.793</u>	<u>1.793</u>	<u>1.519</u>
group1			<u>1.014</u>	<u>1.024</u>	<u>1.219</u>	<u>1.270</u>	<u>1.288</u>	<u>1.288</u>	1.092	<u>1.092</u>
group2		<u>0.05</u>	<u>1.009</u>	<u>1.028</u>	<u>1.196</u>	<u>1.515</u>	<u>1.515</u>	<u>1.300</u>	1.090	<u>1.090</u>
group3			<u>1.046</u>	<u>1.163</u>	2.285	<u>3.504</u>	<u>2.739</u>	<u>2.855</u>	2.564	<u>2.344</u>
group4			<u>1.039</u>	<u>1.117</u>	<u>1.614</u>	<u>1.944</u>	<u>1.586</u>	<u>1.728</u>	<u>1.571</u>	<u>1.274</u>
group5	7		<u>1.043</u>	<u>1.043</u>	<u>1.125</u>	<u>1.194</u>	<u>1.138</u>	<u>1.091</u>	<u>1.058</u>	<u>1.017</u>
group6	<u>Z</u>		<u>1.009</u>	<u>1.021</u>	<u>1.203</u>	<u>1.301</u>	<u>1.362</u>	<u>1.362</u>	<u>1.304</u>	<u>1.051</u>
group7			1.026	<u>1.035</u>	<u>1.167</u>	<u>1.242</u>	<u>1.158</u>	<u>1.181</u>	<u>1.181</u>	<u>1.034</u>
group8			1.090	<u>1.132</u>	<u>1.556</u>	2.306	<u>1.791</u>	<u>1.679</u>	<u>1.676</u>	<u>1.491</u>
group9			1.090	<u>1.132</u>	<u>1.556</u>	2.306	<u>1.791</u>	<u>1.679</u>	<u>1.676</u>	<u>1.491</u>
group10			1.090	<u>1.132</u>	<u>1.556</u>	2.306	<u>1.791</u>	<u>1.679</u>	<u>1.676</u>	<u>1.491</u>
group1			<u>1.011</u>	<u>1.024</u>	<u>1.225</u>	<u>1.253</u>	<u>1.256</u>	1.256	<u>1.109</u>	<u>1.092</u>
group2			<u>1.009</u>	<u>1.029</u>	<u>1.192</u>	<u>1.400</u>	<u>1.400</u>	1.266	<u>1.091</u>	<u>1.089</u>
group3			<u>1.046</u>	<u>1.167</u>	<u>2.487</u>	<u>3.422</u>	<u>2.724</u>	<u>2.767</u>	<u>2.378</u>	2.220
group4			1.056	<u>1.125</u>	<u>1.521</u>	<u>1.776</u>	<u>1.524</u>	<u>1.594</u>	<u>1.497</u>	<u>1.273</u>
group5	7	0.07	<u>1.029</u>	<u>1.029</u>	<u>1.134</u>	<u>1.198</u>	<u>1.080</u>	1.064	<u>1.047</u>	<u>1.016</u>
group6	<u>Z</u>	<u>0.07</u>	<u>1.010</u>	<u>1.021</u>	<u>1.214</u>	1.280	<u>1.268</u>	1.268	<u>1.165</u>	<u>1.051</u>
group7			<u>1.023</u>	<u>1.028</u>	<u>1.166</u>	<u>1.231</u>	<u>1.116</u>	<u>1.138</u>	<u>1.138</u>	<u>1.031</u>
group8			<u>1.062</u>	<u>1.137</u>	<u>1.554</u>	<u>2.248</u>	<u>1.724</u>	<u>1.586</u>	<u>1.586</u>	<u>1.451</u>
group9			<u>1.062</u>	<u>1.137</u>	<u>1.554</u>	<u>2.248</u>	<u>1.724</u>	<u>1.586</u>	<u>1.586</u>	<u>1.451</u>
group10			<u>1.062</u>	<u>1.137</u>	<u>1.554</u>	<u>2.248</u>	<u>1.724</u>	<u>1.586</u>	<u>1.586</u>	<u>1.451</u>

I

I

1

STP 3 & 4

Crown	Direction	Domning			Fr	equency	Range(H	<u> 1z)</u>		
<u>Group</u>	Direction	<u>Damping</u>	<u>0-2</u>	<u>2-5</u>	<u>5-10</u>	<u>10-15</u>	<u>15-20</u>	<u>20-25</u>	<u>25-30</u>	<u>30-35</u>
group1			<u>1.010</u>	<u>1.023</u>	<u>1.199</u>	<u>1.214</u>	<u>1.226</u>	<u>1.226</u>	<u>1.133</u>	<u>1.092</u>
group2			<u>1.009</u>	<u>1.030</u>	<u>1.181</u>	<u>1.314</u>	<u>1.314</u>	<u>1.231</u>	<u>1.111</u>	<u>1.089</u>
group3			<u>1.066</u>	<u>1.188</u>	<u>2.418</u>	<u>3.274</u>	<u>2.734</u>	<u>2.633</u>	2.254	<u>2.120</u>
group4			<u>1.063</u>	<u>1.140</u>	<u>1.421</u>	<u>1.623</u>	<u>1.471</u>	<u>1.487</u>	<u>1.417</u>	<u>1.271</u>
group5	7	0.1	1.022	<u>1.023</u>	<u>1.135</u>	1.207	<u>1.065</u>	<u>1.049</u>	<u>1.036</u>	<u>1.016</u>
group6	<u>Z</u>	<u>0.1</u>	<u>1.009</u>	<u>1.021</u>	<u>1.219</u>	1.259	<u>1.207</u>	<u>1.211</u>	<u>1.122</u>	<u>1.049</u>
group7			<u>1.019</u>	<u>1.022</u>	<u>1.142</u>	<u>1.189</u>	<u>1.112</u>	<u>1.093</u>	<u>1.064</u>	<u>1.028</u>
group8			<u>1.047</u>	<u>1.148</u>	<u>1.553</u>	<u>2.218</u>	<u>1.718</u>	<u>1.531</u>	<u>1.497</u>	<u>1.416</u>
group9			<u>1.047</u>	<u>1.148</u>	<u>1.553</u>	<u>2.218</u>	<u>1.718</u>	<u>1.531</u>	<u>1.497</u>	<u>1.416</u>
group10			<u>1.047</u>	<u>1.148</u>	<u>1.553</u>	<u>2.218</u>	<u>1.718</u>	<u>1.531</u>	<u>1.497</u>	<u>1.416</u>
group1			<u>1.009</u>	<u>1.025</u>	<u>1.099</u>	<u>1.144</u>	<u>1.220</u>	<u>1.217</u>	<u>1.155</u>	<u>1.093</u>
group2			<u>1.009</u>	<u>1.032</u>	<u>1.118</u>	<u>1.217</u>	<u>1.217</u>	<u>1.192</u>	<u>1.095</u>	1.088
group3			<u>1.093</u>	<u>1.226</u>	<u>2.344</u>	<u>2.887</u>	<u>2.672</u>	<u>2.514</u>	<u>2.092</u>	2.042
group4			<u>1.083</u>	<u>1.169</u>	<u>1.354</u>	<u>1.478</u>	<u>1.414</u>	<u>1.398</u>	<u>1.354</u>	<u>1.275</u>
group5	7	0.15	<u>1.016</u>	<u>1.017</u>	<u>1.098</u>	<u>1.166</u>	<u>1.045</u>	<u>1.045</u>	<u>1.023</u>	<u>1.016</u>
group6	<u>Z</u>	<u>0.15</u>	<u>1.006</u>	<u>1.022</u>	<u>1.152</u>	<u>1.183</u>	<u>1.195</u>	<u>1.197</u>	<u>1.129</u>	<u>1.048</u>
group7			<u>1.014</u>	<u>1.017</u>	<u>1.090</u>	<u>1.128</u>	<u>1.103</u>	<u>1.081</u>	<u>1.026</u>	<u>1.027</u>
group8			<u>1.056</u>	<u>1.160</u>	<u>1.470</u>	<u>2.138</u>	<u>1.885</u>	<u>1.516</u>	<u>1.472</u>	<u>1.429</u>
group9			<u>1.056</u>	<u>1.160</u>	<u>1.470</u>	<u>2.138</u>	<u>1.885</u>	<u>1.516</u>	<u>1.472</u>	<u>1.429</u>
group10			<u>1.056</u>	<u>1.160</u>	<u>1.470</u>	<u>2.138</u>	<u>1.885</u>	<u>1.516</u>	<u>1.472</u>	<u>1.429</u>
group1			<u>1.010</u>	<u>1.025</u>	<u>1.089</u>	<u>1.191</u>	<u>1.220</u>	<u>1.217</u>	<u>1.152</u>	<u>1.095</u>
group2			<u>1.009</u>	<u>1.032</u>	<u>1.088</u>	<u>1.153</u>	<u>1.165</u>	<u>1.165</u>	<u>1.097</u>	<u>1.088</u>
group3			<u>1.117</u>	<u>1.298</u>	<u>2.125</u>	<u>2.705</u>	<u>2.643</u>	2.440	2.032	2.007
group4			<u>1.100</u>	<u>1.184</u>	<u>1.330</u>	<u>1.398</u>	<u>1.363</u>	<u>1.342</u>	<u>1.327</u>	<u>1.278</u>
group5	7	0.2	<u>1.014</u>	<u>1.017</u>	<u>1.100</u>	<u>1.120</u>	<u>1.039</u>	<u>1.039</u>	<u>1.017</u>	<u>1.016</u>
group6	<u>Z</u>	<u>0.2</u>	<u>1.006</u>	<u>1.023</u>	<u>1.118</u>	<u>1.201</u>	<u>1.189</u>	<u>1.190</u>	<u>1.143</u>	<u>1.056</u>
group7			<u>1.011</u>	<u>1.017</u>	<u>1.091</u>	<u>1.111</u>	<u>1.079</u>	<u>1.071</u>	<u>1.026</u>	<u>1.028</u>
group8			<u>1.063</u>	<u>1.177</u>	<u>1.620</u>	<u>1.985</u>	<u>1.940</u>	<u>1.537</u>	<u>1.463</u>	<u>1.450</u>
group9			<u>1.063</u>	<u>1.177</u>	<u>1.620</u>	<u>1.985</u>	<u>1.940</u>	<u>1.537</u>	<u>1.463</u>	<u>1.450</u>
group10			<u>1.063</u>	<u>1.177</u>	<u>1.620</u>	<u>1.985</u>	<u>1.940</u>	<u>1.537</u>	<u>1.463</u>	<u>1.450</u>

Table 3H.6-17 Response Spectra Modification Factors (Continued)

F				že.	nber ⁽²⁾	8	-	Axial and Flexu		Reinforcement E	esign Loads In-Plane Shear Load	źs	Longitudinal			Transverse Shear Design Ford	.05			
Locatio	Thickness (ft)	Face	Direction	Reinforcement Layout Drawing Number ^(1,8)	ent Zone Nur	um Forces (3)	Element	Loads ⁽¹¹⁾ Combination	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Loads ⁽¹¹⁾ Combination	In-plane ⁽⁵⁾ Shear (kips / ft)	Longitudinal Reinforcement Provided (in²/ ft)	Load Combination	Horizon	tal Section	Vertica	I Section	Transverse Shear ⁽⁷⁾ Reinforcement Provided (in ² /ff ²)	Rema
	F		-	Reinfor	Reinforcem	Maxin									Transverse Shear Force (kips / ft)	Corresponding Axial Force (kips / ft)	Transverse Shear Force (kips / ft)	Corresponding Axial Force (kips / ft)		
						Max Tension w/ corresponding moment	951	D + L + H' +E' (WP)	130	-28										
					141	Max Compression w/ corresponding moment	932	D + L + H' +E' (WP)	-66	-1	D + L + H' +E' (WP)	26	4.68							
					2	Max Moment with axial tension	952	D + L + H' +E' (WP)	48	-32	D + L + H +E (WP)	20	4.00	-						
						Max Moment with axial compression	953	D + L + H' +E' (WP)	-1	-28										
						Max Tension w/ corresponding moment	153	D + L + H' +E' (WP)	89	-11										
		epis	ortal	3H.7-11	2+H-L	Max Compression w/ corresponding moment	854	D + L + H' +E' (WP)	-77	-1	D + L + H' +E' (WP)	21	3.12							
		Near	Hotz	3H3	24	Max Moment with axial tension	265	D + L + H' +E' (WP)	62	-17	D+L+H+E (WP)	21	0.12							
						Max Moment with axial compression	706	D + L + H' +E' (WP)	-8	-16										
						Max Tension w/ corresponding moment	149	D + L + H' +E' (WP)	108	-28									-	
					3-H-L	Max Compression w/ corresponding moment	149	D + L + H' +E' (WP)	-123	-6	D + L + H' +E' (WP)	26	4.68	-						
					÷	Max Moment with axial tension	149	D + L + H' +E' (WP)	104	-28	0+2+11+2 (WP)	20	4.00	-						
						Max Moment with axial compression	141	D + L + H' +E' (WP)	-9	-28										
	9					Max Tension w/ corresponding moment	284	D + L + H +Wt	109	0										
		side	ortal	3H.7-12	14F	Max Compression w/ corresponding moment	149	D + L + H' +E' (WP)	-129	25	D + L + H' +E' (WP)	26	3.12							
		Far	Horiz	3H1	2	Max Moment with axial tension	634	D + L + H' +E' (WP)	4	28	D+C+H+E (WP)	20	0.12							
						Max Moment with axial compression	277	D + L + H' +E' (WP)	-72	30										
						Max Tension w/ corresponding moment	953	D + L + H' +E'	35	-6										
		Side	icel	3H.7-13	1-V-L	Max Compression w/ corresponding moment	918	D + L + H +Wt	-96	-16	D+L+H+Wt	59	3.12							
		Near	Vertic	SHI	4	Max Moment with axial tension	902	D + L + H' +E' (WP)	14	-86	DTETHTW	59	0.12	-						
						Max Moment with axial compression	902	D + L + H' +E' (WP)	-10	-86										
		Far Side	Vertical	3H.7-14	7/1/5			D + L + H +W		17	D + L + H + Wt	59	3.12							
				3H.7-14A	1-T					•				D + F + L + H' + E'	26	3	10	146	0.44	
		Near Side	Horizontal	9H7-9	7445			D+L+H+W			D + L + H' +E' (WP)	34	3.12	-						
		Far Side	Horizontal	347-0	1441		-	D+L+H+W	See	Note (9)	D + L + H' +E' (WP)	34	4 3.12	-						
	5	Near Side	Vertical	3H.7-10	1W1			D+L+H+Wt			D+L+H+Wt	182	3.12							
		Far Side	Vertical	34.7-10	1-V-L			D * L * H * W			D + L + H + Wt	182	3.12						-	
		<u> </u>		3H.7-10A	1-T									D + F + L + H + Wt	-6	-102	28	86	0.44	<u> </u>

Table 3H.7-1 Results of DGFOT Concrete Wall and Slab-Design

3H-218

Rev. 07

Final Safety Analysis Report

STP 3 & 4

Far Side Near Side Face Internation Horizontal Direction	3H.7-15 ocement Layout fing Number (1.8)	1-H-L ment Zone Numbe	num forces ⁰⁾	Element	Axial and Flexa Loads ⁽¹¹⁾ Combination D + L + H + Wt	Axial ⁽⁴⁾ (kips / ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	In-Plane Shear Load Loads ⁽¹¹⁾ Combination	Is In-plane ⁽⁵⁾ Shear (kips / ft)	Longitudinal Reinforcement Provided (in²/ ft)	Load		Transverse Shear Design Ford	es		Transverse Shear (7)	
Side Near Side Sortal Horizortal DI	3H.7-15 or cernent La. ing Number	1-H-L ment Zone N	inum forces		Combination	(kips/ft)	Flexure ⁽⁴⁾ (ft-kips / ft)	Loads ⁽¹¹⁾ Combination	Shear	Provided (in²/ ft)							
Side Near S Dortal Horizo	3H7-15	144			D + L + H + Wt						Load Combination	Horizo	ital Section	Vertica	al Section	Reinforcement Provided (in ² /ft ²)	Remarks
ar Side orizontal						See	Note (10)	D + L + H' +E' (WP)	27	3.12							
ar Side orizortal			Max Tension w/ corresponding moment	2584	D + L + H' +E' (WP)	95	8									-	
orist	12		Max Compression w/ corresponding moment	309	D + L + H' +E' (WP)	-117	12										
" T	3H.7	Ť	Max Moment with axial tension	2351	D + L + H' +E' (WP)	12	21	D + L + H' +E' (WP)	27	3.12							
			Max Moment with axial compression	2316	D + L + H +Wt	-13	32										
			Max Tension w/ corresponding moment	2425	D + L + H' +E' (WP)	20	-60										
Side Side	9	7	Max Compression w/ corresponding moment	301	D + L + H' +E' (WP)	-23	0										
Verti	3H.7.	×-4	Max Moment with axial tension	2433	D + L + H' +E' (WP)	16	-74	D + L + H' +E' (WP)	47	3.12	· ·					· · ·	
			Max Moment with axial compression	2554	D + L + H' +E' (WP)	-2	-72										
			Max Tension w/ corresponding moment	2315	D + L + H +Wt	13	2										
S 7	9		Max Compression w/ corresponding moment	309	D + L + H' +E' (WP)	-35	79										
Far Si Vertic	3H.7-	14	Max Moment with axial tension	2438	D + L + H' +E' (WP)	1	56	D + L + H' +E' (WP)	47	3.12							
			Max Moment with axial compression	2496	D + L + H' +E' (WP)	-29	87										
	3H.7-17	1-T									1.4D + 1.4F + 1.7L + 1.7H +	52	12	12	1	0.44	
			Max Tension w/ corresponding moment	174	D + L + H + Wt	124	-11										
op Ist	2		Max Compression w/ corresponding moment	1703	D + L + H' +E' (WP)	-117	-4										
Near 5 Horizo	3H.7-	ž	Max Moment with axial tension	1688	D + L + H + Wt	53	-38	D + L + H' +E' (WP)	34	3.12							
			Max Moment with axial compression	1694	D + L + H' +E' (WP)	-9	-30										
			Max Tension w/ corresponding moment	1710	D + L + H' +E' (WP)	118	7										
e 18			Max Compression w/ corresponding moment	1703	D + L + H' +E' (WP)	-117	12										
Far Sic	3H.7-1	1 H	Max Moment with corresponding axial tension	1695	D+L+H+Wt	10	41	D + L + H' +E' (WP)	34	3.12							
-				1840		_											
			Max Tension w/ corresponding moment	1694	D+L+H+W	-	-20										
8 7			Max Compression w/ corresponding moment	1694	D + L + H' +F' (WP)	_	.45										
Verticu	3H.7-1	1-1-1		+ +				D + L + H' +E' (WP)	53	3.12							
z						-	-										
	-																
				++			-										
	H.7-1	1-V-L						D + L + H' +E' (WP)	53	3.12							
					()												
	0117.404	4.7	wax woment with corresponding axia compression	200	D + L + H +E (WP)		04		-		0.5.1.1.1.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Far Side Near Side Far Side Near Side	Vertical Motional Motional Vertical Vertical Vertical Vertical Vertical		No.4 Figure 1 No.4 Figure 2 No.4 <td>이용 12 12 13 1</td> <td>이용 이용 이</td> <td>90/ 100000000000000000000000000000000000</td> <td>90 90</td> <td>9/4 0 0 0 1 3/4 Max Max.Moment with aild corperation 243 0 0 1 3 3 Max Max.Moment with aild corperation 254 0 0 1 3 2 Max Max.Moment with aild corperation 254 0 0 1 3 2 Max Max.Moment with aild corperation 248 0 0 1 6 7 Max.Moment with aild corperation 248 0 0 1 6 7 Max.Moment with aild corperation 248 0 0 1 7</td> <td>97 01<</td> <td>9 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1</td> <td>9 0</td> <td>0 0 0 00 0 00 0 00 0 00 00 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0 00 0 0 0 00 0<br 0<br=""/>0 0<br 0<br=""/>0<br 0<br="" <="" td=""/><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""></th<></td></th<></td></th<></td></th<></td></th<></td></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td>	이용 12 12 13 1	이용 이	90/ 100000000000000000000000000000000000	90 90	9/4 0 0 0 1 3/4 Max Max.Moment with aild corperation 243 0 0 1 3 3 Max Max.Moment with aild corperation 254 0 0 1 3 2 Max Max.Moment with aild corperation 254 0 0 1 3 2 Max Max.Moment with aild corperation 248 0 0 1 6 7 Max.Moment with aild corperation 248 0 0 1 6 7 Max.Moment with aild corperation 248 0 0 1 7	97 01<	9 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1	9 0	0 0 0 00 0 00 0 00 0 00 00 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0 00 0 0 0 00 	000 <th< td=""><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""></th<></td></th<></td></th<></td></th<></td></th<>	000 <th< td=""><td>000<th< td=""><td>000<th< td=""><td>000<th< td=""></th<></td></th<></td></th<></td></th<>	000 <th< td=""><td>000<th< td=""><td>000<th< td=""></th<></td></th<></td></th<>	000 <th< td=""><td>000<th< td=""></th<></td></th<>	000 <th< td=""></th<>

Table 3H.7-1 Results of DGFOT Concrete Wall and Slab Design (Continued)

Final Safety Analysis Report

Rev. 07

STP 3 & 4

3H-219

(11) The "E ' (WP)" designation in the load combination column indicates seismic SSE loading including wave propagation effects.

I

Load	Ca	alculated Safety Fac	tor	
Combination	Overturning	Sliding	Flotation	Notes
D + F _b			1.70	
D + H + W	1.58	3.47		2, 3 (Sliding Only)
D + H + W _t	1.10	1.10		2, 4
D + H' + E'	1.30	1.28		2, 3 <u>, 5</u>

Table 3H.7-2 Factors of Safety against Sliding, Overturning and Flotation for DGFOT

Rev. 07

Notes:

- (1) Loads D, H, H', W, W_t, and E' are defined in Section 3H.7.4.3.4. F_b is the buoyant force corresponding to the design basis flood.
- (2) Coefficients of friction for sliding resistance are 0.58 for static conditions and 0.39 for dynamic conditions for the Diesel Generator Fuel Oil Tunnel.
- (3) The calculated safety factors consider the full passive pressure.
- (4) The minimum calculated safety factor against sliding and overturning for tornado wind is 2.32. For tornado wind in conjunction with tornado missile, subsequent detailed design of the restraints for the Access Regions will provide sliding and overturning safety factors greater than 1.10.
- (5) <u>The seismic sliding forces and overturning moments from SSI and SSSI analyses are less than the</u> seismic sliding forces and overturning moments used in the stability evaluations.

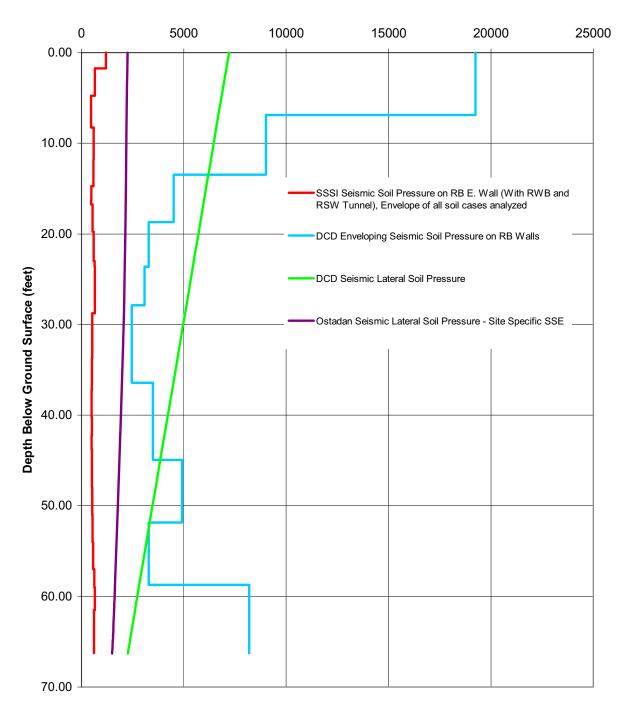
		ct Evaluation for Diesel Generator Fuel Oil Tunnel							
Local Check	DGFOT and Access Regions	Minimum required thickness to prevent penetration, perforation, and scabbing = 15.14"							
		Minimum provided thickness = 24"							
		Flexure controls.							
Overall Check of Impacted Element	Walls and Slabs of DGFOT and Access Regions	Maximum impact load including Dynamic Load Factor (DLF) = 899 kips for Access Regions and 862 kips for DGFOT							
		Ductility demand = 1.4 for shell missile and 1.0 for automobile missile < Ductility limit = 10							
	obal neck	Equivalent static impact forces due to missile impact are considered in the local and global design of the DGFOT. The analysis results presented in Table 3H.7-1 provide a summary of the results for all load combinations including those affected by the tornado missile impact.							

Table 3H.7-3 Tornado Missile Impact Evaluation for Diesel Generator Fuel Oil Tunnel

									- .									
Structure		SSI	Seismic Analysis	55:	sī			Structure	Design			Stability				Design for II	I/I (applicable to th	e design of lateral load resisting system)
Shular	Input Motion	Seil Type	Structural Damping for Generation of ISRS	Input Motion	Soil Type	Seismic	Tornado	Tornado Missiles	Flood	Seismic	Tornado	Tornado Missiles	Flotation	Coeff. Of Friction for Waterproofing Membrane	Seismic	Tormado	Tornado Missiles	Flood
Diesel Generator Fuel Oil Tunnels (DGFOT)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE Å 0.3g RG 1.60	DCD & Site-Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific	Envelope of Amplified ⁽¹⁾ Site-Specific SSE & 0.3g RS 1.60 (See Note 4)	DCD Tornodo Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood El. 40° MSL, Water Density 63.85 lo/f13 (above grade)	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tormado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tormado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1 (Note 2)	Flood El. 40° M.S.L., Water Density 63.85 Ib/ft ⁸ (above gnade)	Site-Specific	NA	NA	NA	NA
UHS/RSW Pump House	Site-Specific SSE	Site-Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Fload El. 40' MSL, Water Density 63.85 lb/f1' (dove grade) • Drag Effect 14 paf (dove grade) • Impact of Floating Debris par COLA Section 3.4.2 • Wind Generated Wave Action par COLA Figure 3.4.1 (only hydrodynamic partion)	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tormado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 Ib/ft ³ (above grade)	Site-Specific	NA	NA	NA	Ν
25W Piping Tunnels	Amplified ^(I) Site-Specific SSE	Site-Specific	4% for all SSI analysis cases Except 7% for Cracked Case	Site-Specific SSE	Site-Specific	Amplified ¹⁰ Site-Specific SSE (See Note 4)	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1		Amplified ⁽⁰⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Termado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 Ib/ft ³ (above grade)	Site-Specific	NA	NA	NA	NA
Diesel Generator Fuel oil Storage Vault (DGFOSV)	Envelope of Amplified ⁽¹⁾ Site-Specific SSE å 0.3g RG 1.60	Site-Specific	4% for all SSI analysis cases	Site-Specific SSE	Site-Specific	Envelope of Amplified ^(II) Site-Specific SSE & 0.3g R6 1.60	Wind Parameters	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1		Amplified ⁽⁰⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tornado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 Ib/ft ³ (above grade)	Site-Specific	NA	NA	NA	Ν
Radwaste Building (RWB)	NA	NA	NA	Site-Specific SSE	Site-Specific	1/2 of 0.3g RG 1.60 SSE for RW-IIa Classification, 4% Damping	Per Table 2 of RG 1.143 Rev. 2 for RW-IIa Classification	Per Table 2 of RG 1:143 Rev. 2 for RW-IIa Classification	Fleed EI. 33' MSL RW-ITb Classification	Amplified ⁽⁰⁾ Site-Specific SSE , 7% Damping	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tormado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63,85 Ib/ft ⁸ (above gnade)	Site-Specific	Envelope of Amplified ⁽¹⁾ Site- Specific SSE & 0.3g RG 1.60, 7% Damping	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood EL 40' MSL, Water Density 63.85 lb/ft ⁻¹ (above gr - Drog Effect 44 psf (above grade) • Impact of Floating Debris gare CCLA Section 3.4.2 • Wind Generated Wave Action per COLA Figure 3.4: (only hydrodynamic portion)
Control Bidg. Annex (CBA)	NA	NA	NA	NA	NA	IBC 2006	NA	NA	NA	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1,76 Rev. 1)	Site-Specific Tormado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood EL 40° MSL, Water Density 63.85 Ib/ft ³ (above grade)	Site-Specific	Envelope of Amplified ⁽²⁾ Site- Specific SSE & 0.3g RG 1.60	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood EI, 40' MSL, Water Density 63,85 lb/ft ² (above grow - Drog Effect 44 pf (above grode) - Import of Flooring Debris per COLA Section 3.4.2 + Wind Generated Ware Action per COLA Figure 3.4-: (only hydrodynamic partion)
Turbine Building (TB)	NA	NA	NA	NA	NA	IBC 2006	NA	NA	NA	Site-Specific SSE	Site-Specific Tornado Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tormado Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63,85 Ib/ft ⁸ (above grade)	Site-Specific	0.3g RG 1.60 SSE	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood El. 40' M.S.L. Water Density 63.88 lb/ft ² (above gr
Service Building (SB)	NA	NA	NA	NA	NA	IBC 2006	NA	NA	NA	Amplified ⁽¹⁾ Site-Specific SSE	Site-Specific Tormodo Wind Parameters (Region II, RG 1.76 Rev. 1)	Site-Specific Tormodo Missile Spectrum for Region II as shown in Table 2 of RG 1.76 Rev. 1	Flood El. 40' MSL, Water Density 63.85 Ib/ft ³ (above gnade)	Site-Specific	Envelope of Amplified ⁽¹⁾ Site- Specific SSE & 0.39 RG 1.60	DCD Tornado Wind Parameters (As described in Table 5.0 of DCD/Tier 1)	DCD Missile Spectrum 1 as defined in Table 5.0 of DCD/Tier 1	Flood E1. 40° MSL, Water Density 63.85 lb/ft ¹ (above gr

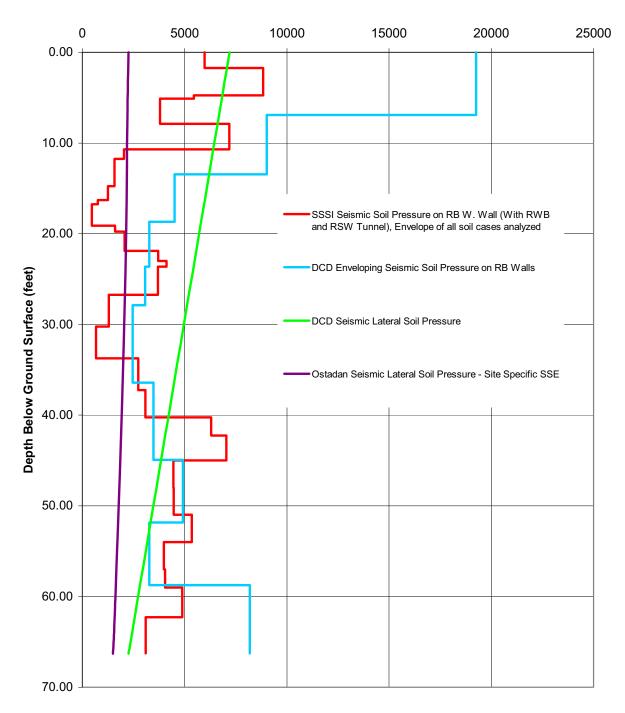
Table 3H-9-1 Extreme Environmental Design Parameters for Seismic Analysis,Design, Stability Evaluation and Seismic Category II/I Design

densed Motors
 11 Anapited Site Specific SSE accounts for the influence of early heavy Deactor Building, counter Building, counter


tion for DGFOT and RSW Piping Tunnels is based on site-specific SSE because their layouts are s

3H-222

Rev. 07


STP

З 8 4

Rev. 07

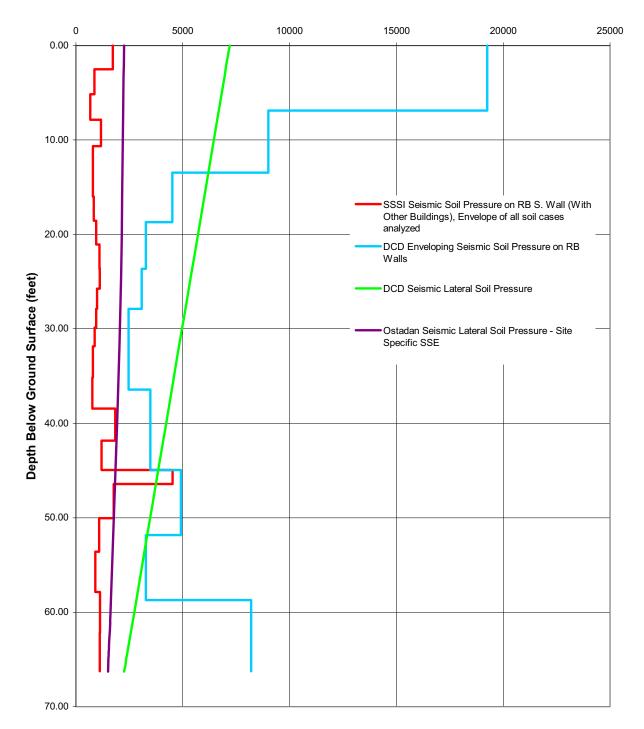
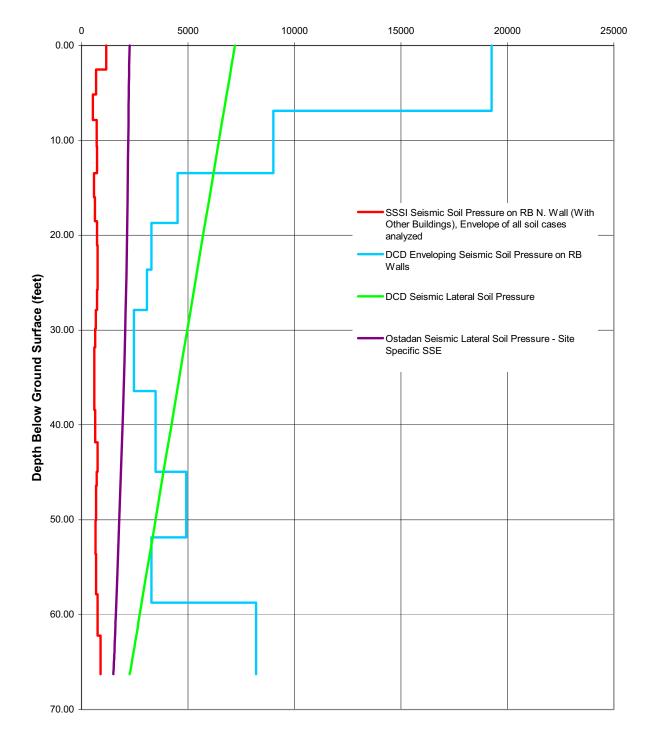
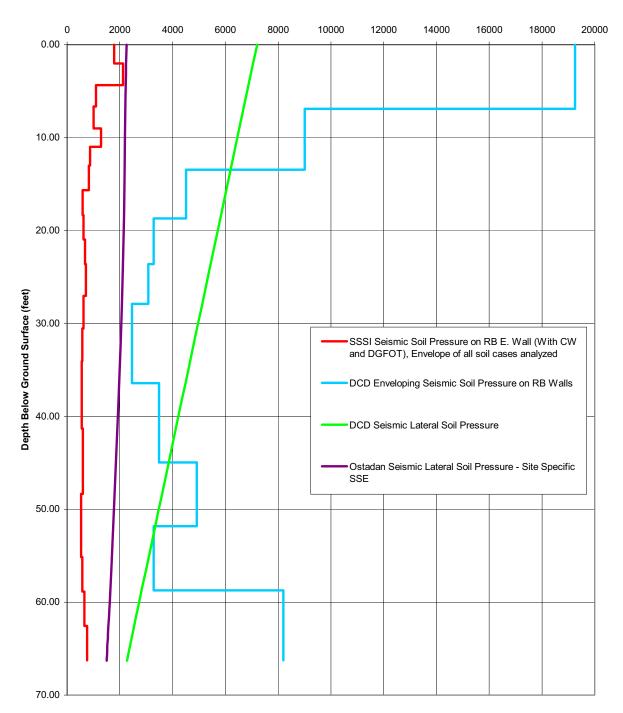
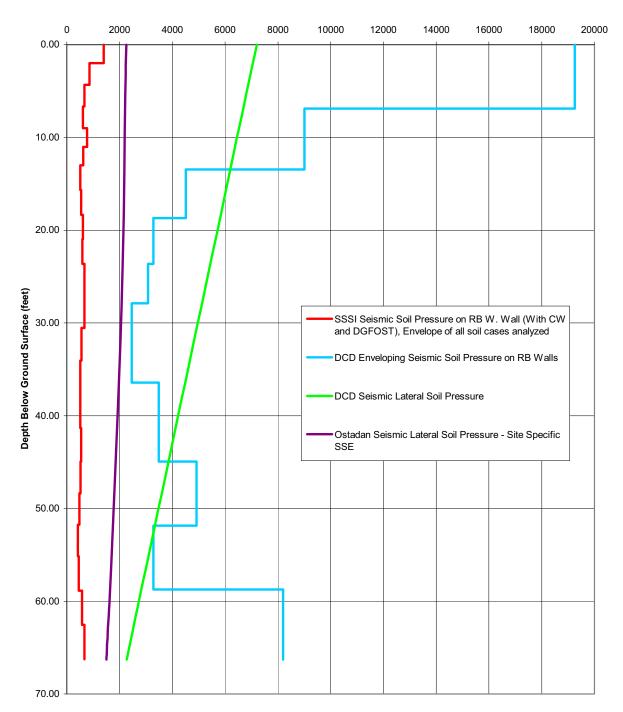




Figure 3H.1-3 Lateral Seismic Soil Pressure Comparison for RB South Wall (Considering DGFOSVS, RSW Tunnel & UHS/RSW Pump House Building)



Rev. 07

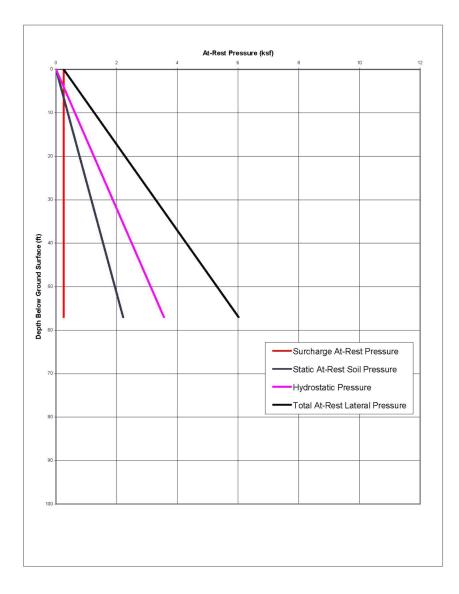


Figure 3H.3-1 At-Rest Lateral Earth Pressure on the RWB Walls

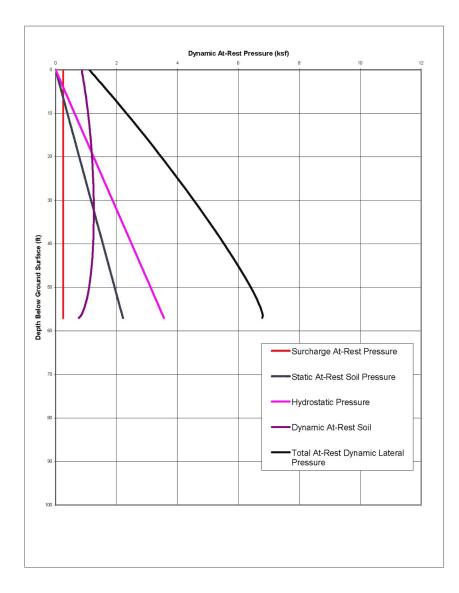


Figure 3H.3-2 Dynamic At-Rest Lateral Earth Pressure on the RWB Walls

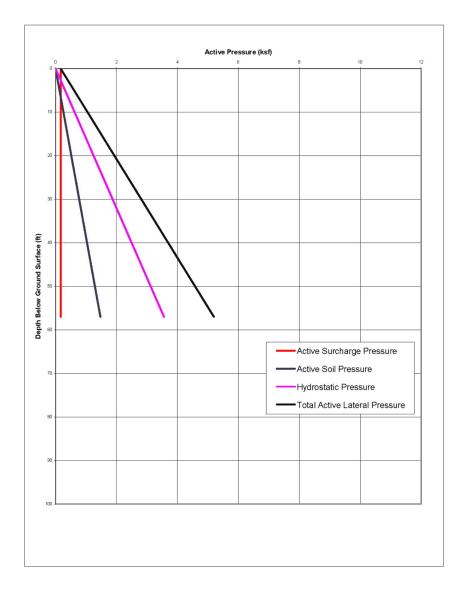


Figure 3H.3-3 Active Lateral Earth Pressure on the RWB Walls

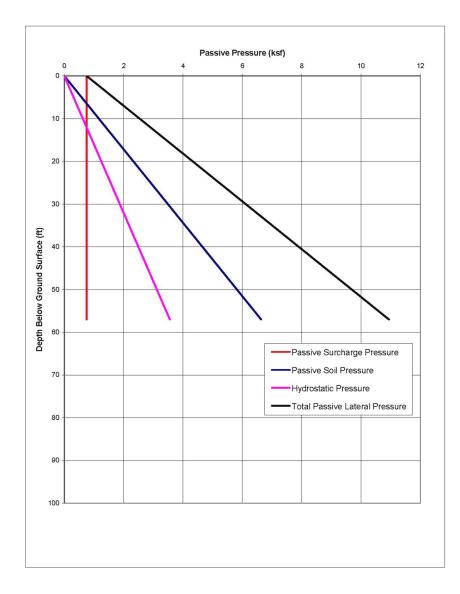


Figure 3H.3-4 Passive Lateral Earth Pressure on the RWB Walls

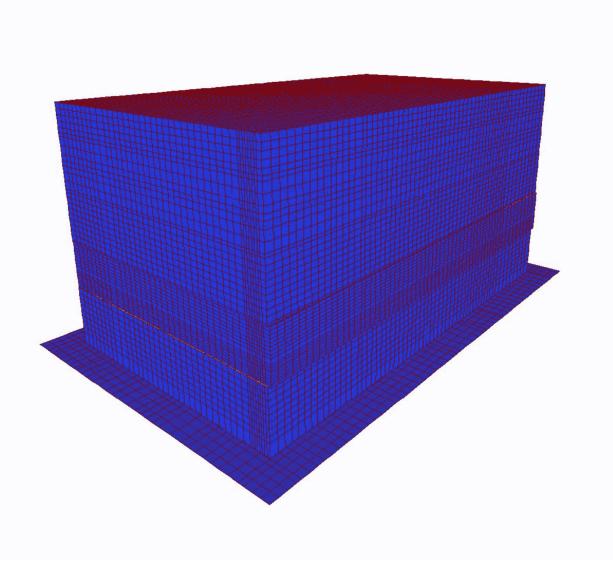


Figure 3H.3-5 Radwaste Building SAP2000 Model (Looking from Southwest Corner)

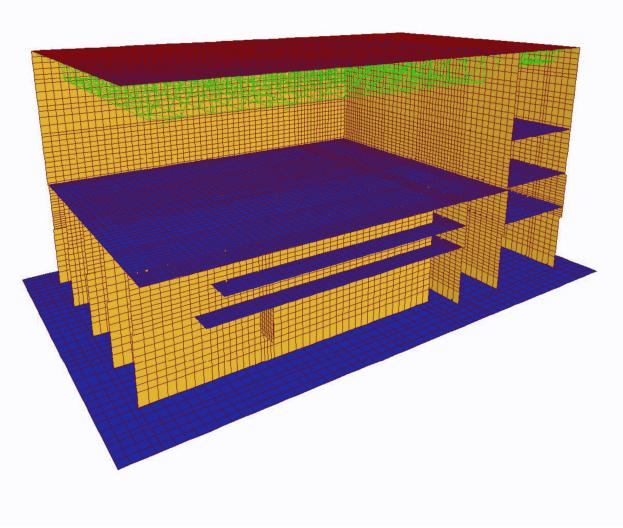


Figure 3H.3-6 Radwaste Building SAP2000 Model (South and West Walls Removed)

STP 3 & 4

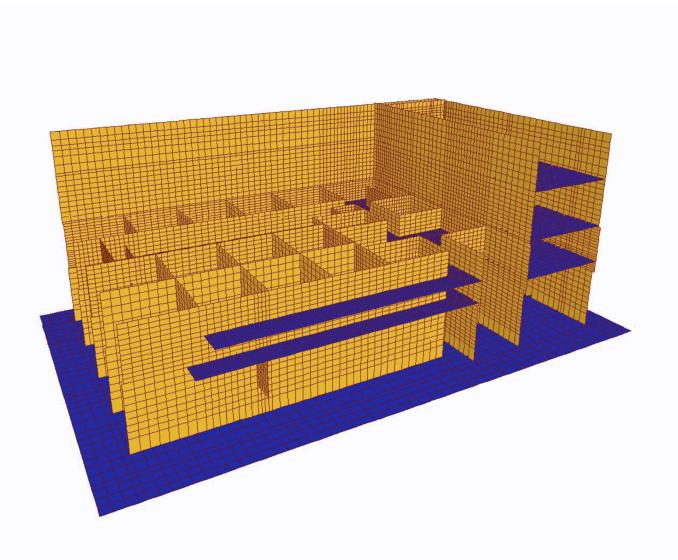


Figure 3H.3-7 Radwaste Building SAP2000 Model (South Wall, West Wall, Roof and El. 35'-0" Slab Removed)

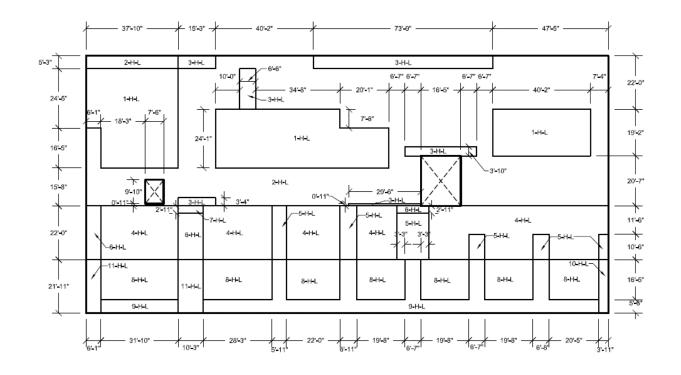


Figure 3H.3-8 North Wall Looking South Horizontal Reinforcement Zones Near Side Face

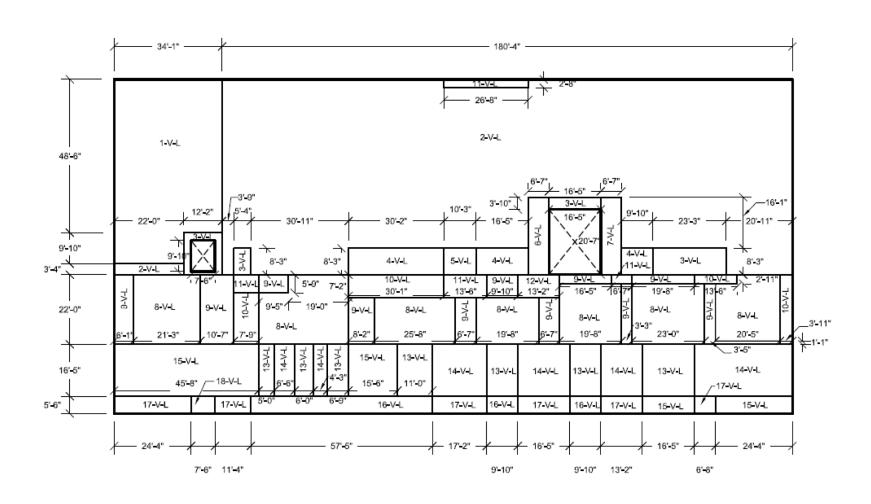


Figure 3H.3-9 North Wall Looking South Vertical Reinforcement Zones Near Side Face

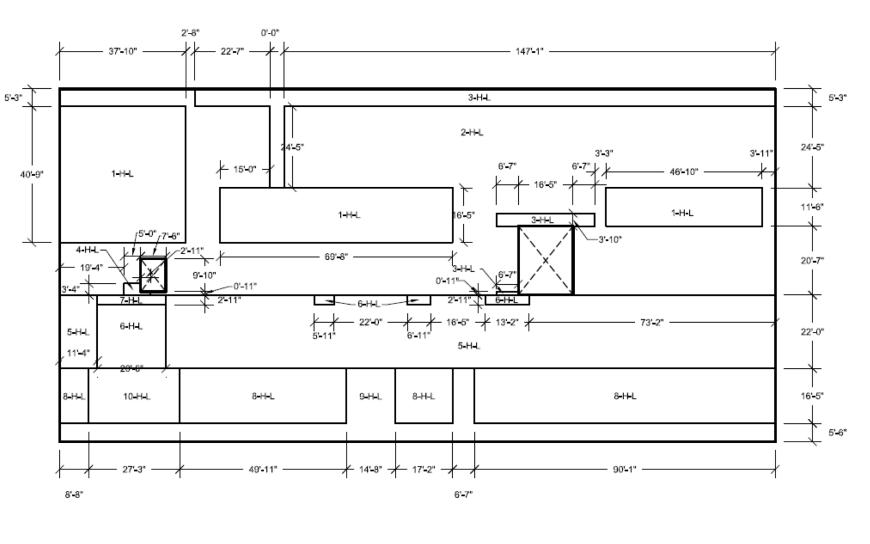


Figure 3H.3-10 North Wall Looking South Horizontal Reinforcement Zones Far Side Face

3H-238

STP 3 & 4

Rev. 07

Details and Evaluation Results of Seismic Category 1 Structures

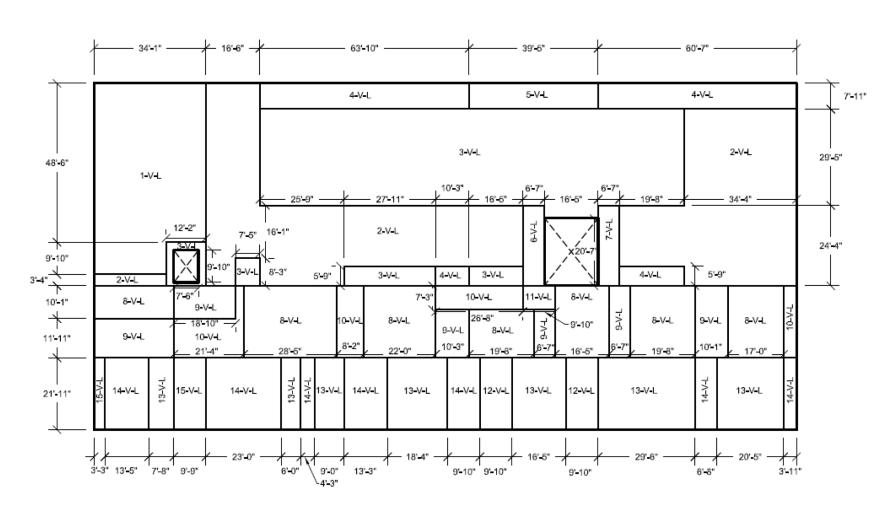


Figure 3H.3-11 North Wall Looking South Vertical Reinforcement Zones Far Side Face Rev. 07

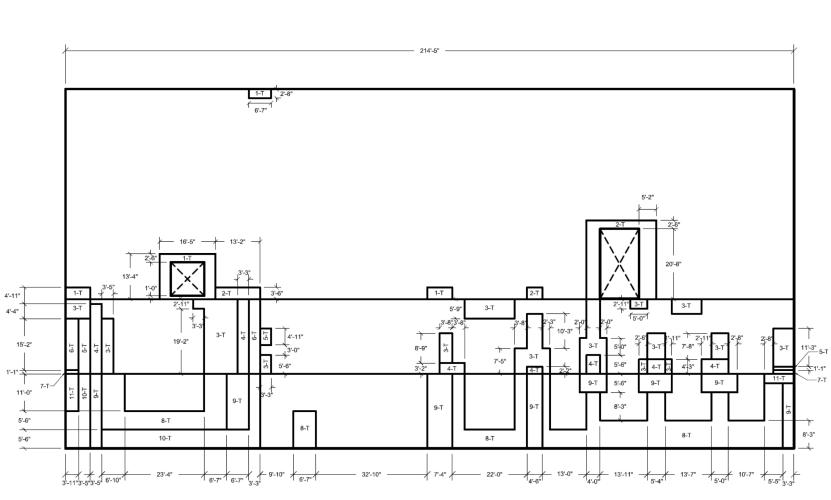
STP

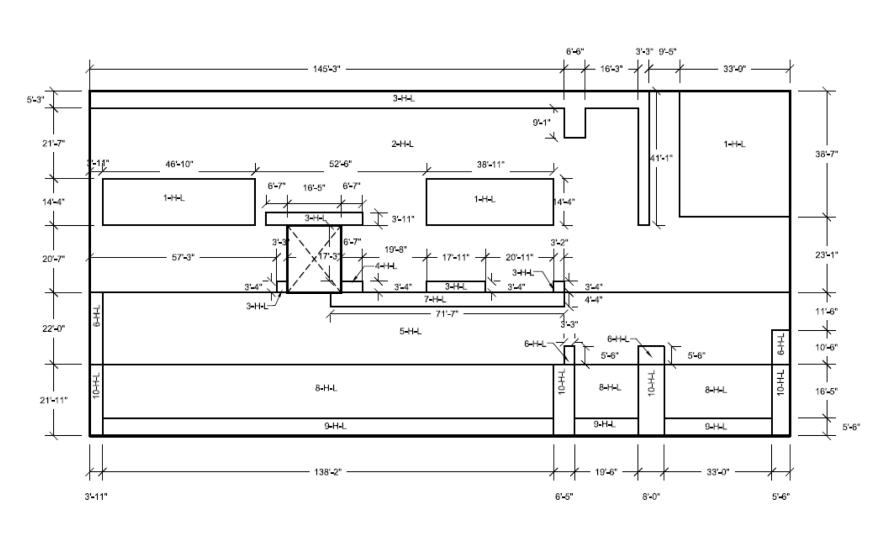
3 &

4

Final Safety Analysis Report

3H-239



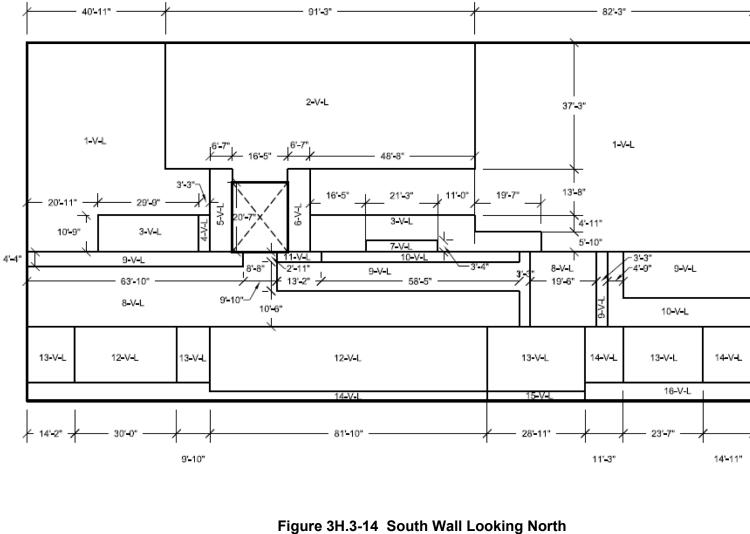

Figure 3H.3-12 North Wall Looking South Transverse Reinforcement Zones

STP

ω 8

4

Rev. 07



Rev. 07

Final Safety Analysis Report

STP 3 &

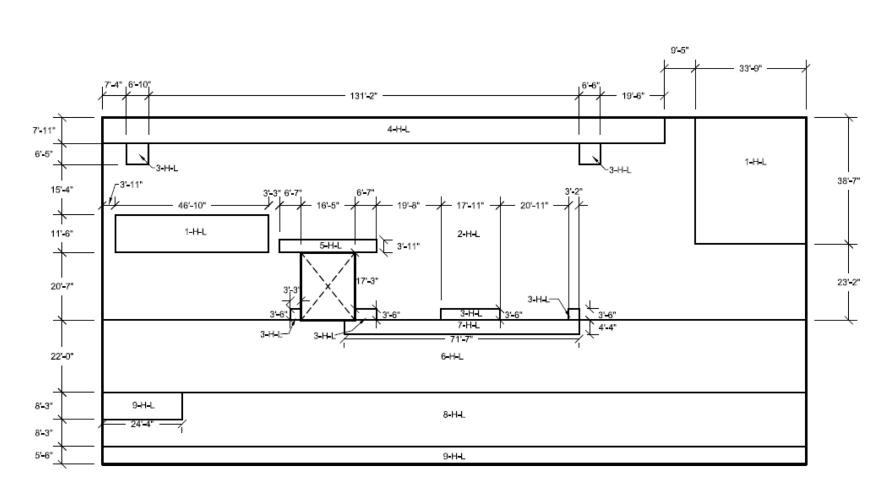
4

Vertical Reinforcement Zones

Near Side Face

STP 3 & 4

61'-8"

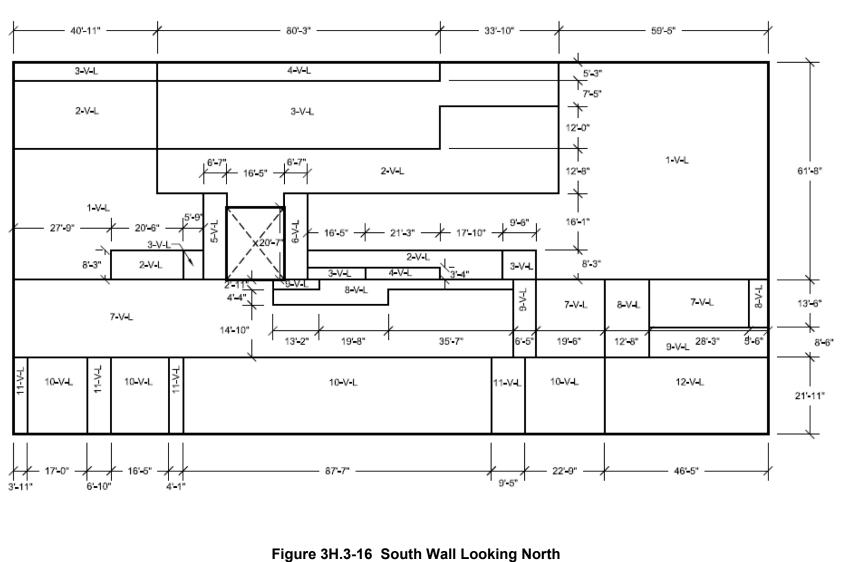

13'-6"

16'-5"

8'-6"

2.9"

Rev. 07

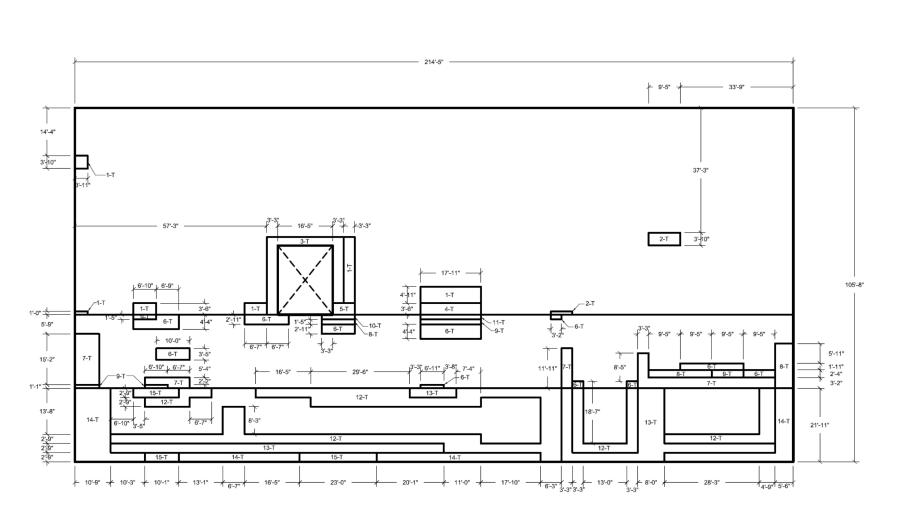

Figure 3H.3-15 South Wall Looking North Horizontal Reinforcement Zones Far Side Face

Rev. 07

Final Safety Analysis Report

STP 3 &

4


Vertical Reinforcement Zones Far Side Face

Details and Evaluation Results of Seismic Category 1 Structures

STP ω 8 4

Rev. 07

Rev. 07

Final Safety Analysis Report

STP 3 & 4

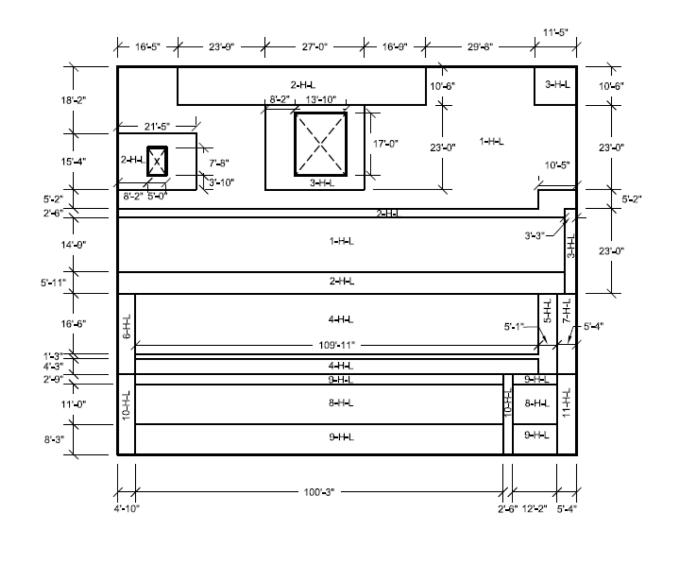


Figure 3H.3-18 East Wall Looking West Horizontal Reinforcement Zones Near Side Face

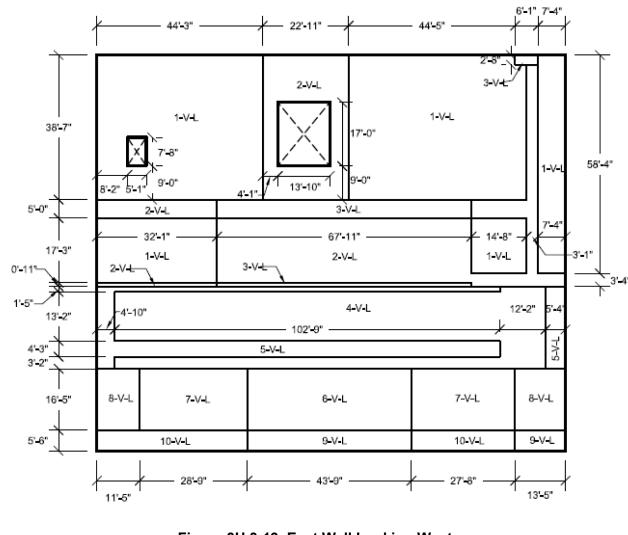
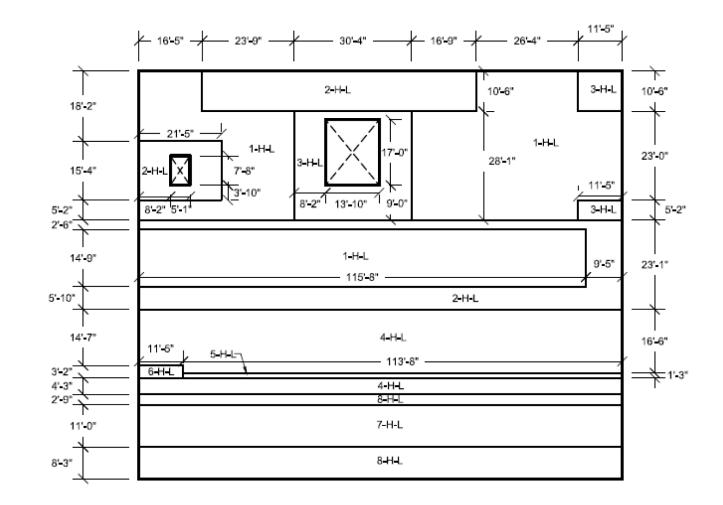



Figure 3H.3-19 East Wall Looking West Vertical Reinforcement Zones Near Side Face

STP 3 & 4

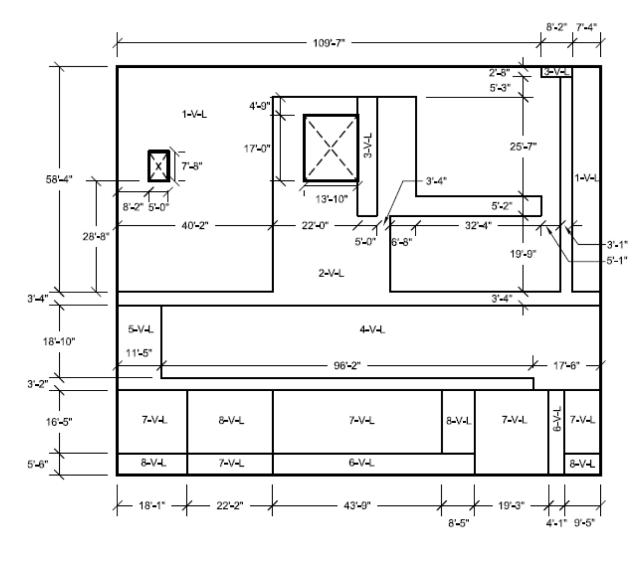


Figure 3H.3-21 East Wall Looking West Vertical Reinforcement Zones Far Side Face

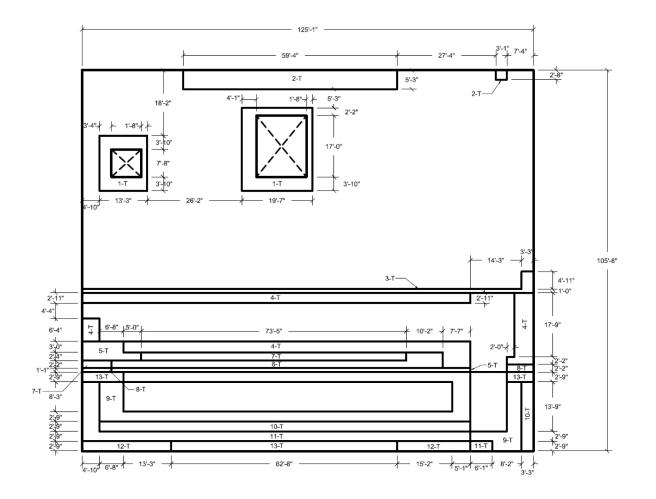


Figure 3H.3-22 East Wall Looking West Transverse Reinforcement Zones

3H-250

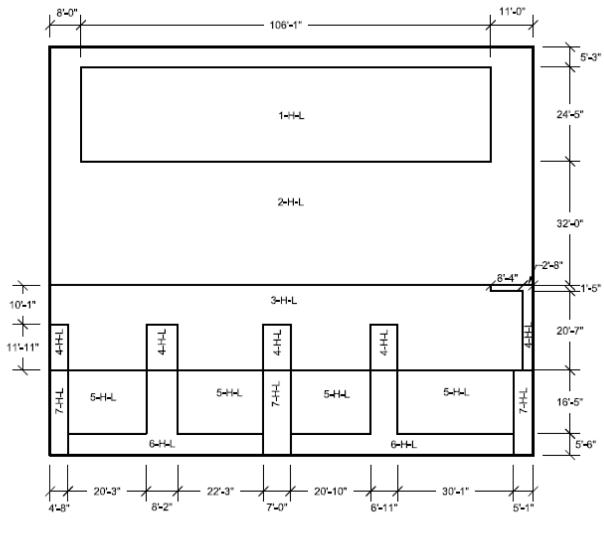
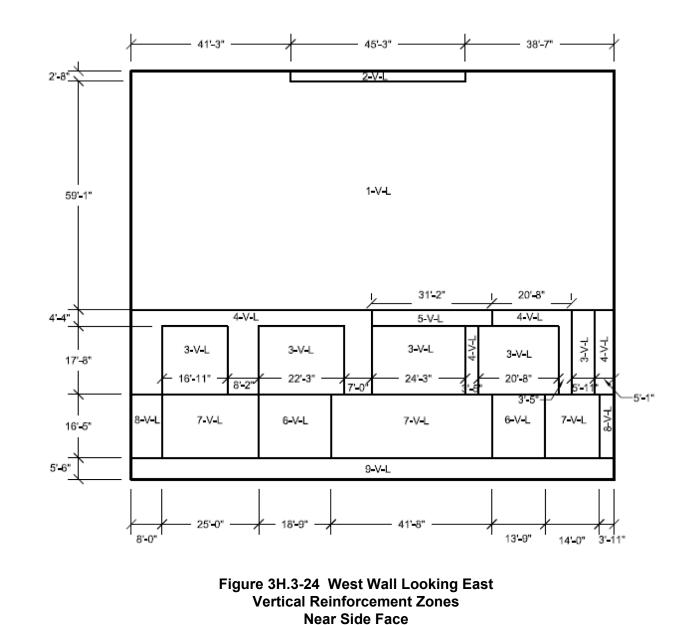



Figure 3H.3-23 West Wall Looking East Horizontal Reinforcement Zones Near Side Face

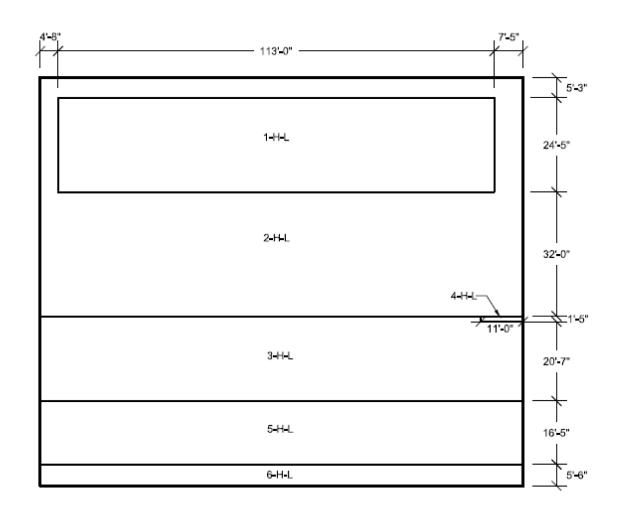
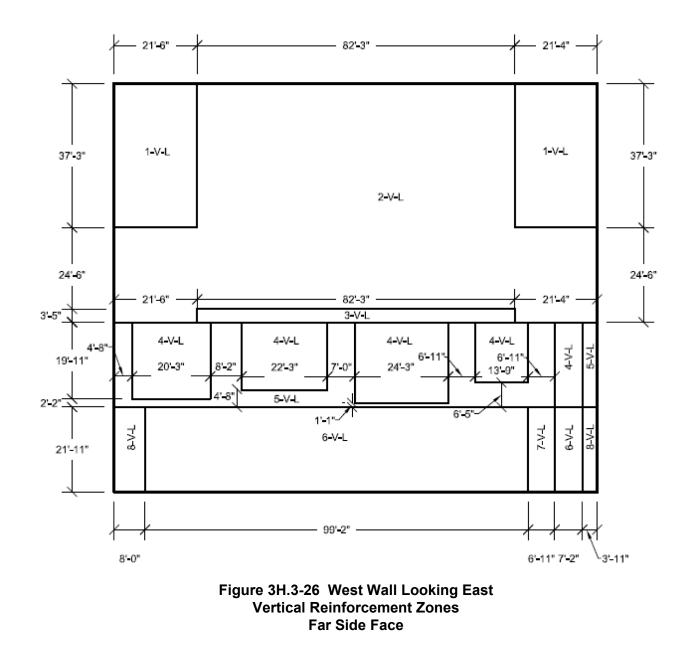



Figure 3H.3-25 West Wall Looking East Horizontal Reinforcement Zones Far Side Face STP 3 & 4

STP

3 & 4

STP 3 & 4

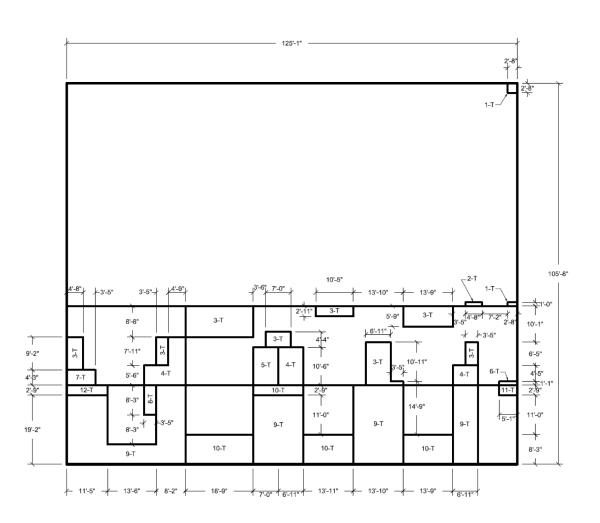
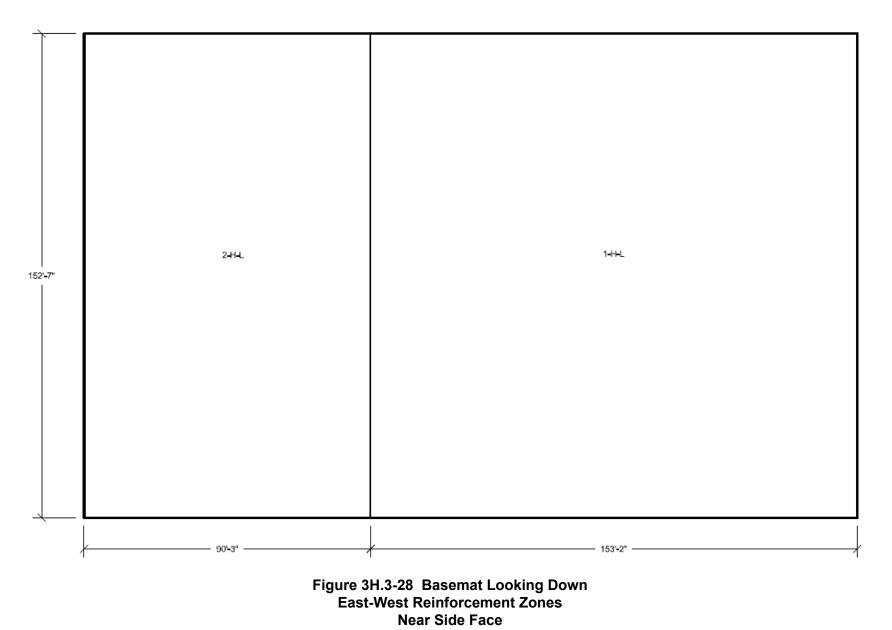
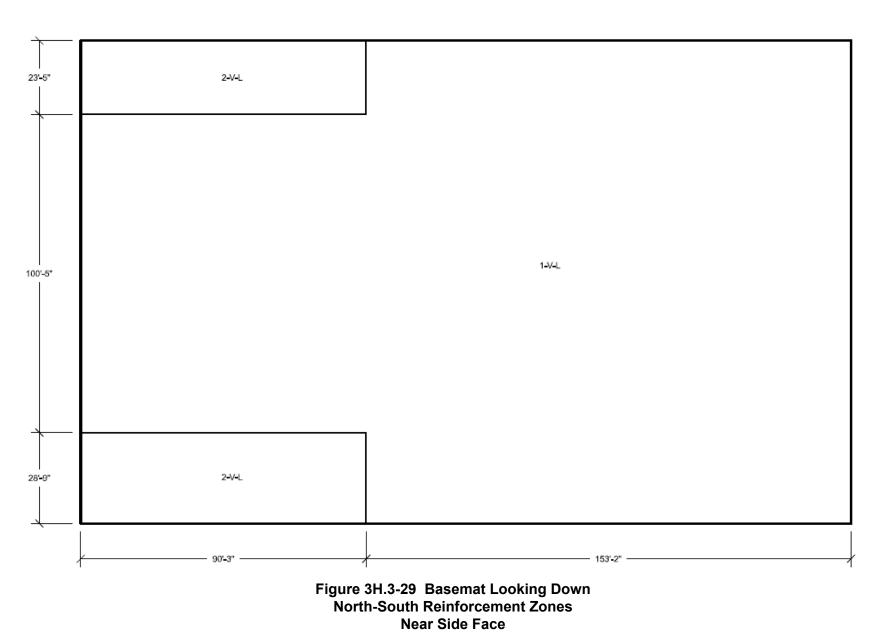



Figure 3H.3-27 West Wall Looking East Transverse Reinforcement Zones


3H-256

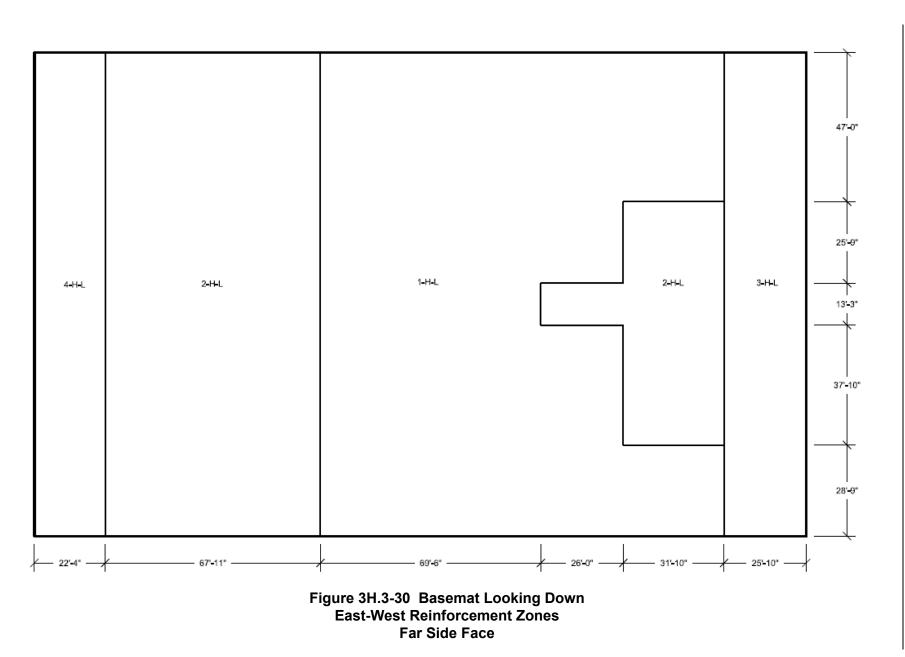
Rev. 07

Final Safety Analysis Report

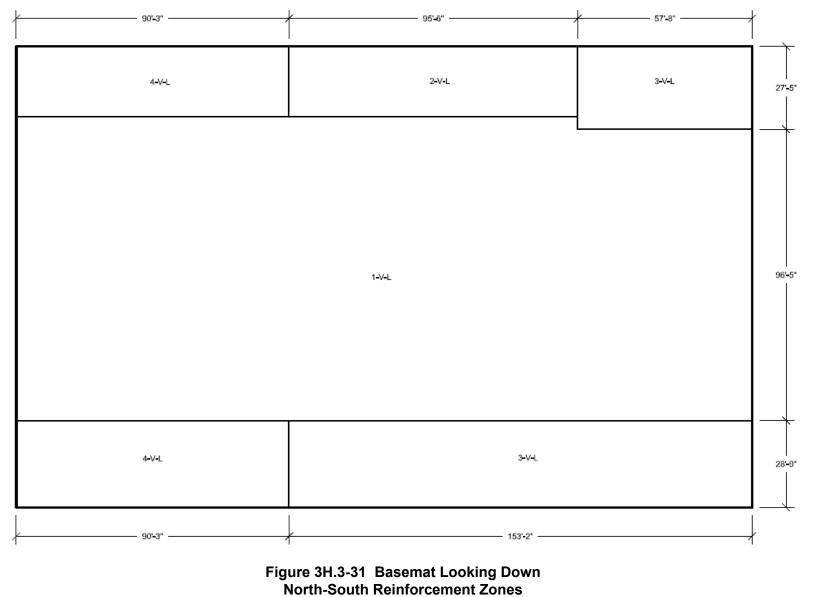
STP

3&4

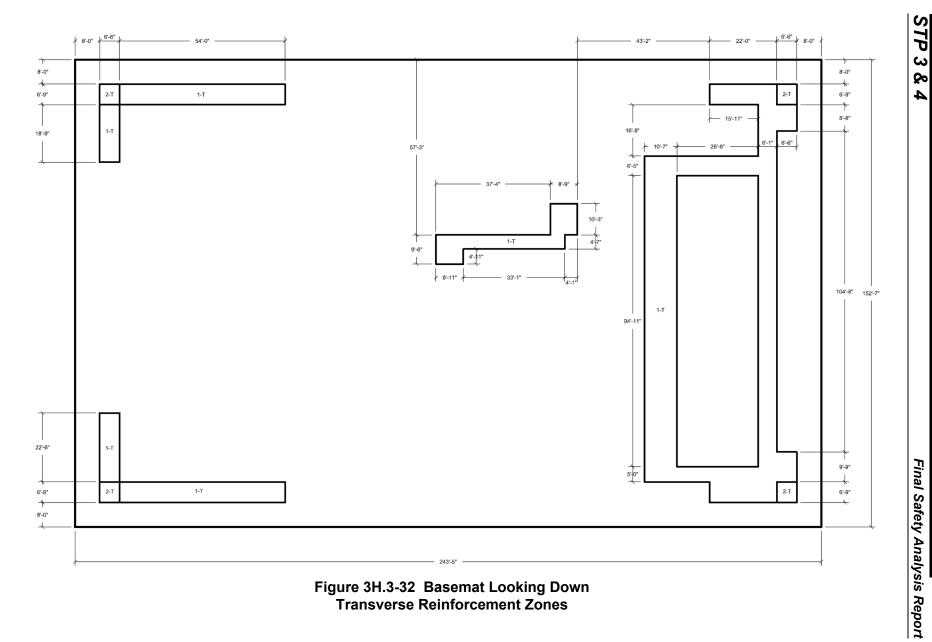
STP


ω

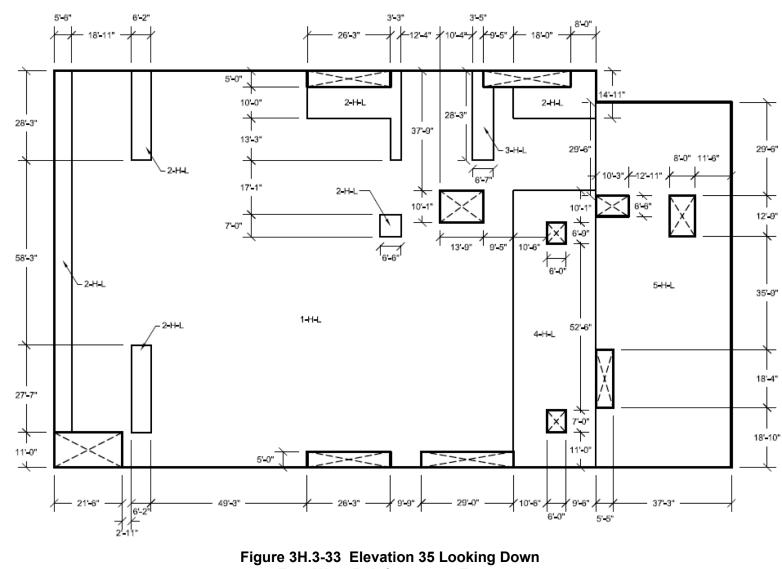
& 4


Final Safety Analysis Report

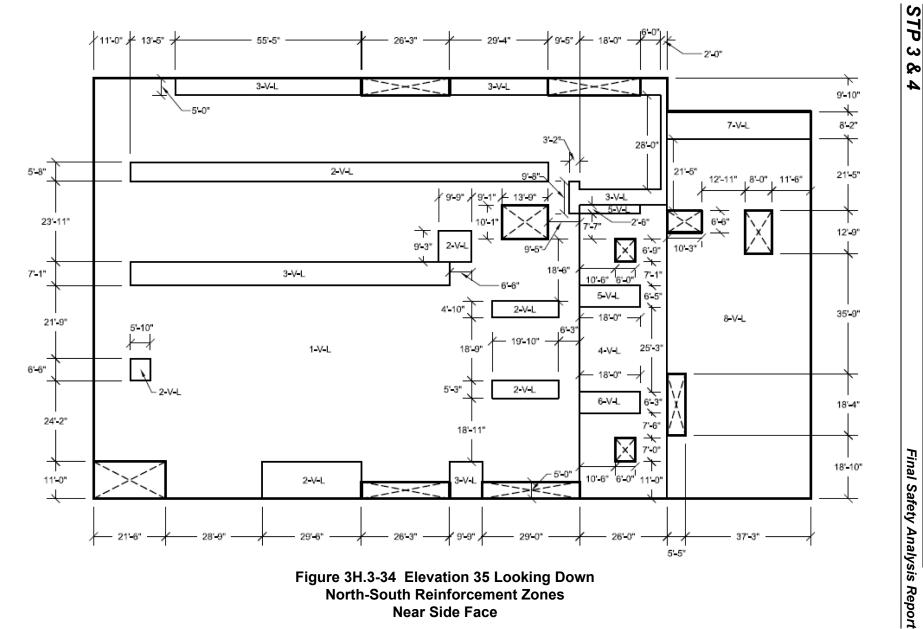
Final Safety Analysis Report


3H-258

Final Safety Analysis Report

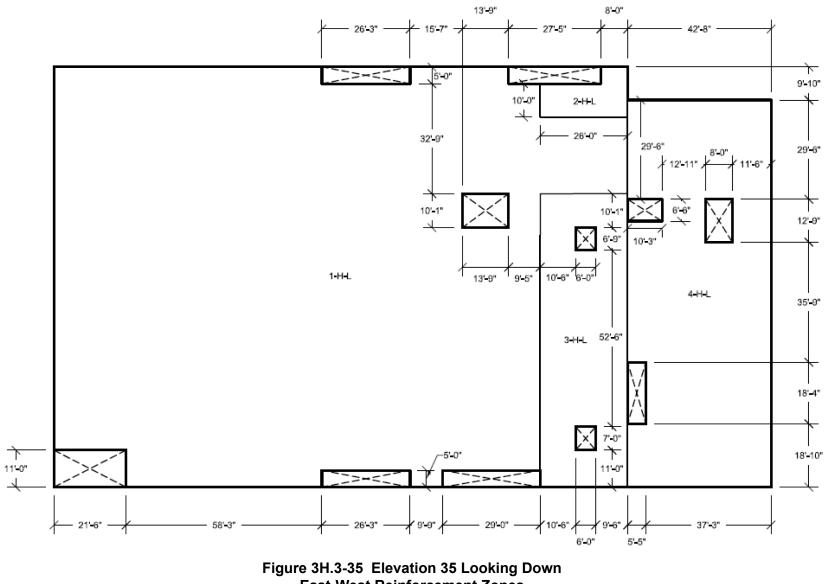

STP

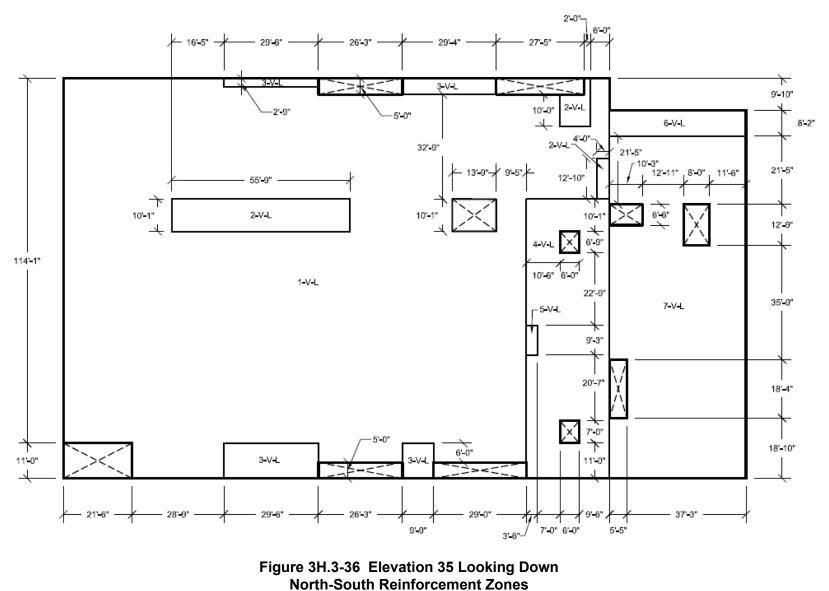
3 & 4



3H-260

Details and Evaluation Results of Seismic Category 1 Structures




gure 3H.3-33 Elevation 35 Looking Down East-West Reinforcement Zones Near Side Face

4

Final Safety Analysis Report

STP 3 & 4

Rev. 07

Final Safety Analysis Report

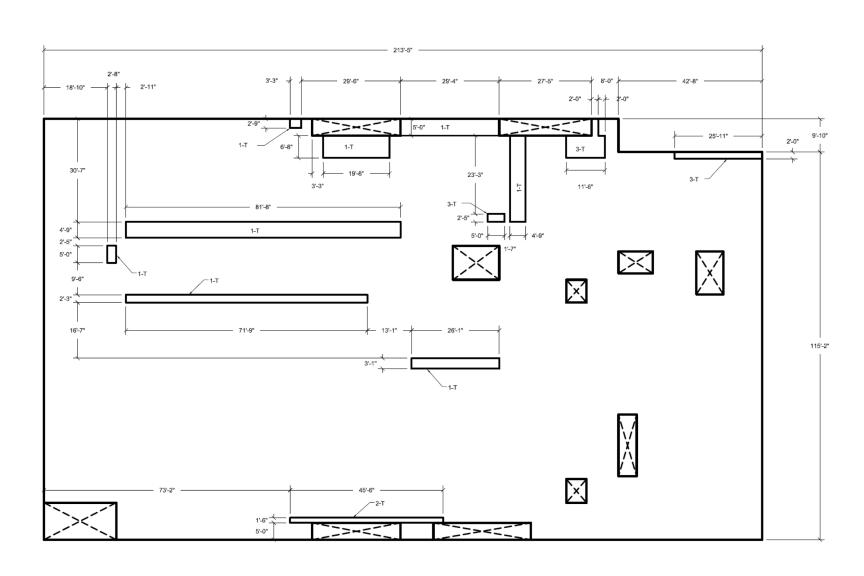
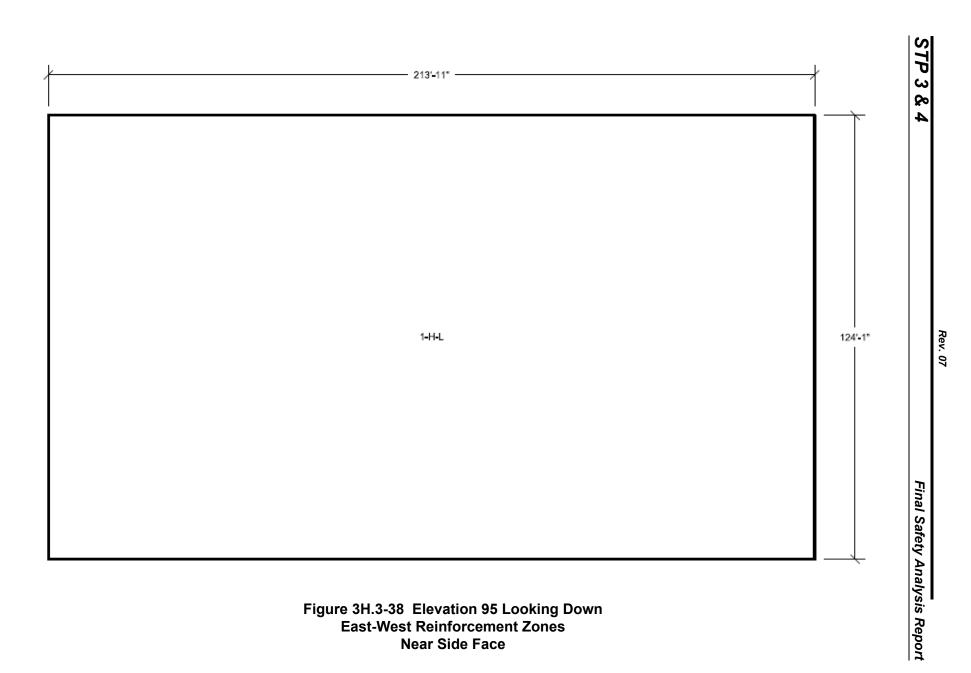
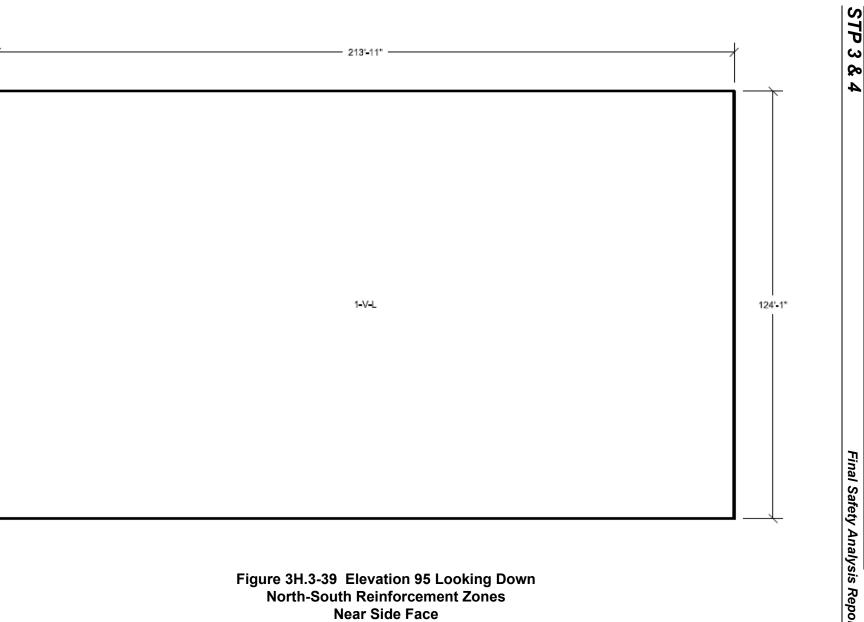


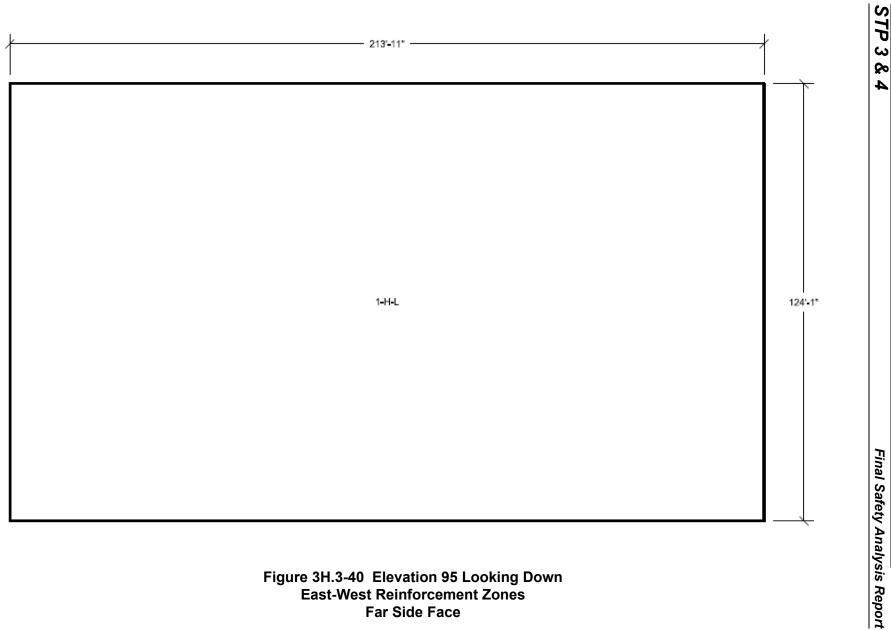
Figure 3H.3-37a Elevation 35 Looking Down Horizontal Transverse Reinforcement Zones Rev. 07

STP

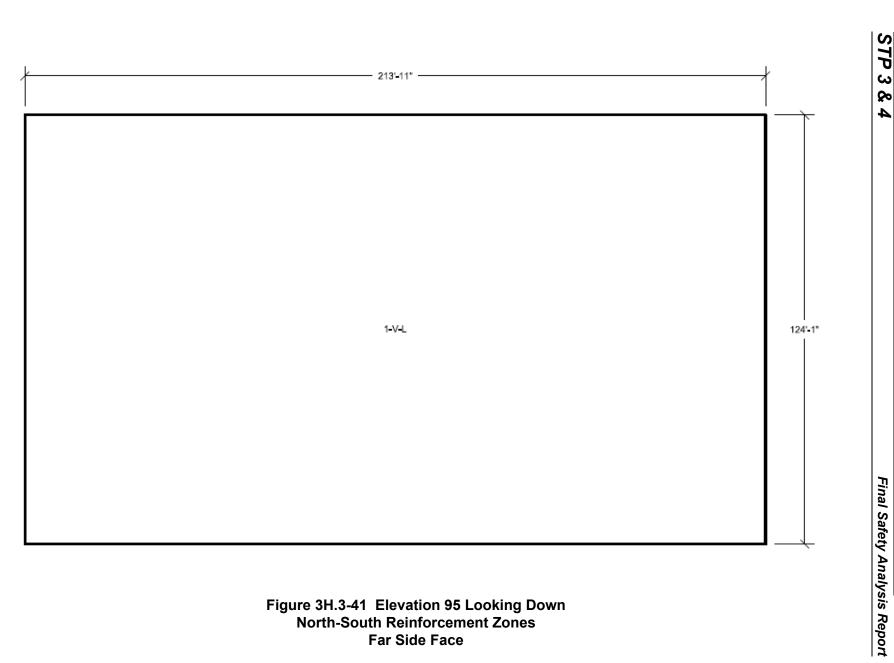

ω

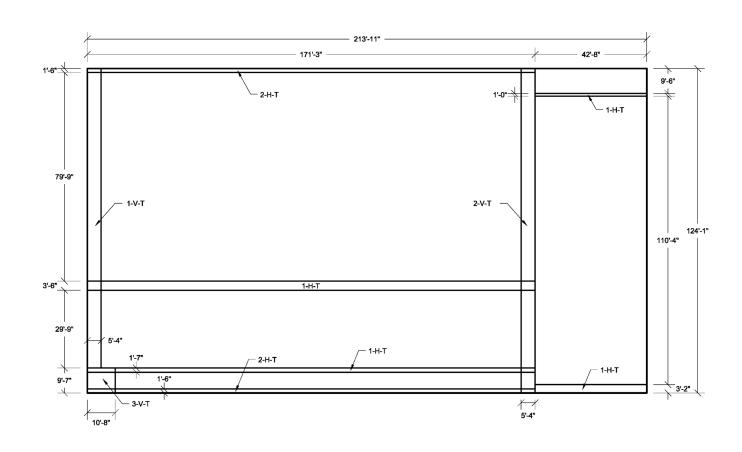
Ø


4


Final Safety Analysis Report

3H-265




Details and Evaluation Results of Seismic Category 1 Structures

Far Side Face

Details and Evaluation Results of Seismic Category 1 Structures

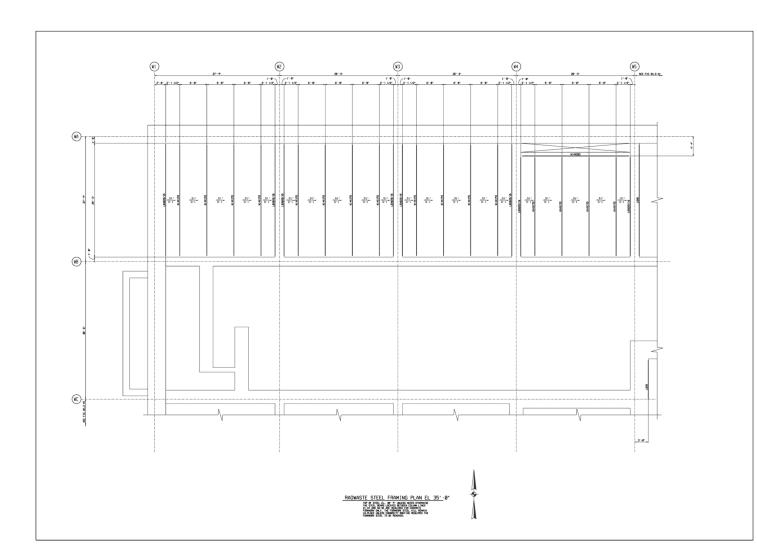


Figure 3H.3-43 El 35'-0" Steel Layout Between Column Lines W1-W5 and WA-WC

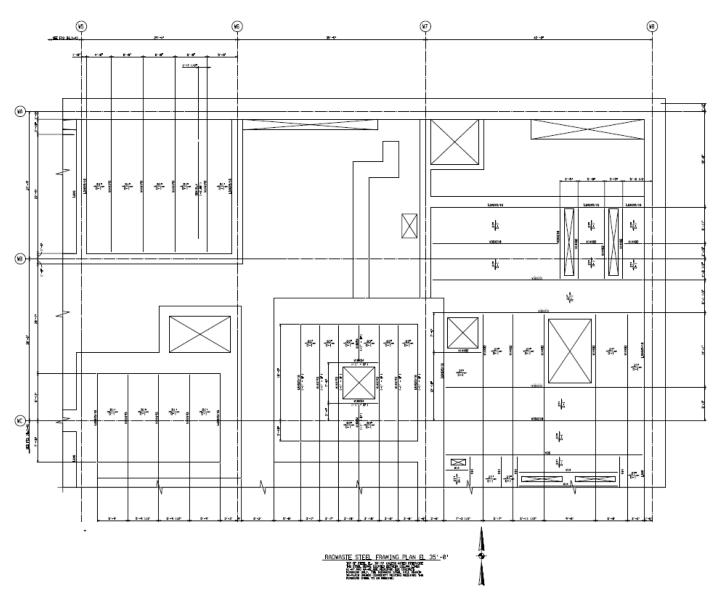


Figure 3H.3-44 El 35'-0" Steel Layout Between Column Lines W5-W8 and WA-WC

Details and Evaluation Results of Seismic Category 1 Structures

3H-274

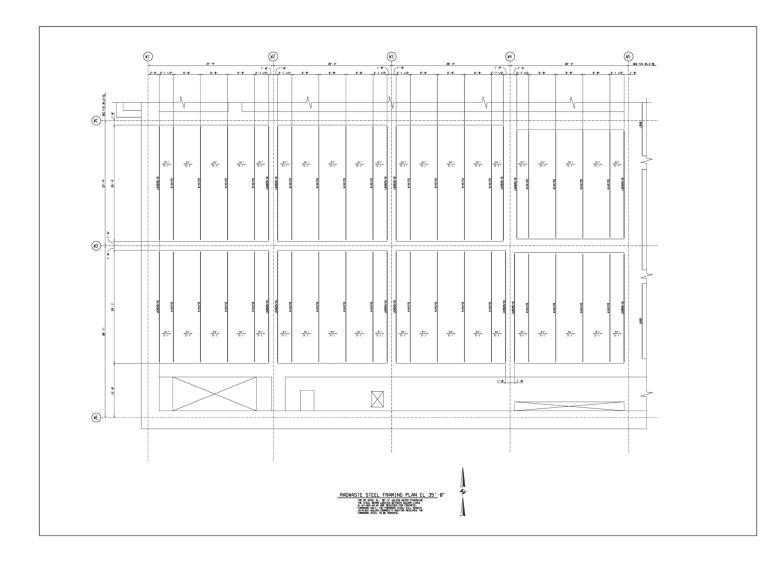


Figure 3H.3-45 El 35'-0" Steel Layout Between Column Lines W1-W5 and WC-WE

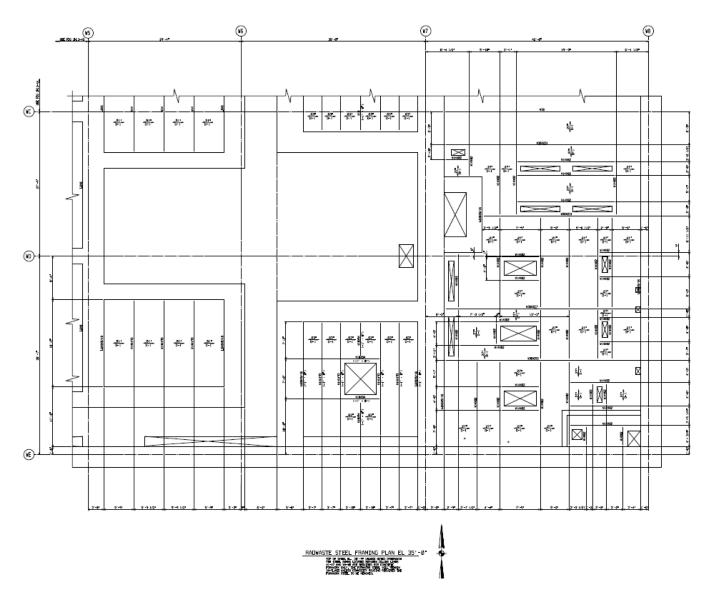
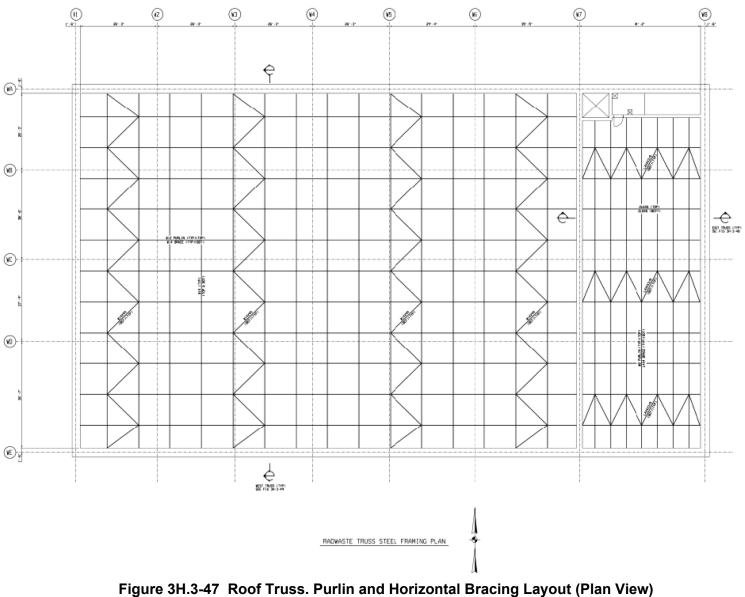
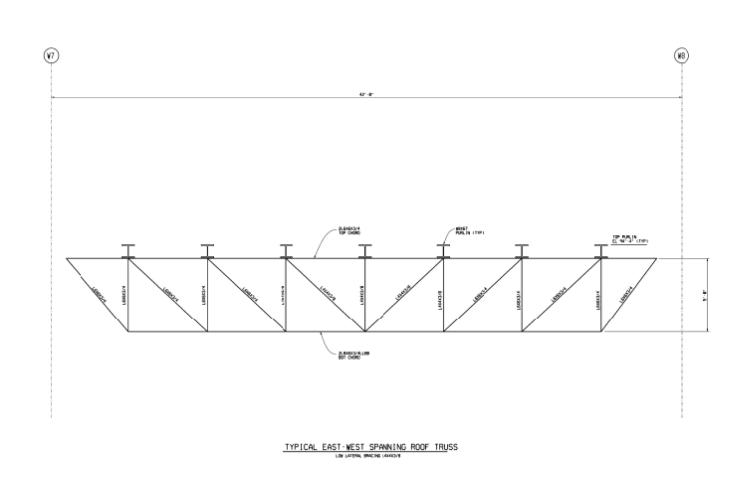




Figure 3H.3-46 El 35'-0" Steel Layout Between Column Lines W5-W8 and WC-WE

STP 3 & 4

STP

3 & 4

STP

ω 8 4

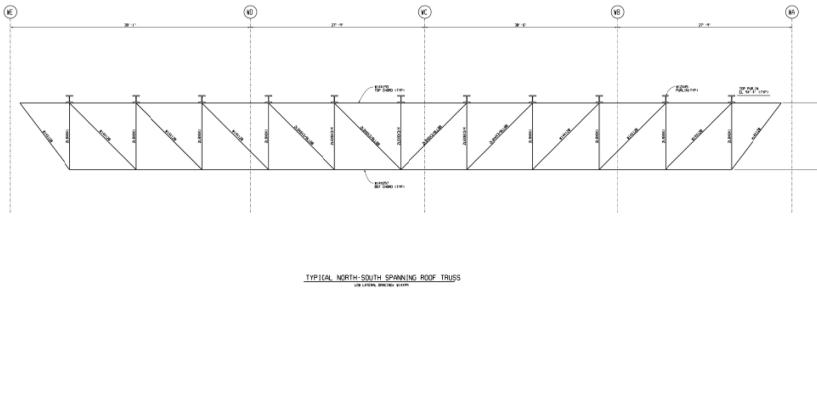
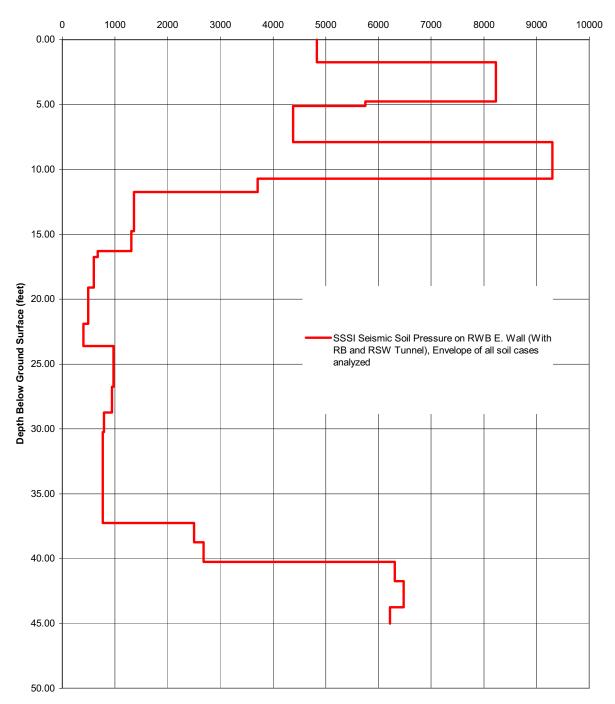
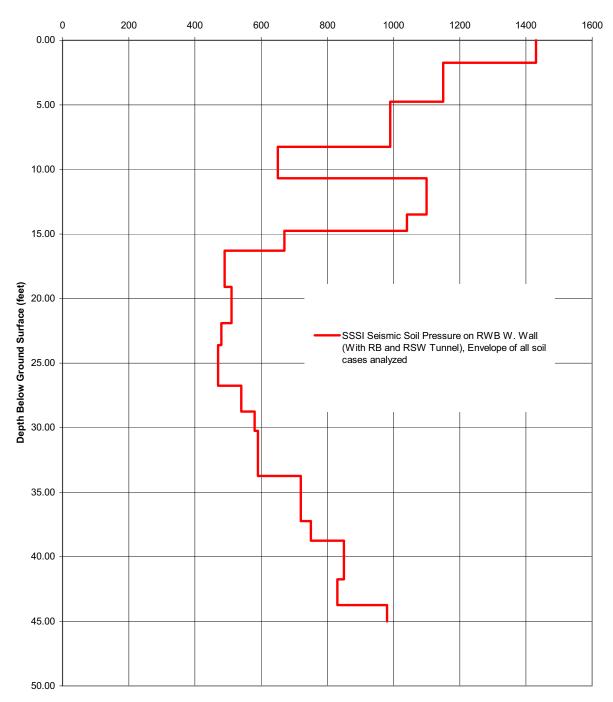
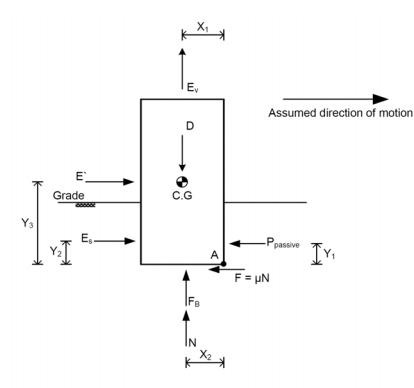




Figure 3H.3-49 Typical North-South Spanning Truss Between Column Lines WA-WE (Elevation View)


Seismic Soil Pressure (psf)

Seismic Soil Pressure (psf)

Factors of Safety against Sliding and Overturning about point A are calculated as follows: $P_{\text{passive}} + F$

$$SF_{sliding} = \frac{P_{assive}}{E_{s} + E`}$$

$$SF_{OT_{A}} = \frac{(P_{passive})(Y_{1}) + (D)(X_{1}) - (F_{B})(X_{2})}{(E_{s})(Y_{2}) + (E`)(Y_{3}) + (E_{v})(X_{1})}$$

Where:

SF_{sliding} = Safety factor against sliding

 SF_{OT_A} = Safety factor against overturning about "A"

D = Dead load

P_{passive} = Total passive soil pressure

 $F = \mu N$ = friction force and μ is the coefficient of friction

- E_s = Static and dynamic soil pressure (active condition)
- E' = Self weight excitation in the horizontal direction
- E_v = Self weight excitation in the vertical direction
- F_B = Buoyancy force

N = Vertical reaction =
$$D - F_B - E_v$$

Notes:

(1) E' represents the inertia of the structure and it is either determined from equivalent static method or response spectrum analysis.

(2) E_s represents the static and dynamic loads from soil which includes seismic loads from soil and hydrodynamic pressure from groundwater. These loads are computed in accordance with Selection 2.5S4.10.5.

Figure 3H.3-52 Formulations Used for Calculations of Factors of Stability Against Sliding and Overturning for Seismic II/I Considerations