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ABSTRACT 

 
This report describes a new seismic source characterization (SSC) model for the Central and 
Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central 
and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard 
Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore 
National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is 
to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis 
Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent 
the center, body, and range of technically defensible interpretations of the available data, models, 
and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic 
source characterization and ground motion characterization. These two components are used to 
calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report 
provides a new seismic source model. 

Results and Findings 
The product of this report is a regional CEUS SSC model. This model includes consideration of 
an updated database, full assessment and incorporation of uncertainties, and the range of diverse 
technical interpretations from the larger technical community. The SSC model will be widely 
applicable to the entire CEUS, so this project uses a ground motion model that includes generic 
variations to allow for a range of representative site conditions (deep soil, shallow soil, hard 
rock). Hazard and sensitivity calculations were conducted at seven test sites representative of 
different CEUS hazard environments. 

Challenges and Objectives 
The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and 
who wish to use an updated SSC model. This model is based on a comprehensive and traceable 
process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for 
Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model 
will be used to assess the present-day composite distribution for seismic sources along with their 
characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use 
in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined 
Operating License Applications (COLAs). 

Applications, Values, and Use 
Development of a regional CEUS seismic source model will provide value to those who (1) have 
submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) 
will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues 
resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs 
to meet design and periodic review requirements for current and future nuclear facilities. This 
work replaces a previous study performed approximately 25 years ago. Since that study was 



 
 

x 

completed, substantial work has been done to improve the understanding of seismic sources and 
their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable 
basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of 
delays in new plant licensing due to more conservative interpretations in the existing and future 
literature. 

Perspective 
The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), 
and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this 
purpose was composed of distinguished subject matter experts from industry, government, and 
academia. The resulting model is unique, and because this project has solicited input from the 
present-day larger technical community, it is not likely that there will be a need for significant 
revision for a number of years. See also Sponsors’ Perspective for more details. 

Approach 
The goal of this project was to implement the CEUS SSC work plan for developing a regional 
CEUS SSC model. The work plan, formulated by the project manager and a technical integration 
team, consists of a series of tasks designed to meet the project objectives. This report was 
reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S. 
Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were 
considered when preparing the report. The SSC model was completed at the end of 2011. 

Keywords 
Probabilistic seismic hazard analysis (PSHA) 
Seismic source characterization (SSC) 
Seismic source characterization model 
Central and Eastern United States (CEUS) 
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EXECUTIVE SUMMARY 

The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities 

(CEUS SSC) Project was conducted over the period from April 2008 to December 2011 to 

provide a regional seismic source model for use in probabilistic seismic hazard analyses 

(PSHAs) for nuclear facilities. The study replaces previous regional seismic source models 

conducted for this purpose, including the Electric Power Research Institute–Seismicity Owners 

Group (EPRI-SOG) model (EPRI, 1988, 1989) and the Lawrence Livermore National 

Laboratory model (Bernreuter et al., 1989). Unlike the previous studies, the CEUS SSC Project 

was sponsored by multiple stakeholders—namely, the EPRI Advanced Nuclear Technology 

Program, the Office of Nuclear Energy and the Office of the Chief of Nuclear Safety of the U.S. 

Department of Energy (DOE), and the Office of Nuclear Regulatory Research of the Nuclear 

Regulatory Commission (NRC). The study was conducted using Senior Seismic Hazard Analysis 

Committee (SSHAC) Study Level 3 methodology to provide high levels of confidence that the 

data, models, and methods of the larger technical community have been considered and the 

center, body, and range of technically defensible interpretations have been included. 

The regional seismic source characterization (SSC) model defined by this study can be used for 

site-specific PSHAs, provided that appropriate site-specific assessments are conducted as 

required by current regulations and regulatory guidance for the nuclear facility of interest. This 

model has been designed to be compatible with current and anticipated ground-motion 

characterization (GMC) models. The current recommended ground-motion models for use at 

nuclear facilities are those developed by EPRI (2004, 2006a, 2006b). The ongoing Next 

Generation Attenuation–East (NGA-East) project being supported by the NRC, DOE, and EPRI 

will provide ground-motion models that are appropriate for use with the CEUS SSC model. The 

methodology for a SSHAC Level 3 project as applied to the CEUS SSC Project is explained in 

the SSHAC report (Budnitz et al., 1997), which was written to discuss the evolution of expert 

assessment methodologies conducted during the previous three decades for purposes of 

probabilistic risk analyses. The methodological guidance provided in the SSHAC report was 

intended to build on the lessons learned from those previous studies and, specifically, to arrive at 

processes that would make it possible to avoid the issues encountered by the previous studies 

(NRC, 2011). 

The SSHAC assessment process, which differs only slightly for Level 3 and 4 studies, is a 

technical process accepted in the NRC’s seismic regulatory guidance (Regulatory Guide 1.208) 

for ensuring that uncertainties in data and scientific knowledge have been properly represented in 

seismic design ground motions consistent with the requirements of the seismic regulation 

10 CFR Part 100.23 (―Geologic and Seismic Siting Criteria‖). Therefore, the goal of the SSHAC 

assessment process is the proper and complete representation of knowledge and uncertainties in 

the SSC and GMC inputs to the PSHA (or similar hazard analysis). As discussed extensively in 
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the SSHAC report (Budnitz et al., 1997) and affirmed in NRC (2011), a SSHAC assessment 

process consists of two important sequential activities, evaluation and integration. For a Level 3 

assessment, these activities are conducted by the Technical Integration (TI) Team under the 

leadership of the TI Lead. As described in NRC (2011), 

The fundamental goal of a SSHAC process is to carry out properly and document completely the 

activities of evaluation and integration, defined as: 

Evaluation: The consideration of the complete set of data, models, and methods proposed by 

the larger technical community that are relevant to the hazard analysis. 

Integration: Representing the center, body, and range of technically defensible interpretations 

in light of the evaluation process (i.e., informed by the assessment of existing data, models, 

and methods). 

Each of the assessment and model-building activities of the CEUS SSC Project is associated with 

the evaluation and integration steps in a SSHAC Level 3 process. Consistent with the 

requirements of a SSHAC process, the specific roles and responsibilities of all project 

participants were defined in the Project Plan, and adherence to those roles was the responsibility 

of the TI Lead and the Project Manager. The technical assessments are made by the TI Team, 

who carry the principal responsibility of evaluation and integration, under the technical 

leadership of the TI Lead. The Database Manager and other technical support individuals assist 

in the development of work products. Resource and proponent experts participate by presenting 

their data, models, and interpretations at workshops and through technical interchange with the 

TI Team throughout the project. The Participatory Peer Review Panel (PPRP) is responsible for a 

continuous review of both the SSHAC process being followed and the technical assessments 

being made. The project management structure is headed by the Project Manager, who serves as 

the liason with the sponsors and the PPRP and manages the activities of all participants. The 

SSHAC Level 3 assessment process and implementation is discussed in depth in Chapter 2 of 

this report. 

Each of the methodology steps in the SSHAC guidelines (Budnitz, 1997) was addressed 

adequately during the CEUS SSC Project. Furthermore, the project developed a number of 

enhancements to the process steps for conducting a SSHAC Study Level 3 project. For example, 

the SSHAC guidelines call for process steps that include developing a preliminary assessment 

model, calculating hazard using that model in order to identify the key issues, and finalizing the 

model in light of the feedback provided from the hazard calculations and sensitivity analyses. 

Because of the regional nature of the project and the multitude of assessments required, four 

rounds of model-building and three rounds of feedback were conducted. These activities ensured 

that all significant issues and uncertainties were identified and that the appropriate effort was 

devoted to the issues of most significance to the hazard results. A comparison of the activities 

conducted during the CEUS SSC Project with those recommended in the SSHAC guidelines 

themselves (Section 2.6) led to the conclusion that the current standards of practice have been 

met for a SSHAC Study Level 3 process—both those that are documented in the SSHAC report 

and those that resulted from precedents set by projects conducted since the SSHAC report was 

issued.  
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The catalog of past earthquakes that have occurred in a region is an important source of 

information for the quantification of future seismic hazards. This is particularly true in stable 

continental regions (SCRs) such as the CEUS where the causative mechanisms and structures for 

the occurrence of damaging earthquakes are generally poorly understood, and the rates of crustal 

deformation are low such that surface and near-surface indications of stresses in the crust and the 

buildup and release of crustal strains are difficult to quantify. Because the earthquake catalog is 

used in the characterization of the occurrence of future earthquakes in the CEUS, developing an 

updated earthquake catalog for the study region was an important focus of the CEUS SSC 

Project. The specific goals for earthquake catalog development and methods used to attain those 

goals are given in Chapter 3. 

The earthquake catalog development consists of four main steps: catalog compilation, 

assessment of a uniform size measure to apply to each earthquake, identification of dependent 

earthquakes (catalog declustering), and assessment of the completeness of the catalog as a 

function of location, time, and earthquake size. An important part of the catalog development 

process was review by seismologists with extensive knowledge and experience in catalog 

compilation. The result is an earthquake catalog covering the entire study region for the period 

from 1568 through the end of 2008. Earthquake size is defined in terms of the moment 

magnitude scale (Hanks and Kanamori, 1979), consistent with the magnitude scale used in 

modern ground-motion prediction equations (GMPEs) for CEUS earthquakes. A significant 

contribution of the CEUS SSC Project is the work conducted to develop an updated and 

consistent set of conversion relationships between various earthquake size measures 

(instrumental magnitudes and intensity) and moment magnitude.  

The conceptual SSC framework described in Chapter 4 was developed early in the CEUS SSC 

Project in order to provide a consistent approach and philosophy to SSC by the TI Team. This 

framework provides the basic underpinnings of the SSC model developed for the project, and it 

led to the basic structure and elements of the master logic tree developed for the SSC model. In 

considering the purpose of the CEUS SSC Project, the TI Team identified three attributes that are 

needed for a conceptual SSC framework: 

1. A systematic, documented approach to treating alternatives using logic trees, including 

alternative conceptual models for future spatial distributions of seismicity (e.g., stationarity); 

alternative methods for expressing the future temporal distribution of seismicity (e.g., 

renewal models, Poisson models); and alternative data sets for characterizing seismic sources 

(e.g., paleoseismic data, historical seismicity data). 

2. A systematic approach to identifying applicable data for the source characterization, 

evaluating the usefulness of the data, and documenting the consideration given to the data by 

the TI Team. 

3. A methodology for identifying seismic sources based on defensible criteria for defining a 

seismic source, incorporating the lessons learned in SSC over the past two decades, and 

identifying the range of approaches and models that can be shown to be significant to hazard. 

Each of these needs was addressed by the methodology used in the project. For example, the 

need for a systematic approach to identifying and evaluating the data and information that 

underlie the source characterization assessments was met by the development of Data Summary 
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and Data Evaluation tables. These tables were developed for each seismic source to document 

the information available at the time of the CEUS SSC assessments (the Data Summary tables) 

and the way those data were used in the characterization process (the Data Evaluation tables). 

Given the evolution of approaches to identifying seismic sources, it is appropriate to provide a 

set of criteria and the logic for their application in the CEUS SSC Project. In the project, unique 

seismic sources are defined to account for distinct differences in the following criteria: 

 Earthquake recurrence rate 

 Maximum earthquake magnitude (Mmax) 

 Expected future earthquake characteristics (e.g., style of faulting, rupture orientation, depth 

distribution) 

 Probability of activity of tectonic feature(s) 

Rather than treat these criteria as operating simultaneously or without priority, the CEUS SSC 

methodology works through them sequentially. Further, because each criterion adds complexity 

to the seismic source model, it is applied only if its application would lead to hazard-significant 

changes in the model. In this way, the model becomes only as complex as required by the 

available data and information. 

The CEUS SSC master logic tree is tied to the conceptual SSC framework that establishes the 

context for the entire seismic source model. The master logic tree depicts the alternative 

interpretations and conceptual models that represent the range of defensible interpretations, and 

the relative weights assessed for the alternatives. By laying out the alternatives initially, the 

subsequent detailed source evaluations were conducted within a framework that ensures 

consistency across the sources. Important elements of the master logic tree are as follows:  

 Representation of the sources defined based on paleoseismic evidence for the occurrence of 

repeated large-magnitude earthquakes (RLMEs, defined as two or more earthquakes with  

M ≥ 6.5).  

 Alternatives to the spatial distribution of earthquakes based on differences in maximum 

magnitudes (Mmax zones approach).  

 Representation of uncertainty in spatial stationarity of observed seismicity based on 

smoothing of recurrence parameters.  

 Representation of possible differences in future earthquake characteristics (e.g., style, 

seismogenic thickness, and orientation of ruptures), which lead to definition of 

seismotectonic zones in the logic tree (seismotectonic zones approach).  

The methodologies used by the project to make the SSC assessments are discussed in Chapter 5. 

The heart of any SSC model for PSHA is a description of the future spatial and temporal 

distribution of earthquakes. Continued analysis of the historical seismicity record and network 

monitoring by regional and local seismic networks has led to acceptance within the community 

that the general spatial patterns of observed small- to moderate-magnitude earthquakes provide 

predictive information about the spatial distribution of future large-magnitude earthquakes. The 

analyses leading to this conclusion have focused on whether the observed patterns of earthquakes 

lxxxviii



 

 

Executive Summary 
 

have varied through time; therefore, in effect, this is an assessment of uncertainty in whether 

small- to moderate-magnitude earthquakes have been relatively stationary through time. 

However, the available data on larger-magnitude earthquakes and their relationship to the spatial 

distribution of smaller earthquakes based on the observed record are quite limited. These data are 

not sufficient to allow confidence in the predictions generated by empirical spatial models. For 

this reason, geologic and geophysical data are needed to specify the locations of future 

earthquakes in addition to the observed patterns of seismicity. 

Detailed studies in the vicinity of large historical and instrumental earthquakes, and liquefaction 

phenomena associated with them, coupled with field and laboratory studies of geotechnical 

properties, are leading to a stronger technical basis for (1) placing limits on the locations of 

paleoearthquakes interpreted by the distribution of liquefaction phenomena and (2) defining their 

magnitudes. In some cases, the paleoseismic evidence for RLMEs is compelling, and the TI 

Team has included the RLME source in the SSC model. The locations of RLME sources 

notwithstanding, the spatial distribution of distributed seismicity sources has advanced in PSHA 

largely because of the assumption of spatial stationarity, and the SSC and hazard community 

uses approaches to ―smooth‖ observed seismicity to provide a map that expresses the future 

spatial pattern of recurrence rates. The CEUS SSC model is based largely on the assumption, 

typical in PSHA studies, that spatial stationarity of seismicity is expected to persist for a period 

of approximately 50 years. 

Estimating Mmax in SCRs such as the CEUS is highly uncertain despite considerable interest 

and effort by the scientific community over the past few decades. Mmax is defined as the upper 

truncation point of the earthquake recurrence curve for individual seismic sources, and the 

typically broad distribution of Mmax for any given source reflects considerable epistemic 

uncertainty. Because the maximum magnitude for any given seismic source in the CEUS occurs 

rarely relative to the period of observation, the use of the historical seismicity record provides 

important but limited constraints on the magnitude of the maximum event. Because of the 

independent constraints on earthquake size, those limited constraints are used to estimate the 

magnitudes of RLME. For distributed seismicity source zones, two approaches are used to assess 

Mmax: the Bayesian approach and the Kijko approach. In the Bayesian procedure (Johnston et 

al., 1994), the prior distribution is based on the magnitudes of earthquakes that occurred 

worldwide within tectonically analogous regions. As part of the CEUS SSC Project, the TI Team 

pursued the refinement and application of the Bayesian Mmax approach becauses it provides a 

quantitative and repeatable process for assessing Mmax. 

The TI Team also explored alternative approaches for the assessment of Mmax that provide 

quantitative and repeatable results, and the team identified the approach developed by Kijko 

(2004) as a viable alternative. While the Kijko approach requires fewer assumptions than the 

Bayesian approach in that it uses only the observed earthquake statistics for the source, this is 

offset by the need for a relatively larger data sample in order to get meaningful results. Both 

approaches have the positive attribute that they are repeatable given the same data and they can 

be readily updated given new information. The relative weighting of the two approaches for 

inclusion in the logic tree is source-specific, a function of the numbers of earthquakes that are 

present within the source upon which to base the Mmax assessment: sources with fewer 

earthquakes are assessed to have little or no weight for the Kijko approach, while those with 
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larger numbers of events are assessed higher weight for the Kijko approach. In all cases, because 

of the stability of the Bayesian approach and the preference for ―analogue‖ approaches within the 

larger technical community, the Bayesian approach is assessed higher weight than the Kijko 

approach for all sources. 

A major effort was devoted to updating the global set of SCR earthquakes and to assessing 

statistically significant attributes of those earthquakes following the approach given in Johnston 

et al. (1994). In doing so, it was found that the only significant attribute defining the prior 

distribution is the presence or absence of Mesozoic-or-younger extension. The uncertainty in this 

assessment is reflected in the use of two alternative priors: one that takes into account the 

presence or absence of crustal domains having this attribute, and another that combines the entire 

CEUS region as a single SCR crustal domain with a single prior distribution. The use of the 

Bayesian—and Kijko—approach requires a definition of the largest observed magnitude within 

each source, and this assessment, along with the associated uncertainty, was incorporated into the 

Mmax distributions for each seismic source. Consideration of global analogues led to the 

assessment of an upper truncation to all Mmax distributions at 8¼ and a lower truncation at 5½. 

The broad distributions of Mmax for the various seismic source zones reflect the current 

epistemic uncertainty in the largest earthquake magnitude within each seismic source.  

The CEUS SSC model is based to a large extent on an assessment that spatial stationarity of 

seismicity will persist for time periods of interest for PSHA (approximately the next 50 years). 

Stationarity in this sense does not mean that future locations and magnitudes of earthquakes will 

occur exactly where they have occurred in the historical and instrumental record. Rather, the 

degree of spatial stationarity varies as a function of the type of data available to define the 

seismic source. RLME sources are based largely on paleoseismic evidence for repeated large-

magnitude (M ≥ 6.5) earthquakes that occur in approximately the same location over periods of a 

few thousand years. On the other hand, patterns of seismicity away from the RLME sources 

within the Mmax and seismotectonic zones are defined from generally small- to moderate-

magnitude earthquakes that have occurred during a relatively short (i.e., relative to the repeat 

times of large events) historical and instrumental record. Thus, the locations of future events are 

not as tightly constrained by the locations of past events as for RLME sources. The spatial 

smoothing operation is based on calculations of earthquake recurrence within one-quarter-degree 

or half-degree cells, with allowance for ―communication‖ between the cells. Both a- and b-

values are allowed to vary, but the degree of variation has been optimized such that b-values 

vary little across the study region. 

The approach used to smooth recurrence parameters is a refinement of the penalized-likelihood 

approach used in EPRI-SOG (EPRI, 1988), but it is designed to include a number of elements 

that make the formulation more robust, realistic, and flexible. These elements include the 

reformulation in terms of magnitude bins, the introduction of magnitude-dependent weights, 

catalog incompleteness, the effect of Mmax, spatial variation of parameters within the source 

zone, and the prior distributions of b. A key assessment made by the TI Team was the weight 

assigned to various magnitude bins in the assessment of smoothing parameters (Cases A, B, 

and E). This assessment represents the uncertainty in the interpretation that smaller magnitudes 

define the future locations and variation in recurrence parameters. Appropriately, the penalized-

likelihood approach results in higher spatial variation (less smoothing) when the low-magnitude 
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bins are included with high weight, and much less variation (higher smoothing) in the case where 

the lower-magnitude bins are given low or zero weight. The variation resulting from the final set 

of weights reflects the TI Team’s assessment of the epistemic uncertainty in the spatial variation 

of recurrence parameters throughout the SSC model. 

The earthquake recurrence models for the RLME sources are somewhat simpler than those for 

distributed seismicity sources because the magnitude range for individual RLMEs is relatively 

narrow and their spatial distribution is limited geographically such that spatial variability is not a 

concern. This limits the problem to one of estimating the occurrence rate in time of a point 

process. The data that are used to assess the occurrence rates are derived primarily from 

paleoseismic studies and consist of two types: data that provide estimated ages of the 

paleoearthquakes such that the times between earthquakes can be estimated, and data that 

provide an estimate of the number of earthquakes that have occurred after the age of a particular 

stratigraphic horizon. These data are used to derive estimates of the RLME occurrence rates and 

their uncertainty. 

The estimation of the RLME occurrence rates is dependent on the probability model assumed for 

the temporal occurrence of these earthquakes. The standard model applied for most RLME 

sources in this study is the Poisson model, in which the probability of occurrence of an RLME in 

a specified time period is completely characterized by a single parameter, λ, the rate of RLME 

occurrence. The Poisson process is ―memoryless‖—that is, the probability of occurrence in the 

next time interval is independent of when the most recent earthquake occurred, and the time 

between earthquakes is exponentially distributed with a standard deviation equal to the mean 

time between earthquakes. For two RLME sources (Reelfoot Rift–New Madrid fault system and 

the Charleston source), the data are sufficient to suggest that the occurrence of RLMEs is more 

periodic in nature (the standard deviation is less than the mean time between earthquakes). For 

these RLME sources a simple renewal model can also be used to assess the probability of 

earthquake occurrence. In making an estimate of the probability of occurrence in the future, this 

model takes into account the time that has elapsed since the most recent RLME occurrence.  

The CEUS SSC model has been developed for use in future PSHAs. To make this future use 

possible, the SSC model must be combined with a GMC model. At present, the GMPEs in use 

for SCRs such as the CEUS include limited information regarding the characteristics of future 

earthquakes. In anticipation of the possible future development of GMPEs for the CEUS that will 

make it possible to incorporate similar types of information, a number of characteristics of future 

earthquakes in the CEUS are assessed. In addition to characteristics that might be important for 

ground motion assessments, there are also assessed characteristics that are potentially important 

to the modeling conducted for hazard analysis. Future earthquake characteristics assessed include 

the tectonic stress regime, sense of slip/style of faulting, strike and dip of ruptures, seismogenic 

crustal thickness, fault rupture area versus magnitude relationship, rupture length-to-width aspect 

ratio, and relationship of ruptures to source boundaries.  

Chapters 6 and 7 include discussions of the seismic sources that are defined by the Mmax zones 

and the seismotectonic zones branches of the master logic tree. Because of convincing evidence 

for their existence, both approaches include RLME sources. The rarity of repeated earthquakes 

relative to the period of historical observation means that evidence for repeated events comes 

xci



 

 

Executive Summary 
 

largely from the paleoseismic record. By identifying the RLMEs and including them in the SSC 

model, there is no implication that the set of RLMEs included is in fact the total set of RLMEs 

that might exist throughout the study region. This is because the presently available studies that 

locate and characterize the RLMEs have been concentrated in certain locations and are not 

systematic across the entire study region. Therefore, the evidence for the existence of the RLMEs 

is included in the model where it exists, but the remaining parts of the study region are also 

assessed to have significant earthquake potential, which is evidenced by the inclusion of 

moderate-to-large magnitudes in the Mmax distributions for every Mmax zone or seismotectonic 

zone. 

In Chapter 6, each RLME source is described in detail by the following factors: (1) evidence for 

temporal clustering, (2) geometry and style of faulting, (3) RLME magnitude, and (4) RLME 

recurrence. The descriptions document how the data have been evaluated and assessed to arrive 

at the various elements of the final SSC model, including all expressions of uncertainty. The 

Data Summary and Data Evaluation tables (Appendices C and D) complement the discussions in 

the text, documenting all the data that were considered in the course of data evaluation and 

integration process for each particular seismic source. 

Alternative models for the distributed seismicity zones that serve as background zones to the 

RLME sources are either Mmax zones or seismotectonic zones. The Mmax zones are described 

in Chapter 6 and are defined according to constraints on the prior distributions for the Bayesian 

approach to estimating Mmax. The seismotectonic zones are described in Chapter 7 and are 

identified based on potential differences in Mmax as well as future earthquake characteristics. 

Each seismotectonic zone in the CEUS SSC model is described according to the following 

attributes: (1) background information from various data sets; (2) bases for defining the 

seismotectonic zone; (3) basis for the source geometry; (4) basis for the zone Mmax (e.g., largest 

observed earthquake); and (5) future earthquake characteristics. Uncertainties in the 

seismotectonic zone characteristics are described and are represented in the logic trees developed 

for each source. 

For purposes of demonstrating the CEUS SSC model, seismic hazard calculations were 

conducted at seven demonstration sites throughout the study region, as described in Chapter 8. 

The site locations were selected to span a range of seismic source types and levels of seismicity. 

The results from the seismic hazard calculations are intended for scientific use to demonstrate the 

model, and they should not be used for engineering design. Mean hazard results are given for a 

range of spectral frequencies (PGA, 10 Hz, and 1 Hz) and for a range of site conditions. All 

calculations were made using the EPRI (2004, 2006) ground-motion models such that results 

could be compared to understand the SSC effects alone. Sensitivity analyses were conducted to 

provide insight into the dominant seismic sources and the important characteristics of the 

dominant seismic source at each site. The calculated mean hazard results are compared with the 

results using the SSC model from the 2008 U.S. Geological Survey national seismic hazard maps 

and the SSC model from the Combined Operating License applications for new nuclear power 

reactors. The hazard results using the CEUS SSC model given in Chapter 8 are reasonable and 

readily understood relative to the results from other studies, and sensitivities of the calculated 

hazard results can be readily explained by different aspects of the new model. The TI Team 

concludes that the SSC model provides reasonable and explainable calculated seismic hazard 
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results, and the most important aspects of the SSC model to the calculated hazard (e.g., 

recurrence rates of RLME sources, recurrence parameters for distributed seismicity sources, 

Mmax) and their uncertainties have all been appropriately addressed. 

Presumably, the GMC model input to the PSHA calculations will be replaced in the future by the 

results of the ongoing NGA-East project. The calculated hazard at the demonstration sites in 

Chapter 8 comes from the regional CEUS SSC model and does not include any local refinements 

that might be necessary to account for local seismic sources. Depending on the regulatory 

guidance that is applicable for the facility of interest, additional site-specific studies may be 

required to provide local refinements to the model. 

To assist future users of the CEUS SSC model, Chapter 9 presents a discussion on the use of the 

model for PSHA. The basic elements of the model necessary for hazard calculations are given in 

the Hazard Input Document (HID). This document provides all necessary parameter values and 

probability distributions for use in a modern PSHA computer code. The HID does not, however, 

provide any justification for the values, since that information is given in the text of this report.  

Chapter 9 also describes several simplifications to seismic sources that can be made to increase 

efficiency in seismic hazard calculations. These simplifications are recommended on the basis of 

sensitivity studies of alternative hazard curves that represent a range of assumptions on a 

parameter’s value. Sensitivities are presented using the test sites in this study. For applications of 

the seismic sources from this study, similar sensitivity studies should be conducted for the 

particular site of interest to confirm these results and to identify additional simplifications that 

might be appropriate. For the seismic sources presented, only those parameters that can be 

simplified are discussed and presented graphically. The sensitivity studies consisted of 

determining the sensitivity of hazard to logic tree branches for each node of the logic tree 

describing that source. The purpose was to determine which nodes of the logic tree could be 

collapsed to a single branch in order to achieve more efficient hazard calculations without 

compromising the accuracy of overall hazard results.  

Finally, this report provides a discussion of the level of precision that is associated with seismic 

hazard estimates in the CEUS. This discussion addresses how seismic hazard estimates might 

change if the analysis were repeated by independent experts having access to the same basic 

information (geology, tectonics, seismicity, ground-motion equations, site characterization). It 

also addresses how to determine whether the difference in hazard would be significant if this 

basic information were to change and that change resulted in a difference in the assessed seismic 

hazard. This analysis was performed knowing that future data and models will continue to be 

developed and that a mechanism for evaluating the significance of that information is needed. 

Based on the precision model evaluated, if an alternative assumption or parameter is used in a 

seismic hazard study, and it potentially changes the calculated hazard (annual frequency of 

exceedence) by less than 25 percent for ground motions with hazards in the range 10
–4

 to 10
–6

, 

that potential change is within the level of precision at which one can calculate seismic hazard. It 

should be noted, however, that a certain level of precision does not relieve users from performing 

site-specific studies to identify potential capable seismic sources within the site region and 

vicinity as well as to identify newer models and data. Also, this level of precision does not 

relieve users from fixing any errors that are discovered in the CEUS SSC model as it is 
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implemented for siting critical facilities. In addition, NRC has not defined a set value for 

requiring or not requiring siting applicants to revise or update PSHAs. 

Included in the report are appendices that summarize key data sets and analyses: the earthquake 

catalog, the Data Summary and Data Evaluation tables, the paleoliquefaction database, the HID, 

and documentation important to the SSHAC process. These data and analyses will assist future 

users of the CEUS SSC model in the implementation of the model for purposes of PSHA. The 

entire report and database will be provided on a website after the Final Project Report is issued. 

The TI Team, Project Manager, and Sponsors determined the approach for quality assurance on 

the CEUS SSC Project in 2008, taking into account the SSHAC assessment process and national 

standards. The approach was documented in the CEUS SSC Project Plan dated June 2008 and 

discussed in more detail in the CEUS SSC Report (Appendix L). Beyond the assurance of quality 

arising from the external scientific review process, it is the collective, informed judgment of the 

TI Team (via the process of evaluation and integration) and the concurrence of the PPRP (via the 

participatory peer review process), as well as adherence to the national standard referred to in 

Appendix L, that ultimately lead to the assurance of quality in the process followed and in the 

products that resulted from the SSHAC hazard assessment framework. 
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Gentlemen: 
 
Reference:  Central and Eastern United States Seismic Source Characterization for Nuclear 

Facilities Project: Participatory Peer Review Panel Final Report 
 
Introduction 

This letter constitutes the final report of the PPRP1 (“the Panel”) for the Central and Eastern 
United States Seismic Source Characterization for Nuclear Facilities Project (the “CEUS SSC 
Project” or “the Project”).  The eight Panel members (Jon P. Ake, Walter J. Arabasz, William J. 
Hinze, Annie M. Kammerer, Jeffrey K. Kimball, Donald P. Moore, Mark D. Petersen, J. Carl 
Stepp) participated in the Project in a manner fully consistent with the SSHAC Guidance.2  The 
Panel was actively engaged in all phases and activities of the Project’s implementation, including 
final development of the Project Plan and planning of the evaluation and integration activities, 
which are the core of the SSHAC assessment process.  

                                                        
1 Participatory Peer Review Panel 
2 Budnitz, R. J., G. Apostolakis, D. M. Boore, L. S. Cluff, K. L. Coppersmith, C. A. Cornell, and P. A. 
Morris, 1997.  Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty
and the Use of Experts (known as the “Senior Seismic Hazard Analysis Committee Report,” or the 
“SSHAC Guidance”). NUREG/CR-6372, U. S. Nuclear Regulatory Commission. TIC; 235076. 
Washington, DC.    
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The Panel’s involvement, described more fully later in this letter, also included review of 
analyses performed by the Project to support the evaluation and integration processes, review of 
interim evaluation and integration products, and review of the interim draft project report and the 
final project report.  Additionally, panel members participated in specific analyses as resource 
experts, and panel members were observers in or participated as resource experts in eight of the 
eleven Technical Integrator Team (TI Team) working meetings held to implement the integration 
phase of the assessment process.  We want to express our appreciation for the opportunity to 
participate in the CEUS SSC Project in this way.   

In the remainder of this letter we provide our observations and conclusions on key elements of 
the project implementation process, and we summarize our reviews of the draft and final project 
reports.  As we explain in our comments, assurance that the center, body, and range of the 
technically-defensible interpretations (“CBR of the TDI”)3 have been properly represented in the 
CEUS SSC Model fundamentally comes from implementing the structure and rigor of the 
SSHAC Guidance itself.  We are aware that the SSHAC Guidance is accepted by the Nuclear 
Regulatory Commission and the Department of Energy for developing seismic hazard models 
that provide reasonable assurance, consistent with the seismic safety decision-making practices 
of these agencies, of compliance with their seismic safety policies and regulatory requirements.  
For these reasons, we describe aspects of the SSHAC Guidance to provide context for our 
observations and conclusions.  

Project Plan: Conformity to the SSHAC Assessment Process  

The SSHAC Guidance recognizes that observed data, available methods, models, and 
interpretations all contain uncertainties.  These uncertainties lead to alternative scientific 
analyses and interpretations.  In other words, experts in the broad technical community do not 
hold a single interpretation.  Accepting this scientific situation, the SSHAC assessment process is 
designed to engage the scientific community in an orderly assessment of relevant data, methods, 
models, and interpretations that constitute current scientific knowledge as the basis for 
development of a seismic hazard model that represents the CBR of the TDI.   

The assessment process is carried out by means of two main activities: evaluation and 
integration.4  In implementation, the evaluation activities are structured to inform the integration 
activities.  The evaluations are carried out by means of workshops in which the TI Team engages 
proponents of alternative interpretations that represent the range of relevant current community 
knowledge.  Resource experts in the various relevant data sets are also engaged.  The workshops 
have the dual purposes of, first, evaluating the degree to which alternative interpretations are 
supported by observed data and, second, defining uncertainties in the degree to which the 
interpretations are defensible, given the observed data.  Integration is carried out by individual 
evaluator experts or evaluator expert teams (Level 4 process) or by a Technical Integrator (TI) 
Team (Level 3 process) who, informed by the evaluation activities, characterize the range of 
                                                        
3 See Section 2.1 in the CEUS SSC Final Report for discussion of concepts relating to the center, body, 
and range of the “technically-defensible interpretations” vs. the center, body, and range of the “informed 
technical community.”  

4 For an excellent discussion of this two-stage process, see Practical Implementation Guidelines for 
SSHAC Level 3 and 4 Hazard Studies, USNRC NUREG-XXXX, Draft for Review, Office of Nuclear 
Regulatory Research, May 2011.   
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defensible alternative interpretations in an integrated hazard model and assess the scientific 
uncertainty distribution.  Based on our review of the Project Plan and our subsequent discussions 
with the Project Team, we concurred that the Plan conformed with the SSHAC Guidance, 
incorporating lessons learned from fourteen years experience using the Guidance, and that the 
planned implementation was structured to properly carry out the SSHAC assessment process for 
development of the CEUS SSC Model.  

SSHAC Level 3 Assessment Process  

The SSHAC Guidance describes implementation processes for four levels of assessment 
depending on the scientific complexity of the assessment and the intended use of the assessed 
hazard model.  For an assessment such as the regional SSC model for the Central and Eastern 
United States, which will be used at many sites for making safety and licensing decisions for 
nuclear facilities, the SSHAC Guidance recommends using an assessment Level 3 or Level 4.   

There are process differences between a Level 3 and Level 4 implementation, but the objective is 
the same: to obtain from multiple proponent experts information that supports an informed 
assessment of the range of existent relevant interpretations and associated uncertainties that 
together represent current community knowledge and to perform an informed assessment of the 
CBR of the TDI.  We understand that within the SSHAC assessment process “technically 
defensible” means that observed data are sufficient to support evaluation of the interpretation and 
the corresponding uncertainty.   

In a Level 4 assessment process a TI Team facilitates the assessment, identifying and engaging 
proponent and resource experts, performing supporting analyses, and conducting knowledge 
evaluation workshops and assessment integration working meetings.  Multiple experts or teams 
of experts perform as evaluators of the range of existent interpretations and as integrators of the 
hazard model.  The individual evaluator experts or evaluator expert teams take ownership of 
their individual or team assessments.  In a Level 3 assessment all of these activities are 
consolidated under a single TI Team consisting of a TI Lead, multiple evaluator experts 
representing the scope of required scientific expertise, and experienced data and hazard analysts.   

As we noted earlier in this report, assurance that the CBR of the TDI is properly represented in a 
hazard model comes from rigorously implementing the SSHAC assessment process itself.  We 
note that an important lesson learned from multiple implementations of the SSHAC Guidance 
over the past fourteen years is that the Level 3 and Level 4 assessment processes provide 
comparably high assurance that the relevant scientific knowledge and the community uncertainty 
distribution are properly assessed and represented in the hazard model.  The Level 3 assessment 
is significantly more integrated and cohesive and is more efficient to implement.  These 
considerations led us to endorse use of the Level 3 assessment for implementation of the CEUS 
SSC Project in our Workshop No. 1 review letter.  During the course of the Project we observed 
that the higher level of cohesiveness inherent in the Level 3 assessment process leads to 
significantly improved communication, facilitating the experts’ performance of their technical 
work.  
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Overall Project Organization  

A complex project with multiple sponsors such as the CEUS SSC Project cannot be successful 
unless it is well organized and energetically managed so that the various participants understand 
the interconnectedness of their activities and perform their technical work as a cohesive group.  
In this regard the adopted project management structure allowed the Project Manager to provide 
integrated overall project leadership, manage the database development activities, and effectively 
maintain communication with the PPRP and project sponsors while allowing TI Team lead to 
concentrate on the structural and technical activities of the assessment as the Project unfolded.  
We conclude that the project organization was effective overall and particularly so with regard to 
facilitating the TI Team’s implementation of the assessment process.          

Implementing the SSHAC Level 3 Assessment Process   

Irrespective of the level of implementation, evaluation and integration are the main activities of a 
SSHAC assessment.  The evaluation activities aim to identify and evaluate all relevant available 
data, models, methods, and scientific interpretations as well as uncertainties associated with each 
of them.  The integration activities, informed by the evaluations, aim to represent the CBR of the 
TDI in a fully integrated SSC model.    

Evaluation 

Consistent with the SSHAC Guidance the evaluation phase of the CEUS SSC project 
accomplished a comprehensive evaluation of the data, models, methods, and scientific 
interpretations existent in the larger technical community that are relevant to the SSC model.  In 
significant part the process was carried out in three structured workshops, each focusing on 
accomplishing a specific step in the evaluation process.   

The first workshop (WS-1) focused on evaluations of relevant geological, geophysical, and 
seismological datasets (including data quality and uncertainties) and on identification of hazard-
significant data and hazard-significant SSC assessment issues.  It became clear that a number of 
issues relating to the earthquake catalog, the paleoliquefaction data set, the potential-field 
geophysical data, updating procedures for assessing maximum earthquake magnitude, and 
development of procedures for assessing earthquake recurrence would require focused analyses.  
These analyses were appropriately carried out within the TI Team working interactively with 
appropriate resource experts recognized by the larger scientific and technical community.  

WS-2 focused on evaluations of the range of alternative scientific interpretations, methods, and 
models within the larger scientific community and on corresponding uncertainties.  WS-3 
focused on evaluations of hazard feedback derived at seven representative test locations using a 
preliminary CEUS SSC model. Specifically, the workshop focused on the identification of the 
key issues of most significance to completing the SSC model assessment.  

Experience has shown that evaluations to gain understanding of the quality of various data sets 
and uncertainties associated with them are essential for fully informing an SSC assessment.  We 
observed that in WS-1 resource experts for the various data sets did a high-quality job of 
describing the data sets and giving their perspective about the data quality and associated 
uncertainties.  We conclude that the understanding of data quality and uncertainties gained in 
WS-1 together with continued interactions between the TI Team and data resource experts 
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significantly informed the TI Team’s evaluations.  The TI Team’s evaluations of the data quality 
and uncertainties are well documented in the innovative “Data Summary Tables” and “Data 
Evaluation Tables” included in the Project Report.  Importantly, the TI Team continued to 
effectively engage data resource experts in productive analyses of potential-field geophysical 
data, the earthquake catalog, development of the paleoearthquake data set (including an 
integrated assessment of the paleoliquefaction data in order to extend the earthquake catalog), the 
development of methods for assessing maximum earthquakes, and the development of 
earthquake recurrence analyses.  All of these focused analyses strongly informed the assessment 
process.  Moreover, documentation of the analyses resulted in stand-alone products of the Project 
that will serve future users of the CEUS SSC Model. 

The compilation and evaluation of potentially relevant methods, models, and alternative 
scientific interpretations representing the community knowledge and corresponding uncertainties 
must be considered the core process activity of any SSHAC assessment.  This step was largely 
carried out in WS-2.  Success in defining the community knowledge depends on fully engaging 
proponent experts representing the range of methods, models, and interpretations existent at the 
time.  Full engagement means that the proponent experts completely and clearly describe their 
interpretations and the data that support them and provide their individual evaluations of 
corresponding uncertainties.  We observed that the actions taken by the Project and TI Team to 
explain the workshop goals and to guide participants toward meeting those goals was very 
productive.  We conclude that the workshop was highly successful in meeting the stated goals 
and that it fully met the expectation of the SSHAC Guidance with respect to evaluating the range 
of alternative scientific interpretations.  The discussions during the workshop and between the TI 
Team and Panel following the workshop evolved the “SSC Framework” concept, which 
provided transparent criteria that framed the TI Team’s systematic identification and assessment 
of seismic sources throughout the CEUS.  

Feedback from hazard calculations and sensitivity analyses is an important step in a SSHAC 
assessment to understand the importance of elements of the model and inform the final 
assessments.  For development of a regional SSC model to be used for site-specific probabilistic 
seismic hazard analyses (PSHAs) at many geographically distributed sites, feedback based on the 
preliminary model is particularly important.  Following WS-2 a preliminary SSC model termed 
“the SSC sensitivity model,” was developed and used for hazard sensitivity calculations that 
were evaluated in WS-3.  While the SSC sensitivity model was clearly preliminary, the 
evaluation of sensitivity results that took place in WS-3 provided important feedback for 
completing analyses and for supporting the TI Team’s development of the preliminary CEUS 
SSC model.  The Panel was able to review the preliminary model and provide feedback in a 
subsequent project briefing meeting on March 24, 2010. 

Together the three workshops provided the TI Team interactions with the appropriate range of 
resource and proponent experts.  These experts were carefully identified to present, discuss, and 
debate the data, models, and methods that together form the basis for assuring that the CBR of 
the TDI have been properly represented in the hazard model.  Experts representing academia, 
government, and private industry participated.  The TI Team also reached out to a wide range of 
experts as they developed the database and performed the integration activities to develop the 
SSC model.  The Panel participated throughout this process, and is satisfied that the TI Team 
fully engaged appropriate experts to accomplish the goals of a SSHAC Guidance.        
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Integration 

Consistent with the SSHAC Guidance, integration is the process of assessing the CBR of the TDI 
and representing the assessment in the SSC model.  Informed by the evaluation process, the 
integration process includes representation of the range of defensible methods, models, and 
interpretations of the larger technical community together with new models and methods 
developed by analyses during the evaluation and integration process.   

For the CEUS SSC Project, development of the earthquake catalog, methods for assessing and 
representing maximum earthquake magnitudes, and methods for earthquake recurrence 
assessment continued during the integration process.  The Panel reviewed all the analyses at 
various stages of development and provided comments and recommendations. The TI Team 
performed the integration process by means of eleven working meetings.  Members of the Panel 
participated in most of these working meetings as observers or resource experts.  The full Panel 
participated in the discussions during both feedback meetings and provided formal comments 
and recommendations following the meetings.  We observed that the integration process was 
thorough and that it acceptably complied with the SSHAC Guidance.  Based on our participation 
and observations we conclude that the integrated CEUS SSC Model appropriately represents the 
center, body, and range of current methods, models and technically defensible interpretations.    

PPRP Engagement 
Consistent with the SSHAC Guidance, the Panel was fully engaged in peer-review interactions 
with the TI Team and the Project Manager of the CEUS SSC Project throughout the entire 
project period—from development of the Project Plan in early to mid 2008 through production of 
the Final Project Report in mid to late 2011.5  The Panel provided both written and oral peer-
review comments on both technical and process aspects at many stages of the Project’s 
evolution.  Key PPRP activities, leading up to this final report, have included: 

• Review of the Project Plan.  
• Formulation of a PPRP implementation plan, specifically for the CEUS SSC Project, to 

ensure adherence to the general guidance provided by SSHAC and NUREG-1563 for the 
scope and goals of a PPRP review.  

• Involvement in each of the three Project workshops, including advising in the planning 
stage; participating collectively as a review panel during the workshop (and individually 
as resource experts when requested by the TI Team), providing timely comments on 
technical and process issues; and submitting a written report of the Panel’s observations 
and recommendations following each workshop. 

• Development and implementation of a process, together with the TI Team, to document 
the resolution of recommendations made in PPRP formal communications. 

• Participation as observers (and occasionally as resource experts when requested by the TI 
Team) in eight of the TI Team’s 11 working meetings. 

• Peer-review and written comments, including several informal reports, on the TI Team’s 
intermediate work products, particularly early versions of the CEUS SSC Model. 

                                                        
5 See CEUS SSC Final Report: Section 2.5, Table 2.2-1, and Appendix I 
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• Direct interaction with the TI Team and Project Manager in more than 20 teleconferences 
and four face-to-face briefings—in addition to the three workshops and eight working 
meetings of the TI Team noted above. 

• Extensive, critical peer-review of the Project’s 2010 Draft Report and 2011 Final Report.  

The Panel, collectively and individually, fully understood the SSHAC Guidance for a structured 
participatory peer review and the requirements for a Level 3 assessment process; had full and 
frequent access to information and interacted extensively with the TI Team and Project Manager 
throughout the entire project; provided peer-review comments at numerous stages; and, as 
documented within the Final Project Report, was fully engaged to meet its peer-review 
obligations in an effective way.     

Project Report 
The SSHAC Guidance makes clear that adequate documentation of process and results is crucial 
for their understanding and use by others in the technical community, by later analysis teams, 
and by the project sponsors.  The Panel understood what was needed to conform to the SSHAC 
requirements, and it was committed to ensuring that the documentation of technical details 
associated with the CEUS SSC Model in the Project Report was clear and complete.  The Panel 
was equally committed to ensuring the transparency of process aspects of the project, both in 
implementation and in description in the Project Report. 

The Panel provided lengthy compilations of review comments (see Appendix I of the Project 
Report) for both the 2010 Draft Report and the 2011 Final Report.  These included hundreds of 
comments, categorized as general, specific, relating to clarity and completeness, or editorial.  
The massive amount of detail provided by the TI Team in the Project Report and the 
intensiveness of the Panel’s review comments both reflect great diligence and a mutual 
understanding by the TI Team and the PPRP of the thoroughness and high quality of 
documentation expected in the Project Report.   

The Project Manager and the TI Lead provided review criteria to the Panel for both the draft and 
final versions of the Project Report.  The criteria for reviewing the Draft Report6 covered the 
range of technical and process issues consistent with requirements of the SSHAC Guidance, 
including draft implementation guidance (see footnote #4).  Key criteria, among others, include 
sufficiency of explanatory detail; adequate consideration of the full range of data, models, and 
methods—and the views of the larger technical community; adequate justification of the data 
evaluation process, logic-tree weights, and other technical decisions; proper treatment of 
uncertainties; and conformance to a SSHAC Level 3 assessment process.  To be clear, the PPRP 
is charged with judging the adequacy of the documented justification for the CEUS SSC Model 
and its associated logic-tree weights.  The TI Team “owns” the Model and logic-tree weights.  

Criteria for reviewing the Final Report focused on reaching closure to comments made on the 
Draft Report and ensuring that no substantive issues remained unresolved.  To that end, among 
its many review comments on the Final Report the Panel identified “mandatory” comments, 
which the TI Team was required to address in the final version of the Project Report.       

                                                        
6 See PPRP report dated October 4, 2010, in Appendix I of CEUS SSC Final Report 
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SPONSORS’ PERSPECTIVE 

This report describes a new seismic source characterization model for the Central and Eastern 

United States (CEUS) for use in probabilistic seismic hazard analysis (PSHA) for nuclear 

facilities. PSHA has become a generally accepted procedure for supporting seismic design, 

seismic safety and decision making for both industry and government. Input to a PSHA consists 

of seismic source characterization (SSC) and ground motion characterization (GMC); these two 

components are necessary to calculate probabilistic hazard results (or seismic hazard curves) at a 

particular geographic location.  

The 1986 Electric Power Research Institute and Seismicity Owners Group (EPRI-SOG) study 

included both an SSC and GMC component. Recent applications for new commercial reactors 

have followed U.S. Nuclear Regulatory Commission (NRC) regulatory guidance (RG 1.208) by 

using the EPRI-SOG source model as a starting point and updating it as appropriate on a site-

specific basis. This CEUS SSC Project has developed a new SSC model for the CEUS to replace 

the SSC component of the EPRI-SOG study.  

The CEUS SSC Project was conducted using a Senior Seismic Hazard Analysis Committee 

(SSHAC) Level 3 process, as described in the NRC publication, Recommendations for 

Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts 

(NUREG/CR-6372). The goal of the SSHAC process is to represent the center, body, and range 

of technically defensible interpretations of the available data, models, and methods. The CEUS 

SSC model is applicable to any site within the CEUS and can be used with the EPRI 2004/2006 

GMC model to calculate seismic hazard at any site of interest. Long-term efforts to replace the 

EPRI 2004/2006 GMC model with the Next Generation Attenuation Relationships for Central 

and Eastern North America obtained from the NGA-East Project is scheduled for completion in 

2014.  

The updated CEUS SSC model provides industry and government with the following: a new 

model for the commercial nuclear industry to perform PSHAs for future reactor license 

applications; the NRC to support its review of early site permit (ESP) and construction and 

operating license (COL) applications; and the U.S. Department of Energy (DOE) to support 

modern PSHAs to meet design and periodic review requirements for its current and future 

nuclear facilities. Specific benefits of the model are as follows: 

 Consistency: For many sites, seismic sources at distances up to 300 km (186 mi.) or more 

significantly contribute to hazard at some spectral frequencies. Consequently, seismic hazard 

models for many sites have significant geologic overlap. If done separately, there is a 

likelihood of conflicting assessments for the same regions. A regional source model allows 

for consistent input into a PSHA. An updated conceptual SSC framework that provides a 
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Sponsors’ Perspective 

consistent basis for identifying and characterizing seismic sources in the CEUS has been 

developed. The NRC will no longer need to review each time each applicant’s regional SSC 

model when the accepted CEUS SSC model is used. This will avoid lengthy review of the 

regional SSC model in ESP and COL applications for sites within the CEUS that use the 

accepted regional CEUS SSC model to develop its site-specific SSC model. 

 Stability: This CEUS SSC model was developed using the accepted state-of-practice 

SSHAC methodology that involved the following tasks: 

o Development of a comprehensive database and new tools for documenting the data 

consideration process. 

o Multiple workshops to identify applicable data, debate alternative hypotheses, and 

discuss feedback. 

o Multiple working meetings by the Technical Integration (TI) Team to develop the SSC 

model and fully incorporate uncertainties. 

o Technical advancements in a number of areas, such as developing a uniform earthquake 

catalog, developing an updated approach for assessing maximum magnitude, compiling 

data evaluation tables, incorporating paleoseismic data, and using spatial smoothing 

tools. 

o Participatory peer review, including four panel briefings, multiple interactions, and 

periodic formal feedback. 

o Proper documentation of all process and technical aspects of the project. 

Experience has shown that stability is best achieved through proper and thorough 

characterization of our knowledge and uncertainties, coupled with the involvement of the 

technical community, regulators, and oversight groups. 

 Greater Longevity: An explicit goal of the SSHAC methodology is to represent the center, 

body, and range of the technically defensible interpretations of the available data, models, 

and methods. Using the SSHAC process provides reasonable assurance that this goal has 

been achieved. Representing the center, body, and range of interpretations at the time of the 

study means that as new information is acquired and various interpretations evolve as a 

result, the current thinking at any point is more likely to be addressed in the study. As new 

information becomes available, an existing SSC will require periodic reviews to evaluate the 

implications of the new findings. The need for updates to a particular study is now better 

understood as a result of findings of the CEUS SSC Project sensitivity studies to determine 

the significance of source characteristics.  

 Cost and Schedule Savings: The CEUS SSC model can be used to perform a PSHA at any 

geographic location within the CEUS. It is applicable at any point within the CEUS, subject 

to site-specific refinements required by facility-specific regulations or regulatory guidance. 

Having stable, consistent input into a regional PSHA will reduce the time and cost required 

to complete a commercial nuclear site’s ESP or COL licensing application, prepare a DOE 

site’s PSHA, and develop design input for new commercial and DOE mission-critical nuclear 

facilities. 
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 Advancement of Science: The CEUS SSC Project provides new data, models, and methods. 
This information was shared at three workshops with international observers as a means to 
provide technology transfer for application in other regions. The CEUS SSC earthquake 
catalog, which merges and reconciles several catalogs and provides a uniform moment 
magnitude for all events, and the CEUS SSC paleoliquefaction database provide a new 
baseline for future research and updates. New approaches used in this project for spatial 
smoothing of recurrence parameters, assessment of maximum magnitude, and systematical 
documentation of all data considered and evaluated also benefit future research and PSHA 
updates.   

The sponsors of the CEUS SSC Project are utilities and vendors on the EPRI Advanced Nuclear 
Technology Action Plan Committee, the DOE Office of Nuclear Energy, the DOE Office of the 
Chief of Nuclear Safety, and the NRC Office of Nuclear Regulatory Research. Technical experts 
from the DOE, NRC, U.S. Geological Survey (USGS), and Defense Nuclear Facility Safety 
Board (DNFSB) participated in the study as part of the TI Team or as members of the 
Participatory Peer Review Panel (PPRP).  

The product of the CEUS SSC Project is a robust peer-reviewed regional CEUS SSC model for 
use in PSHAs. This model will be applicable to the entire CEUS, providing an important 
baseline for future research and updates. The CEUS SSC Project demonstrates that a SSHAC 
Level 3 approach can achieve the goals of considering the knowledge and uncertainties of the 
larger technical community within a robust and transparent framework. The value of the new 
CEUS SSC model has been enhanced by the participation of key stakeholders from industry, 
government, and academia who were part of the CEUS SSC Project Team.  

Looking forward, the NRC will publish NUREG-2117 (2012), Practical Implementation 
Guidelines for SSHAC Level 3 and 4 Hazard Studies that provides SSHAC guidance on the need 
to update a regional model. The guidance covers updating both regional and site-specific 
assessments. It addresses the “refinement” process of starting with a regional model and refining 
it for site-specific applications. 
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ABBREVIATIONS 

AD anno domini (in the year of the Lord) 

AFE annual frequency of exceedance 

AIC Akaike information criterion 

ALM Alabama-Louisiana-Mississippi (zone of possible paleoseismic features) 

AM Atlantic Margin (seismotectonic zone) 

AHEX Atlantic Highly Extended Crust (seismotectonic zone) 

ANSS U.S. Advanced National Seismic System 

ANT Advanced Nuclear Technology 

APC Action Plan Comittee 

BA Blytheville arch 

BC before Christ 

BCFZ Big Creek fault zone 

BFZ Blytheville fault zone 

BL Bootheel lineament 

BMA Brunswick magnetic anomaly 

BP before present 

BPT Brownian passage time 

BTP Branch Technical Position 

CAD computer-aided design 
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Abbreviations 

CBR center, body, and range 

CCFZ Crittenden County fault zone 

CDZ Commerce deformation zone 

CENA Central and Eastern North America 

CERI Center for Earthquake Research and Information 

CEUS Central and Eastern United States  

CFZ Commerce fault zone 

CFR Code of Federal Regulations 

CGL Commerce geophysical lineament 

CGRGC Cottonwood Grove–Rough Creek graben 

CI confidence interval 

CNWRA Center for Nuclear Waste Regulatory Analysis  

COCORP Consortium for Continental Reflection Profiling 

COCRUST Consortium for Crustal Reconnaissance Using Seismic Techniques 

COL combined construction and operating license 

COLA combined operating license application 

COMP composite prior, composite superdomain 

CON contemporary (with earthquake occurrence) 

COV coefficient of variation 

CPT cone penetration test 

CVSZ Central Virginia seismic zone  

D&G Dewey and Gordon (1984 catalog) 

DEM digital elevation model 
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Abbreviations 

DNFSB Defense Nuclear Facilities Safety Board 

DOE   U.S. Department of Energy  

DWM Division of Waste Management 

ECC Extended Continental Crust  

ECC-AM Extended Continental Crust–Atlantic Margin (seismotectonic zone) 

ECC-GC Extended Continental Crust–Gulf Coast (seismotectonic zone) 

ECFS East Coast fault system 

ECFS-C East Coast fault system—central segment 

ECFS-N East Coast fault system—northern segment 

ECFS-S East Coast fault system—southern segment 

EC-SFS East Coast–Stafford fault system 

ECMA East Coast magnetic anomaly 

ECRB East Continent rift basin 

ECTM Eastern Canada Telemetered Network 

E[M] expected moment magnitude listed in the CEUS SSC catalog for an earthquake 

ENA eastern North America 

EP Eau Plain shear zone 

EPRI   Electric Power Research Institute  

EPRI-SOG Electric Power Research Institute–Seismicity Owners Group 

ERM Eastern rift margin 

ERM-N Eastern rift margin—north 

ERM-RP Eastern rift margin—river (fault) picks 

ERM-S Eastern rift margin—south 
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Abbreviations 

ERM-SCC Eastern rift margin—south/Crittenden County 

ERM-SRP Eastern rift margin—south/river (fault) picks 

ERRM Eastern Reelfoot Rift Margin 

ESP early site permit 

ESRI Environmental Systems Research Institute 

ETSZ Eastern Tennessee seismic zone 

EUS Eastern United States  

FAFC Fluorspar Area fault complex 

FGDC Federal Geographic Data Committee 

ft foot or feet 

FTP file transfer protocol 

ft/s feet per second 

ft/yr feet per year 

FWLA Fugro William Lettis & Associates 

FWR Fort Wayne rift 

Ga billion years ago 

GC Gulf Coast 

GCVSZ Giles County, Virginia, seismic zone 

GHEX Gulf Coast Highly Extended Crust (seismotectonic zone) 

GIS  geographic information system 

GLTZ Great Lakes tectonic zone 

GMC ground-motion characterization (model) 

GMH Great Meteor Hotspot (seismotectonic zone) 
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Abbreviations 

GMPE ground-motion prediction equation 

GMRS ground-motion response spectra 

GPR ground-penetrating radar 

GPS  global positioning system 

GSC Geological Survey of Canada 

Gyr gigayears (10
9
 years) 

HF Humboldt fault 

HID  hazard input document 

I0 maximum intensity 

IAEA International Atomic Energy Agency 

IBEB Illinois Basin Extended Basement (seismotectonic zone) 

IPEEE Individual Plant Examination for External Events 

IRM Iapetan rifted margin 

ISC International Seismological Centre 

ITC   informed technical community  

ka thousand years ago 

K-Ar potassium-argon 

km kilometer(s) 

km
2
 square kilometer(s) 

km/sec kilometers per second 

K-S Kijko-Sellevoll 

K-S-B Kijko-Sellevoll-Bayes 

kyr thousand years 
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Abbreviations 

LDO Lamont-Doherty Earth Observatory (catalog) 

LHS Latin hypercube sampling 

LLNL   Lawrence Livermore National Laboratory  

ln(FA) logarithm of felt area (with felt area measured in km
2
) 

LS least squares 

LSA La Salle anticlinal belt 

LWLS locally weighted least squares 

m meter(s) 

M magnitude 

M, MW moment magnitudes 

Ma million years ago 

MAR Marianna (RLME source) 

mb body-wave magnitude (short period) 

mbLg body-wave magnitude determined from higher-mode (Lg) surface waves    

MC coda magnitude 

MCMC Markov Chain Monte Carlo 

MD duration magnitude 

MESE Mesozoic and younger extended crust 

MESE-N Mesozoic-and-younger extended crust or Mmax zone that is ―narrow‖ 

MESE-W Mesozoic-and-younger extended crust or Mmax zone that is ―wide‖ 

mi. mile(s) 

mi.
2
 square mile(s) 

MIDC midcontinent 
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Abbreviations 

MidC Midcontinent-Craton (seismotectonic zone) 

Mfa felt-area magnitude 

ML local magnitude 

Mmax, Mmax maximum magnitude 

MMI modified Mercalli intensity 

mm/yr millimeters per year 

MN Nuttli magnitude  

Mo Scalar seismic moment 

MRS Midcontinent rift system 

m/s meters per second 

MS surface-wave magnitude 

MSF Meeman-Shelby fault 

Mw  

Myr million years 

NAD83 North American Datum of 1983 

NAP Northern Appalachian (seismotectonic zone) 

Nd neodymium 

NEDB National Earthquake Database 

NEI Nuclear Energy Institute 

NEIC  National Earthquake Information Center 

NF Niagara fault zone 

NMESE Non-Mesozoic and younger extended crust  

NMESE-N Mesozoic-and-younger extended crust or Mmax zone that is ―narrow‖ 
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Abbreviations 

NMESE-W Mesozoic-and-younger extended crust or Mmax zone that is ―wide‖ 

NMFS New Madrid fault system 

NMN New Madrid North fault 

NMS New Madrid South fault 

NMSZ New Madrid seismic zone 

NN New Madrid north (fault segment as designated by Johnston and Schweig, 1996) 

NOAA National Oceanic and Atmospheric Administration 

NPP   nuclear power plant(s)  

NR Nemaha Ridge 

NRC   U.S. Nuclear Regulatory Commission  

NRHF Nemaha Ridge–Humboldt fault 

NSHMP National Seismic Hazard Mapping Project 

NW New Madrid west (fault segment as designated by Johnston and Schweig, 1996) 

OKA Oklahoma aulacogen (seismotectonic zone)  

OKO Oklahoma Geological Survey Leonard Geophysical Observatory (catalog) 

OSL optically stimulated luminescence 

Pa probability of activity (of being seismogenic) 

PEZ Paleozoic Extended Crust (seismotectonic zone)  

PGA peak ground acceleration 

PM Project Manager 

PPRP   Participatory Peer Review Panel  

PSHA   probabilistic seismic hazard analysis  

PVHA probabilistic volcanic hazard analysis 
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Abbreviations 

RCG Rough Creek graben 

RF Reelfoot fault 

RFT Reelfoot thrust (fault) 

RLME  repeated large-magnitude earthquake (source) 

RR Reelfoot rift zone 

RS Reelfoot South (fault segment) 

SA spectral acceleration 

SCL St. Charles lineament 

SCML south-central magnetic lineament 

SCR stable continental region 

SCSN South Carolina Seismic Network 

SEUS Southeastern United States (catalog) 

SEUSSN Southeastern United States Seismic Network 

SGFZ Ste. Genevieve fault zone 

SHmax maximum horizontal stress, compression, or principal stress 

SLR St. Lawrence rift (seismotectonic zone) 

SLTZ Spirit Lake tectonic zone 

SLU Saint Louis University (catalog) 

SNM Sanford et al. (2002 catalog) 

SOG Seismicity Owners Group 

SPT standard penetration test 

SRA Stover, Reagor, and Algermissen (1984 catalog) 

SRTM Shuttle Radar Topography Mission 
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Abbreviations 

SSC   seismic source characterization   

SSE safe shutdown earthquake 

SSHAC   Senior Seismic Hazard Analysis Committee   

Str&Tur Street and Turcotte (1977 catalog) 

SUSN Southeastern United States Network 

TC   technical community  

TFI   technical facilitator/integrator 

TI   technical integration 

USGS   U.S. Geological Survey  

USNSN U.S. National Seismograph Network 

UTC Coordinated Universal Time 

VP/VS ratio of P-wave velocity to S-wave velocity 

WES Weston Observatory (catalog) 

WIPP Waste Isolation Pilot Project 

WQSZ Western Quebec seismic zone 

WRFZ White River fault zone 

WUS Western United States 

WVFS Wabash Valley fault system 

WVSZ Wabash Valley seismic zone 
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CHAPTER 8 
DEMONSTRATION HAZARD CALCULATIONS 

8.1 Background on Demonstration Hazard Calculations 
Demonstration hazard calculations were made at seven test sites to illustrate the effects that the 
seismic sources have on calculated seismic hazard, and to compare with hazards from previous 
CEUS seismic source models. All of these calculations were made for demonstration purposes 
only and should not be used for design or analysis decisions for any engineered facility. 

Seven test sites were selected for demonstration calculations. These are listed in Table 8.1-1, 
along with the reason for choosing each site. A map of the seven sites is shown on Figure 8.1-1. 

Seismic hazard was calculated for hard rock conditions using the ground motion equations from 
EPRI (2004, 2006). For these equations, hard rock is defined as rock with a shear wave velocity 
(VS) of 2,800 m/s (9,200 ft/s). Most of the seismic hazard results presented in this section are for 
hard rock conditions (labeled “rock” in Section 8.2). 

For calculating hazard on hard rock, the EPRI (2004) ground-motion equations were used with 
the EPRI (2006) aleatory standard deviations. These equations use distance to the surface 
projection of the rupture (“Joyner Boore distance”) and closest distance to the rupture, when the 
earthquake rupture is defined. When (for seismic hazard calculations) the rupture geometry is 
unknown and the earthquake is represented as a point, the EPRI (2004) report includes correction 
terms for the distance measures and for the aleatory standard deviation, to modify these 
parameters for point-source conditions. These modifications were implemented within the 
seismic hazard calculations. 

For cases where the causative fault geometry is known (or at least modeled), the distance 
measures from a site to the rupture are calculated explicitly. The three central faults of the New 
Madrid fault system are an example. For cases where fault locations are unknown but fault 
orientation is known (or at least modeled), the hazard calculation assumes a uniform spatial 
distribution of rupture within the defined geometry of the source, each rupture with the correct 
orientation. Relationships between earthquake magnitude and rupture length are given in the 
HID for each applicable source. 

Seismic hazard results are also presented in this section for two soil conditions: shallow, stiff soil 
and deep, soft soil. These give a range of hazard results that might be expected at the seven test 
sites. For example, a deep soil site might be expected to affect long period ground motions from 
a large, distant earthquake, and the generic deep-soil model adopted here will represent that 
effect. 

Two hypothetical soil profiles were used; VS versus depth plots for these two profiles are shown 
on Figures 8.1-2 (for the shallow soil site) and 8.1-3 (for the deep soil site). Generic mean 
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amplification factors for the two soil profiles are shown on Figures 8.1-4 and 8.1-5 for 10 Hz 
spectral acceleration (SA), 1 Hz SA, and peak ground acceleration (PGA). As expected, the 
shallow soil profile amplifies high frequencies, and the deep soil profile amplifies low 
frequencies. Uncertainties in amplification factor were included, with logarithmic standard 
deviations dependent on spectral frequency and amplitude. These standard deviations include the 
effect of uncertainties in VS versus depth and in soil parameters, and range from 0.07 to 0.25. 

Demonstration results are included in Section 8.2 for hard rock, shallow soil, and deep soil site 
conditions at the seven test sites. These hazard results are plotted for annual frequencies of 
exceedance from 10–3 to 10–6. Note that seismic hazard calculations for critical facilities may 
require calculations over a different range—in particular, down to annual frequencies of 
exceedance of 10–7. 

8.2 Demonstration Hazard Calculations 
This section presents demonstration hazard calculations for the seven test sites. Figures with 
hazard results in Sections 8.2.1 through 8.2.7 are presented first for hard rock site conditions 
(labeled “rock” below) in the order outlined below for each site. The results are then presented 
for rock, shallow soil, and deep soil. Finally, sensitivity plots are presented showing how 
sensitive the hazard is to some of the input assumptions. 

Rock Hazard 

Figures a–c: Mean rock hazard and 0.85, 0.5, and 0.15 fractile hazard curves for 10 Hz SA, 
1 Hz SA, and PGA.  Digital values for the rock hazard curves are provided in Tables 8.2.1-1 to 
8.2.7-1; corresponding figures are indicated in the table titles. 

Figures d–f: Total mean rock hazard and contribution by background and RLME source for 
10 Hz SA, 1 Hz SA, and PGA. 

Figures g–i: Contribution to mean rock hazard by individual background source for 10 Hz SA, 
1 Hz SA, and PGA. 

Hazard Comparisons 

Figures j–l: Comparison of mean rock hazard from three source models for 10 Hz SA, 1 Hz SA, 
and PGA. This comparison shows total hazard for the current CEUS SSC source model and for 
two other source models, all using the EPRI (2004, 2006) ground-motion model. One source 
model is the USGS model developed for the National Seismic Hazard Mapping Project (Petersen 
et al., 2008). The other is the “COLA” model that has been used for nuclear power plant 
licensing applications since 2003. This is the EPRI-SOG (EPRI, 1988) model updated with more 
recent characterizations of several seismic sources. The updated New Madrid fault source 
(NMFS) is based on the Clinton and Bellefonte applications, and the updated Charleston seismic 
zone is based on the Vogtle application. Also, maximum magnitude (Mmax) values for some 
seismic sources near the Gulf of Mexico coastline were updated to reflect recent seismicity. 
Calculations of hazard for all three models use the EPRI (2004, 2006) ground-motion equations, 
so the differences in hazard presented here between the three models is attributable to differences 
in the source models themselves. 
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Shallow Soil Hazard 

Figures m–o: Total mean shallow-soil hazard and contribution by background and RLME source 
for 10 Hz SA, 1 Hz SA, and PGA. 

Deep Soil Hazard 

Figures p–r: Total mean deep-soil hazard and contribution by background and RLME source for 
10 Hz SA, 1 Hz SA, and PGA. 

All Site Conditions 

Figures s–u: Total mean hazard for rock, shallow soil, and deep soil conditions for 10 Hz SA, 
1 Hz SA, and PGA. 

Hazard Sensitivity 

Figures v and w: Mean rock hazard for Mmax background sources and for seismotectonic 
background sources for 10 Hz SA and 1 Hz SA. Note that the hazard from RLME sources is not 
included in these plots, and that each set of background sources is given a weight of unity for 
these plots only. The legends in these plots indicate the weights assigned in the logic tree for 
total hazard calculations. 

Figures x and y: Mean rock hazard sensitivity to Mmax for the dominant background source for 
10 Hz SA and 1 Hz SA. These hazard curves include the weight assigned to the dominant 
background source, but assign a weight of unity to the individual Mmax values (for these plots 
only). The legends in these plots indicate the total weight assigned in hazard calculations to each 
Mmax value, including the probability of activity. 

Figures z and aa: Mean rock hazard sensitivity to seismicity parameter smoothing Cases A, B, 
and E for background sources only for 10 Hz SA and 1 Hz SA. These hazard curves assign a 
weight of unity to each smoothing case (for these plots only). The legends in these plots indicate 
the weight assigned in hazard calculations to each smoothing case. 

Figures bb, cc, and dd: Mean rock hazard sensitivity to the eight seismicity parameter 
realizations, for 10 Hz SA and smoothing Cases A, B, and E for background sources only. These 
hazard curves assign a weight of unity to each smoothing case (for these plots only). The legends 
in these plots indicate the weight assigned in hazard calculations to each realization. 

Figures ee, ff, and gg: Sensitivity plots similar to the previous three, for 1 Hz SA. 

Sensitivity to In-Cluster and Out-of-Cluster Assumption 

The sensitivity of seismic hazard to the New Madrid fault in-cluster vs. out-of-cluster assumption 
is straightforward to determine. The mean in-cluster annual activity rate is 2.3 × 10–3 (over all in-
cluster branches), the mean out-of-cluster annual activity rate is 5.0 × 10–4, which is a factor of 
4.6 difference. Thus hazard curves for these two cases would differ by about a factor of 4.6 (this 
is approximate because the in-cluster model assumes multiple earthquakes, but the out-of-cluster 
model assumes only a single earthquake). 
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8.2.1 Central Illinois Site 

Hazard results are shown on Figures 8.2-1a through 8.2-1gg for the Central Illinois site. Figures 
8.2-1a, 8.2-1b, and 8.2-1c show mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, 
and PGA, respectively. Figure 8.2-1b shows that the mean rock hazard curve for 1 Hz SA lies 
close to the 0.85 fractile hazard curve at some amplitudes. This results from the contribution of 
the NMFS RLME source for 1 Hz SA, as discussed below. 

Figures 8.2-1d and 8.2-1f show that for 10 Hz SA and PGA, background sources give the highest 
contributions to hazard. Among background sources, Figures 8.2-1g and 8.2-1i indicate that the 
highest contributions to 10 Hz SA and PGA hazard come from the MidC seismotectonic sources, 
the NMESE-N Mmax source, and the IBEB seismotectonic source. The MidC and NMESE-N 
sources are host sources, while the IBEB source is a major contributor to hazard because of its 
close proximity to the site and its weighted mean Mmax value of M 7.4. For comparison, the 
MidC seismotectonic zones have a weighted mean Mmax value of M 6.6, and the NMESE-N 
Mmax source has a weighted mean Mmax value of M 7.1.  

For 1 Hz SA, Figure 8.2-1e shows that the NMFS RLME source dominates total rock hazard for 
ground motions up to about 0.33 g, and background sources dominate total rock hazard at higher 
amplitudes. Also note that the ERM-S RLME source has a higher hazard than the ERM-N 
RLME source, even though the ERM-N RLME source is closer to the site. This is caused by the 
ERM-S RLME source having a weighted mean Mmax of M 7.2 and the ERM-N RLME source 
having a weighted mean Mmax of M 6.9. Figure 8.2-1h shows the contribution to 1 Hz SA by 
background source. 

When the NMFS dominates the hazard and lies a great distance from a site (in this case about 
320 km, or 200 mi., from the Central Illinois site), the mean hazard often corresponds to a high 
fractile hazard curve (the 0.85 fractile or higher). The reason is that for the EPRI (2004, 2006) 
ground-motion model at great distances, one or a few equations within the EPRI (2004, 2006) 
model give high ground motions and dominate the mean hazard. These few equations have low 
weight, but their large contribution to the mean hazard results in a mean hazard that corresponds 
to a high fractile hazard curve. 

Figures 8.2-1j and 8.2-1l show that the CEUS SSC model results in higher rock hazard at the site 
than the COLA or USGS models for 10 Hz SA and PGA, respectively. This is caused by the 
IBEB source (mean Mmax of M 7.4) dominating the high-frequency hazard for the CEUS SSC 
model at this site. The COLA and USGS mean values of Mmax for the area encompassed by the 
IBEB source are lower. Additionally, the IBEB source concentrates historical seismicity within 
the source boundaries, whereas large regional sources (of the COLA and USGS source models) 
allow seismicity to be smoothed over a wider region. 

Figure 8.2-1k shows that the three seismic source models result in similar hazards for 1 Hz SA. 
The NMFS dominates rock hazard at 1 Hz SA, as discussed above, and the New Madrid sources 
are similar in all three models, resulting in similar hazard for 1 Hz SA. 

Figures 8.2-1m through 8.2-1r indicate similar contributions by seismic source for shallow and 
deep soil as were found for rock. These figures show that for PGA and 10 Hz SA, background 
sources dominate the total soil hazard at the site. For 1 Hz SA, the NMFS RLME source 
dominates total soil hazard up to about 0.35 g (for shallow soil) or about 0.8 g (for deep soil). At 
higher amplitudes, background sources dominate the 1 Hz SA soil hazard.  
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Figure 8.2-1t shows that for 1 Hz SA, rock and shallow soil have similar total hazard at the site, 
but amplification caused by deep soil greatly increases the total hazard at the site. For 10 Hz SA 
and PGA (Figures 8.2-1s and 8.2-1u), shallow soil amplifies ground motions slightly, and deep 
soil deamplifies ground motions at the site, except for low PGA amplitudes. At PGA amplitudes 
less than 0.35 g, deep soil shows amplifications of ground motion (see Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-1v through 8.2-1gg) show the following: 

• There is little difference in hazard between Mmax and seismotectonic sources. 

• The hazard is sensitive to Mmax values for the IBEB seismotectonic source, which is 
expected. 

• Smoothing Case E shows the highest hazard, followed by Cases B and A. This is consistent 
with seismicity rates in the IBEB seismotectonic source for these three smoothing cases. 

• The hazard is sensitive to the eight realizations of seismicity parameters for the three 
smoothing cases, which is expected. 

8.2.2 Chattanooga Site 
Hazard results are shown on Figures 8.2-2a through 8.2-2gg for the Chattanooga site. Figures 
8.2-2a, 8.2-2b, and 8.2-2c show mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, 
and PGA, respectively.  

Figures 8.2-2d and 8.2-2f show that for 10 Hz SA and PGA, background sources give the highest 
contributions to rock hazard. Among background sources, Figures 8.2-2g and 8.2-2i indicate that 
the highest contributions to 10 Hz SA and PGA hazard come from the PEZ-N seismotectonic 
source and the NMESE-N Mmax source. Both sources are host sources.  

For 1 Hz SA, Figure 8.2-2e shows that the NMFS RLME source dominates total rock hazard for 
ground motions up to about 0.15 g, and background sources dominate total rock hazard at higher 
amplitudes. However, even at amplitudes below 0.15 g, background sources have an important 
contribution to total hazard. Figure 8.2-2h shows the contribution to 1 Hz SA by background 
source. 

Figures 8.2-2j and 8.2-2l show that the CEUS SSC model and USGS model result in nearly 
identical hazards for lower amplitudes, but above about 0.6 and 0.3 g, the USGS model results in 
higher rock hazards for 10 Hz SA and PGA, respectively. This is related to the mean Mmax value 
for the USGS model for the region encompassing eastern Tennessee, which is higher than the 
mean Mmax values for this region in the CEUS SSC and COLA models. Figure 8.2-2k shows that 
the CEUS SSC model results in rock hazard at the site that lies between the hazard from the 
COLA and USGS models for 1 Hz SA. The difference in Mmax values between the source models 
also plays a role in the comparison of 1 Hz hazard. 

Figures 8.2-2m through 8.2-2r indicate similar contributions by seismic source for shallow and 
deep soil as were found for rock. These figures show that for 10 Hz SA and PGA, background 
sources give the highest contributions to hazard. For 1 Hz SA, the NMFS dominates total hazard 
for ground motions up to about 0.15 g for shallow soil and 0.35 g for deep soil, and background 
sources dominate total hazard at higher amplitudes.  
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Figure 8.2-2t shows that for 1 Hz SA, rock and shallow soil have similar total hazard at the site, 
but amplification caused by deep soil greatly increases the total hazard at the site. For 10 Hz SA 
(Figure 8.2-2s), shallow soil amplifies ground motions slightly, and deep soil deamplifies ground 
motions at the site. The same is true for PGA (Figure 8.2-2u), except for amplitudes less than 
0.35 g where deep soil shows amplification of ground motion (see Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-2v through 8.2-2gg) show the following: 

• There is little difference in hazard between Mmax and seismotectonic sources. 

• There is little sensitivity in hazard Mmax values for the PEZ-N seismotectonic source at 10 Hz 
SA, but at 1 Hz SA the sensitivity is more pronounced, which is expected. 

• Smoothing Case A shows the highest hazard, followed by Cases B and E, and there is 
sensitivity to the three cases. This is consistent with seismicity rates in the PEZ-N 
seismotectonic source for these three smoothing cases. 

• The hazard is sensitive to the eight realizations of seismicity parameters for the three 
smoothing cases, which is expected. 

8.2.3 Houston Site 

Hazard results are shown on Figures 8.2-3a through 8.2-3gg for the Houston site. Figures 8.2-3a, 
8.2-3b, and 8.2-3c show mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, and PGA, 
respectively. Figure 8.2-3b shows that the mean rock hazard lies above the 0.85 fractile between 
about 0.045 and 0.25 g. This results from the contribution of the NMFS RLME source at 1 Hz 
SA, which is discussed below. 

Figures 8.2-3d and 8.2-3f show that for 10 Hz SA and PGA, background sources give the highest 
contributions to hazard except at low amplitudes. For 10 Hz SA amplitudes below about 0.03 g, 
and PGA amplitudes below about 0.015 g, the NMFS gives hazard that slightly exceeds that 
from background sources. Among background sources, Figures 8.2-3g and 8.2-3i indicate that 
the highest contributions to 10 Hz SA and PGA hazard come from the GHEX and ECC-GC 
seismotectonic sources and the MESE-N Mmax source. The GHEX and MESE-N are host 
sources, while ECC-GC is a major contributor to hazard because of its proximity to the site and 
its higher seismicity rate.  

For 1 Hz SA, Figure 8.2-3e shows that the NMFS RLME source dominates total rock hazard for 
ground motions. When the NMFS dominates the hazard and lies a great distance from a site (in 
this case about 780 km, or 485 mi., from the Houston site), the mean hazard often corresponds to 
a high fractile hazard curve (the 0.85 fractile or higher). The reason is that for the EPRI (2004, 
2006) ground-motion model at great distances, one or a few equations within the EPRI (2004, 
2006) model give high ground motions and dominate the mean hazard. These few equations have 
low weight, but their large contribution to the mean hazard results in a mean hazard that 
corresponds to a high fractile hazard curve. Figure 8.2-3h shows the contribution to 1 Hz SA by 
background source. 

Figures 8.2-3j and 8.2-3l show that hazard from the CEUS SSC model lies between hazards from 
the COLA and USGS models for 10 Hz SA and PGA, respectively. Figure 8.2-3k shows that for 
1 Hz SA, all three models result in similar rock hazard, up to approximately 0.05 g. At higher 
amplitudes, the USGS model results in higher rock hazard. The NMFS dominates rock hazard at 
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1 Hz SA, as discussed above, and the New Madrid sources are similar in all three models. Higher 
1 Hz SA hazard from the USGS model at amplitudes above 0.05 g probably relates to the USGS 
treatment of background sources in the vicinity of Houston. 

Figures 8.2-3m through 8.2-3r indicate similar contributions by seismic source for shallow and 
deep soil as were found for rock. These figures show that for 10 Hz SA and PGA, background 
sources give the highest contributions to hazard except at low amplitudes (less than about 0.04 g 
for 10 Hz SA for shallow and deep soil, and less than about 0.03 g for PGA for shallow and deep 
soil). At these low amplitudes the NMFS is the dominant contributor to hazard. For 1 Hz SA, the 
NMFS dominates total hazard for ground motions at all amplitudes, which was the conclusion 
for rock hazard (Figure 8.2-3e).  

Figure 8.2-3t shows that for 1 Hz SA, rock and shallow soil have similar total hazard at the site, 
but amplification caused by the deep soil greatly increases the total hazard at the site. For 10 Hz 
SA and PGA (Figures 8.2-3s and 8.2-3u), shallow soil amplifies ground motions slightly, while 
deep soil hazard exhibits deamplification above about 0.35 g (for PGA) and 0.09 g (for 10 Hz 
SA), and amplification below those amplitudes. This is consistent with the amplification factor 
for deep soil (Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-3v through 8.2-3gg) show the following: 

• Hazard from the seismotectonic sources exceeds that of the Mmax sources because of the 
higher seismicity rate of seismotectonic source ECC-GC and its close proximity to the site. 

• There is little sensitivity of hazard to Mmax values for the GHEX seismotectonic source at 
10 Hz SA, but at 1 Hz SA the sensitivity is slightly more pronounced, which is expected. 

• Smoothing Cases A and E show the highest hazard, followed by Case B. This is consistent 
with seismicity rates in the GHEX source for these three smoothing cases. 

• The hazard is sensitive to the eight realizations of seismicity parameters for the three 
smoothing cases, which is expected. The hazard is especially sensitive to the eight 
realizations for Case B, as seen for 10 Hz and 1 Hz SA, where two of the eight realizations 
indicate very low seismicity near the site. 

8.2.4 Jackson Site 

Hazard results are shown on Figures 8.2-4a through 8.2-4gg for the Jackson site. Figures 8.2-4a, 
8.2-4b, and 8.2-4c show the mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, and 
PGA, respectively. Figure 8.2-4b shows the mean rock hazard overlapping the 0.85 fractile 
hazard between about 0.2 and 0.32 g. This results from the contribution of the NMFS RLME 
source at 1 Hz SA, which is discussed below. 

For 10 Hz SA and PGA, Figures 8.2-4d and 8.2-4f show that the NMFS is the highest contributor 
to hazard at amplitudes below 0.35 g (for 10 Hz SA) and 0.15 g (for PGA). Above these 
amplitudes, the highest contribution to total hazard comes from the background sources. Among 
background sources, Figures 8.2-4g and 8.2-4i indicate that the highest contributions to 10 Hz 
SA and PGA hazard come from the ECC-GC seismotectonic source, and at lower amplitudes, 
from the RR and RR-RCG seismotectonic sources. ECC-GC is the host source, while the RR and 
RR-RCG sources are a major contributor to low-amplitude hazard because of the use of 
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midcontinent attenuation equations for these sources, whereas Gulf attenuation equations are 
used for all other background sources.  

For 1 Hz SA, Figure 8.2-4e shows that the NMFS RLME source dominates total rock hazard for 
ground motions. When the NMFS dominates the hazard and lies a great distance from a site (in 
this case about 360 km, or 225 mi., from the Jackson site), the mean hazard often corresponds to 
a high fractile hazard curve (the 0.85 fractile or higher). The reason is that for the EPRI (2004, 
2006) ground-motion model at great distances, one or a few equations within the EPRI (2004, 
2006) model give high ground motions and dominate the mean hazard. These few equations have 
low weight, but their large contribution to the mean hazard results in a mean hazard that 
corresponds to a high fractile hazard curve. Figure 8.2-4h shows the contribution to 1 Hz SA by 
background source. 

Figures 8.2-4j and 8.2-4l show that the CEUS SSC model results in 10 Hz SA and PGA hazard 
that lies between the hazards from the COLA and USGS models. Figure 8.2-4k indicates that for 
1 Hz SA, all three models have similar rock hazard up to approximately 0.15 g. Above that 
amplitude the USGS model indicates somewhat higher rock hazard. The NMFS dominates rock 
hazard at 1 Hz SA, as discussed above, and the New Madrid sources are similar in all three 
models, resulting in similar hazard for 1 Hz SA.  

Figures 8.2-4m through 8.2-4r indicate similar contributions by seismic source for shallow and 
deep soil to those found for rock. That is, for 10 Hz SA and PGA, background sources dominate 
the total soil hazard at higher ground-motion amplitudes, while at lower amplitudes the NMFS 
dominates. For 1 Hz SA, the NMFS RLME source dominates total hazard for both shallow and 
deep soil. 

Figures 8.2-4s through 8.2-4u show that at 10 Hz SA, there is slight amplification of shallow soil 
and a deamplification of deep soil. At 1 Hz SA, rock and shallow soil have similar total hazard at 
the site, but amplification caused by the deep soil greatly increases the total hazard at the site. 
For PGA, shallow soil amplifies ground motions, resulting in a higher hazard curve. Deep soil 
deamplifies ground motions for PGA above 0.35 g, resulting in a lower hazard curve, and the 
opposite is true for PGA below about 0.35 g. This is consistent with the deep soil amplification 
factor (Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-4v through 8.2-4gg) show the following: 

• Hazard from the seismotectonic sources exceeds hazard from the Mmax sources because 
seismicity rates in the seismotectonic sources (specifically, the ECC-GC source) are higher 
than for Mmax sources (specifically, the MESE-N). 

• There is little sensitivity in hazard Mmax values for the ECC-GC seismotectonic source at 
10 Hz SA, but at 1 Hz SA the sensitivity is slightly more pronounced, which is expected. 

• Smoothing Cases A, B, and E show very similar hazard for 10 Hz SA and 1 Hz SA. 

• Seismic hazard is sensitive to the eight realizations of seismicity parameters for Case A, with 
one realization indicating very low hazard (very low rates of seismicity). There is less 
sensitivity to the eight realizations for Cases B and E. 
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8.2.5 Manchester Site 

Hazard results are shown on Figures 8.2-5a through 8.2-5gg for the Manchester site. Figures 
8.2-5a, 8.2-5b, and 8.2-5c show the mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, 
and PGA, respectively. 

Figures 8.2-5d through 8.2-5f show that for 10 Hz SA, 1 Hz SA, and PGA, the background 
sources are the highest contributor to hazard. The only RLME modeled for the Manchester 
hazard is the Charlevoix RLME, but its great distance (about 440 km, or 275 mi.) from the site 
means that it makes only a minor contribution to hazard at any frequency. Among background 
sources, Figures 8.2-5g and 8.2-5i indicate that the highest contribution to 10 Hz SA and PGA 
hazard comes from the NAP seismotectonic source, which is a host source. MESE-N and 
STUDY-R make the largest contributions of the Mmax sources. Figure 8.2-5h shows the 
contribution to 1 Hz SA by background source. 

Figures 8.2-5j and 8.2-5l show that for 10 Hz SA and PGA, the CEUS SSC model results in 
hazard similar to that of the COLA model. The USGS model indicates similar hazard at low 
amplitudes, but above about 0.5 g for 10 Hz SA and 0.35 g for PGA, the USGS model results in 
higher hazard. Figure 8.2-5k shows that for 1 Hz SA, the CEUS SSC model results in somewhat 
higher hazard than the COLA model, but (at amplitudes exceeding about 0.03 g) the USGS 
model results in the highest hazard between the three. 

Figures 8.2-5m through 8.2-5r indicate similar contributions from background sources for 
shallow and deep soil as were found for rock. These figures show that for 10 Hz SA, 1 Hz SA, 
and PGA, background sources dominate the total soil hazard at the site, and that the Charlevoix 
RLME is not a large contributor to hazard because of its great distance from the site.  

Figure 8.2-5t shows that for 1 Hz SA, rock and shallow soil have similar total hazard at the site, 
but amplification caused by the deep soil greatly increases the total hazard at the site. For 10 Hz 
SA and PGA (Figures 8.2-5s and 8.2-5u), shallow soil amplifies ground motions slightly, and 
deep soil deamplifies ground motions at the site, except for low PGA amplitudes. At PGA 
amplitudes less than 0.35 g, deep soil shows amplifications of ground motion (see Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-5v through 8.2-5gg) show the following: 

• Mmax and seismotectonic sources indicate very similar hazards. 

• There is little sensitivity in hazard Mmax values for the NAP seismotectonic source at 10 Hz 
SA, but at 1 Hz SA the sensitivity is slightly more pronounced, which is expected. 

• Smoothing Case A shows the highest hazard, followed by Cases B and E. This is consistent 
with seismicity rates in the NAP seismotectonic source for these three smoothing cases. 

• The hazard is sensitive to the eight realizations for the three smoothing cases, which is 
expected. The hazard is somewhat more sensitive to the eight realizations for Case B than for 
Cases A and E. 

8.2.6 Savannah Site 
Hazard results are shown on Figures 8.2-6a through 8.2-6gg for the Savannah site. Figures 
8.2-6a, 8.2-6b, and 8.2-6c show mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, 
and PGA, respectively. 
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Figures 8.2-6d and 8.2-6f show that for 10 Hz SA and PGA, the Charleston RLME is the highest 
contributor to rock hazard, but background sources contribute significantly at higher amplitudes. 
For PGA, at amplitudes higher than about 1.25 g, background sources indicate the highest 
contribution to hazard. Among background sources, Figures 8.2-6g through 8.2-6i indicate that 
the highest contribution comes from the ECC-AM seismotectonic source for 10 Hz SA, 1 Hz SA, 
and PGA. MESE-N makes the largest contribution of the Mmax sources. ECC-AM and MESE-N 
are both host sources.  

For 1 Hz SA, Figure 8.2-6e shows that the Charleston RLME dominates total rock hazard for all 
amplitudes and that the background sources are less significant contributors than for 10 Hz SA or 
PGA. 

Figures 8.2-6j through 8.2-6l show that the CEUS SSC model produces higher hazard at 
Savannah than the COLA and USGS models, except at higher amplitudes (above 1.8, 0.45, and 
0.8 g for 10 Hz SA, 1 Hz SA, and PGA, respectively) where the USGS model shows higher 
hazard. This is primarily a result of differences in Charleston source geometries between the 
three models, which have an important effect at a very close site like Savannah. For a more 
distant site, hazard resulting from the three models is expected to be similar. In particular, sites 
located to the northwest would lie perpendicular to predominant rupture orientations in the 
Charleston RLME and would not be highly affected by assumptions on source geometries. 

Figures 8.2-6m through 8.2-6r indicate similar contributions by seismic source for shallow and 
deep soil as were found for rock. These figures show that for 10 Hz SA and PGA, the Charleston 
RLME is the highest contributor to hazard, and background sources contribute significantly at 
higher amplitudes. For 1 Hz SA, the background sources are less significant contributors to 
hazard than at 10 Hz SA or PGA. 

Figures 8.2-6s through 8.2-6u show that at 10 Hz SA, there is slight amplification of shallow soil 
and a deamplification of deep soil. At 1 Hz SA, rock and shallow soil have similar total hazard at 
the site, but amplification caused by the deep soil greatly increases the total hazard at the site. 
For PGA, shallow soil shows higher hazard than rock, while deep soil shows lower hazard than 
rock above about 0.35 g and higher hazard below that amplitude. This is consistent with the deep 
soil amplification factor for PGA (Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-6v through 8.2-6gg) show the following: 

• There is little difference in hazard between Mmax and seismotectonic sources. 

• There is little sensitivity in hazard Mmax values for the ECC-AM seismotectonic source at 
10 Hz SA, but at 1 Hz SA the sensitivity is slightly more pronounced, which is expected. 

• Smoothing Case A shows the highest hazard, followed by Cases E and B. This is consistent 
with seismicity rates in the ECC-AM seismotectonic source for these three smoothing cases. 

• The hazard is sensitive to the eight realizations of seismicity parameters for the three 
smoothing cases, which is expected. 

8.2.7 Topeka Site 

Hazard results are shown on Figures 8.2-7a through 8.2-7gg for the Topeka site. Figures 8.2-7a, 
8.2-7b, and 8.2-7c show the mean and fractile rock hazard curves for 10 Hz SA, 1 Hz SA, and 
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PGA, respectively. Figure 8.2-7b shows the mean rock hazard being equivalent to the 0.85 
fractile between about 0.1 and 0.15 g. This results from the contribution of the NMFS RLME 
source at 1 Hz SA, which is discussed below. 

For 10 Hz SA and PGA, Figures 8.2-7d and 8.2-7f show that background sources give the 
highest contributions to hazard. Among background sources, Figures 8.2-7g and 8.2-7i indicate 
that the highest contributions come from the MidC-A seismotectonic source, the NMESE-N 
Mmax sources, and the STUDY-R Mmax source. All of these are host sources.  

For 1 Hz SA, Figure 8.2-7e shows that the NMFS RLME source dominates total rock hazard for 
ground motions up to about 0.2 g, and background sources dominate total rock hazard at higher 
amplitudes. When the NMFS dominates the hazard and lies a great distance from a site (in this 
case about 580 km, or 360 mi., from the Topeka site), the mean hazard often corresponds to a 
high fractile hazard curve (the 0.85 fractile or higher). The reason is that for the EPRI (2004, 
2006) ground-motion model at great distances, one or a few equations within the EPRI (2004, 
2006) model give high ground motions and dominate the mean hazard. These few equations have 
low weight, but their large contribution to the mean hazard results in a mean hazard that 
corresponds to a high fractile hazard curve. Contribution by background source for 1 Hz SA is 
shown on Figure 8.2-7h. 

Figures 8.2-7j and 8.2-7l show that the CEUS SSC model results in slightly higher rock hazard at 
the site than the COLA or USGS models for 10 Hz SA and PGA, respectively. Figure 8.2-7k 
shows that for 1 Hz SA, hazards resulting from the three models are very similar. The NMFS 
dominates rock hazard at 1 Hz SA, as discussed above, and the New Madrid sources are similar 
in all three models, resulting in similar hazard for 1 Hz SA.  

Figures 8.2-7m through 8.2-7r indicate similar contributions by seismic source for shallow and 
deep soil as were found for rock. These figures show that for 10 Hz SA and PGA, background 
sources give the highest contributions to hazard. For 1 Hz SA, the NMFS dominates total hazard 
for ground motions up to about 0.25 g for shallow soil and 0.55 g for deep soil, and background 
sources dominate total hazard at higher amplitudes.  

Figures 8.2-7s through 8.2-7u show that at 10 Hz SA, there is a slight amplification of shallow 
soil and a deamplification of deep soil. At 1 Hz SA, rock and shallow soil have similar total 
hazard at the site, but amplification caused by the deep soil greatly increases the total hazard at 
the site. For PGA, shallow soil is amplified, but deep soil shows lower hazard than rock above 
about 0.35 g, and higher hazard below this amplitude. This is consistent with the deep soil 
amplification factor for PGA (Figure 8.1-5). 

Sensitivity results for background sources (Figures 8.2-7v through 8.2-7gg) show the following: 

• Mmax sources indicate higher hazard than seismotectonic sources. The maximum 
magnitudes and local seismicity rates in Mmax sources are higher than the corresponding 
values in seismotectonic sources, which explains this difference. 

• There is a moderate sensitivity in hazard Mmax values for the MidC-A seismotectonic source 
at 10 Hz SA, but at 1 Hz SA the sensitivity is more pronounced, which is expected. 

• Smoothing Case B shows the highest hazard, followed by Cases E and A. This is consistent 
with seismicity rates in the MidC-A seismotectonic source for these three smoothing cases. 
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• The hazard is sensitive to the eight realizations of seismicity parameters for the three 
smoothing cases, which is expected. The hazard is especially sensitivity to the eight 
realizations for Case A, as seen for 10 Hz and 1 Hz SA. 
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Table 8.1-1 
Description of Seven Test Sites 

Test Site Name N. Latitude W. Longitude Reason for Selection 

Central Illinois 40.000 –90.000 
Hazard from New Madrid seismic zone 
and paleoearthquake zones in central 
Illinois 

Chattanooga 35.064 –85.255 Hazard from Eastern Tennessee 
seismic zone 

Houston 29.760 –95.363 Hazard in Gulf Coast region 

Jackson 32.312 –90.178 Hazard from New Madrid seismic zone 

Manchester 42.991 –71.463 Hazard in New England 

Savannah 32.082 –81.097 Hazard from Charleston source 

Topeka 39.047 –95.682 Hazard in central plains region 
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Table 8.2.1-1 
Mean and Select Fractiles for Rock Hazard at Central Illinois: Digital Data for  
Figures 8.2-1a through 8.2-1c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 1.27E-3 4.37E-4 9.33E-4 2.00E-3 

0.15 5.98E-4 1.91E-4 4.07E-4 9.33E-4 

0.2 3.37E-4 1.06E-4 2.34E-4 5.01E-4 

0.3 1.45E-4 4.47E-5 1.02E-4 2.04E-4 

0.5 4.91E-5 1.59E-5 3.63E-5 7.76E-5 

0.7 2.44E-5 7.41E-6 1.82E-5 3.89E-5 

1 1.16E-5 3.47E-6 9.12E-6 1.95E-5 

1.5 4.79E-6 1.32E-6 3.47E-6 8.51E-6 

2 2.45E-6 6.17E-7 1.74E-6 4.27E-6 

3 8.61E-7 1.78E-7 5.75E-7 1.62E-6 

5 1.90E-7 2.75E-8 1.10E-7 3.55E-7 

7 6.14E-8 6.68E-9 3.16E-8 1.18E-7 

10 1.64E-8 1.23E-9 7.41E-9 3.06E-8 

1 Hz 

0.01 4.48E-3 1.86E-3 3.72E-3 7.16E-3 

0.015 2.90E-3 1.00E-3 2.46E-3 4.90E-3 

0.02 2.08E-3 6.17E-4 1.62E-3 3.72E-3 

0.03 1.21E-3 2.69E-4 8.13E-4 2.29E-3 

0.05 5.16E-4 7.76E-5 2.69E-4 9.33E-4 

0.07 2.62E-4 3.16E-5 1.10E-4 4.37E-4 

0.1 1.15E-4 1.12E-5 4.17E-5 1.66E-4 

0.15 4.00E-5 3.24E-6 1.29E-5 5.13E-5 

0.2 1.75E-5 1.32E-6 5.25E-6 2.09E-5 

0.3 5.02E-6 3.43E-7 1.51E-6 6.46E-6 

0.5 9.67E-7 5.13E-8 3.31E-7 1.51E-6 

0.7 3.29E-7 1.38E-8 1.14E-7 5.75E-7 

1 1.07E-7 3.24E-9 3.39E-8 2.04E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.1 3.27E-4 8.32E-5 2.04E-4 5.01E-4 

0.15 1.42E-4 3.89E-5 9.55E-5 2.04E-4 

0.2 7.90E-5 2.24E-5 5.50E-5 1.18E-4 

0.3 3.56E-5 1.05E-5 2.57E-5 5.89E-5 

0.5 1.34E-5 3.47E-6 9.77E-6 2.40E-5 

0.7 6.93E-6 1.51E-6 4.57E-6 1.29E-5 

1 3.23E-6 5.75E-7 2.00E-6 6.03E-6 

1.5 1.22E-6 1.55E-7 6.17E-7 2.29E-6 

2 5.55E-7 5.31E-8 2.51E-7 1.00E-6 

3 1.58E-7 9.77E-9 5.89E-8 2.69E-7 

5 2.40E-8 7.59E-10 6.46E-9 3.89E-8 

7 5.68E-9 1.10E-10 1.23E-9 8.51E-9 

10 1.03E-9 1.20E-11 1.72E-10 1.41E-9 
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Table 8.2.2-1 
Mean and Select Fractiles for Rock Hazard at Chattanooga: Digital Data for  
Figures 8.2-2a through 8.2-2c) 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 1.77E-3 6.61E-4 1.41E-3 2.82E-3 

0.15 9.63E-4 3.55E-4 7.08E-4 1.62E-3 

0.2 6.17E-4 2.19E-4 4.37E-4 1.07E-3 

0.3 3.25E-4 1.10E-4 2.19E-4 5.75E-4 

0.5 1.41E-4 4.62E-5 8.91E-5 2.69E-4 

0.7 7.85E-5 2.40E-5 5.13E-5 1.45E-4 

1 4.04E-5 1.20E-5 2.57E-5 7.76E-5 

1.5 1.75E-5 4.90E-6 1.12E-5 3.16E-5 

2 9.08E-6 2.29E-6 5.62E-6 1.70E-5 

3 3.23E-6 7.08E-7 1.86E-6 5.62E-6 

5 7.12E-7 1.26E-7 3.80E-7 1.32E-6 

7 2.29E-7 3.16E-8 1.18E-7 4.07E-7 

10 6.04E-8 6.46E-9 2.75E-8 1.10E-7 

1 Hz 

0.01 5.39E-3 2.29E-3 4.57E-3 8.51E-3 

0.015 3.40E-3 1.23E-3 2.82E-3 5.62E-3 

0.02 2.38E-3 7.08E-4 1.86E-3 4.27E-3 

0.03 1.34E-3 3.31E-4 9.33E-4 2.46E-3 

0.05 5.64E-4 1.02E-4 3.31E-4 1.00E-3 

0.07 2.90E-4 4.47E-5 1.45E-4 4.68E-4 

0.1 1.33E-4 1.82E-5 6.10E-5 2.04E-4 

0.15 5.06E-5 6.03E-6 2.16E-5 7.76E-5 

0.2 2.45E-5 2.82E-6 1.05E-5 3.89E-5 

0.3 8.50E-6 8.13E-7 3.72E-6 1.43E-5 

0.5 2.18E-6 1.45E-7 9.33E-7 3.98E-6 

0.7 8.76E-7 4.17E-8 3.55E-7 1.68E-6 

1 3.19E-7 1.01E-8 1.10E-7 6.17E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.1 6.36E-4 2.04E-4 4.37E-4 1.07E-3 

0.15 3.44E-4 1.10E-4 2.19E-4 6.17E-4 

0.2 2.21E-4 6.76E-5 1.45E-4 4.07E-4 

0.3 1.17E-4 3.39E-5 7.24E-5 2.19E-4 

0.5 4.88E-5 1.20E-5 3.06E-5 8.91E-5 

0.7 2.58E-5 5.62E-6 1.59E-5 4.79E-5 

1 1.22E-5 2.14E-6 6.92E-6 2.24E-5 

1.5 4.60E-6 6.17E-7 2.29E-6 8.51E-6 

2 2.10E-6 2.19E-7 9.02E-7 3.72E-6 

3 5.93E-7 4.17E-8 2.19E-7 1.00E-6 

5 8.95E-8 3.72E-9 2.40E-8 1.35E-7 

7 2.10E-8 5.56E-10 4.57E-9 3.06E-8 

10 3.75E-9 5.89E-11 6.17E-10 5.25E-9 
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Table 8.2.3-1 
Mean and Select Fractiles for Rock Hazard at Houston: Digital Data for  
Figures 8.2-3a through 8.2-3c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.01 1.77E-3 5.01E-4 1.23E-3 3.24E-3 

0.015 1.13E-3 2.88E-4 7.08E-4 2.07E-3 

0.02 7.90E-4 1.91E-4 4.37E-4 1.41E-3 

0.03 4.49E-4 1.02E-4 2.34E-4 7.08E-4 

0.05 2.08E-4 4.47E-5 1.10E-4 2.51E-4 

0.07 1.22E-4 2.57E-5 6.31E-5 1.35E-4 

0.1 6.68E-5 1.43E-5 3.63E-5 7.24E-5 

0.15 3.19E-5 7.41E-6 1.95E-5 3.76E-5 

0.2 1.85E-5 4.57E-6 1.20E-5 2.40E-5 

0.3 8.74E-6 2.29E-6 6.92E-6 1.29E-5 

0.5 3.60E-6 9.02E-7 3.02E-6 6.03E-6 

0.7 2.03E-6 4.68E-7 1.74E-6 3.47E-6 

1 1.08E-6 2.34E-7 9.33E-7 1.86E-6 

1 Hz 

0.01 1.07E-3 1.26E-4 5.75E-4 2.14E-3 

0.015 6.30E-4 5.31E-5 2.51E-4 1.23E-3 

0.02 4.09E-4 2.95E-5 1.26E-4 7.08E-4 

0.03 2.07E-4 1.20E-5 4.79E-5 2.79E-4 

0.05 7.82E-5 3.72E-6 1.38E-5 6.76E-5 

0.07 3.82E-5 1.74E-6 6.46E-6 2.57E-5 

0.1 1.63E-5 7.59E-7 2.82E-6 1.01E-5 

0.15 5.45E-6 2.88E-7 1.15E-6 3.98E-6 

0.2 2.35E-6 1.45E-7 6.17E-7 2.14E-6 

0.3 6.92E-7 5.13E-8 2.51E-7 8.71E-7 

0.5 1.59E-7 1.20E-8 7.24E-8 2.69E-7 

0.7 6.42E-8 3.98E-9 3.16E-8 1.26E-7 

1 2.47E-8 1.15E-9 1.12E-8 5.13E-8 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.01 7.82E-4 1.55E-4 3.80E-4 1.41E-3 

0.015 4.35E-4 8.32E-5 1.91E-4 6.61E-4 

0.02 2.77E-4 5.13E-5 1.26E-4 3.80E-4 

0.03 1.45E-4 2.66E-5 6.31E-5 1.78E-4 

0.05 6.17E-5 1.12E-5 2.95E-5 6.76E-5 

0.07 3.33E-5 6.92E-6 1.82E-5 3.89E-5 

0.1 1.70E-5 3.85E-6 1.12E-5 2.32E-5 

0.15 8.35E-6 2.00E-6 6.46E-6 1.29E-5 

0.2 5.26E-6 1.27E-6 4.27E-6 8.51E-6 

0.3 2.82E-6 6.61E-7 2.29E-6 4.90E-6 

0.5 1.26E-6 2.34E-7 1.00E-6 2.29E-6 

0.7 7.03E-7 1.06E-7 5.01E-7 1.32E-6 

1 3.56E-7 4.17E-8 2.27E-7 6.61E-7 
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Table 8.2.4-1 
Mean and Select Fractiles for Rock Hazard at Jackson: Digital Data for  
Figures 8.2-4a through 8.2-4c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 4.85E-4 8.32E-5 2.69E-4 8.71E-4 

0.15 2.27E-4 3.89E-5 1.10E-4 3.55E-4 

0.2 1.25E-4 2.16E-5 5.89E-5 1.78E-4 

0.3 5.06E-5 9.77E-6 2.57E-5 6.31E-5 

0.5 1.54E-5 3.47E-6 9.77E-6 2.02E-5 

0.7 7.21E-6 1.68E-6 5.25E-6 1.05E-5 

1 3.35E-6 7.59E-7 2.63E-6 5.25E-6 

1.5 1.42E-6 2.88E-7 1.15E-6 2.46E-6 

2 7.51E-7 1.35E-7 6.17E-7 1.32E-6 

3 2.82E-7 4.32E-8 2.04E-7 5.01E-7 

5 6.80E-8 7.41E-9 4.47E-8 1.26E-7 

7 2.34E-8 2.00E-9 1.38E-8 4.32E-8 

10 6.62E-9 3.94E-10 3.47E-9 1.29E-8 

1 Hz 

0.01 2.51E-3 8.13E-4 2.14E-3 4.27E-3 

0.015 1.80E-3 4.37E-4 1.41E-3 3.24E-3 

0.02 1.35E-3 2.51E-4 9.33E-4 2.63E-3 

0.03 8.18E-4 1.10E-4 4.68E-4 1.62E-3 

0.05 3.56E-4 3.06E-5 1.45E-4 6.61E-4 

0.07 1.82E-4 1.25E-5 5.89E-5 2.99E-4 

0.1 8.04E-5 4.57E-6 2.16E-5 1.10E-4 

0.15 2.79E-5 1.51E-6 6.92E-6 3.06E-5 

0.2 1.21E-5 7.08E-7 3.02E-6 1.20E-5 

0.3 3.40E-6 2.19E-7 9.33E-7 3.47E-6 

0.5 6.42E-7 4.17E-8 2.34E-7 8.71E-7 

0.7 2.22E-7 1.25E-8 9.55E-8 3.67E-7 

1 7.58E-8 3.35E-9 3.16E-8 1.45E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.01 3.35E-3 1.23E-3 2.82E-3 5.25E-3 

0.015 2.34E-3 7.08E-4 1.86E-3 3.98E-3 

0.02 1.74E-3 4.37E-4 1.23E-3 3.24E-3 

0.03 1.05E-3 2.04E-4 6.38E-4 2.00E-3 

0.05 4.64E-4 6.76E-5 2.19E-4 8.71E-4 

0.07 2.43E-4 3.63E-5 1.02E-4 4.07E-4 

0.1 1.14E-4 1.76E-5 4.79E-5 1.66E-4 

0.15 4.54E-5 7.94E-6 2.24E-5 5.89E-5 

0.2 2.35E-5 4.73E-6 1.38E-5 2.95E-5 

0.3 9.78E-6 2.14E-6 6.92E-6 1.38E-5 

0.5 3.69E-6 7.33E-7 2.82E-6 6.46E-6 

0.7 2.00E-6 3.55E-7 1.41E-6 3.72E-6 

1 1.00E-6 1.45E-7 6.61E-7 1.86E-6 
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Table 8.2.5-1 
Mean and Select Fractiles for Rock Hazard at Manchester: Digital Data for  
Figures 8.2-5a through 8.2-5c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 9.79E-4 5.19E-4 8.71E-4 1.41E-3 

0.15 5.46E-4 2.69E-4 5.01E-4 8.13E-4 

0.2 3.56E-4 1.78E-4 3.09E-4 5.37E-4 

0.3 1.92E-4 8.91E-5 1.66E-4 2.88E-4 

0.5 8.50E-5 3.39E-5 7.24E-5 1.35E-4 

0.7 4.80E-5 1.82E-5 4.17E-5 7.76E-5 

1 2.51E-5 8.51E-6 2.09E-5 4.17E-5 

1.5 1.11E-5 3.47E-6 8.51E-6 1.95E-5 

2 5.84E-6 1.62E-6 4.57E-6 1.01E-5 

3 2.14E-6 5.19E-7 1.51E-6 3.72E-6 

5 4.96E-7 9.55E-8 3.20E-7 8.71E-7 

7 1.66E-7 2.57E-8 9.89E-8 2.99E-7 

10 4.57E-8 5.62E-9 2.40E-8 8.32E-8 

1 Hz 

0.01 2.62E-3 9.33E-4 1.86E-3 4.42E-3 

0.015 1.43E-3 4.68E-4 1.00E-3 2.37E-3 

0.02 9.02E-4 2.88E-4 6.38E-4 1.51E-3 

0.03 4.54E-4 1.35E-4 3.09E-4 7.59E-4 

0.05 1.79E-4 4.79E-5 1.26E-4 2.88E-4 

0.07 9.45E-5 2.40E-5 6.76E-5 1.55E-4 

0.1 4.69E-5 1.05E-5 3.27E-5 8.04E-5 

0.15 2.08E-5 4.27E-6 1.38E-5 3.63E-5 

0.2 1.15E-5 2.14E-6 7.94E-6 2.09E-5 

0.3 4.89E-6 7.59E-7 3.13E-6 9.77E-6 

0.5 1.56E-6 1.78E-7 8.71E-7 3.13E-6 

0.7 6.91E-7 5.89E-8 3.55E-7 1.41E-6 

1 2.72E-7 1.59E-8 1.26E-7 5.37E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.1 3.73E-4 1.55E-4 3.09E-4 5.75E-4 

0.15 2.05E-4 8.32E-5 1.66E-4 3.31E-4 

0.2 1.33E-4 5.13E-5 1.10E-4 2.19E-4 

0.3 7.06E-5 2.40E-5 5.69E-5 1.18E-4 

0.5 2.99E-5 8.51E-6 2.24E-5 5.50E-5 

0.7 1.60E-5 3.98E-6 1.12E-5 2.95E-5 

1 7.66E-6 1.62E-6 4.90E-6 1.38E-5 

1.5 2.96E-6 4.68E-7 1.62E-6 5.25E-6 

2 1.37E-6 1.78E-7 7.08E-7 2.46E-6 

3 4.00E-7 3.63E-8 1.72E-7 6.61E-7 

5 6.31E-8 3.47E-9 2.09E-8 1.02E-7 

7 1.53E-8 5.75E-10 4.27E-9 2.32E-8 

10 2.84E-9 6.76E-11 6.17E-10 4.27E-9 
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Table 8.2.6-1 
Mean and Select Fractiles for Rock Hazard at Savannah: Digital Data for  
Figures 8.2-6a through 8.2-6c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 1.71E-3 7.08E-4 1.51E-3 2.82E-3 

0.15 1.13E-3 4.07E-4 9.66E-4 1.86E-3 

0.2 7.99E-4 2.51E-4 6.61E-4 1.32E-3 

0.3 4.46E-4 1.18E-4 3.31E-4 8.13E-4 

0.5 1.81E-4 3.89E-5 1.18E-4 3.31E-4 

0.7 9.06E-5 1.70E-5 5.13E-5 1.66E-4 

1 4.08E-5 6.46E-6 2.09E-5 7.00E-5 

1.5 1.53E-5 1.86E-6 6.92E-6 2.57E-5 

2 7.23E-6 7.59E-7 3.02E-6 1.12E-5 

3 2.30E-6 2.04E-7 9.33E-7 3.47E-6 

5 4.44E-7 3.16E-8 1.66E-7 6.84E-7 

7 1.31E-7 8.51E-9 4.79E-8 2.04E-7 

10 3.17E-8 1.74E-9 1.12E-8 5.13E-8 

1 Hz 

0.01 2.88E-3 1.32E-3 2.63E-3 4.57E-3 

0.015 2.10E-3 8.41E-4 1.86E-3 3.47E-3 

0.02 1.68E-3 5.75E-4 1.51E-3 2.82E-3 

0.03 1.18E-3 3.31E-4 1.00E-3 2.00E-3 

0.05 6.82E-4 1.26E-4 5.01E-4 1.27E-3 

0.07 4.37E-4 5.89E-5 2.88E-4 8.41E-4 

0.1 2.50E-4 2.40E-5 1.35E-4 5.01E-4 

0.15 1.19E-4 7.94E-6 5.13E-5 2.34E-4 

0.2 6.51E-5 3.24E-6 2.24E-5 1.26E-4 

0.3 2.53E-5 9.02E-7 6.46E-6 4.47E-5 

0.5 6.52E-6 1.55E-7 1.23E-6 9.44E-6 

0.7 2.41E-6 4.17E-8 3.80E-7 3.02E-6 

1 7.64E-7 9.77E-9 1.10E-7 8.13E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.1 8.13E-4 2.34E-4 6.17E-4 1.41E-3 

0.15 4.46E-4 1.02E-4 3.09E-4 8.13E-4 

0.2 2.70E-4 5.50E-5 1.66E-4 5.01E-4 

0.3 1.22E-4 1.95E-5 6.76E-5 2.19E-4 

0.5 3.99E-5 4.90E-6 1.95E-5 7.00E-5 

0.7 1.81E-5 1.86E-6 7.94E-6 2.95E-5 

1 7.37E-6 6.61E-7 2.92E-6 1.25E-5 

1.5 2.40E-6 1.72E-7 8.71E-7 3.98E-6 

2 9.94E-7 6.10E-8 3.55E-7 1.62E-6 

3 2.50E-7 1.20E-8 7.76E-8 3.80E-7 

5 3.40E-8 1.04E-9 8.51E-9 5.13E-8 

7 7.66E-9 1.66E-10 1.68E-9 1.08E-8 

10 1.34E-9 1.82E-11 2.34E-10 1.86E-9 
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Table 8.2.7-1 
Mean and Select Fractiles for Rock Hazard at Topeka: Digital Data for  
Figures 8.2-7a through 8.2-7c 

Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

10 Hz 

0.1 4.11E-4 1.45E-4 2.88E-4 5.75E-4 

0.15 2.13E-4 7.24E-5 1.55E-4 3.09E-4 

0.2 1.32E-4 4.47E-5 1.02E-4 1.91E-4 

0.3 6.67E-5 2.24E-5 5.13E-5 1.02E-4 

0.5 2.81E-5 9.12E-6 2.24E-5 4.47E-5 

0.7 1.56E-5 4.57E-6 1.29E-5 2.57E-5 

1 8.08E-6 2.14E-6 6.24E-6 1.38E-5 

1.5 3.55E-6 8.13E-7 2.63E-6 6.46E-6 

2 1.85E-6 3.55E-7 1.32E-6 3.24E-6 

3 6.66E-7 1.02E-7 4.37E-7 1.23E-6 

5 1.49E-7 1.48E-8 8.32E-8 2.69E-7 

7 4.84E-8 3.24E-9 2.48E-8 8.91E-8 

10 1.29E-8 5.19E-10 5.62E-9 2.40E-8 

1 Hz 

0.01 2.32E-3 6.17E-4 1.74E-3 4.12E-3 

0.015 1.42E-3 2.69E-4 9.33E-4 2.63E-3 

0.02 9.55E-4 1.50E-4 5.37E-4 1.86E-3 

0.03 5.00E-4 5.89E-5 2.19E-4 9.02E-4 

0.05 1.92E-4 1.59E-5 6.31E-5 2.69E-4 

0.07 9.44E-5 6.68E-6 2.75E-5 1.10E-4 

0.1 4.13E-5 2.63E-6 1.12E-5 4.47E-5 

0.15 1.46E-5 8.13E-7 3.98E-6 1.59E-5 

0.2 6.63E-6 3.09E-7 1.86E-6 7.94E-6 

0.3 2.08E-6 6.76E-8 6.61E-7 3.02E-6 

0.5 4.85E-7 6.68E-9 1.55E-7 8.71E-7 

0.7 1.89E-7 1.37E-9 5.31E-8 3.67E-7 

1 6.87E-8 2.19E-10 1.59E-8 1.35E-7 
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Frequency 
Spectral 
Accel. (g) Mean 0.15 0.5 0.85 

PGA 

0.01 4.03E-3 1.51E-3 3.02E-3 6.46E-3 

0.015 2.46E-3 8.71E-4 1.74E-3 4.27E-3 

0.02 1.67E-3 5.37E-4 1.11E-3 2.82E-3 

0.03 9.14E-4 2.88E-4 5.75E-4 1.51E-3 

0.05 4.10E-4 1.18E-4 2.69E-4 6.17E-4 

0.07 2.40E-4 6.76E-5 1.66E-4 3.55E-4 

0.1 1.35E-4 3.89E-5 9.55E-5 2.04E-4 

0.15 6.97E-5 2.09E-5 5.13E-5 1.10E-4 

0.2 4.40E-5 1.29E-5 3.39E-5 7.24E-5 

0.3 2.31E-5 6.24E-6 1.82E-5 3.89E-5 

0.5 9.77E-6 2.14E-6 6.92E-6 1.76E-5 

0.7 5.24E-6 9.33E-7 3.47E-6 9.77E-6 

1 2.51E-6 3.43E-7 1.41E-6 4.57E-6 
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Figure 8.1-1 
Map showing the study area and seven test sites for the CEUS SSC Project 
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Figure 8.1-2 
Mean VS profile for shallow soil site 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-30 

 

 

Figure 8.1-3 
Mean VS profile for deep soil site 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-31 

 

 

Figure 8.1-4 
Mean amplification factors for shallow soil site 
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Figure 8.1-5 
Mean amplification factors for deep soil site 
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Figure 8.2-1a 
Central Illinois 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-1b 
Central Illinois 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-1c 
Central Illinois PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-1d 
Central Illinois 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-1e 
Central Illinois 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-1f 
Central Illinois PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-1g 
Central Illinois 10 Hz rock hazard: contribution by background source 
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Figure 8.2-1h 
Central Illinois 1 Hz rock hazard: contribution by background source 
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Figure 8.2-1i 
Central Illinois PGA rock hazard: contribution by background source 
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Figure 8.2-1j 
Central Illinois 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-1k 
Central Illinois 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-1l 
Central Illinois PGA rock hazard: comparison of three source models 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-45 

 

 

Figure 8.2-1m 
Central Illinois 10 Hz shallow soil hazard: total and total and contribution by RLME and background 
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Figure 8.2-1n 
Central Illinois 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-1o 
Central Illinois PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-1p 
Central Illinois 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-1q 
Central Illinois 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-1r 
Central Illinois PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-1s 
Central Illinois 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-1t 
Central Illinois 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-1u 
Central Illinois PGA hazard: comparison of three site conditions 
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Figure 8.2-1v 
Central Illinois 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-1w 
Central Illinois 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-1x 
Central Illinois 10 Hz rock hazard: sensitivity to Mmax for source IBEB 
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Figure 8.2-1y 
Central Illinois 1 Hz rock hazard: sensitivity to Mmax for source IBEB 
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Figure 8.2-1z 
Central Illinois 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-1aa 
Central Illinois 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-1bb 
Central Illinois 10 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case A 
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Figure 8.2-1cc 
Central Illinois 10 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case B 
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Figure 8.2-1dd 
Central Illinois 10 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case E 
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Figure 8.2-1ee 
Central Illinois 1 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case A 
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Figure 8.2-1ff 
Central Illinois 1 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case B 
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Figure 8.2-1gg 
Central Illinois 1 Hz rock hazard: sensitivity to eight realizations for source IBEB, Case E 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-66 

 

 

Figure 8.2-2a 
Chattanooga 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-2b 
Chattanooga 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-2c 
Chattanooga PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-2d 
Chattanooga 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-2e 
Chattanooga 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-2f 
Chattanooga PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-2g 
Chattanooga 10 Hz rock hazard: contribution by background source 
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Figure 8.2-2h 
Chattanooga 1 Hz rock hazard: contribution by background source 
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Figure 8.2-2i 
Chattanooga PGA rock hazard: contribution by background source 
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Figure 8.2-2j 
Chattanooga 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-2k 
Chattanooga is 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-2l 
Chattanooga PGA rock hazard: comparison of three source models 
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Figure 8.2-2m 
Chattanooga 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-2n 
Chattanooga 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-2o 
Chattanooga PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-2p 
Chattanooga 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-2q 
Chattanooga 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-2r 
Chattanooga PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-2s 
Chattanooga 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-2t 
Chattanooga 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-2u 
Chattanooga PGA hazard: comparison of three site conditions 
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Figure 8.2-2v 
Chattanooga 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-2w 
Chattanooga 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-2x 
Chattanooga 10 Hz rock hazard: sensitivity to Mmax for source PEZ-N 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-90 

 

 

Figure 8.2-2y 
Chattanooga 1 Hz rock hazard: sensitivity to Mmax for source PEZ-N 
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Figure 8.2-2z 
Chattanooga 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-2aa 
Chattanooga 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-2bb 
Chattanooga 10 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case A 
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Figure 8.2-2cc 
Chattanooga 10 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case B 
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Figure 8.2-2dd 
Chattanooga 10 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case E 
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Figure 8.2-2ee 
Chattanooga 1 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case A 
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Figure 8.2-2ff 
Chattanooga 1 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case B 
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Figure 8.2-2gg 
Chattanooga 1 Hz rock hazard: sensitivity to eight realizations for source PEZ-N, Case E 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-99 

 

 

Figure 8.2-3a 
Houston 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-3b 
Houston 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-3c 
Houston PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-3d 
Houston 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-3e 
Houston 1 Hz rock hazard: total and contribution by RLME and background 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-104 

 

 

Figure 8.2-3f 
Houston PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-3g 
Houston 10 Hz rock hazard: contribution by background source 
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Figure 8.2-3h 
Houston 1 Hz rock hazard: contribution by background source 
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Figure 8.2-3i 
Houston PGA rock hazard: contribution by background source 
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Figure 8.2-3j 
Houston 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-3k 
Houston is 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-3l 
Houston PGA rock hazard: comparison of three source models 
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Figure 8.2-3m 
Houston 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-3n 
Houston 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-3o 
Houston PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-3p 
Houston 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-3q 
Houston 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-3r 
Houston PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-3s 
Houston 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-3t 
Houston 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-3u 
Houston PGA hazard: comparison of three site conditions 
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Figure 8.2-3v 
Houston 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-3w 
Houston 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-3x 
Houston 10 Hz rock hazard: sensitivity to Mmax for source GHEX 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-123 

 

 

Figure 8.2-3y 
Houston 1 Hz rock hazard: sensitivity to Mmax for source GHEX 
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Figure 8.2-3z 
Houston 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-3aa 
Houston 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-3bb 
Houston 10 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case A 
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Figure 8.2-3cc 
Houston 10 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case B 
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Figure 8.2-3dd 
Houston 10 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case E 
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Figure 8.2-3ee 
Houston 1 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case A 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-130 

 

 

Figure 8.2-3ff 
Houston 1 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case B 
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Figure 8.2-3gg 
Houston 1 Hz rock hazard: sensitivity to eight realizations for source GHEX, Case E 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-132 

 

 

Figure 8.2-4a 
Jackson 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-4b 
Jackson 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-4c 
Jackson PGA rock hazard: mean and fractile total hazard 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-135 

 

 

Figure 8.2-4d 
Jackson 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-4e 
Jackson 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-4f 
Jackson PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-4g 
Jackson 10 Hz rock hazard: contribution by background source 
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Figure 8.2-4h 
Jackson 1 Hz rock hazard: contribution by background source 
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Figure 8.2-4i 
Jackson PGA rock hazard: contribution by background source 
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Figure 8.2-4j 
Jackson 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-4k 
Jackson is 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-4l 
Jackson PGA rock hazard: comparison of three source models 
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Figure 8.2-4m 
Jackson 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-4n 
Jackson 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-4o 
Jackson PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-4p 
Jackson 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-4q 
Jackson 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-4r 
Jackson PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-4s 
Jackson 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-4t 
Jackson 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-4u 
Jackson PGA hazard: comparison of three site conditions 
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Figure 8.2-4v 
Jackson 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-4w 
Jackson 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-4x 
Jackson 10 Hz rock hazard: sensitivity to Mmax for source ECC-GC 
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Figure 8.2-4y 
Jackson 1 Hz rock hazard: sensitivity to Mmax for source ECC-GC 
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Figure 8.2-4z 
Jackson 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-4aa 
Jackson 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-4bb 
Jackson 10 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case A 
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Figure 8.2-4cc 
Jackson 10 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case B 
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Figure 8.2-4dd 
Jackson 10 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case E 
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Figure 8.2-4ee 
Jackson 1 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case A 
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Figure 8.2-4ff 
Jackson 1 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case B 
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Figure 8.2-4gg 
Jackson 1 Hz rock hazard: sensitivity to eight realizations for source ECC-GC, Case E 
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Figure 8.2-5a 
Manchester 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-5b 
Manchester 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-5c 
Manchester PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-5d 
Manchester 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-5e 
Manchester 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-5f 
Manchester PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-5g 
Manchester 10 Hz rock hazard: contribution by background source 
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Figure 8.2-5h 
Manchester 1 Hz rock hazard: contribution by background source 
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Figure 8.2-5i 
Manchester PGA rock hazard: contribution by background source 
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Figure 8.2-5j 
Manchester 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-5k 
Manchester is 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-5l 
Manchester PGA rock hazard: comparison of three source models 
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Figure 8.2-5m 
Manchester 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-5n 
Manchester 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-5o 
Manchester PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-5p 
Manchester 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-5q 
Manchester 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-5r 
Manchester PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-5s 
Manchester 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-5t 
Manchester 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-5u 
Manchester PGA hazard: comparison of three site conditions 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-186 

 

 

Figure 8.2-5v 
Manchester 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-5w 
Manchester 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-5x 
Manchester 10 Hz rock hazard: sensitivity to Mmax for source NAP 
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Figure 8.2-5y 
Manchester 1 Hz rock hazard: sensitivity to Mmax for source NAP 
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Figure 8.2-5z 
Manchester 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-5aa 
Manchester 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-5bb 
Manchester 10 Hz rock hazard: sensitivity to eight realizations for source NAP, Case A 
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Figure 8.2-5cc 
Manchester 10 Hz rock hazard: sensitivity to eight realizations for source NAP, Case B 
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Figure 8.2-5dd 
Manchester 10 Hz rock hazard: sensitivity to eight realizations for source NAP, Case E 
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Figure 8.2-5ee 
Manchester 1 Hz rock hazard: sensitivity to eight realizations for source NAP, Case A 
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Figure 8.2-5ff 
Manchester 1 Hz rock hazard: sensitivity to eight realizations for source NAP, Case B 
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Figure 8.2-5gg 
Manchester 1 Hz rock hazard: sensitivity to eight realizations for source NAP, Case E 
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Figure 8.2-6a 
Savannah 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-6b 
Savannah 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-6c 
Savannah PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-6d 
Savannah 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-6e 
Savannah 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-6f 
Savannah PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-6g 
Savannah 10 Hz rock hazard: contribution by background source 
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Figure 8.2-6h 
Savannah 1 Hz rock hazard: contribution by background source 
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Figure 8.2-6i 
Savannah PGA rock hazard: contribution by background source 
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Figure 8.2-6j 
Savannah 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-6k 
Savannah is 1 Hz rock hazard: comparison of three source models 
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Figure 8.2-6l 
Savannah PGA rock hazard: comparison of three source models 
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Figure 8.2-6m 
Savannah 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-6n 
Savannah 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-6o 
Savannah PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-6p 
Savannah 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-6q 
Savannah 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-6r 
Savannah PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-6s 
Savannah 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-6t 
Savannah 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-6u 
Savannah PGA hazard: comparison of three site conditions 
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Figure 8.2-6v 
Savannah 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-6w 
Savannah 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-6x 
Savannah 10 Hz rock hazard: sensitivity to Mmax for source ECC-AM 
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Figure 8.2-6y 
Savannah 1 Hz rock hazard: sensitivity to Mmax for source ECC-AM 
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Figure 8.2-6z 
Savannah 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-6aa 
Savannah 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-6bb 
Savannah 10 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case A 
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Figure 8.2-6cc 
Savannah 10 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case B 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-227 

 

 

Figure 8.2-6dd 
Savannah 10 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case E 
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Figure 8.2-6ee 
Savannah 1 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case A 
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Figure 8.2-6ff 
Savannah 1 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case B 
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Figure 8.2-6gg 
Savannah 1 Hz rock hazard: sensitivity to eight realizations for source ECC-AM, Case E 
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Figure 8.2-7a 
Topeka 10 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-7b 
Topeka 1 Hz rock hazard: mean and fractile total hazard 
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Figure 8.2-7c 
Topeka PGA rock hazard: mean and fractile total hazard 
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Figure 8.2-7d 
Topeka 10 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-7e 
Topeka 1 Hz rock hazard: total and contribution by RLME and background 
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Figure 8.2-7f 
Topeka PGA rock hazard: total and contribution by RLME and background 
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Figure 8.2-7g 
Topeka 10 Hz rock hazard: contribution by background source 
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Figure 8.2-7h 
Topeka 1 Hz rock hazard: contribution by background source 
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Figure 8.2-7i 
Topeka PGA rock hazard: contribution by background source 
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Figure 8.2-7j 
Topeka 10 Hz rock hazard: comparison of three source models 
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Figure 8.2-7k 
Topeka is 1 Hz rock hazard: comparison of three source models 



 

 

Chapter 8 

Demonstration Hazard Calculations 

 

8-242 

 

 

Figure 8.2-7l 
Topeka PGA rock hazard: comparison of three source models 
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Figure 8.2-7m 
Topeka 10 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-7n 
Topeka 1 Hz shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-7o 
Topeka PGA shallow soil hazard: total and contribution by RLME and background 
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Figure 8.2-7p 
Topeka 10 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-7q 
Topeka 1 Hz deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-7r 
Topeka PGA deep soil hazard: total and contribution by RLME and background 
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Figure 8.2-7s 
Topeka 10 Hz hazard: comparison of three site conditions 
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Figure 8.2-7t 
Topeka 1 Hz hazard: comparison of three site conditions 
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Figure 8.2-7u 
Topeka PGA hazard: comparison of three site conditions 
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Figure 8.2-7v 
Topeka 10 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-7w 
Topeka 1 Hz rock hazard: sensitivity to seismotectonic vs. Mmax zones 
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Figure 8.2-7x 
Topeka 10 Hz rock hazard: sensitivity to Mmax for source MidC-A 
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Figure 8.2-7y 
Topeka 1 Hz rock hazard: sensitivity to Mmax for source MidC-A 
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Figure 8.2-7z 
Topeka 10 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-7aa 
Topeka 1 Hz rock hazard: sensitivity to smoothing options 
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Figure 8.2-7bb 
Topeka 10 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case A 
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Figure 8.2-7cc 
Topeka 10 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case B 
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Figure 8.2-7dd 
Topeka 10 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case E 
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Figure 8.2-7ee 
Topeka 1 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case A 
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Figure 8.2-7ff 
Topeka 1 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case B 
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Figure 8.2-7gg 
Topeka 1 Hz rock hazard: sensitivity to eight realizations for source MidC-A, Case E 
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CHAPTER 9 
USE OF THE CEUS SSC MODEL IN PSHA 

9.1 Overview 
This section is intended to provide the reader with information about the future use of the CEUS 
SSC model for purposes of PSHA. Much of the guidance provided in this section is pragmatic 
and aimed at assisting the user such that the subsequent calculational process is optimized but the 
accuracy of the SSC model is maintained. The CEUS SSC model was developed within the 
framework of a SSHAC Level 3 process, and all the required steps were taken to implement the 
letter and the spirit of the SSHAC guidelines (Budnitz et al., 1997). Chapter 2 describes those 
process steps in some detail. A key step in achieving this goal has been the careful consideration 
of alternative data, models, and methods, and—using the hazard-informed approach discussed in 
Section 4.1.3.1—incorporating the center, body, and range of technically defensible 
interpretations into the SSC model. In this sense, the SSC model has been “optimized” to include 
only those assessments that capture present knowledge and uncertainties and are believed to be 
significant to hazard. Once this level of uncertainty treatment was reached, there was no further 
attempt to optimize or reduce the complexity of the model for purposes of subsequent 
calculational efficiency.  

The CEUS SSC model is a regional model, developed explicitly to calculate seismic hazard at 
nuclear facilities. For site-specific applications—consistent with the applicable regulatory 
guidance for the nuclear facility of interest—local data sets will need to be reviewed and possible 
site-specific refinements made to the model to account for local information. This could include 
consideration of local geologic structures or local seismic sources that were not considered in 
this regional SSC model. In addition, the SSC model will need to be paired with a comparable 
ground-motion characterization (GMC) model to perform hazard calculations. The SSC model 
was developed with due consideration of the likely types of information that would be needed for 
these GMC models (see Section 5.4). For example, each seismic source is characterized by its 
style of faulting and likely future rupture geometries. 

The end product of the SSHAC process—and the deliverable for PSHA calculations—is the 
hazard input document (HID), which is discussed below in Section 9.2 and is provided in 
Appendix H. Instructions for implementing the HID are given in Section 9.3, with an eye toward 
simplifications that can be made for future applications without sacrificing accuracy. Section 9.4 
discusses approaches to define the level of precision incorporated into a hazard analysis. The 
purpose of this analysis is to identify the changes in hazard that can be considered significant. 
One application of this concept would be to provide a basis for assessing whether future changes 
to the model would lead to significant changes in hazard, which in turn would require that the 
model be updated.  



 
 
Chapter 9 
Use of the CEUS SSC Model in PSHA 

9-2 

9.2 Hazard Input Document (HID) 
The seismic source characterization of the CEUS presented in this report consists of a large and 
complex model. The report has been structured to give the reader an understanding of the 
reasoning for the structure of the model and the basis for all the model components. When the 
time comes for a hazard analysis to implement the model, there is a tremendous amount of 
material to go through in order to obtain all the model components and link them together for a 
hazard calculation. One of the innovations of the PEGASOS project (NAGRA, 2004) was 
creation of the concept of the HID. The purpose of the HID is to provide the analyst with a 
complete description of how to build the source model and a listing of all the model components 
in one place. The HID does not contain any discussion of the bases for the model structure and 
model components (that is, the purpose of the entire report). Rather, the intent of the HID is to 
provide a clear and unambiguous description of how to implement all the SSC model 
components that are described in this report. 

The HID for the CEUS SSC model is presented in Appendix H. This version of the HID includes 
references to data files for aspects such as seismic source coordinates, gridded seismicity 
parameters, and the like. These components of the HID will be made part of the CEUS SSC 
Project website and will be provided in a suitable structure to provide the analyst access to the 
volumes of data that constitute these model components.  

9.3 Implementation Instructions 

The seismic source model developed in this project is based on interpretations over a broad 
region of eastern North America. Implementation for a specific site in that region, as an input to 
a PSHA, requires that the local region around the site be examined for additional or alternative 
interpretations. These might show, for example, evidence for a small geologic feature near the 
site that might be tectonically active. As another example, a site located near the boundary of two 
seismic sources described here might be affected by the uncertainty in that boundary, to ensure 
that its effect on seismic hazard has been properly characterized. This section gives guidance on 
what simplifications might be made, and on what additional studies might be undertaken, to 
properly represent seismic hazard. 

9.3.1 Simplifications to Seismic Sources 

In the HID for seismic sources (Appendix H), the specification includes ranges for thickness of 
the seismogenic crust, fault dip, orientation of fault strike, geometry of the source, and so on. For 
example, to calculate seismic hazard, hypocenters are distributed uniformly over the specified 
seismogenic crustal thickness. Ranges in the above parameters have been included to ensure a 
complete description of uncertainties in parameters. However, not all variations of parameters for 
a given source will be influential on seismic hazard at every site. For example, for a site located a 
great distance from a source, small variations in source geometry (including the extent of the 
source vertically in the crust) will have a small influence on seismic hazard, compared with other 
sites. 

This section describes several simplifications to seismic sources that can be made to increase 
efficiency in seismic hazard calculations. These simplifications are recommended on the basis of 
sensitivity studies of alternative hazard curves that represent a range of assumptions on a 
parameter’s value. Sensitivities are presented using the test sites in the CEUS SSC Project (see 
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Figure 8.1-1 for a map of these test sites). For applications of the seismic sources from the CEUS 
SSC Project, similar sensitivity studies should be conducted for the particular site of interest to 
confirm these results and to identify additional simplifications that might be appropriate. For the 
seismic sources below, only parameters that can be simplified are discussed and presented 
graphically. 

The sensitivity studies consisted of determining the sensitivity of hazard to logic tree branches 
for each node of the logic tree describing that source. The purpose was to determine which nodes 
of the logic tree could be collapsed to a single branch, to achieve more efficient hazard 
calculations without compromising the accuracy of overall hazard results. The sensitivity 
calculations were performed at the project test sites for 1 Hz, 10 Hz, and PGA; the results for 
1 Hz and 10 Hz are shown below. 

For many comparisons in this section, a difference in hazard of 25% is mentioned as a threshold. 
Many comparisons show less sensitivity of less than 25%. Section 9.4 gives a more detailed and 
quantitative description of what constitutes a significant difference in hazard. 

9.3.1.1 Charleston RLME 

A sensitivity study was performed at the Savannah test site using Appendix H. Note that any 
sensitivities to alternative geometries in the Charleston RLME source model will be accentuated 
at Savannah because it lies close to the Charleston RLME source. Sites more distant to this 
source will show less sensitivity to alternative geometries. 

Level: Rupture Orientation 

For the regional source, there are two rupture orientations outlined in the Charleston RLME 
source model HID logic tree. Ruptures are oriented either parallel to the long axis of the source 
(northeast) or parallel to the short axis of the source (northwest), with weights of 0.8 and 0.2, 
respectively. The results from the sensitivity analysis show that, at the 10–5 ground motion, the 
difference in hazard between the two curves representing these two orientations is less than 25% 
(Figures 9.3-1 and 9.3-2). At the 10–5 ground motion, the percent difference between the 
weighted mean average hazard and the selected northeast orientation is less than 5%, indicating 
that mean hazard at Savannah is not significantly affected by having two alternative rupture 
orientations for the regional source. The northeast rupture orientation was selected as the 
orientation that will represent this level of the logic tree for three reasons: it was assigned the 
highest weight, the two other alternative geometries in the Charleston RLME source model also 
have northeast rupture orientations, and the northeast rupture orientation gives slightly more 
conservative hazard than the northwest rupture orientation, at least for the Savannah site. 

9.3.1.2 Charlevoix RLME 

A sensitivity study was performed at the Manchester test site using Appendix H. 

Level: Seismogenic Thickness 

For the Charlevoix area source, there are two seismogenic thicknesses outlined in the Charlevoix 
RLME source model HID logic tree. The seismogenic thicknesses are 25 and 30 km (15.5 and 
18.6 mi.), with weights of 0.8 and 0.2, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the difference in hazard between the two curves 
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representing the seismogenic thicknesses is less than 10% (Figures 9.3-3 and 9.3-4), indicating 
that hazard at Manchester is not significantly affected by having two alternative seismogenic 
thicknesses for the area source. A thickness of 25 km (15.5 mi.) was selected as the seismogenic 
thickness that will represent this level of the logic tree because it has the highest weight and is 
the more conservative of the two thicknesses. 

Level: Rupture Orientation 

For the Charlevoix area source, there is a range of fault dips outlined in the Charlevoix RLME 
source model HID logic tree. The dips of the faults range from 40° to 60° (modeled as 40°, 50°, 
and 60°, with weights of 0.333, 0.334, and 0.333, respectively, in the sensitivity analysis). The 
results from the sensitivity analysis show that, at the 10–5 ground motion, the difference in hazard 
between the three curves representing the three fault dips is less than 10% (Figures 9.3-5 and 
9.3-6), indicating that mean hazard at Manchester is not significantly affected by having three 
alternative fault dips for the area source. The 50° dip was selected as the orientation that will 
represent this level of the logic tree because it is the average of the three dips. 

9.3.1.3 Cheraw RLME 

A sensitivity study was performed at the Topeka test site using Appendix H. 

Level: Seismogenic Thickness 

For the fault source, there are three seismogenic thicknesses outlined in the Cheraw RLME 
source model HID logic tree. The seismogenic thicknesses are 13, 17, and 22 km (8, 10.6, and 
13.7 mi.), with weights of 0.4, 0.4, and 0.2, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the total range in hazard among the three curves 
representing these three seismogenic thicknesses is less than +20% (Figures 9.3-7 and 9.3-8). 
The weighted mean average hazard, at the 10–5 ground motion, from these three hazard curves is 
within 2% of the central curve (17 km, or 10.6 mi.), indicating that the mean hazard at Topeka 
(using three alternative seismogenic thicknesses) is not significantly different from the hazard 
using the central curve only. Therefore, the thickness of 17 km (10.6 mi.) was selected as the 
seismogenic thickness that will represent this level of the logic tree. It is worth pointing out that 
the thickest crustal assumption indicates the highest hazard because some specifications of fault 
activity for the Cheraw fault are made using fault slip rate. For a given slip rate, a thicker 
seismogenic crust implies more fault area, which results in more seismic activity and higher 
seismic hazard. 

Level: Rupture Orientation 

For the fault source, there are two rupture orientations outlined in the Cheraw RLME source 
model HID logic tree. The dip of the fault is either 50°NW or 65°NW, with weights of 0.6 and 
0.4, respectively. The results from the sensitivity analysis show that, at the 10–5 ground motion, 
the difference in hazard between the two curves representing these two orientations is less than 
10% (Figures 9.3-9 and 9.3-10), indicating that hazard at Topeka is not significantly affected by 
having two alternative rupture orientations for the fault source. The 50°NW dip was selected as 
the orientation that will represent this level of the logic tree because it was assigned the highest 
weight and is the more conservative of the two dips. 
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9.3.1.4 Commerce Fault Zone RLME 

A sensitivity study was performed at the Jackson test site using Appendix H. 

Level: Seismogenic Thickness 

For the area source, there are three seismogenic thicknesses outlined in the Commerce Fault 
Zone RLME source model HID logic tree. The seismogenic thicknesses are 13, 15, and 17 km 
(8, 9.3, and 10.6 mi.), with weights of 0.2, 0.5, and 0.3, respectively. The results from the 
sensitivity analysis show that, at the 10–5 ground motion, the difference in hazard between the 
three curves representing these three seismogenic thicknesses is less than 10% (Figures 9.3-11 
and 9.3-12), indicating that mean hazard at Jackson is not significantly affected by having three 
alternative seismogenic thicknesses for the area source. A thickness of 15 km (9.3 mi.) was 
selected as the seismogenic thickness that will represent this level of the logic tree because it is 
approximately the average of the three thicknesses. 

9.3.1.5 Eastern Rift Margin North RLME 

A sensitivity study was performed at the Jackson test site using Appendix H. 

Level: Seismogenic Thickness 

For the area source, there are three seismogenic thicknesses outlined in the ERM-N RLME 
source model HID logic tree. The seismogenic thicknesses are 13, 15, and 17 km (8, 9.3, and 
10.6 mi.), with weights of 0.2, 0.5, and 0.3, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the difference in hazard between the three curves 
representing these three seismogenic thicknesses is less than 10% (Figures 9.3-13 and 9.3-14), 
indicating that mean hazard at Jackson is not significantly affected by having three alternative 
seismogenic thicknesses for the area source. A thickness of 15 km (9.3 mi.) was selected as the 
seismogenic thickness that will represent this level of the logic tree because it is approximately 
the average of the three thicknesses. 

9.3.1.6 Eastern Rift Margin South RLME 

A sensitivity study was performed at the Jackson test site using Appendix H. 

Level: Seismogenic Thickness 

For the area source, there are three seismogenic thicknesses outlined in the ERM-S RLME 
source model HID logic tree. The seismogenic thicknesses are 13, 15, and 17 km (8, 9.3, and 
10.6 mi.), with weights of 0.2, 0.5, and 0.3, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the difference in hazard between the three curves 
representing these three seismogenic thicknesses is less than 20% (Figures 9.3-15 and 9.3-16). At 
the 10–5 ground motion, the percent difference between the weighted mean average hazard and 
the central value (15 km, or 9.3 mi.) is less than 1%, indicating that mean hazard at Jackson is 
not significantly affected by having three alternative seismogenic thicknesses for the area source. 
A thickness of 15 km (9.3 mi.) was selected as the seismogenic thickness that will represent this 
level of the logic tree because it is approximately the average of the three thicknesses. 
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9.3.1.7 Marianna RLME 

A sensitivity study was performed at the Jackson test site using Appendix H. 

Level: Seismogenic Thickness 

For the area source, there are three seismogenic thicknesses outlined in the Marianna RLME 
source model HID logic tree. The seismogenic thicknesses are 13, 15, and 17 km (8, 9.3, and 
10.6 mi.), with weights of 0.2, 0.5, and 0.3, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the difference in hazard between the three curves 
representing these three seismogenic thicknesses is less than 20% (Figures 9.3-17 and 9.3-18). At 
the 10–5 ground motion, the percent difference between the weighted mean average hazard and 
the central value (15 km, or 9.3 mi.) is less than 1%, indicating that mean hazard at Jackson is 
not significantly affected by having three alternative seismogenic thicknesses for the area source. 
A thickness of 15 km (9.3 mi.) was selected as the seismogenic thickness that will represent this 
level of the logic tree because it is approximately the average of the three thicknesses. 

9.3.1.8 Meers RLME 

A sensitivity study was performed at the Topeka and Houston test sites using Appendix H. 

Level: Seismogenic Thickness 

For both the Meers fault source and Oklahoma Aulacogen (OKA) area source that make up the 
Meers RLME source, there are two seismogenic thicknesses outlined in the Meers RLME source 
model HID logic tree. The seismogenic thicknesses are 15 and 20 km (9.3 and 12.4 mi.), each 
with a weight of 0.5. The results from the sensitivity analysis show that, at the 10–5 ground 
motion, the difference in hazard between the two curves representing these two seismogenic 
thicknesses is less than 10% (Figures 9.3-19 through 9.3-22), indicating that mean hazards at 
Topeka and Houston are not significantly affected by having two alternative seismogenic 
thicknesses for the fault and area source. A thickness of 15 km (9.3 mi.) was selected as the 
seismogenic thickness that will represent this level of the logic tree because it is the more 
conservative value. 

Level: Rupture Orientation 

For the OKA area source, there is a range of rupture orientations outlined in the Meers RLME 
source model HID logic tree. Ruptures are oriented N60°W + 15°, parallel with the long axis of 
the area source (modeled as N50°W, N60°W, and N70°W, with weights of 0.333, 0.334, and 
0.333, respectively, for the sensitivity analysis at Houston). The results from the sensitivity 
analysis show that, at the 10–5 ground motion, the difference in hazard between the two curves 
(N60°W and N60°W + 15°) representing these two orientations is less than 10% (Figures 9.3-23 
and 9.3-24), indicating that mean hazard at Houston is not significantly affected by having two 
alternative rupture orientations for the OKA area source. An orientation of N60°W was selected 
as the value that will represent this level of the logic tree because it is the average value. 

For the OKA area source, there is a range of fault dips outlined in the Meers RLME source 
model HID logic tree. The dips of the faults range from 40° to 90° (modeled as 40°, 50°, 60°, 
65°, 70°, 80°, and 90°, with weights of 0.143 in the sensitivity analysis). The results from the 
sensitivity analysis show that, at the 10–5 ground motion, the difference in hazard between the 
seven curves representing the seven fault dips is less than 10% (Figures 9.3-25 through 9.3-28), 
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indicating that mean hazards at Topeka and Houston are not significantly affected by having 
seven alternative fault dips for the OKA area source. The 65°SW dip was selected as the 
orientation that will represent this level of the logic tree because it is the average value. 

For the Meers fault source, there are two rupture orientations outlined in the Meers RLME 
source model HID logic tree. The dip of the fault is either 90° (vertical) or 40°SW, both with 
weights of 0.5. The results from the sensitivity analysis show that, at the 10–5 ground motion, the 
difference in hazard between the two curves representing these two orientations is less than 10% 
(Figures 9.3-29 through 9.3-32), indicating that mean hazard at Topeka and Houston is not 
significantly affected by having two alternative rupture orientations for the fault source. The 90° 
dip was selected as the orientation that will represent this level of the logic tree because it is the 
simpler model. 

9.3.1.9 New Madrid Fault System RLME 

A sensitivity study was performed at the Jackson test site using Appendix H. 

Level: Seismogenic Thickness 

For all fault sources, there are three seismogenic thicknesses outlined in the NMFS RLME 
source model HID logic tree. The seismogenic thicknesses are 13, 15, and 17 km (8, 9.3, and 
10.6 mi.), with weights of 0.2, 0.5, and 0.3, respectively. The results from the sensitivity analysis 
show that, at the 10–5 ground motion, the difference in hazard of the three curves representing 
these three seismogenic thicknesses is less than 10% (Figures 9.3-33 and 9.3-34), indicating that 
mean hazard at Jackson is not significantly affected by having three alternative seismogenic 
thicknesses for the fault sources. A thickness of 15 km (9.3 mi.) was selected as the seismogenic 
thickness that will represent this level of the logic tree because it is approximately the average of 
the three thicknesses. 

9.3.1.10 Wabash Valley RLME 

A sensitivity study was performed at the Central Illinois test site using Appendix H. 

Level: Seismogenic Thickness 

For the area source, there are two seismogenic thicknesses outlined in the Wabash Valley RLME 
source model HID logic tree. The seismogenic thicknesses are 17 and 22 km (10.6 and 13.7 mi.), 
with weights of 0.7 and 0.3, respectively. The results from the sensitivity analysis show that, at 
the 10–5 ground motion, the difference in hazard between the two curves representing these two 
seismogenic thicknesses is less than 10% (Figures 9.3-35 and 9.3-36), indicating that mean 
hazard at Central Illinois is not significantly affected by having two alternative seismogenic 
thicknesses for the area source. A thickness of 17 km (10.6 mi.) was selected as the seismogenic 
thickness that will represent this level of the logic tree because it has the highest weight and is 
the more conservative of the two thicknesses. 

Level: Rupture Orientation 

For the area source, there are multiple rupture orientations (outlined in e-mails from Kathryn 
Hanson on June 9 and 20, 2010) that replace the rupture orientations outlined in the Wabash 
Valley RLME source model HID logic tree. Ruptures in the area source are to be modeled in 
three ways: parallel to the long axis of the source zone (which is oriented N51°E); N50°W; and 
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N20°W, with weights of 0.8, 0.1, and 0.1, respectively. For the ruptures oriented parallel to the 
long axis, the dips of the faults are vertical or 40°NW to 60°NW (modeled as 40°NW, 50°NW, 
and 60°NW), with weights of 0.666, 0.111, 0.112, and 0.111, respectively. For ruptures oriented 
N50°W, the dips of the faults are vertical. For the ruptures oriented N20°W, the dips of the faults 
are oriented 40°SW to 60°SW (modeled as 40°SW, 50°SW, and 60°SW), with weights of 0.333, 
0.334, and 0.333, respectively. 

The results from the sensitivity analysis show that, at the 10–5 ground motion, the hazard at 
Central Illinois is sensitive to the three rupture orientations and, therefore, this level of the logic 
tree will not be collapsed. However, the results from the sensitivity analysis show that, at the 
10–5 ground motion, the difference in hazard between dips for each fault orientation is less than 
10% (Figures 9.3-37 and 9.3-38), indicating that mean hazard at Central Illinois is not 
significantly affected by having one dip for each of the fault orientations for the area source. 
Therefore, one dip can be selected for the two fault orientations that have multiple dips: ruptures 
oriented parallel to the long axis and ruptures oriented N20°W. For ruptures oriented parallel to 
the long axis, a dip of 90° was selected (vertical faults) because it was assigned the highest 
weight (0.666) and is the simpler model. For the ruptures oriented N20°W, a dip of 50°SW was 
selected because it is the average of the three dips.  

9.3.1.11 Background Sources 

A sensitivity study was performed at the Central Illinois test site using Midcontinent A as a 
background source. For this sensitivity study, the focus was on determining the influence of fault 
ruptures on seismic hazard vs. using point sources within background sources to represent 
earthquake energy release. For the fault rupture model, multiple fault orientations, dips, and 
seismogenic depths are used in each background source characterization. In the hazard 
calculations, ruptures are represented explicitly, and the appropriate distance to the rupture is 
calculated for the ground motion equations. For the point source model, earthquake occurrences 
are represented as point sources, and correction factors are used (as published in EPRI, 2004) to 
modify the distance from the point-source distance to an equivalent rupture distance, and to 
increase aleatory uncertainties in ground motion estimates to account for random rupture 
orientation. 

Figures 9.3-39 and 9.3-40 compare seismic hazards at the Central Illinois test site for the two 
models. For ground motions with a frequency of exceedence greater than 10–5 per year, the 
difference is less than 10%. Given that background sources generally make up only a fraction of 
the total hazard, using the point source model for background sources is an acceptable 
approximation. The fault rupture model is fully documented and available if future ground 
motion equations require the fault rupture geometry to be specified explicitly. 

9.3.2 Accessing the SSC Model and Components from the Website 

A hazard input document (HID) was developed for the CEUS SSC Project that documents the 
SSC model, including logic trees, parameter distributions, and derived Mmax and recurrence 
parameters. The HID specifies the inputs provided by the SSC model to the hazard calculations, 
providing a clear and complete record of how the SSC model is translated into hazard 
calculations. The HID is presented in Appendix H of the CEUS SSC Report, which is available 
on the CEUS SSC website at www.ceus-ssc.com. 



 
 

Chapter 9 
Use of the CEUS SSC Model in PSHA 

9-9 

The HID provides sufficient documentation for users to implement the SSC model in PSHA 
calculations for future applications. Demonstration hazard calculations were made at seven test 
sites to illustrate the effects of seismic sources on calculated seismic hazard and to compare 
hazards calculated using other SSC models. The demonstration hazard calculations are provided 
in Chapter 8 of this report; these can be used to confirm the seismic hazard results calculated by 
other hazard analysts using their hazard calculation software. 

9.3.3 Accessing Project Databases 

The data for the CEUS SSC Project were managed and documented in accordance with a data 
management procedure developed specifically for the project; this procedure is discussed in 
Task 2 of the CEUS SSC Project Plan, Develop a Database, and is described in further detail in 
Appendix A of the CEUS SSC Report. The CEUS SSC Project Plan, the project databases, and 
the CEUS SSC Report are available on the CEUS SSC website, www.ceus-ssc.com. 

The CEUS SSC Project databases were compiled to organize and store those data and resources 
that were carefully and thoroughly collected and described for the TI Team’s use in 
characterizing potential seismic sources in the CEUS. Development of the project database 
began at the inception of the project, and continued throughout the project using new references 
and data collected by the TI Team and project subcontractors. These updates included 
information from several sources, including presentations at project workshops by resource 
experts and proponents and review documentation provided by the PPRP.  

Listed below are the contents of the CEUS SSC website, all of which are accessible.   

• CEUS SSC Report 

• HID data necessary to implement the CEUS SSC model 

• Project GIS database including magnetic, gravity and stress data compiled for the CEUS SSC 
Project 

• Project paleoliquefaction database 

• Complete CEUS SSC earthquake catalog 

• Bibliography (master list of all references used during the project, also provided in Chapter 
10 of the CEUS SSC report) 

• New computer code used to smooth a and b values 

• All stakeholder and non-PPRP reviewer comments and correspondence, including response 
tables (Note: PPRP comments and correspondence are in Appendix I of the CEUS SSC 
Report) 

• CEUS SSC Project Plan dated June 2008 

• Information from Workshops 1–3, including meeting agendas, lists of participants, 
summaries, presentations, and a photo album of participants 

Note that the project GIS database is provided in a format that will allow other investigators to 
use the CEUS SSC database in subsequent CEUS seismic hazard assessments. 
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9.3.4 Use of SSC Model with Site-Specific Refinements 

The seismic source characterization developed under this project is a regional characterization of 
seismic sources, useful as a starting point for site-specific calculations. Any site-specific 
application will need to be conducted according to the applicable regulatory guidance for the 
nuclear facility of interest (e.g., NRC Regulatory Guide 1.208, ANSI/ANS-2.27-2008). These 
guidance documents typically require the development of a site-specific database that might 
include local geologic, tectonic, geophysical, seismicity, and paleoseismic data indicative of 
local seismic sources that could affect the site. 

9.4 Hazard Significance 
A PSHA integrates a range of SSC and GMC input models and parameters, which, collectively, 
represent current knowledge and uncertainties. After a PSHA is completed, it is expected that 
new data, models, and methods will subsequently emerge within the technical community. Some 
of those data, models, and methods may have implications to the existing PSHA model and some 
will not. This section presents an approach to assessing the significance of new findings that 
result in new inputs to the PSHA. The approach looks at the quantitative precision in seismic 
hazard implied by prior studies, and derives minimum estimates of hazard uncertainty to use as a 
guide in assessing the significance of future changes to seismic hazard estimates. 

9.4.1 Data Available to Evaluate the Precision of Seismic Hazard Estimates 

The purpose of this section is to investigate what level of precision should be associated with 
seismic hazard estimates in the CEUS. In other words, how might the seismic hazard estimates 
change if the analysis were to be repeated with independent experts who have access to the same 
basic information (geology, tectonics, seismicity, ground motion equations, site 
characterization)? In effect, we are asking, how precise are the estimates of seismic hazard? If a 
data set or interpretation were to change, and that change were to cause a change in the assessed 
seismic hazard, how would we judge whether that change in hazard were significant or 
insignificant? So the question of significance is closely linked to the level of precision with 
which we can assess seismic hazard. 

Three fundamental sets of information contribute to the precision of seismic hazard estimates: 

1. Seismic sources and parameters, which may be derived by individuals or teams of experts. 

2. Ground motion equations, which are generally derived by a single expert or team using 
available equations but are sometimes derived by multiple experts. 

3. Site response estimates, which are generally derived by a single expert but are sometimes 
derived by multiple experts. 

A realistic assumption can be made that, for seismic hazard analysis at a site, these information 
inputs are separate and independent. It is understood that ground motion equations are developed 
for a wide range of magnitudes and distances, and that site response estimates are developed for 
a wide range of input motions. Additionally, it is assumed that we are interested in the precision 
of the mean seismic hazard curves, rather than any particular fractile. The mean seismic hazard 
curve is used to make decisions regarding design levels for nuclear facilities. 
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Estimates of the precision in mean hazard associated with each of these inputs can be made by 
examining existing seismic hazard results from published studies. Table 9.4-1 indicates available 
studies that can be used for this purpose. 

The underlying concept is that we can estimate the uncertainty in mean hazard from available 
studies by examining the variability in hazard caused by team-to-team variations or expert-to-
expert variations in hazard. For example, if six teams are used to derive seismic sources for a 
hazard estimate, there will be a distribution of total hazard (i.e., annual frequency of exceedance) 
for a given ground-motion amplitude. This distribution will have a standard deviation σTH caused 
by team-to-team variability, and this standard deviation can be calculated using the conditional 
total hazard curves for each team. The uncertainty in overall mean hazard σMH caused by the 
different seismic source interpretations is σMH = σTH/√6, assuming the teams’ hazard estimates 
are uncorrelated. We put aside questions of team-to-team correlation that result from common 
data sets, availability of published papers, and similar items, because this correlation is a 
condition under which we are evaluating the precision of hazard. Similar “independent” teams 
would have access to the same data sets and published papers. 

As additional background, note that the term mean hazard has several meanings. The total 
hazard curve calculated for one team, or one ground-motion equation, or some other assumption, 
is a conditional mean hazard curve. This curve, along with others, is used to calculate σTH. The 
family of conditional mean hazard curves is used, with weights, to calculate an overall mean 
hazard curve. We are interested in the uncertainty σMH in this overall mean. 

9.4.2 Observed Imprecision in Seismic Hazard Estimates 

The imprecision inherent in seismic hazard calculations from past studies provides a guide as to 
what levels of precision we should associate with current or future studies. To this end, we use 
the coefficient of variation (COV) of the mean annual frequency of exceedance (the mean 
hazard) as the fundamental estimate of how precise or imprecise the estimates of mean hazard 
are. The COV is the calculated standard deviation (σ) of mean hazard divided by the mean 
hazard, and is a good measure of how precisely we can characterize the mean hazard. When used 
in this sense, the coefficient of variation is designated COVMH. 

9.4.2.1 Area Seismic Sources 

Figures 9.4-1 and 9.4-2 show the calculated COVMH as a function of ground motion amplitude 
and seismic hazard (i.e., annual frequency of exceedance), respectively, for study (1A) in Table 
9.4-1. These COVMH values were calculated at the seven test sites using only hazard from the six 
EPRI (1989) team interpretations of seismic sources, and do not include hazard from the New 
Madrid and Charleston RLME sources. At some sites (e.g., Manchester), RLME sources such as 
the Charlevoix zone are distant, and area sources dominate the hazard. At other sites (e.g., 
Savannah), the RLME hazard is dominant because the site lies very close to a seismic source 
zone (the Charleston seismic zone, in the case of Savannah) and the area sources contribute 
relatively less hazard. COVMH tends to increase with decreasing annual frequency; between 10–4 
and 10–6 (the mean hazard range of interest) it ranges from about 0.1 to 0.4. 

Figure 9.4-3 shows COVMH at four Swiss nuclear power plant sites (i.e., Beznau, Goesgen, 
Leibstadt, and Muehleberg) studied during the PEGASOS project (study 1B in Table 9.4-1). In 
that project, four experts developed seismic source interpretations. Based on these four 
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interpretations, Figure 9.4-3 (top) plots COVMH, calculated from the standard deviation of hazard 
σMH at each amplitude, as σMH = σTH/√4. Results from the PEGASOS project are available only 
for peak ground acceleration (PGA) and spectral acceleration at 1 Hz. For mean annual 
frequencies in the range of 10–4 to 10–6, COVMH ranges from about 0.13 to 0.3, with one set of 
results (PGA for Goesgen) falling as low as 0.05 (see the solid blue curve on Figure 9.4-3 top 
and bottom). 

Regarding imprecision in seismic hazard estimates for area seismic sources, the conclusion from 
Figures 9.4-1 through 9.4-3 is that typical COVMH values will range from perhaps 0.15 to 0.3 at a 
mean annual frequency of 10–4 to perhaps 0.2 to 0.4 at a mean annual frequency of 10–6, with a 
wide variation in that range. A typical minimum COVMH is 0.1, with one result (i.e., Goesgen 
PGA on Figure 9.4-3b) falling below that minimum. 

9.4.2.2 RLME Seismic Sources 

For seismic hazard calculations in the CEUS, two sources of RLME are the Charleston seismic 
zone and the New Madrid seismic zone. Nuclear plant seismic hazard studies have relied on two 
interpretations for these RLME sources: the WLA model (Southern Nuclear, 2008) for the 
Charleston seismic zone and the Geomatrix model (Exelon, 2003) for the New Madrid seismic 
zone. A general representation of the logic tree representing uncertainties in the Charleston 
seismic zone model is given in Table 9.4-2. For many sites in the southeastern United States, 
seismic hazard will be dominated by this source, rather than by area sources represented by 
multiple interpretations. COVMH values for area sources were described in the previous section, 
but for sites dominated by RLMEs, it is reasonable that there is some uncertainty in the mean 
hazard coming from the RLME, even though only one interpretation is currently used (e.g., 
Table 9.4-2). 

It is notable that weights on alternatives are generally given to one-decimal-place precision, and 
that while these weights indicate quantitative preferences on alternatives, an independent 
evaluation by another investigator might assign somewhat different weights (both because the 
weights themselves are imprecise and because a different investigator might assign substantially 
different weights). Because alternative weights would change the mean hazard at a site, there is 
imprecision in the current estimates of mean hazard from the base-case model. 

To determine the potential effect of alternative weights, an adaptation of the statistical bootstrap 
technique (e.g., Efron, 1982) was used. This application has the underlying assumption that the 
weights given to alternative interpretations (e.g., in Table 9.4-2) are variables with distributions. 
It is reasonable that, to estimate a minimum variation on the weights given in Table 9.4-2, we 
should pick a COVWT for the weights that correspond to a change of 0.1 in the highest weight 
among the alternatives for each interpretation, because this is the precision with which weights 
were assigned. Designating this coefficient of variation COVWT, we calculate the following 
values: 
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Source geometry COVWT = 0.1/0.7 = 0.143 

Maximum magnitudes COVWT = 0.1/0.3 = 0.333 

Paleoseismic record length COVWT = 0.1/0.8 = 0.125 

Activity rate given record COVWT = 0.1/0.4 = 0.25 

The statistical bootstrap method consisted of generating random weights for the alternative 
interpretations given in Table 9.4-2, using the listed values as mean values and using the COVWT 
given above to calculate standard deviations for the weights. A normal distribution for weights 
was assumed, truncated at 0 and 1. For each interpretation, the random weight for the alternative 
with the highest mean weight was generated first, and weights for the other alternatives followed. 
The values of these other weights are not independent, but instead depend on previously 
generated weights. In particular, they must sum to unity. 

The paleoseismic record length is an easy example to explain because it has only two 
alternatives. The weight for the preferred alternative, W1, is generated from a normal distribution 
with a mean of 0.8 and a standard deviation of 0.1. The weight for the other alternative, W2, is 
simply 1-W1. For 100 samples these assumptions result in the following statistics: 

 W1 W2 

Mean ~0.8 ~0.2 

Standard deviation ~0.1 ~0.1 

COVWT ~0.125 ~0.5 

Since mean seismic hazard is linearly proportional to the weights given to alternative 
interpretations, the effect on COVMH for W1 and W2 will depend on the relative contributions of 
the alternative interpretations to mean hazard. (As one example of a trivial case, if the mean 
hazard for each alternative paleoseismic record length is the same, then uncertainty in W1 and 
W2 will result in zero uncertainty in mean hazard.) 

For the interpretations in Table 9.4-2 with four or five alternatives, the bootstrap application 
generates a random weight for the preferred alternative first, followed by the next -preferred 
alternative, and so on. Any symmetry in the weights (e.g., in the maximum magnitude 
distribution) is maintained, so that the overall mean is maintained. The mean weight of the 
second -preferred alternative is adjusted downward if the random weight of the preferred 
alternative exceeds its mean, by the ratio (1-W1)/(1-mean[W1]). This has the effect of 
maintaining a near-normal (truncated) distribution shape for the less-preferred alternatives. The 
last weight is set equal to one minus the sum of previous weights, so that the weights sum to 
unity. 

The total mean hazard (annual frequency of exceedance) is the sum of weighted hazards from the 
available alternatives. For example, for the alternative geometries with four alternatives, 

 mean (H) = W1 H1 + W2 H2 + W3 H3 + W4 H4 (9-1) 
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where the Hi’s are the mean hazard conditional on geometry i. In the current context, the Hi’s are 
constant and the Wi’s are random variables, so that 

 mean (H) = Σi E[Wi]Hi (9-2) 

(where E[.] indicates expectation) and 

 σk
2 (H) = Σ σi

2 Hi
2 + 2 Σi Σj>i Hi Hj cov(Wi, Wj)  (9-3) 

where σ is standard deviation, cov is covariance, k indicates a specific interpretation from Table 
9.4-2, and the σi’s, Hi’s, and Wi’s are with respect to alternatives for that interpretation. The Wi’s 
are correlated because, for example, a higher-than-mean value of W1 will generally be associated 
with lower-than-mean values of the other Wi’s, since they must sum to unity. The covariance of 
the Wi’s can be estimated from samples generated using the bootstrap technique. 

To calculate the total variance of the mean hazard (designated here as σMH
2), we assume that the 

contributions from the four alternatives in Table 9.4-2 are independent. This is an explicit 
assumption in the logic tree summarized in Table 9.4-2 (e.g., the maximum magnitude 
alternatives and weights apply to all geometries). We also assume that effects of uncertainties in 
parameters are multiplicative on hazard. For example, if a variation of weights on alternative 
rates reduces the hazard by 20%, and a variation of weights on alternative geometrics increases 
the hazard by 10%, the total effect on hazard would be 0.8 × 1.1 = 0.88. 

Because hazard values of interest vary over several orders of magnitude, it is convenient to 
present uncertainties as COVMH, which for total hazard HT is defined as follows: 

 COVMH = σMH /E[HT] (9-4) 

Under the independence assumption, COVMH can be estimated as follows: 

 COVMH
2 ~ COVGEOM

2 + COVMmax
2 + COVSEIS

2 + COVRATE
2  (9-5) 

where Equation 9-5 neglects cross-product terms involving the COVs that are small. 

Figures 9.4-4 through 9.4-6 present COVK (where K represents GEOM, Mmax, etc.) and COVMH 
for PGA, 10 Hz, and 1 Hz spectral accelerations, respectively, for the Charleston model 
developed by WLA (Southern Nuclear, 2008). These plots were calculated using hazard results 
at a generic site located in Columbia, South Carolina, from only the Charleston source. From 
these figures it is evident that the alternative Mmax distribution dominates the uncertainty in 
mean hazard, except at low amplitudes (i.e., at high annual frequencies of exceedance). 

From Figures 9.4-4 through 9.4-6, the COVMH for annual frequencies in the range of 10–4 to 10–6 
is 0.25 to 0.45, with a minimum of 0.25. 

Figure 9.4-7 shows a similar comparison of hazard sensitivity at the Jackson site to New Madrid 
alternatives, which include Mmax, seismicity rate, and alternative geometries for the three faults 
in the New Madrid region (designated “RFgeom” for the Reelfoot fault, “NNgeom” for the New 
Madrid North fault, and “NSgeom” for for the New Madrid South fault). A cluster model 
(Exelon, 2003) is used to calculate hazard.  
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Unlike the results for Charleston, the results for the New Madrid model indicate that uncertainty 
in the rate of seismicity is the dominant contributor to uncertainty in hazard. The sensitivity to 
Mmax is low because, when one fault produces a high characteristic magnitude, other faults may 
produce a low characteristic magnitude during the cluster of earthquakes. COVMH is about 0.25 
for all amplitudes, and this result will be consistent across spectral frequencies because 
seismicity rate affects hazard equally across spectral frequencies. 

9.4.2.3 Ground Motion Equations 

As indicated in Table 9.4-1, direct estimates of the uncertainty in seismic hazard caused by 
different interpretations of ground motion equations are available using three studies (labeled 
2A, 2B, and 2C in Table 9.4-1): EPRI (2004), PEGASOS (NAGRA, 2004), and USGS (Petersen 
et al., 2008). These studies are described below. 

EPRI Equations. Hazards calculated with the the EPRI (2004) ground motion equations were 
analyzed in a fashion similar to the Charleston seismic source, i.e., using an application of the 
statistical bootstrap technique. Weights given in EPRI (2004) for the various ground-motion 
equations depend on whether ground motions from a general source or an RLME source are 
being modeled, as shown in Table 9.4-3. 

The ground motion models for general sources and RLME sources are used in hazard 
calculations in specific combinations; they are not independent. 

We applied the statistical bootstrap procedure to generate random weights using the following 
principles: 

1. The mean weights are the weights given in Table 9.4-3. 

2. Weights are assigned a normal distribution. 

3. Uncertainties in the randomly generated weights were controlled using standard deviations 
that are 0.3, 0.5, and 0.7 times the mean weight (these choices are designated “COVWT” 
below). 

4. Equations with equal weights (e.g., C1 and C3) kept this characteristic. 

5. Weights for the last pair of equally weighted equations (e.g., for C7 and C9 of the general 
source equations) were chosen so that the sum of all weights was unity. 

Under principle 3 above, the COVWT values were chosen using the following reasoning. A 
typical weight on the higher-weighted equations in Table 9.4-3 is 0.2, and it seems reasonable 
that an alternative study of ground motions would assign weights for these preferred equations in 
the range of 0.1 to 0.3, about two-thirds of the time. Stated another way, given today’s 
knowledge, if several equations had weights of 0.2, and those equations were re-weighted by 
another study, it is unlikely that the revised weights would be less than 0.1 or greater than 0.3; 
these cases might occur for one-third of the equations, but the other two-thirds would have 
results within +0.1 of the original weight of 0.2. This supports the COVWT of 0.5; the alternative 
values of 0.3 and 0.7 are calculated to show sensitivity to this choice. 

Results are presented separately for sites dominated by general sources and RLME sources, to 
better understand any differences caused by these two cases. The variance of mean hazard σMH

2 
that results from these random weights is calculated using Equation 9-3 above, and COVMH is 
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calculated (at each ground-motion amplitude) by dividing σMH by the mean hazard at that 
amplitude. 

General Sources. As an example of hazard results affected by general sources, Figure 9.4-8 
shows PGA seismic hazard curves for the Manchester test site, for each of the nine general-
source ground-motion equations. Curves are also shown for the mean hazard, for “sigma,” which 
is the standard deviation of total hazard σTH, and for “classical mean sigma,” the classical 
standard deviation of the mean, an estimate of the standard deviation of mean hazard as if the 
hazards from each ground-motion equation were independent. While this assumption does not 
hold, it is a useful comparative curve. It is calculated as σMH × √Σ Wi

2, where Wi are the weights 
given in Table 9.4-3. (This is equivalent to calculating the standard deviation of the mean of a 
group of equally weighted observations using σ/√n.) This estimate is designated as σCL here. 

Figure 9.4-9 shows the COVMH from ground motion equations plotted vs. PGA level for the 
Manchester site, for the two methods of calculating COVMH (the classical mean sigma divided by 
the mean, designated as COVCL, and the bootstrap procedure, designated by the values of 
COVWT). At PGA amplitudes above 0.2 g, all measures of COVMH increase. This is consistent 
with the hazard plot on Figure 9.4-8, which shows that the relative range of hazard increases for 
those amplitudes, and the sigma estimates increase relative to the mean hazard. 

Figure 9.4-10 plots COVMH of PGA hazard vs. mean hazard for the Manchester site. Typically, 
the range of hazards from 10–4 to 10–6 are of most interest in seismic hazard studies for nuclear 
plants, and in this range, even the lowest assumption on COVWT (COVWT = 0.3) indicates that 
COVMH is between 0.1 and 0.4. The assumption of COVWT = 0.5 indicates results similar to 
COVCL, but this is not a universal result, as will be demonstrated below. 

Figures 9.4-11 and 9.4-12 show plots of COVMH at Manchester for 10 Hz and 1 Hz, respectively. 
The 10 Hz COVMH is similar to that for PGA, but the 1 Hz COVMH (Figure 9.4-12) shows 
markedly higher COVMH values. The reason is that the 1 Hz hazard curves (Figure 9.2-13) show 
a larger range and both a larger σMH and a larger σCL than do the PGA hazard curves (for PGA on 
Figure 9.4-8, the “sigma” curve generally lies below the mean hazard, but for 1 Hz on Figure 
9.4-13, the “sigma” curve generally lies above the mean hazard). Figure 9.4-13 also shows that 
the “cl. mean sigma” curve peaks, relative to the mean hazard curve, at an amplitude of about 
0.1 g. At higher ground motions (lower annual frequencies), the “cl. mean sigma” decreases 
relative to the mean hazard. This leads to decreasing COVCL and COVWT curves on Figure 
9.4-12 for hazards in the range of 10–5 to 10–7. 

As another example of the effect of ground motion equations for general sources, Figures 9.4-14 
through 9.4-16 show plots of COVMH from ground motion equations for the Chattanooga test 
site. This site is dominated by local sources, with small contributions to hazard coming from the 
distant Charleston and New Madrid sources. The COVMH plots are similar to those for 
Manchester, with PGA and 10 Hz showing COVMH in the range of 0.15 to 0.25 for hazards in the 
range of 10–4 to 10–6, and 1 Hz showing higher COVMH (for the same reason discussed for the 
Manchester site). 

RLME Sources. In the EPRI (2004) study there were 12 equations recommended for sources that 
can generate large-magnitude earthquakes, as indicated in Table 9.4-3. As an example, Figure 
9.4-17 shows seismic PGA hazard curves for these 12 equations for the Savannah test site, along 
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with mean, σMH, and σCL curves. This site is located quite close to the Charleston seismic zone, 
and hazard at the site is dominated by that source. 

Figures 9.4-18 through 9.4-20 show the COVMH resulting from ground motion equations for 
PGA, 10 Hz, and 1 Hz respectively. At the close distance from the Savannah site to the 
Charleston seismic zone, the hazard curves span a small range (for hazard curves), e.g., for PGA 
amplitudes corresponding to mean hazards of 10–4 and 10–5, the range of hazard among the 12 
ground motion equations on Figure 9.4-17 is about a factor of 20 to 30 in annual frequency. As a 
result, Figure 9.4-18 shows COVMH around 0.1 for COVWT = 0.3, and higher COVMH for higher 
values of COVWT. 

For the central case of COVWT = 0.5, for 10 Hz spectral accelerations, COVMH is around 0.1 for 
mean hazards in the range of 10–4 to 10–6, and for 1 Hz spectral acceleration, COVMH ranges 
from about 0.12 to 0.15. 

The relative agreement among PGA hazard curves at the Savannah site results from the 
proximity of this site to the Charleston seismic zone. To illustrate this, seismic hazard was 
calculated at Columbia, South Carolina, from the Charleston seismic zone. Columbia lies 
roughly 150 km (93 mi.) from the center of the Charleston seismic zone. Figure 9.4-21 plots the 
PGA hazard curves for Columbia for the 12 ground motion equations, and plots the mean hazard, 
σTH, and σCL. For PGA corresponding to mean hazards of 10–4 and 10–5, the range in hazards 
from the 12 ground motion equations spans two to three orders of magnitude, which is much 
greater than the range illustrated on Figure 9.4-17 for Savannah. As a result, the COVHAZ at 
Columbia is larger, as illustrated on Figures 9.4-22 through 9.4-24 for PGA, 10 Hz, and 1 Hz, 
respectively, particularly for mean hazard values that are less than 10–4. 

To provide further perspective, Figures 9.4-25 through 9.4-27 plot COVMH vs. mean hazard at 
the Chattanooga site, but only for the hazard caused by earthquakes in the New Madrid seismic 
zone (NMSZ). Chattanooga is about 400 km (250 mi.) from the NMSZ, and ground motion 
equations show a wider range of hazard at these long distances, as reflected on Figures 9.4-25 
through 9.4-27, wherein the COVWT = 0.5 curves indicate that COVMH is between 0.2 and 0.4 for 
mean hazards between 10–4 and 10–6. This confirms the trend seen with the Savannah and 
Columbia results that COVMH increases with increasing distance from an RLME source. 

Another trend that appears in the COVMH plots for Savannah, Columbia, and Chattanooga is that 
COVCL is much higher than COVMH estimated by bootstrap techniques. The reason is related to 
the dominance of one RLME ground-motion equation, F9 in Table 9.4-3, in the mean hazard 
calculations (see Figures 9.4-17 and 9.4-21). The classical mean estimate of hazard uncertainty 
assumes that all estimates are independent, whereas the bootstrap technique maintains the 
symmetry in weights between RLME ground-motion equations F7 and F9 (the former gives 
estimates lower than equation F8, the latter gives estimates greater than F8, by a consistent 
multiplicative factor). This symmetry results in a lower estimate of COVMH from the bootstrap 
technique and is important in the case of RLME sources when equation F9 results in a hazard 
curve that greatly exceeds the curves from other equations. 

PEGASOS Study. In the PEGASOS project (NAGRA, 2004), five ground-motion experts 
provided recommendations on sets of ground motion equations with weights, and hazard results 
are available at four Swiss nuclear power plant sites for PGA and 1 Hz SA conditional on each 
ground-motion expert. The standard deviation of hazard σMH can be calculated for this set of 
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conditional hazards, and COVMH is taken as σMH/√5 divided by the overall mean hazard. Figures 
9.4-28 and 9.4-29 show COVMH at the four sites, plotted vs. ground motion amplitude and vs. 
annual frequency of exceedance, respectively. For PGA the COVMH exceeds 0.2, and for 1 Hz 
SA the COVMH exceeds 0.3, for mean hazards in the range of 10–4 to 10–6. 

USGS Study. The USGS (Petersen et al., 2008) calculation of seismic hazard for the national 
seismic hazard maps uses multiple weighted ground-motion equations. These allow an estimate 
of the COVMH to be derived. Equations and weights used in the USGS study for the CEUS are 
shown in Table 9.4-4. 

Different weights are used for background sources and for RLME sources in the USGS 
application. The way hazards from alternative ground-motion-prediction equations (GMPEs) are 
combined when the total hazard is calculated from background and RLME sources does not 
affect the mean hazard and is not specified in the USGS study. But the combination of hazards 
does affect the uncertainty in total hazard. In order to avoid the arbitrariness of adopting any 
specific combination rule, and with the goal of calculating the minimum estimate of hazard 
uncertainty, we assume that the GMPEs in Table 9.4-3 combine independently, and adopt the 
classical standard deviation designated σCL above. Accounting for correlations of estimates (e.g., 
that equation i for background seismicity would be associated with equation i for RLMEs) would 
increase the estimates of the uncertainty in mean hazard from the classical estimate. 

Figures 9.4-30 and 9.4-31 show COVMH for Chattanooga and Central Illinois, respectively, for 
the USGS 2008 hazards at seven spectral frequencies. Total hazard at the Chattanooga site is 
dominated by background seismicity, and at the Central Ilinois site is a combination of hazard 
from background and RLMEs, and this combination depends on spectral frequency. For both 
sites, COVMH ranges from 0.15 to 0.25 for total mean hazard between 10–4 and 10–6, with a 
minimum COVMH of about 0.15. 

Note that additional epistemic uncertainties are not used in the USGS GMPEs, as they are in the 
EPRI (2004) GMPEs. Rather, the USGS GMPEs adopts the best estimate of what each author 
believes are appropriate ground-motion amplitudes in the CEUS, along with aleatory 
uncertainties. Some of the authors, in their original publications, discuss how to extend their 
models to estimate epistemic uncertainties, but these extensions have not been used in the USGS 
model. This, along with the assumption of independence between area source and RLME 
estimates discussed above, contributes to the USGS COVMH estimates in some cases appearing 
to be low relative to other estimates. 

Overall, uncertainties in hazard caused by uncertainty in ground motion equations shown for the 
PEGASOS project (Figures 9.4-28 and 9.4-29) and from the USGS (Figures 9.4-30 and 9.4-31) 
are consistent with the results shown for the results in the CEUS (Figures 9.4-8 through 9.4-27). 
That is, hazard uncertainties are lower for high frequencies than for 1 Hz spectral amplitudes, 
and hazard uncertainties increase with ground motion amplitude. Focusing on COVMH estimated 
using COVWT = 0.5, a typical range of COV is from 0.1 to 0.45 across all spectral frequencies 
and amplitudes of interest, with some specific results falling outside of this range.  
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9.4.2.4 Site Response 

Most sites in the CEUS are not classified as hard rock sites, and at these sites, uncertainty in site 
response plays a role in the uncertainty in site hazard calculations. Results from the PEGASOS 
project allow a direct estimate of the hazard uncertainty caused by uncertainty in site response 
calculations, because four site response experts provided recommendations on site response 
models, and hazard results are available at the four Swiss plant sites conditional on these four 
experts. The standard deviation of mean hazard σMH can be calculated for this set of conditional 
hazards, and COVMH is taken as σMH/√4 divided by the overall mean hazard. Figure 9.4-32 
shows COVMH at the four sites for PGA and 1 Hz spectral acceleration (which are the only 
results available in this format), plotted vs. ground motion amplitude. COVMH is relatively small 
for PGA, generally below 0.1. For 1 Hz spectral acceleration, COVMH is small at low amplitudes 
and increases with amplitude. Figure 9.4-33 shows COVMH plotted vs. mean hazard, where for 
the hazard range of 10–4 to 10–6, and depending on spectral frequency, COVMH values range from 
0.03 to 0.4. Results differ among the four sites, which should be expected. 

In the CEUS, an estimate is available of the uncertainty in hazard caused by alternative soil 
amplification models. This comes from the results of two EPRI-funded projects (EPRI, 2005a, 
2005b, 2008) that calculated seismic hazard (including site response) at a group of nuclear power 
plants in the CEUS. Multiple models of site profiles and site characteristics were developed 
using available public information on the sites, and these multiple models were weighted to 
obtain the total site hazard. For the purposes of the current study, at each site the individual mean 
hazard curves for each soil model were obtained, and standard deviation of mean hazard σMH was 
calculated using these individual curves and weights. The classical standard deviation of the 
mean was then calculated as σCL = σTH × √Σ Wi

2, where Wi are the weights for the various soil 
models. This calculation assumes that the estimates of hazard are independent. 

Figure 9.4-34 shows COVMH resulting from the alternative site response models, vs. mean 
hazard, for four sites with alternative site response models. COVMH varies over a wide range, as 
might be expected for different sites, but results generally show that COVMH exceeds 0.05, with 
one site (Site 4 for 10 Hz) showing lower COVs. 

9.4.3 Conclusions on the Precision in Seismic Hazard Estimates 

Results presented above are summarized in Table 9.4-5, which represents minimum COVMH 
values observed in these sensitivity results. For reasons given above, COVMH from the Savannah 
site and from the USGS ground-motion results are not used. Also, the COVMH values from the 
PEGASOS study are downweighted, because only mean hazard curves conditional on each 
ground-motion expert are available, and these do not include within-expert variability. COVMH 
values are summarized by spectral frequency and annual frequency of exceedance, and results 
are given separately for area sources and RLME sources. The last two columns represent the 
total COVMH, calculated as the square root of the sum of squares of the individual COVs for sites 
affected primarily by area sources and by RLME sources. Table 9.4-5 presents COVMH results 
for annual frequencies of exceedance of 10–4, 10–5, and 10–6. This is a common hazard range for 
the seismic design of critical facilities, but note that investigations of seismic hazard for such 
facilities often require a wider range (e.g., 10–3 to 10–7). 

Table 9.4-5 shows that in general, minimum hazard uncertainties resulting from area source 
characteristics are smaller than minimum hazard uncertainties resulting from RLME source 
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characteristics. But the reverse is true of uncertainties resulting from ground motion models, 
where minimum hazard uncertainties from area-source ground-motion models are larger than 
from RLME ground-motion models. These two effects compensate somewhat, so that total 
minimum uncertainties in hazard are comparable for the two types of sources. Uncertainty in site 
response contributes relatively little, at least for the example sites presented here from two major 
studies. As an overall conclusion, the minimum COV representing uncertainty in mean hazard 
over all spectral frequencies, and for annual mean hazards in the range of 10–4 to 10–6, can be 
taken to be about 0.25 for 10–4, 0.3 for 10–5, and 0.35 for 10–6. Because the contribution of site 
response uncertainty is a small part of this total, this conclusion applies to both rock and soil 
sites. 

For decisions regarding the significance of changes in seismic hazard, the above results should 
be interpreted as follows. If an alternative assumption or parameter is used in a seismic hazard 
study, and it potentially changes the calculated mean hazard (mean annual frequency of 
exceedance) by less than +25% for ground motions corresponding to 10–4 annual frequency of 
exceedance, and it potentially changes the calculated hazard by less than +35% for ground 
motions corresponding to 10–6 annual frequency of exceedance, then that potential change is less 
than the best (highest) level of precision with which we can calculate mean seismic hazard. 
Under these circumstances, the potential change could be deemed not significant. For many sites 
we cannot be this precise, and the uncertainty in mean hazard will be higher than this, but the 
above interpretation gives a reasonable lower-bound guideline with which to evaluate the 
significance of potential changes in mean hazard. Note that regulators addressing the impacts of 
potential changes in seismic hazard on seismic design motions or on seismic risk-related 
decisions may (appropriately) require action even if potential changes are less than the guidelines 
given above. 
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Table 9.4-1 
Available Information for Determining the Precision of Mean Hazard 

Input Subset of Application Available Studies 

(1) Seismic sources 
and parameters 

Area sources (1A) EPRI (1989) project 
(6 teams at 7 sites)  

(1B) PEGASOS project (NAGRA, 2004) 

RLME sources 
(Charleston, 
New Madrid) 

(1C) Charleston (Southern Nuclear, 2008) 
(1D) New Madrid (Exelon, 2003) 

(2) Ground motion 
equations 

All (2A) EPRI (2004) equations  
applied to 7 sites 

(2B) USGS equations (Petersen et al., 2008) 
applied to 7 sites 

(2C) PEGASOS study (NAGRA 2004) 
(5 experts applied to 4 sites)  

(3) Site response All (non-rock) sites (3A) EPRI study (2005a, b, 2008) 
(1 expert applied to 45 sites) 

(3B) PEGASOS study (NAGRA, 2004) 
(4 experts applied to 4 sites)  

 
 

Table 9.4-2  
Summary of an Example Logic Tree Representing Uncertainties for the Charleston 
Seismic Zone 

Interpretation Alternatives Weights on Alternatives Designation1 

Geometry of source 4 geometries 0.7, 0.1, 0.1, 0.1 GEOM 

Maximum magnitude 5 values 0.1, 0.25, 0.3, 0.25, 0.1 Mmax 

Paleoseismic record length 2 periods 0.8, 0.2 SEIS 

Activity rate given record 5 rates 0.1, 0.2, 0.4, 0.2, 0.1 RATE 

1 Designation of curves in Figures 9.4-4 through 9.4-6 
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Table 9.4-3 
Basic Weights Given in EPRI (2004) for Ground Motion Equations 

General Source RLME Source 

Equation Weight Comment Equation Weight Comment 

C1 0.065 — F1 0.0509 — 

C2 0.221 — F2 0.173 — 

C3 0.065 wt. equal to C1 F3 0.0509 wt. equal to F1 

C4 0.0737 — F4 0.0577 — 

C5 0.251 — F5 0.197 — 

C6 0.0737 wt. equal to C4 F6 0.0577 wt. equal to F4 

C7 0.0463 — F7 0.0363 — 

C8 0.158 — F8 0.124 — 

C9 0.0463 wt. equal to C7 F9 0.0363 wt. equal to F7 

— (not used) — F0 0.0401 — 

— (not used) — FA 0.137 — 

— (not used) — FB 0.0401 wt. equal to F0 
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Table 9.4-4 
Ground Motion Equations and Weights Used in USGS 2008 National Hazard Map for CEUS 

Reference 

Weight for 
Background 
Seismicity 

Weight for RLME 
Sources 

Atkinson and Boore (2006; 140 bars) 0.125 0.1 

Atkinson and Boore (2006; 200 bars) 0.125 0.1 

Campbell (2003) 0.125 0.1 

Frankel et al. (1996) 0.125 0.1 

Tavakoli and Pezeshk (2005) 0.125 0.1 

Silva et al. (2002) 0.125 0.1 

Toro et al. (1997) 0.25 0.2 

Somerville et al. (2001) — 0.2 

 
 

Table 9.4-5 
Minimum COVMH Values Observed in Seismic Hazard 

Case 
Area 

Sources 
RLME 

Sources

Ground 
Motion 
(Area 

Sources1) 

Ground 
Motion 
(RLME 

Sources1,2)
Site 

Response 

Total 
COVMH, 
General 

Site 

Total 
COVMH, 
RLME 
Site 

PGA, 1E-4 0.15 0.27 0.20 0.15 0.05 ~0.25 ~0.31 

PGA, 1E-5 0.18 0.31 0.25 0.22 0.05 ~0.31 ~0.38 

PGA, 1E-6 0.20 0.40 0.30 0.28 0.05 ~0.36 ~0.49 

10 Hz, 1E-4 0.15 0.27 0.17 0.10 0.05 ~0.23 ~0.29 

10 Hz, 1E-5 0.18 0.31 0.25 0.13 0.05 ~0.31 ~0.34 

10 Hz, 1E-6 0.21 0.4 0.37 0.16 0.05 ~0.43 ~0.43 

1 Hz, 1E-4 0.10 0.25 0.30 0.12 0.05 ~0.32 ~0.28 

1 Hz, 1E-5 0.10 0.30 0.40 0.18 0.05 ~0.42 ~0.35 

1 Hz, 1E-6 0.10 0.35 0.50 0.23 0.05 ~0.51 ~0.42 
1 Excluding Savannah site 
2 Excluding USGS results 
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Figure 9.3-1 
1 Hz sensitivity to rupture orientation at Savannah for the Charleston regional source 
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Figure 9.3-2 
10 Hz sensitivity to rupture orientation at Savannah for the Charleston regional source 
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Figure 9.3-3 
1 Hz sensitivity to seismogenic thickness at Manchester for the Charlevoix area source 
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Figure 9.3-4 
10 Hz sensitivity to seismogenic thickness at Manchester for the Charlevoix area source 
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Figure 9.3-5 
1 Hz sensitivity to rupture orientation (dip) at Manchester for the Charlevoix area source 



 

 

Chapter 9 

Use of the CEUS SSC Model in PSHA 

 

9-29 

 

Figure 9.3-6 
10 Hz sensitivity to rupture orientation (dip) at Manchester for the Charlevoix area source 
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Figure 9.3-7 
1 Hz sensitivity to seismogenic thickness at Topeka for the Cheraw fault source 
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Figure 9.3-8 
10 Hz sensitivity to seismogenic thickness at Topeka for the Cheraw fault source 
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Figure 9.3-9 
1 Hz sensitivity to rupture orientation (dip) at Topeka for the Cheraw fault source 
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Figure 9.3-10 
10 Hz sensitivity to rupture orientation at Topeka for the Cheraw fault source 
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Figure 9.3-11 
1 Hz sensitivity to seismogenic thickness at Jackson for the Commerce area source 
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Figure 9.3-12 
10 Hz sensitivity to seismogenic thickness at Jackson for the Commerce area source 
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Figure 9.3-13 
1 Hz sensitivity to seismogenic thickness at Jackson for the ERM-N area source 
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Figure 9.3-14 
10 Hz sensitivity to seismogenic thickness at Jackson for the ERM-N area source 



 

 
Chapter 9 

Use of the CEUS SSC Model in PSHA 

 

9-38 

 

 

Figure 9.3-15 
1 Hz sensitivity to seismogenic thickness at Jackson for the ERM-S area source 
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Figure 9.3-16 
10 Hz sensitivity to seismogenic thickness at Jackson for the ERM-S area source 
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Figure 9.3-17 
1 Hz sensitivity to seismogenic thickness at Jackson for the Marianna area source 
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Figure 9.3-18 
10 Hz sensitivity to seismogenic thickness at Jackson for the Marianna area source 
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Figure 9.3-19 
1 Hz sensitivity to seismogenic thickness at Topeka for the Meers fault and OKA area sources 
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Figure 9.3-20 
1 Hz sensitivity to seismogenic thickness at Houston for the Meers fault and OKA area sources 
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Figure 9.3-21 
10 Hz sensitivity to seismogenic thickness at Topeka for the Meers fault and OKA area sources 
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Figure 9.3-22 
10 Hz sensitivity to seismogenic thickness at Houston for the Meers fault and OKA area sources 
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Figure 9.3-23 
1 Hz sensitivity to rupture orientation at Houston for the OKA area source 
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Figure 9.3-24 
10 Hz sensitivity to rupture orientation at Houston for the OKA area source 
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Figure 9.3-25 
1 Hz sensitivity to rupture orientation (dip) at Topeka for the OKA area source 
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Figure 9.3-26 
1 Hz sensitivity to rupture orientation (dip) at Houston for the OKA area source 
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Figure 9.3-27 
10 Hz sensitivity to rupture orientation (dip) at Topeka for the OKA area source 



 

 

Chapter 9 

Use of the CEUS SSC Model in PSHA 

 

9-51 

 

Figure 9.3-28 
10 Hz sensitivity to rupture orientation (dip) at Houston for the OKA area source 
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Figure 9.3-29 
1 Hz sensitivity to rupture orientation (dip) at Topeka for the Meers fault source 
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Figure 9.3-30 
1 Hz sensitivity to rupture orientation (dip) at Houston for the Meers fault source 
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Figure 9.3-31 
10 Hz sensitivity to rupture orientation (dip) at Topeka for the Meers fault source 
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Figure 9.3-32 
10 Hz sensitivity to rupture orientation (dip) at Houston for the Meers fault source 
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Figure 9.3-33 
1 Hz sensitivity to seismogenic thickness at Jackson for the NMFS fault sources 
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Figure 9.3-34 
10 Hz sensitivity to seismogenic thickness at Jackson for the NMFS fault sources 
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Figure 9.3-35 
1 Hz sensitivity to seismogenic thickness at Central Illinois for the Wabash Valley area source 
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Figure 9.3-36 
10 Hz sensitivity to seismogenic thickness at Central Illinois for the Wabash Valley area source 
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Figure 9.3-37 
1 Hz sensitivity to rupture orientation (dip) at Central Illinois for the Wabash Valley area source 
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Figure 9.3-38 
10 Hz sensitivity to rupture orientation (dip) at Central Illinois for the Wabash Valley area source 
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Figure 9.3-39 
1 Hz sensitivity to fault ruptures vs. point source for the Central Illinois site from the Mid-C–A background source 
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Figure 9.3-40 
10 Hz sensitivity to fault ruptures vs. point source for the Central Illinois site from the Mid-C–A background source 
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Figure 9.4-1 
COVMH from EPRI (1989) team sources vs. ground motion amplitude for seven test sites: 
PGA (top), 10 Hz SA (middle), and 1 Hz SA (bottom) 
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Figure 9.4-2 
COVMH from EPRI (1989) team sources vs. seismic hazard (i.e., annual frequency of 
exceedance) for seven test sites: PGA (top), 10 Hz SA (middle), and 1 Hz SA (bottom) 
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Figure 9.4-3 
COVMH from seismic source experts (PEGASOS project) vs. amplitude (top) and annual 
frequency (bottom) 
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Figure 9.4-4 
COVK and COVMH from Charleston alternatives for PGA, plotted vs. PGA amplitude (top) 
and hazard (bottom). COVMH is the total COV of mean hazard; see Table 9.4-2 for other 
labels for curves. 
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Figure 9.4-5 
COVK and COVMH from Charleston alternatives for 10 Hz, plotted vs. 10 Hz amplitude (top) 
and hazard (bottom). COVMH is the total COV of mean hazard; see Table 9.4-2 for other 
labels for curves. 
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Figure 9.4-6 
COVK and COVMH from Charleston alternatives for 1 Hz, plotted vs. 1 Hz amplitude (top) 
and hazard (bottom). COVMH is the total COV of mean hazard; see Table 9.4-2 for other 
labels for curves.. 
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Figure 9.4-7 
COVK and COVMH of total hazard from New Madrid for 1 Hz, plotted vs. 1 Hz amplitude (top) 
and hazard (bottom). COVMH is the total COV; see the text for other labels for curves. 
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Figure 9.4-8 
PGA hazard curves for Manchester test site 
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Figure 9.4-9 
COVMH of PGA hazard at Manchester site from ground motion equation vs. PGA 
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Figure 9.4-10 
COV of PGA hazard at Manchester site from ground motion equation vs. hazard 
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Figure 9.4-11 
COV of 10 Hz hazard at Manchester site from ground motion equations vs. hazard 
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Figure 9.4-12 
COV of 1 Hz hazard at Manchester site from ground motion equations vs. hazard 
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Figure 9.4-13 
1 Hz spectral acceleration hazard curves for Manchester test site 
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Figure 9.4-14 
COVMH of PGA hazard at Chattanooga from ground motion equation vs. hazard 
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Figure9.4-15 
COVMH of 10 Hz hazard at Chattanooga from ground motion equation vs. hazard 
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Figure 9.4-16 
COVMH of 1 Hz hazard at Chattanooga site from ground motion equation vs. hazard 
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Figure 9.4-17 
PGA hazard curves for Savannah test site 
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Figure 9.4-18 
COVMH of PGA hazard at Savannah site from ground motion equations vs. hazard 
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Figure 9.4-19 
COVMH of 10 Hz hazard at Savannah site from ground motion equations vs. hazard 
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Figure 9.4-20 
COVMH of 1 Hz hazard at Savannah site from ground motion equations vs. hazard 
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Figure 9.4-21 
PGA hazard curves for Columbia site 
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Figure 9.4-22 
COVMH of PGA hazard at Columbia from ground motion equations vs. hazard 
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Figure 9.4-23 
COVMH of 10 Hz hazard at Columbia from ground motion equations vs. hazard 
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Figure 9.4-24 
COVMH of 1 Hz hazard at Columbia from ground motion equations vs. hazard 
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Figure 9.4-25 
COVMH of PGA hazard at Chattanooga (New Madrid only) vs. hazard 
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Figure 9.4-26 
COVMH of 10 Hz hazard at Chattanooga (New Madrid only) vs. hazard 
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Figure 9.4-27 
COVMH of 1 Hz hazard at Chattanooga (New Madrid only) vs. hazard 
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Figure 9.4-28 
COVMH for PGA and 1 Hz SA vs. ground motion amplitude resulting from alternative ground motion experts, PEGASOS project 
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Figure 9.4-29 
COVMH for PGA and 1 Hz SA vs. mean hazard from alternative ground motion experts, PEGASOS project 
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Figure 9.4-30 
COVHAZ from ground motion equations vs. mean hazard for Chattanooga 
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Figure 9.4-31 
COVMH from ground motion equations vs. mean hazard for Central Illinois 
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Figure 9.4-32 
COVMH from soil experts vs. PGA and 1 Hz SA, PEGASOS project 
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Figure 9.4-33 
COVMH from soil experts vs. mean hazard for PGA and 1 Hz SA, PEGASOS project 
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Figure 9.4-34 
COVMH resulting from site response models vs. mean hazard for four sites, 1 Hz (top) and 
10 Hz (bottom) 
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11 
CHAPTER 11 
GLOSSARY OF KEY TERMS 

Definitions provided in this Glossary were compiled from multiple reference sources, including 
the SSHAC guidance in NUREG/CR-6372 (Budnitz et al., 1997), NUREG-2117 (NRC, 2012), 
and McGuire (2004). The Glossary definitions are consistent with the use of the terms in the 
CEUS SSC Project report and may not correspond exactly to definitions appearing in regulatory 
documents of NRC or DOE. For additional geological terms, the reader is referred to a standard 
glossary of geology (e.g., Neuendorf, K.K.E., Mehl, J.P., Jr., and Jackson, J.A., 2005, Glossary 
of Geology, 5th Edition, American Geological Institute, Alexandria, Va., 779 pp.). Throughout 
this report, designations for formal (capitalized) divisions of time periods followed a Geological 
Society of America geologic time scale (Walker and Geissman, 2009), provided in Figure 11-1.   

____________________________________ 

Active Fault: A fault that has slipped in geologically recent time, has a clear association with 
earthquakes, and is likely to slip again in the future. Quaternary faults (i.e., those whose most 
recent slip was in the past 1.6–1.7 Myr) are generally considered to be active. 

Active Source: A seismic source that is capable of generating moderate- to large-magnitude 
(M ≥ 5) earthquakes. 

Aleatory Uncertainty: The uncertainty that is inherent in a random phenomenon and cannot be 
reduced by acquiring additional data or information. Examples include future earthquake 
locations and magnitudes.  

Area Source: A region of the earth’s crust that is assumed for PSHA to have relatively uniform 
seismic source characteristics.  

Background Source: A regional-scale area source.   

Bayesian Approach: An approach to determine a maximum magnitude distribution defined by 
Johnston et al. (1994) that uses a prior distribution for Mmax developed from the worldwide 
Stable Continental Region (SCR) database. It assumes that crust with the same characteristics 
(extension history, age, stress state, angle of structure relative to stress) has the same prior 
distribution of Mmax. The approach updates the prior distribution with a likelihood function that 
includes local information on the maximum observed magnitude and numbers of observed 
earthquakes of various magnitude. The result is a posterior distribution of Mmax for an 
individual seismic source.  
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b-value: A parameter describing the decrease in the relative frequency of occurrence of 

earthquakes of increasing sizes. It is the slope of a straight line relating absolute or relative 

frequency (plotted logarithmically in base 10) to earthquake magnitude. It is referred to as β 

when using natural logarithms. 

Coefficient of Variation (COV): A statistical term that measures the relative variation of a 

quantity. It is calculated as the standard deviation of the quantity divided by the mean of the 

quantity.  

Conceptual SSC Framework: The seismotectonic and seismic hazard-informed context within 

which data are evaluated and seismic sources are defined and characterized. 

Data Evaluation Table: A table developed for a particular seismic source identified in the 

CEUS SSC Project that provides a summary of the data used for seismic source characterization, 

including the quality of the data and the reliance placed on it for SSC. 

Data Summary Table: A table developed for a particular seismic source identified in the CEUS 

SSC Project that records the data considered and summarizes the potential relevance that the data 

may have to seismic source characterization. 

Declustering: A statistical approach that removes foreshocks and aftershocks to produce a 

catalog of independent main shocks consistent with the requirements of a PSHA model. 

Comparison with a variety of declustering approaches used by the USGS and others showed that 

the results are essentially the same.  

Distance, Epicentral: The distance from the epicenter to a specific location (site). 

Distance, Fault: The shortest distance from the fault to a specific location (site). 

Distance, Hypocentral: The distance from the hypocenter to a specific location (site). 

Earthquake: A sudden motion or trembling of the earth caused by the abrupt release of 

accumulated strain. 

Epistemic Uncertainty: The uncertainty that arises from lack of knowledge about a model or a 

parameter, which can be reduced by the accumulation of additional information. Epistemic 

uncertainty is reflected in the different outcomes of viable alternative models, interpretations, 

and/or assumptions operating on the same data. Examples include geometry of seismotectonic 

zones and assessed source parameters such as maximum magnitude. 

Evaluator Expert: An expert who is capable of evaluating the relative credibility of multiple 

alternative hypotheses to explain a set of observations. Requires considering the available data, 

listening to proponent and other evaluator experts, questioning the technical basis for their 

conclusions, and challenging the proponent’s position.  
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Expert Elicitation: A formal expert assessment technique of conventional decision analysis in 

which experts are led through a series of assessment steps to address  narrowly defined questions 

about specific uncertain quantities within their area of expertise. 

Expert Assessment: The use of expert judgment to address technical questions and their 

uncertainties. 

Fault: A fracture surface or zone in the earth across which there has been relative displacement. 

Fault, Dip-Slip: A fault in which the relative displacement is along the direction of the dip of the 

fault plane; either downdip (normal fault) or updip (reverse fault). 

Fault, Normal: A dip-slip fault in which the block above the fault has moved downward relative 

to the block below, representing crustal extension. 

Fault, Reverse: A dip-slip fault in which the block above the fault has moved upward relative to 

the block below, and the fault dip is >45°. 

Fault Slip Rate: The amount of displacement on a fault divided by the time period over which 

the displacement took place. 

Fault, Strike-Slip: A fault in which the relative displacement is along the strike of the fault 

plane, either right- or left-lateral. 

Fault, Thrust: A dip-slip fault in which the block above the fault has moved upward relative to 

the block below, and the fault dip is <45°, representing crustal compression. 

Fault Zone: The zone of deformation comprising a fault, which may be hundreds of meters 

wide. 

Focal Mechanism: A geometrical representation of earthquake faulting expressed in terms of 

the strike and dip of the fault plane and the rake angle of the slip vector with respect to the fault 

plane. 

Future Earthquake Characteristics: The expected characteristics of future earthquakes that 

occur within a particular seismic source. The characteristics identified (e.g., style of faulting, 

orientation of rupture) are those that are potentially important to ground motion prediction 

equations. 

Geon: A 100-million-year interval of geologic time starting with the present and continuing 

backward through time. Geons are named according to the number representing geologic age 

divided by 100 million. Geologic ages less than 100 million years would be in geon 0. For 

example, an age of 1,650 million years would belong to geon 16.  

Hazard Calculation: The calculation of annual frequencies with which seismic ground-motion 

amplitudes will be exceeded as a result of possible earthquakes in the region. The results of this 
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calculation may be represented as mean annual frequencies (“mean hazard curves”) or fractile 

annual frequencies (“fractile hazard curves”). 

Hazard-Informed Approach: An assessment methodology for characterizing seismic sources 

that places greatest emphasis and focus on those seismic source elements that are most important 

to the hazard analysis results. 

Hazard Input Document (HID): A report that provides the documentation necessary for users 

to implement the input model (e.g., the SSC or GMC model) in PSHA calculations for future 

applications. The HID includes the logic tree structure (with all branches and weights) for each 

seismic source, but it does not include the technical basis or justification for the elements of the 

model.  

Hypocenter: The point in the earth at which an earthquake is initiated. Also referred to as the 

focus. 

Informed Technical (Scientific) Community: A hypothetical construct of the SSHAC 

guidelines that embodies the community distribution of uncertainty sought by the SSHAC 

process at any study level. The goal of a SSHAC process is to “represent the center, body, and 

range of the views of the informed technical community.” “Informed” means that the technical 

community is familiar with the project-specific databases and that the individuals have gone 

through the interactive SSHAC process. Recent SSHAC implementation guidance (NRC, 2011) 

has replaced the terminology to avoid confusion. In that guidance, the goal of the SSHAC 

process is said to be twofold: (1) to consider the data, models, and methods of the larger 

technical community; and (2) to represent the center, body, and range of technically defensible 

interpretations. 

Intensity: A measure of the effects (e.g., damage) of an earthquake at a particular place. 

Commonly used scales are Rossi-Forel, Mercalli, and modified Mercalli. 

Liquefaction/Paleoliquefaction: The temporary conversion of water-saturated, unconsolidated 

soils (sediments) into a medium that behaves like a fluid. It can occur as a secondary hazard 

related to strong shaking from an earthquake. The age, location, and extent of liquefaction can be 

used to estimate the size and location of prehistoric earthquakes. 

Logic Tree: A series of nodes and branches to sequence the assessments in an analysis by 

describing alternative models or parameter values or both. At each node, there is a set of 

branches that represent the range of alternative credible models or parameter values; the branch 

weights must sum to unity at each node. The weights on the branches of logic trees reflect 

scientific judgments in the relative confidence in the alternative models. 

Longevity, Hazard Studies: The length of time a hazard study is considered adequate for 

continued use. 
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Magnitude (general): A measure of earthquake size, classically determined by taking the 

common logarithm (base 10) of the largest ground motion recorded during the arrival of a 

seismic wave type and applying a standard correction for distance to the epicenter. 

Magnitude, Adjusted (M*): Moment magnitude adjusted to correct for a bias that results from 

the propagation of uncertainty in magnitude estimates through the magnitude conversion process.  

Magnitude, Body-Wave (mb): Magnitude derived from the largest displacement amplitude of 

body waves. 

Magnitude, Coda-Wave (MC): Magnitude derived from the amplitude and duration of the 

seismic coda (latter part of a seismic wave train). 

Magnitude, Duration (MD): Magnitude derived from the total duration of the measured seismic 

wave train. 

Magnitude, Lg (mbLg): Magnitude derived from the displacement amplitude of Lg waves; often 

used in Eastern North America because it can be accurately measured from typical low-gain 

seismographs at long distances from the source. 

Magnitude, Moment (M, Mw): Magnitude derived from the scalar seismic moment, Mo. 

Approximately equal to local magnitude for moderate earthquakes, and to surface-wave 

magnitude for large earthquakes. As discussed in Hanks and Kanamori (1979), Mw is derived 

from Kanamori’s (1977) magnitude scale based on strain energy drop and is given by the 

relationship log(Mo in dyne-cm) = 1.5Mw + 16.1. Hanks and Kanamori (1979) defined the 

moment magnitude scale M using the relationship M = ⅔log(Mo in dyne-cm)-10.7. The result is 

a 0.03-magnitude unit difference between Mw and M for the same value of Mo.  

Magnitude, Richter or Local (ML): Common logarithm of the trace amplitude (in microns) of a 

standard Wood-Anderson seismograph located on firm ground 100 km from the epicenter. 

Correction tables are used to account for other distances and ground conditions. 

Magnitude, Surface-Wave (MS): Earthquake magnitude determined from the maximum 

amplitude of 20-second period surface waves. 

Maximum Magnitude (Mmax): The largest earthquake that a seismic source is assessed to be 

capable of generating. The maximum magnitude is the upper bound to recurrence curves. 

Modeling Uncertainty: The epistemic uncertainty that results from the use of various models to 

explain observed data and predict future phenomena. In principle, it can be reduced or eliminated 

by further testing, data accumulation, or more detailed modeling. It is one source of epistemic 

uncertainty. 

Paleoseismic/Paleoseismicity: Term referring to the science of evaluating prehistoric 

earthquakes through the geological analyses of the surficial strata and landforms that have been 

created, deformed, and/or offset by earthquakes. 
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Participatory Peer Review: As defined in SSHAC guidance, an ongoing review throughout an 

entire project that allows reviewers to observe and comment on the process followed and the 

technical assessments developed. Reviewers must be recognized experts on the subject matter 

under review (“peers” in the true sense). 

Probability of Activity: The likelihood that a particular tectonic feature is seismogenic and will 

localize moderate-to-large (M ≥ 5) earthquakes.  

Probabilistic Seismic Hazard Analysis: An analytical methodology that estimates the 

likelihood that various levels of earthquake-caused ground motions will be exceeded at a given 

location in a given future time period. 

Project Manager: As defined in SSHAC guidance, a dedicated full-time professional who is the 

point of contact between the project and the project sponsor(s), and who is responsible for 

ensuring adherence to scope, schedule, budgets, and contractual requirements. The PM organizes 

workshops and keeps the sponsor(s) apprised of progress. 

Proponent Expert: An expert who advocates a particular hypothesis or technical position. 

Rate of Seismicity: Rate of occurrence of earthquakes above some specified magnitude for a 

specific region. 

Recurrence, Recurrence Rate, Recurrence Curve: The frequency of earthquake occurrence of 

various magnitudes often expressed by the Gutenberg-Richter relation. 

Recurrence Interval: The mean time period between earthquakes of a given magnitude on a 

fault or in a region. 

Recurrence Model: A model to express the relative number or frequency of earthquakes having 

different magnitudes. A common recurrence model is the exponential magnitude distribution. 

Recurrence Model (Poisson, Renewal): A model to express the relative number of earthquakes 

of different magnitudes that occur within or associated with a particular seismic source. Two 

models that are commonly used to represent the temporal elements of a recurrence model are 

Poisson and Renewal. In the Poisson model, the time between consecutive earthquakes follows 

an exponential distribution and there is no dependence of the timing of the next earthquake with 

the timing or size of earlier earthquakes. In the Renewal model, the time between consecutive 

events is assumed to be related to the release and accumulation of strain such that there is a 

relation between the timing of the most recent event and time to the next event. 

Resource Expert: A technical expert who has either site-specific knowledge or expertise with a 

particular methodology or procedure useful to the evaluator experts in developing the community 

distribution. 
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RLME Source: A seismic source identified in the CEUS SSC Project as the location of repeated 

(more than one) large-magnitude (M ≥ 6.5) earthquakes; paleoseismic evidence is used to define 

the source’s recurrence rate. 

Seismicity: The occurrence, intensity, and distribution of earthquakes in a region; also refers to 

the the frequency and depths of these earthquakes.  

Seismic Moment: Scalar measurement of the size of an earthquake. It is the product of the area 

of rupture, the average slip on the fault, and the shear modulus of the crustal rocks. It is typically 

expressed in units of dyne-cm. 

Seismic Source: Traditionally, in a probabilistic seismic hazard analysis, a region or volume of 

the earth’s crust that has uniform earthquake potential or uniform earthquake-generating 

characteristics. In this project, unique seismic sources (faults, regions) are spatially defined to 

account for distinct differences in earthquake recurrence rate, maximum earthquake magnitude, 

expected future earthquake characteristics, and probability of generating earthquakes of 

magnitude 5 or larger. 

Seismic Source Characteristics: The parameters that characterize a seismic source for PSHA, 

including source geometry, maximum magnitude, earthquake recurrence, and future earthquake 

characteristics.  

Seismic Source Zones: See “Area Source.” Volumes within the earth where future earthquakes 

are expected to occur. The geometry of seismic sources in the CEUS SSC Project is defined by 

differences in earthquake recurrence rate, maximum earthquake magnitudes, future earthquake 

characteristics, and the probability of activity of tectonic features. 

Seismic Zone: A region showing relatively elevated levels of observed seismicity. 

Seismogenic: Capable of generating tectonically significant earthquakes (M ≥ 5). 

Seismotectonic Province: A region of the earth’s crust having similar seismicity and tectonic 

characteristics. 

Sensitivity Analysis: The calculation of the effect that a particular input parameter or model has 

on the ouput of a seismic hazard analysis. This may be represented as multiple hazard curves for 

these alternative input assumptions. 

Smoothing: The spatial variation in the rate of activity (a-value of the earthquake recurrence 

relationship) and the b-value (slope of the recurrence curve).  

Source Zone: See Area Source. 

Spatial Clustering: Observed or inferred proximity of earthquake occurrences. 
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Spatial Stationarity: A model in which the locations of future earthquakes are assessed to 

follow the spatial distribution of past earthquakes. 

SSC Model: A seismic source characterization model to represent the parameters that 

characterize a seismic source for PSHA, including source geometry, probability of activity, 

maximum magnitude, and earthquake recurrence. 

SSHAC (Senior Seismic Hazard Analysis Committee): A committee sponsored by the NRC, 

DOE, and EPRI to review the state-of-the-art in PSHA and to develop methodologies for using 

expert judgment and treating uncertainties in seismic hazard analyses. The report of the SSHAC 

is given in Budnitz et al. (1997), which is also called the SSHAC guidelines. 

SSHAC Methodology: The recommended methodology for conducting a PSHA given in 

Budnitz et al. (1997). 

SSHAC Assessment Level: See SSHAC Study Level 

SSHAC Study Level: One of four “Study Levels” (also called SSHAC Levels) identified in the 

SSHAC guidelines, ranging from Level 1 projects, which involve very few participants, to Level 

4 projects, which involve multiple participants and workshops. 

Stability: Characteristic of a hazard input model such as the SSC model that properly quantifies 

current knowledge and uncertainties such that the identification of new data, models, and 

methods will not lead to the need to significantly revise the model. 

Stable Continental Region: A region of the earth’s crust that is defined by Johnston et al. 

(1994) as having particular characteristics relative to the age and style of most recent tectonism. 

Technical Integrator (TI): A SSHAC term for an individual or team responsible for 

considering the data, models, and methods of the larger technical (scientific) community and for 

assessing and representing the center, body, and range of technically defensible interpretations in 

a seismic hazard model. In this project, this was done using a SSHAC Level 3 assessment 

process. 

Tectonic Province: See Seismotectonic Province. 

Temporal Clustering: Occurrences of multiple closely timed earthquakes separated by longer 

periods of quiescence. Events that tend to cluster represent a deviation from a stationary Poisson 

process. 

Upper-Bound Magnitude: See Maximum Magnitude. 

Uncertainty: A general term. See Epistemic Uncertainty and Aleatory Uncertainty. 

Variance: The expected value, taken with respect to its probability distribution, of the squared 

deviation of an aleatory variable from its expected value. 
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Weight: A numerical value (<1.0 or 100%) assigned to alternative credible models or parameter 

values. Weights reflect scientific judgments that any particular model or parameter value is the 

correct model or parameter. 

Zonation: The process of developing seismic source maps (or a set of seismic zones). 
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Figure 11-1  
Geologic time scale (Walker and Geissman, 2009) 
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Figure 11-1  
Geologic time scale (continued) 
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