

Ms. Patty G. Barnes NPDES/ND Administration Bureau of Water South Carolina Department of Health and Environmental Control 2600 Bull Street Columbia, SC 29201

Dear Ms. Foster:

Subject:

VIRGIL C. SUMMER NUCLEAR STATION

NPDES PERMITS NO. SC0030856

RENEWAL APPLICATION

This letter provides the renewal application for NPDES Permit No. SC0030856 for the Virgil C. Summer Nuclear Station. Included in this package are the following items:

- Completed Application Form 1 General Information
- Completed Form 2C Wastewater Discharge Information
- Completed Form 2E Facilities Which Do Not Discharge Process Wastewater
- Supplement to NPDES Application (with Correct Required Quad Map)
- Sludge Disposal Procedure
- Thermal Mixing Zone Evaluation Report and 2010 Water Quality Monitoring Report
- PQL List
- Mixing Zone Toxicity Supplement

Should there be any questions, please contact Ms. Susan B. Reese at (803) 345-4591.

Very truly yours.

Thomas D. Gatlin

SBR/TDG/ts Attachments

M. A. Harmon

M. Coleman

M. B. Roberts J. W. Preston

(w/o attachments)

R. J. White

(w/o attachments)

W. M. Cherry

(w/o attachments)

NRC Resident Inspector (w/o attachments)

Document Control Desk

(LTD 286, CR-11-05986) RTS

File (814.07)

PRSF (RC-12-0019)

COOL

SC DHEC Attachment I LTD 286, CR-11-05986 RC-12-0019 Page 1 of 3

FORM 1

CONTINUED FROM THE FRONT	
VII. SIC CODES (4-digit, in order of priority)	D OFFICE OF
A. FIRST (specify) ELECTRIC UTILITY	B. SECOND
7 4911	[7]
15 16 - 19 C. THIRD	15 16 · 19 D. FOURTH
C. THIRD	c (specify)
7	/
VIII. OPERATOR INFORMATION	15 16 - 19
	NAME B.Is the name listed in Item
	VIII-A also the owner?
8 SOUTH CAROLINA ELE	CTRIC & GAS COMPANI [7] YES [1] NO
C. STATUS OF OPERATOR (Enter the appropri	
F = FEDERAL	(specify)
M = PUBLIC (other than federal or s	ate) P (803) 345-4342
P = PRIVATE O = OTHER (specify)	56 15 6 - 18 19 - 21 22 - 26
E. STREET OR P.O. BOX	
P. O. B O X 8 8	
26	55
F. CITY OR TOWN	G. STATE H. ZIP CODE IX. INDIAN LAND
BJENKINSVILLE	SC 29065 ☐ YES ☑ NO
15 16	40 41 42 47 51 52
X. EXISTING ENVIRONMENTAL PERMITS	
A. NPDES (Discharges to Surface Water)	D. PSD (Air Emissions from Proposed Sources)
9 N S C 0 0 3 0 8 5 6 9 P	
15 16 17 18 30 15 16	
B. UIC (Underground Injection of Fluids)	E. OTHER (specify)
9 U	CM 1000-0012 (specify)
15 16 17 18 30 15 16	17 16 30
C. RCRA (Hazardous Wastes)	E. OTHER (specify)
c T	
15 16 17 18 30 15 18	17 18 30
XI. MAP	
Attach to this application a topographic map of the area extending	to at least one mile beyond property boundaries. The map must show the outline of the facility, the
	tructures, each of its hazardous waste treatment, storage, or disposal facilities, and each well where it
	ce water bodies in the map area. See instructions for precise requirements.
XII. NATURE OF BUSINESS (provide a brief description)	
GENERATION OF ELECTRICITY, NUCLEAR REACTOR	<u>.</u>
GENERATION OF ELECTRICITY, NOCHEAR REACTOR	
·	
	·
	•
XIII. CERTIFICATION (see instructions)	
I certify under penalty of law that I have personally examined and a	m familiar with the information submitted in this application and all attachments and that, based on my
	information contained in the application, I believe that the information is true, accurate, and complete. I
am aware that there are significant penalties for submitting false info	
A. NAME & OFFICIAL TITLE (type or print) THOMAS D. GATLIN	B. SIGNATURE C. DATE SIGNED
VICE PRESIDENT, NUCLEAR OPERATIONS	August Topact for 2/1/12
VIOL INDIDINI, NOCHEM OFFICIONS	Angel. Fract for 2/1/12
COMMENTS FOR OFFICIAL USE ONLY	
c	
С	

15 16 EPA Form 3510-1 (8-90) SC DHEC Attachment II LTD 286, CR-11-05986 RC-12-0019 Page 1 of 101

FORM 2C

Form Approved.
OMB No. 2040-0086.
Approval expires 3-31-98.

Please print or type in the unshaded areas only.

PORM 2C NPDES

U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER

EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS

Consolidated Permits Program

OUTFALL LOCATION For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water. B. LATITUDE C. LONGITUDE A. OUTFALL NUMBER D. RECEIVING WATER (name) (list) 1. DEG. 2. MIN. 3. SEC. 1. DEG. 2. MIN. -3. SEC. 81.00 34.00 17.00 44.00 18.00 31.00 Monticello Reservoir 001 17.00 34.00 54.00 81.00 18.00 55.00 Broad River via Penstocks of Fairfield 003 Hydro

II. FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGIES

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfails. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT-	2. OPERATION(S) CON	TRIBUTING FLOW	3. TREATMENT					
FALL NO. (list)	u. or Erorrion (1131)	b. AVERAGE FLOW (include units)	a. DESCRIPTION	b. LIST CODES FROM TABLE 2C-1				
001	Once-through cooling water		Discharge to surface water	4-A				
	Main condensers	691,200,000 gpd						
	Other cooling services	77,760,000 gpđ						
	Total Outfall 001	768,960,000						
003	Reactor water processing		Reactor grade water					
	Reactor grade water (1)		Waste holding tanks	x-x				
	Non-reactor grade floor drains	20,000 gpd	Evaporation	1-F				
	and laundry and hot shower drains		Ion exchange	2-Л				
	Total Outfall 003	20,000 gpd	Reuse/recycle (alternate)	4-C				
			Waste monitor tank	х-х				
			Discharge to surface water	4-A				
			Non-reactor grade drains					
			Waste holding tanks	х-х				
			Ion exchange	2-J				
			Waste monitor tank	x-x				
			Discharges to surface water	4-A				
		,						
	1107 01111 1							

OFFICIAL USE ONLY (effluent guidelines sub-categories)

Form Approved.
OMB No. 2040-0086.
Approval expires 3-31-98.

Please print or type in the unshaded areas only.

PORM 2C NPDES

U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER

EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS

Consolidated Permits Program

I. OUTFALL LOCATION										
For each outfall, list the latitude and longitude of its location to the nearest 15 seconds and the name of the receiving water.										
A. OUTFALL NUMBER		B. LATITUDE		0	C. LONGITUDE					
(list)	1. DEG.	2, MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.		D. RECEIVING WATER (name)		
004	34.00	17.00	54.00	81.00	18.00	56.00	Monticello	Reservoir		

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT-	2. OPERATION(S) (CONTRIBUTING FLOW	3. TREATMENT				
FALL NO. (list)	a. OPERATION (list)	b. AVERAGE FLOW (include units)	a. DESCRIPTION	b. LIST CO TABLE			
004	Steam generator blowdown		Steam generator blowdown (2)				
	Steam generator blowdown		Waste monitoring	x-x			
	Blowdown system sump		Discharge to surface water (alternate)	4-A			
	Total Outfall 004	144,000 gpd	Sedimentation	1-0			
			Reuse/recycle	4-C			
			Blowdown system sump (3)				
			Waste holidng tank	x-x			
			Ion exchange	2-J			
			Reuse/recycle	4-C			
			Waste monitor tank (alternate)	x-x			
		·	Discharge to surface water via Outfall 001 (alternate)	4-A			
İ							
 				ļ			

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

Please print or type in the unshaded areas only.

2C SEPA

U.S. ENVIRONMENTAL PROTECTION AGENCY
APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER
STING MANUFACTURING COMMERCIAL MINING AND SILVICULTUR

EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS

Consolidated Permits Program

A. OUTFALL NUMBER	latitude and longitude of its location to the B. LATITUDE			C. LONGITUDE			The recently water.	
(list)	1. DEG.	2. MIN.	3, SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATER (name)	
006A	34.00	17.00	40.00	81.00	18.00	39.00	Monticello Reservoir	
006B	34.00	17.00	40.00	81.00	18.00	37.00	Monticello Reservoir	

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT-	2. OPERATION(S) CONT	TRIBUTING FLOW	3. TREATMENT				
FALL NO. (list)	a. or 210 (1101)	b. AVERAGE FLOW (include units)	a. DESCRIPTION		DES FROM E 2C-1		
006A	Low volume waste (alum sludge basin)		Sedimentation	1-0			
	Condensate polisher backwash		Discharge to surface water via Outfall 014	4-A			
	Clarifier blowdown						
	Carbon filter backwash						
	Gravity fileter backwash	· · · · · · · · · · · · · · · · · · ·		 			
	Steam generator backwash (alt.)						
	Condensate Storage Tank (alt.)						
	Total Outafll 006A	80,000 gpd					
	·						
006B	Low volume waste (plant surge basin)		Flow equalization (collecting sump)	х-х			
	Turbine room sump		Sedimentation	1-U			
	Main condenser cleaning sump						
	Boiler house drains		Oil skimming	х-х			
	Diesel generator building sump		Discharge to surface water via Outfall 014	4-A	 		
	Circ. water pump house sump						
	Condensate storage tank (alt.)						
	Fuel oil handling drains				T		
	Transformer area drains						
	Total Outfall 006B	50,000 gpd					

Please print or type in the unshaded areas only.

2C SEP

U.S. ENVIRONMENTAL PROTECTION AGENCY
APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER
EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS
Consolidated Permits Program

. OUTFALL NUMBER	E	B. LATITUDE		C. LONGITUDE				
(list)	1. DEG.	1. DEG. 2. MIN.		1. DEG.	2. MIN.	3. SEC.		D. RECEIVING WATER (name)
007	34.00	17.00	52.00	81.00	18.00	52.00	Monticello	Reservoir
008	34.00	17.00	40.00	81.00	18.00	40.00	Monticello	Reservoir

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT-	2. OPERATION(S) CONT	RIBUTING FLOW	3. TREATMENT				
FALL NO. (list)	a. OPERATION (list)	b. AVERAGE FLOW (include units)	a. DESCRIPTION	b. LIST COL TABLE			
007	Low volume waste		Flow equalization	х-х			
	(Neutralization waste tank)		Neutralization	2-K			
	Ion exchange regenerations		Discharges to surface water via Outfall 001	4-A			
	Chemical feed equipment drain sump						
	Caustic tank area sump						
	IB bldg. sump "D" battery room						
	Total Outfall 007	80,000 gpd					
				<u> </u>			
008	Chemical cleaning waste/low volume		Neutralization basin (metal cleaning only)	2 - K			
	waste (Plant startup waste holding		Sedimentation	1-0			
	basin (4)		Discharge to surface water via Outfall 014	4-A			
	Metal cleaning waste						
	Low volume waste from oil		Flow equalization (collecting sump)	x-x			
	collection sump (006B)		Sedimentation	1-0			
	Low volume wster from clarifier						
	blowdown sump (006A)						
	Chemical cleaning waste						
				l .			
1							

Please print or type in the unshaded areas only.

2C SEPA

U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS Consolidated Permits Program

A. OUTFALL NUMBER	latitude and longitude of its location to the B. LATITUDE			C. LONGITUDE			ure receiving water.
(list)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATER (name)
012	34.00	17.00	54.00	81.00	19.00	19.00	Broad River
013	34.00	17.00	39.00	81.00	18.00	32.00	Broad River
014	34.00	17.00	44.00	81.00	18.00	31.00	Monticello Reservoir
						 	

- A. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
- B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.

1. OUT-	2. OPERATION(S) CONT	TRIBUTING FLOW	3. TREATMENT				
FALL NO. (list)	a. or crottion (ibi)	b. AVERAGE FLOW (include units)	a. DESCRIPTION	b. LIST COD TABLE			
012	North yard drain system	2,880 gpd	Discharges to surface water	4-A			
	Yard drains	. •					
	Roof drains	*					
	Refueling water storage tank	*		1			
	pit drains			++			
	Industrial & CRDM coolers (009A & B)	8,000 gpd		<u> </u>			
	Ground water wells	70,000 gpd					
	Total Outfall 012	80,880 gpd *					
013							
	Southeast yard drain system	1,440 gpd*	Discharges to surface water	4-A			
	Yard drains	+					
	Roof drains	*					
	Waste storage tanks sump						
	Misc. building floor drains						
	Groundwater well	4,400 gpđ					
	Total Outfall 013	5,840 gpd			· · · · · · · · · · · · · · · · · · ·		
014							
	Combination outfall		Discharges to surface water	4-A			
	Outfall 005	10,000 gpd	Sanitary sewage treatment				
	Outfall 006A	80,000 gpd	Low volume waste (alum sludege basin)	4-A			
	Outfall 006B	50,000 gpd	Low volume waste (plant waste surge basin)	4-A			
	Outfall 008	0 gpd	Chemical cleaning waste/Low volume waste	4-A			
	Total Outfall 014	140,000 gpd					
	*Average flow varies with rainfall						
	1105 011111 / / / /						

COMMINGED FF											
· —	torm runoff, lea			the discharges	described in	Items II-A or B in		sonal?			
لكة ــــــــــــــــــــــــــــــــــــ	i i co (compieti	e ine joudh	····R more)						1 = 0		
					a. DAYS PE		a FLOWER	TE //		L VOLUME	1
1. OUTFALL NUMBER (<i>list</i>)		2. OP CONTRI	ERATION(s) BUTING FLOW (list)	1	WEEK (specify average)	b. MONTHS PER YEAR (specify average)	a. FLOW RA 1. LONG TERM AVERAGE	2. MAXIMUM DAILY	1. LONG TERI AVERAGE	with units) 1 2. MAXIMUI DAJLY	C. DURATION
008	See discus	sion Ou			N/A	N/A	N/A	N/A	N/A	N/A	N/A
										İ	
	ļ					1]	,	
			400 1								
									İ		
				•							
III. DDODUGTI	ON				<u> </u>		i i i				
A Does an effi		limitation	promulasted	by EDA under S	ection 304 o	f the Clean Water		ır facility?			er and the
l ——	YES (complet			by EFA under 5	ection 304 0	NO (go to Sea		ar racinty?			
B. Are the limit	3	• •	-	line expressed ir	terms of pr	oduction (or other		eration)?			
C. if you answ	YES (complet			ity which rences	ents an acti	NO (go to Secured and measurement		omduction ex	nressed in the	terms and u	nits used in the
	effluent guidelir		dicate the affe	ected outfails.					7	- torrito dirici di	
		<u> </u>	1. AV	ERAGE DAILY F		ON TION, PRODUCT	MATERIAL	rc		FECTED OU	
a. QUANTITY	PER DAY	b. UNITS	OF MEASU	RE	C. OPERA	(specify)	, WATERIAL, E			list outfall num	ibers)
	1								1		
1											
									}		
						·					
IV. IMPROVEM	MENTS					110000	N 100 100 100 100 100 100 100 100 100 10		Mark Market	1960 July 1980	11,7,11,10
A. Are you no	ow required by		leral, State o		to meet a	ny implementation					
						n may affect the di ance schedule lett					
	YES (comple	te the follo	wing table)			NO (go to Ite	em IV-B)				
1. IDENTIFICA			2. AFI	ECTED OUTFA	LLS	3 BRIEF	DESCRIPTION	OF PROJEC	T 4.	FINAL COM	PLIANCE DATE
AGRE	EEMENT, ETC		a. NO.	b. SOURCE OF D	DISCHARGE	0.010.	DECORAL TION	. 01 1 110020	ļ	REQUIRED	b. PROJECTED
									1		
						•					•
										ļ	
ļ										.]	
		.									
B. OPTIONAL	.: You may at	tach addi	tional sheets	describing any	additional v	water pollution co	ontrol programs	(or other env	ironmental pro	jects which i	may affect your
discharges construction		e underwa	ay or which y	ou plan. Indicate	whether ea	ch program is nov	w underway or p	lanned, and in	dicate your ac	tual or planne	ed schedules for
	~	DESCRI	DTION OF A	ODITIONIAL CON	ITEOL DOO	CRAMS IS ATTA	CHED			•	

EPA I.D. NUMBER (copy from Item 1 of Form 1)

CONTINUED FROM PAGE 2

V. INTAKE AND EFFLUENT CHARACTER	RISTICS		·
NOTE: Tables V-A, V-B, and V	ding – Complete one set of tables for each of -C are included on separate sheets number	ed V-1 through V-9.	
D. Use the space below to list any of the from any outfall. For every pollutant you	pollutants listed in Table 2c-3 of the instruc list, briefly describe the reasons you believ	tions, which you know or have reason to be e it to be present and report any analytical o	elieve is discharged or may be discharged lata in your possession.
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
· ·	1		·
	j		i .
	•		
	•		
		!	
	·		
	•	•	' i
VI. POTENTIAL DISCHARGES NOT COV	ERED BY ANALYSIS		d'.t. = 6 -1 - d. t - b. = 10
Is any pollutant listed in item V-C a substal YES (list all such pollutants	nce or a component of a substance which you	ou currently use or manufacture as an interm NO (go to Item VI-B)	nediate or final product or byproduct?
			•
			!
		•	
			,

CONTINUED FROM THE FRONT

VII. BIOLOGICAL TOXICITY TESTING DATA	<u> </u>		
	eve that any biological test for acute or chronic toxici	ty has been made on any of your dis	charges or on a receiving water in
		NO (go to Section VIII)	
relation to your discharge within the last 3 yea YES (identify the test(s) and des Chronic Toxicity Testing for Requirement of NPDES Permit N	Outfall 014	NO (go to Section VIII)	
VIII. CONTRACT ANALYSIS INFORMATION			
	performed by a contract laboratory or consulting firm?)	
	d telephone number of, and pollutants analyzed by,	NO (go to Section LX)	
A. NAME	B. ADDRESS	C. TELEPHONE (area code & no.)	D. POLLUTANTS ANALYZED (list)
General Engineering Laboratory	P. O. Box 30712 Charleston, SC	(843) 556-8171	See attached
Data Resources	3005 Broad River Road Columbia, SC 29210	(803) 561-0331	Biological Oxygen Deman
IX. CERTIFICATION			
qualified personnel properly gather and even directly responsible for gathering the informa- are significant penalties for submitting false	nent and all attachments were prepared under my direct aluate the information submitted. Based on my inquation, the information submitted is, to the best of my information, including the possibility of fine and impris	iry of the person or persons who is knowledge and belief, true, accurate conment for knowing violations.	manage the system or those persons
A. NAME & OFFICIAL TITLE (type or print)		B. PHONE NO. (area code & no.)	
Thomas D. Gatlin, Vice Presid		(803) 345-4342 D. DATE SIGNED	
XIngell-Tryan	for TOGATUM	2/1/12	

NPDES FORM 2C

Notes - Item IIA and IIB

- (1) Reactor grade water (244) gpd is normally treated and discharged to the penstocks of Fairfield Hydro together with treated non-reactor grade drains. The alternate pathway is to treat and recycle when possible.
- (2) Steam generator blowdown is normally returned to the condensate system for recovery. Steam generator blowdown can be monitored and discharged to Monticello Reservoir via Outfall 001. The alternate discharge pathway is to Monticello Reservoir via the clarifier blowdown sump and Outfall 006A. If monitoring indicates blowdown is not acceptable for discharge, flow is diverted to the blowdown holdup tank.
- (3) Flow from the blowdown system sump and blowdown holdup tank is normally treated and recycled. The alternate pathway is treatment and discharge to the penstocks of Fairfield Hydro via Outfall 003.
- (4) The plant startup waste holding basin discharges wastes from the cleaning of plant piping and equipment. When not used for this purpose, it is available for use as an alternate to the alum sludge basin for treatment of low volume wastes from the clarifier blowdown sump. The plant startup waste holding basin is identical in capacity and design to the alum sludge basin (Outfall 006A). Low volume wastes from the collecting sump can also be directed to the plant startup waste holding basin by means of the piping connections provided for metal cleaning wastes.

Analyses Performed by General Engineering Laboratories

for V.C. Summer Station NPDES Permit Extension

Rad Gas Flow

GFPC, Gross A/B, liquid

Alpha

Beta

GFPC, Total Radium, Liquid

Total Radium

Rad Radium-226

Lucas Cell, Ra226, liquid

Radium-226

Ion Chromatography

EPA300.0 Bromide Liquid

Bromide

Fluoride

Sulfate

Mercury Analysis

EPA 245.1 Mercury

Mercury

Metals Analysis-ICPMS

200.8/200.2 NPDES Metals

Aluminum

Antimony

Arsenic

Barium

Beryllium Romn

Cadmium Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Molybdenum

Nickel

Selenium

Silver

Thallium

Tin

Titanium

Zinc

Chromium

Micro-biology

EPA 405.1 BOD, 5DAY

BOD, 5 DAY

Rapid Flow Analysis (Alpkem)

EPA 625 Form 2C BNA Dioxin Screen 2,3,7,8-TCDD

> EPA 1631E Low Level Mercury Analysis Mercury

Rapid Flow Analysis (Alpkem)

EPA 335.3 Cyanide, Total

Cyanide, Total

EPA 420.2 Phenols, Total Liquid

Total Phenol

Semi-Volatiles-GC/MS

3510/8270C TTO in Liqud

1,2-Diphenylhydrazine

2,4,6-Trichlorophenol

2,4-Dichlorophenol 2,4-Dimethylphenol

2,4-Dinitrophenol

2,4 Dinitrotoluene

2,6-Dinitrotoluene

2-Chloronaphthalene

2-Chlorophenol 2-Methyl-4,6-dinitrophenol

2-Nitrophenol

3,3'-Dichlorobenzidine

4-Bromophenylphenylether

4-Chloro-3-methylphenol

4-Chlorophenylphenylether

4-Nitrophenol

Acenaphthene

Acenaphthylene

Anthracene

Benzidine

Benzo(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(ghi)perylene

Benzo(k)fluoranthene

Butylbenzylphthalate

Chrysene

Di-n-butylphthalate

Di-n-octylphthalate

Dibenzo(a,h)anthracene

Diethylphthalate

Dimethylphthalate

Diphenylamine

Fluoranthene

Semi-Volatiles-GC/MS

3510/8270C TTO in Liqid

Fluorene

Hexachlorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane

Indeno(1,2,3-cd)pyrene

Isophorone

N-Nitrosodimethylamine

N-Nitrosodipropylamine

Naphthalene

Nitrobenzene

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

bis(2-Chloroethoxy)methane

bis(2-Chloroethyl) ether

bis(2-Chloroisopropyl)ether

bis(2-Ethylhexyl)phthalate

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

PARTA - TOUTHU	st provide the i	esults of at leas	of Offic affaiyois f	or every political	ill ill tills table.	Complete one	table for ear	or outlan. See	ITISTITUCTION	3 TOF AUGILIONAL C	icians.	
				EFFLUENT				3. UNITS (spec	cify if blank)	4. IN	ITAKE (optional	0
1. POLLUTANT		M DAILY VALUE	(if ave	30 DAY VALUE	(if av	1 AVRG. VALUE ajlable)	d. NO. OF	a. CONCEN-	b. MASS	a. LONG AVERAG		d. NO OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	<2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon <i>(TOC)</i>	2.8						1	mg/l				
d. Total Suspended Solids (TSS)	2.4						1	mg/l				
e. Ammonia <i>(as N)</i>	<0.05						1	mg/l				
f. Flow	VALUE	738.7	VALUE		VALUE	660.84	12	MGD		VALUE		
g. Temperature (winter)	VALUE	26.4	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°င		VALUE		
I. pH	мимим · 6.58	MAXIMUM 7.82	MINIMUM	MAXIMUM			12	STANDARD				

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'			. 3	. EFFLUENT				4. UN	TS	!	5. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM (if avai		d.NO. OF	a. CONCEN-	b. MASS	a. LONG TERM A	AVERAGE VALUE	b.NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)	Х		0.287	-					1	mg/l				
b. Chlorine Total Residual		Х												
c. Color	Х		20.0						1	PCU				
d. Fecal Coliform		Х						-						
e. Fluoride (16984-48-8)	Х		0.138						1	mg/l				
f. Nitrate - Nitrite (as N)	Х		0.325						1	mg/l				

Outfail 001

ITEM V-B CONTIN			1				Outrail	001	 ,			, 		 -
1. POLLUTANT		RK 'X'	L			3. EFFLUENT				4. UNI	rs	 	5. INTAKE	
AND CAS NO.	a. BELIEVED		a. MAXIMUM DA	ILY VALUE	(it ava		c. LONG TERM (if avai	ilable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS		AVERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
g. Nitrogen, Total Organic (as N)	Х		<0.1			:			1	mg/l				
h, Oil and Grease		Х	<3.94						1	mg/l				
I. Phosphorus (as P) Total (7723-14-0)	Х		0.0591						1	mg/l	i			
j. Radioactivity							L							↓
(1) Alpha, Total		Х	<5.00						1	pci/l				
(2) Beta, Total		Х	<5.00						1	pci/l				
(3) Radium, Total		Х	<1.00						1	pci/l	·			
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	х		6.71						1	mg/l				
k. Sulfide (as S)		Х	<0.100						1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.05	· · · · · · ·					1	mg/l				
o. Aluminum, Total (7429-90-5)	Х		107				·		1	μ g /l				
p. Barium, Total (7440-39-3)	Х		15.4						1	μg/l	_			
q. Boron, Total (7440-42-8)	х		72.9						1	μg/l				
r. Cobalt, Total (7440-48-4)		Х	<1.00						1	μg/l				
s. Iron, Total (7439-89-6)	Х		0.368	ı					12	mg/l				
t. Magnesium, Total (7439-95-4)	Х		1620						1	μg/l				
u. Molybdenum, Total (7439-98-7)	Х		5.21						1	μg/l				
v. Manganese, Total (7439-96-5)	Х		0.033						12	mg/L			;	
w. Tin, Total (7440-31-5)		Х	<10.0						1	μg/l				
x. Titanium, Total (7440-32-6)		Х	<5.0						1	μ g /l				

PART C -

If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls. and nonrequired GC/MS fractions! mark "X" in column 2-b for each pollutant you know or have reason to believe is present. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to

				are 7 pages to this p	art, please rev			e (all 7 pages) for ea	ch outfall. See in	structions for			rements.		
1. POLLUTANT		MARK :					3. EFFLUENT	1	1000 1000		4. UI	NITS		AKE (option	
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 D. (if avai		c. LONG TERM (if avai		d.NO. OF	a. CONCEN-	b. MASS	a. LONG AVERAG		b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. IVIAGG	(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	, AND T	OTAL P	HENOL	S		<u> </u>			<u> </u>						Ĺ
1M. Antimony, Total (7440-36-0)	Х			<2.00						1	μg/l				
2M. Arsenic, Total (7440-38-2)	Х			<5.00						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μ g /l				
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			<1.00		·				1	μg/l				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/l				
8M. Mercury, Total (7439-97-6)	Х			4.26						1	ng/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l				
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μ g /l				
12M. Thallium, Total (7440-28-0)	Х			<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)	Х	į		<10.0						1	μg/l				
14M. Cyanide, Total (57-12-5)	Х			<10.0						1	μg/l				
15M. Phenols, Total	Х			13.5						1	μg/l				
DIOXIN	<u> </u>									- <u>t</u> ,			·		-1
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)	х			DESCRIBE RESUL	тs None De	tected									

PAGE V-3

CONTINUE ON REVERSE

Outfall 001

CONTINUED FROM							2 EFFLUENT		······································		4. U	MITC	5 INT	TAKE (options	20
1. POLLUTANT AND CAS		MARK '	Χ΄	ļ			3. EFFLUENT	T a LONG TEST	LAVEC VALUE	T	4. U	CINI		G TERM	
NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	ILY VALUE		30 DAY VALUE nilable)	c. LONG TERM	I AVRG. VALUE iilable)	d.NO. OF ANAL-	a. CONCEN-	b. MASS		G TERM E VALUE	b,NO. OF ANAL-
(if available)	QUIRED	PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. IVIAGO	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO										RATION		
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μg/l				
3V. Benzene . (71-43-2)	Х			<2.00	·					1	μg/l				
4V. Bis <i>(Chloro-methyl)</i> Ether (542-88-1)	Х			Could not be	analyzed	due to high	volatility								
5V. Bromoform (75-25-2)	Х			<2.00						1	μ g /l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00						1	μg/l	i			
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	х			<2.00						1	μg/l				
9V. Chloroethane (75-00-3)	Х			<2.00			1			1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00			- · · ·			1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00				t		1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						. 1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х		;	<2.00						1	μg/l				
16V. 1,1-Díchloro- ethylene (75-35-4)	Х			<2.00				-		1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00				,		1	μg/l				
19V. Ethylbenzene (100-41-4)	Х			<2.00						1	μg/l				
20V. Methyl Bromide (74-83-9)	Х	`		<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Х			<2.00						1	μg/l				

EPA I.D. NUMBER (copy from Item 1 of Form 1) | QUITALL NUMBER

001

CONTINUED FROM PAGE 3 OF FORM 2-C

NUMBER (if available) GC/MS FRACTION - V 22V. Methylene Chloride (75-09-2) 23V. 1,1,2,2-Tetra- chloroethane (79-34-5) 24V. Tetrachloro- ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans-	X X X X X		(1) CONCENTRATION OUNDS (COntinued	(2) MASS	b. MAXIMUM 3 (If ava (1) CONCENTRATION	ilable) (2) MASS	c. LONG TERM (if avail		d.NO. OF ANAL- YSES 1	a. CONCENTRATION	b. MASS	a. LONC AVERAG (1) CONCEN- TRATION		b.NO. OF ANAL- YSES
(if available) QUII GC/MS FRACTION - V 22V. Methylene Chloride (75-09-2) 23V. 1,1,2,2-Tetra- chloroethane (79-34-5) 24V. Tetrachloro- ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	VOLATII X X X X X X	SENT ABSEN	(1) CONCENTRATION OUNDS (COntinued			(2) MASS			YSES 1	tration μg/l	b. MASS	(1) CONCEN-		
GC/MS FRACTION - V 22V. Methylene Chloride (75-09-2) 23V. 1,1,2,2-Tetra- chloroethane (79-34-5) 24V. Tetrachloro- ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	X X X X	E COMP	CUNDS (continued) <2.00 <2.00 <2.00 <2.00						1	······································		TRATION		
22V. Methylene Chloride (75-09-2) 23V. 1,1,2,2-Tetra- chloroethane (79-34-5) 24V. Tetrachloro- ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	X X X X		<2.00 <2.00 <2.00 <2.00						 	······································				
23V. 1,1,2,2-Tetra- chloroethane (79-34-5) 24V. Tetrachloro- ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	x x		<2.00						1	e. 11				
ethylene (127-18-4) 25V. Toluene (108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	X X		<2.00							μg/l				
(108-88-3) 26V. 1,2-Trans- Dichloroethylene (156-60-5)	×		 						1	μg/l				
Dichloroethylene (156-60-5)				i					1	μ g /l				
27\/ 1 1 1-Tri-	V		<2.00						1	μg/l				
chioroethane // / (71-55-6)	^		<2.00						1	μ g /l				
28V. 1,1,2-Tri- chloroethane / (79-00-5)	x		<2.00					· · · · · · · · · · · · · · · · · · ·	1	μg/l				
(/9-01-6)	x		<2.00						1	μg/l	!			
30V. Trichloro- fluoromethane	x		<2.00						1	μg/l				
Chioride (75-01-4)	X		<2.00						1	μg/l				
GC/MS FRACTION - A	CID CO	MPOUND	S .						<u> </u>				· · · · · · · · · · · · · · · · · · ·	<u> </u>
(95-57-6)	X		<10.0						1	μg/l				
prierioi (120-63-2)	X		<10.0					<u> </u>	1	μ g /l				
pnenoi (105-67-9)	X		<10.0						1	μg/l				
Cresor (554-52-1)	X		<10.0						1	μg/l				
phenoi (31-26-3)	X		<50.0						1	μg/l				
(00-73-5)	X		<10.0						1	μ g /l				
(100-02-7)	X		<10.0						1	μg/l				
Gresor (58-50-7)	Х		<10.0						1	μ g /l				
prienti (67-66-5)	X		<10.0						1	μg/l				
(100-95-2)	Х		<10.0						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	x		<10.0				GE V-5		1	μ g /l			IUE ON RE	

CONTINUED FROM							Outfa	11 00 1			4.11	WTO	F (N2	FAVE /antinu	-0
1. POLLUTANT AND CAS		MARK '		 			3. EFFLUENT	T - LOVO TROV	AVD0 141115	1	4. U	NITS		AKE (options	
NUMBER	a TEST- ING RE- QUIRED	b. BE- LIEVED PRESENT	c. BE- LIEVED ABSENT	a. MAXIMUM DA	(2) MASS	b. MAXIMUM 3 (if ava. (1) CONCENTRATION		c. LONG TERM (if availation)		d.NO. OF ANAL- YSES	a. CONCEN- TRATION	b. MASS	AVFRAG (1) CONCEN-	F VALUE (2) MASS	b.NO. OF ANAL- YSES
(if available) GC/MS FRACTION	<u> </u>	<u> </u>		MPOUNDS	(2) WASS	(I) CONCENTION	(z) iii.oo	(i) Concention	(1) WAGO	1353			TRATION	(2) 11/400	1323
1B. Acenaphthene (83-32-9)	X	LAREST	TOTAL OC	<10.0	-					1	μg/l	, 			
2B. Acenaphtylene (208-96-8)	Х		· -	<10.0						1	μ g /l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μg/l			-	
4B. Benzidine (92-87-5)	Х			<100.0						1	μg/l				
5B. Benzo <i>(a)</i> Anthracene (56-55-3)	X			<10.0						1	μ g /l			-	
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0		, ,				1	μ g /l		ļ		
7B. 3,4-Benzo- fluoranthene (205-99-2)	Х			<10.0						1	μ g /l				
8B. Benzo <i>(ghi)</i> Perylene (191-24-2)	Х			<10.0						1	μg/l				
9B. Benzo (k) Fluoranthene (207-08-9)	х			<10.0						1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	х			<10.0						1	μ g/l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	х			<10.0						1	μ g /l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl-</i> <i>hexyl)</i> Phthalate (117-81-7)	Х			<10.0				·		1	μg/l				:
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μ g /l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μg/l				
16B. 2-Chloro- naphthalene (91-58-7)	Х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μ g /l		-		
19B. Dibenzo (a, h) Anthracene (53-70-3)	х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.0						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.0						1	μg/l			WE ON BE	

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

CONTINUED FROM PAGE V-6

001

1. POLLUTANT		2. MARK	'X'				3. EFFLUENT				4. U	INITS	5. IN	TAKE (options	al)
AND CAS	a. TEST-		c. BE-	a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 3	30 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a LONG	3 TERM	b.NO. OF
NUMBER (if available)	ING RE-		LIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO	OMPOUNDS									, ALION		
22B. 1,4-Dichloro- benzene (106-46-7)	Х			<2.0						1	μg/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	Х			<10.0						1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0						1	μg/l				
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μg/i				
26B, Di-N-Butyl Phthalate (84-74-2)	Х			<10.0						1	μg/l				
27B. 2,4-Dinitro- toluene (121-14-2)	Х			<10.0						1	μg/l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0				·		1	μg/l				
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0	I					1	μg/l				
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	х			<10.0						1	μg/l				
31B. Fluoranthene (206-44-0)	Х			<10.0	I					1	μg/l				
32B. Fluorene (86-73-7)	Х			<10.0						1	μg/l				
33B. Hexachloro- benzene (118-74-1)	Х			<10.0						1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachloro- cyclopentadiene (77-47-4)	Х			<10.0						1	μg/l				
36B. Hexachloro- ethane (67-72-1)	Х			<10.0					·	1	μg/l				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	х			<10.0						1	μ g /l				
38B. Isophorone (78-59-1)	Х			<10.0	1					1	μg/l				
39B. Naphthalene (91-20-3)	Х			<10.0	·					1	μg/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0	i					1	μg/l				
41B. N-Nitrosodi- methylamine (62-75-9)	Х			<10.0	I					1	μg/l				
42B. N-Nitrosodi-N- Propylamine (621-64-7)	х			<10.0		·				1	μg/l				
EDA Como 2510 20	10.00							ACE V/7	·			<u> </u>	CONTIN	ILIE ON DEV	VEDEE

Outfall 001 CONTINUED FROM THE FRONT 5. INTAKE (optional) 1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 4. UNITS c. LONG TERM AVRG. VALUE a. LONG TERM AND CAS b. MAXIMUM 30 DAY VALUE c. BEd.NO. OF b.NO. OF a, TESTb. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE NUMBER (if available) (if available) ANALb. MASS ANAL-ING RE-LIEVED LIEVED TRATION (2) MASS (1) CONCENTRATION (2) MASS (2) MASS QUIRED PRESENT ABSENT (1) CONCENTRATION (1) CONCENTRATION (2) MASS YSES YSES (if available) TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 43B. N-Nitro-<10.0 1 sodiphenylamine Χ μg/l (86-30-6) 44B. Phenanthrene Х 1 <10.0 μg/l (85-01-8) 45B. Pyrene Χ <10.0 1 μg/l (129-00-0) 46B. 1.2.4-Trichloro-1 < 2.0 μg/l benzene (120-82-1) GC/MS FRACTION - PESTICIDES 1P. Aldrin Χ (309-00-2) 2P. α-BHC Х (319-84-6) зр. В-внс Χ (319-85-7)4P. γ-BHC Х (58-89-9) 5P. δ-BHC Х (319-86-8) 6P. Chlordane (57-74-9) 7P. 4,4'- DDT Χ (50-29-3) 8P. 4,4'- DDE Χ (72-55-9) 9P. 4.4'- DDD Х (72-54-8) 10P. Dieldrin Χ (60-57-1) 11P. α-Endosulfan Χ (115-29-7) 12P. β-Endosulfan Χ (115-29-7) 13P. Endosulfan Χ Sulfate (1031-07-8) 14P. Endrin Х (72-20-8) 15P. Endrin Aldehyde Х (7421-93-4) 16P. Heptachlor Х

(76-44-8)

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

CONTINUED FROM PAGE V-8

001

1. POLLUTANT	7	2. MARK '	'X'			1	3. EFFLUENT				4. U'	JNITS	5. IN	ITAKE (option	nal)
AND CAS NUMBER	a. TEST- ING RE-			a. MAXIMUM DAIL	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A'		d.NO. OF ANAL-	a. CONCEN-	b. MASS	AVERAG	NG TERM GE VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	T ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDE'	S (contir	nued)	/		/				4				
17P. Heptachlor Epoxide (1024-57-3)			Х				1								
18P. PCB-1242 (53469-21-9)			Х	<0.100		×	/			1	μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100			<u> </u>			1	μg/l				
20P. PCB-1221 (11104-28-2)			Х	<0.100			Í			1	μg/l				
21P. PCB-1232 (11141-16-5)			Х	<0.100	ſ		1			1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100			1			1	μg/l				
23P. PCB-1260 (11096-82-5)			Х	<0.100			(1	μg/l				
24P. PCB-1016 (12674-11-2)			X	<0.100						1	μg/l				
25P. Toxaphene (8001-35-2)			Х		f f		1								

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

I.ART A - Tourna	or promac and i	Sound of at load	2. 2 4.14.7.010 10.	Totoly policie	mem emo easier	COMPICTO CITE	10.010 101 001			2 . C. 2,2 3,110 1.01	70.0	
				EFFLUENT				3. UNITS (spec	cify if blank)	4. 11	NTAKE (optional	ıl)
1. POLLUTANT		M DAILY VALUE	b. MAXIMUM 30 (if avail		b. LONG TERM (if ava	I AVRG. VALUE ailable)	d. NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM JE VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	<2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon (TOC)	<1.00						1	mg/l				
d. Total Suspended Solids (TSS)	13.8				1.84		25	mg/l				
e. Ammonia (as N)	<0.050						1	mg/l				
f. Flow	VALUE (0.004600	VALUE		VALUE 0	0.004344	230	MGD		VALUE		
g. Temperature (winter)	VALUE	27.5	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
1. pH	мимим 6.06	MAXIMUM 8.32	MINIMUM	MAXIMUM			236	STANDARD) UNITS			

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'			:	3. EFFLUENT				4. UNI	ITS	5	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a, MAXIMUM DAIL	LY VALUE	b. MAXIMUM 3 (if avail		c. LONG TERM (if avai		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)		Х	<0.200						1	mg/l				
b. Chlorine Total Residual		Х												
c. Color		Х	<5.00						1	PCU				
d, Fecal Coliform		Х												
e. Fluoride (16984-48-8)		Х	<0.100	-					1	mg/l				
f. Nitrate - Nitrite <i>(as N)</i>		Х	<0.100						1	mg/l				

ITEM V-B CONTINUED FROM FRONT Outfall 003

1. POLLUTANT	2. MA	M FRON	<u>' </u>			3. EFFLUENT	utraii 003			4. UNI	TS		5. INTAKE	
AND CAS NO.		b. BELIEVED	a. MAXIMUM DA	II V VALUE	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF	a. CONCEN-			AVERAGE VALUE	b.NO. OF
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	ilable) (2) MASS	(if ava.	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL-
g. Nitrogen, Total Organic (as N)		Х	<0.100	(,,	<u> </u>				1	mg/l				
h. Oil and Grease	Х		1.58						24	mg/l				
I. Phosphorus (as P) Total (7723-14-0)		Х	<0.050						1	mg/l				
j. Radioactivity														
(1) Alpha, Total	Х		43						1	pci/l				
(2) Beta, Total	Х		942	<u></u> -					1	pci/l				
(3) Radium, Total		Х	<1.00			<u> </u>			1	pci/l				
(4) Radium 226, Total		X	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	Х		890.5				-		1	mg/l				
k. Sulfide (as S)		Х	<0.100			<u></u>			1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)		Х	<50.0				į		1	μg/l				
p. Barium, Total (7440-39-3)		Х	<2.00				·		1	μ g /l				
q. Boron, Total (7440-42-8)	Х		756						1	mg/l				
r. Cobalt, Total (7440-48-4)		х	<1.00						1	μg/l				
s. Iron, Total (7439-89-6)	Х		25.3			·			1	μ g /l				
t. Magnesium, Total (7439-95-4)		Х	<15.0						1	μ g /l				
u. Molybdenum, Total (7439-98-7)		Х	<0.500						1	μ g /l				
v. Manganese, Total (7439-96-5)		Х	<5.00						1	μ g /l				
w. Tin, Total (7440-31-5)		Х	<10.0						1	μg/l				
x. Titanium, Total (7440-32-6)		х	<5.00						1	μ g /l				

EPA I.D. NUMBER (copy from Item 1 of Form 1) | OUTFALL NUMBER

CONTINUED FROM PAGE 3 OF FORM 2-C

003

PART C if you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

				are / pages to this p	art, please rev			e (all / pages) for ea	ich outiali. See ins	di uctions it					
1. POLLUTANT		2. MARK	'X'				3. EFFLUENT				4, U	NITS		TAKE (optiona	al)
AND CAS NUMBER	a. TEST- ING RE-	LIEVED	c. BE- LIEVED	a. MAXIMUM DA		(if ava	DAY AVRG. VALUE nilable)	c. LONG TERM (if ava	ilable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	G TERM SE VALUE	b.NO. OF
(if available)	QUIRED	<u></u>	L	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES		ļ	(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND	TOTAL	HENOL	.S						 		ļ			
1M. Antimony, Total (7440-36-0)	X		<u> </u>	<2.00						1	μg/l				<u> </u>
2M. Arsenic, Total (7440-38-2)	X			<25.0						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μ g /l				
4M. Cadmium, Total (7440-43-9)	X			<0.100			_	_		1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			0.02						24	mg/L				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/l				
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<25.0						1	μ g /l				
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μ g /l				
12M. Thallium, Total (7440-28-0)	Х			<0.500					-	1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			<10.0						1	μg/l				
14M. Cyanide, Total (57-12-5)	Х			<10.0						1	μ g /l				
15M. Phenois, Total	Х			<5.00						1	μ g /l				
DIOXIN															
2,3,7,8-Tetra- chlorodlbenzo-P-	Х			DESCRIBE RESUL	rs one Detec	ted									

Dioxin (1764-01-6)

1. POLLUTANT		MARK 2		1			3. EFFLUENT	uttaii 003			4. U	NITS	5. IN	TAKE (options	al)
AND CAS	a. TEST-	b. BE-	c, BE-	a. MAXIMUM DA	U.V.VALUE		30 DAY VALUE	c. LONG TERM	AVRG. VALUE	d.NO, OF			a, LON	G TERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED		,		ilable)	(if ava	ilable)	ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	E VALUE	ANAL-
(if available)	<u> </u>	<u> </u>	<u> </u>	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	710111014		TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	UNDS											
1V. Acrolein (107-02-8)	X			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μ g /l		!		
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)	×			Could not be	analyzed	due to high	volatility								
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	х			<2.00						1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00		:				1	μ g /l				
8V. Chlorodi- bromomethane (124-48-1)	Х			<2.00						1	μg/l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00						1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	×			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μg/l				
19V. Ethylbenzene (100-41-4)	Х			<2.00						1	μg/l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Х			<2.00						1	μg/l				

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

003

CONTINUED FROM PAGE 3 OF FORM 2-C

1. POLLUTANT	7.7.02	MARK'					3, EFFLUENT				4. UI	NITS	5. IN	AKE (optiona	1/)
AND CAS	a, TEST-	b. BE-	c, BE-	a. MAXIMUM DAI	VVALUE	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF		-	a. LONG	STERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED	L	LIVALUE	(if ava		(if ava		ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG		ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	110111011		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS (continued)											
22V. Methylene Chloride (75-09-2)	Х			<2.00						1	μg/l				
23V. 1,1,2,2-Tetra- chloroethane	Х			<2.00						1	μg/l				
(79-34-5) 24V. Tetrachloro-	}	ļ 					. <u></u>			-					\vdash
ethylene (127-18-4) 25V. Toluene	X	ļ		<2.00	 					1	μg/l			-	
(108-88-3)	X			<2.00						1	μ g/ l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	Х			<2.00						1	μg/l				
27V. 1,1,1-Tri- chloroethane (71-55-6)	Х			<2.00				·		1	μg/l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	Х			<2.00						1	μ g /l `				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00						1	μg/l				
30V. Trichloro- fluoromethane (75-69-4)	Х			<2.00						1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μg/l				
GC/MS FRACTION	- ACID	COMP	DUNDS												
1A. 2-Chlorophenol (95-57-8)	Х			<10.0						1	μg/l				
2A. 2,4-Dichloro- phenol (120-83-2)	Х			<10.0	· - ·					1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	Х			<10.0						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Х			<10.0						1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.0						1	μg/l				
6A. 2-Nitrophenol (88-75-5)	X			<10.0						1	μg/l				
7A. 4-Nitrophenol (100-02-7)	Х			<10.0						1	μg/l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.0			-			1	μg/l				
9A. Pentachloro- phenol (87-86-5)	Х			<10.0						1	μg/l				
10A. Phenol (108-95-2)	Х			<10.0						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	х			<10.0						1	μg/l				
EPA Form 3510-20	(8 00)						DΛ	GE V-5					CONTIN	UE ON REV	/EDSE

Outfall 003

CONTINUED	EDOM THE	EDONT

1. POLLUTANT		. MARK "	X'			··· ·· · · · · · · · · · · · · · · · ·	3. EFFLUENT	ilian 003			4. U	NITS	5. IN	TAKE (options	al)
AND CAS NUMBER	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	30 DAY VALUE	c. LONG TERM		d.NO. OF ANAL-	a. CONCEN-	h 14400	a. LON	G TERM	b.NO. OF ANAL-
(if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CC	MPOUNDS											
1B. Acenaphthene (83-32-9)	Х			<10.0						1	μg/l				
2B. Acenaphtylene (208-96-8)	Х		_	<10.0						1	μg/l				
3B. Anthracene (120-12-7)	Х			<10.0	··				 	1	μg/l	·			
4B. Benzidine (92-87-5)	Х			<100.0						1	μ g/l				
5B. Benzo (a) Anthracene (56-55-3)	Х			<10.0						1	μg/l	· 			
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μ g /l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	Х			<10.0						1	μg/l				
8B. Benzo (ghi) Perylene (191-24-2)	Х			<10.0						1	μ g /l				
9B. Benzo <i>(k)</i> Fluoranthene (207-08-9)	Х			<10.0						1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	Х			<10.0						1	μ g /l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	Х			<10.0	-					1	μg/l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	Х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl- hexyl)</i> Phthalate (117-81-7)	Х			<10.0						1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μg/l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μ g /l				
16B. 2-Chloro- naphthalene (91-58-7)	Х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0						1	μg/l	10			
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l	T.			
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0	· · · ·					1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х	•		<2.00			:			1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.00						1	μg/l				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

OUTFALL NUMBER

CONTINUED FROM PAGE V-6

003

1. POLLUTANT		2. MARK '	, <u>X</u> ,				3. EFFLUENT				4. U	NITS	5, IN?	TAKE (optiona	al)
AND CAS	a. TEST-		c. BE-	a. MAXIMUM DAI	AILY VALUE		30 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a. LONG	G TERM	b.NO. OF
NUMBER (if available)	ING RE-	PRESENT	LIEVED T ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	ailahle) (2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	I - BAS	E/NEUT	RAL CO	OMPOUNDS		1				1			IRAIDIX		
22B. 1,4-Dichloro- benzene (106-46-7)	X			<2.00						1	μg/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	Х			<10.0						1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0						1	μg/l				
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μg/l				
26B. Di-N-Butyl Phthalate (84-74-2)	Х			<10.0						1	μg/l		_		
27B. 2,4-Dinitro- toluene (121-14-2)	Х			<10.0						1	μ g /l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0						1	μg/l				
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0						1	μg/l				
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	Х			<10.0						1	μg/l				
31B. Fluoranthene (206-44-0)	Х		<u> </u>	<10.0						1	μg/l		,		
32B. Fluorene (86-73-7)	Х			<10.0						1	μ g/l		·		
33B. Hexachioro- benzene (118-74-1)	Х			<10.0						1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachloro- cyclopentadiene (77-47-4)	Х			<10.0						1	μ g /l				
36B. Hexachloro- ethane (67-72-1)	Х			<10.0						1	μg/l				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	Х			<10.0						1	μg/l				
38B. Isophorone (78-59-1)	Х			<10.0						1	μg/l				
39B. Naphthalene (91-20-3)	X			<10.0						1	μ g/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0						1	μg/l				
41B. N-Nitrosodi- methylamine (62-75-9)	Х			<10.0						1	μg/l				
42B. N-Nitrosodi-N- Propylamine (621-64-7)	Х			<10.0						1	μg/l				
EDA Form 2510 20								ACE V 7					- CON (T/A	JUE ON DE	VED CE

Outfall 003 CONTINUED FROM THE FRONT 1. POLLUTANT 2. MARK 'X' 3. FFFLUENT 4. UNITS 5. INTAKE (optional) b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM AND CAS d.NO. OF a. TESTb.NO. OF a. MAXIMUM DAILY VALUE b. BEc. BEa. CONCEN-AVERAGE VALUE NUMBER LIEVED (if available) (if available) ANALb. MASS ANAL-ING RE-LIEVED TRATION (1) CONCEN-(1) CONCENTRATION (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS (2) MASS QUIRED PRESENT ABSENT (2) MASS YSES YSES (if available) TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 43B, N-Nitro-Χ <10.0 1 sodiphenylamine μg/l (86-30-6) 44B. Phenanthrene Х <10.0 1 μg/l (85-01-8) 45B. Pyrene Х <10.0 1 μg/l (129-00-0) 46B. 1.2.4-Trichloro-Х < 2.00 1 μg/l benzene (120-82-1) GC/MS FRACTION - PESTICIDES 1P. Aldrin Χ (309-00-2) 2P. α-BHC Х (319-84-6)зр. В-внс Х (319-85-7) 4P. y-BHC Х (58-89-9) 5Р. δ-ВНС Χ (319-86-8) 6P. Chlordane Χ (57-74-9) 7P. 4.4'- DDT Х (50-29-3) 8P. 4.4'- DDE Х (72-55-9) 9P. 4,4'- DDD Х (72-54-8) 10P. Dieldrin Χ (60-57-1) 11P. α-Endosulfan Х (115-29-7) 12P. β-Endosulfan Х (115-29-7) 13P. Endosulfan Χ Sulfate (1031-07-8) 14P. Endrin Х (72-20-8) 15P. Endrin Aldehyde Х (7421-93-4) 16P. Heptachlor Х

(76-44-8)

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

003

CONTINUED FROM	I PAGE	V-8													
1. POLLUTANT	7	. MARK '	Χ'				3. EFFLUENT				4. UI	NITS	5. IN	TAKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM F VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	(contin	ued)											
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			Х	<0.100						2	μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100						2	μg/l				
20P. PCB-1221 (11104-28-2)			Х	<0.100						2	μ g /l	-			
21P. PCB-1232 (11141-16-5)			Х	<0.100						2	μ g /l				
22P. PCB-1248 (12672-29-6)			Х	<0.100						2	μ g /l				
23P. PCB-1260 (11096-82-5)			Х	<0.100						2	μg/l				
24P. PCB-1016 (12674-11-2)			Х	<0.100						2	μ g /l				
25P. Toxaphene (8001-35-2)			Х								,				

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets *(use the same format)* instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO. 004

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

				7 F								
				EFFLUENT				3. UNITS (spec	cify if blank)	4. 11	NTAKE (optional	1)
1. POLLUTANT	L	1 DAILY VALUE	(ifav	30 DAY VALUE ailable)	(if ava	AVRG. VALUE	d. NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM IF VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	<2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.00						1	mg/l				
c. Total Organic Carbon <i>(TOC)</i>	1.84						1	mg/l				
d. Total Suspended Solids <i>(TSS)</i>	1				0.5		5	mg/l				
e. Ammonia (as N)	0.494						1	mg/l				
f. Flow	VALUE 0	0.061297	VALUE		VALUE (0.00814	13	MGD		VALUE		
g. Temperature (winter)	VALUE	49	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
I. pH	мимим 9.33	MAXIMUM 9.33	MINIMUM	MAXIMUM			1	STANDARE	OUNITS			

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'			;	3. EFFLUENT			[4. UNI	TS	5	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAIL	Y VALUE	b. MAXIMUM 3 (if avai		c. LONG TERM (if ava		d.NO. OF	a. CONCEN-	b. MASS	a, LONG TERM A	VERAGE VALUE	b.NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)		Х	<0.200						1	mg/l				
b. Chlorine Total Residual		Х												
c. Color	Х		<5.00						1	PCU				
d. Fecal Coliform		Х												
e. Fluoride (16984-48-8)		Х	<0.100						1	mg/l				
f. Nitrate - Nitrite (as N)		Х	<0.100						1	mg/l				

Outfall 004

ITEM V-B CONTIN	UED FRO	M FRON	T
1. POLLUTANT	2. MA	RK 'X'	Г
AND CAS NO.	a. BELIEVED	b. BELIEVED	
() f '/- b./- \	PRESENT	ABSENT	·

1. POLLUTANT	2. MA	RK 'X'				3. EFFLUENT				4. UNI	TS		5. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DA	ILY VALUE		30 DAY VALUE ailable)	c. LONG TERM (if ava		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. WAGG	(1) CONCENTRATION	(2) MASS	YSES
g. Nitrogen, Total Organic (as N)	Х		0.257						1	mg/l	i			
h. Oil and Grease		Х	1.5						5	mg/l				
I. Phosphorus (as P) Total (7723-14-0)		Х	<0.050						1	mg/l				
j. Radioactivity		· · · · · · · · · · · · · · · · · · ·												
(1) Alpha, Total		Х	<5.00						1	pci/l				
(2) Beta, Total		Х	<5.00						1	pci/l				
(3) Radium, Total		Х	<1.00						1	pci/I	!			
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)		Х	<0.400						1	mg/l				
k. Sulfide (as S)		Х	<0.100				·		1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)		Х	<50.0						1	μg/l				
p. Barium, Total (7440-39-3)		Х	<2.00						1	μ g /l				
q. Boron, Total (7440-42-8)		Х	<75.0						1	μg/l				
r. Cobalt, Total (7440-48-4)		Х	<1.00	,					1	μ g /l				
s. Iron, Total (7439-89-6)		Х	<20.0						1	μ g /l				
t. Magnesium, Total (7439-95-4)		х	<15.0		·				1	μ g /l				
u. Molybdenum, Total (7439-98-7)		Х	<0.500						1	μ g /l				
v. Manganese, Total (7439-96-5)		Х	<5.00						1	μg/l				
w. Tin, Total (7440-31-5)		Х	<10.0						1	μg/l				
x. Titanium, Total (7440-32-6)		Х	<5.0						1	μg/l				

004

PART C -If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenois. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to

1. POLLUTANT AND CAS NUMBER (if available)	2. MARK 'X'			are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions fo 3. EFFLUENT							4. UNITS		5. INTAKE (optional)		
	a. TEST- ING RE- QUIRED	LIEVED	c. BE- LIEVED ABSENT	a. MAXIMUM DAILY VALUE		b. MAXIMUM 30 DAY AVRG. VALUE (if available)		c. LONG TERM AVRG. VALUE (if available)		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM AVERAGE VALUE		b.NO. OF
				(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. WINGO	(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND T	OTAL P	HENOL	S									1 - 110100		
1M. Antimony, Total (7440-36-0)	Х			<2.00						1	μ g /l				
2M. Arsenic, Total (7440-38-2)	Х			<5.0					1	1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μ g /l				
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00			·			1	μg/l				
6M. Copper, Total (7440-50-8)	Х			<1.00						1	μg/l				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/l				
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l				
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μg/l				
12M. Thallium, Total (7440-28-0)	Х			<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			<10.0						1	μg/l				
14M. Cyanide, Total (57-12-5)	Х			<10.0						1	μ g /l				
15M. Phenols, Total	X			<10.0						1	μg/l				
DIOXIN						· · · · · · · · · · · · · · · · · · ·									
2,3,7,8-Tetra- chlorodlbenzo-P- Dioxin (1764-01-6)	Х			DESCRIBE RESUL No	rs ne Detec	ted									

1. POLLUTANT		MARK !					3. EFFLUENT	utian 004			4. U	NITS	5. IN	ΓΑΚΕ (optiona	al)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE		30 DAY VALUE	c. LONG TERM (if avai		d.NO. OF	a. CONCEN-			3 TERM E VALUE	b.NO. OF
NUMBER (if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	UNDS									RATION		
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μg/l				
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)	Х			Could not be	analyzed	due to high	volatility						,		
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00		<u> </u>	-			1	μ g /l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	X			<2.00						1	μg/l	:			
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	X			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	х			<2.00					· -	1	μ g /l	-		-	
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00					·	1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μg/l				
19V. Ethylbenzene (100-41-4)	Х			<2.00		i			· · · · · · · · · · · · · · · · · · ·	1	μg/l				
20V. Methyl Bromide (74-83-9)	X			<2.00						1	μ g /l				
21V. Methyl Chloride (74-87-3)	X			<2.00						1	μg/l				

CONTINUED FROM PAGE 3 OF FORM 2-C

004

1. POLLUTANT	2	. MARK '	X'				3. EFFLUENT				4. U	NITS	5. IN	TAKE (optiona	a <i>l)</i>
AND CAS NUMBER	a, TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 3 (if ava		c. LONG TERM (if ava		d,NO. OF ANAL-	a. CONCEN-	b. MASS		G TERM E VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. IVIASS	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS (continued)									IRATION		
22V. Methylene Chloride (75-09-2)	Х			<2.00						1	μg/l				
23V. 1,1,2,2-Tetra- chloroethane (79-34-5)	Х		-	<2.00						1	μ g /l				
24V. Tetrachioro- ethylene (127-18-4)	Х			<2.00						1	μg/l				
25V. Toluene (108-88-3)	Х			<2.00						1	μg/l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	Х	,		<2.00						1	μg/l				
27V. 1,1,1-Tri- chloroethane (71-55-6)	Х			<2.00						1	μg/l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	Х			<2.00						1	μg/l				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00						1	μ g /l				
30V. Trichloro- fluoromethane (75-69-4)	Х			<2.00						1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μg/l				
GC/MS FRACTION	- ACID	COMPO	DUNDS					ļ		 					1
1A. 2-Chlorophenol (95-57-8)	Х			<10.0						1	μg/l				
2A. 2,4-Dichloro- phenol (120-83-2)	Х			<10.0						1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	X			<10.0						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Χ			<10.0	·		 			1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.0			 			1	μg/l				
6A. 2-Nitrophenol (88-75-5)	Х			<10.0			 			1	μg/l				
7A. 4-Nitrophenol (100-02-7)	Х			<10.0						1	μ g /l				
8A. P-Chloro-M- Cresol (59-50-7)	Х		, ,	<10.0				:		1	μg/l				
9A. Pentachloro- phenol (87-86-5)	Х			<10.0						1	μg/l				
10A. Phenol : (108-95-2)	Х			<10.0						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	Х			<10.0						1	μg/l				
EPA Form 3510-2c	(0.00)						DΛ	GE V-5					CONTIN	IUE ON RE	VEDCE

Outfall 004

CONTINUED	FROM THE	FRONT

1. POLLUTANT	2	. MARK '	Χ'				3. EFFLUENT	atiali 004			4. U	NITS	5. IN	AKE (optiona	al)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a. LONG	TERM	b.NO. OF
NUMBER (if available)	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if avail	(2) MASS	(1) CONCENTRATION	ilable) (2) MASS	ANAL- YSES	a. CONCEN- TRATION	b. MASS	AVFRAG (1) CONCEN- TRATION	E VALUE(2) MASS	ANAL- YSES
GC/MS FRACTION				MPOUNDS	(z) MAGG	(1) SONSERTION	(A) NIAGO	(i) CONSTRUCTION	(E) HITOU	1353			TRATION	(2) 31700	1363
1B. Acenaphthene (83-32-9)	Х			<10.0			-			1	μg/l			 	
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μg/l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μ g /l				
4B. Benzidine (92-87-5)	Х			<100						1	μg/l				
5B. Benzo (a) Anthracene (56-55-3)	Х			<10.0						1	μg/l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μg/l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	Х			<10.0						1	μ g /l				
8B. Benzo (ghi) Perylene (191-24-2)	Х			<10.0						1	μg/l				
9B. Benzo <i>(k)</i> Fluoranthene (207-08-9)	Х			<10.0						1	μg/l				
10B. Bis <i>(2-Chloro-</i> <i>ethoxy)</i> Methane (111-91-1)	Х			<10.0						1	μg/l				·
11B. Bis <i>(2-Chloro-</i> <i>ethyl)</i> Ether (111-44-4)	Х			<10.0						1	μg/l				
12B. Bis <i>(2-Chloroiso-</i> <i>propyl)</i> Ether (102-60-1)	Х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl-hexyl)</i> Phthalate (117-81-7)	Х	-		<10.0						1	μg/l			1	
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	х			<10.0						1	μg/l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μ g/l				
16B. 2-Chioro- naphthalene (91-58-7)	Х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.00						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.00				251/0		1	μg/l			UIS ON DE	

·)

CONTINUED FROM PAGE V-6

004

1. POLLUTANT		v-6 . MARK '	κ'				3. EFFLUENT	· · · · · · · · · · · · · · · · · · ·	 		4. U	NITS	5. IN	TAKE (optiona	al)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-	b M400	a, LONG		b.NO. OF
NUMBER (if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CC	MPOUNDS									INATION		
22B. 1,4-Dichloro- benzene (106-46-7)	Х			<2.00						1	μg/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	Х			<10.0						1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0			·			1	μg/l				
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μ g /l				
26B. Di-N-Butyl Phthalate (84-74-2)	Х			<10.0						1	μg/l				
27B. 2,4-Dinitro- toluene (121-14-2)	Х			<10.0						1	μg/l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0						1	μg/l				
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0						1	μ g /l		!		
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	Х			<10.0						1	μg/l				
31B. Fluoranthene (206-44-0)	Х			<10.0						1	μg/l				
32B. Fluorene (86-73-7)	Х			<10.0						1	μ g/l				
33B. Hexachloro- benzene (118-74-1)	Х			<10.0						1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachioro- cyclopentadiene (77-47-4)	х			<10.0						1	μg/l	·			
36B. Hexachloro- ethane (67-72-1)	Х			<10.0			-			1	μg/l				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	χ			<10.0						1	μg/l				
38B. Isophorone (78-59-1)	Х			<10.0						1	μg/l				
39B. Naphthalene (91-20-3)	Х	_		<10.0						1	μg/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0						1	μg/l				
41B. N-Nitrosodi- methylamine (62-75-9)	Х			<10.0						1	μg/l				
42B. N-Nitrosodi-N- Propylamine (621-64-7)	Х			<10.0					<u> </u>	1	μg/l			i	

CONTINUED FROM	THE F	RONT							Outfall 0	04					
1. POLLUTANT		. MARK	Х'				3. EFFLUENT				4. U	NITS		TAKE (optiona	a <i>l)</i>
AND CAS	a. TEST-	b. 8E-	c. BE-	a, MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-			G TERM E VALUE	b.NO. OF
NUMBER (if available)	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if avail	(2) MASS	(if ava	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO			1							IRAHON		1
43B. N-Nitro- sodiphenylamine (86-30-6)	Х			<10.0		,				1	μg/l				
44B. Phenanthrene (85-01-8)	Х			<10.0						1	μg/l				
45B. Pyrene (129-00-0)	Х			<10.0						1	μg/l				
46B. 1,2,4-Trichloro- benzene (120-82-1)	Х			<2.00						1	μg/l				
GC/MS FRACTION	1 - PEST	ICIDES	,							<u> </u>					
1P. Aldrin (309-00-2)			Х										!	-	
2P. α-BHC (319-84-6)			Х				_	,							
3P. β-BHC (319-85-7)			Х												
4P. γ-BHC (58-89-9)			Х												
5P. δ-BHC (319-86-8)			Х												
6P. Chlordane (57-74-9)			Х												
7P. 4,4'- DDT (50-29-3)			Х												
8P. 4,4'- DDE (72-55-9)			Х							<u> </u>					
9P. 4,4'- DDD (72-54-8)			Х												
10P. Dieldrin (60-57-1)			Х												
11P. α-Endosulfan (115-29-7)			X							<u> </u>					
12P. β-Endosulfan (115-29-7)			Х												
13P. Endosulfan Sulfate (1031-07-8)			Х												
14P. Endrin (72-20-8)			Х												
15P. Endrin Aldehyde (7421-93-4)			Х												
16P. Heptachlor (76-44-8)			Х												

004

CONTINUED FROM	PAGE	V <u>-</u> 8													
1. POLLUTANT	2	MARK '	Χ'				3. EFFLUENT				4. U	NITS	5. IN	TAKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-		c. BE- LIEVED	a. MAXIMUM	DAILY VALUE	b. MAXIMUM 3	30 DAY VALUE ilahle)	c. LONG TERM		d.NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM F VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	ON (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	Ĺ	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	(contin	ued)											
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			Х	<0.100						1	μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100						1	μg/l				
20P. PCB-1221 (11104-28-2)			·X	<0.100						1	μg/l				
21P. PCB-1232 (11141-16-5)			Х	<0.100						1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100						1	μg/l				
23P. PCB-1260 (11096-82-5)			Χ	<0.100						1	μg/l				
24P. PCB-1016 (12674-11-2)			Х	<0.100						1	μg/l				
25P. Toxaphene (8001-35-2)			Х												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

7,47,77	1			EFFLUENT				3. UNITS (spec	ify if blank)	4. IN	ITAKE (optional	
1. POLLUTANT	L	1 DAILY VALUE	(if ava	30 DAY VALUE	(if ava	AVRG. VALUE ilable)	d. NO. OF	a. CONCEN-	b. MASS	a. LONC	TERM E VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	D. 1111 100	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon (TOC)	2.32						1	mg/l				
d. Total Suspended Solids (TSS)	5				2.82		12	mg/l	_			
e. Ammonia (as N)	<0.050						1	mg/l				
f. Flow	VALUE ().208000	VALUE		VALUE	0.05	12	MGD		VALUE		
g. Temperature (winter)	VALUE	11	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
I. pH	MINIMUM 7.38	7.38	MINIMUM	MAXIMUM			1	STANDARD	UNITS			

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK'X'				3. EFFLUENT			}	4. UNI	TS	5	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAII	YVALUE	b. MAXIMUM 3 (if avai		c. LONG TERM (if avai		d.NO. OF	a, CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)	Х		0.262						1	mg/l				
b. Chiorine Total Residual		Х												
c. Color	Х		10.0						1	PCU				
d. Fecal Coliform		Х												
e. Fluoride (16984-48-8)	Х		0.147						1	mg/l				
. Nitrate - Nitrite (as N)	Х		0.178						1	mg/l				

ITEM V-B CONTINUED FROM FRONT

Outfall 06A

1. POLLUTANT	2. MA	RK 'X'				3. EFFLUENT	ation our t			4. UNI	TS		. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a, MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a, LONG TERM A		b.NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(if ava.	(2) MASS	(if ava	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES
g. Nitrogen, Total Organic (as N)	Х		0.177			, , , , , , , , , , , , , , , , , , , ,			1	mg/l				
h. Oil and Grease	Х		10.64						12	mg/l				
I. Phosphorus (as P) Total (7723-14-0)		Х	<0.050						1	mg/l				
j. Radioactivity	ļ						ļ. <u> </u>	: 	1			ļ	·	
(1) Alpha, Total		Х	<5.00						1	pci/l				
(2) Beta, Total	Х		<5.00						1	pci/l				
(3) Radium, Total		Х	<1.00						1	pci/l				
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	Х		6.92						1	mg/l				
k. Sulfide (as S)		Х	<0.100						1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)	Х		53.5						1	μ g /l				
p. Barium, Total (7440-39-3)	Х		13.9						1	μ g /l				
q. Boron, Total (7440-42-8)	Х		42.6				,		1	μg/l				
r. Cobalt, Total (7440-48-4)		Х	<1.00						1	μ g /l				
s. Iron, Total (7439-89-6)	Х		84.1						1 1	μg/l				
t. Magnesium, Total (7439-95-4)	Х		1520						1	μg/l		·		
u. Molybdenum, Total (7439-98-7)	Х		5.31						1	μg/l				
v. Manganese, Total (7439-96-5)	Х		7.2						1	μ g /l				
w. Tin, Total (7440-31-5)		Х	·<10.0			į			1	μg/l				
x. Titanium, Total (7440-32-6)		Х	<5.0						1	μg/l			UTNUE ON BE	

06A

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C -

If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, evanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must even and you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must even and you freeze the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

be	discharge	d. Note th	nat there	are 7 pages to this p	art, please rev	iew each carefully.	Complete one tabl	e <i>(all 7 pages)</i> for ea	ich outfall. See ir	structions fo	or additional de	tails and requi			
1. POLLUTANT		2. MARK '	Χ'				3. EFFLUENT				4. U	NITS	<u> </u>	TAKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-	LIEVED	c. BE- LIEVED	a. MAXIMUM DA		(if ava	AY AVRG. VALUE ilable)	c. LONG TERM (if ava	ilable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	G TERM SE VALUE	b.NO. OF
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND T	OTAL P	HENOL	S											
1M. Antimony, Total (7440-36-0)	X			<2.00						1	μg/l				
2M. Arsenic, Total (7440-38-2)	Х			<5.00						1	μg/l				
3M. Beryllium, Totał (7440-41-7)	Х			<0.500						1	μ g /l				
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μ g /l				
6M. Copper, Total (7440-50-8)	X			<1.00					-	1	μg/l				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/l				
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μ g /l				
9M. Nickel, Total (7440-02-0)	Х			<2.00			_			1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l	·			
11M. Silver, Total (7440-22-4)	Х			<1.00			·			1	μg/l	·			
12M. Thallium, Total (7440-28-0)	Х			<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			<10.0						1	μg/l				
14M. Cyanide, Total (57-12-5)	X			<10.00						1	μg/l				
15M. Phenols, Total	Х			<5.00			,			1	μg/l				
DIOXIN				·											
2,3,7,8-Tetra- chlorodlbenzo-P- Dioxin (1764-01-6)	х			DESCRIBE RESUL	ne Detec	ted									

1. POLLUTANT		MARK '					3. EFFLUENT	uttali 00A	·		4. U	NITS		TAKE (optiona	al)
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c, BE- LIEVED	a. MAXIMUM DA	ILY VALUE		30 DAY VALUE		I AVRG. VALUE	d.NO. OF	a. CONCEN-	b. MASS		G TERM SE VALUE	b.NO. OF ANAL-
(if available)		PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. WA35	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	ОМРО	JNDS											
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μ g /l				
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis <i>(Chloro-methyl)</i> Ether (542-88-1)	Х			Could not be	analyzed	due to high	volatility								
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00						1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	Х			<2.00						1	μ g /l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	х			<2.00						1	μg/l	<u>.</u>			
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х		,	<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00		· · · · · · · · · · · · · · · · · · ·				1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μ g /l				
19V. Ethylbenzene (100-41-4)	Х			<2.00				<u> </u>		1	μg/l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Х			<2.00						1	μg/l				

06A

CONTINUED FROM PAGE 3 OF FORM 2-C

1. POLLUTANT		MARK'					3. EFFLUENT				4. U	NITS	5 IN	TAKE (optiona	a/)
AND CAS	a, TEST-	b. BE-	c, BE-	a. MAXIMUM DA	II V V/ALLIE	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF		11110	a. LONG	G TERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED			(if ava		(if ava		ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG (1) CONCEN-	E VALUE	ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			TRATION	(2) MASS	YSES
GC/MS FRACTION		ATILE C	OMPOU	JNDS (continued))		 	 		- -					
22V. Methylene Chloride (75-09-2)	X	ļ		<2.00						1	μ g /l				}]
23V. 1,1,2,2-Tetra-	1														
chloroethane	Х	,		<2.00)				1	μ g /l				
(79-34-5) 24V. Tetrachloro-	 							 		+				 -	
ethylene (127-18-4)	Х	_]		<2.00]		1	μg/l			<u> </u>	
25V. Toluene (108-88-3)	Х			<2.00			_			1	μg/l				
26V. 1,2-Trans-	Х			<2.00						1	/				
Dichloroethylene (156-60-5)	^	1		~2.00						'	μg/l		!		1
27V. 1,1,1-Tri-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		.0.00											
chloroethane (71-55-6)	X			<2.00				{		1	μ g /l		,		1
28V. 1,1,2-Tri-	 	 					-	 		+					
chloroethane	X			<2.00						1	μ g /l				
(79-00-5) 29V. Trichloro-ethylene	 	-				 		 		+					
(79-01-6)	Х			<2.00				<u> </u>		1	μg/l			<u> </u>	
30V. Trichloro-	V			10.00							. (1			1	
fluoromethane (75-69-4)	X			<2.00				}		1	μg/l			l	
31V. Vinyl	Х			<2.00						1					
Chloride (75-01-4)	·			~2.00						<u> </u>	μg/l				
GC/MS FRACTION	V - ACID	COMPO	DUNDS					ļ							
1A. 2-Chlorophenol (95-57-8)	X			<10.00						1	μg/l				
2A. 2,4-Dichloro- phenol (120-83-2)	X		·	<10.00						1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	X			<10.00						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	X			<10.00						1	μg/l				
5A. 2,4-Dìnitro- phenol (51-28-5)	X			<50.00			 			1	μ g /l				
6A. 2-Nitrophenol (88-75-5)	X			< 10.00						1	μg/l			İ	
7A. 4-Nitrophenol (100-02-7)	X			< 10.00						1	μg/l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.00						1	μ g /l			Ĺ	
9A. Pentachloro- phenol (87-86-5)	Х			< 10.00						1	μg/l				
10A. Phenol (108-95-2)	Х			<10.00						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	х			< 10.00		:				1	μg/l				
EPA Form 3510-20	(8-90)						PA	GE V-5					CONTIN	VUE ON REV	/ERSE

EPA Form 3510-2c (8-90)

Outfall 06A

1. POLLUTANT		. MARK '	X'	 			3. EFFLUENT	attail OOA			4. U	NITS	5. INT	AKE (optiona	11)
AND CAS NUMBER	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE		O DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a, LONG	TERM	b.NO. OF
(if available)	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	(2) MASS	(if avai	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BASI	E/NEUT	RAL CO	MPOUNDS			,								
1B. Acenaphthene (83-32-9)	Х			<10.0						1	μg/l				
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μg/l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μg/l				
4B. Benzidine (92-87-5)	Х			<100.0						1	μ g /l				
5B. Benzo <i>(a)</i> Anthracene (56-55-3)	Х			<10.0						1	μg/l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0					 	1	μ g /l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	Х		_	<10.0			i			1	μ g /l				
8B. Benzo <i>(ghi)</i> Perylene (191-24-2)	Х			<10.0						1	μg/l				
9B. Benzo (k) Fluoranthene (207-08-9)	Х			< 10.0						1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	Х			<10.0						1	μg/l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	Х			<10.0						1	μg/l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	Х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl-</i> hexyl) Phthalate (117-81-7)	Х			<10.0	i .					1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μg/l				,
15B. Butyl Benzyl Phthalate (85-68-7)	Χ			<10.0	i					1	μg/l				
16B. 2-Chloro- naphthalene (91-58-7)	X			<10.0						1	μ g /l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0				•		1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.0						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.0						1	μ g /l				

06A

CONTINUED FROM PAGE V-6 4. UNITS 1. POLLUTANT 2. MARK 'X' 3. EFFLUENT 5. INTAKE (optional) AND CAS c. LONG TERM AVRG. VALUE b. MAXIMUM 30 DAY VALUE d.NO. Of a. LONG TERM b.NO. OF a. TESTb. BEc. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE NUMBER LIEVED ANALb. MASS ANAL-ING RE-LIEVED TRATION (1) CONCEN-(1) CONCENTRATION (1) CONCENTRATION (1) CONCENTRATION (2) MASS (2) MASS QUIRED PRESENT ABSENT (2) MASS (2) MASS YSES YSES (if available) GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 22B. 1.4-Dichloroμg/l Χ < 2.00 1 benzene (106-46-7) 23B, 3.3-Dichloro-Χ <10.0 1 μg/l benzidine (91-94-1) 24B. Diethyl Phthalate Х <10.0 1 μg/l (84-66-2) 25B. Dimethyl Х 1 <10.0 μg/l Phthalate (131-11-3) 26B, Di-N-Butyl Χ <10.0 1 μg/l Phthalate (84-74-2) 27B. 2.4-Dinitro-Χ <10.0 1 μg/l toluene (121-14-2) 28B. 2,6-Dinitro-Х <10.0 1 μg/l toluene (606-20-2) 29B. Di-N-Octvl Χ <10.0 1 $\mu g/I$ Phthalate (117-84-0) 30B. 1,2-Diphenyl-Hydrazine (as Azo-Χ <10.0 1 μg/l benzene)(122-66-7) 31B. Fluoranthene Χ <10.0 1 μg/l (206-44-0) 32B. Fluorene Х <10.0 1 μg/l (86-73-7) 33B. Hexachloro-Х <10.0 1 μg/l benzene (118-74-1) 34B. Hexachloro-Х 1 <10.0 μg/l butadiene (87-68-3) 35B. Hexachloro-Χ <10.0 1 cyclopentadiene μg/l (77-47-4) 36B, Hexachloro-Х <10.0 1 μg/l ethane (67-72-1) 37B. Indeno Χ <10.0 1 (1,2,3-cd) Pyrene μg/l (193-39-5) 38B. Isophorone Χ <10.0 1 μg/l (78-59-1) 39B. Naphthalene Х <10.0 μg/l (91-20-3) 40B. Nitrobenzene Χ 1 <10.0 μg/l (98-95-3) 41B. N-Nitrosodi-Χ <10.0 1 methylamine $\mu g/l$ (62-75-9) 42B. N-Nitrosodi-N-Χ 1 <10.0 Propylamine $\mu g/l$ (621-64-7)

CONTINUED FROM	THE F	RONT							Outfall 06	3A					
1. POLLUTANT	2	. MARK '	Χ'				3. EFFLUENT				4. UI	VITS		TAKE (optiona	
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a, MAXIMUM DA		b. MAXIMUM 3 (if ava	ilable)	c. LONG TERM (if ava	ilable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	S TERM E VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	IRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CC	MPOUNDS						<u> </u>					
43B. N-Nitro- sodiphenylamine (86-30-6)	X			< 10.0						1	μg/l				
44B. Phenanthrene (85-01-8)	Х			< 10.0						1	μg/l				
45B. Pyrene (129-00-0)	Х		•	< 10.0						1	μg/l				
46B. 1,2,4-Trichloro- benzene (120-82-1)	Х			< 2.00						1	μg/l				
GC/MS FRACTION	I - PEST	ICIDES													
1P. Aldrin (309-00-2)			Х		i i										
2P. α-BHC (319-84-6)			Х												
3P. β-BHC (319-85-7)			Х												
4P. γ-BHC (58-89-9)			Х												
5P. δ-BHC (319-86-8)			Х												
6P. Chlordane (57-74-9)			Χ												
7P. 4,4'- DDT (50-29-3)			Х												
8P. 4,4'- DDE (72-55-9)			Χ												
9P. 4,4'- DDD (72-54-8)			Х						·						
10P. Dieldrin (60-57-1)			Х												
11P. α-Endosulfan (115-29-7)			Х												
12P. β-Endosulfan (115-29-7)		*	Х												
13P. Endosulfan Sulfate (1031-07-8)			Х												
14P. Endrin (72-20-8)			Х												
15P. Endrin Aldehyde (7421-93-4)			Х												
16P. Heptachlor (76-44-8)			Х												

06A

CONTINUED FROM PAGE V-8 4. UNITS 1 POLLUTANT 2. MARK 'X' 3. EFFLUENT 5. INTAKE (optional) AND CAS b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE d.NO. OF a. LONG TERM b.NO. OF a. TESTb. BEc. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE
(1) CONCEN(2) MA
TRATION NUMBER b. MASS ANAL-ANAL-ING RE-LIEVED LIEVED TRATION (1) CONCENTRATION (2) MASS (2) MASS QUIRED PRESENT ABSENT (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS YSES YSES (if available) GC/MS FRACTION - PESTICIDES (continued) 17P. Heptachlor Χ Epoxide (1024-57-3) 18P. PCB-1242 Χ < 0.100 μg/l (53469-21-9) 19P. PCB-1254 Χ < 0.100 μg/l (11097-69-1) 20P. PCB-1221 Χ < 0.100 1 μg/l (11104-28-2) 21P, PCB-1232 Х < 0.100 1 μg/l (11141-16-5) 22P, PCB-1248 Χ < 0.100 1 μg/l (12672-29-6) 23P. PCB-1260 Χ < 0.100 μg/l (11096-82-5) 24P. PCB-1016 Χ < 0.100 μg/l (12674-11-2) 25P. Toxaphene Χ (8001-35-2)

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

				EFFLUENT				3. UNITS (spec	cify if blank)	4. 11	NTAKE (optional	1)
1. POLLUTANT	<u> </u>	A DAILY VALUE	(if ava	30 DAY VALUE	(if ava	1 AVRG. VALUE ajlable)	d. NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM E VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	2.16						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon (TOC)	2.67						1	mg/l				
d. Total Suspended Solids (TSS)	10				5.3		12	mg/l				
e. Ammonia (as N)	4.4						1	mg/l				
f. Flow	VALUE C	0.451000	VALUE		VALUE	0.037	63	MGD		VALUE		
g. Temperature (winter)	VALUE	18.4	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
I. pH	мінімим 7.26	MAXIMUM 7.26	MINIMUM	MAXIMUM			1	STANDARD) UNITS			

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'			;	3. EFFLUENT				4. UN!	TS		. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAII	LY VALUE	b. MAXIMUM 30 (if avail		c. LONG TERM (if ava		d.NO. OF	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	\	(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)		Х	<0.200						1	mg/l				
b. Chlorine Total Residual		Х												
c. Color	Х		<5.00						1	PCU				
d. Fecal Coliform		Х												
e, Fluoride (16984-48-8)		Х	<0.100						1	mg/l				
f. Nitrate - Nitrite <i>(as N)</i>	Х		1.75						1	mg/l				

Outfall 06B

1. POLLUTANT	2. MA	RK 'X'				3. EFFLUENT				4. UNI	TS		5. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c, LONG TERM		d.NO, OF	a. CONCEN-	b. MASS	a. LONG TERM	VERAGE VALUE	b.NO. O
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	D. MASS	(1) CONCENTRATION	(2) MASS	YSES
g. Nitrogen, Total Organic (as N)	х		<0.500						1	mg/l				
h. Oil and Grease		Х	1.8						12	mg/l				
I. Phosphorus (as P) Total (7723-14-0)		X	<0.050	 					1	mg/l				
j. Radioactivity	<u> </u>													
(1) Alpha, Total		Х	<5.00						1	pci/l				
(2) Beta, Total		Х	<5.00						1	pci/l				
(3) Radium, Total		Х	<1.00						1	pci/l*	·			
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	Х		3.44		·				1	mg/l				
k. Sulfide (as S)		Х	<0.100						1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)		Х	<50.0	·					1	μ g/l				
p. Barium, Total (7440-39-3)	X		9.59						1	μ g /l				
q. Boron, Total (7440-42-8)	X		49.3						1	μ g /l				
r. Cobalt, Total (7440-48-4)	Х		4.4						1	μ g /l				
s. Iron, Total (7439-89-6)	Х		58						1	μg/l				
t. Magnesium, Total (7439-95-4)	Х		1010						1	μg/l				
u. Molybdenum, Total (7439-98-7)	Х		2.31						1	μg/l				
v. Manganese, Total (7439-96-5)	Х		16.5						1	μg/l				
w. Tin, Total (7440-31-5)		Х	<10.0						1	μg/l				
x. Titanium, Total (7440-32-6)		Х	<5.00						1	μg/l				

ART C - If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cvanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in colum 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that these sets are reasons the pollutant is expected to

	discharge	d. Note ti	nat there	are 7 pages to this p	art, please rev			e (all 7 pages) for ea	ich outfall. See ir	structions fo					
1. POLLUTANT		2. MARK'	X'				3. EFFLUENT				4. U	NITS	1	TAKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-	LIEVED	c. BE- LIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 D (if ava	ilable)	c. LONG TERM (if ava	ilable)	d.NO. OF ANAL-	a. CONCEN-	b. MASS	AVERAG	G TERM E VALUE	b.NO. OF
(if available)	QUIRED	L	<u> </u>	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND T	OTAL P	HENOL	S											
1M. Antimony, Total (7440-36-0)	X			<2.0						1	μg/l				
2M. Arsenic, Total (7440-38-2)	Х			<5.0						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μg/ł				
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			0.04						12	mg/L				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/ł				
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00				·		1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l				
11M. Silver, Total (7440-22-4)	Х			<1.0						1	μg/l				
12M. Thailium, Totai (7440-28-0)	Х			<0.500	i					1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			13.7						1	μg/l	,			
14M. Cyanide, Total (57-12-5)	Х			25.7						1	μg/l				
15M. Phenols, Total	X			6.08						1	μg/l				
DIOXIN															
2,3,7,8-Tetra- chlorodlbenzo-P-	X			DESCRIBE RESUL No	.TS one Detec	ted									

Dioxin (1764-01-6)

1. POLLUTANT		MARK'		<u> </u>			3. EFFLUENT	uliali VOD			4. U	NITS	5. [N]	TAKE (optiona	a <i>l)</i>
AND CAS	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	VILY VALUE		30 DAY VALUE	c. LONG TERM		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG AVERAG	S TERM E VALUE	b.NO. OF
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. WAGG	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	ı - VOL	ATILE C	OMPO	UNDS											
1V. Acrolein (107-02-8)	X			<5.00	!					1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μg/l				
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)	Х			Could not be	analyzed	due to high	volatility								
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00						1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μ g /l				
8V. Chlorodi- bromomethane (124-48-1)	×			<2.00						1	μg/l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00						1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l			_	
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	X			<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μg/l				
19V. Ethylbenzene (100-41-4)	X			<2.00						1	μg/l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Х			<2.00						1	μg/l		· · · · · · · · · · · · · · · · · · ·		

EPA I.D. NUMBER (copy from Item 1 of Form 1)

06B

CONTINUED FROM PAGE 3 OF FORM 2-C

CONTINUED FROM								 					,		
1. POLLUTANT	2	2. MARK '	Χ'				3. EFFLUENT				4. U	NITS		FAKE (options	
AND CAS	a. TEST-		c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3			AVRG. VALUE	d.NO. OF	a. CONCEN-	1		3 TERM	b.NO. OF
NUMBER	ING RE-	PRESENT	LIEVED ABSENT	(1) CONCENTRATION		(if ava		(if ava		ANAL-	TRATION	b. MASS	(1) CONCEN-	E VALUE	ANAL-
(if available)		<u> </u>			(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS (continued	<u> </u>			ļ		 		ļ			
22V. Methylene	Х	{ }		<2.00		1				1	μg/l	}			1
Chloride (75-09-2)		 				ļ		 		 		ļ	ļ		
23V. 1,1,2,2-Tetra- chloroethane	Х	1		<2.00		1			}	1 1	μg/l	ł			
(79-34-5)	^	1 1		-2.00						'	μθ/ι	}			1
24V. Tetrachloro-	Х			10.00							- 1				
ethylene (127-18-4)	\ \ \]]		<2.00		}				1	μg/l	}			
25V. Toluene	· ·			10.00						1	- (1				1
(108-88-3)	Х	1 1		<2.00		1				1	μg/l	1			
26V. 1,2-Trans-															
Dichloroethylene	Х	1 1		<2.00		1				1	μg/l	}			1
(156-60-5)					· · · · · · · · · · · · · · · · · · ·					 		 			
27V. 1,1,1-Tri-	V.	1 1		-0.00							. "				1 1
chloroethane	X	1 1		<2.00						1	μg/l				
(71-55-6) 28V. 1,1,2-Tri-		 						 		 					
chloroethane	Х	1 1		<2.00						1	μg/l				
(79-00-5)		1 1		2.00		<u> </u>		ţ		1	P-9''				1
29V. Trichloro-ethylene	~			-2.00						1	1				
(79-01-6)	Х	1 1		<2.00		1		\		1	μg/l				1
30V. Trichloro-										1					
fluoromethane	Х	1 1		<2.00		ł				1	μg/l	}			}
(75-69-4)					 					 				<u> </u>	
31V. Vinyl	Х	1 1		<2.00						1	μg/l	·			1
Chloride (75-01-4)		ليبيا				ļ		ļ		<u> </u>	~ ~ ~ ~	ļ			
GC/MS FRACTION	- ACID	COMPO	DUNDS							ļ		ļ			↓
1A. 2-Chlorophenol	Х	1 1		<10.0						1	μ g /l	1			
(95-57-8)									ļ	ļ	F-3'.	ļ			
2A. 2,4-Dichloro-	Х	} }		<10.0				}		1	μg/l	}			}
phenol (120-83-2)								 		 	F-3				
3A. 2,4-Dimethyl-	Х			<10.0						1 1	μg/l	į			
phenol (105-67-9)		 						ļ		 		ļ			
4A. 4,6-Dinitro-O-	Х	}		<10.0		}				1 1	μg/l	ł			1
Cresol (534-52-1)						<u> </u>		 		 	, , , , , , , , , , , , , , , , , , ,				
5A. 2,4-Dinitro-	Х]		<50.0		}		1		1	μg/l	i			1
phenol (51-28-5)						 		 	 			 			
6A. 2-Nitrophenol (88-75-5)	Х	}		<10.0		1		}		1	μg/l	}			}
7A. 4-Nitrophenol		 				 		 		 					
(100-02-7)	Х	l.		<10.0				<u> </u>		1	μg/l	ļ			
8A. P-Chloro-M-		 								 					
Cresol (59-50-7)	Х	1 1		<10.0		}				1	μg/l	{			
9A. Pentachloro-		 				 		 	ļ	 					
phenol (87-86-5)	Х		}	<10.0						1	μg/l	ļ			
10A. Phenol		 				 		 		+		 		 	+
(108-95-2)	Х	1 1		<10.0				1	}	1	μg/l	}	}		
11A. 2,4,6-Tri-		 						 		+					+
chlorophenol	Χ	}	}	<10.0				1		1	μ g /l				1
(88-06-2)								<u> </u>		<u> </u>					
								OF W.						THE ON SET	

EPA Form 3510-2c (8-90)

PAGE V-5

CONTINUE ON REVERSE

1. POLLUTANT	7	. MARK "	Χ'				3. EFFLUENT	Outfall Ubb			4. U	NITS	5. INT	AKE (option	al)
AND CAS	a. TEST-		c. BE-	a. MAXIMUM DAI	LYVALUE	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF		· · · · · · · · · · · · · · · · · · ·	a. LONG	TERM	b.NO. O
NUMBER (if available)	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if avai	(2) MASS	(if avai		ANAL- YSES	a. CONCEN- TRATION	b. MASS	AVFRAG (1) CONCEN- TRATION	E VALUE (2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CC	MPOUNDS											
1B. Acenaphthene (83-32-9)	Х			<10.0						1	μg/l				
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μ g /l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μ g /l				
4B. Benzidine (92-87-5)	Х			<100.0						1	μg/l				
5B. Benzo (a) Anthracene (56-55-3)	Х			<10.0						1	μg/l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μg/l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	X			<10.0						1	μg/l				
8B. Benzo <i>(ghi)</i> Perylene (191-24-2)	Х			<10.0						1	μg/l				
9B, Benzo <i>(k)</i> Fluoranthene	X			<10.0						1	μ g /l				
(207-08-9) 10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	Х			<10.0						1	μg/l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	х			<10.0						1	μ g /l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl- hexyl)</i> Phthalate (117-81-7)	Х			<10.0						1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μg/l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μg/l				
16B. 2-Chloro- naphthalene (91-58-7)	х			<10.0						1	μ g /l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.00						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.00						1	μg/l				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

OUTFALL NUMBER

CONTINUED FROM PAGE V-6

06B

1. POLLUTANT	2	. MARK '	X'				3. EFFLUENT				4. U	NITS	5. IN	AKE (optiona	a/)
AND CAS	a. TEST-	b. 8E-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONÇEN-		a. LONG		b.NO. OF
NUMBER	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	E VALUE (2) MASS	ANAL- YSES
(if available) GC/MS FRACTION	<u> </u>	<u> </u>			(z) NIA33	(I) CONCENTION	(2) NAGO	(I) CONCENTION	(2) MAGG	1959			TRATION	(2) 1917-00	1953
22B. 1.4-Dichloro-	r — —	EINEUI	RAL CC					 		 					
benzene (106-46-7)	Х			<2.00						1	μg/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	×			<10.0			:			1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0						1	μg/l				
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μg/l				
26B. Di-N-Butyl Phthalate (84-74-2)	Х		-	<10.0						1	μg/l				
27B. 2,4-Dinitro- toluene (121-14-2)	Х			<10.0						1	μ g /l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0			 			1	μg/l		1		
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0						1	μg/l				
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	Х			<10.0						1	μg/l				
31B. Fluoranthene (206-44-0)	Х			<10.0						1	μg/l		ŧ		
32B. Fluorene (86-73-7)	Х			<10.0						1	μg/l				
33B. Hexachloro- benzene (118-74-1)	Х			<10.0	 		-			1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachloro- cyclopentadiene (77-47-4)	Х			<10.0						1	μg/l				
36B. Hexachloro- ethane (67-72-1)	Х			<10.0						1	μg/l				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	х			<10.0						1	μg/l				
38B. Isophorone (78-59-1)	Х			<10.0						1	μg/l				
39B. Naphthalene (91-20-3)	Х			<10.0						1	μg/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0		·				1	μg/l				
41B. N-Nitrosodi- methylamine	Х			<10.0						1	μg/l				
(62-75-9) 42B. N-Nitrosodi-N- Propylamine (621-64-7)	Х			<10.0						1	μg/l				

CONTINUED FROM 1. POLLUTANT		. MARK '	X'				3. EFFLUENT		Outfall 0		4. U	NITS		TAKE (option	al)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-			G TERM	b.NO. Of
NUMBER (if available)	ING RE-	LIEVED	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if avai	(2) MASS	(if avai	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN-	E VALUE (2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	<u> </u>	<u> </u>	1	(-,	()	(,,	1,7	.,	1.555			TRATION		+
3B. N-Nitro-	T					 		1		 	 		 	 	
sodiphenylamine 86-30-6)	X			<10.0						1	μ g /l				
4B. Phenanthrene 85-01-8)	Х			<10.0						1	μg/l	•			
15B. Pyrene 129-00-0)	Х			<10.0						1	μg/l				
46B. 1,2,4-Trichloro- penzene (120-82-1)	X			<2.00						1	μg/l				
GC/MS FRACTION	- PEST	ICIDES	<u> </u>							1					†
1P. Aldrin (309-00-2)			Х	·											
2P. α-BHC (319-84-6)			Х										:		
3P. β-BHC (319-85-7)			Х												
4P. γ-BHC (58-89-9)			Х												
5P. δ-BHC (319-86-8)			Х												
6P. Chlordane (57-74-9)			Х												
7P. 4,4'- DDT (50-29-3)			Х												
8P. 4,4'- DDE (72-55-9)			Х												
9P. 4,4'- DDD (72-54-8)			Х												
10P. Dieldrin (60-57-1)			Х												
11P. α-Endosulfan 115-29-7)			Х									·			
12P. β-Endosulfan 115-29-7)			Х												
13P. Endosulfan Sulfate (1031-07-8)			Х												
14P. Endrin (72-20-8)			Х												
15P. Endrin Aldehyde 7421-93-4)			Х												
16P. Heptachlor (76-44-8)	1		Х		<u>-</u>										

06B

CONTINUED FROM	PAGE	V-8						005							
1. POLLUTANT	2	. MARK '	Χ'				3. EFFLUENT				4. Ü	NITS	5. IN	ΓΑΚΕ (option	ial)
AND CAS NUMBER	a. TEST-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUN	1 DAILY VALUE	b, MAXIMUM 3	0 DAY VALUE	c. LONG TERM (if ava	AVRG. VALUI <i>jiabi</i> ei	d.NO. OF	a. CUNCEN-	b. MASS	AVERAG	G TERM E VALUE	b.NO. OF
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATI	ON (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MAS	S YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	(contin	ued)											
17P. Heptachlor Epoxide (1024-57-3)			Χ												
18P. PCB-1242 (53469-21-9)			Х	<0.100						1	μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100						1	μg/l				
20P. PCB-1221 (11104-28-2)			Х	<0.100						1	μg/l				
21P. PCB-1232 (11141-16-5)			Х	<0.100						1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100						1	μg/l				
23P. PCB-1260 (11096-82-5)			Х	<0.100						1	μg/l				
24P. PCB-1016 (12674-11-2)			Х	<0.100						1	μg/l				
25P. Toxaphene (8001-35-2)			Х												

PAGE V-9

65

STANDARD UNITS

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

8.88

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO. 007

PART A - You mu	st provide the r	esults of at leas	st one analysis fo	or every polluta	ant in this table.	Complete one	table for ear	ch outfall. See	instructions	s for additional c	letails.	
				EFFLUENT				3. UNITS (spec	cify if blank)	4. IN	NTAKE (optiona	ıl)
1. POLLUTANT	a. MAXIMUN	M DAILY VALUE		30 DAY VALUE	1	1 AVRG. VALUE railable)	d. NO. OF	a. CONCEN-	b. MASS	a, LONG AVERAG		d. NO. OF
i	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	D. 1417.100	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon <i>(TOC)</i>	1.9					,	1	mg/l				
d. Total Suspended Solids <i>(TSS)</i>	29.9				4.76		14	mg/l				
e. Ammonia (as N)	0.165						1	mg/l				
f. Flow	VALUE (0.230000	VALUE		VALUE	0.0899	66	MGD		VALUE		
g. Temperature (winter)	VALUE	16	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
1	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM			CF T	OTANDADE.				

6.11 Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'				. EFFLUENT			1	4. UNI	TS	5	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a, MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 (if avail		c. LONG TERM (if avai		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO, OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)		Х	<0.200					<u>-</u>	1	mg/l				
b. Chlorine Total Residual		Х												
c. Color	Х		5	-					1	PCU				
d. Fecal Coliform		Х		-							-			
e. Fluoride (16984-48-8)		Х	<0.100						1	mg/l				
f. Nitrate - Nitrite (as N)	Х		0.203	· · · · · · · · · · · · · · · · · · ·					1	mg/l	-			

pН

Outfall 007

ITEM V_R	CONTINUE	$D = D \cup M$	FRONT

1. POLLUTANT	2. MA	RK 'X'	 			3. EFFLUENT	Itiali 007			4. UNI	TS	T	5. INTAKE	
AND CAS NO.	a. BELIEVED		a. MAXIMUM DA	II Y VALUE	b. MAXIMUM 3	DAY VALUE	c. LONG TERM AVRO	. VALUE (if	d.NO. OF	a. CONCEN-	<u> </u>	 	VERAGE VALUE	b.NO. OF
(if available)	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES
g. Nitrogen, Total Organic (as N)	Х		<0.288						1	mg/l				1.525
h. Oil and Grease	Х		5.21						12	mg/l				
I. Phosphorus (as P) Total (7723-14-0)		х	<0.050						1	mg/l				
j. Radioactivity								·						
(1) Alpha, Total		Х	<5.00					 	1	pci/l				
(2) Beta, Total		X	<5.00			·		! 	1	pci/l				<u> </u>
(3) Radium, Total		Х	<1.00						1	pci/l				
(4) Radíum 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	Х		420						1	mg/l				
k. Sulfide (as S)	Х		<0.100						1	mg/l				
m, Sulfite (as SO3) (14265-45-3)	Х		<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)	Х		<50.0						1	μg/l				
p. Barium, Total (7440-39-3)	Х		8.06						1	μ g /l				
q. Boron, Total (7440-42-8)		Х	32.9						1	μ g /l				
r. Cobalt, Total (7440-48-4)		х	<1.0			w			1	μg/l				
s. Iron, Total (7439-89-6)	Χ		174						1	μg/l				
t. Magnesium, Total (7439-95-4)	Х		1150						1	μg/l				
u. Molybdenum, Total (7439-98-7)		Х	91.3						1	μ g /l				
v. Manganese, Total (7439-96-5)	Х		<5.0						1	μg/l				
w. Tin, Total (7440-31-5)	Х		<50.0	,					1	μg/l				
x. Titanium, Total (7440-32-6)		х	<5.0						1	μg/l				

007

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C -

If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, evanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in colum 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to

				are 7 pages to this p	art, please rev			e (all 7 pages) for ea	ich outfall. See ir	nstructions fo					
1. POLLUTANT	2	2. MARK '	X'				3. EFFLUENT				4. U	NITS		AKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DAI	ILY VALUE	(if ava		c. LONG TERM (if ava	ilable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	a. LONG AVERAG	E VALUE	b.NO. OF
(if available)	QUIRED		ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND T	OTAL P	HENOL	S											<u> </u>
1M. Antimony, Total (7440-36-0)	X			<2.00						1	μg/l				
2M. Arsenic, Total (7440-38-2)	Х			<5.00						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μg/l				
4M. Cadmium, Totai (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			3.16						1	μg/l				
7M. Lead, Total (7439-92-1)	Х			<2.00	-					1	μg/l				·
8M. Mercury, Total (7439-97-6)			Х	<0.200		ļ.				1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.0				,		1	μg/l				
11M. Silver, Total (7440-22-4)	X.			<1.0						1	μg/l				
12M. Thallium, Total (7440-28-0)	Х			<0.500			•			1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			14.4						1	μg/l				
14M. Cyanide, Total (57-12-5)	Х			<10.00						1	μg/l				
15M. Phenols, Total	Х			<5.00						1	μg/l		·		
DIOXIN															
2,3,7,8-Tetra- chlorodlbenzo-P- Dioxin (1764-01-6)	×			DESCRIBE RESUL N	.TS one Detecte	ed									

4 POLLUTANT		MARK "		<u></u>			3. EFFLUENT	tiali 007	······································		4. U	NITS	5 INT	TAKE (option	(اد
1. POLLUTANT AND CAS							30 DAY VALUE	c. LONG TERM	AVRG, VALUE	d.NO. OF		1113	a. LON		b.NO. OF
NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA		(if ava	ilable)	(if ava	ilable)	ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	E VALUE	ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	·	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS			<u> </u>		·	ļ					 /
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х		!	<5.00						11	μg/l				
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis <i>(Chloro-</i> <i>methyl)</i> Ether (542-88-1)	х			Could Not	Be	Analyzed	Due To High	Volatility							
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	х			<2.00			1			1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00	:					1	μ g /l				
8V. Chlorodi- bromomethane (124-48-1)	х			<2.00						1	μg/i				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	×			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μ g /l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μ g /l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00				·		1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μ g /l				
18V, 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μ g/ ľ				
19V. Ethylbenzene (100-41-4)	Х			<2.00						1	μg/l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μ g /l				
21V. Methyl Chloride (74-87-3)	Х	,		<2.00						1	μg/l				

CONTINUED FROM PAGE 3 OF FORM 2-C

007

1. POLLUTANT		. MARK !					3. EFFLUENT				4. U	NITS	5. IN	TAKE (optiona	al)
AND CAS	a. TEST-	b. BE-	c. 8E-	a. MAXIMUM DAI	I Y VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM		d.NO. OF			a. LONG	3 TERM	b,NO. OF
NUMBER	ING RE-	LIEVED	LIEVED			(if ava		(if avai		_ ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG		ANAL-
(if available)	QUIRED		ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPOL	JNDS (continued)										<u> </u>	ļ
22V. Methylene Chloride (75-09-2)	Х			<2.00						1	μg/l				
23V. 1,1,2,2-Tetra- chloroethane (79-34-5)	Х			<2.00						1	μg/l				
24V. Tetrachloro- ethylene (127-18-4)	Х			<2.00						1	μg/l				
25V. Toluene (108-88-3)	Х			<2.00						1	μg/l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	Х			<2.00						1	μg/l				
27V. 1,1,1-Tri- chloroethane (71-55-6)	Х			<2.00						1	μg/l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	Х			<2.00						1	μg/l				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00						1	μ g /l				
30V. Trichloro- fluoromethane (75-69-4)	Х			<2.00						1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μg/l				
GC/MS FRACTION	- ACID	COMPO	SUNDS							7					1
1A. 2-Chlorophenol (95-57-8)	Х			<10.00						1	μ g /l				
2A. 2,4-Dichloro- phenol (120-83-2)	Х			<10.00						1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	Х			<10.00						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Х			<10.00						1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.00						1	μg/l				
6A. 2-Nitrophenol (88-75-5)	Х			< 10.00						1	μ g/ l	-			
7A. 4-Nitrophenol (100-02-7)	Х			< 10.00			i			1	μg/l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.00						1	μg/l				
9A. Pentachloro- phenol (87-86-5)	Х			< 10.00						1	μg/l				
10A. Phenol (108-95-2)	Х			<10.00						. 1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	Х			< 10.00						1	μ g /l				
EPA Form 3510-2c	(0.00)					·	DΛ	GE V-5					CONTIN	UE ON RE	VEDOE

Outfall 007

CONTINUED FROM THE FR	TIME

1. POLLUTANT	2	. MARK '	X'				3. EFFLUENT				4. U	NITS	5. IN	TAKE (optiona	al)
AND CAS NUMBER	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a, CONCEN-		a. LONG	G TERM F VALUE	b.NO. OF
(if available)	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b, MASS	(1) CONCEN- TRATION	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CC	MPOUNDS									IRATION		
1B. Acenaphthene (83-32-9)	Х			<10.0						1	μg/l				
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μg/l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μg/l				
4B. Benzidine (92-87-5)	Х			<100.0						1	μg/l				
5B. Benzo <i>(a)</i> Anthracene (56-55-3)	Х			<10.0						1	μ g /l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0		_				1	μg/l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	х			<10.0						1	μg/l				
8B. Benzo (ghi) Perylene (191-24-2)	х			<10.0				·		1	μg/l				
9B. Benzo (k) Fluoranthene (207-08-9)	Х			<10.0						1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	Х			<10.0						1	μ g /l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	Х			<10.0						1	μg/l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	х			<10.0		·		·		1	μg/l				
13B. Bis <i>(2-Ethyl-hexyl)</i> Phthalate (117-81-7)	х			<10.0				·		1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μg/l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μg/l				
16B. 2-Chloro- naphthalene (91-58-7)	х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0	<u> </u>					1	μ g /l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μ g /l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х		-	<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.0						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.0						1	μ g /l				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

OUTFALL NUMBER

007

4. UNITS 1. POLLUTANT 3. EFFLUENT 5. INTAKE (optional) 2. MARK 'X' AND CAS c. LONG TERM AVRG. VALUE b. MAXIMUM 30 DAY VALUE d.NO. OF a. LONG TERM b.NO. OF a. TESTb. BEc. 8Ea. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE
(1) CONCENTRATION
(2) MA NUMBER LIEVED ANALb. MASS ANAL-LIEVED ING RE-TRATION (1) CONCENTRATION (2) MASS (1) CONCENTRATION (1) CONCENTRATION (2) MASS QUIRED PRESENT ABSENT (2) MASS (2) MASS YSES YSES (if available) GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 22B. 1.4-Dichloro-Х < 2.00 1 μg/l benzene (106-46-7) 23B. 3,3-Dichloro-Χ <10.0 μg/l benzidine (91-94-1) 24B. Diethyl Phthalate Χ <10.0 1 μg/l (84-66-2) 25B, Dimethyl Х <10.0 1 μg/l Phthalate (131-11-3) 26B. Di-N-Butyl Χ <10.0 1 μg/l Phthalate (84-74-2) 27B, 2,4-Dinitro-Χ <10.0 1 μg/l toluene (121-14-2) 28B. 2.6-Dinitro-Х <10.0 1 μg/l toluene (606-20-2) 29B. Di-N-Octyl Х <10.0 1 μg/l Phthalate (117-84-0) 30B. 1,2-Diphenyl-Х <10.0 1 Hydrazine (as Azoμg/l benzene)(122-66-7) 31B, Fluoranthene Χ <10.0 1 μg/l (206-44-0) 32B. Fluorene Χ <10.0 μg/l (86-73-7) 33B. Hexachloro-Х <10.0 1 μg/l benzene (118-74-1) 34B. Hexachloro-Χ <10.0 1 μg/l butadiene (87-68-3) 35B. Hexachlorocyclopentadiene Х <10.0 1 μg/l (77-47-4) 36B. Hexachioro-Х <10.0 μg/l ethane (67-72-1) 37B. Indeno (1,2,3-cd) Pyrene Х <10.0 1 μg/l (193-39-5) 38B. Isophorone Χ <10.0 1 μg/l (78-59-1) 39B. Naphthalene Χ <10.0 1 μg/l (91-20-3) 40B. Nitrobenzene Χ <10.0 1 μg/l (98-95-3) 41B. N-Nitrosodimethylamine Χ <10.0 1 μg/l (62-75-9) 42B, N-Nitrosodi-N-Х <10.0 Propylamine 1 μg/l (621-64-7)

CONTINUED FROM PAGE V-6

CONTINUED FROM	THE F	RONT							Outfall 00)7					
1. POLLUTANT	2	. MARK '	X,				3. EFFLUENT				4. U	NITS		ΓΑΚΕ (optiona	al)
AND CAS NUMBER	a. TEST-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3 (if ava		c, LONG TERM (if ava		d.NO. OF ANAL-	a. CONCEN-	b. MASS	AVERAG	3 TERM E VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	5. H/700	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO	MPOUNDS											
43B. N-Nitro- sodiphenylamine (86-30-6)	Х			< 10.0						1	μg/l				
44B. Phenanthrene (85-01-8)	Х			< 10.0						1	μg/l				
45B. Pyrene (129-00-0)	Х			< 10.0						1	μ g /l				
46B. 1,2,4-Trichloro- benzene (120-82-1)	Х			< 2.0						1	μg/l				
GC/MS FRACTION	- PEST	ICIDES													
1P. Aldrin (309-00-2)			Х										_		
2P. α-BHC (319-84-6)			Х												
3P. β-BHC (319-85-7)			Х												
4P. γ-BHC (58-89-9)			Х												
5P. δ-BHC (319-86-8)			Х		•				1						
6P. Chlordane (57-74-9)			Х												
7P. 4,4'- DDT (50-29-3)			Х		<u>" </u>										
8P. 4,4'- DDE (72-55-9)			Х												
9P. 4,4'- DDD (72-54-8)			Х												
10P. Dieldrin (60-57-1)			Х												
11P. α-Endosulfan (115-29-7)			Х		: 										
12P. β-Endosulfan (115-29-7)			Х		!			-							
13P. Endosulfan Sulfate (1031-07-8)			Х												
14P. Endrin (72-20-8)			Х												
15P. Endrin Aldehyde (7421-93-4)			Х												
16P. Heptachlor (76-44-8)			Х												

CONTINUED FROM PAGE V-8

007

CONTINUED FROM	PAGE	. V-8														
1. POLLUTANT		2. MARK "	Χ'				3. EFFLUENT					4. UN	NITS	5. IN	ITAKE (optiona	al)
AND CAS NUMBER	a. TEST- ING RE-		c. BE- LIEVED	a. MAXIMU	UM DAILY VALUE		30 DAY VALUE	c. LONG TERM (if avai			NO. OF	a. CONCEN-	b. MASS	AVERAG	IG TERM GE VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	T ABSENT	(1) CONCENTRAT	ATION (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MA	ASS YS	YSES	TRATION	<u></u> ′	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDE	3 (contin	iued)									·			
17P. Heptachlor Epoxide (1024-57-3)			Х													
18P. PCB-1242 (53469-21-9)			Х	<0.100	,					. ,	1	μ g/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100	,					,	1	μ g /l				
20P. PCB-1221 (11104-28-2)			Х	<0.100	,						1	μg/l				
21P. PCB-1232 (11141-16-5)			Х	<0.100	,					,	1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100	,						1	μ g /l				
23P. PCB-1260 (11096-82-5)			Х	<0.100	,						1	μg/l				,
24P. PCB-1016 (12674-11-2)			Х	<0.100	,						1	μg/l				
25P. Toxaphene (8001-35-2)			Х													

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

7	INTAKE AND	FEELLIENT	CHARACT	TERISTICS	(continued for	nm nage	3 of Form	2-0

OUTFALL NO.

PART A - You mus	st provide the re	esults of at leas	t one analysis f	or every polluta	nt in this table.	Complete one	table for ea	ch outfall. See	instructions	for additional d	etails.	
				EFFLUENT		3. UNITS (spec	ify if blank)	4. INTAKE (optional)				
1. POLLUTANT	a. MAXIMUM	DAILY VALUE	b. MAXIMUM 30 DAY VALUE (if available)		b. LONG TERM AVRG. VALUE (if available)		d. NO. OF	a. CONCEN-	b. MASS	a. LONG TERM AVERAGE VALUE		d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	2. 7	(1) CONCENTRATION	(2) MASS	ANALYSES
Biochemical Oxygen Demand (BOD)								mg/l				
b. Chemical Oxygen Demand (COD)								mg/l				
c, Total Organic Carbon <i>(TOC)</i>								mg/l				
d. Total Suspended Solids (TSS)								mg/l				·
e. Ammonia (as N)								mg/l				
f. Flow	VALUE 0		VALUE No Flow In Past		VALUE 26 Months (Oct '09)		0	MGD		VALUE		
g. Temperature (winter)	VALUE		VALUE		VALUE			°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
i. pH	MINIMUM MAXIMUM		MINIMUM	MAXIMUM				STANDARD UNITS				

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'	3. EFFLUENT								4. UNITS		5. INTAKE			
AND CAS NO.	a. BELIEVED	b. BELIEVED		a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 3 (if avai		c. LONG TERM (if ava.		d.NO. OF	a. CONCEN-	b, MASS	a. LONG TERM AVERAGE VALUE		b.NO. OF	
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. IVIAGO	(1) CONCENTRATION	(2) MASS	YSES		
a. Bromide (24959-67-9)										mg/l						
b. Chlorine Total Residual																
c. Color										PCU						
d. Fecal Coliform																
e. Fluoride (16984-48-8)										mg/l						
f. Nitrate - Nitrite (as N)			-							mg/l						

Outfall 008

1. POLLUTANT 2. MARK 'X'						3. EFFLUENT	· 4. UNI	TS	5. INTAKE					
AND CAS NO.	a. BELIEVED	b.	a. MAXIMUM DAILY VALUE		b. MAXIMUM 30 DAY VALUE		c. LONG TERM AVRG. VALUE (if d.NO. O			a. CONCEN-		a LONG TERM AVERAGE VALUE b.f		
(if available)	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if av	ilahla) (2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES
g. Nitrogen, Fotal Organic										mg/l				
n. Oil and Grease										mg/l	1			
. Phosphorus (as P) Total									1	mg/l				
7723-14-0)							ļ					ļ	-	
. Radioactivity											ļ			
(1) Alpha, Total										pci/l				
(2) Beta, Total			<u>.</u>							pci/l				
(3) Radium, Fotal	-									pci/l				
(4) Radium 226, Total						" 				pci/l				
k. Sulfate (as SO4) (14808-79-8)										mg/l				
k. Sulfide (as S)										mg/l				
m. Sulfite (as SO3) (14265-45-3)										mg/l				
n. Surfactants										mg/l				
o. Aluminum, Fotal										μg/l				
(7429-90-5) p. Bariuin, Total										μ g /i				†
7440-39-3) q. Boron, Fotal				<u> </u>						μ g/i				
(7440-42-8) r. Cobalt, Total										μ g /ί				1-
(7440-48-4) s. Iron, Total													<u> </u>	+
7439-89-6) Magnesium,										μg/l				-
Total (7439-95-4)			<u> </u>							μg/l		<u> </u>		
1. Molybdenum, Fotal (7439-98-7)										μg/l				
7439-98-7) 7. Manganese, Total (7439-96-5)										μ g /l	-			
(7449-96-5) w. Tin, Total (7440-31-5)										μg/l				1
x. Titanium, Fotal (7440-32-6)	_			,						μ g /l				

008

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C -

If you are a primary industry and this outfail contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in colum 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to

		2. MARK 'X'		are / pages to this p	The 7 pages to this part, please review each carefully. Complete one table fail 7 pages/ for each outlail. See instructions to 3. EFFLUENT								4. UNITS 5. INTAKE (option			
1. POLLUTANT AND CAS	a. TEST-	b, BE-	c. BE-	a, MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 E	DAY AVRG. VALUE	c. LONG TERM		d.NO. OF			a. LON	G TERM GE VALUE	b.NO. O	
NUMBER (if available)	ING RE- QUIRED		LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN- TRATION	(2) MASS	ANAL- YSES	
METALS, CYANIDE	, AND	TOTAL F	HENOL	S												
1M. Antimony, Total (7440-36-0)											μg/l					
2M. Arsenic, Total (7440-38-2)											μg/l					
3M. Beryllium, Total (7440-41-7)											μg/l			,		
4M. Cadmium, Total (7440-43-9)											μg/l					
5M. Chromium, Total (7440-47-3)											μg/l					
6M. Copper, Total (7440-50-8)					***	·					μg/l					
7M. Lead, Total (7439-92-1)											μg/l					
8M. Mercury, Total (7439-97-6)											μg/l					
9M. Nickel, Total (7440-02-0)											μg/l					
10M. Selenium, Total (7782-49-2)											μg/l					
11M. Silver, Total (7440-22-4)											μ g /l					
12M. Thallium, Total (7440-28-0)											μ g /l					
13M. Zinc, Total (7440-66-6)				·							μg/l					
14M. Cyanide, Total (57-12-5)											μ g /l					
15M. Phenols, Total											μg/l				,	
DIOXIN	•		*	•	·											
2,3,7,8-Tetra- chlorodibenzo-P- Diovin (1764-01-6)				DESCRIBE RESU No	LTS one Detec	ted										

1. POLLUTANT		MARK "					3. EFFLUENT	utiali 000			4 U	NITS	5 IN	AKE (options	al)
AND CAS	a. TEST-			a. MAXIMUM DA	" Y Y Y Y Y I I I I	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF		1113	a, LONG		b.NO. OF
NUMBER	ING RE-	LIEVED	c. BE- LIEVED	<u></u>		(if ava	ilable)	(if ava	ilable)	ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	E VALUE	ANAL-
(if available)		PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	tra ion		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS			<u> </u>						· ·	. 	↓
1V. Acrolein (107-02-8)											μg/l				
2V. Acrylonitrile (107-13-1)									_		μ g /l				
3V. Benzene (71-43-2)											μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)															
5V. Bromoform (75-25-2)											μg/l				
6V. Carbon Tetrachloride (56-23-5)											μg/l				
7V. Chlorobenzene (108-90-7)											μg/l				
8V. Chlorodi- bromomethane (124-48-1)											μ g/l				
9V. Chloroethane (75-00-3)	;										μ g /l	'			
10V. 2-Chloro- ethylvinyl Ether (110-75-8)											μ g /l				
11V. Chloroform (67-66-3)											μ g /l				
12V. Dichloro- bromomethane (75-27-4)						·					μg/l				
13V. Dichloro- difluoromethane (75-71-8)											μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)											μg/l				
15V. 1,2-Dichloro- ethane (107-08-2)											μ g /l				
16V. 1,1-Dichloro- ethylene (75-35-4)											μg/l				
17V. 1,2-Dichloro- propane (78-87-5)											μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)											μg/l				
19V. Ethylbenzene (100-41-4)											μ g /l				
20V. Methyl Bromide (74-83-9)											μg/l		·		
21V. Methyl Chloride (74-87-3)								05.7/4			μg/l				

EPA I.D. NUMBER (copy from Item 1 or Folia 1)

CONTINUED FROM PAGE 3 OF FORM 2-C

800

1. POLLUTANT		2. MARK					3. EFFLUENT				4. U	NITS	5. IN	AKE (option	al)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 3	BO DAY VALUE	c. LONG TERM		d.NO. OF			a. LON	G TERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED	L		(if ava		(if ava		ANAL-	a. CONCEN- TRATION	b. MASS		E VALUE	ANAL-
(if available)	QUIRED	1		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	UNDS (continued,		 		<u> </u>	 						
22V. Methylene		1	1	}		1		1			μg/l				
Chloride (75-09-2)		 	L							_	F-3''				_
23V. 1,1,2,2-Tetra- chloroethane	ļ]				1			البحن				
(79-34-5)	l			ì				1			μg/l				}
24V. Tetrachloro-	 	 													
ethylene (127-18-4)	ļ	ļ	ļ	}		}					μ g /l				
25V. Toluene	 	 						1			- "				1
(108-88-3)	ł	ł	}						i		μg/l				
26V. 1,2-Trans-		T						1							}
Dichloroethylene	l	1]		1		}		1	μg/l				
(156-60-5)		 	<u> </u>			 									
27V. 1,1,1-Tri-	1		[}		1			ua/I				
chloroethane (71-55-6)	1							1			μg/l				
28V. 1,1,2-Tri-	 	 	 	 		 		 	 	+					
chloroethane		}				}		1			μ g /l				
(79-00-5)	l	<u> </u>									7.5.				1
29V. Trichloro-ethylene											μg/l				
(79-01-6)						L					μθ/ι				
30V. Trichloro-	İ	İ		į		!			i		- 0				ļ
fluoromethane	l)					μg/l				}
(75-69-4) 31V. Vinyl	 		 			 		 							
Chloride (75-01-4)				}							μ g /l				Į
GC/MS FRACTION	- ACID	COMP	DUNDS	<u> </u>		†				 					
1A. 2-Chlorophenol	1	1	1	r		 		 		- 				- 	
(95-57-8)	1							}			μ g /l			1	}
2A. 2,4-Dichloro-	 	 	 							1	//				
phenol (120-83-2)	Ì	1		j		ľ					μg/l			i I	1
3A. 2,4-Dimethyl-	1														
phenol (105-67-9)		<u>L</u>		[μg/l				
4A. 4,6-Dinitro-O-											ua/l			· 	
Cresol (534-52-1)											μg/l				ļ
5A. 2,4-Dinitro-											μg/l				}
phenol (51-28-5)	ļ		ļ					<u> </u>	 		μθή				
6A. 2-Nitrophenol	}	1		j l]			μ g /l				}
(88-75-5)	 		 _			ļ		 			ra''			 	
7A. 4-Nitrophenol	1		[μ g /l				
(100-02-7)		ļ	ļ			 		 					 		
8A. P-Chloro-M- Cresol (59-50-7)	1		ł								μ g /l				}
	 	 	 	 		 									+
9A. Pentachloro- phenol (87-86-5)			1								μg/l				1
10A. Phenol	 	 	 	 		 		- 	 						 -
(108-95-2)] [}			μ g /l	}	'		}
11A. 2,4,6-Tri-	 	 	 	 		 		 		 					
chlorophenol		1	!	}				}			μg/l				1
(88-06-2)	<u> </u>					<u> </u>					, 5.				1
EPA Form 3510-20	(0.00)						D.4	GE V-5					CONTIN	ILIE ON RE	VICTOR

CONTINUED FROM								utraii 008							
1. POLLUTANT AND CAS		MARK!	X'				3. EFFLUENT				4. UI	NITS		TAKE (optiona	
NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG	TERM	b.NO. OF ANAL-
(if available)		PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	D. MASS	AVFRAG (1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO	MPOUNDS									_ IRATION		
1B. Acenaphthene											μg/l			I	
(83-32-9) 2B. Acenaphtylene	 		 					+							
(208-96-8)	{	}	j							}	μg/l			İ	1
3B. Anthracene (120-12-7)						·					μg/l				
4B. Benzidine	1							†			μg/i			- 	
(92-87-5)	ļ							 			μgn				
5B. Benzo (a) Anthracene							l				μg/l				
(56-55-3)	 	 				<u> </u>	<u> </u>	 	 			·			
6B. Benzo <i>(a)</i> Pyrene (50-32-8)											μg/l				
7B. 3,4-Benzo- fluoranthene	1	{ ;				}	ı				a/l				1
(205-99-2)	<u> </u>										μg/l				
8B. Benzo (ghi)											/1				
Perylene (191-24-2)											μg/l				<u> </u>
9B. Benzo <i>(k)</i> Fluoranthene											μg/l			ł	1
(207-08-9)						}					μg/ι				} 1
10B. Bis (2-Chloro-															
<i>ethoxy</i>) Methane (111-91-1)					i	1					μ g/l				1 . 1
11B. Bis (2-Chloro-	 							1							
ethyl) Ether (111-44-4)											μg/l			<u> </u>	
12B. Bis (2-Chloroiso-															
<i>propyl)</i> Ether (102-60-1)						}		1			μg/l			1	
13B. Bis (2-Ethyl-															
hexyl) Phthalate (117-81-7)											μ g/ l			I	
14B.4-Bromo-	,														
phenyl Phenyl Ether (101-55-3)											μg/l			L	
15B. Butyl Benzyl Phthalate (85-68-7)											μg/l				1
16B. 2-Chioro-											ua/l				
naphthalene (91-58-7)											μg/l			L	
17B. 4-Chloro-															
phenyl Phenyl Ether (7005-72-3)]								μg/i			1	
18B. Chrysene (218-01-9)											μ g /l				
19B. Dibenzo (a, h)		-						1	 						
Anthracene (53-70-3)] [μ g /l			I	}
20B. 1,2-Dichloro-								1			ua/I				
benzene (95-50-1)					<u> </u>	ļļ		<u> </u>			μg/l				<u> </u>
21B. 1,3-Dichloro- benzene (541-73-1)	{								,		μg/l			ı	
EDA 5 0540 0		<u> </u>			<u> </u>			-CEV6						ILIE ON DEV	

EPA I.D. NUMBER (copy from Item 1 of Form 1) | OUTFALL NUMBER

800 CONTINUED FROM PAGE V-6 3. EFFLUENT 4. UNITS 5. INTAKE (optional) 1. POLLUTANT 2. MARK 'X' AND CAS b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE d.NO. OF a. LONG TERM b.NO. OF a. TESTc, BEb. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE
(1) CONCEN- (2) MA
TRATION NUMBER b. MASS ANAL-ANAL-ING RE-LIEVED LIEVED TRATION (2) MASS (1) CONCENTRATION QUIRED PRESENT ABSENT (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS (2) MASS YSES YSES (if available) GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 22B, 1.4-Dichloroμg/l benzene (106-46-7) 23B. 3,3-Dichloroμg/l benzidine (91-94-1) 24B. Diethyl Phthalate μg/i (84-66-2) 25B. Dimethyl μg/l Phthalate (131-11-3) 26B. Di-N-Butvl μg/l Phthalate (84-74-2) 27B, 2.4-Dinitroμg/l toluene (121-14-2) 28B. 2.6-Dinitro- $\mu g/l$ toluene (606-20-2) 29B, Di-N-Octvl μg/l Phthalate (117-84-0) 30B. 1,2-Diphenyl-Hydrazine (as Azoμg/l benzene)(122-66-7) 31B. Fluoranthene μg/l (206-44-0) 32B. Fluorene μg/l (86-73-7) 33B. Hexachloroμg/l benzene (118-74-1) 34B. Hexachloroμg/l butadiene (87-68-3) 35B. Hexachlorocyclopentadiene μg/l (77-47-4) 36B. Hexachloroμg/l ethane (67-72-1) 37B. Indeno (1,2,3-cd) Pyrene μg/l (193-39-5) 38B. Isophorone μg/l (78-59-1)39B. Naphthalene μg/l (91-20-3)40B. Nitrobenzene μg/i (98-95-3) 41B, N-Nitrosodiμg/l methylamine (62-75-9) 42B. N-Nitrosodi-N-

Propylamine.

(621-64-7)

μg/l

Outfall 008 CONTINUED FROM THE FRONT 3. EFFLUENT 4. UNITS 5. INTAKE (optional) 1. POLLUTANT 2. MARK 'X' AND CAS b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE a. LONG TERM b.NO. OF d.NO. OF a. TESTb. BEc. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE
(1) CONCENTRATION (2) MA (if available) NUMBER (if available) ANAL-ANAL-ING RE-LIEVED LIEVED b. MASS TRATION (2) MASS QUIRED PRESENT ABSENT (1) CONCENTRATION (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS (2) MASS YSES YSES (if available) GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 43B. N-Nitrosodiphenylamine μg/l (86-30-6) 44B. Phenanthrene μg/l (85-01-8) 45B. Pyrene μg/l (129-00-0) 46B. 1,2,4-Trichloroμg/l benzene (120-82-1) GC/MS FRACTION - PESTICIDES 1P. Aldrin (309-00-2) 2P. α-BHC (319-84-6) зр. В-внс (319-85-7) 4P. γ-BHC (58-89-9) 5Р. δ-ВНС (319-86-8) 6P. Chlordane (57-74-9)7P. 4,4'- DDT (50-29-3) 8P. 4,4'- DDE (72-55-9) 9P. 4,4'- DDD (72-54-8) 10P. Dieldrin (60-57-1) 11P. α-Endosulfan (115-29-7) 12P. β-Endosulfan (115-29-7) 13P. Endosulfan Sulfate (1031-07-8) 14P. Endrin (72-20-8) 15P. Endrin Aldehyde (7421-93-4) 16P. Heptachlor

(76-44-8)

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

CONTINUED FROM	PAGE	V-8						000								
1. POLLUTANT	2	. MARK '	Χʻ				3. EFFLUENT					4. U	NITS .	5. IN	TAKE (optiona	al)
AND CAS NUMBER	a. TEST- ING RE-	b. SE- LIEVED	c. BE- LIEVED	a. MAXIMU	M DAILY VALUE	b. MAXIMUM :	30 DAY VALUE illable)	c. LONG TERM	l AVRG. ilable)	. VALUE	d.NO. OF ANAL-	a. CONCEN-	b. MASS	AVERAG	G TERM SE VALUE	b.NO. OF ANAL-
(if available)		PRESENT		(1) CONCENTRAT	TON (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	contin (c	ued)				L	L		i					
17P. Heptachlor Epoxide (1024-57-3)																
18P. PCB-1242 (53469-21-9)																
19P. PCB-1254 (11097-69-1)																
20P. PCB-1221 (11104-28-2)																
21P. PCB-1232 (11141-16-5)																
22P. PCB-1248 (12672-29-6)																
23P. PCB-1260 (11096-82-5)																
24P. PCB-1016 (12674-11-2)																
25P. Toxaphene (8001-35-2)																

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

TAILT TOUTING	or provide and i	COUNTS OF ACTORS	re or to arrany or o	or overy pomere								
				EFFLUENT				3. UNITS (spec	cify if blank)	4. IN	ITAKE (optiona	1)
1. POLLUTANT		M DAILY VALUE	(if ava	30 DAY VALUE pilable)	Gf avi	AVRG. VALUE	d. NO. OF	a. CONCEN-	b. MASS	AVERAG	TERM E VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	<2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon (TOC)	1.86						1	mg/l				
d. Total Suspended Solids (TSS)	4.7				4.2		2	mg/l			i	
e. Ammonia (as N)	<0.050						1	mg/l				
f. Flow	VALUE (0.045600	VALUE		VALUE	0.0287	12	MGD		VALUE		
g. Temperature (winter)	VALUE	19.7	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE			°C		VALUE		
i. pH	мінімим 7.58	махімим 7.87	MUMINIM	MAXIMUM			12	STANDARD	UNITS			

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

												1		
1. POLLUTANT	2. MA	RK 'X'				3. EFFLUENT				4. UNI	TS	<u> </u>	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 3 (if avai		c. LONG TERM (if ava		d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)	Х		0.269						1	mg/l				
b, Chlorine Total Residual		Х								:				
c, Color	Х		5.0					j	1	PCU				
d. Fecal Coliform		Х												
e. Fluoride (16984-48-8)	Х		0.263						1	mg/l				
f. Nitrate - Nitrite (as N)	Х		0.401						1	mg/l				

Outfall 012

ITEM WA	CONTINUED	FROM FRONT

		JW FRON					ilian 012							
1. POLLUTANT	2. MA					3. EFFLUENT	1 - 1 - 1 - 1 - 1		1 22	4. UNI	TS	 	5. INTAKE	11 110 00
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM	ilable)	d.NO. OF ANAL-	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
g. Nitrogen, Total Organic (as N)	Х		1.86						1	mg/l				
h. Oil and Grease		Х	1.5						2	mg/l				
I. Phosphorus (as P) Total (7723-14-0)	Х		0.0577						1	mg/l				
j. Radioactivity														
(1) Alpha, Total		Х	<5.00						1 1	pci/l				
(2) Beta, Total		Х	<5.00						1	pci/l				
(3) Radium, Total		Х	<1.00						1	pci/l				
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	Х		26.9						1	mg/l		·		
k. Sulfide (as S)		Х	<0.100						1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)		х	<50.0						1	μg/l				
p. Barium, Total (7440-39-3)	X		39.4						1	μg/l				
q. Boron, Total (7440-42-8)	Х		42.3					·	1	μg/l				
r. Cobalt, Total (7440-48-4)		Х	<1.0						1	μg/l				
s. Iron, Total (7439-89-6)	. X		52						1	μg/l				
t. Magnesium, Total (7439-95-4)	х		3920						1	μ g /l				
u. Molybdenum, Total (7439-98-7)	Х		5.4						1	μ g /l				
v. Manganese, Total (7439-96-5)	Х		6.23						1	μ g /l				
w. Tin, Total (7440-31-5)		Х	<10.0						1	μg/l				
x. Titanium, Total (7440-32-6)		х	<5.00						1	μ g /l				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

OUTFALL NUMBER

012

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C -

If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

				are 7 pages to this p	art, please rev			e (all 7 pages) for ea	ch outfall. See in	structions to					
1. POLLUTANT		2. MARK	'X'				3. EFFLUENT				4. U	NITS		TAKE (option	al)
AND CAS NUMBER	a. TEST- ING RE-	LIEVED	c. BE- LIEVED	a. MAXIMUM DA		(if ava	AY AVRG. VALUE	c. LONG TERM (if ava	lable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG	G TERM SE VALUE	b,NO. OF ANAL-
(if available)	QUIRED	<u>i</u> .	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES		ļ	(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	E, AND T	OTAL F	HENOL	.S						<u> </u>					
1M. Antimony, Total (7440-36-0)	X			<2.00						1	μg/l	<u>{</u>			
2M. Arsenic, Total (7440-38-2)	Х			<5.00						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μg/l				
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			0.021				0.012		12	mg/L				
7M. Lead, Total (7439-92-1)	Х			<2.00						1	μg/l			-	
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.00			·			1	μ g /l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l				
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μg/l				
12M. Thallium, Total (7440-28-0)	Х		,	<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			67.9						1	μg/l				
14M. Cyanide, Total (57-12-5)	Х			<10.0						1	μg/l				
15M. Phenols, Total	Х			<5.00						1	μg/l				
DIOXIN															
2,3,7,8-Tetra- chlorodibenzo-P-	X			DESCRIBE RESUL	.TS one Detec	ted				<u>-</u>					

chlorodibenzo-P-None Detected Dioxin (1764-01-6)

CONTINUED FROM PAGE 3 OF FORM 2-C

Outfall 012

1. POLLUTANT		. MARK "					3. EFFLUENT	ation o 12			4. U	NITS	5. IN	TAKE (optiona	a <i>l)</i>
AND CAS NUMBER	a. TEST-	b. BE-	c. 8E-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM : (if ava	30 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-	- 11450		G TERM SE VALUE	b.NO. OF ANAL-
(if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	UNDS											
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00		·				1	μg/l		<u> </u>		
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis <i>(Chloro-</i> <i>methyl)</i> Ether (542-88-1)	Х			Could not be	analyzed	due to high	volatility								
5V. Bromoform (75-25-2)	Х			<2.00				·		1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00						1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	Х			<2.00						1	μg/l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μ g /l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μ g /l				
11V. Chloroform (67-66-3)	Х			<2.00						1	μg/l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μ g /l				
13V. Dichloro- difluoromethane (75-71-8)	х			<2.00						1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00						1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х		-	<2.00						1	μg/l				
19V. Ethylbenzene (100-41-4)	Х			<2.00						1	μg/i				
20V. Methyl Bromide (74-83-9)	Х			<2.00				ļ		1	μg/l				-
21V. Methyl Chloride (74-87-3)	Х			<2.00						1	μ g /l				

EPA I.D. NUMBER (copy from Item 1 of Form 1) | OUTFALL NUMBER

012

CONTINUED FROM PAGE 3 OF FORM 2-C

1. POLLUTANT	2	. MARK'	X'				3. EFFLUENT				4. U	NITS		TAKE (options	al)
AND CAS NUMBER	a, TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 3 (if ava		c. LONG TERM (if ava		d.NO. OF	a. CONCEN-	b. MASS		S TERM E VALUE	b.NO. OF ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPOL	JNDS (continued)											
22V. Methylene Chloride (75-09-2)	Х			<2.00					i	1	μg/l				
23V. 1,1,2,2-Tetra- chloroethane (79-34-5)	X.			<2.00						1	μg/l				
24V. Tetrachloro- ethylene (127-18-4)	Х			<2.00						1	μg/l				
25V. Toluene (108-88-3)	Х			<2.00						1	μg/l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	Х			<2.00						1	μg/l				
27V. 1,1,1-Tri- chloroethane (71-55-6)	Х			<2.00						1	μ g /l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	Х			<2.00						1	μ g /l				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00						1	μ g /l				
30V. Trichloro- fluoromethane (75-69-4)	Х			<2.00						1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μg/l				
GC/MS FRACTION	- ACID	COMP	SUNDS												
1A. 2-Chlorophenol (95-57-8)	Х			<10.0						1	μg/l				
2A. 2,4-Dichloro- phenol (120-83-2)	Χ			<10.0						1	μg/l	_			
3A. 2,4-Dimethyl- phenol (105-67-9)	Х			<10.0						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Х			<10.0						1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.0						1	μg/l				
6A. 2-Nitrophenol (88-75-5)	Х			<10.0						1	μg/l				
7A. 4-Nitrophenol (100-02-7)	Х			<10.0						1	μg/l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.0						1	μ g /l				
9A. Pentachloro- phenol (87-86-5)	Х			<10.0						1	μg/l				
10A. Phenol (108-95-2)	Х			<10.0						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	Х			<10.0						1	μg/l			IUE ON RE	

CONTINUED FROM			<i>,,</i>					outrail 012			4. UI	UTC	E INT	'AVE /antions	10
1. POLLUTANT AND CAS	<u> </u>	MARK '					3. EFFLUENT	c. LONG TERM	AVPG VALUE	Tano or	4. 0	NI I O	a. LONG	TAKE (optiona	b,NO. OF
NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DAI		(if ava	jlable)	(if avai	lable)	d.NO. OF ANAL-	a. CONCEN-	b. MASS	AVERAG	E VALUE	ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION	<u> </u>	AVERAG (1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO	MPOUNDS								\	`	<u> </u>	
1B. Acenaphthene (83-32-9)	Х			<10.0						1	μg/l				
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μ g/ l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μg/l			}	
4B. Benzidine (92-87-5)	X			<100.0		:				1	μg/l		·		
5B. Benzo <i>(a)</i> Anthracene (56-55-3)	х			<10.0						1	μ g/i				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μg/l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	х			<10.0						1	μg/l				
8B. Benzo <i>(ghi)</i> Perylene (191-24-2)	Х			<10.0				·		1	μg/l				
9B. Benzo <i>(k)</i> Fluoranthene (207-08-9)	Х			<10.0						1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	х			<10.0						1	μg/l				
11B. Bis <i>(2-Chloro-</i> <i>ethyl)</i> Ether (111-44-4)	Х			<10.0						1	μ g /l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	х			<10.0						1	μg/l				
13B. Bis <i>(2-Ethyl-</i> <i>hexyl)</i> Phthalate (117-81-7)	Х			<10.0						1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μ g /l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0						1	μ g /l				
16B. 2-Chloro- naphthalene (91-58-7)	х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.00						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.00		·				1	μg/l			1	

EPA I.D. NUMBER (copy from Item 1 of Form 1) | OUTFALL NUMBER

012

CONTINUED FROM PAGE V-6

1. POLLUTANT		. MARK '	X'				3. EFFLUENT				4 11	NITS	5 IN	AKE (optiona	a/)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	SI Y VALUE		O DAY VALUE	c. LONG TERM	AVRG. VALUE	d.NO. OF		, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	a. LONG	TERM	b.NO. OF
NUMBER	ING RE-	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	ilahle). (2) MASS	(if ava	ilable) (2) MASS	ANAL- YSES	a. CONCEN- TRATION	b. MASS	AVERAG (1) CONCEN-	E VALUE (2) MASS	ANAL- YSES
(if available) GC/MS FRACTION					(2) NIA33	(I) CONCENTRATION	(2) MAGO	(i) CONCENTION	(2) WAGG	1555			TRATION	(2) NO 65	1353
22B. 1,4-Dichloro-				T				 		1		 	}		
benzene (106-46-7)	Х			<2.00						1	μg/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	Х			<10.0						1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0						1	μg/l				
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μg/l				
26B. Di-N-Butyl Phthalate (84-74-2)	Х			<10.0						1	μg/l				
27B. 2,4-Dinitro- toluene (121-14-2)	Х			<10.0		,				1	μg/l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0						1	μg/l				
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0			·			1	μg/l				
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	Х			<10.0						1	μg/l				
31B. Fluoranthene (206-44-0)	Х			<10.0						1	μg/l				
32B. Fluorene (86-73-7)	Х			<10.0						1	μ g /l				
33B. Hexachloro- benzene (118-74-1)	Х			<10.0						1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachloro- cyclopentadiene (77-47-4)	х			<10.0						1	μ g /l				
36B. Hexachloro- ethane (67-72-1)	Х			<10.0						1	μg/l	<u> </u>			
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	х			<10.0			,			1	μ g /l				
38B. Isophorone (78-59-1)	Х			<10.0						1	μ g/l				
39B. Naphthalene (91-20-3)	Х			<10.0						1	μg/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0						1	μ g /l				
41B. N-Nitrosodi- methylamine (62-75-9)	Х			<10.0						1	μg/l				
42B. N-Nitrosodi-N- Propylamine (621-64-7)	х			<10.0						1	μg/l				

Outfall 012 CONTINUED FROM THE FRONT 4. UNITS 3. EFFLUENT 5. INTAKE (optional) 1. POLLUTANT 2. MARK 'X' c. LONG TERM AVRG. VALUE a. LONG TERM AND CAS b. MAXIMUM 30 DAY VALUE b.NO. OF d.NO. OF b. BEc. BEa. TESTa. MAXIMUM DAILY VALUE a. CONCEN-(if available) AVERAGE VALUE NUMBER ING RE-LIEVED LIEVED (if available) ANALb. MASS ANAL-TRATION (1) CONCEN-TRATION QUIRED PRESENT ABSENT (1) CONCENTRATION (1) CONCENTRATION (1) CONCENTRATION (2) MASS (2) MASS (2) MASS YSES (if available) (2) MASS YSES GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 43B. N-Nitrosodiphenylamine Х <10.0 1 μg/l (86-30-6)44B, Phenanthrene Χ <10.0 1 μg/l (85-01-8) 45B. Pyrene Χ <10.0 1 μg/l (129-00-0) 46B. 1,2,4-Trichloro-Χ < 2.00 1 μg/l benzene (120-82-1) GC/MS FRACTION - PESTICIDES 1P. Aldrin Χ (309-00-2) 2P. α-BHC Χ (319-84-6) зр. В-внс Χ (319-85-7) 4P, γ-BHC Х (58-89-9) 5Ρ. δ-внс Х (319-86-8) 6P. Chlordane Х (57-74-9) 7P. 4.4'- DDT Х (50-29-3)8P. 4,4'- DDE Х (72-55-9)9P. 4,4'- DDD Х (72-54-8)10P. Dieldrin Х (60-57-1) 11P. α-Endosulfan Х (115-29-7) 12P. B-Endosulfan Х (115-29-7)13P. Endosulfan Х Sulfate (1031-07-8) 14P. Endrin Х (72-20-8)15P. Endrin Aldehyde Х (7421-93-4) 16P. Heptachlor Х (76-44-8)

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER 012

CONTINUED FROM PAGE V-8

CONTINUED FROM	1 PAGE	V-8			1										
1. POLLUTANT	- :	2. MARK ¹	′ Χ ′				3. EFFLUENT	·			4	1. UNITS	5. IN	NTAKE (options	ıal)
AND CAS NUMBER	a. TEST- ING RE-		c, BE- LIEVED	a. MAXIMU	UM DAILY VALUE		1 30 DAY VALUE	c. LONG TERM (if ava	M AVRG. VAL vajlable)	LUE d.NO.	a. CONCE		AVERAG	NG TERM GE VALUE	b.NO. OF ANAL-
(if available)		PRESENT			ATION (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) M	MASS YSE			(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	3 (contir	nued)											
17P. Heptachlor Epoxide (1024-57-3)			X				·								
18P. PCB-1242 (53469-21-9)			Х	<0.100	J					1	l μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100	ر					1	μg/l				
20P. PCB-1221 (11104-28-2)			Х	<0.100	ر					1	μ g /l				
21P. PCB-1232 (11141-16-5)			Х	<0.100	ر					1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100	J					1	μg/l				
23P. PCB-1260 (11096-82-5)			Х	<0.100)					1	μ g /l				
24P. PCB-1016 (12674-11-2)			Х	<0.100)					1	μ g/ l				
25P. Toxaphene			Х												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO.

PART A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

or provide and it	obdito of actions	or one analysis is	or every penale	int in this table:	Compicto one	10010 101 00	orroditan: ccc	1170 CI GOCIOTIC	o ioi additional	rotano.	
			EFFLUENT				3. UNITS (spec	cify if blank)	4. IN	NTAKE (optional	1)
	DAILY VALUE	(if ava		(if ava		d. NO. OF	a. CONCEN-	b. MASS	AVERAG		d. NO. OF
(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2)_MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	<u> </u>	(1) CONCENTRATION	(2) MASS	ANALYSES
2.00						1	mg/l				
<20.0						1	mg/l				
2.14						1	mg/l				
9.90				8.75		2	mg/l				
<0.050						1	mg/l				
VALUE C	0.005100	VALUE		VALUE 0	.001082	12	MGD		VALUE		
VALUE	18.7	VALUE		VALUE		1	°C		VALUE		
VALUE		VALUE		VALUE			°C		VALUE		
6.33	7.48					7					
	a. MAXIMUM (1) CONCENTRATION 2.00 <20.0 2.14 9.90 <0.050 VALUE VALUE MINIMUM 6.33	a. MAXIMUM DAILY VALUE (1) CONCENTRATION (2) MASS 2.00 <20.0 2.14 9.90 <0.050 VALUE 0.005100 VALUE 18.7 VALUE MINIMUM 6.33 MAXIMUM 7.48	a. MAXIMUM DAILY VALUE (1) CONCENTRATION (2) MASS (1) CONCENTRATION 2.00 <20.0 2.14 9.90 <0.050 VALUE 0.005100 VALUE 18.7 VALUE MINIMUM 6.33 7.48 b. MAXIMUM (1) CONCENTRATION VALUE VALUE MINIMUM MAXIMUM 7.48	## CONCENTRATION C2) MASS CONCENTRATION C2) MASS CONCENTRATION C2) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS C3	CONCENTRATION CONCENTRATIO	CONCENTRATION C2) MASS CONCENTRATION C2) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS	CONCENTRATION C2) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C4) MASS CONCENTRATION C5) MASS CONCENTRATION C5) MASS CONCENTRATION C5) MASS CONCENTRATION C5) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS C6	SEFFLUENT 3. UNITS (specific auxiliable) 5. LONG TERM AVRG. VALUE (if available) 6. NO. OF (if	STANDARD UNITS STAN	CONCENTRATION C2) MASS CONCENTRATION C3) MASS CONCENTRATION C3) MASS CONCENTRATION C4) MASS CONCENTRATION C5) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS CONCENTRATION C6) MASS	a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE d. NO. OF a. CONCENT b. MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS CONCENTRATION (2) MASS TRATION (2) MASS CONCENTRATION (2) MASS TRATION (2) MASS CONCENTRATION (2) MASS

PART B- Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instruction for additional details and requirements.

1. POLLUTANT	2 MA	RK 'X'				3. EFFLUENT				4. UNI	TC	T	5. INTAKE	
1. POLLOTANT	2. 1017	KK A								4. UNI	10	<u> </u>	INTANE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAII	LY VALUE	b. MAXIMUM 3 (if ava		c. LONG TERM (if ava		d.NO. OF	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF ANAL-
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)	Х		0.332						1	mg/l				
b. Chlorine Total Residual		Х												
c. Color	Х		< 5.0	· · · · · · · · · · · · · · · · ·					1	PCU				
d. Fecal Coliform		Х												
e. Fluoride (16984-48-8)	Х		0.151						1	mg/l				
f. Nitrate - Nitrite <i>(as N)</i>	X		0.368						1	mg/l				

1. POLLUTANT	2. MA	RK 'X'	·			3. EFFLUENT	iliaii 013			4. UNI	TS	ľ	5. INTAKE	
AND CAS NO.	a.	b.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM		d.NO. OF	a, CONCEN-			VERAGE VALUE	b.NO. OF
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava.	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES
g. Nitrogen, Total Organic (as N)	Х		0.116			()			1	mg/l				
h. Oil and Grease		Х	<4.0						1	mg/l				
I. Phosphorus (as P) Total (7723-14-0)	Х		0.052						1	mg/l				
j. Radioactivity	ļ,	,							1	-				
(1) Alpha, Total		Х	<5.00						1	pci/I				
(2) Beta, Total		Х	<5.00						1	pci/l		·		
(3) Radium, Total		Х	<1.00						1	pci/l				
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k. Sulfate (as SO4) (14808-79-8)	х		6.92						1	mg/l				
k. Sulfide (as S)		Х	<0.100						1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		х	<1.00						1	mg/l				
n. Surfactants		Х	< 0.050						1	mg/l				
o. Aluminum, Total (7429-90-5)		Х	< 50.0						1	μg/l				
p. Barium, Total (7440-39-3)	Х		15.5						1	μ g /l				
q. Boron, Total (7440-42-8)	Х		51.2						1	μg/l				
r. Cobalt, Total (7440-48-4)		х	<1.0	·	·				1	μ g /l				
s. Iron, Total (7439-89-6)	Х		124						1	μ g /l				
t. Magnesium, Total (7439-95-4)	Х		1740						1	μ g /l				
u. Molybdenum, Total (7439-98-7)	Х		5.53	,					1	μg/l				
v. Manganese, Total (7439-96-5)	х		< 5.00						1	μ g /l				
w. Tin, Total (7440-31-5)		Х	<10.00						1	μ g /l				
x. Titanium, Total (7440-32-6)		Х	<5.0						1	μ g /l				

PART C -If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls. and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant if you know or have reason to believe it will be discharged in concentrations of 10 ppb or greater. If you mark column 2b for acrolein, acrylonitrile, 2.4 dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

1. POLLUTANT		MARK "		are 7 pages to this p	art, please lev		3. EFFLUENT	e (all / pages) for ea	Cir Outlan. Gee ins	SHUCHOUS IC	4. UI			TAKE (optiona	al)
AND CAS NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA		b. MAXIMUM 30 D (if ava	AY AVRG. VALUE ilable)	c. LONG TERM (if avai	iable)	d.NO. OF ANAL-	a. CONCEN- TRATION	b. MASS	a. LONG AVERAG	E VALUE	b.NO. OF ANAL-
(if available)	<u> </u>	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	110111011		(1) CONCEN- TRATION	(2) MASS	YSES
METALS, CYANIDE	, AND T	OTAL P	HENOL	S			<u></u>								
1M. Antimony, Total (7440-36-0)	Х			<2.0	<u> </u>					1	μg/l				
2M. Arsenic, Total (7440-38-2)	Х			<5.0						1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500						1	μg/l				
4M. Cadmium, Total (7440-43-9)	Х			< 0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.0						1	μg/l				
6M. Copper, Total (7440-50-8)	Х			0.023			_	0.01		12	mg/L				
7M. Lead, Total (7439-92-1)	Х			<2.0						1	μg/l				
8M. Mercury, Total (7439-97-6)			Х	<0.200						1	μg/l				
9M. Nickel, Total (7440-02-0)	Х			<2.0						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00					· ·	1	μg/l			•	
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μg/l				
12M. Thallium, Total (7440-28-0)	Х			<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)	Х			0.329				0.12		11	mg/L				
14M. Cyanide, Total (57-12-5)	Х			<10.00						1	μg/l				
15M. Phenois, Total	Х			<5	 					1	μ g /l				
DIOXIN															

PAGE V-3

CONTINUE ON REVERSE

Х

2.3.7.8-Tetrachlorodlbenzo-P-

Dioxin (1764-01-6)

DESCRIBE RESULTS

None Detected

Outfall 013

1. POLLUTANT		MARK')RIVI 2-C				3. EFFLUENT	tiali 013			4. U	NITS	5. 1N	ΓΑΚΕ (optiona	al)
AND CAS	a. TEST-	b. B€-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM	30 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a. LON	3 TERM	b.NO. OF
NUMBER (if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ave	(2) MASS	(if ava	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAG (1) CONCEN- TRATION	E VALUE (2) MASS	ANAL- YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO				<u> </u>	' 	<u> </u>				TRATION		
1V. Acrolein (107-02-8)	Х			<5.00						1	μg/l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μg/l			-	
3V. Benzene (71-43-2)	Х			<2.00						1	μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)	X			Could Not	Ве	Analyzed	Due To High	Volatility							
5V. Bromoform (75-25-2)	Х			<2.00						1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	х			<2.00						1	μg/l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	х			<2.00						1	μ g /l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chioroform (67-66-3)	Х			<2.00						1	μ g /l				
12V. Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00					-	1	μg/l			·	
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00			-			1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00	i					1	μg/l	i			
19V. Ethylbenzene (100-41-4)	Х			<2.00	·					1	μ g /l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Х			<2.00				2E V 4		1	μ g /l			JUE ON DEV	

EPA I.D. NUMBER (copy from Item 1 of Form 1) | OUTFALL NUMBER

CONTINUED FROM PAGE 3 OF FORM 2-C

013

1. POLLUTANT		MARK'					3. EFFLUENT				4 11	NITS	5 IN	AKE (optiona	B
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DAI	I V VALUE	b. MAXIMUM 3	30 DAY VALUE	c. LONG TERM		d.NO. OF			a. LON	TERM	b.NO. OF
NUMBER	ING RE-		LIEVED ABSENT	<u> </u>		(if ava		(if avai		ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG		ANAL- YSES
(if available) GC/MS FRACTION	l	L		(1) CONCENTRATION JNDS (CONTINUED)	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			(1) CONCEN- TRATION	(2) MASS	1555
22V. Methylene		ATILE	JOIVIPOL		<u> </u>	 				+					\leftarrow
Chloride (75-09-2)	Х	<u> </u>		<2.00		<u> </u>				1	μ g /l				
23V. 1,1,2,2-Tetra- chloroethane (79-34-5)	Х			<2.00						1	μ g/ l				
24V. Tetrachioro- ethylene (127-18-4)	Х			<2.00						1	μ g/l				
25V. Toluene (108-88-3)	Х			<2.00						1	μg/l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	Х			<2.00						1	μ g /l				
27V. 1,1,1-Tri- chloroethane (71-55-6)	×			<2.00			,			1	μg/l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	X			<2.00						1	μg/l				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00		!				1	μg/l				
30V. Trichloro- fluoromethane (75-69-4)	х			<2.00				÷		1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μ g /l				
GC/MS FRACTION	- ACID	COMP	SDNUC				`								
1A. 2-Chlorophenol (95-57-8)	Х			<10.00						1	μg/l				
2A. 2,4-Dichloro- phenol (120-83-2)	Х			<10.00						1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	X			<10.00						1	μ g /l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Х			<10.00						1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.00		_				1	μg/l				
6A. 2-Nitrophenol (88-75-5)	Х			< 10.00						1	μg/l				
7A. 4-Nitrophenol (100-02-7)	Х			< 10.00						1	μ g /l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.00						1	μg/l				
9A. Pentachloro- phenol (87-86-5)	Х			< 10.00						1	μ g /l				
10A. Phenol (108-95-2)	Х			<10.00						1	μ g /l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	Х	·		< 10.00		·				1	μ g /l				
EPA Form 3510-20	(8-90)						PΔ	GE V-5					CONTIN	UE ON REV	/FRSE

Outfall 013

CONTINI	JED F	ROM TH	HE FRONT

1. POLLUTANT		MARK'	Χ'				3. EFFLUENT	utiali 013			4. U	NITS	5 IN	AKE (options	a/)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	II V VALUE	b. MAXIMUM 3		c. LONG TERM	AVRG. VALUE	d.NO. OF		1110	a. LONG	TERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED			(if avai		(if avai		ANAL-	a. CONCEN- TRATION	b. MASS	AVERAG (1) CONCEN-	E VALUE	ANAL-
(if available)	QUIRED	PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			TRATION	(2) MASS	YSES
GC/MS FRACTION		E/NEUT	RAL CC	MPOUNDS	·					 					
1B. Acenaphthene (83-32-9)	X			<10.0				ļ		1	μg/l		·		
2B. Acenaphtylene (208-96-8)	X			<10.0					····	1	μg/l] 	·		
3B. Anthracene (120-12-7)	X			<10.0						1	μg/l				
4B. Benzidíne (92-87-5)	Х			<100.0						1	μg/l				
5B. Benzo <i>(a)</i> Anthracene (56-55-3)	х			<10.0						1	μg/l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μ g /l				
7B. 3,4-Benzo- fluoranthene (205-99-2)	х			<10.0						1	μg/l				
8B. Benzo (ghi) Perylene (191-24-2)	х			<10.0						1	μ g /l				
9B. Benzo (k) Fluoranthene (207-08-9)	х			< 10.0						1	μ g /l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	Х			<10.0						1	μ g/l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	х			<10.0						1	μg/l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	Х			<10.0						1	μ g /l	<i>.</i>			
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	Х			<10.0						1	μ g /l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0		·				1	μ g /l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0					· — — —	1	μ g /l				
16B. 2-Chloro- naphthalene (91-58-7)	Х			<10.0						1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.0						1	μg/l				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.0						1	μg/l				

EPA I.D. NUMBER (copy from Item 1 of Form 1)

IOUTFALL NUMBER

013

CONTINUED FROM PAGE V-6

3. EFFLUENT 4. UNITS 1. POLLUTANT 2. MARK 'X' 5. INTAKE (optional) AND CAS b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE d.NO. OF a. LONG TERM b.NO, OF a. TESTb. BEc. BEa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE NUMBER ANALb. MASS ANAL-ING RE-LIEVED LIEVED TRATION (1) CONCENTRATION (1) CONCENTRATION (2) MASS (2) MASS QUIRED PRESENT ABSENT (1) CONCENTRATION (2) MASS (2) MASS YSES YSES (if available) TRATION GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 22B. 1,4-Dichloro-< 2.00 1 μg/l benzene (106-46-7) 23B, 3,3-Dichloro-Х <10.0 1 μg/l benzidine (91-94-1) 24B, Diethyl Phthalate Х <10.0 1 μg/l (84-66-2) 25B. Dimethyl Х <10.0 1 μg/l Phthalate (131-11-3) 26B. Di-N-Butyl Χ <10.0 1 μg/l Phthalate (84-74-2) 27B, 2,4-Dinitro-Χ <10.0 1 μg/l Itoluene (121-14-2) 28B. 2,6-Dinitro-Χ <10.0 1 μg/l toluene (606-20-2) 29B, Di-N-Octvl Χ 1 <10.0 μg/l Phthalate (117-84-0) 30B. 1,2-Diphenyl-<10.0 Hydrazine (as Azo-Χ 1 μg/l benzene)(122-66-7) 31B. Fluoranthene Х 1 <10.0 μg/l (206-44-0) 32B. Fluorene Χ <10.0 1 μg/l (86-73-7) 33B. Hexachloro-Х <10.0 1 μg/l benzene (118-74-1) 34B. Hexachloro-Х <10.0 1 μg/l butadiene (87-68-3) 35B. Hexachloro-<10.0 cyclopentadiene Х 1 μg/l (77-47-4) 36B. Hexachloro-Х <10.0 1 μg/l ethane (67-72-1) 37B. Indeno <10.0 1 μg/l (1,2,3-cd) Pyrene Χ 193-39-5) 38B. Isophorone Х <10.0 1 μg/l (78-59-1) 39B. Naphthalene Х <10.0 1 μg/l (91-20-3) 40B. Nitrobenzene <10.0 μg/l (98-95-3) 41B. N-Nitrosodi-<10.0 1 μg/l methylamine Х (62-75-9) 42B. N-Nitrosodi-N-<10.0 Propylamine 1 μg/l (621-64-7)

Outfall 013 CONTINUED FROM THE FRONT 3. EFFLUENT 4. UNITS 5. INTAKE (optional) 1. POLLUTANT 2. MARK 'X' AND CAS b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG. VALUE d.NO. OF a. LONG TERM b.NO. OF b. BEc. BEa, TESTa. MAXIMUM DAILY VALUE a. CONCEN-AVERAGE VALUE NUMBER (if available) (if available) b. MASS ING RE-LIEVED LIEVED ANAL-ANAL-TRATION QUIRED (1) CONCENTRATION (1) CONCEN-PRESENT ABSENT (2) MASS (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS (2) MASS (if available) YSES YSES GC/MS FRACTION - BASE/NEUTRAL COMPOUNDS 43B. N-Nitro-< 10.0 sodiphenylamine Χ 1 μg/l (86-30-6) 44B. Phenanthrene Χ < 10.0 μg/i (85-01-8) 45B. Pyrene Х < 10.0 1 μg/l (129-00-0) 46B, 1,2,4-Trichloro-< 2.00 μg/l benzene (120-82-1) GC/MS FRACTION - PESTICIDES 1P. Aldrin Χ (309-00-2)2P. α-BHC Х (319-84-6) зр. В-внс Χ (319-85-7)4P. γ-BHC Χ (58-89-9) 5P. δ-BHC Χ (319-86-8) 6P. Chlordane Χ (57-74-9) 7P. 4,4'- DDT Х (50-29-3)8P. 4.4'- DDE Х (72-55-9) 9P. 4.4'- DDD Χ (72-54-8) 10P. Dieldrin Х (60-57-1) 11P. α-Endosulfan Χ (115-29-7) 12P. β-Endosulfan Χ (115-29-7) 13P. Endosulfan Χ Sulfate (1031-07-8) 14P. Endrin Χ (72-20-8) 15P. Endrin Aldehyde Χ (7421-93-4)

Χ

16P. Heptachlor

(76-44-8)

OUTFALL NUMBER EPA I.D. NUMBER (copy from Item 1 of Form 1)

013

CONTINUED FROM	/ PAGE	_V-8						010							
1. POLLUTANT		2. MARK '	'X'		·		3. EFFLUENT				4. U	JNITS	5. IN	NTAKE (options	ıal)
AND CAS NUMBER	a. TEST- ING RE-		c. BE- LIEVED	a. MAXIMUM DA	AILY VALUE		l 30 DAY VALUE vajlable)		M AVRG. VALUE ajlable)	d.NO. OF	a. CONCEN-	b. MASS	AVERAG	NG TERM GE VALUE	b.NO. OF ANAL-
(if available)		PRESENT			(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	S (contir	ıued)					<u></u>						
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			Х	<0.100						1	μ g /l				
19P. PCB-1254 (11097-69-1)			Х	<0.100						1	μg/l				
20P. PCB-1221 (11104-28-2)			Х	<0.100						1	μ g /l				
21P. PCB-1232 (11141-16-5)			Х	<0.100						1	μg/l		,		
22P. PCB-1248 (12672-29-6)			Х	<0.100						1	μ g /l				
23P. PCB-1260 (11096-82-5)			Х	<0.100	·					1	μg/l				
24P. PCB-1016 (12674-11-2)			Х	<0.100						1	μg/l		1		
25P. Toxaphene (8001-35-2)			X												
							,	DACEVA							

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO. 014

PART A - You mu	st provide the r	esults of at lea	st one analysis t	or every polluta	ant in this table.	Complete one	table for ea	ch outfall. See	instruction	s for additional o	letails.	
				EFFLUENT				3. UNITS (spec	cify if blank)	4. 10	ITAKE (optiona	1)
1. POLLUTANT		A DAILY VALUE	(if av	30 DAY VALUE	(if ava	I AVRG. VALUE ailable)	d. NO. OF	a. CONCEN-	b. MASS		TERM E VALUE	d. NO. OF
	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION		(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Oxygen Demand (BOD)	2.00						1	mg/l				
b. Chemical Oxygen Demand (COD)	<20.0						1	mg/l				
c. Total Organic Carbon <i>(TOC)</i>	2.46						1	mg/l				
d. Total Suspended Solids <i>(TSS)</i>	3.1						1	mg/l				
e. Ammonia (as N)	0.126						1	mg/l				
f. Flow	VALUE	0.292603	VALUE	 	VALUE 0.	1003524	12	MGD		VALUE		
g. Temperature (winter)	VALUE	14.7	VALUE		VALUE		1	°C		VALUE		
h. Temperature (summer)	VALUE		VALUE		VALUE		. 0.3	°C		VALUE		
I. pH	MINIMUM 6.80	махімим 7.58	MUMINIM	MAXIMUM			12	STANDARI	UNITS			

Mark "X" in column 2-a for each pollutant you know or have reason to believe is present. Mark "X" in column 2-b for each pollutant you believe to be absent. If you mark column 2a for any pollutant which is limited either directly, or indirectly but expressly, in an effluent limitations guideline, you must provide the results of at least one analysis for that pollutant. For other pollutants for which you mark column 2a, you must provide quantitative data or an explanation of their presence in your discharge. Complete one table for each outfall. See the instructios for additional details and requirements.

1. POLLUTANT	2. MA	RK 'X'				3. EFFLUENT				4. UNI	TS	5	. INTAKE	
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DAIL	LY VALUE	b. MAXIMUM 3 (if avai		c. LONG TERM . (if evair		d.NO. OF	a. CONCEN-	b. MASS	a. LONG TERM A	VERAGE VALUE	b.NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCENTRATION	(2) MASS	YSES
a. Bromide (24959-67-9)	Х		0.302						1	mg/l				
b. Chlorine Total Residual		Х	<0.01				<0.01		12	mg/l				
c. Color	Х		15.0			-			1	PCU				
d. Fecal Coliform		Х												
e. Fluoride (16984-48-8)	Х		0.143						1	mg/l				
f. Nitrate - Nitrite (as N)	х		1.03						1	mg/l				

Outfall 014

1. POLLUTANT	2. MA	RK 'X'	<u> </u>			3. EFFLUENT	itiali 0 14	 		4. UNI	TS		5. INTAKE	
AND CAS NO.		b. BELIEVED	a, MAXIMUM DA	II V VALUE	b. MAXIMUM 3	0 DAY VALUE	c. LONG TERM AVRG	. VALUE (if	d.NO. OF		<u> </u>	 	AVERAGE VALUE	b.NO. OF
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES
g. Nitrogen, Total Organic (as N)	х		0.293		.,,	(4)			1	mg/i				1923
h. Oil and Grease		Х	1.13						1	mg/l				
I. Phosphorus (as P) Total (7723-14-0)	Х		4.23				1.76		12	mg/l				
j. Radioactivity														
(1) Alpha, Total		Х	<5.00						1	pci/l				
(2) Beta, Total		Х	<5.00						1	pci/I				
(3) Radium, Total		Х	<1.00						1	pci/l				
(4) Radium 226, Total		Х	<1.00						1	pci/l				
k, Sulfate (as SO4) (14808-79-8)	Х		7.01						1	mg/l				
k. Sulfide (as S)		Х	<0.100						1_1	mg/l				
m. Sulfite (as SO3) (14265-45-3)		Х	<1.00						1	mg/l				
n. Surfactants		Х	<0.050						1	mg/l				
o. Aluminum, Total (7429-90 - 5)	Х		52.9						1	μ g/ ί				
p. Barium, Total (7440-39 - 3)	х		13.4						1	μ g /l				
q. Boron, Total (7440-42-8)	Х		43.2						1	μ g /l	<u>.</u>			
r. Cobalt, Total (7440-48-4)		х	<1.00						1	μ g /l				
s. Iron, Total (7439-89 - 6)	Х		144						1	μg/l				
t. Magnesium, Total (7439-95-4)	Х		1510						1	μg/l				
u. Molybdenum, Total (7439-98-7)	Х		4.76						1	μ g /l				
v. Manganese, Total (7439-96-5)	Х		15						1	μg/l				
w. Tin, Total (7440-31-5)	Х		5.2						1	μ g /l				
x. Titanium, Total (7440-32-6)		Х	<5.0						1	μ g /l				

CONTINUED FROM PAGE 3 OF FORM 2-C

PART C -

If you are a primary industry and this outfall contains process wastewater, refer to Table 2c-2 in the instructions to determine which of the GC/MS fractions you must test for. Mark "X" in column 2-a for all such GC/MS fractions that apply to your industry and for ALL toxic metals, cyanides, and total phenols. If you are not required to mark column 2-a (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions) mark "X" in column 2-b for each pollutant you know or have reason to believe is present. Mark "X" in column 2-c for each pollutant you believe is absent. If you mark column 2a for any pollutant, you must provide the results of at least one analysis for that pollutant. If you mark column 2b for any pollutant, you must provide the results of at least one analysis for that pollutant if you mark column 2b for acrolein, acrylonitrile, 2-d dinitrophenol, or 2-methyl-4, 6 dinitrophenol, you must provide the results of at least one analysis for each of these pollutants which you know or have reason to believe that you discharge in concentrations of 100 ppb or greater. Otherwise, for pollutants for which you mark column 2b, you must either submit at least one analysis or briefly describe the reasons the pollutant is expected to be discharged. Note that there are 7 pages to this part, please review each carefully. Complete one table (all 7 pages) for each outfall. See instructions for additional details and requirements.

				are / pages to this p	aπ, piease re			e (aii / pages) for ea	ch outrail. See in	structions to				EA16E (:	- 11
1. POLLUTANT		2. MARK	Χ,				3. EFFLUENT	····			4. U	NITS		TAKE (option	
AND CAS NUMBER	a. TEST-		c. BE- LIEVED ABSENT	a. MAXIMUM DA		(if ava		c. LONG TERM (if avai	ilable)	d.NO. OF	a. CONCEN- TRATION	b. MASS		G TERM E VALUE	b.NO. Of
(if available) METALS, CYANIDE		1	L	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	<u> </u>	ļ	TRATION	(2) MASS	YSES
1M. Antimony,	T	J	TILINOL	<u> </u>		 			· · · · · · · · · · · · · · · · · · · ·	 	ļ <u></u> -				
Total (7440-36-0)	X			<2.00						1	μg/l				
2M. Arsenic, Total (7440-38-2)	X			<5.00		!				1	μg/l				
3M. Beryllium, Total (7440-41-7)	Х			<0.500	i					1	μg/l			,	
4M. Cadmium, Total (7440-43-9)	Х			<0.100						1	μg/l				
5M. Chromium, Total (7440-47-3)	Х			<3.00						1	μ g /l				
6M. Copper, Total (7440-50-8)	Х			1.32						1	μ g /l				
7M. Lead, Total (7439-92-1)	Х			<2.0						1	μ g /l				
8M. Mercury, Total (7439-97-6)	Х			<0.500						2	ng/i				
9M. Nickel, Total (7440-02-0)	Х			<2.00						1	μg/l				
10M. Selenium, Total (7782-49-2)	Х			<5.00						1	μg/l				
11M. Silver, Total (7440-22-4)	Х			<1.00						1	μg/l				
12M. Thallium, Total (7440-28-0)	Х			<0.500						1	μg/l				
13M. Zinc, Total (7440-66-6)		Х		5.57						1	μ g /l				
14M. Cyanide, Total (57-12-5)	Х			<10.00						1	μ g /l				
15M. Phenols, Total		Х		7.26						1	μ g/i				
DIOXIN							····								
2,3,7,8-Tetra- chlorodibenzo-P-	Х			DESCRIBE RESUL	тs one Detec	ted									

Dioxin (1764-01-6)

\bigcirc	itfal	104	
- UI	mai	HUT	4

1. POLLUTANT	_	. MARK '					3. EFFLUENT	itian 014			4. U	NITS	5. IN	TAKE (optiona	al)
AND CAS	a. TEST-	b. BE-	c, BE-	a. MAXIMUM DA	II Y VALUE		30 DAY VALUE	c. LONG TERM		d.NO. OF	a. CONCEN-		a. LON	G TERM	b.NO. OF
NUMBER (if available)	ING RE-	LIEVED	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ave	(2) MASS	(if ava	(2) MASS	ANAL- YSES	TRATION	b. MASS	(1) CONCEN-	E VALUE (2) MASS	ANAL- YSES
GC/MS FRACTION			<u> </u>		(2) 115 (33	(I) CONCENTION	(4) 1	(1) 55/152	(=)	1025		<u> </u>	TRATION	(6) /	
1V. Acrolein (107-02-8)	Х			<5.00						1	μ g /l				
2V. Acrylonitrile (107-13-1)	Х			<5.00						1	μg/l				
3V. Benzene (71-43-2)	Х	_		<2.00						1	μg/l				
4V. Bis (Chloro- methyl) Ether (542-88-1)	×			Could Not	Ве	Analyzed	Due To High	Volatility							
5V. Bromoform (75-25-2)	Х			<2.00					:	1	μg/l				
6V. Carbon Tetrachloride (56-23-5)	Х			<2.00						1	μ g /l				
7V. Chlorobenzene (108-90-7)	Х			<2.00						1	μg/l				
8V. Chlorodi- bromomethane (124-48-1)	Х			<2.00						1	μg/l				
9V. Chloroethane (75-00-3)	Х			<2.00						1	μg/l				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	Х			<5.00						1	μg/l				
11V. Chloroform (67-66-3)	Х			<2.00					-	1	μg/l				
12V, Dichloro- bromomethane (75-27-4)	Х			<2.00						1	μg/l				
13V. Dichloro- difluoromethane (75-71-8)	Х			<2.00						1	μg/l				
14V. 1,1-Dichloro- ethane (75-34-3)	Х			<2.00						1	μg/l				
15V. 1,2-Dichloro- ethane (107-06-2)	Х			<2.00						1	μg/l				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х			<2.00	 					1	μg/l				
17V. 1,2-Dichloro- propane (78-87-5)	Х			<2.00						1	μg/l				
18V. 1,3-Dichloro- propylene (542-75-6)	Х			<2.00						1	μ g /l				
19V. Ethylbenzene (100-41-4)	Х			<2.00						1	μg/l				
20V. Methyl Bromide (74-83-9)	Х			<2.00						1	μg/l				
21V. Methyl Chloride (74-87-3)	Χ			<2.00						1	μg/l				
EDA Form 3510-20						<u> </u>	I. BA	3E V-4	<u> </u>	<u> </u>		L	CONTI	ILLE ON DE	<u> </u>

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

014

CONTINUED FROM PAGE 3 OF FORM 2-C

1. POLLUTANT	7	2. MARK 'X	χ'				3. EFFLUENT				4. U	JNITS	5. IN	TAKE (option	ial)'
AND CAS	a. TEST-		c. BE-	a. MAXIMUM DAI	Y VALUE		30 DAY VALUE		M AVRG. VALUE	d.NO. OF			a. LON	NG TERM	b.NO. OF
NUMBER	ING RE-	LIEVED	LIEVED		,		ailable)		ailable)	ANAL-	TRATION	b. MASS	(1) CONCEN-	GE VALUE	ANAL-
(if available)		. L	I	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES			TRATION	(2) MASS	YSES
GC/MS FRACTION	- VOL	ATILE C	OMPO	JNDS (continued)		<u> </u>		'							 '
22V. Methylene Chloride (75-09-2)	X		'	<2.00						1	μ g /l				
23V. 1,1,2,2-Tetra-	[v '	<u> </u>	ſ '	12.00	1	· ['	1	+	1		- "	-			7
chloroethane (79-34-5)	X	<u> </u>	<u> </u>	<2.00						1	μg/l				<u> </u>
24V. Tetrachloro- ethylene (127-18-4)	X	<u> </u>		<2.00	1	,				1	μg/l				/
25V. Toluene (108-88-3)	Х			<2.00	l					1	μg/l				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	х			<2.00						1	μg/l			,	
27V. 1,1,1-Tri- chloroethane (71-55-6)	х			<2.00						1	μg/l				
28V. 1,1,2-Tri- chloroethane (79-00-5)	х			<2.00						1	μg/l				
29V. Trichloro-ethylene (79-01-6)	Х			<2.00						1	μ g/l				
30V. Trichloro- fluoromethane (75-69-4)	х			<2.00	·					1	μg/l				
31V. Vinyl Chloride (75-01-4)	Х			<2.00						1	μg/l				7
GC/MS FRACTION	- ACID	COMPC	SUNDS		/										
1A. 2-Chlorophenol (95-57-8)	Х			<10.0	1			-		1	μ g /l				
2A. 2,4-Dichloro- phenol (120-83-2)	Х			<10.0	(1	μg/l				
3A. 2,4-Dimethyl- phenol (105-67-9)	Х			<10.0						1	μg/l				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	Х			<10.0	1					1	μg/l				
5A. 2,4-Dinitro- phenol (51-28-5)	Х			<50.0	1					1	μg/l				
6A, 2-Nitrophenol (88-75-5)	Х			<10.0	 [1	μg/l				
7A. 4-Nitrophenol (100-02-7)	Х			<10.0						1	μg/l				
8A. P-Chloro-M- Cresol (59-50-7)	Х			<10.0						1	μg/l				
9A. Pentachioro- phenoi (87-86-5)	X			<10.0						1	μg/l				
10A. Phenol (108-95-2)	Х			<10.0						1	μg/l				
11A. 2,4,6-Tri- chlorophenol (88-06-2)	х			<10.0						1	μg/l				

CONTINUED FROM THE FRONT Outfall 014

1. POLLUTANT	2. MARK 'X'					3. EFFLUENT	utraii 014	 		4 7 1	NITS	E 1417	TAKE (options	20	
1. POLLUTANT AND CAS						b. MAXIMUM 3		c, LONG TERM	AVRG VALUE	d.NO. OF		O I I	a. LONG		b.NO. OF
NUMBER	a. TEST- ING RE-	b. BE- LIEVED	c. BE- LIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3	ilable)	(if ava	ilahle)	d.NO. OF	a. CONCEN-	b. MASS	AVERAG	F VALUE	ANAL-
(if available)		PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- BAS	E/NEUT	RAL CO	OMPOUNDS							-				
1B. Acenaphthene (83-32-9)	Х			<10.0		·				1	μg/l				
2B. Acenaphtylene (208-96-8)	Х			<10.0						1	μg/l				
3B. Anthracene (120-12-7)	Х			<10.0						1	μg/l				
4B. Benzidine (92-87-5)	Х			<100.0						1	μg/l				
5B. Benzo (a) Anthracene (56-55-3)	Х			<10.0						1	μ g /l				
6B. Benzo <i>(a)</i> Pyrene (50-32-8)	Х			<10.0						1	μg/l	,			
7B. 3,4-Benzo- fluoranthene (205-99-2)	Х			<10.0						1	μg/l				
8B. Benzo <i>(ghi)</i> Perylene (191-24-2)	Х			<10.0						1	μg/i				
9B. Benzo (k) Fluoranthene (207-08-9)	Х			<10.0					<u>-</u>	1	μg/l				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	х			<10.0						1	μg/l				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	х			<10.0						1	μg/l				
12B. Bis (2-Chloroiso- propyl) Ether (102-60-1)	х			<10.0						1	μg/l				
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	Х			<10.0						1	μg/l				
14B.4-Bromo- phenyl Phenyl Ether (101-55-3)	Х			<10.0						1	μg/l				
15B. Butyl Benzyl Phthalate (85-68-7)	Х			<10.0					,	1	μg/l				
16B. 2-Chloro- naphthalene (91-58-7)	Х			<10.0	,					1	μg/l				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	Х			<10.0						1	μg/l				
18B. Chrysene (218-01-9)	Х			<10.0						1	μg/l				
19B. Dibenzo (a, h) Anthracene (53-70-3)	Х			<10.0						1	μg/l				
20B. 1,2-Dichloro- benzene (95-50-1)	Х			<2.0						1	μg/i				
21B. 1,3-Dichloro- benzene (541-73-1)	Х			<2.0						1	μ g /l				

EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

CONTINUED FROM PAGE V-6

014

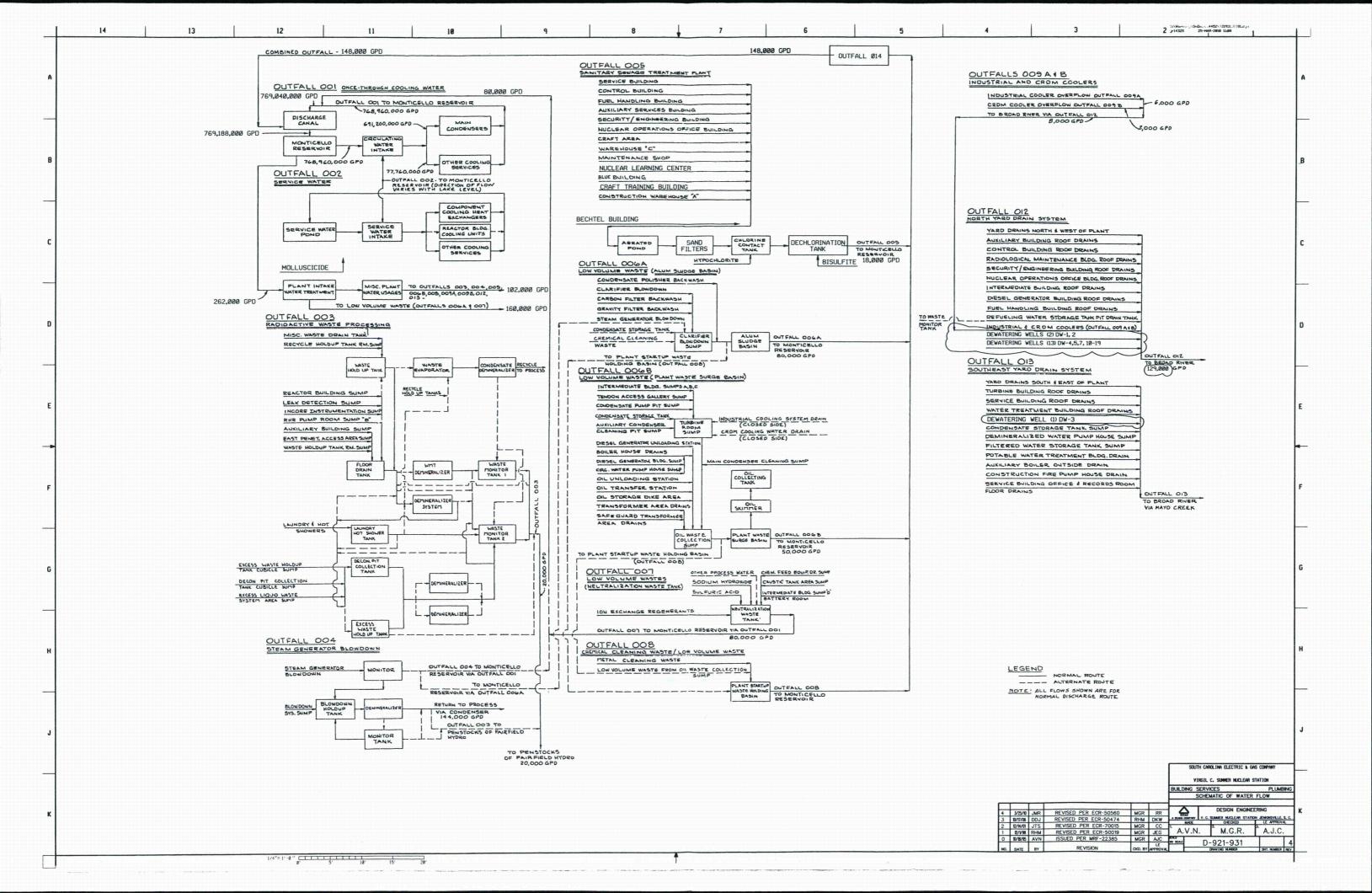
1. POLLUTANT		/-b MARK ')	C'				3. EFFLUENT		<u> </u>		4. U	NITS	5. IN	TAKE (options	ai)
AND CAS	a. TEST-	b. BE-	c. BE-	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-		a. LON	G TERM	b.NO. OF
NUMBER (if available)	ING RE- QUIRED	LIEVED PRESENT	LIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(if ava	(2) MASS	(1) CONCENTRATION	(2) MASS	ANAL- YSES	TRATION	b. MASS	AVERAC (1) CONCEN-	(2) MASS	ANAL- YSES
GC/MS FRACTION	- BASI	=/NEUT								1			TRATION		1 1000
22B. 1,4-Dichloro- benzene (106-46-7)	Х			<2.00						1	μ g/l				
23B. 3,3-Dichloro- benzidine (91-94-1)	Х			<10.0			·			1	μg/l				
24B. Diethyl Phthalate (84-66-2)	Х			<10.0						1	μg/l			,	
25B. Dimethyl Phthalate (131-11-3)	Х			<10.0						1	μ g /l				
26B. Di-N-Butyl Phthalate (84-74-2)	Х			<10.0						1	μ g/l				
27B. 2,4-Dinitro- toluene (121-14-2)	Χ			<10.0						1	μg/l				
28B. 2,6-Dinitro- toluene (606-20-2)	Х			<10.0						1	μg/l			_	
29B. Di-N-Octyl Phthalate (117-84-0)	Х			<10.0						1	μg/l				
30B. 1,2-Diphenyl- Hydrazine (as Azo- benzene)(122-66-7)	Х			<10.0	_					1	μg/l				
31B. Fluoranthene (206-44-0)	Х			<10.0						1	μ g /l				
32B. Fluorene (86-73-7)	Х			<10.0						1	μg/l				
33B. Hexachloro- benzene (118-74-1)	Х			<10.0						1	μg/l				
34B. Hexachloro- butadiene (87-68-3)	Х			<10.0						1	μg/l				
35B. Hexachloro- cyclopentadiene (77-47-4)	Х			<10.0						1	μg/l				
36B. Hexachloro- ethane (67-72-1)	Х			<10.0						1	μg/l				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	х			<10.0						1	μg/l				
38B. Isophorone (78-59-1)	Х			<10.0						1	μg/l				
39B. Naphthalene (91-20-3)	Х			<10.0						1	μg/l				
40B. Nitrobenzene (98-95-3)	Х			<10.0					_	1	μg/l				
41B. N-Nitrosodi- methylamine (62-75-9)	Х			<10.0						1	μ g /l				
42B. N-Nitrosodi-N- Propylamine (621-64-7)	Х			<10.0						1	μ g /l				

CONTINUED FROM									Outfall 0	14		NIXO.	5 (1)	TARE Confine	. 0
1. POLLUTANT AND CAS		. MARK '				b. MAXIMUM 3	3. EFFLUENT	c. LONG TERM	AVRG VALUE	d.NO. OF		NITS		TAKE (option	b.NO. OF
NUMBER (if available)	a. TEST- ING RE- QUIRED	b. BE- LIEVED PRESENT	c. BE- LIEVED ABSENT	a, MAXIMUM DA	(2) MASS	(if ava		(if avail		ANAL- YSES	a. CONCEN- TRATION	b. MASS	AVERAG	E VALUE (2) MASS	ANAL- YSES
GC/MS FRACTION					(-)	(,,	(2)	.,	(-)	1020			TRATION	(-,	1.020
43B. N-Nitro-							-								
sodiphenylamine (86-30-6)	X			<10.0						1	μg/l				
44B. Phenanthrene (85-01-8)	X			<10.0						1	μg/l				
45B. Pyrene (129-00-0)	Х			<10.0						1	μg/l				
46B. 1,2,4-Trichloro- benzene (120-82-1)	Х			<2.00						1	μg/l				
GC/MS FRACTION	- PEST	ICIDES						<u> </u>							
1P. Aldrin (309-00-2)			Х												
2P. α-BHC (319-84-6)			Х												
3P. β-BHC (319-85-7)			Χ	,											
4P. γ-BHC (58-89-9)			Х												
5P. δ-BHC (319-86-8)			Х												
6P. Chlordane (57-74-9)			Χ												
7P. 4,4'- DDT (50-29-3)			Х												
8P. 4,4'- DDE (72-55-9)			Х												
9P. 4,4'- DDD (72-54-8)			Χ												
10P. Dieldrin (60-57-1)			Х												
11P. α-Endosulfan (115-29-7)			Х												
12P. β-Endosulfan (115-29-7)			Х												
13P. Endosulfan Sulfate (1031-07-8)			Х												
14P. Endrin (72-20-8)			Х												,
15P. Endrin Aldehyde			Х												_

Χ

16P. Heptachlor (76-44-8) EPA I.D. NUMBER (copy from Item 1 of Form 1) OUTFALL NUMBER

CONTINUED FROM PAGE V-8


014

CONTINUED FROM	PAGE	V-8													
1. POLLUTANT	2	MARK'	Χ'				3. EFFLUENT				4. U	NITS	5. IN	TAKE (option	ial)
AND CAS NUMBER	a. TEST- ING RE-		c. BE- LIEVED	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 3		c. LONG TERM		d.NO. OF	a. CONCEN-	b. MASS	AVERAG	G TERM E VALUE	b.NO. Of ANAL-
(if available)	QUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	YSES	TRATION		(1) CONCEN- TRATION	(2) MASS	YSES
GC/MS FRACTION	- PES	TICIDES	6 (contin	ued)											
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			Х	<0.100						1	μg/l				
19P. PCB-1254 (11097-69-1)			Х	<0.100						1	μg/l			-	
20P. PCB-1221 (11104-28-2)			Х	<0.100						1	μ g/l				
21P. PCB-1232 (11141-16-5)			Х	<0.100						1	μg/l				
22P. PCB-1248 (12672-29-6)			Х	<0.100						1	μg/l				
23P. PCB-1260 (11096-82-5)			Х	<0.100						1	μ g /l				
24P. PCB-1016 (12674-11-2)			Х	<0.100						1	μg/l				
25P. Toxaphene (8001-35-2)			Х												

PAGE V-9

SC DHEC Attachment III LTD 286, CR-11-05986 RC-12-0019 Page 1 of 12

FORM 2C ITEM IIA

TABULATION FOR CHEMICALS USED IN VARIOUS SYSTEMS

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
D-302-011	Main Steam (Nuclear)	Ammonia Hydrazine Methoxypropylamine Carbohydrazide	006B 003 008 014
D-302-012	Main Steam (Non- Nuclear)	Boron (Boric Acid) Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-014	Main and Reheat Steam (Non-Nuclear)	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-031	Main Steam Dump System	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-041	Extraction Steam	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-051	Auxiliary Steam	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 003 008 014
D-302-081	Feedwater (Non-Nuclear)	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-082	Feedwater (Non-Nuclear)	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-083	Feedwater (Nuclear)	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 003 008 014

FLOW	TITLE	CHEMICAL USED	OUTFALL
DIAGRAM		IN SYSTEM	0000
D-302-085	Emergency Feedwater	Ammonia	006B
	(Nuclear)	Hydrazine	003
		Methoxypropylamine	008
,		Carbohydrazide	014
		Boron (Boric Acid)	
D-302-101	Condensate	Ammonia	006B
		Hydrazine	008
	\	Methoxypropylamine	014
		Carbohydrazide	1
		Boron (Boric Acid)	
D-302-102	Condensate-Auxiliary	Ammonia	006B
	Condensers and Blowdown	Hydrazine	008
	Heat Exhangers	Methoxypropylamine	014
		Carbohydrazide	
<u> </u>		Boron (Boric Acid)	
D-302-103	Condensate Polishers	Ammonia	006B
		Hydrazine	008
		Methoxypropylamine	006A
		Carbohydrazide	014
		Boron (Boric Acid)	
D-302-111	High Pressure Heater Drips,	Ammonia	006B
	Vents and Reliefs	Hydrazine	800
		Methoxypropylamine	014
		Carbohydrazide	
		Boron (Boric Acid)	
D-302-112	High Pressure Heater Drips,	Ammonia	006B
	Vents and Reliefs	Hydrazine	008
		Methoxypropylamine	014
		Carbohydrazide	
		Boron (Boric Acid)	
D-302-113	Low Pressure Heater Drips,	Ammonia	006B
	Vents and Reliefs	Hydrazine	008
		Methoxypropylamine	014
		Carbohydrazide	
		Boron (Boric Acid)	
D-302-121	Main Steam Drains	Ammonia	006B
}		Hydrazine	800
		Methoxypropylamine	014
		Carbohydrazide	
		Boron (Boric Acid)	
D-302-122	Feed Pump Start-Up,	Ammonia	006B
	Extraction and Misc. Steam	Hydrazine	008
	Drains	Methoxypropylamine	014
		Carbohydrazide	
		Boron (Boric Acid)	

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
D-302-123	Misc. Steam Drains	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-124	Extraction Steam Drains	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-125	Scavenging Steam Drains	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-131	Condenser Air Removal	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-141	Turbine Gland Steam	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-161	Pretreatment and Sterile Water	Zinc Sulfate (Betz MS-200P) Soda Ash Aluminum Sulfate Gaseous Chlorine Clay, Polymer (Betz 1190) Tetrasodium Pyrophosphate (Betz-30K) Sodium Bicarbonate	006B 008 014
D-302-163	Cycle Makeup Demineralizers	Sodium Hydroxide Sulfuric Acid	007 001
D-302-165	Condensate Polishing	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006A 006B 008 014
D-302-171	Chemical Feed Condensate Steam Generator Standby	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014

FLOW	TITLE	CHEMICAL USED	OUTFALL
DIAGRAM D-302-172	Chemical Feed Auxiliary	IN SYSTEM Ammonia	006B
	Boiler and Ammonia Storage	Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	008 014
D-302-181	Turbine Cycle Sampling	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-182	Generator Sampling and Turbine Cycle Sample Rack And Recorder – Analyzer Panel	Ammonia Hydrazine Methoxypropylamine Carbohydrazide Boron (Boric Acid)	006B 008 014
D-302-221 D-302-222	Service Water	Chlorine Sodium Hypochlorite Zinc Sulfate (Betz MS-200P) Spectrus CT1300 Polymer (Betz 1190) Sodium Metasilicate Betz Depositrol (PY5206) Betz Dianodic (DN2300) Betz Flowgard (MS6201)	003 Service Water Pond
D-302-224	Turbine Room Closed Cycle Cooling Water	Calgon-CS (Sodium Nitrate/ Sodium Borate)	006B 008 014
D-302-281	Fuel Oil	BIOBOR JF	006B 008 014
D-302-351	Diesel Generator – Fuel Oil	BIOBOR JF	006B 008 014
D-302-601	Reactor Coolant	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
D-302-602	Reactor Coolant	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
E-302-603	Reactor Coolant	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine	003
E-302-604	Reactor Coolant	(during shutdown) Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
E-302-605	Reactor Coolant	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
D-302-611	Component Cooling	Potassium Chromate Potassium Hydroxide Potassium diChromate	003
	<u>"Drain Permit Required</u> due to Chemicals used"	Alternate Treatment 1 Sodium Nitrite Boric Acid Sodium Bicarbonate Benzotriazole Calgon H-303 Calgon H-450 Alternate Treatment 2 Sodium Molybdate Dihydrate Sodium Nitrite Benzotriazole Hydroxyethylidenediphosphon ate (HEDP) Polyacrylate	003

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
D-302-612	Component Cooling System Inside Reactor Building "Drain Permit Required due to Chemicals used"	Potassium Chromate Potassium Hydroxide Potassium diChromate Alternate Treatment 1 Sodium Nitrite Boric Acid Sodium Bicarbonate Benzotriazole Calgon H-303 Calgon H-450 Alternate Treatment 2 Sodium Molybdate Dihydrate Sodium Nitrite Benzotriazole Hydroxyethylidenediphosphon ate (HEDP)	003
D-302-613	Component Cooling System Non-Essential Equipment Cooling	Polyacrylate Potassium Chromate Potassium Hydroxide Potassium diChromate	003
D-302-613 (cont'd)		Alternate Treatment 1 Sodium Nitrite Boric Acid Sodium Bicarbonate Benzotriazole Calgon H-303 Calgon H-450	
	<u>"Drain Permit Required</u> due to Chemicals used"	Alternate Treatment 2 Sodium Molybdate Dihydrate Sodium Nitrite Benzotriazole Hydroxyethylidenediphosphon ate (HEDP) Polyacrylate	

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
D-302-614	Component Cooling System To NSSS Pumps	Potassium Chromate Potassium Hydroxide Potassium diChromate	003
	"Drain Permit Required due to Chemicals used"	Alternate Treatment 1 Sodium Nitrite Boric Acid Sodium Bicarbonate Benzotriazole Calgon H-303 Calgon H-450	
		Alternate Treatment 2 Sodium Molybdate Dihydrate Sodium Nitrite Benzotriazole Hydroxyethylidenediphosphon ate (HEDP) Polyacrylate	
E-302-641	Residual Heat Removal	Boric Acid, Lithium Hydroxide, Hydrogen Peroxide, Hydrazine	003
D-302-651	Spent Fuel Cooling	Boric Acid	003
D-302-661	Reactor Building Spray System "Drain Permit Required due to Chemicals used"	Sodium Hydroxide	003 007 001
E-302-671	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
E-302-672	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
E-302-673	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine	003
		(during shutdown)	<u> </u>

FLOW DIAGRAM	TITLE	CHEMICAL USED IN SYSTEM	OUTFALL
E-302-674	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
E-302-675	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003
E-302-676	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown) BTRS Chill Water -Potassium Chromate -Potassium diChromate -Potassium Hydroxide Alternate 1 Sodium Molybdate Dihydrate Sodium Nitrite Benzotriazole Hydroxyethylidenediphosphate	003
		(HEDP) Polyacrylate Alternate 2 Sodium Nitrite Borax Sodium Bicarbonate Calgon H-303 Calgon H-450 Benzotriazole	
E-302-677	Chemical and Volume Control	Lithium Hydroxide Boron (Boric Acid) Hydrogen Peroxide (during shutdown) Hydrazine (during shutdown)	003

FLOW	TITLE	CHEMICAL USED	OUTFALL
DIAGRAM	 	IN SYSTEM	1000
E-302-691	Safety Injection	Boric Acid	003
E-302-692	Safety Injection	Boric Acid	003
E-302-693	Safety Injection	Boric Acid	003
D-302-734	Excess Liquid Waste Processing and Storage	Sodium Hydroxide Boron (Boric Acid)	003
	System](
	- Cycle	Duratek	
		IRN-77 resin	
	,	IRN-78 resin	
		IRN-150 media and solution	,
E-302-735	Waste Processing	Sodium Hydroxide	003
	· · · · · · · · · · · · · · · · · · ·	Boric Acid	
E-302-736	Waste Processing	Sodium Hydroxide	003
		Boric Acid	
E-302-737	Waste Processing	Sodium Hydroxide	003
		Boric Acid	
E-302-738	Waste Processing	Sodium Hydroxide	003
	····································	Boric Acid	
		Duratek	
		IRN-77 resin	
		IRN-78 resin	
		IRN-150 media and solution	
E-302-741	Waste Processing	Sodium Hydroxide	003
		Boric Acid	
E-302-742	Waste Processing	Sodium Hydroxide	003
		Boric Acid	
E-302-743	Waste Processing	Sodium Hydroxide	003
		Boric Acid	1
E-302-751	Boron Recycle	Boric Acid	003
D-302-771	Nuclear Sampling	Boric Acid	003
		Lithium Hydroxide	
D-302-772	Normal and Post Accident	Sodium Hydroxide	003
	Sampling	Mannitol	
		pH 9 Buffer	
		Boron (Boric Acid)	
D-302-782	Nuclear Blowdown	Ammonia	006A
Ì	Processing System Hold-Up	Hydrazine	004
	Tank and Demineralizers	Boric Acid	800
		Methoxypropylamine	014
1		Carbohydrazide	

FLOW	TITLE	CHEMICAL USED	OUTFALL
DIAGRAM		IN SYSTEM	000
D-302-783	Nuclear Blowndown	Ammonia	003
	Processing System Spent	Hydrazine	004
	Resin Storage Tank	Boric Acid	001
		Methoxypropylamine	
		Carbohydrazide	
D-302-824	Reactor Building Cooling Unit	Potential of Sodium	003
	Drains	Metasilicate from industrial	
		Cooling System CT-2	
D-302-841	Chilled Water – Pump and	Calgon-CS	003
	Chiller Area		
D-302-842	Chilled Water - To Cooling	Calgon-CS	003
	Coils "A"		, ,
D-302-843	Chilled Water - To Cooling	Calgon-CS	003
	Coils "B"		
D-302-844	Chilled Water – Turbine Room	Calgon-CS	006B
			008
			014
D-302-851	Industrial Cooling Water	Sodium Metasilicate	003 (014)
		(Tube side) or Open side	012
D-302-852	CRDM Cooling Water	Sodium Metasilicate	003 (014)
5 302 332			012
D-302-223	Turbine Building Closed Cycle	BL5300	001
	Cooling Tower	Spectrus CT1300	
		Spectrus OX1200	
	<u></u>	T OPOGLIGO OTTIZOO	

^{**}During the addition of Spectrus, discharge is secured until concentration of CT1300 is less than detectable.

SC DHEC Attachment IV LTD 286, CR-11-05986 RC-12-0019 Page 1 of 3

FORM 2E

Form Approved. OMB No. 2040-0086. Approval expires 5-31-92

FORM 2E **NPDES**

SEPA Facilities Which Do Not Discharge Process Wastewater

I. RECEIVING WATERS

For this outfall, list the latitude and longitude, and name of the receiving water(s).

Outfall Number (list)	Latitude			Longitude			Receiving Water (name)
	Deg	Min	Sec	Deg	Min	Sec	Monticello Reservoir via Outfall 014
005	34	17	41	81	18	40	

II. DISCHARGE DATE (If a new discharger, the date you expect to begin discharging)

			W		

- A. Check the box(es) indicating the general type(s) of wastes discharged.
- Sanitary Wastes ☐ Restaurant or Cafeteria Wastes
- ☐ Noncontact Cooling Water
- Other Nonprocess Wastewater (Identify)
- B. If any cooling water additives are used, list them here. Briefly describe their composition if this information is available.

NONE.

IV. EFFLUENT CHARACTERISTICS

- A. Existing Sources Provide measurements for the parameters listed in the left-hand column below, unless waived by the permitting authority (see instructions).
- B. New Dischargers Provide estimates for the parameters listed in the left-hand column below, unless waived by the permitting authority. Instead of the number of measurements taken, provide the source of estimated values (see instructions).

		1) imum		(2) age Daily	(3)	(or) (4)	
Pollutant or Parameter	Daily	Value le units)	Value	(last year) de units)	Number of Measurements	Source of Estimate	
	Mass Concentration		Mass Concentration		Taken (last year)	(if new discharger)	
Biochemical Oxygen Demand (BOD)	14.71 LBS	26 PPM	0.57 LBS	12.2 PPM	11		
Total Suspended Solids (TSS)	9.53 LBS	16.8 PPM	0.44 LBS	9.5 PPM	11		
Fecal Coliform (if believed present or if sanitary waste is discharged)	N/A	2ct/100 ml	N/A	1.64ct/100ml	11		
Total Residual Chlorine (if chlorine is used)							
Oil and Grease	1.17 LBS	2.06 PPM			1		
*Chemical oxygen demand (COD)	37.77 LBS	66.6 PPM			1		
*Total organic carbon (TOC)	9.87 LBS	17.4 PPM	and a		1		
Ammonia (as N)	17.98 LBS	31.7 PPM			1		
Discharge Flow	Value 0.0289	900 MGD	0.005000 MGD		59		
pH (give range)	Value 6.	92			1		
Temperature (Winter)		15.3 °C		°C	1		
Temperature (Summer)		°C	::	°C			

*If noncontact cooling water is discharged

V. Except for leaks or spills, will the discharge described in this form be intermittent or seasonal?	☑ No
If yes, briefly describe the frequency of flow and duration. ☐ Yes ☐	CT INO
·	
VI. TREATMENT SYSTEM (Describe briefly any treatment system(s) used or to be used)	
See attached description.	
- ·	·
,	
·	
VII. OTHER INFORMATION (Optional)	
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other info	ormation you feel
should be considered in establishing permit limitations. Attach additional sheets, if necessary.	
· ·	
·	
·	
VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or supervision.	
system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on m	y inquiry of the person or
persons who manage the system, or those persons directly responsible for gathering the information, the information so my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fal	
the possibility of fine and imprisonment for knowing violations	
A. Name & Official Title	B. Phone No. (area code & no.)
Thomas D. Gatlin, Vice President, Nuclear Operations	(803) 345-4342
C. Signature,	D. Date Signed
C. Signature, Thereof for T.D. GATLIN	2/1/12
	41/12

EPA Form 3510-2E (8-90) Page 2 of 2

SC DHEC Attachment V LTD 286, CR-11-05986 RC-12-0019 Page 1 of 26

LOCATION SUPPLEMENT

AND

DESCRIPTION

OF

OUTFALLS

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL BUREAU OF WATER

LOCATION SUPPLEMENT FOR ND AND NPDES PERMIT APPLICATIONS

FACILITY: Virgil C. Summer Nuclear Station DATE: 01/24/2012

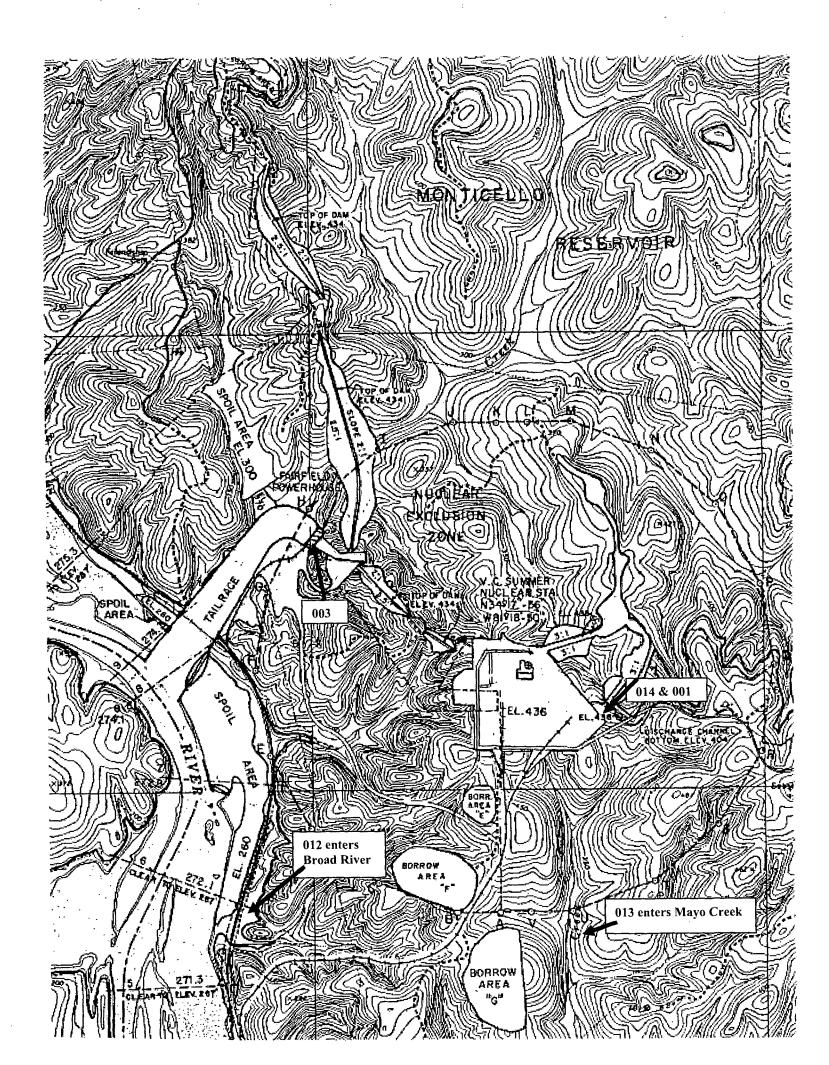
ITEM 1: Please give a short description of the plant location, if the address is not a specific location. Example: Plant is located at the interchange of Interstate 26 and U.S. Highway #1.

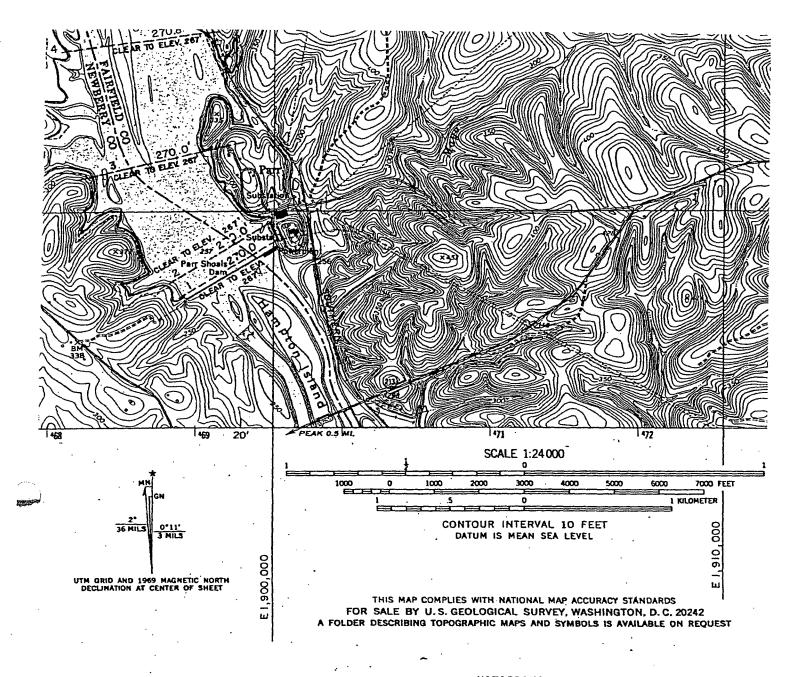
Plant is located approximately 1.5 miles west of Highway 215 at Bradham Blvd.

ITEM 2: Please give a description of the location of the discharge point into the receiving stream using some landmark as a reference point, i.e., bridge, stream, road junction, the plant itself, etc. Give the direction and the distance in feet from the reference point. Example: Discharge #001 is into Johnny Creek approximately 300 feet directly behind the plant. Discharge #002 is into Doris Creek 150 feet downstream from U.S. Highway #30 bridge.

See attached descriptions of NPDES OUtfalls.

Please locate the discharge on a U.S. Geological Survey 7 1/2 minute quad sheet (or a 15 minute quad if a 7 1/2 quad is not available for the area). The entire quad sheet need not be submitted. An 8 1/2 by 11 inch photocopy of the applicable portion of the map is sufficient. The quad sheet name must be provided on the copy submitted to the Department. USGS Maps are available at the SC Dept. Of Natural Resources/Map Division, 2221 Devine Street, Suite 222, Columbia, SC 29205. Phone number is 734-9108.


RETURN TO:

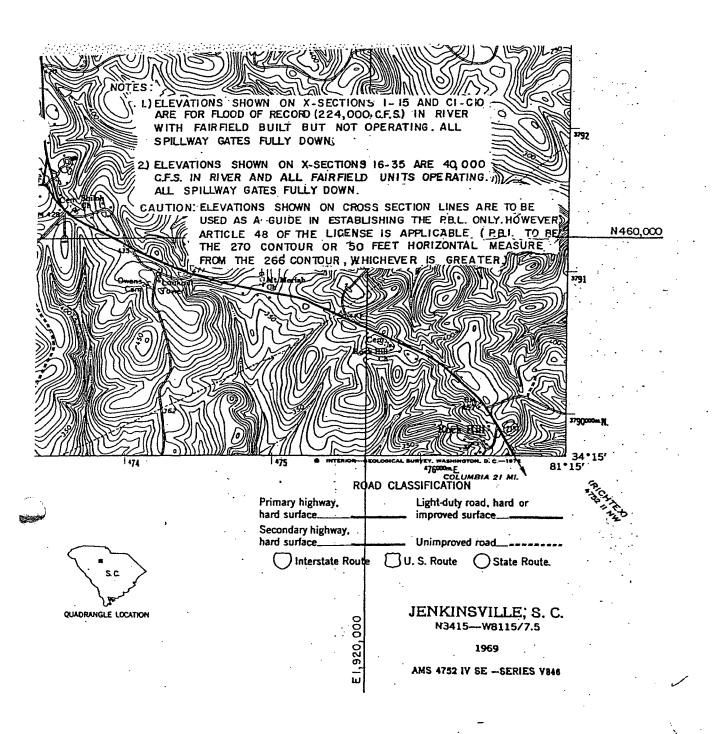

SCDHEC

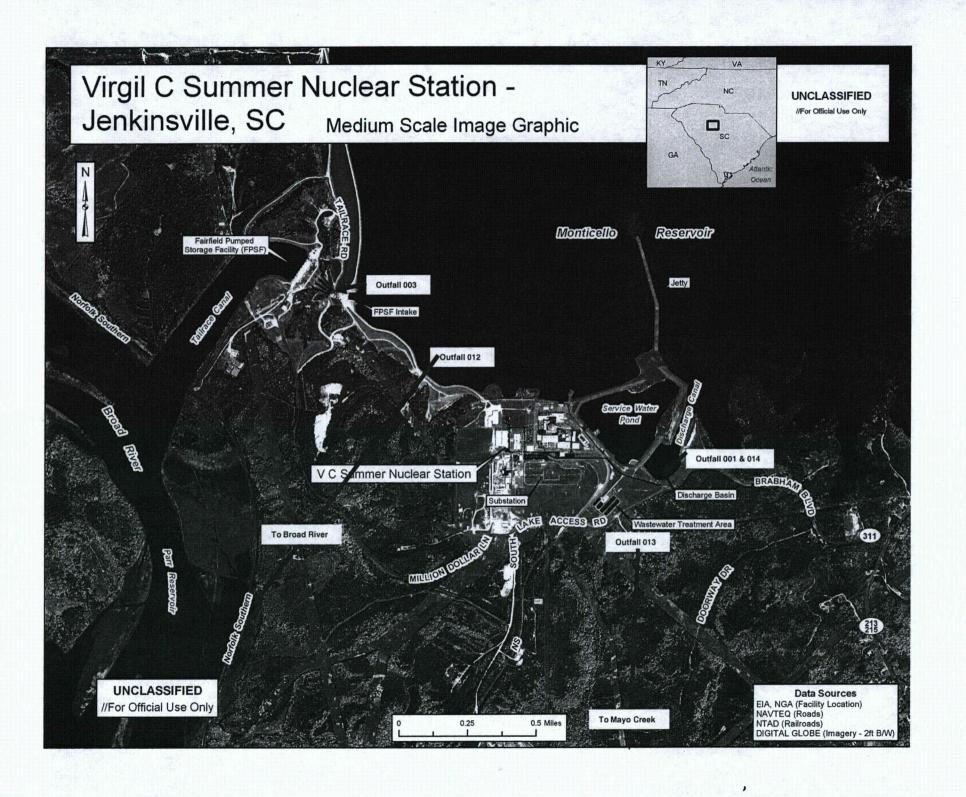
Bureau of Water

NPDES Administration

2600 Bull Street Columbia, SC 29201

HAZARDOUS WASTE

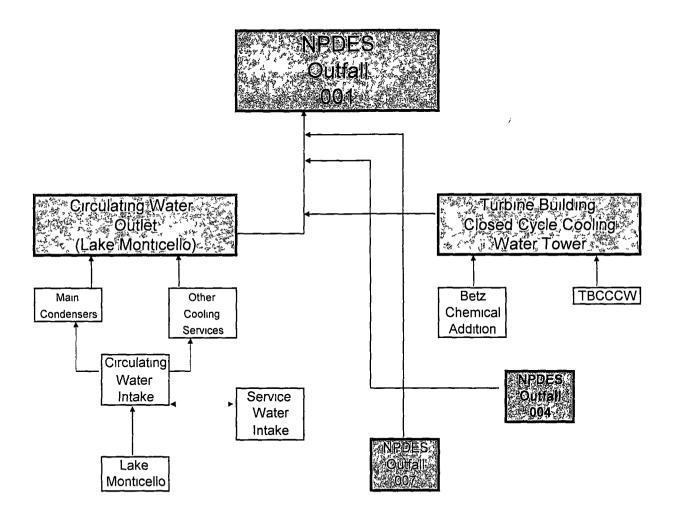

- Hazardous Waste Storage Area
 Mixed Waste Storage


NPDES OUTFALLS

- (3) Outfall 003
- (4) Outfall 012
- (5) Outfall 014 (Outfalls 005, 006A, 006B, 008)(6) Outfall 001 (Outfalls 004, 007)
- (7) Outfall 013

INTAKES

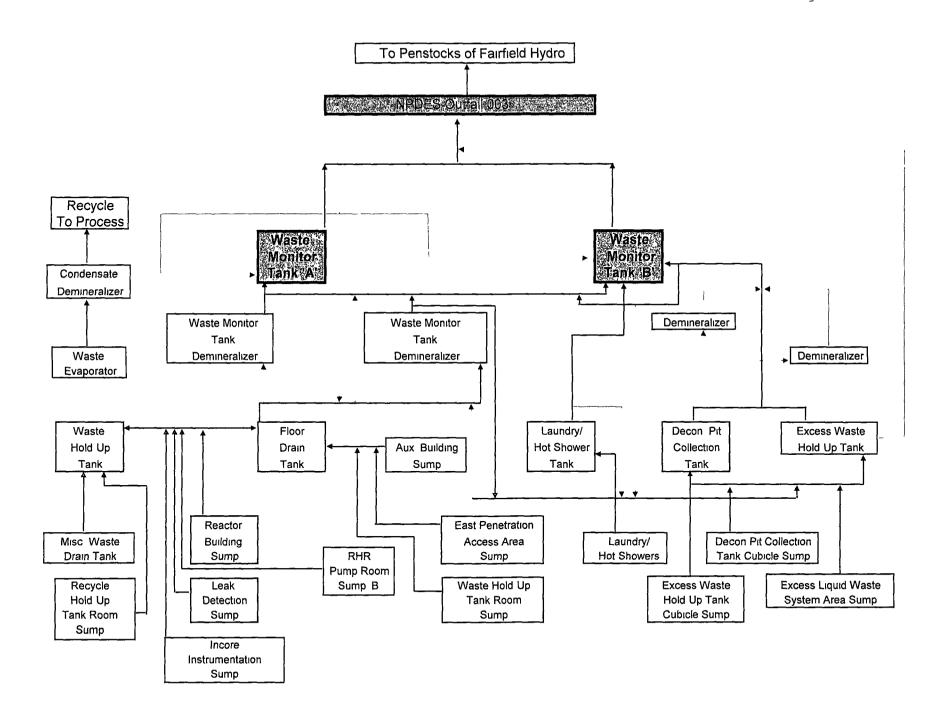
- (8) Service Water Intake(9) Circulating and Raw Water Intake



CIRCULATING WATER

Outfall 001 is discharged into the Monticello Reservoir discharge Canal Zone. It is approximately 25 yards east/southeast of the access road into V.C. Summer Nuclear Station. The discharge is approximately 10 feet below the 425' full level elevation.

The Circulating Water System removes thermal energy from the main and auxiliary condensers and dissipates this energy to the Monticello Reservoir via the Circulating Water Discharge Canal.



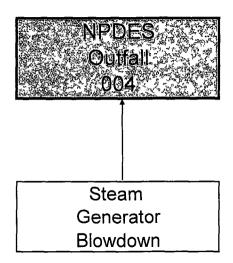
WASTE MONITOR TANKS

Outfall 003 is discharged into the Penstocks of Fairfield Hydro at Broad River This discharge point is located approximately one-half mile from the northwest corner of the Nuclear Plant

Two waste monitor tanks are provided for monitoring discharges from potentially radioactive areas at VCSNS. The tanks act as a reservoir for storing wastewater, which is to be released from the Liquid Waste. Processing System (LWPS) through the penstocks at the Fairfield Pumped Storage Facility. The LWPS is designed to receive, control, segregate, process, recycle and discharge wastewater that is potentially radioactive. Outfall 003 may also receive effluent from the Blowdown Monitor Tank.

Provisions are made to sample and analyze wastewater before it is discharged to ensure that quantities of radioactive releases to the environment are in accordance with 10CFR50, Appendix I, of the Nuclear Regulatory Commission (NRC) Regulations

STEAM GENERATOR BLOWDOWN

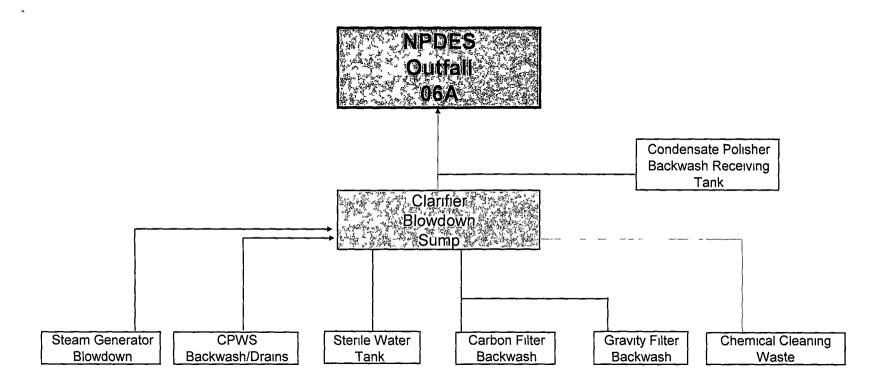

Outfall 004 may be discharged via Outfall 001 into the Monticello Reservoir Outfall 004 is discharged into Outfall 001 in the southwest corner of the Turbine Building near elevation 400' The water is then carried through Outfall 001 into the Monticello Reservoir Discharge Canal Zone

During plant operation, the Steam Generator Blowdown System is in service to continuously purge the steam generators of impurities in order to maintain water chemistry. The Feedwater System supplies Feedwater to the steam generators from the Condensate System. Demineralized water provides makeup to the Condensate System, which in turn is provided with a polishing system consisting of filters and demineralizers. This system may be used to maintain the purity of the water entering the steam generators by removing chemical impurities and rust. The secondary water chemistry control program includes a comprehensive monitoring program, the purpose of which is to minimize overall system corrosion. Steam generator water chemistry is controlled through sampling, steam generator secondary side blowdown, and water treatment by chemical addition VCSNS uses an all-volatile treatment for corrosion control of secondary side water.

Water entering the steam generator must be kept as pure as possible to prevent excessive corrosion of the steam generators. As a result, steam generator blowdown produces a minimum of contaminants

In addition, the nuclear blowdown processing system is used to process cooled steam generator blowdown fluid and returns decontaminated water to the secondary side. Individually regulated blowdown from each steam generator is cooled and reduced in pressure prior to combination with other blowdown streams. The blowdown is then processed by the Nuclear Blowdown Processing System through a filter, mixed bed demineralizers in series, and a post filter from which it returns to the secondary cycle.

Although alternate effluent paths for steam generator blowdown exist, VCSNS has been reclaiming blowdown for the major portion of the operational cycle. Aside from releases during maintenance evolutions, inhouse release permits have been held to a minimum for steam generator blowdown since May 18, 1988.

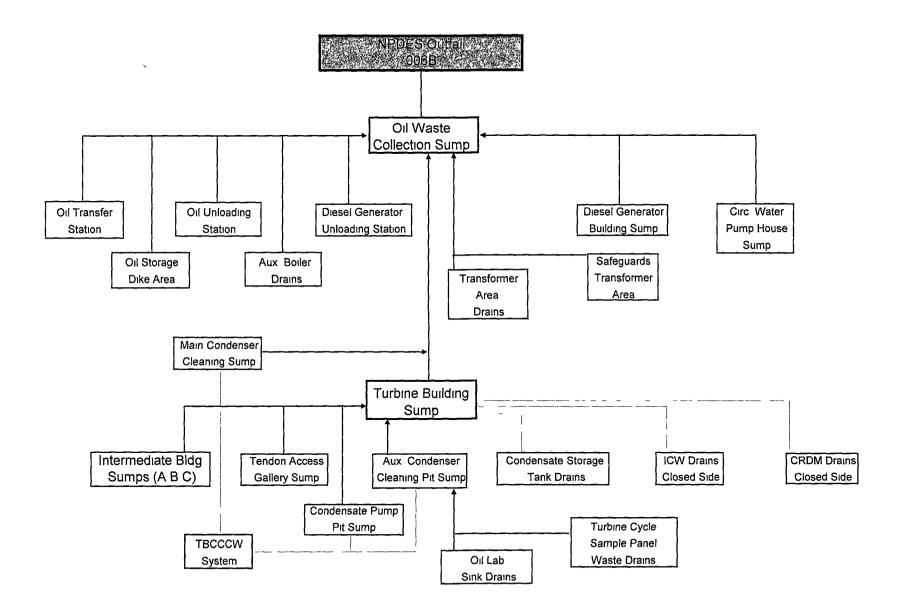


OUTFALL 006A

ALUM SLUDGE BASIN

Outfall 006A is discharged into the combined Outfall 014 and carried to the Monticello Reservoir Discharge Canal Zone Outfall 006A is located in the field lagoon area on the west side of the access road into V C Summer Nuclear Station This area is approximately 300 yards southeast of the Nuclear Plant and is located approximately 50 yards off Bradham Boulevard

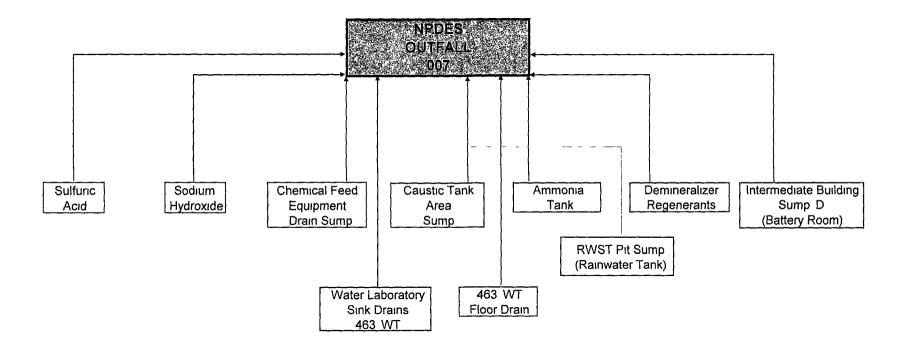
The Alum Sludge Basin is use to treat wastewater primarily from the raw water treatment area of VCSNS Treatment consists of sedimentation for reduction of suspended solids content before the effluent combines with the effluents from Outfalls 005, 006B and 008 (forming Outfall 014) for release to Monticello Reservoir via the Circulating Water Discharge Canal



OUTFALL 006B

PLANT SURGE BASIN

Outfall 006B is discharged into the combined Outfall 014 and carried to the Monticello Reservoir Discharge Canal Zone Outfall 006B is located in the field lagoon area on the west side of the access road into V C Summer Nuclear Station. This area is approximately 300 yards southeast of the Nuclear Plant and is located approximately 150 yards off Bradham Boulevard.


The Plant Surge Basin functions as a retention basin. Sources of wastewater to the Plant Surge Basin consist primarily of wastewater from various sumps, stormwater from transformer areas and stormwater from fuel oil storage and handing areas. Wastewater initially collects in a 6000-gallon common collection sump and is periodically pumped to the retention basin. An oil skimmer removes oil, which is collected in a holding tank Sedimentation also occurs in the retention basin and reduces suspended solids content. Treated effluent gravity flows from the retention basin and combines with treated effluents from Outfalls 005, 006A and 008 (forming Outfall 014) prior to discharge to Monticello Reservoir via the Circulating Water Discharge Canal.

NEUTRALIZATION BASIN

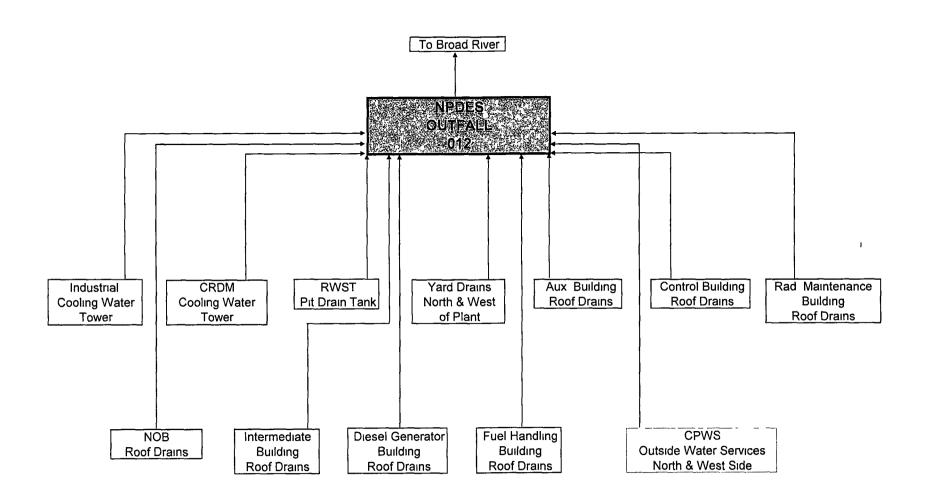
Outfall 007 is discharged into Outfall 001 and carried to the Monticello Reservoir Discharge Canal Zone Outfall 007 is located on the east side of the Water Treatment Plant at V C Summer Nuclear Station

The Neutralization Basin is a 100,000 gallon wastewater treatment tank Sodium hydroxide or sulfuric acid is used to adjust pH to near neutral Neutralized wastewater is discharged into the Circulating Water System discharge piping (Outfall 001) The pH of the neutralized wastewater is continuously monitored, and discharge is automatically terminated if the pH value exceeds specified limits

PLANT STARTUP WASTE HOLDING BASIN

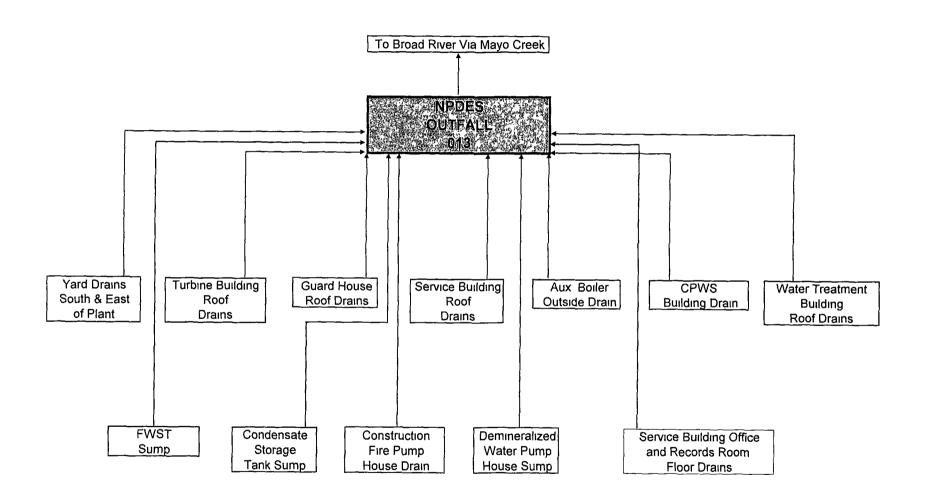
Outfall 008 is discharged into the combined Outfall 014 and carried to the Monticello Reservoir Discharge Canal Zone Outfall 008 is located in the field lagoon area on the west side of the access road into V C Summer Nuclear Station This area is approximately 300 yards southeast of the Nuclear Plant and is located approximately 75 yards off Bradham Boulevard

The Plant Startup Waste Holding Basin is a sedimentation basin for retention of wastewater generated primarily by chemical cleaning of various equipment, piping, etc. Chemical cleaning evolutions occur on an infrequent basis and are implemented for purposes of removing rust, scale, debris and biomass


Biomass removal is necessary to control such organisms as bacteria which cause microbiologically influenced corrosion, and Asiatic Clams which infect nonbiologically treated systems at VCSNS. The Plant Startup Waste Holding Basin is also used as an alternate alum sludge basin. Treatment consists of sedimentation for reduction of suspended solids content prior to the effluent being combined with the effluents from Outfalls 005, 006A and 006B (forming Outfall 014) for releases to Monticello Reservoir via the Circulating Water Discharge Canal

NORTH YARD DRAIN SYSTEM

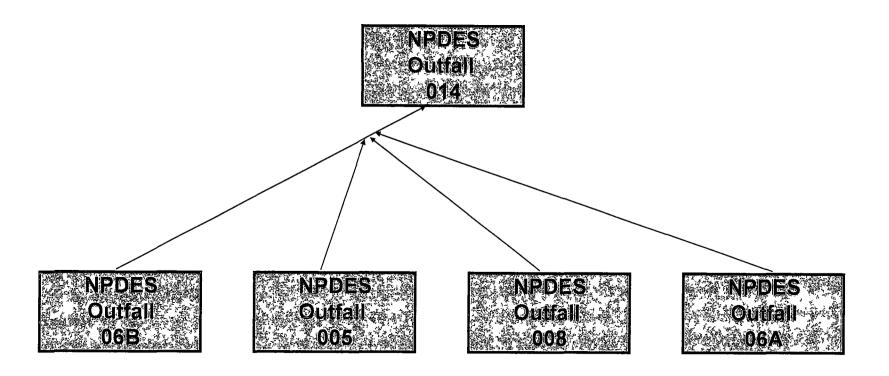
Outfall 012 is discharged into the Broad River Outfall 012 is located on the west/southwest side of the Nuclear Plant, approximately 50 yards from the access road leading to the Craft Training Center


This system primarily collects stormwater runoff from the north/northwest area of the plant site yard drains and roof drains. Included in the effluent from this system is the accumulated stormwater from the refueling water storage tank (RWST) pit drain tank. The RWST pit accumulates rainwater, which is radiologically evaluated prior to release from the RWST pit drain tank. Where radiological concerns are present, the RWST pit drain tank effluent is diverted to the liquid waste processing system. The stormwater runoff, combined with discharges from prior permitted outfalls 009A and 009B, is discharged to a wet weather ditch, which flows via an unnamed stream to the Broad River.

SOUTHEAST YARD DRAIN SYSTEM

Outfall 013 is discharged into the Broad River This outfall is located on the south side of Bradham Boulevard, and approximately 100 yards south/southwest of the Circulating Water Discharge Canal

The Southeast Yard Drain System collects stormwater runoff from the east/southeast area of the plant site yard drains and roof drains. Included in the effluent from this system are the overflow and bleedoff from several water systems and associated tanks, including Filtered Water, Demineralized Water and Condensate System. This drain system discharges to the headwaters of Mayo Creek southeast of the plant.



OUTFALL 014

COMBINED DISCHARGE PIPE EFFLUENT

Outfall 014 is discharged into the Monticello Reservoir Canal Zone It is located approximately 30 yards east/southeast of the access road into V C Summer Nuclear Station The discharge piping is approximately 1 foot above the 425' full level of Monticello Reservoir

This outfall represents the combined internal outfalls 005, 006A, 006B and 008. It consists of sanitary sewerage and low volume wastes. It discharges into Monticello Reservoir via the Circulating Water Discharge Canal.

SC DHEC Attachment VI LTD 286, CR-11-05986 RC-12-0019 Page 1 of 3

SLUDGE DISPOSAL PROCEDURE

BUREAU OF WATER SLUDGE DISPOSAL SUPPLEMENT FOR NPDES AND ND PERMIT APPLICATIONS

Fac	ility N	ame: <u>v.</u>	C. Summer Nuclear Station	
Perr	nit Nu	ımber:	SC00 30856	(leave blank for a new facility)
		or	ND00	
Plea	se che	ck you	r proposed or curren	t sludge disposal procedure:
I.	Exis	ting Fa	cilities:	
		sched	ule for sludge remov	h no routine sludge disposal. Please attach a letter that addresses the approximate al and address the anticipated disposal method (note that the proposed sludge oproved by the Department prior to initiation).
	_	the sluplease Sludge that sh	. The adge for disposal. If a include a detailed receive Disposal Report A.	er wastewater treatment facility. Attached is a recent letter of acceptance is letter must include the NPDES or ND number of the treatment facility accepting no previous SCDHEC approval has been granted on the disposal method, then port on the existing sludge disposal method. See the attached requirements for If a previous SCDHEC approval has been granted, then include a recent analysis as nature of the sludge or a signed statement that the sludge characteristics have nalysis.
		from the Hazard	the landfill is accept dous Waste approval vious approval has b	I. If the landfill is SWAIP (special waste) approved, an recent acceptance letterable. If the landfill is not SWAIP approved, attached is SCDHEC Solid and dated, or other SCDHEC approval dated If een granted on the disposal method, then please include a detailed report on the ethod. See the attached requirements for Sludge Disposal Report B.
	<u>X</u>	dated	8/1/07 If n iled report on the exis	cial Use of Sludge. Attached is SCDHEC approval letter or program approval previous approval has been granted on the disposal method, then please include ting sludge disposal method. See the attached requirements for Sludge Disposal
II.	Prop	osed F	acilities:	
		schedu	ule for sludge remov	n no routine sludge disposal. Please attach a letter that addresses the approximate al and address the anticipated disposal method (note that the proposed sludge oproved by the Department prior to initiation).
		Sludge sludge	e disposal at another disposal method. S	wastewater treatment facility. Please include a detailed report on the proposed see the attached requirements for Sludge Disposal Report A.
		Sludge the att	e disposal at a landfill ached requirements	Please include a detailed report on the proposed sludge disposal method. See for Sludge Disposal Report B.
				al Use. Please include a detailed report on the proposed sludge disposal method. nts for Sludge Disposal Report C.

Send this form and the appropriate disposal report (if applicable) with your NPDES or ND permit application.

Sludge Disposal Summary

The approval to dispose of sludge was granted in the issuance of NPDES Permit No. SC0030856 with an effective date of August 1, 2007. Refer to NPDES Permit No. SC0030856 Part V.D.2.

SC DHEC Attachment VII LTD 286, CR-11-05986 RC-12-0019 Page 1 of 2

THERMAL MIXING ZONE EVALUATION

2010 WATER QUALITY MONITORING REPORT

Mixing Zone for Thermal Discharge

V. C. Summer Nuclear Station (VCSNS) is requesting a mixing zone for the thermal discharge from VCSNS Unit 1. If the mixing zone is not granted, VCSNS will request the 316(a) variance.

A copy of the Thermal Mixing Zone Evaluation prepared by Geosyntec is enclosed for your review. This document presents background and technical information supporting formal requests to SCDHEC for the thermal mixing zone for the VCSNS cooling water effluent discharge to Monticello Reservoir. Based on the results of many years of monitoring and the modeling report, VCSNS is also requesting relief from monitoring the surface temperature at the Fairfield Pump Storage Facility (FPSF) intake structure. Based on years of monitoring and the modeling report, the thermal plume does not extend to the FPSF intake. In addition to this report, the 2010 Water Quality Monitoring for Monticello Reservoir is also attached for you review.

Prepared for

SCANA – South Carolina Electric and Gas 100 SCANA Parkway Cayce, SC 29033

THERMAL MIXING ZONE EVALUATION VIRGIL C. SUMMER NUCLEAR STATION NPDES PERMIT FAIRFIELD COUNTY, SOUTH CAROLINA

Prepared by

engineers | scientists | innovators

Project Number GR4796

January 9, 2012

TABLE OF CONTENTS

1.	INTRODUCTION Facility Description Permitting History Related Modeling Work	1 2
2.	GENERATION OF THE COMPUTATIONAL MODEL	5
3.	SCENARIOS	6
4.	VALIDATION OF THE COMPUTATIONAL MODEL	7
5.	MODEL RESULTS – T = 90°F PLUME	10
6.	MODEL RESULTS – $\Delta T = 5$ °F PLUME	12
7.	RESULTS SUMMARY – T = 90°F PLUME	14
8.	RESULTS SUMMARY – $\Delta T = 5$ °F PLUME	15
9.	RELEVANCE TO THE THEMRAL MIXING ZONE RENEWAL	16
10.	REFERENCES	17
11.	FIGURES	19
12.	APPENDIX A – DETAILS OF THE NUMERICAL MODEL Geometry and Mesh	54
	Computational Models	
	Numerics	54

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure 1 – Aerial photograph of the Monticello Reservoir and V. C. Summer Stat	tion.19
Figure 2 - Close aerial photograph of the Monticello Reservoir and V. C. S	Summer
Station	20
Figure 3 – Contour map of the Monticello Reservoir in the vicinity of the Unit 1	thermal
	21
Figure 4 – Digitized points from the contour map, colored by elevation (red is	
msl, blue is 270 ft msl).	
Figure 5 – Perspective view of the computational model	23
Figure 6 – Contour map showing surface elevation in the computational model	24
Figure 7 – View of the model near the discharge structure, bay and canal	25
Figure 8 – Elevation contour plot near the discharge structure, bay and canal	26
Figure 9 – Computational mesh	27
Figure 10 – View of the computational mesh near the discharge structure	28
Figure 11 – Temperature profiles collected for validation	29
Figure 12 - Contour plot of surface temperature in the numerical model for val	idation.
	30
Figure 13 - Contour plot of temperature near the discharge bay at (a) the surfa	ice, and
(b) 18 ft depth	31
Figure 14 – Velocity vectors in the discharge canal colored by temperature	32
Figure 15 – Comparison between the CFD and collected temperature data	33
Figure 16 – Scenario 1S, surface temperature	34
Figure 17 – Scenario 1S, 90°F thermal plume (purple)	35
Figure 18 – Scenario 2S, surface temperature	36
Figure 19 – Scenario 2S, 90°F thermal plume (purple)	37
Figure 20 – Scenario 3S, surface velocity vectors	38
Figure 21 – Scenario 3S, surface temperature	39
Figure 22 – Scenario 3S, 90°F thermal plume (purple)	40
Figure 23 – Scenario 4S, surface velocity vectors	
Figure 24 – Scenario 4S, surface temperature	42
Figure 25 – Scenario 4S, 90°F thermal plume (purple)	
Figure 26 – Scenario 1W, surface temperature.	
Figure 27 – Scenario 1W, ΔT = 5°F thermal plume (green).	

Geosyntec occupants

TABLE OF CONTENTS (Continued)

Figure 28 – Scenario 2W, surface temperature.	46
Figure 29 – Scenario 2W, $\Delta T = 5^{\circ}F$ thermal plume (green)	47
Figure 30 – Scenario 3W, surface velocity vectors	48
Figure 31 – Scenario 3W, surface temperature.	49
Figure 32 – Scenario 3W, $\Delta T = 5^{\circ}F$ thermal plume (green)	50
Figure 33 – Scenario 4W, surface velocity vectors	51
Figure 34 – Scenario 4W, surface temperature.	52
Figure $35 - \text{Scenario 4W}$, $\Delta T = 5^{\circ}\text{F}$ thermal plume (green)	

1. INTRODUCTION

South Carolina Electric and Gas (SCE&G, a subsidiary of SCANA Corporation) is making an application to the South Carolina Department of Health and Environmental Control (DHEC) for a renewal of its National Pollutant Discharge Elimination System (NPDES) permit for Unit 1 of the Virgil C. Summer Nuclear Generating Station (V. C. Summer Station) located in Fairfield County near Jenkinsville, South Carolina.

This document presents background and technical information supporting formal requests to DHEC for the thermal mixing zone for the V. C. Summer Station cooling water effluent discharge to the Monticello Reservoir pursuant to Rule 61-68 (Water Classifications and Standards) Section C.10.

Facility Description

Summer Station is a single-unit, 974-megawatt (MW) nuclear-fueled electric power generating facility that operates as a base-load facility. It uses a once-through cooling water system that withdraws cooling water from Monticello Reservoir via a single shoreline-positioned cooling water intake structure (CWIS) located at the south end of the reservoir. After the cooling water leaves the condensers, the heated water is conveyed to a "discharge bay" and then through a 1,000 foot (ft) discharge canal leading into Monticello Reservoir.

Monticello Reservoir is a 6,800-acre (ac) freshwater impoundment that was built in the Frees Creek valley in 1978 to serve both as the cooling water source for Summer Station and the upper pool for the Fairfield Pumped Storage Facility (FPSF). The Federal Energy Regulatory Commission (FERC) regulates water levels in Monticello Reservoir through the hydropower license for SCE&G's Parr Shoals (Broad River) Hydroelectric Project (FERC License No. 1894), of which FPSF is a part. The FERC license for Parr Shoals establishes water surface elevation guidelines for Monticello Reservoir between 425.0 feet (ft) above mean sea level (msl) (high water level) and 420.5 ft msl (low water level). Reservoir levels may fluctuate daily within this 4.5-ft operating band as a result of FPSF operation.

The operation of the FPSF will vary depending on the season and system power needs. In summer, the facility generally pumps water from Parr Reservoir to Monticello Reservoir between the hours of 11:00 pm and 8:00 am and generates power by releasing

water between the hours of 10:00 am and 11:00 pm. In winter, FPSF generally pumps water daily from Parr Reservoir to Monticello Reservoir between 11:00 pm and 6:00 am and generates between the hours of 6:00 am and 1:00 pm. Pumping to Monticello Reservoir is normally done at maximum capacity during off-peak periods. The power output for FPSF varies from one generator up to the maximum output from eight generators, depending on demand. Consistent with its operation as a peaking facility, maximum output of FPSF may not be necessary on all days.

Permitting History

The NPDES permitting history for the Summer Station discharge extends from the mid-1970s when the facility was first permitted. Operating as a once-through cooling water system, thermal addition to Monticello Reservoir is substantial with discharge flow rates up to 532,000 gallons per minute (768 million gallons per day). To comply with South Carolina Department of Health and Environmental Control (DHEC) water quality standards for temperature in lakes, SCE&G conducted studies to successfully support alternate thermal effluent limitations under Clean Water Act Section 316(a) per South Carolina Regulation 61-68 – Water Classifications and Standards: Section E.12.c.)¹. The following numeric effluent limitations for temperature were established for Summer Station Outfall 001 in the initial permit:

- a daily maximum temperature of 113°F to be measured "in pipe" prior to discharge;
- a monthly average temperature of 90°F measured at the FPSF intake structure (considered the mixing zone boundary);
- a maximum thermal plume size of 6,700 acres; and

¹ The weekly average water temperature of all Freshwaters which are **lakes** shall not be increased more than 5°F (2.8°C) above natural conditions and shall not exceed 90°F (32.2°C) as a result of the discharge of heated liquids unless a different site-specific temperature standard as provided for in C.12. has been established, a mixing zone as provided in C.10. has been established, or a Section 316(a) determination under the Federal Clean Water Act has been completed (South Carolina Regulation 61-68 – Water Classifications and Standards: Section E.12.c.).

• a monthly average temperature rise (ΔT) within the plume of 3°F measured between the FPSF intake structure and a point at the northern end of the reservoir.

Based on several years of monitoring, DHEC ultimately eliminated the plume size and ΔT limitations leaving in place the 113°F daily maximum limit and 90°F monthly average limit in subsequent permits.

Thermal discharges and repeated continuation of alternate thermal limits (variances) in NPDES permits that are based on historical 316(a) demonstration study data have come under increased scrutiny by the U.S. Environmental Protection Agency (USEPA) who oversees the DHEC NPDES program. Recently, DHEC and SCE&G have had discussions relative to renewal of the current NPDES permit for V. C. Summer Station concerning the level of information needed to support the continued discharge temperature limits for the facility. There have been no substantive changes² to V. C. Summer Station operations since issuance of the initial NPDES permit in the mid-1970s. As such, SCE&G believes that reevaluation of the thermal mixing zone characteristics and boundaries via updated hydrodynamic modeling (in complement to the earlier 316(a) demonstration study data) will provide the quantitative information needed by DHEC to support a decision maintaining the current temperature limits for Summer Station that is consistent with South Carolina Regulation 61-68, Section E.12.

Related Modeling Work

The primary modeling study related to the thermal plume characteristics of the cooling water discharge for the V. C. Summer Station was carried out by NUS Corporation in 1985 [1] and updated in 1989 [2]. A mathematical model of the lake was created which accounted for discharge and atmospheric parameters and calculated the thermal plume based on assumed vertical temperature profiles. The conclusions of the study showed that the VC Summer Station would not violate any of the three quantitative temperature limits in the NPDES permit at the time, even under extreme meteorological conditions.

-

² Licensed power output of the V.C. Summer Station Unit 1 has been increased, but due to some cooling loads being handled by a small cooling tower, the heat loading to the reservoir has not changed significantly. Additionally, the discharge canal was dredged (canal is now deeper than it was originally) to alleviate fish kills in the discharge bay area.

While certainly an advanced and comprehensive analysis at the time, the NUS study did not consider several important features of the thermal discharge. In particular, the Unit 1 cooling water discharges into a small basin (approximately 600 ft x 600 ft surface dimension), which is connected to the reservoir through a channel approximately 900 ft in length and 200 ft wide. The dynamics in the basin and channel are complex; recirculating flows in the basin, and an unusual return flow of cold water flowing along the bottom of the channel from the reservoir to the basin. These features could not have been reasonably accounted for and calculated by the NUS study, and neither can they be calculated with more modern tools such as CORMIX [3], since in both these cases underlying assumptions are made regarding the temperature profiles.

In order to more definitively characterize the V. C. Summer Station Unit 1 thermal discharge into the hydrodynamically and spatially complex mixing environment in the basin, channel and reservoir, a more robust modeling approach was needed. As such, three-dimensional Computational Fluid Dynamics (CFD) modeling effort was conducted.

CFD modeling is based on the Navier-Stokes equations for fluid motion, which are simply an expression of Newton's laws of motion with additional viscous stress terms required to calculate fluid flow [4]. The equations express the laws of conservation of mass, momentum and energy and are hence a "fundamental" set of equations (i.e., no assumptions are made in forming the basic equation set).

CFD modeling has been used successfully for over 40 years in a variety of industrial and environmental applications. The Tennessee Valley Authority (TVA) used CFD modeling to evaluate the thermal discharge from its Browns Ferry Nuclear Power Plant to Wheeler Reservoir in north Alabama [5]. The CFD model allowed TVA to determine thermal plume mixing and temperature rise patterns as well as other hydrodynamic features of the discharge. Notably, TVA found close agreement between CFD model predicted water temperatures and direct temperature measurements at the operating diffusers.

More recently, Geosyntec Consultants and MMI Engineering employed CFD to model the complex thermal plume characteristics of the proposed William States Lee III Nuclear Generating Station, as part of the NPDES permit application for the site submitted by Duke Energy to DHEC. Similar to the current study, the thermal plume

was affected by operations in the receiving water body that significantly affected the surface elevation.

Other examples of CFD environmental applications include the U.S. Department of Energy's Pacific Northwest National Laboratory use of CFD in the hydrodynamic evaluation of the North Fork Dam forebay on the Clackamas River in Oregon and to model the three-dimensional velocity field below Bonneville Dam to enhance fish passage [6]. CFD has also been used to investigate the increased discharge associated with the re-powering of an existing power plant [7].

2. GENERATION OF THE COMPUTATIONAL MODEL

Geosyntec/MMI Engineering uses a variety of classical and computational analysis techniques to assess the performance of fluid systems and processes. For detailed CFD analysis, calculations are made with the general purpose, commercial CFD code ANSYS-CFX Version 12 [8]. This is the CFD model code selected for the current analysis. Full details of the computational model are given in Appendix A.

The extent (geometry) of the Monticello Reservoir and discharge bay and canal environment in the CFD models included:

- the Unit 1 discharge bay and canal;
- the Fairfield Pumped Storage Facility intakes;
- the backwater areas in the locality of the canal; and,
- a section of the Monticello Reservoir extended approximately 1.6 miles north of the discharge structure.

Total surface area of the modeled domain was approximately 1800 acres, or approximately 25% of the total surface area of the reservoir.

Bathymetry data in the discharge bay and canal, and in part of the Monticello Reservoir, was collected by Geosyntec in the form of point-depth measurements in a series of transects. These point data were interpolated to form part of the reservoir bed in the CFD models. For the areas of the model that were not covered by the bathymetry data, a contour map was provided to MMI/Geosyntec (a section of this map in shown in

Figure 3) and was digitized by MMI/Geosyntec to create approximately 10,000 additional data points (Figure 4) that were combined with the collected bathymetry data to form the entire model (see Figure 5 and Figure 6). A more detailed view of the model in the vicinity of the discharge, showing the bay and canal, is shown on Figure 7 and Figure 8.

Detailed drawings of the discharge structure were not available; however the shape of the structure and its dimensions and exact location can be calculated from aerial photographs. The discharge pipe diameter is 144" [9], and in the model this was represented as a square cross-section (rather than circular) of the same area as the circular pipe. This ensures the correct mass, energy and momentum input into the model and the highly turbulent flows near the discharge would quickly smooth out small differences in the shape of the discharge pipe.

Views of the computational mesh, which contained approximately 500,000 cells with 20 cells in the depth direction, are shown on Figure 9 and Figure 10.

3. SCENARIOS

The following modeling scenarios were run to capture the expected worst case results (thermally and spatially) for the Summer Station thermal discharge:

- Scenario 1 Thermal discharge under peak load and discharge flow with Monticello Reservoir elevation under <u>high water-slack</u> conditions (no flow through FPSF).
- Scenario 2 Thermal discharge under peak load and discharge flow with Monticello Reservoir elevation under <u>low water-slack</u> conditions (no flow through FPSF).
- Scenario 3 Thermal discharge under peak load and discharge flow with Monticello Reservoir elevation under <u>low water-rising</u> conditions (FPSF pumpback); and
- Scenario 4 Thermal discharge under peak load and discharge flow with Monticello Reservoir elevation under <u>high water-falling</u> conditions (FPSF generation).

Each scenario was modeled under critical conditions of <u>summer</u> when ambient reservoir and discharge temperatures are expected to be greatest and have the most potential for acute effects to aquatic life. This will allow evaluation of thermal plume mixing characteristics and spatial dimensions in the context of the DHEC 90°F temperature criterion. Based on data transmitted to MMI/Geosyntec [10], the ambient reservoir temperature was set to 86.4°F as this was the highest monthly-average temperature recorded at the Unit 1 intakes in 2010. The discharge temperature was set to 113.0°F which was measured during August 2011, and is approximately 1°F higher than the recorded highest monthly-average discharge temperature in 2010.

Additionally, each scenario was also modeled under <u>winter</u> conditions when differential between the plume temperature and ambient temperature (i.e., ΔT) are expected to be greatest. This will allow evaluation of thermal plume mixing characteristics and spatial dimensions in the context of the DHEC 5°F ΔT temperature criterion. Based on data transmitted to MMI/Geosyntec [10], the highest monthly-averaged ΔT for 2010 occurred in November, where the monthly-average reservoir temperature was recorded at 66.6°F and the monthly-average discharge temperature was 98.7°F, resulting in a ΔT of 32.1°F. These temperature values were used to represent winter conditions.

In all cases, the discharge flow rate was set to 532,000 gpm which is the flow rate through the Unit 1 intake with all three intake pumps fully operational. Based on data transmitted to MMI/Geosyntec [11], the flow rate for FPSF pump-back was set to 41,800 cfs and the flow rate for FPSF generation was set to 50,400 cfs.

4. VALIDATION OF THE COMPUTATIONAL MODEL

Geosyntec collected temperature and velocity profiles during a data survey conducted on the Monticello Reservoir in August 2011. The most useful "snapshot" of the temperature of the thermal plume was taken at around 2pm on August 3rd 2011in the form of five temperature profiles extending to a maximum depth of 25ft. These profiles are shown on Figure 11 (note that the temperature scale is in degrees Celsius). At the time of the measurements, the discharge temperature was 44.1°C (111.4 °F) and this is shown for reference on Figure 11 by the broken purple line on the right. The most striking feature of the measurements is the difference between the discharge temperature and the measured temperature in the discharge bay (i.e. almost immediately downstream of the discharge). This profile is shown in blue in the figure. If the water in the discharge bay were from the discharge alone, then a temperature near to 44.1°C

would be expected as the only losses would be minor. However, the measurements show temperatures around 40°C in the discharge bay. An indication of the explanation for this can be deduced from the temperature profile taken at the confluence of the discharge bay and canal (shown in red). For depths below 15 ft, the temperature reduces rapidly to less than 34°C. The profile taken at the mouth of the discharge canal (green) has a similar dramatic reduction in temperature below 10 ft depth, to just above 30°C near the bottom, which is approximately the same as the recorded background temperature (light blue). It appears from the data that it is likely that these temperature profiles comprise discharge (hot) water in the upper layer and ambient (cold) water in the lower layer, which, since this pattern is repeated at in the discharge bay (red line) suggests that cold water is flowing from the reservoir into the bay along the bottom of the discharge canal, and hot water is flowing in the opposite direction near the surface. Indeed, this phenomenon of warm water flowing over cool water in the discharge canal was explained to MMI/Geosyntec staff by SCE&G staff prior to the measurements being taken. The field measurements confirmed this.

A somewhat less expected feature of the temperature profiles is the apparent inversion in the upper 5ft of the profiles, where the temperature reduces significantly, suggesting a cooler, more dense layer near the surface on top of a warmer and less dense layer below (in opposition to the natural tendency of buoyancy). The only physical explanation for this reduction in temperature is a very high rate of heat loss at the surface, much higher than one would expect by classical heat loss calculations alone. This may be linked to waves generated by the discharge or the wind, or churning aeration of the very upper layer.

To investigate the accuracy of the computational model, a simulation was run to approximate the thermal plume as closely as possible at the time the measurements were taken. The discharge temperature was set to 44.1°C (111.4 °F) and the flow rate was set to 532,000 gpm. The surface elevation of the reservoir was set to 423.5 ft msl which was calculated from level-loggers installed by Geosyntec. In addition, a surface shear stress was applied that was equivalent to a 10 ft/s north-easterly wind which was recorded on the day.

Figure 12 shows a contour plot of temperature on the surface of the reservoir resulting from the simulation. The blue coloration indicates the ambient temperature of the reservoir (set as 32.0°C) while the red coloration indicates a temperature equal to the discharge temperature. The plume can be seen to gradually reduce in temperature away

from the discharge bay and canal. Interestingly, the oranges and yellows in the discharge bay as predicted in the CFD model indicate much lower temperatures than in the discharge pipe. To investigate this further, two contour plots were produced of temperature on the surface and at 18 ft depth – these are shown on Figure 13 (a) and (b) respectively. Figure 13 (a) shows a close view of the contour plot in Figure 12, and surface temperatures of approximately 41.0°C can be observed. However, Figure 13 (b) which is the temperature at 18 ft depth, shows much cooler (blue) temperatures near the bottom of the discharge canal, as was observed in the field measurements. A clear visualization of this phenomenon can be seen on Figure 14, where velocity vectors are shown on a vertical cut-plane in the center of the canal, and are colored by temperature rather than velocity. There is a clear flow of cold water from the reservoir to the discharge bay in the lower layers, and a flow of hot water in the reverse direction in the upper layers.

Qualitatively the model thus agrees with the anticipated flows, despite these flows being unusual. A quantitative comparison is shown on Figure 15 where the lines indicate results from the CFD model and the circles indicate measured data. The colors of the lines and circles match where the profiles were taken at the same locations. The CFD results in the discharge bay (blue line) shows that the temperature has decreased in the discharge bay by approximately the correct amount. This is due to the counter-flow of cold water into the bay from the reservoir, which is shown by the CFD model results at the confluence of the discharge bay and canal (red line). The sharp decrease in temperature mirrors the measured temperature gradient well. The major differences between the model and measured temperature profiles exist within the upper layer, where the inversion is not predicted by the CFD model. This is not unexpected since it is difficult to account for the inversion recorded by the data. However, it is important to note that the differences between the model and the data result in a higher surface temperature being predicted by the CFD model, showing that the model results will in general be conservative. At the mouth of the discharge canal (green line) the surface temperature is again over-predicted, but the sharp temperature gradient seen below 5 ft depth is captured, albeit at a slightly shallower depth in the model than was measured. Importantly, the model and data match well in the region halfway between the canal and exclusion buoys (orange), as the edges of the thermal plume are expected near this region. The last profile comparison (light blue line) is simply the background profile, which was set as constant in the CFD model but showed slight variation with depth in the measured data, probably due to naturally formed thermoclines rather than the

thermal plume itself given the distance between the measurement and the discharge (approximately 2 miles).

The validation effort therefore shows that the CFD model qualitatively predicts the correct behavior, particularly with respect to the known unusual flows in the discharge canal. The agreement between the model and measured data is generally good, with the greatest discrepancies near the surface of the reservoir. Where these discrepancies occur, the CFD model over-predicts the measured data, so the model results are conservative with respect to surface temperature and therefore the size and magnitude of the thermal plumes.

5. MODEL RESULTS – $T = 90^{\circ}F$ PLUME

The four scenarios listed in §3 were run under summer conditions to evaluate the size of the 90°F thermal plume, as these conditions represent the worst-case scenarios for this plume. In all scenarios the discharge temperature was set to 113.0°F and the ambient reservoir temperature was 86.4°F. The scenarios for summer conditions are referred to as 1S, 2S, 3S and 4S in the text and figure captions, and the input parameters and results are summarized in §7 for reference.

The surface temperature for scenario 1S is shown on Figure 16. In this scenario, the reservoir surface elevation is high (425.0 ft msl) and the FPSF flow rate is zero (slack conditions). This figure provides a full view of the thermal plume in plan view, although it must be remembered that the analysis is three-dimensional so variations in temperature in the depth direction are captured. As anticipated, the hot plume spreads and cools as it mixes with the ambient water downstream of the discharge canal (the red areas in the figure represent temperatures about 112.0°F and the blue indicates less than 87.0°F). The 90°F plume is difficult to distinguish from the contour plot, so it is shown more clearly on Figure 17 where the purple area shows the 90.0°F. Note that the area shown on this figure does not necessarily extend vertically down to the bottom of the reservoir, as the temperature gradients highlighted in the validation study will also exist here. The dimensions of the thermal plume account for these variations as the computational model is three-dimensional. The volume of the 90.0°F plume for scenario 1S is 1,418 acre-ft and the surface area is 128 acres. The maximum length of the plume, which is taken from the end of the discharge pipe to the point in the plume furthest away from the pipe, is 4,332 ft, while the width of the plume (the maximum width in approximately an east-west direction) is 3,312 ft. Note that although the

maximum depth of the plume is 40 ft, the average depth of the plume is only 6.4 ft, indicating that the majority of the plume is relatively shallow.

Scenario 2S is the same simulation as scenario 1S but at a low surface elevation (420.5 ft). As the volume of the ambient water is reduced in the reservoir, but the flow rate from the discharge remains the same, it might be expected that the plume would be slightly larger in volume than the previous scenario. This is indeed the case — the volume of the 90°F plume is 1,627 acre-ft and the surface area is 150 acres. The temperature contours and 90°F plume for this case are shown on Figure 19.

When the FPSF is pumping under low surface elevation, approximately 41,800 cfs is injected into the reservoir at the ambient reservoir temperature. This is the situation modeled in scenario 3S. The velocity vectors on the surface of the reservoir are shown on Figure 20 where the scale is from zero velocity (blue) to 3 ft/s (red). Although the jet from the FPSF is set almost directly from west to east in the model, the proximity and angle of the coast just to the south of the FPSF causes the jet to turn south, resulting in a large recirculation region bounded by the jetty and the island. Although the change to the flows in the western region of the lake are significantly changed, the raised jetty effectively shields the thermal plume, so that neither the temperature contours (Figure 21) or the 90°F plume (Figure 22) are changed from slack conditions (compare to scenario 2S). Indeed, the 90°F plume are very similar to those in scenario 2S: the plume volume is 1,626 acre-feet, the surface area is 150 acres and the maximum length and width are 4,699 ft and 3,830 ft respectively.

The final scenario under summer conditions is 4S, where the FPSF is generating, removing 50,400 cfs of flow from the reservoir. This generates a velocity field pointing towards the FPSF intakes, as shown by the velocity vectors on Figure 23 (the scale in this figure is from zero (blue) to 1 ft/s (red). Note that the influence of the FPSF is lesser when the flow is being withdrawn from the reservoir rather than injected, since the flow is withdrawn from all angles rather than the highly directional jet seen in Figure 20. The withdrawal of fluid from the reservoir does have the effect of "pulling" the plume and results in a stretched but shallower thermal plume – the maximum length and width of the plume are 4,775 ft and 3,705 ft respectively, but the average depth has reduced to 6.1 ft. Overall the 90°F plume is largest in this flow regime, with a volume of 1,790 acre-ft and a surface area of 163 acres. The reason why the generating rather than pumping regime increases the plume size is twofold: first, the "pulling" of the fluid is less turbulent and does not cause additional mixing; second, the flow does not sharply

turn, as was shown by the vectors near the island for the previous scenario. The surface temperature contours and 90°F plume for this case are shown on Figure 24 and Figure 25 respectively.

A summary of these results is given by the table in §7.

6. MODEL RESULTS – $\Delta T = 5^{\circ}F$ PLUME

The worst case for the $\Delta T = 5^{\circ}F$ thermal plume is under winter conditions where the temperature difference between the background and discharge is greatest. As explained in §3, this occurs in November where the monthly-average ambient reservoir temperature is 66.6°F and the discharge temperature is 98.7°F, a ΔT of 32.1°F. These temperatures were set for all four winter scenarios, and are referred to as 1W, 2W, 3W and 4W in the text and figure captions, and the input parameters and results are summarized in §8 for reference.

The surface temperature for scenario 1W (high surface elevation, slack conditions) is shown on Figure 26. Similar to the figures for the summer conditions, the blue coloration indicates ambient temperatures and red indicates temperatures similar to the plume; however in winter the ambient temperature is now $66.6^{\circ}F$ and the plume temperatures is $98.7^{\circ}F$. In this color scale the thermal plume appears to be similar in shape and size to the summer plumes, but it is the $\Delta T = 5^{\circ}F$ rather than the $90^{\circ}F$ plume that is of interest here. This is shown for scenario 1W by the green area in Figure 27. This plume is visibly smaller than the $90^{\circ}F$ plumes in the previous section. The volume of the $\Delta T = 5^{\circ}F$ for this scenario is 799 acre-feet and the surface area is 77 acres. The maximum length and width are 3,391 ft and 2,763 ft respectively, while the average depth is 6.5 ft.

The same simulation but for low surface elevation of 420.5 ft msl was run as scenario 2W. For the summer simulations, the reduced surface elevation resulted in a larger thermal plume, and this is also the case for the winter conditions, as the volume has increased to 1,005 acre-ft and the surface area has increased to 107 acres. Similarly, the maximum length and width have increased to 4,129 ft and 3,190 ft respectively, but the plume on average is shallower with an average depth of 5.5 ft. The temperature contours and plume can be seen on Figure 28 and Figure 29.

A large recirculation zone was observed in the summer simulation with the FPSF pumping, and this is also seen under winter conditions in Figure 30, which shows velocity vectors (blue is zero, red is 3 ft/s) for scenario 3W. The vectors are very similar to those for scenario 3S, which is expected as the FPSF pumping flow rate is the same in both cases. However, unlike the summer scenario where an almost identical plume resulted with the FPSF pumping, in this case the plume is slightly bigger. This is not noticeable on the temperature contours (Figure 31) or the plume visualization (Figure 32) but the statistics show a marginal increase in plume size, to 1,148 acre-ft volume and 120 acres surface area. The maximum length and width has also increased to 4,219 ft and 3,325 ft respectively, but the average depth remains the same as scenario 2W at 5.5 ft.

Scenario 4W is the final scenario under winter conditions, simulating FPSF generating flow (50,400 cfs removed from the reservoir). The velocity vectors for this scenario are shown on Figure 33, which show the effect of the flow being removed from the reservoir. Similar to the results for summer conditions, the generating condition for the FPSF results in an extended but shallower plume; the surface area is 110 acres and the average depth is 5.8 ft. The plume dimensions are 3,183 ft for maximum width and 3,901 ft for maximum length, and result in an increase in volume over scenario 1W to 1,043 acre-feet.

7. **RESULTS SUMMARY** – $T = 90^{\circ}F$ **PLUME**

	Scenario 1S	Scenario 2S	Scenario 3S	Scenario 4S
Description	Summer, high water, slack	Summer, low water, slack	Summer, low water, pumping	Summer, high water, generating
Reservoir Surface Elevation	425.0 ft msl	420.5 ft msl	420.5 ft msl	425.0 ft msl
Reservoir Temperature	86.4°F	86.4°F	86.4°F	86.4°F
Discharge Flow	532,000 gpm	532,000 gpm	532,000 gpm	532,000 gpm
Discharge Temperature	113.0°F	113.0°F	113.0°F	113.0°F
FPSF Operation	0 cfs	0 cfs	+ 41,800 cfs	- 50,400 cfs
	Dimensions of the	e T = 90°F Thermal P	ume	
- Volume	1,418 acre-ft	1,627 acre-ft	1,626 acre-ft	1,790 acre-ft
- Surface area	128 acre	150 acre	150 acre	163 acre
- Average Depth/Thickness	6.4 ft	6.0 ft	5.9 ft	6.1 ft
- Maximum Depth/Thickness	40 ft	36 ft	36 ft	40 ft
- Maximum Width	3,312 ft	3,840 ft	3,830 ft	3,705 ft
- Maximum Length ³	4,332 ft	4,699 ft	4,699 ft	4,775 ft

³ Calculated from the end of the discharge pipe.

8. RESULTS SUMMARY $-\Delta T = 5^{\circ}F$ PLUME

	Scenario 1W	Scenario 2W	Scenario 3W	Scenario 4W
Description	Winter, high water, slack	Winter, low water, slack	Winter, low water, pumping	Winter, high water, generating
Reservoir Surface Elevation	425.0 ft msl	420.5 ft msl	420.5 ft msl	425.0 ft msl
Reservoir Temperature	66.6°F	66.6°F	66.6°F	66.6°F
Discharge Flow	532,000 gpm	532,000 gpm	532,000 gpm	532,000 gpm
Discharge Temperature	98.7°F	98.7°F	98.7°F	98.7°F
FPSF Operation	0 cfs	0 cfs	+ 41,800 cfs	- 50,400 cfs
	Dimensions of the	∆T = 5°F Thermal Plu	ime	
- Volume	799 acre-ft	1,005 acre-ft	1,148 acre-ft	1,043 acre-ft
- Surface area	77 acre	107 acre	120 acre	110 acre
- Average Depth/Thickness	6.5 ft	5.5 ft	5.5 ft	5.8 ft
- Maximum Depth/Thickness	40 ft	36 ft	36 ft	40 ft
- Maximum Width	2,763 ft	3,190 ft	3,325 ft	3,183 ft
- Maximum Length⁴	3,391 ft	4,129 ft	4,219 ft	3,901 ft

⁴ Calculated from the end of the discharge pipe.

9. RELEVANCE TO THE THEMRAL MIXING ZONE RENEWAL

The results of the thermal modeling relative to the thermal mixing zone are as follows.

For the $T = 90^{\circ}F$ plume:

- The maximum plume dimensions occur in summer, when the reservoir is at high surface elevation (425.0 ft msl) and the FPSF is generating.
- The maximum volume is 1,790 acre-ft.
- The maximum surface area is 163 acres.
- The maximum length is 4,775 ft.
- The maximum width is 3,705 ft.

For the $\Delta T = 5^{\circ}F$ plume:

- The maximum plume dimensions occur in winter, when the reservoir is at low surface elevation (420.5 ft msl) and the FPSF is pumping.
- The maximum volume is 1,148 acre-ft.
- The maximum surface area is 120 acres.
- The maximum length is 4,219 ft.
- The maximum width is 3,325 ft.

The above results indicate that the $T = 90^{\circ}F$ plume has a larger impact than the $\Delta T = 5^{\circ}F$ plume.

10. REFERENCES

- [1] Toblin, A. L. Final Report Computer Mathematical Model Study V. C. Summer Station Environmental Program. Report prepared for SCE&G by NUS Corporation, NUS Report 4687, March 1985.
- [2] Toblin, A. L. 1988 Computer Mathematical Study of the Thermal Plume in Monticello Reservoir Generated by the V. C. Summer Station. Report prepared for SCE&G by NUS Corporation, May 1989.
- [3] Doneker, R.L. and Jirka G. H. CORMIX User Manual: A Hydrodynamic Mixing Zone Model and Decision Support System for Pollutant Discharges into Surface Waters, EPA-823-K-07-001, December 2007.
- [4] Versteeg, H. K and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Second Edition, Pearson Education, Ltd., 503pp, 2007.
- [5] Fangbiao Lin and George E. Heckler, Alden Research Laboratory, Inc., Holden, MA; and Brennan T. Smith and Paul N. Hopping, Tennessee Valley Authority, Knoxville, TN. Nuclear Power Plant Thermal Discharge, Fluent News, Spring 2004 and associated reference: D.F.R. Hardeman, L.C. Hall, and T.G. Curtis. Thermal Diffusion of Condenser Water in a River during Steady and Unsteady Flows with Application to the TVA Browns Ferry Nuclear Power Plant. Hydrodynamics Laboratory Report No. 111, Massachusetts Institute of Technology, Cambridge, MA, September 1968.
- [6] Computational Fluid Dynamics Modeling of the North Fork Dam Forebay, Clackamas River, Oregon and Bonneville Tailrace Project: Three-Dimensional CFD Models and Flow Measurements. Pacific Northwest National Laboratory, Richland, WA.
- [7] Liaqat A. Khan, Edward A. Wicklein, and Mizan Rashid. "A 3D CFD Model Investigation of an Outfall Reservoir Hydraulics for Repowering a Power Plant". Examining the Confluence of Environmental and Water Concerns; Proceedings of the World Environmental and Water Resources Congress. 2006.

- [8] ANSYS,Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317. http://www.ansys.com/default.asp.
- [9] Piping Yard Plan Non Nuclear, SCE&G Drawing E-303-202.
- [10] *Email correspondence*, from Summer, S. (SCE&G) to Heynes, O. (MMI) on 11/28/11 at 12:15 PM.
- [11] *Email correspondence*, from Summer, S. (SCE&G) to Heynes, O. (MMI) on 11/28/11 at 12:07 PM.

11. FIGURES

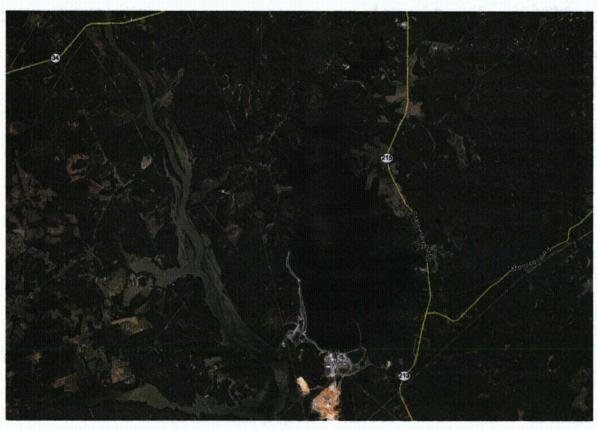


Figure 1 – Aerial photograph of the Monticello Reservoir and V. C. Summer Station

Figure 2 – Close aerial photograph of the Monticello Reservoir and V. C. Summer Station

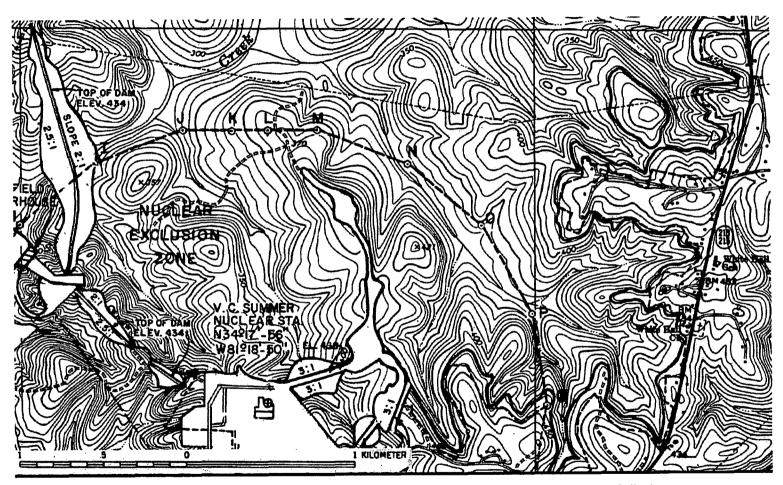


Figure 3 – Contour map of the Monticello Reservoir in the vicinity of the Unit 1 thermal discharge.

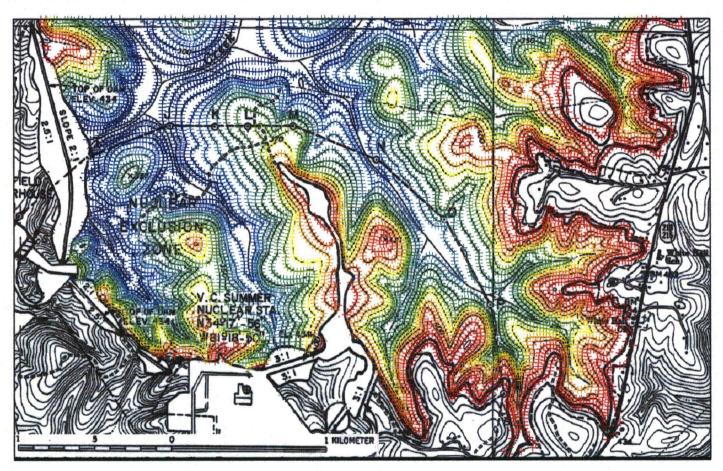


Figure 4 – Digitized points from the contour map, colored by elevation (red is 430 ft msl, blue is 270 ft msl).

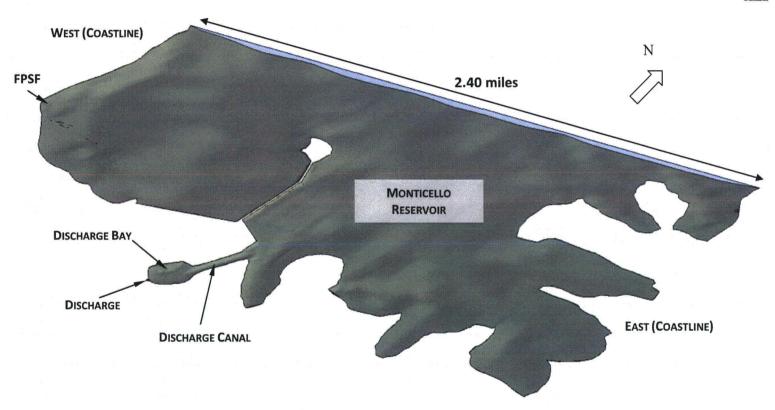


Figure 5 – Perspective view of the computational model.

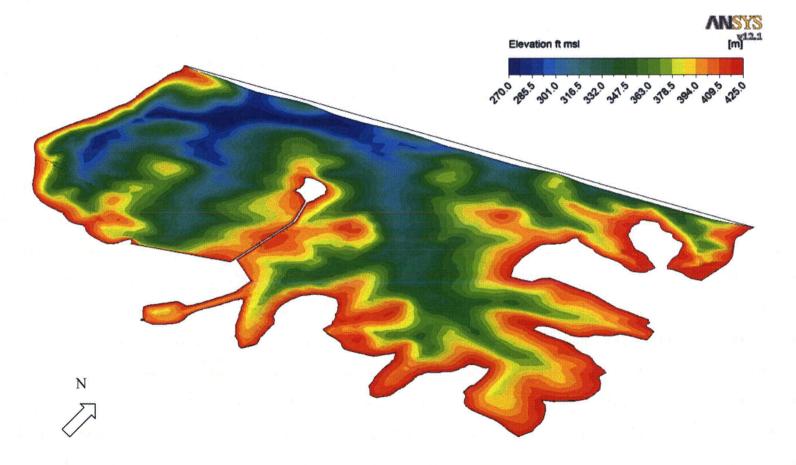


Figure 6 – Contour map showing surface elevation in the computational model.

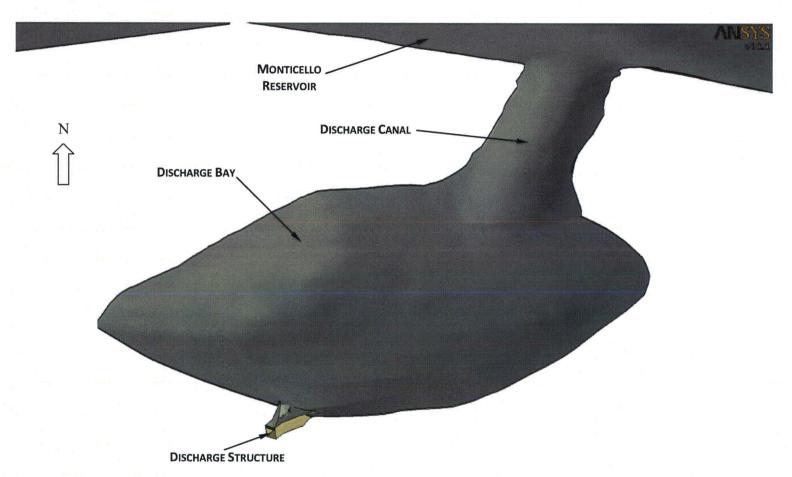


Figure 7 – View of the model near the discharge structure, bay and canal.

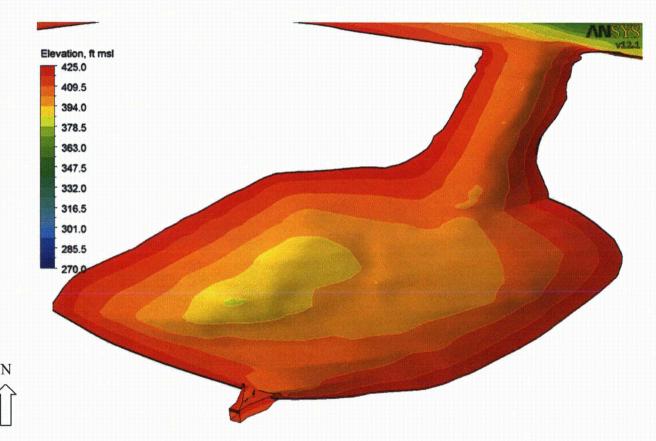


Figure 8 – Elevation contour plot near the discharge structure, bay and canal.

Figure 9 – Computational mesh.

Figure 10 – View of the computational mesh near the discharge structure.

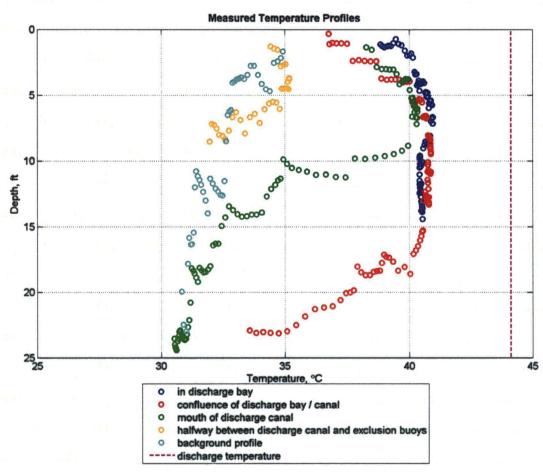


Figure 11 – Temperature profiles collected for validation.

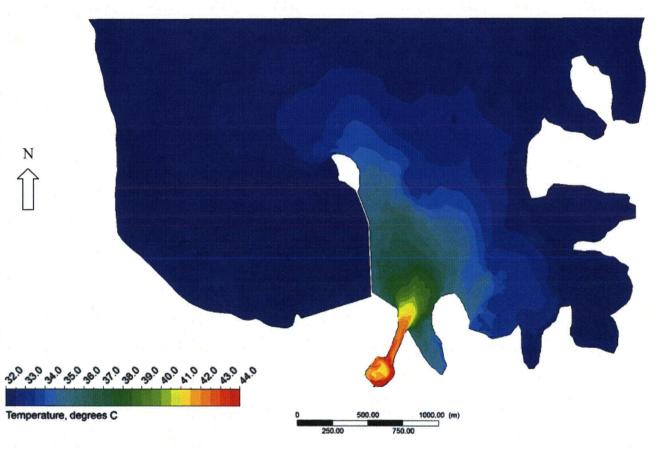


Figure 12 – Contour plot of surface temperature in the numerical model for validation.

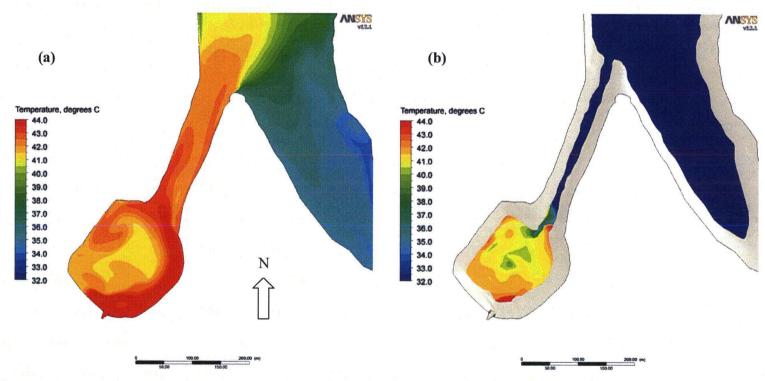


Figure 13 – Contour plot of temperature near the discharge bay at (a) the surface, and (b) 18 ft depth.

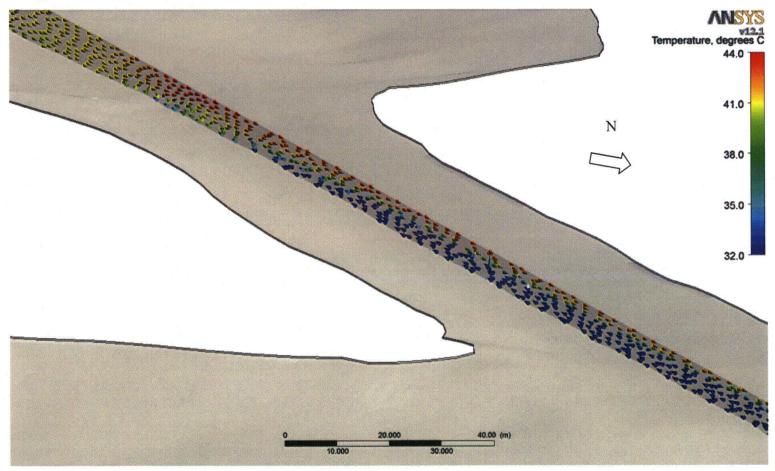


Figure 14 – Velocity vectors in the discharge canal colored by temperature.

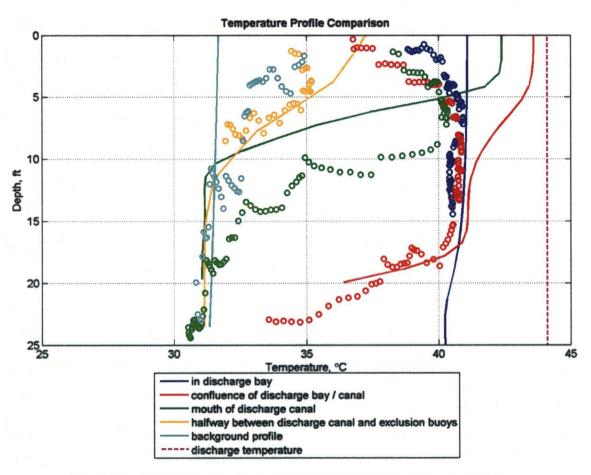


Figure 15 – Comparison between the CFD and collected temperature data.

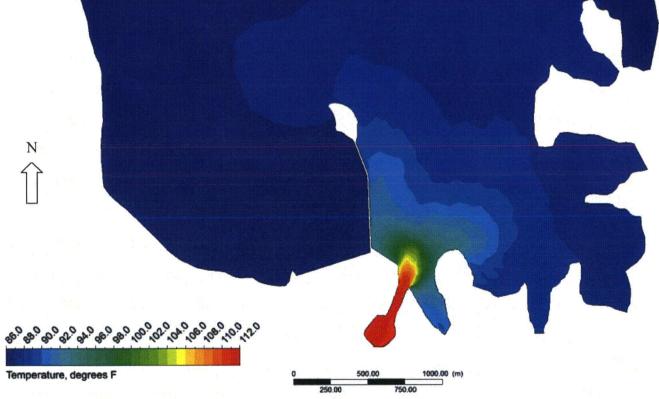


Figure 16 – Scenario 1S, surface temperature.

Figure 17 – Scenario 1S, 90°F thermal plume (purple).

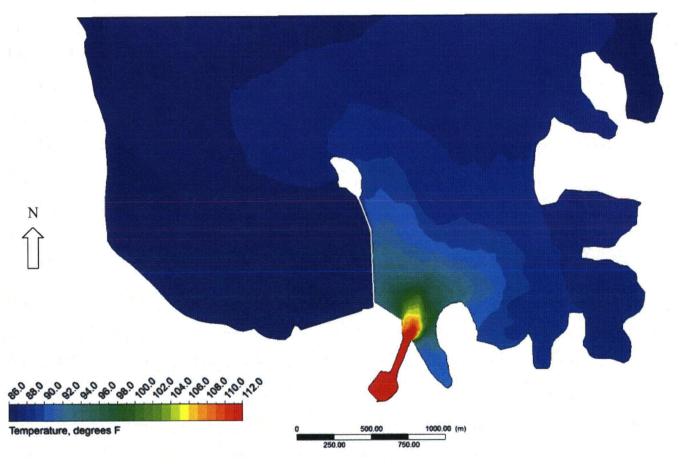


Figure 18 – Scenario 2S, surface temperature.

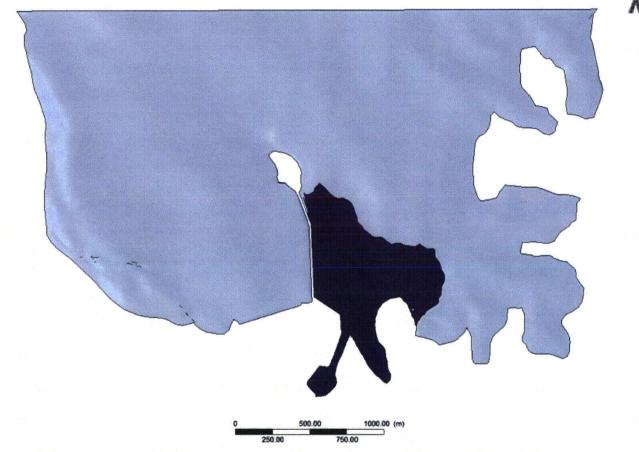


Figure 19 – Scenario 2S, 90°F thermal plume (purple).

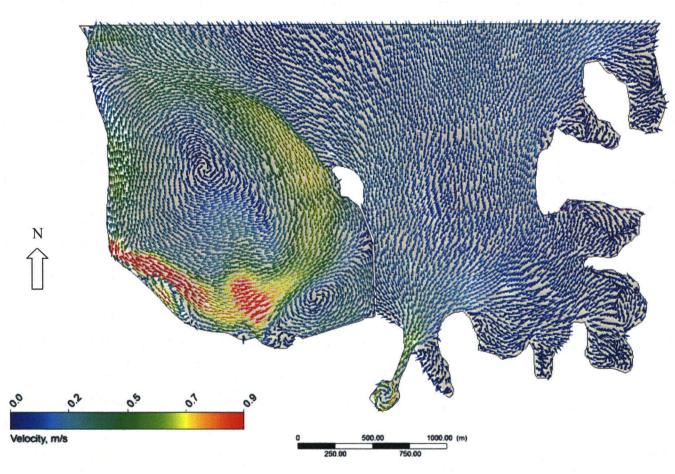


Figure 20 – Scenario 3S, surface velocity vectors.

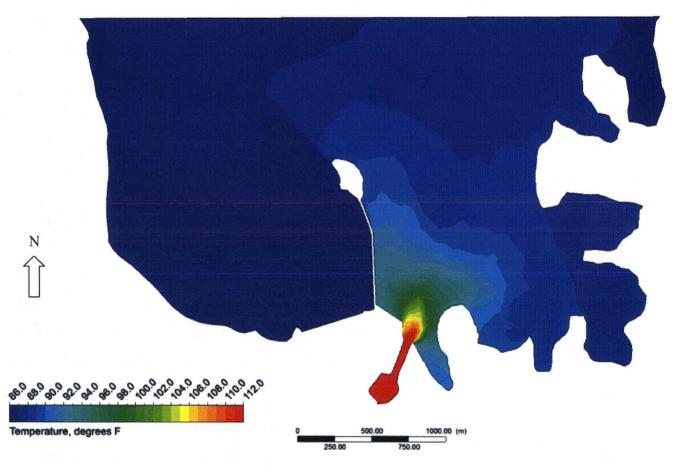


Figure 21 – Scenario 3S, surface temperature.

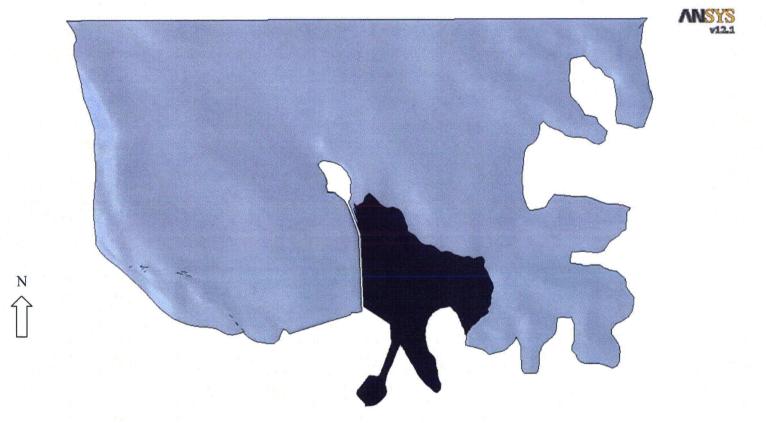


Figure 22 – Scenario 3S, 90°F thermal plume (purple).

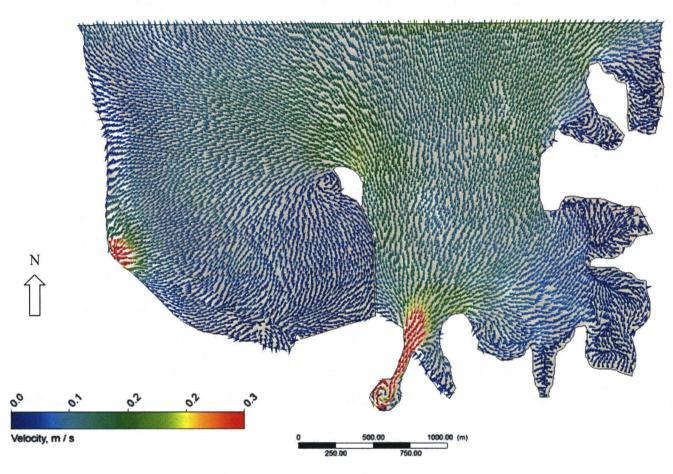


Figure 23 – Scenario 4S, surface velocity vectors.

ANSYS v12.1

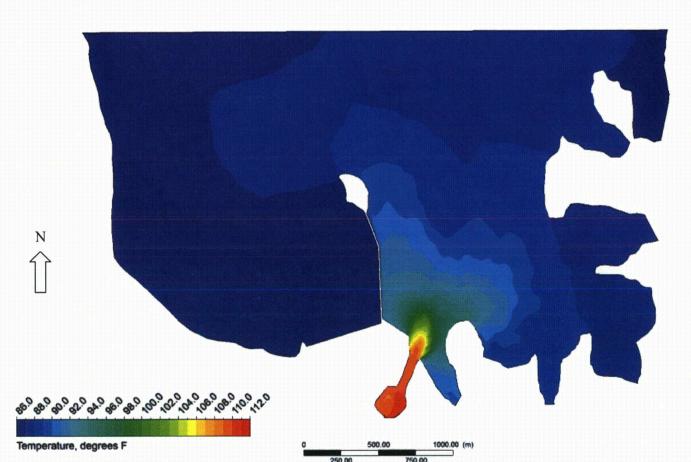


Figure 24 – Scenario 4S, surface temperature.

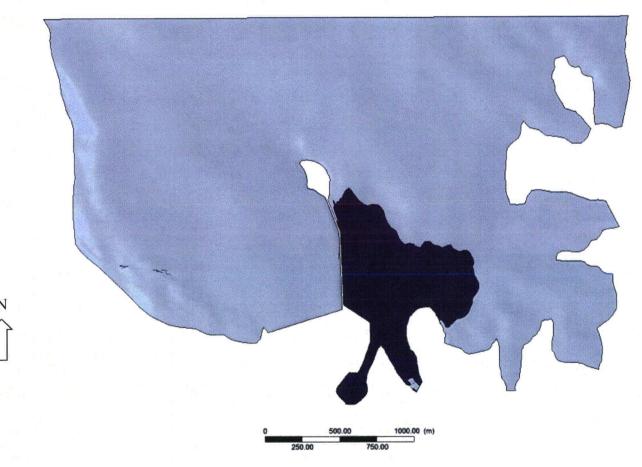


Figure 25 – Scenario 4S, 90°F thermal plume (purple).

Temperature, degrees F

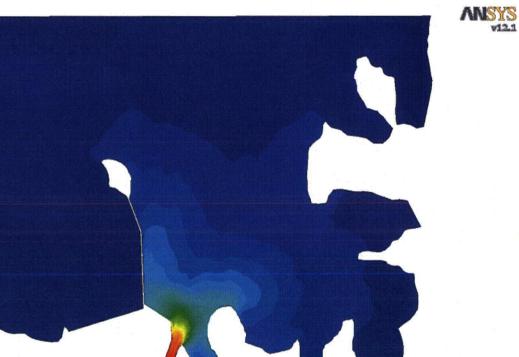


Figure 26 – Scenario 1W, surface temperature.

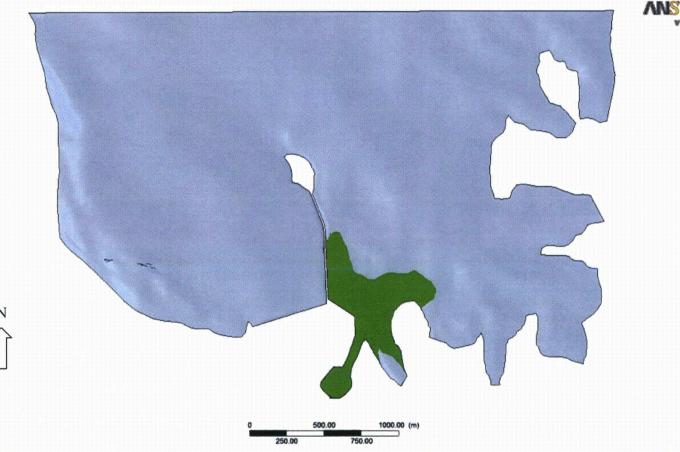


Figure 27 – Scenario 1W, $\Delta T = 5$ °F thermal plume (green).

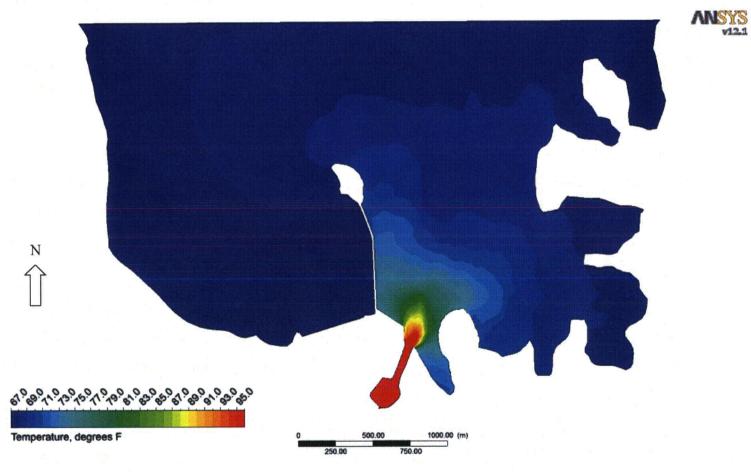


Figure 28 – Scenario 2W, surface temperature.

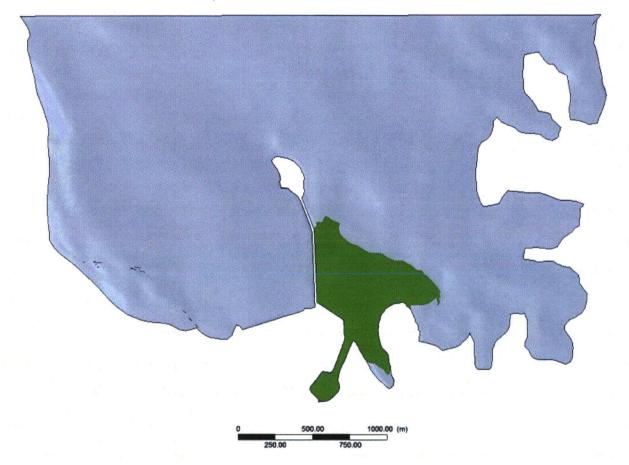


Figure 29 – Scenario 2W, ΔT = 5°F thermal plume (green).

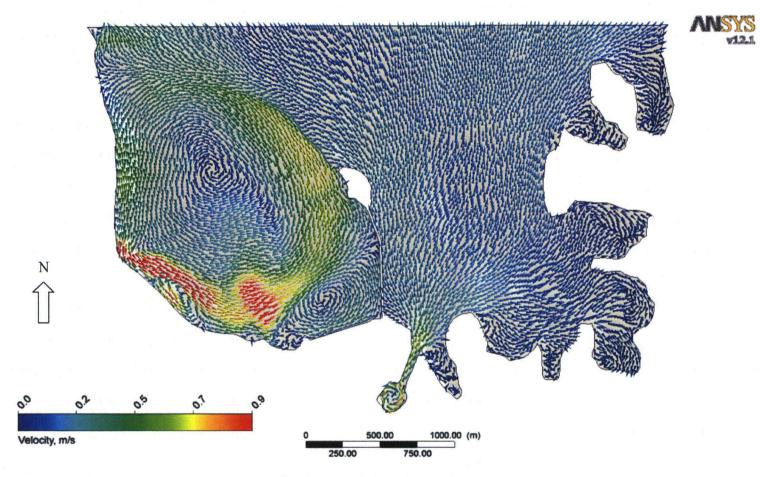


Figure 30 – Scenario 3W, surface velocity vectors

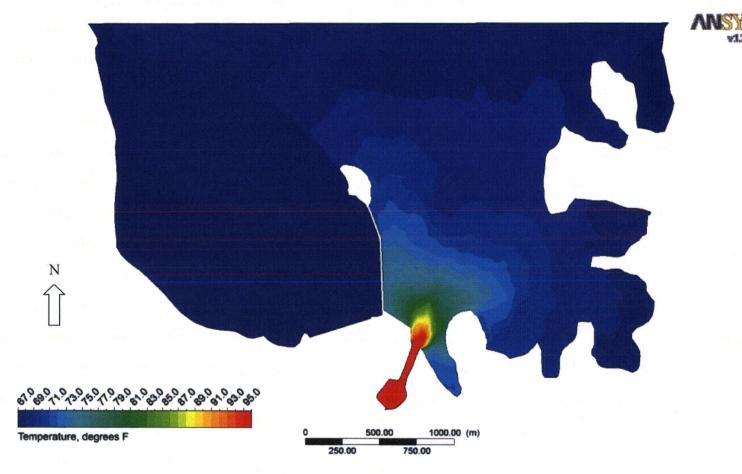


Figure 31 – Scenario 3W, surface temperature.

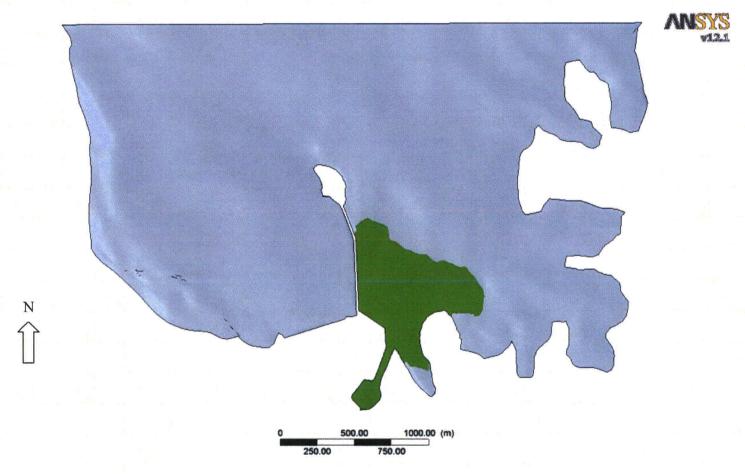


Figure 32 – Scenario 3W, ΔT = 5°F thermal plume (green).

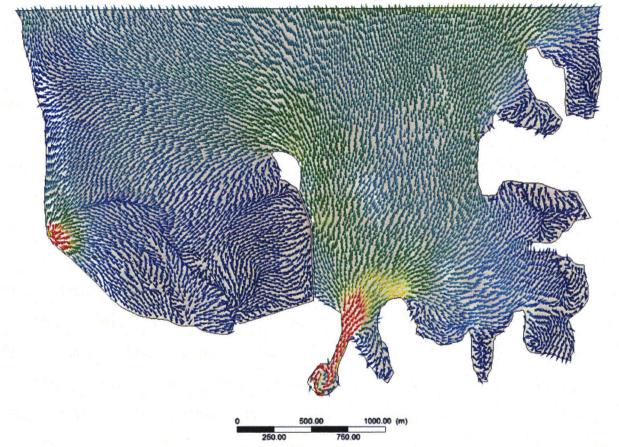


Figure 33 – Scenario 4W, surface velocity vectors

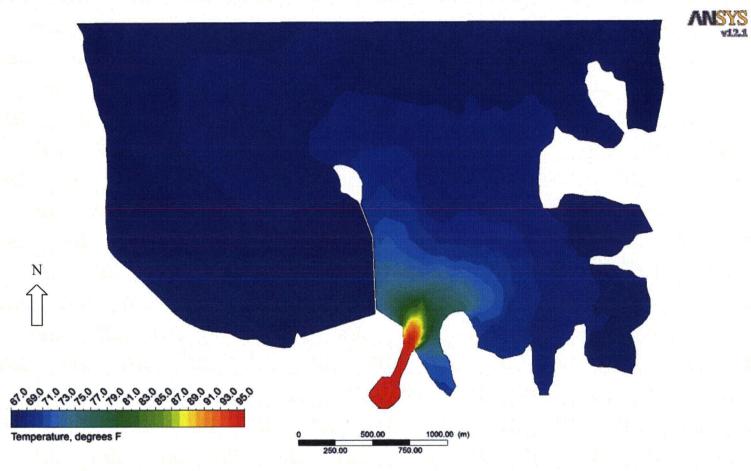


Figure 34 – Scenario 4W, surface temperature.

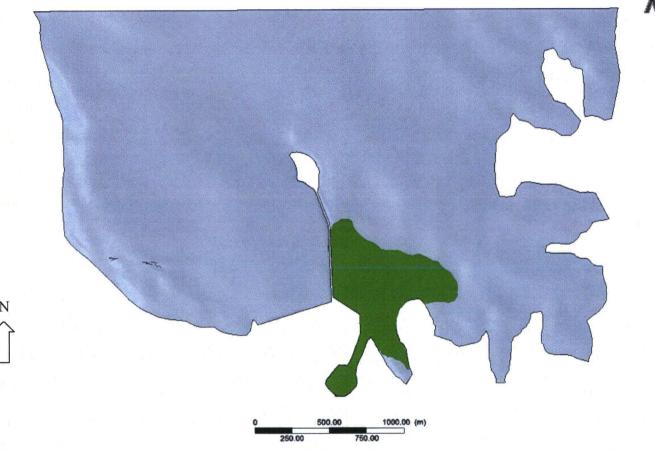


Figure 35 – Scenario 4W, ΔT = 5°F thermal plume (green).

Geosyntec consultants

12. APPENDIX A – DETAILS OF THE NUMERICAL MODEL

Geometry and Mesh

The geometry and mesh generation were described in §2 of this report. A custom-built digitizer in Matlab was used to digitized the contour map, and produce a surface. This surface was read into the ICEM mesh generator to create the meshes.

Boundary Conditions

The primary boundary condition in the CFD model was the flow rate and temperature applied discharge. In all simulations, a point source (or sink) was used to represent the flow being withdrawn through the cooling water intakes. Similarly, where the FPSF was operating, a mass and directional momentum point source was employed. The north surface of the domain was a zero-pressure "opening". This allows fluid to flow into the domain through the north boundary without exerting unphysical influence on the flow. The bottom surface of the domain was set to a "wall" and the top surface, representing the water surface, was set to a "smooth wall" (i.e. no shear stress).

Computational Models

Thermodynamic

The density of water in the domain depended on temperature only, using a tested polynomial relationship between density and temperature.

Turbulence

The shear-stress transport model (SST) was used for all simulations, which is a blend of the well-recognized k- ε and k- ω turbulence models.

Numerics

Model

All simulations were performed using Ansys-CFX 12.0, a widely recognized industrial CFD software package. The model was run in steady-state mode as transient instabilities were not observed.

Geosyntec consultants

Discretization

For the simulation, a specified blend factor of 0.5 was used, which is a blend between first- and second-order schemes. This scheme was used to provide a balance between numerical accuracy and stability.

The temporal term in the transient simulations was discretized using a second-order implicit Euler scheme.

Convergence

The root-mean-square residuals were less than 1e-04 for all transport equations solved. This level of convergence is acceptable for a transient simulation, especially as the volume of the thermal plumes was not observed to change. Imbalances for all conserved variables were less than 1%.

2010 Water Quality Monitoring Report For Monticello Reservoir

February 9, 2011

Environmental Services
South Carolina Electric & Gas Company

Water Quality Monitoring

Monticello Reservoir 2010

Introduction

Monticello Reservoir is the upper reservoir for a pumped storage hydroelectric plant (Fairfield Pumped Storage Facility) and the cooling reservoir for a nuclear powered electric generation facility (Virgil C. Summer Nuclear Station). Monticello Reservoir is located in Fairfield County, near Jenkinsville, South Carolina.

Water quality profiles (temperature, pH, conductivity, and dissolved oxygen) were conducted on a monthly basis at three locations in the Monticello Reservoir in 2010. Sampling was also conducted in the V. C. Summer Nuclear Station Service Water Pond. The locations are designated as follows (see Figure 1):

"Uplake 16", located near the northern end of the reservoir (near the old NUS site 16),

"Intake 2", located in the channel near the circulating water intake for the Virgil C. Summer Nuclear Station,

"Discharge 6", located just outside the northern end of the circulating water discharge canal for the Virgil C. Summer Nuclear Station (VCSNS),

"Service Water Pond", located adjacent to VCSNS. The actual sampling site is found in the immediate vicinity of the intake structure. We no longer sample this area due to security concerns since 9/11.

These three locations cover three major portions of the Monticello Reservoir. The three locations in the Monticello Reservoir are; the area near the Fairfield Pumped Storage Facility (FPSF) intake, which is influenced by pump back and generation operations of the hydro; the area near the discharge canal which is influenced by the VCSNS thermal discharge; and the northern end of the reservoir which is relatively unaffected, in terms of water quality, by either the FPSF or the VSCNS.

All measurements were conducted in the field using the YSI 650 MDS with the 600XL Sonde Water Quality Logger. The instruments (pH, Conductivity, and Dissolved Oxygen probes) were calibrated in the laboratory prior to taking field measurements. In some cases they were re-calibrated in the field. Data was collected between mid-morning or early afternoon on each sampling day.

Results

Data collected is presented in the tables from January 2010 to December 2010. Bottom contours at each sampling location can vary greatly over small distances due to boat positioning not being exact. Depth sampled at a location can vary from month to month due to water use at Fairfield Pump Storage. Each table displays depth, temperature, pH, conductivity, and dissolved oxygen. Measurements were taken from surface (approximately one foot in depth), to the bottom in 1 meter increments. Six graphs are provided to show contrast or similarities of like parameters, different locations, and same dates. Conductivity was not included in the graphs. Results are discussed by parameter below. The months of January and August were graphed to show extremes in 2010 parameter values. All data from the month of June is incorrect due to an overheated Water Quality meter. June charts are not included in this report.

Temperature- As the result of heated water discharge from VCSNS, surface water temperatures were higher at the Discharge 6 site than at the other two locations in Lake Monticello (see temperature graph for August 2010). A thermal plume is evident in the Discharge 6 site at depths of 0 to 2 meters in August. In winter, Uplake 16 site and Intake 2 site have similar temperature profiles.

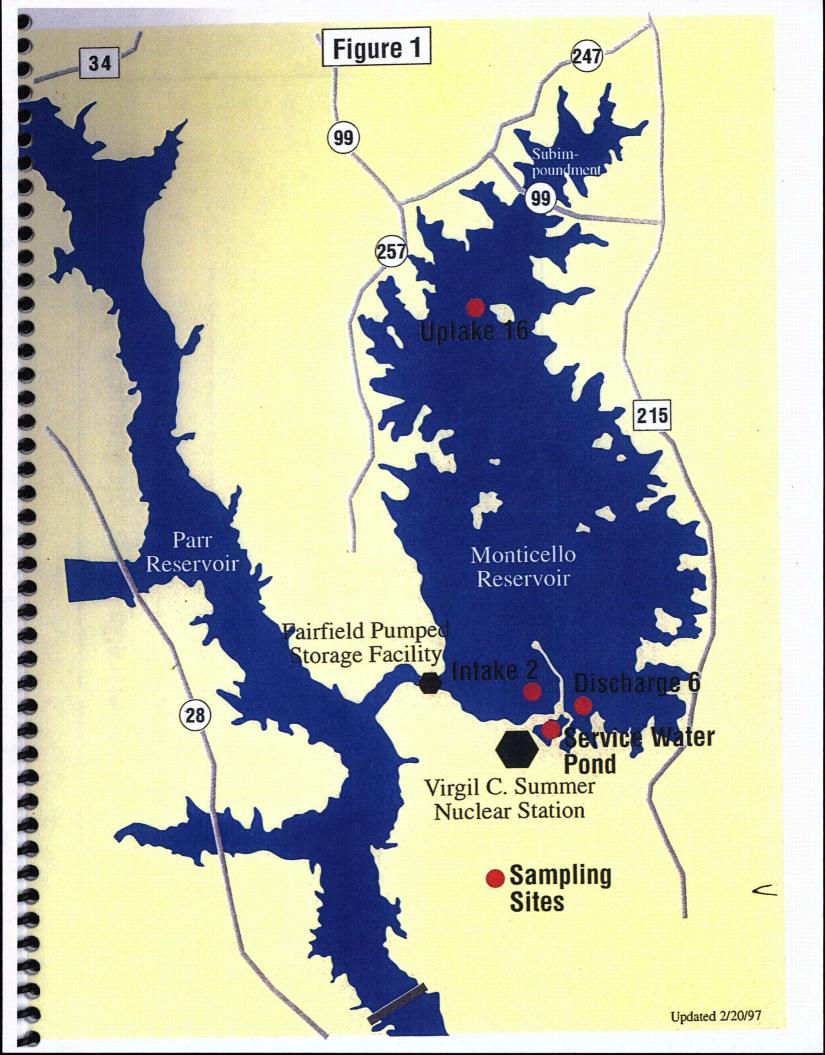
The May temperature graph shows a thermocline at Uplake 16 between 4 and 5 meters depth. Another thermocline is evident at Discharge 6 from 1 to 2 meters due to the thermal plume discharged from the V. C. Summer Nuclear Plant. A thermocline is a zone of rapid temperature change indicating a boundary between water layers of different temperature and density. This temperature change can be as little as 1 degree centigrade/meter of depth increase.

In the fall, due to cooler weather conditions, thermal stratification breaks down allowing mixing of layers. No thermocline is evident or expected during the winter months at Uplake 16 or Intake Channel 2 sampling sites. Discharge 6 has a thermocline at 1 to 2 meters due to the thermal plume discharged from the V. C. Summer Nuclear Plant during winter and summer months when Summer Station is operational.

Dissolved Oxygen- Dissolved oxygen in the Monticello Reservoir is relatively high throughout the year except for the deeper waters in the late summer. These deep waters, due to their lower temperatures and increased density, do not mix with the upper layers of water in the reservoir and become oxygen depleted during the summer. A general decrease in oxygen occurs with depth during the summer months as evidenced in two of the three sites sampled. During winter conditions, thorough mixing of water layers occur distributing oxygen from surface to bottom.

Uplake 16 site and Discharge 6 show the greatest decline in oxygen with depth in the summer months. There seems to be more mixing occurring at Intake 2 due to the influence of pump-back by FPSF.

pH- The pH in the Monticello Reservoir is generally neutral. Measured pH values in 2010 ranged from a low of 7.2 to a high of 8.7. During the winter months pH profiles are similar at all three sampling sites (see pH graph Monticello Reservoir January 2010). In the spring and summer, pH values are higher at the Uplake 16 site. This is due to phytoplankton photosynthetic activity in the surface waters to a depth that sunlight can penetrate. The uptake of carbon dioxide, and reduction of bicarbonate and carbonate ions during photosynthesis by aquatic plants (including microscopic phytoplankton) results in increased pH. The highest pH value of 8.7 was measured in Monticello Reservoir during 2010 near the surface at Uplake 16 during the month of May. The water mixing process previously mentioned at Intake 2, and Discharge 6, keeps their pH values lower than at the Uplake 16 site.

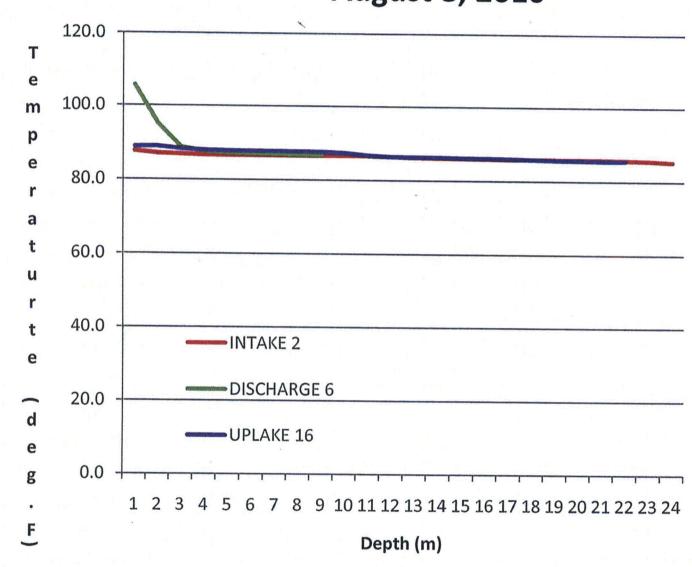

Conductivity- In 2010 normal conductivity in the Monticello Reservoir is 72.0 to 88.0 uS/cm. The conductivity is calibrated along with dissolved oxygen and pH before each monthly data collecting session. In general, low conductivity values are consistent for Monticello Reservoir and show only slight variation throughout the year.

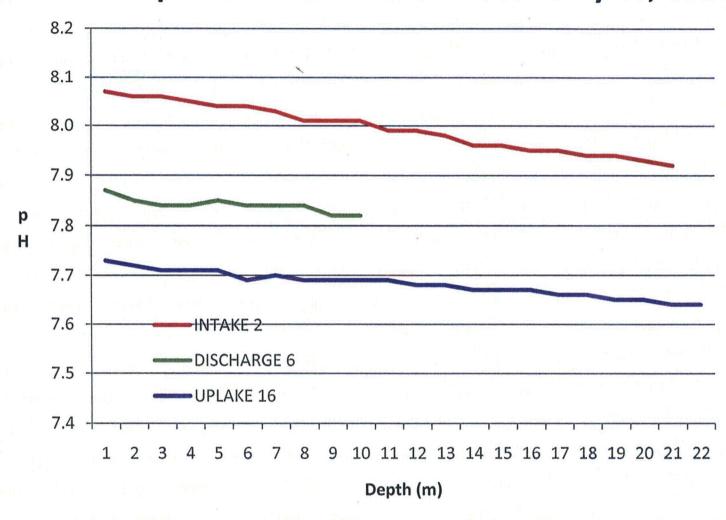
Summary

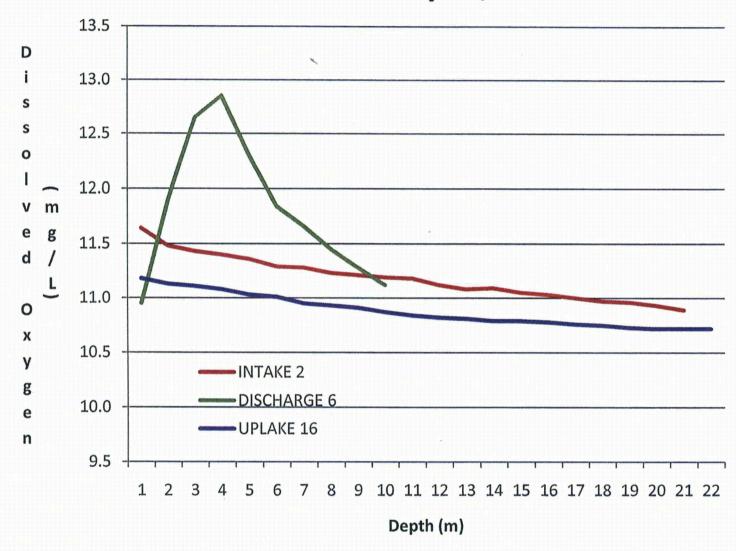
Water quality measurements reveal that Monticello Reservoir exhibits mixed thermal conditions at the southern end of the reservoir with the exception of the thermal plume from Summer Station (Discharge 6 location). There is no evidence of the thermal plume from Summer Station in the area near the Summer Station circulating water intake (Intake 2), nor at the uplake sampling location (Uplake 16). Water quality measurements reveal a thermally stratified environment at the uplake sampling location during warm weather months. Dissolved oxygen levels remain relatively high in Monticello Reservoir throughout the year except in deep water during the summer months. Near neutral pH conditions are the rule for Monticello Reservoir, except for photosynthesis induced pH elevation near the surface during the spring and summer months. Conductivity values are generally low and are consistent with historical Monticello Reservoir values. No data taken during 2010 suggests the water quality in Monticello Reservoir is insufficient for support of aquatic life.

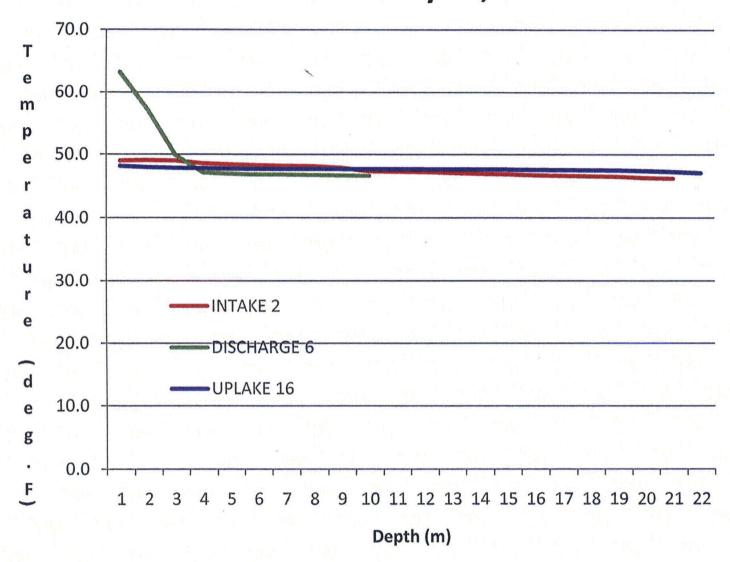

Note: There is no data for the month of June 2010 due to meter malfunction from overheating.

F. David Haddon Environmental Services




Dissolved Oxygen Monticello Reservoir August 8, 2010





Dissolved Oxygen Monticello Reservoir January 28, 2010

Temperature Monticello Reservoir January 28, 2010

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	1/28/2010 11:00	49.0	68	11.6	8.1	0
SITE: INTAKE CHANNEL 2	1/28/2010 11:00	49.1	64	11.5	8.1	1
SITE: INTAKE CHANNEL 2	1/28/2010 11:00	49.0	67	11.4	8.1	2
SITE: INTAKE CHANNEL 2	1/28/2010 11:00	48.6	63	11.4	8.1	3
SITE: INTAKE CHANNEL 2	1/28/2010 11:00	48.4	67	11.4	8.0	4
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	48.3	67	11.3	8.0	5
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	48.2	68	11.3	8.0	6
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	48.1	68	11.2	8.0	7
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.9	67	11.2	8.0	8
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.3	66	11.2	8.0	9
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.3	66	11.2	8.0	10
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.2	62	11.1	8.0	11
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.1	66	11.1	8.0	12
SITE: INTAKE CHANNEL 2	1/28/2010 11:01	47.0	67	11.1	8.0	13
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.9	63	11.1	8.0	14
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.7	64	11.0	8.0	15
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.7	67	11.0	8.0	16
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.6	68	11.0	7.9	17
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.5	67	11.0	7.9	18
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.3	64	10.9	7.9	19
SITE: INTAKE CHANNEL 2	1/28/2010 11:02	46.2	68	10.9	7.9	20

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	1/28/2010 11:10	63.2	67	11.0	7.9	0
SITE: DISCHARGE 6	1/28/2010 11:10	57.1	69	11.9	7.9	1
SITE: DISCHARGE 6	1/28/2010 11:10	49.9	67	12.7	7.8	2
SITE: DISCHARGE 6	1/28/2010 11:10	47.1	68	12.9	7.8	3
SITE: DISCHARGE 6	1/28/2010 11:10	46.9	70	12.3	7.9	4
SITE: DISCHARGE 6	1/28/2010 11:10	46.8	68	11.8	7.8	5
SITE: DISCHARGE 6	1/28/2010 11:10	46.8	68	11.7	7.8	6
SITE: DISCHARGE 6	1/28/2010 11:10	46.8	68	11.5	7.8	7
SITE: DISCHARGE 6	1/28/2010 11:11	46.7	68	11.3	7.8	8
SITE: DISCHARGE 6	1/28/2010 11:11	46.6	68	11.1	7.8	9

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	1/28/2010 11:25	48.2	69	11.2	7.7	0
SITE: UPLAKE 16	1/28/2010 11:25	48.0	69	11.1	7.7	1
SITE: UPLAKE 16	1/28/2010 11:25	47.9	69	11.1	7.7	2
SITE: UPLAKE 16	1/28/2010 11:25	47.8	69	11.1	7.7	3
SITE: UPLAKE 16	1/28/2010 11:25	47.7	69	11.0	7.7	4
SITE: UPLAKE 16	1/28/2010 11:25	47.7	69	11.0	7.7	5
SITE: UPLAKE 16	1/28/2010 11:25	47.7	69	11.0	7.7	6
SITE: UPLAKE 16	1/28/2010 11:25	47.7	75	10.9	7.7	7
SITE: UPLAKE 16	1/28/2010 11:25	47.7	69	10.9	7.7	8
SITE: UPLAKE 16	1/28/2010 11:26	47.7	69	10.9	7.7	9
SITE: UPLAKE 16	1/28/2010 11:26	47.7	69	10.8	7.7	10
SITE: UPLAKE 16	1/28/2010 11:26	47.7	69	10.8	7.7	11
SITE: UPLAKE 16	1/28/2010 11:26	47.6	69	10.8	7.7	12
SITE: UPLAKE 16	1/28/2010 11:26	47.6	74	10.8	7.7	13
SITE: UPLAKE 16	1/28/2010 11:26	47.6	69	10.8	7.7	14
SITE: UPLAKE 16	1/28/2010 11:26	47.6	69	10.8	7.7	15
SITE: UPLAKE 16	1/28/2010 11:26	47.6	69	10.8	7.7	16
SITE: UPLAKE 16	1/28/2010 11:27	47.5	69	10.8	7.7	17
SITE: UPLAKE 16	1/28/2010 11:27	47.5	69	10.7	7.7	18
SITE: UPLAKE 16	1/28/2010 11:27	47,.4	69	10.7	7.7	19
SITE: UPLAKE 16	1/28/2010 11:27	47.3	69	10.7	7.6	20
SITE: UPLAKE 16	1/28/2010 11:27	47.1	69	10.7	. 7.6	21

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	2/23/2010 12:23	51.2	60	14.8	8.2	0
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	49.4	58	14.5	8.2	1
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	48.0	61	14.4	8.2	2
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	47.8	61	14.3	8.1	3
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	47.0	62	14.1	8.1	4
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	46.8	62	14.1	8.1	5
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	46.7	62	14.0	8.1	6
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	46.6	62	13.9.	8.1	7
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	46.5	62	13.8	8.0	8
SITE: INTAKE CHANNEL 2	2/23/2010 12:24	46.5	62	13.7	8.0	9
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.4	62	13.7	8.0	10
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.4	62	13.6	8.0	11
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.4	62	13.5	8.0	12
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.4	62	13.5	8.0	13
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.3	62 .	13.5	8.0	14
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.2	62	13.5	8.0	15
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.2	62	13.4	8.0	16
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.2	62	13.4	7.9	17
SITE: INTAKE CHANNEL 2	2/23/2010 12:25	46.1	62	13.4	7.9	18
SITE: INTAKE CHANNEL 2	2/23/2010 12:26	46.0	62	13.4	7.9	19
SITE: INTAKE CHANNEL 2	2/23/2010 12:26	45.9	60	13.4	7.9	20
SITE: INTAKE CHANNEL 2	2/23/2010 12:26	45.6	61 ["]	13.4	7.9	21
SITE: INTAKE CHANNEL 2	2/23/2010 12:26	45.5	61	13.3	7.9	22

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	2/23/2010 12:35	60.0	62	13.9	7.9	0
SITE: DISCHARGE 6	2/23/2010 12:35	54.6	59	14.7	7.9	1
SITE: DISCHARGE 6	2/23/2010 12:35	47.4	61	15.4	7.9	2
SITE: DISCHARGE 6	2/23/2010 12:35	46.6	61	15.2	7.9	3
SITE: DISCHARGE 6	2/23/2010 12:35	46.0	62	14.5	7.9	4
SITE: DISCHARGE 6	2/23/2010 12:35	45.9	62	14.1	7.8	5
SITE: DISCHARGE 6	2/23/2010 12:36	45.9	61	13.9	7.8	6
SITE: DISCHARGE 6	2/23/2010 12:36	45.8	61	13.7	7.8	7
SITE: DISCHARGE 6	2/23/2010 12:36	45.8	61	13.5	7.8	8
SITE: DISCHARGE 6	2/23/2010 12:36	45.7	61	13.4	7.8	9

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	2/23/2010 12:52	54.2	62	14.3	8.0	0
SITE: UPLAKE 16	2/23/2010 12:52	54.4	61	14.2	8.0	· 1
SITE: UPLAKE 16	2/23/2010 12:52	53.7	61	14.3	8.0	2
SITE: UPLAKE 16	2/23/2010 12:52	52.7	59	14.3	8.0	3
SITE: UPLAKE 16	2/23/2010 12:53	48.3	61	14.7	8.0	4
SITE: UPLAKE 16	2/23/2010 12:53	48.0	62	14.6	8.0	5
SITE: UPLAKE 16	2/23/2010 12:53	47.4	62	14.3	7.9	6
SITE: UPLAKE 16	2/23/2010 12:53	46.8	62	14.0	7.9	7
SITE: UPLAKE 16	2/23/2010 12:53	46.5	62	14.0	7.9	8
SITE: UPLAKE 16	2/23/2010 12:53	46.3	62	13.9	7.9	9
SITE: UPLAKE 16	2/23/2010 12:53	46.1	62	13.7	7.9	10
SITE: UPLAKE 16	2/23/2010 12:53	46.0	62	13.6	7.9	11
SITE: UPLAKE 16	2/23/2010 12:54	45.9	62	13.5	7.9	12
SITE: UPLAKE 16	2/23/2010 12:54	45.8	63	13.4	7.8	13
SITE: UPLAKE 16	2/23/2010 12:54	45.8	63	13.3	7.8	14
SITE: UPLAKE 16	2/23/2010 12:54	45.7	63	13.3	7.8	15
SITE: UPLAKE 16	2/23/2010 12:54	45.7	63	13.2	7.8	16
SITE: UPLAKE 16	2/23/2010 12:54	45.6	63	13.2	7.8	17
SITE: UPLAKE 16	2/23/2010 12:54	45.6	63	13.1	7.8	18
SITE: UPLAKE 16	2/23/2010 12:54	45.6	62	13.1	7.8	19
SITE: UPLAKE 16	2/23/2010 12:54	45.6	63	13.1	7.8	20
SITE: UPLAKE 16	2/23/2010 12:54	45.5	63	13.1	7.8	21

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	54.9	58	12.6	8.0	0
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	54.9	58	12.3	8.0	1
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	54.7	58	12.2	8.0	2
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	54.7	58	12.1	8.0	3
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	54.7	58	12.0	8.0	4
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	52.8	57	12.4	8.0	5
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	51.6	57	12.4	7.9	6
SITE: INTAKE CHANNEL 2	3/18/2010 21:00	50.8	57	12.5	7.9	7
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	50.3	57	12.4	7.9	8
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	49.5	57	12.4	7.9	9
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	48.9	58	12.4	7.9	10
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	48.5	58	12.4	7.9	11
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	48.1	58	12.3	7.9	12
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	48.0	58	12.2	7.9	13
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	47.9	58	12.2	7.9	14
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	47.8	58	12.1	7.9	15
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	47.6	58	12.0	7.9	16
SITE: INTAKE CHANNEL 2	3/18/2010 21:01	47.6	58	12.0	7.9	17
SITE: INTAKE CHANNEL 2	3/18/2010 21:02	47.5	58	11.9	7.8	18
SITE: INTAKE CHANNEL 2	3/18/2010 21:02	47.4	58	11.8	7.8	19

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	3/18/2010 21:08	68.3	58	11.6	7.8	0
SITE: DISCHARGE 6	3/18/2010 21:08	63.9	58	11.7	7.8	1
SITE: DISCHARGE 6	3/18/2010 21:09	56.0	57	12.9	7.8	2
SITE: DISCHARGE 6	3/18/2010 21:09	53.3	58	13.0	7.8	3
SITE: DISCHARGE 6	3/18/2010 21:09	52.8	58	12.7	7.8	4
SITE: DISCHARGE 6	3/18/2010 21:09	52.6	58	12.5	7.8	5
SITE: DISCHARGE 6	3/18/2010 21:09	52.4	58	12.3	7.8	6
SITE: DISCHARGE 6	3/18/2010 21:09	52.0	58	12.2	7.8	7
SITE: DISCHARGE 6	3/18/2010 21:09	51.6	58	12.1	7.8	8
SITE: DISCHARGE 6	3/18/2010 21:09	51.3	58	12.1	7.8	9

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	3/18/2010 21:24	55.4	58	16.8	7.7	0
SITE: UPLAKE 16	3/18/2010 21:24	55.1	58	12.4	7.7	1
SITE: UPLAKE 16	3/18/2010 21:24	55.0	58	12.3	7.7	2
SITE: UPLAKE 16	3/18/2010 21:24	54.6	58	12.2	7.7	3
SITE: UPLAKE 16	3/18/2010 21:25	53.7	58	12.1	7.7	4
SITE: UPLAKE 16	3/18/2010 21:25	53.1	58	12.2	7.7	5
SITE: UPLAKE 16	3/18/2010 21:25	52.7	58	12.2	7.7	6
SITE: UPLAKE 16	3/18/2010 21:25	52.2	58	12.2	7.7	7
SITE: UPLAKE 16	3/18/2010 21:25	51.9	58	12.2	7.7	8
SITE: UPLAKE 16	3/18/2010 21:25	51.4	58	12.2	7.7	9
SITE: UPLAKE 16	3/18/2010 21:25	51.0	58	12.2	7.7	10
SITE: UPLAKE 16	3/18/2010 21:25	50.6	58	12.2	7.7	11
SITE: UPLAKE 16	3/18/2010 21:25	50.2	58	12.2	7.7	12
SITE: UPLAKE 16	3/18/2010 21:25	49.9	58	12.1	7.7	13
SITE: UPLAKE 16	3/18/2010 21:26	48.9	58	12.2	7.7	14
SITE: UPLAKE 16	3/18/2010 21:26	48.1	58	12.3	7.7	15
SITE: UPLAKE 16	3/18/2010 21:26	47.8	58	12.2	7.7	16
SITE: UPLAKE 16	3/18/2010 21:26	47.5	59	12.2	7.7	17
SITE: UPLAKE 16	3/18/2010 21:26	47.4	59	12.1	7.7	18
SITE: UPLAKE 16	3/18/2010 21:26	47.3	59	12.1	7.6	19
SITE: UPLAKE 16	3/18/2010 21:26	47.2	59	12.0	7،6	20
SITE: UPLAKE 16	3/18/2010 21:26	47.1	59	11.9	7.6	21

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	4/29/2010 10:25	67.5	69	9.6	8.3	0
SITE: INTAKE CHANNEL 2	4/29/2010 10:26	67.0	69	9.7	8.3	1
SITE: INTAKE CHANNEL 2	4/29/2010 10:26	66.8	69	9.7	8.3	2
SITE: INTAKE CHANNEL 2	4/29/2010 10:26	66.4	69	9.7	8.3	3
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	66.2	73	9.3	8.2	4
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	66.0	69	9.2	8.1	5
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	66.0	69	9.2	8.1	6
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	65.9	69	9.1	8.1	7
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	65.9	69	9.1	8.1	8
SITE: INTAKE CHANNEL 2	4/29/2010 10:27	65.8	69	9.1	8.0	9
SITE: INTAKE CHANNEL 2	4/29/2010 10:28	65.5	69	9.0	8.0	10
SITE: INTAKE CHANNEL 2	4/29/2010 10:28	65.1	73	8.8	8.0	11
SITE: INTAKE CHANNEL 2	4/29/2010 10:28	64.8	69	8.8	8.0	12
SITE: INTAKE CHANNEL 2	4/29/2010 10:28	64.1	68	8.8	7.9	13
SITE: INTAKE CHANNEL 2	4/29/2010 10:28	62.7	68	8.8	7.9	14
SITE: INTAKE CHANNEL 2	4/29/2010 10:29	61.6	68	8.8	7.9	15
SITE: INTAKE CHANNEL 2	4/29/2010 10:29	61.0	68	8.6	7.9	16
SITE: INTAKE CHANNEL 2	4/29/2010 10:29	60.6	68	8.4	7.9	17
SITE: INTAKE CHANNEL 2	4/29/2010 10:29	60.2	68	8.3	7.8	18
SITE: INTAKE CHANNEL 2	4/29/2010 10:29	60.0	68	8.3	7.8	19
SITE: INTAKE CHANNEL 2	4/29/2010 10:30	59.5	69	8.0	7.8	20

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	4/29/2010 10:38	84.4	71	8.5	7.8	0
SITE: DISCHARGE 6	4/29/2010 10:38	75.1	69	9.6	7.8	1
SITE: DISCHARGE 6	4/29/2010 10:38	71.6	67	9.8	7.9	2
SITE: DISCHARGE 6	4/29/2010 10:38	69.5	68	9.9	7.9	3
SITE: DISCHARGE 6	4/29/2010 10:39	68.7	68	9.9	7.9	4
SITE: DISCHARGE 6	4/29/2010 10:39	68.0	68	9.9	7.9	5
SITE: DISCHARGE 6	4/29/2010 10:39	67.1	70	9.6	7.9	6
SITE: DISCHARGE 6	4/29/2010 10:39	66.5	69	9.5	7.9	7
SITE: DISCHARGE 6	4/29/2010 10:39	65.8	69	9.3	7.9	8

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	4/29/2010 10:56	69	68	12.13	8.1	0
SITE: UPLAKE 16	4/29/2010 10:56	69	67	9.71	8.1	1
SITE: UPLAKE 16	4/29/2010 10:56	68	67	9.7	8.1	2
SITE: UPLAKE 16	4/29/2010 10:56	68	67	9.66	8.1	3
SITE: UPLAKE 16	4/29/2010 10:57	68	68	9.65	8.1	4
SITE: UPLAKE 16	4/29/2010 10:57	67	68	9.64	8.1	5
SITE: UPLAKE 16	4/29/2010 10:57	67	68	9.58	8.1	6
SITE: UPLAKE 16	4/29/2010 10:57	67	68	9.58	8.1	7
SITE: UPLAKE 16	4/29/2010 10:57	67	68	9.49	8.0	8
SITE: UPLAKE 16	4/29/2010 10:57	66	64	9.25	8.0	9
SITE: UPLAKE 16	4/29/2010 10:57	65	69	9.07	8.0	10
SITE: UPLAKE 16	4/29/2010 10:58	65	65	8.36	7.9	10
SITE: UPLAKE 16	4/29/2010 10:58	64	65	8.24	7.9	11
SITE: UPLAKE 16	4/29/2010 10:58	63	69	8.02	7.9	12
SITE: UPLAKE 16	4/29/2010 10:58	63	68	7.91	7.8	13
SITE: UPLAKE 16	4/29/2010 10:58	63	65	7.79	7.8	14
SITE: UPLAKE 16	4/29/2010 10:58	62	68	7.76	7.8	15
SITE: UPLAKE 16	4/29/2010 10:59	62	68	7.67	7.8	16
SITE: UPLAKE 16	4/29/2010 10:59	61	65	7.57	7.7	17
SITE: UPLAKE 16	4/29/2010 10:59	61	68	7.51	7.7	18
SITE: UPLAKE 16	4/29/2010 10:59	61	68	7.35	7.7	19
SITE: UPLAKE 16	4/29/2010 10:59	60	68	7.32	7.7	20
SITE: UPLAKE 16	4/29/2010 10:59	59	68	7.27	7.7	21
SITE: UPLAKE 16	4/29/2010 10:59	58	67	7.03	7.7	22

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	5/19/2010 9:57	74.5	72	9.0	8.1	0
SITE: INTAKE CHANNEL 2	5/19/2010 9:57	74.4	72	8.8	8.1	1
SITE: INTAKE CHANNEL 2	5/19/2010 9:57	74.0	72	8.6	8.1	2
SITE: INTAKE CHANNEL 2	5/19/2010 9:57	73.5	69	8.3	8.0	3
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	73.4	72	8.3	8.0	4
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	73.4	72	8.2	8.0	5
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	73.1	72	8.1	7.9	6
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	72.4	72	8.1	7.9	7
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	71.9	73	8.0	7.9	8
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	71.7	73	7.9	7.9	9
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	71.6	73	7.8	7.9	10
SITE: INTAKE CHANNEL 2	5/19/2010 9:58	70.7	72	7.7	7.8	11
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	70.0	72	7.7	7.8	12
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	69.3	72	7.6	7.8	13
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	68.9	71	7.5	7.8	14
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	68.2	71	7.3	7.8	15
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	67.8	67	7.3	7.7	16
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	67.2	70	7.2	7.7	17
SITE: INTAKE CHANNEL 2	5/19/2010 9:59	66.4	71	7.2	7.7	18
SITE: INTAKE CHANNEL 2	5/19/2010 10:00	66.1	71	7.1	7.7	19
SITE: INTAKE CHANNEL 2	5/19/2010 10:00	65.9	71	7.0	7.7	20
SITE: INTAKE CHANNEL 2	5/19/2010 10:00	64.4	69	7.1	7.7	21
SITE: INTAKE CHANNEL 2	5/19/2010 10:00	62.9	71	6.6	7.7	22

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	5/19/2010 10:08	88.2	73	7.8	8.0	0
SITE: DISCHARGE 6	5/19/2010 10:08	83.2	72	8.2	7.9	1
SITE: DISCHARGE 6	5/19/2010 10:08	78.0	70	8.6	8.0	2
SITE: DISCHARGE 6	5/19/2010 10:08	77.0	71	8.8	8.0	3
SITE: DISCHARGE 6	5/19/2010 10:08	76.6	71	8.9	8.0	4
SITE: DISCHARGE 6	5/19/2010 10:08	75.7	71	8.9	8.0	5
SITE: DISCHARGE 6	5/19/2010 10:08	74.9	70	8.9	8.0	6
SITE: DISCHARGE 6	5/19/2010 10:08	73.6	70	8.9	8.0	7
SITE: DISCHARGE 6	5/19/2010 10:09	71.8	71	8.8	7.9	8
SITE: DISCHARGE 6	5/19/2010 10:09	70.6	71	8.0	7.9	9
SITE: DISCHARGE 6	5/19/2010 10:09	70.3	71	7.9	7.9	10
SITE: DISCHARGE 6	5/19/2010 10:09	70.1	71	7.5	7.9	11
SITE: DISCHARGE 6	5/19/2010 10:09	69.8	71	7.3	7.8	12

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	5/19/2010 10:24	77.9	71	9.4	8.6	0
SITE: UPLAKE 16	5/19/2010 10:24	78.0	71	9.4	8.7	1
SITE: UPLAKE 16	5/19/2010 10:24	78.0	75	9.5	8.7	2
SITE: UPLAKE 16	5/19/2010 10:24	78.0	71	9.5	8.7	3
SITE: UPLAKE 16	5/19/2010 10:25	78.0	70	9.5	8.7	4
SITE: UPLAKE 16	5/19/2010 10:25	75.9	69	9.8	8.7	5
SITE: UPLAKE 16	5/19/2010 10:25	74.6	69	9.8	8.6	6
SITE: UPLAKE 16	5/19/2010 10:25	72.5	70	9.1	8.5	7
SITE: UPLAKE 16	5/19/2010 10:25	71.7	71	8.6	8.4	8
SITE: UPLAKE 16	5/19/2010 10:25	70.9	71	8.3	8.3	9
SITE: UPLAKE 16	5/19/2010 10:25	70.5	71	8.0	8.3	10
SITE: UPLAKE 16	5/19/2010 10:26	69.8	71	7.6	8.2	11
SITE: UPLAKE 16	5/19/2010 10:26	69.4	71	7.5	8.2	12
SITE: UPLAKE 16	5/19/2010 10:26	69.2	75	7.2	8.1	13
SITE: UPLAKE 16	5/19/2010 10:26	68.9	71	7.1	8.1	14
SITE: UPLAKE 16	5/19/2010 10:26	68.4	71	7.0	8.0	15
SITE: UPLAKE 16	5/19/2010 10:26	67.8	70	6.8	8.0	16
SITE: UPLAKE 16	5/19/2010 10:27	67.2	71	6.5	7.9	17

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	6/24/2010 13:56	86.8	73	15.6	8.5	0
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	86.5	76	15.7	8.4	1
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	86.2	73	16.3	8.3	2
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	85 <i>.</i> 7	74	15.4	8.2	3
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	85.1	75	15.1	8.1	4
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	84.5	75	14.9	8.1	5
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	83.8	74	14.6	8.0	6
SITE: INTAKE CHANNEL 2	6/24/2010 13:57	83.2	77	14.6	7.9	7
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	83.0	73	14.9	7.9	8
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	82.5	73	15.7	7.9	9
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	82.1	73	15.7	7.8	10
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	81.2	74	11.7	7.8	11
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	80.4	72	9.0	7.8	12
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	80.1	72	8.9	7.7	13
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	79.8	72	8.7	7.7	14
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	79.6	72	8.2	7.7	15
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	79.2	72	8.1	7.7	16
SITE: INTAKE CHANNEL 2	6/24/2010 13:58	78.9	72	7.6	7.6	17
SITE: INTAKE CHANNEL 2	6/24/2010 13:59	78.4	72	7.5	7.6	18
SITE: INTAKE CHANNEL 2	6/24/2010 13:59	78.2	72	7.2	7.6	19
SITE: INTAKE CHANNEL 2	6/24/2010 13:59	77.5	74	7.0	7.6	20
SITE: INTAKE CHANNEL 2	6/24/2010 13:59	76.8	72	6.7	7.5	21
SITE: INTAKE CHANNEL 2	6/24/2010 13:59	76.4	72	6.7	7.5	22

Note: Date bad due to over heated. Water Quality meter.

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	.Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m ·
SITE: DISCHARGE 6	6/24/2010 14:07	100.1	75	12.0	7.8	0
SITE: DISCHARGE 6	6/24/2010 14:07	91.2	72	7.6	7.8	1
SITE: DISCHARGE 6	6/24/2010 14:07	87.3	70	8.1	7.9	2
SITE: DISCHARGE 6	6/24/2010 14:07	86.0	71	8.5	7.9	3
SITE: DISCHARGE 6	6/24/2010 14:07	83.7	72	9.0	7.9	4
SITE: DISCHARGE 6	6/24/2010 14:07	83.0	72	8.9	7.9	5
SITE: DISCHARGE 6	6/24/2010 14:08	82.6	72	8.2	7.8	6
SITE: DISCHARGE 6	6/24/2010 14:08	82.3	72	7.8	7.8	7
SITE: DISCHARGE 6	6/24/2010 14:08	82.0	72	7.6	7.7	8
SITE: DISCHARGE 6	6/24/2010 14:08	81.7	72	7.2	7.7	9
SITE: DISCHARGE 6	6/24/2010 14:08	81.5	72	7.0	7.7	10

Note: Data bad due to over heated water anality meter

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	6/24/2010 14:21	93.0	81	8.1	7.7	0
SITE: UPLAKE 16	6/24/2010 14:21	90.2	73	8.6	8.5	1
SITE: UPLAKE 16	6/24/2010 14:21	89.8	73	9.7	8.6	2
SITE: UPLAKE 16	6/24/2010 14:21	89.3	72	10.2	8.6	3
SITE: UPLAKE 16	6/24/2010 14:21	85.8	70	10.8	8.6	4
SITE: UPLAKE 16	6/24/2010 14:21	83.5	71	10.8	8.5	5
SITE: UPLAKE 16	6/24/2010 14:22	82 <i>.</i> 5	72	10.2	8.3	6
SITE: UPLAKE 16	6/24/2010 14:22	81.8	72	8.5	8.2	7
SITE: UPLAKE 16	6/24/2010 14:22	81.5	72	7.4	8.1	8
SITE: UPLAKE 16	6/24/2010 14:22	81.3	72	7.0	8.0	9
SITE: UPLAKE 16	6/24/2010 14:22	80.9	72	6.6	8.0	10
SITE: UPLAKE 16	6/24/2010 14:22	80.6	72	6.4	7.9	11
SITE: UPLAKE 16	6/24/2010 14:22	80.4	72	6.0	7.9	12
SITE: UPLAKE 16	6/24/2010 14:22	80.2	72	5.7	7.8	13
SITE: UPLAKE 16	6/24/2010 14:22	80.0	72	5.5	7.8	14
SITE: UPLAKE 16	6/24/2010 14:22	79.9	72	5.2	7.8	15
SITE: UPLAKE 16	6/24/2010 14:23	79.5	72	4.9	7.7	16
SITE: UPLAKE 16	6/24/2010 14:23	79.4	71	4.8	7.7	17
SITE: UPLAKE 16	6/24/2010 14:23	79.1	72	4.4	7.6	18
SITE: UPLAKE 16	6/24/2010 14:23	78.9	72	4.3	. 7 <i>.</i> 6	19
SITE: UPLAKE 16	6/24/2010 14:23	78.7	72	4.2	7.6	20
SITE: UPLAKE 16	6/24/2010 14:23	78.2	72	4.0	7.6	21
SITE: UPLAKE 16	6/24/2010 14:23	77.0	73	3.4	7.5	22
SITE: UPLAKE 16	6/24/2010 14:23	76.5	75	2.8	7.5	23

Note: Data bad due to over heated water quality meter

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	7/19/2010 9:24	84.7	81	7.0	7.9	0
SITE: INTAKE CHANNEL 2	7/19/2010 9:25	84.6	80	6.7	7.8	1
SITE: INTAKE CHANNEL 2	7/19/2010 9:25	84.6	80	6.5	7.7	2
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.5	80	6.4	7.7	3
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.5	83	6.3	7.6	4
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.6	79	6.3	7.6	5
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.5	83	6.3	7.6	6
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.4	79	6.3	7.6	7
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.3	79	6.1	7.5	8
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.2	79	6.0	7.5	9
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.2	79	5.9	7.5	10
SITE: INTAKE CHANNEL 2	7/19/2010 9:26	84.2	79	5.9	7.5	11
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.2	82	5.8	7.5	12
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.2	79	5.8	7.5	13
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.2	82	5.7	7.5	14
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.2	78	5.7	7.5	15
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.2	78	5.7	7.5	16
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.1	78	5.6	7.4	17
SITE: INTAKE CHANNEL 2	7/19/2010 9:27	84.1.	78	5.6	7.4	18
SITE: INTAKE CHANNEL 2	7/19/2010 9:28	84.1	78	5.6	7.4	19

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	7/19/2010 9:35	99.1	80	5.1	7.4	0
SITE: DISCHARGE 6	7/19/2010 9:35	89.4	79	5.6	7.4	1
SITE: DISCHARGE 6	7/19/2010 9:35	86.6	77	5.8	7.4	2
SITE: DISCHARGE 6	7/19/2010 9:35	85.0	78	5.9	7.4	3
SITE: DISCHARGE 6	7/19/2010 9:35	84.4	78	5.3	7.4	4
SITE: DISCHARGE 6	7/19/2010 9:36	84.3	78	4.8	7.3	5
SITE: DISCHARGE 6	7/19/2010 9:36	84.3	78	4.7	7.3	6
SITE: DISCHARGE 6	7/19/2010 9:36	84.2	78	4.5	7.3	7
SITE: DISCHARGE 6	7/19/2010 9:36	84.1	78	4.3	7.3	8
SITE: DISCHARGE 6	7/19/2010 9:36	83.9	78	· 4.2	7.3	9
SITE: DISCHARGE 6	7/19/2010 9:36	83.9	78	4.0	7.2	10
SITE: DISCHARGE 6	7/19/2010 9:36	83.9	78	3.9	7.2	11

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	7/19/2010 10:11	86.0	74	8.8	8.1	0
SITE: UPLAKE 16	7/19/2010 10:11	86.0	77	8.5	8.2	1
SITE: UPLAKE 16	7/19/2010 10:12	86.0	77	8.4	8.2	2
SITE: UPLAKE 16	7/19/2010 10:12	86.0	74	8.4	8.2	3
SITE: UPLAKE 16	7/19/2010 10:12	86.0	74	8.3	8.3	4
SITE: UPLAKE 16	7/19/2010 10:12	86.0	77 .	8.3	8.3	5
SITE: UPLAKE 16	7/19/2010 10:12	86.0	77	8.3	8.3	6
SITE: UPLAKE 16	7/19/2010 10:12	85.9	73	8.3	8.3	7
SITE: UPLAKE 16	7/19/2010 10:12	85.9	76	8.3	8.3	8
SITE: UPLAKE 16	7/19/2010 10:12	85.9	73	8.3	8.3	9
SITE: UPLAKE 16	7/19/2010 10:13	85.9	76	8.3	8.3	10
SITE: UPLAKE 16	7/19/2010 10:13	85.0	77	8.0	8.2	11
SITE: UPLAKE 16	7/19/2010 10:13	84.3	77	6.2	8.1	12
SITE: UPLAKE 16	7/19/2010 10:13	84.0	77	5.5	8.0	13
SITE: UPLAKE 16	7/19/2010 10:13	83.9	77	4.6	8.0	14
SITE: UPLAKE 16	7/19/2010 10:13	83.7	74	4.2	7.9	15
SITE: UPLAKE 16	7/19/2010 10:14	83.2	77	2.6	7.7	16
SITE: UPLAKE 16	7/19/2010 10:14	83.2	77	2.5	7.7	18
SITE: UPLAKE 16	7/19/2010 10:14	83.1	77	2.3	7.7	18
SITE: UPLAKE 16	7/19/2010 10:14	83.0	77	1.7	7.4	19
SITE: UPLAKE 16	7/19/2010 10:15	82.8	77	1.7	7.4	20
SITE: UPLAKE 16	7/19/2010 10:15	82.7	77	1.5	7.4	21
SITE: UPLAKE 16	7/19/2010 10:15	82.5	78	1.2	7.4	22
SITE: UPLAKE 16	7/19/2010 10:15	82.3	79	1.1	7.3	23

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	8/17/2010 11:23	87.7	82	7.0	7.9	0
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	87.1	83	6.8	7.8	1
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.9	83	6.3	7.8	2
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.7	82	5.9	7.7	3
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.6	82	5.8	7.7	4
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.6	81	5.7	7.7	5
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.6	81	5.7	7.6	6
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.6	80	5.6	7.6	· 7
SITE: INTAKE CHANNEL 2	8/17/2010 11:24	86.6	82	5.6	7.6	8
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.6	79	5.6	7.6	9
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.6	79	5.7	7.6	10
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.5	80	5.7	7.6	11
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.2	81	5.6	7.5	12
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.2	81	5.5	7.5	13
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.1	83	5.4	7.5	14
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.0	83	5.3	7.5	15
SITE: INTAKE CHANNEL 2	8/17/2010 11:25	86.0	81	5.2	7.5	16
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.9	83	5.2	7.5	17
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.9	81	5.2	7.4	18
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.9	81	5.1	7.4	19
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.9	81	5.1	7.4	20
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.8	81	5.1	7:4	21
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.7	81	5.1	7.4	22
SITE: INTAKE CHANNEL 2	8/17/2010 11:26	85.3	83	5.0	7.4	23

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рĦ	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	8/17/2010 11:34	105.5	84	5.8	7.5	0
SITE: DISCHARGE 6	8/17/2010 11:34	95.0	84	6.5	7.5	1
SITE: DISCHARGE 6	8/17/2010 11:34	88.8	78	6.9	7.5	2
SITE: DISCHARGE 6	8/17/2010 11:34	87.6	80	6.8	7.5	3
SITE: DISCHARGE 6	8/17/2010 11:34	87.3	80	6.9	7.5	4
SITE: DISCHARGE 6	8/17/2010 11:34	87.0	79	6.7	7.5	5
SITE: DISCHARGE 6	8/17/2010 11:34	86.9	78	6.4	7.4	6
SITE: DISCHARGE 6	8/17/2010 11:35	86.8	79	5.8	7.4	7
SITE: DISCHARGE 6	8/17/2010 11:35	86.7	79	5.5	7.4	8

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	8/17/2010 11:48	88.8	79	9.0	8.4	0
SITE: UPLAKE 16	8/17/2010 11:48	88.9	78	9.1	8.4	1
SITE: UPLAKE 16	8/17/2010 11:48	88.3	78	9.0	8.4	2
SITE: UPLAKE 16	8/17/2010 11:48	88.0	78	9.1	8.4	3
SITE: UPLAKE 16	8/17/2010 11:48	87.8	78	9.0	8.4	4
SITE: UPLAKE 16	8/17/2010 11:48	87.8	78	8.9	8.3	5
SITE: UPLAKE 16	8/17/2010 11:48	87.7	77	8.7	8.3	6
SITE: UPLAKE 16	8/17/2010 11:48	87.7	77	8.6	8.2	7
SITE: UPLAKE 16	8/17/2010 11:48	87.6	77	8.2	8.2	8
SITE: UPLAKE 16	8/17/2010 11:48	87.4	77	8.0	8.1	9
SITE: UPLAKE 16	8/17/2010 11:49	86.8	77	6.9	8.0	10
SITE: UPLAKE 16	8/17/2010 11:49	86.5	77	6.0	8.0	11
SITE: UPLAKE 16	8/17/2010 11:49	86.4	77	4.9	7.9	12
SITE: UPLAKE 16	8/17/2010 11:49	86.4	77	4.6	7.9	13
SITE: UPLAKE 16	8/17/2010 11:49	86.3	77	4.3	7.8	14
SITE: UPLAKE 16	8/17/2010 11:49	86.2	77	3.9	7.8	15
SITE: UPLAKE 16	8/17/2010 11:49	86.1	75	3.8	7.7	16
SITE: UPLAKE 16	8/17/2010 11:49	85.9	75	3.4	7.7	17
SITE: UPLAKE 16	8/17/2010 11:49	85.8	77	2.9	7.6	18
SITE: UPLAKE 16	8/17/2010 11:49	85.7	77	2.6	7.6	19
SITE: UPLAKE 16	8/17/2010 11:50	85.6	77	2.0	7.6	20
SITE: UPLAKE 16	8/17/2010 11:50	85.6	79	1.8	7.5	21

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	9/23/2010 9:48	83.1	89	5.9	7.7	0
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	83.1	. 85	5.9	7.6	1
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	83.0	85	5.8	7.6	2
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	83.0	85	5.8	7.6	3
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	82.9	85	5.7	7.6	4
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	82.9	84	5.7	7.5	5
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	82.9	84	5.7	7.5	6
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	82.9	84	5.6	7.5	7
SITE: INTAKE CHANNEL 2	9/23/2010 9:49	82.9	84	5.6	7.5	8
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.9	84	5.6	7.5	9
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.9	84	5.5	7.5	10
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.9	84	5.5	7.5	11
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	84	5.5	7.5	12
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	84	5.5	7.5	13
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	83	5.5	7.4	14
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	83	5.5	7.4	15
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	83	5.5	7.4	16
SITE: INTAKE CHANNEL 2	9/23/2010 9:50	82.8	85	5.5	7.4	17
SITE: INTAKE CHANNEL 2	9/23/2010 9:51	82.8	82	5.5	7.4	18
SITE: INTAKE CHANNEL 2	9/23/2010 9:51	82.8	82	5.5	7.4	19
SITE: INTAKE CHANNEL 2	9/23/2010 9:51	82.8	83	5.4	7,4	20

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	9/23/2010 10:02	83.8	85	6.6	7.5	0
SITE: DISCHARGE 6	9/23/2010 10:03	83.7	85	6.2	7.4	1
SITE: DISCHARGE 6	9/23/2010 10:03	83.6	84	5.9	7.4	2
SITE: DISCHARGE 6	9/23/2010 10:03	83.4	84	5.6	7.4	3
SITE: DISCHARGE 6	9/23/2010 10:03	83.3	84	5.5	7.4	4
SITE: DISCHARGE 6	9/23/2010 10:03	83.2	84	5.4	7.3	5
SITE: DISCHARGE 6	9/23/2010 10:03	83.1	84	5.2	7.3	6
SITE: DISCHARGE 6	9/23/2010 10:03	83.0	84	5.1	7.3	7
SITE: DISCHARGE 6	9/23/2010 10:03	82.9	82	4.9	7.3	8

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	9/23/2010 10:32	84.6	84	8.1	8.1	0
SITE: UPLAKE 16	9/23/2010 10:32	84.6	84	8.1	8.1	1
SITE: UPLAKE 16	9/23/2010 10:33	84.6	84	8.0	8.1	2
SITE: UPLAKE 16	9/23/2010 10:33	84.5	83	8.0	8.1	• 3
SITE: UPLAKE 16	9/23/2010 10:33	84.5	83	7.9	8.1	4
SITE: UPLAKE 16	9/23/2010 10:33	84.5	83	7.9	8.1	5
SITE: UPLAKE 16	9/23/2010 10:33	84.5	83	7.9	8.1	6
SITE: UPLAKE 16	9/23/2010 10:33	84.4	83	7.8	8.1	7
SITE: UPLAKE 16	9/23/2010 10:33	84.4	82	7.8	8.1	8
SITE: UPLAKE 16	9/23/2010 10:33	84.4	82	7.8	8.1	9
SITE: UPLAKE 16	9/23/2010 10:33	84.4	82	7.8	8.1	10
SITE: UPLAKE 16	9/23/2010 10:33	84.3	81	7.8	8.0	11
SITE: UPLAKE 16	9/23/2010 10:33	83.9	81	7.8	8.0	12
SITE: UPLAKE 16	9/23/2010 10:34	83.6	81	7.5	8.0	13
SITE: UPLAKE 16	9/23/2010 10:34	83.4	81	6.6	7.9	14
SITE: UPLAKE 16	9/23/2010 10:34	83.2	81	6.0	7.8	15
SITE: UPLAKE 16	9/23/2010 10:34	83.2	81	5.6	7.8	16
SITE: UPLAKE 16	9/23/2010 10:34	83.1	81	4.9	7.8	17
SITE: UPLAKE 16	9/23/2010 10:34	83.0	81	4.5	7.7	18
SITE: UPLAKE 16	9/23/2010 10:34	83.0	81	4.4	7.7	19
SITE: UPLAKE 16	9/23/2010 10:34	82.9	81	4.2	7.7	20
SITE: UPLAKE 16	9/23/2010 10:34	82.9	81	3.9	7:6	21
SITE: UPLAKE 16	9/23/2010 10:34	82.8	81	3.8	7.6	22
SITE: UPLAKE 16	9/23/2010 10:34	82.7	87	3.7	7.6	23

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	10/26/2010 10:08	73.1	78	8.5	7.6	0
SITE: INTAKE CHANNEL 2	10/26/2010 10:08	73.1	74	8.3	7.5	1
SITE: INTAKE CHANNEL 2	10/26/2010 10:08	73.0	78	8.2	7.5	2
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.9	75	8.1	7.5	3
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.9	78	8.1	7.5	4
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.9	78	8.0	7.5	5
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.9	78	8.0	7.5	6
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.8	78	7.9	7.5	7
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.8	78	7.9	7.5	8
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.8	75	7.9	7.5	9
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.8	78	7.8	7.5	10
SITE: INTAKE CHANNEL 2	10/26/2010 10:09	72.8	78	7.8	7.5	11
SITE: INTAKE CHANNEL 2	10/26/2010 10:10	72.8	75	7.8	7.5	12
SITE: INTAKE CHANNEL 2	10/26/2010 10:10	72.7	78	7.8	7.5	13
SITE: INTAKE CHANNEL 2	10/26/2010 10:10	72.7	78	7.7	7.5	14
SITE: INTAKE CHANNEL 2	10/26/2010 10:10	72.7	78	7.7	7.5	15
SITE: INTAKE CHANNEL 2	10/26/2010 10:10	72.6	75	7.7	7.5	16
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	72.3	79	7.7	7.4	17
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	72.1	80	7.7	7.4	18
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	71.8	81	7.7	7.4	19
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	71.7	81	7.7	7.4	20
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	71.7	81	7.7	7.4	21
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	71.6	81	7.7	7.4	22
SITE: INTAKE CHANNEL 2	10/26/2010 10:11	71.6	81	7.7	7.4	23

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	10/26/2010 10:16	83.8	85	6.6	7.5	0
SITE: DISCHARGE 6	10/26/2010 10:16	83.7	85	6.2	7.4	1
SITE: DISCHARGE 6	10/26/2010 10:16	83.6	84	5.9	7.4	2
SITE: DISCHARGE 6	10/26/2010 10:16	83.4	84	5.6	7.4	3
SITE: DISCHARGE 6	10/26/2010 10:16	83.3	84	5.5	7.4	4
SITE: DISCHARGE 6	10/26/2010 10:16	83.2	84	5.4	7.3	5
SITE: DISCHARGE 6	10/26/2010 10:16	83.1	84	5.2	7.3	6
SITE: DISCHARGE 6	10/26/2010 10:16	83.0	84	5.1	7.3	7
SITE: DISCHARGE 6	10/26/2010 10:16	82.9	82	4.9	7.3	8

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	10/26/2010 1032	85	84	8.3	8.1	0
SITE: UPLAKE 16	10/26/2010 1032	85	84	8.1	8.1	1
SITE: UPLAKE 16	10/26/2010 1032	85	84	8.0	8.1	2
SITE: UPLAKE 16	10/26/2010 1032	85	83	8.0	8.1	3
SITE: UPLAKE 16	10/26/2010 1032	84	83	7.9	8.1	4
SITE: UPLAKE 16	10/26/2010 1032	84	83	7.9	8.1	5
SITE: UPLAKE 16	10/26/2010 1033	84	83	7.9	8.1	. 6
SITE: UPLAKE 16	10/26/2010 1033	84	83	7.8	8.1	7
SITE: UPLAKE 16	10/26/2010 1033	84	82	7.8	8.1	8
SITE: UPLAKE 16	10/26/2010 1033	84	82	7.8	8.1	9
SITE: UPLAKE 16	10/26/2010 1033	84	82	7.8	8.1	10
SITE: UPLAKE 16	10/26/2010 1033	84	81	7.8	8.0	11
SITE: UPLAKE 16	10/26/2010 1033	84	81	7.8	8.0	12
SITE: UPLAKE 16	10/26/2010 1033	84	81	7.5	8.0	13
SITE: UPLAKE 16	10/26/2010 1034	83	81	6.6	7.9	14
SITE: UPLAKE 16	10/26/2010 1034	83	81	6.0	7.8	15
SITE: UPLAKE 16	10/26/2010 1034	83	81	5.6	7.8	16
SITE: UPLAKE 16	10/26/2010 1034	83	81	4.9	7.8	17
SITE: UPLAKE 16	10/26/2010 1034	83	81	4.5	7.7	18
SITE: UPLAKE 16	10/26/2010 1034	83	81	4.4	7.7	19
SITE: UPLAKE 16	10/26/2010 1034	83	81	4.2	7.7	20
SITE: UPLAKE 16	10/26/2010 1034	83	81	3.9	7.6	21
SITE: UPLAKE 16	10/26/2010 1035	83	81	3.8	7.6	22
SITE: UPLAKE 16	10/26/2010 1035	83	87	3.7	` 7.6	23

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	11/11/2010 10:31	67.3	83	9.3	7.9	0
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.4	83	8.4	7.9	1
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.3	83	8.2	7.9	2
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.2	83	8.1	7.8	3
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.2	83	8.1	7.8	4
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.2	83	8.0	7.8	5
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.1	83	8.0	7.8	6
SITE: INTAKE CHANNEL 2	11/11/2010 10:32	67.1	83	8.0	7.8	7
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.1	82	8.0	7.8	8
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.1	82	8.0	7.8	9
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.1	82	7.9	7 <i>.</i> 8	10
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.1	82	7.9	7.8	11
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.0	82	7.9	7.7	12
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.0	82	7.9	7.7	13
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	67.0	82	7.9	7.7	14
SITE: INTAKE CHANNEL 2	11/11/2010 10:33	66.9	82	7.9	7.7	15
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	66.4	83	8.0	7.7	16
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	66.2	83	8.0	7.7	17
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	66.1	83	8.0	7.7	18
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	66.0	83	8.0	· 7.7	19
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	65.9	83	8.0	7.7	20
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	65.9	83	8.0	` 7.7	21
SITE: INTAKE CHANNEL 2	11/11/2010 10:34	65.9	83	8.0	7.7	22

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	11/11/2010 10:41	89.5	85	8.8	7.7	0
SITE: DISCHARGE 6	11/11/2010 10:41	79.8	79	9.3	7.7	1
SITE: DISCHARGE 6	11/11/2010 10:41	70.4	82	10.1	7.7	2
SITE: DISCHARGE 6	11/11/2010 10:42	68.8	82	9.3	7.7	3
SITE: DISCHARGE 6	11/11/2010 10:42	68.3	82	8.5	7.7	4
SITE: DISCHARGE 6	11/11/2010 10:42	68.2	82	8.4	7.7	5
SITE: DISCHARGE 6	11/11/2010 10:42	68.1	82	8.3	7.7	6
SITE: DISCHARGE 6	11/11/2010 10:42	67.9	82	8.2	7.6	7

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	11/11/2010 11:08	68.2	82	13.3	7.9	0
SITE: UPLAKE 16	11/11/2010 11:09	68.2	82	10.0	7.9	1
SITE: UPLAKE 16	11/11/2010 11:09	68.2	82	9.8	7.9	2
SITE: UPLAKE 16	11/11/2010 11:09	68.1	82	9.6	7.9	3
SITE: UPLAKE 16	11/11/2010 11:09	68.1	82	9.5	7.9	4
SITE: UPLAKE 16	11/11/2010 11:09	68.0	82	9.4	7.9	5
SITE: UPLAKE 16	11/11/2010 11:09	68.0	82	9.3	7.8	6
SITE: UPLAKE 16	11/11/2010 11:09	67.9	82	9.3	7.8	7
SITE: UPLAKE 16	11/11/2010 11:09	67.8	82	9.1	7.8	8
SITE: UPLAKE 16	11/11/2010 11:10	67.7	81	9.0	7.8	9
SITE: UPLAKE 16	11/11/2010 11:10	67.5	81	8.8	7.8	11
SITE: UPLAKE 16	11/11/2010 11:10	67.4	81	8.7	7.7	12
SITE: UPLAKE 16	11/11/2010 11:10	67.3	81	8.6	7.7	13
SITE: UPLAKE 16	11/11/2010 11:10	67.2	80	8.5	7.7	14
SITE: UPLAKE 16	11/11/2010 11:10	67.1	80	8.5	7.7	15
SITE: UPLAKE 16	11/11/2010 11:10	67.0	80	8.5	7.7	16
SITE: UPLAKE 16	11/11/2010 11:10	66.9	80	8.5	7.7	17
SITE: UPLAKE 16	11/11/2010 11:11	66.9	80	8.5	7.7	18
SITE: UPLAKE 16	11/11/2010 11:11	66.8	80	8.3	7.7	19
SITE: UPLAKE 16	11/11/2010 11:11	66.8	77	8.3	7.7	20
SITE: UPLAKE 16	11/11/2010 11:11	66.7	80	8.3	7.6	21
SITE: UPLAKE 16	11/11/2010 11:11	66.7	80	8.2	7.6	22
SITE: UPLAKE 16	11/11/2010 11:11	66.6	80	8.1	7.6	23

SITE: INTAKE CHANNEL 2	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: INTAKE CHANNEL 2	M/D/Y	F	uS/cm	mg/L		m
SITE: INTAKE CHANNEL 2	12/17/2010 10:26	53.8	86	11.8	7.6	0
SITE: INTAKE CHANNEL 2	12/17/2010 10:26	53.8	86	11.6	7.6	1
SITE: INTAKE CHANNEL 2	12/17/2010 10:26	53.8	82	11.4	7.5	2
SITE: INTAKE CHANNEL 2	12/17/2010 10:26	53.7	86	11.3	7.5	3
SITE: INTAKE CHANNEL 2	12/17/2010 10:27	53.4	86	11.4	7.5	4
SITE: INTAKE CHANNEL 2	12/17/2010 10:27	53.4	86	11.4	7.5	5 .
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.3	. 82	11.4	7.5	6
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.2	86	11.4	7.5	. 7
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.3	86	11.3	7 <i>.</i> 5	8
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.3	86	11.3	7.5	9
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.3	82	11.3	7.5	10
SITE: INTAKE CHANNEL 2	12/17/2010 10:28	53.2	82	11.3	7.5	11
SITE: INTAKE CHANNEL 2	12/17/2010 10:29	53.2	86	11.3	7.5	12
SITE: INTAKE CHANNEL 2	12/17/2010 10:29	53.1	82	11.3	7.5	13
SITE: INTAKE CHANNEL 2	12/17/2010 10:29	53.1	86	11.3	7.5	14
SITE: INTAKE CHANNEL 2	12/17/2010 10:29	53.0	86	11.3	7.5	15
SITE: INTAKE CHANNEL 2	12/17/2010 10:29	52.9	86	11.3	7.5	16
SITE: INTAKE CHANNEL 2	12/17/2010 10:30	52.7	86	11.4	7 <i>.</i> 5	17
SITE: INTAKE CHANNEL 2	12/17/2010 10:30	52.3	86	11.5	7.5	18
SITE: INTAKE CHANNEL 2	12/17/2010 10:30	51.3	87	11.6	7.5	19
SITE: INTAKE CHANNEL 2	12/17/2010 10:30	50.3	88	11.9	7.5	20
SITE: INTAKE CHANNEL 2	12/17/2010 10:30	50.1	88	12.0	7.5	21
SITE: INTAKE CHANNEL 2	12/17/2010 10:31	49.7	88	12.2	7.4	22

ZUTU MICHILO KESEKVOIK WATER QUALITY

SITE: DISCHARGE 6	DateTime	Temp	SpCond	DO Conc	pН	Depth
SITE: DISCHARGE 6	M/D/Y	F	uS/cm	mg/L		m
SITE: DISCHARGE 6	12/17/2010 10:40	73.5	87	11.0	7.5	0
SITE: DISCHARGE 6	12/17/2010 10:40	62.3	.86	12.0	7.5	1
SITE: DISCHARGE 6	12/17/2010 10:40	54.7	85	12.7	7.6	2
SITE: DISCHARGE 6	12/17/2010 10:41	54.3	85	12.1	7.5	3
SITE: DISCHARGE 6	12/17/2010 10:41	54.1	85	11.8	7.5	4
SITE: DISCHARGE 6	12/17/2010 10:41	54.0	85	11.6	7.5	5
SITE: DISCHARGE 6	12/17/2010 10:41	54.0	85	11.4	7.5	6
SITE: DISCHARGE 6	12/17/2010 10:42	54.0	85	11.3	7.5	7
SITE: DISCHARGE 6	12/17/2010 10:42	53.9	85	11.3	7.5	8
SITE: DISCHARGE 6	12/17/2010 10:42	53.9	85	11.3	7.5	. 9
SITE: DISCHARGE 6	12/17/2010 10:42	53.9	88	11.2	7.5	10

SITE: UPLAKE 16	DateTime	Temp	SpCond	DO Conc	рН	Depth
SITE: UPLAKE 16	M/D/Y	F	uS/cm	mg/L		m
SITE: UPLAKE 16	12/17/2010 10:02	54.7	91	10.7	7.7	0
SITE: UPLAKE 16	12/17/2010 10:03	54.7	88	10.4	7.7	1
SITE: UPLAKE 16	12/17/2010 10:03	54.7	88	10.2	7.7	2
SITE: UPLAKE 16	12/17/2010 10:04	54.5	87	10.2	7.6	3
SITE: UPLAKE 16	12/17/2010 10:04	54.3	87	10.1	7.6	4
SITE: UPLAKE 16	12/17/2010 10:04	54.2	87	10.1	7.6	5
SITE: UPLAKE 16	12/17/2010 10:04	54.0	87	10.1	7.6	6
SITE: UPLAKE 16	12/17/2010 10:05	53.9	87	10.1	7.5	7
SITE: UPLAKE 16	12/17/2010 10:05	53.7	87	10.1	7.5	8
SITE: UPLAKE 16	12/17/2010 10:05	53.3	87	10.1	7.5	9
SITE: UPLAKE 16	12/17/2010 10:06	53.2	89	10.1	7.5	10
SITE: UPLAKE 16	12/17/2010 10:06	53.2	87	10.0	7.5	11
SITE: UPLAKE 16	12/17/2010 10:06	53.2	87	10.0	7.5	12
SITE: UPLAKE 16	12/17/2010 10:06	53.1	87	10.0	7.5	13
SITE: UPLAKE 16	12/17/2010 10:07	53.1	87	10.0	7.5	14
SITE: UPLAKE 16	12/17/2010 10:07	53.1	86	10.0	7.5	15
SITE: UPLAKE 16	12/17/2010 10:07	53.0	86	10.0	7.4	16
SITE: UPLAKE 16	12/17/2010 10:07	52.9	86	10.0	7.4	17
SITE: UPLAKE 16	12/17/2010 10:08	52.7	86	10.0	7.4	18
SITE: UPLAKE 16	12/17/2010 10:08	52.7	· 86	10.0	7.4	19
SITE: UPLAKE 16	12/17/2010 10:08	52.6	88	10.0	7.4	20
SITE: UPLAKE 16	12/17/2010 10:09	52.6	86	10.0	7.4	21
SITE: UPLAKE 16	12/17/2010 10:09	52.6	88	10.0	7.4	22 [.]

SC DHEC Attachment VIII LTD 286, CR-11-05986 RC-12-0019 Page 1 of 2

PQL LIST

Clean Water Act MDL Values

MDL values in the following table that has been established for analyses performed in the Environmental Laboratory. This table, or parts of this table, may be posted at several locations in the Environmental Laboratory.

PARAMETER	METHOD	SM/EPA NUMBER	MDL	
COPPER	FLAA	SM 3111B	0.01	PPM
IRON	FLAA	SM 3111B	0.02	PPM
AMMONIA	CP-154	SM 4500-NH3 D	0.100	PPM
RES. CHLORINE	CP-172	SM 4500-CL G	0.050	PPM
RES. CHLORINE	CP-186	SM 4500-CL D	0.010 *	PPM
OIL & GREASE	CP-188	EPA 1664A	N/A	PPM
OIL & GREASE	CP-188	EPA 1664A Manual	1.5	РРМ

^{*} MDL is 0.01 by scale detection.

SC DHEC Attachment IX LTD 286, CR-11-05986 RC-12-0019 Page 1 of 2

MIXING ZONE TOXICITY SUPPLEMENT

South Carolina Department of Health and Environmental Control

NPDES APPLICATION SUPPLEMENT

Mixing Zone Request for Surface Water Discharges

NPDES #:	SC0030856
Facility Name:	Virgil C. Summer Nuclear Station
County:	Fairfield
	esting a mixing zone for whole effluent toxicity (WET) in accordance of this form?
	No further information is needed. Submit this form. If WET testing is required, a chronic 100% will be required, unless the IWC is at least 80%. Proposed IWC
Yes.	Check one of the boxes below and submit this form with the appropriate information.
	Check this block if you are proposing to perform or have performed a mixing zone demonstration to determine the appropriate zone of initial dilution (ZID) and/or mixing zone size. Complete the remainder of this form and submit a mixing zone demonstration plan as described on the back of this form. The Department recommends the demonstration plan be approved prior to implementation of any demonstration work.
	Check this block if you are requesting a mixing zone by providing limited information such as a mixing model like CORMIX to determine mixing in accordance with suggested zone of initial dilution (ZID) and/or mixing zone sizes. Complete the remainder of this form, as applicable, and submit the CORMIX Supplement and modeling results (or other model assumptions, inputs and results).
Wha	t is the proposed ZID size (in meters)? Length: m Width: m
	What is the proposed acute WET test concentration?%
Wha	t is the proposed mixing zone size (in meters)? Length: m Width: m
•	What is the proposed chronic WET test concentration?%
Printed Name:	Thomas D. Gatlin VCSNS
Signature: <u>X</u>	The Frank for TOGATLIN Date: 2/1/12
· · · · · · · · · · · · · · · · · · ·	BUREAU OF WATER - SCDHEC - 2600 Bull Street - Columbia, SC 29201 803-898-4300 - http://www.scdhec.net/water/