Davis-BesseNPEm Resource

From:	klbrowning@firstenergycorp.com
Sent:	Tuesday, January 17, 2012 12:21 PM
То:	Holmberg, Mel
Subject:	remaining USBR procedures
Attachments:	USBR 4907.pdf; USBR 4910.pdf

Attached are the remaining USBR procedures in response to question 12 for the Davis-Besse shield building cracking.

Kevin L. Browning FENOC / Davis-Besse Regulatory Compliance (419) 321-8202

KLBrowning@FirstEnergycorp.com ------ The information contained in this message is intended only for the personal and confidential use of the recipient(s) named above. If the reader of this message is not the intended recipient or an agent responsible for delivering it to the intended recipient, you are hereby notified that you have received this document in error and that any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately, and delete the original message.

Hearing Identifier:Davis_BesseLicenseRenewal_Saf_NonPublicEmail Number:3332

Mail Envelope Properties (OF986A8972.34DD1B7C-ON85257988.005DB13E-85257988.005F458C)

Subject:	remaining USBR procedures
Sent Date:	1/17/2012 12:20:36 PM
Received Date:	1/17/2012 12:24:18 PM
From:	klbrowning@firstenergycorp.com

Created By: klbrowning@firstenergycorp.com

Recipients: "Holmberg, Mel" <Mel.Holmberg@nrc.gov> Tracking Status: None

Reply Requested:

Expiration Date: Recipients Received:

Sensitivity:

Post Office:	FirstEnergyCorp.com	
Files MESSAGE USBR 4907.pdf USBR 4910.pdf	Size 817 1786717 1069817	Date & Time 1/17/2012 12:24:18 PM
Options Priority: Return Notification:	Standard No	

No

Normal

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION

USBR 4907-92

PROCEDURE FOR

SPECIFIC HEAT OF AGGREGATES, CONCRETE, AND OTHER MATERIALS

INTRODUCTION

This test procedure is under the jurisdiction of the Concrete and Structural Branch, code D-3730, Research and Laboratory Services Division, Denver Office, Denver, Colorado. The procedure is issued under the fixed designation USBR 4907; the number immediately following the designation indicates year of original adoption or year of last revision.

1. Scope

1.1 This designation covers a procedure for determining the mean specific heat of concrete, aggregates, and other materials. While the description of this procedure mentions only concrete, it is applicable to any material that will fit in the calorimeter.

2. Applicable Documents

2.1 USBR Procedures:

4192 Making and Curing Concrete Test Specimens in Laboratory

2.2. ASTM Standards:

C 125 Standard Definitions of Terms Relating to Concrete and Concrete Aggregates¹

C 168 Standard Definitions of Terms Relating to Thermal Insulating Materials²

3. Summary of Procedure

3.1 A sample of known mass is placed in a calorimeter, and a known amount of heat is then applied to calorimeter. The specific heat of the specimen is calculated from its temperature rise after applying corrections to heat input to calorimeter.

4. Significance and Use

4.1 Specific heat, which is the amount of heat required to raise the temperature of a unit mass of material by 1°, is expressed in this procedure as British thermal units per pound mass degree Fahrenheit and as joules per kilogram degree Celsius. This determination is made by measuring the net heat required to raise the temperature of a specimen by a given amount.

4.2 The temperature regime and resulting thermal stresses in mass concrete, during its early life, are a function of the rate of heat evolution produced by cement hydration, specific heat, thermal conductivity, and density of the

concrete. Thus a knowledge of the thermal properties of concrete is necessary for establishing temperature control procedures during construction. Because aggregate comprises most of the volume of concrete, a measurement of the specific heat of the aggregate gives a good indication of the specific heat of the concrete.

5. Terminology

5.1 Terms used in this procedure are as defined in ASTM C 125 and C 168.

6. Apparatus

6.1 Calorimeter.-The calorimeter described in this procedure was designed for concrete, and uses an 8- by 16-inch (203- by 406-mm) cylindrical specimen cast with a 1.5-inch (38-mm) diameter hole extending the length of the specimen. However, the calorimeter can be used for any material where the test specimen can be adapted to fit.

6.1.1 The calorimeter shall consist of two containers separated by a layer of insulation. The inner container, which holds specimen and water, shall be made of stainless steel or copper. The outer container may be made of sheet steel. Specimen shall rest on a support that will permit circulation of water and minimize thermal conduction between specimen and calorimeter wall. A micarta base has been found to be satisfactory for this support.

6.2 Stirrer.-A brass stirrer capable of maintaining circulation of water through inner container of calorimeter.

6.3 *Heater.*-An immersion heater, with associated equipment to measure heat input, capable of raising temperature of inner container of calorimeter, including specimen and water, by 20 °F (11 °C) in 45 minutes.

6.4 Thermometer. A thermometer graduated to $0.1 \,^{\circ}$ F (0.06 $\,^{\circ}$ C), or a recording thermometer capable of being read to this same precision in the range from 32 to 150 $\,^{\circ}$ F (0 to 65.6 $\,^{\circ}$ C).

6.5 Scales -Scales shall be capable of determining mass of sample within an accuracy of 0.1 percent.

NOTE 1.-The specific heat apparatus currently in use at the Bureau's Denver Office has been automated to include data

Rennal Book of ASTM Standards, vols. 04.02, 04.03.

acquisition, calculation, and control. Power to the immersion heater is measured by a watt-hour calibration standard reading to 0.0006 watt-hour. Temperature is determined using a platinum RTD (resistance temperature detector). The operation of this controlling and recording unit is described in section 12. Figure 1 shows an RTD with a calorimeter that has been found satisfactory for 8- by 16-inch (203- by 406-mm) cylinders. Figure 2 shows the propeller inside the calorimeter.

Figure 1. - Controlling and recording instrumentation for conducting tests to determine specific heat of concrete.

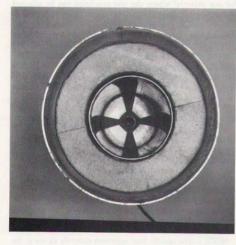


Figure 2. - Propeller.

7. Materials

7.1 Any material capable of being placed in the calorimeter may be tested.

8. Precautions

8.1 This test procedure may involve hazardous materials, operations, and equipment, and does not claim to address all safety problems associated with its use. It is the responsibility of the user to consult and establish appropriate safety and health practices and determine applicability of regulatory limitations prior to use.

9. Test Specimens

9.1 While any shape specimen may be tested, the 8by 16-inch (203- by 406-mm) cylinder with a 1.5-inch (38-mm) hole through the center provides excellent circulation of water and accurate results, see figure 3. 9.2 Concrete specimens shall be fabricated in accordance with the applicable provisions of USBR 4192.

Figure 3. - Mold and 8- by 16-inch (203- by 406-mm) cylinder with a 1.5-inch (38-mm) hole through the center.

10. Calibration and Standardization

10.1 The calibration and standardization of miscellaneous equipment or apparatus used in performing the tests listed under the Applicable Documents of section 2 are covered under that particular procedure or standard directly or by reference.

or by reference. 10.2 Determine the water equivalent of the calorimeter by substituting water for the test specimen and making

a normal run. It is recommended that the average results of several runs be used.

11. Conditioning

11.1 No conditioning of the saturated specimen is necessary; however, if specimen temperature is about the same as the water bath temperature, initial equilibrium will be attained sooner.

12. Procedure

12.1 Initially, determine mass of specimen. The specimen should then be immersed in an accurately measured quantity of water in the inner container. Heater and propeller should then be inserted, cover placed on container, and heater connections made.

12.2 Start stirrer and continue stirring until equilibrium temperature has been reached as indicated by timetemperature curve becoming linear, as shown on figure 4. This may require 1 to 2 hours.

12.3 Read initial temperature Ti. Continue stirring for 30 minutes and then read temperature T_o . The temperature change during this 30-minute interval will be used in the calculations as a correction for heat loss or gain from calorimeter during test.

12.4 Turn on heater for 45 minutes or until a temperature rise of about 20 °F (11 °C) has occurred. Record total heat input.

12.5 Turn off heater, continue stirring, and make temperature readings until time-temperature curve is again linear. Record the temperature when curve is linear as T_n

12.6 Continue stirring for 30 minutes and make another temperature reading, which is recorded as T_t . This final 30-minute interval will be used as a correction factor along with the initial 30-minute interval.

When using the automatic data acquisition and control unit to monitor and control the test, follow the steps in 12.7.1

12.7.1 Connect the RTD to the data acquisition and control unit. The four-wire ohms technique is used to measure resistance of RTD. A computer controls the control unit and records temperature data from RTD. A high-order polynomial equation is used to convert RTD resistance to temperature. After initial equilibrium is reached, computer is instructed by operator to apply power to heater. The computer commands the control unit to close a relay, which in turn closes a solid-state power relay to apply power to heater. At this point, the watt-hour standard starts sending out pulses which are counted by control unit. The computer records the temperature and, when temperature has increased by 20 °F (11.2 °C), computer commands control unit to remove power from heater. The total pulse count is transferred to the computer and the apparatus is again allowed to reach equilibrium. At this point, computer calculates the specific heat and generates a graph of the temperature data. A block diagram of the apparatus and computer control is shown on figure

12.8 Perform the test at each of two mean temperatures of about 50 and 140 °F (10 and 60 °C).

13. Calculations

13.1 When using the automatic data acquisition system described in section 12.7.1, the computer calculates the specific heat and generates a graph of the temperature data.

13.2 Calculations for a typical test are shown on figure6. For this example test, 5-minute intervals were used; however, any interval can be used. For most automated procedures, such as the one described in 12.7.1, 1-minute intervals are used.

13.3 To calculate the true temperature rise, the test should be divided into three temperature periods: an initial period from T_i to T_o , heating period from T_o to T_n , and final period from T_n to T_f . The temperature rise is equal to $T_n - T_o + T_c$, where T_c is a calculated temperature correction. This correction is actually a summation, of opposite sign, of the temperature drifts per interval during the heating period calculated from drifts determined during the initial and final periods. The increase in temperature drift between the initial and any intermediate interval is to the increase in temperature drift between initial and final periods as the average temperature difference between initial and same intermediate interval is to the average temperature difference between initial and final periods. Mathematically, this proportion can be stated:

$$T_{c} = -nC_{a} - \left[\frac{C_{b} - C_{a}}{T_{b} - T_{a}}\right] \left[(T_{1} + T_{2} + \ldots + T_{n-1}) + \frac{T_{o} + T_{n}}{2} (-nT_{a}) \right]$$
(1)

where:

 $T_c =$ temperature correction factor,

- n = number of intervals during heating period (usually 1- or 5-minute intervals),
- C. = average temperature drift (algebraic) per interval during initial period,
- C_b = average temperature drift (algebraic) per interval during final period,
- T_a = average temperature during initial period,
- T_b = average temperature during final period,
- $T_o =$ temperature at end of initial period and at
- start of heating period, T_n = temperature at end of heating period and at start of final period, and
- $T_1, T_2, \ldots, T_3 =$ temperature at intervals of heating period.

13.4 The specific heat of the concrete in British thermal units per pound mass degree Fahrenheit or joules per kilogram degree Celsius is equal to the total heat input minus the heat required to raise temperature of water and calorimeter divided by corrected temperature rise and mass of specimen (fig. 6).

13.5 Figures 7 and 8 are included to establish factors used in the example shown on figure 6.

13.6 The water equivalent of the calorimeter, as shown on figures 8a and 8b, must be reestablished for each calorimeter used. The water equivalent of the calorimeter currently used by the Bureau is shown on figures 8c and 8d.

8d. 13.7 When using the automatic data acquisition system described in section 12.7.1, the computer has been programmed to compute the factors internally to provide data similar to that shown on figures 7 and 8. 13.7.1 A computer printout utilizing the automatic data acquisition system described in section 12.7.1 is illustrated on figure 9.

illustrated on figure 9. 13.7.2 A summarization of cycle runs for two specimens is shown in table 1 that generates the regression equations for the linear (straight line) versus parabolic curves illustrated on figure 10.

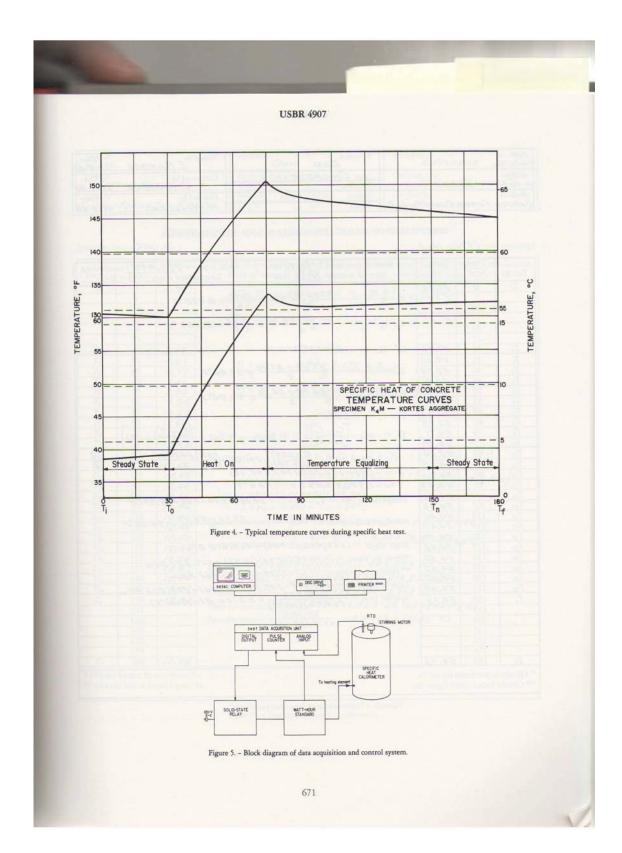
14. Report

14.1 Figure 11 shows a typical reporting form for the thermal properties, which consists of conductivity, diffusivity, and specific heat. The report shall include:

Identification of constituents of sample.

- . Mixture proportions, if concrete. .
- Two average temperatures.
- Specific heat at each temperature.

15. Precision and Bias


15.1 The precision for this procedure has not been determined.

15.2 There is no known bias.

Specimen	Cycle No.	Start Temp., °F	End Temp., °F	Average Temp., °F	Specific Heat, Btu/(lbm • °F)
Specimen No. 2	1	31.08	50.01	40.46	0.378
9-25-85	2	49.80	67.94	58.97	.248
68.78 lbm	3	67.94	84.89	76.52	.254
	4	85.09	100.49	92.90	.260
	5	100.90	115.06	108.08	.266
	6	115.67	128.20	122.07	.270
	7	129.09	140.57	134.92	.278
	8	141.65	152.35	147.05	.291
Specimen No. 3	1	31.19	51.43	41.17	.325
9-25-85	2	51.14	70.80	61.07	.254
68.84 lbm	3	70.71	88.64	79.80	.256
	4	88.80	104.95	97.00	.262
	4	105.36	119.55	112.55	.276
	6	120.15	132.93	126.66	.280
	7	133.77	145.73	139.84	.284

Specimen No.	Average Temp. (T), °F	Specific Heat (S), Btu/(lbm • °F)
2	58.97	0.248
3	61.07	.254
2	76.52	.254
3	79.80	.256
2	92.90	.260
3	97.00	.262
2	108.08	.266
3	112.55	.276
2	122.07	.270
3	126.66	.280
2	134.92	.278
3	139.84	.284
2	147.05	.291

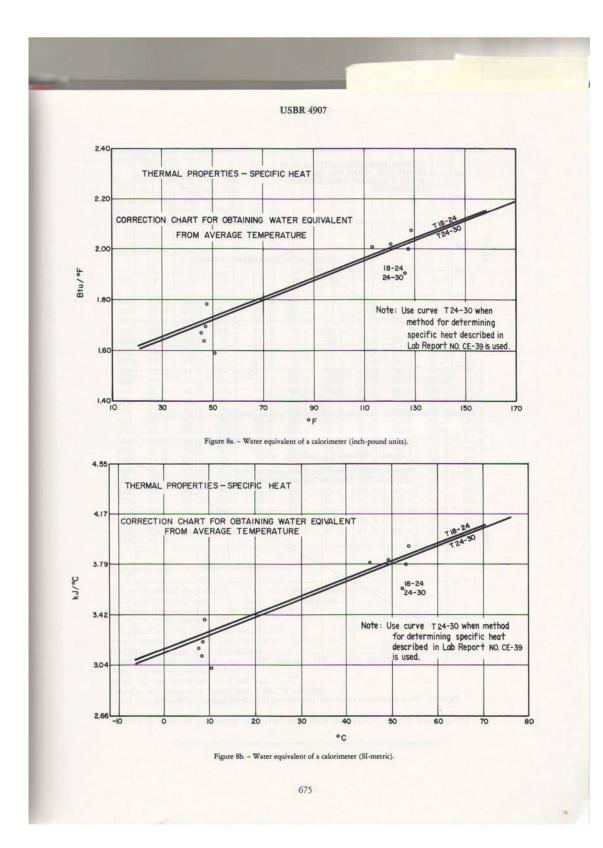
Specific heat equations: S = 0.221947 + 0.0004373 T, or S = 0.245342 - 0.0000588 T + 0.00000243 T²

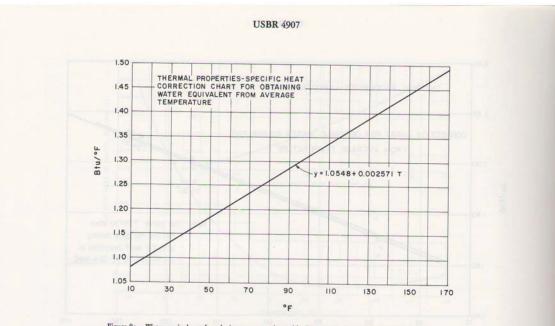
Solic. No. Project	Structure	Tested by	
CANYON FERRY LINIT Feature	Item CONCRETE	Tested by E. HARBOE Computed by	10
CANYON FERRY DAM & PWR. PL.	Station Offset	E. HARBOE Checked by	11-0-70
SDECIEIC UT IN	10	G. HOAGLAND	Date 11-8-48

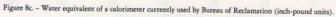
SPECIFIC HEAT OF AGGREGATES, CONCRETE, AND OTHER MATERIALS Specimen No.: CFMo No.1

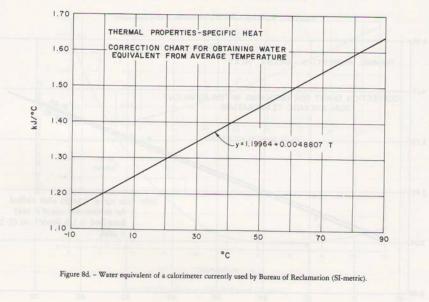
Temp.	Tim		Mass of specimen = 68.23 lbm Heat input = 225.455
T_i	0	37.22	midss of water = 19 de th
and and and	5	51.60	
C	10		$C_a = \frac{T_0 - T_i}{n} = \frac{37.70 - 37.22}{5} = \frac{0.48}{6} = 0.080^{\circ} f$
1	15		- 6 = 0.080°F
10. CT	20		$-G_{h} = \frac{T_{f} - T_{h}}{54.95 - 54.73}$
1	25		$C_b = \frac{T_t - T_n}{n} = \frac{54.95 - 54.73}{6} = \frac{0.22}{5} = 0.037 ^{\circ}F$
To	30	37.70	
T_1	35	39.60	$C_{b}-C_{a} = -0.043^{\circ}F$
T_2	40	37.60	
T_3	45	42.38	
T_4	50	44.61	2 - 37.46 F
T_5	55	48.81	$T_b = \frac{T_f + T_n}{2} = \frac{54.95 + 54.73}{2} = 54.84^{\circ}F$
T_6	60	48.81	2 = 54.84°F
T_7	65	50.67	$T_b - T_a = 17.38^{\circ}F$
T ₈	70	52.85	Fo .75
To	75	54.71	$T_{c} = -nC_{a} - \left[\frac{C_{b} - C_{a}}{T_{b} - T_{a}}\right] \left[(T_{1} + T_{2} + \ldots + T_{23}) + \left(\frac{T_{o} + T_{a}}{2}\right) (-nT_{a}) \right]$
T10	80		$[T_b - T_a]$ $[T_1 + T_2 + \ldots + T_{23}] + [T_0 + T_n] (-nT_a)$
Tin	85	55.24	$= -24(0.080) - \left[\frac{-0.043}{77.38} \right] \left[1201.20 + \left(\frac{32.70 + 54.73}{2} \right) - 24(37.46) \right]$ = -1.920 + (0.002474) (348.38)
T12	90	54.77	24(0.080) - [17.38] [1201.20 + (37.70+54.73) -24(37.44)7
T13	95	54.56	= -1.920 + (0.002474)(348.38) -24(37.46)
T14	100	54.47	= -1.920 + 0.862 = -1.058°F
T15	105	54.43	Temperature rise = $T_n - T_o + T_c = 54.73 - 37.70 - 1.06 = 15.97 \circ F$
T16	110	54.43	$I_{1} = I_{1} - I_{0} + I_{c} = 54.73 - 37.70 - 1.06 = 15.97^{\circ} F$
T17	115	54.47	Average temperature = $\frac{T_0 + T_n}{2} = \frac{37.70 + 54.73}{2} = 46.22 \text{ °F}$
T18	120	54.50	$\frac{1}{2} = \frac{37.73 + 54.73}{2} = 46.22 \text{ fr}$
T19	125	54.55	Heat input - Cas a
T_{20}	130	54.58	Heat input = (225,495)(2.956) = 463.618 Btu
T21	135	54.62	
T22	140	54.65	*Heat to water = $(1.3028)(12.36) = 463.618$ Btu **Heat to calorimeter = $(1.707)(15.97) = 207.551$ Btu
T ₂₃		44 4 4 4	Heat to
T_n		54.73	Specific heat = $\frac{463,618-207,551-27.261=228.806}{(48.23)(15.97)} = 0.2100 Btu/(0bm.*r)$
	155	24.13	(68.23) (15 and = 0.2/00 Rt. M.
	160		(15.47) (15.47)
	165		
	170		
	175		
		54.95	
		figure 7a.	


Figure 6a. - Typical calculation form (inch-pound units).


Solic. No. Project CANYON FERRY UNIT Feature	Structure DAM	Tested by E. HARBOE	Date
Feature	Item CONCRETE	Computed by	11-8-48
CANYON FERRY DAM & PWR PL.	Station Offset	E. HARBOF	Date 11-8-48
	Depth to	Checked by G. HOAGLAND	Date
SPECIFIC HEAT	FAGGRECATER COL		11-8-48


SPECIFIC HEAT OF AGGREGATES, CONCRETE, AND OTHER MATERIALS Specimen No.: CFMo No. 1

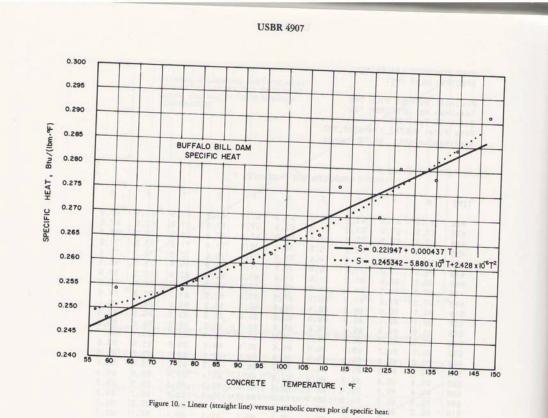

Temp	Tim		
Ti		C	
11	0	2.90	$T_{r} = T_{r}$ $T_{r} = T_{r}$ T_{r} $T_{r} = T_{r}$ T_{r} T_{r
-	5		$C_{i} = \frac{T_{0} - T_{i}}{3 / 7 - 2.80}$
_	10		$n = \frac{1}{2} $
_	15		$C_{e} = \frac{T_{o} - T_{i}}{n} = \frac{3.17 - 2.90}{6} = \frac{0.27}{6} = 0.045^{\circ}C$
	20		$C_b = \frac{I_f - I_n}{I_n} = \frac{12.75 - 12.63}{I_n}$
1000	25		$C_b = \frac{T_{l} - T_n}{n} = \frac{12.75 - 12.63}{6} = \frac{0.12}{6} = 0.020^{\circ}C$
T_{o}	30	3.17	6
T_1	35		
To	40	4.22	$T \perp T$
T_3	45	5.77	$T_a = \frac{T_i + T_o}{2} = \frac{2.90 + 3.17}{2} = 3.04^{\circ}C$
T ₄		7.01	2 = 3.04°C
T5	50	8.24	$T = T_{f} + T_{r}$ (0.75)
15 T6	55	9.34	$T_b = \frac{T_f + T_n}{2} = \frac{12.75 + 12.63}{2} = 12.69^{\circ}C$
16 T ₇	60	10.37	2
17 T8	65	11.58	
	70	12.62	
T_9	75	13.52	$T_b - T_a = 9.65 ^\circ C$
T_{10}	80	12.91	To and
T ₁₁	85	12.65	$T_c = -nC_a - \left \frac{C_b - C_a}{m} \right (T + m)$
T12	90	12.53	$T_{c} = -nC_{a} - \left[\frac{C_{b} - C_{a}}{T_{b} - T_{a}}\right] \left[(T_{1} + T_{2} + \ldots + T_{23}) + \left(\frac{T_{o} + T_{a}}{2}\right) (-nT_{a}) \right]$ $= -24(a \circ nt_{o}) - \Gamma_{-} a \cdot n25 T_{a}$
T13	95		
T14	100	12.48	ET(-, 073) - 1259 Ad , (3, 17+19 /2)
T15	105	12.46	$= -24(0.045) - \left[\frac{-0.025}{9.65}\right] \left[258.44 + \left(\frac{3.17 + 12.43}{2}\right) - 24(3.04)\right]$ = -1.080 + (0.002591)(193.38)
T16	110	12.46	== 1.080+ 0.50
T17	115	12.47	=-1.080+0.501 = -0.579°C
T18	120	12.48	remperature rise = $T_p - T_c + T_c = 12/12$
T ₁₉		12.50	Temperature rise = $T_n - T_0 + T_c = 12.63 - 3.17 - 0.579 = 8.88°C$
T ₂₀	125	12.53	Average temperature = $\frac{T_0 + T_n}{2} = \frac{3.17 + 12.63}{2} = 7.90^{\circ}C$
120 T21	130	12.54	2 = 7.90%
	135	12.57	Heat input = (225 dec)(a train
22	140	12.58	Heat input = (225.495)(2.169) = 489.099 kJ
23	145	12/1	-xear to water = $(1/985)/5991/991/$
'n	150	1262	
	155		Heat to concrete = 482 and (0.00) = 28.762 kJ
	160		Heat to concrete = $489, 099 - 219, 222 - 28, 762 \text{ kJ}$ Specific heat = $\frac{241.1/5}{(30.95)(8.88)} = 0.8773 \text{ kJ}/(kg. °C)$
	165		Specific near = $\frac{-71.113}{(30.95)(200)} = 0.8773 110 115 kJ$
	170		(0.88) (8.88) (KJ/(Kg. C)
	175		the second s
		12 70	
		2.75	
btain fac	or from	figure 7b. figure 8b.	
-	Long Star		


Figure 6b. - Typical calculation form (SI-metric).

USBR CONCRETE LABORATORY SPECIFIC HEAT TEST

Project: BUFFALO BILL DAM Specimen No: SPECIMEN TWO Date: 25 Sep 1985 Data file: BUFFB2_1:HP8290,702 Specimen weight: 68.78 pounds

TEMPERATURE CYCLE 3


				TEMPERA	TURE -	DEGREES	F			
TIME	0	1	2	3	4	5	6	7	8	-
$\begin{array}{c} 420\\ 430\\ 450\\ 450\\ 450\\ 500\\ 510\\ 520\\ 530\\ 540\\ 550\\ 550\\ 560\\ 570\\ 580\\ 560\\ 560\\ 630\\ 630\\ 640\\ 650\\ 640\\ 650\\ 660\\ 660\\ \end{array}$	67.9 67.9 67.9 73.2 76.9 80.5 83.9 87.3 86.7 85.1 85.8 85.8 85.8 85.5 85.4 85.4 85.4 85.4		67.9 67.9 69.3 74.0 81.1 84.6 86.9 86.5 86.0 85.7 85.7 85.7 85.7 85.6 85.5 85.4 85.4 85.4 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2	67.9 67.9 69.9 74.4 78.0 81.5 84.9 88.3 86.4 85.4 85.6 85.6 85.6 85.6 85.6 85.4 85.4 85.4 85.4 85.1 85.1 85.0 84.9	67.9 67.9 67.9 70.4 74.7 78.4 81.8 85.2 87.9 85.9 85.9 85.6 85.6 85.5 85.4 85.3 85.3 85.3 85.3 85.1 85.1 85.0 85.1 85.0 88.4	67.9 67.9 70.9 75.1 78.7 85.6 85.6 85.8 85.7 85.6 85.5 85.5 85.5 85.4 85.3 85.3 85.3 85.1 85.1 85.0 85.1 85.0 85.1 85.0 85.1 85.0 85.1 85.0 85.1	67.9	67.9	67.9	9 67.9 67.9 72.8 80.1 83.5 86.9 86.9 86.9 85.9 85.9 85.9 85.7 85.6 85.7 85.6 85.4 85.4 85.4 85.4 85.2 85.1 85.0 85.0 85.0 85.0

CALCULATIONS

 $\begin{array}{rcl} CA &=& 0.00000 \ degrees \ F & Cb &=& -.00581 \ degrees \ F \\ Ta &=& 57.94 \ degrees \ F & Tb &=& 84.99 \ degrees \ F \\ Average temperature &=& 76.52 \ degrees \ F \\ Tc &=& 1.1338 \ degrees \ F \\ Temperature \ rise &=& 18.29 \ degrees \ F \\ Heat input &=& 158.08 \ watt-hours &=& 539.53 \ Btu \\ Weight \ of \ water &=& 11.82 \ pounds \\ Specific \ heat \ of \ water \ at \ 76.5 \ degrees \ F &=& .9976 \ Btu/(1b.^{\circ}F) \\ Heat \ to \ water \ at \ 215.71 \ Btu \\ Heat \ to \ calorimeter \ at \ 4.65 \ Btu \\ Weight \ of \ concrete \ specimen \ =& 68.78 \ pounds \\ Heat \ to \ concrete \ at \ 319.17 \ Btu \end{array}$

Specific heat of concrete specimen at 76.5 degrees F = .254 Btu/ (16.°F)

Figure 9. - Typical computer output generated from automatic data acquisition system.

Spec. or Solic. No. DESIGNI STAGE Project	Structure DAM MODIFICATION	Tested by M. PEABODY, M. D. ARNEY, F. TRAVERS	CASHDate 9€10-85
SHOSHONE Feature	Location E & R CENTER, DENVER	Communed by	Date 9 £ 10-85
BUFFALO BILL DAM		Checked by M. PEABODY	Date 9 \$ 10-85

SPECIFIC HEAT OF AGGREGATES, CONCRETE, AND OTHER MATERIALS

						MIX DATA	Scondament and	12 02 010	Alter Mar
					Ibi	m	kg	mL	
	Volu	ume of air-	Coarse entraining A lbm (kg er-reducing Ibm (kg	fly ash aggregate admixture,), $C + P$ g admixture,), $C + P$	24 10 92 2,6	26 75		<u>605</u> 490	
-	-		Mi	neralogic mak		regate: <u>PRIMAR</u>	ILY LIMEST	ONE	
Con	crete	Saru	rated		THERMA	AL PROPERTIES	and the state	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NUMBER OF
	(T)	densit	(P)	Diffusiv	ity (D)	Specific	heat (S)	Conduct	ivity (C)
	°F	lbm/ft ³	kg/m ³	ft²/h	m²/h	Btu/(lbm * °F)	kJ/(kg·°C)	Btu/(ft·h·°F)	kJ/(m·h·°(
_	50	-		0.038	Ser. A	0.244	and the	1.40	
-	100	151.5		0.036	pilete E	0.266	Section In	1.45	and shall be
-	150	-	in lines	0.034	1	0.288	LENGTH NO	1.48	15 ^{co} controlo
		in a set	-	a course			Cherry Proder		Spinster 1
_	_		ALC UNC			The second second	in firmer seaf		24
-	r ni				Nº SS	a alphaner	Marrie Mar		n gent of
_					10.010	en ander	N.S. Star	See Stark	- instation
-			A DELLA		C C C C C C C C C C C C C C C C C C C		- DEgloan	and the second	- all the to
		e phu		In second	and the second		Carlle man		Comments of
	112	C. C. CTINE							The second
			Seller.		STR AND	10000	A Vennerane V	CIRCLED CO D	Carlo and I
		sheet.	Sule The		0.5		And the second	S Post and	1 10 co mai
									a with grant of
OTE:	0 -	0.0396 0.221 PDS	<u>36</u> 947 +	0.00003	396 T 373 T				

Figure 11. - Typical reporting form for thermal properties.

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION

USBR 4910-92

PROCEDURE FOR

COEFFICIENT OF LINEAR THERMAL EXPANSION OF CONCRETE

INTRODUCTION

This test procedure is under the jurisdiction of the Concrete and Structural Branch, code D-3730, Research and Laboratory Services Division, Denver Office, Denver, Colorado. The procedure is issued under the fixed designation USBR 4910; the number immediately following the designation indicates year of original adoption or year of last revision.

1. Scope

1.1 Most unrestrained engineering materials expand when heated and contract when cooled. The strain due to a 1°-temperature change is known as the coefficient of thermal expansion. This coefficient is approximately constant for a considerable range of temperatures, and generally increases with an increase in temperature. For a homogeneous, isotropic material, the coefficient applies to all dimensions in all directions. This test designation covers a procedure for determining the thermal coefficient of expansion for hardened concrete in a saturated, intermediate, or dry-moisture condition.

2. Applicable Documents

2.1 USBR Procedures:

4042 Obtaining and Testing Drilled Cores and Sawed Beams or Cubes of Concrete and Shotcrete

4192 Making and Curing Concrete Test Specimens in Laboratory

3. Apparatus

3.1 Holding Tank.-An insulated, copper-lined tank to hold circulating water.

3.2 Water Tank.-A water tank containing electric immersion heaters and refrigeration coils capable of maintaining circulating water at constant temperatures between 35 and 90 °F (1.7 and 32.2 °C).

3.3 Recorder.-A thermocouple recorder to record water temperature versus time.

3.4 *Refrigeration Unit.*-A freon refrigeration unit for lowering water temperature.

3.5 Controller.-A controller for regulating water temperature. Controller should automatically turn heater and refrigeration units on and off.

3.6 *Steel Frames.*-Invar steel, level frames for holding concrete test specimens as they are lowered into water (six required).

3.7 Thermometer.-A thermometer with a range of 35 to 90 °F (1.7 to 32.2 °C), and with an accuracy of 0.1 °F (0.16 °C).

3.8 Transformers.-For measuring length change during testing, six LVDT's (linear variable differential transformers) are required.

3.9 Transducer Indicators.-Two amplifier transducer indicators are required. These indicators are highsensitivity, differential transformer, input modules for reading summation of length change occurring in three of the test specimens. The normal length change range selection for concrete is set so that a full scale division is 0.01 inch (0.25 mm); the scale is divided into 100 divisions.

3.10 Other types of sensing, controlling, and recording equipment and instrumentation can also provide satisfactory results. This system is being described somewhat in detail for the benefit of Bureau personnel who will be conducting the test with this equipment.

4. Precautions

4.1 This test procedure may involve hazardous materials, operations, and equipment, and does not claim to address all safety problems associated with its use. It is the responsibility of the user to consult and establish appropriate safety and health practices and determine applicability of regulatory limitations prior to use.

5. Sampling and Test Specimens

5.1 Six concrete test specimens are sawed as 2- by 2by 4-inch (50- by 50- by 100-mm) prisms obtained in accordance with USBR 4042, or cast as 2- by 4-inch (50by 100-mm) cylinders made in accordance with USBR 4102, Invar buttons are then epoxied onto the ends of the specimens. The buttons are recessed to accommodate the tips of the holding frame during testing. Length measurements are made to nearest 0.01 inch (0.25 mm), and testing normally occurs in a 100-percent vacuum saturated condition, as close to zero load as possible.

5.2 In our previous test procedures, mass concrete has been tested at three different moisture conditions to determine difference in thermal coefficients at each state. These three conditions are 100 percent dry, 100 percent vacuum saturated, and 75 percent vacuum saturated. If testing by these conditions is requested, 12 specimens are prepared in 2 groups of 6 each. All specimens are oven

dried at 190 °F (87.8 °C) to initiate testing under equal conditions.

5.2.1 During initial drying of first set of specimens, mass is determined until no loss of the mass is observed. Specimens are immediately dipped in heated paraffin wax to sustain this 100 percent dry condition.

5.2.2 After initial drying, second set of specimens are vacuum saturated and their mass determined until no increase in mass is observed. Specimens are immediately submerged in a water bath of constant temperature to sustain this 100 percent saturated condition.

5.2.3 The second set of specimens, which were previously tested in a fully saturated state, are also used for obtaining data in a partially saturated condition. The fully saturated specimens are dried and their mass determined until they reach a condition of 75 percent saturation. To remain in this state, specimens are immediately dipped in heated paraffin wax. The highest values for coefficient of thermal expansion are normally obtained in this 75 percent saturated condition.

6. Calibration and Standardization

6.1 The calibration and standardization of miscellaneous equipment or apparatus used in performing the tests listed under the Applicable Documents of section 2 are covered under that particular procedure.

6.2 The LVDT's are calibrated on the thermal expansion testing apparatus as follows: *Step 1.*-Place test specimens in tank.

Step 2.-Set ABC selector switch to A of TAI (Transducer Amplifier-Indicator).

Step 3.-Set range selector to STANDBY. Adjust meter screw for zero reading.

Step 4.-Turn sensitivity to maximum (clockwise) and

set zero knobs to center point (arrows point upward). Step 5.-Repeat steps 1 through 4 for second TAI.

Step 6.-Turn range selector to NULL.

Step 7.–Unlock adjustment knob on frame and set LVDT for zero meter reading, lock LVDT, and adjust with "mechanical adjustment knob" to bring needle as close to zero as possible. Lock manual adjustment knob.

Step 8.-Fine adjust to zero with proper null screw.

Step 9.-If necessary, alternate mechanical and null adjustment to bring needle as close to zero as possible. Step 10.-Set ABC selector switch to B, and repeat steps 7

through 9. Step 11.–Set ABC selector switch to C, and repeat steps 7

through 9.

Step 12.-Turn second TAI range selector to NULL.

Step 13.-Repeat steps 7 through 11 for second amplitude. Step 14.-Set range selector to 10.

Step 15.-Adjust zero for A with fine-zero controls. Repeat for B and C.

Step 16.-Check zero of A+B+C.

Step 17.-Repeat steps 14 through 16 with second TAI. Step 18.-Set ABC selector switch to A.

Step 19.-Insert 0.01-inch (0.25-mm) shim between first

LVDT and mechanical adjuster with a sawing motion. Step 20.-Adjust sensitivity to bring needle to 100. Step 21.-Set range selector to CAL and bring needle to 100 with CAL SET adjustment.

Step 22.-Bring range selector back to 10.

Step 23 .- Set ABC selector switch to B. Insert shim.

Step 24.-Adjust needle to 100 with span B adjustment screw.

Step 25.-Set ABC selector switch to C. Insert shim.

Step 26.-Repeat step 24 with span C screw.

Step 27.-Check zero of A+B+C.

Step 28.-Repeat steps 18 through 27 with second amplitude,

Step 29.-With range selector at 10 and ABC selector switch at A+B+C, begin test by moving rheostat to about 55 and turning on all other switches. Turn recorder to "select-o-print."

Step 30.-Temperature is adjusted with knob on temperature controller.

6.3 Temperature control shall be verified as conforming with section 3 by adequate thermometers certified by manufacturer.

7. Conditioning

7.1 Tests should be conducted in a room environment where temperature change is held to a minimum. Other conditioning is covered under section 5.

8. Procedure

8.1 Test specimens in a fully dry, fully saturated, or partially saturated state are placed in their holding frames and lowered into a water bath of constant temperature 1 day prior to testing. This allows all components to reach a temperature equilibrium.

8.2 Fill in heading of Data and Computation Sheet (fig. 1) and begin test.

8.3 The initial time, water temperature, and amplified meter readings are taken and temperature controller is set to 70 or 80 °F (21.1 or 26.7 °C) depending upon initial room temperature.

8.4 When water reaches set temperature, hold temperature constant for 5 to 7 minutes while entries are made on data sheet of length changes, temperatures, and time.

8.5 Increase temperature to 90 °F (32.2 °C) and repeat data entries.

8.6 Lower temperature to 85 °F (29.4 °C) and read in 10 °F (5.6 °C) increments down to 35 °F (1.7 °C). Increase temperature to 40 °F (4.4 °C) and read in 10 °F increments back to the initial set temperature. In this manner, data points are obtained for every 5 °F (2.8 °C) interval between 35 and 90 °F as temperature is fluctuated.

8.7 Meter versus temperature readings are plotted and a linear curve is drawn (fig. 2).

9. Calculations

9.1 Figure 1 shows a typical data and calculation form.9.2 Figure 2 shows the curve discussed in section 8.7.The length or projected meter readings are determined

from the curve at the intersect point of 35 °F (1.7 °C) and 90 °F (32.2 °C). 9.2.1 Calculate the coefficient of thermal expansion

as follows:

$$CE = \frac{y_2 - y_1}{0.55 \, S} \tag{1}$$

where:

 $\begin{array}{l} CE = \mbox{coefficient of thermal expansion, in (in/in)/{}^{\circ}F} \\ \times 10^{-6} \mbox{ or (cm/cm)/}{}^{\circ}C \times 10^{-6}; \\ p_1 = \mbox{intercept of line at 35 } {}^{\circ}F \ (1.7 \ {}^{\circ}C); \\ p_2 = \mbox{intercept of line at 90 } {}^{\circ}F \ (32.2 \ {}^{\circ}C); \mbox{and} \\ S = \mbox{summation of gauge lengths, in inches} \\ \ (millimeters). \end{array}$

9.2.2 A more precise method of calculating the coefficient of thermal expansion is by the least squares method of calculation for determining the slope of a line (fig. 3):

$$CE = \frac{y_2 - y_1}{0.55 S}$$
(1)

$$y_1 = -c + 35b$$
 (2)

$$y_2 = -c + 90b$$

$$c = a - \overline{v}$$

$$b = \frac{\sum (x - \bar{x}) (y - \bar{y})}{\sum (x - \bar{x})^2}$$

(5)

(6)

 $a = \bar{x}b$

where:

a = constant derived from the average temperature multiplied by the slope of the line,

b = slope of line, c = constant derived from a, minus the average

y = measurement in inches per inch (centimeters per centimeter),

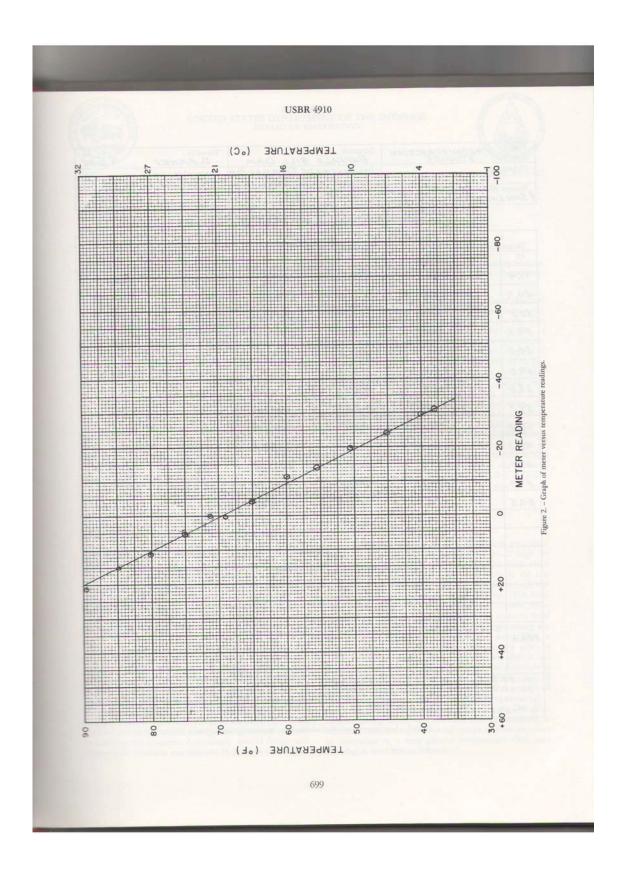
 \bar{y} = average measurement in inches per inch (centimeters per centimeter), and

CE, S, y_1 , and $y_2 =$ as previously defined.

10. Report

(3)

(4)


10.1 A cover letter along with figures 1 and 2 or figure 3 should serve as a report for this procedure.

11. Precision and Bias

11.1 The precision and bias for this procedure have not been established.

So	Spec. or PRECONSTRUCTION Solic. No. STUDIES Project PSMBP				Structure BUFFALO BILL DAM Item CONCRETE THERMAL EXP. Location DENVER LAB						
Liojett PSMBP				A state of the sta							
Feature Burge											
Feature BUFFALD BILL DAME				BILL DAME	Station Offset				D. ARNEY 9-8-1		
-	MODIFICATIONS				OF LINEAR THERMAL EXPANSION OF				E Hanna D		
[Sand			_	COLITICIENT	OF LINEAR THER	MAL	EXPANSIO	NOFCO	NCRETE		
MSA MSA	Of Van	urce: C	oarse hes (ALTHOFF CONS	Sawed 🗆 Fabri	cated; Fine	Nom	inal Size	2- By 2-By 4 inch		
			-		_ (-) <u>1//6</u> ()) <u>T</u>	0 (6) <u>4.0</u> inc	hes (mm)	Summation: 24. /	25 inches (mm	
				No. 1						menes (mm	
Tim		Temperature		Range 10 0.01.NCH × 100	Range 10		Average				
-	0	°F °C		Meter Reading	O. OLINCH X /	00	Meter				
8:20			Meter Reading		Meter Reading		Reading	Remarks			
0.20	71.	4		0	0	-		* 3/2(15%), 3/4(25%), 1/2(35%)			
9.00	7.	0	-		0		0	3(25	5%)	, 1/2 (35%)	
9:03	14.	74.9		+5.2	100				10)		
0.21	00	0.0			+5.3		+5.3			11111	
9:31	80.	80.2		+10.7	+11.1						
10.0		00			-11.1		+10.9			100 C	
0:05	89.	89.6		+20.5	1000					and home	
10.2.	0.0		-		+20.9		+20.7			Men and	
0:36	84.	84.8		+15.2	+140						
10.00		-	+		+14.8		+15.0			10-20	
0:59	69.	2		+0.7	400				and the second		
1.0		-			+0.2		+0.5				
1:30	65.0	65.0		-4.4	1.			-		and a second	
1		-	+		-4.0		-4.2			i i i i i i i i i i i i i i i i i i i	
1:56	59.7	59.7		-11.7	-11.1		-11.4	-	and the second	and the second	
2:30	55.4	-		-14.0	- 12 0				ALC: NOT DOUB	Statics Street	
://	1-		+		-13.9	1.	-14.0				
	45.1	45.1		-24.1	- 22 0			- Contraction	and the second		
					-23.9		24.0				
:50	37.8	37.8		-31.5	-200						
					-30.8		-31.2				
:12	39.9			-29.9	-29.3				the second second		
	-		-	and the second second	27.3	-	29.6				
:44	50.5			-20.3	-19.6		2.		0.000		
1			-			-	20.0			a seal a series of	
	ST A DE			STREET.				-			
			-								
		6-1 T 7			102					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
	-		-								
					and the second second			-			
= y2	- 14		-	-	38 millionth						
			2	-24 (1)		-					

Figure 1. - Typical data and calculation form for measurement of expansion.

Spec. or PRECONSTRUCTION Solic. No. STUDIES		Tested by D. ARNEY	Date 9-8-85
Project PSMBP	Item GONCRETE THERMAL EXP. Location DENVER LAB	Computed by D. ARNEY	Date
Teature DUPFAIA BILL DALL	Station Oll	Checked by	9-8-85
SPILLWAY MODIFICATIONS	Depth ~ to ~	E. HARBOE	9-8-85

x Temperature		y Meter	$x - \overline{x}$	$(x-\overline{x})^2$	y - y	(
°F	°C	Reading			7-7	$(x-\overline{x})(y-\overline{y})$
71.4		0	+8.1	65.61	+6.3	+51.03
44.9		+5.3	+11.6	134.56	+11.5	+133.40
80.2		+10.9	+16.9	285.61	+17.2	+290.68
89.6		+20.7	+26.3	691.69	+27.0	+710.10
84.8		+15.0	+21.5	462.25	+21.3	+457.95
69.2		+0.5	+5.9	34.81	+6.7	+ 40.12
65.0		-4.2	+1.7	2.89	+2.1	+ 3.57
59.7		-11.4	-3.6	12.96	-5.1	+ 18.36
55.4		-14.0	-7.9	62.41	-7.7	+60.83
45.1		-24.0	-18.2	331.24	-17.7	+ 322.14
37.8		-31.2	-25.5	650.25	-24.9	+634.95
39.9		-29.6	-23.4	547.56	-23.3	+545.22
50.5		-20.0	-12.8	163.84	-13.7	+ 175.36
7:11						
	E					
	Σ =	Σ = - 82.4		Σ = 3 ,445, 68		
23.5				2-3,445.68		Σ = 3,443. 71
$\overline{x} = 63.$ $\overline{y} = -6.$ $\overline{y}_1 = -69.6$ $\overline{y}_2 = -69.6$	34	- / 3	125 inches 3 (0.99943) = 63. 43.71 /3445.68	$^{3}CE = \frac{y_{2} - y_{1}}{0.55 S} = \frac{20.3}{0.55 S}$	-(-34.6) (24.125 = 4.1	138 millionths inch/inch/of

COEFFICIENT OF LINEAR THERMAL EXPANSION OF CONCRETE

Figure 3. - Least squares method of calculation for determining slope of line.