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INTRODUCTION 

Since 1975, a short course entitled "System Safety and Reliability Analysis" has 
been presented to over 200 NRC personnel and contractors. The course has been 
taught jointly by David F. Haasl, Institute of System Sciences, Professor Norman H. 
Roberts, University of Washington, and ·members of the Probabilistic Analysis Staff, 
NRC, as part of a risk assessment training program sponsored by the Probabilistic 
Analysis Staff. 

This handbook has been developed not only to serve as text for the System Safety 
and Reliability Course, but also to make available to others a set of otherwise 
undocumented material on fault tree construction and evaluation. The publication of 
this handbook is in accordance with the recommendations of the Risk Assessment 
Review Group Report (NUREG/CR-0400) in which it was stated that the fault/event 
tree methodology both can and should be used more widely by the NRC. It is hoped 
that this document will help to codify and systematize the fault tree approach to 
systems analysis. 

vii 



CHAPTER I - BASIC CONCEPTS OF SYSTEM ANALYSIS 

1. The Purpose of System Analysis 

The principal concern of this book is the fault tree technique, which is a 
systematic method for acquiring information about a system.* The information so 
gained can be used in making decisions, and therefore, before we even define system 
analysis, we will undertake a brief examination of the decisionmaking process. 
Decisionmaking is a very complex process, and we will highlight only certain aspects 
which help to put a system analysis in proper context. 

Presumably, any decision that we do make is based on our present knowledge 
about the situation at hand. This knowledge comes partly from our direct experience 
with the relevant situation or from related experience with similar situations. Our 
knowledge may be increased by appropriate tests and proper analyses of the 
results-that is, by experimentation. To some extent our knowledge may be based on 
conjecture :Jd this will be conditioned by our degree of optimism or pessimism. For 
example, w~ may be convinced that "all is for the best in this best of all possible 
worlds." Or, conversely, we may believe in Murphy's Law: "If anything can go 
wrong, it will go wrong." Thus, knowledge may be obtained in several ways, but in 
the vast majority of cases, it will not be possible to acquire all the relevant 
information, so that it is almost never possible to eliminate all elements of 
uncertainty. 

It is possible to postulate an imaginary world in which no decisions are made until 
all the relevant information is assembled. This is a far cry from the everyday world in 
which decisions are forced on us by time, and not by the degree of completeness of 
our knowledge .. We all have deadlines to meet. Furthermore, because it is generally 
impossible to have all the relevant data at the time the decision must be made, we 
simply cannot know all the consequences of electing to take a particular course of 
action. Figure 1-1 provides a schematic representation of these considerations. 

DIRECT 
INFORMATION 
ACQUISITION 

INDIRECT 
INFORMATION 

DECISION 

ACQUISITION I 
I 
I 

TIME AT WHICH ~ 
DECISION MUST _T 

BE MADE 

TIME AXIS • 

Figure 1-1. Schematic Representation of the Decisionmaking Process 

*There are other methods for performing this function. Some of these are discussed briefly 
in Chapter II. 

1-1 
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The existence of the time constraint on the decisionmaking process leads us to 
make a distinction between good decisions and correct decisions. We can classify a 
decision as good or bad whenever we have the advantage of retrospect. I make a 
decision to buy 1000 shares of XYZ Corporation. Six months later, I find that the 
stock has risen 20 points. My original decision can now be classified as good. If, 
however, the stock has plummeted 20 points in the interim, I would have to 
conclude that my original decision was bad. Nevertheless, that original decision could 
very well have been correct if all the information available at the time had indicated a 
rosy future for XYZ Corporation. 

We are concerned here with making correct decisions. To do this we require: 
(1) The identification of that information. (or those data) that would be pertinent 

to the anticipated rlecision. 
(2) A systematic program for the acquisition of this pertinent information. 
(3) A rational assessment or analysis of the data so acquired. 
There are perhaps as many definitions of system analysis as there are people 

working and writing in the field. The authors of this book, after long thought, some 
controversy, and considerable experience, have chosen the following definition: 

System analysis is a directed process for the orderly and timely acquisition and 
investigation of specific system information pertinent to a given decision. 

According to this definition, the primary function of the system analysis is the 
acquisition of information and not the generation of a system model. Our emphasis 
(at least initially) will be on the process (i.e., the acquisition of information) and not 
on the product (Le., the system model). This emphasis is necessary because, in the 
absence of a directed, manageable, and disciplined process, the corresponding system 
model will not usually be a very fruitful one. 

We· must decide what information is relevant to a given decision before the data 
gathering activity starts. What information is essential? What information is 
desirable? This may appear perfectly obvious, but it is astonishing on how many 
occasions this rationale is not followed. The sort of thing that may happen is 
illustrated in Figure I-2. 

... ........ 

Figure 1-2. Data Gathering Gone Awry 

/ 
/ 

/ 
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The large circle represents the information that will be essential for a correct decision 
to be made at some future time. Professor Jones, who is well funded and who is a 
"Very Senior Person," is an expert in sub-area A. He commences to investigate this 
area, and his investigation leads him to some fascinating unanswered questions 
indicated in the sketch by Ai. Investigation of Ai leads to A2 , and so on. Notice, 
however, that Professor Jones' efforts are causing him to depart more and more from 
the area of essential data. Laboratory Alpha is in an excellent position to study 
sub-area B. These investigations lead to Bi and B2 and so on, and the same thing is 
happening. When the time for decision arrives, all the essential information is not 
available despite the fact that the efforts expended would have been able to provide 
the necessary data if they had been properly directed. 

The nature of the decisionmaking process is shown in Figure 1-3. Block A 
represents certified reality. Now actual reality is pretty much of a "closed book," but 
by experimentation and investigation (observations of Nature) we may slowly 
construct a perception of reality. This is our system model shown as block B. Next, 
this model is analyzed to produce conclusions (block C) on which our decision will 
be based. So our decision is a direct outcome of our model and if our model is 
grossly in error, so also will be our decision. Clearly, then, in this process, the greatest 
emphasis should be placed on assuring that the system model provides as accurate a 
representation of reality as possible. 
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Figure I-3. Relationship Between Reality, System 
Model, and Decision Process 

2. Definition of a System 
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We have given a definition of the process of system analysis. Our next task is to 
devise a suitable definition for the word "system." In common parlance we speak of 
"the solar system," "a system of government," or a "communication system," and in 
so doing we imply some sort of organization existing among various elements that 
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mutually interact in ways that may or may not be well defined. It seems reasonable, 
then, to establish the following definition: 

A system is a deterministic entity comprising an interacting collection of 
discrete elements. 

From a practical standpoint, this is not very useful and, in particular cases, we 
must specify what aspects of system performance are of immediate concern. A 
system performs certain functions and the selection o( particular performance 
aspects will dictate what kind of analysis is to be conducted. For instance: are we 
interested in whether the system accomplishes some task successfully; are we 
interested in whether the system fails in some hazardous way; or are we interested in 
whether the system will prove more costly than originally anticipated? It could well 
be that the correct system analyses in these three cases will be based on different 
system defintions. 

The word "deterministic,' in the definition implies that the system in question be 
identifiable. It is completely futile to attempt an analysis of something that cannot 
be clearly identified. The poet Dante treated the Inferno as a system and divided it 
up into a number of harrowing levels but, from a practical standpoint, such a system 
is not susceptible to identification as would be, for example, the plumbing system in 
my home. Furthermore, a system must have some purpose-it must do. something. 
Transportation systems, circulating hot water piping systems, local school systems all 
have definite purposes and do not exist simply as figments of the imagination. 

The discrete elements of the definition must also, of course, be identifiable; for 
instance, the individual submarines in the Navy,s Pacific Ocean Submarine Flotilla. 
Note that the discrete elements themselves may be regarded as systems. Thus, a 
submarine consists of a propulsion system, a navigation system, a hull system, a 
piping system, and so forth; each of these, in tum, may be further broken down into 
subsystems and sub-subsystems, etc. 

Note also from the definition that a system is made up of partsrbr subsystems that 
interact. This interaction •. which may be very complex indeed, generally insures that 
a system is riot simply equal to the sum of its parts, a point that will be continually 
emphasized throughout this book. Furthermore, if the physical nature of any part 
changes-for example by failure-the system itself also changes. This is an important 
point because, should design changes be made as a result of a system analysis, the 
new system so resulting will have to be subjected to an analysis of its own. Consider, 
for example, a four-engine aircraft. Suppose one engine fails. We now have a new 
system quite different from the original one. For one thing, the landing characteris
tics have changed rather drastically. Suppose two engines fail. We now have six 
different possible systems depending on which two engines are out of commission. 

Perhaps the most vital decision that must be made in system definition is how to 
put external boundaries on the system. Consider the telephone sitting on the desk. Is 
it sufficient to define the system simply as the instrument itself (earpiece, cord and 
cradle), or should the line running to the jack in the wall be included? Should the 
jack itself be included? What about the external lines to the telephone pole? What 
about the junction box on the pole? What about the vast complex of lines, switching 
equipment, etc., that comprise the telephone system in the local area, the nation, the ~ 
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world? Clearly some external boundary to the system must be established and this 
decision will have to be made partially on the basis of what aspect of system 
performance is of concern. If the immediate problem is that the bell is not loud 
enough to attract my attention when I am in a remote part of the house, the external 
system boundary will be fairly closed in. If the problem involves static on the line, 
the external boundary will be much further out. 

It is also important in system definition to establish a limit of resolution. In the 
telephone example, do I wish to extend my analysis to the individual components 
(screws, transmitter, etc.) of which the instrument is composed? Is it necessary to 
descend to the molecular level, the atomic level, the nuclear level? Here again, a 
decision can be made partially on the basis of the system aspect of interest. 

What we have said so far can be represented as in Figure I4. The dotted line 
separates the system from the environment in which it is embedded. Thus, this 
dotted line constitutes an external boundary. It is sometimes useful to divide the 
system into a number of subsystems, A, B, C, etc. There may be several motivations 
for doing this; most of them will be discussed in due course. Observe also that one of 
the subsystems, F, has been broken down, for purposes of the analysis, into its 
smallest sub-subsystems. This constitutes a choice of an internal boundary for the 
system. The smallest sub-subsystems, a, b, c, etc., are the "discrete elements" 
mentioned in the general definition of a system. 

TYPICAL 
SUBSYSTEMS 

A 

B 

c 

0 

SYSTEM 

E 

a b 

g h 

m n 

~ -ENVIRONMENT 

- - - - - - - - -, EXTERNAL ii BOUNDARY 

F 

c d e 

k 

0 p q 

f 

I 
I 
I 
I 
I 

I 
I 
I 
I 

SMALLEST 
S LIB-SUBSYSTEM 

(LIMIT OF 
RESOLUTION) 

L------------------------~ 
Figure 1-4. System Definition: External and Internal Boundaries 

The choice of the appropriate system boundaries in particular cases is a matter of 
vital importance, for the choice of external boundaries determines the comprehen
siveness of the analysis, whereas the choice of a limit of resolution limits the detail of 
the analysis. A few further facets of this problem will be discussed briefly now, and 
will be emphasized throughout the book, especially in the applications. 

The system boundaries we have discussed so far have been physical boundaries. It 
is also possible, and indeed necessary in many cases, to set up temporal or time-like 
boundaries on a system. Consider a man who adopts the policy of habitually trading 
his present car in for a new one every two years. In this example, the system is the 
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car and the system aspect of interest is the maintenance policy. It is clear that, under 
the restriction of a two-year temporal boundary, the maintenance policy adopted 
will be one thing; it will be quite a different thing if the man intends to run the car 
for as long as possible. In some applications, the system's physical boundaries might 
actually be functions of time. An example of this would be a system whose temporal 
boundaries denote different operating phases or different design modifications. After 
each phase change or design modification, the physical boundaries are subject to 
review and possible alteration. 

The system analyst must also ask the question, "Are the chosen system 
boundaries feasible and are they valid in view of the goal of the analysis?" To reach 
certain conclusions about a system, it may be desirable to include a large system 
"volume" within the external boundaries. This may call for an extensive, 
time-consuming analysis. If the money, time and staff available are inadequate for 
this task and more efficient analysis approaches are not possible, then the external 
boundaries must be "moved in" and the amount of information expected to result 
from the analysis must be reduced. If I am concerned about my TV reception, it 
might be desirable to include the state of the ionosphere in my analysis, but this 
would surely be infeasible. I would be better advised to reduce the goals of my 
analysis to a determination of the optimum orientation of mv roof antenna. 

I • -

The limit of resolution (internal boundary) can also be established -from 
consideration,s of feasibility (fortunately!) and from the goal of the analysis. It is 
possible to conduct a worthwhile study of the reliability of a population of TV sets 
without being concerned about what is going on at the microscopic and 
submicroscopic levels. If the system failure probability is to be calculated, then the 
limit of resolution should cover component failures for which data are obtainable. At 
any rate, once the limit of resolution has been chosen (and thus the "discrete 
elements" defined), it is interactions at this level with which we are concerned; we 
assume no knowledge and are not concerned about interactions taking place at lower 
levels. 

We now see that the external boundaries serve to delineate system outputs (effects 
of the system on its environment) and system inputs (effects of the environment on 
the system); the limits of resolution serve to define the "discrete elements" of the 
system and to establish the basic interactions within the system. 

The reader with a technical background will recognize that our definition of a 
system and its boundaries is analogous to a similar process involved in classical 
thermodynamics, in which an actual physical boundary or an imaginary one is used 
to segregate a definite quantity of matter ("control mass") or a definite volume 
("control volume"). The inputs and outputs of the system are then identified by the 
amounts of energy or mass passing into or out of the bounded region. A system that 
does not exchange mass with its environment is termed a "closed system" and a 
closed system that does not exchange energy with its surroundings is termed an 
"adiabatic system" or an "isolated system." A student who has struggled with 
thermodynamic problems, particularly flow problems, will have been impressed with 
the importance of establishing appropriate system boundaries before attempting a 
solution of the problem. 

A good deal of thought must be expended in the proper assignment of system 
boundaries and limits of resolution. Optimally speaking, the system boundaries and 
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limits of resolution should be defined before the analysis begins and should be 
adhered to while the analysis is carried out. However, in practical situations the 
boundaries or limits of resolution may need to be changed because of information 
gained during the analysis. For example, it may be found that system schematics are 
not available in as detailed a form as originally conceived. The system boundaries and 
limits of resolution, and any modifications, must be clearly defined in any analysis, 
and should be a chief section in any report that is issued . 

.,,,,,,..---...... 
/ 10-4 ' 

/ '~-4..------EXTENDEDSYSTEM 
/ ~ BOUNDARY 

I \ 

' 

3 -.-------SYSTEM BOUNDARY 
\ 1~ I 
\ I 
\. I ' / 

, __ ,, 
Figure 1-5. Effect of System Boundaries on Event Probabilities 

To illustrate another facet of the bounding and resolution problem, consider 
Figure 1-5. The solid inner circle represents our system boundary inside of which we 
are considering events whose probabilities of occurrence are, say, of order 10-3 or 
greater. If the system boundaries were extended (dotted circle) we would include, in 
addition, events whose probabilities of occurrence were, say, of order 10-4 or 
greater. By designing two-fold redundancy into our restricted system (solid circle) we 
could reduce event probabilities there to the order of oo-3)(10-3) = 10-6 but then 
the probabilities of events that we are ignoring become overriding, and we are 
suffering under the delusion that our system is two orders of magnitude safer or 
more reliable than it actually is. When due consideration is not devoted to matters 
such as this, the naive reliability calculator will often produce such absurd numbers 
as 10-l 6 or 10-18. The low numbers simply say that the system is not going to fail 
by the ways considered but instead is going to fail at a much higher probability in a 
way not considered. 

3. Analytical Approaches 

Because we are concerned, in this volume, with certain formal processes or 
models, it should come ·as no great suprise that these processes or models can be 
categorized in exactly the same way as are the processes of thought employed in the 
human decisionmaking process. There are two generic analytical methods by means 
of which conclusions are reached in the human sphere: induction and deduction. It is 
necessary at this point to discuss the respective characteristics of these approaches. · 
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Inductive Approaches 

Induction constitutes reasoning from individual cases to a general conclusion. If, 
in the consideration of a certain system, we postulate a particular fault or initiating 
condition and attempt to ascertain the effect of that fault or condition on system 
operation, we are constructing an inductive system analysis. Thus, we might inquire 
into how the loss of some specified control surface affects the flight of an airplane or 
into how the elimination of some item in the budget affects the overall operation of 
a school district. We might also inquire how the non-insertion of given control rods 
affects a scram system's performance or how a given initiating event, such as a pipe 
rupture, affects plant safety. 

Many approaches to inductive system analysis have been developed and we shall 
devote Chapter II to a discussion of the most important among them. Examples of 
this method are: Preliminary Hazards Analysis (PHA), Failure Mode and Effect 
Analysis (FMEA), Failure Mode Effect and Criticality Analysis (FMECA), Fault 
Hazard Analysis (FHA), and Event Tree Analysis. 

To repeat-in an inductive approach, we assume some possible component 
condition or initiating event and try to determine the corresponding effect on the 
overall system. 

Deductive Approaches 

Deduction constitutes reasoning from the general to the specific. In a deductive 
system analysis, we postulate that the system itself has. failed in a certain way, and 
we attempt to find out what modes of system/component* behavior contribute to 
this failure. In common parlance we might refer to this approach as a "Sherlock 
Holmesian" approach. Holmes, faced with given evidence, has the task of 
reconstructing the events leading up to the crime. Indeed, all successful detectives are 
experts in deductive analysis. 

Typical of deductive analyses in real life are accident investigations: What chain of 
events caused the sinking of an "unsinkable" ship such as the Titanic on its maiden 
voyage? What failure processes, instrumental and/or human, contributed to the crash 
of a commercial airliner into a mountainside? 

The principal subject of this book, Fault Tree Analysis, is an example of deductive 
system analysis. In this technique, some specific system state, which is generally a 
failure state, is postulated, and chains of more basic faults contributing to this 
undesired event are built up in a systematic way. The broad principles of Fault Tree 
Analysis, as well as details relating to the applications and evaluation of Fault Trees, 
are given in later chapters. 

In summary, inductive methods are applied to determine what system states 
(usually failed states) are possible; deductive methods are applied to determine how a 
given system state (usually a failed state) can occur. 

*A component can be a subsystem, a sub-subsystem, and sub-sub-subsystem, etc. Use of the 
word "component" often avoids an undesirable proliferation of "subs." 
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4. Perils and Pitfalls 

In the study of systems there are dangerous reefs which circumscribe the course 
which the analyst must steer. Most of these problem areas assume the role of 
interfaces: subsystem interfaces and disciplinary interfaces. 

Subsystem Interfaces 

Generally, a system is a complex of subsystems manufactured by several different 
subcontractors or organizational elements. Each subcontractor or organizational 
element takes appropriate steps to assure the quality of his own product. The trouble 
is that when the subsystems are put together to form the overall system, failure 
modes may appear that are not at all obvious when viewed from the standpoint of 
the separate component parts. 

It is important that the same fault definitions be used in analyses which are to be 
integrated, and it is important that system boundaries and limits of resolution be 
clearly stated so that any potential hidden faults or inconsistencies will be identified. 
The same event symbols should be used if the integrated system is to be evaluated or 
quantified. Interface problems often lie in control systems and it is best not to split 
any control system into "pieces." Systems which have control system interfaces (e.g., 
a spray system having an injection signal input) can be analyzed with appropriate 
"places" left for the control analysis which is furnished as one entity. These 
"places," or transfers, will be described later in the fault tree analysis discussions. 

Disciplinary Interfaces 

Difficulties frequently arise because of the differing viewpoints held by people in 
different disciplines or in different areas of employment. The circuit designer regards 
his black box as a thing of beauty and a joy forever, a brainchild of his own creation. 
He handles it gently and reverently. The user, on the other hand, may show no such 
reverence. He drops it, kicks it and swears at it with gay abandon. 

One of the authors, as a mere youth, was employed as a marine draftsman. The 
principal shop project was drawing up plans for mine-sweepers. The draftsmen were 
divided into groups. There was a hull section, a wiring section, a plumbing section, 
etc., each section working happily within its own technical area. When an attempt 
was made to draw up a composite for one of the compartments (the gyro room, in 
this case), it was found that hull features and plumbing fixtures were frequently 
incompatible, that wiring and plumbing often conflicted with vent ducts, and indeed, 
that the gyro room door could not be properly opened because of the placement of a 
drain from the head on the upper deck. This exercise demonstrated the unmistakable 
need for system integration. 

Other conflicts can readily be brought to mind: the engineering supervisor who 
expects quantitative resuits from his mathematical section, but gets only beautiful 
existence proofs; the safety coordinator who encumbers the system with so many 
safety devices that the reliability people have trouble getting the system to work at 
all; and so on. 
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As an example of an interface between operational and maintenance personnel, 
consider a system that is shut down for an on-line maintenance check for 5 minutes 
every month, and suppose that the probability of system failure due to hardware 
failure is 10 -6 per month. Then, on a monthly basis, the total probability that the 
system will be unavailable is the sum of its unavailability due to hardware failures 
and its unavailability due to the maintenance policy or: 

where 
10-6 
720 
1/12 

=system unavailability due to hardware failure per month 
=number of hours in a month 
= hours required for maintenance check per month 

Note that the probability of system unavailability due to our maintenance policy 
(only 5 minutes downtime per month) is greater by two orders of magnitude than 
the probability that the system will be down because of hardware failure. In this case 
the best maintenance policy may be none at all! 

The system analyst (system integratc-r) must be unbiased enough and knowledge
able enough to recognize interface problem areas when they occur-and they will 
occur. 



CHAPTER II - OVERVIEW OF INDUCTIVE METHODS 

1. Introduction 

In the last chapter we defined the two approaches to system analysis: inductive 
and deductive. The deductive approach is Fault Tree Analysis-the main topic of this 
book. This chapter_is devoted to a discussion of inductive methods. 

We have felt it necessary to devote a full chapter to inductive methods for two 
reasons. First of all, these techniques provide a useful and illuminating comparison. to 
Fault Tree Analysis. Second, in many systems (probably the vast majority) for which 
the expenses and refinements of Fault Tree Analysis are not warranted, the inductive 
methods provide a valid and systematic way to identify and correct undesirable or 
hazardous conditions. For this reason, it is especially important for the fault tree 
analyst to be conversant with these alternative procedures. 

In everyday language the inductive techniques provide answers to the generic 
question, "What happens if--?" More formally, the process consists of assuming a 
particular state of existence of a component or components and analyzing to 
determine the effect of that condition on the system. In safety and reliability studies 
the "state of existence" is a fault. This may not necessarily be true in other areas. 

For systems that exhibit any degree of complexity (i.e., for most systems), 
attempts to identify all possible system hazards or all possible component failure 
modes-both singly and in combination-:-become simply impossible. For this reason 
the inductive techniques that we are going to discuss are generally circumscribed by 
considerations of time, money and manpower. Exhaustiveness in the analysis is a 
luxury that we cannot afford. 

2. The "Parts Count" Approach 

Probably the simplest and most conservative {i.e., pessimistic) assumption we can 
make about a system is that any single component failure will produce complete 
system failure. Under this assumption, obtaining an upper bound on the probability 
of system failure is especially straightforward. We simply list all the components 
along with their estimated probabilities of failure. The individual component 
probabilities are then added and this sum provides an upper bound on the probability 
of system failure. This process is represented below: 

Component 

A 

B 

Failure Probability 

f A 

where F, the failure probability for the system, is equal to f A +fB+ ... 

ll-1 
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The failure probabilities can be failure rates, unreliabilities, or unavailabilities 
depending on the particular application (these more specific terms will be covered 
later). 

For a particular system, the Parts Count technique can provide a very pessimistic 
estimate of the system failure probability and the degree of pessimism is generally 
not quantifiable. The "Parts Count" technique is conservative because if critical 
components exist, they often appear redundantly, so that no single failure is actually 
catastrophic for the system. Furthermore, a component can often depart from its 
normal operating mode in several different ways and these failure modes will not, in 
general, all have an equally deleterious effect on system operation. Nevertheless, let 
us see what results the Parts Count approach yields for the simple parallel 
configuration of two amplifiers shown in Figure II-1. 

A 

B 

Figure II-1. A System of Two Amplifiers in Parallel 

Suppose the probability of failure of amplifier A is 1 x 1 o-3 and the probability 
of failure of amplifier Bis 1x10-3,i.e.,fA=1 x 10-3 and fB = 1 x 10-3. Because 
the parallel configuration implies that system failure would occur only if both 
amplifiers fail, and assuming independence of the two amplifiers, the probability of 
system failure is 1 x 10-3 x 1 x 10-3 = 1 x 10-6. By the parts count method, the 
component probabilities are simply summed and hence the "parts count system 
failure probability" is 1 x 10-3 + 1 x 10-3 = 2 x 10-3 which is considerably higher 
than 1 x 10-6. 

The parts count method thus can give results which are conservative by orders of 
magnitude if the system is redundant. When the system does have single failures, then 
the parts count method can give reasonably accurate results. Because all the 
components are treated as single failures (any single component failure causes system 
failure), any dependencies among the failures are covered, i.e., the parts count 
method covers multiple component failures due to a common cause.* Finally, the 
parts count method can also be used in sensitivity studies; if the system or subsystem 
failure probability does not impact or does not contribute using the parts count 
method, then it will not impact or contribute using more refined analyses. 

3. Failure Mode and Effect Analysis (FMEA) 

Inasmuch as the Parts Count approach is very simplistic and can give very 
conservative results, other more detailed techniques have been devised. We first 

*Common cause failures will be discussed in subsequent chapters. 
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discuss Failure Mode and Effect Analysis and return for a closer look at the system 
shown in Figure 11-1. 

We recognize that amplifiers can fail in several ways and our first task is the 
identification of these various failure modes. The two principal ones are "open" and 
"short" but suppose that our analysis has also detected 28 other modes (e.g., weak 
signal, intermittent ground, etc.). A short of any amplifier is one of the more critical 
failure modes inasmuch as it will always cause a failure of the system. We now 
describe a table containing the following information: 

(1) Component designation 
(2) Failure probability (failure rates or unavailabilities are some of the specific 

characteristics used) 
(3) Component failure modes 
(4) Percent of total failures attributable to each mode 
(5) Effects on overall system, classified into various categories (the two simplest 

categories are "critical" and "non-critical"). 
The result for our redundant amplifier system might be as in Table 11-1. 

Table 11-1. Redundant Amplifier Analysis 

1 2 3 4 5 

Failure % Failures Effects 
Component Probability Failure Mode by Mode Critical Non-Critical 

A 1x10-3 
Open 90 x 
Short 5 x 

(5x10-5) 

Other 5 x 
(5x10·51 

B 1x10-3 
Open 90 x 
Short 5 x 

(5x10·51 
Other 5 x 

(5x10·51 

Based on prior experience with this type of amplifier, we estimate that 90% of 
amplifier failures can be attributed to the "open" mode, 5% of them to the "short" 
mode, and the balance of 5% to the "other" modes. We know that whenever either 
amplifier fails shorted, the system fails so we put X's in the "Critical" column for 
these modes; "Critical" thus means that the single failure causes system failure. On 
the other hand, when either amplifier fails open, there is no effect on the system 
from the single failure because of the parallel configuration. What is the criticality of 
the other 28 failure modes? In this example we have been conservative and we are 
considering them all as critical, i.e., the occurrence of any one causes system failure. 
The numbers shown in the Critical column are obtained from multiplying the 
appropriate percentage in Column 4 by 10-3 from Column 2. 

Based on the table, we can now more realistically calculate the probability of 
system failure from single causes, considering now only those failure modes which 
are critical. Adding up the critical column, Column 5, we obtain probability of 
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system failure = 5 x 10 -5 + 5 x 10 -5 + 5 x 10 -5 + 5 x 10-s = 2 x 10-4. This is 
a less conservative result compared to 2 x 10-3 obtained from the parts count 
method where the critkal failure modes were not separated. The difference between 
the two system results can be large, i.e., an order of magnitude or more, as in our 
example, if the critical failure modes are a small percentage of the total failure modes 
(e.g., 10% orless). 

In FMEA (and its variants) we can identify, with reasonable certainty, those 
component . failures having "non-critical" effects, but the number of possible 
component failure modes that can realistically be considered is limited. Conservatism 
dictates that unspecified failure modes and questionable effects be deemed "critical" 
(as in the previous example). The objectives of the analysis are to identify single 
failure modes and to quantify these modes; the analysis needs be no more elaborate 
than is necessary for these objectives. 

4. Failure Mode Effect and Criticality Analysis (FMECA) 

Failure Mode Effect and Criticality Analysis (FMECA), is essentially similar to a 
Failure Mode and Effects Analysis in which the criticality of the failure is analyzed in 
greater detail, and assurances and controls are described for limiting the likelihood of 
such failures. Although FMECA is not an optimal method for detecting hazards, it is 
frequently used in the course of a system safety analysis. The four fundamental 
facets of such an approach are (I) Fault Identification, (2) Potential Effects of the 
Fault, (3) Existing or Projected Compensation and/or Control, and (4) Summary of 
Findings. These four facets generally appear as column headings in an FMECA 
layout. Column 1 identifies the possible hazardous condition. Column 2 explains 
why this condition is a problem. Column 3 describes what has been done to 
compensate for or to control the condition. Finally, Column 4 states whether the 
situation is under control or whether further steps should be taken. 

- . 
At this point the reader should be warned of a most hazardous pitfall that is 

present to a greater or lesser extent in all these inductive techniques: the potential of 
mistaking form for substance. If the proje~t becomes simply a matter of filling out 
forms instead of conducting a proper analysis, the exercise will be completely futile. 
For this reason it. might be better for the analyst not to restrict himself to any 
prepared formalism. Another point: if the system is at all complex, it is foolhardy for 
a single analyst to imagine that he alone can conduct a correct and comprehensive 
survey of all system faults and their effects on the system. These techniques call for a 
well-coordinated team approach. 

5. Preliminary Hazard Analysis (PHA) 

The techniques described so far have been, for the most part, system oriented, i.e., 
the effects are faults on the system operation. The subject of this section Preliminary 
Hazard Analysis (PHA), is a method for assessing the potential hazards posed, to 
plant personnel and other humans, by the system. 

The objectives of a PHA are to identify potential hazardous conditions inherent 
within the system and to determine the significance or criticality of potential 
accidents that might arise. A PHA study sho\lld be conducted as early in the product 
development stage as possible. This will permit the early development of design and 
procedural safety requirements for controlling these hazardous conditions, thus 
eliminating costly design changes later on. 
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The first step in a PHA is to identify potentially hazardous elements or 
components within the system. This process is facilitated by engineering experience, 
the exercise of engineering judgment, and the use of numerous checklists that have 
been developed from time to time. The second step in a PHA is the identification of 
those events that could possibly transform specific hazardous conditions into 
potential accidents. Then the seriousness of these potential accidents is assessed to 
determine whether preventive measures should be taken. 

Various columnar formats have been developed to facilitate the PHA process. 
Perhaps the simplest goes something like this: 

Column (1)-Component/subsystem and hazard modes 
Column (2)-Possible effects 
Column (3)-Compensation and control 
Column (4)-Findings and remarks 

6. Fault Hazard Analysis (FHA) 

Another method, Fault Hazard Analysis (FHA), was developed as a special 
purpose tool for use on projects involving many organizations, one of whom is 
supposed to act as integrator. This technique is especially valuable for detecting 
faults that cross organizational interfaces. It was first used to good purpose in the 
Minuteman III program. 

A typical FHA form uses several columns as follows: 
Column (1 )-Component identification 
Column (2)-Failure probability 
Column (3)-Failure modes (identify all possible modes) 
Column (4)-Percent failures by mode 
Column (5)-Effect of failure (traced up to some relevant interface) 
Column (6)-Identification of upstream component that could command or 

initiate the fault in question 
Column (7)-Factors that could cause secondary failures (including threshold 

levels). This column should contain a listing of those operational or environmental 
variables to which the component is sensitive. 

Column (8)-Remarks 
The FHA is generally like an FMEA or FMECA with the addition of the extra 
information given in Columns 6 and 7. 

As will become apparent in later chapters, Columns 6 and 7 have special 
significance for the fault tree analyst. 

7. Double Failure Matrix (DFM) 

The previous techniques concerned themselves with the effects of single failures. 
An inductive technique that also considers the effects of double failures is the 
Double Failure Matrix (DFM); its use is feasible only for relatively noncompiex 
systems. In order to illustrate its use, we must first discuss various ways in which 
faults may be categorized. A basic categorization which is related to that given in 
MIL STD 882 and modified for these discussions is as shown in Table 11-2. 
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Table 11-2. Fault Categories and Corresponding System Effects 

Fault Category Effect on System 

I Negligible 

II Marginal 

111 Critical 

IV Catastrophic 

It is desirable to give more complete definitions of the system effects: 
(I) Negligible-loss of function that has no effect on system. 
(II) Marginal-this fault will degrade the system to some extent but will not cause 

the system to be unavailable; for example, the loss of one of two redundant pumps, 
either of which can perform a required function. 

(III) Critical-this fault will completely degrade system performance; for exam
ple, the loss of a component which renders a safety system unavailable. 

(IV) Catastrophic-this fault will produce severe consequences which can involve 
injuries or fatalities; for example, catastrophic pressure vessel failure. 

The categorization will depend on the conditions assumed to exist previously, and 
the categorizations can change as the assumed conditions change. For example, if one 
pump is assumed failed, then the failure of a second redundant pump is a critical 
failure. 

The above crude categorizations can be refined in many ways. For example, on 
the NERY A project, six fault categories were defined as shown in Table 11-3. 

Table II-3. Fault Categories for NERVA Project 

Fault Category Effect on System 

I Negligible 

llA A second fault event causes a transition into Category 111 
(Critical) 

llB A second fault event causes a transition into Category IV 
(Catastrophic) 

llC A system safety problem whose effect depends upon the 
situation (e.g., the failure of all backup onsite power sources, 
which is no problem as long as primary, offsite power service 
remains on) 

111 A critical failure and mission must be aborted 

IV A catastrophic failure 
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To illustrate the concept of DFM, consider the simple subsystem shown in Figure 
II-2. In this figure, the block valves can operate only as either fully open or fully 
closed, whereas the control valves are proportional valves which may be partially 
open or partially closed. 

FUEL 
SUPPLY 

BLOCK VALVE A CONTROL VALVE A 

BVA CVA 

io-----t MOTOR 

BVB CVB 

BLOCK VALVE B CONTROL VALVE B 

Figure 11-2. Fuel System Schematic 

Let us define two fault states for this system and categorize them as follows: 

Fault State 

No flow when needed 
Flow cannot be shut off 

Category 

IV 
III 

We now proceed to consider all possible component failures and their fault 
categories. For instance, if Block Valve A (BVA) is failed open we have Category IIA 
because, if Control Valve A (CVA) is also failed open, we cascade into Category III. 
If BV A is failed closed we have Category IIB because, if either BVB or CVB is also 
failed closed, we cascade into Category IV. This type of analysis is conveniently 
systematized in the Double Failure Matrix shown in Table II-4. _ 

For illustrative purposes we have filled in the entire matrix; for a first-order 
analysis we would be concerned only with the Il;lain diagonal terms, to wit, the single 
failure states. Note that if BV A is failed open, there is only one way in which a 
second failure can cascade us into Category III; namely, CVA must be failed open 
too. In contrast, if BV A is failed closed, we can cascade into Category IV if either 
BVB or CVB is also failed closed which is why "Two Ways" is given in Table II-4. 
Similar considerations apply to the single failures of CV A, BVB and CVB and this 
important additional information has been displayed in the principal diagonal cells of 
the matrix. 

Now concentrating only on single failures, we can conduct a hazard category 
count as the following table shows: 

Hazard Category 

IIA 
IIB 

Number of Ways 
of Occurring 

4 
8 
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Table 11-4. Fuel System Double Failure Matrix 

BVA CVA BVB CVB 

Open Closed Open Closed Open Closed Open Closed 

(One Way) IX 111 llB llA 
llA or 

llA llA Open 
llA llB 

BVA x ' (Two Ways) llA or llA or ' 
Closed 118 118 !V ! IV 

118 llB 118 

(One Way) IX llA 
. llA or 

llA 
llA or 

Open 111 118 
llA 118 118 

CVA 

[>( Closed 118 
(Two Ways) 

llA IV 
llA or 

IV llB 
118 118 

llA or 
llA 

llA or (One Way) x 111 118 Open llA 
118 118 llA 

BVB 

tX llA or llA or fTwo Ways) 
118 118 Closed 118 IV 118 IV 118 

llA or 
llA 

llA or 
Ill 118 

(One Way) IX Open llA 
118 118 · 11A 

CVB 

C>< Closed 
llA or 

IV 
llA or 

IV llB JIB 
(Two Ways) 

118 118 118 

How can this information be used? One application would be a description and 
subsequent review of how these hazard categories are . controlled or are insured 
against. Another application would be a comparison between the configuration of 
valves shown in Figure II-2 and an alternative design, for instance the configuration 
shown in Figure 11-3. 

FUEL 
SUPPLY 

BVA CVA 

BVB CVB 

Figure 11-3. Alternative Fuel System Schematic 

MOTOR 

For brevity let us refer to the system of Figure 11-2 as "Configuration I" and that 
of Figure 11-3 as "Configuration II." For Configuration II we naturally define the 
same system fault states as for Configuration I; namely, "no flow when needed" is 
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Category IV and "flow cannot be shut off' is Category Ill. We can now pose the 
following question: "Which configuration is the more desirable with respect to the 
relative number of occurrences of the various hazard categories that we have 
defined?" The appropriate Double Failure Matrix for Configuration II is shown in 
Table 11-5. 

Table 11-5. Alternative Fuel System Double Failure Matrix 

BVA CVA BVB CVB BVX 

Open Closed Open Closed Open Closed Open Closed 0 c 

Open 
llA 

(One Way) 

BVA 
llB 

Closed (One Way) 

Open 
llA 

(One Way) 
CVA 

llB 
Closed (One Way) 

Open 
llA 

(One Way) 
BVB 

llB 
Closed (One Way) 

Open 
llA 

(One Way) 

CVB 
llB 

Closed (One Way) 

Open I 

BVX 

Closed I 

In this case we have filled in only the principal diagonal cells which correspond to 
single failure states. We see that if BVX is failed closed, Configuration II becomes 
essentially identical to Configuration I, and if BVX is failed open, we have a pipe 
connecting the two main flow channels. 

Now, concentrating only on the single failure states, we can conduct another 
hazard category count for Configuration II. The results are shown in the following 
table: 

Hazard Category 

IIA 
, IIB 

Number of Ways 
of Occurring 

4 
4 
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Comparing the two configurations, we see that they are the same from the 
standpoint of cascading into Category III but that Configuration II has approxi
mately one-half as many ways to cascade into Category IV. Therefore, using this 
criterion, Configuration II is the better design. Where differences are not as obvious, 
more formal analysis approaches may also be used for additional information (these 
approaches will be discussed in the later sections). 

8. ·Success Path Models 

We have been and will be discussing failures. Instead of working in "failure space" 
we can equivalently work in "success space." We give a brief example of the 
equivalence and then return to our failure space approach. 

Consider the configuration of two valves in parallel shown in Figure 11-4. This 
system may be analyzed either by a consideration of single failures (the probabilities 
of multiple failures are deemed negligible) or by a consideration of "success paths." 
Let us take up the former first. 

System requirements are as follows: 
(1) The operation involves two phases; 
(2) At least one valve must open for each phase; 
(3) Both valves must be closed at the end of each phase. 
The two relevant component failure modes are: valve fails to open on demand, 

and valve fails to close on demand. For purposes of the analysis, let us assume the 
following numbers: 

P (valve does not open)= 1 x 10-4 for each phase 
P (valve does not close)= 2 x 10-4 for each phase 

where the symbol "P" denotes probability. The valves are assumed to be identical. 

1 

Figure II-4. Redundant Configuration of 2 Valves 

The single failure analysis of the system can be tabulated as in Table 11-6. 
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Table 11-6. Single Failure Analysis for Redundant Valve Configuration 

FAILURE FAILURE PROBABILITY OF 
COMPONENT MODE EFFECT OCCURRENCE (F) 

Valve# 1 Failure to open -

Failure to close System 4 x 10 -4 (either phase) 
failure 

Valve# 2 Failure to open -

Failure to close System 4 x 10 -4 (either phase) 
failure 

The system failure probability = 8 x 10-4. 

Now let us see whether we can duplicate this result by considering the possible 
successes. There are three identi:fiable success paths which we can specify botp. 
verbally and schematically. If R0 denotes "valve i opens successfully," and R(: 
denotes "valve i closes successfully," and P (Path i) denotes the success probability 
associated withthe ith success path, we have the following: 

Path 1: Both valves function properly for both cycles. 

P(Path 1) = (RoRc:)4 

Path 2: One valve fails to open on the first cycle but the other valve functions 
properly for both cycles. 

P(Path 2) = 2(1 - Ro)(RoRc)2 

Path 3: One valve fails to open on the second cycle but the other valve 
functions properly for both cycles. 

P(Path 3) = 2(1 - RoXRoRc)3 
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Numerically, system reliability is given by 

RsYSTEM = (RoRc)4 + 2(1-Ro)(RoRc)2 + 2(1 -Ro)(RoRc)3 

= 0.99880027 + 0.00019988 + 0.00019982 
= 0.99919997,..,, 1 - 8 x 10-4 

which is essentially the same result as before but it can be seen that the failure 
approach is considerably less laborious. 

9. Conclusions 

Although the various inductive methods that we have discussed can be elaborated 
to almost any desirable extent, in actual practice they generally play the role of 
"overview" methods and, on many occasions, this is all that is necessary. For any 
reasonably complex system, the identification of all component failure modes will be 
a laborious, and probably unnecessary, process. Worse yet, the identification of all 
possible combinations of component failure modes will be a truly Herculean taik. In 
general, it is a waste of time to bother with failure effects (single or in combination) 
that have little or no effect on system operation or whose probabilities of occurrence 
are entirely negligible. Thus, in all of these analyses the consequences of a certain 
event must be balanced against its likelihood of occurrence. 



CHAPTER III - FAULT TREE ANALYSIS -
BASIC CONCEPTS 

1. Orientation 

In Chapter I we introduced two approaches to system analysis: inductive and 
deductive. Chapter II described the major inductive methods. Chapter III presents 
the basic concepts and definitions necessary for an understanding of the deductive 
Fault Tree Analysis approach, which is the subject of the remainder of this text. 

2. Failure vs. Success Models 

The operation of a system can be considered from two standpoints: we can 
enumerate various ways for system success, or we can enumerate various ways for 
system failure. We have already seen an example of this in Chapter II, section 8. 
Figure III-1 depicts the Failure/Success space concept. 

COMPLETE 
FAILURE 

MINIMUM 
ACCEPTABLE 
SUCCESS 

MAXIMUM 
TOLERABLE 
FAILURE 

SUCCESS SPACE 

MINIMUM 
ANTICIPATED 
SUCCESS 

MAXIMUM 
ANTICIPATED 
FAILURE 

MAXIMUM 
ANTICIPATED 
SUCCESS 

MINIMUM 
ANTICIPATED 
FAILURE 

FAILURE SPACE 

Figure 111-1. The Failure Space-Success Space Concept 

TOTAL 
SUCCESS 

I 

It is interesting to note that certain identifiable points in success space coincide 
with certain analogous points in failure space. Thus, for instance, "maximum 
anticipated success" in success space can be thought of as coinciding with "minimum 
anticipated failure" in failure space. Although our first inclination might be to select 
the optimistic view of our system-success-rather than the pessimistic one-failure-, 
we shall see that this is not necessarily the most advantageous one. 

From an analytical standpoint, there are several overriding advantages that accrue 
to the failure space standpoint. First of all, it is generally easier to attain concurrence 
on what constitutes failure than it is to agree on what constitutes success. We may 
desire an airplane that flies high, travels far without refueling, moves fast and carries 
a big load. When the final version of this aircraft rolls off the production line, some 
of these features may have been compromised in the course of making the usual 

111-1 
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trade-offs. Whether the vehicle is a "success" or not may very well be a matter of 
controversy. On the other hand, if the airplane crashes in flames, there will be little 
argument that this event constitutes system failure. 

"Success" tends to be associated with the efficiency of a system, the amount of 
output, the degree of usefulness, and production and marketing features. These 
characteristics are describable by continuous variables which are not easily modeled 
in terms of simple discrete events, such as "valve does not open" which characterizes 
the failure space (partial failures, i.e., a valve opens partially, are also difficult events 
to model because of their continuous possibilities). Thus, the event "failure," in 
particular, "complete failure," is generally easy to define, whereas the event, 
"success," may be much more difficult to tie down. This fact makes the use of 
failure space in analysis much more valuable than the use of success space. 

Another point in favor of the use of failure space is that, although theoretically 
the number of ways in which a system can fail and the number of ways in which a 
system can ·succeed are both infinite, from a practical standpoint there are generally 
more ways to success than there are to failure. Thus, purely from a practical point of 
view, the size of the population in failure space is less than the size of the population 
in success space. In analysis, therefore, it is generally more efficient to make 
calculations on the basis of failure space. 

We have been discussing why it is more advantageous for the analyst to work in 
failure space as opposed to success space. Actually all that is necessary is to 
demonstrate that consideration of failure space allows the analyst to get his job done, 
and this, indeed, has been shown many times in the past. The drawing of tree 
diagrams for a complex system is an expensive and time-consuming operation. When 
failures are considered, it may be necessary to construct only one or two system 
models such as fault trees, which cover all the significant failure modes. When 
successes are considered, it may become necessary to construct several hundred 
system models covering various definitions of success. A good example of the 
parsimony of events characteristic of failure space is the Minuteman missile analysis. 
Only three fault trees were drawn corresponding to the three undesired events: 
inadvertent programmed launch, accidental motor ignition, and fault launch. It was 
found that careful analysis of just these three events involved a complete overview of 
the whole complex system. 

To help fix our ideas, it may be helpful to subject some everyday occurrence (a 
man driving to his office) to analysis in failure space (see Figure III-2). 

The "mission" to which Figure 111-2 refers is the transport of Mr. X by 
automobile from his home to his office. The desired arrival time is 8:30, but the 
mission will be considered marginally successful if Mr. X arrives at his office by 9 :00. 
Below "minimum anticipated failure" lie a number of possible incidents that 
constitute minor annoyances, but which do not prevent Mr. X from arriving at the 
desired time. Arrival at 9:00 is labeled "maximum anticipated failure." Between this 
point and "minimum anticipated failure" lie a number of occurrences that cause Mr. 
X's arrival time to be delayed half an hour or less. It is perhaps reasonable to let the 
point "maximum tolerable failure" coincide with some accident that causes some 
damage to the car and considerable delay but no personal injury. Above this point lie 
incidents of increasing seriousness terminating in the ultimate catastrophe of death. 
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COMPLETE FAILURE ACCIDENT 
(DEATH OR CRIPPLING INJURY) 

MAXIMUM TOLERABLE FAILURE .._._ACCIDENT 

TOTAL SUCCESS--~ 

(CAR DAMAGED; NO PERSONAL INJURY\ 

MINOR ACCIDENT 

FLAT TIRE 

WINDSHIELD WIPERS INOPERATIVE 
(HEAVY RAIN\ 

TRAFFIC JAM 

WINDSHIELD WIPERS INOPERATIVE 
(LIGHT RAIN) 

TRAFFIC CONGESTION 

LOST HUBCAP 

WINDSHIELD WIPERS INOPERATIVE 
(CLEAR WEATHER! 

ARRIVES AT 8:30 
(NO DIFFICULTIES WHATSOEVER) 

Figure III-2. Use of Failure Space in Transport Example 

Note that an event such as "windshield wipers inoperative" will be positioned along 
the line according to the nature of the environment at that time. 

A chart such as Figure 111-2 might also be used to pinpoint events in, for example, 
the production of a commercial airliner. The point "minimum anticipated failure" 
would correspond to the attainment of all specifications and points below that would 
indicate that some of the specifications have been more than met. The point 
"maximum anticipated failure" would correspond to some trade-off point at which 
all specifications had not been met but the discrepancies were not serious enough to 
degrade the saleability of the airplane in a material way. The point "maximum 
tolerable failure" corresponds to the survival point of the company building the 
aircraft. Above that point, only intolerable catastrophes occur. Generally speaking, 
Fault Tree Analysis addresses itself to the identification and assessment of just such 
catastrophic occurrences and complete failures. 

3. The Undesired Event Concept 

Fault tree analysis is a deductive failure analysis which focuses on one particular 
undesired event and which provides a method for determining causes of this event. 
The undesired event constitutes the top event in a fault tree diagram constructed for 
the system, and generally consists of a complete, or catastrophic failure as mentioned 
above. Careful choice of the top event is important to the success of the analysis. If it 
is too general, the analysis become unmanageable; if it is too specific, the analysis 
does not provide a sufficiently broad view of the system. Fault tree analysis can be 
an expensive and time-consuming exercise and its cost must be measured against the 
cost associated with the occurrence of the relevant undesired event. 
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We now give some examples of top events that might be suitable for beginning a 
fault tree analysis: 

(a) Catastrophic failure of a submarine while the submarine is submerged. In the 
analysis we might separate "failure under hostile attack" from "failure under routine 
operation." 

(b) Crash of commercial airliner with loss of several hundred lives. 
(c) No spray when demanded from the containment spray injection system in a 

nuclear reactor. 
(d) Premature full-scale yield of a nuclear warhead. 
(e) Loss of spacecraft and astronauts in the space exploration program. 
(f) Automobile does not start when ignition key is turned. 

4. Summary 

In this chapter we have discussed the "failure space" and "undesired event" 
concepts which underlie the fault tree approach. In the next chapter we will define 
Fault Tree Analysis and proceed to a careful definition of the gates and fault events 
which constitute the building blocks of a fault tree. 



CHAPTER IV - THE BASIC ELEMENTS OF A 
FAULT TREE 

1 . The Fault Tree Model 

A fault tree analysis can be simply described as an analytical technique, whereby 
an undesired state of the system is specified (usually a state that is critical from a 
safety standpoint), and the system is then analyzed in the context of its environment 
and operation to find all credible ways in which the undesired event can occur. The 
fault tree itself is a graphic model of the various parallel and sequential combinations 
of faults that will result in the occurrence of the predefined undesired event. The 
faults can be events that are associated with component hardware failures, human 
errors, or any other pertinent events which can lead to the undesired event. A fault 
tree thus depicts the logical interrelationships of basic events that lead to the 
undesired event-which is the top event of the fault tree. 

It is important to understand that a fault tree is not a model of all possible system 
failures or all possible causes for system failure. A fault tree is tailored to its top 
event which corresponds to some particular system failure mode, and the fault tree 
thus includes only those faults that contribute to this top event. Moreover, these 
faults are not exhaustive-they cover only the most credible faults as assessed by the 
analyst. 

It is also important to point out that a fault tree is not in itself a quantitative 
model. It is a qualitative model that can be evaluated quantitatively and often is. This 
qualitative aspect, of course, is true of virtually all varieties of system models. The 
fact that a fault tree is a particularly convenient model to quantify does not change 
the qualitative nature of the model itself. 

A fault tree is a complex of entities known as "gates" which serve to permit or 
inhibit the passage of fault logic up the tree. The gates show the relationships of 
events needed for the occurrence of a "higher" event. The "higher" event is the 
"output" of the gate; the "lower" events are the "inputs" to the gate. The gate 
symbol denotes the type of relationship of the input events required for the output 
event. Thus, gates are somewhat analogous to switches in an electrical circuit or two 
valves in a piping layout. Figure IV-1 shows a typical fault tree. 

2. Symbology-The Building Blocks of the Fault Tree 

A typical fault tree is composed of a number of symbols which are described in 
detail in the remaining sections of this chapter and are summarized for the reader's 
convenience in Table IV-1. 

PRIMARY EVENTS 

The primary events of a fault tree are those events, which, for one reason or 
another, have not been further developed. These are the events for which 
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Figure IV-1. Typical Fault Tree 

probabilities will have to be provided if the fault tree is to be used for computing the 
probability of the top event. There are four types of primary events. These are: 

The Basic Event 

0 
The circle describes a basic initiating fault event that requires no further 

development. In other words, the ci_rcle signifies that the appropriate limit of 
resolution has been reached. 
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0 
0 

<> 
0 

0 

Table IV-1. Fault Tree Symbols 

PRIMARY EVENT SYMBOLS 

BASIC EVENT - A basic initiating fault requiring no further develop
ment 

CONDITIONING EVENT - Specific conditions or restrictions that 
apply to any logic gate (used primarily with PRIOR ITV AND and 
INHIBIT gates} 

UNDEVELOPED EVENT - An event which is not further developed 
either because it is of insufficient consequence or because infor
mation is unavailable 

EXTERNAL EVENT - An event which is normally expected to occur 

INTERMEDIATE EVENT SYMBOLS 

INTERMEDIATE EVENT - A fault event that occurs because of one 
or more antecedent causes acting through logic gates 

GATE SYMBOLS 

AND - Output fault occurs if all of the input faults occur 

OR - Output fault occurs if at least one of the input faults occurs 

EXCLUSIVE OR - Output fault occurs if exactly one of the input 
faults occurs 

PRIORITY AND - Output fault occurs if all of the input faults occur 
in a specific sequence (the sequence is represented by a CONDI
TION ING EVENT drawn to the right of the gate} 

INHIBIT - Output fault occurs if the (single} input fault occurs in the 
presence of an enabling condition (the enabling condition is 
represented by a CONDITIONING EVENT drawn to the right of 
the gate} 

TRANSFER SYMBOLS 

TRANSFER IN - Indicates that the tree is developed further at the 
occurrence of the corresponding TRANSFER OUT (e.g., on 
another page) 

TRANSFER OUT - Indicates that this portion of the tree must be 
attached at the corresponding TRANSFER IN 

IV-3 
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The Undeveloped Event 

The diamond describes a specific fault event that is not further developed, either 
because the event is of insufficient consequence or because information relevant to 
the event is unavailable. 

The Conditioning Event 

-0 
The ellipse is used to record any conditions or restrictions that apply to any logic 

gate. It is used primarily with the INHIBIT and PRIORITY AND-gates. 

The External Event 

0 
The house is used to signify an event that is normally expected to occur: e.g., a 

phase change in a dynamic system. Thus, the house symbol displays events that are 
not, of themselves, faults. 

INTERMEDIATE EVENTS 

0 
An intermediate event is a fault event which occurs because of one or more 
antecedent causes acting through logic gates. All intermediate events are symbolized 
by rectangles. 

GATES 

There are two basic types of fault tree gates: the OR-gate and the AND-gate. All 
other gates are really special cases of these two basic types. With one exception, gates 
are symbolized by a shield with a flat or curved base. 

The OR-Gate 

The OR-gate is used to show that the output event occurs only if one or more of 
the input events occur. There may be any number of input events to an OR-gate. 
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Figure IV-2 shows a typical two-input OR-gate with input events A and Band output 
event Q. Event Q occurs if A occurs, B occurs, or both A and B occur. 

OUTPUT Cl 

INPUT A INPUT B 

Figure IV-2. The OR-Gate 

It is important to understand that causality never passes through an OR-gate. That 
is, for an OR-gate, the input faults are never the causes of the output fault. Inputs to 
an OR-gate are identical to the output but are more specifically defined as to cause. 
Figure IV-3 helps to clarify this point. 

VALVE IS 
CLOSED DUE 

TO HARDWARE 
FAILURE 

VALVE IS 
FAILED 
CLOSED 

VALVE IS 
CLOSED DUE 
TO HUMAN 

ERROR 

VALVE IS 
CLOSED DUE 
TO TESTING 

Figure IV-3. Specific Example of the OR-Gate 

Note that the subevents in Figure N-3 can be further developed; for instance, see 
Figure N4. 
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TEST 

VALVE IS 
CLOSEO OUE 
TO HUMAN 

ERROR 
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VALVE IS 
INAOVERTENTL Y 
CLOSED OURING 
MAINTENANCE 

Figure IV-4. OR-Gate for Human Error 

However, the event 

VALVE IS 
INADVERTENTLY 
CLOSED DURING 
MAINTENANCE 

is still a restatement of the output event of the first OR-gate 

with regard to a specific cause. 

VALVE IS 
FAILED 
CLOSED 

One way to detect improperly drawn fault trees is to look for cases in which 
causality passes through an OR-gate. This is an indication of a missing AND-gate (see 
following definition) and is a sign of the use of improper logic in the conduct of the 
analysis. 

The AND-Gate 

0 
The AND-gate is used to show that the output fault occurs only if all the input 

faults occur. There may be any number of input faults to an AND-gate. Figure IV-5 
shows a typical two-input AND-gate with input events A and B, and output event Q. 
Event Q occurs only if events A and B both occur. 
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OUTPUT Q 

INPUT A INPUT B 

Figure IV-5. The AND-Gate 

In contrast to the OR-gate the AND-gate does specify a causal relationship 
between the inputs and the output, i.e., the input faults collectively represent the 
cause of the output fault. The AND-gate implies nothing whatsoever about the 
antecedents of the input faults. An example of an AND-gate is shown in Figure IV-6. 
A failure of both diesel generators and of the battery will result in a failure of all 
onsite DC power. 

DIESEL 
GENERATOR 1 

IS FAILED 

All ONSITE 
DC POWER IS 

FAILED 

DIESEL 
GENERATOR 2 

IS FAILED 

BATTERY 
IS FAILED 

Figure IV-6. Specific Example of an AND-Gate 

When describing the events input to an AND-gate, any dependencies must be 
incorporated in the event definitions if the dependencies affect the system logic. 
Dependencies generally exist when the failure "changes" the system. For example, 
when the first failure occurs (e.g., input A of Figure IV-5), the system may 
automatically switch in a standby unit. The second failure, input B of Figure IV-5, is 
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now analyzed with the standby unit assumed to be in place. In this case, input B of 
Figure IV:S woul_d be more precisely defined as "input B given the occurrence of A." 

The variant of the AND-gate shown in Figure IV-7 explicitly shows the 
dependencies and is useful for those situations when the occurrence of one of the 
faults alters the operating modes and/or stress levels in the system in a manner 
affecting the occurrence mechanism of the other fault. 

A OCCURS 
8 OCCURS GIVEN 
THE OCCURENCE 

OF A 

0 OCCURS 

8 OCCURS 
A OCCURS GIVEN 
THE OCCURENCE 

OF 8 

Figure IV-7. AND-Gate Relationship with Dependency Explicitly Shown 

That is, the subtree describing the mechanisms or antecedent causes of the event 

I 

A OCCURS 

I 

will be different from the subtree describing the mechanisms for the event. 

I 

A OCCURS 
GIVEN THE 

OCCURRENCE 
OF B 

I 

For multiple inputs to an AND-gate with dependencies affecting system logic among 
the input events, the "givens" must incorporate all preceding events. 

The INHIBIT-Gate 
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The INHIBIT-gate, represented by the hexagon, is a special case of the AND-gate. 
The output is caused by a single input, but some qualifying condition must be 
satisfied before the input can produce the output. The condition that must exist is 
the conditional input. A description of this conditional input is spelled out within an 
ellipse drawn to the right of the gate. Figure IV-8 shows a typical INHIBIT-gate with 
input A, conditional input B and output Q. Event Q occurs only if input A occurs 
under the condition specified by input B. 

OUTPUT U 

INPUT A 

Figure IV-8. The INHIBIT-Gate 

To clarify this concept, two examples are given below and are illustrated in Figure 
IV-9. 

(a) Many chemical reactions go to completion only in the presence of a catalyst. 
The catalyst does not participate in the reaction, but its presence is necessary. 

(b) If a frozen gasoline line constitutes an event of interest, such an event can 
occur only when the temperature T is less than T critical• the temperature at which 
the gasoline freezes. In this case the output event would be "frozen gasoline line," 
the input event would be "existence of low temperature," and the conditionai input 
would be "T < Tcritical·" 

CHEMICAL 
REACTION 
GOES TO 

COMPLETION 

ALL 
REAGENTS 
PRESENT 

CATALYST 
PRESENT 

FROZEN 
GASOLINE 

LINE 

EXISTENCE 
OF LOW 

TEMPERATURE T 

Figure IV-9. Examples of the INHIBIT-Gate 
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Occasionally, especially in the investigation of secondary failures (see Chapter V), 
another type of INHIBIT-gate depicted in Figure IV-10 is used. 

OUTPUT Q 

CONDITION A 

Figure IV-10. An Alternative Type of INHIBIT-Gate 

In Figure IV-10, condition A is the necessary, but not always sufficient, single 
cause of output Q; i.e., for Q to occur we must have A, but just because A occurs it 
does not mean that Q follows inevitably. The portion of time Q occurs when A 
occurs is given in the conditional input ellipse. 

The gates we have described above are the ones most commonly used and are now 
standard in the field of fault tree analysis. However, a few other special purpose gates 
are sometimes encountered . 

. The EXCLUSIVE OR-Gate 

The EXCLUSIVE OR-gate is a special case of the OR-gate in which the output 
event occurs only if exactly one of the input events occur. Figure IV-11 shows two 
alternative ways of depicting a typical EXCLUSIVE OR-gate with two inputs. 

0 

A 

A 
BEFORE OR 

A 

Figure IV-11. The EXCLUSIVE OR-Gate 

0 



BASIC ELEMENTS OF A FAULT TREE IV-11 

The exclusive OR differs from the usual or inclusive OR in that the situation 
where both input events occur is precluded. Thus, the output event Q occurs if A 
occurs or B occurs, but not if both A and B occur. As we will see later in Chapter 
VII, the quantitative difference between the inclusive and exclusive OR-gates is 
generally so insignificant that the distinction is not usually necessary. In those special 
instances where the distinction is significant, it can be accounted for in the 
quantification phase. 

The PRIORITY AND-Gate 

The PRIORITY AND-gate is a special case of the AND-gate in which the output 
event occurs only if all input events occur in a specified ordered sequence. The 
sequence is usually shown inside an ellipse drawn to the right of the gate. In practice, 
the necessity of having a specific sequence is not usually encountered. Figure IV-12 
shows two alternative ways of depicting a typical PRIORITY AND-gate. 

Q 

A 

A 
BEFORE 

B 

Q 

OR 

A 

Figure IV-12. The PRIORITY AND-Gate 

In Figure IV-11, the output event Q occurs only if both input events A and B 
occur with A occurring before B. 

TRANSFER SYMBOLS 

TRAN5"• '" L D TRANSFER OUT 

The triangles are introduced as transfer symbols and are used as a matter of 
convenience to avoid extensive duplication in a fault tree. A line from the apex of 
the triangle denotes a "transfer in," and a line from the side, a "transfer out." A 
"transfer in" attached to a gate will link to its corresponding "transfer out." This 
"transfer out," perhaps on another sheet of paper, will contain a further portion of 
the tree describing input to the gate. 



CHAPTER V - FAULT TREE CONSTRUCTION FUNDAMENTALS 

In Chapter IV we defined and discussed the symbols which are the building 
blocks of a fault tree. In this chapter we cover the concepts which are needed for the 
proper selection and definition of the fault tree events, and thus, for the construction 
of the fault tree. 

1. Faults vs. Failures 

We first make a distinction between the rather specific word "failure" and the 
more general word "fault." Consider a relay. If the relay closes properly when a 
voltage is impressed across its terminals, we call this a relay "success." If, however, 
the relay fails to close under these circumstances, we call this a relay "failure." 
Another possibility is that the relay closes at the wrong time due to the improper 
functioning of some upstream component. This is clearly not a relay failure; 
however, untimely relay operation may well cause the entire circuit to enter an 
unsatisfactory state. We shall call an occurrence like this a "fault" so that, generally 
speaking, all failures are faults but not all faults are failures. Failures are basic 
abnormal occurrences, whereas faults are "higher order" events. 

Consider next a bridge that is supposed to open occasionally to allow the passage 
of marine traffic. Suddenly, without warning, one leaf of the bridge flips up a few 
feet. This is not a bridge failure because it is supposed to open on command and it 
does. However, the event is a fault because the bridge mechanism responded to an 
untimely command issued by the bridge attendant. Thus, the attendant is part of this 
"system," and it was his untimely action that caused the fault. 

In one of the earliest battles of the American Civil War, General Beauregard sent a 
message to one of his officers via mounted messenger #1. Some time later, the overall 
situation having changed, he sent out an amended message via mounted messenger 
#2. Still later, a further amended message was sent out via mounted messenger #3. 
All messengers arrived but not in the proper sequence. No failure occurred, but such 
an event could well have a deleterious effect on the progress of the battle-and, in 
this case, it did. Again, we have a fault event but not a failure event. 

The proper definition of a fault requires a specification of not only what the 
undesirable component state is but also when it occurs. These ''what" and ''when" 
specifications should be part of the event descriptions which are entered into the 
fault tree. 

2. Fault Occurrence vs. Fault Existence 

In our discussion of the several varieties of fault tree gates, we have spoken of the 
occurrence of one or more of a set of faults or the occurrence of all of a set of faults. 
A fault may be repairable or not, depending on the nature of the system. Under 
conditions of no repair, a fault that occurs will continue to exist. In a repairable 
system a distinction must be made between the occurrence of a fault and its 
existence. Actually this distinction is of importance only in fault tree quantification 
(to be discussed in a later chapter). From the standpoint of constructing a fault tree 
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we need concern ourselves only with the phenomenon of occurrence. This is 
tantamount to considering all systems as nonrepairable. 

3. Passive vs. Active Components 

ln most cases it is convenient to separate components into two types: passive and 
active (also called quasi-static and dynamic). A passive component contributes in a 
more or less static manner to the functioning of the system. Such a component may 
act as a transmitter of energy from place to place (e.g., a wire or bus-bar carrying 
current or a steam line transmitting heat energy), or it may act as a transmitter of 
loads (e.g., a structural member). To assess the operation of a passive component, we 
perform such tests as stress analysis, heat transfer studies, etc. Further examples of 
passive components are: pipes, bearings, journals, welds, and so forth. 

An active component contributes in a more dynamic manner to the functioning of 
its parent system by modifying system behavior in some way. A valve which opens 
and closes, for example, modifies the system's fluid flow, and a switch has a similar 
effect on the current in an electrical circuit. To assess the operation of an active 
component, we perform parametric studies of operating characteristics and studies of 
functional interrelationships. Examples of active components are: relays, resistors, 
pumps, and so forth. 

A passive component can be considered as the transmitter of a "signal." The 
physical nature of this "signal" may exhibit considerable variety; for example, it may 
be a current or force. A passive component may also be thought of as the 
"mechanism" (e.g., a wire) whereby the output of one active component becomes the 
input to a second active component. The failure of a passive component will result in 
the non-transmission (or, perhaps, partial transmission) of its "signal." 

In contrast, an active component originates or modifies a signal. Generally, such a 
component requires an input signal or trigger for its output signal. In such cases the 
active component acts as a "transfer function," a term widely used in electrical and 
mathematical studies. If an active component falls, there may be no output signal or 
there may be an incorrect output signal. 

As an example, consider a postman (passive component) who transmits a signal 
(letter) from one active component (sender) to another (receiver). The receiver will 
then respond in some way (provide an output) as a result of the message (input) that 
he has received. 

From a numerical reliability standpoint, the important difference between failures 
of active components and failures of passive components is the difference in failure 
rate values. As shown in WASH-1400 [39] , active component failures in general have 
failure rates above 1 x 10 -4 per demand (or above 3 x 10 -7 per hour) and passive 
component failures in general have failure rates below these values. In fact, the 
difference in reliability between the two types of components is, quite commonly, 
two to three orders of magnitude. 

In the above, the definitions of active components and passive components apply 
to the main function performed by the component; and failures of the active 
component (or failures of the passive component) apply to the failure of that main 
function. (We could have, for example, "passive" failure modes of active compo
nents, e.g., valve rupture, if we attempted to classify specific failure modes according 
to the "active" or "passive" definition.) 
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4. Component Fault Categories: Primary, Secondary, and Command 

It is also useful for the fault tree analyst to classify faults into three categories: 
primary, secondary and command. A primary fault is any fault of a component that 
occurs in an environment for which the component is qualified; e.g., a pressure tank, 
designed to withstand pressures up to and including a pressure Po, ruptures at some 
pressure p,;;; Po because of a defective weld. 

A secondary fault is any fault of a component that occurs in an environment for 
which it has not been qualified. In other words, the component fails in a situation 
which exceeds the conditions for which it was designed; e.g., a pressure tank, 
designed to withstand pressure up to and including a pressure p0 , ruptures under a 
pressure p > Po. 

Because primary and secondary faults are generally component failures, they are 
usually called primary and secondary failures. A command fault in contrast, involves 
the proper operation of a component but at the wrong time or in the wrong place; 
e.g., an arming device in a warhead train closes too soon because of a premature or 
otherwise erroneous signal origination from some upstream device. 

5. Failure Mechanism, Failure Mode, and Failure Effect 

The definitions of system, subsystem, and component are relative, and depend 
upon the context of the analysis. We may say that a "system" is the overall structure 
being considered, which in turn consists of subordinate structures called "sub
systems," which in turn are made up of basic building blocks called "components." 

For example, in a pressurized water reactor (PWR), the Spray Injection System 
may consist of two redundant refueling spray subsystems which deliver water from 
the refueling water storage tank to the containment. Each of these subsystems in 
turn may consist of arrangements of valves, pumps, etc., which are the components. 
In a particular analysis, definitions of system, subsystem, and component are 
generally made for convenience in order to give hierarchy and boundaries to the 
problem. 

In constructing a fault tree, the basic concepts of failure effects, failure modes, 
and failure mechanisms are important in determining the proper interrelationships 
among the events. When we speak of failure effects, we are concerned about why the 
particular failure is of interest, i.e., what are its effects (if any) on the system. When 
we detail the failure modes, we are specifying exactly what aspects of component 
failure are of concern. When we list failure mechanisms, we are considering how a 
particular failure mode can occur and also, perhaps, what are the corresponding 
likelihoods of occurrence. Thus, failure mechanisms produce failure modes which, in 
turn, have certain effects on system operation. 

To illustrate these concepts consider a system that controls the flow of fuel to an 
engine. See Table V-1. The subsystem of interest consists of a valve and a valve 
actuator. We can classify various events which can occur as viewed from the system, 
subsystem, or component level. Some of the events are given in the left-hand column 
of the table below. For example, "valve unable to open" is a mechanism of 
subsystem failure, a mode of valve failure, and an effect of actuator failure. 
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Table V-1. Fuel Flow System Failure Analysis 

Description of Event System Subsystem Valve Actuator 

No flow from 
subsystem Mechanism Mode Effect 
when required 

Valve unable Mechanism Mode Effect 
to open 

Binding of Mechanism Mode 
actuator stem 

Corrosion of Mechanism 
actuator stem 

To make the mechanism-mode-effect distinction clearer, consider a simple system 
of a doorbell and its associated circuitry from the standpoints of the systems man, the 
subsystems man, and the component designer. The system is shown schematically in 
Figure V-1. 

- BATTERY 

-r- PUSHBUTTON 

I 

• SWITCH 

BELL 

SOLENOID 

Figure V-1. Doorbell and Associated Circuitry 

From the viewpoint of the systems man, the system failure modes are: 
(1) Doorbell fails to ring when thumb pushes button. 
(2) Doorbell inadvertently rings when button is not pushed. 
(3) Doorbell fails to stop ringing when push button is released. 
If the systems man now sat down and made a list of the failure mechanisms 

causing his failure modes, he would generate a list that corresponded to the failure 
modes of the subystems man who actually procures the switch, bell-solenoid unit, 
battery, and wires. These are: 

(1) Switch - (a) fails to make contact (including an inadvertent open) 
(b) fails to break contact 
( c) inadvertently closes 

(2) Bell-solenoid unit-fails to ring when power is applied (includes failure to 
continue ringing with power applied) 

(3) Battery-low voltage condition 
( 4) Wire-open circuit or short circuit. 
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It is emphasized again that this last list constitutes failure mechanisms for the 
systems man and failure modes for the subsystems man. It is also a list of failure 
effects from the standpoint of the component designer. Let us try to imagine what 
sort of list the component designer would make. See Table V-2. 

Table V-2. Doorbell Failure Analysis 

Failure Effect Failure Mode Mechanism 

Switch fails to • Contacts broken • Mechanical shock 
make contact 

• High contact • Corrosion 
resistance 

Bell-solenoid unit • Clapper broken or • Shock 
fails to ring not attached 

• Corrosion 

• Clapper stuck 

• Open circuit 

• Solenoid link in solenoid 
broken or stuck 

• Short circuit 

• Insufficient magneto- in solenoid 
motive force 

Low voltage • No electrolyte • Leak in casing 
from battery 

• Positive pole • Shock 
broken 

From the table we see that the system failure modes constitute the various types 
of system failure. In fault tree terminology these are the "top events" that the 
system analyst can consider. He will select one of these top events and investigate the 
immediate causes for its occurrence. These immediate causes will be the immediate 
failure mechanisms for the particular system failure chosen, and will constitute 
failures of certain subsystems. These latter failures will be failure modes for the 
subsystems man and will make up the second level of our fault tree. We proceed, step 
by step, in this "immediate cause" manner until we reach the component failures. 
These components are the basic causes defined by the limit of resolution of our tree. 

If we consider things from the component designer's point of view, all of the 
subsystem and system failures higher in the tree represent failure effects-that is, 
they represent the results of particular component failures. The component 
designer's failure modes would be the component failures themselves. If the 
component designer were to construct a fault tree, any one of these component 
failures could constitute a suitable top event. In other words, the designer's "system" 
is the component itself. The lower levels of the designer's fault tree would consist of 
the mechanisms or causes for the component failure. These would include quality 
control effects, environmental effects, etc., and in many cases would be beneath the 
limit of resolution of the system man's fault tree. 
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6. The "Immediate Cause" Concept 

Now getting back to the system analyst, he first, as we have seen, defines his 
system (i.e., determines, its boundary) and then selects a particular system failure 
mode for further analysis. The latter constitutes the top event of the system analyst's 
fault tree. He next determines the immediate, necessary, and sufficient causes for the 
occurrence of this top event. It should be noted that these are not the basic causes of 
the event but the immediate causes or immediate mechanisms for the event. This is 
an extremely important point which will be clarified and illustrated in later 
examples. 

The immediate, necessary, and sufficient causes of the top event are now treated 
as sub-top events and we proceed to determine their immediate, necessary, and 
sufficient causes. In so doing, we place ourselves in the position of the subsystems 
man for whom our failure mechanisms are the failure modes; that is, our sub-top 
events correspond to the top events in the subsystem man's fault tree. 

In this way we proceed down the tree continually transferring our point of view 
from mechanism to mode, and continually approaching finer resolution in our 
mechanisms and modes, until ultimately, we reach the limit of resolution of our tree. 
This limit consists of basic component failures of one sort or another. Our tree is 
now complete. 

As an example of the application of the "immediate cause" concept, consider the 
simple system in Figure V-2. 

B 

A D E 

c 

Figure V-2. System Illustrating "Immediate Cause" Concept 

This system is supposed to operate in the following way: a signal to A triggers an 
output from A which provides inputs to B and C. B and C then pass a signal to D 
which finally passes a signal to E. A, B, C and D are dynamic subsystems. 
Furthermore, subsystem D needs an input signal from either B or C or both to trigger 
its output to E. We thus have redundancy in this portion of our system. 

The system of Figure V-2 can be interpreted quite generally. For example, it 
' could represent an electrical system in which the subsystems are analog modules 

(e.g., comparators, amplifiers, etc.); it could be a piping system in which A, B, C and 
D are valves; or it could represent a portion of the "chain of command" in a 
corporation. 
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Let us choose for our top event the possible outcome "no signal to E," and let us 
agree that in our analysis we shall neglect the transmitting devices (passive 
components) which pass the signals from one subsystem to another. This is 
tantamount to assigning a zero failure probability to the wires, pipes, or command 
links. 

We now proceed to a step-by-step analysis of the top event. The immediate cause 
of the event, "no signal to E," is "no output from D." The analyst should strongly 
resist the temptation to list the event, "no input to D" as the immediate cause of "no 
signal to E." In the determination of immediate causes, one step should be taken at a 
time. The "immediate cause" concept is sometimes called the "Think Small" Rule 
because of the methodical, one-step-at-a-time approach. 

We have now identified the sub-top event, "no output from D," and it is next 
necessary to determine its immediate cause or causes. There are two possibilities: 

(1) "There is an input to D but no output from D." 
(2) "There is no input to D." 

Therefore, om sub-top event, "no output from D," can arise from the union of the 
two events, 1 or 2. The reader should note that if we had taken more than one step 
and had identified (improperly) the cause of "no input to D," then event 1 above 
would have been missed. In fact, the motivation for considering immediate causes is 
now clear: it provides assurance that no fault event in the sequence is overlooked. 

We are now ready to seek out the immediate causes for our new mode failures, 
events 1 and 2. If our limit of resolution is the subsystem level, then event 1 (which 
can be rephrased, "D fails to perform its proper function due to some fault internal 
to D") is not analyzed further and constitutes a basic input to our tree. With respect 
to event 2, its immediate, necessary and sufficient cause is "no output from B and no 
output from C," which appears as an intersection of two events, i.e., 

where 
1=3 and 4 

3 = "no output from B," and 
4 = "no output from C." 

As a matter of terminology, it is convenient to refer to events as "faults" if they 
are analyzed further (e.g., event 2). However, an event such as 1 which represents a 
basic tree input and is not analyzed further is referred to as a "failure." This 
terminology is also fairly consistent with the mechanistic definitions of "fault" and 
"failure" given previously. 

We must now continue the analysis by focusing our attention on events 3 and 4. 
As far as 3 is concerned, we have 

3 = 5 or 6 
where 

5 = "input to B but no output from B," and 
6 = "no input to B." ... 

We readily identify 5 as a failure (basic tree input). Event 6 is a fault which can be 
analyzed further. We deal with event 4 in an analogous way. 

The further steps in the analysis of this system can now be easily supplied by the 
reader. The analysis will be terminated when all the relevant basic tree inputs have 
been identified. In this connection, the event "no input to A" is also considered to 
be a basic tree input. 

Our analysis of the top event ("no input to E") consequently produced a linkage 
of fault events connected by "and" and "or" logic. The framework (or system 
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model) on which this linkage is "hung" is the fault tree. The next section provides 
the necessary details for connecting the fault event linkage to its framework (fault 
tree). 

At this juncture the reader may be interested in conducting a short analysis of his 
own with reference to the doorbell circuit previously given in Figure V-1. A suitable 
top event would be "doorbell fails to ring when finger pushes button." The analysis 
would commence with the statement: 

DOORBELL 
FAILS TO RING 

BATTERY 
DISCHARGED OR 

SOLENOID 
NOT ACTIVATED 

in which the event "battery discharged" represents a failure or basic tree input. 

7. Basic Rules for Fault Tree Construction 

The construction of fault trees is a process that has evolved gradually over a 
period of about 15 years. In the beginning it was thought of as an art, but is was soon 
realized that successful trees were all drawn in accordance with a set of basic rules. 
Observance of these rules helps to ensure successful fault trees so that the process is 
now less of an art and more of a science. We shall now examine the basic rules for 
successful fault tree analysis. 

Consider Figure V-3. It is a simple fault tree or perhaps a part of a larger fault 
tree. Note that none of the failure events have been ''written in"; they have been 
designated just Q, A, B, C, D. 

Q 

A B 

c D 

Figure V-3. A Simple Fault Tree 
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Now, when we have a specific problem in hand, it becomes necessary to describe 
exactly what such events such as Q, A, B, C, D actually are, and the proper procedure 
for doing this constitutes Ground Rule I: 

Write the statements that are entered in the event boxes as faults; state 
precisely what the fault is and when it occurs. 

The "what-condition" describes the relevant railed (or operating) state of the 
component. The "when-condition" describes the condition of the system-with 
respect to the component of interest-which makes that particular state of 
existence of the component a fault. 

Note that Ground Rule I may frequently require a fairly verbose statement. So 
be it. The analyst is cautioned not to be afraid of wordy statements. Do not tailor 
the length of your statement to the size of the box that you have drawn. If 
necessary, make the box bigger! It is permissible to abbreviate words but resist the 
temptation to abbreviate ideas. Examples of fault statements are: 

(1) Normally closed relay contacts fail to open when EMF is applied to coil. 
(2) Motor fails to start when power is applied. 
The next step in the procedure is to examine each boxed statement and ask the 

question: "Can this fault consist of a component failure?" This question and its 
answer leads us to Ground Rule II: 

If the answer to the question, "Can this fault consist of a component 
failure?" is "Yes," classify the event as a "state-of-component fault." If 
the answer is "No," classify the event as a "state-of-system fault." 

If the fault event is classified as "state-of-component," add an OR-gate below the 
event and look for primary, secondary and command modes. If the fault event is 
classified as "state-of-system," look for the minimum necessary and sufficient 
immediate cause or causes. A "state-of-system" fault event may require an AND-gate, 
an OR-gate, an INHIBIT-gate, or possibly no gate at all. As a general rule, when 
energy originates from a point outside the component, the event may be classified as 
"state-of-system." 

To illustrate Ground Rule II, consider the simple motor-switch-battery circuit 
depicted in Figure V-4. 

SWITCH 

I 
-------o 

BATTERY MOTOR 
LOAD 

Figure V-4. Simple Motor-Switch-Battery System 
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The system can exist in two states: operating and standby. The following faults 
can be identified and classified using Ground Rule II: 

OPERATING STATE 

SYSTEM FAULT 

Switch fails to close when thumb pressure is 
applied. 

Switch inadvertently opens when thumb 
pressure is applied. 

Motor fails to start when power is applied 
to its terminals. 

Motor ceases to run with power applied to 
terminals. 

STANDBY ST ATE 

SYSTEM FAULT 

Switch inadvertently closes with no thumb 
pressure applied. 

Motor inadvertently starts. 

CLASSIFICATION 

State of component 

State of component 

State of component 

State of component 

CLASSIFICATION 

State of component 

State of system 

In . addition to the above ground rules, there are a number of other pro
cedural statements that have been developed over the years. The first of these 
is the No Miracles Rule: 

If the normal functioning of a component propagates a fault se
quence, then it is assumed that the component functions normally. 

We might find, in the course of a system analysis, that the propagation of a 
particular fault sequence could be blocked by the miraculous and totally unexpected 
failure of some component. The correct assumption to make is that the component 
functions normally, thus allowing the passage of the fault sequence in question. 
However, if the normal functioning of a component acts to block the propagation of 
a fault sequence, then that normal functioning must be defeated by faults if the fault 
sequence is to continue up the tree. Another way of stating this is to say that, if an 
AND situation exists in the system, the model must take it into account. 

Two other procedural statements address the dangers of not being methodical and 
attempting to shortcut the analysis process. The first is the Complete-the-Gate Rule: 

All inputs to a particular gate should be completely defined before 
further analysis of any one of them is undertaken. 
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The second is the No Gate-to-Gate Rule: 

Gate inputs should be properly defined fault events, and gates should not 
be directly connected to other gates. 

V-11 

The Complete-the-Gate Rule states that the fault tree should be developed in 
levels, and each level should be completed before any consideration is given to a 
lower level. With regard to the No-Gate-to-Gate Rule, a "shortcut" fault tree is 
shown in Figure V-5. 

Q 

A B 

x 

Figure V-5. A Short-Cut Fault Tree 

The "gate-to-gate" connection is indicative of sloppy analysis. The "gate-to-gate" 
shortcutting may be all right if a quantitative evaluation is being performed and the 
fault tree is being summarized. However, when the tree is actually being constructed, 
the gate-to-gate shortcuts may lead to confusion and may demonstrate that the 
analyst has an incomplete understanding of the system. A fault tree can be successful 
only if the analyst has a clear and complete understanding of the system to be 
modeled. 



CHAPTER VI - PROBABILITY THEORY: 
THE MATHEMATICAL DESCRIPTION OF.EVENTS 

1. Introduction 

Having completed our discussion of fault tree fundamentals, we are almost ready 
to begin some actual fault tree construction examples. However, because the 
examples we will be discussing in Chapters VIII and IX include not only construction 
but evaluation of the trees, we must first digress in Chapters VI and VII to cover 
some basic mathematical concepts which underlie that evaluation. 

Chapter VI addresses the basic mathematical technique involved in the quantita
tive assessment of fault trees: probability theory. Probability theory is basic to fault 
tree analysis because it provides an analytical treatment of events, and events are the 
fundamental components of fault trees. The topics of probability theory which we 
shall consider include the concepts of outcome collections and relative frequencies, 
the algebra of probabilities, combinatorial analysis, and some set theory. We begin 
with the concept of outcome collections which can be conveniently described in 
terms of a random experiment and its outcomes. 

2. Random Experiments and Outcomes of Random Experiments 

A random experiment 1s defined to be any observation or series of observations in 
which the possible result or results are non-deterministic. A result is deterministic if 
it always occurs as the outcome of an observation; a result is non-deterministic ifit is 
only one of a number of possibilities that may occur. Thus, if we toss an ordinary 
coin and our purpose is to determine whether the coin will land Heads or Tails, we 
are performing a random experiment, which is the flipping of the coin. If our coin is 
"phony," however, and possesses, say, two Tails, we are not performing a random 
experiment in the sense of the definition because the outcome, Tails, may be 
expected on every toss. Similarly, the throw of a die constitutes a random 
experiment unless the die is loaded to give exactly the same outcome on every trial. 
The term "random experiment" is a very general one and the reader will be able to 
supply innumerable examples, such as: the measurement of stiffness of a certain 
spring, the time to failure of a motor, the measurement of the amount of iron in a 
meteorite, etc. It is clear that many non-trivial observations of our environment 
constitute random experiments. 

A random experiment may be characterized by itemizing all its possible outcomes. 
This is easily done in simple cases when the number of outcomes is not great, but can 
also be done, at least in theory, when the number of outcomes is very great, perhaps 
infinite. The itemization of the outcomes of a random experiment is known, 
mathematically, as an outcome space but we believe that the term outcome 
collection is somewhat more descriptive. The notation {E 1, E2 , ... , En} will be used 
to denote the outcome collection of possible events E1 , E2 , ... , En. The concept of 
an outcome collection will now be illustrated by means of several simple examples. 

VI-1 



VI-2 FAULT TREE HANDBOOK 

(a) Random experiment-one toss of a fair coin. 
Object-to determine whether coin lands Heads (H) or Tails (T). 
Outcome collection: {T, H}. 

Note that if there is present danger of the coin's disappearing into the depths of a 
nearby crevasse, then this latter outcome (or event) should be added to the outcome 
collection. 

(b) Random experiment-toss of a coin onto a ruled surface. 
Object-to determine the coordinates of the coin when it has come to rest. 
Outcome collection: {(x1, y 1), (x2, y2), (x3, y 3), ... } where (x1, y 1)are the 

Cartesian coordinates which locate the coin on the ruled surface. Note that this 
outcome collection has an infinite number of elements. 

(c) Random experiment-start of a diesel. 
Object-to determine whether the diesel starts (S) or fails to start (F). 
Outcome collection: {S, F}. 

(d) Random experiment-the throw of a die. 
Object-to determine what number is uppermost when the die comes to rest. 
Oli'tC'Ome collection: {1, 2, 3, 4, 5, 6 }. 

(e) Random experiment-the operation of a diesel which has successfully started. 
Object-to determine the time of failure (t) to the nearest hour. 
Outcome collection: {t 1 , t 2 , ... }. 

(f) Random experiment-an attempt to close a valve. 
Object-to determine if valve closes (C) or remains open (0). 
Outcome collection: {C, 0 }. 

If, in addition, we were to consider partial failure modes, the outcome collection 
would contain such further events as "Valve closes less than halfway," "Valve closes, 
then opens," etc. 

(g) Random experiment-the operation of a system for some prescribed length of 
time t. The system includes two critical components, A and B, and will fail if either 
or both of these fail. (A and Bare thus single failures.) 

Object-To determine if (and how) the system fails by time t. 
OUtCOme collection: {System does not fail, 

System fails due to failure of A alone, 
System fails due to failure of B alone, 
System fails due to joint failure of A and B}. 

Note that the outcome collection does not include the time of failure because we 
are observing only whether the system fails or succeeds in some given time. 

(k) Random experiment-operation of two parallel systems. If the two systems are 
designated A and B, respectively, we can define Fi =the event that system i fails and 
Oi =the event that system i does not fail (i =A, B). 

Object-to determine the state of the two systems after a given time interval. 
Outcome collection: {(FA ,OB), (0 A ,F B ), (0 A ,OB), (FA ,F B)}. 

In this example only the event (FA ,FB) constitutes overall system failure. 
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3. The Relative Frequency Definition of Probability 

Consider some general random experiment with the outcome collection, E1,E2,E3, 
... , En. Suppose we repeat the experiment N times and watch for the occurrence 
of some specific outcome, say, E 1. After N repetitions or trials we find, by actual 
count, that outcome E1 has happened N 1 times. We then set up the ratio, 

which represents the relative frequency of occurrence of E1 in exactly N repetitions 
of this particular random experiment. The question now arises: does this ratio 
approach some definite limit as N becomes very large (N~)? If it does, we call the 
limit the probability associated with event E1, in symbols, P(E1). Thus 

P(E ) = lim (Ni) 
1 N~oo N 

Some obvious properties of P(E 1) arise from this definition: 

O<P(E1)< 1 
If P(E1) = 1, E1 is certain to occur. 
If P(E1) = 0, E1 is impossible. 

(VI-1) 

A more formal definition of probability involves set theory; however, the 
"empirical" definition given by Equation (VI-1) is adequate here. 

4. Algebraic Operations with Probabilities 

Consider a random experiment and designate two of its possible outcomes as A 
and B. Suppose that A and Bare mutually exclusive. This simply means that A and B 
cannot both happen on a single trial of the experiment. For instance, we expect to 
get either Heads or Tails as a result of a coin toss. We could not possibly get both 
Heads and Tails on a single toss. If events A and B are mutually exclusive, we can 
write down an expression for the probability that either A or B occurs: 

P(A or B) = P(A) + P(B) (VI-2) 

This relation is sometimes referred to as the "addition rule for probabilities" and is 
applicable to events that are mutually exclusive. This formula can be readily 
extended to any number of mutually exclusive events A, B, C, D, E, .... 

P(A or B or C or Dor E) = P(A) + P(B) + P(C) + P(D) + P(E) (VI-3) 
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For events which are not mutually exclusive a more general formula must be used. 
For example, suppose that the random experiment is the toss of a single die and let 
us define two events as follows: 

A-"the number 2 turns up" 
B-"an even number turns up" 

Clearly these events are not mutually exclusive because if the result of the toss is 2, 
both A and B have occurred. The general expression for P(A or B) is now 

P(A or B) = P(A) + P(B) - P(A and B) (VI-4) 

If A and Bare mutually exclusive, P(A and B) = 0 and (VI-4) reduces to (VI-2). The 
reader should also note that (VI-2) always gives an upper bound to the true 
probability (VI-4) when the events are not mutually exclusive. Now, if we return to 
our single die problem and define A and B as above, we can calculate P(A or B) 
numerically: 

P(A or B) = 1/6 + 1/2 - 1/6 = 1/2 

Equation (IV-4) can be extended to any number of events. For example, for 3 
events A, B, C 

P(A or B or C) = P(A) + P(B) + P(C) - P(A and B) - P(A and C) 

- P(B and C) + P(A and B and C) 

For n events E1, E2, .. ., En, the general formula can be expressed as: 

n n-1 n 

P(E1 or E2 or ... or En) = L: P(Ei) - L: L: P(Ei and Ej) 
i=l i=l j=i+l 

n-2 n-1 n 

(Vl-5) 

+ L: L: L: P(Ei and Ej and Ek) ... 
i= 1 j=i+ 1 k=j+ 1 

(VI-6) 

where "~" is the summation sign. 
If we ignore the possibility of any two or more of the events Ei occurring 

simultaneously, equation (VI-6) reduces to 

n 

P(E1 or E2 or ... or E0 ) = L: P(Ei) 
i=l 

(VI-7) 
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Equation (VI-7) is the so-called "rare event approximation" and is accurate to within 
about ten percent of the true probability when P(Ei) < 0.1. Furthermore, any error 
made is on the conservative side, in that the true probability is slightly lower than 
that given by equation (VI-7). The rare event approximation plays an important role 
in fault tree quantification and is discussed further in Chapter XI. 

Consider now two events A and B that are mutually independent. This means that 
in the course of several repetitions of the experiment, the occurrence (or 
non-occurrence) of A has no influence on the subsequent occurrence (or non
occurrence) of B and vice versa. If a well-balanced coin is tossed randomly, the 
occurrence of Heads on the first toss should not cause the probability of Tails on the 
second toss to be any different from 1 /2. So the results of successive tosses of a coin 
are considered to be mutually independent outcomes. Also, if two components are 
operating in parallel and are isolated from one another, then the failure of one does 
not affect the failure of the other. In this case the failures of the components are 
independent events. If A and B are two mutually independent events, then we can 
write, 

P(A and B) = P(A) P(B) (VI-8) 

·This is often called the "multiplication rule for probabilities" and its extension to 
more than two events is obvious. 

P(A and Band C and D) = P(A) P(B) P(C) P(D) (VI-9) 

Very often, we encounter events that are not mutually independent, that is, they 
are mutually interdependent. For instance, the overheating of a resistor in an 
electronic circuit may very well change the failure probability of a nearby transistor 
or of related circuitry. The probability of rain on Tuesday will most likely be 
influenced by the weather conditions prevailing on Monday. In order to treat events 
of this nature, we introduce the concept of conditional probability, and we need a 
new symbol: P(BIA) which is the probability of B, given A has already occurred. The 
probability of A and B both occurring then becomes 

P(A and B) = P(A) P(BIA) = P(B) P(AIB). (VI-10) 

If A and B are mutually independent, then P(AIB) = P(A) and P(BIA) = P(B) and 
(VI-10) reduces to (VI-8). Thus Equation (VI-10) constitutes a general expression for 
the probability of the joint occurrence of two events A and B. 

For three events A, B, C, we have 

P(A and Band C) = P(A) P(BIA) P(CIA and B) (VI-11) 

where P(CIA and B) is the probability of C occurring given A and B have already 
occurred. For n events E1 , E2 , ... En, 

P(E1 and E2 and ... En)= P(E 1) P(E2 IE 1) P(E3 IE 1 and E2) 

... P(En IE 1 and E2 ... and En_ 1) 
(VI-12) 
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An example of the use of the formulae in this section may be helpful. Consider 
the following random experiment: we select one card at random from a well-shuffled 
regulation deck of 52. We note its face value (e.g., "seven," "Queen," etc.) and lay it 
aside (i.e., we do not put it back in the deck-this is known as "sampling without 
replacement"). We then choose a second card at random from the deck of 51 and 
note its face value. We now calculate the probability of getting at least one Ace in the 
two draws. There are three mutually exclusive possibilities: 

(Ace on first draw then non-Ace on second draw) or 
(non-Ace on first draw then Ace on second draw) or 
(Ace on first draw then Ace again on second draw). 

Expressed in mathematical language, this becomes much more succinct: 

P (at least one Ace in two draws)= P(A) 

= P(A1 and A2) + P(A1 and A1) + P(A1 and A2) 

= P(A1) P(A2 IA 1) + P(A1) P(A2 IA1) + P(A1) P(A2 IA 1) 

in which the subscripts refer to the order of the draw, A stands for "Ace" and A 
stands for "non-Ace." We can evaluate this expression numerically as follows: 

( 4)(48) (48)f 4) (_ 4 )(3) 396 33 
P(A) = 52 Sl + 52 \Si + \52 SI = (52)(51) = 221 = O.l 49 

Let us now calculate the probability of getting an Ace and a King in two draws. 

P(A and K) = P(A1) P(K2 IA 1) + P(K1) P(A2IK1) 

= (5i)(5
4
1) + (s~)(s41) = (52~~s1) = 6!3 = 0·012 

' 

We now note an important point. If .the events "getting an Ace" and "getting a 
King" were independent, we would have P(A and K) = P(A) P(K) = (0.149)2 = 0.022, 
but we have just shown that P(A and K) = 0.012 * 0.022. Therefore, the events in 
question are not independent. At this point the reader is invited to present an 
argument that the events in question would have been independent if the first card 
drawn had been replaced in the deck and the deck had been shuffled before the 
second draw. 

A result with important applications to fault tree analysis is the calculation of 
the probability of occurrence of at least one of a set of mutually independent events. 

Consider the set of mutually independent events, 

{E1' E2, E3,. .. 'En} 

and define the event E1 as the non-occurrence of E1 , the event E2 as the 
non-occurrence of E2, etc. Because a particular event must either occur or not occur, 
we have 
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P(Ei) + P(Ei) = 1 {VI-13) 

P(Ei) = 1 - P(Ei) (VI-14) 

Now there are two possibilities with regard to the events E 1 , E2 , ... , En: at least 
one Ei occurs or none of the Ei occur. Therefore, 

P (at least one Ei occurs) 

= 1 - P (no Ei occurs) 

= 1 - P(E1 and E2 ... and En) 

We know that the E's are mutually independent and, for this reason, it is perhaps 
intuitively obvious that E's must also be mutually independent. As a matter of fact, 
this result can be easily proven. Therefore, 

(VI-15) 

But from Equation (VI-14) this is the same as 

{VI-16) 

so that our final result is 

P{E1 or E2 or E3 or ... or En)= 1 - { [1- P{E1)] [1 - P(E2)] 

[ 1 - P(E3)] ... [ 1- P(En)]} {VI-17) 

In the especially simple case where P(E1) = P(E2) = ... = P(En) = p, the right-hand 
side of (VI-17) reduced to 1 - (1- p )n. 

Our general result (VI-17) finds application in fault tree evaluation. For example, 
consider a system in which system failure occurs if any one of the events E1 , 
E2 , ... , En occurs, it being assumed that these events are mutually independent. 
The probability of system failure is then given by (VI-17). For example, the events 
E1, ... , En may be failures of critical components ·of the system, where each 
component failure will cause system failure. If the component failures are 
independent, then Equation (VI-17) is applicable. In the general case, the events E1 , 

E2, etc., represent the modes by which system failure (top event of the fault tree) 
can occur. These modes are termed the minimal cut sets of the fault tree and if they 
are independent, i.e., no minimal cut sets have common component failures, then 
Equation {VI-17) applies. We shall discuss minimal cut sets in considerable detail in 
later chapters. 

To conclude this section we return to the concept of an outcome collection 
because we are now in a position to define it in more detail. The elements of an 
outcome collection possess several important characteristics: 

(a) The elements of an outcome collection are all mutually exclusive. 
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(b) The elements of an outcome collection are collectively exhaustive. This means 
that we have included in the outcome collection every conceivable result of the 
experiment. 

(c) The elements of the outcome space may be characterized as being continuous 
or discrete; e.g., the times-to-failure for some systems are continuous events and the 
52 possible cards when a card is drawn are discrete events. 

5. Combinatorial Analysis 

We now discuss combinatorial analysis because it allows us to easily evaluate the 
probabilities of various combinations of events, such as failures of redundant 
systems. As an introduction, we review the difference between "combination" and 
"permutation." Consider a collection or set of four entities: {A, B, C, D }. Suppose we 
make a random choice of three items from the four available. For example, we may 
end up with the elements ABD. This group of three may be rearranged or permuted 
in six different ways: ABD, ADB, BAD, BDA, DAB, DBA. Thus, there are six 
rearrangements or permutations corresponding to the single combination ABD. 

Briefly, when we talk about permutations, we are concerned with order; when we 
talk about combinations, we are not concerned with order. Whether order is 
important to us or not will depend on the specific nature of the problem. For a 
certain redundant system to fail we may need only some particular number of 
component failures without regard to the order in which they occur. For example, in 
a two-out-of-three logic system we may need any two-out-of-three component 
failures to induce system failure. In this case we are concerned with combinations of 
events. However, when a particular sequence of events must occur, we are generally 
concerned with permutations. For example, failure of containment spray injection 
necessarily implies failure of containment spray recirculation and hence here we are 
concerned with order, i.e., injection, then recirculation. 

We now seek a few simple rules that will enable us to count numbers of 
combinations or permutations as desired. Consider the problem of choosing (at 
random) a sample of size r from a population of size n. This process can be 
conducted in two ways: (a) with replacement, and (b) without replacement. If we 
sample with replacement, we put each element drawn back into the population after 
recording its characteristics of interest. If we sample without replacement, we lay 
each item aside after "measuring" it. The reader will- recall that this concept was 
mentioned briefly in our example involving the draw of two cards from a desk. 

If we sample with replacement, how many different samples of sizer are possible? 
We have n choices for the first item, n choices for the second item, n choices for the 
third item, and so on until a sample of size r is completed. Thus, under a replacement 
policy there are nr possible samples of size r. Observe that under a replacement 
policy duplication of items in the sample is possible. 

If we sample without replacement, we have n choices for the first item, (n-1) 
choices for the second item, (n-2) choices for the third item, (n-r+ 1) choices for the 
rth item. Thus, the total number of different samples of size r that can be drawn 
from a population of size n without replacement is 

(n) (n-1) (n-2) ... (n- r+l) = (n)r (VI-18) 

As shown in Equation (VI-18), the special symbol (n)r is used for this product. The 
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symbol (n)r may be written in a more familiar way by using the following algebraic 
device: 

(n) (n-1) (n-2) ... (n-r+l) (n-r) (n-r-1) ... 3·2· l 
(n)r= (n-r)(n-r-1) ... 3·2·1 

(VI-19) 

using the definition of the factorial numbers. 
Equation (VI-19) constitutes one of the fundamental relationships that we have 

been seeking. It gives us the number of permutations of n things taken r at a time. 
n! 

When r = n, we get (n)n = O! = n! because O! = 1. Thus the number of ways of 

rearranging n items among themselves is just n!. 
If we are interested in combinations and not permutations, we do not desire to 

count the r! ways in which the r items of the sample can be rearranged among 
themselves. Thus the number of combinations of n things taken r at a time is given 
by 

n! -(n) 
(n-r)! r! - r 

(VI-20) 

where (~) is the symbol used to denote this quantity. If we choose at random three 

elements from the population {A, B, C, D}, we have 1 ~~!=4 possible combinations 

and they are ABC, ABD, ACD, and BCD. Each of these can be permuted in 6 ways so 
that there should be a total of 24 permutations and this agrees with 

n! 4! 
-( - )' =-1, = 4 x 3 x 2 x 1 = 24 n r. . 

Consider now a population of n items, p of which are all alike, q of which are all 
alike, and r of which are all alike, with (p+q+r) = n. For example, we might have the 
quantities p resistors from one manufacturer, q from the second manufacturer, and r 
from a third. We can distinguish among manufacturers, but resistors from the same 
manufacturer are treated as being indistinguishable. Thus, there will be some 
permutations among the n! possible rearrangements that cannot be differentiated. 
Specifically, rearrangements of the Manufacturer 1 resistors among themselves will 
lead to no new distinguishable arrangements and similarly for Manufacturer 2 and 
Manufacturer 3. Thus, the total number of distinct arrangements is given by 

n! 
(VI-21) 

p! q! r! 

In general, for n items, n 1 of which are alike, n2 of which are alike, ... , and nk 
of which are alike (n 1 + n2 + ... + nk = n), the number of distinct arrangements is 
given by 
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n! 
(VI-22) 

An example will show how these expressions are used in the solution of a 
problem. Let us try to calculate the probability of being dealt a full house 
(3-of-a-kind and a pair) in ordinary 5-card poker. 

The total number of possible 5-card poker hands is simply the number of 
combinations of 52 things taken 5 at a time or 

where the subscript PH stands for "poker hands." If we can find out how many of 
N 

these contain a full house NFH, then the ratio NFH will give us the probability of 
PH 

being dealt a full house. First let us determine the number NF H. We can write a full 
house symbolically as XXXYY, where X and Y stand for any two of the 13-card 
categories 2, 3, 4, ... , J, Q, K, A. In how many ways can the categories X, Y be 
chosen? Clearly we have 13 possible choices for X and then 12 possible choices for Y 
so that the product (13)(12) represents the total number of ways of selecting the 
categories X and Y. Now there are 4 suits and the triplet XXX must be constituted in 
some way from the 4 available X's. The number of ways of accomplishing this is (j) 
= 4. Similarly, the pair YY must be constituted in some way from the 4 available Y's 

and the number of ways of doing this is ( i) = 6. Consequently NFH = 
(13)(12)(4)(6) and 

_ NFH _ (13)(12)(4)(6) _ 6 . 1 
P(Full House)-~ - ( 52) - 4168 or approximately 700 PH 

5 

For an example more pertinent to reliability analysis, consider a system consisting 
of n similar components; the system fails if m out of n components fail. For 
example, the system may consist of 3 sensors where 2 or more sensor failures are 
required for system failure (2-out-of-3 logic). The number of ways the system can fail 

if m components fail is (~), or the number of combinations of n items taken m at a 
time. If any component has a probability p of failing, the probability of any one 
combination leading to system failure is 

Thus the probability of system failure from m components failing is 

In addition to m components failing, the system can also fail if m+ 1 components 
fail or if m+2 components fail, etc., up to all n components failing. The number of 
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ways the system can fail from k component failures is(~) where k = m+l, m+2, ... , 
k. The probability for a particular combination of k failures is 

k = m+ 1, m+2, ... , n. 

Hence, the probability of system failure from k components failing is 

k=m+l,m+2, ... ,n. 

To obtain the total system failure probability we add up the probabilities for m 
components failing, m+ 1 components failing, etc., and hence the total system failure 
probability is 

which can also be written as 

n L (~) pk (1-p )n-k 
k=m 

The probabilities are examples of the binomial distribution which we shall discuss 
later in more detail. 

6. Set Theory: Application to the Mathematical Treatment of Events 

As seen in the previous section, combinatorial analysis allows us to determine the 
number of combinations pertinent to an event of interest. Set theory is a more 
general approach which allows us to "organize" the outcome events of an experiment 
to determine the appropriate probabilities. In the most general sense, a set is a 
collection of items having some recognizable features in common so that they may 
be distinguished from other things of different species. Examples are: prime 
numbers, relays, scram systems, solutions of Bessel's equation, etc. Our application 
of set theory involves a considerable particularization. The items of immediate 
interest to us are the outcome events of random experiments and our development of 
the elementary notions of set theory will be restricted to the event concept. 

We can think of an event as a collection of elements. Consider, for example, the 
following possible even ts of interest associated with the toss of a die: 

A-the number 2 turns up 
B-the result is an even number 
C-the result is less than 4 
D-some number turns up 
E-the result is divisible by 7. 
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Each of these events can be considered as a particular set whose elements are drawn 
from the basic outcome collection of the experiment: {l, 2, 3, 4, 5, 6 }. 

We have: 

A= {2} 
B = {2, 4, 6} 
C={l,2,3} 
D= {l,2,3,4,5,6} 
E =¢(the null, void, or empty set), 

where braces, " { } ," are used to denote a particular set and the quantities within the 
braces are the elements of that set. 

Event A can be represented as a set having a single element-the number 2. Both B 
and C can be represented as 3-element sets. Event D contains all the possible results 
of the experiment. It thus coincides with the outcome collection. Any such set that 
contains all the outcomes of an experiment is referred to as the universal set and is 
generally denoted by the symbol n or I (also sometimes by the number 1 when the 
notation is informal). E is an impossible event and can be represented by a set 
containing no elements at all, the so-called null set symbolized by ¢. 

Returning to our die-throwing example, we note that the element "1" belongs to 
C and D but not to A or B. This fact is symbolized as follows: 

lEC, lED, 1$A, 1$B. 

where the symbol "E" means "is an element of' and the symbol Et means "is not an 
element of." 

We also note that the elements of A, B, C are contained in set D. We call A, B, C 
subsets of D and write ACD, BCD, CCD. Observe also that A is a subset of both B 
and C. If X and Y are two sets such that Xis a subset of Y, i.e., XCY and Y is a 
subset of X, i.e., YCX, then X and Y are equal (i.e., they are the same set). 

As another example, consider the time of failure t of a diesel (in hours) and 
consider the sets 

A= {t=O} 
B = {ti, 0 < t ~ 1} 

c = {ti, t > 1 } 

The failure to start of the diesel is represented by A, i.e., "zero failure time." B 
represents times of failure which are greater than zero hours (i.e., the diesel started) 
and less than or equal to one hour. C represents time of failure greater than 1 hour. 
Each of these sets, i.e., events, could be associated with different consequences if an 
abnormal situation existed (i.e., loss of off site power). 

There exists a graphical procedure that permits a simple visualization of the set 
theoretic concept which is known as a Venn diagram. The universal set is 
represented by some geometrical shape (usually a rectangle) and any subsets (events) 
of interest are shown inside. Figure VI-1 represents a Venn diagram for the previous 
toss of a die example. · 
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Figure VI-1. Venn Diagram Representation of Sets 

Operations on sets (events) can be defined with the help of Venn diagrams. The 
operation of union is portrayed in Figure VI-2. 

Figure VI-2. The Operation of Union 

The union of two sets of X, Y is the set that contains all elements that are either in X 
or in Y or in both, is written as XUY, and is indicated by the shaded area in Figure 
Vl-2. Returning to the die example, the union of B, C is written, 

BUC= {l,2,3,4,6}. 

Note that the word "or" translates into the symbol "U." 
The operation of intersection is portrayed in Figure VI-3. The intersection of two 

sets X,Y is the set that contains all elements that are common to X and Y, is written 
as xnY, and is indicated by the shaded area in Figure VI-3. In the die Example 
BnC = {2 } = A. Note that the word "and" translates into the symbol "n." 

The operation of complementation is portrayed in Figure VI-4. The complement 
of a set Xis the set that contains all elements that are not in X, is written X (or X'), 
and is indicated by the shaded area in Figure VI-4. For the die example, the 
complement of the set BUC is (BUC)' = (BUC) = {5 }. 
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Q 

Figure VI-3. The Operation of Intersection 

--

I 

x 

Figure VI-4. The Operation of Complementation 

There is another operation (unnamed) that is sometimes defined, but it is not 
independent of the operations we have already given. The operation is illustrated in 
Figure VI-5. If we remove from set Yall elements that are common to both X and Y, 
we are left with the shaded area indicated in Figure VI-5. This process is occasionally 
written (Y-X) but the reader can readily see that 

(Y-X)= vnx' 

Figure VI-5. The Operation (Y-X) 
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so that the symbol (Y-X) is not needed and hence will not be further used. 
As an example of the use of the set-theoretic approach, consider a simple system 

consisting of three components A, B, C. Let us use the symbols A, B, C not only to 
designate the components themselves but also the events "component success" for A, 
B, C, respectively. Thus, by A, B, C, we shall understand the events "component 
failure" for A, B, C, respectively. The symbol ABC will consequently be used to 
represent the event, "A operates successfully, B fails, and C operates successfully." 

Because there are 3 components and 2 modes of operation for each component 
(success/failure), combinatorial analysis tells us that there are 23 = 8 combinations 
which give all system modes of failure or operation. Thus, the universal set (or 
outcome collection) is given by: 

n = {ABC, ABC, ABC, ABC, ABC, ABC, ABC ABC}. 

Suppose that we have determined (perhaps by fault tree analysis) that our system 
will fail if any two or more of its components fail. Then the events corresponding to 
system failure are: 

51 =ABC 

s2 =ABC 

53 =ABC 

54 =ABC 

and the event, "system failure," S, can be represented by the subset 
S = S1 U 52 U S3 U 54 = {ABC, ABC, ABC, ABC}. We have enumerated, in an 
exhaustive manner, all the ways the system can fail. This information can be used in 
various applications. For example, knowing the probability of component failures, 
we can calculate the probability of system failure. In the same way we have done 
above, we may take intersections and unions of any of the basic elements (simple 
events) of the universal set to generate still other events which can be represented as 
sets consisting of particular elem en ts. 

This approach of enumerating the outcome events is sometimes used in the 
inductive methods of system analysis (according to which we enumerate all possible 
combinations of component operation or non-operation and determine the effects of 
each possibility on system behavior). The so-called "matrix approaches" are of this 
nature. If our system is relatively simple or if the "components" are relatively gross 
(e.g., subsystems), these inductive approaches can be efficient, in that the number of 
combinations in the universal set will be fairly small. We can also use an inductive 
approach to determine which combination has the most serious consequences. This 
latter event can then be more fully analyzed by means of fault tree analysis. 

Using the set theory concepts we have developed, we can now translate 
probability equations into set theoretic terms. For example, 

P(A or B) = P(A) + P(B) - P(A and B) becomes 

P(AUB) = P(A) + P(B) - P(AnB). (VI-23) 



VI-16 FAULT TREE HANDBOOK 

The equation P(A and B) = P(AIB) P(B) = P(BIA) P(A) becomes 

P(AnB) = P(AIB) P{B) = P(BIA) P(A). (VI-24) 

We have introduced a new mathematical entity, the set {or, more particularly, the 
event). An algebra based on the defined operations of union, intersection, and 
complementation is called a Boolean algebra. By using the basic operations of union, 
intersection, and complementation, Boolean algebra allows us to express events in 
terms of other basic events. In our fault tree applications, system failure can be 
expressed in terms of the basic component failures by translating the fault tree to 
equivalent Boolean equations. We can manipulate these equations to obtain the 
combinations of component failures that will cause system failure {i.e., the minimal 
cut sets) and we calculate the probability of system failure in terms of the 
probabilities of component failures. We shall further pursue these topics in later 
sections. 

7. Symbolism 

Boolean algebra, which is the algebra of events, deals with event operations which 
are represented by various symbols. Unfortunately, set theoretic symbolism is not 
uniform; the symbology differs among the fields of mathematics, logic, and 
engineering as follows: 

Operation Probability Mathematics Logic Engineering 

Union of A and B AorB AUB AvB A+B 

Intersection of 
AandB Aand B AnB AA B A·B or AB 

Complement of A not A A' or A -A A' or A 

The symbols used in mathematics and in logic are very similar. The logical 
symbols are the older; in fact the symbol "v" is an abbreviation for the Latin word 
"vel" which means "or." It is unfortunate that engineering has adopted "+" for "U" 
and an implied multiplication for "n." This procedure "overworks" the symbols "+" 
and"•". As an example of the confusion that might arise when"+" is used for U, 
consider the expression 

P{AUB) = P{A) + P(B) - P(AnB). 

If "+" is written for "U" on the left-hand side, we have an equation with "+" 
meaning one thing on the left and a totally different thing on the right. 

Despite these difficulties and confusing elements in the symbology, the 
engineering symbology is now quite widespread in the engineering literature and any 
expectation of a return to mathematical or logic symbols seems futile. In fault tree 
analysis, use of the engineering notation is widespread, and, as a matter of fact, we 

.shall use it later in this book. If, however, the reader is unacquainted with event 
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algebra, it is strongly recommended that he use the proper mathematical symbols 
until attaining familiarity with this type of algebra. This will serve as a reminder that 
set algebraic operations are not to be confused with the operations of ordinary 
algebra where numbers, and not events, are manipulated. 

8. Additional Set Concepts 

We shall now proceed further with certain other set concepts which will illustrate 
the difference between simple events and compound events. This will be useful 
groundwork for some of the fault tree concepts to follow and will also lead to a more 
rigorous definition of "probability." 

Consider again the throw of a single die. The event A = {2 } is a simple event; in 
fact it constitutes an element of the outcome collection. In contrast, the events 
B = {2, 4, 6} and C = {l, 2, 3} are compound events. They do not constitute, per se, 
elements of the outcome collection, even though they are made up of elements of 
the outcome collection. B and C have an element in common; therefore, their 
intersection is non-empty (i.e., they are not "disjoint" subsets or, in probability 
language, they are not mutually exclusive). The elements of outcome collections are, 
by definition, all mutually exclusive and, thus, all mutually disjoint. 

Now compound events (like B and C) are generally the ones that are of 
predominant interest in the real world and it is necessary, because they are not 
included in the outcome collection, to define a mathematical entity that does include 
them. Such a mathematical entity is called a class. A class is a set whose elements are 
themselves sets and these elements are generated by enumerating every possible 
combination of the members of the original outcome collection. 

As an example, consider the 4-element outcome collection S = {1, 3, 5, 7 }. If we 
list every possible combination of these 4-elements we shall generate the class ~ 
defined on the original set S as follows: 

~= {l}, {3}, {5}, {7}, {l,3}, {l,5}, 
{l, 7}, {3,5}, {3, 7}, {5, 7}, {1,3,5}, 

{ 1, 5' 7 } ' {l, 3' 7 } ' {3' 5' 7 } ' { 1, 3' 5' 7 }, { </>}. 
Notice that the null set </> is considered an element of the class to provide a 
mathematical description of the "impossible event." If we count the number of 
elements in the class §.,we find 16 which is 24 where 4 is the number of elements in 
the original set S. In general, if the original set has n elements, the corresponding 
class* will have 2n elements. 

The utility of the class concept is simply that the class will contain as elements, 
every conceivable result (both simple and compound) of the experiment. Thus, in the 
die toss experiments, Swill have 6 elements and S. will have 26 = 64 elements, two of 
which will be B = {2, 4, 6} and C = {l, 2, 3 }. In the throw of 2 dice, Swill contain 
36 elements and~ will have 236 (a number in excess of 1010) elements. Embedded 
somewhere in this enormous number of subsets we find the compound event 
"sum= 7" which can be represented in the following way: 

E = { (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. 

*When certain appropriate mathematical restrictions are imposed, a class is often referred to, 
in more advanced texts, as a Borel Field. 
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Consider again the simple three-component system A, B, C, where system failure 
consists of any two or more components failing. In that example, the universal set 
comprised eight elements, and these eight elements gave all modes of system failure 
or operation. The class based on this set would contain 28 = 256 elements and would 
include such events as: 

"A operates properly": {ABC, ABC, ABC, ABC} 
"Both Band C fail": {ABC, ABC} 
"Five components fail": </> 

"System fails": {ABC, ABC, ABC, ABC} 

The reader should bear in mind that the elements of classes are sets. Thus, the event 
ABC is an element of the original universal set, whereas {ABC} is a set containing 
the single element ABC and is an element of the class generated from the universal 
set. The utility of the class concept is that it enables us to treat compound events in a 
formal manner simply because all possible compound events are included in the class. 

Perhaps the most useful feature of the class concept is that it provides us with a 
basis for establishing a proper mathematical definition of the probability function. 
The set theoretic definition of the probability function is shown schematically in 
Figure VI-6. 

s P(E) 
s 

0 1 

Figure Vl-6. Set Theoretic Definition of Probability 

In Figure VI-6, the box labeled "S" represents the outcome collection for some 
random experiment. It could, for instance, represent the totality of the 36 possible 
outcomes in the two-dice experiment. The circle labeled ".§." represents the class 
generated from set S by enumerating all combinations of the elements of S. In the 
two-dice example the class § possesses an enormous number ( < 1Ql0) of elements. 
These elements represent every conceivable outcome (simple and compound) of the 
experiment. Specifically, the event E = "sum of 7" is a member of.§. It is shown 
schematically in Figure VI-6. Next the axis of real numbers between 0 and 1 is 
drawn. A function can now be defined that "maps" event E into some position on 
this axis. This function is the probability function P(E). 

The concept of mapping may be unfamiliar. For our purpose a mapping may be 
considered simply as a functional relationship. For instance the relation y = x2 maps 
all numbers x into a parabola (x = ±1, y = + 1; x = ±2, y = +4; etc.). The relation y = x 
maps all numbers x into a straight line making a 45° angle with the y-axis. In these 
examples one range of numbers is mapped into another range of numbers and we 
speak of point-functions. The function P(E) is somewhat more complicated; it maps 
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a set onto a range of numbers, and we speak of a set function instead of a point 
function although the underlying concept is the same. In unsophisticated terms, 
however, a probability function simply assigns one unique number, a probability, to 
each event. 

Two · things should be noted. One is that probability has now been defined 
without making use of the limit of a ratio. The second thing is that this definition 
doesn't tell us how to calculate probability; rather, it delineates the mathematical 
nature of the probability functions. If E is the event "sum = 7 ," we already know 
how to calculate its probability assuming that all 36 outcomes in the outcome 
collection are equally likely: 

6 1 
P(E)=-=-

36 6 

Of course this is a particularly simple example. In other cases we may have to 
investigate the physical nature of the problem in order to develop the probabilities of 
even ts of interest. 

9. Bayes' Theorem 

The formula of Bayes plays an important and interesting role in the structure of 
probability theory, and it is of particular significance for us because it illustrates a 
way of thinking that is characteristic of fault tree analysis. We shall first develop the 
formula using a set theoretic approach, and then discuss the meaning of the result. 

Figure VI-7 portrays the "partitioning" of the universal set n into subsets A1 , 

A2, A3, A4, As· 

Figure VI-7. Partition of the Universal Set 

The A's have the following characteristics: 

i=S 

A1 UA2UA3 UA4 UA5 = u ~ = r2 
i=l 

Q 

B 

(VI-25) 
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Any set of A's having the properties of Equation (VI-25) is said to constitute a 
partition of the universal set. Also shown in Figure VI-7 is another subset B. The 
reader can show (by shading the appropriate regions in the Venn diagram) that 

(Actually BnA1 =</>but </>UX = X, where Xis any set.) The expression for B above 
can be written in a more mathematically succinct form: 

i=5 

B= u BnAi (VI-26) 
i=l 

in which the large union symbol implies a succession of unions just as the symbol ~ 
implies a succession of sums. Similarly, the large intersection symbol implies a 
succession of intersections just as the symbol TI implies a succession of products. We 
shall return to (VI-26) in a moment. 

Consider now the probability equation for an intersection, 

P(AnB) = P(AIB) P(B) = P(BIA) P(A). 

This is true for any arbitrary events A, B. In particular it will be true for Band any 
one of the A's in Figure VI-7. Thus, we can write 

(VI-27) 

or 

(VI-28) 

We can now write P(B) in a different way by using Equation (VI-26). 

{

i-S } 
P(B) = P u BnAi 

1=1 

i=S i=S 

= L: P(BnAi) = L: P(BIAi) P(Ai) 
i=l i=l 

which can be done because the events (BnAi) are mutually exclusive. If we substitute 
this expression for P(B) into (VI-28), we obtain 

P(BIAk) P(Ak) 
P(A IB)------

k - ~ P(BiA·) P(A·) 
. 1 1 
I 

(VI-29) 
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This is Bayes' theorem. The equation is valid in general for any number of events~. 
Ai, ... , An which are exhaustive and are mutually exclusive (see Equation (VI-25)). 
The summation then extends from i = 1 to i = n instead of i = 1 to i = 5. 

We now discuss some of the meanings of Equation (VI-29). Suppose that some 
event B has been observed and that we can make a complete list of the mutually 
exclusive causes of the event B. These causes are just the A's. Notice, however, the 
restrictions on the A's given by the relations (VI-25). * Now, having observed B, we 
may be interested in seeking the probability that B was caused by the event Ak. This 
is what (VI-29) allows us to compute, if we can evaluate all the terms of the 
right-hand side. 

The Bayseian approach is deductive: given a system event, what is the probability 
of one of its causative factors? This is to be contrasted with the inductive approach: 
given some particular malfunction, how will the system as a whole behave? The use 
of Bayes' formula will now be illustrated by a simple example for which it is 
particularly easy to enumerate the A's. 

Suppose that we have three shipping cartons labeled I, II, III. The cartons are all 
alike in size, shape, and general appearance and they contain various numbers of 
resistors from companies X, Y, Z as shown in Figure VJ-8. 

9 ITEMS 6 ITEMS 9 ITEMS 

3X 4Y 2Z 1X 2Y 3Z 2X 3Y 4Z 

II Ill 

Figure VI-8. Illustration of the Use of Bayes' Formula 

A random experiment is conducted as follows: First, one of the cartons is chosen at 
random. Then two resistors are chosen from the selected box. When they are 
examined, it is found that both items are from Company Z. This latter event we 
identify with event B in our general development of Bayes' rule. The "causes" of B 
are readily identified: either carton I was chosen or carton II was chosen or carton III 
was chosen. Thus, 

A1 =choice of carton I 
Ai = choice of carton II 
A3 = choice of carton III 

Now we should be able to work out the probability that, given event B, it was carton 
I that was originally chosen. 

*The restrictions on the Ai given by (VI-is) are equivalent to the restrictions:~ P(A.) = 1 and 
P(AinAj)=O;i*j. 

1 
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It would appear natural enough to set 

because the boxes are all alike and a random selection among them is made. We now 
need to evaluate the terms P(BIA1 ), P(BIA2) and P(BIA3). This is easily done from 
Figure VI-8. 

P(BIA1) = (~) (~) = 316 

P(BIA2) =(~)(;)= + 
P(BIA3) = (~)(~) = +· 

When these numbers are substituted into Bayes' formula we obtain 

P(A IB) - (T6) (t) = -5 
1 

- (316)(~)+(~)(~)+(~)(~) 71 

In a similar way we can calculate 

36 30 
P(A2 IB) = 7i and P(A3 IB) =71. 

Thus, if event B is actually observed, the chances are about 50-50 that carton II was 
originally chosen. 

As another example, refer once more to our simple system made up of three 
components. We have already determined that the system can fail in any one of the 
four modes, S1, 52, S3, 54. If the system fails and we wish to know the probability 
that its failure mode was S3, we can compute: 

_ _ P(SIS3) P(S3) 

P(S3 IS)= P(SIS1) P(S 1) + P(SIS2) P(S2) + P(SIS3) P(S3) + P(SIS4) P(S4). 

This can be written in a simpler form because the system will surely fail if any one of 
the events 81, 82, 83, or 84 occurs. 
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_ _ P(S3) 

P(S3 IS)= P(S
1

) + P(S
2

) + P(S
3

) + P(S
4

) 

Pr~u_!!lably the quantities P(Si) can be estimated from reliability data. Th~ quantity 
P(SilS) is sometimes called the "importance" of system failure cause Si. Bayes' 
Theorem is sometimes applied to obtain optimal repair schemes and to determine the 
most likely contributors to the system failure (i.e., which of the P(SilS) is the 
largest). 



CHAPTER VII - BOOLEAN ALGEBRA AND APPLICATION 
TO FAULT TREE ANALYSIS 

1. Rules of Boolean Algebra 

In the previous chapter we developed the elementary theory of sets as applied, 
specifically, to events (outcomes of random experiments). In this chapter we are 
going to further develop the algebra of events, called Boolean algebra, with particular 
application to fault trees. Boolean algebra is especially important in situations 
involving a dichotomy: switches are either open or closed, valves are either open or 
closed, events either occur or they do not occur. 

The Boolean techniques discussed in this chapter have immediate practical 
importance in relation to fault trees. A fault tree can be thought of as a pictorial 
representation of those Boolean relationships among fault events that cause the top 
event to occur. In fact, a fault tree can always be translated into an entirely 
equivalent set of Boolean equations. Thus an understanding of the rules of Boolean 
algebra contributes materially toward the construction and simplification of fault 
trees. Once a fault tree has been drawn, it can be evaluated to yield its qualitative and 
quantitative characteristics. These characteristics cannot be obtained from the fault 
tree per se, but they can be obtained from the equivalent Boolean equations. In this 
evaluation pr0cess we use the algebraic reduction techniques discussed in this 
chapter. 

We present the rules of Boolean algebra in Table VII-1 along with a short 
discussion of each rule. The reader is urged to check the validity of each rule by 
recourse to Venn diagrams. Those readers who are mathematically inclined will 
detect that the rules, as stated, do not constitute a minimal necessary and sufficient 
set. Here and elsewhere, the authors have sometimes sacrificed mathematical elegance 
in favor of presenting things in a form that is more useful and understandable for the 
practical system analyst. 

According to (la) and (lb), the union and intersection operations are commutative. 
In other words, the commutative laws permit us to interchange the events X, Y with 
regard to an "AND" operation. It is important to remember that there are 
mathematical entities that do not commute; e.g. the vector cross product and 
matrices in general. 

Relations (2a) and (2b) are similar to the associative laws of ordinary 
algebra: a{bc) = (ab)c and a + (b+c) = (a+b) + c. If we have a series of "OR" 
operations or a series of "AND" operations, the associative laws permit us to group 
the events any way we like. 

The distributive laws (3a) and (3b) provide the valid manipulatory procedure 
whenever we have a combination of an "AND" operation with an "OR" operation. If 
we go from left to right in the equations, we are simply reducing the left-hand 
expression to an unfactored form. In (3a), for example, we operate with X on Y and 
on Z to obtain the right-hand expression. If we go from right to left in the equations, 
we are simply factoring the expression. For instance, in (3b) we factor out X to 
obtain the left-hand side. Although (3a) is analogous to the distributive law in 
ordinary algebra, (3b) has no such analog. 

VII-1 
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Table VII-2. Rules of Boolean Algebra 

Mathematical 
Symbolism 

(1al xnv = vnx 

(1b) x u v = vu x 

(2al X n (V n ZI = (X n VI n Z 

(2b) X U (V u Z) + (X U VI u Z 

(3al X n (Vu ZI = (X n VI u (X n ZI 

(3b) x U(V nz1 = (X UV) n(X UZI 

(4al x nx = x 

(4b) x ux = x 

(5al X n (X u VI = X 

(5bl Xu (X n VI = X 

(&al x nx' = <P 

(6b) XU X' = H = I* 

(6c) (X')' = X 

(7al IX n vi' = x· u v· 
(7bl (Xu VI' = X' n v' 

(la) ¢n x = </> 

(lb) ¢UX = X 

11,cl n n x = x 
(Id) S2UX = S2 

(lel ¢' = n 
(If) S2' = ¢ 

(9al xu(x'nv) = xuv 

(9b)X:n(XUV') = x'nv' = (XUV)' 

Engineering 
Symbolism 

X·V = V·X 

X+V =V+X 

X • (V • ZI = (X • V) • Z 
X(VZ) = (XVIZ 

X + (V + Z) = (X + V) + Z 

X • (V + Z) = X • V + X • Z 
XIV+ Zl = XV+ XZ 

X + V • Z = (X + V) • (X + ZI 

x. x = x 
X+X = X 

X • (X +YI = X 

X+X·V=X 

x · x· = ¢ 

x + x· = n = 1 

(X')' = X 

(X • V)' = X' + V' 

(X+V)' = X' • V' 

¢· x = ¢ 

</>+ x = x 
n ·X = X 

n+x = n 
4/ = n 
n' = ¢ 

Designation 

Commutative Law 

Associative Law 

Distributive law 

Idempotent Law 

Law of Absorption 

Complementation 

de Morgan's Theorem 

Operations with</> and Q 

X + x· · Y = X + V These relationships are 
unnamed but are he· 

X' • (X + V') = X' · v' = (X +VJ' quently useful in the 
reduction process. 

*The symbol I is often used instead of S2 to designate the Universal Set. In engineering notation S! is often replaced by 1 
and ¢by 0. 

The idempotent laws (4a) and (4b) allow us to "cancel out" any redundancies of 
the same event. 

The laws of absorption {Sa) and {Sb) can easily be validated by reference to an 
appropriate Venn diagram. With respect to {Sa), we can also argue in the following 
way. Whenever the occurrence of X automatically implies the occurrence of Y, then 
Xis said to be a subset of Y. We can symbolize this situation as XCY or X-+.Y. In this 
case X+Y= Y and X·Y= X. In {Sa), if X occurs then (X+Y) has also occurred and 
XC(X+Y); therefore X·(X+Y) = X. We can develop a similar argument in the case of 
{Sb). 

De Morgan's theorems {?a) and (7b) provide the general rules for removing primes 
on brackets. Suppose that X represents the failure of some component. Then X' 



BOOLEAN ALGEBRA AND APPLICATION TO FAULT TREE ANALYSIS VII-3 

represents the non-failure or successful operation of that component. In this light 
(7a) simply states that for the double failure of X and Y not to occur, either X must 
not fail or Y must not fail. 

As an application of the use of these rules, let us try to simplify the expression 
(A+B) • (A+C) • (D+B) • (D+C). 

We can apply (3b) to (A+B) • (A+C) obtaining 
(A+B) • (A+C) = A+(BC). 

Likewise, 
(D+B)·(D+C) = D+(B·C). 

We thus have as an intermediate result 
(A+B)·(A+C)·(D+B)·(D+C) = (A+B·C)·(D+B·C). 

lfwe now let E represent the event B·C, we have 
(A+BC)·(D+BC) = (A+E)·(D+E) = (E+A)·(E+D). 

Another application of (3b) yields 
(E+A)·(E+D) = E+A·D = B·C + A·D. 

We, therefore, have as our final result 
(A+B)·(A+C)·(D+B)·(D+C) = B·C +A· D. 

The original expression has been substantially simplified for purposes of evaluation. 
There are more general rules for simplifying Boolean functions and we will discuss 

these later in this chapter. For the moment we are concerned with what can be 
accomplished by more or less unsystematic manipulation of the algebra. A few 
examples of this procedure are now given. The reader should work carefully through 
these illustrations and ascertain at each step which of the rules, (1 a) - (9b ), are being 
used. 

Example 1-Show that 

[(A· B) +(A· B') +(A'· B')]' =A'· B. 

This example can be worked either by (a) removing the outermost prime as a first 
step or by (b) manipulating the terms inside the large brackets and removing the 
outermost prime as a last step. In either case the removal of primes is accomplished 
by using (7a) or (7b ). 

(a) [(A·B) + (A·B') + (A'·B')]' 
= (A·B)' · (A·B')' • (A'·B')' 
= (A'+B') • (A'+B) • (A+B) 
=A'+ (B'·B) • (A+B) 
=(A'+¢)· (A+B) 
=A'· (A+B) 
= (A'· A)+ (A'· B) 
=<t>+(A'·B) 
= A'·B. 



VII-4 

(b) [(A·B)+(A·B')+(A'·B')]' 
= [(A·(B+B') +(A'· B')]' 
= [A·n + (A'·B')]'_ 
= [A+ (A'· B')]' 
= [(A+A') • (A+B')]' 
= [n · (A+B')]' 
= [A+B']' =A'· B. 

Example 2-Show that 

(A'· B·C')' • (A· B' ·C')' = C + [(A'· B') + (B· A)] 
(A'· B· C')' • (A· B' • C')' 

= (A+B'+C) • (A'+B+C) 
= C + [(A+B') • (A'+B)] 
= C + [(A+B') • A'+ (A+B') • B] 
= C + [(A'· A)+ (A'· B') + (B· B') + (B· A)] 
= C + [p + (A'· B') + ¢ + (B· A)] 
=C+ [(A'·B'.)+(B·A)]. 

Example 3-Show that 

[(X· Y) +(A· B·C)] • [(X· Y) + (A'+B'+C')] = X· Y 

FAULT TREE HANDBOOK 

Applying de Morgan's theorem to the second tenn inside the second bracket, we have 

[ (X • Y) + (A· B • C)] • [ (X • Y) + (A· B · C)']. 

Now let L= X·Y, M= (A·B·C), and we have 

(L+M) · (L+M') = L • (M+M') = L + n = L= X·Y 

and the original statement is proved. Notice in this example that A,B,C are 
completely redundant. 

2. Application to Fault Tree Analysis 

In this section we shall relate the Boolean methodology to fault trees. A fault tree, 
as we now know, is a logic diagram depicting certain events that must occur in order 
for other events to occur. The events are termed "faults" if they are initiated by 
other events and are tenned "failures" if they are the basic initiating events. The 
fault tree interrelates events (faults to faults or faults to failures) and certain symbols 
are used to depict the various relationships (see Chapter IV). The basic symbol is the 
"gate" and each gate has inputs and an output as shown in Figure VII-1. 

The gate output is the "higher" fault event under consideration and the gate 
inputs are the more basic ("lower") fault (or failure) events which relate to the 
output. When we draw a fault tree, we proceed from the "higher" faults to the more 
basic faults (i.e., from output to inputs). In this process (Chapter V), certain 
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OUTPUT 

GATE 

INPUT INPUT INPUT 

Figure VII-1. The Gate Function in a Fault Tree 

techniques are used to determine which category of gate is appropriate. The two 
basic gate categories are the OR-gate and the AND-gate. Because these gates relate 
events in exactly the same way as the Boolean operations that we have just discussed, 
there is a one-to-one correspondence between the Boolean algebraic representation 
and the fault tree representation. 

The OR-Gate 

The fault tree symbol CJ is an OR-gate which represents the union of the 

events attached to the gate. Any one or more of the input events must occur to cause 
the event above the gate to occur. The OR-gate is equivalent to the Boolean symbol 
"+." For example, the OR-gate with two input events, as shown in Figure VII-2, is 
equivalent to the Boolean expression, Q=A+B. Either of the events A or B, or both 
must occur in order for Q to occur. Because of its equivalence to the Boolean union 
operation denoted by the symbol "+ ," the OR-gate is sometimes drawn with a "+" 
inside the gate symbol as in Figure VII-2. For n input events attached to the OR-gate, 
the equivalent Boolean expression is Q = A1 + A2 + A3 + ... + An. 
In the terms of probability, from Equation (VI-4): 

P(Q) = P(A) + P(B)-P(AnB) 
or 
= P(A) + P(B)-P(A)P(BIA) (VII-1) 
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Q 

A B 

Figure VIl-2. A Two-Input OR-Gate 

From our discussion of probabilities in Chapter VI, we can make the following 
observations about Equation (VII-1): 

• If A and B are mutually exclusive events, then P(AnB) = 0 and 
P(Q) = P(A) + P(B); 

• If A and B are independent events, then P(BIA) = P(B) and 
P(Q) = P(A) + P(B) - P(A) P(B); 

• If event B is completely dependent on event A, that is, whenever A 
occurs, B also occurs, then P(BIA) = 1 and 
P(Q) = P(A) + P(B) - P(A) 

= P(B); 
• The approximation P(Q) ==: P(A) + P(B) is, in all cases, a conservative 

estimate for the probability of the output event Q, i.e., 
P(A) + P(B) ~ P(A) + P(B) - P(AnB) for all A, B; 

• If A and B are independent, low probability events (say P(A), 
P(B) < 10-1 ), then P(AnB) is small compared with P(A) + P(B) so 
that P(A) + P(B) is a very accurate approximation of P(Q). The reader 
will remember P(A) + P(B) as the "rare event approximation" 
discussed in Chapter VI. 

These observations, especially the last two, will become very important when we 
discuss quantification in Chapter XI. 

In Chapter IV, we briefly discussed the EXCLUSIVE OR-gate. As the reader 
should remember, the output event Q of an EXCLUSIVE OR-gate with two input 
events A and B occurs if event A occurs or event B occurs, but not both. The 
probability expression for the output event Q of an EXCLUSIVE OR-gate is: 

P(Q)EXCLUSIVE oR= P(A) + P(B) - 2P(AnB) (VII-2) 
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Comparing Equations (VII-1) and (VII-2), we observe that if A and B are 
independent low probability component failures, the difference in probability 
between the two expressions is negligible. This is why the distinction between the 
inclusive and exclusive OR-gates is generally not necessary in Fault Tree Analysis 
where we are often dealing with independent, low probability component failures. It 
may sometimes, however, be useful to make the distinction in the special case where 
the exclusive OR logic is truly required, and in addition where there is a strong 
dependency between the input events and the failure probabilities are high. In this 
latter case, the intersection term may be large enough to significantly effect the 
result. In conclusion, it should be observed that in any case, the error which is made 
by using the inclusive rather than the exclusive OR-gate biases the answer on the 
conservative side because the inclusive OR has the higher probability. In the 
remainder of this text, unless otherwise noted, all references to the OR-gate should 
be interpreted as the inclusive variety. 

Figure VII-3 shows a realistic example of an OR-gate for a fault condition of a set 
of normally closed contacts. 

RELAY COIL 
NOT 

DE-ENERGIZED 

NORMALLY CLOSED 
RELAY CONTACTS 

FAIL TO OPEN 

RELAY CONTACTS 
FAIL 

CLOSED 

Figure VII-3. A Specific Two-Input OR-Gate 

This OR-gate is equivalent to the Boolean expression 

RELAY CONTACTS 
FAIL TO OPEN 

RELAY COIL 
NOT 

DE-ENERGIZED + CONTACTS FAIL 
CLOSED 

Instead of explicitly describing the events, a unique symbol (Q, A2 , etc.) is usually 
associated with each event as shown in Figure VII-2. Therefore, if the event "relay 
contacts fail to open" is labeled "Q," "relay coil not de-energized" is labeled "A," 
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and "contacts fail closed" is labeled "B," we can represent the OR-gate of Figure 
VII-3 by the Boolean equation Q=A+B. 

An OR-gate is merely a re-expression of the event above the gate in terms of the 
more elementary input events. The event above the gate encompasses all of these 
more elementary events; if any one or more of these elementary events occurs, then 
B occurs. This interpretation is quite important in that it characterizes an OR-gate 
and differentiates it from an AND-gate. The input events to an OR-gate do not cause 
the event above the gate; they are simply re-expressions of the event above the gate. 
We have discussed this topic before, but we feel it is so important to fault tree 
analysis that we cover it again, having now· gone through the Boolean algebra 
concepts. 

Consider two switches in series as shown in Figure VII-4. The points A and B are 
points on the wire. If wire failures are ignored then the fault tree representation of 
the event, "No Current to Point B" is shown in Figure VIl-5. 

SWITCH 1 SWITCH 2 

SWITCH 1 
IS OPEN 

Figure VII-4. Two Switches in Series 

NO CURRENT 
TO POINT B 

SWITCH 2 
IS OPEN 

NO CURRENT 
TO POINT A 

Figure VII-5. A Specific Three-Input OR-Gate 
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If the events are denoted by the symbols given below, then the Boolean 
representation is B =Ai +A2+A3. 

NO CURRENT 
TO POINT B = EVENT B 

SWITCH 1 
IS OPEN = EVENT Ai 

NO CURRENT 
TO POINT A = EVENT A3 

SWITCH 2 
IS OPEN = EVENT A2 

The event B occurs if Ai or A2 or A3 occurs. Event B is merely a re-expression of 
events Ai, A2, A3. We have classified the particular events Ai, A2, A3 as belonging 
to the general event B. 

The AND-Gate 

The fault tree symbol 0 is an AND-gate which represents the intersection 

of the events attached to the gate. The AND-gate is equivalent to the Boolean symbol 
"· ". All of the input events attached to the AND-gate must exist in order for the 
event above the gate to occur. For two events attached to the AND-gate, the 
equivalent Boolean expression is Q=A· B, as shown in Figure VII-6. Because of its 
equivalence to the Boolean intersection operation denoted by the symbol "· ", that 
symbol is sometimes included inside the AND-gate as in Figure VII-6. For n input 
events to an AND-gate, the equivalent Boolean expression is 

In this case, event Q will occur if and only if all the Ai occur. In terms of probability, 
from Equation (VI-10): 

P(Q) = P(A)P(BIA) = P(B)P(AIB). (VII-3) 

From our discussion of probability in Chapter VI, we can make the foilowing 
observations about Equation (VII-3): 

• If A and B are independent events, then P(BIA) = P(B), P(AIB) = P(A), 
and P(Q) = P(A) P(B); 

• If A and B are not independent events, then P(Q) may be significantly 
greater than P(A)P(B). For example, in the extreme case where B 
depends completely on A, that is, whenever A occurs, B also occurs, 
th~n P(BIA) = 1 and P(Q) = P(A). 
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Q 

• 

A B 

Figure VII-6. A Two-Input AND-Gate 

Again, the reader should bear these observations in mind for future reference when 
we discuss fault tree quantification in later chapters. 

The events attached to the AND-gate are the causes of the event above the gate. 
Event Q is caused only if every one of the input events occurs. This causal 
relationship is what differentiates an AND-gate from an OR-gate. If the event above 
the gate occurs when any one of the input events occurs, then the gate is an OR-gate 
and the event is merely a restatement of the input events. If the ev~nt above the gate 
occurs only when combinations of more elementary events occur, then the gate is an 
AND-gate and the inputs constitute the cause of the event above the gate. 

We conclude this section with an example showing how Boolean algebra can be 
used to restructure a fault tree. Consider the equation D = A • (B+C). The 
corresponding fault tree structure is shown in Figure VII-7. 

Now according to Rule 3a, event D can also be expressed as D =(A· B) + (A·C). 
The fault tree structure for this equivalent expression for D is shown in Figure VII-8. 

The two fault tree structures in Figures VII-7 and VII-8 may appear to be 
different; however, they are equivalent. Thus, there is not one "correct" fault tree 
for a problem but many correct forms which are equivalent to one another. The rules 
of Boolean algebra can thus be applied to restructure the tree to a simpler, equivalent 
form for ease of understanding or for simplifying the evaluation of the tree. Later, 
we shall apply the rules of Boolean algebra to obtain one form of the fault tree, 
called the minimal cut set form, which allows quantitative and qualitative evaluations 
to be performed in a straightforward manner. 
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D 

A BORC 

B c 

Figure VII-7. Fault Tree Structure for D = A • (B+C) 

D 

AANDB AANDC 

A B A c 

Figure VII-8. Equivalent Form for the Fault Tree of Figure VII-7 



VII-12 FAULT TREE HANDBOOK 

3. Shannon's Method for Expressing Boolean Functions 
in Standardized Forms 

In the previous sections we have discussed how Boolean functions may be 
expressed in a number of ways by applying the algebraic rules presented earlier in 
this chapter. In this section we shall discuss Shannon's method for expanding 
Boolean functions. This method is a general expansion technique applicable to any 
Boolean function. According to Shannon's method, a Boolean function of n variables 
can be expanded about one, two, ... , or all n of the variables. When the expansion is 
"complete" (i.e., when it is taken about all n of the variables), the result is referred 
to as an "expansion in minternis." The latter constitutes a standard or canonical 
form consisting of all combinations of occurrences and non-occurrences of the events 
of interest. 

First some preliminaries need to be reviewed. A Boolean variable is a two-valued 
variable. For instance if E designates some event of interest, then E=l indicates that 
the event has occurred and E=O indicates that the event has not occurred. For this 
reason, theorems in Boolean algebra are much more easily proved than theorems in 
ordinary algebra in which the variable may take on an infinity of values. 

Consider a function of the n Boolean variables X1, X2, X3 , ... , X
0

: 

f(X1, X2, X3, ... , X0 ). 

The Boolean function can take on only two values: 1 (occurs) and O (does not 
occur). This function may be expanded about one of its arguments (say X1) in the 
following way: 

(VII-4) 

In equation (VII-4), because we are dealing with events, we must remember that the 
dots (·) and pluses (+) represent the intersection and union operations. The 
symbolism f(l, X2, ... , X0 ) indicates that 1 has been substituted for X 1. We 
may simplify f(l, X2 ... , X0 ) using the rules of Boolean algebra. For example 
if f(X1, X2) = X1 • X2, then f(l, X2) = 1 • X2 = X2. The reader can readily 
show that equation (VII-4) is correct by considering the only two possibilities, 
X1 = 1 and X1 = 0, i.e., X1 occurs or does not occur. 

Equation (VII-4) can be extended to the expansion of a Boolean function about 
two, three, or, indeed, all of its arguments. For instance, the extension of equation 
(VII-4) to the expansion about the two variables X1 and X2 is: 

f(X 1,X2,X3, ... , ~)= [X1 • X2·f(l,1, X3, ... ,X0 )] 

+ X1 • X' 2 • f(l, 0, X3 , ... , X0 )] + X' 1 • X2 • f(O, 1, X3 , ... , ~)] 
+ X' 1 • X' 2 • f(O, 0, X3, ... , X0 )] (VII-5) 

The reader should note that equation (VII-5) can be obtained by simply expanding 
f{l, x2, ... , X

0
) and f{O, X2, ... , X

0
) about X2 in the manner of equation (VII-4). 

When the expression is carried out about all the variables X1, X2, X3 , ... , X0 , the 
Boolean expressions lying outside the functional representations are called minterms 
which consist of combinations of certain X's occurring and others not occurring. In 
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the complete expansion there will be 2n minterms consisting of all combinations of 
the possible occurrences and nonoccurrences of the X variables. Each minterm 
expression will have as a "coefficient" the function f evaluate cf at the appropriate l's 
and O's corresponding to the occurrences and nonoccurrences of X. 

In addition to the minterm expansion, the complementary maxterm expansion 
can be obtained for any Boolean function. The maxterm expansion is simply 
obtained from the minterm expansion by interchanging · for+ and 0 for 1, and vice 
versa. Thus from equation (VII-4), the maxterm expansion in one variable is 

f(X1, X2, ... , Xn) = [X1 + f(O, X1 ... , Xn)] · [X' 1 + f(l, Xx, .. ., Xn)] 
(VII-6) 

Analogous forms are obtained for higher order expansions. Instead of obtaining a 
sum (union) of combinations (intersections) as in the minterm expansion, we obtain 
a combination (intersection) of sums (unions) for the maxterm expansion. 

In the minterm (or maxterm) expansion, each combination term is disjoint* from 
all the others. Thus in equation (Vll-5) the four terms 

X1 ·X2 • f(l, 1, X3, ... , Xn) 
X1 ·X'2 • f(l, 0, X3, ... , Xn) 
X' 1 • X2 • f(O, 1, X3, ... , Xn) 
X' 1 ·X'2 • f(O, 0, X3 , ... , Xn) 

are disjoint from one another. This characteristic is generally true for any order 
expansion and it can be exploited in quantifying fault trees whenever Shannon's 
expansion is used. Another reason for representing a Boolean function in either 
minterms or maxterms is that these expressions are unique for any given function. 
Such an expansion, then, provides a general technique for determining whether two 
Boolean expressions are equal, because if they are, they will have identical minterm 
(or maxterm) forms. 

Shannon's expansion will now be illustrated for the two 3-variable functions: 

(a) f(X,Y,Z) = (X·Y) + (X'·Z) + (Y·Z) 
(b) f(X,Y ,Z) = (X • Y) + (X' • Z). 

The reader can show, in a few simple algebraic steps, that the functions in (a) and (b) 
are indeed equal but we wish to use (a) and (b) to exemplify the general process 
involved in using Shannon's expansion. We shall start with (a) and expand it using the 
minterm expansion. 

(X · Y) + (X' · Z) + (Y • Z) 
= [X·Y·Z·f(l, 1, 1)] + [X·Y·Z'·f(l, 1, O)] + [X·Y'·Z·f(l, 0, 1)] 
+ [X·Y'·Z'·f(l, 0, O)] + [X'·Y·Z·f(O, 1, 1)] + [X'·Y·Z'·f(O, 1, O)] 
+ [X'·Y'·Z·f(O, 0, 1)] + [X'·Y'·Z'·f(O, 0, O)]. (VII-7) 

*Two events are disjoint if their intersection is the null set, or equivalently, two events are 
disjoint if the probability of both events is zero. 



VII-14 FAULT TREE HANDBOOK 

Note that this expression is valid for any 3-variable Boolean function. Now f{l, 1, 1 ), 
f{l, 1, 0), etc., can be readily evaluated by making the appropriate substitutions in 
the original functional form as follows: 

f{l,1,1)=(1·1)+{0·1)+{1·1)= 1+0+1=1 
f{l,1,0)={1·1)+{0·0)+{1·0)= 1+0+0= 1 
f{l ,0,1) = {1 ·0) + {0· 1) + {0· 1) = O+O+O = 0 
f{l ,0,0) = {l ·O) + {O·O) + (O·O) = 0+0+0 = 0 
f{0,1,1) = {0· 1) + {l • 1) + {1·1) = O+ 1+1 = 1 
f{0,1,0) = {0· 1) + {1 ·0) + {1 ·0) = O+O+O = 0 
f{0,0,1) = (0·0) + {l • l) + (0· 1) = O+l +O = 1 
f(0,0,0) = (0·0) + {l ·O) + (O·O) = O+O+o = 0 

When these values are substituted into the expanded form of (a) above, the result is 
the unique minterm expansion of (a): 

{X • Y) + (X' • Z) +· {Y • Z) = 
(X • Y • Z) + (X • Y • Z') + (X' • Y • Z) + (X' • Y' • Z). 

in which all of the terms in parentheses are disjoint. 

It now remains to evaluate f(l ,1,1 ), f{l ,1,0), etc., for expression {b ). 

f{l,1,1)={1·1)+{0·1)= 1+0= 1 
f{l ,1,0) = {l • 1) + {O·O) = 1 +O = 1 
f( 1,0, 1) = ( 1 • 0) + (0 • 1) = O+O = 0 
f{l ,0,0) = {1 ·0) + {0·0) = O+O = 0 
f(0,1,1) = {0· 1) + {l • 1) = O+l = 1 
f(0,1,0) = {0· 1) + {l ·0) = O+O = 0 
f{0,0,1) = (O·O) + {1·1) = O+l = 1 
f(0,0,0) = {0·0) + {1 ·0) = O+O = 0 

It is now apparent that {b) has exactly the same minterm expansion as (a) and there
fore we have proved that (X • Y) + (X' • Z) + (Y • Z) = (X • Y) + (X' • Z). 

It is of interest to view the minterms of equation (VII-7) with the help of Venn 
diagrams. This is shown in Figure VII-9. The reader should note from Figure VII-9 
two important properties of the minterms: They are all mutually disjoint and their 
collective union yields the universal set. 

The maxterm expansion of a 3-variable Boolean function can be obtained from an 
extension of equation {VII-6) as follows: 

f(X, Y, Z) 
= [X+Y+Z+f{0,0,0)] • [X+Y+Z'+f(0,0,1)] • [X+Y'+Z+f(0,1,0)] 
• [X+Y'+Z'+f(0,1,1)] • [X'+Y+Z+f{l,0,0)] • [X'+Y+Z' +f{l,0,1)] 
• [X'+Y'+Z+f{l ,1,0)] • [X'+Y'+Z'+f(l ,1,1)] 

{VII-8) 

The reader should now be able to show that the maxterm expansions of (a) and (b) 
are identical. 
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x·v·z x · v · z' x . y' . z x · v' · z' 

x' · v · z x' · v · z' x' · v' · z x' · v' · z' 

Figure VII-9. Venn Diagram Representation of the Minterms of a 
3-Variable Boolean Function 

4 . Determining the Minimal Cut Sets or Minimal Path Sets 
of a Fault Tree 

One of the main purposes of representing a fault tree in terms of Boolean 
equations is that these equations can then be used to determine the fault tree's 
associated "minimal cut sets" and "minimal path sets." The minimal cut sets define 
the "failure modes" of the top event and are usually obtained when a fault tree is 
evaluated. Once the minimal cut sets are obtained, the quantification of the fault tree 
is more or less straightforward. The minimal path sets are essentially the 
complements of the minimal cut sets and define the "success modes" by which the 
top event will not occur. The minimal path sets are often not obtained in a fault tree 
evaluation; however, they can be useful in particular problems. 

Minimal Cut Sets 

We can formally define a minimal cut set as follows: a minimal cut set is a smallest 
combination of component failures which, if they all occur, will cause the top event 
to occur. 

By the definition, a minimal cut set is thus a combination (intersection) of 
primary events sufficient for the top event. The combination is a "smallest" 
combination in that all the failures are needed for the top event to occur; if one of 
the failures in the cut set does not occur, then the top event will not occur (by this 
combination). 

Any fault tree will consist of a finite number of minimal cut sets, which are 
unique for that top event. The one-component minimal cut sets, if there are any, 
represent those single failures which will cause the top event to occur. The 
two-component minimal cut sets represent the double failures which together will 
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cause the top event to occur. For an n-component minimal cut set, all n components 
in the cut set must fail in order for the top event to occur. 

The minimal cut set expression for the top event can be written in the general 
form, 

T = M 1 + M2 + ... + Mk 

where T is the top event and M1 are the minimal cut sets. Each minimal cut set 
consists of a combination of specific component failures, and hence the general 
n-component minimal cut can be expressed as 

where X1 , X2 , etc., are basic component failures on the tree. An example of a top 
event expression is 

T=A+B·C 

where A, B, and Care component failures. This top event has a one-component mini
mal cut set (A) and a two-component minimal cut set (B·C). The minimal cut sets 
are unique for a top event and are independent of the different equivalent forms the 
same fault tree may have. 

To determine the minimal cut sets of a fault tree, the tree is first translated to its 
equivalent Boolean equations and then either the "top-down" or "bott.om-up" 
substitution method is used. The methods are straightforward and they involve 
substituting and expanding Boolean expressions. Two Boolean laws, the distributive 
law and the law of absorption, are used to remove the redundancies. 

Consider the simple fault tree shown in Figure VII-10; the equivalent Boolean 
equations are shown below the tree. 

T 

Figure VII-10. Example Fault Tree 
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T = E1 ·E2 
E1 = A+E3 
E3 = B+C 
E2 = C+E4 
E4 = A·B 

We will first perform the top-down substitution. We start with the top event equation 
and substitute and expand until the minimal cut set expression for the top event is 
obtained. Substituting for E1 and E2 and expanding we have: 

T = (A+E3) • (C+E4) 
= (A·C) + (E3 ·C) + (E4 ·A)+ (E3· E4) 

Substituting for E3: 

T =A ·C + (B+C) • C + E4 ·A+ (B+C) • E4 
= A·C + B·C + C·C + E4 ·A+ E4 • B + E4 ·C. 

By the idempotent law, C·C = C, so we have: 

But A·C + B·C + C + E4 • C = C by the law of absorption. Therefore, 

T = C + E4 ·A + E4 • B. 

Finally, substituting for E4 and applying the law of absorption twice 

T = C + (A· B)· A + (A· B)· B 
= C + A•B. 

The minimal cut sets of the top event are thus C and A· B, one single component 
minimal cut set and one double component minimal cut set. The fault tree can thus 
be represented as shown in Figure VII-11 which is equivalent to the original tree 
(both trees have the same minimal cut sets). 

T 

Figure VII-11. Fault Tree Equivalent of Figure VII-IO 
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The bottom-up method uses the same substitution and expansion techniques, 
except that now the operation begins at the bottom of the tree and proceeds upward. 
Equations containing only basic failures are successively substituted for higher faults. 
The bottom-up approach can be more laborious and time-consuming; however, the 
minimal cut sets are now obtained for every intermediate fault as well as the top 
event. 

Consider again our example tree (we repeat the equivalent Boolean equations for 
the reader's convenience). 

T = E1 ·E2 
E1 = A+E3 
E3 = B+C 
E2 = C+E4 
E4 = A·B 

Because E4 has only basic failures, we substitute into E2 to obtain 

E2 =C+A·B. 

The minimal cut sets of E2 are thus C and A· B. E3 is already in reduced form having 
minimal cut sets B and C. Substituting into E1, we obtain E1 = A+B+C so E1 has 
three minimal cut sets A, B, and C. Finally, substituting the expressions for E1 and 
E2 into the equation for T, expanding and applying the absorption law, we have 

T=(A+B+C) • (C+A·B) 
= A·C + A·A·B + B·C + B·A·B + C·C + C·A·B 
= A· C + A· B + B· C + A· B + C + A· B· C 
= C + A·B. 

The minimal cut sets of the top event are thus again C and A· B. 
As a very simple example, suppose we have the pumping system shown in Figure 

VII-12. 

IN EXHAUST ABLE 
WATER 
SOURCE 

PUMP 1 

VA~EV 

PUMP2 

Figure VII-12. Water Pumping System 

REACTOR 

Assume that out undesired event is "no flow of water to reactor." Ignoring the 
contribution of the pipes, we can model this system by fault tree of Figure VII-11 
where: 

T = "no flow of water to reactor" 
C = "valve V fails closed" 
A= "pump 1 fails to run" 
B = "pump 2 fails to run" 
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We have just shown that the minimal cut sets of this tree are C and A· B. This tells 
us that our undesired event "no flow of water to tank" will occur if either valve V 
fails closed or both pumps fail to run. In this simple case, the cut sets do not really 
provide any insights that are not already quite obvious from the system diagram. In 
more complex systems, however, where the system failure modes are not so obvious, 
the minimal cut set computation provides the analyst with a thorough and systematic 
method for identifying the basic combinations of component failures which can 
cause an undesired event. 

For smaller fault trees, the determination of the minimal cut sets, using either the 
top-down or bottom-up method, can be done by hand. For larger trees, various 
computer algorithms and codes for fault tree evaluation are available. These are 
discussed in Chapter XII. 

Minimal Path Sets and Dual Fault Trees 

The top event of a fault tree represents system failure. This event is of great 
interest from the point of view of system safety. From the point of view of reliability 
we would be more concerned with the prevention of the top event. Now we know 
that the top event of a fault tree may be represented by a Boolean equation, and 
because this equation may be complemented, there is also a Boolean equation for the 
complement (i.e., nonoccurrence) of the top event. This complemented equation, in 
turn, corresponds to a tree which is the complement of the original tree. This 
complemented tree, called the dual of the original fault tree, may be obtained direct
ly from the original tree by complementing all the events and substituting OR-gates 
for AND-gates and vice versa. In either case, whether we complement the top event 
equation or the tree itself, we are applying de Morgan's theorem given in our Table 
of Boolean Algebra Laws. The minimal cut sets of the dual tree are the so-called 
"minimal path sets" of the original tree, where a minimal path set is a smallest 
combination (intersection) of primary events whose non-occurrence assures the 
non-occurrence of the top event. 

The combination is a smallest combination in that all the primary event 
nonoccurrences are needed for the top event to not occur; if any one of the events 
occurs then the top event can occur. The minimal path set expression for the top 
event T can be written as 

T' = Pi + P 2 + · · · + Pk 

where T' denotes the complement (non occurrence) of T. The terms P 1 , P 2 , ... , P x 
are the minimal path sets of the fault tree. Each path set can be written as 

pi = x' 1 • x' 2 • . . . • x' m 

where the Xi are the basic events in the fault tree and the X1 i are the complements. 
We can find the minimal path sets of a given tree by forming its dual and then 

using either the top-down or bottom-up method to find its minimal cut sets. These 
cut sets are the minimal path sets of the original tree which we desire. 

Alternatively, if the minimal cut sets of the tree have already been determined, we 
can take the complement of the minimal cut set equation and obtain the minimal 
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path sets directly. For our sample tree, we obtained the following minimal cut 
expression in the previous section, 

T=C+A·B. 

Taking the complement 

T' = (C + A·B)' 
= C'·(A·B)' 

using de Morgan's theorem. Applying de Morgan's theorem to the term (A·B)' 

T' =·c'·(A'+B') 

and using the distributive law (i.e., expanding) 

T' =·c'·A' + C'·B' 

Therefore, the minimal path sets of the tree are C' ·A' and C' · B'. In terms of our 
pumping system of Figure VIl-12, this tells us that we can prevent the undesired 
event and assure system success if either 

(1) Valve V is open and pump 1 is running, or 
(2) Valve Vis open and pump 2 is running. 



CHAPTER VIII - THE PRESSURE TANK EXAMPLE 

1. System Definition and Fault Tree Construction 

In this and the next chapter, we are going to define undesired events for two 
simple systems. The reader will then be shown how the corresponding fault trees are 
developed step-by-step with the help of the rules described in Chapter V. From the 
trees so constructed, some obvious conclusions will be drawn, but detailed evaluation 
procedures will be postponed until Chapter XI. 

Consider now Figure VIII-I which shows a pressure tank - pump-motor device and 
its associated control system. First we present details of system operation. The 
operational modes are given in Figure VIIl-2. 

r---- ---- -- - ., 
I 
I 

I·~~ 
SWITCH 

Sl 

FROM RESERVOIR 

PRESSURE 
SWITCH S 

Figure VIII-I. Pressure Tank System 

PRESSURE 
TANK 

The function of the control system is to regulate the operation of the pump. The 
latter pumps fluid from an infinitely large reservoir into the tank. We shall assume 
that it takes 60 seconds to pressurize the tank. The pressure switch has contacts 
which are closed when the tank is empty. When the threshold pressure has been 
reached, the pressure switch contacts open, deenergizing the coil of relay K2 so that 
relay K2 contacts open, removing power from the pump, causing the pump motor to 
cease operation. The tank is fitted with an outlet valve that drains the entire tank in 
an essentially negligible time; the outlet valve, however, is not a pressure relief valve. 
When the tank is empty, the pressure switch contacts close, and the cycle is repeated. 

Initially the system is considered to be in its dormant mode: switch Sl contacts 
open, relay Kl contacts open, and relay K2 contacts open; i.e., the control system is 

VIII-1 
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Figure VIII-2. Pressure Tank Example 
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de-energized. In this de-energized state the contacts of the timer relay are closed. We 
will also assume that the tank is empty and the pressure switch contacts are therefore 
closed. 

System operation is started by momentarily depressing switch S 1. This applies 
power to the coil of relay Kl, thus closing relay Kl contacts. Relay Kl is now 
electrically self-latched. The closure of relay Kl contacts allows power to be applied 
to the coil of relay K2, whose contacts close to start up the pump motor. 

The timer relay has been provided to allow emergency shut-down in the event that 
the pressure switch fails closed. Initially the timer relay contacts are closed and the 
timer relay coil is de-energized. Power is applied to the timer coil as soon as relay Kl 
contacts are closed. This starts a clock in the timer. If the clock registers 60 seconds 
of continuous power application to the timer relay coil, the timer relay contacts 
open (and latch in that position), breaking the circuit to the Kl relay coil (previously 
latched closed) and thus producing system shut-down. In normal operation, when the 
pressure switch contacts open (and consequently relay K2 contacts open), the timer 
resets to 0 seconds. 

For our undesired event let us take: 

RUPTURE OF 
PRESSURE TANK 

AFTER THE START 
OF PUMPTNG 

It will simplify things considerably if we agree to neglect plumbing and wiring 
failures and also all secondary failures except, of course, the one of principal interest: 
"tank rupture after the start of pumping." 

The reader may object that a system that includes an infinitely large reservoir and 
an outlet valve that drains the tank iri a negligible time is unrealistic-and now we are 
suggesting the neglect of plumbing and wiring faults that might contribute to the 
occurrence of the top event. The point is that with this simplified system we can 
illustrate most of the important steps in fault tree construction. In a more complex 
system the reader might tend to lose sight of the overall system and become too 
involved in the details. 

First we check to make sure that our top event is written as a fault and that it 
specifies a "what" and a "when." Next we apply our test question: "Can this fault 
consist of a component failure?" Because the answer is "Yes," we immediately add 
an OR-gate beneath the top event and consider _primary, secondary, and command 
modes.* Our tree has now developed to the point shown in Figure VIIl-3. 

In this problem we shall establish our limit of resolution at the "component 
failure level." By "component" we shall mean those items specifically named in 
Figure VIII-1. Thus the primary failure of the tank (e.g., a fatigue failure of the tank 
wall) is already at the limit of resolution and is shown in a circle. Whether or not we 
include the statement in the diamond is moot. We could just assume at the beginning 
that the tank was an appropriate one for the operating pressures involved. At any 
rate, we choose not to trace this fault any further. 

*In this case, however, there is no command mode. 



VIII-4 

TA111K RUPTURE 
(SECONDARY FAILURE) 

RUPTURE OF PRESSURE 
TANK AFTER THE 

START OF PUMPING 

FAULT TREE HANDBOOK 

Figure VIII-3. Fault Tree Construction - Step 1 

Thus our attention is now directed to the secondary failure of the tank. The 
reader will remember from Chapter V, that in contrast to a primary failure, which is 
the failure of a component in an environment .for which it is qualified, a secondary 
failure is the failure of a component in an environment for which it is not qualified. 
Because the secondary failure of the tank can consist of a component failure, we 
introduce another OR-gate and our tree assumes the form shown in Figure VII14. 

Here again we indicate, in a diamond, a set of conditions whose causes we choose 
not to seek. Notice that the fault spelled out in the rectangle is a specific case of the 
top event with a more detailed description as to cause. 

Now it might happen that our tank could miraculously withstand continuous 
pumping for t > 60 seconds but an application of our "No Miracles" rule constrains 
us to the statement that the tank will always rupture under these conditions. We can 
indicate this on the fault tree by using an Inhibit gate whose input is "continuous 
pump operation fort> 60 seconds" (see Figure VIII-5). 

Can the input event to the Inhibit gate consist of a component failure? No, the 
pump is simply operating and pump operation for any length of time cannot consist 
of a component failure. Therefore this fault event must be classified "state-of
system." We now recall the rules of Chapter V. Below a state-of-system fault we can 
have an OR-gate, an AND-gate, or no gate at all. Furthermore, we look for the 
minimum, immediate, necessary and sufficient cause or causes. In this case the 
immediate cause is "motor runs for t > 60 seconds," a state-of-system fault. Its 
immediate cause is "power applied to motor for t > 60 seconds," a state-of-system 
fault. The immediate cause of the latter event is "K2 relay contacts remain closed for 
t > 60 seconds." We have now added the string of events shown in Figur~ VIII-6. 

In this case, nothing is lost by jumping from "pump operates continuously for 
t > 60 seconds" directly to "K.2 relay contacts remain closed for t > 60 seconds." 
There is, however, no harm done in detailing the intermediate causes and, as a matter 
of fact, the opportunity for error is lessened thereby. 
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Figure VIII-4. Fault Tree Construction - Step 2 
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Figure VllI-5. Fault Tree Construction - Step 3 
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PUMP OPERATES 
CONTINUOUSLY 
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MOTOR RUNS 
FOR t > 60 SEC 

POWER APPLIED 
TO MOTOR 

FOR t> 60 SEC 

K2 RELAY CONTACTS 
REMAIN CLOSED 
FORt>&OSEC 

FAULT TREE HANDBOOK 

Figure VIIl-6. Fault Tree Construction - Step 4 

We have now to consider the fault event, "K2 relay contacts closed for t > 60 
seconds." Can this consist of a component failure? Yes, the contacts could jam, weld, 
or corrode shut. We thus draw an OR-gate and add primary, secondary, and 
command modes as shown in Figure VIII-7. 

The event of interest here is the conunand mode event described in the rectan'gle. 
Recall that a command fault involves the proper operation of a component, but in 
the wrong place or at the wrong time because of an erroneous command of signal 
from another component. In this case, the erroneous signal is the application of EMF 
to the relay coil for more than 60 seconds. This state-of-system fault can be analyzed 
as.shown in Figure VIII-8. 

Notice that both input events to the AND-gate in Figure VIII-8 are written as 
faults. In fact, as we know, all events that are linked together on a fault tree should 
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K2 RELAY CONTACTS 
REMAIN CLOSED 
FOR t> 60SEC 

EMF APPLIED TO 
K2 RELAY COIL 
FORt>&OSEC 

Figure VIII-7. Fault Tree Construction - Step 5 
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FORt>60SEC 

EMF APPLIED TO 
K2 RELAY COIL 
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EMF REMAINS ON 
PRESSURE SWITCH 
CONTACTS WHEN 
PRESSURE SWITCH 

CLOSED FOR t > 60 SEC 

Figure VIII-8. Fault Tree Construction - Step 6 
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be written as faults except, perhaps, those statements that are added as simply 
remarks (e.g., statements in ellipses). The pressure switch contacts being closed is not 
a fault per se, but when they are closed for greater than 60 seconds, that is a fault. 
Likewise the fact that an EMF is applied to the pressure switch contacts is not itself a 
fault. Notice that the condition that makes this event a fault is framed in terms of 
the other input event to the AND-gate. 

The fault event, "pressure switch contacts closed for t > 60 seconds," can consist 
of a component failure, so both input events in Figure VIII-8 are followed by 
OR-gates. We analyze them separately, starting with tne left-hand event (see Figure 
VIII-9. 
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PRESSURE SWITCH 
CONTACTS CLOSED 

FOR t> 60SEC 

PRESSURE 
SWITCH CONTACTS 

FAIL TO OPEN 
(PRIMARY 
FAILURE) 

FAULT TREE HANDBOOK 

Figure VIII-9. Fault Tree Construction - Step 7 

We see that this. leg of the tree has reached its terminus (all input events are either 
circles or diamonds) unless, for some reason, we wish to pursue the event in the 
left-hand diamond somewhat further (e.g., ruptured diaphragm, etc.). 

We now analyze the right-hand event in Figure VIII-8 as shown in Figure VIII-10. 
Both the input events in Figure VIII-10 are state-of-component faults. The 

left-hand one is the more easily analyzed as shown in Figure VIII-11. 

EMF REMAINS ON PRES· 
SURE SWITCH CONTACTS 
WHEN PRESSURE SWITCH 
CONTACTS CLOSED FOR 

EMF THRU K1 RELAY 
CONTACTS WHEN PRES

SURE SWITCH CONTACTS 
CLOSED FOR t > 60 SEC 

t> 60SEC 

EMF THRU S1 SWITCH 
CONTACTS WHEN PRES· 

SURE SWITCH CONTACTS 
CLOSED FOR t > 60 SEC 

Figure VIII-I 0. Fault Tree Construction - Step 8 
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EMF THRU St SWITCH 
CONTACTS WHEN PRES

SURE SWITCH CONTACTS 
CLOSED FOR t > 60 SEC 

Figure VIII-I I. Fault Tree Construction - Step 9 
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Here we have reached another tree terminus. The analysis of the remaining input 
event in Figure VIII-IO is shown in Figure VIII-12. The reader will note from this 
latter figure that we have finally worked our way-in this step-by-step fashion-down 
to timer relay faults. Finally, we show the complete fault tree for the pressure tank 
example in Figure VIII-13. 

Actually, the fault tree of Figure VIII-13 ~ould be considered too complete. 
Because the only secondary failure that we developed was the rupture of the pressure 
tank due to overpumping, other secondary failures (the dotted diamonds) could 
simply be omitted from the diagram. Further simplifications can also be made, 
leading to the basic fault tree of Figure VIII-14, where the circles represent primary 
failures as shown in the legend and the fault events El, E2 etc. are defined as 
follows: 

The E's are fault events. 

El Pressure tank rupture (top event). 
E2 Pressure tank rupture due to internal overpressure from pump 

operation for t > 60 seconds which is equivalent to K2 relay contacts 
closed for t > 60 seconds. 

E3 EMF on K2 relay coil fort> 60 seconds. 
E4 EMF remains on pressure switch contacts when pressure switch 

contacts have been closed fort> 60 seconds. 
ES EMF through Kl relay contacts when pressure switch contacts have 

been closed for t > 60 seconds which is equivalent to timer relay 
contacts failing to open when pressure switch contacts have been closed 
for t > 60 seconds. 
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Figure VIII-12. Fault Tree Construction - Final Step 
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2. Fault Tree Evaluation (Minimal Cut Sets) 

Fault tree evaluation in general will be taken up in Chapter XI. It is useful at this 
point, however, to evaluate the fault tree so that we can assess, in a gross way, the 
strengths and particularly the weaknesses of the pressure tank control circuit. 

From the basic fault tree of Figure VIII.14 we can express the top event as a 
Boolean function of the primary input events using the method explained in Chapter 
VII. This is accomplis)led by starting at the top of the tree and working down: 

El = T + E2 
= T + (K2 + E3) 
= T + K2 + (S · E4) 
= T + K2 + S • (S 1 + ES) 
= T + K2 + (S • Sl) + (S • ES) 
= T + K2 + (S,- Sl) + S • (Kl + R) 
= T + K2 + (S • Sl) + (S · Kl)+ (S • R) 

This expression of the top event in terms of the basic inputs to the tree is the 
Boolean algebraic equivalent of the tree itself. El appears as the union of various 
combinations (intersections) of basic events and is the minimal cut expression for the 
top event. In our example, we have found five minimal cut sets-two singles and 
three doubles: 

K2 
T 
S • Sl 
S ·Kl 
S • R 

Each of these defines an event or series of events whose existence or joint existence 
will initiate the top event of the tree. 

We are now in a position to make, first, a qualitative assessment of our results and 
then, armed with some data, a gross quantitative assessment. Qualitatively, the 
leading contributor to the top event is the single relay K2 because it represents a 
primary failure of an active component. Therefore, the safety of our system would 
be considerably enhanced by substituting a pair of relays in parallel for the single 
relay K2. Actually, however, our system contains a much more serious design error: 
We are monitoring the controls instead of the parameter of interest (pressure in this 
case). It should be just the other way around! Thus, the most obvious way to 
improve the system would be to install a pressure relief valve on the tank and remove 
the timer. 

The next basic event, in order of importance, is T, the primary failure of the 
pressure tank itself. Because the tank is a passive component, recall from Chapter V 
that the probability of the event T should be less (by an order of magnitude or so) 
than the probability of event K2. Of less importance are the three double component 
cut sets S·Sl, S·Kl, and S·K2, although we do note that the failure of the pressure 
switch contributes to each of them. 

To make a quantitative assessment of our results we need estimates of failure 
probabilities for our components. Table VIII-I gives values for the failure 
probabilities for the components in the system. The calculations involved in getting 
these numbers will be discussed later; at this time we simply assume the values as 
being "data." 
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Table VIII-I. Failure Probabilities for Pressure Tank Example 

COMPONENT 

Pressure Tank 
Relay K2 
Pressure Switch 
Relay Kl 
Timer Relay 
Switch Sl 

SYMBOL 

T 
K2 
s 
Kl 
R 
Sl 

FAILURE PROBABILITY 

5 x 10-6 
3 x 10-s 
1 x 10-4 
3 x 10-s 
1 x 10-4 
3 x 10-s 

Because a minimal cut is an intersection of events, the probabilities associated 
with our five minimal cut sets are obtained by multiplying the appropriate 
component failure probabilities (assuming independence of failures); 

P[T] = 5 x 10-6 
P[K2] = 3 x 10~5 
P[S"Kl] = (1 x 10-4) (3 x 10-S) = 3 x 10-9 
P[S • R] = (1 x 10-4) (1 x 10-4) = 1 x 10-8 
P[S • Sl] = (1 X 10-4) (3 X 10-S) = 3 X 10-9 

We now wishto estimate the probability of the top event, E1. Observing that the 
top event probability is given by the probability of the union of the minimal cut sets, 
and that the probability of each individual minimal cut set is low, we conclude that 
the rare event approximation of equation (VI-7) is applicable. We therefore simply 
sum the minimal cut set probabilities and obtain: 

P{E1)::::3.4x 10-s 
The relative quantitative importance of the various cut sets can be obtained by 

taking the ratio of the minimal cut set probability to the total system probability: 

Cut Set 

T 
K2 

S ·Kl l 
S·R 
S • Sl 

Importance 

14% 
86% 

Less than 0.1% 

The pressure tank example has been provided on numerous occasions as a 
workshop exercise for students learning the basics of fault tree construction. The 
most frequent analytical error made by these students is the tendency to leap 
directly from the event of rupture to the pressure switch. When this is done the single 
failure minimal cut set K2, i.e., the primary failure pf K2, is missed completely. This 
illustrates the importance of applying the rules described in Chapter V. 

One design-related principle that arises out of this example is that a system should 
be designed so that AND-gates appear as close to the tree-top as possible in an effort 
to eliminate single event cut sets. The family automobile is a good example of a 
system which is not of this type, and the reader can amuse himself by making a 
lengthy list of single events that will immobilize his car. 



CHAPTER IX - THE THREE MOTOR EXAMPLE 

1. System Definition and Fault Tree Construction 

In this chapter we discuss a somewhat more complicated example of fault tree 
construction and evaluation.* Figure IX-1 displays a power distribution box and 
Figure IX-2 gives the system modus operandi. With contacts KTl, KT2, and_ KT3 
normally closed, a momentary depression of pushbutton S 1 applies power from 
B;;tttery 1 to the coils of cut-throat relays Kl and K2. Thereupon Kl and K2 close 
and remain electrically latched. 

rl• .. 
BATTERY 1 

TEST SIGNAL 

~~--------0~. ~ 
: : I -
I I 

.-----o-""01 ...__ ______ ~~ 
I 
I 

I 
I 
I 

~~ 
Sll,~ 
~. 

""""' """" ...... 
KT1 KT2 KT3 

I 
I 

I 
I T 

rl+-~r---------~: ~oro• -
BATTERY 2 KT 

3 

Figure IX-1. Power Distribution Box Fault Tree Example 

Next, a 60-second test signal is impressed through K3, the purpose being to check 
the proper operation of Motors 1, 2, and 3. Once K3 has closed, power from Battery 
1 is applied to the coils of relays K4 and KS. The closure of K4 starts Motor 1. The 
closure of KS applies power from Battery 2 to the coil of K6 and also starts Motor 2. 
Finally, the closure of K6 applies power from Battery 1 to the coil of K7. Closure of 
K7 starts Motor 3. 

After an interval of 60 seconds, K3 is supposed to open, shutting down the 
operation of all three motors. Should K3 fail closed after the expiration of 60 
seconds, all three timers (KTl, KT2, KT3) open, de-energizing the coil of Kl, thus 
shutting down system operation. Suppose K3 opens properly at the end of 60 
seconds, but K4 fails closed. In that case KTl opens to deenergize Kl and Motor 1 
stops. KT2 and KT3 act similarly to stop Motor 2 or Motor 3 should either KS or K7 
fail closed. 

*For an actual example of a fault tree analysis applied to a major nuclear safety system see 
U.S. Nuclear Regulatory Commission, "Reactor Safety Study-An Assessment of Accident Risks 
in U.S. Commercial Nuclear Power Plants," WASH-1400 (NUREG-75/014), Appendix II, "Fault 
Trees," Section 2, "Fault Tree Analysis." 
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Figure IX-2. Power Distribution Box Component Status Diagram 
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Figure IX-3. "Treetop" for Motor Overrun Problem 

IX-3 

Our main concern in this problem is the "overrun" (t > 60 seconds) of any one of 
the motors after test initiation. Thus our "tree top" appears as in Figure IX-3. 

Each of the three inputs to the OR-gate must be analyzed separately. We propose 
to treat the overrun of Motor 2 first. To avoid a clutter of trees on a single sheet, 
"transfer out" symbols, as shown, are applied to the fault events relevant to Motor 1 
and Motor 3. 

At this point, we have to decide how exhaustive our analysis is going to be. The 
simplest approach would be to restrict ourselves to the failures of relays and 
switches, and we shall do this first. A fuller analysis (which we shall hold in abeyance 
for awhile) would also include possible wiring defects. Limiting the analysis to the 
former problem for the moment, we are faced with the top event: 

EMF APPLIED 
TO MOTOR 2 

FORt>GOSEC 

Because this is a state-of-system fault, we look for immediate necessary and 
sufficient causes. We see from Figure IX-1 that two fault events have to exist to cause 
the occurrence of the event of interest: 

( 1) KS relay contacts remain closed for t > 60 seconds. 
(2) K2 relay contacts fail to open when KS relay contacts have been closed for 

t > 60 seconds. 
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These two fault events are shown as inputs to the 2nd level AND-gate in Figure IX-4 
which displays the completed tree for overrun of Motor 2. Notice that the failures of 
KS or K2 contacts to open are not, of themselves, faults; they become faults, 
however, when the time restriction is specified. 

We now direct our attention to the fault event: 

KlRELAYCDlrtTACTS 
REMAUICLOSEO 
FOR1>HSEC 

K5 RELAY CONTACTS 
REMAIN CLOSED 
FOR t>&O SECS. 

lt1RELAYCONTACTS 
FAILTOOPU 

WltEIKJCDNTACTS 
LOSEDFORt">iDSEC 

OVERRU•OFAU 
MOTOR AFTER TEST 

ISlllllTIATED 

EMF TD Kl COIL 
THRUTlll.ER 

CIRCUIT WHEN 
KSCO#TACTSClOSE 

FORt'"IOSEC 

Figure IX-4. Fault Tree for Overrun of Motor 2 (Relay Logic Only) 

Because this is a state-of-component fault, it demands an OR-gate with primary, 
secondary, and command inputs. To Simplify the problem, let us not pursue 
secondary failures. Thus, Figure IX-4 shows only primary and command inputs. The 
primary failure of KS relay is already a basic tree input (a limit of resolution); we 
tum our attention therefore, to the command input which is 
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EMF REMAINS 
ON KS COIL 

FOR t > 60 SEC 

IX-5 

We note that this event is a state-of-system fault. From Figure IX-1 we find that this 
fault event will occur when both K3 contacts and K 1 contacts fail to open with the 
time restriction t > 60 seconds. These two events are shown in Figure IX4 as inputs 
to the 4th level AND-gate on the left. The fault event relevant to relay K3 is a 
state-of-component fault which demands an OR-gate followed by primary and 
command inputs. In this case, the command input is shown in a diamond because its 
cause (or causes) lie "outside" of our defined system. This leg of the tree is now 
complete. 

Returning now to the fault event relevant to Kl relay, we realize that it will be 
the "top event" of a fairly substantial subsidiary tree of its own. We therefore 
"transfer out" to another sheet of paper (see Figure IX-5). As a matter of fact, this 
strategy proves to be particularly useful inasmuch as this same fault event recurs in 
the analysis of the overruns of Motor 1 and Motor 3. The task of studying the details 
of the subsidiary fault tree of Figure IX-5 is left to the reader. 

Referring once more to Figure IX4, we now have to consider the righthand input 
to the 2nd level AND-gate. This fault event is 

K2 RELAY CONTACTS 
FAIL TO OPEN WHEN 

KS RELAY CONTACTS 
CLOSED FOR t > 60 SEC 

This is a state-of-component fault whose command input is 

EMF NOT REMOVED 
FROM K2 RELAY COIL 

WHEN KS RELAY 
CONTACTS CLOSED 

FORt>60SEC 

a state-of-system fault. This is really a single input event except that we have also 
chosen to consider the possibility (highly improbable) of an EMF on the K2 coil 
through the S 1, KT 1, KT2 and KT3 contacts. This latter event appears in a diamond 
in Figure IX4. 

The details of the rest of the right leg of the tree are left to the reader. The basic 
inputs are primary failures of Kl relay, S 1 switch and KT2 timer contacts. 



IX-6 

KT1 TIMER CONTACTS 
FAIL TO OPEN 

WHEN K3 CONTACTS 
CLOSED FOR t > 60 SEC 

EMF TO Kl COIL 
THRU TIMER 

CIRCUIT WHEN 
KJ CONTACTS CLOSED 

FOR t > 60 SEC 

KT2 TIMER CONTACTS 
FAIL TO OPEN 

WHEN K3 CONTACTS 
CLOSED FOR t > 60 SEC 

Kl RELAY CONTACTS 
FAIL TO OPEN WHEN 

KJ CONTACTS CLOSED 
FORt>60SEC 

EMF NOT REMOVED 
FROM Kl RELAY 
COIL WHEN KJ 

CONTACTS CLOSED 
FOR 1>60SEC 

KT3 TIMER CONTACTS 
FAIL TO OPEN 

, W~EN KJ CONTACTS 
CLOSED FOR t > 60 SEC 

Figure IX-5. Analysis of Fault Event Relevant to Kl Relay 
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EMF TO K1 COIL 
THAU S1 CONTACTS 
WHEN K3 CONTACTS 

CLOSED FOR t > 60 SEC 
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The fault trees relevant to overruns of Motor 1 and Motor 3 are shown in Figures 
IX-6 and IX-7. A more exhaustive study of the overrun problem for Motor 2 
(including wiring defects) is shown in Figures IX-8, and IX-9. The reader may now 
care to try his hand at the analysis of a different top event: Motor 1 fails to start in 
presence of test signal. A solution for Motor 1 is displayed in Figure IX-10. 

2. Fault Tree Evaluation (Minimal Cut Sets) 

We now turn to the qualitative evaluation of the fault tree of Figure IX-4 and 
determine the minimal cut sets for the overrun of Motor 2. For ease of presentation 
we will deal with a reduced version of the fault tree of Figure IX-4 where the 
diamonds and houses are removed. The reduced tree is shown in Figure IX-11. 

In Figure IX-11 the circles represent primary failures of the components denoted, 
and the fault events E1 , E2 , etc. are defined as follows: 

E1 EMF applied to Motor 2 fort> 60 seconds. 
E1 KS relay contacts remain closed fort> 60 seconds. 
E3 K2 relay contacts fail to open when KS contacts have been closed 

to t > 60 seconds. 
E4 EMF remains on KS coil for t > 60 seconds. 
Es Kl relay contacts fail to open when KS contacts have been closed for 

t > 60 seconds. 
E6 Kl relay contacts fail to open when K3 contacts have been closed for 

t > 60 seconds. 
E7 EMF not removed from Kl relay coil when K3 contacts have been 

closed for t > 60 seconds. 

The reader should note that events Es and E6 , although similar, are not the same 
because the "when" is different. Thus, the tendency to transfer the fault event Es to 
the subsidiary tree of Figure IX-S must be strongly resisted. 

In the equations below each fault event is expressed in terms of its equivalent 
Boolean equation. Engineering notation is used. 

Ei = E1 . E3 
E2 = KS+ E4 
E3 = K2 +Es 
E4 = K3 • E6 
Es = Kl + KT2 + S 1 
E6 = Kl + E7 + Sl 
E7 = KTl • KT2 • KT3 

Next, starting from the bottom of the tree, each fault event is expressed in terms of 
the basic tree inputs. 

E7 = KT 1 • KT2 • KT3 
E6 =Kl+ (KTl • KT2 • KT3) + Sl 
Es= Kl+ KT2 + Sl 
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E4 = K3 • (Kl + KTl • KT2 • KT3 + Sl) 
=K3 ·Kl +K3 • (KTl • KT2 • KT3)+K3 • Sl 

E3 = K2 +Kl+ KT2 + Sl 
E2 =KS+ K3 ·Kl+ KS+ K3 • (KTl • KT2 • KT3) +KS+ K3 • Sl 
E1 = [KS+ K3 ·Kl+ KS+ K3 • (KTl • KT2 • KT3) +KS+ K3 • Sl] 

• [K2+Kl+KT2+Sl] 

The Boolean expression for E1 simplifies to: 

E1 = {KS+ (K3 • Kl)+ [K3 • (KTl • KT2 • KT3)] + (K3 •Sl)} 
• {K2 +Kl+ KT2 + Sl} 

Expanding this expression using the distributive law, the minimal cut sets (all 
redundancies eliminated) are: 

KS· K2 
KS· Kl 
KS· KT2 
KS· Sl 
K3 ·Kl 
K3 • Sl 
K3 • KTl • KT2 • KT3 

Note, for instance, that because (K3 • Kl) is minimal from the relationship 
(K3 • K 1 • K 1) = (K3 • K 1 ), then (K3 • K 1 • K2), for example, is not minimal. 

All the minimal cut sets above are "doubles" except the last one which appears to 
be a "quadruple." If all three timers, however, are identical, they might be likely 
candidates for a so-called "common case" failure. In this case, our ostensible 
quadruple minimal cut set becomes essentially a "double." In later sections, we will 
further discuss common cause failures. 

The reader should now try his hand at identifying the minimal cut sets in the 
other two problems: overrun of Motor 1 and overrun of Motor 3. Following the 
procedure detailed for Motor 2 he should be able to check the following solutions: 

MINIMAL CUT SETS 

(Overrun of Motor 1) 

Kl· K4 
K4 • Sl 
K4 • KTl 
Kl • K3 
K3 • Sl 

K3 • KT 1 • KT2 • KT3 

MINIMAL CUT SETS 

(Overrun of Motor 3) 

Kl· K7 
K2 • K7 
K7 • KT3 
K7 • Sl 
Kl· K3 
K3 • Sl 

K3 • KTl • KT2 • KT3 
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Figure IX-6. Fault Tree for Overrun of Motor 1 (Relay Logic Only) 
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Figure IX-11. Basic Fault Tree for Overrun of Motor 2 



CHAPTER X - PROBABILISTIC AND STATISTICAi 
ANALYSES 

1. Introduction 

In this chapter we shall attempt to present those basic elements that are necessary 
for understanding the probabilistic and statistical concepts associated with the fault 
tree. This material will also serve as the basis for future chapters on the 
quantification of fault trees. The reader who feels well-versed in statistics and 
probability may prefer to skip this chapter and proceed directly to Chapter. XI. He 
may find it convenient at a later time to review this chapter as the need arises. 

We shall start with a discussion of probability distribution theory. To introd...&ce 
this discussion we shall first look at the binomial distribution and shall then proceed 
to distribution theory in general, with emphasis on some specific distributions that 
are of special interest to the systems analyst. We shall then attack the basics of 
statistical estimation. 

The method of presentation, although perhaps not in the best tradition of 
mathematical statistics, has been developed by one of the authors in the course of 
teaching statistics to engineering students and engineers in the field. In this process 
mathematical rigor has sometimes been sacrificed to expedite the explication of basic 
ideas. 

2. The Binomial Distribution 

Suppose that we have 4 similar systems that are all tested for a specific operating 
time. At the end of each test let us further suppose that the test results allow us to 
categorize each run unambiguously as "success" or "failure." If the probability of 
success on each run is designated by p (and thus the probability of failure is ( 1-p )), 
what is the probability of x = 0, 1, 2, 3, 4 successes out of the four runs or trials? 

The outcome collection for this experiment can be easily written down (subscripts 
·denote run number, and "S'~ and "F" stand for success and failure): 

S1S2S3F4 
S1 S2F3S4 
S1F2S3S4 

S1S2F3F4 
S1F2S3F4 
F1S2S3F4 
F1S2F3S4 
S1F2F3S4 
F1F2S3S4 

F1F2F3S4 
F1F2S3F4 
F1S2F3F4 

A symbol such as S1 F2S3F4 means, "first run successful, second run a failure, third 
run successful, fourth run a failure." The probability of this particular outcome is 

. p • (1-p) • p • (1-p) = p2 • (1-p )2. Note that in 4 trials, it is possible to have 4 

X-1 
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successes (x = 4) in only 1 way, 3 successes (x = 3) in 4 ways, 2 success (x = 2) in 6 
ways, 1 success (x = 1) in 4 ways, and no successes (x = 0) in only 1 way. In general 
for n trials the number of ways of achieving x successes is 

(n)- n! 
x x! (n-x)! 

which is the number of combinations of n items taken x at a time. Note also that 
there are a total of 16 = 24 outcomes. If there were n trials and each trial could be 
classified as "success" or "failure," there would be 2n outcomes. 

Now let us classify these results in a somewhat different way as follows: 

No. of Successes No. of Ways Probability 

x=O 1 lp0(1-p)4 

x=l 4 4pl(l-p)3 

x=2 6 6p2(1-p)2 

x=3 4 4p3(1-p)l 

x=4 1 lp4(1-p)O 

Consider the terms in the last column. For example, 4p3(1-p) represents the 
probability of having exactly 3 successes in 4 trials. Three successes in 4 trials can 
occur in 4 ways (thus the coefficient 4) and if we have had 3 successes, we must have 
had also 1 failure. The probability of a particular outcome of three successes and one 
failure is p3(1-p) and because there are 4 possible outcomes in which .three successes 
are obtained the total probability is 4p3 (1-p ). These expressions in the last column 
represent individual terms in the binomial distribution, the general form of which is 
written as follows: 

If the probability of success on any trial is p, then 

P[exactly x successes inn trials] = (~) px (1-p)n-x 

=b(x;n,p) 
(X-1) 

in which b (x; n, p) represents the binomial distribution in what is termed probability 
density form. (The probability density form is discussed further in succeeding 
sections.)* If the reader will set n = 4 and let x range through the values of 0 to 4, he 
will see that the individual terms in the probability column of our previous example 
are generated by equation (X-1 ). 

*For a discrete variable such as x, the probability density is also sometimes called the 
probability mass function. 
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Questions regarding the probabilities of having at most x successes in n trials and 
at least x successes in n trials can be answered by summing the appropriate individual 
terms. Thus: 

x 
P[at most x successes inn trials]= L (~) p8(1-p)n-s = B(x; n,p) (X-2) 

s=O 

n 
P[at least x successes inn trials] = L {~) p8(1--p)n-s 

s=x 

x-1 
= 1 - L (~) pS(l-p)n-s 

s=O 
(X-3) 

where B (x; n,p) is the binomial distribution in cumulative distribution form (the 
cumulative distribution form is discussed further in upcoming sections). At this stage 
we may simply interpret the cumulative binomial as giving the probability that the 
number of successes is less than or equal to some value. Thus, returning to our 
example, the probability of having at least 2 successes in 4 trials is, 

The binomial distribution is extensively tabulated, often in the form of equation 
(X-2) but also occasionally in the form of equation (X-3) and sometimes in the form 
of equation (X-1). See for example References [1], [33], and [41]. 

The statistical average of the binomial distribution is np and its variance is 
np(l-p ). The average is a measure of the location of the distribution and the variance 
is a measure of its dispersion, or spread. These terms are discussed further in 
subsequent sections. 

We have made a number of assumptions (tacitly so far) in our own use of the 
binomial. It is of the utmost importance to list these assumptions explicitly: 

(1) Each trial has only one of two possible outcomes. We have called these 
"Success" /"Failure" but they could just as well be called anything else (e.g., 
·def ective/nondefective ). 

(2) There are exactly n random trials and n is numerically specified. 
(3) All n trials are mutually independent. 
(4) The probability of "success" (or whatever you want to call it) on any trial is 

designated by some letter such as p, and p remains constant throughout the sequence 
of trials. 

It is important for the reader to realize that if a problem comes up and one or 
more of these assumptions is violated, then use of the binomial distribution will be 
questionable unless the effect of the violation is investigated. All distributions and, as 
a matter of fact, all mathematical formulae are characterized by underlying 
assumptions and restrictions, and a valid use of these distributions or formulae 
involves a knowledge of what the associated assumptions and restrictions are. 
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Let us now return to our list of assumptions and consider them in more detail. 
What can be done in case one or more of these restrictions happens not to be true? 
We will look at only a few cases to indicate the possible violations to the 
assumptions. 

(1) What if each trial has more than 2 possible outcomes? For instance, in certain 
testing methods, 3 decisions are possible after each trial: accept the lot, reject the 
lot, continue testing. If we are drawing single chips from a container holding a 
mixture of white, green, red, blue, and yellow chips, then each trial has 5 possible 
outcomes. This case does not pose a serious problem, for, instead of using the 
binomial distribution, we simply use its generalization, which is known as the 
multinomial distribution and which is adequately discussed in many statistics texts 
(see, e.g., reference [52]). When applicable, we might also lump the outcomes 
into "success" and "failure" and use the binomial on this more gross categorization. 
(The probability of "success" would be the sum of the probabilities of the outcomes 
categorized as "success.") 

(2) Now suppose that the number of trials, n, is not known, but only the number 
of successes. For example, we may agree to throw a single die until the number "5" 
comes up. It is not known, a priori, how many tosses will be necessary. Or we may 
agree to test similar relays until one fails. Again the number of relays tested is not 
known. Under such conditions (i.e., whenever a number of trials are performed until 
a preassigned number of successes are obtained) we cannot use the binomial 
distribution, but another distribution closely related to the binomial and called the 
negative binomial distribution is available (see reference [13]). The negative 
binomial l>(x; k,p) gives the probability that the kth success occurs on the xth trial 
and is written, 

icx; b,p)= (~:=D pk (1-p)x-k (X-4) 

(3) If the outcomes of the n trials are mutually interdependent (i.e., the (x+l)th 
outcome depends in some way on the xth outcome and possibly on preceding 
outcomes as well), a number of difficulties arise. Some sort of conditional 
probability representation is required. The probability of a specific sequence of 
outcomes would depend on the order of occurrence ("serial outcome space") and 
each different sequence would have a different probability. For example, it would 
generally be invalid to use the binomial distribution to estimate the probability that 
the daily weather be rainy or not rainy because weather patterns often persist for 
days or even weeks at a time and what happens on Wednesday is dependent on what 
has happened on the preceding Tuesday. If independence is in doubt, there are 
statistical tests to check independence before the binomial is used (see reference 
[11]). 

(4) If the probability of "success" (or whatever) changes throughout the series of 
trials, where samples are chosen from a fixed population without replacement, the 
so-called hypergeometric distribution can be employed (see reference [52] ). This 
distribution is: 

(X-5) 
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where a = number of items exhibiting characteristic A in the population 
b = number of items exhibiting characteristic B in the population 

a+b = N = population size or lot size 
n = size of sample drawn from the population 
x =number of items exhibiting characteristic A in the sample. 

X-S 

For example, characteristic A may be "defective" and characteristic B, "non
defective." Here h (x; n, a, b) gives the probability that exactly x of then sample 
items exhibit characteristic A. 

Use of the hypergeometric distribution is necessary when sampling of a small 
population is carried out without replacement. ("Small" means that N and n in 
equation (X-5) are comparable in size.) For instance, if we receive a shipment of 50 
transistors, 10 of which are defective, the initial proportion of inoperative ones is 
1/5, but this proportion will change as we withdraw a sample of, say, 20 without 
replacement. 

As the reader will observe from equation (X-5), use of the hypergeometric 
frequently entails complicated arithmetical calculations involving factorial numbers, 
and for this reason, the binomial is often used in these cases to give approximate 
results. The binomial distribution provides a good approximation whenever N ;;;. lOn 
where N is the population (or lot or batch) size and n is the sample size.* In this case 
a/n is taken as the approximate value of p. 

As a specific example of the use of the binomial distribution, consider the 
following problem: ABC Corporation mass produces resistors of a certain type. Past 
experience indicates that one out of a hundred of these resistors is defective. 
Therefore, the probability of obtaining a defective resistor in a sample is p = 0.01. If 
a sample of 10 resistors is selected randomly from the production line, what is the 
probability of its containing exactly one defective resistor? We have: 

x= 1,n= 10,p=0.01 and 
b(x = 1; n = 10, p = 0.01) = (11°) (0.01) (0.99)9 

If tables of the cumulative binomial distribution are available, this can be most 
readily evaluated by finding B(l) - B(O) because 

B(l) = P [O or 1 defective resistors] , and 
B(O) = P [exactly 0 defective resistors] . 

B(l)- B(O) = 0.9957 - 0.9044 = 0.0913 

By making calculations similar to the foregoing we can now draw a distribution 
function giving the probability of finding x = 0, 1, 2, 3, ... , 10 defective resistors in 
the sample of 10. This distribution is shown in Figure X-1. The continuous curve in 
Figure X-1 is not really legitimate because the binomial distribution is inherently 
discrete, but this kind of continuous interpolation serves to make the general shape 
of the distribution visible. 

*Some authors recommend a somewhat less conservative rule of thumb of N ;;;. Sn. 
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P(O) = 0.9044 
P(1) = 0.0913 
P(2) = 0.0042 
P(3 OR MORE) ;;- 0 

3 4 5 

NUMBER OF DEFECTIVE ITEMS 

Figure X-1. Distribution of x Defective Items in a Sample of 10 
when p = 0.01 

In safety and reliability evaluations, the binorriial distribution is applicable to 
systems featuring redundancy if each redundant component operates independently 
and if each redundant component has the same (or approximately the same) 
probability of failure. For example, suppose we haven redundant components and, if 
more than x of these fail, the system fails. Let p be the probability of component 
failure in some designated operating period. T!te probability that the system will not 
fail is then the probability that x or fewer eomponents fail and this is just the 
binomial cumulative probability B(x; n, p ). 

Alternatively, consider a situation in which n events are possible and, if more than 
x of these events occur, we have an accident. If the n events are independent and if 
they all have approximately the same probability of occurring, the binomial 
distribution is again applicable. In general, the binomial distribution may be used 
when we have n repetitions of some event ("n trials") and we desire information 
about the probability of x occurrences of an outcome, fewer than x occurrences of 
an outcome, or more than x occurrences of an outcome, always presuming that the 
assumptions previously listed are satisfied. The "n trials" can be n components, n 
years, n systems, n human actions, or any other appropriate quantity. 

We shall return to the binomial distribution shortly because two of its limiting 
forms are of special interest to us. For the moment, however, we will discuss 
distributions and distribution parameters in general. 
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3. The Cumulative Distribution Function 

Let us use the symbol X to designate the possible results of a random experiment. 
X is usually referred to as a random variable* and it may take on values that are 
either discrete (e.g., the number of defective items in a lot) or continuous (e.g., the 
heights or weights of a population of men). Actually, the latter category of values is 
also strictly discrete because the measuring apparatus employed will have some limit 
of resolution. It is convenient mathematically, however, to consider such values as 
representing a continuous variable. It will be convenient to use the corresponding 
lower case letter x to designate a specific value of the random variable. 

The fundamental formula that we are about to present will be given for the 
continuous case with detours here and there to point out differences between the 
continuous and discrete cases whenever it seems important to do so. In general, it is 
operationally a matter of replacing integral signs with summation signs. The 
cumulative distribution function F{x) is defined as the probability that the random 
variable X assumes values less than or equal to the specific value x. 

F{x) = P[X ~ x] {X-6) 

According to equation (X-6), F(x) is a probability and thus must assume values 
only between {and including) zero and one: 

O~F(x)~ I 

If X ranges from -oo to +00, then 

F{-00) = 0 
F{+00) = I 

If X has a more restricted range, x1 < X < xu, then 

F(x1) = 0 
F(xu) = I 

An important property of the cumulative distribution function is that F(x) never 
decreases in the direction of increasing x. F(x) is a non-decreasing function although 
not necessarily monotonically so, in the strict mathematical sense. This can be stated 
more succinctly as follows: 

One further important property of F(x) is stated in equation (X-7) below.** 

(X-7) 

*Random variables will be denoted in this text by boldface type. 
**For discrete variables the formula is P( x 1 < X ~ x2] = F(x2) - F(x 1 ). 
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Figure X-2. Typical Shapes for F(x) 

The binomial cumulative distribution B(x; n, p) encountered in section 2 is one 
specific example of F(x). Typical shapes for F(x) for a continuous variable and for a 
discrete variable are shown in Figure X-2. 

The properties of the cumulative distribution function that we have presented in 
the above formulae are generally valid for continuous and discrete random variables. 

As an example of a random variable and its corresponding cumulative distribution, 
consider a random experiment in which we observe times to failure of a single 
component. Whenever the component fails, we repair it, set t = 0 and note the new 
time to failure (see sketch below). 

FAILURE 1 FAILURE 2 FAILURE 3 FAILURE 4 FAILURE 5 

Let us assume that repair ("renewal") does not alter the component, i.e., in every 
instance its repair state coincides with its initial operating state. The random variable 
of interest, T, is the time to failure from renewal or repair. We represent a specific 
value of T by the symbol ti. The cumulative distribution F(t) for any t thus gives the 
probability that the time to failure will be less than or equal tot. 

As another example consider a random experiment in which we are performing 
repeated measurements on some item. The random variable X represents the 
"measurement outcome" in general and xi represents some specific measurement 
value. The cumulative distribution F(x) gives the probability that the measurement 
value is less than or equal to x. We could estimate values of F(x) from Fest(~) where 

in which n gives the total number of measurements and ni is the number of 
measurements in which X assumes values less than or equal to xi. As n gets larger and 
larger Fest (xi) will approach more and more closely the true value F(~). In 
application, the cumulative distribution function must either be determined from 
theoretical considerations or be estimated by statistical methods. 
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4. The Probability Density Function 

For a continuous random variable, the probability density function (pdf), f(x), is 
obtained from F(x) by a process of differentiation:* 

d 
f(x) = dx F(x) (X-8) 

An equivalent statement is, 

F(x) = L x f(y)dy (X-9) 

Because f(x) is defined as the slope of a non-decreasing function, we must have 

f(x) ;;;i: 0 (X-10)· 

When the pdf is integrated over the entire range of its argument, the result is 
unity. 

J: f(x)dx= 1 (X-11) 

This property of f(x) permits us to treat areas under f{x) as probabilities. 
The fundamental meaning of the pdf is stated in equation (X-12). 

f(x)dx = P[x < X < x + dx] (X-12) 

Our previous equation (X-7) can now be stated in another, especially useful, form: 

{X-13) 

Typical shapes for f{x) are illustrated in Figure X-3 in which (a) represents a 
symmetrical distribution, (b) a distribution skewed to the right, and ( c) a distribution 
skewed to the left. (In the figures x increases as we move to the right). 

In the case of a continuous variable, probabilities must be expressed in terms of 
intervals. This is because the probability associated with some specific value x is 
always zero because there are an infinite number of values of X in any range. Thus 
f(x)dx is the probability that the quantity of interest will lie in the interval between 
x and x + dx. Of course, the interval length dx may be made as small as we please. 
The quantity f(x) itself is therefore the probability per unit interval. In the case of 

*We assume F(x) is well-behaved and allows differentiation. 
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(a) (b) (c) 

Figure X-3. Typical Shapes for f(x) 

discrete variables we replace integral signs by summation signs and sum over the 
individual probabilities of the x-values in the range of interest. Equation (X-13), for 
example, then becomes applicable for a discrete variable X. 

With regard to our previous time to failure example, f(t)dt gives the probability 
that the component will fail in the time interval between t and t + dt. In the 
measurement example f(x)dx gives the probability that the measurement outcome 
will lie between x and x + dx. Empirically, if we consider a large number of 
measurements, f(x)dx could be estimated by 

Ani 
f(x)..:lx=-

n 

where n is the total number of measurements and Ani is the number of 
measurements for which X lies between x and x +Ax. 

5. Distribution Parameters and Moments 

The characteristics of particular probability density functions are described by 
distribution parameters. One variety of parameter serves to locate the distribution 
along the horizontal axis. For this reason such a parameter is called a location 
parameter. 

The most common location parameter is the statistical average. Other location 
parameters commonly employed are: the median (50% of the area under the. 
probability density curve lies to the left of the median; the other 50%, to the right), 
the mode, which locates the "peak" or maximum of the probability curve (there may 
be no "peak" at all or there may be more than one as in bimodal or trimodal 
distributions); the mid-range, which is simply the average of the minimum and 
maximum values when the variable has a limited range, and others of lesser 
importance. For an illustration of these concepts refer to Figure X-4. 

In (a) the median is indicated by x.50 . From the definition of the median, 50% of 
the time the outcome will be less than or equal to x .5 0 , and 50% of the time it will 
be greater than x.50. Therefore P(X.;;;; x.50) = .50 and, in terms of the cumulative 
distribution, F(x.50) = .50. The median is a particular case of the general 
a-percentile, xa, defined such that F(xa) =a:. For example, the 90% percentile is 
such that F(x.90) = .90 and 90% of the time the outcome value x will be less than or 
equal to x.90 . 
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Figure X-4. The Median, Mode, and Mid-Range 

In (b) of Figure X-4, the mode is indicated by xm and gives the most probable 
outcome value. In (c), we see how the mid-range is calculated from the two extreme 
values x1 and x2 . 

The average is also termed the mean, or the expected value. If we repeat a random 
experiment many times and average our outcome values, this empirical average will 
approximate the true average and will approach the true average more and more 
closely as the number of repetitions is increased. (>Ve assume the distribution has an 
average and is such that the empirical average converges to the population average.) 

In the case of a symmetrical distribution as shown in (a) of Figure X-3, the mean, 
median, and mode all coincide. For skewed distributions, as in Figure X-3 (c), the 
median will fall between the mode and the mean. In Figure X-5 we see two 
symmetrical distributions with the same values of mean, median, and mode. They 
are, however, strikingly different from the standpoint of how the values are clustered 
about the central position. Parameters used to describe this aspect of a distribution 
are known as dispersion parameters. Of these, the most familiar are the variance and 
the square root of the variance or standard deviation. Other dispersion parameters, 
less frequently employed, are the median absolute deviation and the range between a 
lower bound value and an upper bound value. We will calculate that variance of the 
distribution in a later section. 

There are, in fact, many other types of distribution parameters, but those we have 
mentioned are some of the most basic ones. It is essential that we become familiar 
with the general methods for calculating distribution parameters once the functional 

Figure X-5. Two Symmetrical Distributions with 
Different Dispersion Parameters 
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form of the pdf is known. Some of these general methods entail calculating the 
moments of the distribution and are of great importance in theoretical statistics. 
Distribution moments may be calculated about any specified point but we shall 
restrict ourselves to the discussion of (a) moments about the origin, and (b) moments 
about the mean. 

(a) Moments About the Origin 

The first moment about the origin is defined as 

µ}=I: x f(x)dx (X-14) 

This gives us the mean or expected value of X, written E [X]. We will use the symbol 
µ for the mean for the sake of brevity although actually E [X] = µ. 

The second moment about the origin is defined as 

µi. =I: x2 f(x)dx (X-15) 

and gives us the expected value of x2, E [X2] . 
In general, the nth moment about the origin is defined as 

µ~ = f
00

00 

xn f(x)dx (X-16) 

and gives us the expected value of xn, E [XD] . 
If Y = g(X) is any function of X, and X is distributed according to the pdf f(x), 

the expected value of g(X) may be obtained from 

E[Y] = E[g(X)] =I: g(x) f(x)dx (X-17) 

(b) Moments About the Mean 

The first moment about the mean is defined as 

(X-18) 

Because µ 1 is always and invariably equal to 0, it is not of great utility. 
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The second moment about the mean is defined as 

µ2 =I: (x-µ)2 f(x)dx. (X-19) 

This gives us the variance a2 or E[(X-µ)2 J. In general, the nth moment about the 
mean is defined as 

µn = [
00 

(x-µ)n f(x)dx (X-20) 

and gives us E[(X-µ)n J. 
There is a useful relationship between µ2, µ2,, and µ {, namely, 

(X-21) 

Equation (X-21) permits us to calculate the variance by evaluating the integral in 
(X-15) rather than the integral in (X-19) which is more complicated algebraically. 
Equation (X-21) is easily proved as follows: 

µ2 =I: (x -µ)2 f(x)dx 

= f
00

00 

x2 f(x)dx - 2µ Loo x f(x)dx + µ2 Loo f(x)dx 

In the case of a discrete random variable, the first moment about the origin is 
written 

n 

µ = µi = L:xj p(xi) 
i=l 

(X-22) 

where p(xi) is the probability associated with the value xi. The commonly used 
formula for finding the average of n values, 

n - 1z::: X =- X· n l' 

i=l 

is a special case of equation (X-22) which can, be used whenever all the individual 
values are treated as having the same probability or "weight," namely 1 /n. Thus, in 
the case of a single die we have 
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µ = µ' = 1 + 2 + 3 : 4 + 5 + 6 = 2i = 3 .5 

so that the expected value is 3.5 despite the fact that such an outcome is impossible 
in practice. 

Also, if the random variable is discrete, the second moment about the mean (the 
variance) assumes the form: 

n 

µ2 = L (xi - µ)2 p(xi) 
i=l 

(X-23) 

In case all the xi have the same "weight"..!.., equation (X-23) reduces to a sampling 
n 

formula for computing the variance of a sample of n readings,* 

(X-24) 

We conclude this section with a simple example of the use of distribution 
moments. Consider the rectangular pelf shown in Figure X-6 in which any value 
between a and b is equally likely. Because any value is equally likely, f(x) = f0 , a 
constant. The area under a pdf must integrate to 1 and hence we have 

. f(x) 

1 
Area= fo (b-a) = 1 so that f0 = b-a. 

fo ~- - - - - ----------------

a b 

Figure X-6. The Rectangular Distribution 

*(X-23) provides a biased estimate of the population variance a2• The bias is eliminated by 
multiplying (X-23) by the factor n/(n-1), "Bessel's correction." For large n the difference is 
slight. The question of bias is discussed later in this chapter. 

- x 
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The mean of this distribution is given by 

I b 1 
µ = µ 1' = E(X) = x - dx 

b-a a 

=-1- f x2Jb = b2 - a2 = (b - a)(b +a)= b +a. 
b-a L 2 a 2(b - a) 2(b - a) 2 

The variance of the distribution is given by 

Var= a2 = µ2 = µJ. - (µj)2 = J.b x2 (b~) dx -(b~ay 

= (b~a) [ x;J~ -(b;a) 
2 

= (b~a) (b3; a3)- (b:a) 2 

= b2 - 2ab + a2 = (b-a)2 
12 12 

6. Limiting Forms of the Binomial: Normal, Poisson 

Several important distributions can be obtained as limiting forms of the binomial 
distribution. For example, consider 

lim [(~) Px (1 - P )n-x l 
p fixed 
n--+ "" 

We read the above as the limit when p is fixed and n goes to infinity. Omitting the 
mathematical details, this process leads to the famous normal or Gaussian* 
distribution 

f(x;µ, a)=~ 
0 

exp [-Hx: µ Y] (X-25) 

*We suspect that the normal distribution is sometimes called Gaussian in commemoration of 
the fact that it was one of the few things Gauss didn't discover! Actually it was first investigated 
by de Moivre. -- · 
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where µ and a are the mean and standard deviation respectively. The normal 
distribution is extensively tabulated but not in the form (X-25). A direct tabulation 
of (X-25) would require an extensive coverage of values of the parametersµ and u 
and would be impossibly unwieldly. It is possible, however, to find a transformation 
which has the effect of standardizing µ to 0 and a to 1. This transformation is 

x-µ 
z=--

u 
(X-26) 

and the corresponding distribution in terms of z is 

f(z) =-l-e _z2/2 
V2i 

(X-27) 

which is known as the standardized normal distribution and which forms the basis 
for all tabulations. 

The reader should note that the passage from equation (X-25) to equation (X-27) 
via equation (X-26) is not a matter of simple substitution. The transformation from 
one distribution to another requires, among other things, a factor known as the 
Jacobian of the transformation (see reference [25] ). In the present case the 
Jacobian is just a, which neatly cancels the a in the original coefficient 1/("5/i o). A 
graph of f(z) is shown in Figure X-7. 

f(z) 

a .. .. a 

t I 
z 

z = -1 z = 0 z = +1 z, 

(x = µ-al (x = µ) (x = µ+a) 

Figure X-7. The Standardized Normal Distribution 

Several characteristics of the standardized normal distribution are tabulated. Of 
primary interest to us is the area under the curve included between two points on the 
horizontal axis. The reader should remember that such an area can be treated as a 
probability because the total area under the curve is unity. Suppose that an arbitrary 
point z1 is a point of interest (see Figure X-7). Some tabulations record the area 
under the curve from z1 to +oo (shaded in the figure). Some tabulations record the 
area from z1 to --<X> and still others, the area from z1 to the origin. It is, of course, 
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essential to ascertain what area is being tabulated before the tables can be used 
intelligently. 

For the normal distribution, in terms of the original variable X, a measures the 
distance from the mean µ to the inflection point of the curve. For X, the area under 
the pdf curve fromµ - a toµ+ a is approximately 0.68 and the area fromµ -2a to 
µ + 2a is approximately 0.95. 

It is assumed that the reader already has some familiarity with the normal 
distribution and its tabulations. Nonetheless, a simple numerical example will be 
given, which can be skipped by the experienced. The widths of slots in forgings are 
normally distributed with meanµ= 0.9000 inch and standard deviation a= 0.0030 
inch. If the specification limits (acceptance limits) are 0.9000 inch ± 0.0050, what 
percentage of the total output will be rejected? The rejected forgings will be those 
widths that fall into either one of the shaded regions indicated in the sketch. 

f(x) 

0.8950 0.900 0.9050 

The value of z corresponding to x = 0.9050 is 

= 0.9050 - 0.9000 = I 67 z 0.0030 . 

From standard normal tables, the right-hand tail area for P[Z ~ 1.67] is 0.0475. This 
is the probability that X ~ 0.9050. By symmetry the left-hand tail area is also 
0.0475. Then the area of both tails is 2(0.0475) = 0.0950. This is the probability of 
finding a slot width that is outside the specifications. Therefore, 9 .5% of the total 
production will be rejected. 

This rejection rate is fairly high. If no change in the specifications is possible, we 
could lower the rejection rate by controlling production more carefully so that a is 
reduced. Suppose that our goal is a rejection rate of 1/1000 = 0.001. What is the 
maximum allowable a, say a', that is consistent with such a rejection rate? 

x 
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If the rejection rate is 0.001 the area in each tail (see sketch) must be 
0.001/2 = 0.0005. From tables, the value of z that cuts off a tail area of 0.0005 is 
3.3. From z = (x-µ)/a we find a'= (x-µ)/z, 

h I: 0.9050 - o.~000 : 0.005 : 0 00152 , h 
t us a 

3
.
3 33 . me . 

Therefore, for a rejection rate of .001, the maximum allowable value of a is 0.00152 
inch. 

There are several reasons for us to be interested in the normal distribution. One is 
that the mean of a large number of measurements tends to be normally distributed 
regardless of the underlying distribution of each measurement (from the Central 
Limit Theorem). Another is that the normal distribution provides a fairly good 
statistical model of many wear-out processes. 

Another critically important distribution, from the standpoint of systems and 
reliability analysis, is obtained as the following limiting form of the binomial 
distribution: 

lim {(~) px (1-p)n-x} 
n-> °" 
n-> 0 

(X-28) 

In equatfon (X-28) the limit- is taken in such a way that the product np remains 
finite. The outcome of the limiting process is 

(np)x mx 
-- e-np = - e-m 

x! ml 
(X-29) 

where m = np. (The mathematical details of the limiting process can be found in 
many texts, e.g.: reference [32], pp. 45-46.) 

Equation (X-29) gives the probability of exactly x occurrences of a rare event 
(p ~ 0) in a large number of trials (n ~ oo). The expected number of occurrences of 
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the event is np = m. The distribution given in (X-29) is known as the Poisson 
distribution. As can be shown by the method of moments {although there are easier 
ways) that the mean and variance of the Poisson distribution are both numerically 
equal tom. 

The Poisson distribution provides a fairly good approximation to the binomial 
even though p is not particularly small and n is not especially large. For example, 
suppose that in a mass production process the probability of encountering a defective 
unit is 0.1 (p = 0.1 ). What is the probability of finding exactly one defective unit in a 
random lot of 10 (n = 1 O)? The exact result can be found by using the binomial 
distribution: 

b{l; 10,0.1)=0.3874 

The Poisson approximation yields the result 0.3679 which does not differ greatly 
from the exact value. If we increase the random lot size to 20 (n = 20), the 
agreement is even closer: 

binomial - 0.2702 
Poisson - 0.2707 

The Poisson distribution is important not only because it approximates the 
binomial, but because it describes the behavior of many rare event occurrences, 
regardless of their underlying physical process. The Poisson distribution also has 
numerous applications in describing the occurrence of system (or component) 
failures under steady-state conditions. We will now further discuss these system 
applications. 

7. Application of the Poisson Distribution to System Failures-The 
So-Called Exponential Distribution 

Assume we have a given system which is in steady-state, when it is not in the 
process of being burnt in and is it not wearing out. Further, we will assume that 
when the system fails, it is restored to a condition that is essentially as good as new 
and that the repair time is negligible. Let the event of interest be system failure. We 
are specifically interested in the probability of exactly 0 occurrences of system 
failure. Thus, applying the Poisson distribution we are led to set x = 0 in equation 
(X-29). The result is: 

P [O occurrences of system failure] = e-m 

where m =expected number of system failures in a large number of "trials." 
Now, as far as failures are concerned, the parameter of interest is time. We thus 

seek a way of somehow expressing m in terms of time. It turns out that this can be 
readily done. 

Assume we have data for this system and, on the average, a failure occurs every 50 
hours. We say the mean time to failure (0) is 50 hours. If we operate this system for 
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100 hours, we expect to experience 2 failures; that is, 100/50 = 2. Using the symbol t 
for operating time we have in general: 

Expected number of failures in time t = t/O = Xt if A= 1/0 

But m =expected number of failures. Therefore, 

P[O occurrences of system failure] = e-m = etfo =ext. 

Now the reliability of a system, R(t), is by definition the probability of continuous 
successful operation for a time t. Hence we have 

(X-30) 

The probability of system failure prior to time t is given by the cumulative 
distribution function F(t). The system either fails prior to time to or it does not; we 
have, therefore, 

R(t) = e-Xt = 1 - F(t) 

and 

F(t) = 1 - eXt. (X-31) 

The pdf corresponding to equation (X-31) can now easily be found. 

f(t) = _! F(t) =~ (1 -e-Xt) 
dt dt 

(X-32) 

The pdf in equation (X-32) is generally referred to as the "exponential distribution 
of time-to-failure." Also, the expression (X-30) is sometimes referred to as simply the 
exponential distribution. 

The reliability, cumulative distribution, and pdf, given by equations (X-30), 
(X-31 ), and (X-32), respectively, are widely used in system analysis and reliability. 
The reason is clear. The exponential is an especially simple distribution. Only one 
parameter (X, the failure rate or 0, the mean time to failure) must be determined 
empirically. We must;however, be extremely cautious in applying equation (X-30) to 
the calculation of system reliability for the following reasons. We saw that equation 
(X-30) arises from the Poisson distribution. The latter is obtained as a limiting form 
of the binomial distribution. The use of the binomial distribution is restricted by a 
number of assumptions that we took care to list earlier in this chapter. Some of these 
assumptions have been modified in the limiting process, but one of them remains 
untouched: the assumption that all "trials" are mutually independent. Translated 
into failure language, a trial is an "opportunity to fail in some interval of time." 
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When system failures are repairable, then our interpretation of the independent 
trial assumption is as follows: the probability of failure in some future interval is a 
function of only the length of the interval and is independent of the number of past 
failures. If the system is not able to be repaired, our interpretation of the probability 
behavior must be modified to the following: given no prior failure, the probability of 
failure in some future time interval is a function only of.the length of that interval. 
We need the restriction "given no prior failure" because, for a non-repairable 
component, if we have had a failure at an earlier time, then the probability of the 
failure existing at a later time is 1 and the probability of the failure occurring at a 
later time is 0 because it has already occurred. 

Another way of characterizing the failure processes is as follows. For the 
exponential distribution, given no failure up to time t, the probability of failure in 
the interval (t, t + .6.t) is the same as the probability of failure in any interval of the 
same length (given no failure has occurred up to that time). Specifically, it is the 
same as the probability of failure in the interval (0, At). Thus, because we start 
operation at t = 0, we are "as good as new" at time t, which is another description of 
the exponential. 

If we start with the assumption that the probability of failure in a certain interval 
is a function only of interval length, we can derive the exponential distribution from 
that assumption alone. Consider, for example, a non-repairable system that can exist 
in one of two states: E1 -system operating, E0-system failed. Let us define 

P 1 ( t) = probability that system is in state E1 at time t 
P0(t) =probability that system is in state E0 at time t 

and let us assume that at the start of time ( t = 0) the system is in its operating state 
Ei. 

Now P 1 (t + At) represents the probability that the system is in state E1 at time 
t + At. We can write 

where, according to our initial assumption (probability of failure in a given interval is 
a function only of interval length), the quantity Mt gives the probability that the 
system makes a transition from state E1 to state E0 in the time interval At and that A. 
is some constant (the failure rate). Consequently (1 - A..6.t) gives the probability that 
the system does not make a transition from E1 to E0 (i.e., does not fail) in time 
interval At. Algebraic rearrangement yields the following difference equation: 

If we allow the length of the time interval to approach zero (At~O), the limiting 
form of the left-hand side of the equation is just, by definition, the derivative of 
P 1 ( t) with respect to t. Thus 

[
P1(t+.6.t)-P1(t)J d 

1!~ .6.t = dtP1(t)=P{(t)=-A.P1(t) 
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in which the prime stands for differentiation with respect to time, a convention 
originally proposed by Newton. We now have the differential equation, 

This is easily integrated if we remember our boundary condition P 1 ( t=O) = 1. 

t t 
[ln P1 (t)] O = [-A.t] O 

which is just the reliability of the system. Also, because P 0 ( t) + P 1 ( t) = 1, we have 

Po(t) = 1 - e-Xt = 1 - R(t) = F(t). 

The corresponding pdf is 

and we recognize the exponential distribution. 

8. The Failure Rate Function 

Recall from previous sections that 

F(t) = P[failure occurs at some time prior tot] 

and that 

f(t)dt = P(failure occurs between t and t + dt]. 

We now define a conditional probability, A.(t), called the failure rate function: 

A.(t)dt = P (failure occurs between t and t + dt I no prior failure]. (X-33) 

For any general distribution, there is an important relationship between the three 
functions A.(t), f(t), and. F(t); 

- f(t) 
A.(t) - 1 - F(t) . (X-34) 
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The validity of equation (X-34) is easily demonstrated as follows. 
Let us designate the time at which failure occurs as T. T is a random variable 

according to the definition given in equation (X-33), 

X(t)dt = P [t < T < t + dt It< T]. 

Let (t < T < t + dt) be denoted as event A and (t < T) be denoted as event B. We 
remember from basic probability theory that in general, 

Therefore, 

P (A I B) = P(A n B) 
P(B) . 

'\( )d = P [(t < T < t + dt)n(t < T)] 
I\ t t P(t < T) 

Now event A is just a special case of event B, i.e., when A occurs then B 
automatically occurs. In set theoretic notation, ACB (A is a subset of B) and, under 
these circumstances, AnB = A. It follows that 

Finally, 

X(t)dt= P[t<T<t+dt]=P[A]= f(t)dt. 
P(t<T) P[B] 1-F(t) 

f(t) 
X(t) = 1 - F(t)' 

which is just equation (X-34 ). 
If X(t) is plotted against time for a general system, the curve shown in Figure X-8 

results. For obvious reasons this relationship between X(t) and t has become known 
as the "bathtub curve." 

A(t) 

Figure X-8. Plot of A(t) vs. t for a General System 
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This curve can be divided into three parts which are labeled I, II, Ill in Figure X-8. 
Region I is termed the region of "infant mortality" where sometimes an underlying 
distribution is difficult to determine. The distribution appropriate to this part of the 
curve may depend quite critically on the nature of the system itself. Manufacturers 
will frequently subject their product to a burn-in period attempting to eliminat·e the 
early failures before lots are shipped to the consumer. Region II corresponds to "a 
constant failure rate function," and is the region of chance failures to which the 
exponential distribution applies. Region III corresponds to a wear-out process for 
which the normal distribution often provides an adequate model. For an actual 
system, the X(t)-vs.-t curve may be quite different from that depicted in Figure X-8. 
For example, the exponential Region II may be entirely missing or the burn-in region 
may be negligible. 

Returning to the failure rate function equations, it is convenient to solve (X-34) 
explicitly for both F(t) and f(t). This is accomplished by writing equation (X-34) in 
the form 

where 

X(t)dt = - [-F'(t) dt] 
1 - F(t) 

F'( ) = d F(t) 
t dt . 

Integrating both sides of equation (X-35) we have 

which is equivalent to 

t -L X(x) dx = ln [1 - F(t)], 
0 

and therefore F( t) = I - exp~1 A(x)d~. 

If we differentiate equation (X-36), we obtain 

f(t) = A(t) exp~1 
A(x)dxl 

(X-35) 

(X-36) 

(X-37) 

The reader should convince himself that if we put X(t) =A.= constant in (X-36) 
and (X-37), we obtain 
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which is just the exponential distribution. For the exponential distribution, then, the 
failure rate function is a constant (independent oft) and 

A.(t)dt = P [failure occurs between t and t + dt I no prior failure]= A.dt. 

If we choose to describe a component failure distribution with the exponential 
distribution, we are assuming that we are on the constant, steady state portion of the 
bathtub curve with no burn-in or wear-out occurring. Because of the constancy of 
the failure rate function in this case, the exponential distribution is often referred to 
as the "random failure distribution," i.e., the probability of future failure is 
independent of previous successful operating time. 

It is also valuable to note that if we use e-t/e to represent reliability, we are being 
conservative even if wear-out is occurring (but no bum-in), i.e., R(t);;;. e-t/e where 
R(t) is the actual reliability and 0 is the actual mean time to failure. This relation is 
true for t ~ 8. (For a proof of this see Reference [ 15] ). 

Equations (X-36) and (X-37) may be used to investigate a wide variety of failure 
rate models. For instance, if A.( t) = kt (linearly increasing failure rate) we find that 

R(t) =I - F(t) = exp(-kt2/2) 

which is known as the Rayleigh distribution. An important distribution of 
times-to-failure, the Weibull distribution, is obtained by putting A.(t) = Ktm 
(m > - I) whence 

and 

f(t) = ktm exp (- _k_tm_+_l) 
m+l 

( 
ktm+l) 

R(t)=l-F(t)=exp - m+l . 

The Weibull distribution is a two-parameter distribution, where k is known as the 
scale parameter and m as the shape parameter. For m = 0 we have the exponential 
distribution and as m increases a wear-out behavior is modeled. When m increases to 
2, f( t) approaches normality. When m is less than 0 but greater than -1, the burn-in 
portion of certain bathtub curves may be modeled. Thus, by changing the value of m, 
we can use the Weibull distribution to embrace regions I, II, or III of the bathtub 
curve. The reader can find a more detailed description of the Weibull distribution in 
the literature of reliability (see reference [23] pp. 137-138, [32], Appendix D, and 
[36], p. 190 et seq.). 

9. An Application Involving Time-To-Failure Distribution 

The concept of a distribution of times-to-failure is an extremely important one 
and in order to impress this more thoroughly on the reader's mind, we consider the 
following example. 
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Similar components are being purchased from two manufacturers, A and B. 
Manufacturer A claims a mean life of 100 hours (8 A = 100 hrs.) and states that the 
distribution of times-to-failure for his components is exponential. B also claims a 
mean lifo of 100 hours (OB = 100 hrs.) but states that the appropriate distribution of 
times-to-failure in his case is normal with a mean of 100 hours and a standard 
deviation of 40 hours. 

For both types of components let us attempt to compute the reliability for 10 
hours of operation. First we consider the component from manufacturer A. 

-t/eA RA(t)=e 

RA (10) = e-10/100 = e-0.1 = 0.905 

Thus for Manufacturer A there is a 90.5% reliability. 
Now we consider the components from manufacturer B. The distribution here is 

normal; we need to find a value of the transformed variate z corresponding to t = 10 
hours. 

t-OB 10-100 
z=--= =-2.25 

aB 40 

This value of z cuts off a tail area of 0.01222 (from standard normal tables) and 
represents the probability of failure prior to t = 10 hours.* Thus 

RB(t = 10) = 1 - 0.01222 = 0.988 

Thus for Manufacturer B the reliability is 98.8%. 
From the above example we note the 'differ1mce between RA and RB despite the 

fact that ()A =OB. This difference arises because of the difference in the failure 
distributions. As t increases, eventually the exponential will give higher values of 
reliability than the normal. For instance, for t = 100 hours, RA = 36.8% and 
RB= 50.0% but for t = 200 hours, RA= 13.5% and RB= 0.62%. Somewhere 
between t = 100 hours and t = 200 hours both distributions give the same value for 
reliability. The reader may care to calculate the value oft that gives RA= RB. 

10. Statistical Estimation 

Suppose that we were engaged in a study of the heights of men between the ages 
of 20 and 30 in the greater Los Angeles area. This is a very large population, and 
although we might be eager and willing to measure every member of the population, 
this would assuredly prove to be physically impossible. 

By way of compromise, we take a random sample from the population. The 
importance of the sample's being random will be discussed shortly. From the sample 
we can estimate any sample parameters that may be of interest, such as the sample 
mean, the sample median, the sample variance, and so forth. The problem i~ simply 

*This is not exactly correct because values of z less than -2.5 correspond to negative values of 
time. However, the area in the tail corresponding to z = -2.5 is extremely small and we ha.ve not 
considered it necessary to make the small correction involved. 
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this: how good are these sample statistics as estimates of corresponding population 
quantities? As a matter of fact, have we any assurance that a sample mean is a better 
estimate of the population mean than is, for instance, a sample median or a sample 
mid-range? To answer questions such as these, we have to know precisely what is 
meant statistically by statements like: 

"E'a is a good estimator of population parameter O" 

u'(j'b is a best estimator of population parameter 8" 

.. 9b is a better estimator of e than is 'B'c"* 

These matters will be taken up in Section 13. First we must discuss the importance 
of choosing random samples, and then we must establish the concept of a sampling 
distribution, specifically the sampling distribution of the mean. 

11. Random Samples 

A random sample can be defined as a sample in which every member of the 
population has the same chance of being included. Most statistical calculations are 
based on the assumption of randomness; conclusions drawn from a sample which is 
thought to be random but which actually does not accurately reflect the 
characteristics of the population, can, therefore, be seriously in error. 

A classic case in which the assumption of randomness was invalid involved the 
Literary Digest Poll of 1936. The poll attempted to sample public opinion on the 
subject of whether Mr. Roosevelt or Mr. Landon would win election to the 
presidency of the United States. The poll predicted a Landon victory whereas, in 
fact, Roosevelt won with a popular plurality of 11,069 ,785 votes and an electoral 
vote of 523 to 8. In this case, polling was carried out largely by means of telephone. 
In the depressed economic state of the country in those days, most of the telephones 
were owned by wealthy to moderately wealthy Republicans who intended to vote 
for Landon. The conclusions drawn from this non-random sample were spectacularly 
in error. Shortly thereafter the Literary Digest became defunct. 

If you wish to select a random sample of electronic components from a large crate 
that has just been delivered, it would be incorrect to select only from those 
components at the top of the crate. In this case you might remain blissfully unaware 
that the crate had been dropped in transit and that every component at the botton of 
the crate had been smashed. Whenever sampling is performed, care must be taken to 
ensure a random sample because usual estimation techniques are based on this 
assumption. One simple method, for example, is to use random number tables to 
select the specific samples. Other random sample approaches are described in 
Reference [10]. 

12. Sampling Distributions 

Suppose we take a random sample of size n from some population and compute a 
n 

sample mean x1, where x1 =; 'L: xi. We could now take a second sample of size n 
i=l 

*The symbol ff is added to designate an estimator of some population parameter (}. 
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and compute its mean x2. In a like manner we could generate other sample means, 
x3, x3, x5 , etc. We do not expect these sample means to all be the same. In fact, 
these sample means are values of a random variable. Let the sample means in general 
be represented by the symbol X which denotes the random variable. The question 
arises, how is X distributed? A partial answer is provided by so-called restricted 
central limit theorem which states: 

If X (the random variable of interest) is distributed normally with mean 
µ and variance a2, then Xis distributed normally with mean µx_ =µand 
variance (ax.)2 = a2/n where n is the sample size. 

This theorem is exactly true only for populations of infinite size; for finite 
populations of size N and for samples of size n, 

More important is the general central limit theorem which states that if X is 
distributed with mean µ and variance a2 but with distribution otherwise unknown, 
the distribution of X is still very closely approximated by the normal distribution 
with meanµ and variance a2 /n, at least for large n (e.g., n ;;;;., 50). 

Consequently, whenever we deal with sample means of large samples, we are 
concerned with normal distributions. The variance of the sampling distribution of the 
mean decreases as the sample size increases and this provides a justification for taking 
as large a sample as possible. Note that the z transformation corresponding to an x 
value is 

x-µ 
z =------

a/ yn 

Other estimators (e.g., median, range, variance, etc.) are characterized by their 
corresponding sampling distributions, most of which can be found in advanced texts 
on statistics, e.g., Reference [30]. For instance, for a normal distribution, the 
variance estimate, s2, is a function of a value x2 from the chi square distribution 
through the relation 

The chi square distribution has been extensively tabulated and is widely used in 
decision criterion, in goodness of fit tests, and in hypothesis testing. 

13. Point Estimates-General 

A single numerical value (such as i) calculated from a sample constitutes a point 
estimate of some corresponding parameter. The associated random variable represent
ing the collection of values is called the sample estimator. To facilitate the discussion 
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let us use the symbol (J to designate the population parameter being estimated and 
the symbols fi'a, fi'b, fi'c, ... to designate various sample estimators for fJ. For 

~ 

instance, if 0 were the population mean, then Oa could be the sample mean 
estimator; fi'b, the sample median estimator; fi'c, the sample mid-range estimator, and 
so forth. The estimators fi'a, 'B'b, fi'c, ... will all have sampling distributions. The 
reader should note that the following characteristics of estimators relate to these 
sampling distributions. 

a) Unbiased Estimators 

An estimator is said to be unbiased if its sampling distribution has a mean that 
equals the population parameter being estimated. Thus, if fi'a is an unbiased estimator 
of the population mean µ, then 

From the properties of the expectation, we know that the sample mean X is an 
unbiased estimator ofµ because E(X) = µ. On the other hand 

n 

s2 = .!. '°" (X· - X)2 n L.J i 

i=l 

is a biased estimator of a2. If we multiply by n/(n-1 }-Bessel's correction-we have 

n 
s2 = _1_ '°" (X· - X}2 

n-1 L.J 1 ' 
i=l 

which is an unbiased estimator of a2. 

b) Minimum Mean Square Error Estimators 
and Minimum Variance Estimators 

The mean square error (MSE} of an estimator is defined as 

(X-38) 

The MSE thus is a measure of the amount an estimator ff deviates from the true value 
(J. By adding and subtracting E('O') inside the parenthesis in equation (X-38), and 
manipulating the result, we can always rewrite the MSE as 

The first term on the right-hand side is the variance of the estimator and the second 
term is called the square of the bias of the estimator. If the estimator is unbiased 
then E( 1f) = (J and 
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MSE = E[ 1f-E(e)] 2 . 

Hence the MSE for an unbiased estimator is simply the variance of the estimator. 

If among several estimators 1fa, 1fb, 1fc, ... , one of them has the smallest MSE, 
then that estimator is called the minimum mean square error (MMSE) estimator. If 
among several estimators, all of which are unbiased, one has minimum variance, then 
that estimator is called the minimum variance unbiased estimator and abbreviated 
MVUE. 

The choice of estimator depends on the situation. If we are going to use an 
estimator in numerous applications then we generally want the estimator to be 
unbiased, because on the average we want the estimator to equal the true value. If we 
choose between two or more unbiased estimators, we usually choose the one with 
minimum variance. In comparing the variance of two unbiased estimators '8'1 and '8'2 , 
we say that the one with the smaller variance is relatively more efficient and in fact, 
we use the ratio 

var ( 1f2) 

var ( 1f1) 

as one measure of the relative efficiency of estimator 1f 1 with respect to '8'2 . 
If, however, we are going to use an estimator only once or a few times, then a 

(biased) MMSE estimator may be more efficient. In this case we are more interested 
in minimizing the deviation from the true value than we are in the long-run unbiased 
property. 

c) Consistent Estimators 

lftra is a consistent estimator of 8, then 

P [11fa -8 I<€]> (1-5) for all n > n' 

where € and 5 are arbitrarily small positive numbers and n' is some integer. We can 
interpret the above equation as saying that as the sample size n increases, the pdf of 
the estimator concentrates about the true value of the parameter. When n becomes 
very large then the probability that the estimator deviates from the true value goes to 
zero. In this case we say that "tra converges in probability to 8 ." 

Properties (a), (b), and (c) are the principal characteristics that determine whether 
an estimator is good or not. Further discussion of estimator considerations is given in 
reference [24] . 

14. Point Estimators-Maximum Likelihood 

There is one very important technique for calculating estimators that is called the 
method of maximum likelihood. This method is widely used, for example, in 
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computing parameter estimates in life testing. For large sample sizes (n-+oo) under 
rather general conditions, the maximum likelihood technique yields estimators which 
are consistent and which are both MMSE and MVUE. Even for moderate or small 
samples, the maximum likelihood technique yields estimates which are generally 
usable. The technique is based on the supposition that the particular random sample 
drawn from the population is the most likely one that could have been chosen. To 
make this supposition reasonable, consider two examples. 

Bridge players do not expect to pick up a hand containing all 13 spades. The 
probability of such a hand is extremely small because it can arise in only one way. 
The probability of a 13-spade hand, however, is the same as that associated with any 
hand that is preassigned card by card, because that hand can also arise in only one 
way. The kind of hand you usually get may look something like this: 

4 Spades 
2 Hearts 
4 Diamonds 
3 Clubs 

This hand can arise in an enormous number of ways-to be precise, 

( 11) (1i) (11) (1]) = (13)4 (11)3 (10)2 (3) ways (over 10 billion). In fact, you will 

get the distribution 44-3-2 (regardless of suit) about 20% of the time. For most of 
the rest of the time you will be getting hands that are very similar to this. The 
maximum likelihood technique is based on the premise that the sample we have is a 
most probable one, or is near the most probable one. 

As a more physical illustration, assume that we had a special camera that 
photographed the molecules in a box full of gas. When the photographs are 
developed, not only do we see the actual, instantaneous locations of the molecules 
but also their individual vector velocities. We could take photographs like this for 
thousands of years and they would all look pretty much the same: a homogeneous 
distribution of molecules in space going all directions. Even so, there is a positive 
(although miniscule) probability that we shall find a picture showing all the particles 
crowded into one corner of the box and all heading due north. If we were to apply 
the maximum likelihood technique to one sample (a given photograph), then we 
would be making the assumption that the sample was a probable one and not the 
very unlikely one. 

In general, the technique of maximum likelihood is founded on the assumption 
that our sample is representative of the most likely one we could have withdrawn 
from the population-always with the proviso that we have gone to some pains to 
assure that it is a random one. 

Suppose that we are taking random samples from a population that is distributed · 
according to the pdf f(x; 0) where e is some unknown population parameter that we 
desire to estimate. Assume that our sample (size n) is x1 , x2 , ... , xn and that the 
sample variables are independent. Using the pdf, we write down an expression that 
gives us the probability associated with this particular sample and then apply the 
condition that it be a maximum. 
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The probability that out first reading will be x1 in the interval dx1 is simply 
f(x1; 8)dx1. The probability that our first reading will be x1 in dx1 and that our 
second reading will be x2 in dx2 is 

Following this line of reasoning, we can now write down an expression that gives us 
the probability of our sample: 

P[sample] = f(x1 ; 8)dx1 f(x2 ; 8)dx2 f(x3 ; 8)dx3 ... f(xn; 8)dxn (X-39) 

If we drop off the differentials we get an expression that is known as the 
likelihood function: 

n 
Likelihood Function= f(x 1; 8) f(x2 ; 8) ... f(Xn; 8) = II f(xi; 8) (X40) 

i=l 

where the symbol Il stands for a continued product. The likelihood function is no 
longer equal to the probability of the sample but it represents a quantity that is 
proportional to that probability.* 

The next step is to take the natural logarithm ("ln") of the likelihood function. 
This is simply a matter of convenience because most of the pdfs we encounter are 
exponential in form and it is easier to work with the natural logarithm than with the 
function itself. 

n n 

ln (Likelihood Function)= L(8) = ln IT f(x1 ; 8) = l::tn f(xi; 8) (X41) 
i=l i=l 

Notice that this is a function only of 8 because all the xi's (our sample values) are 
known. We are now in a position to determine 8 for which L(8) is a maximum. We 
do this by setting the derivative of L(8) with respect to 8 equal to zero and solving 
for 8. 

d 
d8 L(8) = 0. (X42) 

Assuming a solution is obtainable (which it generally is), the result is written 8ML• 
the maximum likelihood estimate of the unknown population parameter 8. 

We shall now consider some speClflc examples to indicate how the maximum 
likelihood technique is applied in practice. Suppose that we are taking random 
samples from a population whose distribution is normal with unknown mean µ and 
known variance a2 = 1. 

*If the sample variables were not independent, then the likelihood would consist of a 
multivariate distribution, and we would attempt to maximize that (see Reference [24] ). 
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1 [ (x-µ)2] f(x;µ, a= 1) = y'2i exp -
2 

. 

We desire to make :-1. maximum likelihood estimate ofµ. 
The likelihood function is 

1 [ (x1 -µ)2] 1 [ (x2-µ)2J 1 [ (xn -µ)2] --exp - --exp - ... --exp - ---
$ 2 v'2i 2 ../2-i 2 

= 1 .· exp [- l ~ (x--µ)21. 
(27r)n/2 2 f:t 1 J 

Taking natural logarithms we have 
n 

L(µ) = - ~ 1n (2n) - ~ L<xcµ)2. 
i=l 

Applying the maximization condition, 

dl(µ) ( 1) ~ ~ --aµ = -2 (2) L../xcµ)(-1) = L../xcµ) = o. 
i=l i=l 

This yields 

~X· -nµ =0 
1 ' 

so 

Thus, the maximum likelihood estimate ofµ is just the ordinary arithmetic mean. 
If more than one population parameter is to be estimated, the process is similar. 

Suppose that in our previous example we knew neither µ nor a2. Then our 
fundamental pdf is 

f(x; µ, a2) = exp - . 1 [ (x-µ)2] 
v12'ff a 2a2 

The likelihood function becomes 

[ 

n ( _ )2] 2 . 2 _ 1 xi µ f(x1,µ, a) ... f(xn,µ, a)- exp - ~ . 
(2na2)nf2 £;t 2a2 
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Taking natural logari!hms we have 
n 

L(µ, a2) = - ~ ln (211') - ~ ln a2 -~ 2: (xcµ)2 .. 
2a i=l 

We now find aL/aµ and aL/[a(a2)] and set the results equal to zero. The first 
operation yields the same result as before, namely, 

n 

1 """' -µML = n L...t xi = x. 
i=l 

The second operation yields 
n 

a2ML = ! 2: (xcx)2. 
i=l 

This is a biased estimate of a2. The bias may be removed by multiplying a~ L by the 
quantity n/(n-1). Then 

n 
2 - _1 """' ( - -)2 aunbiased - n-1 L.J xi X • 

i=l 

There is little difference between a~L and a~nbiased if n, the sample size, is large 
(say n ;;;i. 30). The estimated value of the variance is often denoted by the symbol s2. 

As a final example let us return to the exponential distribution and find the ML 
estimate for f), the mean life. · 

f(t; fJ) = o-1 e-tf 8 (t > 0). 

Assume we have observed n times of failure for n components tested. Then 

and 

Therefore, 

and 

so that 

n 
dL = _ .!!. + _1 2: t· = O 
dO 0 02 i=l i 

1 n 
7i 2: ti= n 

i=l 

n 

OML = ! 2: ti, again the simple arithmetic mean. 
i=l 
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15. Interval Estimators 

We have seen in the previous sections how we can make point estimates of 
population parameters on the basis of one or more random samples drawn from the 
population. We can, if we desire, adopt a different approach. This involves making an 
assertion such as: 

P [( 1flower < B <~pper)] = T/ 

where B is some unknown population parameter, 'Oiower and 'O'upper are estimators 
associated with a random sample and T/ is a probability value such as 0.99, 0.95, 0.90, 
etc. If, for instance, T/ = 0.95 we refer to the interval 

for particular values of 1f1ower and lfupper as a 95% confidence interval. In this case 
we are willing to accept a 5% probability (risk) that our assertion is not, in fact, true. 

To help clarify the concept of a confidence interval we can look at the 
situation in a geometrical way. Suppose we draw repeated samples (x 1, x 2) 

from a population, one of whose parameters, B, we desire to bracket with a 
confidence interval. We construct a three-dimensional space with the vertical axis 
corresponding to B and with the two horizontal axes corresponding to values of x 1 
and x2 (see Figure X-9). The actual value of the population parameter B is marked on 
the vertical axis and a horizontal plane is passed through this point. Now we take a 
random sample (x1, x2) from which we calculate the values Bu and BL at, say, the 
95% confidence level. The interval defined by Bu and BL is plotted on the figure. 

cb°"' 
' I e ' 

.:. L 

e 
el I:::· 

x2 

Figure X-9. Geometrical Interpretation of the Concept 
of a Confidence Interval 
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Next we take a second sample (xi, x2) from which we calculate the values Ou and 
O{ at the 95% level. This interval is plotted on the figure. A third sample (xi', x2) 
yields the values O{] and OL, etc. In this way we can generate a large family of 
confidence intervals. The confidence intervals depend only on the sample values (x1, 
x2), (xi, xi), etc., and hence we can calculate these intervals without knowledge of 
the true value of 0. If the confidence intervals are all calculated on the basis of 95% 
confidence and if we have a very large family of these intervals, then 95% of them 
will cut the horizontal plane through 0 (and thus include 0) and 5% of them will not. 

The process of taking a random sample and computing from it a confidence 
interval is equivalent to the process of reaching into a bag containing thousands of 
confidence intervals and grabbing one at random. If they are all 95% intervals, our 
chance of choosing one that does indeed include 0 will be 95%. In contrast, 5% of 
the time we will be unlucky and select one that does not include 0 (like the interval 
(Ou, Oj) in Figure X-9). If a risk of 5% is judged too high, we can go to 99% intervals, 
for which the risk is only 1%. As we go to higher confidence levels (and lower risks) 
the lengths of the intervals increase until for 100% confidence the interval includes 
every conceivable value of 0 (I am 100% confident that the number of defective 
items in a population of 10,000 is somewhere between 0 and 10,000.). For this 
reason 100% confidence intervals are of little interest. 

Now we shall give an example showing how the quantities OL and Ou are 
computed from a sample drawn from a normally distributed population with mean µ 
and standard deviation a. For the example, we will assume that we wish to bracketµ 
and that we know a (based on previous data and knowledge). If each sample is drawn 
from a normal distribution then the sample mean X has a normal distribution with 
mean µ and standard deviation a/yn, where n is the sample size. Even if each sample 
value is not drawn from a normal distribution, then by the Central Limit Theorem, 
for sufficiently large n, X will still be approximately normal with mean µ and 
standard deviation a/yn. The quantity Z will then be the standardized normal 
random variable, where 

X-µ Z=--
a/yn 

and where the distribution of Z is tabulated. Because the distribution of Z is 
tabulated we can find, for any assigned probability 17, values-wand w such that 

P[-w<Z~w] =11. 

For example, for 17 = 0.95, w = 1.96. Substituting for Z in the above equation we 
thus have 

[ X-µ J P -w~--~w =11 
a/yn 

where again w is known for any given 17. (For example, we could substitute the values 
0.95 for 17 and 1.96 for w.) · 

We are now going to concentrate on the inequality on the left-hand side of the last 
equation and attempt to convert it into the form 
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Let us first multiply through by the factor a/yn thus converting the inequality to 

[ 
a - a J 

-w y'ii <X-µ<+w vn]· 

Now we subtract X from every term of the inequality 

[ 
a - a -] -w ../ii - x < - µ < w Vn - x . 

Next we multiply through by -1 remembering, in the process, to reverse the 
directions of the inequalities. 

[ 
a - a -J w-+X>µ>-w--+X 

Vn Vn 

which we can write in the form 

[
- a - a J X-w-<µ<X+w-- . 

Vn ..;n 
Substituting a particular value x for the random variable X we thus have a particular 
interval, 

a a 
x-w-<µ<x+w-. 

Vn Vn 

The above inequality yields our desired confidence interval for µ. In the case of the 
population mean, then 

If a confidence coefficient 11 has been assigned, x, n, and w are known quantities. 
The value of a is also assumed to be known. If we do not know the value of a then 
we can, as described earlier for the normal distribution, estimate a from our sample 
thus obtaining the quantity s. Now we can form the standardized value t, where 

x-µ 
t=--. 

s/vn 

Proceeding as we did with the Z variable, we can form the inequality 

_ ts _ ts 
x--<µ<x+-. 

..;n ../ii 
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The value t, however, is not a value from the standard normal distribution. The 
distribution was investigated in the early part of this century by W.S. Gossett and is 
known as the t distribution; its properties are now extensively tabulated.' So if a is 
unknown, we find the value of t for given 'T/ from t tables and not from normal 
tables. The values of the t distribution depend on the sample size (degrees of 
freedom). As it turns out, when the sample size is greater than 25 or 30 the t table 
value is indistinguishable from the normal table value so that in that case, normal 
tables may be used. 

In terms of estimating the reliability or mean time to failure, one-sided confidence 
intervals are more commonly seen than two-sided intervals. If the sampling 
distribution is symmetric (equal tail areas on the ends), then a two-sided interval may 
easily be converted into a corresponding one-sided interval; e.g., if 

0.95 < R < 0.98 

at the 95% confidence level, then 

R>0.95 

at the 97 .5% confidence level. 
For the exponential distribution, the mean time between failures, 8 1

, was 
estimated by the point estimate 

n8ML 
where ti are the observed times of failure. It can be shown that x2 = -

8
- follows a 

chi square distribution with 2n degrees of freedom. Letting x2 (97 .5, 2n) and 
x2 (2.5, 2n) be the chi square values corresponding to cumulative distribution values 
of 97 .5% and 2.5%, we have for a two-sided 95% confidence interval 

n8ML x2(2.5, 2n)< -
8

- <x2(97.5, 2n) 

or, equivalently, 

n8ML . n8ML 
2 <e < 2 

X (97 .5, 2n) x (2.5, 2n) 

Other intervals for different levels of confidence can be obtained from the tabulated 
values of the chi square distribution. Confidence intervals for the failure rate A.= 1 /8 
can be easily obtained by inverting the above inequalities for 8. 

For more involved experiments, the confidence intervals, as well as the maximum 
likelihood point estimates, depend on the way the data are collected. In what is 
called a type 1 test, for example, n components having the same failure rate are 
operated for a prearranged time interval T. The number of components failing in this 
time interval is then random. For a type 2 test, n components are operated until a 
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preassigned number of components fail and this preassigned number may be less than 
n. 

The text by Mann, Schafer, and Singpurwalla (see reference [24]), cited earlier, 
further discusses tests of type 1 and 2, giving associated point estimates and 
confidence intervals. Testing with replacement is also discussed and confidence 
intervals and point estimates are given for the Weibull and gamma distributions as 
well as the exponential distribution under a variety of circumstances. 

16. Bayesian Analyses 

In the past discussions, we have been treating the parameters of the sampling 
distributions as being fixed. In many applications, this is a questionable assumption. 
In the Bayesian approach, the parameters of the sampling distribution are treated not 
as fixed, but as random variables. With regard to the exponential distribution 

f{x) = ! e-x/e, the mean time to failure (J is thus treated as itself being associated 

with a probability distribution. Expressing the exponential in terms of the failure 
rate A.= l /fJ, we have f(x) = A.e-A.x. The failure rate is thus also associated with a 
probability di~tribution {because of the relation A.= 1 /fJ, the distribution of A. is given 
by the distribution for fJ and vice versa). From here on A. and () will denote the 
random variables associated with the parameters A. and (J. 

Let the pdf for 'A be denoted by p(A.). The pdf p{'A) is known as the prior 
distribution and it represents our prior knowledge of A before a given sample is 
taken. Assume now that a given sample (t1 , t 2, ... , tn) of component failure times 
is collected. We then talk about the posterior distribution of A which represents our 
updated knowledge of the distribution of A with the additional sample data 
incorporated. 

The posterior distribution of 'A, whose pdf we shall denote by p{A.ID), is easily 
obtained by applying Bayes theorem* (the symbol "D" denotes the data sample, e.g., 
(t 1, t2, ... , tn)). Now Bayes theorem says 

P{BI ) = P{A/B) P(B) 
A ~P{A/B) P(B) 

B 

Letting "A" denote the data sample "D," and "B" the event that the failure rate lies 
between A. and A. + d'A, we have 

exp [-t A.ti] A.n p{A.) 
1=1 

p(A.ID) = --------

exp [-t A.ti]· A. n p{A.) d'A. 
1=1 

*See Chapter VI, Section 9. 
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Here we have replaced the summation sign by the integral sign. Because the 
denominator does not involve A (it is integrated out) we can write the above equation 
as 

where K is treated as a normalizing constant. The distribution p(XID) is the posterior 
distribution of A now incorporating now both our prior knowledge and the observed 
data sample. 

Bayes theorem thus gives a formal way of updating information about the failure 
rate A (i.e., going from p(X) to p(XID)). If a second sample D' were collected (say tj, 
t2, ... , t~) then the distribution of X could be updated to incorporate both sets of 
data. If p('AID,D') represents the posterior distribution of X based on both sets of 
data D and D' then we simply use the above equation with p(:XID) now as our prior 
giving 

Choices for the initial prior p('A) as well as techniques for handling various kinds 
of data are described in detail in various texts (see references [24] and [30]). In 
Bayesian approaches, the pdfs obtained for the parameters (such as p(XID)) give 
detailed information about the possible variability and uncertainty in these 
parameters. We can obtain point values, such as the most likely value of 'A or the 
mean value of :X. We can also obtain interval values, which are probability intervals 
and are sometimes called Bayesian confidence intervals. For example, having 
determined p('AID) we can then determine lower and upper 95% values of AL and Au, 
such that there is a 95% probability that the failure rate lies between these values, 
i.e., 

[
Au 

p(AID) dA = 0.95. 
AL 

Other bounds and other point values can be obtained in the Bayesian approach 
because the parameter distribution (e.g., p(AID)) is entirely known and this 
distribution represents our knowledge about the parameter. The Bayesian approach 
has the advantage that engineering experience and general knowledge, as well as 
"pure" statistical data, can be factored into the prior distribution (and hence 
posterior distribution). Once distributions are obtained for each relevant component 
parameter, such as the component failure rate, then the distribution is straight
forwardly obtained for any system parameter quantified in the fault tree, such as the 
system unavailability, reliability, or mean time to failure. One must be very careful in 
determining the priors which truly represent the analyst's knowledge and in 
ascertaining the impact of different priors if they are all potentially applicable. 
Bayesian approaches are further discussed in reference [24] . 



CHAPTER XI - FAULT TREE EVALUATION TECHNIQUES 

1. Introduction 

This chapter describes the techniques which form the bases for manual and 
automated fault tree evaluations and discusses basic results obtained from these 
evaluations. Once a fault tree is constructed it can be evaluated to obtain qualitative 
and/or quantitative results. For simpler trees the evaluations can be performed 
manually; for complex trees computer codes will be required. Chapter XII discusses 
computer codes which are available for fault tree evaluations. 

Two types of results are obtainable in a fault tree evaluation: qualitative results 
and quantitative results. Qualitative results include: (a) the minimal cut sets of the 
fault tree, (b) qualitative component importances, and ( c) minimal cut sets 
potentially susceptible to common cause (common mode) failures. As previously 
discussed, the minimal cut sets give all the unique combinations of component 
failures that cause system failure. The qualitative importances give a "qualitative 
ranking" on each component with regard to its contribution to system failure. The 
common cause/common mode evaluations identify those minimal cut sets consisting 
of multiple components which, because of a common susceptibility, can all 
potentially fail due to a single failure cause. 

The quantitative results obtained from the evaluation include: (a) absolute 
probabilities, (b) quantitative importances of components and minimal cut sets, and 
(c) sensitivity and relative probability evaluations. The quantitative importances give 
the percentage of time that system failure is caused by a particular minimar cut set or 
a particular component failure. The sensitivity and relative probability evaluations 
determine the effects of changing maintenance and checking times, implementing 
design modifications, and changing component reliabilities. Also included in the 
sensitivity evaluations are error analyses to determine the effects of uncertainties in 
failure rate data. 

Listed below is a summary of the type of results obtained from a fault tree 
evaluation. In the following sections we discuss fault tree evafoation in more detail. 

Classes of Results Obtained From a Fault Tree Evaluation: 

Qualitative Results 

a. Minimal cut sets: 

b. Qualitative importances: 

c. Common cause potentials: 

Combinations of component failures causing 
system failure 
Qualitative rankings of contributions to 
system failure 
Minimal cut sets potentially susceptible to a 
single failure cause 

Quantitative Results 

a. Numerical probabilities: 
b. Quantitative importances: 

Probabilities of system and cut set failures 
Quantitative rankings of contributions to 
system failure 

XI-1 
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c. Sensitivity evaluations: Effects of changes in models and data, error 
determinations 

2. Qualitative Evaluations 

For the qualitative evaluations, the minimal cut sets are obtained by Boolean 
reduclfon of the fault tree as previously described in Chapter VII, section 4. 
Additional examples of minimal cut set determinations are given in this section to 
further familiarize the reader with Boolean reduction techniques. The minimal cut 
sets obtained are used not only in the subsequent qualitative evaluations but in all 
the quantitative evaluations as well. 

(a) Minimal Cut Set Determinations 

Because the minimal cut sets form the bases for all types of evaluations considered 
here, we shall briefly review the determination of minimal cut sets from the tree. In 
general, as stated in Section 4 of Chapter VII, our goal is to obtain the top event in 
the minimal cut set form 

The minimal cut sets Mj consists of combinations of primary failures (component 
failures), e.g., Mj = C1 c2c3 , which are the smallest combinations of primary failures 
that cause system failure. The substitution can be either a top-down substitution or a 
bottom-up substitution as previously described. Most computer algorithms for 
determining minimal cut sets are based on these principles. (Computer codes are 
discussed in Chapter XII.) 

Let us now consider the pressure tank fault tree of Figure XI-1. Figure XI-1 is 
similar to the detailed pressure tank fault tree constructed in Chapter VIII and shown 
in Figure VIll-13. In Chapter VIII, minimal cut sets were determined for a reduced 
version of the tree. We will determine here the minimal cut sets of the detailed tree as 
a first type of qualitative and/or quantitative evaluation. 

In the fault tree in Figure XI-1 we designate primary failures by P1, P2 , ... in 
circles; secondary failures by S1 , S2 ... in diamonds; undeveloped events by Ei. E2 
... in diamonds; and all higher fault events by G1, G2 ... except for the top event 
which we designate T. 

The set of Boolean equations equivalent to the fault tree of Figure XI-1 is: 

T = P1 + S1 + G1 
G1 = E1 + G2 
G2 = P2 + S2 + G3 
G3 = G4. G5 
G4 = G6 + G7 
Gs = P3 + S3 + E3 
G6 = p 4 + S4 + E4 
G7 = p 5 + S5 + Gs 
Gg = p 6 + S6 + E6. 

Note that we have one equation for each gate in the tree. 
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T 

Figure IX-1. Pressure Tank Fault Tree 
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We will use the bottom-up procedure and write each gate equation in terms of 
primary events (the P's, E's, and S's) by substituting for the G's. Using the 
distributive law and the law of absorption we will then transform each gate equation 
to minimal cut set form. Gs is already in minimal cut set form. G7 contains only the 
higher fault Gs and so substituting it becomes 

which is now in minimal cut set form. Both G6 and G5 are already in minimal cut set 
form. G4 contains G6 and G7, which are already in minimal cut set form, and thus 
becomes 

Substituting for G4 and G5 in the equation for G3 we have 

Using the distributive law we now express G3 in its expanded form: 

G3 = (P 4 • P3) + (P 4 • S3) + (P 4 • E3) 
+ (S4 • P3) + (S4 • S3) + (S4 • E3) 
+(E4. P3)+(E4. S3)+(E4. E3) 
+(P5 • P3)+(P5. S3)+(P5. E3) 
+ (S5 • P3) + (S5 • S3) + (S5 • E3) 
+(P6. P3)+(P6. S3)+(P6. E3) 
+ (S6 • P3) + (S6 • S3) + (S6 • E3) 
+ (E6. P3) + (E6 • S3) + (E6 • E3). 

~w~=~+~+~·and~se~~fy 
Gi = E1 + P2 + S2 + G3 

sothatT=P1 +S1 +E1 +P2 +S2 +G3. 

Substituting the expanded form of G3 into this last equation, we finally have T in 
correct minimal cut set form. 

The top event, or system model, thus contains: 
5 single component minimum cut sets, and 

24 double component minimum cut sets. 
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We note that if the S's denote secondary failures, then we do not really need to 
explicitly show them. All we need to do is to redefine the primary failures P to 
denote any type of cause and we can, if we wish, separate the causes in the 
quantitative analyses. By deleting the S's in the fault tree, we delete all the cut sets 
containing S. We now have 

3 single component minimal cut sets, and 
10 double component minimal cut sets. 

With larger trees, the savings in number of minimal cut sets will be even greater if we 
do not explicitly show the secondary failures. 

(b) Qualitative Importances 

After obtaining the minimal cut sets, some idea of failure importances can be ob
tained by ordering the minimal cut sets according to their size. The single-component 
minimal cut sets (if any) are listed first, then the double-component minimal cut sets, 
then the triple, etc. Computer codes usually list the minimal cut sets in this order. 

Because required computer times can increase dramatically as the size of the mini
mal cut sets increase, it is often the practice to obtain only the single-, double-, and 
perhaps triple-component minimal cut sets. As an additional calculation, higher order 
minimal cut sets (quadruples, etc.) can also be obtained on a selective basis if they 
show potential susceptibility to common cause failures (discussed further in the next 
section). 

Because the failure probabilities associated with the minimal cut sets often de
crease by orders of magnitude as the size of the cut set increases, the ranking accord
ing to size gives a gross indication of the importance of the minimal cut set. For 
example, if individual component failure probabilities are of the order of 10 -3, a 
single-component cut set probability will be o(the order of 10 -3, and a double cut 
set 10 -6 , a triple 10 -9, etc. Component failure probabilities are in general different 
and depend on testing intervals, downtimes, etc.; therefore the ranking of minimal 
cut sets according to size gives only a general indication of importance. 

The minimal cut set information can sometimes be used directly to check design 
criteria. For example, if a design criterion states that- no single component shall fail 
the system, then this is equivalent to stating that the system shall contain no single 
component minimal cut sets. The minimal cut sets can be checked to see if this 
criterion is satisfied. Similar checks can be done on criteria that restrict specific types 
of failures which may not individually fail a system (e.g., active components or 
human errors). 

(c) Common Cause Susceptibilities 

The primary failures (component failures) on a fault tree do not necessarily have 
to be independent. A single, more basic cause may result in multiple failures which 
fail the system. For example, an operator may have miscalibrated all the sensors, or 
one steam line break may cause all instrumentation to fail in a control panel. 
Multiple failures which can fail the system and which can originate from a common 
cause are termed common cause failures. 

In evaluating a fault tree, we do not know which failures will be common cause 
failures; however, we can indicate the susceptibility that componeJ!t failures may 
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have to a common initiating cause. Now by definition, the top event occurs, i.e., 
system failure occurs, if all the primary failures in a minimal cut set occur. Therefore, 
we are interested only in those common causes which can trigger all the primary 
failures in a minimal cut set. A cause which does not trigger all the primary failures in 
a minimal cut set will not by itself cause system failure. 

To identify minimal cut sets which are susceptible to common cause failures we 
can first define common cause categories, which are general areas that can cause 
component dependence. Examples of common cause categories include manufac
turer, environment, energy sources (not explicitly shown in the tree), and humans. 
The list below gives some example categories which might be considered in a 
common cause susceptibility evaluation. 

List of Common Cause Categories to be Evaluated 

Manufacturer 
Location 
Seismic Susceptibility 
Flood Susceptibility 
Temperature 
Humidity 
Radiation 
Wear-out Susceptibility 
Test Degradation 
Maintenance Degradation 
Operator Interactions 
Energy Sources 
Dirt or Contamination 

For each common cause category, we then define specific "elements." For 
example, for the category "Manufacturer" the elements would be the particular 
manufacturers involved which we might code as "Manufacturer l ." "Manufacturer 
2," etc. For the "Location" category, we might divide the plant into a given number 
of physical locations which would be the elements. For the category "Seismic 
Susceptibility," we might define several sensitivity levels ranging from no sensitivity 
to extreme sensitivity, and for more specificity we would define acceleration ranges 
where failure would likely occur. 

Our next task in the common cause susceptibility evaluations involves component 
coding. As part of the component name code or in associated component description 
fields, for each component failure we denote the element of each category associated 
with the component. The categories and elements can be indexed or keyed according 
to any convenient coding system. For example, "MV2-183" may denote manual 
valve 2 ("MV2") having element 1 associated with category 1, having element 8 
associated with category 2, and element 3 associated with category 3 ("-183"). This 
kind of naming can easily be coded on the fault tree and in any subsequent computer 
input. 

Having performed this coding, we can then identify the potentially susceptible 
minimal cut sets among the collection of minimal cut sets determined for the fault 
tree. The minimal cut sets which are potentially susceptible to common cause failures 
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are those whose primary failures all have the same element of a given category. 
Having identified the potentially susceptible minimal cut sets, we then need to finally 
screen these cut sets to determine those which·may require further action. This final 
screening may be based on past histories of common cause occurrences, some sort of 
quantification analysis, and/or engineering judgement. This last step is the most 
difficult and most time consuming. Chapter XII, section 6, discusses computer codes 
which can perform the initial searches. 

3. Quantitative Evaluations 

Once the minimal cut sets are obtained, probability evaluations can be performed 
if quantitative results are desired. The quantitative evaluations are most easily 
performed in a sequential manner, first determining the component failure 
probabilities, then the minimal cut set probabilities, and finally the system, i.e., top 
event, probability. Quantitative measures of the importance of each cut set and of 
each component can also be obtained in this process. 

If the failure rates are treated as random variables, then random variable 
propagation techniques can be used to estimate the variabilities in system results 
which result from the failure rate variations. We first discuss the usual "point 
estimations" where one value is assigned to each failure rate and where one value is 
obtained for each minimal cut set probability and for the system probability. 
Afterwards, we will discuss random variable analyses. 

(a) Component Failure Probability Models 

By "component" we mean any basic primary event shown on the fault tree 
(circle, diamond, etc.). For any component, we consider only failure probability 
models for which either a constant failure rate per hour applies or a constant failure 
rate per cycle applies. In using these constant failure rate models, we ignore any 
time-dependent effects such as component burn-in and component wear-out. The 
constant failure rate models which we discuss are usually used for order of magnitude 
results. Where time-dependent effects such as bum-in or wear-out are important or 
where precision better than, say, a factor of 10 is required, then more sophisticated 
models are required. These more sophisticated models include, for example, Weibull 
and Gamma failure distribution modeling; the reader is referred to [12] and [17] for 
discussions of these other models. 

(b) Constant Failure Rate Per Hour Model: Probability Distributions 

Consider first a component whose failures are modeled as having a constant failure 
rate per hour. Let the constant failure rate per hour be denoted by A.. When we use 
the constant failure rate per hour model, which we shall simply call the A.-model, 
then we are assuming that failure probabilities are directly related to component 
exposure times. The longer the exposure time period, the higher the probability of 
failure. The failure causes can be human error, test and maintenance, or 
environmental, such as contamination, corrosion, etc. The A.-model is the model most 
often used in fault tree quantifications. 

For the A.-model, the resulting first failure probability distributions are exponen
tial distributions. We shall review the distribution properties to refresh the reader's 
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memory. The probability F{t) that the component suffers its first failure within time 
period t, given it is initially working, is: 

F{t) = 1 - e-A.t. (XI-1) 

The quantity F(t) is the cumulative probability distribution as discussed in 
section 3 of Chapter X. In reliability terminology, F(t) is called the component 
unreliability. The complementary quantity to F{t) is the quantity 1 - F(t), which is 
the probability of no failure in time period t (given the component is initially 
working): 

(XI-2) 

In statistical terminology, the quantity 1 - F(t) is called the complementary 
cumulative probability. In reliability terminology, 1 - F{t) is the component 
reliability and is denoted by R(t): 

R(t) = 1 - F(t). (XI-3) 

The density function denoted by f(t) is the derivative of F{t); the quantity f(t)At, 
where the interval At approaches zero, is the probability that the component does 
not fail in time period t but then does fail l.n some small interval At about t. As part 
of the definition of f(t)At, we again assume the component is initially working at the 
beginning of the period. This "initially working" assumption is applied to all the 
calculations, and we will not explicitly state it in the forthcoming discussions. 

For the exponential distribution, the density function f(t) is: 

(XI4) 

The constant failure rate per hour model is so named because a formal calculation 
of the time-dependent failure rate A.(t) simply gives the constant value A.. Estimates of 
the constant failure rate A. are given for a variety of components in various data 
sources. The analyst needs to obtain a value of A. for each component failure on his 
fault tree for which the constant failure rate model is applied. Table XI-1 gives some 
representative failure rates for various component failures; the data are taken from 
WASH-1400 (reference [38]). 
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Table XI-1. Representative Failure Rates from WASH-1400 
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Extreme precision is not required (and is not believed!) in a fault tree evaluation; 
it is the order of magnitude size of the failure rate that is of concern, i.e., is the 
failure rate 10-6 per hour or 10-s per hour. To this "order of magnitude" precision, 
detailed environments and detailed component specifications are often not important 
in obtaining gross estimates of the failure rate. The analyst, however, should of 
course use all the available information in obtaining as precise an estimate as he can 
for A. for each component or basic event on his tree. 

Because extreme precision is not required in a fault tree evaluation, the 
exponential distribution can be approximated by its first order term to simplify the 
calculations. The cumulative exponential distribution, i.e., the component unreli
ability, is thus approximated as: 

F(t) :::: A.t. (XI-5) 

The above approximation is accurate to within 5% for failure probabilities (F(t)) 
less than 0.1 and the slight error made is on the conservative side. Furthermore, the 
approximation error is small compared to uncertainties in A.. 

The failure rate A. used in the A.-model can be either a standby failure rate or an 
operating failure rate; data sources give both types of rates. If A. is a standby failure 
rate, then the time period t used in Equation (Xl-5) should be the standby time t, 
i.e., the time period during which the component is "ready" for actual operation. 
For these standby situations, F(t) is the probability that the failure will occur in 
standby. If A. is an operating failure rate, then t is the actual operating time period 
and F(t) is the probability that the failure will occur in operation. Many components 
will have both a standby failure rate and an operating failure rate; for example, a 
pump will have a standby failure rate when it is not operating and will have an 
operating failure rate when it is operating. The analyst must ensure that the proper 
failure rate is used with the proper time period. For a standby and an operating phase 
the total failure probability is 

where the subscript "s" denotes the standby phase and the subscript "o" the 
operating phase. For small probabilities (less than, say, 0.1) we can thus simply sum 
the failure probabilities. 

(c) The Constant Failure Rate Per Hour Model: Reliability Characteris
tics 

As stated in the previous section, the quantity R(t) = I - F(t) is the probability. of 
no failure in time t and is termed the component reliability. The component 
unreliability F(t) is the probability of at least one failure in time period t. It is also 
the probability of first failure in time t. These definitions of F(t) incorporate the 
possibility of more than one failure occurring if the component failures are repairable 
(the reason for the phrase "at least one failure"). If the component failure is not 
repairable, then at most one failure will occur. 
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When we say failures are repairable, we mean that the component is repaired or 
replaced when it fails. The repair or replacement need not begin immediately after 
failure, and when begun will require some time to complete. The repair or 
replacement operation can be characterized by the downtime of the component 
denoted by d, which is the total period of time the component is down and 
unavailable for operation. For a standby component dis the downtime during which 
a demand on the component may occur. If the plant is shutdown sometime after the 
failure occurs then d is only that period of online downtime in which the component 
could still be-required to operate (to respond to, say, an accident). 

The cumulative distribution for the downtime denoted by G{d) is defined as 
follows: 

G{d) =the probability that the downtime period will be less than d. (XI-6) 

The cumulative distribution G(d) is obtained from experience data on repairs/ 
replacements and completely defines the repair/replacement process for quantitative 
evaluations. 

Let q{t) be the component unavailability and be defined as: 

q(t) = the probability that the component is down at time t 
and unable to operate if called on. (XI-7) 

1 - q(t) is the component availability and is the probability that the component is 
up and able to operate were it called on. 

If component failures are not repairable, then the component will be down at 
time t if and only if it has failed in time t. Consequently, for nonrepairable failures, 
where the component is up at t = 0, the unavailability q(t) is equal to the 
unreliability F(t): 

q{t) = F(t); nonrepairable failures. {XI-8) 

For the exponential distribution, the unavailability q(t) is thus simply given by 
the approximation: 

q{t) ~ A.t. (XI-9) 

For nonrepairable failures, the constant failure rate A. is thus all that is needed to 
calculate the basic component characteristics F(t) and q(t) which are used in a fault 
tree evaluation. 

For repairable failures, the component unavailability q(t) is not equal to the 
unreliability and we need information on the repair process* to calculate q(t). 

We will assume that the repair restores the component to a state where it is 
essentially as good as new. This assumption is optimistic but is usually made. The 
effects of test inefficiencies can be investigated by more sophisticated analyses. (For 
other treatments see references [37] and [41] .) 

*From here on, we will speak only of "repair" but we will mean repair or replacement. 
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For repairable failures, we consider two cases: (1) when failures are monitored, 
and (2) when failures are not detectable until a periodic surveillance test is 
performed. For the monitored case, when a failure occurs an alarm, annunciator, 
light, or some other signal alerts the operator. In this case, the unavailability q(t) 
quickly reaches a constant asymptotic value qM which is given by: 

q = ATD 
M --

1 + A.To 

=::A.To. 

(XI-10) 

(XI-11) 

The failure rate X is the standby failure rate and the quantity T 0 is the average 
online downtime obtained by statistically averaging the downtime distribution 
{described by the cumulative distribution G(d)). The downtime which is evaluated is 
again the online downtime during which the system is up and the component may be 
called on {for example, to respond to an accident situation). For simplified 
evaluations, the downtimes can often be broken into several discrete values with 
associated probabilities and a statistical average taken over the discrete values. The 
approximation given by Equation (XI-11) is conservative and is within 10% accuracy 
for A.To< 0.1. 

For components which are not monitored but which are periodically tested, any 
failures occurring are not detectable until the test is performed. This is the situation, 
for example, when surveillance tests are performed monthly; any failure which 
occurred during the past month would be detected only when the test is performed. 
(Jle assume perfect testing here, in that essentially 100% of the failure modes are 
detected.) 

For periodic tests performed at intervals of T, the unavailability rises from a low 
of q(t = 0) = 0 immediately after a test is performed to a high value of q(t = T) = 
1 - e-A. T::: XT immediately before the next test is performed. Because the 
exponential can be approximated by a linear function (for XT < 0.1 say) the average 
unavailability between tests is approximately XT/2. The average value is applicable 
for fault tree evaluations if we assume that a demand on the component may occur 
uniformly at any time in the interval. 

If the component is found failed at a surveillance test, then it will remain down 
during the necessary repair time. Considering this additional repair contribution, we 
have the following expression for the total average unavailability qT for periodically 
tested components: 

(XI-12) 

In the above formula, X is again the standby failure rate per hour and TR is the 
average repair time obtained from downtime considerations. The repair time 
evaluated is again the online repair time during which the component may be called 
on to function. The subscript "R" is used on TR to denote that it is the average 
repair time and not the total downtime which is the sum of the repair time plus the 
undetected downtime from time of failure to time of detection. 
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In general, TR is small compared to T and the second term on the right hand side 
of Equation (XI-12) is negligible; we thus have: 

(XI-13) 

For repairable failures, the unavailability is thus given by qM or qT depending on 
whether monitoring exists or periodic testing is performed with no monitoring 
between tests. (If monitoring is performed, qM applies regardless of whether any 
additional periodic testing is performed.) For each repairable component of the tree, 
A. and TD (monitored) or A., TR, and T (periodically tested) are required as data 
inputs. Failure rate data sources supply A. and operating specifications for the 
component are sources for TR, T, and Tn. 

In addition to the component unavailability, there is one component reliability 
characteristic which is of interest when an operational system is being evaluated. This 
component characteristic is the component failure occurrence rate w(t) and is 
defined such that: 

w(t)At =the probability that the component fails in time 
t tot+ At. (XI-14) 

In the definition of w(t), we are not given that the component has operated 
without failure to time t as was the case for the failure rate definition A.(t) (see 
Section 8 of Chapter X). In fact, if the component is repairable, then it can have 
failed many times previously; the quantity w(t)At is the probability that it fails in 
time t to t + At irrespective of history. 

The occurrence rate w( t) is applicable for both nonrepairable and repairable 
components. For both repairable and nonrepairable components, the expected 
number of failures in some time interval t 1 to t 2 , denoted by n(t 1 , t 2), is given by 
the integral of w(t) from t 1 to t 2 : 

(XI-15) 

For nonrepairable component failures, the component can only fail once. 
Therefore, w(t) is equal to the probability density function for first failure: 

w(t) = f(t) 

= xe-A.t 

(XI-16) 

(XI-17) 

where Equation (XI-17) is for the constant failure rate model (the A.-model). 
For time t small compared to 1/A. (such that A.t < 0.1 ), e-A.t is approximately 1, 

and hence Equation (XI-17) becomes, 

w(t):::::: A., A.t < .1. (XI-18) 
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For repairable failures, w(t) can be a complex function of time; however, it 
approaches A. as time progresses, and this asymptotic value of A. is generally precise 
enough for applications: 

w(t) ~A.. (XI-19) 

Hence for both nonrepairable and repairable failures, w(t) = A. is generally a 
reasonable approximation. (Some of the computer codes discussed in the next 
chapter can compute the time dependent values of w(t).) 

(d) Reliability Characteristics for the Constant Failure Rate Per Cycle 
Model 

Instead of modeling component failures as having a constant failure rate per hour, 
we can use a constant failure per cycle model. In the constant failure rate per cycle 
model, the component is assumed to have a constant probability of failing when it is 
called on (i.e., when it is "cycled"). This probability of failing per cycle, which we 
denote by p, is independent of any exposure time interval, such as the time interval 
between the test or the time that the component has existed in standby. 

The constant failure rate per cycle model, which we shall simply call the p-model, 
is applied when failures are inherent to the component and are not caused by 
"external" mechanisms which are associated with exposure time. For cyclic failures, 
the cycling of the component may actually cause the failure (because of stress, etc.). 
For example, a component which is obtained from a manufacturer and immediately 
placed in the field may be modeled as having a certain failure probability p due to 
manufacturing defects. After pre-operational testing (i.e., burn-in testing), many of 
the inherent component failures would be detected and the failures might then be 
best modeled by the A.-model, i.e., the constant failure rate per hour model. 

In past practice, the p-model has been applied to relatively few components, 
whereas the A-model, the constant failure rate per hour model, has been applied to 
the majority of components. The analyst must decide which component model, the 
p-model or the A-model, is most applicable for his analyses. Failure rate data sources 
sometimes indicate the appropriate models; otherwise, the analyst must decide based 
on knowledge of the failure causes and mechanisms. 

The reliability characteristics for the p-model are straightforward and are all based 
on the one characterizing value p, which is the probability of failure per cycle, or per 
demand. We again use the definition of component unreliability, F(t), and 
component unavailability, q(t), as given by Equations (XI-8) through (XI-11 ). For n 
demands in time t and assuming independent failures, the reliability (Rc) and the 
unavailability (qc) are given by: 

(Xl-20) 
or 

1- R" = q" ~ np, np < 0.1. 

(The subscript c in Rc and qc denotes "cyclic" values.) 
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As noted in the above equations, the reliability and unavailability do not depend 
explicitly on time but on the number of cycles {demands) occurring in that time. For 
one demand (n = 1 ), we note that 1 - Re,= qc = p. For each component on the fault 
tree modeled by the p-model, the user must obtain the appropriate value of p and the 
number of demands (usually one). 

(e) Minimal Cut Set Reliability Characteristics 

Once the component reliability characteristics are obtained, the reliability 
characteristics for the minimal cut sets can be evaluated. For a fault tree of a standby 
system, such as a nuclear safety system, the characteristic of principal concern is the 
minimal cut set unavailability denoted by Q: 

Q(t) =the probability that all the components in the minimal 
cut set are down at time t and unable to operate. (XI-22) 

Because a minimal cut set can be viewed as being a particular failure mode of the 
system we can also define Q as: 

Q( t) = the probability that the system is down at time t 
due to the particular minimal.cut set. 

We can thus also call Q(t) the system unavailability due to a minimal cut set. 

{Xl-23) 

We can index each minimal cut set of the fault tree in any way we choose, and 
then Qi(t) would be the unavailability for minimal cut set i. To determine Qi(t) we 
note that, by its definition, the minimal cut set is an intersection of the associated 
component failures; the minimal cut set occurs if and only if all the component 
failures occur. Assuming the component failures are independent, recall from 
Chapter VII (Equation VII-3) that the probability of an intersection {i.e., an AND 
gate) is simply the product of the component probabilities. Hence: 

(XI-24) 

where q1 (t), q2(t), etc., are the unavailabilities of the component in the particular 
minimal cut set and ni is the number of components in the cut set. As an example in 
applying Equation (XI-24), if a minimal cut set has two components, having 
respective unavailabilities of 1 x 10-2 and 1 x 1 o-3, then the cut set unavailability 
is 

The component unavailabilities are those given in the previous sections; any 
combinations of component unavailabilities can be used (e.g., one component can be 
periodically tested and the other can have a cyclic failure rate, etc.). If the 
components in the minimal cut set are all repairable or cyclic, then constant values 
can be used for the component unavailabilities, e.g., (Equation (XI-10) or (Xl-11)), in 
which we ignore any time-dependent transient behaviors. For this completely 



XI-16 FAULT TREE HANDBOOK 

repairable or cyclic case and within our approximations, the minimal cut set 
unavailability is then simply a constant and independent of time. 

If the fault tree is of an operational system, then instead of the unavailability, the 
number of system failures and the probability of no system failure are of primary 
interest. A minimal cut set characteristic giving information on these reijability
related concerns and one which is easily calculable is the minimal cut set occurrence 
rate denoted by W(t). The minimal cut set occurrence rate W(t) is defined such that: 

W(t)At =the probability that the minimal cut set 
failure occurs in time t to time t + At. (XI-25) 

The quantity At is a small increment of time. The occurrence rate itself, W(t), is 
thus a probability per unit time of the minimal cut set failure occurring. Because a 
minimal cut set can be considered a system failure mode we can equivalently define 
W(t)At to be: 

W(t)At =the probability that a system failure occurs in time 
t tot+ At by the partic1;1lar minimal cut set. (XI-26) 

If we index all the minimal cut sets of the tree, then Wi(t) refers to the occurrence 
rate of minimal cut set i. 

To calculate Wi(t), we use the basic definition of a minimal cut set and the 
concept of an "occurrence." A minimal cut set failure occurs at time t tot+ At if all 
the components except one are down at time t and the other component then fails at 
time t to t + At. Assuming independence of the component failures Wi(t) is thus 
given by: 

(Xl-27) 

where the q(t)'s are the component unavailabilities and the w(t)'s are the component 
occurrence rates (Equation (XI-14)). The first term on the right hand side of 
Equation (Xl-27) is the probability that all components except component 1 are 
down at time t and then component 1 fails. The second term is the probability that 
component 2 is the component that fails in time t to t + At, all other components 
being already down, etc. The contribution from each of the componen~s failing in 
time t to t + At is summed over the ni components in the cut set to obtain the total 
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occurrence rate given by Equation (XI-27). The At's cancel in Equation (XI-27), 
giving: 

(XI-28) 

The minimal cut set occurrence rate Wj(t) is strictly applicable when all the 
components have a per hour failure rate (the A.-model). Cyclic components (the 
p-model), as previously stated, do not have any explicit time-associated behaviors. 
The above equation can be applied to minimal cut sets having cyclic components, if 
we use for the cyclic components qc(t):::::::: n(t)p and wc(t)::::: pk(t), where p is the 
cyclic component failure probability, n(t) is the (expected) number of demands in 
time t, and k(t) is the probability of a demand occurring per unit time at time t. (The 
quantity k(t)At is thus the probability that a demand occurs in time t tot+ At.) The 
quantities n(t) and k(t) must be obtained from operational considerations for the 
component. 

The expected number Ni( ti ,t2) of failures of minimal cut set i occurring during 
some time period from ti to t2 is: 

(XI-29) 

If the components in the minimal cut set are all repairable, and constant values are 
used for the component unavailabilities and occurrence rates (ignoring any 
transients), then Wi(t) is a constant, Wi(t) = Wi. In this constant value case Ni(ti,t 2) 
is simply equal to the time interval multiplied by the constant minimal cut set 
occurrence rate: 

(XI-30) 

Because the system fails every time the minimal cut set fails (by the minimal cut 
set definition), Ni(ti ,t2) is the expected number of times the system fails in time 
period ti to t2 , due to minimal cut set i. When all components are nonrepairable 
then Ni( ti ,t2) is also the probability that the minimal cut set fails in the time period 
ti to t2 (the expected number being equal to the probability in this case). Even when 
components are repairable, if the system failure probability over the time period of 
interest is small (say, less than 0.1), then Nj(ti,t2) is less than 1. Even though 
Ni(ti ,t2) is strictly the expected number of failures, it is also a reasonably good 
approximation for the probability of the minimal cut set failing in time period t 1 to 
t2 . This approximation in the repairable case is conservative (the true probability is 
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less than Ni(t1 ,t2)) and fairly accurate, generally agreeing to within 10% of the true 
probability for Ni(t1,t2) < 0.1. 

Using our previous nomenclature, the probability of minimal cut set failure is the 
minimal cut set unreliability and hence, using the above reasoning, when Ni(t1 ,t2) < 
0.1: 

NiCt 1 ,t2) ~minimal cut set unreliability in time t 1 to t 2. (XI-31) 

In terms of system failure, when Ni(t1 ,ti) < 0.1, then Ni(t 1 ,t2) is thus also 
approximately the probability of system failure in time t 1 to t 2 due to minimal cut 
set i. We can thus say, within our approximation, that Ni(t1 ,t 2) is the system 
unreliability due to minimal cut set i. When some components are repairable, the 
exact minimal cut set and system unreliabilities are generally difficult to· calculate 
and Ni(t1 ,t2) consequently provides a useful and generally accurate approximation 
which is simple to calculate and good enough for most applications. 

For a fault tree evaluation, the minimal cut set unavailabilities, Qi(t), and the 
minimal cut set occurrence rates, Wi(t), provide comprehensive information on th.e 
probabilistic behavior of the minimal cut sets. If a standby system, such as a nuclear 
safety system, is being evaluated, then only the cut set unavailability Qi(t) is usually 
calculated. The minimal cut set characteristics need to be calculated for all the 
dominant minimal cut sets of the tree. For small numbers of minimal cut sets, the 
characteristics can be calculated for all the cut sets of the fault tree. For fault trees 
having very large numbers of minimal cut sets, the minimal cut set characteristics are 
generally only computed for the lower order cut sets, e.g., single-component and 
double-component cut sets. Because component failures are assumed to be 
independent, the values of Qi(t) and Wi(t) for higher order cut sets (e.g., triples and 
higher) are generally negligible compared to those for the lower order cut sets {singles 
and doubles). The independence assumption represents an optimal condition and the 
true cut set characteristics, for doubles and up, may be quite higher than the 
calculated values of Qi(t) and Wi(t) because of dependencies among the component 
failures. If the fault tree has only double cut sets and higher, then the calculated 
values for Qi(t) and Wi(t) represent design capability numbers useful principally for 
relative evaluations; the actual achieved values of Qi(t) and Wi(t) may be quite higher 
and will be much more difficult to estimate. (See for example reference [12] for 
further considerations.) 

(f) System (Top Event) Reliability Characteristics 

Once the minimal cut set characteristics are obtained, the determination of the 
system characteristics is quite straightforward. The system unavailability denoted by 
Qs(t) (the subscript "s" denoting "system") is defined as: 

Q
8
(t) =the probability that the system is down at time t 

and unable to operate if called on. (XI-32) 

For a standby system, such as a nuclear safety system, Q8(t) is the most critical 
system chara°{eristic. If the top event of the fault tree is not a system failure but 
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some general event, then Qs(t) is the probability that the top event exists at time t 
(having occurred earlier and persisting to time t). 

Now, the system is down if and only if any one or more of the minimal cut sets is 
down. If we ignore the possibility of two or more minimal cut sets being 
simultaneously down, the system unavailability Qs(t) can thus be appr:oximated as 
the sum of the minimal cut set unavailabilities Qi(t): 

N 
Qs(t)::::: I: Qi(t) 

i=l 
(XI-33) 

where ~ denotes a summation of Qi(t) over the N minimal cut sets considered in the 
tree. 

Equation (XI-33), the so-called "rare event approximation," was first introduced 
in Chapter VI. It generally gives results agreeing within 10% of the true unavailability 
for Q8(t) < 0.1. Furthermore, any error made is on the conservative side in that the 
true unavailability is slightly lower than that computed by Equation (Xl-33). 
Equation (XI-33) is usually used in fault tree evaluations; it is simple to calculate, 
and it can be truncated at any value of N to consider only those cut sets contributing 
most to Qs(t). If the component failures are all repairable or cyclic and constant 
values used for the component unavailabilities, then Qs(t) is independent of time and 
is simply a constant value Q5 • 

For on-line operational systems, the system failure occurrence rate Ws(t) is of 
interest and is defined such that: 

WsCt)~t =the probability that the system fails in time 
t tot+ ~t. (XI-34) 

The occurrence rate itself, Ws(t), is the probability per unit time of system failure 
at time t. (For any general top event, W8(t) is the probability per unit time that the 
top event occurs at time t.) 

The system failure occurs if and only if any one or more of the minimal cut sets 
occurs. The system failure occurrence rate then, W8(t), can be expressed as the sum 
of the minimal cut set occurrence rates Wi(t): 

\ 

N 
Ws(t) = I: Wi(t). 

i=l 
(XI-35) 

Equation (XI-35) is another application of the "rare event approximation." It is 
quite accurate for low probability events because for such events, the probability of 
two or more minimal cut sets occurring simultaneously is negligible. Equation 
(XI-35) is again simple to evaluate and it can be truncated so that only the N 
dominant minimal cut contributors are considered. 
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If we use W 8(t), the expected number of system failures N8(t1 ,ti) in time ti to ti 
is: 

(XI-36) 

As a particular use of the above formula, the expected number of system failures 
in time t, N8(t), is: 

t 
N8(0,t) = f WsCt')dt'. 

0 
(XI-37) 

If the component failures are all repairable or cyclic and constant values used for 
the component unavailabilities, then W8(t) is simply a constant W8 , and Nit1 ti) is 
simply W8 times the interval t2 - ti. 

Using the same rationale as for the minimal cut set Ni(t 1,t2), for Ns(t 1,t2) less 
than 0.1, Ns(t1 ,t2) is also a reasonably accurate approximation for the probability of 
system failure in time t 1 to t 2 , which is the system unreliability: 

(XI-38) 

The quantity NsCO,t) is thus a reasonably accurate approximation of the system 
unreliability in time period t. 

The system unavailability Q8(t), the system failure occurrence rate Ws(t), and the 
expected number of system failures Ns(t1 ,t 2) give comprehensive information on the 
probabilistic description of system failure. In using these results, the reader must 
keep in mind the assumptions and limitations of the calculations, particularly the 
assumption of independence of component failure occurrences. As discussed for the 
minimal cut set characteristics (section e), if the fault tree has only double cut sets 
and higher, the system results as calculated here may be very much below the true 
values due to dependencies among the component failures. When these dependencies 
exist to the extent that they significantly increase failure probabilities, then Qs(t), 
W8(t) and N8(ti ,t 8) represent optimal design-based numbers which are useful for 
relative evaluations but are not useful for absolute evaluations. 

(g) Minimal Cut Set and Component Importances 

As an additional evaluation we describe a quantitative technique for determining 
the "importance" of each minimal cut set and each component failure. We define the 
minimal cut set importance to be the fraction of system failure probability 
contributed by a particular minimal cut set. We define the component importance to 
be the fraction of system failure probability contributed by . the particular 
component failure. Different formulas can be used to calculate the importances (see 
reference [21] for a discussion of the different approaches); for our discussion here 
we will use one of the simplest methods of calculating the importances. 

The minimal cut set importance and the component importance can be calculated 
with regard to the system unavailability, Qs(t), or the system failure occurrence rate, 
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Ws(t). The rule in either case is the same: to calculate the minimal cut set 
importance, we take the ratio of the minimal cut set characteristic over the system 
characteristic. For the component importance, we sum the characteristic of all 
minimal cut sets containing the component and divide by the system characteristic. 

Let Ej(t) be the importance of minimal cut set i at time t, and let ek (t) be the 
importance of component k at time t (we have simply indexed the cut sets and 
components for ease of identification). With regard to system unavailability, then: 

and: 

= fraction of system unavailability contributed by minimal 
cut set i 

=fraction of system unavailability contributed by 
failure of component k. 

(XI-39) 

(XI-40) 

(XI-41) 

(XI-42) 

The symbol ~in equation (XI-41) denotes a sum of Qi(t) over all those minimal 
cut sets containing component k as one of its components. Because the system can 
be down if and only if one or more of the cut sets is down, the sum of Qi( t) in 
Equation (XI-41) is the probability that the system is down due to component 
failure k being one of the causes. In terms of conditional probabilities, Elt) is 
approximately the probability that the system is down due to minimal cut set i, given 
the system is down. The quantity ek(t) is approximately the probability that the 
system is down due to component k being one of the causes, given the system is 
down. (The quantities are approximate because intersections of minimal cut sets are 
ignored, i.e., the rare event approximation is used.) 

When all components of the fault tree are repairable or cyclic, and constant values 
are used for the component unavailabilities then the importances Ei(t) and ek(t) are 
constant and independent of time: Ei(t)= Ei and ek(t)= ek. The minimal cut set and 
component importances thus can be ranked from largest to smallest without regard 
to the time considered. 

With regard to the system failure occurrence rate, the minimal cut set importance 
/' /\. 
Ei(t) and the component importance ek(t) are: 

= fraction of system failure. occurrences at 
time t contributed by minimal cut set i 

(Xl-43) 

(XI-44) 
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and: 
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= Fraction of system failure occurrences at time t 
in which component k is one of the contributors. 

(XI-45) 

(XI-46) 

The reasoning for the above two formulas is the same as used previously. With 
regard to ~(t), component k is defined to be one of the contributors to system 
failure at time t if it is either down at time t or if it fails at time t. If constant values 
are used for all the component characteristics then t'i(t) and-ek(t) are again simple 
constants which can be ranked from highest to lowest without regard to time. 

For the convenience of the reader, Tables XI-2 and XI-3 summarize all the 
formulas which have been presented for the evaluation of a fault tree. 



fable XI-2. Summary of Equations for Reliability Characteristics 

Required Data Unavailability 

Components 

A-model 

Non-repairable A q(t) = 1 - e-At :. At, At < 0.1 

Repairable, monitored A, To q(t) = Ho ""n0 • n 0 <0.1 
1 +Ho 

Repairable, periodically 
q(t) =AT+ ATR :.AI. TR <0.1 T tested >., T, TR 

2 2 

p-model 

Cyclic Component p, n(t), k(t) q(t) = 1 - (1 - p)n(t) :. n(t)p, n(t)p < 0.1 

n· 
Minimal Cut Sets Qj(t} = 11 1 

qk(tl where ni =the 
k=1 number of 

components in 
the ith minimal 
cut set 

N 
System Oslt) = L: Ojltl where N =the 

i= 1 number of 
minimal cut sets 

where A = component failure rate per hour (operating or standby.as applicable) 
To = average downtime per failure in hours 
T = test interval in hours 
TR = average repair time per faHure in hours 
p = probability of cyclic component failure per demand 
nit) = expected number of demands in time t 
kit) = cyclic component demand rate per hour at time t 

Occurrence Rate Unreliability 

w(t) = Ae·At:. A, >.t<0.1 Flt) = 1 - e-At "" At, At < 0.1 

w(t) = A (asymptotic) same as above 

w(tl = A (asymptotic) same as above 

wit)= pk(t) F(t) = same as q(t) 

Wilt) = Q2ltl Q3(t) ··· Qnj(tl W1(t) F(tl :. Njlt1,- t21; Nj lt1. t2) < 0.1 
+ qf(t) Q3(tl ... Qniltl w2(tl 
+ Q1(tl Q2(t) ... Qni(t) W3(t) 

'+ q1(t) Q2(t) ... qni _11tl Wniltl 

N 
Wsltl =.L: Wit) 

1=1 I 
F(tl:. Ns(t1, t2); Ns(t1, t2) < 0.1 



XI-24 FAULT TREE HANDBOOK 

Table Xl-3. Summary of Equations for Quanitative Importance 

System Unavailability 

System Failure Occurrence Rate 

ith Cut Set Importance 

Ej(t) = Qiltl 
Osltl 

E"·( I _ Wilt) ,t ---
Wslt) 

kth Component Importance 

ek(t) = L Qi(tl 
kin i 

Os It) 

I\ L Wilt) 
ek(t) = kini ----

(h) Sensitivity Evaluations and Uncertainty Analyses 

In the previous sections, the computation of point estimates for the unavailability 
and failure occurrence rate of the top event of a fault tree were described. In this 
section we briefly take up the question of how to evaluate the sensitivity of these 
estimates to variations or uncertainty in the component data or models. 

Sensitivity studies are performed to assess the impact of variations or changes to 
the component data or to the fault tree model. It is particularly convenient to assess 
effects of component data variations using the formulas presented previously in this 
chapter because they explicitly contain component failure rates, test intervals, and 
repair times as variables. In sensitivity analyses different values may be assigned these 
variables to determine the differences in any result. For example, if T is a periodic 
testing interval, then the effects on system unavailability with regard to different 
testing intervals can be studied by varying the T's for the components. This can entail 
as simple a calculation as redoing the computations with different T's or as complex 
as employing dynamic programming. likewise, failure rates (')..) can be changed to 
determine the effects of upgrading or downgrading component reliabilities. 

As a type of sensitivity study, scoping-type evaluations can also be performed by 
using a high failure rate and a low failure rate for a particular event on the tree. If the 
system unavailability does not change significantly, then the event is not important 
and no more attention need be paid it. If the system unavailability does change 
significantly' then more precise data must be obtained or the event must be further 
developed to more basic causes. A wide spectrum of sensitivity analyses can be 
performed, depending on the needs of the engineer. 

In judging the significance of an effect, it is important that the analyst take into 
account the precision of his data. For example, although a factor of 2 variation in the 
system unavailability might be very significant when failure rates are known to 3 
significant figures, the same factor of 2 variation would probably not be significant 
when failure rates are known only to an order of magnitude. 

As a type of sensitivity evaluation, formal error analyses can be performed to 
determine the error spread in any final result due to possible data uncertainties or 
variabilities. The error spread obtained for the results gives the uncertainty or 
variability associated with the result. The error analyses employ statistical or 
probabilistic techniques, which are independent of the fault tree evaluation 
techniques per se; the discussion therefore, will be short. 
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A variety of error analysis methods can be used, and we will briefly explain the 
approach when data are treated as random variables.* For the random variable 
approach, the method most adaptable to a fault tree evaluation is the Monte Carlo 
simulation technique. The Monte Carlo method can accommodate general distribu
tions, general sizes of the errors, and dependencies. 

In the Monte Carlo method, the fault tree evaluations are repeated a number of 
times (each repetition is called a "trial") using different data values (e.g., }i.'s and 
TR 's) for each calculation. The variation in the data values is "simulated" by 
randomly sampling from probability distribution functions which describe the 
variability in the data. The probability distributions can be Bayesian prior 
distributions on the parameters A, TR, etc., or can be distributions representing 
plant-to-plant variation in the failure rates and other data. Each trial calculation will 
give one value for the system result of interest such as the system unavailability or 
occurrence rate. The whole set of repeated calculations will give a set of system 
results from which an error spread is determined (e.g., picking the 5% largest value 
and 95% largest value to represent the 90% range for the result). 

The above method is completely analogous to repeating an experiment many 
times to determine the error in the experimental value. The final error spread on the 
result is the estimate of the result variability arising from the variability in the failure 
rates and other data treated as random variables. (Section 2b of Chapter XII 
describes several fault tree-oriented computer codes for performing Monte Carlo 
simulation.) 

*When failure rates and other data are treated as constants, with uncertainties arising from the 
variability of the estimators, then classical confidence bound approaches should be used. The 
reader is referred to Mann, Schafer, and Suigpurwalla (reference [30)) for further details. 
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1. Overview of Available Codes 

This chapter covers the computer code methodology currently available for fault 
tree analysis. The codes discussed are divided into five groups. The numbers in 
brackets refer to references in the bibliography. 

Group 1. Codes for Qualitative Analysis 

PREP [42] 1970 
ELRAFT [35] 1971 
MOCUS [11] 1972 
TREEL and MICSUP [29] 1975 
ALLCUTS [39] 1975 
SETS [46] 1974 
FTAP [43] 1978 

Group 2. Codes for Quantitative Analysis 

KITTI [42] 1969, KITT2 [40] 1970 
SAMPLE [38] 1975, MOCARS [25] 1977, et al. 
FRANTIC _[41] 1977 

Group 3. Direct Evaluation Codes 

ARMM [26] 1965 
SAFTE [13] 1968 
GO [14] 1968, GO "Fault Finder" 1977 
NOTED [45] 1971 
PATREC [19] 1974, PATREC-MC [20] 1977 
BAM [34] 1975, WAM-BAM [22] 1976,.WAMCUT [9] 1978 

Group 4. A Dual-Purpose Code 

PL-MOD [28] 1977 

Group 5. Common Cause Failure Analysis Codes 

COMCAN [3] 1976 
BACKFIRE [ 5] 1977 
SETS [47] 1977 

Group 1 consists of codes that perform the qualitative evaluation of a fault tree 
(i.e., codes that compute minimal cut and/or path sets). The codes in Group 2 
perform quantitative (probabilistic) analysis based on the structural information 
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embodied in the cut sets. The codes in Group 3 are designed to perform direct 
numerical evaluation of a fault tree without computing cut sets as a necessary 
intermediate step; however, many of them will generate cut sets on request as a 
nonintegral part of the analysis. PLMOD, a dual purpose code that can be used both 
for the qualitative and quantitative analysis of a fault tree constitutes Group 4, and, 
finally, Group 5 contains the codes developed for use in common cause analysis. The 
five groups of codes are described in the succeeding sections of this chapter. 

2. Computer Codes for Qualitative Analysis of Fault Trees 

This section deals with codes that compute the minimal cut (and/or path) sets of a 
fault tree. The computation of the minimal cut sets is often referred to as the 
qualitative evaluation of the fault tree because the results are based solely on the 
structure of the tree and are independent of the probabilities associated with the 
basic events. In contrast, the probabilistic assessment is called the quantitative 
evaluation of the fault tree. 

The division between qualitative and quantitative aspects develops naturally 
because the probabilistic analysis often involves repeated evaluation of the tree (i.e., 
at different time points, using a distribution of failure or repair rates to perform 
sensitivity or error analysis). Thus, it is often most efficient to perform the 
time-consuming structural analysis once, save the results in some convenient form 
(usually minimal cut sets) and then use these results to quantify the tree using 
different sets of data, as required. Other advantages afforded by the computation of 
the minimal cut sets are (1) the minimal cut sets themselves provide much useful 
information to the analyst, even in the absence of any quantitative data, because 
they indicate the minimal sets of components whose failure will cause the system to 
fail; (2) non-contributing cut sets (usually based on cut set size) can be discarded 
prior to quantification, thus increasing computational efficiency and reducing data 
requirements; (3) the ability to compare the minimal cut sets with the original tree 
provides a valuable error check; and (4) cut sets are required as part of the input to 
the common cause analysis codes. 

One disadvantage of the minimal cut set codes is that the storage and computer 
time required to process even medium-size trees can become quite prohibitive. This is 
because the number of cut sets can increase exponentially with the number of gates 
and can easily reach the millions or even billions of terms (e.g., one example tree 
with 299 basic events and 324 gates, had in excess of 64 million cut sets). The 
problem is complicated further because a simple count of events and gates is a very 
poor indicator of the expected number of minimal cut sets, and even the number of 
minimal cut sets may not be a good prediction of required processing time. Thus it 
is often difficult to predict the storage requirements and run time for a given tree. 

Several methods can be used to overcome or at least alleviate the problems 
associated with obtaining the minimal cut sets. The most common is to eliminate, 
during the processing, cut sets whose size (number of events) is greater than some 
prespecified number n. This is often very effective for trees having low order cut sets 
which dominate the high order cut sets. In WASH-1400 [38] for example, only the 
single and double event cut sets were retained for the independent failure 
computations; the higher order cut sets were analyzed only for common mode and 
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common cause failure potentials. Another similar approach is to reduce the tree 
based directly on cut set probability instead of order. This requires the input of 
component failure probabilities at the outset, however. Disadvantages of using a tree 
reduction process are that (1) it is impossible to determine the total failure 
probability discarded and (2) analysis of dependencies such as events dependent on 
common causes requires separate evaluation of the higher order cut sets. 

Other techniques used in some codes are efficient "packed" and/or bit-level 
storage schemes, use of auxiliary storage media during cut set processing, and 
automatic tree decomposition schemes. The latter seems to be a promising method, 
and is discussed further in later sections (see sections on SETS, FTAP, and PL-MOD). 

In the remainder of this section, we discuss the individual qualitative analysis 
codes. PREP, discu~ed in section l(a), was the first cut set code. It is included 
mainly for background; its algorithm has been superseded by improved methods. 
ELRAFT, MOCUS, MICSUP, ALLCUTS, SETS, and FTAP discussed in sections 
l{b)-(g), all use variations on the "top-down" and "bottom-up" methods described 
earlier in Chapter VII, section 4. SETS is somewhat different from the other codes in 
that it provides a very general and flexible tool for manipulating the fault tree in the 
form of its corresponding Boolean equations. 

(a) PREP 

The PREP and KITI codes [40] [42], written in FORTRAN IV for the IBM 360 
computer and released in 1970, were the first computerized fault tree evaluation 
codes. PREP is a minimal cut set (or path set) generator, and KITTI and KITT2 
perform time dependent fault tree analysis in the context of Kinetic Tree Theory, 
using the results from PREP. The KITI codes will be discussed in the quantification 
section. 

PREP consists of two parts: PREP-TREBIL and PREP-MINSET. TREBIL (for 
"tree build") takes the user's input description of a fault tree and builds a 
FORTRAN subroutine of the Boolean equations for the tree. MINSET then uses the 
TREE subroutine produced by TREBIL to find the tree's minimal cut and/or path 
sets. 

PREP-MINSET has two options for cut set generation: COMBO and FATE. 
COMBO systematically fails all single basic events, pairs of basic events, groups of 
three basic events, etc., to determine which combinations cause the top event of the 
fault tree to occur. The user determines the maximal size of the cut sets to be 
computed (for low probability events, such as those found in nuclear power plant 
fault trees, doubles or triples usually suffice). FATE incorporates quantitative data 
on the component's reliability to find minimal cut sets which are "most likely" to 
occur. It does this by performing Monte Carlo simulation. 

The main disadvantage of PREP is that COMBO requires a prohibitive amount of 
computer time for large order cut sets of large fault trees, whereas FATE is not 
guaranteed to find all the minimal sets. Also, the input to PREP is limited to AND 
and OR gates, so NOT gates, both explicit and implicit (e.g., exclusive OR gates), are 
prohibited; and special gates, such as k-out-of-n gates, must be input in terms of their 
basic AND and OR gate structure. The basic events are assumed to be independent; 
unlimited replicated events are allowed; there is no way to generate cut sets for 
intermediate gates; and there is no easy method to input replicated portions of the 
tree. PREP allows a maximum of 2000 components and 2000 gates; minimal cut sets 
found by COMBO are limited to maximum length of 10 components. 
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(b) ELRAFT 

The ELRAFT (Efficient Logic Reduction of Fault Trees) code (35] uses the 
unique factorization property of the natural numbers to find the minimal cut sets of 
a fault tree. Every integer greater than 1 can be expressed as a unique (except for 
order) product of prime factors. In the ELRAFT code, each basic event is assigned a 
unique prime number. The tree is processed from the bottom up, and cut sets for the 
gates at successively higher levels are represented by the product of the numbers 
associated with their input events. The major drawback of ELRAFT is that for large 
trees, the product of the prime factors can soon exceed the capacity of the machine 
to represent the number. Coded in FORTRAN IV for the CDC 6600, ELRAFT is 
capable of finding minimal cut sets of up to six basic events for the top event and 
other specified intermediate events. 

(c) MOCUS 

The MOCUS code [ 11] was written in 1972 to replace PREP as a minimal cut set 
generator for the KITT codes. The so-called "Boolean indicated cut sets" (BICS) are 
generated by successive substitution into the gate equations beginning with the top 
event and working down the tree until all gates have been replaced by basic events.* 
If the tree contains no replicated events, the BICS will be minimal; otherwise, the 
nonminimal BICS must be discarded. The MOCUS algorithm may be used to find the 
minimal cut or path sets for up to 20 gates in a given tree. The user may place an 
upper limit on the length of cut sets found if desired. Other aspects of the MOCUS 
code are identical to PREP. MOCUS is written in FORTRAN IV for the IBM 360 
series computer. 

(d) TREEL AND MICSUP 

TREEL and MICSUP [29] are based on an idea similar to that used in MOCUS 
except that instead of working from the top event down, MICSUP (Minimal Cut Set 
UPward) starts with the lowest level gate basic inputs and works upward to the top 
tree event.* TREEL is a preprocessor that checks the tree for errors and determines 
in advance the maximum number and size of the Boolean indicated cut and path sets. 
As a result of processing the tree from bottom to top, MICSUP has the advantage of 
generating the BICS for each intermediate gate of the tree. Nonminimal BICS and 
BICS of length greater than a user-specified limit can be discarded as they appear, 
thus reducing the computer time and storage requirements. As with MOCUS, most 
other aspects of the code are similar to PREP. 

(e) ALLCUTS 

Another code for finding minimal cut sets is ALLCUTS [39] developed by the 
Atlantic Richfield Company. ALLCUTS uses a top-down algorithm, similar to that of 
MOCUS. An auxiliary program BRANCH can be used to check the input and cross 
reference the gates and input events, and a plot program KILMER can be used to 
produce a Calcomp plot of the fault tree based on the fault tree input description 
and conversational plotting instructions. ALLCUTS optionally allows input of basic 
event probability data. If this data is input, ALLCUTS can compute the top event 
probability, sort and print up to 1000 minimal cut sets in descending order of 
probability, and select cut sets in specified probability ranges. ALLCUTS handles up 

*The basic top-down and bottom-up algorithms for minimal cut set generation are explained 
in chapter VII, section 4. 
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to 175 basic events and 425 gate events; the current version of the code uses 110 K, 
octal. ALLCUTS is written in FORTRAN IV and COMPASS (assembly language) for 
the CDC 6600 computer. 

(f) SETS 

The Set Equation Transformation System [46], developed by Sandia Labora
tories, is a general program for the manipulation of Boolean equations which can be 
applied to fault trees and used to find minimal cut or path sets. The advantages of 
the SETS code are its generality and flexibility, one example of which is the ability 
to dynamically manipulate the tree via SETS user programs. This capability gives the 
user a great deal of control over the processing, a feature which can be especially 
helpful when analyzing large trees. For example, a SETS user program may be 
written to decompose the original tree and process it in stages without requiring any 
changes to the original fault tree input description. A recently added feature enables 
SETS to automatically identify the independent subtrees and select stages for 
efficient processing of large trees. A packed, bit-level storage scheme and use of 
auxiliary storage are other SETS features aimed at efficient processing of large trees. 

Unlike PREP, ELRAFT, MOCUS, ALLCUTS,- and MlCSUP, SETS can handle 
complemented events, exclusive or gates, and special gates represented by any valid 
Boolean expression defined by the user. It can be used to find the "prime 
implicants" (a more general term than minimal cut sets which includes the possibility 
of having both an event and its complement in a Boolean equation) of any 
intermediate gate. Other useful features are free field input, the ability to easily input 
replicated subtrees, the option of saving the cut sets or factored equation for any 
event on a file for future use. The factored equation is a compact form of the 
minimal cut set equation from which cut sets of any order can be generated for 
enumeration purposes. 

SETS allows tree reduction based on both cut set order and cut set probability. It 
will also rank and print the minimal cut sets in order of descending probability 
(assuming basic event probabilities have been input). SETS is written in FORTRAN 
for the CDC 6600. 

(g) FTAP 

The Fault Tree Analysis Program [43] is a cut set generation code developed at 
the University of California Berkeley Operation Research Center. FTAP is unique in 
offering the user a choice of three processing methods: top-down, bottom-up and the 
"Nelson" method. The top-down and bottom-up approaches are basically akin to the 
methods used in MOCUS and MICSUP, respectively. The Nelson method is a prime 
implicant algorithm which is applied to trees containing complement events and uses 
a combination of top-down and bottom-up techniques. FTAP is the only fault tree 
code, other than SETS, which can compute the prime implicants. 

FT AP uses two basic techniques to reduce the number of non-minimal cut sets 
produced and thereby increase the code's efficiency. The first technique, used in the 
bottom-up and Nelson methods, is modular decomposition. This approach is quite 
similar to that used in PL-MOD (see section 4) and somewhat similar to the SETS 
algorithm for identifying and processing independent subtrees (see section 2(f)). The 
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second technique, used in the top-down and Nelson methods, is called the "dual 
algorithm" in the FT AP documentation [43] . The algorithm involves transformation 
of a product of sums into a sum of products whose dual is then taken using a special 
method. The author claims that the non-minimal sets appearing during construction 
of the dual "will always be less than the number of such sets in [the original product 
of sums], usually many times less." 

Other features of FT AP are the ability to reduce the tree based on cut set order or 
probability, the ability to find either path sets or cut sets, direct input of symmetric 
(k-out-of-n) gates, and considerable flexibility and user control over processing and 
output. 

FTAP is written in FORTRAN and assembly language, and is available in versions 
for the CDC 6600/7600 and IBM 360-370 model computers. 

3. Computer Codes for Quantitative Analysis of Fault Trees 

This section deals with codes which perform quantitative evaluations of fault 
trees. The input to these codes consists of two parts: 

(1) the equation for the top event unavailability or unreliability (usually from the 
minimal cut sets but can be obtained from other non-fault tree models such as block 
diagrams or schematics) 

(2) failure rate, test, and repair data for the components appearing in the 
equation. 

Given the above inputs, several types of quantitative results may be computed 
including: 

Numerical probabilities: probabilities of system and component failures; 
Quantitative importances: quantitative rankings of contributions to system failure; 
Sensitivity evaluations: effects of changes in models and data, error bounding; 
The KITT and FRANTIC codes, described in sections 2(a) and 2(c), respectively, 

compute time-averaged and time-dependent point estimates for the system failure 
probability. KITT also computes quantitative importances. SAMPLE and MOCARS, 
described in section 2(b ), compute a distribution and error bounds for system failure 
probability based on uncertainty, error, or variation in the component failure 
characteristics. 

(a) The KITT codes 

KITTI and KITT2 [40] [42] perform time dependent fault tree quantification 
based on the minimal cut or path set description of the tree. The codes can thus be 
used in conjunction with any qualitative analysis code which generates the minimal 
cut sets in terms of components (basic events) such as PREP, MOCUS, SETS, etc. 
PREP and MOCUS generate the cut sets in a form which is directly usable as input to 
the KITT codes. Other required inputs are the component failure rates and repair 
characteristics. Components are assumed to have exponential failure distributions. 
Each component may have a constant repair time, an exponential repair distribution, 
or may be nonrepairable. In addition, KITT2 allows each component to have its own 
unique time phases whereby its failure and repair data may vary from phase to phase. 



FAULT TREE EVALUATION COMPUTER CODES XII-7 

The KITT codes compute the following five probability characteristics for the 
system failure (top event), each component, and each minimal cut or path set at 
arbitrary time points specified by the user: 

The probability of the failure existing at time t (the unavailability). 
The probability of the failure not occurring to time t (the reliability). 
The expected number of failures occurring to time t. 
The failure rate per hour. 
The occurrence rate per hour. 

In addition to the above, the KITT codes rank the events in single and double 
component cut sets by qualitative and quantitative importance. See Chapter XI for a 
discussion of importance measurements. 

{b) SAMPLE, MOCARS, et al. 

Several codes have been written to compute the probability distribution of a 
calculated system result (such as unavailability) when probability distributions are 
assigned to the component failure rates to account for data variability. These codes 
use Monte Carlo simulation in which the component failure rates are sampled from 
input probability distributions. The sample values for the failure rates are then 
combined by means of a system function given in a user-supplied FORTRAN 
subroutine to detennine the sample system results. After a number of these "trials," 
the different system values can be tabulated and the resulting empirical distribution 
can be characterized. By this method, the effect on the system unavailability of 
uncertainties or variations in the component failure rates can be assessed. 

Typically, the user-supplied system unavailability function might be the minimal 
cut set equation obtained from one of the qualitative analysis codes. 

SAMPLE [38] was the Monte Carlo code used in WASH-1400. SAMPLE allows 
nonnal, log-nonnal, or log-unifonn distributions to be specified for the component 
failure rates. The output distribution is presented in tenns of estimated empirical 
probability percentiles from which the estimated median and upper and lower 
bounds can easily be read. The output also includes the estimated mean and standard 
deviation of the distribution and a tabular histogram of the system density function. 
Sample is written in FORTRAN IV. 

MOCARS [25] is similar to principle and operation to SAMPLE, but allows a 
larger variety of sampling distributions including exponential, normal, gamma, beta, 
lognonnal, binomial, Poisson, Weibull, and empirical distributions. It allows the 
system unavailability function to be specified either as FORTRAN statements or in 
terms of cut sets. Other options include microfilm plotting using the Integrated 
Graphics System {IGS) and the ability to perform a Kolmogorov-Smirnov goodness
of-fit test on the output distribution to see if it resembles a normal, lognormal, or 
exponential function. MOCARS was written in FORTRAN to run on the INEL CDC 
76-1973 operating system. 

Other expanded versions of SAMPLE [4] have been written, but they are all quite 
similar, and so we will not discuss them here. 
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(c) FRANTIC 

The FRANTIC (Formal Reliability Analysis including Normal Testing, Inspection 
and Checking) code [41] computes the average and time dependent unavailability of 
any general system model such as a fault tree or event tree, incorporating in detail 
the effects of different periodic testing schemes. The program can be used to assess 
the effects on system unavailability of test downtimes, repair times, test efficiency, 
test bypass capabilities, test-caused failures, and different test staggerings. In addition 
to periodically tested components, nonrepairable and monitored components as well 
as human error and common cause contributions can also be modeled. 

As in the SAMPLE code, the system model function is input in the form of 
FORTRAN subroutine. For each component, the failure rate, and test and repair 
characteristics must be provided. Exponential failure distributions are assumed. 
Other input includes the time period for the calculations, and print and plot options. 
Calcomp plots of the time dependent system unavailability function may be 
produced. 

A Monte Carlo version of the FRANTIC code [ 16] is available in which sampling 
distributions may be input for the component failure rates. FRANTIC is written in 
FORTRAN IV for the IBM 360-370 series computers. 

4. Direct Evaluation Codes 

As their name implies, the direct evaluation codes quantify the system model in a 
single step. Thus they do not produce cut sets as an integral part of the analysis and 
they require probabilistic input for each component from the outset of the 
processing. The output from these codes is generally in the form of point estimates 
for the system unavailability or failure probability. 

The GO and WAM-BAM codes, described in sections 3(c) and 3(f) respectively, 
offer the advantage of allowing complement events and some modeling of 
dependencies. GO also allows switches and time delays and models all system states 
instead of a single fault event. Both GO and W AM-BAM reduce storage requirements 
by eliminating low probability paths at an intermediate stage of the processing and at 
the same time keep track of the total of the discarded path probabilities. 
Disadvantages are mainly connected with the inability to produce cut sets (many of 
the direct evaluation codes have added the option to compute cut sets, but not as an 
integral part of the analysis), and the necessity of inputting probabilities for all of the 
components even though many may be insignificant contributors to system failure. 
Also, a change in probabilities often requires a complete rerun. 

(a) ARMM 

The ARMM (Automatic Reliability Mathematical Model) code [26], developed by 
North American Aviation for the U.S. Air Force and modified by Holmes and Narver 
for application to nuclear power plant systems, was the first direct evaluation code. 
ARMM models a reliability block diagram using a success path approach. The 
component failure probabilities are determined using failure density functions 
supplied for each component. The program is capable of handling Weibull 
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(time-dependent failure rate) density functions, dependent components, and mutu
ally exclusive failure modes. It is written in FORTRAN IV for the IBM 360 
computer. 

(b) SAFTE 

The SAFTE (Systems Analysis by Fault Tree Evaluation) codes [13], SAFTEl, 
SAFTE2, and SAFTE3, are Monte Carlo simulation programs using techniques 
similar to the FATE option of PREP to generate random times to failure of 
components in a fault tree. However, instead of computing the cut sets, the SAFTE 
codes directly generate a distribution of times to failure for the system. The SAFTEl 
code works as described above; the SAFTE2 code also includes the ability to sample 
from normal repair distributions to get a time to repair for each component. In this 
version, a failed component may be repaired (made as good as new) before system 
failure, and then resume operation with a new random time to failure and time to 
repair. In both SAFTEl and SAFTE2, the random times to failure are generated 
from exponential failure distributions. 

SAFTE3 computes the probability of system failure based on steady state repair, 
using either direct or importance sampling techniques. The SAFTE codes are written 
in FORTRAN IV for the IBM 360 computer. 

(c) GO 

The GO methodology [ 14] , developed in the mid-1960's by Kaman Sciences 
Corporation, differs from the fault tree approach in that the normal operating 
sequence is modeled and all possible system states are considered. The input model 
used is called a GO chart and it resembles a schematic or flowchart made up of a set 
of standardized operators which describe the logical operation and interconnection 
of the system components. Some of the 16 GO operators are similar to fault tree 
gates, but in addition to logic functions, time delays and switches can be modeled as 
well as complementary event logic and mutually exclusive states. GO also provides a 
simplified method for modeling repeated portions of the tree through the use of 
"supertypes." In addition to specifying the types of operators and their interconnec
tions, the user also specifies the probabilities associated with the possible operational 
modes of each component. This process is analogous to supplying failure probabil
ities for components in a fault tree; however, in the GO approach, probabilities are 
given for states other than simple success or failure (e.g., the probability of 
premature operation, or the probabilities of response over a series of time points are 
supplied for some operators). The outputs from GO are the probabilities of 
occurrence of individual output events or the joint probability density of degrees of 
performance for several output events. The output events can include system success, 
and various degrees of failure such as spurious or premature operation, delayed or 
partial operation, and complete failure to operate. The effects of component repair 
cannot be modeled. 

The numerical evaluations are performed in a one-step process as the signals 
(event probabilities) are traced through the model using a Markov chain (event tree) 
approach to propagate the values. This means that a change in component 
probabilities, such as for sensitivity studies, requires a complete reevaluation even 
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though the system structure remains unchanged. Because the probability tree can 
easily become very large, GO has options for pruning the tree of branches with 
probabilities lower than a selected value, and of deleting signals which are no longer 
needed, while keeping track of the total probability of the discarded paths. GO also 
includes a "Fault Finder" option to compute the 4th order cut sets for a selected 
output event. 

Because of the diversity and detail of the GO operators, and the necessity of 
including all system components, the modeling process for GO is somewhat more 
complex than that for fault trees. However, it may be argued that because GO charts 
are similar to the familar system schematics, the modeling process is easily learned by 
designers and engineers. If the analyst wishes to use the fault tree model instead of 
the GO chart, it is still possible to evaluate the tree using GO. In this case only the 
subset of the GO operators analogous to the fault tree gates would be used and the 
output would be a point estimate of the top event failure probability. 

GO is written in FORTRAN for the CDC 7600. 

(d) NOTED 

NOTED [45], developed by the United Kingdom Atomic Energy Authority in 
1971, is similar in concept to GO. However, instead of analyzing the system at a 
series of discrete time points, NOTED produces a graph of the cumulative failure 
probability as a continuous function of time at any of several points in the system. 
Similarly, the behavior of the input components is described by continuous failure 
distributions including exponential lognormal, normal, Weibull and forms including 
repair times. 

(e) PATREC 

PATREC [19) was the first computer code to apply list processing techniques to 
fault tree evaluation. Rather than generating cut sets, PATREC evaluates the tree 
directly, using a pattern recognition algorithm implemented in the PL/ 1 programm
ing language. A set of subtree patterns along with their corresponding probability 
equations are stored in the computer code's library. The fault tree is then searched 
for occurrences of the library patterns. Each recognized pattern is replaced by a 
supercomponent with probability of occurrence equal to that stored in the library. 
The whole tree is thus eventually reduced to a single leaf which corresponds to the 
probability of failure of the total system. 

PATREC can evaluate trees containing both an event and its complement; direct 
input of k-out-of-n gates is also supported. Cut sets can be generated, if desired, using 
an algorithm similar to that of MOCUS, but they are not used in the evaluation of 
the fault tree. PATREC's greatest limitation is in its handling of replicated events. 
The pattern recognition scheme yields the correct probabilities only when no events 
are replicated. Therefore, PATREC replaces a single fault tree having r different 
replicated events by 2r fault trees with no replicated events. Even with approxima
tions which allow some of the 2r fault trees to be discarded, PATREC cannot 
efficiently evaluate fault trees with more than about 20 replicated events. 
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PATREC is capable of performing time dependent system unavailability analysis 
where each basic event may have a failure distribution which is exponential, Weibull, 
normal, or log normal. For the exponential failure case, the component can 
optionally be assumed repairable with an exponential repair distribution. In addition, 
the user can include a constant "failure-on-demand" (e.g., failure to start) probability 
which is independent of time. 

PATREC-MC [20] is a Monte Carlo version of PATREC which can be used to 
assess the effects of uncertainty in the component reliability parameters. The 
operation of the code is similar to that of SAMPLE (see section 2(b) of this chapter) 
except for the representation of the system function. In PATREC-MC, a calculation 
is first made to identify the patterns in the tree using the list processing methods 
described earlier. The patterns are then stored in memory so that they can be 
repeatedly evaluated during the Monte Carlo trials. Note that storage of the patterns 
for subsequent reevaluation means that PATREC-MC is not really a direct evaluation 
code because the stored patterns are actually the result of an intermediate qualitative 
analysis independent of the component probabilities. This distinction will come up 
again in our discussion of PL-MOD (see section 4 of this chapter). 

(f) WAM-BAM 

The WAM-BAM codes [9] [22] [34] were developed at Science Applications 
Inc. for EPRI beginning in 1975. The WAM-BAM package actually consists of four 
codes: WAM, WAMTAP, BAM, and WAM-CUT. WAM and WAMTAP are input 
preprocessors for the evaluation code BAM (Boolean Arithmetic Model). The W AM 
preprocessor, like PREP, is designed to ease the input preparation process. It 
generates the numeric input for BAM from the input description of the fault tree and 
the event probabilities. At the user's option, the input to BAM can be saved and 
subsequently modified by WAMTAP. WAMTAP allows the probability of single 
components or groups of components to be changed in order to run sensitivity 
studies or to include common cause contributions. W AM-CUT can be used to 
compute minimal cut sets, and the mean and variance of the probability of any gate. 
It can also generate the input to a Monte Carlo code, SPASM, which computes a 
distribution on gate probability. 

The evaluation code, BAM, uses a combination of concepts from the GO 
methodology and fault tree analysis. The GO computational scheme is used but the 
operations are modeled as gates on a fault tree. Eight possible logical combinations of 
2 events and their complements are included as allowable gates. In BAM, the 
probability of the top event is computed by forming a truth table, each line of which 
represents a product term (P term) event disjoint from all the other P terms. In terms 
of the GO methology, the P terms are equivalent to paths in the GO event tree. The 
output from BAM is a point probability of the top event. As mentioned earlier, 
WAMTAP can be used to modity the input for BAM sensitivity studies. WAM-BAM is 
written in FORTRAN for the CDC 6600. 

5. PL-MOD: A Dual Purpose Code 

PL-MOD [28] is described separately in this section because, though it can 
perform both a qualitative and quantitative fault tree analysis, it depends neither on 
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the standard cut set generation nor the direct evaluation techniques. Like the 
PATREC-MC code, it performs a qualitative analysis which does not rely on standard 
cut set generation techniques, but which can be used repeatedly for quantification. 

The PL-MOD computer code works by '.'modularizin&_" the fault tree directly 
from a description of its component and gate diagram. Defined in terms of a 
reliability network diagram, a module is a group of components which behaves as a 
supercomponent (i.e., it is completely sufficient to know the state of the 
supercomponent, and not the state of the components which comprise it, to 
determine the state of the system). In terms of a fault tree diagram, an intermediate 
gate is a module to the top event tree if none of the basic events contained in the 
gate domain (i.e., all branches below the gate) appear elsewhere in the fault tree. 
Briefly, modularization implies that all the independent subtrees (i.e., modules or 
subsystems) are identified, and the minimal cut sets are defined recursively in terms 
of these modules. Or, to put this is a slightly different way, a modularized tree is one 
which is equivalent to the original tree but in some sense "maximizes" the 
decomposition of the tree into independent subtrees. 

The concept and advantages of modularization have been known for some time 
[2] and an algorithm for finding the finest modular decomposition of a fault tree 
given its cut sets was described by Chatterjee [ 6] in 197 5. The modularization 
process used by PL-MOD is, as mentioned earlier, unique in that it is applied not to 
the cut sets, but directly to a description of the fault tree diagram, using the list 
processing features of the PL/ 1 programming language. The modularization process 
used by PL-MOD is somewhat complex, and will therefore not be discussed here. (A 
complete description appears in reference (28] ). 

Features of PL-MOD are the ability to handle complemented events, direct input 
of symmetric (k-out-of-n) gates, free field input, and dynamic storage allocation. The 
output from PL-MOD includes the standard and modular minimal cut sets for the top 
event and specified intermediate gates of the tree. 

Some disadvantages of PL-MOD are its machine dependence (PL/1 is not 
available in many computer systems) and the lack of familiarity with PL/ 1 among 
scientific users. 

The quantitative capabilities of PL-MOD include the computation of the 
occurrence probability and importance (see Chapter XI) for the top event and all 
other modules. PL-MOD also has a Monte Carlo option for computing uncertainties 
and time-dependent unavailability evaluation option which can handle non
repairable, repairable (revealed fault), and periodically tested components. 

6. Common Cause Failure Analysis Codes 

Common cause failure analysis is becoming increasingly important in system 
reliability and safety studies because it has been recognized that common cause 
failures can often dominate the random hardware failures. Common cause failure 
analysis attempts to identify the modes of system failure (i.e., minimal cut sets) 
which have the potential of being triggered by a single, more basic common cause; 
the minimal cut sets which need to be identified are those with two or more events, 
all of which are susceptible to a single common cause failure mechanism. 
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(a) COMCAN 

COMCAN r3l, developed at INEL, was the first program to perform common 
cause failure analysis. The input to the program consists of two parts: (1) the 
minimal cut sets of the fault tree to be analyzed, and (2} the common cause 
susceptibility data for each basic event. The output from the program is a list of the 
minimal cut sets which are common cause candidates . 

. A minimal cut set may be identified as a common cause candidate by either of 
two criteria. The first criterion requires that all the events in the cut set be 
potentially affected by the same cause or condition. The second criterion requires 
that all the events in the cut set share susceptibility to a common cause or condition 
and in addition, all components implied by the basic events in the minimal cut set 
must share a common physical location with respect to the common cause 
susceptibility. Some typical common causes include: impact, vibration, pressure, grit, 
stress, and temperature. The minimal cut sets and common cause susct;ptibility data 
constitute the required inputs. Optional inputs are the component manufacturers, 
location domain definitions for generic causes, the location of each component 
implied by the basic events, and r~ks of component susceptibility to each common 
cause. The more input provided, the more refined will be the search for the common 
cause candidates. The output options include the ability to print only the common 
cause candidates with ranks~ N, and to include similar type components as one of 
·criteria for common cause candidates. 

COMCAN is written in FORTRAN N for the IBM 360 computer. 

(b) BACKFIRE 

The BACKFIRE code [5], published in May 1977, is an offshoot of COMCAN. 
The required and optional inputs are almost the same except that BACKFIRE 
permits more than one location to be specified for a component. This is useful for 
piping and wiring which may pass through domain barriers. Like COMCAN, 
BACKFIRE is written in FORTRAN IV for the IBM 360 computer. 

(c) SETS 

The SETS code, described in section 1 (f), can also be used for common cause 
analysis [ 4 7] . The analysis is conducted ~·a manner similar to that of COM CAN, by 
inputting generic cause susceptibilities for each basic event. A variable transformation 
incorporates the common cause susceptibilities into the Boolean equation for the top 
or any intermediate gate of the fault tree, and a few simple manipulations allow the 
user to display the cut sets which are the common cause candidates. 
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