Date Entered: Dec 06, 2000

то:	USNRC/WASHING	GTON	
	JMCKNIGHT	Copy Number:	145
•			
			3ER: 170796

PROCEDURE NUMBER: EI-7.2

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

TRANSMITTAL: LISTED BELOW ARE NEW/REVISED PROCEDURES WHICH MUST BE IMMEDIATELY INSERTED INTO OR DISCARDED FROM YOUR PROCEDURE MANUAL.

Action Required	
REMOVE AND DESTROY	EI-7.2, R/8, ENTIRE PROCEDURE
REPLACE WITH	EI-7.2, R/8, ENTIRE PROCEDURE
	EDITORIAL

SIGN, DATE, AND RETURN THE ACKNOWLEDGEMENT FORM WITHIN 10 DAYS TO THE PALISADES PLANT DOCUMENT CONTROL.

SIGNATURE OR INITIALS

<u>DATE</u>

A045

Procedure No EI-7.2 Revision 8 Issued Date 12/6/00

PALISADES NUCLEAR PLANT EMERGENCY IMPLEMENTING PROCEDURE

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

Michael Sullini 1 12/6/00 Procedure Sponsor Date

TAChartrand	/ 8/5/96	
Technical Reviewer	Date	

JPKryska	/ 9/20/96
User Reviewer	Date

-

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

Table of Contents

1.0	PERSONNEL RESPONSIBILITY					
2.0	PURPOSE			. 1		
3.0	INITIAL CONDITIONS AND/OR REQUIREMENTS			. 1		
4.0	REFEREN	REFERENCES				
	4.1 4.2	SOURCE I	DOCUMENTS			. 1 . 2
5.0	PREREQU	UISITES				. 2
	5.1 5.2	DOSIMET	RY REQUIREMENTS			2
6.0	PRECAUTIONS AND LIMITATIONS					
7.0	PROCED	ROCEDURE		4		
	7.1	PRE-ANAI	YSIS INSTRUMENT PREPARATI	ON		4
		7.1.1 7.1.2 7.1.3	Boron: Chloride Ion Chromatogra Gas Chromatograph (Backup for Chromatograph) Gamma Spec System	ph In-line Gas	 	4 5 5
	7.2	SAMPLE I	PREPARATION	•••••		5
		7.2.1 7.2.2 7.2.3	Diluted PCS Gas Sample for Radi Diluted PCS Gas Sample for H ₂ A In-line Gas Chromatograph) Undiluted PCS Liquid Sample for	ioactivity Analysis (Ba Chloride, a	 <u>ackup f</u> 	5 <u>or</u> 6
		7.2.4 7.2.5	Boron Diluted PCS Liquid Sample for Ra Containment Air Sample for Radi	adioactivity ioactivity	· · · · · ·	6 6 6

Proc No El-7.2 Revision 8 Page ii

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

Table of Contents			
8.0	<u>CALCULATIONS</u>		
	8.1IN-LINE GAS CHROMATOGRAPH ANALYSIS78.2BACKUP GAS CHROMATOGRAPH ANALYSIS7		
9.0	ATTACHMENTS AND RECORDS89.1ATTACHMENTS89.2RECORDS8		
C 10.0	SPECIAL REVIEWS		
ATTAC	HMENTS		

Attachment 1, "Post Accident Analytical Data Sheet"

Proc No El-7.2 Revision 8 Page 1 of 8

0

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

USER ALERT REFERENCE USE PROCEDURE

Refer to the procedure periodically to confirm that all procedure segments of an activity will be or are being performed. Where required, sign appropriate sign-off blanks to certify that all segments are complete.

1.0 **PERSONNEL RESPONSIBILITY**

The OSC Chemistry Supervisor shall implement this procedure.

2.0 **<u>PURPOSE</u>**

To describe the sequential method of analyzing the Primary Coolant System samples obtained from the post accident sample panel during a post accident condition.

3.0 INITIAL CONDITIONS AND/OR REQUIREMENTS

This procedure shall be implemented per Emergency Implementing Procedures EI-7.1, "Post Accident Sampling - PCS Liquid/Gas and Containment Air."

4.0 **REFERENCES**

4.1 SOURCE DOCUMENTS

- 4.1.1 NUREG 0737
- 4.1.2 NUREG 0654
- 4.1.3 Technical Specifications Chapter 5, Section 5.5.3, "Post Accident Sampling Program"

Proc No El-7.2 Revision 8 Page 2 of 8

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

4.2 **REFERENCE DOCUMENTS**

- 4.2.1 Emergency Implementing Procedure EI-7.1, "Post Accident Sampling - PCS Liquid/Gas and Containment Air"
- 4.2.2 Emergency Implementing Procedure EI-7.3, "Hydrogen Analysis of Post Accident Samples"
- 4.2.3 Emergency Implementing Procedure EI-7.4, "Post Accident Gas and Liquid Activity Analysis"
- 4.2.4 Emergency Implementing Procedure EI-7.5, "Boron; Chloride Ion Chromatography Method Post Accident"
- 4.2.5 Emergency Implementing Procedure EI-1, "Emergency Classification and Actions"
- 4.2.6 Emergency Implementing Procedure EI-7.0, "Emergency Post Accident Sampling Decision Process"
- 4.2.7 Palisades Administrative Procedure 10.46, "Plant Records"

5.0 **PREREQUISITES**

5.1 DOSIMETRY REQUIREMENTS

- 5.1.1 As dictated by OSC Health Physics Supervisor.
- 5.1.2 Individuals handling samples shall wear ring TLDs on one finger to each hand.

5.2 ANTI-C CLOTHING REQUIREMENTS

Minimum clothing shall be determined by the OSC Health Physics Supervisor.

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

6.0 **PRECAUTIONS AND LIMITATIONS**

- 6.1 After a reactor accident, very high radiation dose rate and high levels of airborne radioactivity may be present in unexpected locations. Take precautions to keep internal and external exposure to a minimum. These may include, but are not limited to the following precautions:
 - a. Air sampling shall be performed to determine the iodine concentration in the sampling and analysis areas.
 - b. Since the radiological conditions in the sampling area are uncertain, radiological surveillance shall be required.
 - c. At least one calibrated high-range dose rate instrument should be available at all times.
 - d. The instruments used for survey purposes should be ion chamber or gm type instruments. If an instrument with a sealed chamber is not available, bag the instrument to preclude internal contamination with radioactive gases.
 - e. Handling of samples should be minimized. When samples must be handled, a Beta radiation dose rate deduction of 90% can be assumed for heavy rubber gloves. Dose to the extremities shall be limited to 40,000 mrem Shallow Dose Equivalent, (SDE).
 - f. When not being handled, samples shall be stored in a shielded or remote location. All open samples shall be handled in vent hoods.
 - g. Airborne conditions in the Auxiliary Building could require the use of pressure demand type supplied air respirators or Self Contained Breathing Apparatus (SCBA) by all personnel involved.

Proc No El-7.2 Revision 8 Page 4 of 8

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

- 6.2 Assume that all reactor coolant samples are extremely radioactive until determined otherwise by survey. Handle all liquids collected during post-accident sampling, including dilutions, with extreme care to prevent unnecessary personnel exposure.
 - a. Shielding shall be used in the hot laboratory hood. Ensure shield is in the hood. This shield will normally be located in the hot laboratory hood.
 - Personnel should keep their occupational radiation exposure (wholebody and extremity) as low as reasonably achievable (ALARA) by practical use of shielding, by maintaining a distance from the sources of radiation, and by proceeding to a low background radiation area during wait time periods.
 - c. Remote handing tools may be used in support of ALARA.
 - d. Check dosimeters periodically to determine approximate exposure.
- 6.3 There is a three hour time limit on sampling and analysis from the time the sample is requested.

7.0 **PROCEDURE**

USER ALERT REFERENCE USE PROCEDURE

Refer to the procedure periodically to confirm that all procedure segments of an activity will be or are being performed. Where required, sign appropriate sign-off blanks to certify that all segments are complete.

7.1 **PRE-ANALYSIS INSTRUMENT PREPARATION**

7.1.1 Boron: Chloride Ion Chromatograph

Ensure Ion Chromatograph is calibrated and an acceptable functional check is run prior to analyzing a PASM sample for Boron and Chloride per Emergency Implementing Procedure EI-7.5, "Boron; Chloride Ion Chromatography Method Post Accident."

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

7.1.2 Gas Chromatograph (Backup for In-line Gas Chromatograph)

- a. Ensure carrier gas flow has been established and instrument settings are proper.
- b. Standardize as per Emergency Implementing Procedure EI-7.3, "Hydrogen Analysis of Post Accident Samples."
- c. Perform functional check as per Emergency Implementing Procedure EI-7.3, "Hydrogen Analysis of Post Accident Samples."

7.1.3 Gamma Spec System

- a. Conduct a 500 second background analysis to ensure no interference with changing background radiation levels as per Emergency Implementing Procedure EI-7.4, "Post Accident Gas and Liquid Activity Analysis."
- b. Verify that a daily source check count has been performed to show that the equipment is performing at the calibrated efficiencies/Kev for the Gamma Spec System to be used for PASM analysis.

7.2 **SAMPLE PREPARATION**

7.2.1 Diluted PCS Gas Sample for Radioactivity

- a. Prepare and Analyze PCS gas sample per Emergency Implementing Procedure EI-7.4, "Post Accident Gas and Liquid Activity Analysis."
- b. Attach gamma spectral analysis printout to data sheet, Attachment 1, "Post Accident Analysis Data Sheet."

Proc No El-7.2 Revision 8 Page 6 of 8

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

7.2.2 Diluted PCS Gas Sample for H₂ Analysis (Backup for In-line Gas Chromatograph)

- a. No preparation of the H_2 gas sample is necessary. Sample will be analyzed directly as it is delivered to the lab after being counted for activity.
- b. Analyze as per Emergency Implementing Procedure EI-7.3, "Hydrogen Analysis of Post Accident Samples."
- c. Syringe should be purged in lab hood.
- d. Remove septum from vial and allow to vent in hood.

7.2.3 Undiluted PCS Liquid Sample for Chloride, and Boron

Boron, Chloride analysis will be performed using Emergency Implementing Procedure EI-7.5, "Boron; Chloride Ion Chromatography Method Post Accident."

7.2.4 Diluted PCS Liquid Sample for Radioactivity

- a. Prepare and analyze diluted PCS liquid sample per Emergency Implementing Procedure EI-7.4, "Post Accident Gas and Liquid Activity Analysis."
- b. Attach gamma spectral analysis printout to data sheet, Attachment 1, "Post Accident Analysis Data Sheet."

7.2.5 Containment Air Sample for Radioactivity

- a. Prepare and analyze containment air sample per Emergency Implementing Procedure EI-7.4, "Post Accident Gas and Liquid Activity Analysis."
- b. Attach gamma spectral analysis printout to datasheet Attachment 1, "Post Accident Analysis Data Sheet."

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

8.0 CALCULATIONS

- 8.1 IN-LINE GAS CHROMATOGRAPH ANALYSIS
- 8.1.1 Hydrogen peak height obtained from Emergency Implementing Procedure EI-7.1, "Post Accident Sampling - PCS Liquid/Gas and Containment Air."

Peak	Heiaht
i Quit	inorgine

8.1.2 Determine corrected peak height using the following calculation:

Corrected Peak Height = <u>Peak Height x Attenuation</u> 10

Corrected Peak Height

8.1.3 Determine cc/kg for H_2 using calibration curve. Calibration curves are specific for attenuation values.

_____H₂ cc/kg

8.1.4 Record H_2 cc/kg on Attachment 1.

8.2 BACKUP GAS CHROMATOGRAPH ANALYSIS

8.2.1 Hydrogen % for diluted PCS gas sample obtained from Emergency Implementing Procedure EI-7.3, "Hydrogen Analysis of Post Accident Samples."

_____ % H₂

8.2.2 Determine ppm H_2 using the following calculation:

 $H_2 \% x 10,000 \text{ ppm}/\% = \text{ppm } H_2$ ppm H_2

8.2.3 Determine $cc/kg H_2$ using the following calculation:

ppm H₂ x 9.338 cc/kg/ppm = H₂ cc/kg H_2 cc/kg

8.2.4 Record H_2 cc/kg on Attachment 1.

Proc No El-7.2 Revision 8 Page 8 of 8

TITLE: EMERGENCY POST ACCIDENT ANALYSIS

9.0 ATTACHMENTS AND RECORDS

9.1 ATTACHMENTS

9.1.1 Attachment 1, "Post Accident Analytical Data Sheet"

9.2 **RECORDS**

0

Records generated by this procedure shall be filed in accordance with Palisades Administrative Procedure 10.46, "Plant Records."

10.0 SPECIAL REVIEWS

None

Proc No EI-7.2 Attachment 1 **Revision 8** Page 1 of 1

POST ACCIDENT ANALYTICAL DATA SHEET

PCS OFF GAS ANALYSIS (diluted sample)

- 1. Sample Date/Time _____/ (from El-7.1)
- 2. Hydrogen Concentration cc/kg 3. Attach gamma spectral analysis print out to data sheet.

PCS LIQUID ANALYSIS (undiluted sample)

Sample Date/Time _____/ (from El-7.1) 1. 2. Chloride Concentration (See El-7.5, "Boron; Chloride ppm Ion Chromatography Method Post Accident") 3. Boron Concentration (See El-7.5, "Boron; Chloride Ion ppm Chromatography Method Post Accident") 4. Dissolved Oxygen Concentration (From EI-7.1) ppm Recommended

5. pH (From EI-7.1) Recommended

PCS LIQUID ANALYSIS (diluted sample)

- Sample Date/Time _____/ (from EI-7.1) 1.
- 2. Attach gamma spectral analysis print out to data sheet.

CONTAINMENT AIR ANALYSIS

- Sample Date/Time ____ / (from El-7.1) 1.
- 2. Attach gamma spectral analysis print out to data sheet.

ALL ANALYTICAL RESULTS COMPLETED

_____/ Date

Time