ATTACHMENT C

COST ESTIMATES

FOR

RECLAMATION

OF

WHITE MESA FACILITIES

BLANDING, UTAH

PREPARED BY

INTERNATIONAL URANIUM (USA) CORP.

1050 17th STREET, SUITE 950

DENVER, COLORADO 80265

H:\USERS\WMRCPLN\ATTC.RPT\May 1999

International Uranium (USA) Corp.

Cost Estimates for Reclamation

Of

White Mesa Mill

Blanding, Utah

JULY 2000

Source Material License No. SUA-1358 Docket No. 40-8681

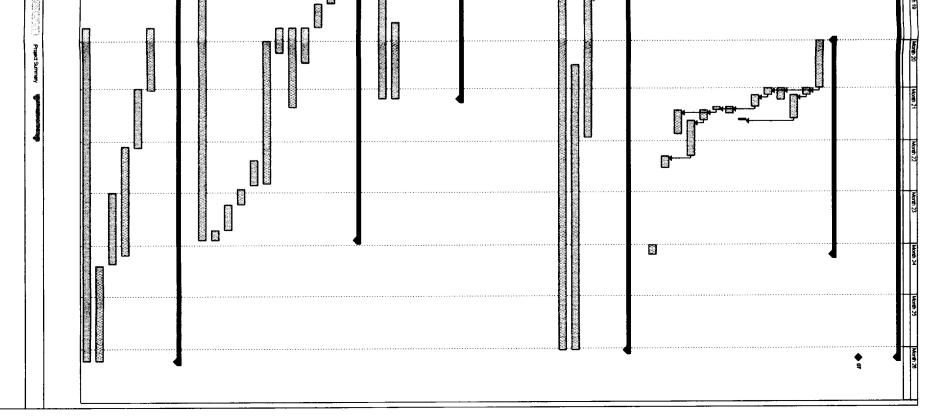

Cost Estimates for Reclamation of White Mesa Mill

Table of Contents

1. Cost	Summary
---------	---------

- 2. Mill Decommissioning
- 3. Cell 2 Calculations
- 4. Cell 3 Calculations
- 5. Cell 4A Calculations
- 6. Cell 1 Calculations
- 7. Miscellaneous Cost Calculations
- 8. Rock Production Costs
- 9. Equipment Costs
- 10. Labor Costs
- 11. Long Term Care Calculation

	A COTTIGUO	Image: Project Startup Image: Project Startup <t< th=""></t<>
	See Progrees	
International Uranium (USA) Corporation White Mesa Mill Reclamation Revision 3.0 - July 2000	Robertup Taak Robertup Sak	

WHITE MESA MILL RECLAMATION COST ESTIMATE July 2000

	Ju	ly 2000 Estimate	
Mill Decommissioning		\$1,505,167	
Cell 2		\$1,082,870	
Cell 3		\$1,565,444	
Cell 4A		\$120,128	
Cell 1		\$1,234,212	
Miscellaneous		\$1,939,480	
Subtotal Direct Costs		\$7,447,302	
Profit Allowance	10.00%	\$744,730	
Contingency	15.00%	\$1,117,095	
Licensing & Bonding	2.00%	\$148,946	
Long Term Care Fund		\$606,721	
Total Reclamation	-	\$10,064,794	
Revised Bond Amount		\$10,064,794	
	=		

MILL DECOMMISIONING

Mill Building Demolition

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	720	\$12,757
Mechanics	hrs	\$13.80	640	\$8,829
Laborers	hrs	\$10.35	320	\$3,311
Small Tools	hrs	\$1.25	960	\$1,200
Cat 769 Haul Truck	hrs	\$60.52	640	\$38,735
Truck Drivers	hrs	\$12.74	640	\$8,154
Cat 988 Loader	hrs	\$95.68	160	\$15,308
Cat 375 Excavator	hrs	\$123.76	160	\$19,802
PC-400 with Shears	hrs	\$159.84	160	\$25,574
65 Ton Crane	hrs	\$55.91	160	\$8,946
30 Ton Crane	hrs	\$40,80	80	\$3,264
Equipment Maintenance (Butler)	hrs	\$10.01	1.360	\$13,617
Concrete Removal	sf	\$3.30	37,500	\$123,750

Total Mill Building Demolition

\$283,247

Ore Feed Demolition

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	48	\$850
Mechanics	hrs	\$13.80	64	\$883
Laborers	hrs	\$10.35	32	\$331
Small Tools	hrs	\$1.25	96	\$120
Cat 769 Haul Truck	hrs	\$60.52	64	\$3,873
Truck Drivers	hrs	\$12.74	64	\$815
Cat 988 Loader	hrs	\$95.68	16	\$1,531
Cat 375 Excavator	hrs	\$123.76	16	\$1,980
PC-400 with Shears	hrs	\$159.84	16	\$2,557
30 Ton Crane	hrs	\$40.80		\$0
Equipment Maintenance (Butler)	hrs	\$10.01	112	\$1,121

Total Ore Feed Demolition

\$14,063

SX Building Demolition

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	240	\$4,252
Mechanics	hrs	\$13.80	320	\$4,415
Laborers	hrs	\$10.35	160	\$1,655
Small Tools	hrs	\$1.25	480	\$600
Cat 769 Haul Truck	hrs	\$60.52	320	\$19,367
Truck Drivers	hrs	\$12.74	320	\$4,077
Cat 988 Loader	hrs	\$95.68	80	\$7,654
Cat 375 Excavator	hrs	\$123.76	80	\$9,901
PC-400 with Shears	hrs	\$159.84	80	\$12,787
65 Ton Crane	hrs	\$55.91		\$0
30 Ton Crane	hrs	\$40.80		\$0
Equipment Maintenance (Butler)	hrs	\$10.01	560	\$5,607
Concrete Removal	sf	\$3.30	55,970	\$184,701

\$255,017

Total SX Building Demolition

CCD Circuit Removal Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	195	\$3,455
Mechanics	hrs	\$13.80	120	\$1,655
Laborers	hrs	\$10.35	60	\$621
Small Tools	hrs	\$1.25	180	\$225
Cat 769 Haul Truck	hrs	\$60.52	120	\$7,263
Truck Drivers	hrs	\$12.74	120	\$1,529
Cat 988 Loader	hrs	\$95.68	30	\$2,870
Cat 375 Excavator	hrs	\$123.76	30	\$3,713
PC-400 with Shears	hrs	\$159.84	30	\$4,795
65 Ton Crane	hrs	\$55.91	30	\$1,677
30 Ton Crane	hrs	\$40.80	15	\$612
Equipment Maintenance (Butler)	hrs	\$10.01	315	\$3,154
Concrete Removal	sf	\$3.30	15,000	\$49,500

Total CCD Circuit Removal

\$81,070

Sample Plant Removal

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	24	\$425
Mechanics	hrs	\$13.80	32	\$44 1
Laborers	hrs	\$10.35	16	\$166
Small Tools	hrs	\$1.25	48	\$60
Cat 769 Haul Truck	hrs	\$60.52	32	\$1,937
Truck Drivers	hrs	\$12.74	32	\$408
Cat 988 Loader	hrs	\$95.68	8	\$765
Cat 375 Excavator	hrs	\$123.76	8	\$990
PC-400 with Shears	hrs	\$159.84	8	\$1,279
30 Ton Crane	hrs	\$40.80		\$0
Equipment Maintenance (Butler)	hrs	\$10.01	56	\$561
Concrete Removal	sf	\$3.30	4,200	\$13,860

Total Sample Plant Removal

\$20,892

Boiler Demolition

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	120	\$2,126
Mechanics	hrs	\$13.80	160	\$2,207
Laborers	hrs	\$10.35	80	\$828
Small Tools	hrs	\$1.25	240	\$300
Cat 769 Haul Truck	hrs	\$60.52	160	\$9,684
Truck Drivers	hrs	\$12.74	160	\$2,038
Cat 988 Loader	hrs	\$95.68	40	\$3,827
Cat 375 Excavator	hrs	\$123.76	40	\$4,951
PC-400 with Shears	hrs	\$159.84	40	\$6,394
65 Ton Crane	hrs	\$55.91		\$0
30 Ton Crane	hrs	\$40.80		\$0
Equipment Maintenance (Butler)	hrs	\$10.01	280	\$2,804
Concrete Removal	sf	\$3.30	2,900	\$9,570

Total Boiler Demolition

Vanadium Oxidation Circuit Removal

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	48	\$850
Mechanics	hrs	\$13.80	64	\$883
Laborers	hrs	\$10.35	32	\$331
Small Tools	hrs	\$1.25	96	\$120
Cat 769 Haul Truck	hrs	\$60.52	64	\$3,873
Truck Drivers	hrs	\$12.74	64	\$815
Cat 988 Loader	hrs	\$95.68	16	\$1,531
Cat 375 Excavator	hrs	\$123.76	16	\$1,980
PC-400 with Shears	hrs	\$159.84	16	\$2,557
65 Ton Crane	hrs	\$55.91		\$0
30 Ton Crane	hrs	\$40.80		\$0
Equipment Maintenance (Butler)	hrs	\$10.01	112	\$1,121
Concrete Removal	sf	\$3.30	1,200	\$3,960

Total Vanadium Oxidation Circuit Removal

\$18,023

\$44,728

Main Shop/Warehouse Demolition

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	96	\$1,701
Mechanics	hrs	\$13.80	128	\$1,766
Laborers	hrs	\$10.35	64	\$662
Small Tools	hrs	\$1.25	192	\$240
Cat 769 Haul Truck	hrs	\$60.52	128	\$7,747
Truck Drivers	hrs	\$12.74	128	\$1,631
Cat 988 Loader	hrs	\$95.68	32	\$3,062
Cat 375 Excavator	hrs	\$123.76	32	\$3,960
PC-400 with Shears	hrs	\$159.84	32	\$5,115
Equipment Maintenance (Butler)	hrs	\$10.01	224	\$2,243
Concrete Removal	sf	\$3.30	19,300	\$63,690

Total Main Shop/Warehouse Demolition

\$91,816

. . .

0----

Office Building Demolition

Units	Cost/Unit	Task Units	Task Cost
hrs	\$17.72	72	\$1,276
hrs	\$13.80	96	\$1,324
hrs	\$10.35	48	\$497
hrs	\$1.25	144	\$180
hrs	\$60.52	96	\$5,810
hrs	\$12.74	96	\$1,223
hrs	\$95.68	24	\$2,296
hrs	\$123.76	24	\$2,970
hrs	\$159.84	24	\$3,836
hrs	\$10.00	168	\$1,680
sf	\$3.30	12,100	\$39,930
	hrs hrs hrs hrs hrs hrs hrs hrs hrs hrs	hrs \$17.72 hrs \$13.80 hrs \$10.35 hrs \$10.25 hrs \$1.25 hrs \$60.52 hrs \$12.74 hrs \$95.68 hrs \$123.76 hrs \$159.84 hrs \$10.00	hrs \$17.72 72 hrs \$13.80 96 hrs \$10.35 48 hrs \$10.25 144 hrs \$125 144 hrs \$125 144 hrs \$12.74 96 hrs \$12.74 96 hrs \$12.76 24 hrs \$159.84 24 hrs \$159.84 24 hrs \$10.00 168

Total Office Building Demolition

\$61,023

\$7,031

\$74,563

\$54,930

Teels Cool

Misc. Tankage & Spare Parts Removal

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	24	\$425
Mechanics	hrs	\$13.80	32	\$441
Laborers	hrs	\$10.35	16	\$166
Small Tools	hrs	\$1.25	48	\$60
Cat 769 Haul Truck	hrs	\$60.52	32	\$1,937
Truck Drivers	hrs	\$12.74	32	\$408
Cat 988 Loader	hrs	\$95.68	8	\$765
Cat 375 Excavator	hrs	\$123.76	8	\$990
PC-400 with Shears	hrs	\$159.84	8	\$1,279
Equipment Maintenance (Butler)	hrs	\$10.00	56	\$560
Concrete Removal	sf	\$3.20	-	\$0

Total Misc. Tankage & Spare Parts Removal

Mill Yard Decontamination Task Units Task Cost **Resource** Description Units Cost/Unit \$10,312 582 Equipment Operators hrs \$17.72 \$36,110 \$140.50 257 hrs Cat 637 Scraper \$95.68 65 \$6,219 hrs Cat 988 Loader Cat D8N Dozer With Ripper hrs \$68.67 65 \$4,463 \$3,764 65 \$57.90 Cat D7 Dozer hrs \$72.12 65 \$4,688 hrs Cat 651 Waterwagon 65 \$3,180 \$48.93 Cat 14G Motorgrader hrs \$5,827 \$10.01 582 Equipment Maintenance (Butler) hrs

Total Mill Yard Decontamination

Ore Storage Pad Decontamination

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	429	\$7,601
Cat 637 Scraper	hrs	\$140.50	189	\$26,555
Cat 988 Loader	hrs	\$95.68	48	\$4,593
Cat D8N Dozer With Ripper	hrs	\$68.67	48	\$3,296
Cat D7 Dozer	hrs	\$57.90	48	\$2,779
Cat 651 Waterwagon	hrs	\$72.12	48	\$3,462
Cat 14G Motorgrader	hrs	\$48.93	48	\$2,348
Equipment Maintenance (Butler)	hrs	\$10.01	429	\$4,295

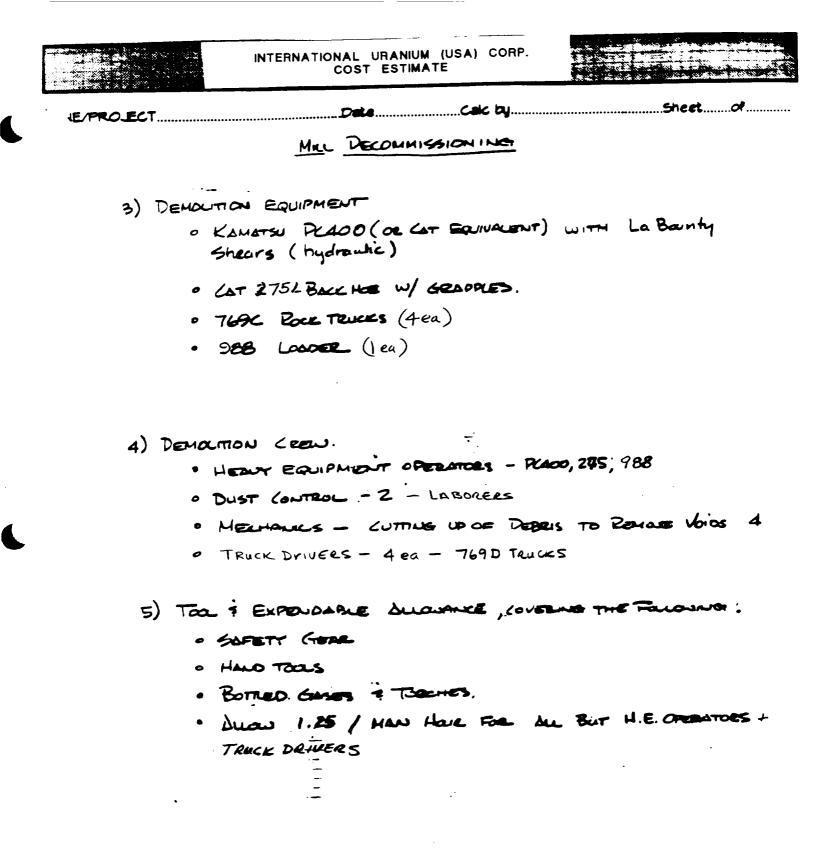
Total Ore Storage Pad Decontamination

Equipment Storage Area Cleanup Resource Description Task Units Task Cost Units Cost/Unit \$2,729 Equipment Operators \$17.72 154 hrs \$9,695 \$140.50 69 Cat 637 Scraper hrs \$95.68 17 \$1,627 Cat 988 Loader hrs Cat D8N Dozer With Ripper hrs \$68.67 17 \$1,167 17 \$984 \$57.90 Cat D7 Dozer hrs 17 \$1,226 hrs \$72.12 Cat 651 Waterwagon \$48.93 17 \$832 Cat 14G Motorgrader hrs 154 \$1,542 Equipment Maintenance (Butler) \$10.01 hrs

Total Equipment Storage Area Cleanup

\$19,801

arts Removal


Revegetate Mill Yard & Ore Pad	Units	Cost/Unit	Task Units	Task Cost
Resource Description			231	\$4,093
Equipment Operators	hrs	\$17.72	132	\$18,547
Cat 637 Scraper	hrs	\$140.50	0	\$10,547
Cat 988 Loader	hrs	\$95.68		
Cat D8N Dozer With Ripper	hrs	\$68.67	33	\$2,266
Cat D7 Dozer	hrs	\$57.90	33	\$1,911
Cat 651 Waterwagon	hrs	\$72.12		\$0
Cat 14G Motorgrader	hrs	\$48.93	33	\$1,615
Equipment Maintenance (Butler)	hrs	\$10.01	231	\$2,313
Total Revegetate Mill Yard & Ore Pad				\$30,744
Total Demolition and Decontamination			0	\$1,056,948
CLEANUP OF WINDBLOWN CONTAMINAT				
Scoping Survey				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Soil Samples	each	\$50.00	100	\$5,000
Survey Crew	hrs	\$13.19	752	\$9,917
Sample Crew	hrs	\$13.19	1,312	\$17,301
Total Scoping Survey				\$32,218
Characterization Survey		o	T = -1, 1, 1 = 14 =	Task Cast
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Soil Samples	each	\$50.00	472	\$23,600
Sample Crew	hrs	\$13.19	1,136	\$14,980
Total Characterization Survey				\$38,580
Final Status Survey				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
	leach	\$50.00	300	\$15,000
Soil Samples Sample Crew	hrs	\$13.19	3,552	\$46,840
Total Final Status Survey				\$61,840
Windblown Cleanup				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	1,190	\$21,084
Cat 637 Scraper	hrs	\$140.50	680	\$95,543
• • • •	hrs	\$68.67	170	\$11,674
Cat D8N Dozer With Ripper	hrs	\$57.90	170	\$9,844
Cat D7 Dozer		\$48.93	170	\$8,317
Cat 14H Motorgrader	leach	\$50.00	500	\$25,000
Soil Samples		\$13.19	163	\$2,14
Survey Crew	hrs	\$13.19	83	\$1,09
Sample Crew Equipment Maintenance (Butler)	hrs hrs	\$10.01	1,190	\$11,91
Total Windblown Cleanup		k		\$186,62
Quality Control		.	.	
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Quality Control Contractor	hrs	\$62.00	2,080	\$128,960
Total Quality Control				\$128,960
Total Cleanup Windblown Contamination			I	\$448,21
TOTAL MILL DECOMMISIONING				\$1,505,167

.

•

.

· ·

chop p	- Mise Threase i Noom Food
shop &	י מצביר ביורטוחט
shop t	35 10H 330/1/ dotig .
spab 5	· Venedium Oxidetion
shap G	· Joires
hop	THAT BRING .
shop 5	· CCD, PLT, LARCONE
shop OI	· Sx Building
shop Z	100 358707 .
shop oz	• אורר פחירטיאכד
É GERRE)	6) DEVOLITION TIME ESTIMATES. (6422
	WITT DECOMMISSIONER
19945	LE/PROJECT
	INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE

NOTIONAL MOTIONOT (T

· à à e a tauns. (Fean can) 2559 02 215721762 MIN 270-120-0700 € 233 33/1752 0

æ £'6	006 2	-2130102
0099	osoe	Dieces SHOP
007 '21	CC2' +	THE REAL
ool'se	-001'Z1	37440
00L'19	0 82'61	2500 287 / dotis
001 '6LI	aciss	MALENING X4
000'001	005'LE	WILL BUILDING
Ear #	ALL REAL	

55. 4 1103 1 512 # 209 V] "

EPROJECT Ø REVENTSTICS 1000 fr [[1, 43, 453 + 976, 780] ft + 1/2 ft] + 27 ft ۲-Dysche . 637 BOUTE #4 FLACE INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE ODE PLO 48 600 yd MILL TORD DEEL = set by the ٩ 44 C 1 1 1 MILL DECOMMISSIONING ۱ ć Date dec = n SPPLEIMATES HAVE 1,643,453,412 976, 780 At Ŕ "637 han TE sheet of Ņ 48,600 yd3 48,522 yd3 1998 -----

WIND BLOWN CONTAMINATION

1) Jeoping Survey

No. 5505 Engineer's Computation Pad

Initial Jurvey will be Conducted ON a Grea To be distormined <u>But</u> to this estimate it is defined as on Grea Approximated by A perimeter 1000 feet Outside God the Restaucted Aneq Boundries This is conservative Since wind blown Contamnation Would mout likely be found Down wind of the Size, which is on the East side of the Vertrice Anea

AREA DETCHMINCO by Cap. = 38, 728,000 #2

Anea Requiring wind blows Sursey is

Total Ansa -	38,728,000 ft2
Cerc 4A	1,909,000 112
Cell 3	3,234,000 ft2
Coll 2	2,987,000 flz
Coll 1	2, 576,000 42
MILL YARD	1,643,000 ft?
One STORAJO PAD	977,000 HZ
	25,402,000 AZ

- · ASSUME ROLEMONT OF STANDARD NAC/ERA 10 × 10 motor god (10760+2)
- . Assume Scoping Survey Completed by Scanning WITH MR Meter Hold Crose TO ground while traviling at ± 0.5 m/Sec. As per Guidance IN NAREG 5849.
- · SURVEY Crew of 2 Copolio of Jerring 500 good points per Day 25,402,000 ft² _ 23,400 Guid DOMITS

23,600 POINTS = 47 Doy 5 500 POINTS/DOY

. Sconning Crow Consists of 2 min -

· Courage 0.5 m/sec × 60 sec/min × Ehrs/= 14,400 m/on. Assume . 8 eff. factor 14,400 m/on x . 8 = 11,520 m/ony

INSCHNATIONAL UHANIUM (USA) CONT. COST ESTIMATE Wind blown Contamination - Jesping Sorie 7 . Assume 30 meter Patt for each 10 × 10 grid to Cours 10% of Surface Anca (Par NURSE 5549) CREW CON SCON 11, 520 m/004 = 384 Grios /044 30 m/Grio <u>_</u>. 23,600 Grips ~ 62 Day TO Complete INITIAL Scal 384 Grios/000 62 Days x Zmon x Ehrs = 1992 monthes 1 · ASSUME MAP PRODUCTION + Dota Reduction to ke Sconning Craw AN Appiriunal 20 Days To Complete 20 Days × 2 mon × Elhoslony = 320 mon Hes TOTAL SCONNING Markers = 1312 · Scoping Survey will require 100 Contremiting Soil Simples at a cost of \$ 50,00 / Each (UNAT + Rozza) . Samples Can be tohow at Some time no sconning takes place. 2) CHAPACTERIZATAN JUNNEY -Survey at areas identified as attacts areas og Suping Svevery . ASSUME ! , 20% of Anes will require additioner Someting · Proding will be use, 4 probe sites / grie (Bri, Genand . Sois Samples will be required on 10% of Good Same . Somples will be for Unot + Ro 226 · Cont/Same = 50 (LAB) 25,402,000 HZ = 23,608 Gride X.2 = 4722 Grios 1076 St /geis . Crew cans cover 100 Griss / any probing · Crew Can toko 25 Soir Samples long Probing tokes 4722 Grob ~ 47 Days 47×2×8 = |752 hes |

No. 5505 Engineer's Computation Pao

$$\int \frac{1}{2} \int \frac{$$

ANDI (ACU) MUNAHU JANUITANAETNI ETAMITEE TEOD

♦

;

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE EPROLECT ... MILL DECOMISSIONING WIND BLOWN (ONTAMINATION (Cont) 5) com - up. · Assume 202 of sees surveyed Requires Corrective Action · 6'OF SOL WILL BE STEIPPED 25,402 AX 0.20 = 0.5 Ft -2,540,000 fts 94,000 yd3 مرح (94, 100 yd3) يعح · US IT IS NOT KNOWN WHAT BEENS MAY BE CONTAMINATED, ASSUME THE USE OF 637 How BOUTE & G TO BE CONSERVITE · BELAUSE OF THE BOONTIAL FOR IRREALINE & DISCONNECTED AREAS, EFFICIENCY WILL BE WIT 50% OF RELIAN 637 EPACONO, 277 yd 3/hr x 0.50 138. 2 yd 3/hr = مطيقيل say [138 yd 3/m 94,100 yd3 + (38 yd3/hr= 681 scroperhans sy 680 hours

RECLAMATION OF CELL 2

RECLAMATION OF CELL 2

Obtain Permits for Clay Borrow Site - S Resource Description	Units	Cost/Unit	Task Units	Task Cost
Permits & Licenses	ea	\$10,000.00	5	\$50,000
Total Obtain Permits for Clay Borrow	Site - Section 16			\$50,000
Place Remainder of Bridging Lift Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	178	\$3,154
Cat 627F Scraper	hrs	\$140.50	78	\$10,959
Cat 815C Compactor	hrs	\$66.15	20	\$1,323
Cat D8N Dozer With Ripper	hrs	\$68.67	20	\$1,373
Cat D7 Dozer	hrs	\$57.90	20	\$1,158
Cat 651 Waterwagon	hrs	\$72.12	20	\$1,442
Cat 14G Motorgrader	hrs	\$48.93	20	\$979
Equipment Maintenance (Butler)	hrs	\$10.01	178	\$1,782

Total Place Remainder of Bridging Lift

Place Lower Random Fill (12")

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	902	\$15,981
Cat 637 Scraper	hrs	\$140.50	402	\$56,483
Cat 825 Compactor	hrs	\$66.15	100	\$6,615
Cat D8N Dozer With Ripper	hrs	\$68.67	100	\$6,867
Cat D7 Dozer	hrs	\$57.90	100	\$5,790
Cat 651 Waterwagon	hrs	\$72.12	100	\$7,212
Cat 14G Motorgrader	hrs	\$48.93	100	\$4,893
Equipment Maintenance (Butler)	hrs	\$10.01	902	\$9,032

Total Place Lower Random Fill (12")

Clay Layer

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	1,690	\$29,943
Cat 825 Compactor	hrs	\$66.15	320	\$21,167
Cat D8N Dozer With Ripper	hrs	\$68.67	300	\$20,601
Cat D7 Dozer	hrs	\$57.90	0	\$0
Cat 651 Waterwagon	hrs	\$72.12	300	\$21,635
Cat 14G Motorgrader	hrs	\$48.93	320	\$15,656
Cat 980 Loader	hrs	\$64.99	300	\$19,496
5000 Gallon Water Truck	hrs	\$40.64	150	\$6,095
Highway Trucks	hrs	\$40.00	2,400	\$96,000
Truck Drivers	hrs	\$12.74	2,400	\$30,577
Equipment Maintenance (Butler)	hrs	\$10.01	4,090	\$40,952

Total Place Clay Layer

\$302,123

\$22,171

\$112,872

RECLAMATION OF CELL 2

Upper Random Fill

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	1,990	\$35,258
Cat 637 Scraper	hrs	\$140.50	796	\$111,842
Cat 825 Compactor	hrs	\$66.15	199	\$13,163
Cat D8N Dozer With Ripper	hrs	\$68.67	199	\$13,665
Cat D7 Dozer	hrs	\$57.90	199	\$11,523
Cat 651 Waterwagon	hrs	\$72.12	199	\$14,352
Cat 14G Motorgrader	hrs	\$48.93	199	\$9,736
5000 Gallon Water Truck	hrs	\$40.64	199	\$8,087
Equipment Maintenance (Butler)	hrs	\$10.01	1,990	\$19,925

Total Place Upper Random Fill

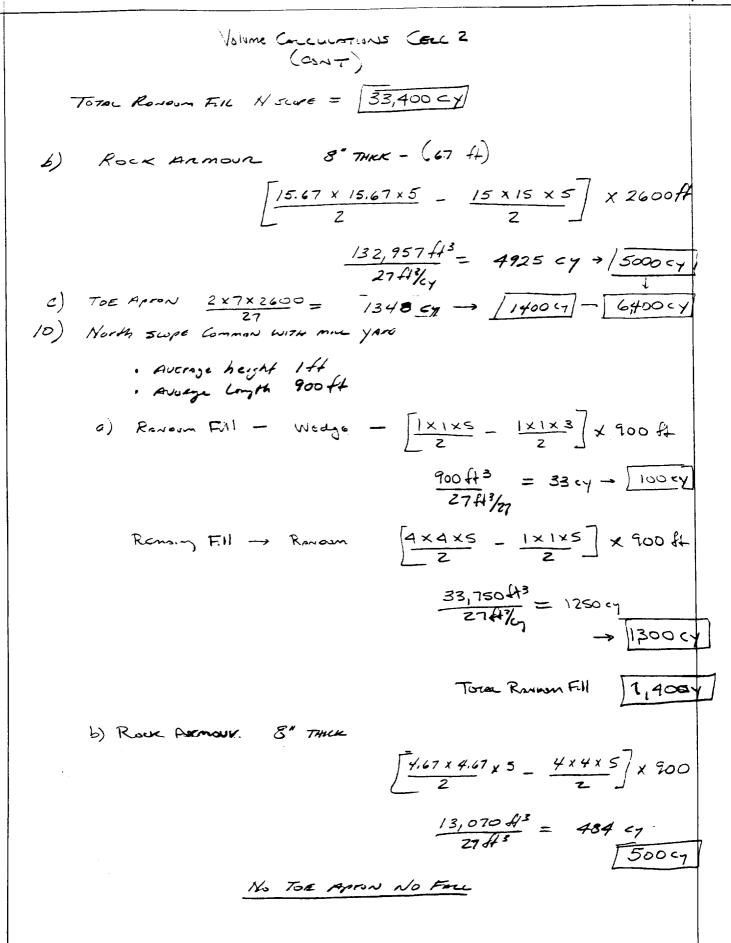
\$237,551

\$293,053

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	825	\$14,617
Cat D7 Dozer	hrs	\$57.90	275	\$15,924
Cat 651 Waterwagon	hrs	\$72.12	275	\$19,833
Cat 14G Motorgrader	hrs	\$48.93	275	\$13,454
Rock Cost Delivered	CY	\$3.34	66,200	\$220,965
Equipment Maintenance (Butler)	hrs	\$10.01	825	\$8,261

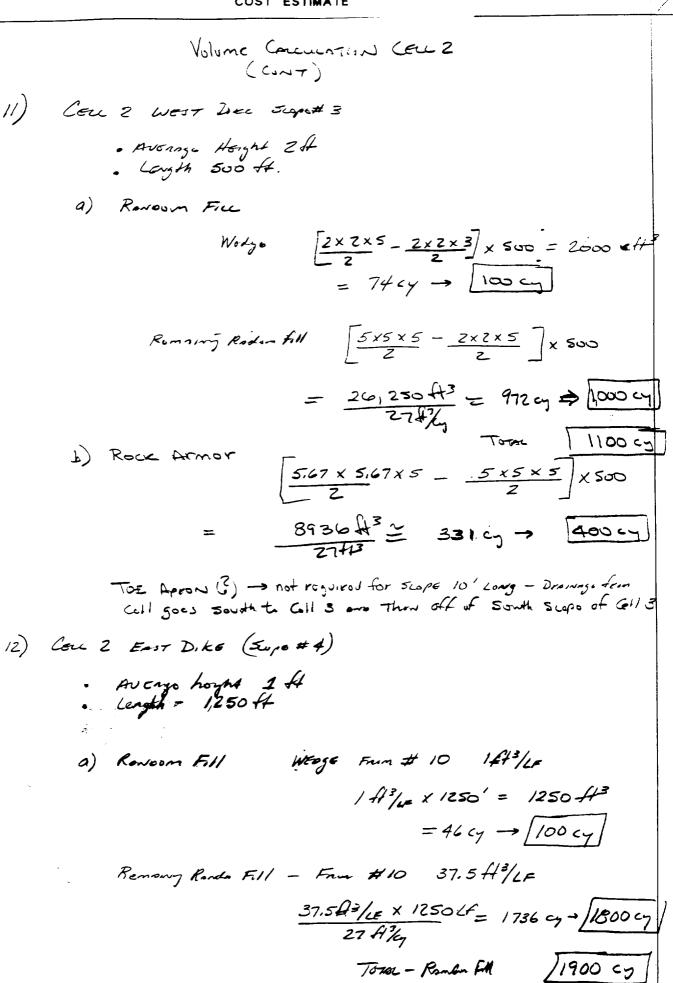
Total Place Rock Armor

Quality Control


Resource Description	Units	Cost/Unit	Task Units	Task Cost
Quality Control Contractor	hrs	\$62.00	1,050	\$65,100
Total Quality Control				\$65,100
TOTAL RECLAMATION OF CELL 2			E	\$1,082,870

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE 2/10/99 Volume CALCULATIONS CELL 2 1) AREA OF CELL 2 - 2956,660 A2 68.56 ACLES Ŧ No. 5505 Engineer's Computation Pad 2) ARCA OF CELL Z STILL OPEN 2/10/99 (SEE FIGUR A) 1000 × 200 Approximate Anca = 200000 st (4.6 Acres) 3) Assumptions : · Bridging layer is placed using random fill from pices WEIT OF COLL 2 · Car will be graded to Desyns eleverned urilling times marevers In rondom fill Slock piles and ferm "Clag" Stockpiles. · CLOY will be mined, blondod & hours from borrow SITE LOCATED IN SECTION 16 - 4 MILES South at the MILL - USING Billy domp Trucke - CLAY LOYER ON top of Coll ONLY, exception South SLOPE CAMPAN 63 Cell 3 . The upper 2 feet of Renson fill will be placed using the twe renson fill and chang stockpilles · Rock for side Armor, Top Armor and TOE sprows will Come from an offsite group source I mile worth of Blancing, Rock will be produced through Scraning, Stucepices and Trucked to the Site at the time of USE. Belly dump Trucks will Dump grouce in Windrows on the top and sodo of the Coll. Bridging Loyer (Renson Fice) LEFT TO PLOCE 4) $\frac{200,000 \, \text{A}^2 \times 3 \, \text{H}}{27 \, \text{H}^3/cy} = 22,222 \, \text{GeV} \rightarrow$ 23,000 cy Bring Lower ronoun fill up to Design Eccurrons 5) Assume Full Anos of CELL × I ful thick $\frac{2,986,660 \text{ fl}^2 \times 1 \text{ fl}}{27 \text{ fl}^3 \text{ ky}} = 110,617 \text{ cy} \rightarrow 110,700 \text{ cy}$

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE Volume Cacano Tion Car Z (cont) 6) PLACEMENT OF CLOY LAYER (1 tout Thick on Top of CELL ONLY) Full Anto OF Cere × 1ft thick 2986,660 A2 × Ift = 110,617 cy > [110,700 cy] 27 At /c., 7) Upper RANDOM FILL VOLUME - TOP IF PILE FULL ANEA OF CELL X 2 At Thick 2986,660 ft2 × 2ft = 221,234 cy → 221,300 cy ARMOR ANDTECTION - TOP OF LELL S) Full Anca OF Core X . 5ft $\frac{2986,660 \, \text{A}^2 \, \text{x.s}}{274^3/c_n} = 55,309 \, \text{cy} - 55,400 \, \text{cy}$ CELL 2 North Scope (Scope #1) Common WITH CELL 1 9) · Avennyo height = 12 feet · Length = 2600 ft a) Rowoom File TO Resource Suger From 3:1 TO 5:1 $\int \frac{12 \times 12 \times 5}{2} - \frac{12 \times 12 \times 3}{2} \times 2600$ FIRIT WEDge $= \frac{374,400}{2774\%} \text{ft}^{3} = 13,867 \text{Cy}$ = 13,900 ey REMAINING Ranon Fell $\int \frac{15 \times 15 \times 5}{2} = \frac{12 \times 12 \times 5}{2} \times 2600$ 526,500 H3 = 19,500 cy


No. 5505 Engineer's Computation Pad

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE

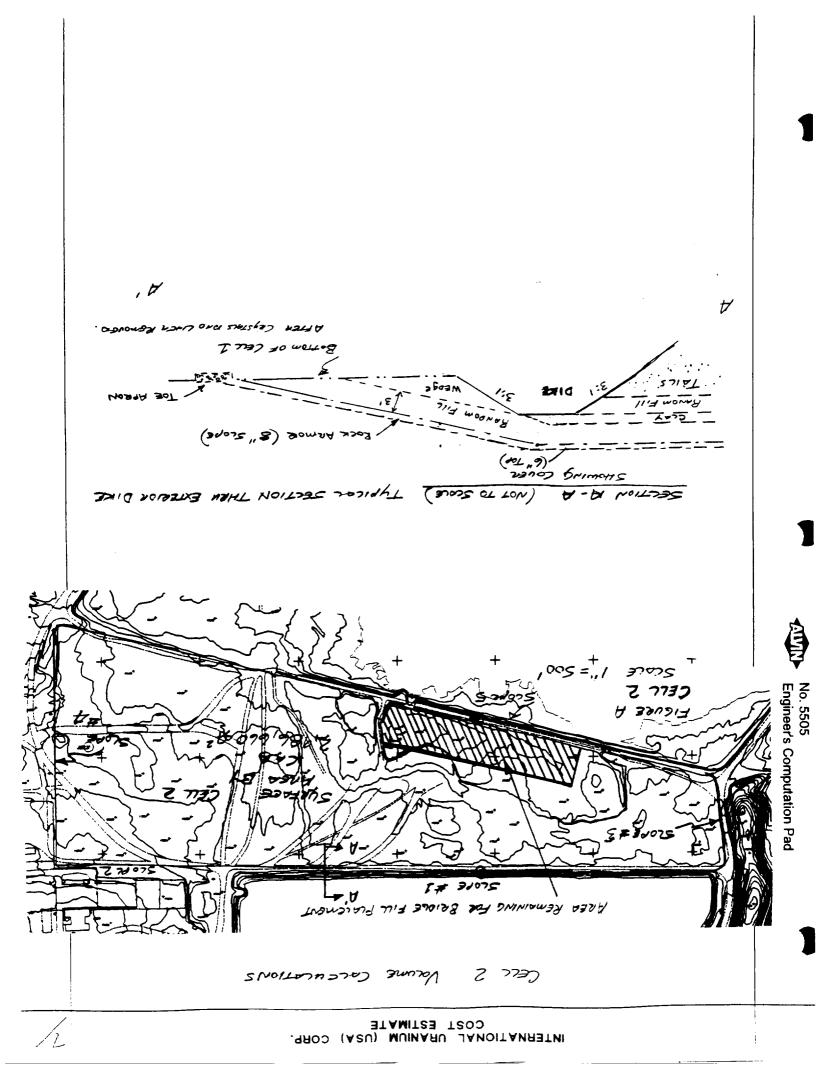
No. 5505 Engineer's Computation Pad

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE

No. 5505
 Engineer's Computation Pad

Į

$$- made sol on
\frac{12}{12} - 1522 = \frac{12}{14\pi 2.745}$$


$$\frac{12}{12} - 20002 + 1522 = \frac{12}{14\pi 2.745}$$

$$D = 152 \times \left(\frac{2}{5\times9\times9} - \frac{2}{5\times1.99\times2.99}\right)$$

$$- mound = 300 \times \left(\sqrt{2}\right)$$

$$\frac{1}{2} - \frac{1}{2} -$$

INTERNATIONAL URANUM (USA) CORP.

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE

Volume COLCULO TIONS Cerc Ζ

Volume Summey.

No. 5505 Engineer's Computation Pad

	Bridge Loyca	Lowen Rondom	CLAY	upper Redom	BEMOR
TOP OF Core	23,000	110,700	110,700	221,300	55,400
Nonth (scape # 1)		/3, <i>9</i> 00		19,500	6,400
North (Suge#2)		100		1,300	500
WEST (Scope #13)		100		1,000	400
ERST (Score 4)		100		1,800	700
SOUTH (SLOPE 5)		1200	2,300	6,500	2800
	23,000	126,100	113,000	251,400	66,200

PROJECT QUANTITIES

Cell SI	opes											0.6667	
Slope		Height	Length		G DIKE "A"		GE "B"	A second seco	M FILL "C"		M FILL "D" VOL (CY)	1	RAP "E" VOL (CY)
No.		feet	feet	AREA	VOL (CY)	AREA	VOL (CY)	AREA	VOL (CY)	AREA	VUL (CT)	AREA	
1	Cell 2 North dike	12	2,600	216.0	20,800	144.0	13,867	62.5	6,019	140.0	13,481	51.7	4,976
2	Cell 2 North Dike	1	900	1.5	50	1.0	33	7.5	250	30.0	1,000	15.0	500
3	Cell 2 West Dike	2	500	6.0	111	4.0	74	12.5	231	40.0	741	18.3	340
4	Cell 2 East Dike	1	1,250	1.5	69	1.0	46	7.5	347	30.0	1,389	15.0	694
5	Cell 2 South Dike	3	3,500	0.0	0	9.0	1,167	17.5	2,269	50.0	6,481	30.7	3,976
1	Cell 2 Slope Totals		6,150		21,031	4	15,187		9,116		23,093		10,485
6	Cell 3 West Dike	2	1,100	6.0	244	4.0	163	12.5	509	40.0	1,630	18.3	747
' 7	Cell 3 South Dike	16	1,750	384.0	24,889	256.0	16,593	82.5	5,347	180.0	11,667	65.0	4,213
8	Cell 3 South Dike	39	1,700	2,281.5	143,650	1,521.0	95,767	197.5	12,435	410.0	25,815	141.7	8,920
9	Cell 3 East Dike	6	800	54.0	1,600	36.0	1,067	32.5	963	80.0	2,370	31.7	938
i 1	Cell 3 Slope Totals		5,350		170,383		113,589		19,255		41,481	1	14,819
		···· · · · · · · · · ·					, n n i n a sui nana	<u></u>	· · · ·		<u> </u>		:
	Total Material Requiren	nents (CY)			191,414		128,776		28,370	:	64,574		25,304

NOTE:

Values shown in the "Area" column are the CROSS SECTIONAL AREA for the component in SQUARE FEET. Values shown in the "Volume" column are the component's area x length converted to CUBIC YARDS.

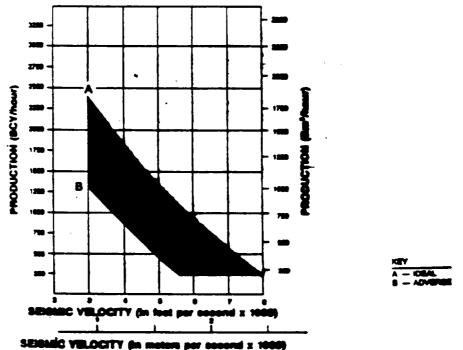
CELL 2 RECLAMATION

CAT 637 RESOURCE REQUIREMENTS

	Volume	Route	Yds/Hr	%	Equip hrs
Cell 2 Bridging Lift					
Tailings Surface	23,000	5	296	100%	77.7
-				TOTAL	77.7
Cell 2 Lower Random fill					
Tailings surface	110,700	5	296	67%	250.6
Tailings Surface	110,700	4	368	33%	99.3
Slope 1	13,900	5	296	100%	47.0
Slope 2	100	4	368	100%	0.3
Slope 3	100	5	296	100%	0.3
Slope 4	100	4	368	100%	0.3
Slope 5	1,200	5	296	100%	4.1
				TOTAL	401.7
Cell 2 Upper Random Fill					
Tailings surface	221,300	5	296	67%	500.9
Tailings Surface	221,300	4	368	33%	198.4
Slope 1	19,520	5	296	100%	65.9
Slope 2	1,300	4	368	100%	3.5
Slope 3	100	5	296	100%	0.3
Slope 4	1,800	4	368	100%	4.9
Slope 5	6,500	5	296	100%	22.0
				TOTAL	796.0
Cell 2 Rock Armour use Hig	hway Truck	S			

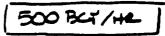
INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE WHITE MESA MILL REC '99 CLAY ProductION Hanlage From Section 16 Haur Protile From Secon 16 - Lonoso 200000 Grass Emply Segment Lowyth 世」 Imin . 65 4% 600 m. 2000' 1 min 11% 1.8 mm 1500' 2 540 M 1.2 min 1.4 min 1260 m 1,8% 4200' 3 1.5 ml. 1.6 min 0.5% 1600m 5600' 4 1710 m 1.75 MIN 1.63 mm 1.4% 5700' 5 1560 m 1.48 -1.5 min 0.8% 5200' 6 24,500' 7.43 mm 9.05 min 16.48 min 4,6 mile This Looper 9.2 mile Romo Thip Cury = 2300 day Louse. FIXED TIMES - LOADING -Tay Bucket 300 300 TO 4000 980 1 . 5 mulayde = 1. Sommathe first Dump -> Using bolly Damps -> Contropas. 1,5 minutes to loss X & Trucco = 12 minutes -Cyclo is to minuto + 6 minuto to space OFF ROAD Appliation ZZ cy/LOOG Cyclo timo = 18 minues / TARChe 50 monto bor = 2.7 cyclas/h 22 cy/cydo x 2.7 cyle/hr × 8 toute = $\frac{1}{2}$ $\frac{1}{2}$ = _ hrs lanor + homeso + Dizer 118,0000gy CLAY Con 2 = " (Dozen Run \$60 cy/hr / Say =) = 297 hrs (8 TAMES) Spreading + Copporting to to place 141250 Lug GE MATORIAL BANKED. UN 300 her 4. 5 ... 45y & Loodford. Tauces 287 x = 1896 hrs - 2376 hrs Excess has TO STAGE OB + Prop. 300 hes 300 × 1 = Dozca 297 - 300 23 Bhe 235×1 = Lonove 3.0 + 20 237 her 237×1 = GANDUY 291 300 237 h / 291 238:21 5 NN 300 +20 Compartex 22 · 27

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE



EPROJECT WHITE MESA Rech Date Calc by Sheet of

LAY PRODUCTION COSTS SECTION 16 SOURCE -


1) CLAY PEODUCTION

- · CLASS WILL BE EIPPED FROM SOURCE @ SECTION 16
- APPROL 400 VERNAL FEET OF BOUGHT BASIN BURSLINE
- . FROM GAT HAND BOOK MAK SEISMIC VELOCITY OF CLAY & 6000 FH/SEC

DEL WITH SINGLE SHANK

· BOSED ON THE ABOVE, DB CAT SHOULD BE ABLE TO PRODUCE AT LEAST 250 BCY /HOUR WITH AN AVERAGE OF.

· WE WILL ASSUME THAT THE CAT IS UTILIZED ENER DAY OF CLAY PRODUCTION FOR BIPPING AND OR DORMA / REMONEY/ PREPARATION.

RECLAMATION OF CELL3

RECLAMATION OF CELL 3

\$0.48 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67 \$57.90	62,400 Task Units 1,945 865 216 216 216 216 216 1,945 State 1,945 Task Units 1,745 775 194 194 194	\$30,000 \$30,000 Task Cost \$34,465 \$121,536 \$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$10,568 \$10,568 \$10,568 \$10,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233 \$13,991
\$17.72 \$140.50 \$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	1,945 865 216 216 216 216 216 1,945 715 775 194 194 194	Task Cost \$34,465 \$121,536 \$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$17.72 \$140.50 \$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	1,945 865 216 216 216 216 216 1,945 715 775 194 194 194	\$34,465 \$121,536 \$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$17.72 \$140.50 \$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	1,945 865 216 216 216 216 216 1,945 715 775 194 194 194	\$34,465 \$121,536 \$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$140.50 \$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	865 216 216 216 216 216 1,945 775 1,745 775 194 194 194	\$121,536 \$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$66.15 \$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	216 216 216 216 216 1,945 Task Units 1,745 775 194 194 194	\$14,304 \$14,832 \$12,507 \$15,578 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$68.67 \$57.90 \$72.12 \$48.93 \$10.01 \$10.01 \$17.72 \$140.50 \$66.15 \$68.67	216 216 216 216 1,945 7,945 1,745 7,75 194 194 194	\$14,832 \$12,507 \$15,578 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$57.90 \$72.12 \$48.93 \$10.01 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67	216 216 216 1,945 Task Units 1,745 775 194 194 194	\$12,507 \$15,578 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$72.12 \$48.93 \$10.01 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67	216 216 1,945 Task Units 1,745 775 194 194 194	\$15,578 \$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$48.93 \$10.01 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67	216 1,945 Task Units 1,745 775 194 194 194	\$10,568 \$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$10.01 Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67	1,945 Task Units 1,745 775 194 194 194	\$19,477 \$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
Cost/Unit \$17.72 \$140.50 \$66.15 \$68.67	Task Units 1,745 775 194 194 194	\$243,268 Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$17.72 \$140.50 \$66.15 \$68.67	1,745 775 194 194 194	Task Cost \$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$17.72 \$140.50 \$66.15 \$68.67	1,745 775 194 194 194	\$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$17.72 \$140.50 \$66.15 \$68.67	1,745 775 194 194 194	\$30,913 \$108,891 \$12,816 \$13,322 \$11,233
\$140.50 \$66.15 \$68.67	775 194 194 194	\$108,891 \$12,816 \$13,322 \$11,233
\$66.15 \$68.67	194 194 194	\$12,816 \$13,322 \$11,233
\$68.67	194 194	\$13,322 \$11,233
	194	\$11,233
w01.001		
\$72.12		<u> </u>
\$48.93	194	\$9,491
\$10.01	1,745	\$17,470
		\$218,127
Cost/Unit	Task Units	Task Cost
\$17.72	1,975	\$34,99
\$140.50	0	\$
\$66.15	375	\$24,80
\$68.67	350	\$24,03
\$57.90	0	\$
\$72.12	350	\$25,24
\$48.93	375	\$18,34
	350	\$22,74
\$64.99	175	\$7,11
		\$112,00
\$64.99 \$40.64	2,0001	\$35,67
\$64.99 \$40.64 \$40.00	2,800	
	\$72.12 \$48.93 \$64.99 \$40.64	\$72.12 350 \$48.93 375 \$64.99 350 \$40.64 175 \$40.00 2,800

07/13/2000 - 9:15 AM - WM.RecPlanEst.July2000.xls

RECLAMATION OF CELL3

Upper Random Fill

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	2,490	\$44,117
Cat 637 Scraper	hrs	\$140.50	996	\$139,943
Cat 825 Compactor	hrs	\$66.15	249	\$16,470
Cat D8N Dozer With Ripper	hrs	\$68.67	249	\$17,098
Cat D7 Dozer	Ihrs	\$57.90	249	\$14,418
Cat 651 Waterwagon	hrs	\$72.12	249	\$17,957
Cat 14G Motorgrader	hrs	\$48.93	249	\$12,182
5000 Gallon Water Truck	hrs	\$40.64	249	\$10,118
Equipment Maintenance (Butler)	hrs	\$10.01	2,490	\$24,932

Total Place Upper Random Fill

\$297,237

Rock Armor

Units	Cost/Unit	Task Units	Task Cost
hrs	\$17.72	948	\$16,796
hrs	\$57.90	316	\$18,298
hrs	\$72.12	316	\$22,789
hrs	\$48.93	316	\$15,460
CY	\$3.34	76,110	\$254,043
hrs	\$10.01	948	\$9,492
	hrs hrs hrs CY	hrs \$17.72 hrs \$57.90 hrs \$72.12 hrs \$48.93 CY \$3.34	hrs \$17.72 948 hrs \$57.90 316 hrs \$72.12 316 hrs \$3.34 76,110 CY \$3.34 76,110

Total Place Rock Armor

Quality Control

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Quality Control Contractor	hrs	\$62.00	1,406	\$87,172

Total Quality Control

TOTAL RECLAMATION OF CELL 3

\$336,879

\$1,565,444

\$87,172

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE 2/16/99 Volume CALCULATIONS CELL 3 Ance of Top of cell by Car - 3,234, 252 4 ı) 74.25 AURES 2) Area of Bridging loyer (lower Rondom) placed 103000 A2 25 ACLES 3) ASSUMPTIONS: · Bridging GEA (Aunon Fill) Gomes from renoum Fill Stockpellos work of Colls - Using hour Route #6. · STOLEPILLES DESIGNATED AS "CLOY" Will be word for top 12" of Lower random Fill · Choy For the radio barrier will be moved, blanded, and house term Section 16 four miles South of the mill. "B" on Super, 6" on Top + 2'x7' Apron at bother of JUNTH Jupes . I tost loger it upper rundon fill will come times more In voridom till stock piles and "Cing" Stock piles . Roca Armor for top, side super, and to aprive will form term Some Survey to Coll 2 Rock Armor. - Grovel p.+ Nuch of Bland -. · Cisy Layer extends and only the Top of Call Not on Scopes. 4) Bridging longor left to place (3,234, 252 H2 - 1,080,000 H3) × 34+ = CV 27 ft /cs $\frac{2154254\times^3}{27} = 239,361 \text{ cy}$ 239,400 CY Bruy lower ranson will up to design elevering (Assume such that **5**) Area for estimate, in reacity parts of east end of pool is up to elos min Diacooy.) 3,234,252 A2 × 1A = 119,787 -> (119,800 cy) 27A%

No. 5505 Engineer's Computation Pad

INTERNATIONAL UPANIUM (USA) CORP.
COST ESTIMATE
Notive Concurring Cost 3
(a) Therement of Cost under (for invers) over full neces Try of Cost

$$\frac{3}{274,2524^{2}\times 1^{2}} = 19,775 \text{ Cr} \rightarrow 119,500 \text{ Cy}}{274^{3}\text{Cr}}$$

$$\frac{3}{274^{3}\text{Cr}} = 19,775 \text{ Cr} \rightarrow 119,500 \text{ Cy}}{274^{3}\text{Cr}}$$

$$\frac{3}{274^{3}\text{Cr}} = 239,574 \text{ Cy} \rightarrow 239,600 \text{ Cy}}{274^{3}\text{Cr}}$$
(b) upper random fill where such full once of Cell

$$\frac{3224,2524^{2}\times 24^{2}\times 241}{274^{3}\text{Cr}} = 239,574 \text{ Cy} \rightarrow 239,600 \text{ Cy}}$$
(c) and protection - Tor order 6" (.54)

$$\frac{3(224,2524^{2}\times.54)}{274^{3}\text{Cr}} = 59,394 \text{ Cy} + 59,900 \text{ Cy}}$$
(c) Cost 3 west supper (supper 46) 2 four 4.144,100 form Carp
• No Casp on Stapes
• To Chargen only as faire of Carp supper or where dramage off of the
Ceuse is character
• Routen fill words on No Eutropoints + 50 Transtrum from the Corr

$$\frac{(2\times2\times5\times1000 \text{ ft})_{27}^{2} = 407\text{ Cy} = 410\text{ Cy}}{274^{3}\text{Cy}}$$
• Routen fill words - No Eutropoints + 50 Transtrum from the Corr

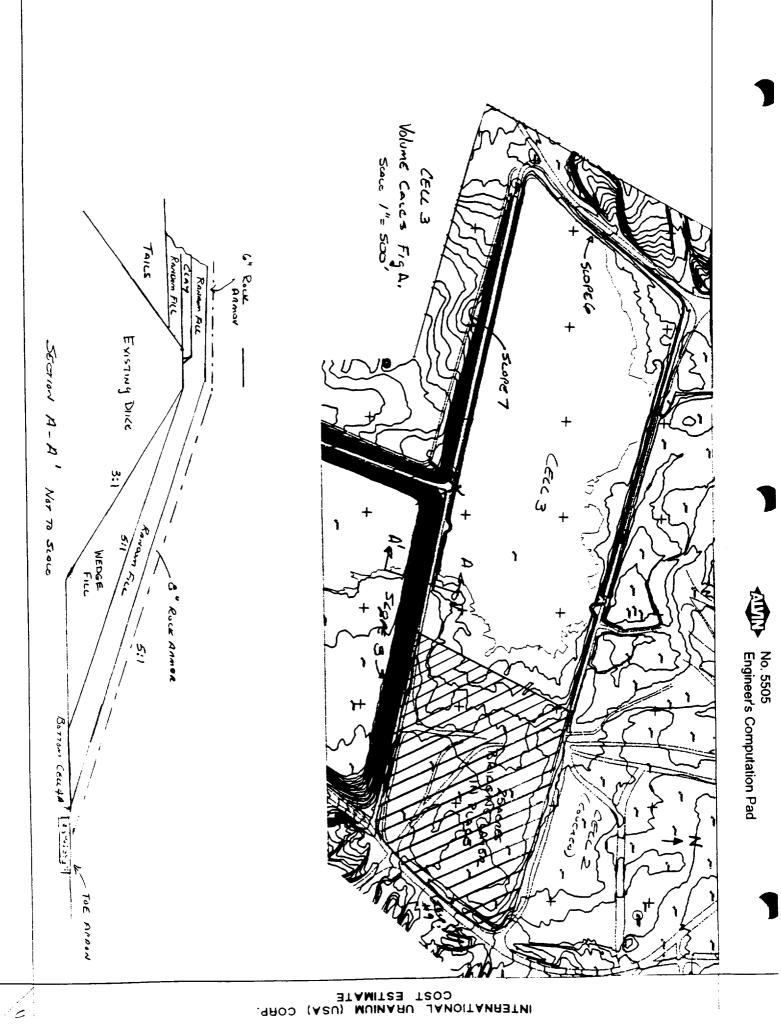
$$\frac{(5.57\times50 \text{ H}^{2}}{274^{3}\text{Cy}} = 2135 \text{ Cy} - 22200 \text{ Cy}}{274^{3}\text{Cy}}$$
• Route Armor

$$\frac{(5.67\times507 \text{ Cs} - 5\times55)}{274^{3}\text{Cy}} = 728 \text{ Cy} + 720 \text{ Cy}}$$

No. 5505 Engineer's Computation Pad

6

6


62.5

INTERNATIONAL URANUM (USA) CORP.

L

L

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE

Volume Cocculation Cocce

Morume Summary

011192	007 '867	0081611	019722	007'682	(⁽⁺)=2020 <u>1</u>
054	002'1				(6) 2018 LS03
0586	005,85		008'56		(8 #) 2710 M2205
००२'९	001121	—	~~~/9/	_	(LA) DURG HENOS
082	5,200		017	_	(הבצ זריינ (אר)
006'65	00% 682	008611	008/611	004'682	اعد ودر
Armos	Upper Randows	row	דסחופע צייים	Bridge Caree	l

2 2 2 2 3 ج**يني**د مرجد . م . -SXMALE < 14/ 10 162 , - Goosids RSINH OF BMIT ANTARYOS LAS 304 CYThe - Deliver Rock Armor Volume = 76,110 cy - 33 cy/Timer × & TAMERS Row Armor 41.5 5000 Gowen Warding In She 100 000 971 200 524 568 **** 252 Comparent 542 MM 159 100 SAYOSE No. 5505 Engineer's Computation Pad DEN Dozze W/ MINDER - 350 MED 524055-22000 08% 220082 = camer 8 × 03E 14/ LOT SLA 251 = %01 + 14 91E = 407 OSL'6#1 524058 1620KING 475LCY/M - 8 TAURERS + 1 600082 · B Swell factor Los 1052'601 = Logo 8'611 = 200101 6000 6072 (nee some & seundyon As care 2)

INTERNATIONAL URANUM (USA) CORP. CORT ESTIMATE

CELL 3 RECLAMATION

CAT 637 RESOURCE REQUIREMENTS

	Volume	Route	Yds/Hr	%	Equip hrs
Cell 3 Bridging Lift					
Tailings Surface	239,400	6	277	100%	864.3
-				TOTAL	864.3
Cell 3 Lower Random Fill					
Tailings surface	119,800	6	296	100%	404.7
Slope 6	410	6	296	100%	1.4
Slope 7	16,600	6	368	100%	45.1
Slope 8	95,800	6	296	100%	323.6
Slope 9	0	6	368	100%	0.0
				TOTAL	774.9
Cell 3 Upper Random fill					
Tailings surface	239,400	6	296	100%	808.8
Slope 6	2,200	6	296	100%	7.4
Slope 7	17,100	6	368	100%	46.5
Slope 8	38,300	6	296	100%	129.4
Slope 9	1,200	6	368	100%	3.3
				TOTAL	995.3

CELL 4A CLEANUP

CELL 4A CLEANUP

Dewatering of Cell 4A

Dewatering of Cell 4A				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Dewatering of Cell 4A	hrs	\$0.48	11,500	\$5,529
Total Dewatering of Cell 4A				\$5,529
Remove Fencing				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Cat 988 Loader	hrs	\$95.68	40	\$3,827
Equipment Operators	hrs	\$17.72	40	\$709
Equipment Maintenance (Butler)	hrs	\$10.01	40	\$401
Laborers	hrs	\$10.35	160	\$1,655
Total Remove Fencing				\$6,592
Remove Liner & Contaminated Material to			—	Task Oast
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	303	\$5,368
Cat 769 Truck	hrs	\$60.52	606	\$36,677
Truck Driver	hrs	\$12.74	606	\$7,721
Cat 988 Loader	hrs	\$95.68	303	\$28,990
Equipment Maintenance (Butler)	hrs	\$10.01	909	\$9,102
Total Remove Liner & Contaminated Mate	erial to Cell 3			\$87,858
Quality Control				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Quality Control Contractor	hrs	\$62.00	325	\$20,150
Total Quality Control				\$20,150
TOTAL CELL 4A CLEANUP			[\$120,128

		and BA	ter ter	1) dywnations dwr dwr der der der		EPROLECT	
۰ ۱۰ ۱۰ ۱۰	106 100 yd3 ÷ 175 yd3	Based on Have Come & Romine,	Quanty of Cortanivation Man $\left[1,909,000 \times \left[\frac{6}{2} + \frac{1}{2}\right]\right]$	XTALS ARE PLOED UNIX	Lell at work	Date Calc by	INTERNATIONAL URANIUM (USA) (COST ESTIMATE
	= 606 Truck Ibies = 303 Flazt Houes (2 Trucks)	EPAcienty = 175 yel3/muck how.	Manazara = 12] - 27 173/103 = 106,055 500 106,100 yd3	o with LIVER Contaminates is insolated to certa Returne, No Cost is flaced Contrations is 1,900 M A ² Contrations is 1,900 M A ²		y sneet of	CORP.

.

•

•

RECLAMATION OF CELL 1

Dewatering of Cell 1

Dewatering of Cell 1				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Dewatering of Cell 1	hrs	\$0.48	62,400	\$30,000
Total Dewatering of Cell 1				\$30,000
Crystal Removal				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	2,695	\$47,749
Cat 769 Truck	hrs	\$60.52	2,157	\$130,548
Truck Drivers	hrs	\$12.74	2,157	\$27,481
Cat 988 Loader	hrs	\$95.68	539	\$51,570
Cat D8N Dozer With Ripper	hrs	\$68.67	539	\$37,012
Cat 375 Excavator	hrs	\$123.76	539	\$66,709
Cat 651 Waterwagon	hrs	\$72.12	539	\$38,872
Cat 14G Motorgrader	hrs	\$48.93	539	\$26,371
Equipment Maintenance (Butler)	hrs	\$10.01	4,852	\$48,582
Total Crystal Removal				\$474,893
Contaminated Materials Removal				
Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	616	\$10,914
Cat 637 Scraper	hrs	\$140.50	308	\$43,275
Cat D8N Dozer With Ripper	hrs	\$68.67	77	\$5,287
Cat 825C Compactor	hrs	\$66.15	77	\$5,093
Cat 651 Waterwagon	hrs	\$72.12	77	\$5,553
Cat 14G Motorgrader	hrs	\$48.93	77	\$3,767
Equipment Maintenance (Butler)	hrs	\$10.01	616	\$6,168
Total Contaminated Materials Removal				\$80,058
Topsoil Application				
Resource Description	Units	Cost/Unit	Task Units	Task Cost

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	240	\$4,252
Cat 637 Scraper	hrs	\$140.50	120	\$16,861
Cat D8N Dozer With Ripper	hrs	\$68.67	40	\$2,747
Cat 651 Waterwagon	hrs	\$72.12	40	\$2,885
Cat 14G Motorgrader	hrs	\$48.93	40	\$1,957
Equipment Maintenance (Butler)	hrs	\$10.01	240	\$2,403

Total Topsoil Application

\$31,104

Construct Channel

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	858	\$15,202
Cat 637 Scraper	hrs	\$140.50	272	\$38,217
Cat 769 Truck	hrs	\$60.52	450	\$27,235
Truck Drivers	hrs	\$12.74	450	\$5,733
Cat 988 Loader	hrs	\$95.68	150	\$14,352
Drilling & Blasting Contractor	BCY	\$1.50	89,100	\$133,650
Cat 14G Motorgrader	hrs	\$48.93	218	\$10,666
Cat D8N Dozer With Ripper	hrs	\$68.67	218	\$14,970
Equipment Maintenance (Butler)	hrs	\$10.01	1,308	\$13,097

Total Construct Channel

\$273,121

Place Clay Liner

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	355	\$6,290
Cat 637 Scraper	hrs	\$140.50	0	\$0
Cat 825 Compactor	hrs	\$66.15	60	\$3,969
Cat D8N Dozer With Ripper	hrs	\$68.67	60	\$4,120
Cat D7 Dozer	hrs	\$57.90	0	\$0
Cat 651 Waterwagon	hrs	\$72.12	60	\$4,327
Cat 980 Loader	hrs	\$64.99	60	\$3,899
5000 Gallon Water Truck	hrs	\$40.64	30	\$1,219
Highway Trucks	hrs	\$40.00	435	\$17,400
Truck Drivers	hrs	\$12.74	435	\$5,542
Cat 14G Motorgrader	hrs	\$48.93	85	\$4,159
Equipment Maintenance (Butler)	hrs	\$10.01	1,580	\$15,820

Total Place Clay Liner

Place Lower Random Fill

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	602	\$10,666
Cat 637 Scraper	hrs	\$140.50	172	\$24,167
Cat 825 Compactor	hrs	\$66.15	86	\$5,689
Cat D8N Dozer With Ripper	hrs	\$68.67	86	\$5,906
Cat D7 Dozer	hrs	\$57.90	86	\$4,980
Cat 651 Waterwagon	hrs	\$72.12	86	\$6,202
Cat 14G Motorgrader	hrs	\$48.93	86	\$4,208
Equipment Maintenance (Butler)	hrs	\$10.01	602	\$6,028

Total Place Lower Random Fill

\$67,844

\$66,745

Clay Cap

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	305	\$5,404
Cat 637 Scraper	hrs	\$140.50	0	\$0
Cat 825 Compactor	hrs	\$66.15	55	\$3,638
Cat D8N Dozer With Ripper	hrs	\$68.67	55	\$3,777
Cat D7 Dozer	hrs	\$57.90	0	\$0
Cat 651 Waterwagon	hrs	\$72.12	55	\$3,967
Cat 14G Motorgrader	hrs	\$48.93	55	\$2,691
Cat 980 Loader	hrs	\$64.99	55	\$3,574
5000 Gallon Water Truck	hrs	\$40.64	30	\$1,219
Highway Trucks	hrs	\$40.00	440	\$17,600
Truck Drivers	hrs	\$12.74	440	\$5,606
Equipment Maintenance (Butler)	hrs	\$10.01	305	\$3,054

Total Place Clay Cap

Upper Random Fill

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	688	\$12,190
Cat 637 Scraper	hrs	\$140.50	172	\$24,167
Cat 825 Compactor	hrs	\$66.15	86	\$5,689
Cat D8N Dozer With Ripper	hrs	\$68.67	86	\$5,906
Cat D7 Dozer	hrs	\$57.90	86	\$4,980
Cat 651 Waterwagon	hrs	\$72.12	86	\$6,202
Cat 14G Motorgrader	hrs	\$48.93	86	\$4,208
5000 Gallon Water Truck	hrs	\$40.64	86	\$3,495
Equipment Maintenance (Butler)	hrs	\$10.01	688	\$6,889

Total Place Upper Random Fill

\$73,724

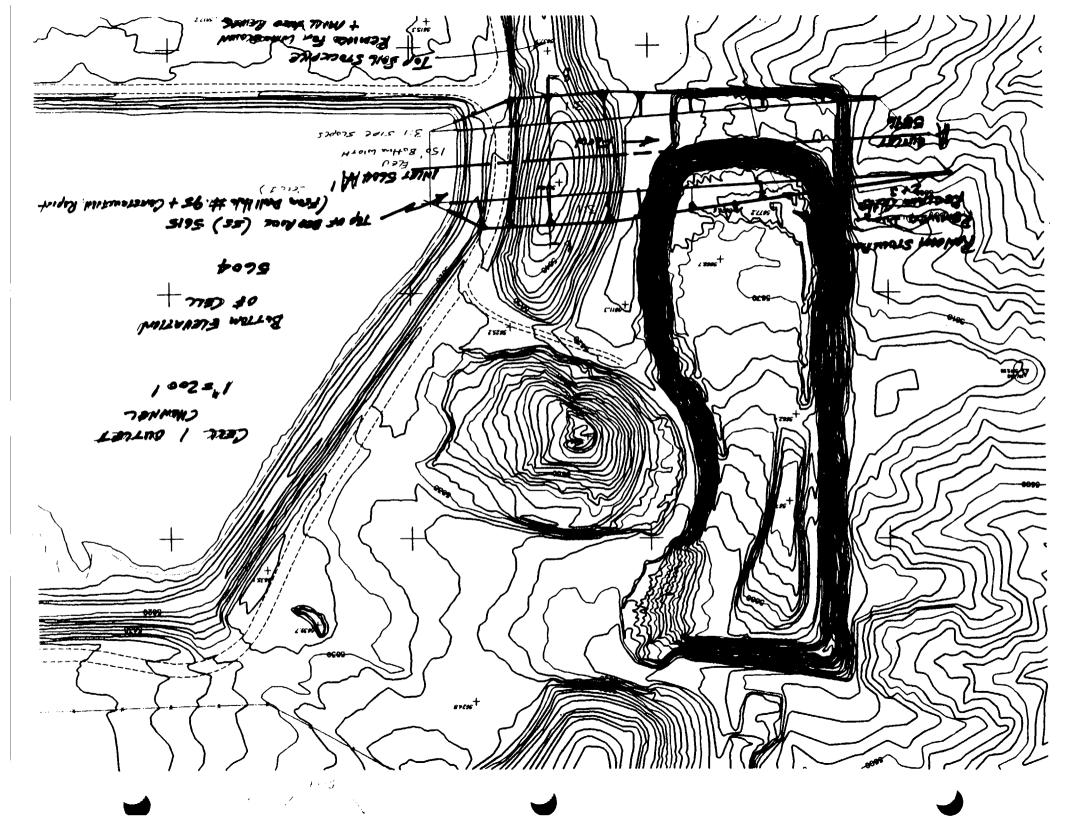
\$50,529

Rock Armor

Resource Description	Units	Cost/Unit	Task Units	Task Cost
Equipment Operators	hrs	\$17.72	90	\$1,595
Cat D7 Dozer	hrs	\$57.90	30	\$1,737
Cat 651 Waterwagon	hrs	\$72.12	30	\$2,164
Cat 14G Motorgrader	hrs	\$48.93	30	\$1,468
Rock Cost Delivered	ĊY	\$3.34	8,607	\$28,729
Equipment Maintenance (Butler)	hrs	\$10.01	90	\$901
Total Place Rock Armor Quality Control				\$36,593
-	1.1		Toolullaite	Task Cost
Resource Description	Units	Cost/Unit	Task Units	
Quality Control Contractor	hrs	\$62.00	800	\$49,600
Total Quality Control				\$49,600

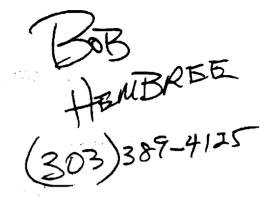
22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS 10 Ľ と \mathbb{N} لللار 600 Cay AJSUM 1 5 50 ٦ Cayator 0 Soic Carson LINCE 3 Anga NNEO 2 CHANNE **Million**o 100 Guar over Cere INTERNATIONAL URANIUM (USA) COST ESTIMATE Ceystow 50 lund Cert 207 thick 99 १ ω 2575, 00 Ы Δ 3 3 67 ANO. + 220 0-55 2. EVAP 5 50 2 Ħ. Puc. 2 2 2027 + 703 Volume 3 いいい based 2743/2 Aneac N 11 k 0 è nor zar £ ≤£ 2 2 5 Anea CNCC 2,5.75, r . Cove 100 3-X (INCLUDES 2157 truck hes Ś Lavor 5 2 Ω 1 1-4 Ludder б 12, 4 + hir 2 ╋ 203 ٨, 9 5 all puted up at som duction 756 59,1 ACRES Zuces+ Rocas) i, C 11 ŝ 27 3 \$ 27 ft 2/cy Jar ar S CORP. 4=x (34+1/54 Under design 95, 396 cy y 2 3 505 5 200 Ciaro K> 661 + 1. nor £. z 224 ω ť 2 2 2 \$ 3 40 1 じょう 386 TRUCE whah THICK 539 hes builty هـ ő. 101 II. 29 ~ 0 time ω A Lonor 429,2536 ٩ ğ 100 GH λ the second 小块 网 C 0 ì٨ Ż ς,

INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE CELLI VOIUME COLLIGATIONS 4) TIME REQUIRED TO FOMOLE MATERIAL FROM UNDER LATER IN PLACE IN CELL#3 - USE HALL ROUTE#1 - 4 5 Cropers 4 smars = 77hrs/upr. 95,500 cy = 308 scroper hoves 310cy/hr/sumper TOP SOIL Volumes -> place 6" of Top soil over Anen of 5) $\frac{2.575,703}{27}\frac{ft^2 \times .5}{t} = 47,693 \text{ cy}$ --- 48,000 cm USE Scraper floor Assume River 1 -> 310 cy helsey 48,000 cy => 155 hrs usy owe score pu 320 cylle same if use 4 scrayors = #Ohk/UNIT .-6) Discharge CHARNEL Volume --· · CHONNEL WILL HOVE bose WIDTH OF 150 ff - Side Scope 3:1 · CHINNE Form Love will deep at . 01 ft / ft (11/1) Roce econstin Based on Drill hater + Construction Report is at 5615 - . 5622 SILTY Samo CER 1 5615 Rock 5604 INLET -1% OUTLET 5596 Remoon Fill me Top soil stockpices will be ware in the Busing Thurs OF Coll: 2+3 and the mill yord before duchinge channan is built.


SHEETS SHEETS SHEETS SHEETS

888

22-141 22-142 22-144


22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS Channel Drilling + Rock Boic ExcavoTin (Caringo) BLASTING INTERNATIONAL URANIUM (USA) CORP. COST ESTIMATE 64 69,300 cy/m 199 cy/k P Eas cy 1 (] {| 5 ととい 196 Þ Basso 2 Avoria Scroper hes TAUCK Dupth ž Recort ₩? J Connorae Ч, 2 TRUCK S S # 4 scrysco 1.50 lcy 2 WOIVIDAL Quine ****I 1632 4 ۸ e les J .

Feb 25 99 01:39p

AMERICAN MINE SER

August 13, 1998

Via Fax:

Attn: Mark Kerr, KLG Associates, Inc.

Re: Drilling and Blasting Limestone, Mill Creek, Oklahoma

We are please to submit the following properal to provide all equipment, labor and materials for the above referenced project as follows:

Description	Unit Price	Est. Quantity
Mobilization	\$8,000 .00	1
Drill and Blast Cuts ≥20' Desp	\$ 1.35/CY	30,000 CY
Seismic Monitoring	\$300,00/EA	2

General Clarifications:

> Layout and grade control by others

> Excavation by others

> Explosives storage on site

> Pricing assumes two 10 hour drilling shifts per day for 6 days per week

> If bon ling is required add 1%

> Night working lights by others

> Pricing assumes dry hole conditions, add \$.15 per CY if wet hole conditions are encountered

> Pricing is based on a minimum of 30,000 CY shot during a 10 day period

If you have any questions or need additional information, please feel free to contact me at 303.49941770.

Sincerely,

C. B. Statton, Project Manager

Recent Fue Busit

Calculation / Work Sheet Page ____ of ____ Date 07-06-00 Project: Rec. Plan Revision 3.0 by: _____ Revisión to Tapsoil Cost - Cell 1-I 5) Place 6" of Topsoil were open: area of Cell 1.1 Title area of Cell 1 - w/ side slopes = 60 AC. Area consumed by new dispisal area = (175' + 100') × 2,600 = 715,000 \$t² = 16.41 Use 16 -Total area to be topsoiled = 60-16= 44 acres Total volume = 44 x 43,560 x 0.5 ft = 35,493 xd3 Use scanper fleet - assume Runte No. 1 310 yo 3/ he machine 35,493 xd³ = 114.5 he use 3 machines 38.17 br. use 40 hr. × 3 120 hr. Total

Calculation / Work Sheet Page ____ of ___ Date 07-06-00 Project: Rec. Plan Revision 3.0 by:_____ Revisión to Channel construction cost. New channel width - 1200 ft (WAS 800 ft) Rock 81 cy/ It of channel kurth Soil 76 " " " · Assume 1100 ft 89,100 cy Rock 83,600 cy soil · Use SCRAPERS ON Soil Removal · Daill & Blast Rock - use teuchs to hand Based on EFN's experience during construction -Rock is not easily reped - Blasting is required · Assume Route 1 for Truches and Scanpers. Truches 199 x13/tauch/he Scamer 310 " scinger / " Roche - 89,100 xl³ = 448 hr - 3 truches - 150 hr. er. 199 450 hr. $\frac{83,600}{310} = 270 - 4 \text{ units} = 675 = 68 \text{ here}$ Soil 272 hr. Support equipil - 150 hr. + 68 hr. = 218 hr.

Calculation / Work Sheet Page of Project: Rec. Plan Revision 3.0 by: Date 07-06-00 Installation of Clay Linea in Cell 1.I Clay line - Average capth of Tarlings - 18' 89 Slope reduction cost included w/ Coll 2 -Slope length = (5×13) = 90' Housend length - 176 175+90 = 265 Told length = 266 265-69= 176 702 10-266 266 ft x 12" x 2600 ft = 691,600 ft 25,615 rd' lines Clay production cast - from Cell 2 estimate 22 yd 3 pen cycle × 2.7 cycles/hr = 59.4 13 per hour / trude Use & truches = 475 yd 3/hr. 25,615 xd' = 54 he - Use 60 he

Calculation / Work Sheet Page ____ of ____ Date 07-06-00 Project: Rec. Plan Revision 3.0 by _____ Installation of louce Rondom Sill North Slope lower Rondom Fill included with Cell 2 Cost (19,500 yel3) lower Rondon Fill on extention Area. - Cost w/ Coll 2 175 1 6 641 w/ Celli Costs 3' that - 175' wide × 2600 ft 50,556 yd Use Route 5 handage - scapers > 296 xcl3/he. = 171 he. use Z scrapens - 87 hr. use Z scrapens - 87 hr.

Calculation / Work Sheet Page ____ of ____ Date 07-06-00 Project: Rec. Plan Revision 3.0 by: Clay Cop - top and suce slipe top - 175 St slope - 90 ft 265 ft × 1.0 ft thit. x 2,600 ft 25,518 yd3 Use same haulage factor for clay liner 22 yel' per tauch cycle - X 2.7 cycles/ha. 59.4 x 3 per hour / Laud. 8 tauchs = 475 yd 3/ ha = 53.7 ha - use 55 440 fance ha 55 other

Calculation / Work Sheet Page ____ of ___ Project: ___Rec. Plan Revision 3.0____ by: _____ Date 07-06-00 Place Upper Rondom F.II 2'-0" lay over top and slope Total width - 175' + 90' = 265 ft 265 × 2600 × 2'-0" = 1,378,000 \$t3 = 51,037 xd3 Use Route 5 haulage - scappens 296 xd3/he = 172 he. use 2 scarpor = 86 ha.

Calculation / Work Sheet Page ____ of ____ Project: <u>Rec. Plan Revision 3.0</u> by: <u>ABC</u> Date 07-06-00 Installation of Rock ARMOR Top of New area = 175' x 2600 St 6" Thele 175 × 2600 × 0.5 - 227, 500 ft 8,426 yel 3 Toe Appen on East and West sections (175' x 7' x 2' Thick x 2 = 4900 ft 3 = 182 13 Upsteern slope and toe aprin anny east-west included in Cell 2 Reclantin Costs Total 8,607 J3 8,607 yel3 - 38 yd3 / tauch 226.5 he - use 227 Use & tandes 28.31 ha - use 30

MISCELLANEOUS ITEMS

MISCELLANEOUS ITEMS

Equipment Mobilization Task Units Task Cost Cost/Unit Units **Resource Description** \$148,200 LS \$148,200.00 1 **Butler Machinery Mobilization** \$2,500 LS 1 \$2,500.00 Other Equipment Mobilization \$150,700 **Total Equipment Mobilization Office Facilities** Task Cost Units Cost/Unit **Task Units Resource Description** \$15,000 \$15,000.00 ĒS **Run New Powerline** 1 \$1.000.00 36 \$36,000 months **Utilities for Offices** \$51.000 **Total Temporary Office Facilities Wheel Wash Facility** Units Cost/Unit Task Units Task Cost **Resource Description** \$86.084 \$10.35 8,320 hrs Laborers \$50.000 LS \$50,000.00 **Construct Wheel Wash Facility** \$136.084 **Total Wheel Wash Facility** MANAGEMENT/SUPPORT Cost/Unit **Task Units Task Cost** Units **Resource Description** \$303,826 \$48.69 6,240 Manager/Engineer hrs \$236,309 6.240 hrs \$37.87 **Radiation Safety Officer** \$93,680 \$15.01 6,240 hrs Secretary 4,866 \$60,877 \$12.51 hrs Clerk 4,866 \$97,403 \$20.02 hrs **Environmental Technician** 6,240 \$171,661 \$27.51 Maintenance Foreman hrs 2,080 \$46,840 \$22.52 hrs Chemist \$7.78 18,720 \$145.583 hrs Security \$20.02 4,160 \$83,271 hrs Safety Engineer 6.240 \$227,448 \$36.45 Misc. Materials & Supplies hrs \$64.81 2,080 \$134,800 **Health Physics Costs** hrs

Total Management/Support

TOTAL MISCELLANEOUS ITEMS

\$1,601,696

\$1,939,480

International	Uranium (USA) Corp.
	White Mesa Mill

07/13/2000 - 9:10 AM - WM.RecPlanEst.July2000.xls

ROCK PRODUCTION COST

Assumptions:

Rock is obtained from gravel source north of Blanding, UT that is a BLM Public pit Rock is processed by screening only, no crushing is required 1.25 CY of feed for 1 CY of product Rock is produced and stockpiled at the site Site is 7 road miles from the mill, 6 miles of which is paved public highway Rock will be hauled in 22 CY bellydump trucks, contract haulers (\$45.00/hr) Rock will be dumped in windrows on Cells by trucks, spread by grader, and compacted by D7 Dozer Trucks can average 30 MPH (1.75 rounds/hr)

Tucks can average be the transferred to the				Plant	Plant
	Product	а	Material Feed	Throughput	Operating
	Required (CY)	•		(CY/hr)	Hours
Material fed to plant	146,000	25.0%	182,500	122	1,500

PRODUCTION OF RIPRAP

hrs	\$17.72	2,340	\$41,460
hrs	\$10.35	1,500	\$15,520
	\$68.67	365	\$25,064
	\$64.99	1,975	\$128,353
hrs	\$55.00	1,500	\$82,500
	\$45.00	3,800	\$171,000
and the second	\$10.01	2,340	\$23,430
	hrs hrs hrs hrs hrs hrs	hrs \$10.35 hrs \$68.67 hrs \$64.99 hrs \$55.00 hrs \$45.00	\$10.35 1,500 hrs \$68.67 365 hrs \$64.99 1,975 hrs \$55.00 1,600 hrs \$450 3,800

Total Production of RipRap

RIPRAP COST PER CUBIC YARD DELIVERED

\$3.34

\$487.326

WHITE MESA MILL RECLAMATION COST HOURLY EQUIPMENT COSTS 1999 DOLLARS

Actual equipment rates quoted from Butler machinery 6 month rental period

November 3, 1998

		RATE		MTCE	FUEL	FUEL @	TOTAL	Mob/Demob	Mob/Demob	Operating Hrs
	Units	MONTHLY	HOURLY	EXPENDABLES	USAGE	\$0.75	COST	per machine	Totals	per Month
637E Scraper	4	21,200	120.45	2.05	24.0	18.00	\$140.50	\$10,800.00	\$43,200.00	704
D8N Dozer	1	10,800	61.36	0.93	8.5	6.38	\$68.67	\$7,400.00	\$7,400.00	176
D7H Dozer	1	9,100	51.70	0.95	7.0	5.25	\$57.90	\$6,400.00	\$6,400.00	176
825C Compactor	1	9,600	54.55	1.10	14.0	10.50	\$66.15	\$7,300.00	\$7,300.00	176
980 F Loader	1	10,000	56.82	1.42	9.0	6.75	\$64.99	\$7,300.00	\$7,300.00	176
988 F Loader	1	15,000	85.23	1.45	12.0	9.00	\$95.68	\$8,600.00	\$8,600.00	176
769C Haul Truck	4	9,200	52.27	1.50	9.0	6.75	\$60.52	\$7,400.00	\$29,600.00	704
375 Excavator	1	19,600	111.36	1.90	14.0	10.50	\$123.76	\$15,000.00	\$15,000.00	176
651 Water Wagon	1	10,000	56.82	1.80	18.0	13.50	\$72.12	\$8,000.00	\$8,000.00	176
5000 gal Water Truck	1	5,700	32.39	0.75	10.0	7.50	\$40.64	\$3,000.00	\$3,000.00	176
14G Motor Grader	1	7,700	43.75	1.05	5.5	4.13	\$48.93	\$5,600.00	\$5,600.00	176
16G Motor Grader	1	11,000	62.50	1.20	8.5	6.38	\$70.08	\$6,800.00	\$6,800.00	176

Equipment Rental Rate Quoted by Power Motive, Denver, Colorado (2/2/99) for PC400 Kamatsu Excavator with LaBounty MSD 70R Shear

PC-400 w Shear	22,950.00	130.40	18.94	14.0	10.50	\$159.84	\$2,500.00
Small tools allocation - Demolition - \$1.25/mechanic labor hour for oxygen/acetalene, expendables						\$1.25	
Total Equipment Mobilization				Maintenance		ι.	\$150,700.00
	Monthly Maintenance Flat Rate	Planned Operating Hours/month	Availabiltiy Factor	Cost per Operating Hour			
Butler Equipment Maintenance Cost	\$29,500.00	3,168					
	RA	TE	MTCE	FUEL	FUEL @	TOTAL	
Crane Rental Rates	MONTHLY	HOURLY	EXPENDABLES	USAGE	\$0.86	COST	
30 ton Hydrautic Crane	7,500	42.61	2.05	15.0	11.25	\$55.91	
65 ton Hydraulic Crane	5,500	31.25	2.05	10.0	7.50	\$40.80	

\$148,200.00

3,168

07/13/2000 - 9:10 AM - WM,RecPlanEst,July2000.xis

International Uranium (USA) Corp. White Mesa Mill

Butler Machinery Co.	TO: BOB HEMBREE COMPANY: INTERNATIONAL URANIUM
Butler Machinery Co. 1351 Page Dr. PO Box 9559	DIRECT DIAL (AUDDA):
Fargo, ND 58106 (701) 232-0033 FAX (701) 298-1717	• ACKNOWLEDGE RECEIPT OF THIS FAX □ YES □
	NUMBER OF PAGES: (INCLUDING THIS COVER SHEET)
NOTES:	
	· · · · · · · · · · · · · · · · · · ·
·	
-	

L

6

Butler Machinery Company • (701) 232-0033 • FAX (701) 298-1717 • 1351 Page Dr. • Box 9558 • Ferge, ND 58106

NOVEMBER 3, 1998

INTERNATIONAL URANIUM CORPORATION ATTN: BOB HEMBREE 1050 SEVENTEENTH ST. SUITE 950 **DENVER CO 80265**

DEAR BOB:

THANK YOU FOR THE INVITATION TO QUOTE INTERNATIONAL URANIUM CORPORATION (IRC) THE EQUIPMENT NEEDED FOR THEIR MINING PROJECT IN BLANDING, UTAH. BUTLER MACHINERY COMPANY (BUTLER) RESPECTFULLY SUBMITS OUR PROPOSAL FOR A MAINTAINED FLEET OF CATERPILLAR MACHINES.

LISTED ON ATTACHMENT A, YOU WILL FIND THE MODELS, QUANTITIES, MONTHLY RENTAL RATES, HOURS ALLOWED PER MONTH, EXCESS HOUR CHARGE, GUARANTEED NUMBER OF MONTHS RATES ARE BASED UPON, TOTAL FREIGHT CHARGES AND THE MAINTENANCE RATE PER HOUR FOR MATERIALS ONLY.

ALL RATES SHOWN ON ATTACHMENT A DO NOT INCLUDE ANY STATE, LOCAL, PROPERTY OR ANY OTHER TAXES THAT MAY BE APPLICABLE.

RATES ARE BASED UPON ELECTRIC HOUR METER READINGS WHICH ARE ATTACHED TO THE DASH OF EACH MACHINE. RATES ARE BASED ON 176 HOURS OF USE EACH MONTH. EXCESS HOUR CHARGES, IF ANY, WILL BE CALCULATED AND INVOICED AT THE END OF THE PROJECT. THERE WOULD BE NO CREDIT ISSUED FOR ANY HOURS UNDER THE ALLOWED DURING THE TERM OF THIS PROPOSAL. IF IRC ELECTS TO DOUBLE SHIFT MACHINES, THEN BUTLER WOULD INVOICE THOSE HOURS AT THE END OF EACH MONTH. (TO FIGURE THE DOUBLE SHIFT RATES, TAKE THE EXCESS HOUR RATE SHOWN ON ATTACHMENT A TIMES THE NUMBER OF HOURS).

RATES ARE BASED UPON A MINIMUM GUARANTEE OF 6 MONTHS AND A PACKAGE DEAL.

MAINTENANCE:

THE MAINTENANCE RATES PER HOUR LISTED ON ATTACHMENT A INCLUDES THE MATERIAL PART ITEMS ONLY, SUCH AS AIR, OIL, AND FUEL FILTERS, LUBRICANT OILS, GREASE, ANTI-FREEZE, BATTERIES, FAN BELTS, LIGHTS AND MAKE-UP OILS. BUTLER WOULD INVOICE IRC ACTUAL HOURS USED ON MACHINES AT THE END OF EACH MONTH.

Abardsan, 57402 Sioux Falls, 57101 Grand Forks, 58208 Rapid City, 57709 Bismarch, 58502 Minor, 58702 Fargo, 58108 3601 Desolwood Ave. N. 3201 N Louise Ave. 4950 E. Highway 12 3402 360 Ave. S. 3530 Miniam Ave. 1505 Hay 2. Bypass E 1201 S. 450 St. P.O. 8cm 38 P.O. Box 1307 P.O. Box 2070 F.f. Box 12280 P.O. Bot 1058 P.O. Box 757 P.O. Box 9559

NOVEMBER 3, 1998 PAGE 2

OUR MONTHLY MAINTENANCE CHARGE WOULD BE \$29,500.00, WHICH INCLUDES OUR LABOR, SPECIALIZED LUBE TRUCKS, SUPPORT VEHICLES AND EQUIPMENT, SPECIALIZED TOOLING, SCHEDULED OIL SAMPLING, PARTS TRAILERS AND INVENTORIES, MILEAGE AND TRAVEL EXPENSE. BUTLER WILL PROVIDE TWO (2) FULL-TIME MAINTENANCE TECHNICIANS ON SITE FIFTY (50) HOURS PER WEEK ON A SCHEDULE TO BE DETERMINED, MONDAY THROUGH FRIDAY. IRC WOULD HAVE TO SCHEDULE THE MACHINES AVAILABLE FOR A TIME FRAME YET TO BE DETERMINED ADEQUATE FOR BUTLER MAINTENANCE PERSONNEL TO PERFORM THE REQUIRED MAINTENANCE. BUTLER WOULD INVOICE IRC FOR THE MONTHLY MAINTENANCE CHARGE AT THE BEGINNING OF EACH MONTH.

REPAIRS:

BUTLER WOULD BE RESPONSIBLE FOR ALL REPAIRS INCLUDING PARTS AND LABOR ON OUR MACHINES OTHER THAN FAILURES CAUSED BY DAMAGES OR MIS-USE. REPAIRS INCLUDE ITEMS AS MINOR AS STARTERS, ALTERNATORS, WATER PUMPS, HYDRAULIC HOSES, ETC. TO THE MAJOR ITEMS SUCH AS ENGINES, TRANSMISSIONS, DIFFERENTIALS, BRAKES, HYDRAULIC PUMPS AND CYLINDERS, ETC. IF TIME PERMITS AND IRC REQUESTS BUTLER'S TECHNICIAN TO PERFORM REPAIRS OR MAINTENANCE ON THEIR MACHINES, OUR HOURLY CHARGE WOULD BE \$47.00 PER HOUR PLUS MATERIALS.

FREIGHT:

FREIGHT CHARGES INCLUDE BOTH DELIVERY AND RETURN, ASSEMBLY, AND DISASSEMBLY OF EQUIPMENT.

IRC'S RESPONSIBILITIES INCLUDE:

<u>OPERATORS.</u> PROVIDE THE OPERATORS AS NEEDED TO OPERATE MACHINES AS STATED IN CATERPILLAR'S OPERATING GUIDE. BUTLER WILL PROVIDE, AT NO EXPENSE TO IRC, QUALIFIED TRAINING INSTRUCTORS FOR THE PURPOSES OF TRAINING OPERATORS. THIS TRAINING WOULD TAKE PLACE ON THE JOBSITE AT THE INITIAL START UP OF THE JOB AND WOULD INCLUDE CLASSROOM, WALK AROUND, AND IN IRON DEMONSTRATIONS.

<u>FUEL.</u> SUPPLY AND FILL ALL FUEL FOR EQUIPMENT INCLUDING BUTLER'S SERVICE VEHICLES.

<u>DAMAGES.</u> THIS INCLUDES GLASS BREAKAGE, BENT HANDRAILS, STEP LADDERS, FENDERS, ETC. BUTLER'S NORMAL POLICY FOR REPAIRING DAMAGES TO RENTAL MACHINES IS TO REPAIR THEM WHEN THE RENTAL PERIOD IS COMPLETED, HOWEVER, IF THE DAMAGED ITEM IS OF A SAFETY CONCERN, WE WOULD REPAIR THE DAMAGES AS SOON AS POSSIBLE AFTER THEY OCCURRED. AN ITEMIZED LIST OF THE PARTS AND LABOR REQUIRED WOULD BE PROVIDED TO IRC PRIOR TO STARTING THE REPAIR, AND INVOICED AT CURRENT LIST PRICES PLUS FREIGHT UPON COMPLETION. NOVEMBER 3, 1998 PAGE 3

UNDERCARRIAGE AND TIRES: IRC WOULD BE RESPONSIBLE FOR ALL TIRE WEAR INCLUDING TIRE DAMAGES ON THE MACHINES WITH AN ASTERISK LISTED ON ATTACHMENT A. EQUIPMENT WOULD HAVE TO BE RETURNED WITH SAME BRAND AND MODEL TIRES AS WHEN DELIVERED, OR PRORATED ACCORDINGLY BY PERCENTAGE OF TIRE WEAR AND CONDITION AT TERMINATION OF RENTAL PERIOD.

UPON DELIVERY OF MACHINES, A REPRESENTATIVE OF BUTLER, A REPRESENTATIVE OF IRC AND A REPRESENTATIVE FROM AN INDEPENDENT TIRE DEALER OR MANUFACTURER WOULD JOINTLY VERIFY IN WRITING THE CONDITION, PERCENTAGE OF WEAR, AND TIRE VALUE. UPON TERMINATION OF RENTAL, WE WOULD AGAIN HAVE THE REPRESENTATIVES MENTIONED ABOVE DETERMINE THE CONDITION, PERCENTAGE OF WEAR, AND TIRE VALUES. ANY DIFFERENCES NOTED, WOULD THEN BE CHARGED OR CREDITED TO IRC INCLUDING BOTH MATERIALS AND LABOR.

UNDERCARRIAGE WEAR ON ALL TRACK TYPE MACHINES WOULD BE BUTLER'S EXPENSE.

GROUND ENGAGING TOOLS:

IRC WOULD BE RESPONSIBLE FOR ALL PARTS RELATING TO GROUND ENGAGING TOOLS (G.E.T.), LE. CUTTING EDGES, RIPPER TIPS AND PROTECTORS, BUCKET TIPS AND ADAPTERS, EDGES BETWEEN ADAPTERS, WEAR PLATES ON BOTTOM OF BUCKETS AND ALL MOUNTING HARDWARE. BUTLER WOULD INSTALL THESE ITEMS ON AN AS NEEDED BASIS AT THE CURRENT CATERPILLAR LIST PRICE PLUS FREIGHT AT NO ADDITIONAL LABOR COSTS. ALL MACHINES WOULD BE DELIVERED WITH NEW G.E.T. ITEMS AND ARE TO BE RETURNED WITH NEW.

WE WISH TO THANK IRC AND YOU FOR GIVING US THE OPPORTUNITY TO PRESENT OUR PROPOSAL AND FOR ALL THE CONSIDERATION WE RECEIVE.

SINCERELY YOURS,

BUTLER MACHINERY COMPANY

OSCAR D. SWENSON RENTAL FLEET MARKETING MANAGER

ODS/del cc: JOEL NIKLE, RENTAL FLEET MANAGER

MENT A AT) INTERNATIONAL URANIUM CORPORATION EQUIPMENT NEEDED FOR JOB IN BLANDING, UTAH NOVEMBER 3, 1998 MINIMUM

<u>MODEL</u> *637E	0TY '	MONTHLY RENTAL <u>RATE</u> \$21,200 EA.	HOURS ALLOWED <u>PER MONTH</u> 176 EA.	EXCESS HOUR I <u>CHARGE</u> \$66 EA.	GUARANTEED NUMBER OF MONTHS RATE BASED UPON 6 EA.	TOTAL** FREIGHT CHARGES <u>TO & FROM</u> \$10,800 EA.	MAINTENANCE RATE <u>PER HOUR</u> \$2.05 EA.
D9N/RIPPER	1	13,300	176	42	б	8,600	1.40
D8N/RIPPER	1	10,800	176	34	6	7,400	1.15
D7H/RIPPER	1	9,100	176	28	6	6,400	.95
825C	1	9,600	176	30	6	7,300	1.10
980F	1	10,000	176	32	6	7,300	1.15
*988F	1	15,000	176	48	б	8,600	1.45
*769C	4	9,200 EA.	176 EA.	28 EA.	6 EA.	7,400 EA.	1.50 EA.
375L	1	19,600	176	56	6	15,000	1.90
10,000 GALLON WATER WAGON	1	10,000	176	30	6	8,000	1,80
5,000 GALLON WATER WAGON	1	5,700	176	18	6	3,000	.75
14G/RIPPER	1	7,700	176	24	6	5,600	1.05
16G/RIPPER	1	11,000	176	34	6	6,800	1.20

* PLUS TIRE WEAR

**** INCLUDES ASSEMBLY AND DISASSEMBLY**

	FROM: FRAL	Taxes	Frt & Margin	Dark	Propane bobt	Total Price	r-reign: Margin	Reck	Propane Delivered	Total Price	Taxes	Rack		Vol end Gos	Margin	Freight	Rack	No Lead Gas		Total Price	Taxas Salar Tav	Frt & Margin	Rank dal # 2	Red dyed dies	Total Price	Sales Tax	· Mamm	Freight	Rack dsl #2	. Red typed die	CONFIDENT	ATTN: WALLY BRICE
	Wah charg Colorado d EY & CO. I)	\$0.0000	\$0.1500	Blanding	ail loads deli	\$0.0000	\$0.0100	\$0.2700	rened Fransport	871.099 0000118	\$0.4290	\$0.4800	Blanding	\$0,9240	\$0.0200	\$0.0450 \$0.4290	\$0,4300	oline 86 oct: Blandinti	Utah Chan	60.5775	\$0.0000	\$0,1500	Blanding	sel for off road l	40.4900	\$0.0000	80.0200	\$0.0450	\$0.4250	sel for off ro	AIL PRICE I	TAH Y BRICE
	yu.Azuu es .05% sales fax harges .03% salet harges .03% salet	50.000	\$0.1500	Sunday Mine	Propane bobtail loads deliverd to various sites	+J6 % Utah Sales Tax exempt				\$0.9603	\$0,4103	\$0.3900	Sunday Mines	so station in house	\$0.0200	\$0.0500 \$0.4103	\$0.3900	ane gasoline defve Sunday Hines	Utah Charges sales fax on dyed doeal 00%	\$0,5388	\$0.0063	\$0.1500	Sunday Mines			\$0.0000	\$0.0200	\$0.0500	\$0.3825	ad use delivered in	CONFIDENTAIL PRICE INFORMATION FAX # 1 / TERMS: NET 15 DAYS ON TRANSPORT LOADS	
	on propane b tax b tax	\$0.0000	\$0.2700 \$0.1500	La Sal Nino		s Tax exempt			g Utah	0696'05	\$0,4290	\$0.3900	Elanding Sunday Mines La Sal Mina Dove Creck	50,8840	\$0.0200	\$0.0550 \$0.4290	0066.05	oline 86 octane gasoline deivered in transport loads to various sites Blanding Sunday Mines La Sal Mine Dovo Crook	tyed diese/ 05%	FQ.5325		\$0.1500	13 8al Mine	83	\$0,4588 \$0,4575	\$0.0000	\$0.0200	\$0.0550	\$0.3825	Red dyed diesel for off road use delivered in transport quanties	CONFIDENTAIL PRICE INFORMATION FAX # 1 435 678 2224 TERMAS: NET 15 DAYS ON TRANSPORT LOADS	
~	\$0.4200 EIS 1 800 392 693	\$0.0000	\$0,1500	Dove Creek						F1.0053	\$0.4103	\$0,4450	Dave Creck		\$0.0200	\$0.0400 \$0.4103	\$0,4450	boys Crook	•	8209-05	\$0.0083	\$0.1500	Dove Creek	bhail load (500-2000) to various sites		\$0.0000		\$0.0400	\$0.4465	8	•	

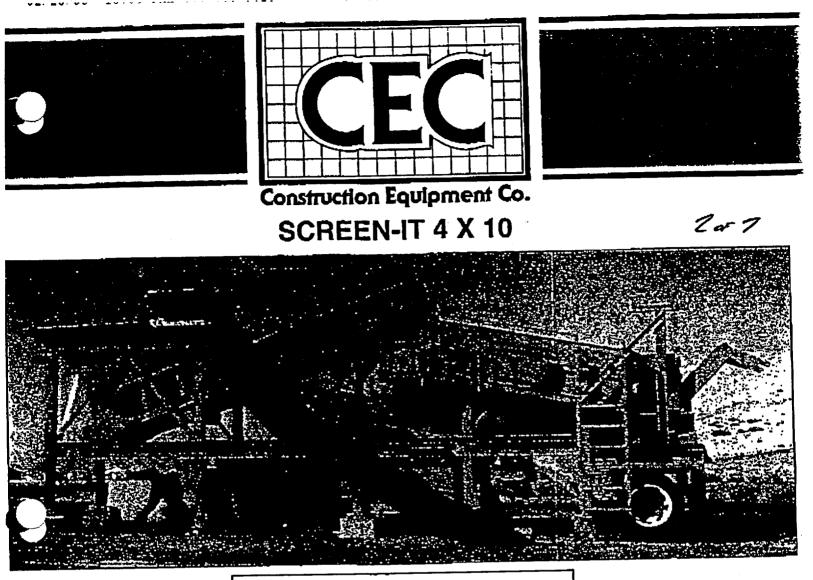
.

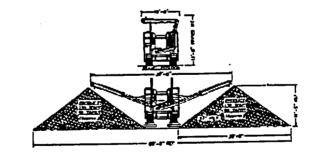
ግ ጠ

> N U

1

うえいぶ


100 0LTN


زه

٠

Webby Cirana. 100 Ton Hydraulic #4800 Mdb. & Demolo. W/operator (Blanding, UT 200/hr. on site \$100/Per Dian Not available 10/9/98 75 Ton Conventional Ofoperator #3900 Mdb. & Denob. #180/hr. on site 200 hr/mo. #100 Per Diem Not available 10/9/98 40 Ton Rough Terrain (air Operator) 1600/month Notavailable 10/9/78 2200/week 4/632 mob + Demph Hewlett Richard Laveryle & Day Crane Service 70, 122.00 65 Ton # 7,500 .00 / month # 3600.00 mob. & Demob. 50 Ton # 7,000.00 / month # 3,600.00 mob \$ Demob.

POWER MOTIVE CORP **FAX Transmission** TO: BOB EMBRE 2/25/99 Date: Company: I. C. C. C.C. FAX #: 30 3. 389. 41.5 **TERRY BERG** From: Factowing PACIES Eafon ConfiderAtion of THE LEL SCREEN-ITS THE 4 × 10 SIZE RENTE & B. 800. - / 10. THE 5x12 SIZE RENTS & 10,600 - / mas. 3" on TEP DECK & 1/2" on Bettery DECK IS A COMFALTABLE SET-UP For LETERER PLANT. THANKE -Beni 1 ar 7 VOICE: 303-355-5900 FAX: 303-388-9328 5000 VASQUEZ BLVD, DENVER, CO 80216

TRANSPORT

Height: 13'6" Fifth Wheel Pull Width: 10'0" Spring Suspension, air brakes Length: 39' Lights, oil filled hubs

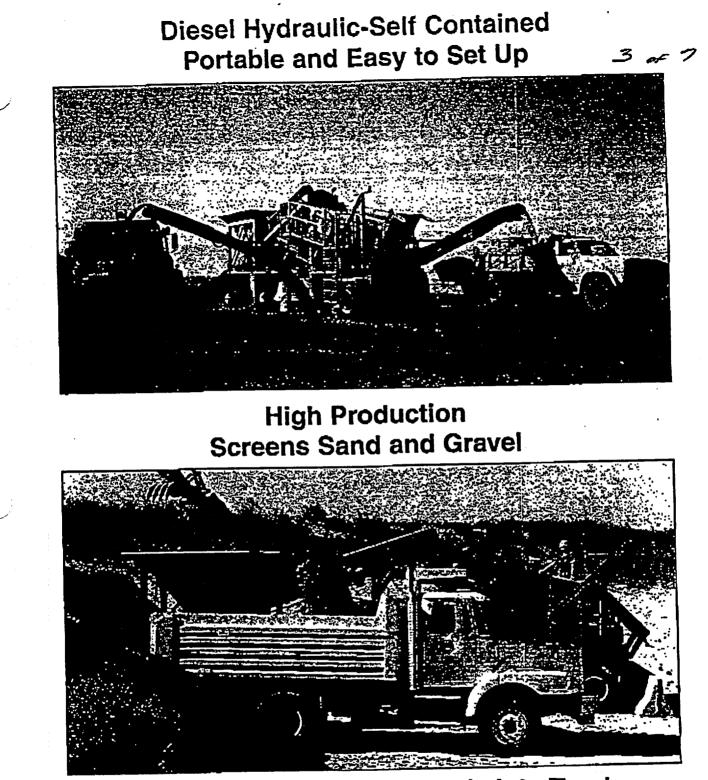
ENGINE

4 cylinder Deutz; 46 HP - Air Cooled 65 gallon fuel tank

OPTIONS

4 individual jacking legs Shredder Grizzly dump Stacking Conveyors Ball decks

HOPPER

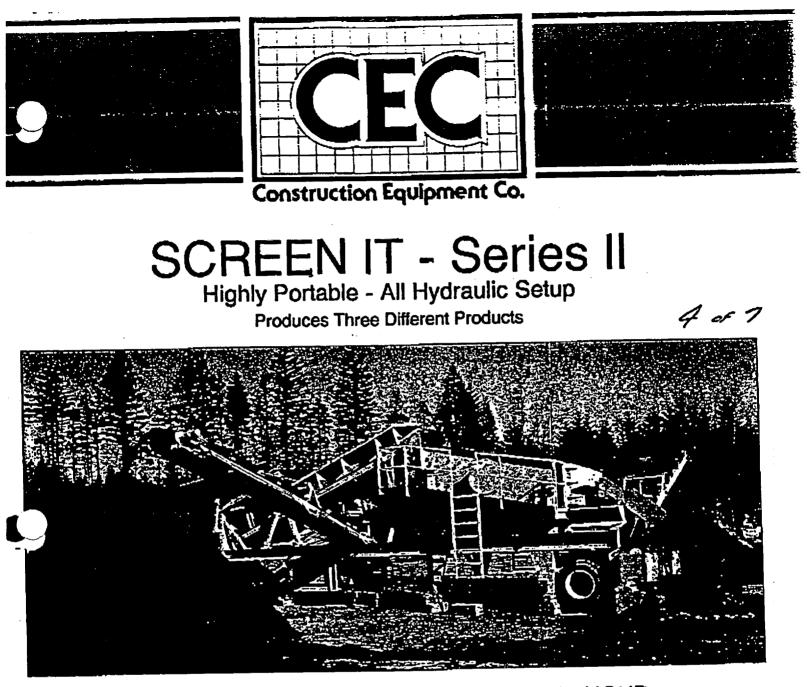

5.5 cu. yard charging hopper Height to load 12'3" Side Loading width 12'0"

SCREEN

4 x 10; 2 Deck Screen Hydraulic drive 5/8" Throw Rubber Spring Suspension

CONVEYORS

36" wide feed conveyor 36" wide under screen conveyor 24" side discharge conveyor 24" rear discharge conveyor

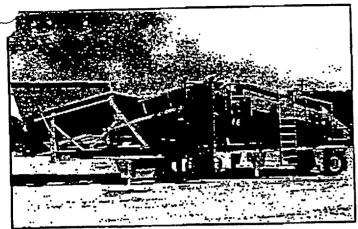

Conveyors Can Load Directly Into Truck

Construction Equipment Co.

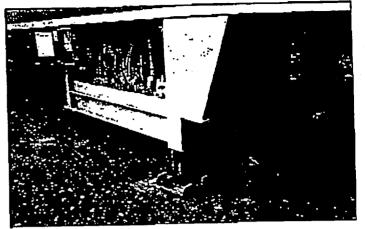
18650 S.W. Pacific Hwy Tualatin, OR 97062 503-692-9000 Fax 503-692-6220 Area Dealer

POWER MOTIVE 5000 VASQUEZ BLVD. DENVER, CO 80216 PHONE: (303) 355-5900 FAX: (303) 388-9325

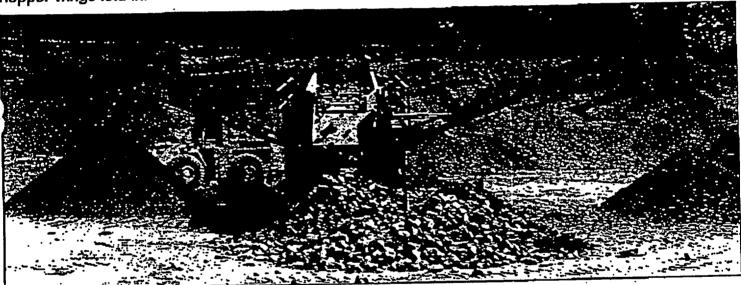
SCREENS COMPOST 120-140 YARDS PER HOUR SCREENS GRAVEL UP TO 600 TONS PER HOUR

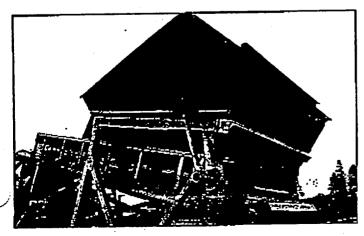

SCREENS: LOG YARD WASTE, COMPOST, BARK, TOP SOIL, SAND & GRAVEL, TRASH, C & D, STUMPS, CONCRETE, ROCK AND MANY RECYCLE MATERIALS

Patent #5234564



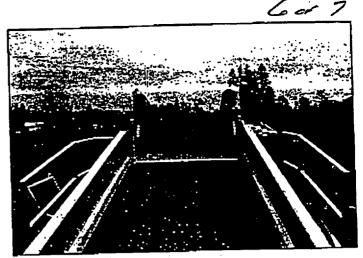
Construction Equipment Co. P.O. Box 1271 Lake Grove, Oregon 97035 503-635-4427 Fax 503-635-7819 Area Dealer

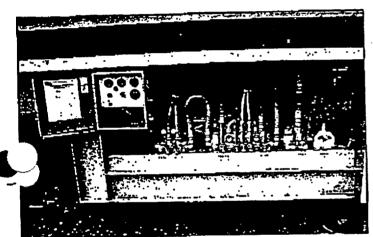

ALL HYDRAULIC FOLD AND SETUP

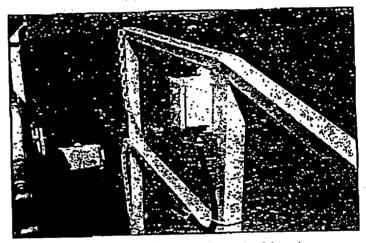

Travel position of the SCREEN IT in which feed conveyor and hopper hydraulically slide back and lower down to transportation height, while hopper wings fold in.

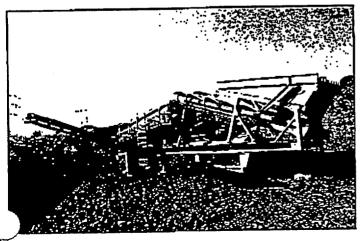
Hydraulic jacking legs are standard for cantelever style blocking, but four (4) individual jacking legs can be an option.

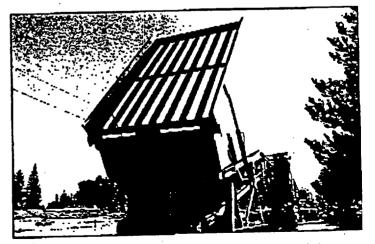
Side and rear discharge conveyors hydraulically fold out to the height of 14'.

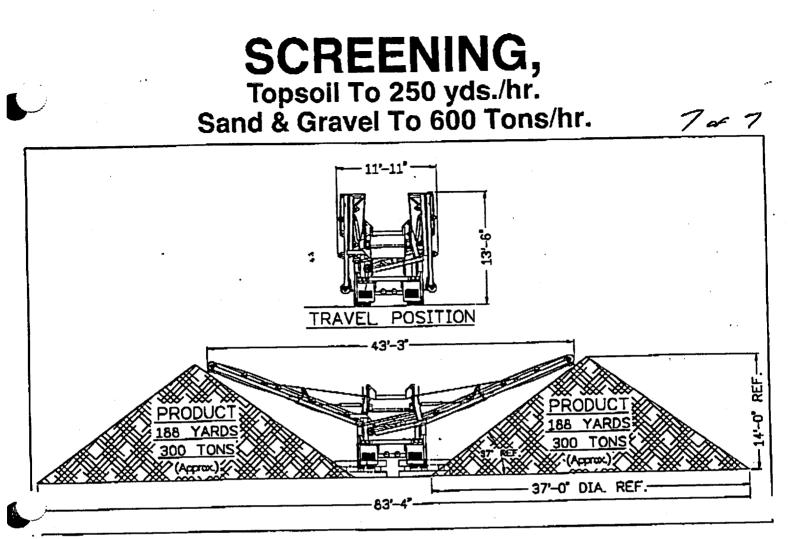

Feed conveyor moves up and forward hydraulically, while the hopper wing walls extend for operation.


Feed conveyor hydraulically moves back and down for transport.


The charging hopper folds out to the width of 14' while in its working position.


A 48" wide variable feed conveyor with 20" rubber lagged head pulley feeds a 5 x 12 2 Deck screen.


Control panel and hydraulic controls are all located in turnkey area. Powered by a Deutz 4 cylinder, 70 HP diesel engine.


Actuator switch to control speed of feed conveyor is located on the catwalk platform along with kill switch. Actuator switch also located at control panel.

. ne SCREEN IT has an optional 14 foot long by 8 foot wide hydraulic dumping grizzly. An operator controlled remote dumping system is also available.

The optional grizzly dumps to the rear of the plant.

HYDRAULIC DRIVE

TRANSPORT

Height: Width:	13' 6" 11' 11"	Fifth wheel pull Spring suspension, air brakes
Length:	43′ 0″	Lights, oil filled hubs
Weight:	38,600	Transport speed 65 mph

ENGINE

4 cylinder Deutz 70 HP • Air Cooled 65 gallon fuel tank 110 gallon hydraulic tank

OPTIONS

4 individual jacking legs Shredder Grizzly Dump Stacking conveyors 79 HP Turbo Diesel (Water Cooled) 98 HP Turbo Diesel (Air Cooled)

HOPPER

14.5 cu. yard charging hopper Height to load 13' 6" Width at rear 14' - Working position Width at rear 8' - Travel position

SCREEN

5 x 12, 2 Deck with step deck Hydraulic drive with 3/8" to 5/8" throw Rubber spring suspension

CONVEYORS

48" wide feed conveyor 23' 10" long 42" wide under screen conveyor 30" side discharge conveyor 18' 4" long 30" rear discharge conveyor 18' 4" long

637 SCRAPER EFFICIENCY

NOMINAL CAPACITY

HAUL ROUTE	TRAVEL TIME	FIXED TIME	EFFICIENCY	MINUTES PER TRIP	TRIPS/ HOUR	YARDS/ HOUR
	2 00	1.20	85%	6.0	10.0	310
1	3.90					1
2	3.25	1.20	85%	5.2	11.5	355
3	4.30	1.20	85%	6.5	9.3	287
4	3.10	1.20	85%	5.1	11.9	368
5	4.15	1.20	85%	6.3	9.5	296
6	4.50	1.20	85%	6.7	8.9	277
· 7	3.75	1.20	85%	5.8	10.3	319

International Uranium (USA) Corp. White Mesa Mill

31

CAT 637 SCRAPER

TRAVEL TIMES FOR CAT 637 SCRAPERS BASED ON PROJECTED HAUL ROUTES

Haul	Distance	Distance	Rolling	Grade	Ave Speed	Time
Segment	Feet	Meters	Risistance	%	MPH	Min
la	200	67	7.5	0.0	9.1	0.25
lb	500	167	5.0	0.0	12.6	0.45
1c	200	67	3.0	2.5	9.1	0.25
1d	1400	467	3.0	0.0	18.7	0.85
le	250	83	3.0	0.0	9.5	0.30
1f	250	83	3.0	0.0	11.4	0.25
lg	1400	467	3.0	0.0	21.2	0.75
1h	200	67	3.0	(2.5)	11.4	0.20
1 i	400	133	5.0	0.0	13.0	0.35
lj	200	67	7.5	0.0	9.1	0.25
- J						3.90
	<u> </u>	L	l		I	<u></u>
2a	200	67	7.5	0.0	9.1	0.25
2a 2b	2150	717	3.0	(0.5)	22.2	1.10
20 2c	250	83	5.0	0.0	9.5	0.30
20 2d	250	83	5.0	0.0	11.4	0.25
2e	2250	750	3.0	+0.5	23.2	1.10
2¢ 2f	200	67	7.5	0.0	9.1	0.25
21	200		1.0			3.25
	<u> </u>					
	250	83	7.5	0.0	8.1	0.35
3a 2h	3300	1100	3.0	-0.5	23.4	1.60
3b 3c	250	83	5.0	0.0	9.5	0.30
30 3d	250	83	5.0	0.0	11.4	0.25
	3300	1100	3.0	+0.5	25.0	1.50
3e 3f	250	83	7.5	0.0	9.5	0.30
51	250	0.0	1.5	0.0		4.30
			1	L		
	350	117	7.5	-3.5	11.4	0.35
4a 45		483	3.0	0.0	19.4	0.85
4b	1450	83	5.0	0.0	9.5	0.30
4c	250			0.0	11.4	0.25
4d	250	83	5.0		22.7	0.25
4e	1700	567	3.0	0.0		0.83
4f	500	167	7.5	+3.5	11.4	
	1					3.10

Haul	Distance	Distance	Rolling	Grade	Ave Speed	Time
Segment	Feet	Meters	Risistance	%	MPH	Min
	L	L,				
5a	1400	467	7.5	-2.75	15.9	1.00
5b	1350	450	3.0	0.0	19.2	0.80
5c	250	83	5.0	0.0	9.5	0.30
5d	250	83	5.0	0.0	11.4	0.25
5e	2250	750	3.0	0.0	23.2	1.10
5f	700	233	7.5	+5.5	11.4	0.70
						4.15
	<u> </u>	1				
6a	600	200	7.5	0.0	11.4	0.60
6b	900	300	3.0	-3.3	20.5	0.50
6c	1450	483	3.0	0.0	19.4	0.85
6d	400	133	5.0	0.0	11.4	0.40
6e	400	133	5.0	0.0	11.4	0.40
6f	1450	483	3.0	0.0	22.0	0.75
6g	900	300	3.0	+3.3	17.0	0.60
6h	450	150	7.5	0.0	12.8	0.40
	.	_l				4.50
7a	750	250	7.5	-1.5	12.2	0.70
7b	1600	533	3.0	0.0	20.2	0.90
7c	350	117	5.0	0.0	11.4	0.35
7d	350	117	5.0	0.0	11.4	0.35
7e	1600	533	3.0	0.0	22.7	0.80
7f	750	250	7.5	+1.5	13.1	0.65
						3.75

CAT 637 SCRAPER

L

769C TRUCK EFFICIENCY

NOMINAL CAPACITY

25

HAUL ROUTE	TRAVEL TIME	FIXED TIME	EFFICIENCY	MINUTES PER TRIP	TRIPS/ HOUR	YARDS/ HOUR
1	3.90	2.50	· 85%	7.5	8.0	199
2	3.05	2.50	85%	6.5	9.2	230
3	4.00	2.50	85%	7.6	7.8	196

International Uranium (USA) Corp. White Mesa Mill

CAT 769 TRUCKS

		BASED ON F	PROJECTED HA	UL ROUTES		
Haul	Distance	Distance	Rolling	Grade	Ave Speed	Time
Segment	Feet	Meters	Risistance	%	MPH	Min
						<u>, ,</u>
la	200	67	7.5	0.0	7.6	0.30
lb	500	167	5.0	0.0	12.6	0.45
lc	200	67	3.0	2.5	9.1	0.25
1d	1400	467	3.0	0.0	18.7	0.85
le	250	83	3.0	0.0	9.5	0.30
lf	250	83	3.0	0.0	11.4	0.25
lg	1400	467	3.0	0.0	22.7	0.70
1h	200	67	3.0	(2.5)	11.4	0.20
li	400	133	5.0	0.0	13.0	0.35
lj	200	67	7.5	0.0	9.1	0.25
.,						3.90
		1	<u> </u>		1,	
2a	200	67	7.5	0.0	7.6	0.30
2b	2150	717	3.0	(0.5)	24.4	1.00
20 20	250	83	5.0	0.0	9.5	0.30
2d	250	83	5.0	0.0	11.4	0.25
20 2e	2250	750	3.0	+0.5	26.9	0.95
2e 2f	200	67	7.5	0.0	9.1	0.25
£1						3.05
		1			<u> </u>	L
	250	83	7.5	0.0	8.1	0.35
3b	3300	1100	3.0	-0.5	25.0	1.50
30 30	250	83	5.0	0.0	9.5	0.30
3d	250	83	5.0	0.0	11.4	0.25
3e	3300	1100	3.0	+0.5	28.8	1.30
3f	250	83	7.5	0.0	9.5	0.30
						4.00
		.			· · · · · · · · · · · · · · · · · · ·	
4a	350	117	7.5	-3.5	11.4	0.35
4b	1450	483	3.0	0.0	19.4	0.85
4c	250	83	5.0	0.0	9.5	0.30
4d	250	83	5.0	0.0	11.4	0.25
4e	1700	567	3.0	0.0	22.7	0.85
4f	500	167	7.5	+3.5	11.4	0.50
						3.10

TRAVEL TIMES FOR CAT 769C TRUCKS BASED ON PROJECTED HAUL ROUTES

CAT 769 TRUCKS

Haul	Distance	Distance	Rolling	Grade	Ave Speed	Time
Segment	Feet	Meters	Risistance	%	MPH	Min
5a	1400	467	7.5	-2.75	15.9	1.00
5b	1350	450	3.0	0.0	19.2	0.80
5c	250	83	5.0	0.0	9.5	0.30
5d	250	83	5.0	0.0	11.4	0.25
5e	2250	750	3.0	0.0	23.2	1.10
5f	700	233	7.5	+5.5	11.4	0.70
						4.15
			••••••••••••••••••••••••••••••••••••••			
6a	600	200	7.5	0.0	11.4	0.60
6b	900	300	3.0	-3.3	20.5	0.50
6c	1450	483	3.0	0.0	19.4	0.85
6d	400	133	5.0	0.0	11.4	0.40
6e	400	133	5.0	0.0	11.4	0.40
6f	1450	483	3.0	0.0	22.0	0.75
6g	900	300	3.0	+3.3	17.0	0.60
6h	450	150	7.5	0.0	12.8	0.40
						4.50
					10.0	0.70
7a	750	250	7.5	-1.5	12.2	0.70
7b	1600	533	3.0	0.0	20.2	0.90
7c	350	117	5.0	0.0	11.4	0.35
7d	350	117	5.0	0.0	11.4	0.35
7e	1600	533	3.0	0.0	22.7	0.80
7f	750	250	7.5	+1.5	13.1	0.65
						3.75

LABOR COSTS

Specified Wages Heavy Construction	1998 Estimate	Labor Rates**	0.1397	0.2128		
Labor Classification	Base Rate	Mandated Fringe	Labor Burden (FICA, SUI, FUI, etc.	Company Benefits (medical, life insure, etc)	Fringe Costs	Labor Cost/HR
– Boiler Makers	\$19.60	\$8.76	\$2.74	no added cost	\$11.50	\$ 31.10
Millwrights	\$19.83	\$3.25	\$2.77	\$0.97	\$6.99	\$26.82
Ironworkers	\$19.92	\$6.66	\$2.78	no added cost	\$9.44	\$29.36
Carpenters	\$10.81		\$1.51	\$2.30	\$3.81	\$14.62
Cement Masons	\$11.52		\$1.61	\$2.45	\$4.06	\$15.58
Electricians	\$14.52	\$2.71	\$2.03	\$0.38	\$ 5.12	\$19.64
Ironworkers - Reinforcing	\$11.00		\$1.54	\$2.34	\$3.88	\$14.88
Laborers (including pipelayers)	\$7.65	\$1.60	\$1.07	\$0.03	\$2.70	\$10.35
Pipefitters	\$12.60		\$1.76	\$2.68	\$4.44	\$17.04
POWER EQUIPMENT OPERATORS						
Backhoes	\$10.00		\$1.40	\$2.13	\$3.53	\$13.53
Cranes	\$10.43		\$1.46	§ \$2.22	\$3.68	8 \$14.11
Dozers++	\$13.10		\$1.83	\$2.79	\$4.62	2 \$17.72
Graders	\$12.67		\$1.77	\$2.70	\$4.4	7 \$17.14
Loaders	\$11.26		\$1.57	\$2.40	\$3.9	7 \$15.23
Scrapers+	\$10.00		\$1.40	\$2.13	\$3.5	3 \$13.53
Trackhoes	\$10.00		\$1.40	\$2.13	\$3.5	3 \$13.53
Tractors	\$9.42		\$1.32	\$2.00	\$3.3	2 \$12.74
TRUCK DRIVERS	\$9.42		\$1.32	2 \$2.00	\$3.3	2 \$12.74

Note: base rates do not include FICA, worker comp, unemployment, or company benefits which increase the cost per hour

** General Decision UT980009 - Modification 0 - 2/13/98

++ Operator Rate used in 1999 estimate

LABOR COSTS

			Labor Burden (FICA, SUI, FUI, etc.	Company Benefits (medical, life insure, etc)	Fringe Costs	Labor Cost/HR
Nonspecified Wages	Base Rate	Mandated Fringe			Finge Costs	
Survey Crew Member	\$9.75	\$0.00	\$1.36	\$2.07	\$3.44	\$13.19
Sample Crew Member	\$9.75	\$0.00	\$1.36	\$2.07	\$3.44	\$1 3.19
Mechanic (Demolition)	\$10.20	\$0.00	\$1.42	\$2.17	\$3.60	\$13.80
Manager/Engineer	\$36.00	\$0.00	\$5.03	\$ 7.66	\$12.69	\$48.69
Radiation Safety Officer	\$28.00	\$0.00	\$3.91	\$5.96	\$9.87	\$37.87
Secretary	\$11.10	\$0.00	\$1.55	\$2.36	\$3.91	\$15.01
Clerk	\$9.25	\$0.00	\$1.29	\$ 1.97	\$3.26	\$12.51
Engineer	\$28.00	\$0.00	\$3.91	\$5.96	\$9.87	\$37.87
Environmental Technician	\$14.80	\$0.00	\$2.07	\$3.15	\$5.22	\$20.02
Safety Engineer	\$14.80	\$0.00	\$2.07	\$3.15	\$5.22	\$20.02
Maintenance Foreman	\$20.34	\$0.00	\$2.84	\$4.33	\$7.17	\$27.51
Security Personnel	\$5.75	\$0.00	\$0.80	\$1.22	\$2.03	\$7.78
Chemist	\$16.65	\$0.00	\$2.33	\$3.54	\$5.87	\$22.52

INTERNATIONAL	
URANIUM (USA)	
CORPORATION	
6425 S. Highway 191 + P.O. Box 809 + Blar	nding, UT 84511 🔹 435 678-2221 🔹 435 678 2224 (fax)
FACSIMU	LE TRANSMITTAL
	FAX NO:
TO: Bols Hambrac	
Haroke Roberts	PHONE NO:
FROM: 1, INIA	
<u>Cerce</u>	PAGE 1 OF:
IF ALL PAGES ARE NOT REC	EIVED PLEASE CALL:
IF ALL PAGES ARE NOT ALL	
	PHONE NO: 435-678-2221
	0 7/5 3
Into I received	from Job Service.
	\sim
Is this what	you need?
	RO

IMPORTANT/CONFIDENTIAL: FAX messages are sometimes received by persons other than to the person to whom they are addressed as a result of equipment failure or human error. This Communication is intended solely for the addressee shown above. Mease notify mu office immediately at any of the telephone or Fax numbers shown above if you are not the addressee of r someone responsible for delivering it to the addressee. We retain all rights and privileges as to this communication and provide any dissemination, distribution or copying by or to anyone other than the addressee. Our office will arrange for its return by the United States Postal Service or by commercial carrier to us at no cost to you.

유민은 한곳이라? Sep 17 88 04:20p MRC 3702426726 http://aeptant.foworld.gov/cgi-bl ..56912970+6+0+9&walsaction=retrieve Journers Retrieval GENERAL DECISION UT980009 02/13/58 UT9 General Decision Number UT960009 Superseded Scheral Decision No. UT970009 State: Utah

Construction Type: MERVY

ب نے

IRON	SEVIER
JURE	HATMIU
KANE	WASHINGTON
PIUTE	WAYNE
san juan	•
OAN PRTE	•
	Juar Kane Piute San Juan

107

WHEN CONSTRUCTION PROJECTS

Publication Date Modification Number Ċ 02/23/2998

COUNTY (ies) :		
BRAVER	iron	STVIER
CARBON	JUAB	UININH
DAGGETT	KANE	VASHINGTON
EMERY	piute	WAYNE
GARFIELD	SAN JUNN	
GRAND	SAN PETR	•

BOIL01928 04/01/1995

	XACTO	LLTU368
Boilermakers	19.60	8.76
· · · · · · · · · · · · · · · · · · ·	******	

CARP0722B 10/29/1995

	RATON .	Lindes .
MILLWRIGHTS	19.83	3.25
· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • •

IRON00270 07/01/1997

IRCHNORKERS :

- ------···· // ··· /· ... -----_ - · · ------

Fringes

Rateo

1

3001200/A 63/61/1900	•	
	Rates	Fringes
CARPENTERS	10.81	-
L'EMENT MASONS	11.52	
BLECTRICIANS	14.52	2.71
IRONWORKERS :		
Reinforcing	11.00	
LABORERS (including		(*
pipelayers)	7.65	1.60 . 4.75
PIPEFITTERS	12.60	
Pomer equipment operators:		فر
Dockboes	10.00	•
Cranes	10.43	
Lozers S.	13,10	
Graders	12.67	
Loadera	11.26	
Scrapers	10.00	
Trackhoes	10.00 -	
Tractors	9.42	
TRUCK FETTERS	3.62	÷

200

.

ŧ

11-03-98 18:05 P.2

5

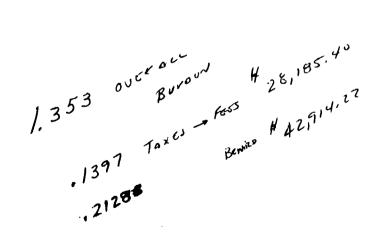
4 4

ب م

<u>ب</u> ب

ت د

Shauna Vigil From: w.deal@cisna.com To: Fri, Nov 13, 1998 11:21 AM Date: Heavy Construction Davis-Bacon wages Subject:


Heavy Construction Projects Modification Number Publication Date

0	02/13/1998

County (ies)				
Beaver	lron	Sevier		
Carbon	Juab	Uintah		
Daggett	Kane	Washington		
Emery	Piute	Wayne		
Garfield	San Juan	tt = j//c		
Grand	San Pete			
		Rates	Fringes	
Boilermakers	;	19.60	8.76	
		Rates	Fringes	·
Milwrights		19.83	3.25	
		Rates	Fringes	
Ironworkers:Structural		18.92	8.66	
		Rates	Fringes	
Carpenters		1 0.81		
Cement Mas	ons	11.52		
Electricians		14.52	2.71	
Ironworkers:F	-	11.00		
	luding pipelayers		1. 60	
Pipefitters		1 2.60		
	ment Operators:			
Backhoes		10.00		
Cranes		10.43		
Dozers		13.10		
Graders		12.87		
Loaders		11.26		
Scrapers		10.00		
Trackhoes		10.00		
Tracions	-	9.42		
Truck Drivers		9.42		

Let me know if this works out o.k. Shauna :)

PAGE PREP ALP03	9 ARED: 0 6	3:14 PM 03-Feb-9	9	INTERNAT SALARY ALLOO	TIONAL URANIUM CATION·JOURNAL JAN 31, 199 (FINAL)	(USA) CORP ENTRY SUPPORT 99				
	_	SALARY	PENSN BONUS	TAXES INSUR	VACAT HOLIDY		DENOHD TOTAL	PRPTY VACAT	HOLIDY	OTHER
249	3H	1,280.00	12.50		32.57 65.23		1,805.69	1,727.45	78.24	
294	3Н	1,296.00	1	212.26 234.00	33.57 67.03	13.47	1,856.33	1,775.93	80.40	
307	3H	1,576.00		238.17 234.00	39.36 78.84		2,166.37	2,071.81	94.56	
214	31	1,612.00		243.51 234.00	40.13 80.37	16.03	2,226.04	2,129.64	96.40	
306	3H	1,649.09		247.45 234.00	40.93 81.97	18.44	2,271.88	2,173.56	98.32	
OPERA	TIONS -	HOURLY 201,681.02	602.15 28 0.00	3,185.40 5 24,948.00	.682.11 1 9,781.64	,900.32 0.00	0.00 24 272.780.64	10,341,32 10,466.12	12,032.88 2 324.00	616.32

LONG TERM CARE CALCULATION

Long Term Care Calculation

Base Amount (Starting in Dec. 1978)	\$250,000
CPI-U December, 1978	67.7
CPI-U January, 1999	164.3

Adjusted Long Term Care = \$250,000 x (CPI-U most recent / CPI-U Dec., 1978)

Adjusted Long Term Care

\$606,721

Table 1. Consumer Price Index for All Urban Consumers (CPI-U): U. S. City Average, by expenditure category and commodity and service group

Table 1. Consumer Price Index for All Urban Consumers (CPI-U): U.S. city average, b and service group

(1982-84=100, unless otherwise noted)

CPI-U	Relative importance, December 1998	Unadjusted Dec. 1998	indexes Jan. 1999	U perce Jan. Jan 199
Expenditure category				
All items All items (1967=100)	100.000	163.9 491.0	164.3 492.3	1
Food and beverages Food Food at home Cereals and bakery products Meats, poultry, fish, and eggs Dairy and related products (1) Fruits and vegetables Nonalcoholic beverages and beverage	16.408 15.422 9.691 1.544 2.569 1.088 1.440	162.7 162.3 162.6 182.3 147.3 157.6 200.7	163.9 163.6 164.3 184.2 146.4 161.2 208.6	2 2 2 -1 8 3
Nohalcoholic beverages and beverage materialsOther food at homeSugar and sweetsFats and oilsOther foodsOther miscellaneous foods (1) (2)Food away from home (1)Other food away from home (1) (2)Alcoholic beverages	1.049 2.002 .377 .309 1.316 .320 5.730 .175 .986	131.7 152.4 150.1 151.9 166.9 104.9 163.0 103.3 167.2	133.5 153.0 151.7 150.5 167.7 104.1 163.5 103.5 167.6	-0 2 0 7 2 3 2 3 1
Housing Shelter Rent of primary residence (3) Lodging away from home (2) (3) Owners' equivalent rent of primary	39.828 30.283 7.007 2.376	161.3 184.0 174.9 103.8	161.8 184.7 175.3 107.1	2 3 3 1
residence (3) (4) Tenants' and household insurance (1) (2) Fuels and utilities Fuels Fuel oil and other fuels Gas (piped) and electricity (3) Household furnishings and operations	20.529 .371 4.735 3.801 .227 3.574 4.810	190.7 99.9 126.6 111.4 86.1 118.9 126.6	191.0 99.7 126.2 110.9 86.6 118.3 126.8	3 -0 -2 -3 -10 -2 1

Apparel Men's and boys' apparel Women's and girls' apparel Infants' and toddlers' apparel (1) Footwear	4.831 1.358 1.939 .272 .876	130.7 130.3 122.4 129.6 127.5	127.9 128.1 117.7 130.0 125.6	-1 -2 4 -1
Transportation Private transportation New and used motor vehicles (2) New vehicles Used cars and trucks (1) Motor fuel Gasoline (all types) Motor vehicle parts and equipment Motor vehicle maintenance and repair Public transportation (1)	16.99915.6537.8434.9831.9142.4932.476.5491.6241.346	140.7 137.2 100.9 144.1 153.1 86.2 85.7 101.2 169.6 188.4	140.4 136.7 100.6 144.4 150.6 85.0 84.5 101.2 169.8 190.4	-1 -1 0 1 -13 -13 -0 2 1
Medical care Medical care commodities Medical care services Professional services (3) Hospital and related services (3)	5.713 1.252 4.461 2.854 1.354	245.2 225.6 249.6 224.6 291.4	246.6 225.9 251.3 225.8 294.4	3 3 3 3 3 3 3
Recreation (2) Video and audio (1) (2)	6.120 1.748	101.2 100.7	101.7 101.4	1 0
Education and communication (2) Education (2) Educational books and supplies Tuition, other school fees, and childcare Communication (1) (2) Information and information processing (1)	5.478 2.694 .203 2.492 2.783	100.7 104.7 257.3 301.7 97.1	100.9 105.0 258.4 302.4 97.3	1 4 5 4 -2
(2) Telephone services (1) (2) Information and information processing	2.580 2.327	96.9 100.3	96.9 100.7	-2 C
other than telephone services (1) (5) Personal computers and peripheral equipment (1) (2)	.253	34.8 64.2	33.8 61.4	-26 -36
Other goods and services Tobacco and smoking products Personal care (1) Personal care products (1) Personal care services (1) Miscellaneous personal services	4.624 1.159 3.465 .742 .973 1.491	250.3 331.2 158.3 148.7 168.3 237.8	255.4 354.2 158.9 149.9 168.8 238.9	10 39 2 2 2 3
Commodity and service group				
Commodities Food and beverages Commodities less food and beverages Nondurables less food and beverages Apparel	42.109 16.408 25.702 14.345 4.831	142.2 162.7 130.2 132.1 130.7	142.5 163.9 129.9 131.8 127.9	0 2 -0 -0 -1
Nondurables less food, beverages, and apparel Durables Services Rent of shelter (4) Transportation services Other services	9.514 11.356 57.891 29.912 6.963 10.768	137.8 127.4 185.7 191.5 188.4 219.5	138.8 127.1 186.3 192.3 188.8 220.5	0 -0 2 3 0 3
Special indexes				
All items less food All items less shelter	84.578 69.717	164.2 157.8	164.5 158.1	1 1

All items less medical care Commodities less food Nondurables less food and apparel Nondurables Services less rent of shelter (4) Services less medical care services Energy All items less energy All items less food and energy Commodities less food and energy Energy commodities Energy commodities Purchasing power of the consumer dollar	2.720	159.4 131.7 134.2 139.7 147.5 192.8 179.8 98.9 172.3 174.8 143.9 86.3 192.5 \$.610	193.3 180.3	2 2 1
Purchasing power of the consumer dollar - old base 1 Not seasonally adjusted.	-	\$.204	\$.203	
2 Indexes on a December 1997=100 base. 3 This index series was calculated using a I geometric means estimator in January, 1999. 4 Indexes on a December 1982=100 base. 5 Indexes on a December 1988=100 base. - Data not available. NOTE: Index applies to a month as a whole, no				item s

Table of Contents

Consumer Price Indexes

Bureau of Labor Statistics gibson_s@bls.gov Last modified: Friday, February 19 1999 URL: /news.release/cpi.t01.htm

Consumer Price Index

Table of Contents

- Consumer Price Index Summary
- <u>Table 1. Consumer Price Index for All Urban Consumers (CPI-U): U. S. City Average, by</u> expenditure category and commodity and service group
- <u>Table 2. Consumer Price Index for All Urban Consumers (CPI-U): Seasonally adjusted U. S. City</u> Average, by expenditure category and commodity and service group
- Table 3. Consumer Price Index for All Urban Consumers (CPI-U): Selected areas, all items index
- Table 4. Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W): U. S. City Average, by expenditure category and commodity and service group
- <u>Table 5. Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W):</u> <u>Seasonally adjusted U. S. City Average, by expenditure category and commodity and service</u> <u>group</u>
- <u>Table 6. Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W): Selected</u> areas, all items index
- <u>Table 1(LAS)</u>. Consumer Price Index for All Urban Consumers (CPI-U-XL): U.S. city average. by expenditure category and commodity and service group using a Laspeyres Estimator
- <u>Table 2(LAS)</u>. <u>Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W-XL)</u>: <u>U.S.city average</u>, by expenditure category and commodity and service group using a Laspeyres <u>Estimator</u>
- <u>Table 3(LAS)</u>. Consumer Price Index for All Urban Consumers (CPI-U-XL): Selected areas, all items index using a Laspeyres Estimator
- <u>Table 4(LAS). Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W-XL):</u> Selected areas. all items index using a Laspeyres Estimator
- Text version of entire news release

Consumer Price Indexes

Data Home Page

BLS Home Page

Consumer Price Index

http://stats.bls.gov/news.release/cpi.toc.htm

Bureau of Labor Statistics <u>gibson_s@bls.gov</u> Last modified: Friday, February 19 1999 URL: /news.release/cpi.toc.htm 2-19-1999

U.S. Department Of Labor Bureau of Labor Statistics Washington, D.C. 20212

Consumer Price Index

All Urban Consumers - (CPI-U)

U.S. city average

All items

1982-84=100

YEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.
1913	9.8	9.8	9.8	9.8	9.7	9.8	9.9	9.9	10.0	10.0	10.1
1914	10.0	9.9	9.9	9.8	9.9	9.9	10.0	10.2	10.2	10.1	10.2
1915	10.1	10.0	9.9	10.0	10.1	10.1	10.1	10.1	10.1	10.2	10.3
1916	10.4	10.4	10.5	10.6	10.7	10.8	10.8	10.9	11.1	11.3	11.5
1917	11.7	12.0	12.0	12.6	12.8	13.0	12.8	13.0	13.3	13.5	13.5
1918	14.0	14.1	14.0	14.2	14.5	14.7	15.1	15.4	15.7	16.0	16.3
1919	16.5	16.2	16.4	16.7	16.9	16.9	17.4	17.7	17.8	18.1	18.5
1920	19.3	19.5	19.7	20.3	20.6	20.9	20.8	20.3	20.0	19.9	19.8
1921	19.0	18.4	18.3	18.1	17.7	17.6	17.7	17.7	17.5	17.5	17.4
1922	16.9	16.9	16.7	16.7	16.7	16.7	16.8	16.6	16.6	16.7	16.8
1923	16.8	16.8	16.8	16.9	16.9	17.0	17.2	17.1	17.2	17.3	17.3
1924	17.3	17.2	17.1	17.0	17.0	17.0	17.1	17.0	17.1	17.2	17.2
1925	17.3	17.2	17.3	17.2	17.3	17.5	17.7	17.7	17.7	17.7	18.0
1926	17.9	17.9	17.8	17.9	17.8	17.7	17.5	17.4	17.5	17.6	17.7
1927	17.5	17.4	17.3	17.3	17.4	17.6	17.3	17.2	17.3	17.4	17.3
1928	17.3	17.1	17.1	17.1	17.2	17.1	17.1	17.1	17.3	17.2	17.2
1929	17.1	17.1	17.0	16.9	17.0	17.1	17.3	17.3	17.3	17.3	17.3
1930	17.1	17.0	16.9	17.0	16.9	16.8	16.6	16.5	16.6	16.5	16.4
1931	15.9	15.7	15.6	15.5	15.3	15.1	15.1	15.1	15.0	14.9	14.7
1932	14.3	14.1	14.0	13.9	13.7	13.6	13.6	13.5	13.4	13.3	13.2
1933	12.9	12.7	12.6	12.6	12.6	12.7	13.1	13.2	13.2	13.2	13.2
1934	13.2	13.3	13.3	13.3	13.3	13.4	13.4	13.4	13.6	13.5	13.5
1935	13.6	13.7	13.7	13.8	13.8	13.7	13.7	13.7	13.7	13.7	13.8
1936	13.8	13.8	13.7	13.7	13.7	13.8	13.9	14.0	14.0	14.0	14.0
1937	14.1	14.1	14.2	14.3	14.4	14.4	14.5	14.5	14.6	14.6	14.5
1938	14.2	14.1	14.1	14.2	14.1	14.1	14.1	14.1	14.1	14.0	14.0
1939	14.0	13.9	13.9	13.8	13.8	13.8	13.8	13.8	14.1	14.0	14.0
1940	13.9	14.0	14.0	14.0	14.0	14.1	14.0	14.0	14.0	14.0	14.0
1941	14.1	14.1	14.2	14.3	14.4	14.7	14.7	14.9	15.1	15.3	15.4
1942	15.7	15.8	16.0	16.1	16.3	16.3	16.4	16.5	16.5	16.7	16.8
1943	16.9	16.9	17.2	17.4	17.5	17.5	17.4	17.3	17.4	17.4	17.4
1944	17.4	17.4	17.4	17.5	17.5	17.6	17.7	17.7	17.7	17.7	17.7
1945	17.8	17.8	17.8	17.8	17.9	18.1	18.1	18.1	18.1	18.1	18.1
1946	18.2	18.1	18.3	18.4	18.5	18.7	19.8	20.2	20.4	20.8	21.3

1947	21.5	21.5	21.9	21.9	21.9	22.0	22.2	22.5	23.0	23.0	23.1
1948	23.7	23.5	23.4	23.8	23.9	24.1	24.4	24.5	24.5	24.4	24.2
1949	24.0	23.8	23.8	23.9	23.8	23.9	23.7	23.8	23.9	23.7	23.8
1950	23.5	23.5	23.6	23.6	23.7	23.8	24.1	24.3	24.4	24.6	24.7
1951	25.4	25.7	25.8	25.8	25.9	25.9	25.9	25.9	26.1	26.2	26.4
1952	26.5	26.3	26.3	26.4	26.4	26.5	26.7	26.7	26.7	26.7	26.7
1953	26.6	26.5	26.6	26.6	26.7	26.8	26.8	26.9	26.9	27.0	26.9
1954	26.9	26.9	26.9	26.8	26.9	26.9	26.9	26.9	26.8	26.8	26.8
1955	26.7	26.7	26.7	26.7	26.7	26.7	26.8	26.8	26.9	26.9	26.9
1956	26.8	26.8	26.8	26.9	27.0	27.2	27.4	27.3	27.4	27.5	27.5
1957	27.6	27.7	27.8	27.9	28.0	28.1	28.3	28.3	28.3	28.3	28.4
1958	28.6	28.6	28.8	28.9	28.9	28.9	29.0	28.9	28.9	28.9	29.0
1959	29.0	28.9	28.9	29.0	29.0	29.1	29.2	29.2	29.3	29.4	29.4
1960	29.3	29.4	29.4	29.5	29.5	29.6	29.6	29.6	29.6	29.8	29.8
1961	29.8	29.8	29.8	29.8	29.8	29.8	30.0	29.9	30.0	30.0	30.0
1962	30.0	30.1	30.1	30.2	30.2	30.2	30.3	30.3	30.4	30.4	30.4
1963	30.4	30.4	30.5	30.5	30.5	30.6	30.7	30.7	30.7	30.8	30.8
1964	30.9	30.9	30.9	30.9	30.9	31.0	31.1	31.0	31.1	31.1	31.2
1965	31.2	31.2	31.3	31.4	31.4	31.6	31.6	31.6	31.6	31.7	31.7
1966	31.8	32.0	32.1	32.3	32.3	32.4	32.5	32.7	32.7	32.9	32.9
1967	32.9	32.9	33.0	33.1	33.2	33.3	33.4	33.5	33.6	33.7	33.8
1968	34.1	34.2	34.3	34.4	34.5	34.7	34.9	35.0	35.1	35.3	35.4
1969	35.6	35.8	36.1	36.3	36.4	36.6	36.8	37.0	37.1	37.3	37.5
1970	37.8	38.0	38.2	38.5	38.6	38.8	39.0	39.0	39.2	39.4	39.6
1971	39.8	39.9	40.0	40.1	40.3	40.6	40.7	40.8	40.8	40.9	40.9
1972	41.1	41.3	41.4	41.5	41.6	41.7	41.9	42.0	42.1	42.3	42.4
1973	42.6	42.9	43.3	43.6	43.9	44.2	44.3	45.1	45.2	45.6	45.9
1974	46.6	47.2	47.8	48.0	48.6	49.0	49.4	50.0	50.6	51.1	51.5
1975	52.1	52.5	52.7	52.9	53.2	53.6	54.2	54.3	54.6	54.9	55.3
1976	55.6	55.8	55.9	56.1	56.5	56.8	57.1	57.4	57.6	57.9	58.0
1977	58.5	59.1	59.5	60.0	60.3	60.7	61.0	61.2	61.4	61.6	61.9
1978	62.5	62.9	63.4	63.9	64.5	65.2	65.7	66.0	66.5	67.1	67.4
1979	68.3	69.1	69.8	70.6	71.5	72.3	73.1	73.8	74.6	75.2	75.9
1980	77.8	78.9	80.1	81.0	81.8	82.7	82.7	83.3	84.0	84.8	85.5
1981	87.0	87.9	88.5	89.1	89.8	90.6	91.6	92.3	93.2	93.4	93.7
1982	94.3	94.6	94.5	94.9	95.8	97.0	97.5	97.7	97.9	98.2	98.0
1983	97.8	97.9	97.9	98.6	99.2	99.5	99.9	100.2	100.7	101.0	101.2
1984	101.9	102.4	102.6	103.1	103.4	103.7	104.1	104.5	105.0	105.3	105.3
1985	105.5	106.0	106.4	106.9	107.3	107.6	107.8	108.0	108.3	108.7	109.0
1986	109.6	109.3	108.8	108.6	108.9	109.5	109.5	109.7	110.2	110.3	110.4
1987	111.2	111.6	112.1	112.7	113.1	113.5	113.8	114.4	115.0	115.3	115.4
1988	115.7	116.0	116.5	117.1	117.5	118.0	118.5	119.0	119.8	120.2	120.3
1989	121.1	121.6	122.3	123.1	123.8	124.1	124.4	124.6	125.0	125.6	125.9
1990	127.4	128.0	128.7	128.9	129.2	129.9	130.4	131.6	132.7	133.5	133.8
1991	134.6	134.8	135.0	135.2	135.6	136.0	136.2	136.6	137.2	137.4	137.8
1992	138.1	138.6	139.3	139.5	139.7	140.2	140.5	140.9	141.3	141.8	142.0
1993	142.6	143.1	143.6	144.0	144.2	144.4	144.4	144.8	145.1	145.7	145.8
1994	146.2	146.7	147.2	147.4	147.5	148.0	148.4	149.0	149.4	149.5	149.7
1995	150.3	150.9	151.4	151.9	152.2	152.5	152.5	152.9	153.2	153.7	153.6
1996 1997 1998 1999	154.4 159.1 161.6 164.3	154.9 159.6 161.9	155.7 160.0 162.2	156.3 160.2 162.5	156.6 160.1 162.8	156.7 160.3 163.0	157.0 160.5 163.2	157.3 160.8 163.4	157.8 161.2 163.6	158.3 161.6 164.0	158.6 161.5 164.0

L

LONG TERM CARE CALCULATION

Long Term Care Calculation

Base Amount (Starting in Dec. 1978)	\$250,000
CPI-U December, 1978	67.7
CPI-U January, 1999	164.3

Adjusted Long Term Care = \$250,000 x (CPI-U most recent / CPI-U Dec., 1978)

Adjusted Long Term Care

\$606,721

ATTACHMENT D

RECLAMATION MATERIAL CHARACTERISTICS

PREPARED BY

INTERNATIONAL URANIUM (USA) CORP.

INDEPENDENCE PLAZA

1050 17th STREET, SUITE 950

DENVER, CO 80265

Attachment D - Reclamation Material Characteristics

Material proposed for use in the reclamation of the White Mesa Mill tailings cells is available from stockpiles on the site, which were generated from construction of the existing cells. In the case of clay material for radon barrier, it is available to supplement the onsite material from the Section 16 borrow site located approximately 3 miles to the south of the existing cells.

The characteristics of the materials are generally described in the text of the Reclamation Plan. In addition, test work was completed on the clay borrow material as well as the onsite stockpiles.

The Section 16 clay material was originally tested in 1982 by D'Appolonia Consulting Engineers, Inc. This test work included:

- -- Classification
 - Grain size, sieve and hydrometer
 - Atterberg limits
 - Specific gravity
- -- X-ray diffraction
- -- Cation Exchange Capacity
- -- Exchangeable Cations
- -- Modified Proctor
- -- Permeability

A copy of the full D'Appolonia Report is included in this Attachment

The onsite random fill and clay stockpiles were sampled in characterized in a program detailed in the April 15, 1999, submittal to the NRC, "Additional Clarifications to the White Mesa Mill Reclamation Plan". A copy of this sampling and testing program are included in this Attachment as well as the results of the characterization work. The samples wee characterized for:

- -- Classification
 - Grain size and sieve
 - Atterberg limits
- -- Standard Proctor

The results of these tests for the onsite stockpiled material are included in this Attachment.

CONSULTING ENGINEERS, INC.

March 8, 1982

Project No. RM78-682B

Mr. H. R. Roberts Energy Fuels Nuclear, Inc. 1515 Arapahoe Street Three Park Central, Suite 900 Denver, Colorado 80202

Letter Report Section 16 Clay Material Test Data White Mesa Uranium Project Blanding, Utah

Dear Harold:

This report presents the results of field investigations and laboratory tests performed on Section 16 clay material. The material tested was obtained from borings and test pits made in April 1979. The laboratory tests were performed and the data retained in our files until your recent request for the data.

Field Investigations

The area of investigation is a canyon located in Section 16, about three miles south of the mill site. Seven borings were drilled as part of the field investigations. These borings, 100 through 106, are located approximately as shown on Figure 1.

The borings were drilled with a rig provided by Energy Fuels using the rotary method with air pressure to flush out the cuttings. Samples were obtained by sampling the cuttings on five foot intervals. Only qualitative information on the subsurface materials is available because of the method of drilling and sampling utilized. However, the qualitative information and samples obtained are suitable to provide preliminary data on the character of the subsurface materials present.

Three test pits (1-3) were excavated to obtain bulk samples for laboratory testing. The location of the test pits is shown on Figure 1.

Samples from Boring 2-16 drilled by Energy Fuels in November 1978 were also provided to D'Appolonia for testing. The location of Boring 2-16 is shown on Figure 1.

 7400 SOUTH ALTON COURT, ENGLEWOOD, CO 80112 TELEPHONE: 303/771-3464 TELEX: 45-4565

 BECKLEY, WV
 CHESTERTON, IN
 CHICAGO, IL
 HOUSTON, TX
 AGUNA NIGUEL, CA

 PITTSBURGH, PA
 WILMINGTON, NC
 BRUSSELS, BELGIUM
 SECUL KOREA

Subsurface Conditions

The subsurface conditions in the canyon, based on the boring data, are shown on Cross Sections A-A' and B-B' presented on Figures 2 and 3, respectively. The plan locations of these cross sections is shown on Figure 1. As shown on the cross sections, the subsurface consists of a surficial layer of red clayey and silty sand about five feet thick. The underlying material is mostly a red or gray silty clay. The consistency of the silty clay layer varies from stiff to hard, based on observations of the drillers and rig during drilling. A lense or layer of very hard silt was noted in Boring 105. This layer appears to be a well cemented unit from the cutting samples obtained. In Boring 106, the surficial sand layer was about 20 feet thick and a clayey sand layer was also encountered at a depth of about 30 feet.

The laboratory soil classifications for the tested samples are also shown on Cross Sections A-A' and B-B'. The testing program is discussed in detail in the following section, however, the testing results indicate that the silty clay layer is mostly a CL or CH material with one sample being a SM and two a ML. These test results show the material is basically a fine grained soil with a varying amount of silt and clay size particles. The plasticity characteristics of the material vary from low to high. Further discussion of the test results and material characteristics is given below.

Water in the borings was not noted except for Boring 104 for which a depth of about 43 feet was measured. This depth is not considered completely reliable since it was measured only one day after drilling and the water level may not have had time to stabilize.

Laboratory Test Results

The laboratory testing program conducted on samples from the borings and test pits included the following types of tests:

- o Classification
 - Grain size, sieve and hydrometer
 - Atterberg limits
 - Specific gravity
- o X-Ray Diffraction
- o Cation Exchange Capacity
- o Exchangeable Cations
- Modified Proctor Compaction Density
- o Permeability

The results of the classification tests are given on Table 1. The soil classifications given are shown on Cross Sections A-A' and B-B' (Figures 2 and 3) and were discussed above.

2

The cation exchange capacity (CEC) and exchangeable ions were conducted to evaluate the type of clays present and the chemical effects resulting from contact with the tailings liquid. Tests were run on samples from Test Pits 2 and 3 samples and Boring 103 (15-20 foot depth). Soil from each sample was treated by soaking in simulated tailings liquid for 48 hours before testing. Both treated and untreated (as received) samples were tested and the results are presented on Table 2. Results of the testing are summarized as follows:

- o The untreated samples indicate pH (1:1) values between 7.40 and 8.35 with CEC values in the 45-56 meq/100g range. The predominate exchangeable ions are calcium and sodium for Test Pits 2 and 3 and calcium and magnesium for Boring 103 (15-20 ft).
- o The treated samples indicate pH (1:1) values between 1.70 and 2.35 with CEC values in the 90-100 meq/100g range. The predominate exchangeable ions are hydrogen, calcium, and magnesium for all the samples.

These results indicate that exposure to the tailings water causes:

- the pH (1:1) of the material to decrease.
- the exchangeable hydrogen and magnesium to increase.
- the exchangeable calcium and sodium to decrease.
- the CEC to increase by a factor of about two due primarily to the large increase in exchangeable hydrogen.

The effects of these changes on clay material properties, particularly permeability, is discussed in the following paragraphs.

The X-ray diffraction tests were run on material from the same three samples as tested for CEC and exchangeable ions. The x-ray diffraction testing was conducted to evaluate the type of clay minerals occurring in the material. The results of the testing are given on Table 3. As shown, about 50 percent of the material is quartz, 25 percent montmorillonite, 25 percent illite, and minor percentages of other minerals. Montmorillonite is an active clay mineral which typically has a low coefficient of permeability. Illite is also a clay mineral, but it is typically relatively inactive with a somewhat higher coefficient of permeability.

Modified Proctor compaction tests were conducted on four different samples. Test Pits 1, 2 and 3 samples were tested and a composite sample from Boring 2-16 (85 to 210 feet depth). The results of the modified Proctor tests are given on Table 1. The average maximum dry density measured is 107 pounds per cubic foot and the average optimum water content is 17.5 percent.

3

Permeability tests were conducted on compacted samples of material from Boring 2-16 (composite 85-120 feet), Boring 101 (composite 0-25 feet), Boring 103 (composite 0-25 feet) and Test Pit 2. The tests were conducted in permeability cells with a confining pressure applied around the sample which is encased in a rubber membrane. A differential pressure was applied across the sample and flow of fluid through the sample measured. Both distilled water and simulated tailings liquid were used in the tests. The tests on Borings 101 and 103, and Test Pit 2 were conducted over a period of about five months to assess the effects of tailings liquid on the permeability of the material. The tests were conducted with distilled water for about two months to establish saturation and steady state flow. Tailings liquid was then introduced to the sample and the test continued for three more months. The results of the permeability tests are presented on Table 4 along with other pertinent sample data. The material has an average coefficient of permeability with water of 3.3×10^{-10} centimeters per second and 5.1×10^{-10} centimeters per second with simulated tailings liquid. The test results indicate that the permeability of the material was essentially the same with distilled water and tailings liquid and no degradation of the material was indicated.

4

Conclusions and Recommendations

Based on the field and laboratory investigations discussed above, conclusions which can be made regarding the materials in Section 16 are:

- o The material is mostly a silty clay (CL to CH) with slight variation in properties. The clay minerals are mostly montmorillonite with some illite.
- o The material varies laterally with some layers or lenses of sand and silt. The consistency of the material also varies from stiff to hard or very hard.
- o The permeability values of the material are very low and long-term permeability tests conducted with simulated tailings liquid indicate little change in permeability with time. This result is in good agreement with the results of the CEC, exchangeable ion tests and x-ray diffraction test results.
- o The clay material is suitable for use as borrow for use as a clay liner or in situ as a natural liner layer.

Recommendations for further assessment of the clay for use as a borrow area or in situ clay liner source are:

> o Geotechnical borings with split spoon samples to assess the material characteristics more specifically, including consistency, natural water content, and classification.

- o Field permeability tests (falling or rising head) in the borings to measure the in situ permeability.
- o Installation of piezometers to determine the ground water level.

Additional discussion of the above recommendations can be provided as necessary depending on your needs.

Very truly yours,

Corwin E. Oldweiler Project Engineer

CEO:par

LABORATORY TEST RESULTS

I BIBAT . .

(FERCENT) WATER CONTENT VALUES	DRY DENSITY PRY DENSITY PROCTOR	6844114 84561416	101140141884 10 101140141884 10	FLASTICITY	TERSERG LI	01 0017	CLAT	87JANA 85 7J18	sand Craim Si	AJ9MA8 HT974	,
-			CITASSIFICATION	(1893892)	(INTONIA)	(LENCERL)	(FERCENT)		(PERCENT) ((1884) D1130	114 188 /90100/
-	-	•	NS-35	٤.٤	5.81	34.0	11	22	19	\$-0	10
-	-	-	си	8. AC	1.45	6.82	36	87	92	01-5	
-	-	03 C	HD CH	8.44	2°82	0.01	07	0\$	01	\$1-01	
-	-	- 65°2	HJ CH	8'14	2.10	0.001	60	45	L	12-20	
-	-	-	אר אר	48	٦	-	-	-	-	01-5	20
-		-	าม	46	•	-	-	-	-	\$1-01	
-	-	11.6	່າວ	1.01	2.01	£.05	-	-	-	12-50	
-	-	-	KS	1.2	6'91	0.11	21	81	01	§-0	£0
-	-	-	CH CH	6.84	6.12	0.61	14	9C	. SI	01-5	
-	-	-	CH CH	2.00	36.6	8.62	9C	64	° C L	\$1-01	
-	-	-	er CH	y. ea	9.12	0.17	10	05	£1	02-51	
-	-	-	сг жя	2.5	2.91	4'BI	51	90	\$\$	S-O	90
-	-	-	-	2. 41	5°91	2.10	12	64	00	01-5	
-	-	-	10	-	-	-	41	41	99	\$1-01	
-	-	-	HS	an 6'EZ	0.11	1.20	20	10	15	12-20	
-	-	-	NS	ادل. ادل	-	-	30	22	85	5-0	\$0
	-	-	80		-	-	81	<i>L</i> 1	59	01-5	
-	-	-	CH	0.51	0.51	34 '0	-12	41	29	\$1-01	
6.61	6.99	-	CH	1.52	6.81	0.17	14	96	41	02-51	
0.81	5.111	-	CN	0.C8 8.SSI	0.25.0	0.801	64	07	<i>L</i> 1	-	(D)
\$.05	0.101	09.2	CN	0' 26 0' 771	A.81	2"141		05	<i>L</i> 1	-	(1) ¹
-	-	-	CL	2,81	8.21 8.21	0'511	\$\$	24	E .	-	(D ^C
-	-	-	CH	9.1C	6.25	0.50	-	- ·	-	\$9	91-T
-	-	-	СИ	0.651	C. 25	5.12	05	64	L	152	
-	-					5.841	-	-	-	081	
	-	-	DS-MB	-	-	-	0	s	S6	82-510(5) COHLOSTIE	
1.24	8'511	21.5	[m-[]	-	-	-	sc	14	91	82-510 CONLOSSIZ	

(1) These samples are Test Pits (2) Sample tested before sosking. (3) Sample tested siter sosking 16 hours.

INOTO ZA

TABLE 2

CATION EXCHANGE CAPACITY AND EXCHANGEABLE CATION TEST RESULTS

		UNTREATED SAMPLES			TREATED SAMPLES ⁽¹⁾			
	UNITS		TEST PIT		TEST PIT	TEST PIT 3	BORING 103	
PARAMETER	UNIIS							
pH (1:1)	-	8.35	7.40	7.60	2.30	2.35	1.70	
Buffer pH	-	NA	NA	NA	2.28	2.20	2.15	
Exchangeable:						/	50 0	
H	meq/100g	0	0	0	56.6	57.6	58.2	
Ca	meq/100g	19.5	21.1	25.8	12.3	13.5	18.7	
Mg	meq/100g	4.3	4.9	15.4	17.0	20.3	17.8	
Na	meq/100g	20.0	28.0	6.5	3.7	6.5	2.6	
K	meq/100g	1.2	2.5	0.6	0.8	1.6	0.5	
Cation Exchange Capacity (CEC)	meq/100g	45	56	48	90	100	98	

(1) Samples soaked in simulated tailings liquid for 48 hours before testing. (2) Represents triplicate results.

DAPOLONL

TABLE 3

X-RAY DIFFRACTION SEMI-QUANTITATIVE RESULTS

SAMPLE	QUARTZ	ANDESINE	MONTMORILLONITE	ILLITE	MIXED LAYER
	50%+	-5%	10-25%	10-25%	5-10%
Test Pit 2	50%+	5-10%	10-25%	10-25%	5-10%
Test Pit 3 Boring 101 (15'-20' Depth)	50%+	5-10%	25-50%	T ra ce	-5%

DAT OLONL

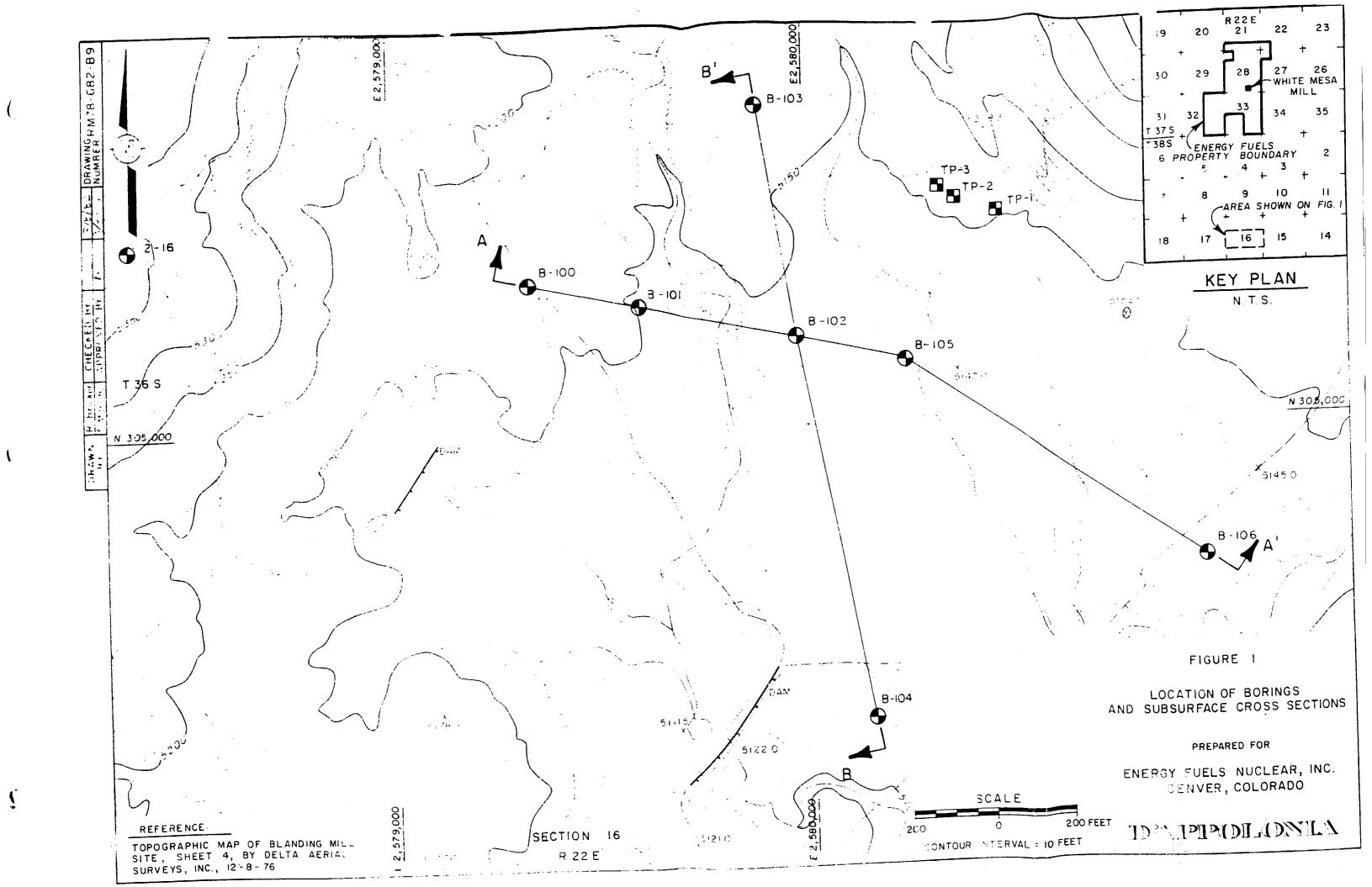
TABLE 4

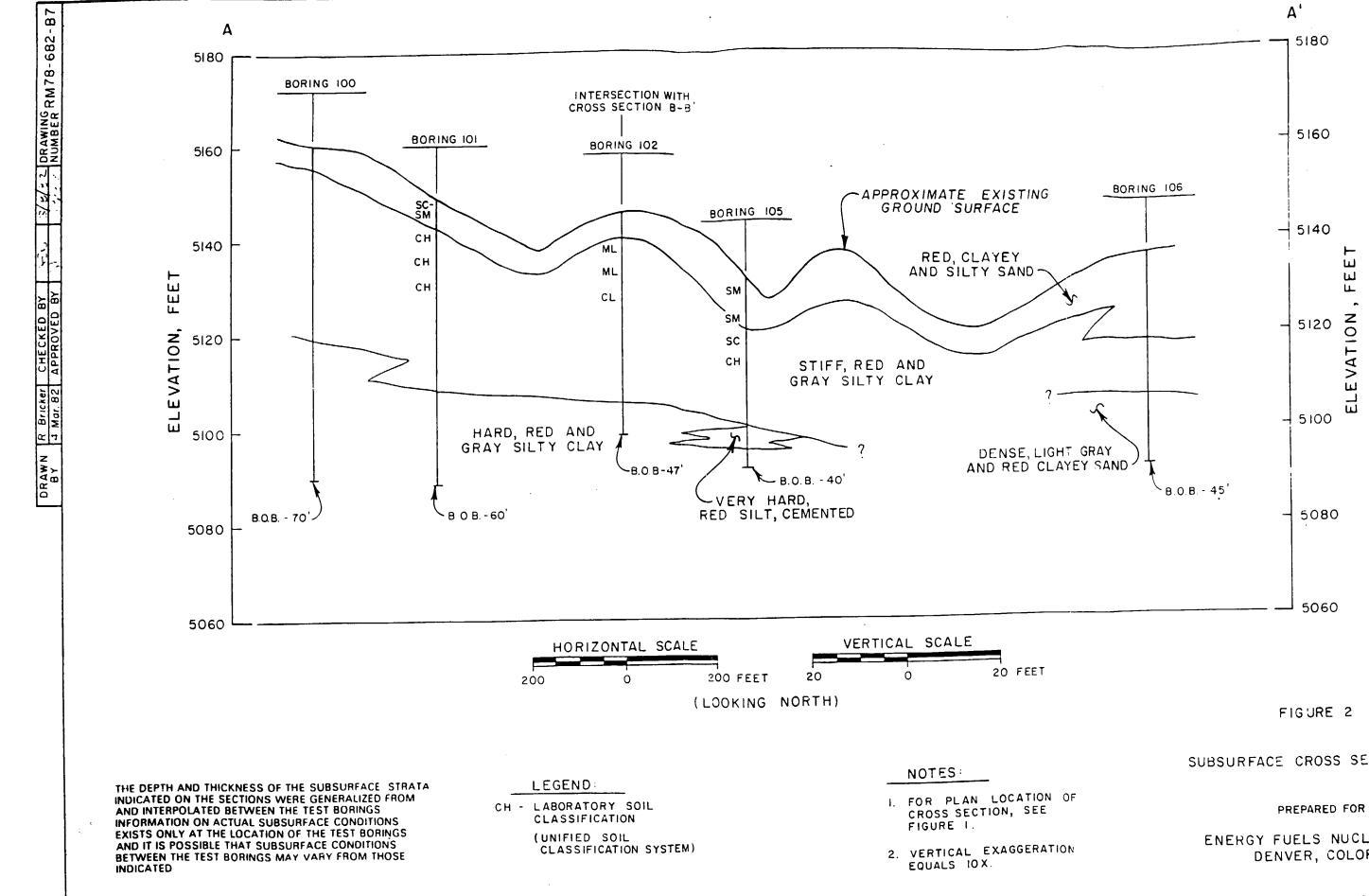
PERMEABILITY TEST RESULTS

BORING/ TEST PIT	SAMPLE DEPTH (FEET)	INITIAL Dry density (PCF)	CONDITIONS WATER CONTENT (PERCENT)	COEFFICIENTS OF WITH DISTILLED WATER (CM/SEC)	PERMEABILITY WITH TAILINGS LIQUID (CM/SEC)
103	0-25	116.7	13.3	1.2×10^{-9}	9.4 x 10^{-10}
101	0-25	117.5	14.6	5.2 x 10^{-10}	7.5×10^{-10}
2	_	110.7	14.7	4.7×10^{-10}	2.3×10^{-10}
2-16	85-210	101	15	-	1.0×10^{-10}
2-16	85-210	110	15	-	5.5 x 10^{-10}

LONIA

Soil Sampling and Testing Program - White Mesa Mill

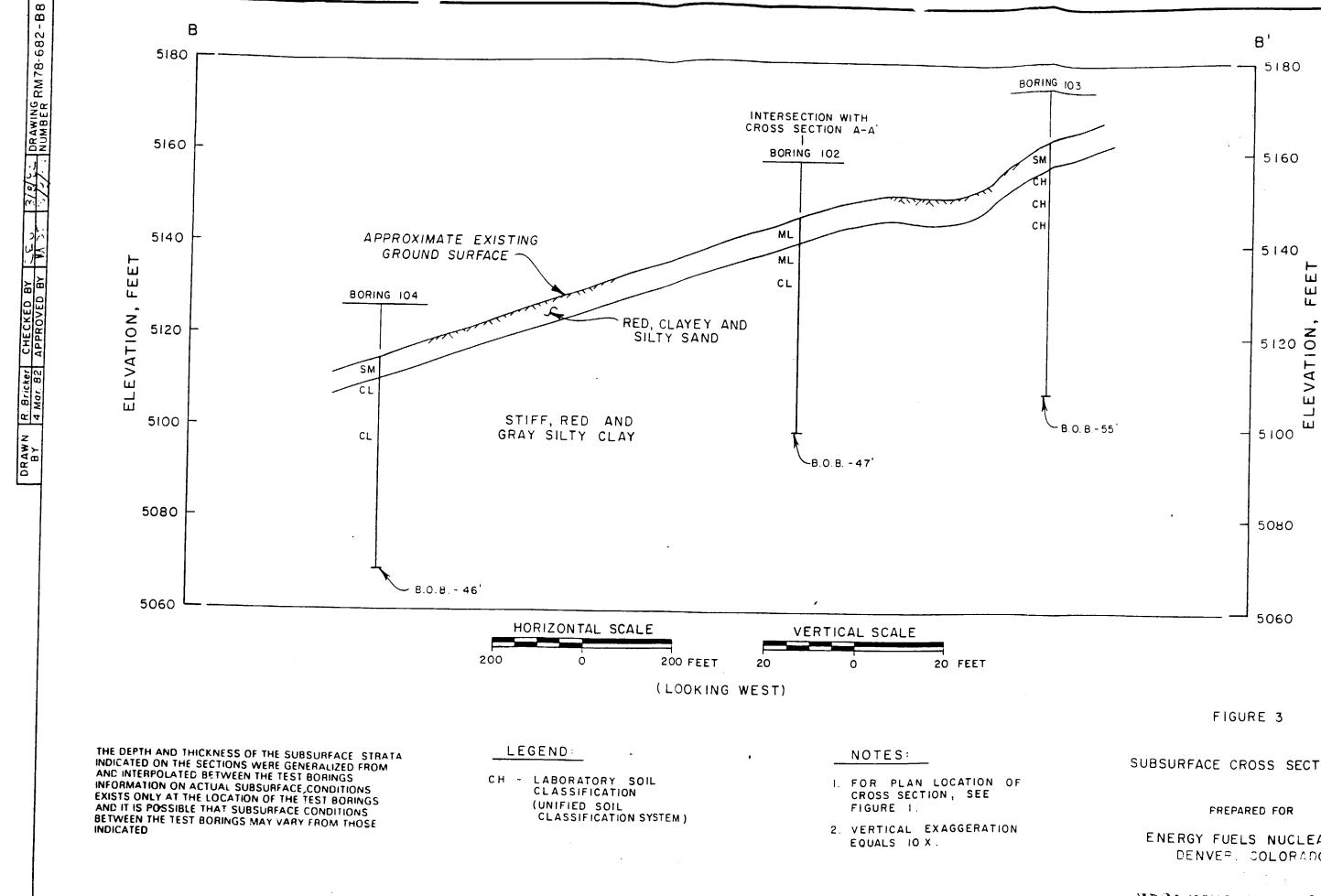

The purpose of this Soil Sampling and Testing Program is to verify the soil classification, gradation and compaction characteristics (standard proctor) of the stockpiled random fill and clay materials that will be used for cover materials on the tailings cells at the White Mesa Mill. Additionally this program will verify the compaction characteristics and gradation of the random fill materials utilized in the platform fill previously placed on Cells 2 and 3.


Sampling

Sampling will take place on each of six stockpiles of random fill (designated RF-1 through RF-6 on Exhibit A), two clay material stockpiles (C-1 and C-2 on Exhibit A), and on platform fill areas in Cells 2 & 3. A total of 9 samples will be taken from the random fill stockpiles. Two (2) samples will be taken from the clay stockpiles and three (3) samples will be taken from the covered areas of the cells. Samples will be taken from test pits excavated by a backhoe. Samples will be taken from a depth of 8 feet in stockpiles and from 2 foot depth in cells. One backhoe bucket full of material will be taken from the test pit at the specified depth and dumped separately. This sample will be quartered and one quarter will be screened to minus 2" (rocks over 8" will be removed prior to screening). Two five gallon sample buckets will be filled with sample randomly selected from the screened fraction. Oversized material remaining after the screening of the sample will be visually classified and then weighed. Sample locations will be indicated on a site map and sample descriptions will recorded and maintained in the facility's records. A total of fourteen samples will be submitted for testing during this program.

Testing

Samples will be packaged and shipped to a certified commercial testing laboratory for testing. Tests will be run on each sample for standard proctor (ASTM D698), particle size analysis (ASTM C117 and ASTM C136), soil classification (ASTM D2487) and plasticity index (Atterberg limits ASTM D4318).



:

ID: APPPOLIDNIA

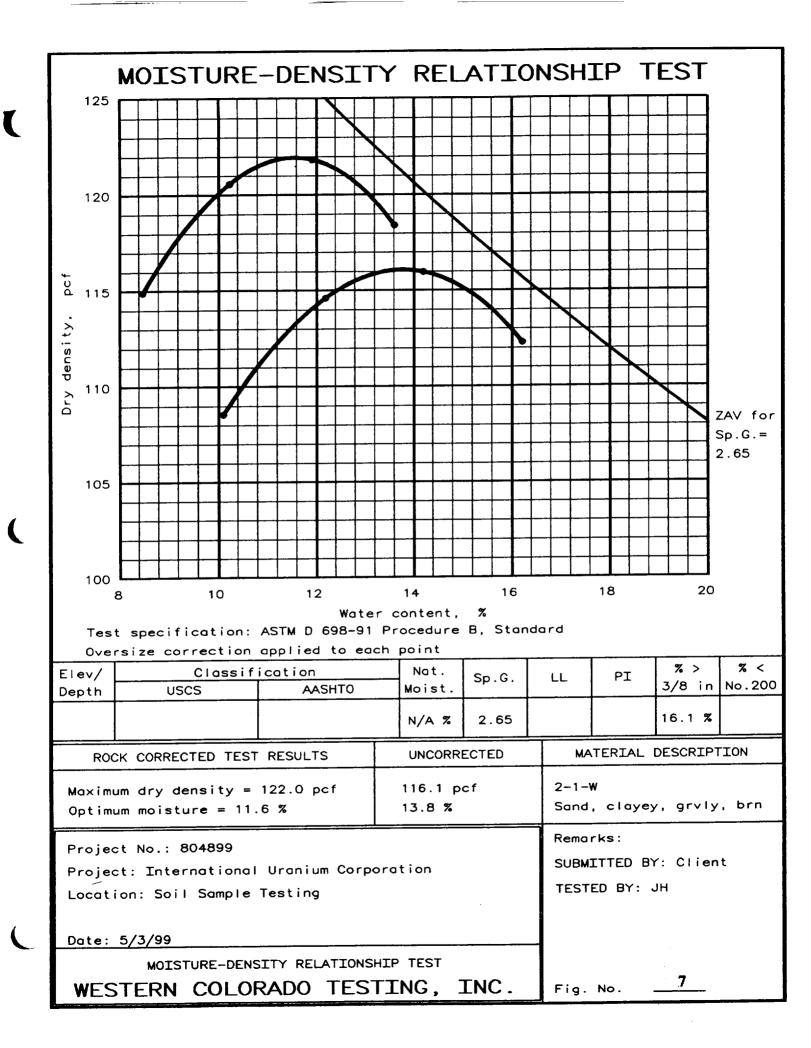
ENERGY FUELS NUCLEAR, INC. DENVER, COLORADO

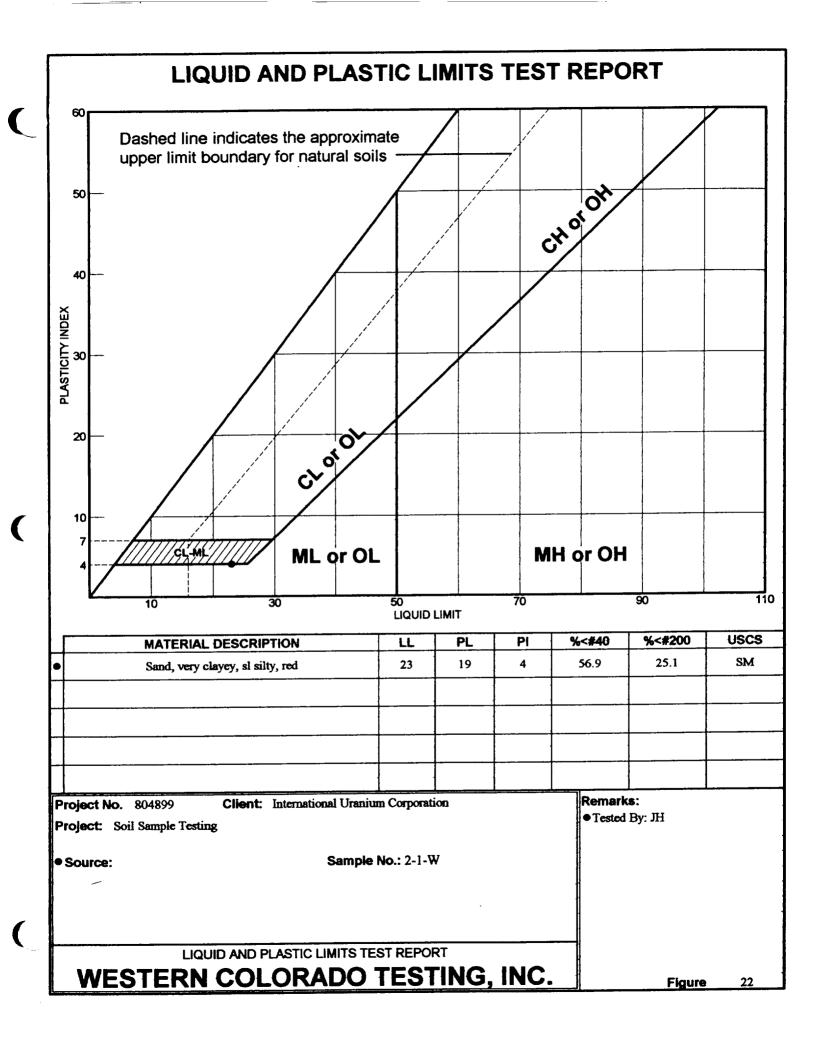
SUBSURFACE CROSS SECTION A-A

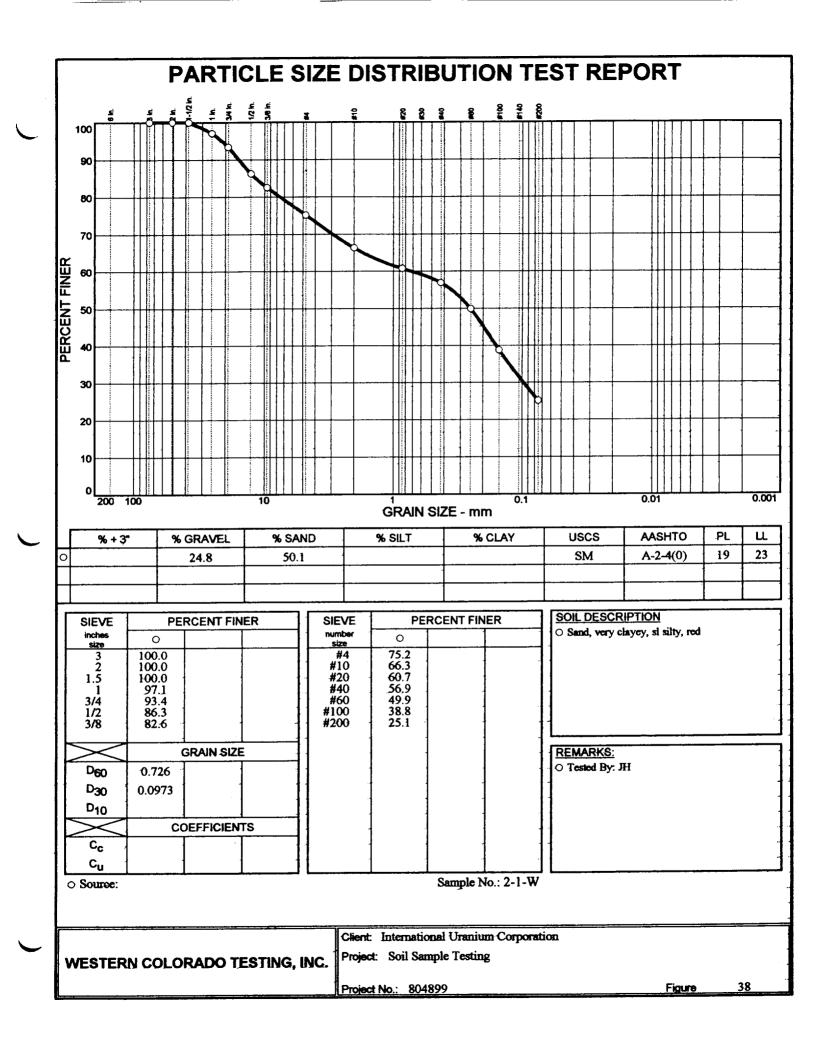
19 1253 HERCULENE AND SMITH CO POH PA

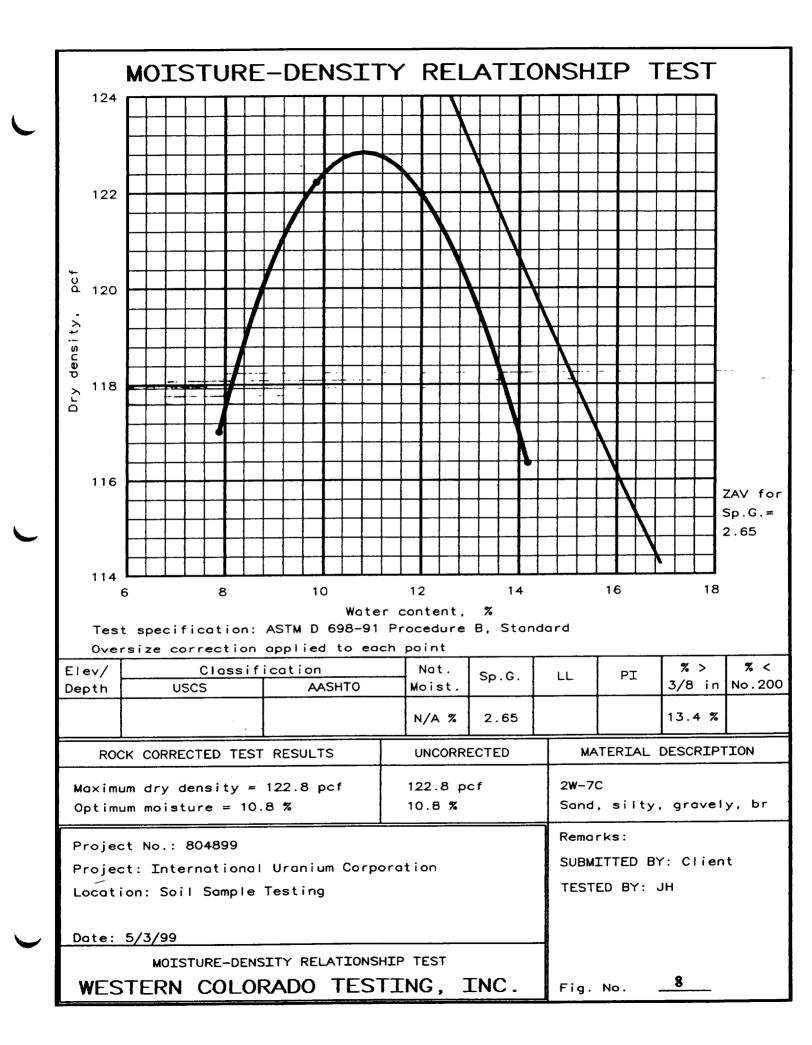
IDAIPIP(DEADNLA

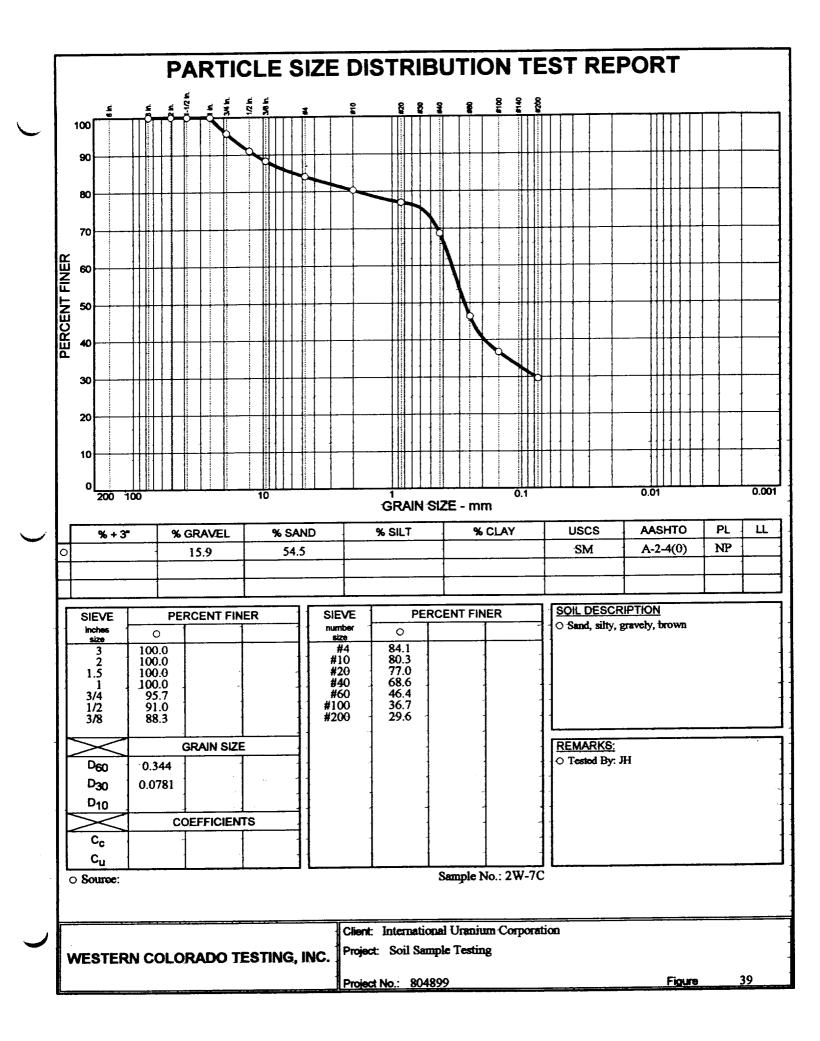
ENERGY FUELS NUCLEAR, INC. DENVER, COLORADO

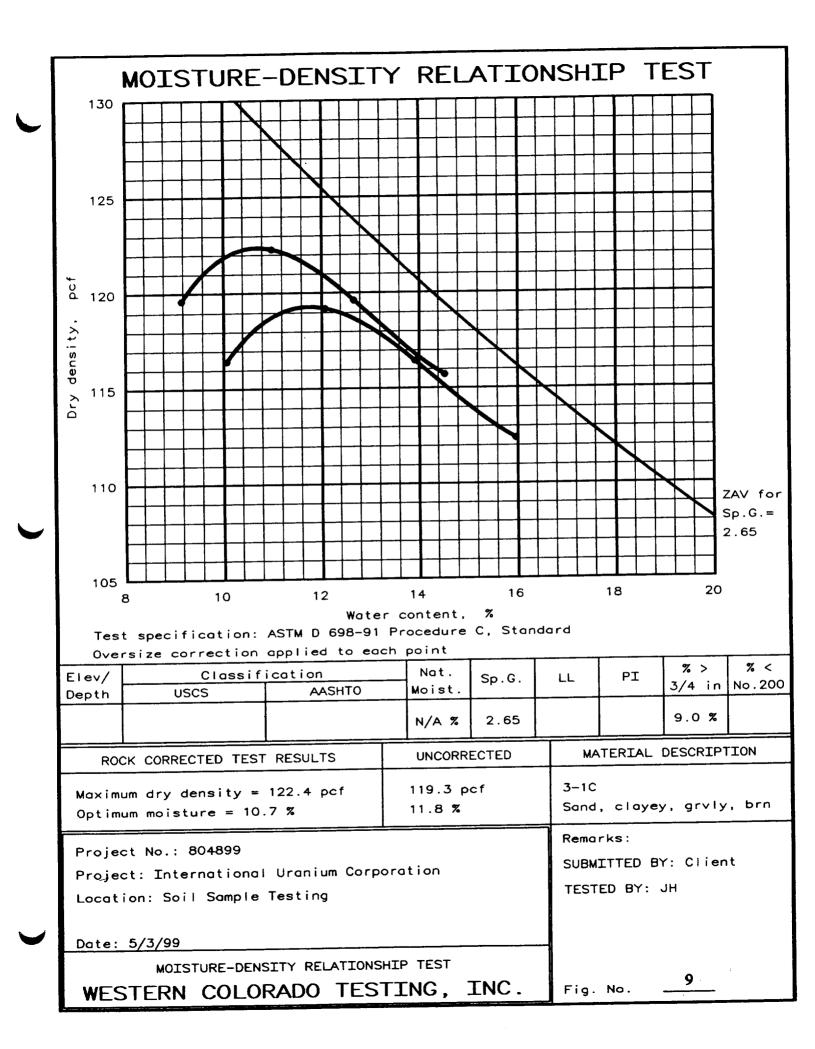

SUBSURFACE CROSS SECTION B-B

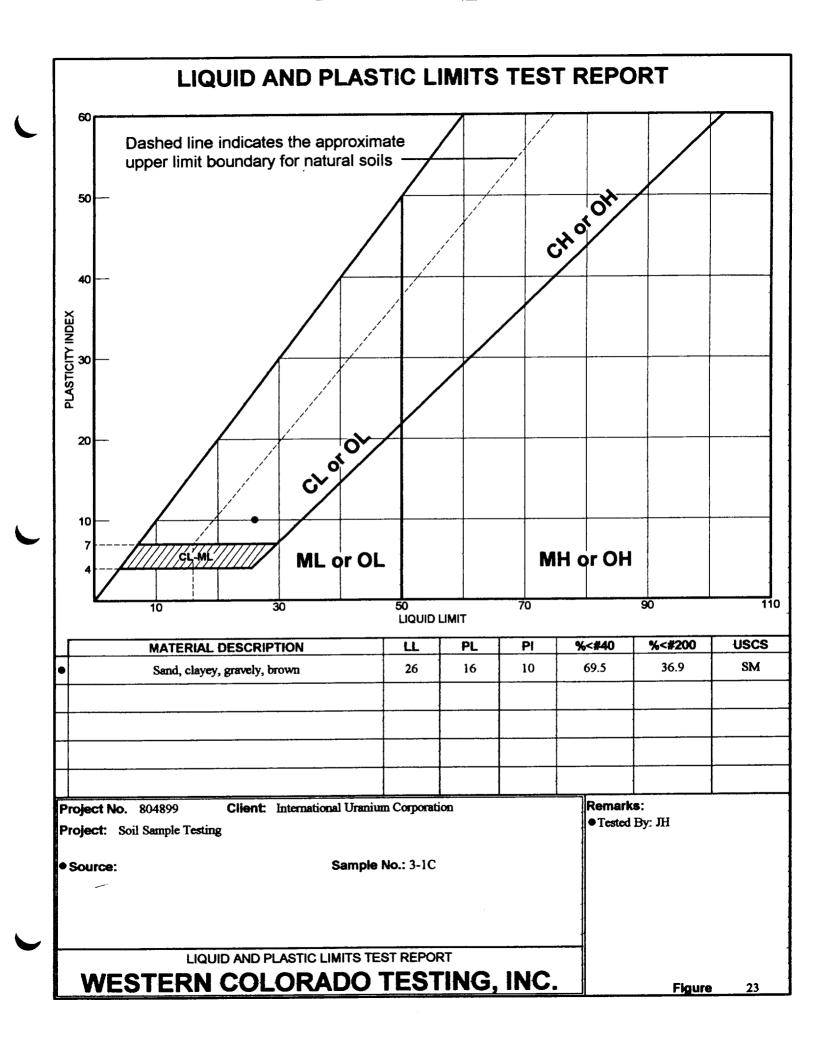

.

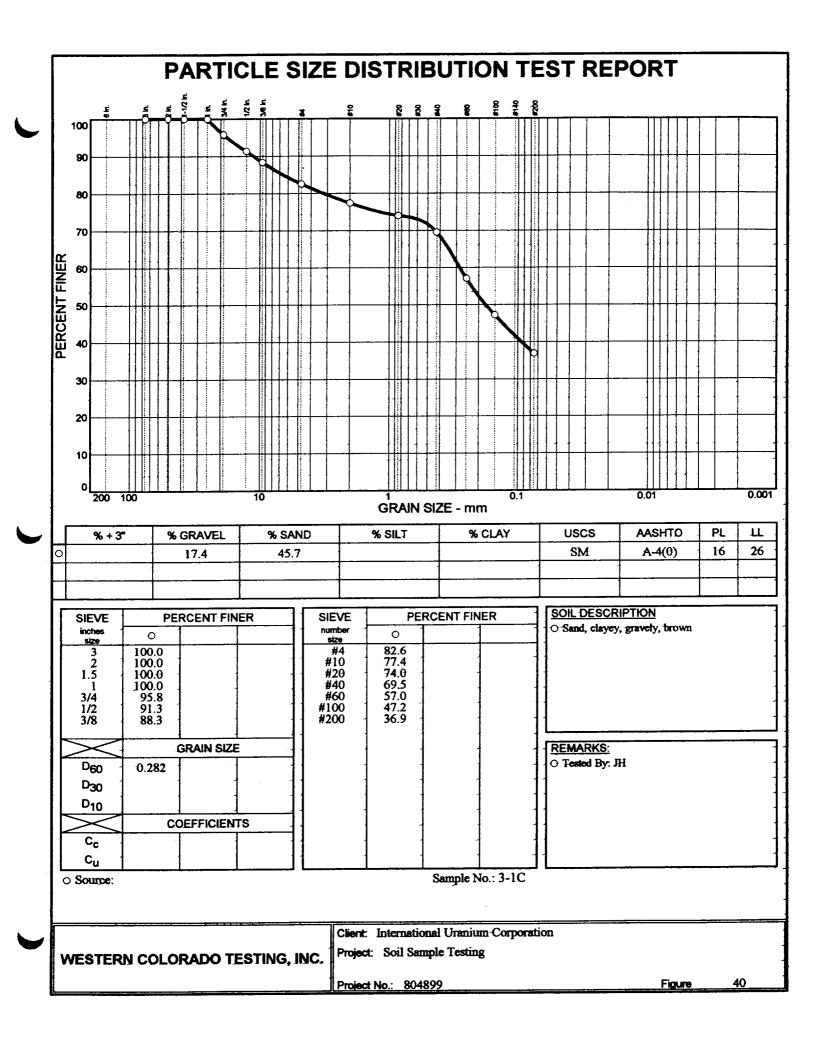

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: EXHIBIT A: SOIL SAMPLING AND TESTING PROGRAM SAMPLE AND STOCKPILE LOCATIONS

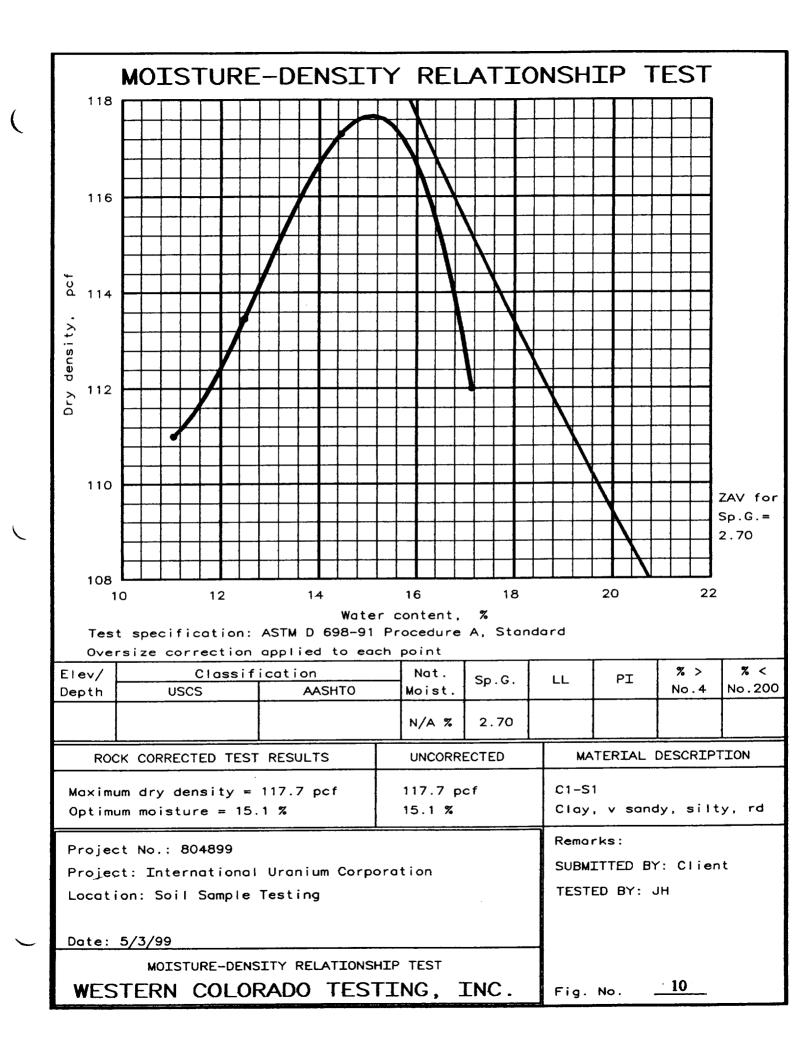

WITHIN THIS PACKAGE...OR, BY SEARCHING USING THE DRAWING NUMBER: EXHIBIT A

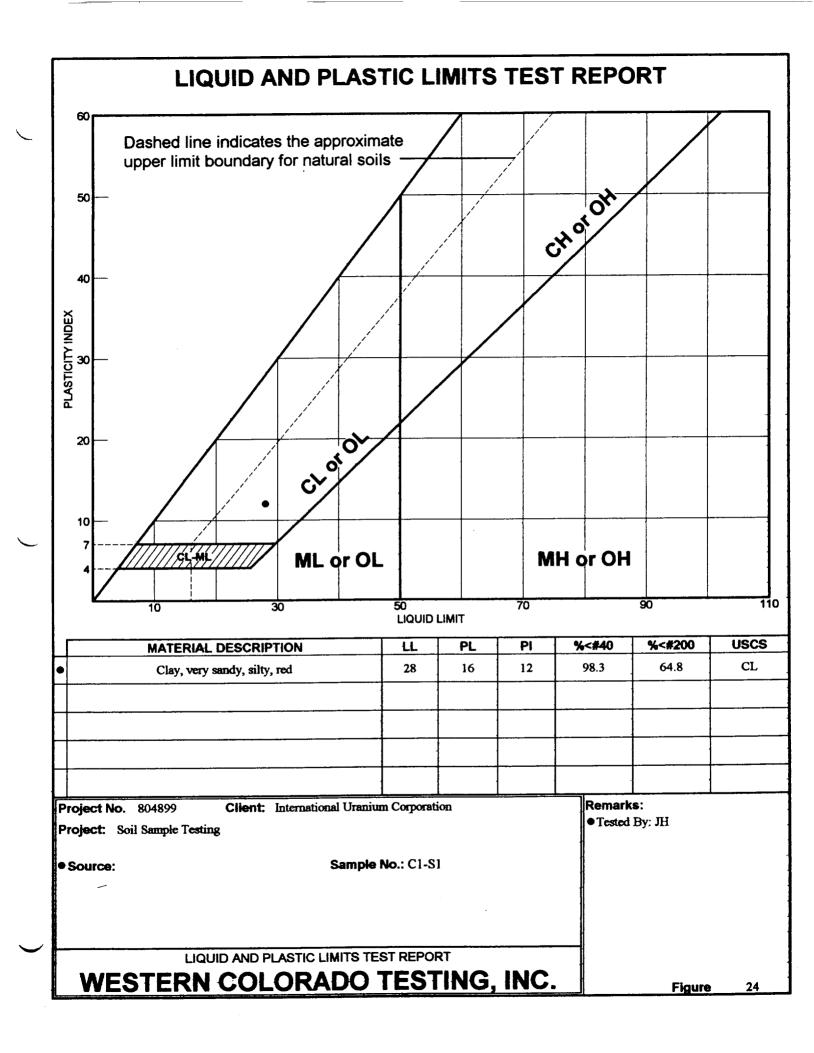

NOTE: Because of this page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

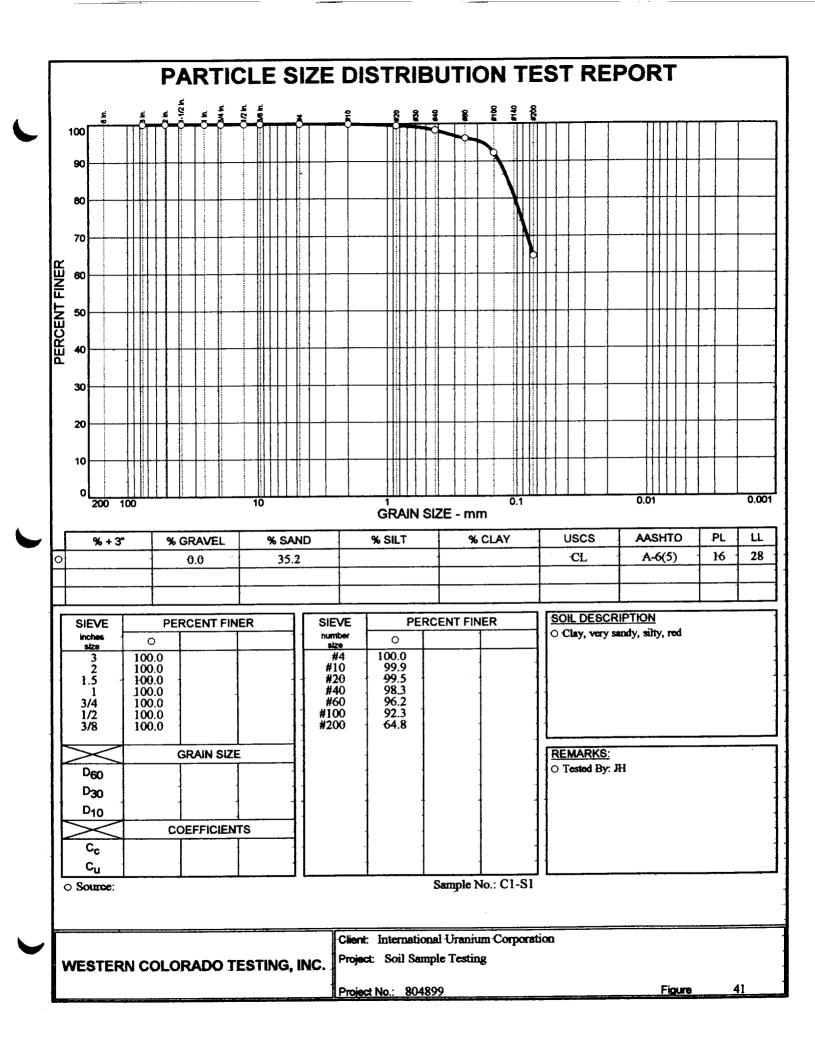


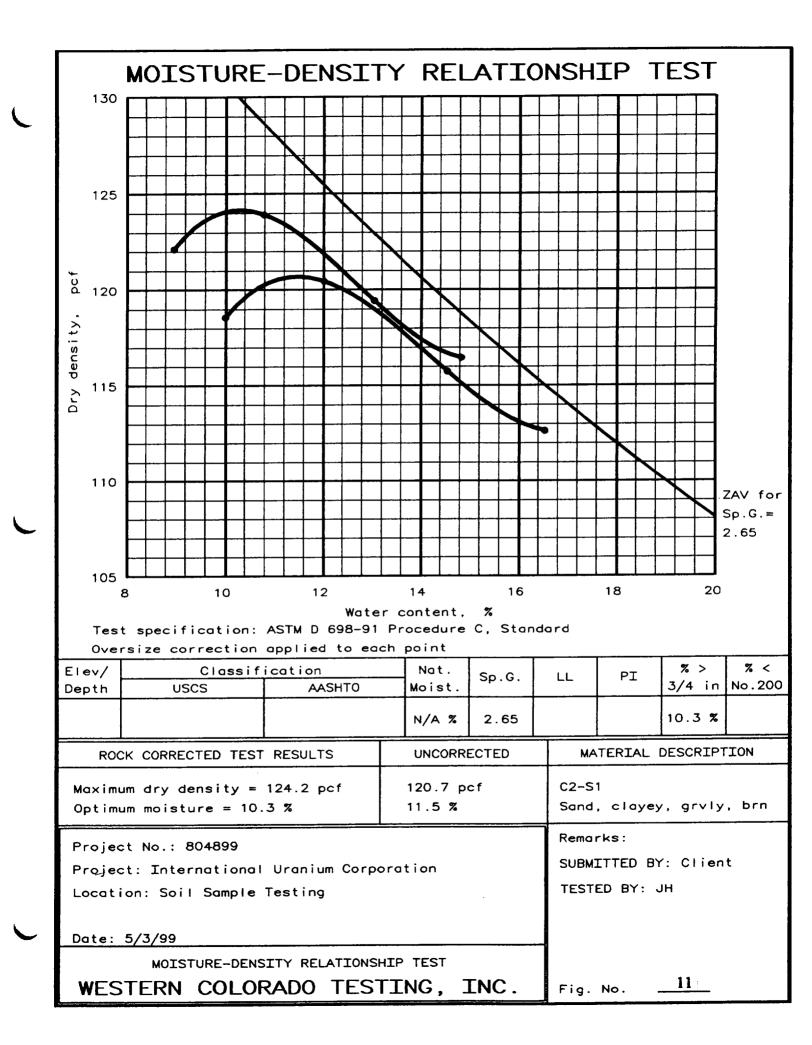


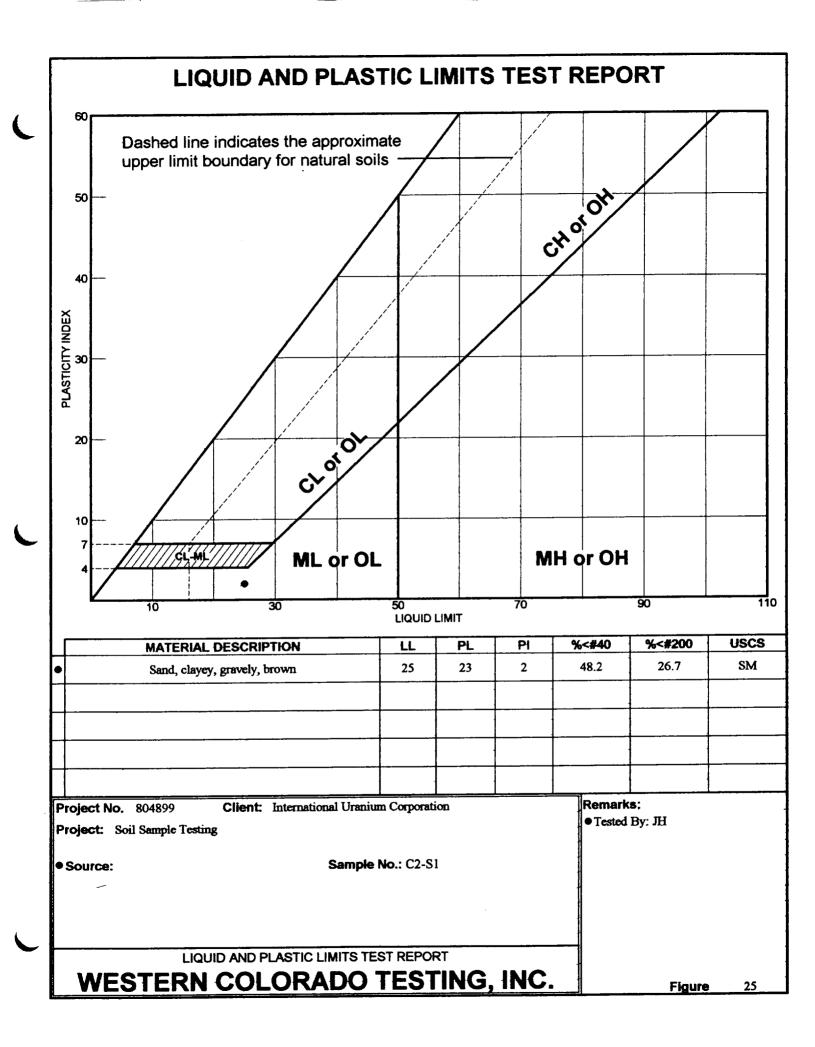


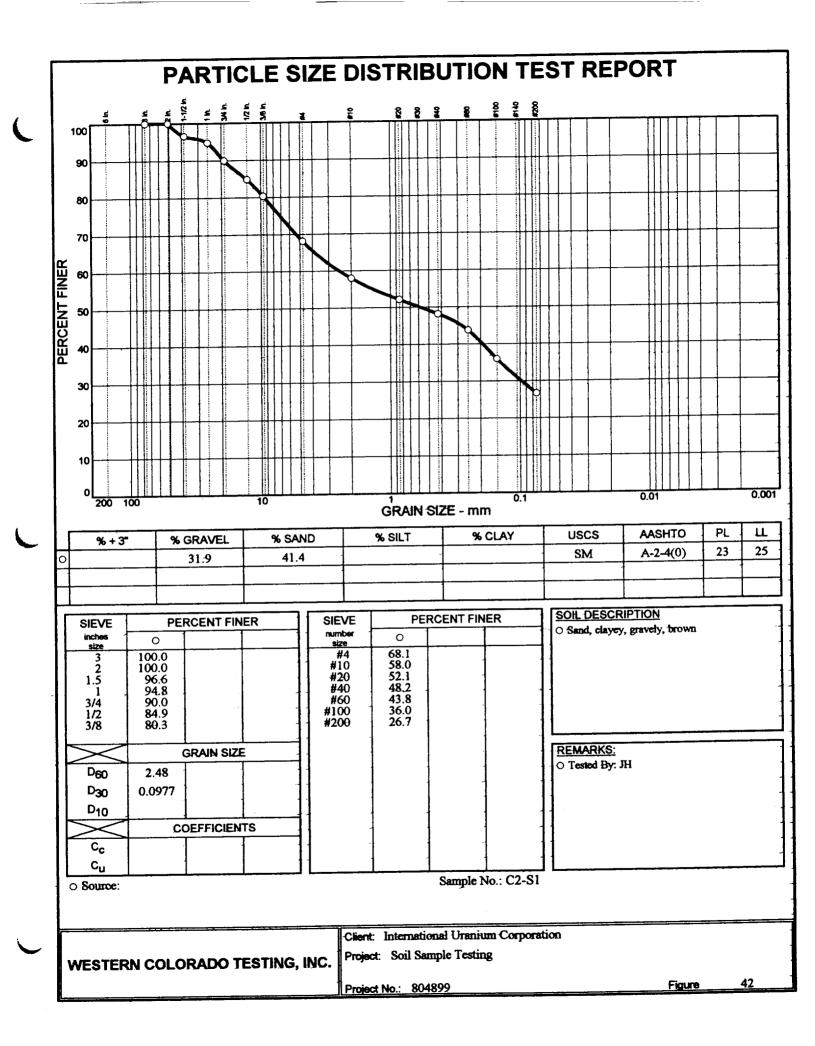


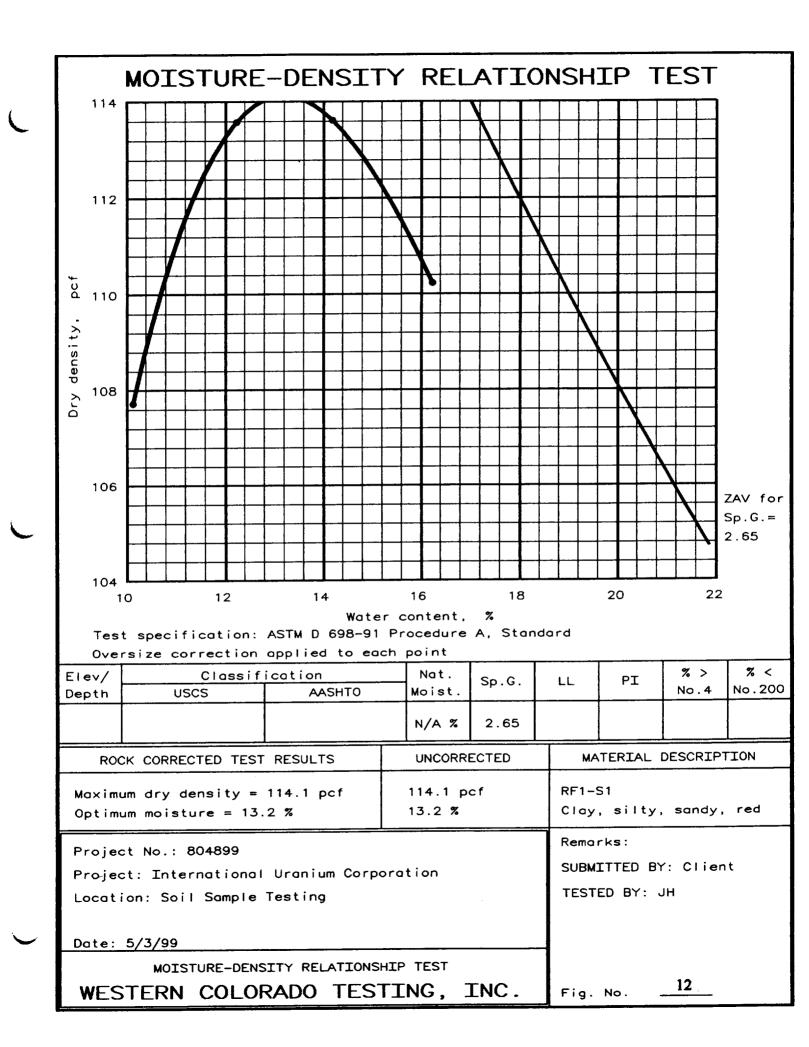


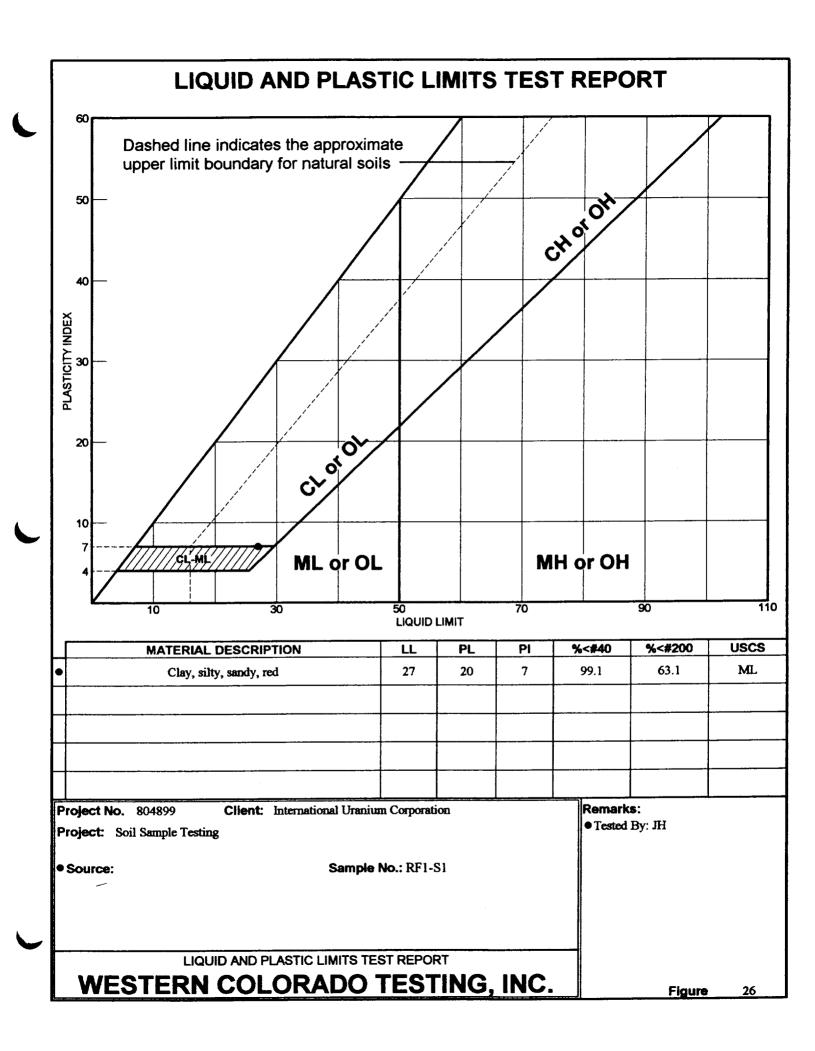


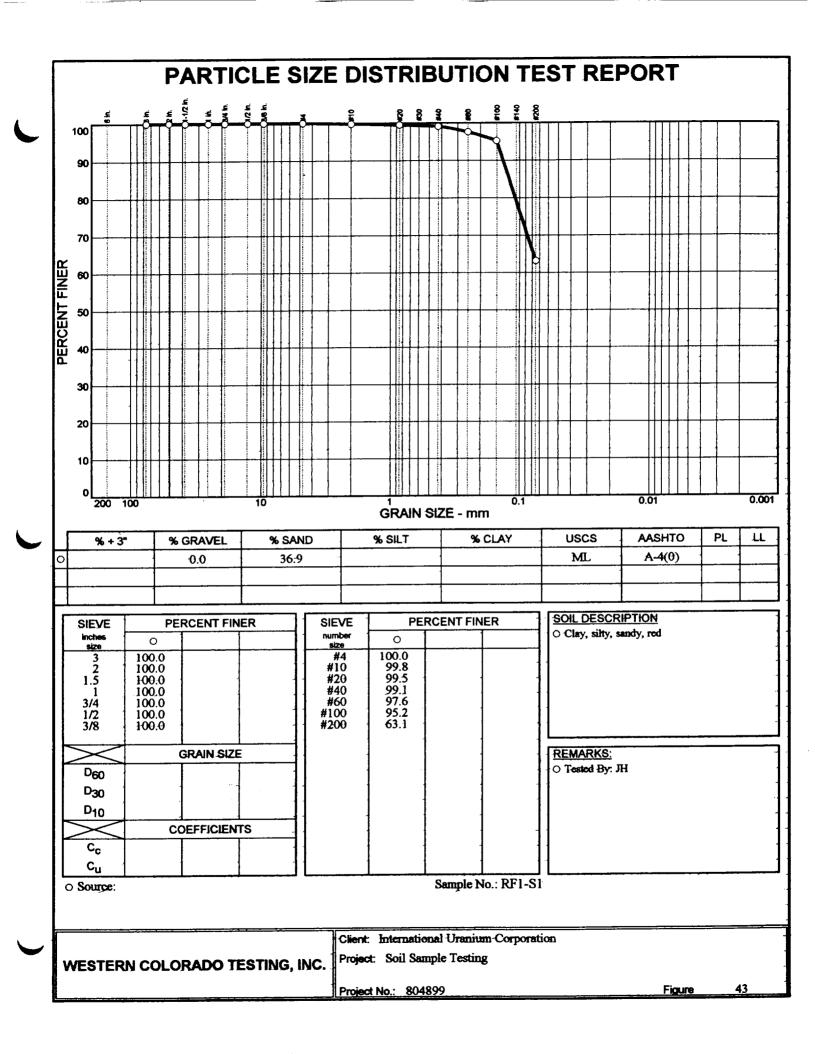


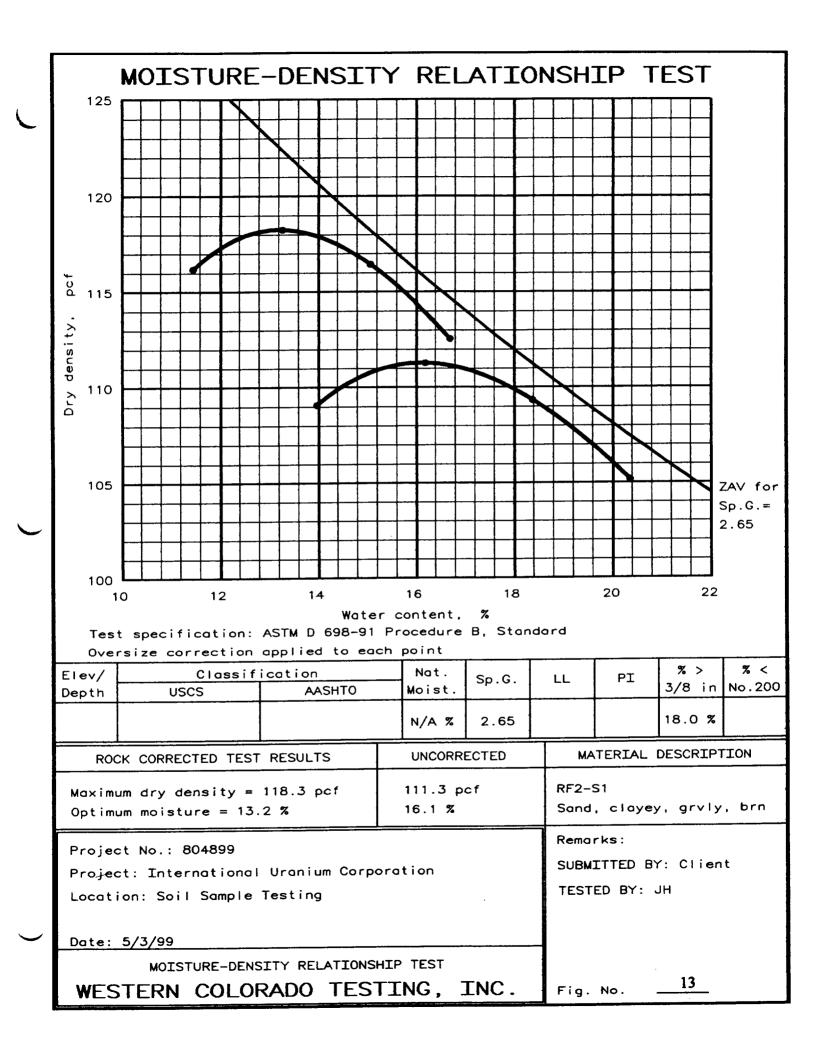


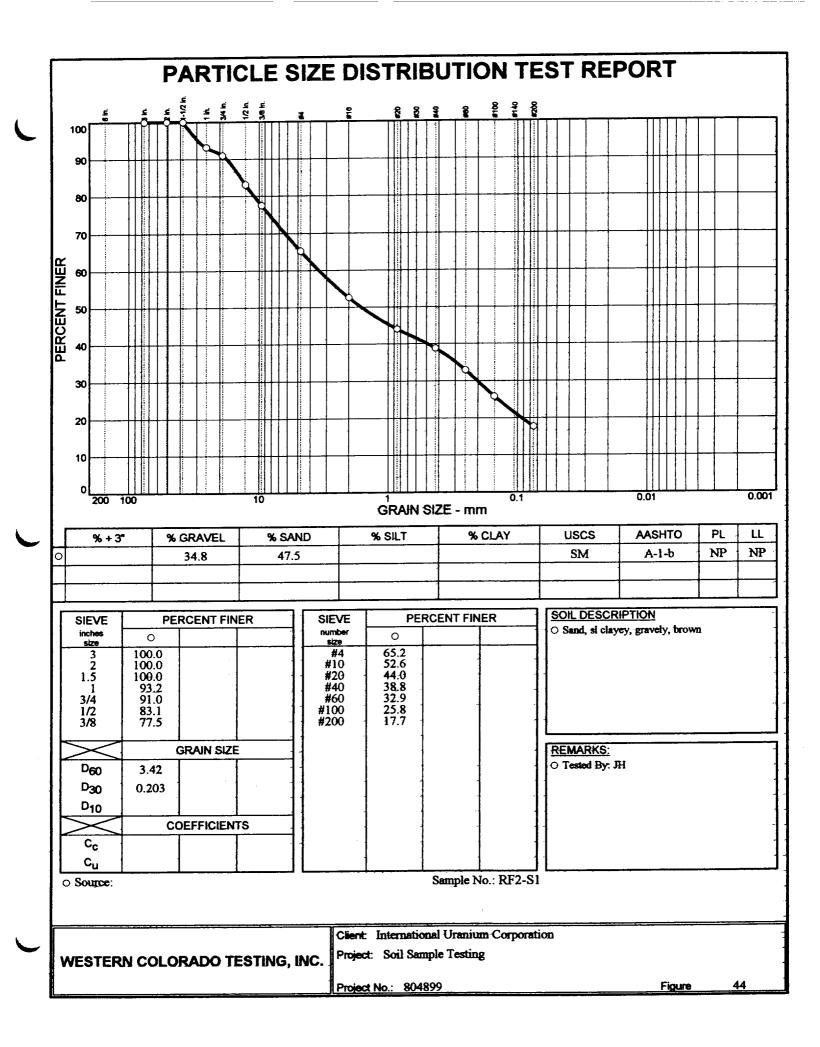


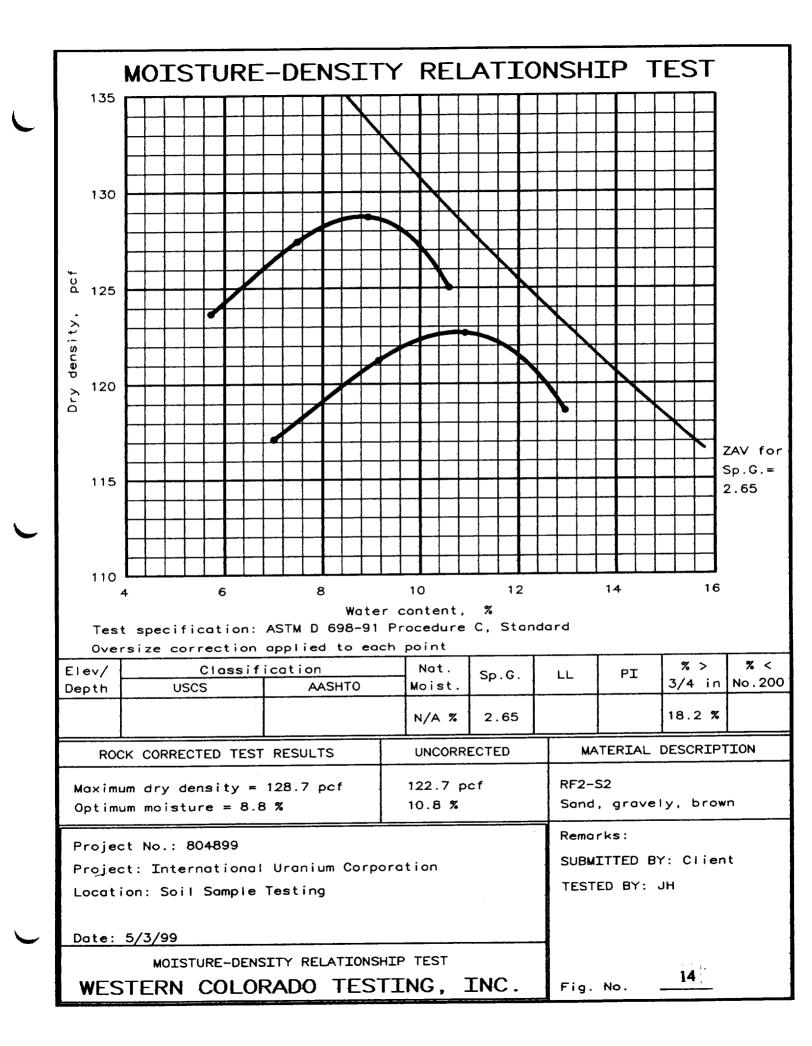


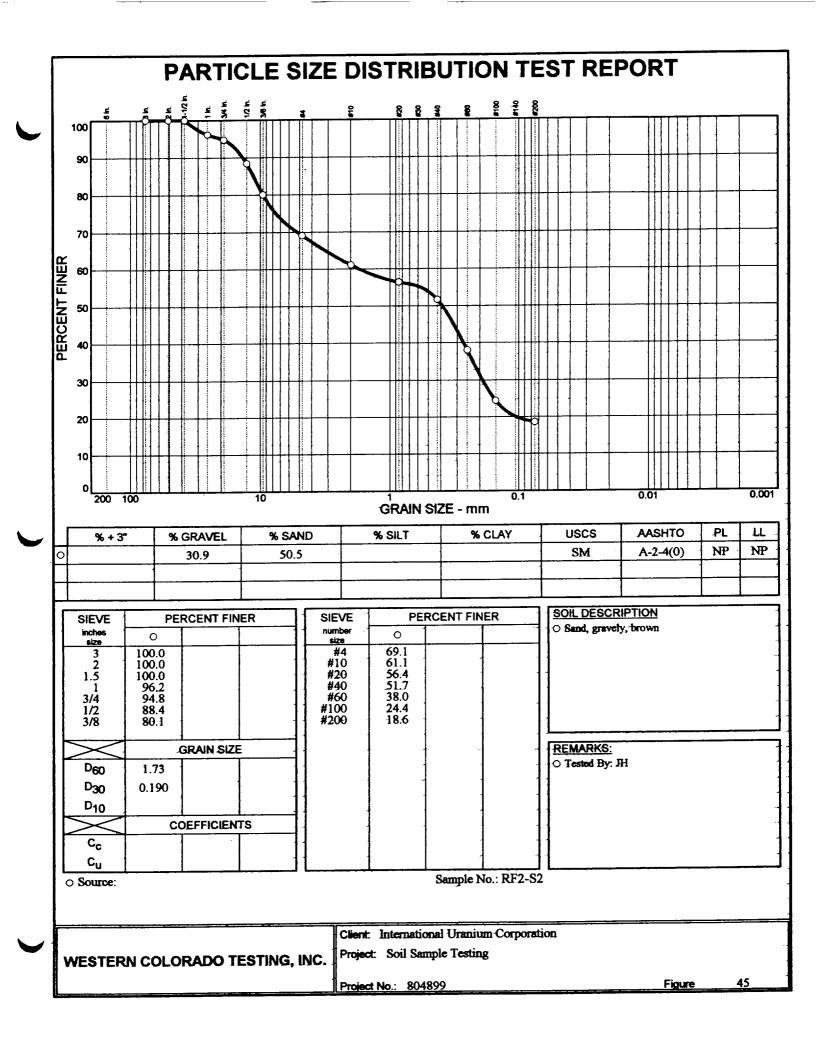


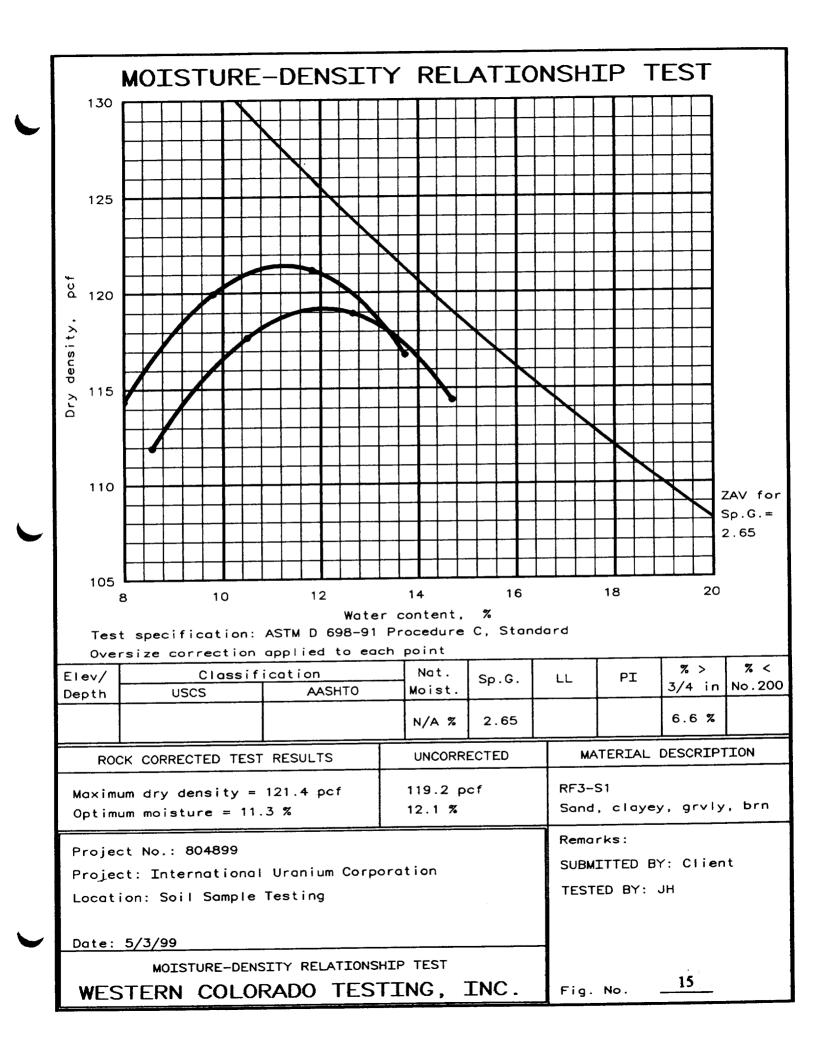


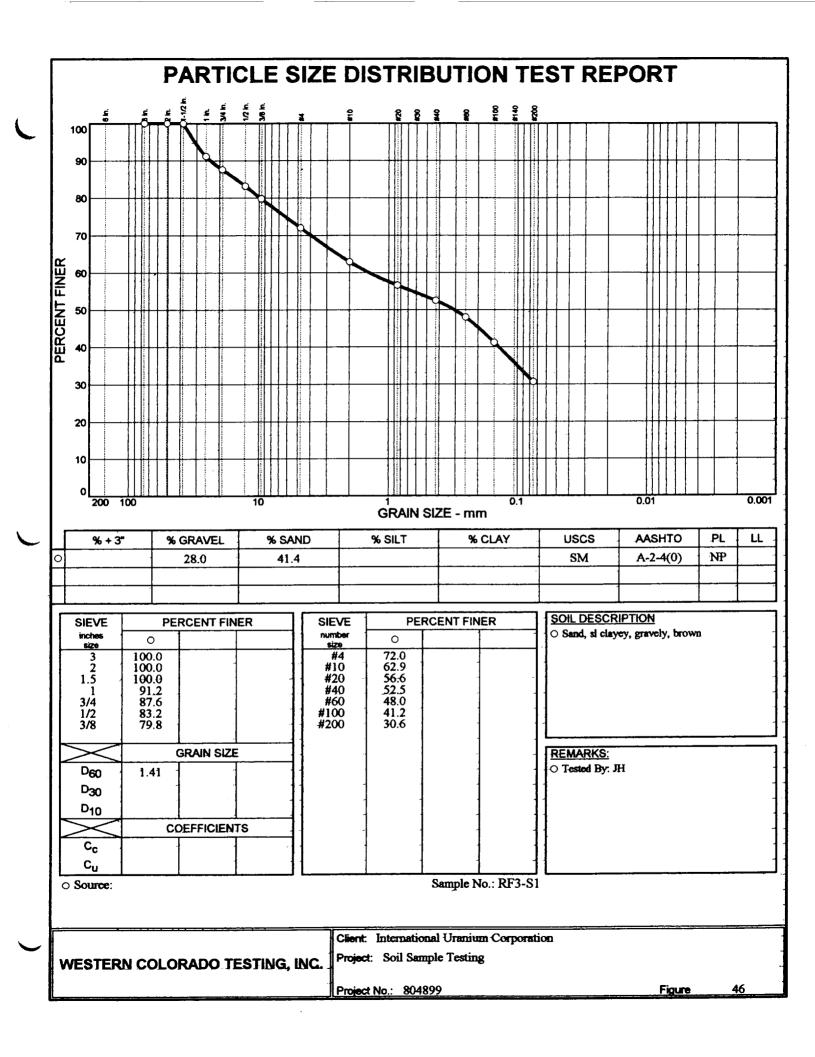


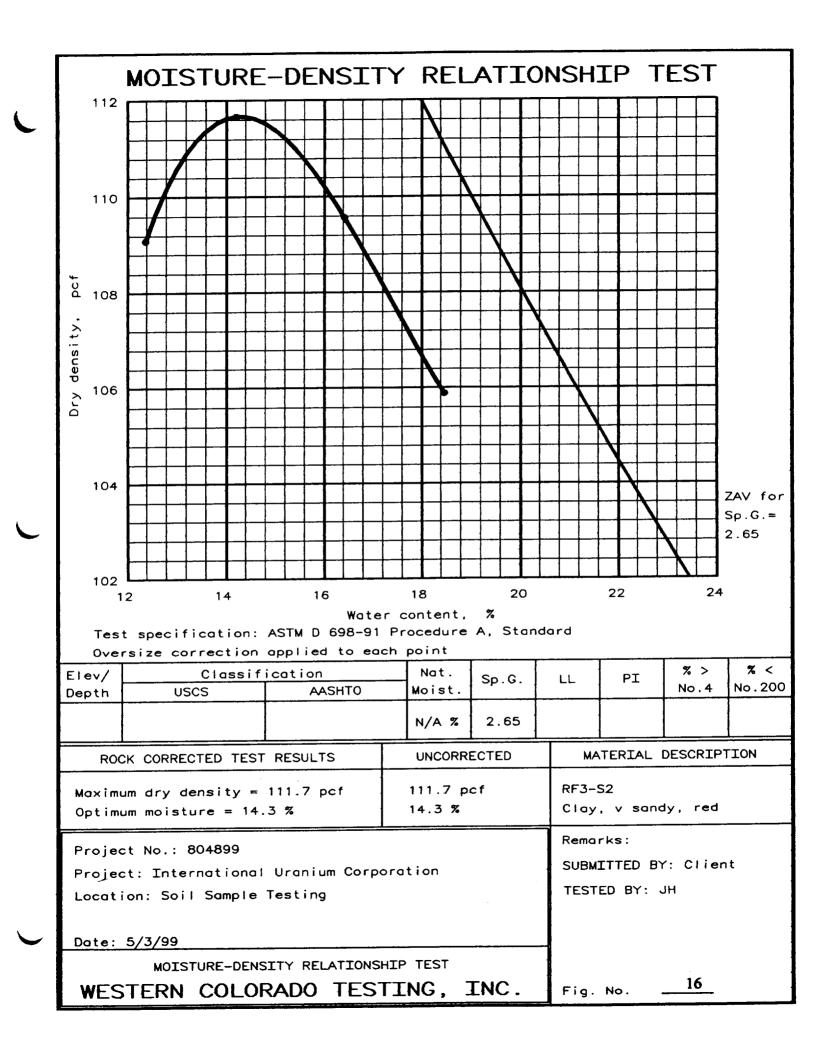


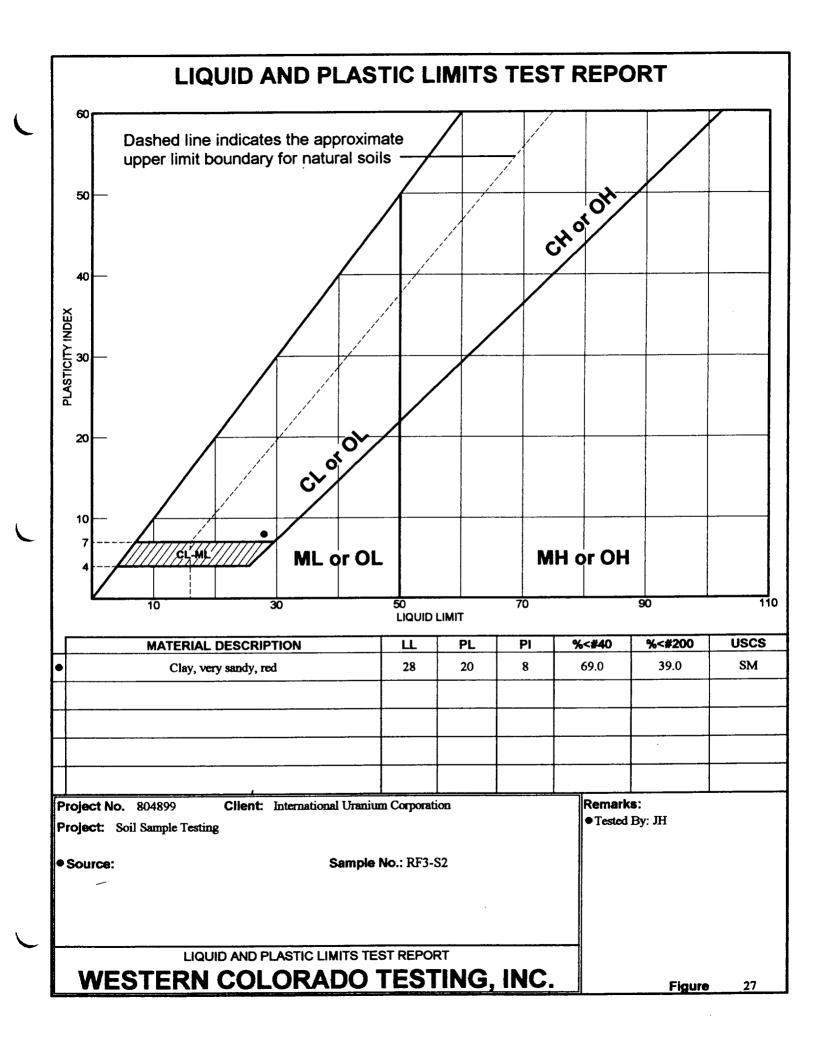


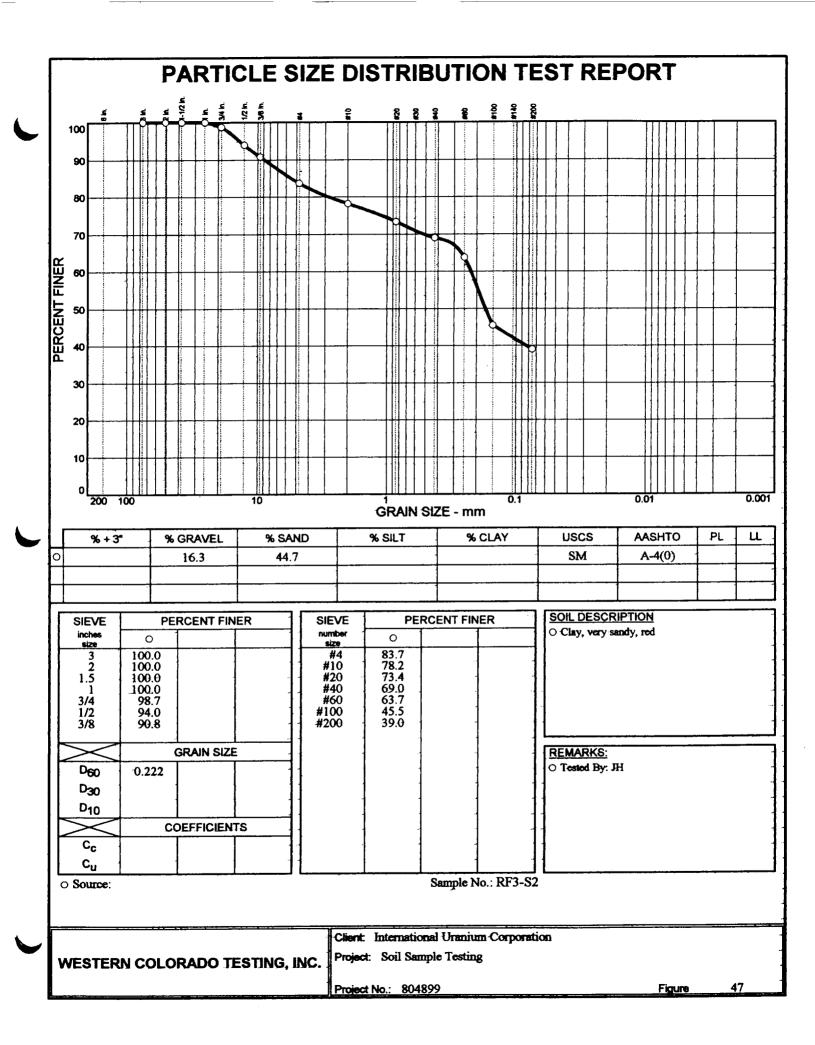


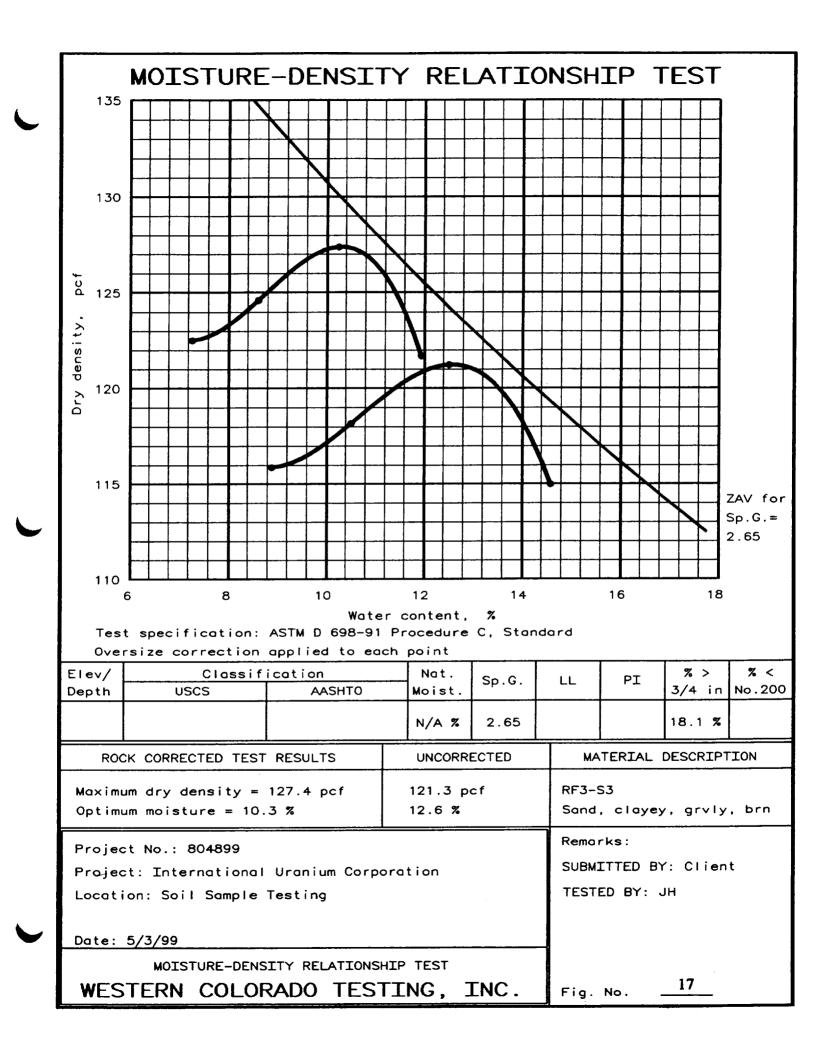


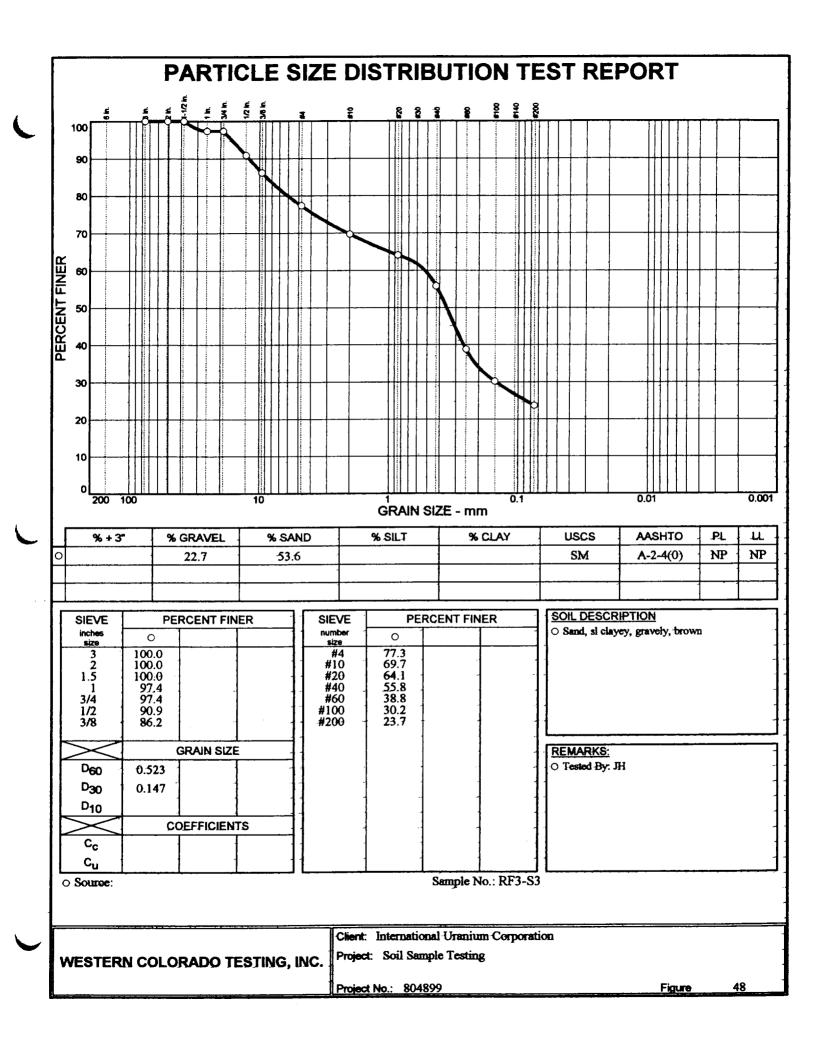


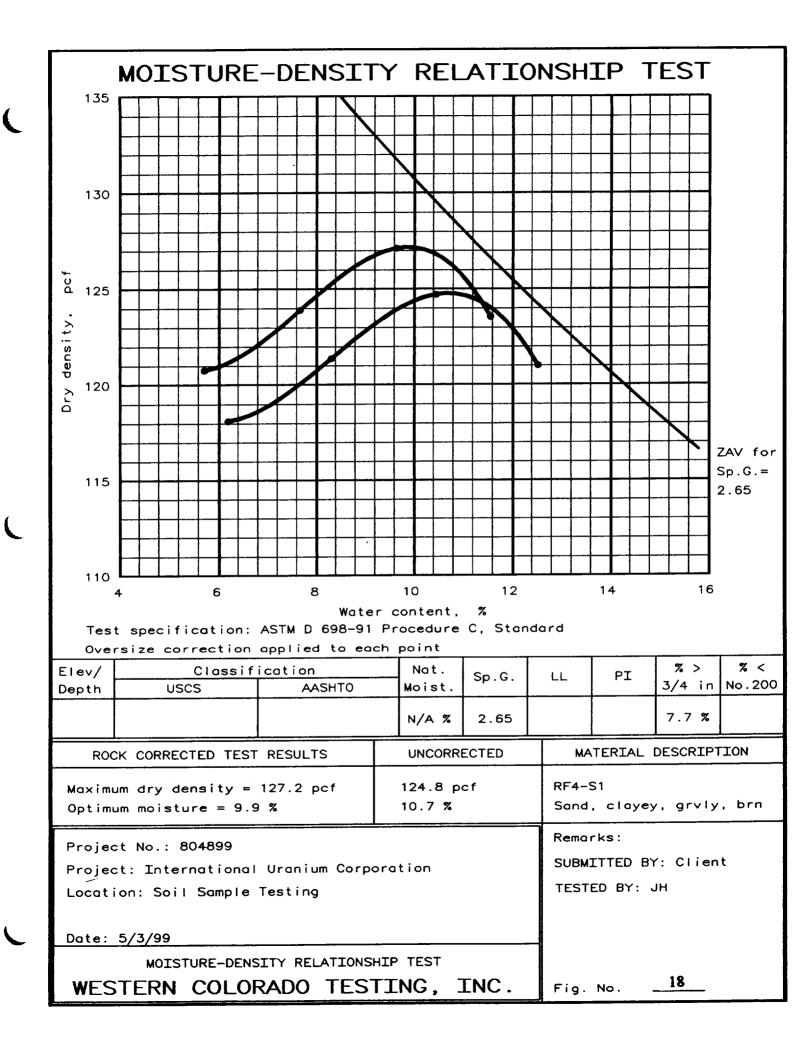


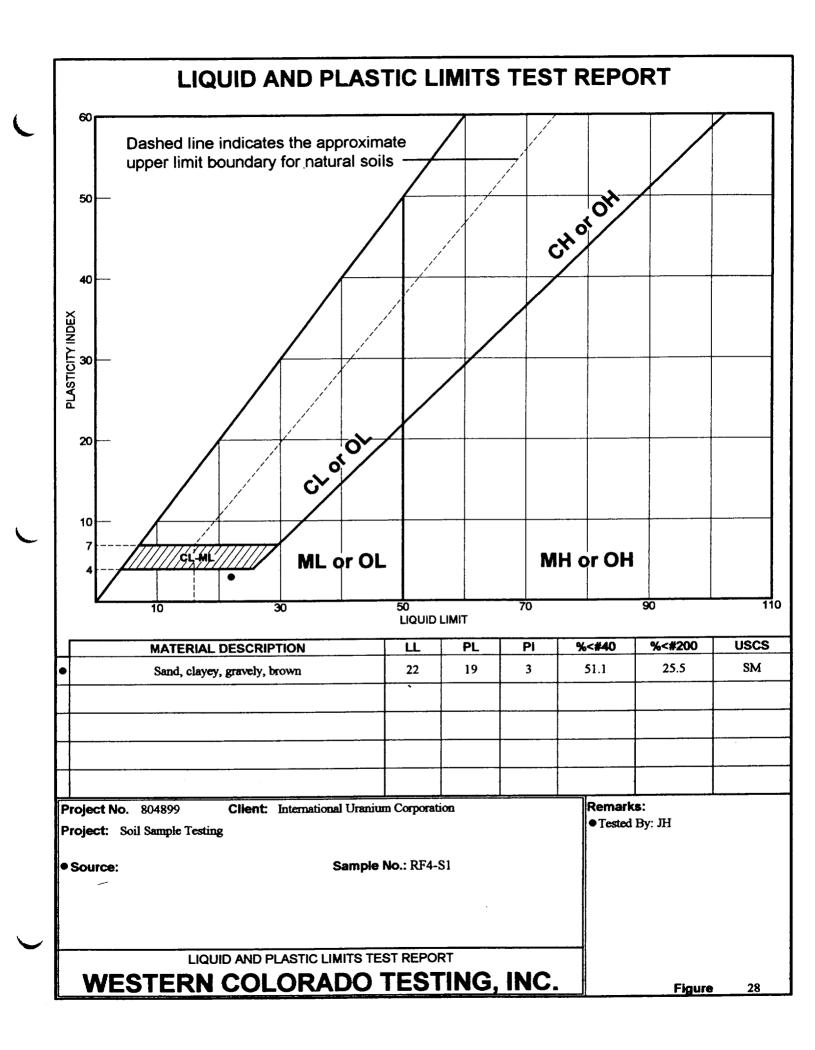


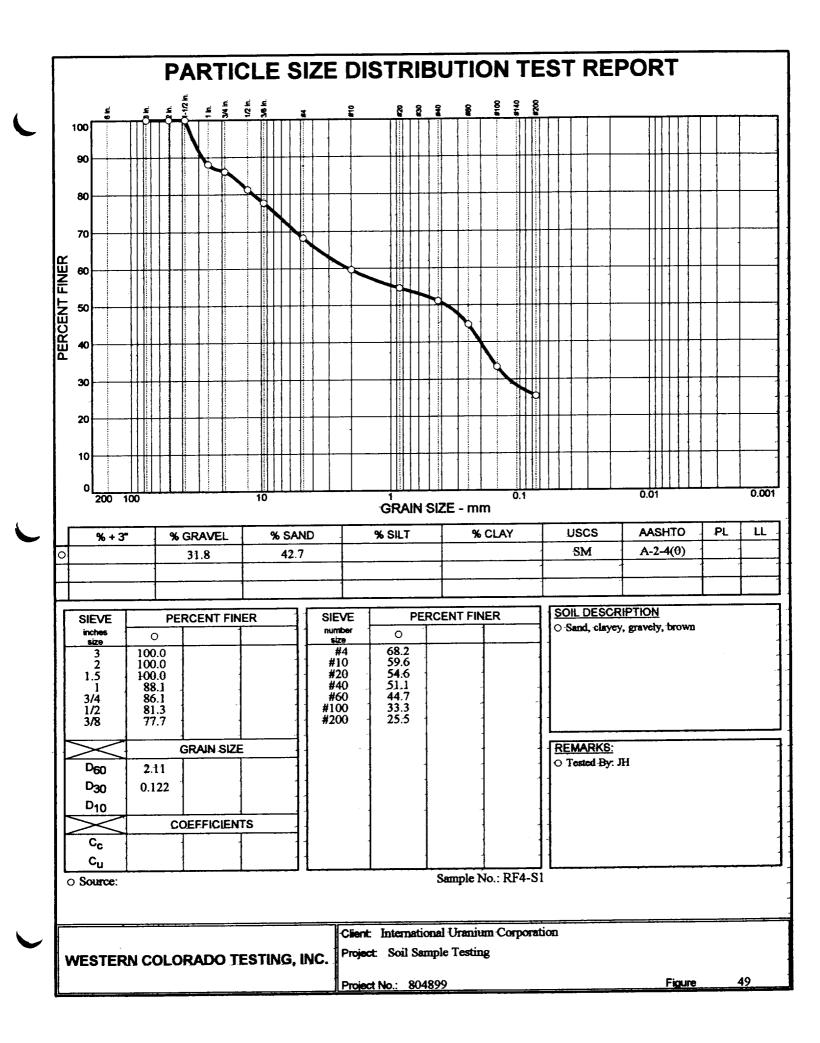


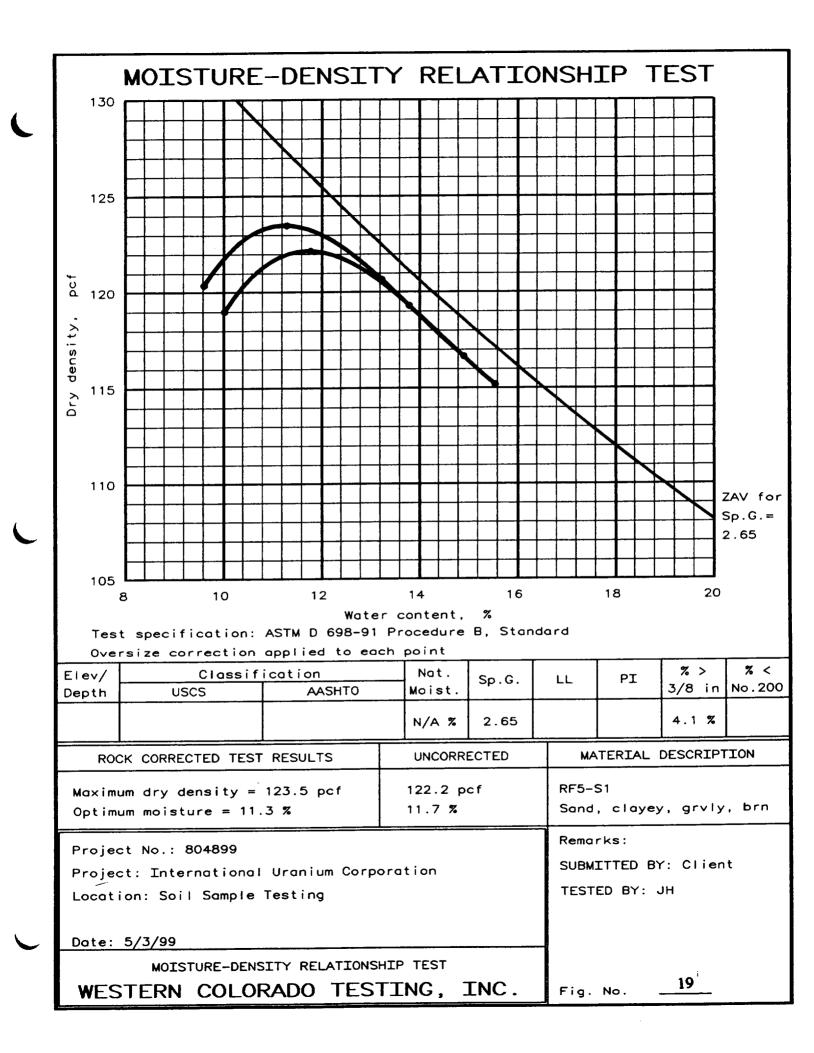


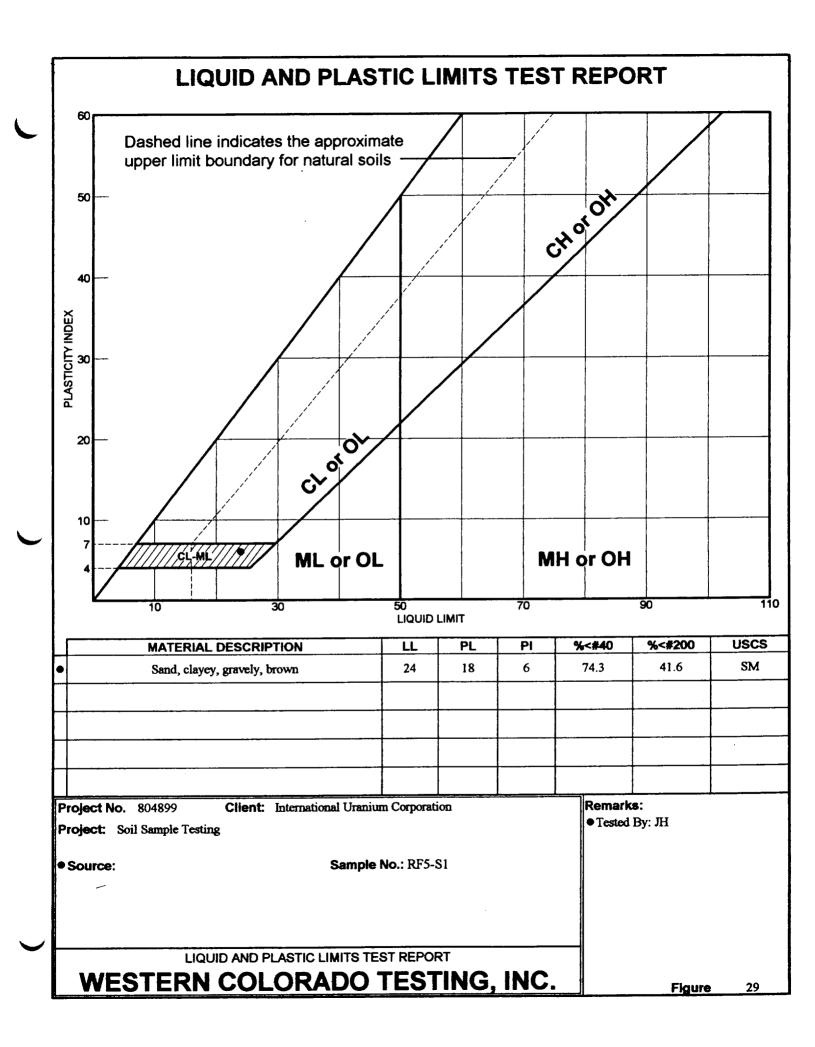


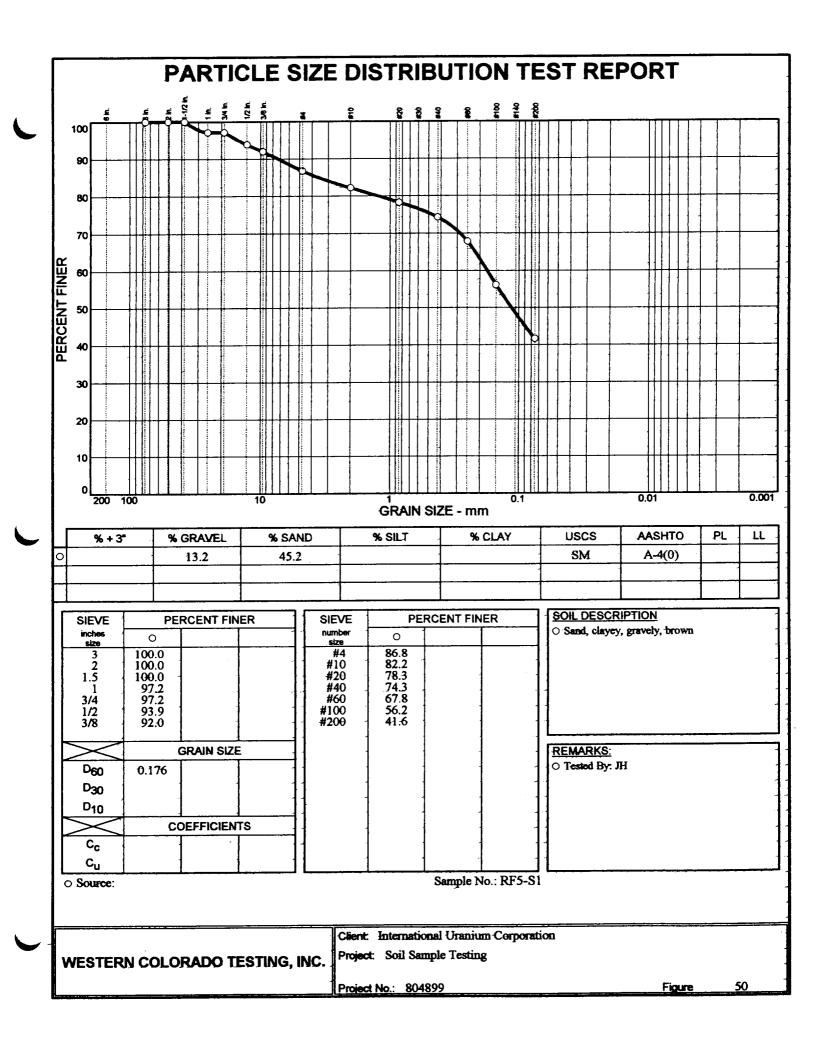


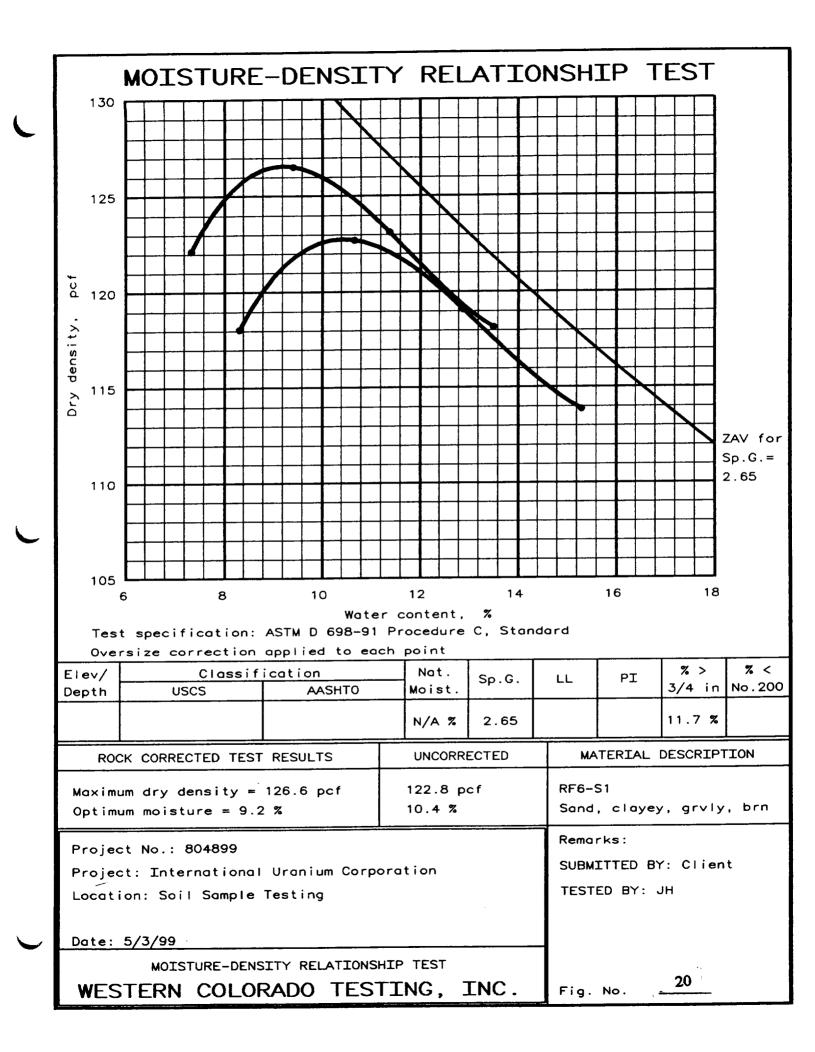


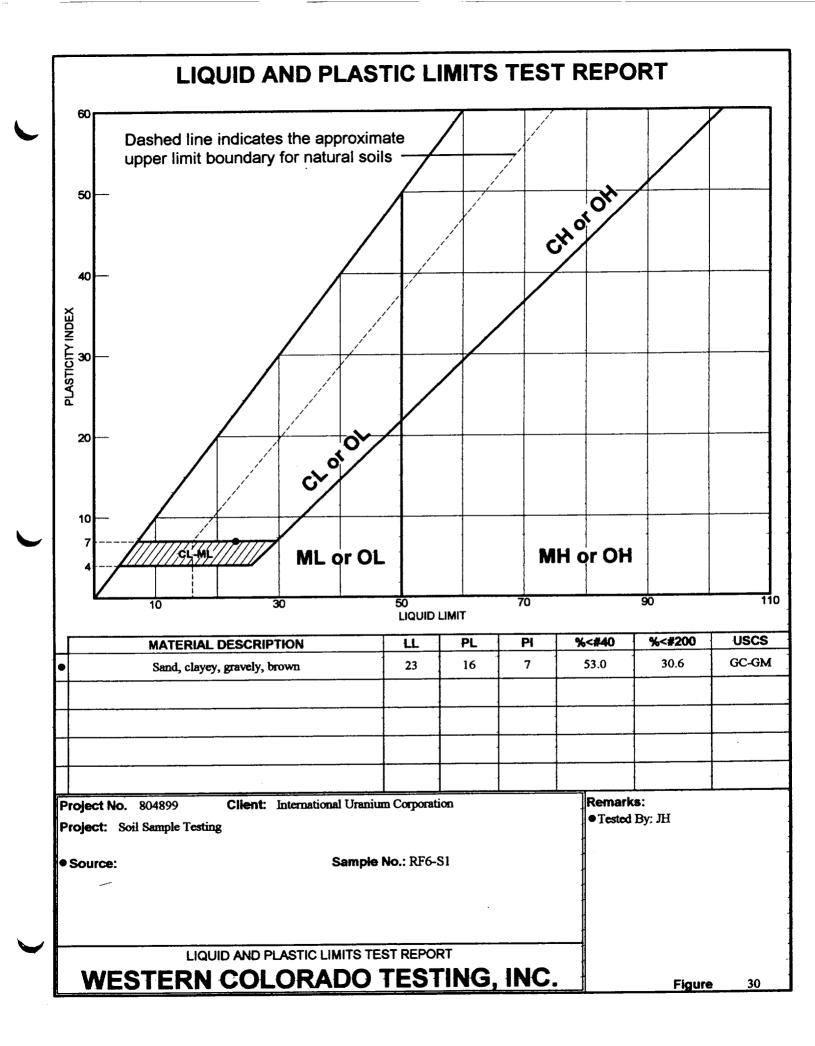


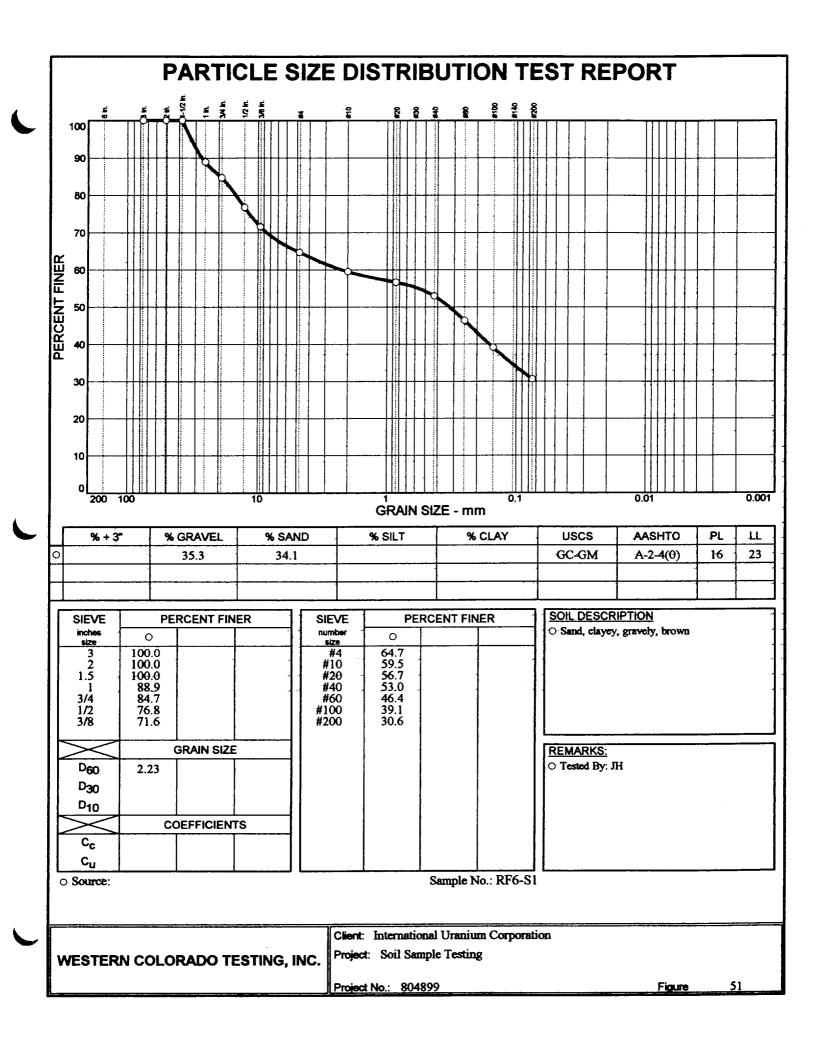


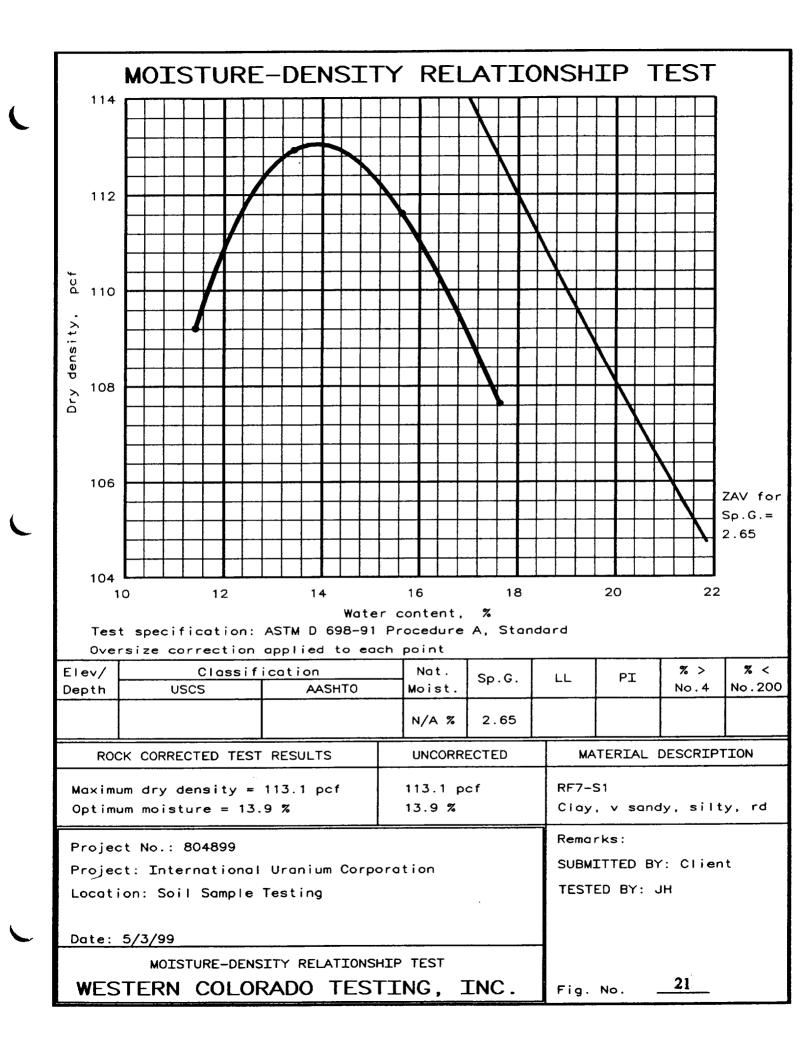


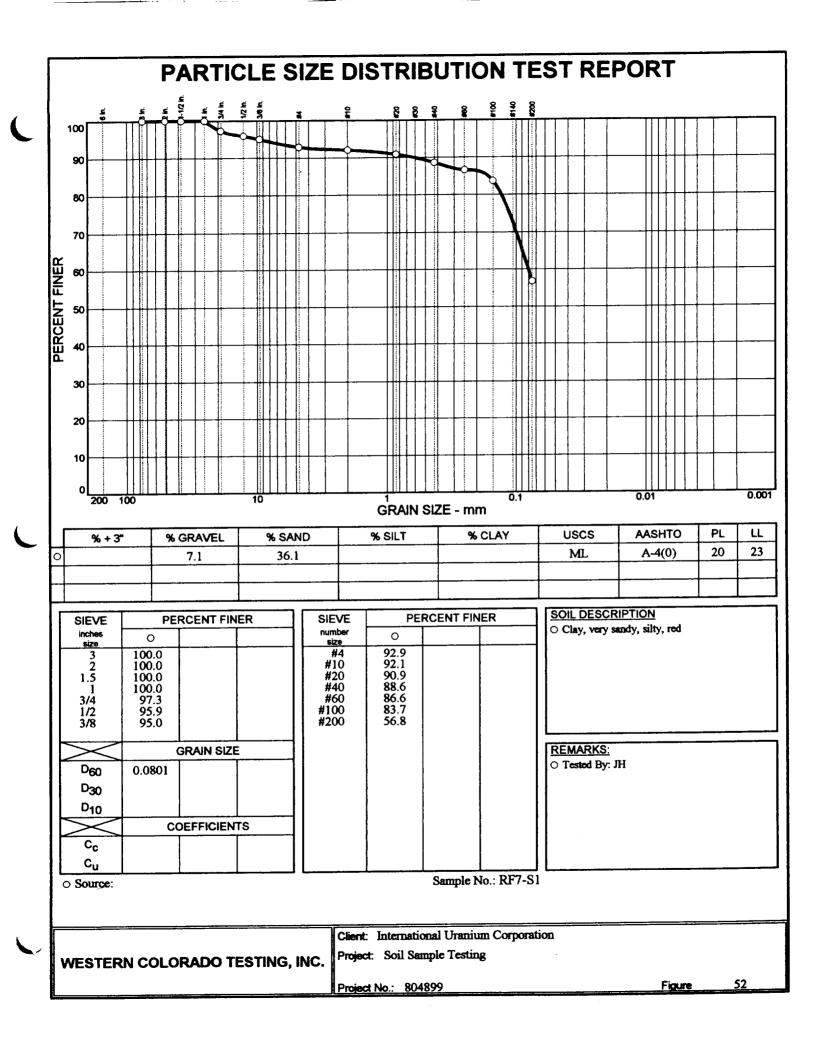












ATTACHMENT E

EVALUATION OF POTENTIAL SETTLEMENT

DUE TO EARTHQUAKE-INDUCED LIQUEFACTION

AND

PROBABILISTIC SEISMIC RISK ASSESSMENT

PREPARED BY

INTERNATIONAL URANIUM (USA) CORP.

INDEPENDENCE PLAZA

1050 17^{тн} STREET, SUITE 950

DENVER, CO 80265

EVALUATION OF POTENTIAL SETTLEMENT DUE TO EARTHQUAKE-INDUCED LIQUEFACTION INTERNATIONAL URANIUM CORPORATION, WHITE MESA MILL 5/6/99

An evaluation of potential settlement due to earthquake-induced liquefaction of tailings at International Uranium Corporation's White Mesa mill has been performed, and the results are reported below. This analysis applies to cells #2 and #3 and uses conditions of those cells that existed before May 1999, ore sieve analyses, calculated average in-place density, seismic analyses by Knight Piesold, and typical physical property values from the literature. Two analyses were performed using methods applied to the Maybell UMTRA site by Morrison-Knudsen Engineers (per information supplied by the NRC to IUC).

Method I is the Stress Ratio method of Takimatsu and Seed, 1987¹. This method uses the SPT blow counts (N) as input for the analysis. No N values are available for the White Mesa tailings, so N values were estimated (see page 2 of calculations) using the grain size properties determined in recent tests by Western Colorado Testing Inc. and the average in-place density determined by IUC from volumetric calculations. The N values are conservatively estimated to range from 0 at ground surface to 8 at 35 feet depth, values consistent with very loose to loose fine grained (relative density 0 to 35), non-plastic soils according to Terzaghi et al, 1996², and NAVFAC DM-7, 1971³. According to KME's UMTRA Design Procedures, Chap. 11, App. 11B, Fig 11B-2, this is conservative because under field conditions the minimum relative density should be about 36%. For additional conservatism, it was assumed that the tailings are completely saturated below ground surface. The results of this calculation, tabulated on page A2, indicate that the maximum settlement should be about one foot in 35 feet of tailings and that most of that settlement originates in the upper 15 feet. According to Borns and Mattson, 1999⁴, an earthen cover of the type used on tailings impoundments should not exhibit cracking in response to rapid settlement until differential settlement exceeds about 0.75%. At White Mesa, estimated differential settlements are not significant (less than 1%) over the tailing cell with the possible exception of the inslope areas where differential settlement, expressed as vertical feet of settlement over horizontal distance, could exceed 0.01 (1%) in the upper 5 feet and between 10 and 20 feet of the inslope depth. Differential settlements would be accommodated initially by plastic deformation of the cover, then by cracking, so not all of the differential

¹ Takimatsu, K. and H.B. Seed, 1987; "Evaluation of Settlements in Sands Due to Earthquake Shaking", Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8 ² Terzaghi, k., R.B. Peck, and G. Mesri, 1996; Soil Mechanics in Engineering Practice, 3rd Edition, John

Wiley & Sons

Dept. Of Navy, Navy Facilities Engineering Command, 1971; Design Manual Soil Mechanics, Foundations, and Earth Structures, NAVFAC DM-7

⁴ Borns, D. And E. Mattson, 1999, "Simulated Subsidence of the Monticello Cover", Sandia National Laboratories Draft Report, 3/10/99

settlement would be expressed by offset along fractures. However, if it is conservatively assumed that all differential settlement is expressed in fracture offset, then the largest offset would be about 0.175 feet (2.1 inches) about 30-45 feet from the top of the cell inslope. It is more likely that this differential settlement would result in some cover flexure or, at worst, several small fractures with offsets totaling not more than 2.1 inches.

The other method used for analysis, MKE's Method II, is from the Committee on Earthquake Engineering, 1985⁵. It is based on evaluating the shear strain in the tailings caused by an earthquake. It relies not on N values but on shear wave velocities and shear modulus/ maximum shear modulus ratio, both of which are estimated based on empirical data. This removes the effect of uncertainty associated with the lack of site-specific in-place tailings characterization. Using the same assumptions as in Method I, the estimated maximum settlement from liquefaction is 0.0581 feet, or 0.7 inches. The associated differential settlements are all well below the 0.75% threshold of concern for cracking of the cover.

The differences in settlement estimates of the two methods are substantial, about 17.5 times. However, the two estimates probably provide bounding limits for the range of likely liquefaction-induced settlement. If the Method I results are used, then the following consequences of the design earthquake liquefaction would be conservatively predicted:

maximum settlement - 1.015 feet in the deepest part of the cell, up to 0.4 feet along the cell margins over the inslope

maximum differential settlement - 2.7% within about 15 feet horizontal distance of the top of inslope, 1.2% to 0.8 % between 30 and 60 feet from top of inslope

impacts on cover - settlement of cover in response to tailing settlement, with maximum flexure over the upper half of the inslopes, where some cracking is possible with offsets less than two inches and probably less than one inch

⁵ Committee on Earthquake Engineering, Commission on Engineering and Technical Systems, National Research Council, 1985; "Liquefaction of Soils During Earthquakes", National Academy Press

	A MILL TAILINGS	, 				
	les Parameters					
	Western Colorad			May Day	Ontimum	% -#200
Sample #	USCS	LL	F1	Max. Dry Density	Optimum Moisture	70 -#200
				pcf	%	
				pci	/0	
C2-ST1	SM	NP	NP	109.2	15.2	24.1
C2-TS2	ML	29	29	103.5	20.8	82.7
C2-TS3	SM	NP	NP	110.4	16.0	32.7
C2-TS4	SM	NP	NP	107.4	16.8	32.2
C2-134 C3-TS1	ML	24	23	105.7	16.0	60.8
C3-TS2	SM	NP	NP	105.4	15.3	23.0
00-102						
ave. for	SM	NP	NP	108.1	15.8	28.0
ave. for	ML	26.5	26	104.6	18,4	71.75
Design Life Return Period Reak Horiz Ad		10000 yrs	from Knight Piesold (Julio Valera), 4/23/99 from Knight Piesold (Julio Valera), 4/23/99 from Knight Piesold (Julio Valera), 4/23/99			
Peak Horiz Acceler. 0.18g				echnical Approa		
Calamia Caaf	Seismic Coeff. 0.12g					
Seismic Coef	f.:	0.12g				
Seismic Coef	f. <u>.</u>	0.12g	Revision II, Ura	nium Mill Tailin		
Seismic Coef	f	0.12g		nium Mill Tailin		
	f. ce Characteristics	· · · · · · · · · · · · · · · · · · ·	Revision II, Ura	nium Mill Tailin		
Tailing In-plac		· · · · · · · · · · · · · · · · · · ·	Revision II, Ura	nium Mill Tailin		
Tailing In-plac	ce Characteristics een analyses:	· · · · · · · · · · · · · · · · · · ·	Revision II, Ura	nium Mill Tailin		
Tailing In-plac	ce Characteristics een analyses: Ore		Revision II, Ura Action Project)	nium Mill Tailin	gs Remedial	
Tailing In-plac From mill scro	ce Characteristics een analyses: Ore Blanding #4	Anchutz #1	Revision II, Ura Action Project) Hanksville #2A	nium Mill Tailin Hanksville #1	gs Remedial	
Tailing In-plac	ce Characteristics een analyses: Ore	Anchutz #1	Revision II, Ura Action Project) Hanksville #2A	nium Mill Tailin	gs Remedial	
Tailing In-plac From mill scr % -#200	ce Characteristics een analyses: Ore Blanding #4	Anchutz #1 30.7	Revision II, Ura Action Project) Hanksville #2A 37.6	nium Mill Tailin Hanksville #1	gs Remedial Average 29.7	
Tailing In-plac From mill scr % -#200 Ave. Dry Unit	ce Characteristics een analyses: Ore Blanding #4 27.2 Wt. of all tailings	Anchutz #1 30.7 s, in pcf =	Revision II, Ura Action Project) Hanksville #2A 37.6 86.31	Hanksville #1 23.2	gs Remedial Average 29.7 metric calcs.	
Tailing In-plac From mill scro % -#200 Ave. Dry Unit	ce Characteristics een analyses: Ore Blanding #4 27.2	Anchutz #1 30.7 s, in pcf =	Revision II, Ura Action Project) Hanksville #2A 37.6 86.31	Hanksville #1 23.2	gs Remedial Average 29.7 metric calcs.	

(

(

(

EARTHQUAKE-INDUCED SETTLEMENT METHOD I per Takimatsu and Seed

5,6,99

Param	neters:
Tav	= ave cyclic shear stress from earthquake. psi
Ρ,	= total overburden pressure at depth considered, psi = (86.31+ n*62.4) * depth = (86.31+ 0.478*62.4) * depth = 116 1 pcf/ft
P,	= effective overburden pressure at depth considered, psi = P_z - depth * 62.4
r _e	= stress reduction factor (1.0 at surface to 0.89 at 35') per Kovacs and Solomne, 1984
a _{max}	= peak acceleration at ground surface = .18g
N,	= SPT N value normalized to an effective overburden pressure of 1 tsf and effective energy delivered to drill rods of 60% of theoretical free-fall energy = C _n * N N = SPT N value N = SPT N value C _n = correction factor based on effective overburden pressure at depth of SPT count
Assum	nptions:
1) 2)	N values are assumed to increase with depth, from 1 to 8 (see page 3) Tailings are saturated to ground surface

Estimation of N Values:

No SPT tests have been performed, so N values are estimated using physical properties of samples, average in-place dry density, and standard soil mechanics references.

1) From NAVFAC DM-7, Fig. 3-7, relative density ranges from 0 to 35% for SM to ML soil with dry density of 86.31 pcf, and corresponding N values range from 1 to 8 (Fig. 4-2).

- From MKE UMTRA Design Procedures, Chap. 11, App. 11B, Fig.11B-2, minimum relative density under field conditions is about 36%, corresponding to N₁ = 0,and maximum relative density (100%) corresponds to N₁ of about 47.
- 3) Based on 1 and 2 above, it is reasonable to estimate that the relative density of the SM/ ML tailings in-place is at least 35% and that the N values range from 1 at the surface to 8 at 35 feet depth.

N ₁ =	C _n • N	Z	N	P。'	C,	N1
		5	1	269	1.67	1.67
N1 =	corrected SPT value	10	2	537	1.44	2.88
N =	recorded SPT value	15	3	806	1.31	3.92
C, =	correction coeff.	20	4	1074	1.21	4.84
	= 0.77 log10 (20/(P _o '/2000))	25	5	1343	1.14	5.68
	• • • • •	30	6	1611	1.07	6.44
		35	8	1880	1.02	8.18

Calculation of Settlement:

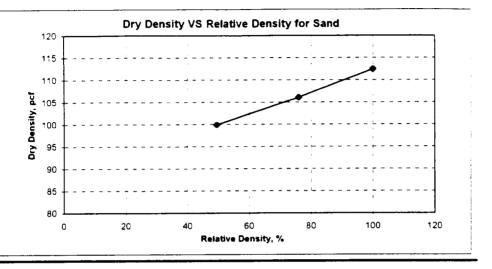
shear stress ratio Tav/P_o' = 0.65 * (a_{max}/g) * (P_o/P_o') * r_d

Depth, z	N ₁	P.	P,	P,/P,	r _d	Tav/P。'	Vol. strain	Thickness	Settlement
π		psf	psf				% (1)	of Layer, ft	ft
5	1.67	581	269	2.162	1	0.2530	8	5	0.4
10	2.88	1161	537	2.162	0.98	0.2479	5	10	0.5
15	3.92	1742	806	2.162	0.96	0.2428	4.5	15	0.675
20	4.84	2322	1074	2.162	0.95	0.2403	4	20	0.8
25	5.68	2903	1343	2.162	0.93	0.2352	3.6	25	0.9
30	6.44	3483	1611	2,162	0.92	0.2327	3.2	30	0.96
35	8.18	4064	1880	2.162	0.89	0.2251	2.9	35	1.015

(1) from Fig 6, Tokimatsu and Seed, 1987

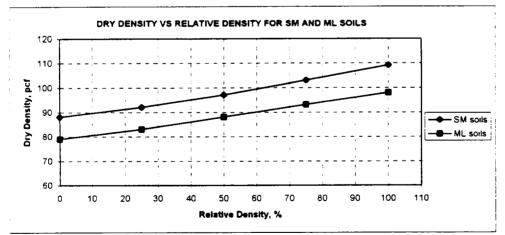
Differential Settlements over Cell Inslopes:

Slopes are 3H:1V


Horizontal Distance over slope ft.	Depth of Tailings over slope ft.	Settlement ft.	Settlement, vertical ft./ horizontal ft.	
15	5	0.4	0.027	
30	10	0.5	0.007	
45	15	0.675	0.012	
60	20	0.8	0.008	
75	25	0.9	0.007	
90	30	0.96	0.004	
105	35	1.015	0.004	

CORRELATION BETWEEN RELATIVE DENSITY AND ABSOLUTE DRY DENSITY OF SANDS

∃v АКК 5/6/99


after Terzaghi et al, 1996, Fig 44.1

Relative	Dry Density		
Density	pcf	Mg/m ³	
49.5	99.89	1.6	
76	106.1	1.7	
100	112.4	1.8	

after NAVFAC DM-7, 1971, Fig. 3-7

	Dry Density,pcf ML soils
	79
	83
97	88
103	93
109	98
	Density,pcf SM soils 88 92 97 103

Based on these relationships, the average dry density of 86.31 pcf corresponds to relative density in the 0% to 40% range, depending on the amount of silt vs sand. Therefore, N values would range from 1 at ground surface to 8 at depths of 35-40 ft.

EARTHQUAKE-INDUCED SETTLEMENT

8. 1AA 5/6/99

Parameters: Ρ,

r٩

ā

- = peak shear stress from earthquake, psi Т
 - = total overburden pressure at depth considered, psi = =w"z
 - = stress reduction factor (1.0 at surface to 0.9 at 30', 0.8 at 40')
- s = strain
- = acceleration of gravity, ft/sec/sec g
 - = peak acceleration at ground surface = 0.18g
- = unit weight, pcf w
- = depth, ft. z
- d = mass density

G = shear modulus

G/G_{max} = modulus reduction factor for strain

- ν, = shear wave velocity, fps
- = Poisson's ratio pr
- = axial strain E₄
- = thickness of layer, ft. h
- dh = settlement in layer, ft.

Assumptions:

- Tailings are saturated to ground surface 1) 2)
 - G/G_{max} = 0.80
- 3) V_s = 3000 fps, per Committee on Earthquake Engineering, 1985
- 4) pr = 0.5
- Shear wave travels path that is 45 degrees from vertical, so E_{lateral} = pr * E_A 5)

Calculations:

S = T/G =	((a/g)*P _o *r _d)/G	. =	((a/g)*(w*z)*r _d)/G =	a*z*(w/g)*r _d /G
G _{max}	_c = d*V _s ²	=(w/g) *V _s ²		
	d =	G _{max} / V _s ²	= w/g	
S =	= a"z"d"r _d /G =		$a^{*}z^{*}(G_{max} / V_{s}^{2})^{*}r_{d} / G =$	a*z*r _d / (V _s ² * (G/ Gmax))
	= $a^{*}z^{*}r_{d} / (V_{s}^{2}$	• 0.80)	= 1.25*a*z*r _d / V _s ²	= 1.25*a*z*r _d / (300) ²
	= 1.25*(0.18*3	32.2) "z"r _d / 900	00 = 1.25*(0.18	*32.2) * z *r _d / 90000
S =	0.0000805	5 *z* fd		
r,	ı = 1.0 at sunfac	e to 0.9 at 30', 0	0.8 at 40'	(Kovacs and Solomne, 1984)
E,	= S/(1+pr)	= dh/h	= 0.00008°z°r _d / 1.5	

 $dh = 0.00008^{\circ}z^{\circ}r_{d}^{\circ}h/1.5$

Settlements:

Depth, z	r _d	Thickness	Strain	Axial Strain	Settlement
ft		of Layer, h, ft	s	E,	dh, ft
5	1	5	0.0004	0.00027	0.0013
10	0.98	10	0.0008	0.00052	0.0052
15	0.96	15	0.0012	0.00077	0.0115
20	0.95	20	0.0015	0.00101	0.0203
25	0.93	25	0.0019	0.00124	0.0310
30	0.92	30	0.0022	0.00147	0.0442
35	0.89	35	0.0025	0.00166	0.0581

Differential Settlements over Cell Inslopes:

Slopes are 3H:	Slopes are 3H:1V							
Horizontal	Depth of	Settlement	Differential					
Distance	Tailings	ft.	Settlement,					
over slope	over slope		vertical ft./					
ft .	ft.		horizontal ft.					
15	5	0.0013	0.0001					
30	10	0.0052	0.0003					
45	15	0.0115	0.0004					
60	20	0.0203	0.0006					
75	25	0.0310	0.0007					
90	30	0.0442	0.0009					
105	35	0.0581	0.0009					

Knight Piésold

Memorandum

Date: April 23, 1999

International Uranium Corporation

To: Mr. Harold R. Roberts

From: Julio E. Valera

Re: Probabilistic Seismic Risk Assessment

As stipulated by the Nuclear Regulatory Commission (NRC) in their "Draft Standard Review Plan for the Review of a Reclamation Plan for Mill Tailings Sites under Title II of the Uranium Mill Tailings Radiation Control Act", (UMTRCA) - NUREG-1620, a probabilistic seismic hazard analysis (PSHA) may be considered as an acceptable method to a deterministic maximum credible earthquake (MCE) analysis for establishing the peak horizontal acceleration (PHA) for a site.

The NRC draft standard (Section 1.4) states the following: "An exceedance value no greater than 10⁻¹ per year should be used in determining the PHA for the site. This 10⁻¹ value represents a 1 in 10 chance of the site exceeding the PHA in a 1,000-year period, which is appropriate for a 1.000 -year design life". Based on this understanding, Knight Piésold has performed a simplified seismic risk assessment for IUC's White Horse Mesa Uranium Mill Tailings Facility to establish the probabilistic PHA for the site. The simplified PSHA has made use of probabilistic seismic hazards maps recently developed for the contiguous USA as part of a joint effort by the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS) to develop new maps for use in seismic design. A detailed description of the development of the maps is contained in the USGS Open-File Report 96-532, National Seismic Hazards Maps: Documentation. June 1996 by Frankel et al. (1996). The maps provide probabilistic ground motion design parameters with 2%. 5% and 10% probabilities of exceedance in 50 years, corresponding to recurrence intervals of 475. 975 and 2500 years, respectively. The maps were developed using a soft-rock site as the reference site condition which is reasonably representative of the conditions at White Horse Mesa mill site. A probability of exceedance of 10% for a 1,000 year design life as stipulated by the NRC corresponds to a recurrence interval of 10,000 years. A similar probability of exceedance for a 200 year design life corresponds to an earthquake recurrence interval of 2000 years.

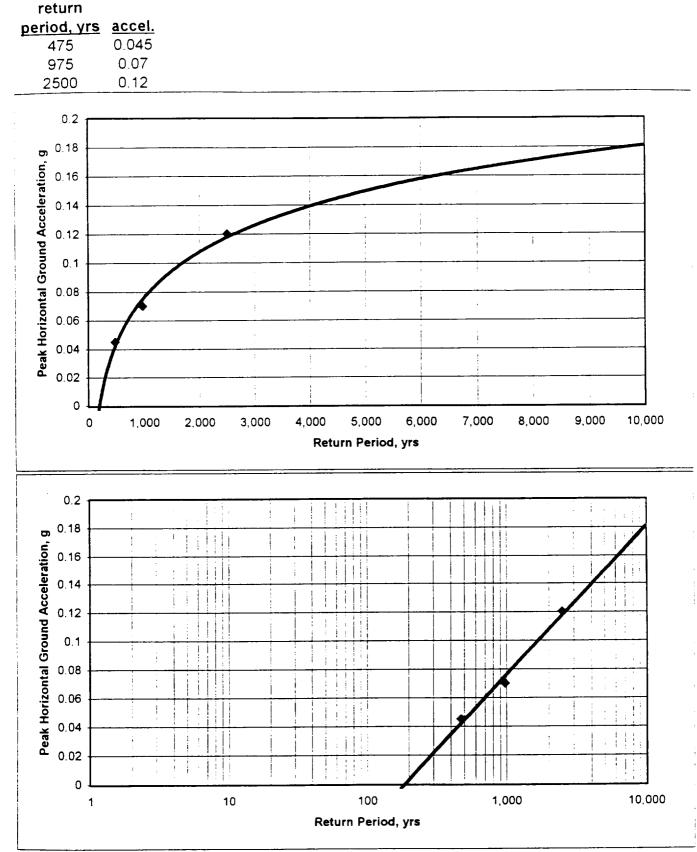
The latitude and longitude for the White Horse Mill are $37^0 35$ N, and $109^0 30$ W, respectively. Using these coordinates, values of PHA were obtained from the USGS seismic hazards maps at the three recurrence intervals previously mentioned. These are plotted in the accompanying figure versus return period. A best-fit straight line and curve were fitted to the data to extrapolate to larger return periods. The following PHA values were obtained for the White Horse Mesa Mill site:

<u>Design Life (yrs)</u>	Return Period (yrs)	<u>PHA (g)</u>
200	2,000	0.11
1,000	10,000	0.18

Mr. Harold R. Roberts Probabilistic Seismic Risk Assessment

April 23, 1999

Thus based on extrapolation of the USGS data, a PHA equal to 0.18g would correspond to the 10.000 year event for the site.


2

In Section 1.4.3 of NUREG-1620 the NRC states that in order "to assess potential site ground motion from earthquakes not associated with known tectonic structures (i.e., random or floating earthquakes), the largest floating earthquake reasonably expected within the tectonic province (no smaller than magnitude 6.2) should be identified". They also state that a site-to-source distance of 15 km should be used for floating earthquakes within the host tectonic province in a dterministic analysis.

In addition to the PHA, it is necessary to establish the magnitude of the corresponding earthquake in order to conduct a liquefaction assessment of the tailings impoundment. An estimate of this magnitude was obtained using the acceleration attenuation relationship developed by Campbell and Bozorgnia (1994) which is considered by the NRC as an acceptable relationship. The attenuationship relationship used for this study assumed strike-slip faulting and soft rock site conditions. A site-to-source distance of 15 km was also used with a PHA of 0.18g to establish the corresponding magnitude. By coincidence a magnitude of 6.2 was obtained.

Thus based on this simplified seismic risk assessment, a magnitude 6.2 earthquake producing a PHA of 0.18g at the mill site represents the 10,000 year event which has a 10% probability of exceedance during a mine life of 1000 years.

White Mesa Ground accelerations from Frankel et al. (1996)

White Mesa Mill - Soil Testing, tailings samples

(

(

(

WESTERN COLORADO TESTING, INC. 529 25 1/2 Road, Suite 8-101 Grand Junction, Colorado 81505 (970) 241-7700 • Fax (970) 241-7783

> May 4, 1999 WCT **#**804899

International Uranium USA Corporation Independence Plaza, Suite 950 1050 17th Street Denver, Colorado 80265

Subject: Soil Sample Testing

As requested, we have completed the soil laboratory work for International Uranium USA Corporation. The testing performed included the following:

- 21 Sieve Analyses
- 21 Atterberg Limit Tests
- 21 Standard Proctor Tests (ASTM D698)
- 6 Hydrometer Tests
- 6 Specific Gravity Tests

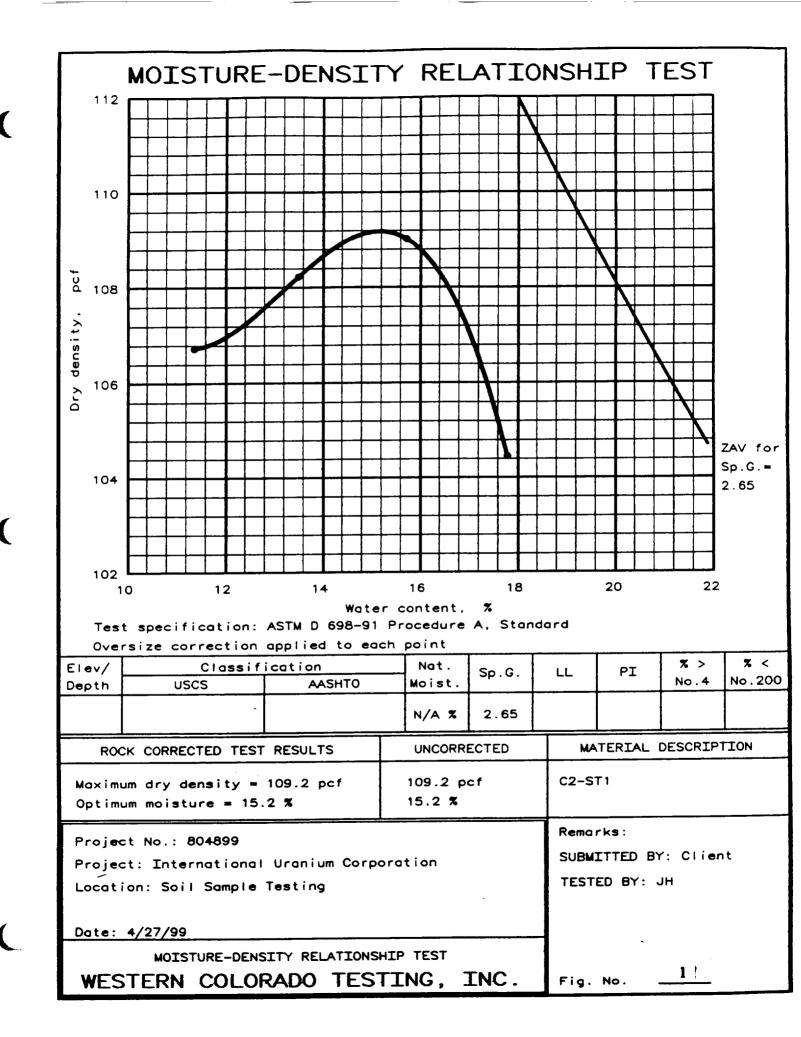
Data sheets are included for each test except for the specific gravities. The results of these are shown below:

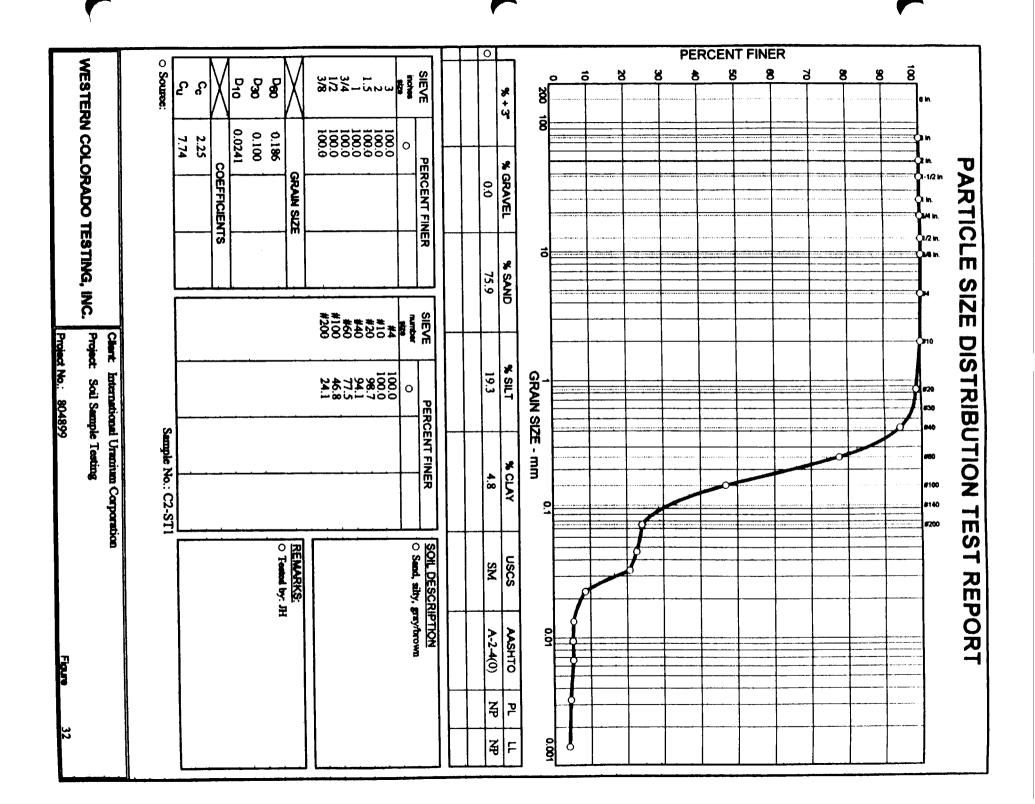
<u>Sample</u>	Avg. Bulk <u>Specific Gravity</u>	Avg. Bulk Specific <u>Gravity (SSD)</u>	Apparent Specific Gravity	Absorption Percent
C2 - TS1	2.337	2.468	2.673	5.372
C2 - TS2	2.137	2.392	2.868	11.926
C2 - TS3	2.157	2.359	2.705	9.396
C2 - TS4	2.265	2.432	2.721	7.402
C3 - TS1	2.456	2.562	2.746	4.294
C3 - TS2	2.349	2.464	2.655	4.900

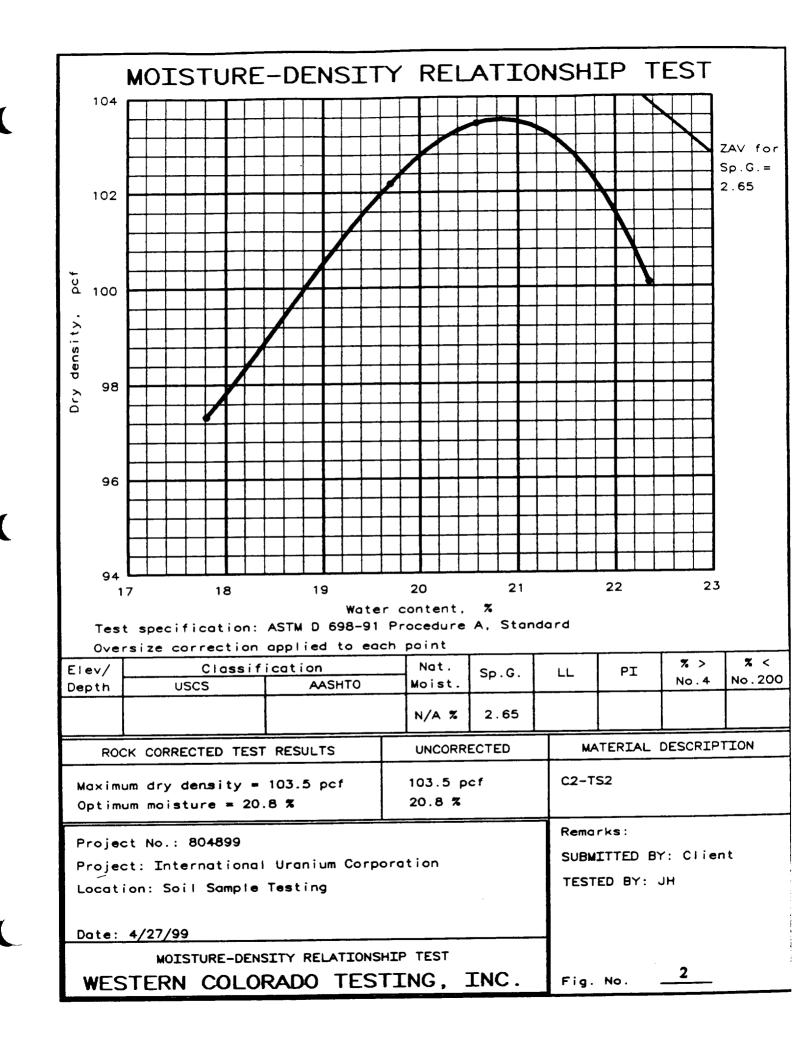
Page 2 International Uranium USA Corporation WCT #804899 May 4, 1999

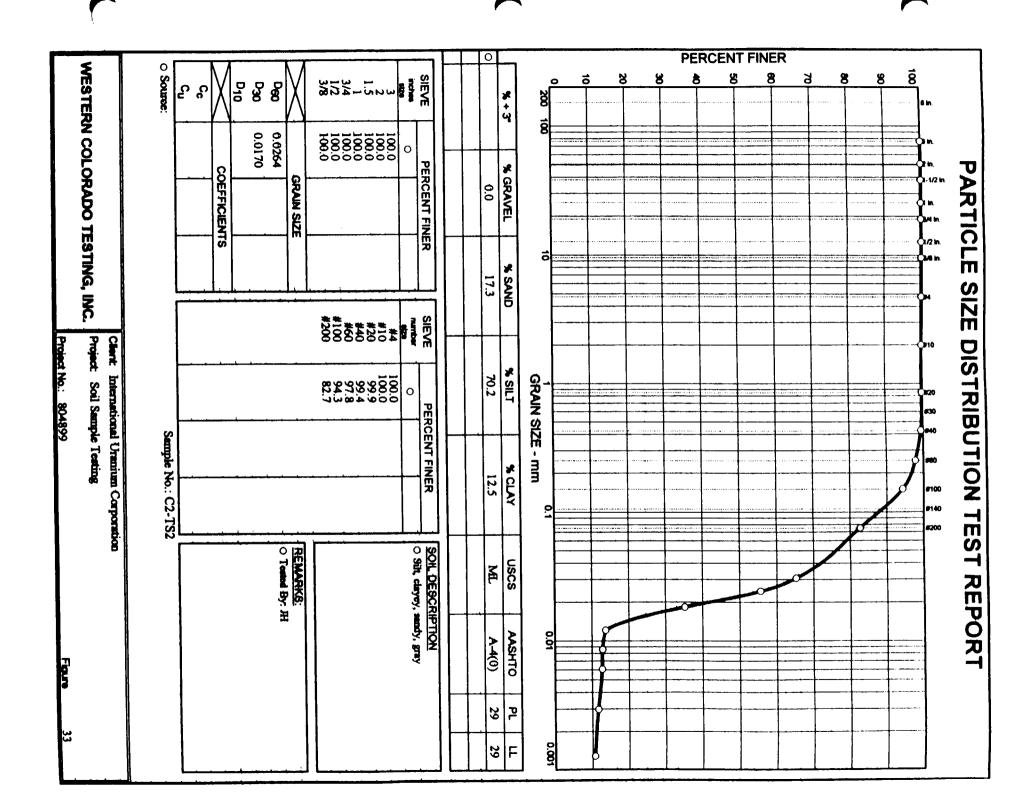
We have been happy to be of service. If you have any questions or we may be of further assistance, please call.

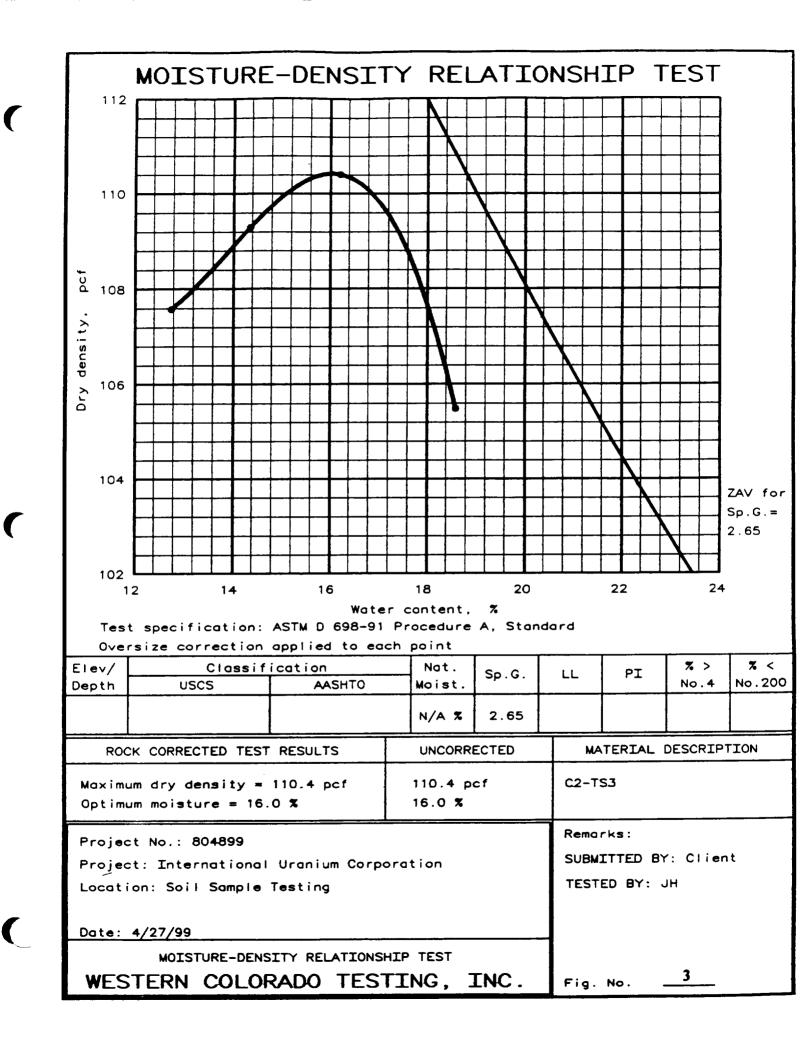
Respectfully Submitted: WESTERN COLORADO TESTING, INC.

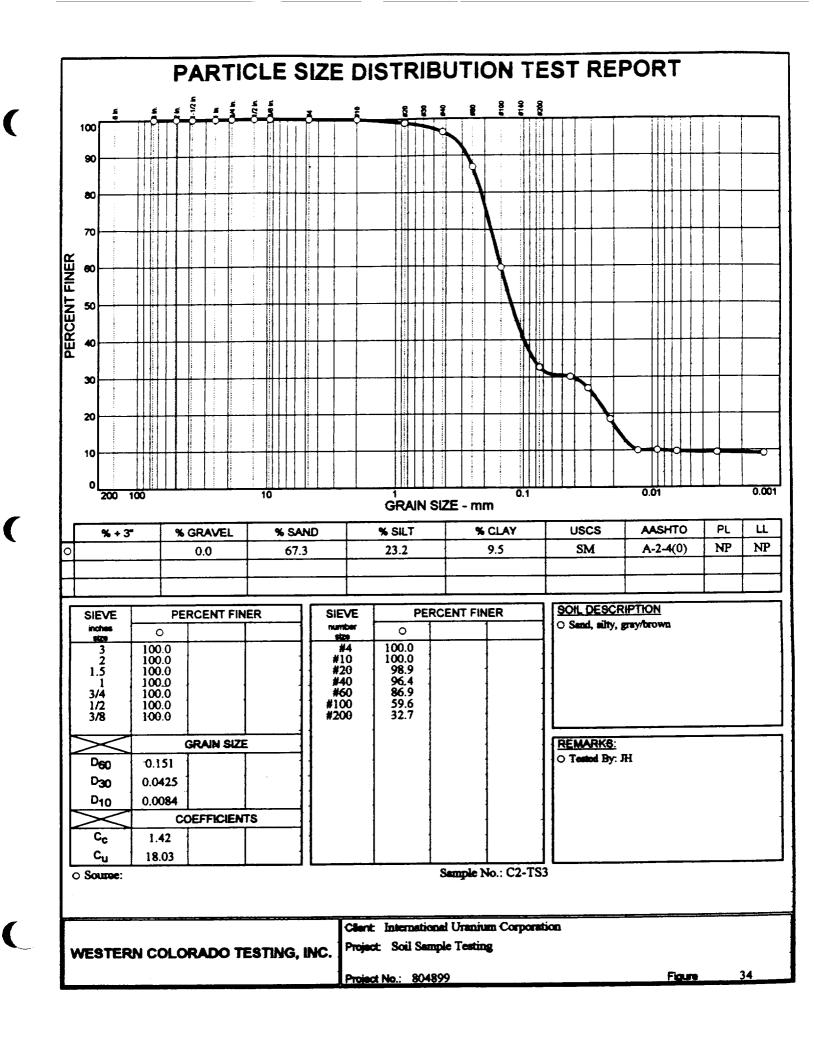

When Dowiel Smith

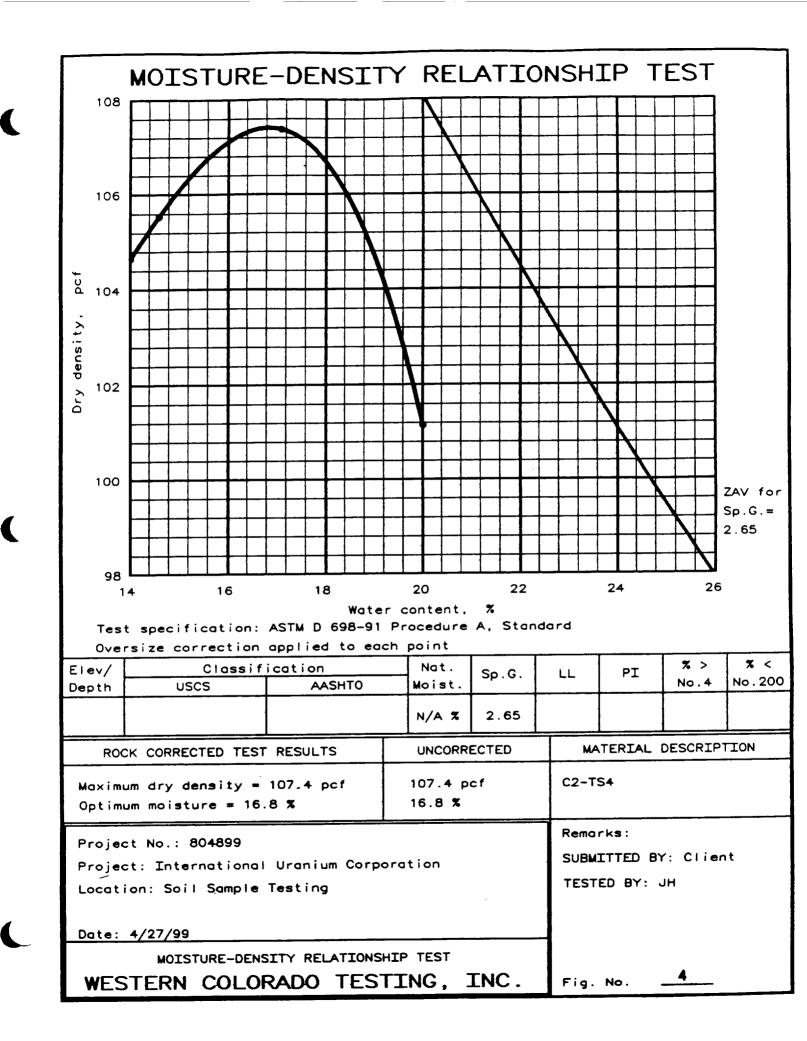

Wm. Daniel Smith, P.E. Senior Geotechnical Engineer

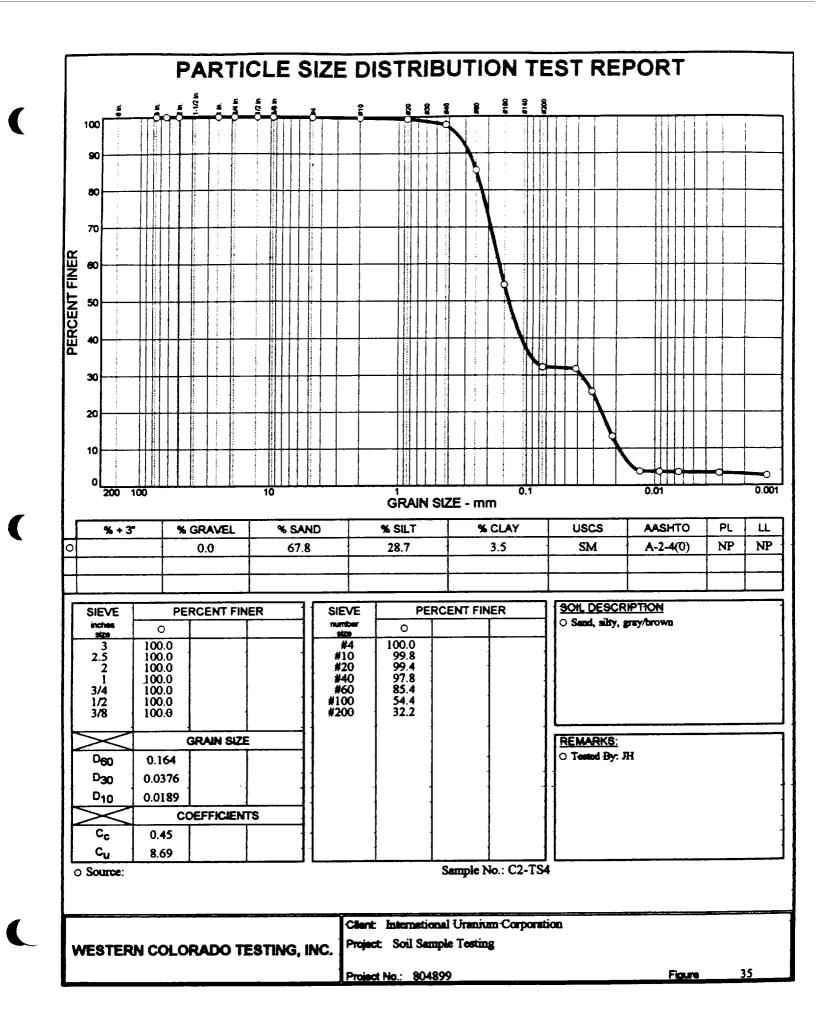

WDS/mh Mab:jobs\2048L0504

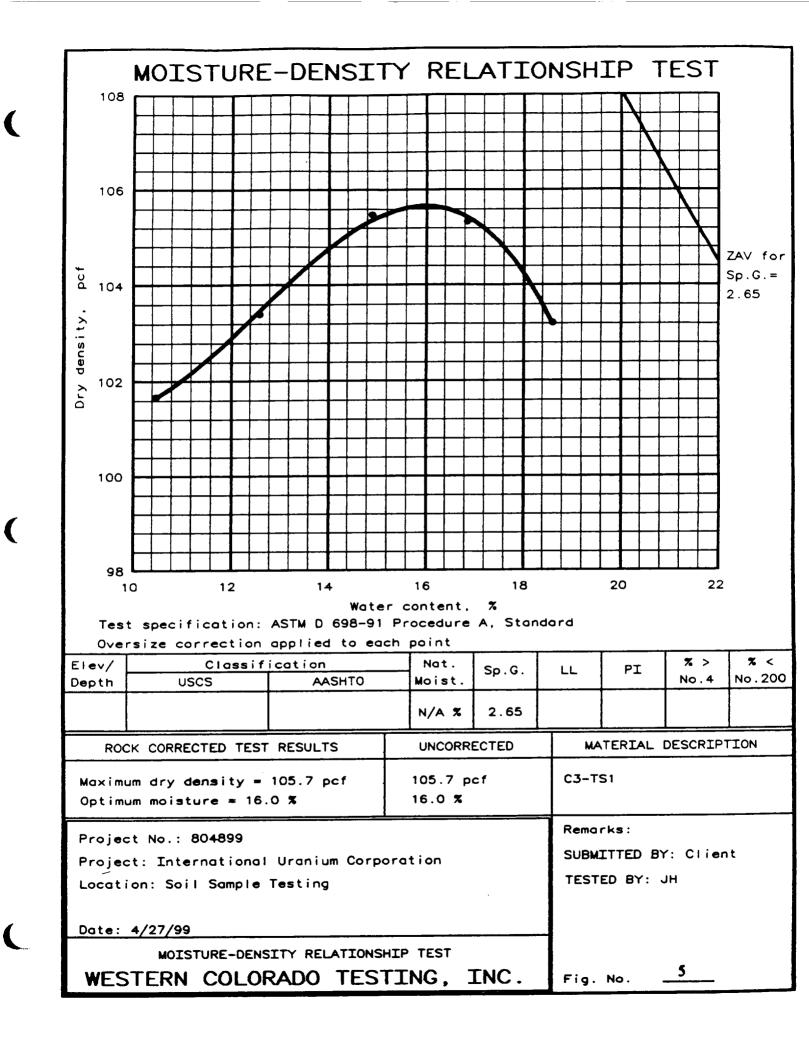

(

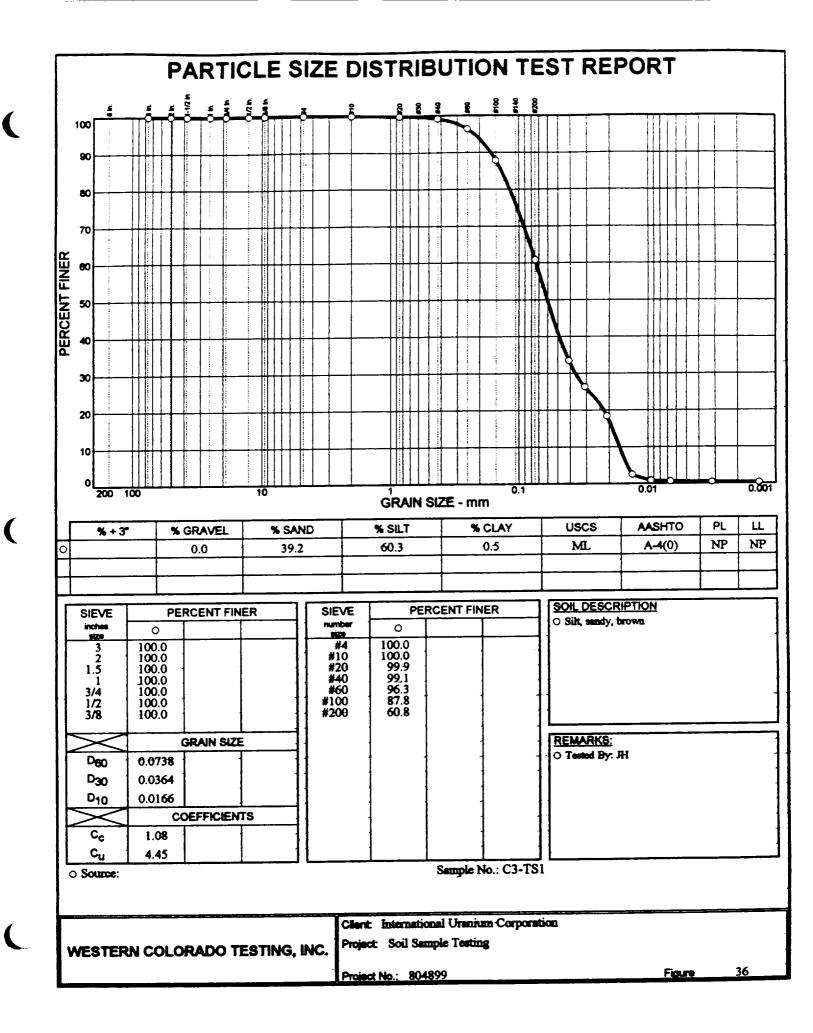

÷

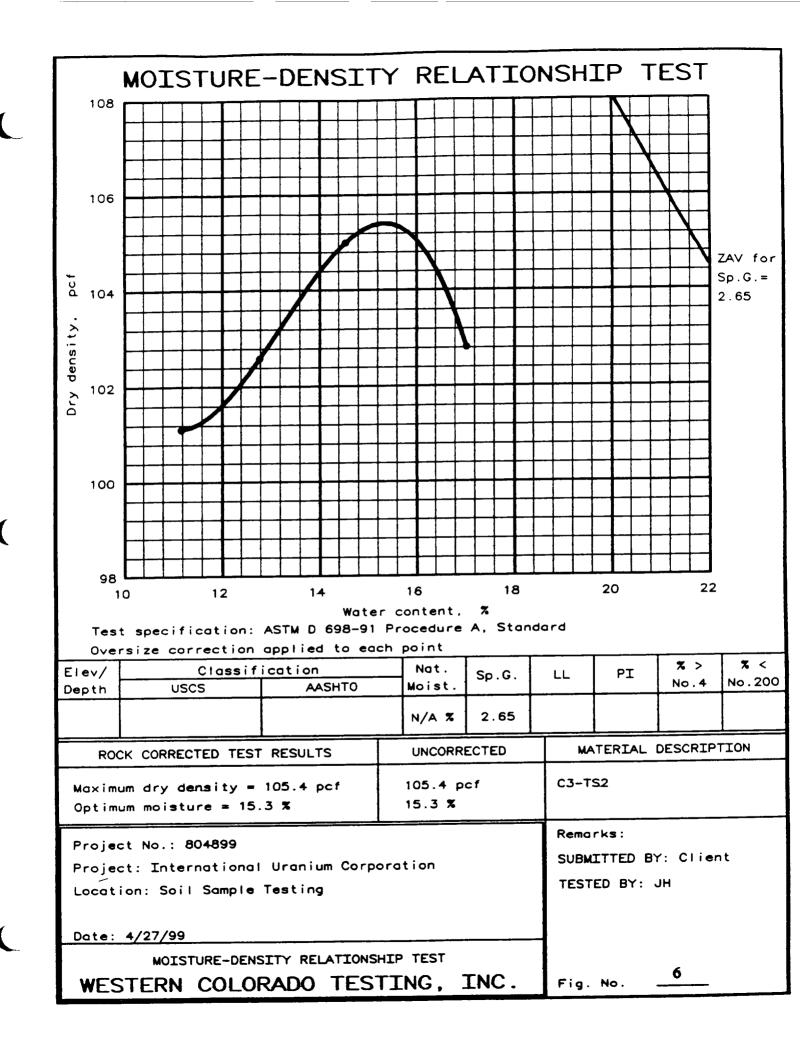


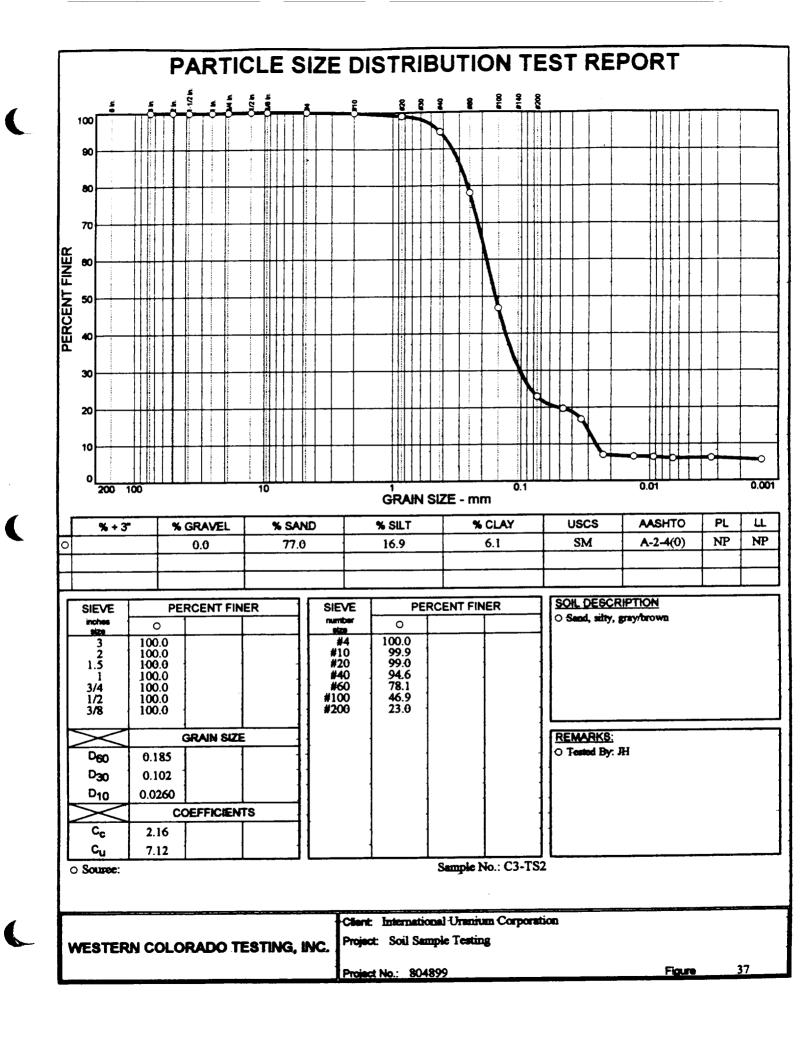












Tailings Cell 2 - Dry Density Calculation

_

(

(

<u>Cell 2 – Original Design Volume</u>

2,380,000 tons @ 92 dpcf	=	1,916,264 yd ³
Design change to east end - + 5%	=	95,000 yd ³
Total as built volume	=	2,011,264 yd ³
Remaining storage volume	=	< <u>23,000> yd³</u>
		1,9 88 ,264 yd ³

Total Tailings to Date

As of October 23, 1989	2,299,708 tons
Cabot	12,000 tons
On-Site Waste	<u>5,000 tons</u>
	2,316,708 tons

 $\frac{2,316,708}{1,988,264}$ tons = 86.31 dpcf

TO:	Bill Deal
FROM:	Shannon Clark
DATE:	June 25, 1997
SUBJECT:	Cell 3 Calculated Capacity Left

I was asked by you, to find the original capacity of Cell 3 and the capacity we have left to fill.

In the Environmental files I found where John Hamrick had listed the cells and capacities and, off the 19 C's had calculated the from inception tons deposited to each cell.

Cell 2	2,299,708	
Cell 3	1,249,000	(+600,000 tons = License Amendment)
- 23 1080		

as of October 23, 1989.

I then went to Gary Richards to find the dry tons fed to the mill to date off of the 19C report Fed to the mill, inception to-date, is 3,757,344 tons. We have produced 14,050 tons of Yellowcake and 16,200 tons of Vanadium.

3,757,344	Dry tons fed to mill
- 14.050	YC produced in tons
3,743,294	Tons to tails
16.200	Vanadium Produced
3,727,094	Tons to tails
-2.299.708	Tons deposited into Cell 2
1,427,386	Tons in Cell 3 at this point
2,091,717	Available tons in Cell 3 at time of construction
<u>-1.427.386</u>	Tons deposited into Cell 3 as of now
664,331	Tons of space left in Cell 3 (in theory)
	This calculates out to be 68% full.

White Mesa Mill - Screen Analysis of Ore Feed to Leach

(

<

Table 5

Screen Analysis of Feed Ore to Leach

Grind conditions:

_...

C14 - 15

K

K

Rod mill	7-5/8" diam x 9-1/2", steel, ribbed, 85/90 rpm
Rod charge	8.9 kg
Ore charge	1.00 kg, minus 6-mesh
% solids	50
Time	3 min

.		Weight D	istribution, %	
Size <u>Mesh (Tyler)</u>	Blanding No. 4 HRI-11868	Anschutz No. 1 HRI-11870	Hanksville No. 11/ HRI-11175-1	Three-Ore Composite
+35 35×48 48×65 65×100 100×150 150×200 200×270 270×325 -325	0.0 2.5 16.2 25.0 18.7 10.4 4.5 1.5 21.2	0.0 0.2 7.4 25.2 21.9 14.6 7.6 2.8 20.3	0.5 1.9 15.3 26.2 19.5 13.4 6.2 1.8 15.2	1.2 12.7 28.9 20.1 13.7 6.0 2.9 14.5
· · · · ·	100.0	100.0	100.0	100.0

1/ Data from June 15, 1977 report "Uranium Recovery from Hanksville and Blanding Station Ores."

х.

ł

Screen Analysis of Blanding No. 4, Anschutz No. 1, and Hanksville No. 2A Ore Feed to Leach

A-1

Grinding conditions:

(

-~

Mill Rod charge	Rod, steel, 7-5/8" diam x 9-1/2", ribbed, 85/90 rpm Steel rods, 9" in length Diam No. of Weight inch Rods kg
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Ore charge H ₂ O Time	1.0 kg, minus 6-mesh 1.0 kg 3 min

	Weight Distribution, %							
Size Mesh (Tyler)	Blanding No. 4 HRI-11868	Anschutz No. 1 HRI-11870	Hanksville No. 24 HRI-11869					
+28			12.3					
28x35	0.0	0.0	11.3					
35 x4 8	2,5	0.2	13.5					
48x65	16.2	7.4	9.2					
65x100	25.0	25.2	7.1					
100x150	18.7	21.9	4.8					
150x200	10.4	14.6	4.2					
200x270	4.5	7.6	-3.0					
270x325	1.5	2.8	2.3					
-325	21.2	20.3	32.3					
	100.0	100.0	100.0					

<u>nri</u>

ATTACHMENT F

RADON EMANATION CALCULATIONS

(REVISED)

PREPARED BY

INTERNATIONAL URANIUM (USA) CORP.

INDEPENDENCE PLAZA

1050 17th STREET, SUITE 950

DENVER, CO 80265

Memorandum

Date: April 15, 1999

To: File 1626B

From: Roman Popielak and Pete Duryea

Re: Radon Emanation Calculations (Revised)

At the request of International Uranium (USA) Corporation (IUC), we have completed a series of analyses of the expected levels of radon flux from the White Mesa uranium tailings facility for the tailings cover design. These analyses accounted for recent comments from the United States Nuclear Regulatory Commission (NRC).

Analysis Methodology and Input Parameters

The analyses conducted and described herein adopted the methods and approach detailed in NRC Regulatory Guide 3.64 and more specifically the computer code RADON Version 1.2. The code, which considers one-dimensional steady state gas diffusion, requires input data including: layer thickness, porosity, dry density, radium activity, emanation coefficient, gravimetric water content and radon diffusion coefficient. These input data were based exclusively on available data from previous work by others including Rogers and Associates Engineering Corporation, Advanced Terra Testing, Chen and Associates, D'Appolonia Consulting Engineers Inc. and TITAN Environmental. Key laboratory data and a summary of parameters selected for these analyses are presented in the attached Table 1.

The current cover design includes 2.0 feet of random fill (frost barrier fill) over 1.0 foot of compacted clay which in turn overlies 3.0 feet of random fill (platform fill). In the analyses, the thickness of final cover was reduced by 6.8 inches to 1.4 feet to account for the depth of frost penetration as evaluated by TITAN Environmental. The actual tailings thickness is on the order of 44 feet, which meets the NRC guidelines for an infinitely thick source, and hence it could be modeled in program RADON as a 500.0-centimeter thick layer. Available data on the in-situ density of the tailing was used. All available historical Proctor compaction results for the other materials were evaluated to select appropriate maximum dry densities for the clay and random fill.

The clay layer and frost barrier fill, which are to be placed and compacted as engineered fill materials, were modeled with 95-percent standard Proctor compaction. The platform fill material is dumped and spread directly on top of the tailing surface. Once in place, the material is compacted by selective routing of equipment traffic, and it then provides a working surface for subsequent operations such as placement and compaction of the clay layer and frost barrier fill. The compaction of material comprising the platform is expected to be higher at its top than at its contact with the tailings.

1626B

File 1626B

Radon Emanation Calculations (Revised)

Within the platform fill, the surficial material is likely to exhibit fairly high compaction given the influence of the contact stresses exerted by equipment traffic and later by the compaction of overlying material. Such stresses diminish with depth, so lower portions of the platform fill will not have experienced as significant a compactive effort. Compaction of the platform fill is therefore likely to range from about 80-percent of standard Proctor at the base of the random fill immediately above the tailing to 90- to 95-percent of standard Proctor compaction at the top of the platform fill immediately below the equipment loads just described.

The porosity of each of the materials/sublayers was calculated from its dry density and specific gravity of soil solids. Radium activities and emanation coefficients were selected for each soil type from available lab data, and the long term water contents were selected for the analyses as follows. In the absence of other data, the tailing was modeled with a 6.0 percent by weight moisture content as the NRC recognizes that value as a practical lower bound for soils in the western United States. Long term moisture content can be conservatively modeled as the residual (or irreducible) water content from capillary moisture retention data since a lower value is more critical, that is it yields a higher radon flux. Such data was provided and used for the random fill and the clay.

The final, and one of the more critical parameters, was the radon diffusion coefficient. This parameter is dependent upon the porosity and degree of saturation of the soil, and although lab data was available, it was for conditions other than those modeled. So in the absence of diffusion coefficient data at the porosities and degrees of saturation of interest, a correlation provide by the NRC was employed to compute the diffusion coefficients adopted for the analyses. These values ranged from 0.0071 to 0.0507 cm²/sec. It should be noted that the resultant values did seem to match well with the trends observed in the available laboratory data.

Results and Conclusions

Since there were not data available describing the degree and distribution of compaction in the platform fill, a series of analyses were conducted based on varying assumptions about the condition of that material. In each of those cases, the platform fill was divided into a series of sublayers whose thickness and degree of compaction were selected based upon engineering judgement and previous experience with similar situations.

The two cases of distribution of compaction considered to represent the conditions anticipated at White Mesa are presented in attached Figure 1 as Case I and Case II. The results of the radon flux evaluation for those two cases are attached. For the reasonably conservative input parameters listed herein and an interim cover comprising 1.0 foot each at 80-, 90 and 95-percent compaction as shown as Case I in Figure 1, a radon flux at the ground surface of 18.2 pCi/m²/sec is expected. For Case II with 0.5 foot of 95-percent compaction material overlying 1.0 feet of 90-percent compaction material and 1.5 feet of 85-percent compaction material, the radon flux at the ground surface is 19.8 pCi/m²/sec. Both of these results are within the 20.0 pCi/m /sec limit specified by the NRC.

<u>Knight Piésold</u>

File 1626B Radon Emanation Calculations (Revised)

April 15, 1999

Therefore, it appears that the cover design should be acceptable assuming that the conditions described herein do not vary significantly from those in the field.

In conclusion, empirical knowledge of the site conditions should be taken under consideration in evaluation of the model results. At present, approximately 80-percent of Cell No.2 is covered with the random fill (platform fill). This fill supports traffic of the heavy, 30 ton haulers. Hence the degree of compaction of the layer(s) as represented in the radon flux models (see Figure 1) may have already been achieved in certain locations within the cell. The platform fill has been very effective to date in attenuating the radon flux, which as currently recorded is 7.4 pCi/m²/sec which is well below the standard of 20.0 pCi/m²/sec. Based on these observations, it would appear that the performance of the tailings cover, which will ultimately include the clay layer and frost barrier fill in addition to the fill currently in place, as a barrier controlling radon flux is anticipated to meet the regulatory requirements.

3

Table 1Laboratory and Model Input Data

LABORATORY DATA

Material	Specific Gravity	Max. Dry Unit Wt.	Max. Dry Density	95% Max. Dry Density	Porosity ⁽¹⁾	Dry Density	Radium Activity	Emanation Coefficient	Water Content	Diffusion ⁽⁷⁾ Coefficient	Saturation ⁽²⁾	Diffusion ⁽³⁾ Coefficient
	G,) Y dry,max	Pdry,max	Pdry,95% max	n	Pary			w	D	S	D
		(pcf)	(g/cm ³)	(g/cm ³)		(g/cm ³)	(pCi/g)		(% by wt.)	(cm²/sec)		(cm²/sec)
Tailings	2.85	104.0	1.67	1.58	0.491	1.45	981.0	0.19	13.2	2.00E-02	0.390	2.07 E-02
B	2.85	104,0	1.67	1.58	0.495	1.44	981.0	0.19	19.1	8.40E-03	0.556	1.06E-02
Rnd. Fill (Comp.)	2.67	120.2	1.93	1.83	0.307	1.85	1.9	0.19	6.5	1.60E-02	0.392	1.63E-02
· • • • • • • • • • • • • • • • • • • •	2.67	120.2	1.93	1.83	0.311	1.84	1.9	0.19	12.5	4.50E-04	0.740	1.99E-03
Clay (Site #1)	2.69	121.3	1.94	1.85	0.312	1.85	2.2	0.20	8.1	1.60E-02	0.480	L12E-02
) (2)	2.69	121.3	1.94	1.85	0.316	1.84	2.2	0.20	12.6	1.40E-03	0.734	2.13E-03
Clay (Site #4)	2.75	108.7	1.74	1.65	0,400	1.65	2.0	0.11	15.4	1.10E-02	0.635	5.481.03
	2.75	108.7	1.74	1,65	0.400	1.65	2.0	0.11	19.3	4.20E-04	0.796	1.341-03
Clay (UT-1)	2.39	113.5	1.82	1.73	0.280	1.72	1.5	0.22	14.5	9.10E-03	0.890	2.8-H E=04

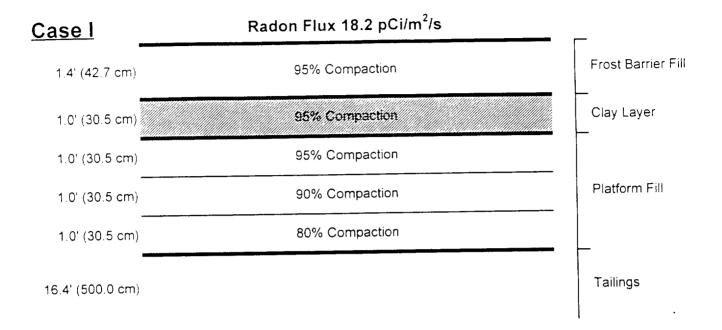
SELECTED MODEL INPUT DATA

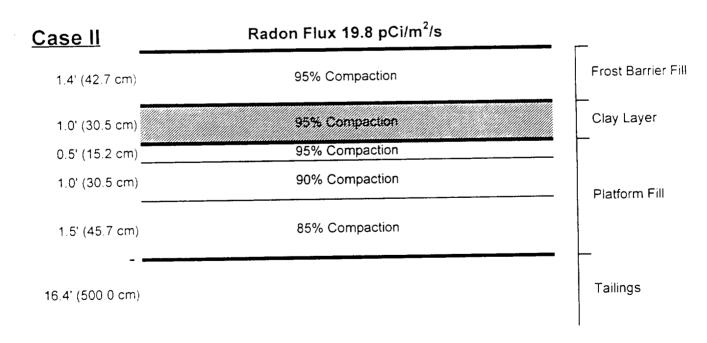
Material	Specific ⁽⁶⁾ Gravity	Max. Dry ⁽⁶⁾ Unit Wt.	Max. Dry Density	Specified Dry Density	Porosity ⁽¹⁾	Dry ⁽⁴⁾ Density	Radium ⁽⁶⁾ Activity	Emanation ⁽⁶⁾ Coefficient	Water ⁽⁵⁾ Content	Diffusion ⁽³⁾ Coefficient	Saturation ⁽²⁾
	G,	Y dry,max	Pery,max	Pdry,spec	n	ρ _{dry}			w	D	S
		(pcf)	(g/cm³)	(g/cm³)		(g/cm³)	(pCi/g)		(% by wt.)	(cm²/sec)	
Tailings	2.85	N/A	N/A	N/A	0,583	1.19	981.0	0.19	6.0	5.07E-02	0.122
Rnd. Fill @ 80% Std.	2.67	120.2	1.93	1.54	0.423	1.54	1.9	0.19	9.8	2.12E-02	0.357
Rnd. Fill @ 85% Std.	2.67	120.2	1.93	1.64	0.387	1.64	1.9	0.19	9.8	1.62E-02	0.415
Rnd. Fill @ 90% Std.	2.67	120.2	1.93	1.73	0.351	1.73	1.9	0.19	9.8	1.15E-02	0.484
Rnd. Fill @ 95% Std.	2.67	120.2	1.93	1.83	0.315	1.83	1.9	0.19	9.8	7.05E-03	0.570
Clay @ 95% Std.	2.72	100.0	1.60	1.52	0.440	1.52	1.9	0.18	14.1	1.30E-02	0,488

(1) n=1-($\rho_{diy}/G_s/\rho_w$)

(2) $S=w^*G_s^*\rho_{dry}/\rho_w/(G_s^*\rho_w^-\rho_{dry})$

(3) $D=0.07\exp(-4(S-Sn^2+S^5))$ per NRC correlation


(4) Tailings based on 74.2 pcf. Rnd. Fill ranges from 80 to 95% Std. Proctor. Clay based on 95% Std. Proctor.


(5) Tailings based on w=6% per NRC. Others based on capillary moisture data. Rnd. Fill w=9.8% and Clay w=14.1% (average of two tests).

(6) Values for clay are an average of test results.

(7) Individual lab test results.

Figure 1 Cover Cross Sections for Radon Flux Models

Note: Percent compaction is based upon the maximum dry density by standard Proctor.

----- ****! RADON !*****-----

Version 1.2 - Feb. 2, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

> RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

WHITE MESA CASE I

CONSTANTS

RADON DECAY CONSTANT RADON WATER/AIR PARTITION COEFFICIENT SPECIFIC GRAVITY OF COVER & TAILINGS	.0000021 .26 2.65	s^-1
GENERAL INPUT PARAMETERS		
LAYERS OF COVER AND TAILINGS	6	

DESIRED RADON FLUX LIMIT	20	pCi m^-2 s^-1
LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION SURFACE FLUX PRECISION	0 0	pCi l^-1 pCi m^-2 s^-1

LAYER INPUT PARAMETERS

LAYER 1

THICKNESS	500	CM
POROSITY	.583	
MEASURED MASS DENSITY	1.19	g_cm ² -3
MEASURED RADIUM ACTIVITY	981	pCi/g^-l
MEASURED EMANATION COEFFICIENT	.19	
CALCULATED SOURCE TERM CONCENTRATION	7.990D-04	pCi cm^-3 s^-1
WEIGHT & MOISTURE	6	8
MOISTURE SATURATION FRACTION	.122	
MEASURED DIFFUSION COEFFICIENT	.0507	cm^2 s1

LAYER 2

THICKNESS	30.5	CM
POROSITY MEASURED MASS DENSITY	.423 1.54	g cm [^] -3 pCi/g [^] -1
MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT	1.9 .19 2.760D-06	pCi/g -1 pCi cm^-3 s^-1
CALCULATED SOURCE TERM CONCENTRATION WEIGHT & MOISTURE	9.8	
MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	.357 .0212	cm^2 s^-1

THICKNESS ASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	30.5 .351 1.73 1.9 .19 3.737D-06 9.8 .483 .0115	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	30.5 .315 1.83 1.9 .19 4.404D-06 9.8 .569 .0071	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5		
AICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	30.5 .44 1.52 1.9 .18 2.481D-06 14.1 .487 .013	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹

LAYER 6

THICKNESS	42.7	CM
POROSITY MEASURED MASS DENSITY	.315 1.83	g cm^-3
MEASURED RADIUM ACTIVITY	1.9	pCi/g^-1
MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION	.19 4.404D-06	pCi cm^-3 s^-1
WEIGHT % MOISTURE	9.8 .569	00
MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	.0071	cm ² s ⁻¹

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

(N 6	F01 -1.000D+00	CN1 0.000D+00	ICOST 0	CRITJ 2.000D+01	ACC 0.000D+00	
	LAYER		D 5.070D-02	P 5.830D-01	Q 7.990D-04	XMS 1.225D-01	RHC 1,190
	1 2	5.000D+02 3.050D+01	2.120D-02	4.230D-01	2.760D-06	3.568D-01	1.540
	3 4	3.050D+01 3.050D+01	1.150D-02 7.100D-03	3.510D-01 3.150D-01	3.737D-06 4.404D-06	4.830D-01 5.693D-01	1.730 1.830
	5 6	3.050D+01 4.270D+01	1.300D-02 7.100D-03	4.400D-01 3.150D-01	2.481D-06 4.404D-06	4.871D-01 5.693D-01	1.520 1.830

BARE SOURCE FLUX FROM LAYER 1: 6.938D+02 pCi m⁻² s⁻¹

(

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS	EXIT FLUX	EXIT CONC.
	(cm)	(pCi m ⁻² s ⁻¹)	(pCi l^-1)
1	5.000D+02	1.417D+02	2.911D+05
2	3.050D+01	8.383D+01	1.976D+05
3	3.050D+01	5.158D+01	1.220D+05
4	3.050D+01	3.608D+01	5.146D+04
5	3.050D+01	2.274D+01	4.139D+04
6	4.270D+01	1.824D+01	0.000D+00

____****** RADON !*****-----

Version 1.2 - Feb. 2, 1989 - G.F. Birchard tel.# (301)492-7000 U.S. Nuclear Regulatory Commission Office of Research

> RADON FLUX, CONCENTRATION AND TAILINGS COVER THICKNESS ARE CALCULATED FOR MULTIPLE LAYERS

WHITE MESA CASE I

(

CONSTANTS

RADON DECAY CONSTANT	.0000021	s^-1
RADON WATER/AIR PARTITION COEFFICIENT	.26	
SPECIFIC GRAVITY OF COVER & TAILINGS	2.65	

GENERAL INPUT PARAMETERS

LAYERS OF COVER AND TAILINGS DESIRED RADON FLUX LIMIT	6 20	pCi m^-2 s^-1
LAYER THICKNESS NOT OPTIMIZED DEFAULT SURFACE RADON CONCENTRATION SURFACE FLUX PRECISION	0 0	pCi l^-1 pCi m^-2 s^-1

LAYER INPUT PARAMETERS

'ER 1

THICKNESS	500 .583	cm
POROSITY MEASURED MASS DENSITY	1.19	g cm ² -3
MEASURED RADIUM ACTIVITY	981 .19	pCi/g^-1
MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION	7.990D-04	pCi cm ⁻³ s ⁻¹
WEIGHT % MOISTURE MOISTURE SATURATION FRACTION	6 .122	\$
MEASURED DIFFUSION COEFFICIENT	.0507	cm^2 s^-1

LAYER 2

THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT & MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	45.7 .387 1.64 1.9 .19 3.213D-06 9.8 .415 .0162	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
---	---	---

LAYER 🤇	5
---------	---

THICKNESS POROSITY ASURED MASS DENSITY TEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	30.5 .351 1.73 1.9 .19 3.737D-06 9.8 .483 .0115	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 4		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	15.2 .315 1.83 1.9 .19 4.404D-06 9.8 .569 .0071	cm g cm ⁻³ pCi/g ⁻¹ pCi cm ⁻³ s ⁻¹ % cm ² s ⁻¹
LAYER 5		
LICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT	30.5 .44 1.52 1.9 .18 2.481D-06 14.1 .487 .013	cm g cm ² -3 pCi/g ² -1 pCi cm ² -3 s ² -1 % cm ² s ² -1
LAYER 6		
THICKNESS POROSITY MEASURED MASS DENSITY MEASURED RADIUM ACTIVITY MEASURED EMANATION COEFFICIENT CALCULATED SOURCE TERM CONCENTRATION WEIGHT % MOISTURE	42.7 .315 1.83 1.9 .19 4.404D-06 9.8	cm g cm^-3 pCi/g^-1 pCi cm^-3 s^-1 %

(

WEIGHT % MOISTURE MOISTURE SATURATION FRACTION MEASURED DIFFUSION COEFFICIENT

.

cm^2 s^-1

.569 .0071

DATA SENT TO THE FILE `RNDATA' ON DRIVE A:

(¹	F01	CN1	ICOST	CRITJ	ACC	
6	-1.000D+00	0.000D+00	0	2.000D+01	0.000D+00	
LAYER	DX	D	P	Q	XMS	RHO
1	5.000D+02	5.070D-02	5.830D-01	7.990D-04	1.225D-01	1.190
2	4.570D+01	1.620D-02	3.870D-01	3.213D-06	4.153D-01	1.640
3	3.050D+01	1.150D-02	3.510D-01	3.737D-06	4.830D-01	1.730
4	1.520D+01	7.100D-03	3.150D-01	4.404D-06	5.693D-01	1.830
5	3.050D+01	1.300D-02	4.400D-01	2.481D-06	4.871D-01	1.520
6	4.270D+01	7.100D-03	3.150D-01	4.404D-06	5.693D-01	1.830

BARE SOURCE FLUX FROM LAYER 1: 6.938D+02 pCi m⁻² s⁻¹

RESULTS OF THE RADON DIFFUSION CALCULATIONS

LAYER	THICKNESS	EXIT FLUX	EXIT CONC.
	(cm)	(pCi m ⁻² s ⁻¹)	(pCi l^-1)
1	5.000D+02	1.382D+02	2.930D+05
2	4.570D+01	7.131D+01	1.485D+05
3	3.050D+01	4.602D+01	9.400D+04
4	1.520D+01	3.921D+01	5.586D+04
5	3.050D+01	2.469D+01	4.491D+04
6	4.270D+01	1.977D+01	0.000D+00

ATTACHMENT G

CHANNEL AND TOE APRON

DESIGN CALCULATIONS

OF

WHITE MESA FACILITIES

BLANDING, UTAH

PREPARED BY

1

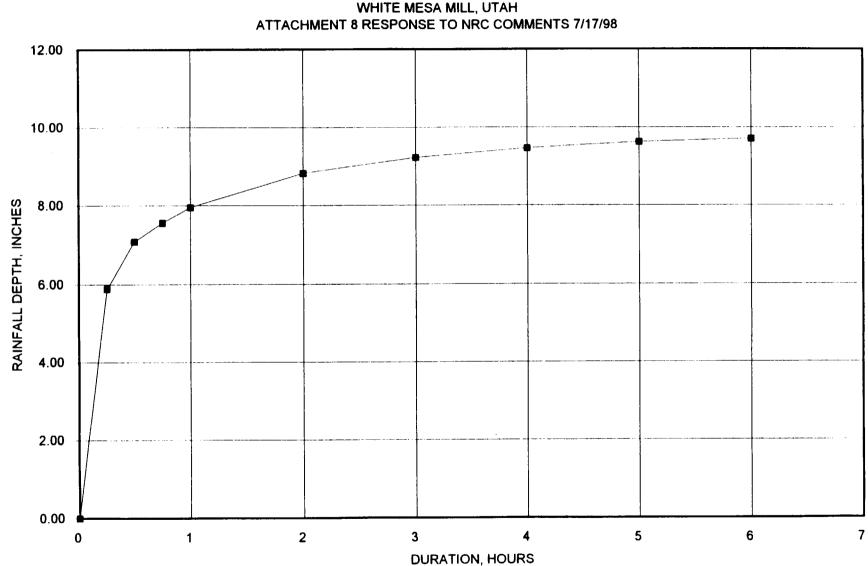
INTERNATIONAL URANIUM (USA) CORP.

INDEPENDENCE PLAZA

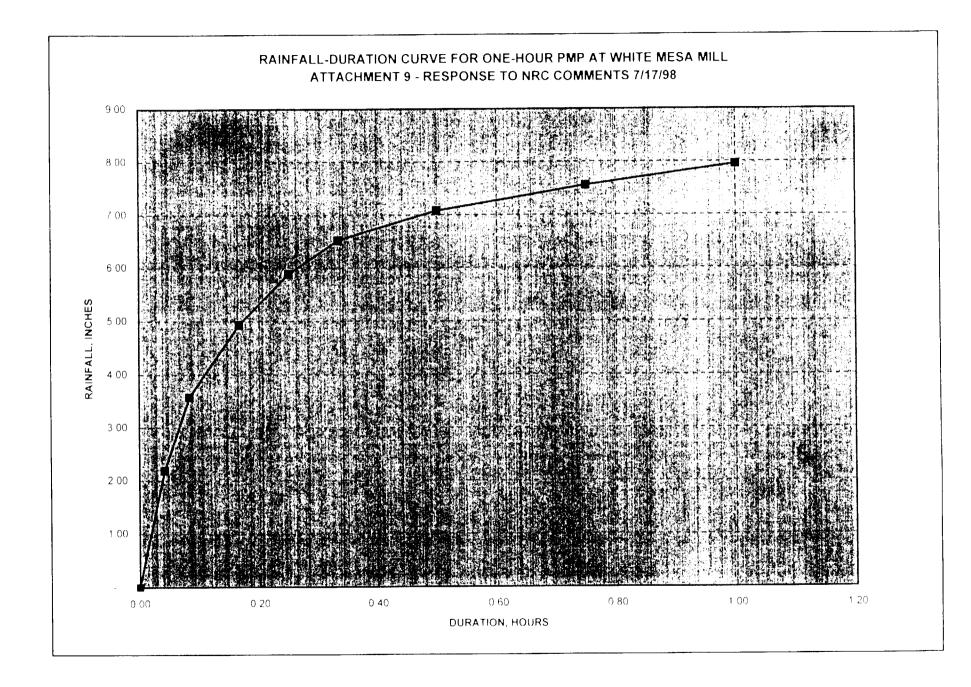
1050 17TH STREET, SUITE 950

DENVER, CO 80265

ATTACHMENT 7 - RESPONSE TO NRC COMMENTS 7/17/98 TABLE OF SIX-HOUR LOCAL PMP RAINFALL DEPTH VS DURATION FOR WHITE MESA MIL


6-Hour Storm Rainfall is 10 inches (ref: Hydrologic Design Report for White Mesa Mill, 1990) 6/1 Hr Ratio for WHITE MESA is 1.22 (Figure 4.7 and Table 4.4, HMR 49) ONE-HOUR PMP IS: 8.20 inches at 5000 ft. elevation 97.0% or 7.95 inches at 5600 ft. elevation (1)

DURATION HOURS	% OF 1-HR PMP	RAINFALL DEPTH, IN INCHES, AT AVERAGE ELEVATION OF: (based on Table 6.3A, HMR 49)					
		5000 ft	5600 ft(1)				
0	o	0.00	0.00				
0.25	74	6.07	5.88				
0.5	89	7.30	7.08				
0.75	95	7.79	7.55				
1	100	8.20	7.95				
2	111	9.10	8.83				
3	116	9.51	9.22				
4	119	9.75	9.46				
5	121	9.92	9.62				
6	122	10.00	9.70				


Plot of data is adaptation of Figure 12.10, HMR 55A, to site rainfall. (1) Average elevation of site in vicinity of base of cell 4Aeach tanks

TIME DISTRIBUTION OF FIRST ONE HOUR, OR THE ONE-HOUR PMP (after Table 2.1, NUREG CR 4620)

RAINFALL	RAINFALL	% OF	RAINFALL D	EPTH IN INCHES
DURATION	DURATION	ONE-HOUR	AT EL	EVATION:
MINUTES	HOURS	PMP		
			5000 ft	5600 ft(1)
0	0	0	0	0
2.5	0.04	27.5	2.25	2.19
5	0.08	45	3.69	3.58
10	0.17	62	5.08	4.93
15	0.25	74	6.07	5.88
20	0.33	82	6.72	6.52
30	0.50	89	7.30	7.08
45	0.75	95	7.79	7.55
60	1.00	100	8.20	7.95

DEPTH VS DURATION FOR 6-HR PMP WHITE MESA MILL, UTAH

 \frown

ATTACHMENT 11 RESPONSES TO NRC COMMENTS 7/17/98 RATIONAL METHOD CALCULATION OF PMF PEAK DISCHARGE, VELOCITY, AND DEPTH THROUGH CELL #1 DISCHARGE CHANNEL

FLOW PATH ELEMENT	ELEMENT LENGTH L	MAX ELEV	MIN. ELEV	GRADIENT S	SLOPE ANGLE degrees	tc hours	RAINFALL WITHIN tc (1)	i in/hr	SURFACE AREA acres	PEAK DISCHARGE Q, cfs
LONGEST	4800	5655	5610	0.0094	0.54	0.54	7.20	13.43	143	1344

(

(

	Channel Bottom Width, b ft	Channel Side Siopes	Channel Gradient, s ft/ft	Manning Coeff., n	Qn/1.49*s^ 5	Fiow Depth, y ft	Cross Section Area of Flow a, ft^2	Hydraulic Radius R, ft	ə(R)^.67	Velocity v fps	Aliowable Peak Velocity fps (COE, 1970
Bedrock Channel	100	3:1	0.0100	0.025	226	1.62	169.9	1.54	226.95	7.96	8-10
Bedrock Channel	120	3:1	0.0100	0.025	226	1.45	180.3	1.40	225.46	7.45	8-10

RATIONAL METHOD CALCULATION OF PMF PEAK DISCHARGE, VELOCITY, DEPTH AND SCOUR THROUGH CELL 4A BREACH WITH BREACH WIDENED TO 200 FEET - IUC WHITE MESA

FLOW PATH ELEMENT	ELEMENT LENGTH L	MAX ELEV	MIN ELEV.	GRADIENT S	SLOPE ANGLE degrees	1C hours	RAINFALL WITHIN IC (1)	av/hr	SURFACE AREA acres	PEAK DISCHARGE Q. cfs
CELL 2 COVER	1230	5619.5	5617	0.0020	0.12	0.34	6.53	19.29	41.30	637
CELL 2/3 BERM	10	5617	5615	0.2000	11.31	0.34	6.54	19.24	1.10	654
CELL 3 COVER	900		5613.2	0.0020	0.11	0.61	7.30	12.01	35.12	992
CELL 3/4A BERM	180	· .	5577.2	0.2000	11.31	0.62	7 40	11.92	6.40	1053
CELL 4A	1400	5577 2	5562	0.0109	0.62	0.82	7.70	9.42	27.70	1262
CELL 4A INSLOPES	80	5599	5560	0.4875	25.99	0.04	2.00	47.62	5.68	216
CELL 4A BREACH	275	5562	5560	0.0073	0.42	0.92	7.80	8.44	0.38	1481

FLOW PARAMETERS IN CELL 4A BREACH AT PEAK PMF DISCHARGE

	Breach Bottom Width, b ft	Breach Side Slopes	Breach Channei Gradient. s ft/ft	Manning Coeff , n	Qn/1.49"\$* 5	Flow Depth, y fl	Cross Section Area of Flow a. R^2	Hydraulic Radius R, fl	a(R)^ 67	Velocity v tps	Allowable Peak Velocity fps (COE, 1970)	Riprap Size d50 inches (ref 1)
Soil (SM) Channel	200	3:1	0.0073	0.03	350	1.39	283.8	1.36	348.59	5.20	2-4	4.00
Rock Channel	200	3:1	0.0073	0.025	291	1.25	254.7	1.23	291.78	5.82	8-10	N/A

NOTE: If rounded rock (river cobbles and gravel) is used, rock size should be increased by 33%, per Fig. 4.10, NUREG /CR 4651, Vol. 2

Reference 1 - Fig 4.11, NUREG CR 4620

DEPTH OF SCOUR OF CELL 4A BREACH CHANNEL

All methods used are from Pemberton, E.L., and J.M. Lara, 1984, "Computing Degradation and Local Scour", Technical Guideline for Bureau of Reclamation

ds = depth of so	our, ft.	Soil
q = unit dischar	ge, cfs/ft	Channel
		200' wide
Method 1	ds=K°q^0.24	
	K = constant, 2.45	
	q =	5.2
	ds =	3.64
Method 2	ds = 0.25 dm	
	dm = mean water depth at design discharge =	1.4
	d s =	0.34
Method 3	ds = 0.6°dfo	
	dio = q^0.666/Fbo^0.333 =	3.00
	Fbo = zero bed factor = 1.0 ft/s^2 for fine sand	
	d s =	1.80
Method 4	ds = 0.25 * dma	
	dma * unit cross section of flow *	1.39
	d s =	0.35
Method 5	ds = dm*((Vm/Vc)-1)	
	Vm = mean velocity =	5.22
	Vc =	2
	ds =	2.19
	DUR DEPTH. n =	1.66

ATTACHMENT 12 TABLE - RESPONSES TO NRC COMMENTS 7/17/98 ROCK APRON DESIGN TABLE - TAILING CELL EROSION PROTECTION WHITE MESA MILL

FLOW PATH ELEMENT	ELEMENT LENGTH L	ELEMENT WIDTH W	GRADIENT S	SLOPE ANGLE	tc (minimum is 0.042)	RAINFALL WITHIN tc	INTENSITY	Peak Unit Discharge q	d50
	ft	ft.	ft/ft	degrees	hours	inches	in/hr	cfs/ft	inches
APRON	10	1	0.01	0.57	0.60	7 29	12.07	1.80	7.3

Notes

The top cover element length is 2450 ft. This was used in the calculations for time of concentration and peak unit discharge

The outslope element length is 240 ft. This was used in the calculations for time of concentration and peak unit discharge

The d50 for the outslope was calculated per Abt, S.R. and Johnson, T.L., "Riprap Design for Overtopping Flow," ASCE Journal of Hydraulic Engineering, 1991.

The d50 for the apron was calculated per Abt, S.R., Johnson, T.L., Thornton, C.I. and Trabant, S.C., "Riprap Sizing at Toe of Embankment Slopes," ASCE Journal of Hydraulic Engineering, July 1998

DEPTH OF SCOUR AT DOWNSTREAM EDGE OF TOE APRON

All methods used are from Pemberton, E.L., and J.M. Lara, 1984, "Computing Degradation and Local Scour", Technical Guideline for Bureau of Reclamation

Method 1	ds=K*q^0.24 K = constant, 2.45 q = 1.81 cfs/ft							
	ds =	2.82	ft					
Method 2	ds = 0.25 dm dm = mean water de	pth at design di	scharge					
	ds =	0.22	ft.					
Method 3	ds = 0.6°dfo dfo = q^0.666/Fbo^0.333 Fbo = zero bed factor = 1.0 ft/s^2 for fine sand							
	ds =	0.09	ft					
Method 4	ds = 0.25 * dma dma = unit cross section of flow = 0.87 fl							
	ds =	0.22	ft					
Method 5	ds = dma*((Vm/Vc)- Vm = mean velocity = Vc = 0.5 fps	•						
	ds =	3.17	ft					

ATTACHMENT H

ROCK TEST RESULTS

BLANDING AREA GRAVEL PITS

PREPARED BY

INTERNATIONAL URANIUM (USA) CORP.

INDEPENDENCE PLAZA

1050 17th STREET, SUITE 950

DENVER, CO 80265

TO:	Harold R. Roberts	cc:	William N. Deal
FROM:	Robert A. Hembree		
DATE:	November 20, 1998		
SUBJECT:	Rock Test Results – Blanding Area Grav	el Pit	S

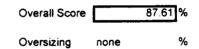
Attached you will find the results for lab tests that were performed on rock samples obtained from three gravel sources around the White Mesa Mill. These samples were taken from the Cow Canyon pit located just north of Bluff (15 miles south of the mill), the Brown Canyon pit located on the east side of Recapture Canyon four miles northeast of the mill, and the North Pit located one mile northeast of Blanding. A 75 pound sample of material was collected from each site, each sample was crushed and screened to a $+1/2 - 1 \frac{1}{2}$ inch size. Testing was performed by Western Colorado Testing in Grand Junction, Colorado. All samples were tested for specific gravity, absorption, sulfate soundness and L.A. Abrasion.

Test results indicate that all three sites score high enough to be used as rip rap sources for the reclamation cover at the mill (see attached scoring calculations). The Cow Canyon site scores high enough that there would be no over-sizing required; it is suitable for use in channels as well as on side and top slopes. The Brown Canyon site requires the most over-sizing at nineteen percent (19%). The North Pit material would require over-sizing of 9.35%. These test results prove that there are sources of rip rap material within a reasonable distance of the mill site. The average over-sizing factor for the three sites is 9.5%, which is well below the 25% number used in the 1996 reclamation cost estimate. The over-sizing factor used in the Titan Design Study was also 25%.

Based on the results of the testing IUC could use any of these three sites. The North Pit would be the most reasonable choice of material sites since it has a lower over-sizing factor than the Brown Canyon site and is closer to the mill than the Cow Canyon site. The North Pit also has the advantage of being an established public pit on BLM administered land.

RAH/rah

International Uranium (USA) Corp. WHITE MESA MILL RECLAMATION


NRC Rip Rap Scoring Calculations

Weighting Factors for Igneous Rocks Oversizing for side slopes, top slopes, and well drained toes and aprons Rock Scoring less than 50% is rejected, rock scoring over 80% does not require oversizing

Cow Canyon Pit (Bluff)

Lab Test	Lab Results	Score	Weight	Score x Weight	Max. Score
Specific Gravity	2.63	7.5	9	67.5	90
Absorption, %	0.47	8.25	2	16.5	20
Sodium Sulfate Sound., %	0.2	10	11	110	110
L.A. Abrasion, %	6.4	7.5	1	7.5	10

Totals

201.5

140.25

Brown Canyon Site

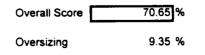
Lab Results	Score	Weight	Score x Weight	Max. Score
2.525	5.5	9	49.5	90
2.61	1.75	2	3.5	20
5.5	7.5	11	82.5	110
10.3	4.75	1	4.75	10
	2.525 2.61 5.5	2.525 5.5 2.61 1.75 5.5 7.5	2.525 5.5 9 2.61 1.75 2 5.5 7.5 11	2.525 5.5 9 49.5 2.61 1.75 2 3.5 5.5 7.5 11 82.5

Totals

Overall Score	60.98 %
Oversizing	19.02 %

North Pit (N. Blanding)

Lab Test	Lab Results	Score	Weight	Score x Weight	Max. Score
Specific Gravity	2.557	6.25	9	56.25	90
Absorption, %	2.84	1.25	2	2.5	20
Sodium Sulfate Sound., %	3.2	8.75	11	96.25	110
L.A. Abrasion, %	6.3	7.5	1	7.5	10


Totals

230

162.5

230

230

WESTERN COLORADO TESTING, INC. 529 25 1/2 Road, Suite 3-101 Grand Junction, Colorado 81505 (970) 241-7700 • Fax (970) 241-7783

> November 16, 1998 WCT #811898

International Uranium USA Corporation Independence Plaza 1050 17th Street Denver, Colorado 80265

Attention: Mr. Bob Hembree

Reference: Rock Durability Testing

As requested, three (3) potential sources of riprap for use in reclamation of tailings ponds in Blanding, Utah were tested for rock durability. The riprap material was obtained, crushed to testing size, and delivered to Western Colorado Testing, Inc. by the client. The three sources of material were tested for specific gravity and absorption (ASTM Cl27), Sodium Sulfate Soundness (ASTM C88), and Los Angeles Abrasion (ASTM Cl31). The results of the testing are provided below.

Test	Result
Bulk Specific Gravity, g/cc	2.630
SSD Specific Gravity, g/cc	2.642
Apparent Specific Gravity, g/cc	2.663
Water Absorption, %	0.47
Sodium Sulfate Soundness, Avg. & Loss	0.2
L.A. Abrasion, & Loss @ 100 Rev.	6.4

Page 2 International Uranium USA Corporation WCT #811898 November 16, 1998

Saterial Sources Brown Canyos		
	Result	
Bulk Specific Gravity, g/cc	2.460	
SSD Specific Gravity, g/cc	2.525	
Apparent Specific Gravity, g/cc	2.629	
Water Absorption, *	2.61	
Sodium Sulfate Soundness, Avg. & Loss	5.5	
L.A. Abrasion, & Loss @ 100 Rev.	10.3	

Material Seurces North Pit		
Teat	Repult	
Bulk Specific Gravity, g/cc	2.485	
SSD Specific Gravity, g/cc	2.557	
Apparent Specific Gravity, g/cc	2.674	
Water Absorption, %	2.84	
Sodium Sulfate Soundness, Avg. & Loss	3.2	
L.A. Abrasion, & Loss & 100 Rev.	6.3	

If there are any questions or if additional testing is needed, please feel free to contact our office.

Respectfully Submitted: WESTERN COLORADO TESTING, INC.

- C----

Kyle Alpha Construction Services Manager

KA/mh Mehiobev0118L1118