WOLF CREEK GENERATING STATION – UNIT 1

_

PRESSURE AND TEMPERATURE LIMITS REPORT

-

Table of Contents

Section		Page
1.0	Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)	1
2.0	Operating Limits	1
	2.1 RCS Pressure and Temperature Limits	1
	2.2 Low Temperature Overpressure Protection System	1
3.0	Reactor Vessel Material Surveillance Program	9
4.0	Reactor Vessel Surveillance Data Credibility	9
5.0	Supplemental Data Tables	14
6.0	References	14

List of Figures

Figure		Page
2.1-1	Wolf Creek Reactor Coolant System Heatup Limitations (Heatup Rates of 60° and 100°F/hr). Applicable to 20 EFPY (Without Margins for Instrumentation Uncertainty)	3
2.1-2	Wolf Creek Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 100°F/hr) Applicable to 20 EFPY (Without Margins for Instrumentation Uncertainty)	5
2.2-1	Maximum Allowed PORV Setpoint for the Cold Overpressure Mitigation System	7
	List of Tables	
2.1-1	Wolf Creek Heatup Data at 20 EFPY Without Margins for Instrumentation Uncertainty	4
2.1-2	Wolf Creek Cooldown Data at 20 EFPY Without Margins for Instrumentation Uncertainty	6
2.2-1	Data Points for Maximum Allowed PORV Setpoint	8

1.0 Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)

This PTLR for WCGS has been prepared in accordance with the requirements of Technical Specification (TS) 5.6.6. The TS addressed in this report are listed below:

- LCO 3.4.3 RCS Pressure and Temperature (P/T) Limits
- LCO 3.4.12 Low Temperature Overpressure Protection (LTOP) Systems

2.0 Operating Limits

The parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. The limits were developed using a methodology that is in accordance with the NRC-approved methodology specified in Specification 5.6.6 (Ref. 1). NRC approval of this methodology was received in Amendment No. [], (Ref. 2). NRC approval of the PTLR was received in Reference 3.

The revised P/T Limit curves account for a requirement of 10 CFR 50, Appendix G, that the temperature of the closure head flange and vessel flange regions must be at least 120°F higher than the limiting RT_{NDT} for these regions when the pressure exceeds 20% of the preservice hydrostatic test pressure (3106 psig).

- 2.1 RCS Pressure and Temperature (P/T) Limits (LCO 3.4.3)
 - 2.1.1 The RCS temperature rate-of-change limits are (Ref. 2)
 - a. A maximum heatup of 100°F in any 1-hour period.
 - b. A maximum cooldown of 100°F in any 1-hour period.
 - c. A maximum temperature change of 10°F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves.
 - 2.1.2 The RCS P/T limits for heatup, cooldown, inservice hydrostatic and leak testing, and criticality are specified by Figures 2.1-1 and 2.1-2.
- 2.2 Low Temperature Overpressure Protection (LTOP)System Setpoints (LCO 3.4.12)

The power-operated relief valves (PORVs) shall each have lift settings in accordance with Figure 2.2-1. The LTOP System (Cold Overpressure Mitigation System/PORVs) arming temperature is 368°F. These lift setpoints have been developed using the NRC approved methodologies specified in Technical Specification 5.6.6.

2.2 (continued)

The maximum allowed PORV setpoint for LTOP is derived by analysis which models the performance of the LTOP assuming limiting mass and heat input transients with incorporation of 10% relaxation in accordance with ASME Code Case N-514. Operation with a PORV setpoint less than or equal to the maximum setpoint ensures that Appendix G criteria will not be violated with consideration for: (1) process and instrumentation uncertainties; (2) single failure. To ensure mass and heat input transients more severe than those assumed cannot occur, it is required to lockout both Safety Injection pumps and one centrifugal charging pump (one centrifugal charging pump and the normal charging pump are operational) while in MODES 4, 5, and 6 with the reactor vessel head installed and limit heat input of starting a reactor coolant pump if secondary temperature is more than 50°F above reactor coolant temperature.

2

LIMITING MATERIAL: LOWER SHELL PLATE R2508-3 LIMITING ART VALUES AT 20 EFPY: 1/4T, 90°F 3/4T, 80°F

2500 50 2250 • — LIM TE S **d** 2000 1750 Э UNACCEPTABLE OPERATION sur HEATUP RATE UP TO 60 °F/Hr 1500 S د هند سند منت و HEATUP RATE UP TO 100 °P/Er e 1250 A C C E P T A B L E O P E R A T I O N ч ÔP Р 1000 q FOR LIMIT 60°F/Hr θ ب 750 LIMIT 00°7/H a c u l 500a l 250 Boltup Temp. \mathcal{O} SERVICE PERIOD UP TO 20.0 X7P 0 200 250 300 100 150 50 350 400 0 450 500 Moderator Temperature (Deg.F)

FIGURE 2.1-1 Wolf Creek Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100°F/hr) Applicable to 20 EFPY (Without Margins for Instrumentation Uncertainty)

Wolf Creek - Unit 1

				TABL	E 2.1-1				
Wolf Creek Heatup Limits at 20 EFPY									
		<u> </u>	Vithout Mar	gins for Ins	trumentatio	n Uncertair	nty		
<u>60°</u>	F/hr	60°F/hr (Crit. Limit	100	100°F/hr		Crit. Limit	Leak Test Limi	
Temp. (°F)	Press. (psig)	Temp. (°F)	Press. (psia)	Temp. (°F)	Press. (psia)	Temp. (°F)	Press. (psig)	Temp. (°F)	Press (psic
60	0	223	0	60	0	223	0	201	2000
60	595	223	605	60	567	223	567	223	248
65	596	223	604	65	567	223	567		
85	596	223	598	85	567	223	567		<u> </u>
85	596	223	596	90	567	223	567		•·
90	596	223	596	95	567	223	567		
95	596	223	600	100	567	223	567		
100	596	223	606	105	567	223	567		
105	600	223	615	110	567	223	567		
110	606	223	626	115	567	223	560	•	
115	615	223	639	120	569	223	573		
120	621	223	654	125	573	223	570		
125	621	223	672	120	570	223	597	·	<u> </u>
130	621	223	601	135	597	223	506		
135	621	223	712	140	506	223	590		
140	621	223	712	140	590	223	608		
140	601	223	750	145	600	223	622	·	
140	712	223	701	150	622	223	637		
140	712	223	709	100	037	223	655		
150	730	223	020	160	655	223	674		
100	701	223	852	165	6/4	223	696		
165	709	223	000	170	696	223	719		
170	820	223	926	1/5	719	223	745		
170	002	225	967	180	/45	225	//4		
1/5	888	230	1012	185	//4	230	805		
100	926	235	1060	190	805	235	838		
100	967	240	1111	195	838	240	875		
190	1012	245	1166	200	875	245	914		
192	1060	250	1225	205	914	250	956		
200	1100	255	1289	210	956	255	1002		
205	100	260	1357	215	1002	260	1052		
210	1225	205	1430	220	1052	265	1105		
215	1289	270	1509	225	1105	270	1162		
220	1357	2/5	1593	230	1162	2/5	1223		
225	1430	280	1683	235	1223	280	1289		
230	1509	285	1/79	240	1289	285	1360		<u>.</u>
235	1593	290	1882	245	1360	290	1436		
240	1683	295	1992	250	1436	295	1517		
245	1/79	300	2110	255	1517	300	1605		
250	1882	305	2235	260	1605	305	1698		
255	1992	310	2369	265	1698	310	1798		
260	2110			270	1798	315	1905		
265	2235			275	1905	320	2019		
270	2369			280	2019	325	2141		
				285	2141	330	2271		
				290	2271	335	2409		
				295	2409				

Wolf Creek - Unit 1

4

MATERIAL PROPERTY BASIS

LIMITING MATERIAL: LOWER SHELL PLATE R2508-3 LIMITING ART VALUES AT 20 EFPY: 1/4T, 90°F 3/4T, 80°F

Figure 2.1-2 Wolf Creek Reactor Coolant System Cooldown Limitations (Cooldown Rates of 0, 20, 40, 60 and 100°F/hr) Applicable to 20 EFPY (Without Margins for Instrumentation Uncertainty)

Wolf Creek - Unit 1

	TABLE 2.1-2										
	Wolf Creek Cooldown Limits at 20 EFPY										
	Without Margins for Instrumentation Uncertainty										
Stead	y State	20 °	F/hr	40 °	F/hr	60°	'F/hr	100°F/hr			
Temp.	Press.	Temp.	Press.	Temp.	Press.	Temp.	Press.	Temp.	Press.		
(°F)	(psig)	(°F)	(psig)	(°F)	(psig)	(°F)	(psig)	(°F)	(psig)		
60	0	60	0	60	0	60	0	60	0		
60	595	60	557	60	518	60	480	60	401		
65	605	65	568	65	530	65	492	65	414		
70	616	70	579	70	542	70	505	70	429		
75	621	75	592	75	556	75	519	75	445		
80	621	80	606	80	570	80	534	80	463		
85	621	85	620	85	586	85	551	85	482		
90	621	90	621	90	602	90	569	90	502		
95	621	95	621	95	620	95	588	95	525		
100	621	100	621	100	621	100	609	100	549		
105	621	105	621	105	621	105	621	105	574		
110	621	110	621	110	621	110	621	110	602		
115	621	115	621	115	621	115	621	115	621		
120	621	120	621	120	621	120	621	120	621		
125	621	125	621	125	621	125	621	125	621		
130	621	130	621	130	621	130	621	130	621		
135	621	135	621	135	621	135	621	135	621		
140	621	140	621	140	621	140	621	140	621		
140	894	140	876	140	859	140	844	140	822		
145	927	145	911	145	897	145	885	145	870		
150	962	150	948	150	937	150	929	150	920		
155	1000	155	989	155	981	155	975	155	975		
160	1040	160	1032	160	1028	160	1026	160	1034		
165	1084	165	1079	165	1078	165	1080		1-		
170	1130	170	1129		1	1		1			
175	1181							1			
180	1234					1	1		1		
185	1292					1		1 .			
190	1354					1					
195	1421					1					
200	1492			1	İ	t			1		
205	1569								1		
210	1651										
215	1739										
220	1833										
225	1934		1			1	1				
230	2042		1					İ			
235	2158		1		1	1	1	1			
240	2281		1		1	1			·····		
245	2413				1	1					

-

2 RCPs running below 100°F 4 RCPs running above 100°F

FIGURE 2.2-1 Maximum Allowed PORV Setpoint for the Cold Overpressure Mitigation System

Wolf Creek - Unit 1

-

TABLE 2.2-1 Data Points for Maximum Allowed PORV Setpoints					
Temperature (°F)	Pressure (psig)				
60	469				
78	469				
88	493				
118	488				
158	488				
168	529				
218	540				
268	650				
318	800				
343	910				
368 1127					
418	2350				

-

3.0 Reactor Vessel Material Surveillance Program

The reactor vessel material surveillance program is in compliance with Appendix H to 10 CFR 50, entitled "Reactor Vessel Material Surveillance Program Requirements" and Section 5.3 of the WCGS Updated Safety Analysis Report. The withdrawal schedule is presented in USAR Table 5.3-11. The surveillance capsule reports are as follows:

- 1. WCAP-11553, August 1987, "Analysis of Capsule U from the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Programs."
- 2. WCAP-13365, Revision 1, April 1993, "Analysis of Capsule Y from the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Programs."
- 3. WCAP-15078, Revision 1, August 1998, "Analysis of Capsule V from the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Programs."

4.0 Reactor Vessel Surveillance Data Credibility

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there has been three surveillance capsules removed from the Wolf Creek Unit 1 reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Wolf Creek Unit 1 reactor vessel surveillance data and determine if the Wolf Creek Unit 1 surveillance data is credible.

Criterion 1: Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements," as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

The Wolf Creek Unit 1 reactor vessel consists of the following beltline region materials:

- Intermediate shell plate R2005-1,
- Intermediate shell plate R2005-2,
- Intermediate shell plate R2005-3,
- Lower shell plate R2508-1,
- Lower shell plate R2508-2,
- Lower shell plate R2508-3, and
- All vessel beltline weld seams were fabricated with weld wire heat number 90146. The intermediate to lower shell circumferential weld seam 101-171 was fabricated with Flux Type 124 Lot Number 1061. The intermediate and lower shell longitudinal weld seams 101-124A, B & C and 101-142A, B & C were fabricated with Flux Type 0091 Lot Number 0842. The surveillance weld metal was fabricated with weld wire heat number 90146, Flux Type 124 Lot Number 1061. Per Regulatory Guide 1.99, Revision 2, "weight-percent copper" and "weight percent nickel" are the best-estimate values for the material, which will normally be the mean of the measured values for a plate or forging or for weld samples made with the weld wire heat number that matches the critical vessel weld. The surveillance weld metal was made with the same weld wire heat as all of the vessel beltline weld seams and is therefore representative of all of the beltline weld seams.

The Wolf Creek Unit 1 surveillance program utilizes longitudinal and traverse test specimens from lower shell plate R2508-3. The surveillance weld metal was fabricated with weld wire heat number 90146, Flux Type 124 Lot Number 1061.

The Wolf Creek Unit 1 surveillance program was based on ASTM E185-79. When the surveillance program material was selected it was believed that copper and phosphorus were the elements most important to embrittlement of reactor vessel steels. Lower shell plate R2508-3 had the highest initial RT_{NDT} and the lowest initial USE of all plate materials in the beltline region. In addition, lower shell plate R2508-3 had approximately the same copper and phosphorous content as the other beltline plate materials. Hence, based on the highest initial RT_{NDT} and lowest initial upper shelf energy, lower shell plate R2508-3 was chosen for the surveillance program.

Per Regulatory Guide 1.99, Revision 2, "weight-percent copper" and weight percent nickel" are the best-estimate values for the material, which will normally be the mean of the measured values for a plate or forging or for weld samples made with the weld wire heat number that matches the critical vessel weld. Since the surveillance weld metal was made with the same weld wire heat as all of the vessel beltline weld seams, it is representative of the limiting beltline weld metal.

Therefore, the Wolf Creek Unit 1 surveillance material meets the intent of this criteria.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Wolf Creek - Unit 1

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in WCAP-15078, Revision 1, September 1998, "Analysis of Capsule V from the Wolf Creek Nuclear Operating Corporation Wolf Creek Reactor Vessel Radiation Surveillance Program."

Based on engineering judgement, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Wolf Creek Unit 1 surveillance materials unambiguously. Hence, the Wolf Creek Unit 1 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ∆RT_{NDT} values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 17°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values. Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM E185-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of the ΔRT_{NDT} values about this line is less than 28°F for welds and less than 17°F for the plate.

Following is the calculation of the best-fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

NOTE: Since the calculated vessel fluence values are greater than the best estimate vessel fluence values, the calculated fluence values will be used for all calculations.

Table 4.0-1 Wolf Creek Surveillance Capsule Data							
Material	Capsule	f ⁽¹⁾	FF ⁽²⁾		FFx∆RT _{NDT}	FF ²	
Lower Shell Plate	U	0.3429	0.705	36.46°F	25.70°F	0.50	
R2508-3	Y	1.308	1.075	16.03°F	17.23°F	1.16	
(Longitudinal)	V	2.528	1.249	52.03°F	64.99°F	1.56	
Lower Shell Plate	υ	0.3429	0.705	23.79°F	16.77°F	0.50	
R2508-3	Y	1.308	1.075	35.39°F	38.04°F	1.16	
(Transverse)	V	2.528	1.249	54.53°F	68.11°F	1.56	
				SUM	230.84°F	6.44	
	CF _{R2}	₂₅₀₈₋₃ = Σ(FF ⁻	* RT_{NDT}) ÷ Σ	(FF ²) = (230.84°F	^c) ÷ (6.44) = 35.8°	'F	
Weld Metal ⁽³⁾	U	0.3429	0.705	27.21°F	19.18°F	0.50	
	Y	1.308	1.075	45.09°F	48.47°F	1.16	
	V	2.528	1.249	46.33°F	57.87°F	1.56	
				SUM	125.52°F	3.22	
	$CF_{weld} = \Sigma(FF^* RT_{NDT}) \div \Sigma(FF^2) = (125.52) \div (3.22) = 39.0^{\circ}F$						

(1) $f = Calculated Fluence (10^{19} n/cm^2, E > 1.0 MeV)$. These values were re-evaluated as part of the capsule V analysis. (See Section 6 of WCAP-15078, Revision 1.)

(2) FF = Fluence Factor = $f^{(0.28 - 0.1 * logf)}$

⁽³⁾ ΔRT_{NDT} values do not include the adjustment ratio procedure of Regulatory Guide 1.99, Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values.

The scatter of ΔRT_{NDT} values about the functional form of a best fit line drawn as described in Regulatory Position 2.1 is present in Table 4.0-2.

Table 4.0-2 Wolf Creek Surveillance Capsule Data								
Material	Capsule	CF	FF	Best Estimate ∆RT _{NDT} ^(a)	Measured $\Delta RT_{NDT}^{(b)}$	Change in ΔRT_{NDT}		
Lower Shell Plate	U	35.8°F	0.705	25.24	36.46°F	-11.2		
R2508-3	Y	35.8°F	1.075	38.49	16.03°F	22.46		
(Longitudinal)	V	35.8°F	1.249	44.71	52.03°F	-7.32		
Lower Shell Plate	U	35.8°F	0.705	25.24	23.79°F	1.45		
R2508-3	Y	35.8°F	1.075	38.49	35.39°F	3.10		
(Transverse)	V	35.8°F	1.249	44.71	54.53°F	-9.82		
Surveillance	U	39.0°F	0.705	27.50	27.21°F	0.29		
Program	Y	39.0°F	1.075	41.93	45.09°F	-3.16		
VVeld Metal	V	39.0°F	1.249	48.71	46.33°F	2.38		

^(a) Best estimate $\Delta RT_{NDT} = CF * FF$. Where the CF used when comparing best-estimate ΔRT_{NDT} values to measured ΔRT_{NDT} values for the credibility analysis were calculated based on the measure surveillance data.

(b) Calculated using measured Charpy data plotted using CVGRAPH 4.1.

The scatter of ΔRT_{NDT} values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is less than 17°F for all but one plate material data point. One out of six values for the plate material would be expected to be out of the 1 σ range.

However, the capsule Y longitudinal data point is out on the low side (i.e., the prediction is 22.5°F higher than the measured value) and is less than 2 σ out. The scatter of ΔRT_{NDT} values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is less than 28°F for the weld metal. Therefore, this criteria is met for the surveillance data of the Wolf Creek Unit 1 surveillance program material.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The capsule specimens are located in the reactor between the neutron pads and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pads. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence this criteria is met.

Wolf Creek - Unit 1

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the data base for that material.

The Wolf Creek Unit 1 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the Wolf Creek Unit 1 surveillance program.

5.0 Supplemental Data Tables

- Table 5.0-1Comparison of Wolf Creek Surveillance Material 30-ft-lb TransitionTemperature Shifts and Upper Shelf Energy Decreases with Regulatory
Guide 1.99, Revision 2, Predictions.
- Table 5.0-2
 Calculation of Chemical Factors Using Surveillance Capsule Data.
- Table 5.0-3Provides the unirradiated reactor vessel toughness data. The bolt-up
temperature is also included in this Table.
- Table 5.0-4Provides a summary of the peak pressure vessel neutron fluence values
at 20 EFPY used for the calculation of ART values.
- Table 5.0-5Provides a summary of the adjusted reference temperature (ARTs) for
reactor vessel beltline materials at the ¼-T and ¾-T locations for
20 EFPY.
- Table 5.0-6Shows the calculation of the ART at 20 EFPY for the limiting reactor
vessel material (lower shell plate R-2508-3).
- Table 5.0-7 Provides RT_{PTS} values for 35 EFPY.

6.0 References

- 1. Technical Specification 5.6.6, "Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)."
- 2. License Amendment No. [], dated [], from [] to [].
- 3. NRC letter dated [], [title of letter]
- 4. WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," January 1996.

Table 5.0-1									
Comparison of W	Comparison of Wolf Creek Surveillance Material 30 ft-lb Transition Temperature Shifts								
and Opper Shen L	and opper Shen Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions								
Matorials	Cancula	(n/cm2		turo Shift		rease			
IVIALEITAIS	Capsule		Dradiated	Maggurad	Dradiated	Magaurad			
		E > 1.0 WeV)	(°F) ^(a)		$(\%)^{(a)}$	(%) ^(c)			
		2 400 4018	(1)	()	44.5	(//)			
Lower Shell Plate	U	3.429 X 10 ¹⁰	40.9	36.46	14.5	2			
R2508-3	Y	1.308 x 10 ¹⁹	62.4	16.03	20.0	11			
(Longitudinal)	V	2.528 x 10 ¹⁹	72.4	52.03	24.0	13			
Lower Shell Plate	U	3.429 x 10 ¹⁸	40.9	23.79	14.5	0			
R2508-3	Y	1.308 x 10 ¹⁹	62.4	35.39	20.0	0			
(Transverse)	V	2.528 x 10 ¹⁹	72.4	54.53	24.0	6			
Weld Metal	U	3.429 x 10 ¹⁸	30.7	27.21	16.5	8			
	Y	1.308 x 10 ¹⁹	46.8	45.09	2.5	6			
	V	2.528 x 10 ¹⁹	54.3	46.33	26.5	11			
HAZ Metal	U	3.429 x 10 ¹⁸		58.41		13			
	Y	1.308 x 10 ¹⁹		12.98		0			
	V	2.528 x 10 ¹⁹		55.91		0			
(a) Based on Rec	(a) Based on Regulatory Guide 1.99 Revision 2 methodology using the mean weight								

Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.

^(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1.

^(c) Values are based on the definition of upper shelf energy given in ASTM E185-82.

.

ſ					····•			
I able 5.0-2 Calculation of Chemietry Festers Lleing Suppliance Carcula Date								
Material	Capsule	f ⁽¹⁾	FF ⁽²⁾	∆RT _{NDT}	FF×∆RT _{NDT}	FF*		
Lower Shell Plate	U	0.3429	0.705	36.46°F	25.70°F	0.50		
R2508-3	Y	1.308	1.075	16.03°F	17.23°F	1.16		
(Longitudinal)	V	2.528	1.249	52.03°F	64.99°F	1.56		
Lower Shell Plate	U	0.3429	0.705	23.79°F	16.77°F	0.50		
R2508-3	Y	1.308	1.075	35.39°F	38.04°F	1.16		
(Transverse)	V	2.528	1.249	54.53°F	68.11°F	1.56		
				SUM	230.84°F	6.44		
	$CF_{R2508-3} = \Sigma(FF^* RT_{NDT}) \div \Sigma(FF^2) = (230.84^{\circ}F) \div (6.44) = 35.8^{\circ}F$							
Weld Metal ⁽³⁾	U	0.3429	0.705	27.21°F	19.18°F	0.50		
	Y	1.308	1.075	45.09°F	48.47°F	1.16		
	V	2.528	1.249	46.33°F	57.87°F	1.56		
				SUM	125.52°F	3.22		
	CI	$=_{weld} = \Sigma(FF)$	$T RT_{NDT}) \div \Sigma$	(FF ²) = (125.52) +	- (3.22) = 39.0°F			
(1) $f = Calculated$	(1) $f = Calculated Eluence (1019 n/cm2 E > 1.0 MeV). These values were re-evaluated as$							

f = Calculated Fluence (10^{19} n/cm², E > 1.0 MeV). These values were re-evaluated as part of the capsule V analysis. (See Section 6 of WCAP 15078, Revision 1.)

(2) FF = Fluence Factor = $f^{(0.28 - 0.1 * \log f)}$

.

⁽³⁾ ΔRT_{NDT} values do not include the adjustment ratio procedure of Regulatory Guide 1.99, Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values.

16

TABLE 5.0-3							
Reactor Vessel Beltline Material Unirradiated Toughness Properties							
Material Description	Cu (%)	Ni(%)	Initial RT _{NDT} ^(a)				
Closure Head Flange R2504-1		0.66	20°F ^(c)				
Vessel Flange R2501-1		0.70	20°F ^(c)				
Intermediate Shell Plate R2005-1	0.04	0.66	-20°F				
Intermediate Shell Plate R2005-2	0.04	0.64	-20°F				
Intermediate Shell Plate R2005-3	0.05	0.63	-20°F				
Lower Shell Plate R2508-1	0.09	0.67	0°F				
Lower Shell Plate R2508-2	0.06	0.64	10°F				
Lower Shell Plate R2508-3	0.09	0.58	40°F				
Intermediate and Lower Shell Longitudinal Weld Seams ^(b)	0.04	0.08	-50°F				
Intermediate to Lower Shell Circumferential Weld Seam ^(b)	0.04	0.08	-50°F				
Surveillance Program Weld Metal ^(b)	0.07	0.10					

^(a) The initial RT_{NDT} values for the plates and welds are based on measured data.

- (b) All welds, including the surveillance weld, were fabricated with weld wire heat number 90146. The intermediate to lower shell circumferential weld seam 101-171 was fabricated with Flux Type 124 Lot Number 1061. The intermediate shell longitudinal weld seams 101-124A, B & C and lower shell longitudinal weld seams 101-142A, B, & C were fabricated with Flux Type 0091 Lot 0842. The surveillance weld metal was fabricated with weld wire heat number 90146, Flux Type 124 Lot number 1061. Per Regulatory Guide 1.99, Revision 2, "weight percent copper " and "weight percent nickel" are the best-estimate values for the material, which will normally be the mean of the measured values for a plate or forging or for weld samples made with the weld wire heat number that matches the critical vessel weld." The surveillance weld metal was made with the same weld wire heat as all of the vessel beltline weld seam and is therefore representative of all of the beltline weld seams.
- ^(c) These values are used for considering requirements for the heatup/cooldown curves. Per the methodology given in WCAP-14040-NP-A (Ref. 4), the minimum boltup temperature is 60°F.

Wolf Creek - Unit 1

TABLE 5.0-4							
Summary of the Peak Pressure Vessel Neutron Fluence Values at 20 EFPY used for the Calculation of ART Values (n/cm ² , E > 1.0 MeV)							
Material	Surface	1⁄4-T	3⁄4-T				
Intermediate Shell Plate R2005-1	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Intermediate Shell Plate R2005-2	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Intermediate Shell Plate R2005-3	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Lower Shell Plate R2508-1	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Lower Shell Plate R2508-2	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Lower Shell Plate R2508-3	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
Intermediate & Lower Shell Longitudinal Weld Seam	6.82 x 10 ¹⁸	4.06 x 10 ¹⁸	1.44 x 10 ¹⁸				
101-124A & 101-142A (90° Azimuth)							
Intermediate & Lower Shell Longitudinal Weld Seam	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				
101-124B,C & 101-142B,C (210° & 330° Azimuth)							
Intermediate to Lower Shell Girth Weld Seam 101-171	1.265 x 10 ¹⁹	7.54 x 10 ¹⁸	2.68 x 10 ¹⁸				

•

. _____

TABLE 5.0-5							
Summary of Adjusted Reference Temperatures (ARTs) for the Reactor Vessel Beltline Materials at the ¼-T and ¾-T Locations for 20 EFPY							
Matorial	20 EFPY ART ^(a)						
Material	RG 1.99 Rev. 2 Method	¼-T (°F)	¾-Т (°F)				
Intermediate Shell Plate R2005-1	Position 1-1	28°F	13°F				
Intermediate Shell Plate R2005-2	Position 1-1	28°F	13°F				
Intermediate Shell Plate R2005-3	Position 1-1	37°F	20°F				
Lower Shell Plate R2508-1	Position 1-1	87°F	71°F				
Lower Shell Plate R2508-2	Position 1-1	78°F	57°F				
Lower Shell Plate R2508-3	Position 1-1	127°F	111°F				
	Position 2-1	90°F ^(b)	80°F ^(b)				
Intermediate & Lower Shell Longitudinal Weld Seam	Position 1-1	-3°F	-19°F				
101-124A & 101-142A (90° Azimuth)	Position 2-1	-8°F	-22°F				
Intermediate & Lower Shell Longitudinal Weld Seam	Position 1-1	8°F	-10°F				
101-124B,C & 101-142B,C (210° & 330° Azimuth)	Position 2-1	2°F	-14°F				
Intermediate to Lower Shell	Position 1-1	8°F	-10°F				
Girth Weld Seam 101-171	Position 2-1	2°F	-14°F				

^(a) ART = Initial $RT_{NDT} + \Delta RT_{NDT} + Margin (°F)$

^(b) These ART values are used to generate the heatup and cooldown curves.

Wolf Creek - Unit 1

TABLE 5.0-6 Calculation of Adjusted Reference Temperature at 20 EFPY for the Limiting Wolf Creek Reactor Vessel Material (Lower Shell Plate R 2508-3)						
Location	1⁄4-T	3⁄4-T				
Chemistry Factor, CF (°F)	35.8	35.8				
Fluence ÷ 10 ¹⁹ n/cm ² (E > 1.0 MeV), f ^(a)	0.754	0.268				
Fluence Factor, FF ^(b)	0.92	0.64				
$\Delta RT_{NDT} = CF \times FF$, (°F)	32.9	22.9				
Initial RT _{NDT} , I (°F)	40	40				
Margin, M (°F) ^(c)	17	17				
ART = I + (CF x FF) + M (°F) per Regulatory Guide 1.99, Rev. 2	90	80				

^(a) Fluence, f, is based upon f_{surf} (10¹⁹ n/cm², E > 1.0 MeV) = 1.265 at 20 EFPY. The Wolf Creek reactor vessel wall thickness is 8.625 inches at the beltline region.

^(b) Fluence Factor (FF) per Regulatory Guide 1.99, Revision 2, is defined as $FF = f^{(0.28 - 0.10 \log f)}$.

^(c) Margin is calculated as $M = 2(\sigma_1^2 + \sigma_2^2)^{0.5}$. The standard deviation for the initial RT_{NDT} margin term σ_1 , is 0°F since the initial RT_{NDT} is a measured value. The standard deviation for ΔRT_{NDT} term σ_A , is 17°F for the plate, except that σ_A need not exceed the 0.5 times the mean value of ΔRT_{NDT} .

20

.

CIPTS Calculations for Wolf Creek Beltline Region Materials at 35 EFPY ^(a)									
Material	Fluence (n/cm ² , E >1.0 MeV)	FF	CF (°F)	ΔRT _{PTS} ^(c) (°F)	Margin (°F)	RT _{NDT(U)} ^(a) (°F)	RT _{PTS} ^(b) (°F)		
Intermediate Shell Plate R2005-1	2.18E+19	1.21	26.0	31.5	31.5	-20	43		
Intermediate Shell Plate R2005-2	2.18E+19	1.21	26.0	31.5	31.5	-20	43		
Intermediate Shell Plate R2005-3	2.18E+19	1.21	31.0	37.5	34.0	-20	52		
Lower Shell Plate R2508-1	2.18E+19	1.21	58.0	70.2	34.0	0	104		
Lower Shell Plate R2508-2	2.18E+19	1.21	37.0	44.8	34.0	10	89		
Lower Shell Plate R2508-3	2.18E+19	1.21	58.0	70.2	34.0	40	143		
Using S/C Data	2.18E+19	1.21	35.8	43.3	17	40	100		
Inter. and Lower Shell Long. Weld Seams101-124A & 101-142A (90° Azimuth)	1.15E+19	1.04	31.6	32.9	32.9	-50	16		
Using S/C Data	1.15E+19	1.04	28.3	29.4	28.0	-50	7		
Inter. and Lower Shell Long. Weld Seams101-124A & 101-142B/C (210° & 330° Azimuth)	2.18E+19	1.21	31.6	38.2	38.2	-50	26		
Using S/C Data	2.18E+19	1.21	28.3	34.2	28.0	-50	12		
Intermediate to Lower Shell Circumferential Weld Seam 101- 171	2.18E+19	1.21	31.6	38.2	38.2	-50	26		
Using S/C Data	2.18E+19	1.21	28.3	34.2	28.0	-50	12		

Initial RT_{NDT} values are measured values RT_{PTS} = RT_{NDT(U)} + Margin + Δ RT_{PTS} Δ RT_{PTS} = CF * FF

(b)

(c)

(d) Projected no. of EFPY at the EOL.

Wolf Creek - Unit 1