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RESPONSE TO 
REQUEST FOR ADDITIONAL INFORMATION 

EPRI TOPICAL REPORT NP-7450 
RETRAN-3D 

PROJECT NO. 669 

A number of clarifications and minor corrections have been included in Revision 5 of 

Volume 1 of NP-7450 as a result of the questions asked in this request for additional 
information (RAI). The pertinent portions of Revision 5 are included with this response 
as Attachment 1. The individual RAI is included and printed in "italics" followed by the 
response.  

1. The "tube-and-tank or node-flow-path basis" is not fully illustrated by Figure 11.3-1 
which shows a piece of straight pipe. Difficulties occur when the "tank" or "tube" has a 

complicated shape and there are changes in flow area and direction from one side to 

the other (as in the lower plenum of a PWR) or when there are multiple connections to 

a single node.  

Please give examples of more complicated nodes, typical of reactor applications, and 

show how variables are defined in each case.  

Attachment 2 is a description of the node flowpath methodology used to model 

hydraulic systems with RETRAN-3D. It contains modeling examples for complex 

geometries typical of reactor applications (pages 5 through 10 of Attachment 2).  

2. As used on page 11-69 "volumes" and 'junctions" are rather misleading terms. Both 

the mass and momentum cells have "volume" and are connected to adjacent cells by 

"junctions". When the geometry is anything other than a straight pipe the evaluation of 

properties in the volumes and at the junctions is not straightforward. Interpolation to 

give values in the "staggered mesh" is OK for a pipe but not for something like the lower 

plenum where flow in/out from/to the downcomer is perhaps better characterized by 

having the velocity in the downcomer, rather than some interpolation between the lower 

plenum and the downcomer, while the temperature may perhaps be better described by 

some interpolation when flow is towards the downcomer and by "upwinding" when the 

flow is from the downcomer.  

This is discussed at the bottom of page 11-86 where there is also mention of instability.  

Are there clear rules or is this a matter of users discretion? 

Please describe the rules for evaluating "staggered" properties and indicate if there are 

ad hoc rules for each component other than a straight pipe.  

Attachment 2 is a description of the node flowpath methodology used to model 
hydraulic systems with RETRAN-3D. Page 4 begins the descriptions of the 

closure relationships that are used to define the property and mass flow rate
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values that arise from the staggered mesh but are not obtained directly from the 
solution of the balance equations or pressure equation of state.  

The application of these models is also described in Attachment 2.  

3. Figure 11.3-2 shows a "slight generalization" when a "complete generalization" is 
needed to cover the shapes and conditions of all nodes. The indication of "volumes" 
and 'junctions" is poor - the boundaries should not cut the pipe wall but should enclose 
the fluid that is actually considered to be in the volume.  

Please show typical volumes and junctions for reactor geometries, such as the lower 
plenum and downcomer, indicating boundaries and giving a description of how 
properties are evaluated.  

Attachment 1 contains a revision to Figure 11.3-2 that clearly indicates the 
momentum cell boundaries (page 11-71).  

Attachment 2 is a description of the node flowpath methodology used to model 
hydraulic systems with RETRAN-3D. It contains modeling examples for complex 
geometries typical of reactor applications, including the lower plenum and 
downcomer. Also included are descriptions of the closure relationships that are 
used to define the property and mass flow rate values that arise from the 
staggered mesh but are not obtained directly from the solution of the balance 
equations or pressure equation of state.  

4. Equation 11.3-2a is an energy equation requiring a recipe for D,, at every node, 
which may not be available. It would seem simpler, if mechanical energy is to be 
included at all, to use the overall energy balance equation in the form that includes 
kinetic energy in both the stored energy and flow energy terms. In this case the 
dissipation and "work done accelerating the fluid" terms are discarded.  

Please explain how Dins is evaluated. If it is neglected, then explain if the term involving 
(Pi-Pi.-) is retained and why.  

Equation 11.2-3a contains a source term Dm, that accounts for heating due to 
viscous dissipation. Section 11.2.4.1 includes a discussion of the various 
components of viscous dissipation. The dissipation due to wall friction is 
generally small for the problems for which RETRAN-3D is used, and is therefore 
neglected. However, the dissipation of viscous forces due to moving surfaces 
such as centrifugal pumps and turbines can be significant. This effect is not 
neglected and is discussed in Sections VI.1.1 and VI.6.0, respectively.  

The (pi - p.-1) term is retained in the development for completeness, but is 
currently neglected as noted in Section VIII.2.2.3
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5. Equation 11.3-2a is said to come from Equation 11.2-107. In the latter the "mechanical 
work done on the fluid" term has all variables with the subscript 'Y", indicating evaluation 
at boundaries, while in the former equation the pressure is evaluated at boundaries 
(subscript i) but the flow is evaluated at the volume. (subscript k).  

Please explain why the subscripts have been changed in a way that changes the 
physics.  

The general form of the mechanical work term is shown in Eq. 11.2-107. Equation 
11.3-2a is specific to the geometry shown in Figure 11.3-2. It is obtained from 
Eq. 11.2-107 by assuming that the pressure varies linearly across the volume, 
giving (P--1 - Pk) = (Pk - P) = ½(P1-1 - Pi). Substituting these identities for the 
pressure gradient terms lead to Eq. 11.3-2a. To avoid confusion in the future, 
Revision 5 replaces Eq. 11.3-2a with a form that follows directly from Eq. 11.2-107 
(see page 11-54 and 11-71 to 11-72 of Attachment 1).  

6. In Equation IL2-107, cited above, the term Ap is not defined nor is the origin of this 
equation given. A similar term appears in Equation IL2-9 7, again without defining Ap, 
and is said to come from Equation IL2-49a. Demonstrate how the volume integral that 
appears there, representing mechanical work that is done on the fluid to accelerate it 
rather than to compress it, can be decomposed to two separate factors.  

Please explain how the final term in Equation 11.2-97 follows from Equation 11.2-49.  
Define Ap and show how the final term in Equation 11.2-9 7 differs, if it does, from the 
similar term in the enthalpy flux that is the first summation on the right hand side.  

The development of Eqs. 11.2-49 has been revised (pages 11-30 through 11-33 of 
Attachment 1) to clarify the origin of the components comprising the reversible 
work term. The revisions made to Sections 11.2.4.1 and 11.2.7.3 also define the 
Ap terms. Equations 11.2-97 and 11.2-107 are obtained directly from Eq. 11.2-49b.  

The final terms in Eqs. 11.2-97 are related to the enthalpy as described in the 
revised derivation of Eq. 11.2-49b.  

7. It is not clear how to interpret Equation 11.3.2c for a node such as the lower plenum 
where v, A and W are not obviously defined.  

Please explain how to interpret Equation 11.3-2c for a node of complex geometry, such 
as the lower plenum, upper head, downcomer, etc.  

Equation 11.3-2a applies to the geometry of Figure 11.3-2, specifically for situations 
where there is one junction flowing into a volume and one junction flowing out.  
Equation 11.3-2a has been revised (Question 5 above) to use junction flow 
values. Attachment 2 describes the models for W.
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Equation 11.3-2c is an equation for the volume average flow. The calculation of 
this parameter in complex regions such as a plenum or downcomer is described 
in Attachment 2.  

8. Equation 11.3-4 is only valid if the velocity is normal to the surface at boundaries.  
There is a statement at the bottom of the page "in RETRAN the velocity at a junction 
surface is assumed to be perpendicular to the surface" but this seems to be 
contradicted in the analysis of the tee later in this section where we find terms like WIN 
and WY2 multiplying the same area.  

Please explain if v is always perpendicular to the surface in RETRAN. If so, explain the 
apparent breaking of the rule in analyzing the tee junction.  

Equation 11.3-4 is a special case of Eq. 11.2-106 where the velocity is normal to 
the surface at the momentum cell boundaries. Equations 11.3-4 through 11.3-7 
have been revised to include the more general situation where the velocity is not 
normal to the surface. The revised text and equations are included in 
Attachment 1 (see pages 11-73 and 11-74).  

The tee example is addressed in the response to question 14.  

9. A picture is needed to explain the difference between A' and A and the various 
angles used in Equation 103-6. If the momentum cell flow surfaces are parallel to the 
same direction (4, the direction of the momentum in the cell)" then they are not the 
same as A for a bend. If a clear sketch is given it will show that Equation 11.3-7 does 
not follow from Equation 11.3-6. Equation 103-7 has A and not A' in it but the difference 
between them is not clear. If A is interpreted as the pipe cross-section area for a bend, 
then Equation 11.3-7 is wrong, as there are two factors of cosine of an angle in the 
momentum flux terms when there should be one. Moreover, the angles have somehow 
disappeared from the pressure terms. If all the surfaces are perpendicular to p, then 
the condition of flow being perpendicular to the boundaries is violated for a bend.  
There is no interpretation of the geometry and definitions which will validate Equation 
11.3-7 for anything other than a straight pipe.  

Please give a rigorous derivation of Equation 11.3-7 with clear indication by figures of 
how it applies to a bend (like Figure IL 3-8) or other geometry where the direction of 
outflow is not the same as the direction of inflow and neither corresponds to the mean 
direction of flow in the node.  

Figure 11.3-2 has been revised to more clearly illustrate the momentum cell with 
the associated junction and boundary orientations. The angles that define the 
orientations are normal to the associated areas. The derivation for Eq. 11.3-7 has 
also been revised. It starts with Eq. 11.2-106 and uses the revised Figure 11.3-2 to 
illustrate the application of the equation to the momentum cell. The revisions are 
included in Attachment 1 (see pages 11-71 through 11-74).
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The momentum flux terms in Eq. 11.3-7 were originally written as W2, rather 

than WkWk Was revised in Attachment 1 (see page 11-74). For straight pipes and 

orthogonally oriented components, the two products are equal. This is 

demonstrated by combining Eqs. 11.3-32 and 11.3-33 from Attachment 1 (see 

page 11-85) to obtain 

- cos(Ok 
- !1 

The absolute value of the cosine ratio will be unity as long as 4 k and LPj lie in a 

straight line or are orthogonal to each other.  

A trouble report has been filed to notify users that an error in the momentum flux 

component of the momentum equation pressure drop can occur if angles other 

than 0, 90, 180, or 270 degrees are used with the vector momentum option. To 

assess the potential impact of this error on previous analyses, those presented in 

the RETRAN-3D Assessment Manual [4] and the RETRAN-3D sample problems 

were reviewed. It was determined that all used straight pipes and orthogonally 

oriented components (angles of 0, 90, 180 and 270 degrees). For these angles, 

the momentum flux terms are evaluated correctly. This is the approach normally 

applied by users when modeling reactor systems for plant transient analyses.  

The plant models used to generate results included in Reference 4 were 

provided by U.S. and foreign utility owners, indicating that commonly used 

modeling practices produce correct results.  

In summary, an error in the momentum equation when using the vector 

momentum option has been identified for situations in which angles other than 0, 

90, 180, or 270 degrees are used. These angles are rarely modeled since they 

do not routinely exist in the reactor systems for which RETRAN-3D is used. This 

error is also applicable to RETRAN-02. A trouble report has been issued to 

RETRAN users to communicate the situation, and a correction to the codes will 

be made available for any users with an urgent need to address the error. The 

error will be corrected in future code releases. The error will also be discussed 

in the upcoming RETRAN User Group meeting on October 19, 1999.  

Appendix 4 contains a development for a scalar macroscopic momentum 

balance for multi-dimensional flow that was written by Dr. T. A. Porsching. The 

equations given in the development are consistent with those that are given in 
Attachment 1.  

10. Equations such as 11.3-7 and 11.3-10 cannot be used without recipes for the forces 

from the boundaries on the fluid. For the lower plenum, for example, the momentum 

balance must include the reaction from the lower surface, which turns the fluid from the 

downcomer into the core. It is not just form losses that are involved.
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The example of flow around a bend on pp.11-89 and 11-90 illustrates this point. There is 
no attempt there to evaluate the force on the bend due to normal stresses. Therefore 
the vector momentum balance that is claimed as a basis for analysis is actually not 
being used at all, but something else.  

Please explain what is actually used as a "momentum balance" for nodes, other than 
pieces of straight pipe, in RETRAN. If it does not follow from the rationale given in the 
documentation, then supply appropriate new documentation.  

The pressure forces acting normal to the wall are included in the surface 
integrals for Eq. 11.2-34 and are subsequently included in the Fi a term described 
with equation 11.2-70. In Eqs. 11.3-7 and 11.3-10, the wall pressure forces are 
included in the Floo terms by definition. They are geometry dependent and are 
included in the form or energy loss coefficients found in standard references 
such as Idlechik [1] or those obtained from measurement.  

Bird, Stewart, and Lightfoot [2] present a development where the viscous and 
pressure forces are related to the energy loss coefficient. This loss coefficient is 
the same form as the term used in RETRAN-3D. The authors break the losses 
into two components, one that accounts for pressure drops due to viscous wall 
shear in piping sections, and another that accounts for pressure drops due to 
geometric effects for components such as valves, meters, and elbows. This is 
the same approach used in RETRAN-3D, where the wall shear effects are 
included in FW and wall pressure and geometry related dissipation effects are 
included in the form loss term Fl,,.  

A number of other computer programs used for system analyses of LOCA and 
plant transient licensing applications, such as LOFTRAN, versions of RELAP4, 
RELAP5, and versions of RETRAN, all represent the wall pressure and geometry 
related dissipation effects by use of form losses. All of these codes have been 
used for a number of years to successfully model the behavior of experimental 
facilities and operating plants.  

The development of the RETRAN-3D flow equation has been revised to clarify its 
use. Attachment 1 (see pages 11-75 through 11-80) includes the revised text.  
Equation 11.3-26 is used to compute the flow rates for all junctions.  

Attachment 2 (see page 5) contains illustrated examples of momentum cells for 
junctions connecting to the lower plenum. These include the downcomer to 
lower plenum junction and the lower plenum to core junction.  

11. "The equations presently in RETRAN-3D can be obtained for the geometry shown 
in Figure 11.3-3 which is a representation of a flow channel containing an abrupt area 
change". The special case of an area change in a straight pipe is not a basis for 
deducing a general equation for use in more complicated geometries.
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Please explain if these derivations are intended to be "general." If so, please derive 
them for a general node and not only for the straight area change example.  

With RETRAN-3D's one-dimensional momentum equation, all area changes are 
represented as an idealized abrupt area change. When developing an input 
model for a hydraulic system, junctions are typically located where changes in 
geometry and area occur. All area changes will look like abrupt area changes to 
RETRAN-3D. This may be a good approximation for some situations, for others 
the form loss term may require adjustment to more accurately model the 
pressure distribution. The selection of the proper input is the responsibility of the 
user developing the model.  

RETRAN-3D solves a one-dimensional momentum equation for the junction 
flows. Since reactor systems contain components where the flow may be three
dimensional, some approximations will be necessary when developing the input 
for a plant model. Modeling guidelines are provided in Reference 3 for various 
components encountered in reactor systems. Sensitivity studies are often 
performed to gain understanding about the effects of the modeling 
approximations in RETRAN-3D input models.  

Geometry dependent form loss coefficients can be supplied by the user through 
input. They can be obtained from handbooks or selected to match component or 
system pressure drop data.  

12. Equation 11.3-7 is an approximation for the straight area change because all flows 
are in the same direction and one does not have to deal with the vector nature of the 
momentum balance. p,+ and p,- are mean pressures that may be assumed for this 
particular geometry, as long as the mixing length needed to establish pi+ is short 
compared with the length of the node. There is no way to generalize this to a more 
complicated variation of area with position or a geometry in which all velocities are not 
in the same direction. This is an ad hoc treatment of an area change in a straight pipe, 
not a general derivation for any node. Explain how all junctions can fit this pattern, as 
suggested in Figure 113-5. Equation 11.3-28 seeks to change a vector momentum flux to 
a scalar one in the direction ui. If all momentum terms are resolved in the direction 8, 
then the force from the structure in that direction has to be included and it is not just a 
frictional force, as in Equation 11.3-30. Moreover, the pressures will not lose the areas 
by which they are multiplied. Equation 11.3-30 appears to be a strange compromise 
between momentum and energy conservation but it is not rigorously derived.  

Please explain how Equation 11.3-30 is justified, using a proper general control volume, 
or even examples such as a bend or lower plenum. It is not a momentum conservation 
equation because it contains only scalar terms and includes energy dissipation, which is 
not a force.
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As discussed in the response to question 11, the abrupt area change form of the 
momentum equation is used for all junctions where area changes occur. The 
development for the RETRAN-3D momentum equation, Eq. 11.3-26, has been 
revised in Attachment 1 (see page 11-75) to clarify the original development, to 
identify the assumptions and use of the equation in RETRAN-3D. The revised 
development starts with a uniform area channel with a bend and continues 
through the abrupt area change and situations where multiple inlet and outlet 
junctions connect to a volume.  

The wall pressure forces are treated separately from the viscous shear or wall 
friction terms. The response to question 10 provides more details concerning the 
treatment of these wall pressure forces and their relation to the energy 
dissipation term.  

Equation 11.3-26 in Attachment 1 (see page 11-79) is obtained by summing two 
momentum equations that are first divided by the areas associated with the 
pressure terms. The mechanical energy equation is then used to relate the 
pressure drop across the area change (static and velocity heads) to a 
recoverable change and the irrecoverable dissipation loss. This approach is 
similar to that presented in Reference 3. Attachment 1 (see page 11-75) contains 
revisions that have been made to the theory manual to clarify the assumptions 
and applications for the momentum equation.  

13. Figure 11.3-6 does not represent a general node because no areas for flow are 
included. It would be nice to see the momentum conservation equation derived for a 
general node with several flows in and out. This is not done. The explanations in the 
text leave too much up to the reader to try to envisage how this momentum balance 
might look.  

Please draw a more realistic general node and derive the momentum balance for it in a 
way that is compatible with the actual treatments in RETRAN.  

Figure 11.3-6 does not represent a momentum cell. It represents a control 
volume with multiple junctions connected, and is used to illustrate the calculation 
of the volume centered flows that are used as the momentum cell boundary 
flows. The figure and text have been revised in Attachment 1 (see page 11-81) to 
clarify these points.  

14. The treatment of the tee on page 11-87 is very strange. The whole "staggered 
mesh" treatment has been abandoned, apparently, as the momentum and mass control 
volumes do not appear to have different subscripts. To evaluate the momentum 
balance for the shaded volume in figure (a) we need the flows across boundaries which 
are only indicated for W15 (though later addressed in Equations 11.3-35b and c.  
Pressures are presumably evaluated at the boundaries of the shaded volume, but they 
have the same subscripts as those for mass flow evaluated at the centers of the
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momentum volumes. The mass flows with overbars are stated to be "volume average 
values" whereas they are actually area averages across boundaries and cannot be 
computed directly from the volume averages for momentum nodes. It is presumably 
assumed that no x-momentum (not defined but presumably in the direction of the 
straight pipe) goes out through the piece of this volume that leads to the branch pipe.  
If the momentum balance is complete around the boundaries of the volume there is no 
need for the final two terms in Equation 11.3-35a that introduce energy dissipation. The 
only new term justifiable in a momentum balance is a force or momentum flux.  

Equation //. 3-35c does not account for flow that goes out the side branch.  

Equation II. 3-36a is more peculiar. Is A12 the area of the whole main pipe or one half of 
it? Is flow entering there with y-momentum (there is no reason why this should be 
1/2W15 as in Equation //.3-36b)? How about the y-momentum that comes in the bottom 
of the volume or leaves in the direction 13? Provide justification for the energy 
dissipation terms. The attempt seems to be to use a "general" form of equation that 
doesn't really fit the situation.  

Is there any empirical test or check of these formulations? How are the empirical 
"dissipation" coefficients evaluated? 

The tee example has been revised in Attachment 1 (see page 11-86) to clarify the 
use of the staggered mesh, nomenclature, and the use of the vector momentum 
feature. The results for the original example problem are correct and agree with 
the momentum equation and surface flow definitions, even though Figure 11.3-7 
may have been misleading. The results for the revised example differ slightly 
from those for the original problem, but the differences are due only to revisions 
made to the figure to clarify the example, not as the result of errors in the original 
example.  

In the question above, the statement that "The mass flows with overbars are 
stated to be "volume average values" whereas they are actually area averages 
across boundaries and cannot be computed directly from the volume averages 
for momentum noded', implies that something is being attempted that in actuality 
is not, nor is there any implication to that effect in the documentation. The flow 
terms with overbars are defined throughout the document to be cell centered, 
surface, or average volume flows. The document specifically states that a 
model, other than a balance equation, is required to define the volume centered 
flows. The averaging form of the equation is then used in the example to define 
the cell-centered flows. The statement that leads to the confusion has been 
removed from Attachment 1 (see page 11-86) and the discussion regarding the 
application of the equations for defining the volume centered flows has been 
expanded and clarified.
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Contrary to the statement in the question above, the energy dissipation terms 
must be included in Eq. 11.3-26 (and the results for the tee example) since they 
are related to the wall pressure forces. Refer to the response to question 10 for 
the justification of the dissipation terms.  

The dissipation or form loss coefficients are obtained either from steady-state 
measurements of the pressure drop across a component such as an elbow, 
orifice, or tee, or using methods described in References 1 and 2. For locations 
where pressure drops are known, the RETRAN-3D steady-state initialization 
feature can be used to calculate loss coefficients.  

15. On pages 11-89 and 11-90 again the "staggered mesh" is not clearly indicated. The 
'Yunction 2" for which Equation /1.3-37b is written should presumably end on the right 
hand side as a boundary that cuts the bend in half at 45 degrees.  

Equation IL3-37b contains subscripts x in the momentum terms and is presumably 
supposed to be the x-component of a momentum balance. One would expect W to be 
(W2+W3)/2, like Equation IL3-38a, and WLx to be W•/v2, as the x-component of a vector 
flux. Then the W___2 term in Equation 11.3-37b will be like W2/2 rather than W2/4. In fact 
the real momentum contribution from this boundary is like W 2/v/2 because it is a scalar 
mass flux times the x-component of the vector velocity (see the discussion of Equation 
11.3-7), so there are two errors here.  

If the momentum balance is properly written for the actual control volume, the pressure 
P3 acts at an angle and picks up a factor of 1//2 which is missing in the text.  

In such a situation there is clearly a force from the bend on the flow which should 
appear in the momentum balance. It is not at all clear that the "energy dissipation" 
terms give this force. In fact, flow around a bend can be almost frictionless while the x
reaction on the bend is large and not related to friction at all but results from the normal 
stresses on the wall.  

In steady state one would expect P3 to be halfway between P2 and p4. but the equations 
are not symmetrical.  

Presumably these "steady state" equations" are used to illustrate the terms that would 
also appear in an unsteady flow case with compressibility, when the W's are not equal? 
In view of the discussion on p.11-73 it would seem that this balance should be written in 

the direction of the average velocity in the cell, which is at 22.5 degrees to the x-axis.  
This still faces the problem of the resultant of normal forces on the bend, which are not 
the same in unsteady flow as in steady flow.  

Please clarify these points of error.  

Figure 11.3-8 has been revised in Attachment I (see page 11-90) to more clearly 
illustrate the momentum cells used with the elbow example. The discussion for
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the example has also been revised to account for the revised figure and 
momentum equation. The momentum flux term for volume 3 in the original 
example was 1/4 W2

2 (given that W2 = W3 for steady-state conditions), whereas 
the revised momentum equation gives 1/(2V2) W2

2. The ratio of the revised and 
original momentum flux terms gives 2/,/2, which agrees with the cosine ratio 
given in the response to question 9.  

Contrary to the statement in the question above, the pressure term for the 
boundary at the middle of the elbow should not have a cosine of 45 degrees 
when using the RETRAN-3D momentum equation. If this were the case, a 
model combining volumes 2 and 3 into a single volume to represent the 90
degree bend and downstream volume as shown in Figure 11.3-8 (see 
Attachment 1 page 11-92) would have a cosine of 90 degrees (= zero) multiplying 
the exit pressure term. This would make the flow equation a function of the 
upstream pressure only, which only makes physical sense for choked flow. If 
only the flow surface portion of the pressure surface integral is considered (see 
page 11-73 of Attachment 1) then a cosine term would appear, but a 
compensating term should appear from the remainder of the surface integral.  
The use of a simple pressure gradient is consistent with formulations for the 
energy loss coefficients which include the surface pressure forces.  

As described in the response to question 10 above, the wall normal pressure 
forces are included in the dissipation or form loss term which is dependent on 
the junction velocity and density. Given these dependencies, the form losses will 
vary during a transient.  

16. As an assessment of the 3-D kinetics capabilities of the RETRAN-3D code please 
provide a comparison of data versus calculated power for SPERT Hot Standby Case 81 
and the Full Power Test 86.  

The RETRAN-3D predictions for the SPERT 81 and 86 tests are given in 
Attachment 3.  
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Fluid Balance and State Equations

The results are

dfv Pa Ua dV = 
I fzAaj
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and 

Q =-f q a n' dS 

w a s.a 

where (rhab)Sa is the mass transfer rate defined previously for the continuity equation.

The second term on the right-hand side of Eq. 11.2-46 represents the integral of the reversible 

work over the finite control volume. If the pressure inside the volume integral is taken to be the 

volume average value and assumed to be uniform over the control volume, it can be moved 

outside the integral. The resulting integral can then be evaluated as shown in References 11.2-9 

and 11.2-10, to give

Wa= P a (VaAa)j cosO a + V dta] (II.2-47f)

where

Pa = volume average pressure.
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The first term on the right-hand side of Eq. II.2-47f represents the reversible work associated 
with the normal inlet and exit flow paths, while the second term gives the reversible work 
associated with moving the phasic boundaries due to compression or expansion within a volume.  

The third term on the right-hand side of Eq. 11.2-46 represents the integral of the viscous 
dissipation over the control volume. It's contribution to the internal energy equation is usually 
neglected at the flow surfaces into and out of the control. This assumption is also used in 
RETRAN-3D. In addition, viscous dissipation due to wall-to-phase friction and interfacial 
friction is neglected in RETRAN. Dissipation due to friction will almost always be a small term 
in the types of analyses to which RETRAN is applied. The dissipation of viscous forces due to a 
moving surface in the control volume can be a significant contribution to the energy equation. In 
particular, the centrifugal pumps in the primary-side loops of the reactor coolant system are 
sometimes used to heat the coolant in the systems. This heating is due to viscous dissipation.  
Thus, the contribution of dissipation due to moving surfaces is retained in the equation. For the 
present development, the viscous dissipation due to a moving surface is left as a volume integral 

a aV dV (11.2-47g) 
Dm nf oik-V 

The interface jump condition of Eq. Il.2-43b shows that the interface energy transfer of 
Eq. II.2-47b satisfies 

QT =-QT ba (I.2-48) 

It is also interesting to note that the first term on the right-hand side of Eq. 11.2-47a contains all 
the terms of the interface jump condition. This result indicates that the flow areas Aj take on the 
role of "interfaces" between the finite control volume and its surroundings. The surface integrals 
of Eqs. II.2-47c and II.2-47d represent energy exchange, in the form of heat transfer, between 
phase or fluid "a" and the solid surfaces bounding the fluid.  

The terms on the right-hand side of Eq. II.2-47a are evaluated by the same procedure employed 
for the continuity and momentum equations. The major assumptions usually employed in 
evaluating the surface integrals in Eq. 11I.2-47a are: 

a a a a * the contributions of qk nk and oik vk ni are neglected at the surfaces Aj, 

* the dissipation is neglected in RETRAN except for the contribution from centrifugal 
pumps, 

0 the areas Aj are taken perpendicular to the flow channel walls and the velocity is assumed 
to be parallel to the flow channel walls, and 

* the density Pa is assumed to be uniform over Aaj and the average of the product (uava) is 
taken to be the product of average values ua and vk.
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Substituting this information into Eq. II.2-47a gives 

dt Pa Ua dV-- [(aUaVa + Pava)j Aaj cos 0j 

fVab 

- PaV ý_ + QT + Qwa + Q~a dt 

+ Qma + Dma + fv, a a dW (II.2-49a) 

Factoring PaVa out of the first term on the right-hand side of Eq. II.2-49a, leaves 

Pa Ua +

Pa 

This term would be the junction (or flow path) enthalpy if the pressure was the junction value pa 

rather than the volume average value. By adding and subtracting pa/pa, and applying the junction 

enthalpy definition, the internal energy equation can be rewritten as 

d [(va A (h Pa -Pa] 1 - daVd.__ 
"d fva PaUadV =avaAa)j ha Pa jPa 

[a a;J (P P a ) j dt 

+ Qab + Qwa + Qea + Qwa + D . + fv ( adV (l1.2-49b) 
Va 

where 

Aaj = (EaaA)j (ll.2-49c) 

As discussed previously with the continuity equation, the cos0 is always -1 for inflow and +1 

for outflow. It therefore has been omitted in the above and the appropriate sign for inflow and 

outflow is implied in the summation.  

The junction pressure that appears in Eq. II.2-49b, should be consistent with the pressure used 

with the junction enthalpy model. For example, if the junction enthalpy is donored, the junction 

pressure should also be that of the donor volume. Thus, the Ap term will be zero for junctions 

flowing out of a volume. For the junctions flowing into a volume, the junction pressure should 

be that of the upstream volume. The pressure difference for this term will be small for most 

applications.  

The other junction enthalpy models, e.g., enthalpy transport, bubble rise, etc., also neglect the 

effects of pressure drop when computing the junction enthalpy. Consequently, the argument
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given above for using the donor volume pressure also applies to the other junction enthalpy 
models.  

Eqs. 11.2-49b is analogous to the macroscopic mass and momentum balances given previously 
and require an extensive amount of information to be useful.  

2.4.2 Mechanical Energy Equation (Generalized Bernoulli Equation) 

Another useful form of the energy balance can be obtained from the local form of the kinetic 
energy equation. The macroscopic form of the kinetic energy equation is developed in the 
following discussion.  

The local form of the kinetic energy equation is obtained by forming the scalar product of V€ with 
the local momentum equation to get 

a (I a a)i a (I a a a) a Va a 

(3t Pa Vk Vk) + - 2 Pa Vk Vk Va F XPa vk + Pa X k 

a a a a a a a a + -rki Vi - Jik -- Vi + Pa Vk gk (11.2-50) 
axk axk 

Substituting the property per unit volume 1/ = /2 paVkVk into the Reynolds transport theorem of 
Eq. 11.2-2, operating on Eq. 11.2-50 with f dV, and using the Gauss theorem of Eq. 11.2-4 gives 

Vd 1 a a dV f [I a a (Va - a) a+ a a aa nka S dt Pa Vi vdV=Pa Vi Vi k sk nk+Pa Vk nk - ik V kd 

_a 1 a a 

.ýV...k a (Vi al d+a ga 

+fv Pa 0k ik'ax I dVpf vPkgkdV 

(I.k 2- Pa 

(H1.2-5 1)
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Substituting Eq. 11.2-55 into Eq. H.2-51 gives 

d 1 Pa Vi aVi dV + d v Pa Za dV d--Ja dt f 

= - 1Pa via a (V k - svk) nk 

a 

" (a a) a aa a a a 
+ Pa 2a k svk nk + Pa vk nk - 0 ik vi nk dS 

S av _ cik dV (11.2-56) 

+ Pa xk dVxk 

The last term on the right-hand side of Eq. 11.2-56 can be evaluated as follows. The second 

argument of the integral represents dissipation by viscous stresses (see Section 11.2.4.1), 

f va dV .(1.2-57) 
a ik0 

The first argument accounts for compressibility of the fluid. Evaluation of this term must 

consider the thermodynamic path followed by the fluid, isothermal or isentropic, for example. In 

addition, because compressibility of the fluid is included in this term, evaluation of the integral 

will include effects due to the time rate of change of the porosity, E, and the volume fraction, aa" 

For the present time the integral of the first argument is left unchanged.  

Evaluation of the surface integrals in the first term on the right-hand side of Eq. 11.2-56 is carried 

out as follows. The contributions at the flow areas, Aaj, are 

[2 a a (Va-a) a + 2 (V a a) a a• 

A Pa Vi V sVk nk + Pa Za k -sVk nk + Pa Vk nk dS 

(11.2-58) 

a a 
where the contributions of a vnk have been neglected. At the stationary surfaces Swa and 

Sea, all the surface integrals are zero by use of the no-slip assumption. On the moving surface 

Sma, the surface integral accounts for the rate of work done by the fluid on the surroundings by 

means of pressure and viscous forces; that is, 

•Wa f n[ _ oik viankdS (11.2-59)
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On the interface Sab' the surface integral gives the energy exchange between the fluid phases.  
This contribution is denoted by 

Sas [ a a(V a a aa a 
Ke = f [ Pa Vi Vi k - Svk nk + Pa 2 a k -s Vk nk 

Sab 

a a a n a] dS (11.2-60) 
+ Pa Vk nk -

0 ik vik 

Substituting Eqs. 11.2-57 through 11.2-60 into Eq. 11.2-56 gives 

dt 1 Pa Vi aVi dV + d Pa Za dV 

=- f Pa Vi Vi k " Vk nk + Pa Za k - vk) nk +Pa vk nk dS 

- aVa ab 
p+ f a dV - W a- D a- KeT . (11.2-61) 

a 

Eq. 11.2-61 is the macroscopic form of the kinetic energy equation. The steady-state form of 
Eq. 11.2-61 is called the generalized Bernoulli equation and the usual Bernoulli equation is the 
incompressible form of Eq. 11.2-61. Thus, Eq. 11.2-61 represents the Bernoulli equation for 
transient, compressible flow of two-phase fluids in porous media.  

The surface integrals remaining on the right-hand side of Eq. 11.2-61 are evaluated by the same 
procedures employed for the continuity, momentum, and energy equations. The major 
assumptions usually employed in evaluating the surface integrals are 

the areas Aj are taken perpendicular to the flow channel walls and the velocity is assumed 
to be parallel to the flow channel walls, and 

a a a 

the density is assumed to be constant over Aaj and the average of products, Vi vi vka for 

example, are taken to be the product of the average values of the quantities.
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With these assumptions, Eq. 11.2-61 can be written

1 a a 
"2Pa Vi Vi 
2

dV + d 
dV + d- v.

- Wa -Da

Pa (v a)3 + Pa Za V a + PaV alj Aaj COS 

a 
-Ke ab + Pa axk d

Aaj = AEaaj

and Oa is the angle between V a and fj a Eqs. 11.2-62 are analogous to the macroscopic mass, 
momentum, and energy equations given previously and require an extensive amount of 
information in order to be useful.  

2.5 Fluid Equation of State 

The equations of state of the fluid are obtained from the fundamental relation of the material.  
The equations of state are usually expressed in terms of two independent variables in the form

(lI.2-63a)Pa = Pa(Pa'Ua)

for the density and

Ta = Ta(pa,Ua) (II.2-63b)

for the temperature, with similar expressions for phase or fluid "b". If the fluid is at the 
saturation state, the state properties are functions of the pressure only, and the equations of state 
can be written

(II.2-63c)
P = Pas(Pa) '

and

(II.2-63d)Ta = Ta(P)
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Qab = _ Pa Ua - vk nk + qk nk dS (II.2-77a) 

Sab 

The macroscopic mechanical energy balance, Eq. 11.2-61, contains the interphase energy 
exchange of Eq. II.2-60a 

Keab = f [1 Va aa ) a Va (V a =e "f 2a Vik -vka nk +Pa Z2a k -sVk) 

Sab 

a a a a a 1 
+PaVk nk -iOik Vk nk dS (I1.2-77b) 

Inspection of Eqs. 11.2-77 shows that the interface energy exchanges consist of a contribution due 
to mass exchange plus other thermal-hydraulic effects. As in the case of the mass and 
momentum balances, specific expressions for the interface energy exchange are not required for 
the present section. Eqs. 11.2-77 are simply rewritten as 

QTb= MEatab + q ab + Wa ,(II.2-78a) 

and 

KeT = KeeT + Wa (11.2-78b) 

respectively. Eqs. 11.2-78 are substituted into Eqs. Il.2-49a and 11.2-6 1, respectively. The 
resulting equations are not repeated here.  

2.7 Summary of the Macroscopic Balance Equations 

The macroscopic balance equations for general models of two-phase flow have been derived 
from the local, instantaneous Navier-Stokes equations. As in the case of single-phase or 
homogeneous two-phase flow, the macroscopic balance equations require a large amount of 
additional information to be useful. Averaging procedures always eliminate information and in 
the case of macroscopic balances, the information loss is severe. Practical applications of the 
macrobalances require experience and engineering judgment. In the following discussion we 
summarize the results obtained previously and specialize the equations to the models used in 
RETRAN. In particular, the mixture equations are obtained from the component equations and 
the definitions of various quantities of interest are introduced.  

The two-phase flow model in RETRAN-3D is designed for thermal-hydraulic analyses of single
phase and two-phase boiling water with or without noncondensables. In the following 
discussions, the sub- and superscripts for phase "a" or "b" will be changed to "P" for the liquid

Revision 511-43



Fluid Balance and State Equations 

The details of incorporating the vector-momentum balance of Eq. 11.2-96 into RETRAN are 

given in Section 11.3.  

2.7.3 Energy Conservation Equations 

RETRAN utilizes two energy equations: 

the internal energy equation and 

the kinetic energy (generalized Bernoulli) equation.  

The specialization of the energy conservation equations proceeds in the same manner as the mass 

and momentum equations and, thus, not as many details will be given for the energy equations.  

For the following developments, assume E = 1, Sg = Sra = 0, Sm. = Sm0 = 0 and pg = pe = p. As 

with the preceding momentum equation development, this discussion of energy balances can be 

regarded as complete with respect to the composition of the gaseous mixture. That is, the 

subscript "g", which refers to the gaseous mixture, is generic in nature and is appropriate 

regardless of gas phase composition (i.e., noncondensables and/or water vapor).  

The internal energy equation, Eq. II.2-49b, for the gas phase, is 

- U V [a Pg v5 hg A]. + Q 9'+ Qwg 
-~fi Pg ug dV T d J 

d d•ag V + [ag v A (AP)]j (II.2-97a) 

dtg 

and for the liquid phase 

p p,uQ dV= - p, v' h, A]j + Q'g +Q, d- v 

p d M I V + [ vP A (Ap)]. (11.2-97b) 

dt 

where 

Ap = pi - . (II.2-97c) 

In Eqs. 11.2-97, the volumetric generation and pump work terms have been dropped. The 

RETRAN models for these contributions are discussed in Sections V and VI, respectively.  
Evaluation of the last terms in Eqs. 11.2-97 is given later in this report as the specific equations in 

RETRAN are listed.
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and Eq. 11.2-104a, as 

1 ag = 1(II.2-105b) 
S 1 + [ (l-Xgm Igm [PIPQ] 

The mixture momentum balance of Eq. 11.2-96, obtained with v9 = v = v, is slightly generalized 
to include the pump term as 

d f p dV =- [p v A + p A ij-Ff - FPoM - ApP + pg dV 

"dt v v 

(11.2-106) 

Equation 11.2-106 is a vector equation and the details of the RETRAN model are given in Section 
11.3.  

The equation for conservation of intemal energy is 

d U=-E (W h)j + Qwm +E W (Ap) + rm + Q , (11.2-107) 
dt jj 

where 

Ap = pj - p (11.2-107a) 

The over bar on the pressure designates the volume average pressure which typically will have a 
volume subscript. When a volume subscript is used with the pressure, the over bar will be 
omitted.  

The contributions due to wall heat transfer and volumetric heat generation have been included.  
Note that the viscous dissipation term D..s includes the effects of mechanical shear introduced by 
components such as centrifugal pumps and turbines as discussed in Sections VI. 1.1 and VI.6.0, 
respectively. Viscous dissipation associated with wall friction is ignored as discussed in 
Section 11.2.4.1.  

The equation of state, in terms of the macroscopic balance properties is 

p = p(M,U) . (11.2-108) 

When noncondensables are present, the equation of state becomes 

p = p(M, U, Mn,) (II.2-108a)
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and the gas properties correspond to those for the gas mixture. In general neither the gas nor 

liquid will be saturated for situations where noncondensables are not present.  

Additional information is necessary in order to obtain a form of the momentum balance of Eq.  

11.2-106 that can be used for engineering analyses. Further development of the momentum 

balance is given in Section 11.3. The mass conservation equation, Eq. II.2-103a, is complete as 

written. The energy conservation equation, Eq. 11.2-107, requires information about Qv, Q and 

energy dissipation due to pumps, Ds. Models and equations for these terms are given in other 

sections of this report.
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unknown quantities. Application of the macroscopic balance equations to analyses of 
hypothetical transients in complex thermal-hydraulic loops has resulted in generalization of the 
usual engineering application procedures associated with these equations.  

In order to conduct the generalized thermal-hydraulic analyses, many of the results obtained from 

the steady-state applications are used in the transient form of the equations. In particular, the 

steady-state equations are generally employed with experimental data in order to determine the 

wall friction, heat transfer coefficients, local losses, and pump characteristics, for example. The 

correlations and models which result from this process are then used in the general equations for 

transient analyses. As previously mentioned, in some cases the local equations can be solved for 

the detailed distributions of the fluid state and flow and the integrals obtained in the macroscopic 
balances, evaluated exactly. In most cases of practical interest, analytical solution of the local 
equations is not possible at the present time and numerical solutions would be required.  

The macroscopic balance equations require that a large amount of information be supplied in 

order to produce a closed equation system. The derivation of the balance equations has 
introduced the following quantities: 

* geometric details of the flow channel represented by the volume V, the flow areas Aj, and 
the wetted areas SW and Sm; 

0 momentum exchange and forces due to wall friction, Fw; 

* wall normal pressure forces and dissipation due to local flow perturbations, Fjo; 

* momentum exchanges due to moving surfaces, A~P; 

a energy exchanges between the fluid and the flow channel bounding surfaces, Qw; 

0 work done on or by the fluid due to moving surfaces, Wý p; and 

* volumetric generation of energy in the fluid, Q.  

All of these quantities must be specified before the general equation system can be solved. In 

addition to these specific engineering quantities, implementation of the equation of state of the 

fluid, in a manner consistent with the variety of processes encountered in transient analyses, can 

present problems of a practical nature. Models and correlations for all of the quantities required 

for closure of the equation system are given in the following sections of this volume.  

Many transients of interest involve two-phase flow of the system fluid. The assumption that the 

two-phase mixture can be treated as a single homogeneous fluid has been explicitly introduced 
into the derivation of the equations. In RETRAN-3D, the two-phase nature of the fluid is 

introduced into the equation system through the models and correlations employed for the 

constitutive equations required for system closure. That is, the friction, heat transfer, pump 

characteristics, and the other quantities discussed in the preceding paragraph contain an 

accounting of the two-phase nature of the coolant. In addition, several models are employed
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which account for some of the more important clearly nonhomogeneous situations encountered 

in system analysis. These models are of a specialized nature and are described in this volume.  

RETRAN-3D has four basic forms of the general equations, each with or without 
noncondensables. They are 

0 the homogeneous equilibrium model, 

* the dynamic slip model, 

* the algebraic slip model, and 

* the five-equation model.  

The simplest form is given by the homogeneous equilibrium model. In this model, each phase in 

a two-phase mixture is assumed to move at the same velocity (vg = v€ = v) and to have the same 

temperature (Tg = T,). Thus, countercurrent flows, subcooled boiling and similar physical 

phenomena associated with transient two-phase flow cannot be completely described.  

In order to relax the equal-velocity assumption, two optional model forms for the velocity 

difference are provided in RETRAN-3D. The first is based upon a differential equation for 

velocity difference obtained from algebraic manipulation of the phasic momentum-balance 

equations. This model is called a "dynamic slip" model and is further described in Section 11.3.2.  

The second velocity difference option is an algebraic equation for velocity difference based on a 

drift flux approach and is called an "algebraic slip" model. This method is presented in 

Section 11.3.3. Regardless of the velocity difference model selected, the mixture momentum and 

internal energy equations contain the same accounting of terms due to unequal-phase velocities.  

The fourth model removes in part the limitation imposed on the homogeneous equilibrium 

model, the dynamic slip, and algebraic slip options by the assumption of equal-phase 

temperatures. The five-equation option of RETRAN-3D assumes the vapor in a two-phase 

mixture is saturated (in the absence of noncondensables) and allows the liquid phase to be 

subcooled, saturated, or superheated. This option computes a vapor-phase mass using a separate 

balance equation and allows the modeling of some nonequilibrium phenomena. Either the 

dynamic slip equation or the algebraic slip equation can be used to model unequal-velocity 
conditions in the five-equation option. This option is described in Section ID.3.4.  

The above equation forms are generally valid whether or not noncondensables are present. When 

the homogeneous equilibrium model is used, all fluid components (liquid, vapor, and 
noncondensable) exist at single temperature. When either of the slip models is used, the vapor 

and noncondensable form a homogeneous gaseous mixture that moves at a single velocity.  
When the five-equation model is used, the noncondensable and vapor exist at the single 

temperature that is mass weighted between the endpoints T1 (only noncondensable) and Tsat(P) 

(only vapor). The noncondensable tracking model adds another continuity equation to the
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overall equation set. It differs from the earlier RETRAN-3D accumulator in that the 
noncondensable is not confined to the volume in which it originates. It differs from the 
generalized transport model in that the noncondensable does affect the overall hydraulic solution.  

3.1 Homogeneous Equilibrium Model 

The application procedure for the homogeneous equilibrium model is given in the following 
discussion. In this model the fluid is characterized by a single velocity and temperature. In this 
section, as following sections, the discussion is typically generalized to include noncondensables.  

3.1.1 Geometry of the Application Procedure 

The generalized macroscopic balance equations are applied in RETRAN-3D on a tube-and-tank 
or node-flow-path basis that are illustrated by Figure 1H.3-1. A portion of a straight, constant
area, vertical flow channel is shown in the figure. The regions bounded by the flow-channel 
walls and the dashed lines, with centers labeled "k" and "k+l", correspond to the tanks (or nodes 
or volumes). The regions bounded by the flow-channel walls and the solid lines correspond to 
the tubes (or flow paths or junctions). The volumes are sometimes referred to as "mass and 
energy cells" and the junctions as "momentum cells". The conservation equations for mass and 
energy and the equation of state are applied to the volumes, and the momentum balance is 
applied to the junctions.  

In addition to being an application procedure for the macroscopic equations, this "staggered 
mesh" representation is related to the numerical solution procedure. As is the case for almost all 
solution procedures, the macroscopic balances sometimes require information from spatial 
locations where it is not directly calculated. Use of the RETRAN-3D application procedure 
provides information that would not otherwise be available. A hydraulic network is represented 
in RETRAN-3D by a number of control volumes connected by junctions or flow paths. All the 
geometric characteristics of the network must be supplied to the macroscopic equations along 
with the interactions between the walls (heat transfer) and pumps or turbines and the fluid.  

A slight generalization of the flow channel of Figure 11.3-1 is given in Figure 11.3-2 which 
introduces the vector momentum model. The mass and energy conservation equations are scalar 
equations and are unaffected by the vector nature of the momentum balance. They only require 
that the sign of the mass flow rate be correct. For the case of flow into volume "k" at junction 
"i-1" and flow out of volume "k" at junction "i", the mass conservation of Eq. 11.2-103a gives 

w-w k = Wi.1 1Wi (II.3-1a) 
dt
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Figure 11.3-1. Balance Equation and Staggered Mesh Description
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where

Mk = Pk Vk 

Wi_ -= (pvA)il,

and

Wi = (pvA)i 

The energy conservation of Eq. II.2-107 gives 

dUk - (Wi-1 hi-) - (Wi hi) + Qwm 
dt

(11.3-1d)

Wi

Pi-1

Wi 
-Pk) + -- (pi - Pk) + +D.  

Pi 
(17.3-2a)

The equation of state (omitting noncondensables), Eq. 11.2-108, gives the pressure in the volume 
as 

Pk = Pk(MkUk) (II.3-3a)

where

(11.3-3b)Uk = Mk uk I 

and the temperature, Tk, as

Tk = Tk(Mk,Uk) (11.3-3c)

When noncondensables are included an additional mass conservation equation is required, and 
the noncondensable mass is added as an independent parameter input to the equation of state.  

Eqs. 11.3-1, 11.3-2, and 11.3-3 show that the thermodynamic state of the fluid is determined in the 

volumes. These equations also illustrate the problem discussed regarding the availability of 

information at spatial locations at which the thermodynamic state is not calculated. The energy 

conservation of Eq. II.3-2a, for example, requires the fluid enthalpy, h in Eq. 11.3-2d, at the
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junctions. The fluid state is determined in the volumes so that a method of obtaining state 
information in the junctions from the volume information is necessary. Similar requirements are 
associated with the momentum balance.  

3.1.2 Mixture Momentum Balance 

The flow equations used in RETRAN-3D are derived using the one-dimensional momentum 
equation and mechanical energy equation. First, the flow equation is developed for constant area 
channels that may include bends. The second step extends the development to variable area 
channels, and finally the development is extended to situations where multiple junctions connect 
to a given control volume. The result is the RETRAN-3D flow equation. Each of the 
development steps is summarized in the following sections. Examples of the vector momentum 
balance for several geometric arrangements are given following the development of the flow 
equations. Additional information is given in References 11.3-1, 11.3-2, and 11.3-3.  

3.1.2.1 Constant Area Channels. The general macroscopic momentum balance equation, 
Eq. 11.2-106, is written in the RETRAN form as: 

d- f pV dV=- (pvA)j V Fw- Ftoe- A PP (pA)jfi + p V . (11.3-4) 
v J J 

where vi is normal to Aj and the summations are over the flow surfaces into and out of the 
momentum cell. During the development of the local momentum equation, the pressure surface 
integrals (see Eq. 11.2-34) were split into two pieces, one for the solid surface and another for the 
flow surface. They correspond to the third and fifth term on the right-hand side of the above 
equation. Recombining the two surface integrals into a single integral gives 

-F loe - E(pA)j fij =-fp f dS 
J Stoz 

which when substituted into Eq. 11.3-4 gives 

d fp dV =- (pvA)j -V - AP + pVg fp fi dS (11.3-5) 
V j Stot 

The component of momentum in the direction of the junction jýi is obtained by taking the dot 
product of Eq. 11.3-5 with a unit normal vector oriented in that direction, fiL,. This gives the 
momentum equation

Revision 511-73



Fluid Balance and State Equations

d f ii" dV = (pvA)k k fi,- (pvA)k+, VIk+l1 Aft dt ( 
V 

- Fw - App - Migz- f PriidS (11.3-6) 
S'ý 

The pressure surface integral is then applied to the region upstream of the junction, k, and the 

region downstream k+1 assuming a uniform pressure along the surface within each region. This 

gives the RETRAN-3D flow equation 

d (Pi Vi V~) = Pk Vk Ak VkW - Pk+1 Vk+I Ak+l Vk+1,*~ - Fw - Fo 
dt 

+ (Pk Pk+l)Ak" Mi 9, (11.3-7) 

where 

Vk, Vk COS (k - i) 

is the component of volume centered velocity lying in direction (Pi. The effect of the local form 

losses due to the bend is F1,, which includes the effects of wall pressure forces not included in 

the pressure difference and other geometric changes associated with the flow turning through 

bends.  

If the bend and other geometric changes are absent, Eq. 11.3-7 reduces to 

d V2A2A 
(Pi vi V,) = Pk v Ak - Pk+1 Vk+l Ak1 - Fw + (Pk - Pk+,) Ak - Mi gz , (11.3-8) 

which is the standard RETRAN straight-pipe momentum equation.  

The areas Ak are constant in space and time and the volume V, is 

V.=A k+ k1(111.3-9) 

The volume centered mass flow rate is 

Wk = (pAV)k 

and the component of the volume centered flow in the direction of the junction is 

Wk,, = (pA)kVk, •
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Using these definitions, Eq. 11.3-7 can be written 

SiLk -Lk+lI] dWi Wk Wk'* Wk+l WAkl, 1 

k[ Pk k Pdt A 2 A 2 A 
1 Floc + Pk - Pk+I - M1 gz (11.3-10) 

Ak Ak 

Eq. 11.3-10 is valid for the case of flow in a channel of constant cross-sectional area. Specific 
models are required for the mass flow component Wk , in direction *, the wall friction Fwk, the 
local flow perturbation FI.(,k and the mass Mi in volume Vi. An example application of 
Eq. 11.3-10 is given in Section 11.3.1.2.4.  

Eq. 11.3-10 is an equation for the mass flow Wi, the quantity that appears in the advection terms 
for the continuity and energy equations, Eqs. 11.3-1a and 11.3-2a, respectively. The mass flows 
Wk and Wk ,, on the right-hand side of Eq. 11.3-10 are not available from a differential equation 
and must be obtained as functions of the mass flows Wi. A model is required for Wk and Wkw, 

to close the set of equations. It is given in Section 11.3.1.2.3.  

3.1.2.2 Variable-Area Channels. The momentum equation developed in the previous 
section is for constant area channels. Many situations encountered in a hydraulic system or 
reactor vessel model will have area changes between adjacent control volumes. An example is 
shown in Figure 11.3-3 which is a representation of a flow channel containing an abrupt area 
change. The RETRAN-3D momentum equation for an abrupt area change is obtained by 
applying Eq. 11.3-7 to the portions of the flow channel labeled l/2Lk and /2Lk+. The two regions 
are separated by a small region where the area change occurs. The velocity through this region is 
assumed to be normal to the junction area.  

The upstream half volume k, extends from the volume center to a location just upstream of the 
junction. The downstream half volume extends from a location just downstream of the junction 
to the center of the downstream volume k+l. The junction region is assumed to have no volume 
and the upstream side is designated by "i" and the downstream side is "if". For the upstream half 
volume, the momentum equation is 

d I (pv)kVk = Pk Ak vk Vk, - (pAv F-- Fwk - Floc,k 

dt 2 
+ (Pk - pi-)Ak - M1/2 vk gz,k (11.3-11) 

where the wall friction FWk and the mass Mii 2v are understood to refer to the distance ½/2(Lk) and 
volume 1/2 (Vk), respectively. Applying Eq. II.D-7 to the downstream half volume, the 
momentum equation is
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k+1 
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Figure 11.3-3. Geometry for RETRAN Momentum Equation 
with an Abrupt Area Change

d 
dt

1 

2
(PV)k+1 Vk+I = :pAv2)+ - Pk+1 Akl Vkl Vk+l, Fk+ -Floc,k+l

+ (Pi' - Pk+l) Ak+j - M1/2 Vk+l gz,k+l (11.3

In Eqs. 11.3-11 and 11.3-12 the superscripts "i-" and "i'' refer to positions on either side of the 
transition portion of the flow channel as shown in Figure 11.3-3. The volumes 1½(Vk+l) and 
½(Vk+l) are 

1 Vk = Lk Ak 
2 2 

and 

1 1(1.
-Vk+1 =-Lk+l Ak+l (1.3
2 2 

respectively.

-12)

13a)

13b)

The RETRAN-3D model for the flow-area-transition region of the flow channel is based upon 

the macroscopic mechanical energy balance of Eq. 11I.2-102a. The latter equation is used because
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the available information relating to the effects of local flow perturbations such as area changes 
are usually given in terms of irreversible energy loss coefficients.  

Equation II.2-102a incorporates the assumption that the flow in the transition region can be 
considered to be steady-state flow and that the wall friction forces can be neglected. In addition, 
the model which is described here incorporates the assumption that the fluid is incompressible 
for purposes of applying the mechanical energy equation.  

Applying the assumption of steady flow to the integral mass balance of Eq. 11.3-1a, for the area 
transition regions gives 

0 = Wi- - Wi+ , (11.3-14) 

or 

(pvA)i_ = (pvA)i+ = Wi (11.3-15) 

The incompressible-flow assumption gives 

P1i- .Pi+ (11.3-16) 

The macroscopic mechanical energy balance for steady incompressible flow, Eq. 11.2-102a, 
applied to the area-transition region, gives 

0 1 1 I2 2: 
"0 = P [ (Vi-)2- Vi+)2] + pi_ pi+- (vi+)2ei 'p(11.3-17) 

where ei is the irreversible loss coefficient. These coefficients are available from tables or 
experimental data for common geometric changes. The irreversible loss coefficients are 
measures of the amount of turbulence induced into the flow field by the geometric-flow 
perturbations. Thus, the value of ej for an area expansion is not the same as the value for an area 
contraction.  

Eqs. 11.3-11 through 1.3-17 can be rearranged as follows. In Eq. 11.3-11, Ai- = Ak and it can be 

written 

1 d 1 (PV)kVk = Pk Vk Vk, i--p-- (Vi-) 2 
- FOck + Pk -APi 

Ak dt 2 Ak Ak 

1 (11.3-18) 

Ak M1 /2 vk gz,k
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In the same manner, Ai+ = Ak+1 and Eq. 11.3-12 is rewritten as 

1 dl 1 
-- (PV)k+1 Vk+l = Pi+ -i+)2 -k+l Vk+l Vk+l,*, -- Fw,k+l 

Ak+I dt 2 Ak+l 

1 
+ Pi÷ - Pk+l - •M1/ 2 Vk+l gz,k+l Ak+l

1 1 Flock+l 

Ak+l 

(11.3-19)

Adding Eqs. 11.3-18 and 11.3-19 gives 

I -d (PV)k Vk + 1 d I (PV)k+1 Vk+l Pk Vk Vk,W - Pk+l Vk+l Vk+l,q* 
Ak dt 2 Ak+1 dt 2 

-F- 1  1 F 1 
+ Pk - Pk+1 - 1 Fw,k Fw,k+l Floc,k - Flock+l 

Ak Ak+1 Ak Ak+l 1+1kk+ 

1Ak /2 vk gz,k - A M1/2 Vk+1 gz,k+l 

+ Pi+ (vi+)2 - P_- (vi-) 2 + pi÷ - pi- (H1.3-20) 

where the wall friction Fw,k and FW,k+l, refer to 1/2 (Lk) and 1 /2 (Lk+l), respectively. Eq. 11.3-17 is 

substituted into Eq. 11.3-20 using Eqs. 11.3-14 through 11.3-16 to obtain 

1 d 11 
- - 1 (PV)kVk + - - (PV)k+lVk+l = Pk Vk Vk,, - Pk+1 Vk+1 Vk+l,* + Pk - Pk+1 

Ak dt 2 Ak+1 2 

1 Fw~k - Fw,k+I M1 /2 V gzk k .. M1 12 Vk+1 gzk+l 
Ak Ak+- Ak k'k+i Ak+1 

+ - - - Ev - E - E (11.3-21) 
k2 k 

where

1 
EV 1 Pi (vi 4 ei, 

2 

Vk - Flock , and 
Ak 

E k+ l Floc,k+l

(II.3-22a) 

(1/.3-22b) 

(11.3-22c)
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If E v and EVk+1 are assumed to have the same form as Ev, the following is obtained 
1 

Evi + E+vk + EVk+1 = I Pi (v i+ (ek + e + ek+l)" (II.3-22d) 

Combining the three form or energy loss coefficient for the upstream volume, area change, and 
downstream half volume into an equivalent coefficient gives 

ei = (ek + ei + ek+l) . (11.3-22e) 

The total form loss for a momentum cell is then 

Evi + E V ,+ , E V- W i I w2I e-- - (11.3-23) 2 Pi Ai2 

where the coefficient ei* is usually referenced to conditions downstream of the flow 
perturbation. The irreversible loss term of Eq. 11.3-23 is used in RETRAN-3D based on the 
conditions at location "i".  

Substituting Eqs. 11.3-13 into the time derivatives on the left-hand side of Eq. 11.3-21 gives 

1 d Lk 1 d Lk+1 1 Lk +1 Lk+l 1 dWi 
-- (pvA)k - + A - (pvA)k+l - + k , (11.3-24) 
Ak dt 2 Ak+I dt 2 2 Ak 2 Ak+] dt 

where the momentum within each half-volume is approximated as the product of an average 
mass flow times the path length. These half-volume average flows are further approximated as 
being equal to the flow Wi. These approximations for the temporal derivative of the momentum 
terms implicitly introduce assumptions associated with mass flow and density distributions.  

The volume average flows are defined as 

Wk = (pvA)k (11.3-25a) 

and 

Wk,* = (pA)k vk,* (lI.3-25b)
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Substituting Eqs. 11.3-23, 11.3-24, and 11.3-25 into Eq. 11.3-21 gives 

1Lk 1  1 dWi -k ____ F 1 F 

Sk+ 1 Wk Wk - k + Pk - Pk+l F,k - Fw,k+l 
""dt2 k+ + PP2 Ak Ak+ 1 

2A dt Pk Ak Pk+1 2k+1 

L2AkA Ak+1 A 

+- i - I - i, gWkile* 1.-6 

Ak-- M1/2 vk gz,k "Ak+---lM/ kg~~ 

2 2 Wi.[ 1 11 1 ei 113-6 
2 Pi pk+1 Ai Ai 

Equation 11.3-26 is for an abrupt area change. In RETRAN-3D, the available geometric 

information describes control volumes in a one-dimensional sense. When volumes with different 

flow areas are connected in a model, they appear as abrupt area changes in the momentum 

equation and there is a momentum flux correction (next to last term in Eq. 11.3-26) associated 

with this area change. Other pressure losses are associated with geometric effects and are 

included through the energy loss or form loss term (last term of Eq. 11.3-26).  

Equation 11.3-26 is used as the general RETRAN-3D flow equation and several approximations 

have been used to obtaining this equation. For flow in a constant area channel, Eq. 11.3-26 

reduces to the more nearly exact form given by Eq. 11.3-10. Eq. 11.3-26 also reduces to the cases 

of incompressible, steady flow in channels with various flow perturbations.[11.3-2] 

3.1.2.3 Volume with Multiple Junctions. Some components that are modeled with one

dimensional assumptions in RETRAN-3D actually contain regions of flow which are truly 

multidimensional. Several examples may be found in a typical nuclear reactor system: the 

downcomer, plenum, and core regions in the reactor pressure vessel; the plenum and secondary 

side of a steam generator, and piping networks with branches in the water makeup and treatment 

systems. The shapes of these regions are many and varied; they cannot always be classified as 

simple geometrical figures. Thus, the shape of the control volume must be considered in a more 

general sense than axially aligned tubes.  

In developing the generalized momentum balance equation with vector information, the 

groundwork laid by deriving Eq. 11.3-26 is used as fully as possible. The vector-momentum 

equation is still a combination of the macroscopic form of the momentum and kinetic energy 

equations, but it requires additional information to describe the direction of vector components.  

By taking the vector component of momentum in the same direction as the junction, the terms for 

inertia, area change, form loss, and friction remain the same, and only the momentum flux terms 

are affected.  

Consider two amorphous volumes, labeled k and V, shown in Figure 11.3-4. In general, each of 

the volumes has several flow paths (junctions) associated with it. In this example, there are six 

total junctions for the two volumes, and the two volumes are connected only by junction i.  

Junction i leads from volume k to volume 2. The angle for the direction of the effective normal
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vector for a junction surface is defined-with respect to the upstream ("from") volume. Thus, 
junction angles for junctions 1, 2, and i are defined as normal vectors for volume k, as shown by 
the open arrows in Figure 11.3-4, junction angles for junctions 4 and 5 are defined as normal 
vectors for volume Q, and junction 3 is for another volume.  

The flow vector is assumed to be normal to the junction surface, and the direction of positive 
flow is defined in the direction of the normal vector so 4ýi is the direction of positive flow for W,.  
The flow vectors show the true direction of flow through each junction in Figure 11.3-4. W ,, W5, 
and W1 are positive, and W2, W3, and W4 are negative. The volume central flows for volumes k 
and k+1 are not necessarily normal to the volume or junction directions, as shown in 
Figure 11.3-5. They are vector quantities, determined by the junction flows connected to the 
volume. A model equation is used to combine the junction flows to determine the magnitude and 
direction of the cell centered flow, Wke and Ok, respectively. It will be presented subsequent to a 
discussion of the application of the scalar momentum equation.  

Volumes k and k+1 are control volumes for the continuity equation, but not for the momentum 
equation. The momentum cell is centered over the junction and overlaps half of each volume 
connected by the junction. As shown in Figure 11.3-5, a momentum cell is constructed by 
placing planes across the center of volumes k and k+l. The normal to this plane is parallel to the 
flow channel boundary.  

Volumes k and k+1 are described as idealized volumes of length 1/2_k and l/_lk+l and uniform 
cross-sectional areas Ak and Ak÷l. The momentum cell for junction i is shown in Figure 11.3-5.  
The axes of the cylindrical volumes are in directions qk and 4 k+I, neither of which is required to 
be the same as (f. The full momentum equation for the component of flow through junction i is 
developed using the vector nature as discussed in developing Eq. 11.3-10 and in the above 
paragraphs and considering the aspects of an area change as discussed in developing Eq. 11.3-26.  
The resulting equation is 

1'- ]k 1k+ 1W W 
[ L - L-l dWV + WkWk'* Wk+lWk+l'* + Pk - Pk+1 - i Fwk - Fw,k+l - (AP)r 

2 k Ak+l J dt Pk Ak Pk+1 Ak+1 Ak k+1 

1 1 

MI/2 vk gz,k - vA1 M112 vk+l gz,k+l 
Akk+ 

+ "2 -_ W- - W il e. (11.3-27) 
[Ap l AJ 2 

2+ AkPi Ai
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Figure 11.3-4. Generalized Volumes and Junctions

Ak

Figure 11.3-5. Generalized Control Volumes with Several Flow 
Paths for Each Volume
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where 

Wi= mass flow at center of momentum cell, 

Wk mass flow at center of mass and energy cell in the direction of the 
volume, 

Wk,, = mass flow at center of mass and energy cell in direction ij, 

Fwk = friction force in 1/2(Vk) over length 1/2(L_), 

(Ap)p = pressure drop associated with flow past a moving surface such as a 
pump, 

M v/2 vk = mass of fluid in volume ½ (Vk), 

ei = irreversible loss coefficient due to flow perturbation, and 

Pk = pressure in volume Vk.  

Flow-field models are required for Fw, and ei . If the momentum cell contains moving surfaces 
such as those associated with pumps, compressors, and turbines, the model must be incorporated 
into the momentum equation. The RETRAN momentum equation includes models for pumps 
and turbines as given in Section VI. The flow-field models for the wall friction and local-loss are 
given in Section ]II. The models for Wk and Wk,,* are described in the following.  

To evaluate the terms for momentum flux, values must be obtained for the surface flows 
Wk,0 and Wk-,0 as shown in Figure 11.3-5. These vector mass flow rates are used to obtain the 

cell centered flow normal to the boundary flow area and the cell centered flow in the direction of 
the junction, Wk and Wk, for the upstream boundary and Wk+l and Wk+l , for the 
downstream boundary. Consider the generalized volume k as shown in Figure 11.3-6. The 
volume is divided by the plane at the volume center and normal to the direction k. For purposes 
of discussion, the half volumes are called upstream and downstream with 4ýk pointing to the 
downstream region. All eight possible relationships between a junction flow, a junction angle, 
and the volume regions are shown. A junction may be associated with either the upstream or 
downstream region, a junction direction may be inward or outward with respect to the volume, 
and the flows may be positive or negative with respect to the junction direction fi. Each junction 
i connected to volume k has a unit normal vector Ntk directed away from volume k. This normal 
vector is not shown in Figure 11.3-6.  

The first step in obtaining the flow rates required to evaluate the momentum flux, is to evaluate 
the volume centered flows Wk,0 and Wk, The normal flows Wk and Wk+l and the 

components in the direction of the junction Wk*,, and Wk+lw,, are then obtained directly from the 
cell centered values.
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4 

W, 

w4), 

W1 

Figure 11.3-6. Volume with Multiple Junction Connections 

For the example control volume with multiple junction connections shown in Figure 11.3-6, the 

junction flows are oriented in the direction indicated and are normal to the junction area. The 
volume is divided into an upstream and downstream half based on the volume angle, which is 
equal to 4k. The normal vectors Nik which are directed outward form the surface of volume k, 

are determined by the from-volume/to-volume specification and angle assigned with each 
junction as follows, 

Nik= cji for the "from" side of a junction where positive flow is out of the "from" 
volume k 

= (4i + ic) for the "to" side of a junction where positive flow is into the "to" 
volume k 

Both the averaging and donor forms of the volume centered flow equation models are obtained 
using a general form. The equations used to obtain the components of the flow in the x and y 
directions are 

Wk,x = Ckj Wk~j + CkdjWkdxj (II.3-28a) 

Wk,y = Ckuj W-"yj + CkdjWkdyi (11.3-28b)
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where the C are coefficients dependent.on the model (averaging or donor) selected and the 
upstream and downstream components of the volume flow are given by the following equations.  
The summations are over all junctions connecting to the volume that also satisfy the requirement 
for 'D which is defined as (D = Nik - (ýi,

xj =- W2 wIcos cos (Ni - (N 
iek 

WkuyJ -= Wi sin (4b)cos (Nik- (4i) 
i~k I

Wkdxj = E w I cos (1i) Icos (Nik
iek 

WkY = E: Wi sin (4ý) fcos (Nk - i 1) 
kd i ek J~k

for - < <D 
2 2

for -- <(D< 
2 2

The volume centered velocity and direction are then given by 

k 2 f[ / Wk,O- = rkx + k,y]

and

tan-' (W) 
ic + tan`'W

for Wx > 0

(11.3-31)

for W x < 0

The component of the volume centered mass flow rate that is normal to the volume flow area is 

Wk = Wke cos(Ek - Vk)I (11.3-3 

and the component that is in direction g, is 

W Wk, e I=ces(kk - 'I'k)k (II.3-3

2)

3)

Revision 5

and

(II.3-29a)

(II.3-29b)

(11.3-30)

11-85



Fluid Balance and State Equations

The coefficients used to obtain the averaging and donor models are: 

Arithmetic Average 

C•j = 0.5 (II.3-34a) 

Ckdj = 0.5 (11.3-34b) 

Donor Cell 

Ikuj = 10 for W >_ 0.0 (II.3-34c) 

Ckdj = 0.0 

Ckuj = 0.0 Ikdj = 0 for W. < 0.0 (II.3-34d) 
•kdj =1.0 J 

The volume flow terms required for the solution of the momentum equation are obtained using 

the above equations. They are evaluated for both boundaries of the momentum cell.  

The macroscopic balance equations require a large amount of information in order to determine 

the time rate of change of the state of the fluid in the mass, momentum, and energy cells.  

Basically, all the information at the boundaries of the cells must be specified. Application of the 

momentum equation to a control volume bounded by the center of the mass and energy cells 

allows some of the boundary information to be calculated with a differential equation. The 

RETRAN-3D macroscopic balance equations form a system of coupled differential-difference 

equations for the quantities Mk, Wi, Uk, Pk, and Tk (and MK and K,1 for five-equation and 

noncondensable, respectively, when present). All other information required by the equation 

system must be expressed in terms of these quantities, or other equations must be added to the 

system. The RETRAN-3D models for these variables are described in Section III.  

3.1.2.4 Examples Using Vector Model for a Tee and Elbow. The following examples 

are provided to illustrate the application of the RETRAN-3D momentum equation to typical 

hydraulic components. In particular, the examples illustrate the calculation of the momentum 

cell boundary flows used to compute the momentum flux terms, using the vector momentum 
option.  

For the examples, the pressures and densities are assumed to be known at the volume centers or 

momentum cell surfaces. Figure 11.3-1 illustrates the locations where the various quantities are 

defined for mass, energy, and momentum cells. The surface areas are parallel to the boundary
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surfaces shown in the illustration and the junction flows are normal to the junction flows. The 
volume and junction orientations (angles) are relative to the axes shown on the example figures.  

Tee Example 

Common geometries found in hydraulic networks and reactor systems are those of tees or 
manifolds. Since a manifold can be thought of as a number of connected tees, the tee is used to 
illustrate the application of Eq. 11.3-27 for something other than a straight pipe. The examples 
assume steady-state flow, which allows the time derivative to be dropped. The wall friction and 
hydrostatic head are neglected for the purpose of simplification.  

For the horizontal path of the tee (Junction 2) shown in Figure 11.3-7(a), the momentum equation 
reduces to 

Wl wlnl V 2 W2,iI1 W2  W2 1w21* 
P1 W-p2 + _ W_ 2 W2_WA2 12]-W2 -¢- 2 e2 = 0 (II.3-35a) 

P piA P2A 2p 2  A 22Aj 

Equations 11.3-29 are used to define the upstream and downstream flows in the x and y directions 
for Volume 1 as 

Wlux = WW Wldx = W2 

Wluy Wldy = W4 

The volume average flow components in the x and y directions are then obtained using 
Eq. 11.3-28 with the coefficients defined for the averaging method. Also applying the 
assumptions of steady-state conditions gives 

- 1W2 
W,x =- (WI +W2) 

and 

S 1W4 1 
Wa'y "- W4 (Wi - W2)• 

2 2 

Equation 11.3-30 is then used to define the magnitude of the volume centered flow, giving 

0'=12 w,,0 = W + Wf+ (WI,- W
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Figure 11.3-7. Momentum Cells for an Example Tee

Revision 5 11-88



Fluid Balance and State Equations 

Note that WI,, is not required for this example since the junctions are oriented along the x and y 
axes.  

The terms needed to evaluate the momentum flux terms for the upstream boundary (center of 
Volume 1) for momentum cell or Junction 2 are available from the components of the volume 
flow already defined. They are 

1 21

and

- - 1 
W1 ,* =1Wx = (w1 + W2) Wlll - W~x-"-•(W 2

The volume centered flows for the downstream boundary of the momentum cell are obtained 
similarly for Volume 2. They are

W2ux = W2 W2dx = W3 

W2dy = 0

Given the assumption of steady-state conditions 

- 1 W = 2 (W2 +W3)=W2

and

W
2

,y -0

The volume average flow is then 

W2,0 = W2 

and the angle is zero degrees. The flow components for the downstream momentum flux 
evaluation are 

W 2 = W2,x = W 2
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and

W2,, = W2,. = W2

Substituting the boundary flow definitions into Eqs. II.3-35a gives

+ (wI + w2)Y 

4p1AI

W22 

P2A2

W2 

2P 2 2A l
W V1e* = 0 

P22

The flow equation for the vertical flowpath (Junction 4) can be developed using the same 
process. The junction is illustrated in Figure II.3-7(b) and the associated momentum equation is

2 

Pi - P4 + WW_'__ W4W4'4 [ - 12 
I I~ p4A2 2P4 2 A 2~

w4* = * 
21A 2 e4 = 
2P4A4

The x and y direction flows for Volume 1 were defined above for the horizontal flowpath 
(Junction 2) and are used again here. For Volume 4, the downstream side of Junction 4

W4ux = 0 

W4uy = W4

W 4dx = 0 

W4dx = W5

Given the assumption of steady-state conditions 

W4,x = 0

and

W4,y -- (W 4 + W)-= W4 
2

The flow components needed for evaluation of the downstream momentum flux are 

W 4 = W 4 ,, = W 4 = (Wl - W 2 )

and

W-'4, = W 4 ,y - W4 = (WI - W 2) •
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Substituting these values, and the y components for the upstream side (Volume 1) of the 
momentum cell, gives 

S (W - W2- (W1 - WE).  PI -P4+2 

4p1A1 p4A2 

(Wl-W22 [1 2] (WI-W 2) I(Wl-W 2)2I4e 0 . (I1.3-36b) 

T4A A2 2P4Aj4 * 

The local loss coefficient e4 must account for the turning of the flow from Volume 1 to 
Volume 4.  

A typical application of Eq. II.3-36b in a system model is for a pressurizer surge line in a PWR.  
At steady-state, W4 = 0 and W, = W2. For these conditions, the momentum flux terms are zero 
and do not effect the pressure gradient which is primarily due to hydrostatic head (neglected in 
the example). If the vector feature isn't used for the surge line example (all angles 0 or the same), 
the surge line pressure will be elevated by W2/p 1A2, which could be significant.  

Elbow Example 

Applying Eq. 11.3-30 to the elbow in Figure 11.3-8, shows how the vector balance reduces to a 
simple form with a well-known result. The steady-state mass balance gives 

W=W2 =W 3 =W 4 . (II.3-37a) 

For steady-state conditions, zero wall friction, and no elevation change, application of Eq. 11.3-27 
to Junction 2 gives 

W ,I . W2W2, 1 1] 2 e2 . (11.3-37b) 

P- AI P2A 2P2 AI A2 2P2Aj2 

Since all of the junctions connecting to Volume 1 are horizontally oriented, the volume flow will 
be in that direction and there will not be a vertical component. The volume centered flow is then 
obtained from Eqs. 11.3-28 and 11.3-29 

Wlux = W1 

Wldx = W21 

W1 = = 1 k (w1 + W 2) = W 2 , and
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1 2

W2>

o Mass & Energy Cell 
[ Momentum Cell 

(a) Momentum Cell for Junction 2

1 0 2

WI W2

WI W,

900

o W

X

(b) Momentum Cell for Junction 3

Figure 11.3-8. Momentum Cells for an Example Elbow
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W1,1 = Wl,' = W2 

The volume centered flows for Volume 2 will have both x and y components. Equation 11.3-29 
gives 

W2ux = W2 w2dx = 0 

W,2uy = 0 W2dy = W3 

Applying the averaging form of Eqs. 11.3-28 gives 

W2,x = -W =•2 

and 

W2 y = lW 3 = w2 S 2 2 

The magnitude of the volume average flow is given by Eq. 11.3-30 

W2,e = --•1W2 

and the angle of the flow will be at -45' since the x and y components are equal. If the 
downstream boundary of the momentum cell is at -45o also 

2 2 - 1 W2 = w 2,8 = W 

Since Junction 2 is horizontal (angle j = 0) the component of the volume flow in the direction 
of the junction is 

- - 1W 
W2,* W2,x = "-W2 

2x 

Substituting the volume flow components into the momentum flux terms of Eq. II.3-37b gives 

-W 2  W2 W2  1 1 W2 e2, (II.3-37c) 
P2 Pl A 2v-P 2A: 2 P2 [Aý2 A2 j 2P 2Aj
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Applying Eq. 11.3-27 to Junction 3 gives

W2W2,* 

P3 - P2 = 
P2A2

W3W3,,.  

P3 A3

W3 

2P3

w3 
2P2

2 -1 2 
[2A3~~

W3 WV31 eZ. (II.3-38a) 

2P 3A 3

From the development for Junction 2 above, 

- - 1 
W 2 = W2,0 = 2 2 

Since Junction 3 is oriented at 270 degrees (-90), the component of the volume flow in the 

junction direction is simply the y component, or 

- - 1w 
W 2,tt = W2,y = -W 2 

For the downstream boundary for Junction 3, the flow will be in the direction of the junction 

since Junction 4 is oriented in the same direction. As a result 

W3 = - (W3 + WI) =

and

W3,* = W3 = W2

Substituting the values of the volume center flows into Eq. II.3-37d gives

w2 
P3 - P2 2

w 2 

P3A3

2 
W2 

2p3 1 
[2 3]

W2 jWr21 * 

2 j 2 e3 2P 3A3

Summing Eqs. 11.3-37c and II.3-37e gives

A1 A[7?
W22 

2P3

21 

A[7.y

W2 ýV 21 * 
2 e2, 

2p2A.2

W21WV21 *~ 

2p3 e3
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_W22 

2 

P3 - PI 2 91AI

W22 

2P2

W22 

P3A

(11.3-38c)
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For a uniform flow area and a constant density, the above reduces to 

(e +W eI2I(e e) -w2I21 e (11.3-39) 
P3 - Pi 2pA 2  2pA 2 

which is commonly used to determine local-loss coefficients from experimental data.  

It should be noted that Eq. II.3-37c shows that there will be a pressure recovery in P2 due to the 
momentum flux terms. However, an equal and opposite recovery (loss) occurs between the 
middle of the elbow and the exit as shown by Eq. II.3-38b.  

While the elbow example given above is useful for illustrating the use of the vector momentum 
model, it is not illustrative of a typical use in RETRAN-3D. RETRAN-3D control volumes 

usually represent long piping sections containing elbows and flow restrictions or expansions.  
For such models, the loss coefficients for the related junctions must be equal to the sum of the 
losses for the various components that are associated with the adjacent control volumes.  
Reference 11.3-17 gives guidelines for modeling LWR systems.
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The Node-Flowpath Methodology 

The traditional method used in the numerical simulation of nuclear reactor systems has the 

piping system geometry represented as a series of nodes or volumes that are connected by a 

flowpath or junction. This approach has come to be known as the "node-flowpath" or "volume

junction" representation of the reactor system. The components represented with this method 

include the core and plena regions of the reactor vessel, the hot and cold legs, steam generators, 

and components such as pumps, pressurizer and accumulator. The representation is basically a 

one-dimensional model of the reactor system, in that flow enters one end of the node, exits at the 

other end, and the properties are assumed to be homogeneous within the node.  

The early applications of programs of this type were undertaken by reactor vendors to obtain the 

system response to postulated loss-of-coolant accidents (LOCA). The node-flowpath 

representation of the reactor system has remained as an integral part of the computer programs 

that have followed the early LOCA codes. Today, the programs generally applied for system 

analyses of LOCA and plant transient licensing applications, such as LOFTRAN, versions of 

RELAP4, RELAP5, and versions of RETRAN, all rely on this representation to model the piping 

system. Programs used to represent three-dimensional geometries such as TRAC and some 

vendor programs use different methods to solve the conservation equations for special 
applications.  

Some of the requests for additional information ask questions regarding the node-flowpath 

approach and how it is applied in complex regions for a RETRAN model of the reactor system.  

In the following discussion, the homogeneous mixture equations of RETRAN are applied to the 

node-flowpath approach first for a section of straight pipe and then for regions of complex 

geometry such as those involving the downcomer and lower plenum. The models used to 

compute values of certain variables needed for closure of the system equations are summarized.  

Special considerations related to geometric input for the volumes and junctions in the region of 

complex geometry are discussed and the form of the momentum flux terms for these two 

geometries are presented. It is noted that the nodalization model presented for the complex 

region discussion represents one method of modeling this region, and it is used herein for 

discussion of the vector momentum model in RETRAN-3D.  

Application to Simple Pipe Geometry 

The node-flowpath concept uses two basic types of elements, the first is a control volume, also 

denoted as a node. Nodes are connected to each other via flowpaths or junctions. The geometric 

representation of a node is defined by the volume, flow area, elevation, and height, and other 

model parameters such as the wetted perimeter and hydraulic diameter. A flowpath is defined by 

a flow area, inertia, elevation, and energy loss coefficient. It also uses some of the geometric 

information of the two nodes it connects, including the flow length for the connected nodes and 

the flow area and elevation. A junction must reside between the vertical bounds of the adjacent 

control volumes it connects with.
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In the node-flowpath method, the equations for conservation of mass and energy are solved in the 
nodes or volumes, and the one-dimensional momentum equation is solved in the flowpaths.  
Flowpaths occupy the region bounded by the centers of the nodes connected. Figure 1 illustrates 
the regions occupied by nodes and flowpaths for a simple pipe geometry.  

flowpath 

I I a 

IL IL 

i-I 1k j k+1 j+1 
I I 

node node 

Figure 1. Node-Flowpath Mesh Structure 

The mixture mass and energy equations are spatially integrated over a control volume which 
corresponds to a node in Figure 1. They are solved to obtain the total mass and internal energy 
for each node. The mixture momentum equation is spatially integrated over a region 
corresponding to the flowpath and is solved to obtain the average mass flow rate in the flow path.  
Note that the regions of integration are different for the nodes and the flowpaths. The flow path 
region extends from the center of the upstream node to the center of the downstream node.  

Historically, nodes are referred to as control volumes (or simply volumes) since they correspond 
to the region over which the mass and energies are integrated. Similarly, the flowpaths are 
referred to as junctions since they correspond to the connection or junction between volumes.  
The remainder of the discussion refers to nodes and flowpaths as volumes and junctions, 
respectively.  

Governing Equations 

In this discussion, the mixture conservation equations will be considered. While RETRAN 
includes options to model slip and nonequilibrium conditions, the inclusion of these equations 
relies on the same node-flowpath representation of the system. RETRAN uses the volume
junction terminology and that is applied in the following. The three governing equations for the 
RETRAN-3D program are given by Equations 1, 2, and 3. Detailed derivations of these 
equations for the homogeneous equilibrium mixture model are presented in Reference 1. This 
discussion presents these equations applied to the straight pipe of Figure 1.
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The mixture continuity equation is

d Mk =- F Wj 1 
dt j 

and the mixture energy equation is 

d Uk=- (W h)j + Qw, + (W/p)j (Ap)j , (2) 

dt 

where 

Ap = Pj -Pk 

The junction flow equation is obtained from the one-dimensional mixture momentum equation 
and is 

dW. WkWk Wk+lWk 1 1 

dt Pk Ak Pk+2 A2  Ak wk Ak+ l 

P k k k+Ik-I 

M- vk M'/vk+g 
(3a) + Pk - Pk+l gI gz, 

Ak k+I 

where 
1L[.k Lk +1 (3b) 

2 k Ak+ 1 

The k (and k+1) subscripts refer to the node average quantities that are assumed to exist at the 

geometric center of the volume and the j subscript values are assumed to exist at the junction 

connecting two nodes. The geometric and model parameters associated with the control volumes 
are, 

A = uniform flow area, 
L = flow length, 

Z = elevation of the bottom, 
ZVOI = height, 

gz = gravitational constant, and 
Fwk = wall friction loss.
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The dependent variables (unknowns) associated with each of the three balance equations are 

Balance Equation Dependent Variable 
Mixture Continuity Total Mass - Mk 

Mixture Energy Total Energy - Uk 

Mixture Momentum Junction Flow - Wj 

Pressures for each control volume are obtained using the water property functions and an 
iterative search procedure that determines the pressure given the total mass and energy in a 
volume. The pressure search solutions is discussed in detail is Reference 1 and is given by the 
function 

Pk = f(Pk, Uk) (4) 

where 

Pk = Mk/Vk 

and 

Uk= UJMk 

The thermodynamic state of the control volume is also obtained from the pressure search; thus, 
the following state properties are known 

hk = enthalpy, and 
Tk = temperature, 

as are the saturation and other state properties.  

Closure Relations 

For a node-flowpath program, the mass and energy inventories are computed for the volumes and 
mass flow rates are computed for the junctions. This means that the pressure, enthalpy, and 
density values are available only in the volumes. To relate these parameters to a junction, some 
assumptions are required. These assumptions are 

1) The pressure for a junction, pj, is the flow donor node pressure adjusted for 
hydrostatic head and wall friction losses between the volume center and the junction.  
This model is used at all junctions. (Section 111.2.2 of Reference 1) 

2) The enthalpy of a flow path, hi, is the enthalpy of the upstream (or donor) volume for 
most applications although there are special models that account for variations in the 
enthalpy as a result of spatial gradients due to heating or phase separation. The donor
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method is the default model and is applied unless the user selects another option 

through input. (Section III.2.3 of Reference 1) 

3) The density of a junction, pj, is the density of the upstream (or donor) volume unless 

a special model that accounts for variations in the enthalpy as a result of spatial 

gradients due to heating or phase separation is used. For these special models, the 

density is computed from the junction pressure and enthalpy using the RETRAN-3D 

water property functions. (Section III.2.2 of Reference 1) 

The solution of the momentum equation requires evaluation of the momentum flux terms (the 

first two terms on the right-hand side of Equation 3a) at the upstream and downstream surfaces 

of the momentum cell. The volume centered flow values used in these terms are not available 

directly from the solution of the balance equations, i.e., they are not one of the dependent 

variables noted above. Consequently, a separate model is necessary to define these flow rates as 

a function of the junction mass flow rates; it is given below.  

The momentum flux term is given by the product of the volume average flow, Wk, which is 

parallel to the volume axis and normal to the volume flow area, and the component of the volume 

average flow which lies in the direction of the momentum cell. For the straight pipe shown in 

Figure 1, these two terms are equal and the momentum flux terms become 

Wk2 
Wk+1 

PA
2  A+2 

k k PkI k+1 

Assuming steady-state conditions, the volume average flow, Wk - Wk+l = Wj, and the 

momentum flux term reduce to 

Wj2 W._2 

2 2 
Pk Ak Pk+I Ak+l 

Given steady-state conditions in a constant area pipe, the momentum flux gradient is determined 

by the density gradient only.  

Application to Complex Geometries 

The node flowpath geometry shown in Figure 1 is typical of that for piping sections. For 

RETRAN-3D models of light water reactor (LWR) systems, the vessel is a large three

dimensional component comprised of a number of nearly one-dimensional components (core 

channels and bypass) that are connected via regions where there are three-dimensional effects, 

such as the plenums and annuli. Figure 2 is an illustration of such a system, and shows a 

simplified noding example when the node-flowpath approach is applied to the RETRAN-3D 

balance equations. The system is represented by connecting a series of one-dimensional 

volumes. Thus, a cold leg pipe, downcomer, the plenums and other regions in the system would
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all be represented as one-dimensional volumes, and they would be connected to other volumes 

by junctions. The volume (node) boundaries are defined by the user through input values for the 

volume size, equivalent flow area, length and hydraulic diameter. If a particular piping section 

actually has pipes of varying sizes or elbows, expansion or contraction sections and is 

represented as a single node, it is the responsibility of the user to provide the appropriate 

equivalent values for the physical volume occupied by the node as well as the area, length and 

diameter values. An equivalent loss coefficient may also be required to account for the total 

pressure drop related to the geometry changes.  

When modeling complex geometries with a program that contains a one-dimensional momentum 

equation, the selection of inputs requires a careful consideration of how those inputs are used in 

the equations. Reference 2 provides specific guidance for modeling various LWR components.  

The user may choose to preserve certain geometrical quantities with particular sensitivity to the 

parameter of interest. Studies of the sensitivity of the model response to input variations are 

often performed when adapting a one-dimensional equation to a complex geometry. Another 

consideration is the level of detail that is required to obtain the necessary results. This will 

dictate the detail that is required for the system nodalization. The nodalization in Figure 2 is 

used for illustration only.  

Input Parameters for Complex Regions 

This section presents a short summary of the input considerations for some of the important 

model parameters and input options for applying RETRAN-3D in regions of complex geometry.  

It is noted that there may be several ways to represent these regions. The vector form of the 

momentum equation permits one to account for changes in the momentum flux resulting from a 

change in the direction of the fluid flow. However, the loss coefficient values for unrecoverable 

losses for elbows and bends presented in references such as Idelchik [3] include effects due to 

change in direction. It may be difficult to determine what fraction of the loss coefficient is a loss 

due to a change in flow direction. Thus, many applications using RETRAN in complex 

geometric regions use handbook values for loss coefficients or values computed from steady

state pressure drop measurements, and do not account separately for the angle changes when 

flowing from one volume to the next.  

Generally, the volume flow area should be representative of the cross-sectional flow area at the 

volume center or momentum cell boundary. This value affects the momentum flux terms and 

can also affect the wall friction.  

The volume length and/or the hydraulic diameter may be modified to more correctly represent 

the wall frictional pressure losses associated with a control volume. In some components, a 

length other than the physical length may be required to accurately represent the frictional losses.  

The geometric inertia is treated as an independent model parameter. As an option, the inertia can 

be computed directly from the input volume flow areas and lengths for simple one-dimensional 

regions. This is appropriate for straight pipes, but generally is not a good representation of 

complex geometries such as plenum and separators. In these components the flow path length
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through the component may be significantly different than the physical length (or area) of the 
volume. The inertia has no effect on the steady-state solution, but it does affect the time constant 
for the flow during a transient calculation.  

Control volume boundaries generally coincide with physical changes in the geometry of the 
region being modeled, e.g., where the cold leg joins the downcomer. It is common for junctions 
to have areas that differ from either the upstream or downstream volumes, or both. These local 
area changes will affect the irreversible wall friction and form losses and the reversible area 
change momentum flux terms.  

Form or energy losses must be included in junctions to account for losses associated with 
changes in geometry. These geometry dependent loss coefficients are based on measurements 
and have been collected into various widely used books, such as Idelchik.[3] 

Application of Vector Momentum Option 

RETRAN-3D provides an option for the code user to approximate the vector nature of the 
momentum by associating an angle with the momentum cell. This approach has been called 
"vector momentum". For the system shown in Figure 2, the momentum equation takes the form 

dWj WkWk,,o Wk~lWk.,, 1 Fw 

2 w A k A k +l 

d•t Ak P.k kAk+ , 

+ Pk Pk+1 gz gz 
Ak Ak+l 

j1w1-K e 1 (5) 
2 i 2 2 2 2l~ 0A 

2p k+1 kpjA 

where W k is the component of the volume average flow that is normal to the flow area and Wk,V 

is the component that lies in the direction of the junction. Both are obtained from the volume 
average flow WkO. Appendix A provides the details of the model equations used to obtain these 
flows. The form or geometric losses are given by the last term in Eq. 5 where ej* is the standard 
energy loss coefficient.  

Figure 2 illustrates the momentum cell and associated control volume relationships for three 
different junctions. The first is Junction 2 connecting the cold leg piping to the downcomer 
volume, the second is for Junction 3 connecting the downcomer and the lower plenum, and the 
third is Junction 4 connecting the lower plenum with the first active core volume. The 
application of the mixture continuity and energy equations to these geometric configurations is 
straight forward since they are scalar equations. The momentum flux considerations are 
discussed below. Tables 1 and 2 list the pertinent information for evaluating the momentum flux 
contributions, which are also shown (without the pA2 terms in the denominators). The 
evaluations were performed assuming steady-state flow conditions.
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Table 1

Junction Related Momentum Flux Terms

Junction Angle Wk,- Wk+'T Wk'W,' Wk+lWk+lT' 
(degrees)Wk WWW W 

1 0 

2 0 W2  ½W2  W¼ Wý 

270 1/2W 3  0 1/4 W 2  0 

4 90 0 W4  0 W2 

5 90 

6 90 

Table 2 

Volume Centered Flow Quantities 

Volume Angle W W W W 
(degrees) k,x k,y k,0 (degrees) Wk 

1 0 W2  0 W2  0 W2 

2 270 1/2W 2  1/2W 2  1/i2,W 2  315 1/2W 2 

3 90 0 0 0 0 0 

4 90 0 W4  W4  90 W4 

Each of the three junctions are discussed below. The momentum flux terms are evaluated using 

the averaging model for the volume centered flows, where the volume centered flow is the 

arithmetic average of the inlet and exit flows. The following examples give an intuitive 

description for the evaluation of the volume average flow and momentum flux terms. The actual 

equations implemented in RETRAN-3D to perform this task are given in Appendix A.
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Cold Leg/Downcomer - Junction 2

Since the cold leg is a pipe and essentially one-dimensional, the inertia for Junction 2 would be 
one half of the L/A for volume 1 plus the contribution for the associated downcomer half 
volume. For the downcomer side, the L/A contribution might range from the geometric values to 
something larger if there is an attempt to account for the flow spreading around the downcomer 
annulus as well as flowing downward. These are modeling choices rather than code options.  

With the assumption of steady-state flow conditions, W, = W2 =-W3 and with W2 substituted for 
the other values, the value for the average flow for Volume 1 (W 1 ) is simply W2. It is oriented 
in the x-direction since both the inlet and exit junctions for the volume lie in that direction. For 
Volume 2, the inlet flow (junction 2) is at 0 degrees, but the exit (Junction 3) is at 270 degrees.  
Both the x and y components are simply ½2 W2. As a result, the averaging algorithm used for the 
volume flow gives a value of 1/T2 W2 at 315 degrees. The results for the volume center flow 
components are shown in Table 2. They are combined with the component of the volume flow 
that lies in the direction of the junction which is shown in Table 1 to give the momentum flux 
terms which are shown in the last two columns of Table 1. The angular effects for the 
momentum flux for Junction 2 appear in the downstream term (k+l) which has a multiplier of 
1/4 rather than a value of unity that would appear if the angular effects were neglected (as shown 
for the straight pipe example given above).  

Downcomer/Lower Plenum - Junction 3 

For Junction 3, the inertia would in general be something other than the geometric value. The 
upstream contribution from the downcomer could be the geometric value if the flow in the half 
volume is primarily downward so the length of the flow path is approximately the same as the 
length of the half volume. On the other side, the flow path length will differ significantly from 
the half volume length, so the lower plenum contribution to the inertia will typically be larger 
than the geometric value.  

As noted above, W2 = W3 so W3 is used for W2 wherever it is needed. The volume centered flow 
for Volume 2 was determined in the example for Junction 2. The average flow for Volume 3, the 
lower plenum, is determined by averaging all of the flows in and out. The orientation of the 
junctions is either at 90 or 270 degrees, indicating that there will not be a component in the x
direction. Table 2 shows that the volume flow terms are zero since all flows enter and leave the 
same side of the lower plenum. The result is that the downstream momentum flux term is zero as 
shown in Table 1.  

Lower Plenum/Core Inlet - Junction 4 

The inertia for Junction 4 would be the component for the lower plenum half volume which 
would be the geometric value plus the core node contribution. Since the core node side is 
primarily one-dimensional, the L/A contribution would be the geometric value.
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With the assumption of steady-state flow conditions, W4 = W6. Consequently, W4 is substituted 

for W6. As indicated above, the volume flow terms are zero for the lower plenum volume as 

expected for a large tank. The volume flow for the downstream side is W4 since the core volume 

has only was one inlet and one exit junction and they are oriented in the same direction.  

Consequently, the momentum flux term is the equal to the square of the Junction 4 flow rate.  

This is listed in Table 1.  

The examples given above illustrate the use of the node-flowpath approach for some of the more 

complex geometries that are encountered in reactor vessel models. Reference 2 provides more 

guidance for specific applications of RETRAN to LWR systems.  
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Appendix A 
Volume Centered Flow Models 

The solution of the RETRAN-3D momentum equation requires the mixture velocity (vector 
quantity) or flow rate at the momentum cell boundaries (or volume centers). These boundary 
flows are not obtained directly from the solution of the governing equations but are obtained 
from a simple closure model. Two different options are available in RETRAN-3D. One uses a 
donor scheme and the other uses an averaging scheme. The choice of the flow model is globally 
specified by input, but the averaging method is the default. It has been shown that for some 
atypical problems, notably those where momentum flux is dominant compared to friction and the 
other terms in the momentum equation, the solution technique in RETRAN-3D can be unstable 
when the averaging model is used. For these cases, the donor cell provides a stable solution.  

The closure equations compute the volume average velocity or flow as a function of the junctions 
connected to any given volume. The averaging and donor methods available in RETRAN-3D 
also rely on a knowledge of where a junction connects to a volume, i.e., either in the upstream or 
downstream half volume. Figuree A-1 illustrates a volume with multiple inlet and exit junctions.  
It also shows the volume flow WkE which is not necessarily parallel to the volume orientation 

4k. The component of the volume flow that is in direction 4k is Wk.  

For the example control volume with multiple junction connections shown in Figure A-i, the 
junction flows are oriented in the direction indicated and are normal to the junction area. The 
volume is divided into an upstream and downstream half based on the volume angle, which is 
equal to 1k-. The normal vectors Nk which are directed outward from the surface of volume k, 
are determined by the from-volume/to-volume specification and angle assigned with each 
junction as follows, 

Nik = • for the "from" side of a junction where positive flow is out of the "from" 
volume k 

= (j + iT) for the "to" side of a junction where positive flow is into the "to" 
volume k 

Both the averaging and donor forms of the volume centered flow equation models are obtained 
using a general form. The equations used to obtain the components of the flow in the T, x, and 
y directions are 

Wk,* =kuj Wkuj + ýkdiWkdj (A-la) 

WkX = Wkuj + CkdjWk~j (A-lb) 

Wk,y Ckuj Wkuyj + CkdjWkdyi (A-ic)
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Figure A-1. Volume with Multiple Junction Connections 

where the C are coefficients dependent on the model (averaging or donor) selected and the 

upstream and downstream components of the volume flow are given by the following equations.  

The summations are over all junctions connecting to the volume that also satisfy the requirement 
for 0 which is defined as D = Nik - Ibj,

i~k 

iek 

WkUyj E- Wi sin (4i) IcOS (Nik- 4)i) 
i~k

for I < D < 3_.x 
2 2

and

13
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Wkdj= w I cos (4ý - cPj) cos (Ni, - u1i) 
i~k 

Wk-x= Wl I cos() Icos•Ni, - i)for- < < 

iek 2 2 

Wkdyj = Wi I sin (i)COS (Nik 
iEk 

The volume centered velocity and direction are then given by 

-- 2 V2+ wk,e _- r[k + w.k~]
and

tan-' W for Wx> 0

Lt + tan ( for W < 0 

The component of the volume centered mass flow rate that is normal to the volume flow area is 

Wk = Wko I CosOk - 'k)I (A-.  

and the component that is in direction *j is 

Wk.* = Wk,o I Cos(Ek - *j)l (A-, 

where 4j is the junction angle (*j. Equation A-6 is equivalent to Eq. A-la.  

The coefficients used to obtain the averaging and donor models are: 

Arithmetic Average 

Cj = 0.5 (A-7.  

Ckd = 0.5 (A-71
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(A-3)

(A-4)

5) 

6)

a) 

b)



Donor Cell

ýkuj = 1.0 

ýkdj = 0.0 

ýkqj = 0.0 

ýkdj = 1.0

for >0.0 

for W. < 0.0

The volume flow terms required for the solution of the momentum equation are obtained using 

the above equations. They are evaluated for both boundaries of the momentum cell.
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Attachment 3 
RETRAN-3D Multidimensional Kinetics 

Calculations for SPERT III E Tests 81 and 86


