ADVISORY COMMITTEE ON REACTOR SAFEGUARDS

UNITED STATES ATOMIC ENERGY COMMISSION

WASHINGTON, D.C. 20545

September 23, 1970

Honorable Glenn T. Seaborg Chairman U. S. Atomic Energy Commission Washington, D. C. 20545

Subject: REPORT ON INDIAN POINT NUCLEAR GENERATING UNIT NO. 2

Dear Dr. Seaborg:

At its 125th meeting, September 17-19, 1970, the Advisory Committee on Reactor Safeguards completed its review of the application by Consolidated Edison Company of New York, Inc., for authorization to operate the Indian Point Nuclear Generating Unit No. 2. This project had previously been considered at the Committee's 95th, 98th, 122nd, and 124th meetings, and at Subcommittee meetings on August 23, 1969, March 13, 1970, April 25, 1970, May 28, 1970, July 28-29, 1970, and September 15, 1970. Subcommittees also met at the site on December 28, 1967 and May 11, 1970. The Committee last reported on this project to you on August 16, 1966. During the review, the Committee had the benefit of discussions with representatives of the Gonsolidated Edison Company and their contractors and consultants, and with representatives of the AEC Regulatory Staff. The Committee also had the benefit of the documents listed.

The Indian Point site is located in Westchester County, New York, approximately 24 miles north of the New York City limits. The minimum radius of the exclusion area for Unit No. 2 is 520 meters and Peekskill, the nearest population center, is approximately one-half mile from the unit. Also at this site are Indian Point Unit 1, which is licensed for operation at 615 MWt, and Unit 3, which is under construction.

The applicant has re-evaluated flooding that could occur at the site in the event of the probable maximum hurricane and flood, in the light of more recent information, and has concluded that adequate protection exists for vital components and services.

Additional seismic reinforcement being provided for the Indian Point Unit No. 1 superheater building and removal of the top 80 ft. of the superheater stack will enable the stack to withstand winds in the range of 300-360 mph corresponding to current tornado design criteria. Since

the reinforcement of the superheater building, which supports the stack, enables the stack to resist wind loads of a magnitude most likely to be experienced from a tornado, the Committee believes that removal of the top 80 ft. of the stack, to enable it to resist the maximum effects from a tornado, may be deferred until a convenient time during the next few years, but prior to the commencement of operation of Indian Point Unit No. 3. The applicant has stated that truncation of the stack will have no significant adverse effect on the environment.

The Indian Point Unit No. 2 is the first of the large, four-loop Westinghouse pressurized water reactors to go into operation, and the proposed power level of 2758 MWt will be the largest of any power reactor licensed to date. The nuclear design of Indian Point Unit No. 2 is similar to that of H. B. Robinson with the exception that the initial fuel rods to be used in Indian Point Unit No. 2 will not be prepressurized. Partlength control rods will be used to shape the axial power distribution and to suppress axial xenon oscillations. The reactor is designed to have a zero or negative moderator coefficient of reactivity, and the applicant plans to perform tests to verify that divergent azimuthal xenon oscillations cannot occur in this reactor. The Committee recommends that the Regulatory Staff follow the measurements and analyses related to these tests.

Unit 2 has a reinforced concrete containment with an internal steel liner which is provided with facilities for continuous pressurization of weld and penetration areas for leak detection, and a seal-water system to back up piping isolation valves. In the unlikely event of an accident, cooling of the containment is provided by both a containment spray system and an air-recirculation system with fan coolers. Sodium hydroxide additive is used in the containment spray system to remove elemental iodine from the post-accident containment atmosphere. An impregnated charcoal filter is provided to remove organic iodine.

Major changes have been made in the design of the emergency core cooling system as originally proposed at the time of the construction permit review. Four accumulators are provided to accomplish rapid reflooding of the core in the unlikely event of a large pipe break, and redundant pumps are included to maintain long-term core cooling. The applicant has analyzed the efficacy of the emergency core cooling system and concludes that the system will keep the core intact and the peak clad temperature well below the point where zircaloy-water reaction might have an adverse effect on clad ductility and, hence, on the continued structural integrity of the fuel elements. The Committee believes that there is reasonable assurance that the Indian Point Unit No. 2 emergency core cooling system will perform adequately at the proposed power level.

The Committee concurs with the applicant that the reactor pit crucible, proposed at the time of the construction permit review, is not essential as a safety feature for Indian Point Unit No. 2 and need not be included.

To control the concentration of hydrogen which could build up in the containment following a postulated loss-of-coolant accident, the applicant has provided redundant flame recombiner units within the containment, built to engineered safety feature standards. Provisions are also included for adequate mixing of the atmosphere and for sampling purposes. The capability exists also to attach additional equipment so as to permit controlled purging of the containment atmosphere with iodine filtration. The Committee believes that such equipment should be designed and provided in a manner satisfactory to the Regulatory Staff during the first two years of operation at power.

The applicant plans to install a charcoal filter system in the refueling building to reduce the potential release of radioactivity in the event of damage to an irradiated fuel assembly during fuel handling. This installation will be completed by the end of the first year of full power operation.

The reactor instrumentation includes out-of-core detectors, fuel assembly exit thermocouples, and movable in-core flux monitors. Power distribution measurements will also ordinarily be available from fixed in-core detectors.

The applicant has proposed that a limited number of manual resets of trip points, made deliberately in accordance with explicit procedures, by approved personnel, independently monitored, and with settings to be calibrated and tested, should provide an acceptable basis for the occasional operation of Indian Point Unit No. 2 with only three of the four reactor loops in service. The Committee concurs in this position.

The applicant stated that neutron noise measurements will be made periodically and analyzed to provide developmental information concerning the possible usefulness of this technique in ascertaining changes in core vibration or other displacements. On a similar basis, accelerometers will be installed on the pressure vessel and steam generators to ascertain the practicality of their use to detect the presence of loose parts.

The reactor includes a delayed neutron monitor in one hot leg of the reactor coolant system to detect fuel element failure. Suitable operability requirements will be maintained on the several sensitive means of primary system leak detection.

A conservative method of defining pressure vessel fracture toughness should be employed that is satisfactory to the Regulatory Staff.

The applicant stated that existing experimental results and analyses provide considerable assurance that high burnup fuel of the design employed will be able to undergo anticipated transients and power perturbations without a loss of clad integrity. He also described additional experiments and analyses to be performed in the reasonably near future which should provide further assurance in this regard.

The Committee has, in recent reports on other reactors, discussed the need for studies on further means of preventing common failure modes from negating scram action, and of possible design features to make tolerable the consequences of failure to scram during anticipated transients. The applicant has provided the results of analyses which he believes indicate that the consequences of such transients are tolerable with the existing Indian Point Unit No. 2 design at the proposed power level. Although further study is required of this general question, the Committee believes it acceptable for the Indian Point Unit No. 2 reactor to operate at the proposed power level while final resolution of this matter is made on a reasonable time scale in a manner satisfactory to the Regulatory Staff. The Committee wishes to be kept advised.

Other matters relating to large water reactors which have been identified by the Regulatory Staff and the ACRS and cited in previous ACRS letters should, as in the case of other reactors recently reviewed, be dealt with appropriately by the Staff and the applicant in the Indian Point Unit No. 2 as suitable approaches are developed.

The ACRS believes that, if due regard is given to the items recommended above, and subject to satisfactory completion of construction and preoperational testing of Indian Point Unit No. 2, there is reasonable assurance that this reactor can be operated at power levels up to 2758 MWt without undue risk to the health and safety of the public.

Sincerely yours

Joseph M. Hendrie

Chairman

References attached.

References - Indian Point Nuclear Generating Unit No. 2

- 1. Amendment No. 9 to Application of Consolidated Edison Company of New York for Indian Point Nuclear Generating Unit No. 2, consisting of Volumes I - IV, Final Safety Analysis Report, received October 16, 1968
- 2. Amendments 10 20 to the License Application
- 3. Amendments 22 24 to the License Application