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SUMMARY 

This report was prepared for the U.S. Nuclear Regulatory Commission 

(NRC) to present use cases of applying advanced technologies to meet the 

current and future regulatory requirements for the maintenance and condition 

monitoring of structures, systems, and components. The advanced technologies 

considered in this work, collectively referred to as digital twin technologies, are 

advanced sensors and instrumentation, data analytics, machine learning and 

artificial intelligence (ML/AI), and physics-based models. This report presents 

two use cases: reactor coolant pumps and heat pipes in nuclear power plants 

(NPPs), along with technical and regulatory considerations and opportunities for 

using advanced technologies in condition monitoring. Key findings from 

exploring these considerations are as follows: 

• Uncertainties in sensor data and model predictions must be rigorously 

addressed through validation and verification processes. 

• For safety-significant applications, regulatory implications on NRC 

guidelines for current and advanced reactors need to be considered. Such 

considerations may necessitate the development of sound data-driven 

models consistent with codes and standards.  

• Explainability and transparency in ML/AI models are essential for 

developing operator trust and regulatory review, including methods that 

enhance the interpretability of complex data-driven predictions. 

• Condition monitoring programs must be evaluated for their effectiveness 

in reducing maintenance-preventable function failures and aligning with 

plant performance criteria. 

• The deployment of advanced technologies for condition monitoring 

could lead to a transition from periodic to continuous monitoring, 

thereby optimizing maintenance schedules. 

• Collaborative efforts between industry stakeholders, regulatory bodies, 

and technology developers are crucial for the successful adoption of 

advanced technologies for condition monitoring systems in nuclear 

facilities. 

In summary, the introduction of advanced technologies to condition 

monitoring programs represents a significant leap forward in the domain of NPP 

maintenance. By harnessing the capabilities of advanced sensors, data analytics, 

and ML/AI, NPP operators can transition from a time-based to a condition-based 

maintenance approach. This shift can potentially enhance the reliability and 

safety of crucial plant components while optimizing maintenance efforts and 

minimizing unnecessary outages. The NRC is continuing to explore the 

regulatory aspects of advanced technologies as part of inservice inspection and 

inservice testing programs by pursuing additional research in this technical area. 
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1. INTRODUCTION 

The Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC) has 

initiated an effort to assess the regulatory viability of using advanced technologies for condition monitoring 

of structures, systems, and components (SSCs) at nuclear facilities. This effort is led by Idaho National 

Laboratory in collaboration with The University of Illinois Urbana-Champaign. The objective of this 

project is the identification and evaluation of technical challenges associated with advanced technologies 

when applied by an NRC applicant or licensee toward meeting the current and future regulatory 

requirements for maintenance and condition monitoring of SSCs. Condition monitoring incorporates signal 

data from sensors and instrumentation into computer codes and models that can be used to assess the state 

of system or component health. Some of the advanced technologies being considered for these uses are data 

analytics, machine learning and artificial intelligence (ML/AI), physics-based models, and digital twins 

(DTs). For more information on what comprises a DT, refer to Reference [1].  

As part of this effort, the NRC sponsored a virtual workshop on “Condition Monitoring and Structural 

Health Management for Nuclear Power Plants” in November 2023 [2]. The workshop focused on 

developing a better understanding of industry activities and perspectives with respect to the application of 

advanced technologies and prognostic tools for condition monitoring of nuclear power plant (NPP) 

components. A report was recently published on this effort and provides an assessment of technical 

challenges, considerations, and opportunities associated with applying advanced condition monitoring 

technologies to address certain inservice inspection (ISI) and inservice testing (IST) activities [3]. 

This current report presents a broad approach for the application of advanced technologies intended to 

potentially meet the regulatory requirements associated with condition monitoring of SSCs at NPPs. The 

scope of this report encompasses identifying the scope of monitoring, determining safety classifications 

based on existing guidance, monitoring degradation modes, and selecting appropriate monitoring 

parameters. Two use cases, reactor coolant pumps (RCPs) in pressurized-water reactors (PWRs) and heat 

pipes in microreactors, are discussed in detail to present the possible implementations of a condition 

monitoring approach using advanced technologies.  

For RCPs, the focus is on safeguarding the pump’s operation within design parameters—a critical 

aspect for the reactor’s safety and efficiency. This first case study focuses on the onset detection of thermal 

barrier leakage, a significant degradation mode, by closely tracking process variables (e.g., bearing 

temperature) to indicate the pump’s health. Discussion of advanced monitoring technologies in this case 

study is to evaluate its impact on IST and ISI activities for active components. 

For the second case study, heat pipe condition monitoring is explored. Heat pipes are novel heat 

removal components actively explored for advanced microreactors applications and are instrumental in 

transferring heat away from the reactor core. A key feature of heat pipes is their lack of moving parts to 

achieve heat removal, leveraging the principles of phase transition and capillary action (i.e., wicking 

structure) of a working fluid (e.g., sodium) to facilitate efficient and reliable heat transfer. As such, the heat 

pipe case study focuses on thermal performance condition monitoring to ensure that the heat pipe can 

function as designed within acceptance criteria. In addition to thermal performance, a condition monitoring 

program may also take into account the structural integrity (e.g., ISI activities) of the heat pipe as 

maintaining integrity (i.e., wicking structure corrosion) directly affects heat transfer performance. This case 

study investigates how advanced monitoring technologies may impact IST and ISI activities.  

Section 2 provides a background and overview of the condition monitoring approach using advanced 

technologies. Sections 3 and 4 discuss the RCP and heat pipe use case, respectively, along with the technical 

and regulatory considerations and potential challenges for the successful deployment of these use cases. 

Section 5 presents some generic considerations for condition monitoring, which are common considerations 

regardless of a specific application or use case.  
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2. BACKGROUND 

This section introduces a broad and general approach for applying advanced technologies toward 

condition monitoring of an SSC at an NPP. Table 1 illustrates the development stages for condition 

monitoring, detailing each stage for the two use cases presented in this work. Within each stage, key 

information is identified that is expected to be integral for developing DT models for condition monitoring. 

These stages may refine the existing major steps required for developing a condition monitoring program. 

For example, American Society of Mechanical Engineers’ Operation and Maintenance of Nuclear Power 

Plants (hereafter referred to as ASME OM Code), Division 2, Part 24, “Reactor Coolant and Recirculation 

Pump Condition Monitoring” [4] provides guidance for condition monitoring of pumps. The first step is to 

identify the potential pump faults that the program can detect, and the symptoms produced by those faults 

[4]. In this work, this single step is broken down into five stages: (1) identifying the scope of condition 

monitoring, (2) determining the safety class of the SSC, (3) determining the degradation mode monitored, 

(4) determining the objective of the condition monitoring program, and (5) selecting the relevant parameters 

for condition monitoring (see Table 1).  

Table 1. DT development stages for condition monitoring under different example use cases. 

DT Development Stage 
Use Case Application 

Case 1 Case 2 

Identify scope and reasoning for condition 

monitoring 

RCP ensuring normal 

anticipated operating 

condition 

Heat pipe ensuring normal 

anticipated operating 

condition 

Determine the safety class of the SSC  Safety-related Safety-related*  

Determine degradation mode monitored Thermal barrier leakage Structural integrity 

Determine the objective of condition 

monitoring 

Detection of the onset of 

thermal barrier leakage 

Detection of degradation 

and leakage of heat pipe 

Select parameters for condition monitoring Bearing temperature, 

motor vibration signature, 

flow rate 

Ultrasonic vibrations for 

structural integrity 

monitoring 

*Dependent on final heat pipe reactor design. 

 

The first step of the DT development process is an organizational decision to implement a condition 

monitoring program for a target SSC and what capabilities the program may offer. This organizational 

decision evaluates what SSC is targeted, whether a condition monitoring program is necessary for the SSC, 

the expected benefits derived from its implementation, and the scope of the program. In essence, it should 

answer fundamental questions such as why a condition monitoring program is necessary, what component 

is assessed and under what conditions, and what benefits it can bring to the organization. Techno-economic 

analyses may also be performed in this step to evaluate the feasibility of implementation. In this work, it is 

assumed that the organization has determined that a condition monitoring program is necessary; decision 

support for this determination is not investigated in this work. The next step is to identify the scope of the 

condition monitoring program after selecting an SSC, determining the intended operational conditions 

monitored and identifying the available sensors and technology used to monitor that SSC. This step is 

fundamental as it sets the boundaries of what needs to be monitored and why. For the RCP (i.e., Case 1), 

the scope is to ensure that it operates within designed parameters at normal operating conditions, which is 

crucial for reactor safety and efficiency. Similarly, for the heat pipe (i.e., Case 2), the scope is to assure its 

proper function in transporting heat away from the reactor core, a key aspect of the reactor’s cooling system. 

Note that defining the scope of the monitoring task is not limited to a single operating condition and may 

span a variety of anticipated operational occurrence.  
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Determining degradation modes monitored is a stage that involves understanding how a component 

might fail or underperform. There can be several degradation modes for each SSC in an NPP. For this 

report, one degradation mode is considered in each use case; other modes may be added following a similar 

approach. For Case 1, thermal barrier leakage is a concern, as it could signal a breach in the RCP’s ability 

to maintain a thermal boundary. In Case 2, the degradation mode of interest is an event that affects the 

structural integrity of the heat pipe. Note that structural integrity condition monitoring may either be 

inferred through heat transfer performance (e.g., decreased heat transfer performance implying structural 

degradation of heat pipe) or through conventional structural monitoring (e.g., crack detection) 

The objective of condition monitoring is closely tied to the identified degradation modes and specifies 

what the condition monitoring program is intended to do, whether for the prediction of onset of failure, 

recommendation for preventive maintenance action, or detection of structural integrity, etc. For the RCP, 

the aim is to detect the onset of thermal barrier leakage early. Timely detection allows for maintenance 

actions before leakage exceeds limits or negatively affects component performance. In the case of the heat 

pipe, the objective is to identify any cracks and signs of leakage that could jeopardize the reactor’s cooling 

capabilities. Both objectives are geared toward preemptively identifying issues to maintain the 

uninterrupted, safe operation of the nuclear facility. 

Finally, the parameters that correlate the degradation to the functional reliability of the SSC are 

identified. Selecting parameters for condition monitoring is a technical decision based on what best 

indicates the health of the SSCs. For instance, the RCP’s bearing temperature is an indicative parameter, as 

it can reflect various issues, including potential thermal barrier problems. For the heat pipe, ultrasonic 

vibrations serve as a parameter for monitoring. This method is sensitive to changes in material integrity, 

making it suitable for detecting structural discrepancies that could lead to leaks. Note that this stage is 

focused on the completeness of indicative parameters rather than down-selecting to a limited number of 

parameters to monitor. Multiple parameters may be selected as degradation indicators if evidence exists to 

support their use. 
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3. PUMP CONDITION MONITORING 

In both existing light-water reactors (LWRs) and certain advanced reactors, pumps are crucial 

components that maintain flow circulation (i.e., core reactor cooling). Some examples include integral 

reactors that rely on horizontally mounted coolant pumps and LWRs that utilize large vertically oriented 

centrifugal pumps. In these configurations, pumps act as the primary method to achieve a variety of 

performance and safety goals of the reactor design.    

While smaller novel reactor designs may utilize different passive safety features for operation (e.g., 

natural circulation) to reduce reliance, pumps may still play an integral part in other systems of the nuclear 

facility. For instance, pumps may still be used as feedwater and condensate pumps [5], circulating water 

system pumps [6], and injection pumps for borated water for the chemical volume control system [5], etc. 

As such, pumps remain relevant to the current and future fleet of NPPs; the ability to monitor their condition 

will also be important, whether they are involved in a safety function or are important for power operation 

(i.e., intermittent operating pumps). To support operation, IST and ISI activities as well as condition 

monitoring may be performed on SSCs related to the pump (i.e., RCP thermal barrier).  

3.1. Motivation for Condition Monitoring of Pumps 

Maintaining performance and scheduling appropriate maintenance for certain pumps in some nuclear 

facilities are necessary for meeting plant operational and safety goals. The NRC regulations in Section 

50.55a, “Codes and standards” in Title 10 of the Code of Federal Regulations (10 CFR 50.55a) [7] 

incorporate the IST requirements for pumps by reference in ASME OM Code, Division 1, OM Code: 

Section IST, 2020 Edition [4]. Conventional methods are provided for pump condition monitoring (e.g., 

motor current signature analysis) and are well-established in guidance documents. 

3.1.1. IST Activities and Condition Monitoring of Pumps 

IST activities, as required in ASME OM Code, Division 1, Subsection ISTF [4], include periodic testing 

to ensure that a pump meets its performance goals. ASME OM Code Case OMN-29 [8], “Pump Condition 

Monitoring Program” provides alternative requirements for condition monitoring of pumps in NPPs as part 

of the IST program required by 10 CFR 50.55a [7]. Different types of pumps are identified that may or may 

not be within the scope of the ASME OM Code IST program. For example, guidance for RCP condition 

monitoring is provided in ASME OM, Division 2, Part 24 [4] and describes in-situ monitoring for the 

detection or prediction of pump and driver degradation and equipment faults prior to functional failure. As 

each pump type and application will have a different monitoring and performance requirements, this report 

will focus on IST and condition monitoring activities for the vertical line shaft centrifugal pumps to provide 

an illustrative overview.  

Before implementing an IST program for a pump, a preservice test must first be conducted to establish 

the initial baseline behavior for each pump. This baseline test must be performed under conditions as near 

as practicably possible to those expected during subsequent IST activities. For instance, for vertical line 

shaft centrifugal pumps, the baseline test must include (a) flow rate and differential pressure at a minimum 

of five locations and (b) vibration measurements at specified reference points [4]. If the pump is capable of 

variable speeds, then monitoring speed is also required in the baseline test. Baseline tests are reconducted 

if the existing reference data no longer represent the installed pump following replacement, major 

maintenance, or routine service.  

Following the preservice test, an IST activity must be conducted periodically in accordance with the 

ASME OM Code as incorporated by reference in 10 CFR 50.55a. Specific testing conditions for vertical 

line shaft centrifugal pumps are identified in ASME OM Code, paragraph ISTF-5220 [4]. By following the 

acceptance criteria and testing conditions outlined in the ASME OM Code [4], a license holder can develop 

an IST program that complies with 10 CFR 50.55a. 
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A condition monitoring program may also be implemented for the advanced detection of faults and 

degradation. The major steps to implement a condition monitoring program include the following, derived 

from guidance in ASME OM, Division 2, Part 24 [4] (note that Division 2 provides guidance but not 

requirements): 

1. Identify the potential pump faults that could be detected by the program and the symptoms 

produced by these faults 

2. Determine the analysis techniques that are appropriate for the faults monitored 

3. Establish the monitoring program necessary for the advanced detection of equipment 

degradation or faults early enough to prevent functional failure 

4. Apply the evaluation criteria for the pump. 

Implementing advanced technologies for online condition monitoring could follow similar steps, with 

the actual model development and integration occurring in steps 2 and 3. Existing guidance on a condition 

monitoring program covers vibration analysis, seal monitoring, thermography, motor current signature 

analysis, and lube oil analysis. In addition, a condition monitoring program may have set intervals in which 

data are collected depending on the startup monitoring schedule. Monitoring schedule and data collection 

guidance is found in ASME OM, Division 2, Part 24 [4]. Alarm setpoints guidance is also provided in 

ASME OM, Division 2, Part 24 [4].  

Advanced technologies such as data analytics and ML/AI for condition monitoring may assist operators 

by continuously and more frequently assessing the condition of the pump in contrast to the periodic 

monitoring schedule. Automated and continuous, as opposed to manual and periodic, analysis can provide 

more timely insights into the condition or the pump. 

3.1.2. Monitoring the Effectiveness of a Condition Monitoring Program 

In addition to the IST requirements in 10 CFR 50.55a, the evaluation of condition monitoring programs 

and their effectiveness is specified under 10 CFR 50.65 [9] also known as the Maintenance Rule. This rule 

specifies the requirement for condition monitoring of safety and non-safety-related SSCs. Section (a)(1) of 

10 CFR 50.65 [9] states that NPP license holders “shall monitor the performance or condition of structures, 

systems, or components…in a manner sufficient to provide reasonable assurance that these structures, 

systems, or components…are capable of fulfilling their intended functions” [9]. Alternatively, if it is 

demonstrated that the performance or condition of the SSC is effectively controlled through appropriate 

preventive maintenance to perform its intended function, then monitoring, as specified in Section (a)(1), is 

not required because requirements are satisfied as part of Section (a)(2) [9]. Regardless of a licensee’s use 

of Section (a)(1) or (a)(2), a condition monitoring and/or preventive maintenance activity must be 

conducted at least once every refueling cycle or within 24 months, whichever is shorter [9]. Specific SSC 

evaluation intervals may be more often than once per refueling cycle. Last, the licensee shall assess and 

manage the risk that may result from the performed maintenance activity [9].  

Regulatory Guide (RG) 1.160 [10] further describes methods that the NRC accepts and endorses under 

NUMARC 93-01, Revision 4F [11] to comply with the Maintenance Rule. Methods or solutions that differ 

from those described in RG 1.160 may be acceptable if sufficient basis and information are provided to the 

NRC [10]. In general, the Maintenance Rule for an SSC may be satisfied by using performance criteria or 

goals or by condition monitoring [10]. The performance criteria for evaluating SSCs should be either 

availability, reliability, or condition [11].  

The performance criteria can be quantified as a single value or ranges of values [11]. For example, 

maintaining wall thickness of a piping system to comply with ASME Boiler & Pressure Vessel Code (BPV 

Code) requirements could be a performance criterion [12]. A licensee would establish an acceptable value 

for wall thickness and monitor it by an approved means [11]. Plant-level performance criteria may also be 

used to determine the effectiveness of the maintenance program as equipment performance is a major 
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contributor [11]. For instance, a plant-level performance criterion may include “no unplanned reactor 

scrams per 7000 hours critical” [11].  

NUMARC 93-01 identifies the maintenance-preventable function failure (MPFF) as an indicator of 

SSC reliability and performance [11]. An MPFF is an unintended event or condition such that the monitored 

SSC is not capable of performing its intended function, which should have been prevented by appropriate 

maintenance actions [11]. MPFFs identify whether the root cause of a component failure was preventable 

through maintenance or if external factors were the cause. If the failure of the SSC was not an MPFF, the 

licensee may continue to perform the existing maintenance program [11]. Examples of MPFF include 

failures that occur due to the failure to perform a maintenance activity that are normal and appropriate (e.g., 

application of lubrication at appropriate frequencies) [11]. If the MPFF approach is utilized, the licensee 

must demonstrate how the number of MPFFs allowed per evaluation period is consistent with the 

assumptions in the risk analysis and plant performance goals.  

One way to assess the analytics applied for online condition monitoring is to consider to what degree 

MPFFs are reduced over an operational period when compared against the conventional condition 

monitoring program. A lower MPFF due to maintenance recommendations from the analytics suggests the 

new program may be more effective at identifying the onset of RCP faults and anomalies.  

From an organizational perspective, comparing the level of effort spent (e.g., work hours) when 

conducting preventive vs. corrective maintenance activities can also indicate the effectiveness of a pump 

condition monitoring program. Other economic factors may also play a role in the decision-making process; 

however, this is not explored in this report. A cost impact analysis of the application of DTs for maintenance 

optimization can be found in Reference [13]. 

In summary, NUMARC 93-01 [11] specifies methods to evaluate whether a condition monitoring 

program is effective at preventing failure events, whereas the ASME OM Code specifies requirements for 

an IST program that may include condition monitoring. Developing a DT for condition monitoring (e.g., 

for pumps) must therefore take into consideration how it may impact the existing condition monitoring 

program (e.g., operationally, economically) as well as the impact to plant/component performance metrics 

(e.g., MPFF). Validation that a DT for condition monitoring is effective may assess whether the MPFFs 

over an operational period are reduced on average in comparison to previous operational periods MPFFs.  

3.2. Relevant Technologies for Pump Modeling and Condition 
Monitoring 

Enabling technologies that are anticipated to play an important role in developing DT models include 

sensors, data storage, preprocessing, and analytics, ML/AI, and physics simulators. These technologies 

ensure that a DT for condition monitoring can continuously maintain digital state concurrence with the 

physical process, in this case, detecting the early onset and occurrence of degradation or faults in pumps.  

For a DT developed for pump condition monitoring to be successful, it is important to determine what 

type of information can be collected to build and operate a DT. Sensors (e.g., vibration and temperature) 

monitor the different condition indicators of a pump and play a crucial role at fault detection. For instance, 

deviations in recorded sensor data can be precursor indicators for pump faults or irregularities. Some key 

features measured by sensors include inlet and outlet pressure, pump vibrations, pump flow rate, pump 

impeller speed, electric current, bearing temperatures, motor winding temperature, power consumption, and 

lubricant quality. Sensors in multiple locations may also be used for a single feature measurement. For 

instance, pump vibrations are usually measured in at least two locations (typically in different orientations) 

to measure horizontal and vertical vibrations (i.e., on the pump shaft).   

A condition monitoring DT would rely on a source of real-time data to supply analytics and/or ML 

algorithms that detect degradation/fault within the pump. An ideal suite of sensors to support condition 

monitoring functionality may vary from the current standard suite of sensors used today (e.g., additional 
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sensors and varying placement locations). The intent is to transition from time-based periodic monitoring 

to condition-based continuous monitoring to reduce the likelihood of corrective maintenance activities and 

reduce unnecessary maintenance activities.  

With respect to pumps, a wide variety of sensors, measuring different parameters, can capture real-time 

data characteristics of a wide variety of failure modes across a pump. Pressure sensors, such as pressure 

transducers, are used to measure inlet and differential pressure, typically at three different locations per 

shaft seal [14]. Changes in pressure values can indicate hydraulic degradations within a pump such as 

cavitation, recirculation, and loss of flow. Differential pressure transmitters may also be used to derive flow 

rate in and around the pump. These sensors may also be placed on auxiliary system loops, such as the 

component cooling water return line and in the controlled bleed-off line in the chemical volume and control 

system, as indicators for pump coolant leakages. In addition, tachometers may be used to measure the pump 

impeller rotational speed [15]; variation in rotational speed can be used to gauge pump performance trends. 

Finally, pump component temperature may be measured at various bearing locations and on the motor 

winding via direct measurement (e.g., thermocouples) or indirectly (e.g., infrared detectors). Typically, 

RCPs have six detection locations within each motor and a sensor for each bearing location [14]. 

Thermographic imaging (i.e., infrared detectors) may also be used to detect areas of high temperatures and 

is a developed form of condition monitoring. Temperature measurement can be used in several different 

ways, such as detecting bearing failures and reactor coolant leakages. 

Another useful parameter that can indicate degradations is motor current conducted via motor current 

signature analysis. Motor current is useful for detecting any developing degradation and failure within the 

motor electrical system. It can detect various hydraulic and component degradations (e.g., broken rotor 

bars) and can indicate occurrences of overcurrent or undervoltage before the pump trips. Gross load and 

power evaluations can detect the occurrence of trips due to improper power distribution to the motor.  

Motor current analysis may also be supplemented with vibration analysis. As degradations in the 

motor structure (e.g., broken rotor bar) result in additional side-band vibration signatures, this type of 

analysis can provide additional early fault identification signatures. Vibration analysis commonly 

measures three dynamic quantities: displacement, velocity, and acceleration. Vibration data can also be 

used in detecting degradations like bearing misalignment, recirculation, shaft breaks, improper suction, 

axial and radial thrusts, pressure changes within the system, improper lubrication, mechanical damages to 

bearings, and unbalanced power supply. Vibration can be measured using accelerometers, permanently 

mounted transducers, or advanced acoustic emission monitoring transducers [16].   

It is expected that these sensors will produce a large quantity of data that needs to be processed. As 

such data storage is projected to be a key enabling technology for online condition monitoring. It is essential 

to store all real-time sensor data as well as previous plant and pump change information, such as previous 

work orders correlated to pump degradation, equipment data containing design information, pump 

performance curves, and inventory data. An example of data storage for a circulating water system in an 

accessible digital form is an Azure cloud-based web application written in JavaScript to support large-

volume data storage [6]. This web application can also be used for data preprocessing along with analytics 

and visualization models for work order data [6].  

Data preprocessing is the act of data preparation and cleaning into a usable format and can include 

outlier removal, noise reduction, and detrending, but also may be used to inform when sensor drift is 

occurring. First, real-time data can contain noise that can obscure indicative signs of degradation; for 

example, vibration data achieved through acoustic emission transducers are susceptible to background 

noise. Equipment data and previous storage of faulty and normal data can be used in this instance to 

understand if data is noisy or if the data contains faults (e.g., sensor drift). A few examples of data 

preprocessing for vibration data are fast Fourier transform, wavelet transform, S-transform, and cyclic 

spectral analysis [17].  
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A more pertinent example is exploratory data analysis (EDA), which is used to discover correlations in 

the data (e.g., Pearson correlation, pairwise plots) and irregularities. EDA usually consists of capturing 

trends in data and removing any existing outliers within the data. EDA can be used to analyze both textual 

and numeric data and summarize the major aspects of them. For instance, EDA is used in Reference [13] 

to categorize and analyze pump maintenance work order and inventory data. In this study, methods, such 

as Latent Dirichlet Allocation, along with natural language processing, were used to conduct topic analysis 

to correlate the work order equipment condition to degradation states [13].  

Fault and degradation detection and modeling can be conducted via conventional analytical methods 

and data-driven methods (e.g., ML/AI). Analytical methods include, but are not limited to, the parity space 

method [18] and the auto-associative kernel regression [19]. The parity space method relies on checking 

for parity of measurements from the system processes and generating a residual comparison between an 

input-output linear model and process behavior [18]. Auto-associative kernel regression is, essentially, a 

signal reconstruction method used to identify irregularities in the data when compared to a known historical 

database [19]. These methods rely on historical data to inform on the anticipated performance of the SSC. 

ML/AI-based models may also be used to predict and detect faults in pump data as well as classify the 

type of fault within a pump based on the real-time data received. The primary benefit ML/AI-based models 

have over conventional analytical methods is their ability to summarize vast quantities of data into fast and 

succinct relationships. There are two possible configurations for supervised ML/AI models: classification 

and regression. Classification models output a single class decision based on a limited number of possible 

distinct classes (e.g., binary) whereas regression outputs a continuous value across the parameter range. For 

instance, a classification model can be used to determine the overall state of a pump (e.g., if it is healthy or 

if there is incipient degradation). In contrast, regression algorithms can be used to understand the root cause 

of anomalies in data by comparing the current or future state of a parameter to a baseline. Artificial neural 

networks and their variations are widely used ML/AI algorithms that can be used for both fault classification 

and degradation degree in pumps.  

Previous work in Reference [6] used ML methods to detect if a circulating water pump was healthy or 

unhealthy and, if unhealthy, what type of fault occurred. This was done using XGBoost (eXtreme Gradient 

Boosting) as a prognostic and diagnostic model [20]. The diagnostic model was implemented using 

XGBoost as a binary classifier to detect whether the circulating water system was healthy or unhealthy. 

The prognostic model also used XGBoost but in a multiclass classifier configuration to identify which type 

of fault occurred given an unhealthy diagnostic. The prognostic model was able to consider a variety of 

faults including but not limited to waterbox fouling, pump diffuser failure, pump bellmouth failure, pump 

shaft misalignment, motor air intake screen clogging, motor winding moisture and salt contamination, pump 

low oil level, bearing failure, etc. [6]. The input data used by the diagnostic and prognostic XGBoost models 

consisted of plant process data like differential temperature, motor inboard and outboard temperature, motor 

stator temperature, motor current, motor and pump age, historical replacement/refurbishment data, temporal 

domain features (e.g., time stamp, uptime) as well as frequency domain features (e.g., diffuser vane 

vibration). Fundamentally, ML models are capable of diagnosing fault occurrence and fault type but may 

require a variety of input data ranging from sensory to maintenance logs.  

3.3. Case Study on Condition Monitoring for Pumps 

This section showcases how a condition monitoring program for RCPs can be set up following similar 

guidance presented in ASME OM, Division 2, Part 24. The first subsection discusses the potential pump 

faults and symptoms that should be detected by a condition monitoring program. The second subsection 

presents appropriate analytical techniques to identify faults. An RCP is used for the case study with the 

lessons learned intended to be applicable to all important pumps in nuclear facilities.   
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3.3.1. Degradation Modes for a Reactor Coolant Pump 

An RCP in a large water-cooled PWR NPP circulates the reactor coolant and transports heat from the 

reactor to the steam generators. The major components of an RCP include the pump case assembly, pump 

cover, heat exchanger assembly, the mount and rotating assembly like the shaft, impeller, and associated 

coupling as well as the shaft seal assembly [21]. Degradations can occur in any part of the RCP, which can 

then have the potential to cause a failure of the RCP and can thus have a negative effect on the operation of 

the NPP.  

There are various causes of degradation that can be detected through improper vibrations within the 

RCP. The most common vibration-related problems within an RCP can be due to: (1) improper suction 

conditions, (2) improper operating conditions, (3) misalignment of pump components, (4) improper fitting 

of couplings and bearings, (5) leakages and lubrication issues, and (7) seal failure [22].  

Improper suction conditions refer to a hydraulic condition of the pump operating conditions. These 

degradations can manifest as pump recirculation issues, where partial reversal of flow back through the 

pump impeller is due to the reduced flow rate through the pump at the suction/impeller region of the pump 

[22]. Recirculation can damage the inlet of the casing and the thrust bearings, causing erosion of impellers 

and diffusers as well as mechanical failures in the bearings and seals. 

Another hydraulic condition causing pump degradation is cavitation, which is the rapid formation and 

collapse of vapor bubbles that occur at ambient pressure less than or equal to the liquid vapor pressure. 

Collapsing cavitation bubbles on metal surfaces can cause damage in the form of pitting [22]. Cavitation 

can cause severe deterioration of pump internals and is usually detected by steady crackling noises around 

the pump suction, as well as an increase in vibration and noise level and a reduction in the net capacity and 

pressure head. Cavitation can be prevented by operating the RCP at a net positive suction head greater than 

the required net positive suction head as recommended per the manufacturer [22].  

Aside from operating conditions, misalignment of pump components can cause extreme heating in 

couplings, wear and fatigue of rotating components, and bearing failures, along with thrust transmission 

issues through couplings [22]. Misalignment may refer to a situation where the pump and driver shafts are 

not perfectly straight and concentric with each other, resulting in non-parallel thrust forces along the axis 

of rotation. Misalignment may also refer to a situation where the motor stator is not concentric with the 

motor cage, manifesting as static or dynamic eccentricity in alignment [23]. These misalignments generate 

additional vibrations in the motor that are anomalous when compared against trending data. Other signs of 

misalignment include excessive acoustic noise, increased energy consumption, and reduced flow rate. 

RCP degradation may also be caused due to a variety of leakages, such as oil leakage, thermal barrier 

leakage, and seal leakage. An identified leakage is a leakage that can be captured, flow-metered, collected 

in a sump, tank, or a collection system or moves from a known primary to secondary system without being 

considered a reactor coolant pressure boundary leakage. The identified leakage can also be a leakage that 

goes into a containment atmosphere of a known source and does not interfere with the operation of 

unidentified leakage monitoring systems or does not affect the reactor coolant pressure boundary [24]. 

Oil leakage is where oil in the upper bearing heat exchanger, used to cool the bearings, leaks from the 

exchanger. A drip pan is positioned at the base of the motor to catch any leaks from the oil heat exchanger 

at bearing components. The RCP oil system components are also enclosed to catch any oil leaks. 

Accumulated oil in either the drip pan or enclosure is emptied into a collection tank, reducing the chance 

that oil comes into contact with the reactor coolant system (RCS) pipework. An oil leakage of the heat 

exchanger can cause high temperatures of the upper bearing, ultimately increasing the vibrations within the 

RCP [25]. If the oil leakage is not properly collected within the reservoirs and comes into contact with the 

insulation or high-temperature surfaces, it can easily ignite, causing a fire [25]. When an oil leak occurs, 

the standard procedure is to reduce power or trip the reactor, helping isolate and address the pump oil leak 

[25]. 
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Another common type of leakage that can occur is due to seal failure. Leakage along the shaft of an 

RCP is controlled by shaft seals located at the top end of the pump shaft. For instance, the Westinghouse 

AP1000 [14] RCP contains three shaft seals; the first one is a controlled leakage seal while the next two are 

rubbing face seals. All seals are located within the main flange and seal housing. Seal injection water is 

supplied to the RCP from the chemical and volume control system. Of the 8 gallons per minute (gpm) seal 

injection flow, 3 gpm flows upward through the radial bearings and pump seals, and 5 gpm flows downward 

through the heat exchanger into the reactor coolant flow, which is considered normal. This downward flow 

prevents the coolant from entering the seal areas of the pump. The thermal barrier heat exchanger is located 

at the interface between the reactor coolant and controlled leakage seal and is usually used as a backup 

source of cooling if there is a loss of seal injection flow. During a failure of the seal injection system (e.g., 

no water is provided to seals), reactor coolant flows upward through the thermal barrier heat exchanger to 

provide temporary cooling for the seals. This operating mode is limited only to short durations as unfiltered 

reactor coolant will damage the seals. In the event of a seal failure, the upper seals convert to film riding 

seals from rubbing face seals due to an increase in pressure, which forces the majority of the leakage to 

enter the component cooling return line instead of further up the pump shaft [14]. As such, this type of 

leakage is sensed by a high flow alarm in the component cooling water return line. The response to this 

alarm is to isolate the component cooling water return line to stop the leak flow and results in the high-

pressure piping of the component cooling water system serving as a part of the RCS pressure boundary. 

3.3.2. Reactor Coolant Pump Condition Monitoring  

There are a large variety of technologies that can help with detecting degradations within the RCP, such 

as vibration spectral analysis, thermography, lubricant analysis, modal analysis, acoustic emission analysis, 

motor current, and power analysis [22].  

Monitoring vibration through methods such as vibration spectral analysis is a powerful tool for pump 

analysis and diagnosis, which can be used to detect numerous types and causes of pump degradation like 

misalignment, unbalance, and various anomalies that can occur within the bearings of the RCP. Early 

detection can thereby help in preventive maintenance as opposed to corrective maintenance to prevent 

degradation from causing any type of failure within the RCP. Spectral analysis, by transforming a signal 

from a time domain to a frequency domain, is also more useful than vibration amplitude measurements for 

detecting pump failure in its early stages [22]. Spectral analysis can distinguish between various pump 

degradations like misalignment, unbalance, looseness, and different bearing anomalies [22].  

Thermographic measurement equipment has also been used to detect anomalies as they are not intrusive 

and can scan hot spots, indicating degradation like misaligned couplings causing excessive friction, 

overheated bearings, misaligned and rubbing shafts, and lack of lubrication within the RCP [22]. 

Limitations of thermographic measurements are dependent on the material that it is used on; for example, 

highly reflective surfaces can interfere with the thermal imaging process leading to inaccurate results.  

Lubricant analysis can also be used to detect the presence of particulates generated through wear or 

mechanical damage within the motor or pump’s rotating parts (e.g., bearings). Common measurement 

techniques include particle count, kinematic viscosity, Fourier Transform Infrared spectroscopy, etc. For 

instance, rotating bomb oxidation test is a useful lubricant analysis method used to determine the remaining 

life of the lubricant [22]. However, rotating bomb oxidation test does not capture insoluble particles and 

sludge.  

Motor current analysis and power analysis techniques can be used to help analyze impending faults and 

degradation in the motors of the RCP. Motor current monitoring can detect rotor faults as well as hydraulic 

degradations. Motor current monitoring through motor current signature analysis has limitations because it 

cannot capture all types of degradations (e.g., mechanical faults).  

Acoustic emission analysis can be used to detect defect growth in metals, inadequate lubrication, 

overloading, misalignments, damage due to fatigue, rubbing between rotor and surfaces, and different 
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friction-caused wears. Acoustic emission analysis is most useful when overall mean values and spectral 

signatures are stored for trend analysis. Acoustic emissions do not necessarily require direct attachment to 

the pump components for measurements and are advantageous for monitoring concealed or covered 

components. A disadvantage of acoustic emissions is their susceptibility to contamination from external 

noises.  

Modal analysis is often used to understand the dynamic interactions and behavior of pump, motor, and 

piping through vertical, horizontal, and axial movement analysis to detect deteriorations. Modal analysis 

can provide additional insight into the causes of degradation that other methods can miss and can identify 

resonant frequencies that exist above operational speed. A limitation of modal analysis is the functional 

necessity of using multiple sensors to obtain accurate results and for transducers to be specified at a 

frequency response within an anticipated range. 

Pump curves may also be used as a method for pump analysis and are mathematical relationships that 

correlate flow, discharge pressure, suction pressure, atmospheric pressure, suction temperature, discharge 

temperature, pump speed, and input power with each other. Given certain measurable parameters, other key 

parameters can be calculated. The onset of faults will change the mathematical relationship and can be used 

as an advance indicator for corrective action. However, pump curves require the knowledge of subject-

matter experts to analyze and determine when anomalies occur, especially when compared against real-

time pump performance data.  

Pump condition monitoring consists of developing an equipment file on the RCP-containing design and 

manufacturers specifications such as a homologous pump curve [26]. Equipment files also contain previous 

history (e.g., seen in work orders) to understand the type of degradations and the data associated with them. 

Useful stored historic information contains operating temperatures, vibration data, power consumption, 

lubrication analysis, and performance indices. Regularly performed general observations are useful for 

predictive and preventive maintenance. Expert systems like computerized problem analysis programs are 

also needed to embody the knowledge basis for the RCP and sensor performance. 

It is anticipated that both real-time and historical data from RCPs will be used to develop condition 

monitoring tools for preventive maintenance. Real-time data consists of motor current, gross load, inlet and 

outlet temperatures, motor-bearing temperatures, stator winding temperature, thrust-bearing temperature, 

upper and lower radial bearing temperatures, vibration data from distributed array of probes, etc. These 

measurements, collected within the seals and secondary systems of pumps, can be used to detect different 

potential degradations and leakages while simultaneously providing a continuous observation of the motor 

pump state. Historical data, such as plant processes, maintenance logs, operator logs, or work orders 

containing maintenance records, can provide information including, but not limited to, correlations between 

past degradations and repairs with associated sensor data, limits that trigger alarms for a particular 

degradation, and the duration of maintenance that causes the pump to be shut off.  

3.4. Technical Considerations and Opportunities for Pump DT 
Condition Monitoring 

In this section, a discussion on the technical considerations and opportunities for developing and 

deploying a DT condition monitoring program specific to RCPs is provided. General considerations for a 

DT condition monitoring program are discussed in Section 5.  

3.4.1. Pump Condition Monitoring Sources of Uncertainties  

There exist several sources of uncertainty that need to be addressed at various stages in the DT 

development pipeline. Assuming that historical, experimental, and simulation data are used to train the DT 

for pump condition monitoring, each of these sources contains their own epistemic and aleatoric 

uncertainties that may contribute to the final DT prediction uncertainty.  
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One potential uncertainty from using historical data arises from its collection and storage method. Real-

time sensors generate a vast amount of data, and collecting data, such as long recordings, is generally 

infeasible due to physical storage limitations [4]. For instance, ASME OM, Division 2, Part 24 [4] provides 

guidance for a vibration monitoring system for pumps with a specified sample rate per instrumentation 

channel and collected for a sufficient period of time to ensure maximum vibration amplitudes are captured. 

As such, most plants implement a compression or data management tool to manage file sizes and simplify 

data processing. For instance, signal averaging or maximum/minimum data is recommended for RCP 

condition monitoring as provided in ASME OM, Division 2, Part 24 [4]. This process may remove spurious 

peaks due to electrical noise or eliminate specific frequencies that are not representative of a monitored 

response [4]. While removal of these frequency sources from the historical data can improve training 

efficacy, it may also eliminate potentially relevant hidden information in the data and force a specific 

function to the DT model. As such, utilizing data-compression tools and methods to efficiently store and 

collect data is still currently an issue as it may subsequently mask underlying fault signatures [27, 28, 29]. 

Furthermore, signal accuracy for analysis from historical data, especially from analog to digital formats, 

can introduce reconstruction uncertainty. As existing requirements on data storage and collection are 

developed for legacy condition monitoring methods, they may be less applicable when data-driven models 

are considered. For instance, ASME OM, Division 2, Part 24 Section 6.3.2 specifies the sensor channel 

accuracy over the frequency range. This form of uncertainty is where the reconstructed signal by the model 

incorporates sensor inaccuracy resulting in predictions that do not accurately reflect the state of the pump.  

These various sources of uncertainty are implicitly built into the DT model during training. It is 

challenging to separate and quantify the degree to which these uncertainties affect DT model predictions. 

While model performance can be determined through test cases, these cases may not fully represent the 

intended operational condition and provide only a partial idea of how well the model will perform. For 

instance, consider the possible defects that may be considered in bearing condition monitoring. ISO 15243 

[30] identifies six main damage modes for bearings: fatigue, wear, corrosion, electrical erosion, plastic 

deformation, and fracture/cracking. Generating enough data to sufficiently investigate each mode to train a 

DT model is challenging as varying operational and equipment specifications will result in different defect 

characteristics [31]. In use, variations between the training data and operational data will result in prediction 

uncertainty. 

The degree of prediction uncertainty may be holistically quantified using popular existing methods. 

Sensitivity analysis, for instance, may be used to evaluate the effect each data feature contributes to model 

performance and to a certain degree establish model uncertainty. However, sensitivity analysis cannot 

determine how uncertainty from data sources will impact model prediction uncertainty. This is also true for 

popular ML methods, such as Monte Carlo dropout, k-fold cross validation, and Bayesian inference 

methods, which determine the model’s uncertainty and not underlying data uncertainty. In this respect, an 

approach to propagate uncertainty from data inception to model construction is needed to create a more 

comprehensive understanding of the sources of uncertainty encountered in a DT. 

3.4.2. Regulatory Consideration for Pump Condition Monitoring 

A pump condition monitoring program may exist to address several different organizational and 

operational goals, such as reducing unnecessary maintenance frequencies, reducing MPFFs, and improving 

plant economics. These goals are driven by NRC regulations (e.g., 10 CFR 50.65 [9] and 10 CFR 50.55a 

[7]) and through IST requirements, incorporated by reference. For example, in NUMARC 93-01 [11] 

endorsed through RG 1.160 [10], MPFF is used to describe preventable SSC failures through maintenance 

actions. In this sense, a successful pump DT condition monitoring program may be used to reduce MPFF 

occurrences over the operational life of a component. Specifically, a pump DT for condition monitoring 

may provide more robust insight into when preventive maintenance activities need to be conducted through 

more frequent automatic analysis of pump trending characteristics such as vibration, temperature, and motor 

current and voltage. In addition, a pump DT may be used to reduce unnecessary maintenance frequency 

without compromising safety. Currently, IST for pumps is performed at set interval frequencies as per 
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regulation under ASME OM Code, Table ISTB-3400-1 [4] or if unusual trending is observed as per 

guidance under ASME OM, Division 2, Part 24 [4]. Pump condition monitoring may be one way to 

demonstrate the pump is operating at reference. Through frequent automatic analysis, a DT for pump 

condition monitoring can continuously verify that the pump is operating at an established baseline and thus 

operating within reference conditions and quantities. 

DT for condition monitoring can be further improved by incorporating evidence from multiple sources 

of plant data. For instance, it is identified that while one technology alone may convey some evidence of a 

defect condition, incorporating other technologies (e.g., thermography, oil lube analysis, and motor current 

signature analysis) may provide a more complete and accurate diagnosis of the pump condition (see 

guidance in ASME OM, Division 2, Part 24). A method to incorporate these technologies would improve 

the reliability of DT predictions for condition monitoring as various pieces of evidence can be utilized to 

make a deduction on the state of the RCP. 
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4. HEAT PIPE CONDITION MONITORING 

Heat pipes are a type of heat transfer device primarily used for cooling. They utilize the thermal 

conduction of the pipe shell and phase transition of a working fluid (e.g., sodium) sealed in an elongated 

pipe to transfer large amounts of heat between the heat source and sink. Heat pipes have several benefits. 

They have excellent heat transfer rates, are completely, requiring no power source or moving parts (other 

than the working fluid), and are completely sealed from the interfacing system. The two most common 

types of heat pipes are identified by how heat is transferred within the pipe. Gravitational heat pipes (also 

known as a Perkins tube or thermosyphons) rely on the gravitational convection between liquid and vapor 

phases of the working fluid in upright tubes to transfer heat [32]. In contrast, capillary heat pipes can operate 

in any orientation (typically horizontal) and rely on the wicking effect of liquids and vapor pressure 

differentials between the hot and cold leg of the pipe to transfer heat [32]. Either heat pipe type may employ 

a range of working fluids and cladding material (e.g., steel 316). Some commonly used working fluids for 

high-temperature applications (e.g., 400 to 1200oC) include sodium-potassium alloy, sodium, or lithium 

[32, 33]. Examples of heat pipe reactor designs include the eVinci microreactor [21], the Special Purpose 

Reactor (SPR) [34], and the KiloPower reactor [35].  

In this report, the technological and regulatory considerations of reactors that employ monolithic steel 

blocks to house heat pipes are considered. This reactor type is used as an example as several designs and 

concepts exist that can be referenced (e.g., SPR and eVinci). Different heat pipe reactor designs will require 

different condition monitoring strategies, and the discussions presented in later sections may not be 

applicable. In a monolith steel block heat pipe reactor, the fuel pins and heat pipes are arranged in a 

hexagonal pattern within channels of the monolith. Each heat pipe is potentially surrounded by up to six 

adjacent fuel pins as shown in Figure 1 [36]. 

 

Figure 1. Cross section of a subsection of a steel monolith with one heat pipe surrounded by up to six fuel 

pins [36]. 

4.1. Motivation for Condition Monitoring in Heat Pipes 

4.1.1. IST Activities and Condition Monitoring of Heat Pipes 

Heat pipes contain no moving parts unlike RCPs. However, due to the importance in maintaining core 

temperature, their function may still involve protecting the reactor whether as a safety-related or non-safety-

related SSC. The exact determination will depend on the final reactor design. Even if heat pipes are 

considered structures as opposed to systems and components, the Maintenance Rule may still apply as heat 
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pipes will play a crucial role in reactor cooling [10]. Condition monitoring of heat pipes may be required 

under 10 CFR 50.65 [9] following NUMARC 93-01, Section 9.4.1.4, which discusses structural monitoring 

[11]. Section III, Division 5 of the ASME BPV Code [37] is also anticipated to apply to heat pipe reactor 

designs as it specifies relevant material limits, welding processes, and inspection requirements. 

Alternatively, a heat pipe reactor licensee may refer to guidance in Regulatory Guide 1.233 [38], known as 

the licensing modernization program (LMP), as heat pipe reactors are classified as non-LWRs. LMP 

provides an alternative pathway for licensees to identify licensing-basis events, classification, and special 

treatment of SSCs and assess defense-in-depth of non-LWR designs. An LMP case study with the eVinci 

microreactor was conducted to examine how licensing could be conducted [39]. The LMP pathway may be 

more relevant as the types of LBEs encountered by a heat pipe reactor will be significantly different than 

an LWR. For instance, in Reference [40], it is identified that the failure of a single heat pipe over the lifespan 

of the SPR is highly probable and a design should account for this type of failure. Within NUMARC 93-

01, Section 9.3.3 [11], it is mentioned SSCs that have little to no contribution to system safety function 

could be allowed to run until failure (i.e., a heat pipe), such that only corrective maintenance is performed 

rather than preventive maintenance. As the events that a heat pipe reactor would encounter in comparison 

to LWRs would be substantially different, the effects of a single heat pipe failure could be limited and have 

little contribution to overall plant safety function. This would be highly dependent on the types of LBEs 

identified in the event of a heat pipe failure. 

IST programs for heat pipes may be implemented following guidance under ASME OM-2 Code [41], 

a standard developed specifically for advanced reactor components (i.e., heat pipes). In OM-2 Code Section 

GR-1.2, a heat pipe can be considered a component that generates, allows, throttles, or isolates a fluid [41]. 

Note that due to the novelty of heat pipes in nuclear power plants, a specific section discussing IST guidance 

within OM-2 Code is not currently available. Rather, new ASME guidance may be developed within OM-2 

Code, with specific applications depending on the adopted design [41].  

In the SPR reactor, for example, the tight configuration of the heat pipes within the steel monolith block 

might challenge individual heat pipe testing as surrounding heat pipes highly influence the behavior of any 

individual heat pipe [42]. Variations in surrounding heat pipe performance could result in variations of 

individual heat pipes. A heat pipe reactor may also plan for individual heat pipe failures [40]. This is because 

heat pipes may act as a distributed redundant cooling system, such that the failure of any individual heat 

pipe does not compromise system safety [40]. Therefore, establishing a consistent performance baseline for 

heat pipes (whether individual or for groups) may be challenging. 

Although heat pipes may act as redundant cooling structures, a minimum number of heat pipes over a 

specific core volume must be operational to maintain safety. For example, multiple heat pipe failures in a 

single location (or within proximity of each other) might exceed local allowable thermal limits, but multiple 

heat pipe failures in multiple locations might not. Monitoring the integrity of individual heat pipes or 

specific distributed locations can provide an estimate on the number of remaining heat pipes that are 

operational even in the event of single heat pipe failure. In addition, condition monitoring might also be 

necessary to demonstrate inherent safety and maintenance of defense-in-depth principles. For example, in 

SPR reactor design, it is anticipated that the core monolith structure will be operating at elevated 

temperatures (i.e., 700–800°C) [42]. At these temperatures, most practical metals suffer from some degree 

of material property change, loss of strength, increased grain growth, migration of elemental constituents, 

and thermal creep under load [42]. The ASME defined that the maximum allowable stress for 316 stainless 

steel, an approved alloy for nuclear applications, at 700°C is 29.6 MPa [37]. However, it was found, through 

thermo-mechanical analysis of the SPR reactor, that the heat pipe housing structure may reach a peak stress 

of 37.1 MPa if surrounding heat pipes fail [34]. The exact threshold (e.g., percent of surrounding heat pipe 

failures) may vary between designs; more experimental or simulation evidence is required before a 

determination can be made. This is concerning because this may result in radioactive containments leaking 

into heat pipe channels, causing external corrosion of the heat pipes and potentially leading to the release 
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of radioactive material into the heat exchanger region of the reactor. Condition monitoring may inform 

licensees of locations within the housing structure where this event occurs. 

Non-water-cooled reactors will be required to develop an IST program for components that provide for 

the movement or cessation of the movement of reactor cooling system fluid. Heat pipes might be included 

in the IST program for such non-water-cooled reactors. Ultimately, condition monitoring of heat pipes is 

important and might be required by the NRC regulations (such as new Part 53 or 10 CFR 50.65). The exact 

regulatory requirements for condition monitoring would be dependent on the applicable NRC regulations 

and LBEs identified along with the anticipated design of the reactor.  

4.1.2. Monitoring the Effectiveness of a Condition Monitoring Program 

Due to the relative novelty of using heat pipes to cool reactors, the exact criteria for success of a 

condition monitoring program are not known and highly depend on the operational and design goals. For 

instance, the use of MPFF may not apply as an evaluation metric if the reactor internals (i.e., heat pipes) 

are not planned for maintenance and are allowed to fail. Previous reports [34, 42] discuss that the heat pipe 

microreactor is intended to operate for an extended period of time (i.e., 5-year sustained operation [42]) 

with minimal maintenance activities. Once the operation period has ended, the reactor is intended to be sent 

back to the manufacturing floor for refueling and servicing (i.e., eVinci [21]). Replacement or maintenance 

of heat pipes is not discussed in the operation of microreactors. Certain structural components within the 

reactor may not need a condition monitoring program if they are planned to fail. For instance, the monolith 

housing structure, although exceeding ASME-defined stress limits, may not apply if the monolith is not 

designated as a pressure vessel boundary [42]. In a similar manner, some number of heat pipes may be 

permitted to fail over the anticipated reactor lifetime [40]. This may not be concerning given that heat pipes 

are intended to operate independently of each other. The large number of in-core heat pipes would thus 

provide built-in redundancy and a theoretically large safety margin [40]. In the event of a local failure of 

one or more heat pipes, the surrounding heat pipes may still operate normally and can theoretically avoid 

serious accidents (e.g., core damage) [40]. As such, developing a method to evaluate the effectiveness of a 

heat pipe condition monitoring program must factor in the operational and design goals of the reactor.  

The evaluation of a heat pipe condition monitoring program may fall under Section 9.3.3 of NUMARC 

93-01, which discusses new plants with no operating history [11]. In essence, the licensee establishes an 

acceptable baseline performance goal for the condition monitoring program by referencing similar designs 

used in other applications. This comparative goal setting and process applies to preventive maintenance 

programs, corrective actions, cause determination, and operating experience. While there is very little 

operating experience with commercial heat pipe reactors, experience may be transferred from other piping 

applications, such as ultrasonic testing of buried pipes and bobbin probes for U-tube steam generator 

assemblies.  

4.2. Relevant Technologies for Heat Pipe Modeling and Condition 
Monitoring 

Referencing Figure 1, all instrumentation as well as the heat pipe must fit within the center channel. 

Several sensor technologies can be employed to monitor the temperature of the heat pipe in different 

sections (i.e., condenser and evaporator). In the Single Primary Heat Extraction and Removal Emulator 

experiment (SPHERE) [36, 43, 44], based off the configuration in Figure 2, researchers utilized a 

combination of multipoint type K thermocouples, fiberoptic temperature sensors, and an ultrasonic 

temperature sensor to measure temperature at discrete points along the heat pipe. The length of the monolith 

was 19.5 inches long and made from 316-stainless steel with heat pipes approximately 36 inches long [44]. 

In Figure 2, the un-instrumented SPHERE experimental setup is presented, with a single heat pipe resting 

in a vacuum chamber. 



 

17 

 
Figure 2. SPHERE test bed and seven-hole test article [36]. 

The fiberoptic temperature sensors run down the axial length of the heat pipe and are capable of 

recording temperature along the entire length (at discrete locations) of the monolith block [36, 43]. Two 

different fiberoptic sensors were tested: (1) a fiber Bragg grating (FBG) sensor with nine FBGs equally 

distributed along the fiber and (2) an optical frequency domain reflectometry (ODFR) distributed 

temperature sensor with spatial resolutions every 0.65 mm (0.0256 inch) [36, 43, 44]. Both sensors have 

been demonstrated in the Transient Reactor Test Facility [36, 44]. The FBG sensors permit measurements 

up to 1kHz and can provide stable measurements at high temperatures above 700°C. The ODFR sensor will 

fail above 700°C but can use an adaptive reference technique to compensate at higher temperatures [36, 

44]. However, there are several challenges with fiberoptic temperature sensors that affected temperature 

sensing accuracy and consistency. For example, the ODFR sensor is highly sensitive to material defects, 

density changes, and annealing inconsistencies [44].   

The ultrasonic thermometer utilizes a magnetostrictive alloy to generate and sense ultrasonic waves 

along a waveguide to detect temperature [44]. Five measurement zones are possible, separated by 3 inches 

per detection zone [44]. The ultrasonic thermometer can record data up to 10 Hz, which is more applicable 

for steady state conditions. However, there are several challenges associated with the ultrasonic 

thermometer, namely environmental radio frequency noise, which interferes with and partially obscures the 

recorded signal [44]. It was found that at power levels of 500 W and greater, the associated noise makes 

the recorded temperature signals unusable [44]. Calibration of the ultrasonic thermometer may also be an 

issue as the entire length must be calibrated before use. In the experiment, this was a challenge as the 

furnace used for calibration of the 15-inch-long thermometer was too short to adequately calibrate the 

sensor [44].   

These temperature sensors would be important for monitoring the effectiveness of heat transfer by the 

heat pipes. Furthermore, if the axial power along the heat pipe is known, it may be possible to calculate 

axial heat flux. In combination with axial temperature, the operating profile (see Figure 3) of the heat pipe 

at different sections can be derived. This would be relevant in monitoring when heat pipes limits are reached 

and have potentially failed. 

In addition to sensing technologies, heat pipe modeling and simulation can be utilized for DT 

development. For instance, Sockeye, a simulation software based on the Multiphysics Object-Oriented 

Simulation Environment (MOOSE) [45], can be used to model high-temperature liquid-metal heat pipes 

with annular or porous wick structures. Sockeye specializes in modeling heat pipes that are sealed 

cylindrical tube containing a wicking structure along the inner surface, saturated with working fluid [45]. 

Different wicking structures can also be modeled, such as wire screens, sintered metal, or open annulus 

screens [45]. Sockeye currently supports two-phase flow modeling, vapor-only flow modeling, and 
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conduction modeling and can be used to investigate all heat transfer limits shown in Table 2 [45]. However, 

Sockeye cannot currently be used to evaluate certain accident scenarios, such as dryout, which may occur 

during leakage of working fluid or heat transport limitations (shown in Table 2). In addition, Sockeye cannot 

be used to model startup or shutdown transients [45].   

4.3. Case Study on Condition Monitoring for Heat Pipes  

A case study is presented for structural integrity condition monitoring of heat pipes. The process for 

developing the condition monitoring DT follows the steps provided in Table 1. 

4.3.1. Degradation and Failure Modes of Heat Pipes 

An understanding of degradation and failure modes of heat pipes can be derived from similar 

experiences with other piping components used in NPPs as well as other industries. ASME BPV Code, 

Section III, Division 5 [12] is anticipated to contain design rules that apply to heat pipe reactors. For 

instance, within the standard, Nonmandatory Appendix HBB-T describes deformation and fatigue limits of 

components at elevated temperatures (i.e., creep-fatigue evaluation) [12]. In general, heat pipes are 

anticipated to have two different pathways that can lead to inoperability: heat transport limits and 

environmental degradation.  

Heat transport limits describe the physical limitations of heat pipes for heat transfer. For instance, if the 

temperature differential between the hot and cold ends of the heat pipe is significant, this may lead to the 

phenomenon of entrainment [46, 47]. This is where the high vapor velocity of the working fluid strips liquid 

from the walls, preventing rewetting of the hot-end heat pipe wicks, and impedes convective heat transfer. 

This phenomenon is self-sustaining and compounding in the sense that as heat transfer capability is lost, 

entrainment is exacerbated as vapor velocity grows with temperature differential [46, 47]. Entrainment is 

analogous to the countercurrent flow limitation in LWRs [46]. Another physical limitation is the viscous 

limit of the working fluid [48]. On cold startup, the operating temperature may be close to the freezing 

temperature of the working fluid; in such conditions, the vapor pressure and density are very low, and the 

viscous forces dominate flow behavior preventing circulation of the working fluid [48]. In Table 2, heat 

transport limits of heat pipes are summarized; while in Figure 3, a plot of the limits is provided. Lastly, 

while heat transport limits may describe global conditions that can lead to failure of heat pipes (i.e., during 

cold startup), they may also exist locally (e.g., individual heat pipes) due to the loss of operable heat pipes 

over the operational lifespan of the reactor. 

Each heat transfer operating limit has a different physical phenomenon; indirect methods must be used 

to determine which limit has been reached. In general, the operating limits are characterized by abrupt 

increases in the overall thermal resistance of the heat pipe, resulting in rapid temperature increases [49]. As 

such, temperature measurements can generally be used to determine the power at which a limit is reached 

[49]. Further analytical and physics-based reasoning (i.e., using heat pipe evaporator region temperature) 

can be employed to determine the exact limiting factor and can be used to determine operational limits. 

However, it should be noted that operating limits can change under both short-term transient conditions as 

well as long-term due to degradation/corrosion of the channel or structure, or through the intentional (i.e., 

design choice) or non-intentional (i.e., fabrication error) introduction of non-condensable gases [50]. 

Table 2. Heat transport limitations for heat pipe operation. Derived from Reference [48]. 

Phenomenon Description 

Viscous Limit Insufficient pressure differential between evaporator and condenser to 

overcome viscous forces of working fluid 

Sonic Limit Vapor flow reaches sonic velocity, choking flow of working fluid 

Capillary Limit Capillary force is insufficient to overcome pressure drop  

Entrainment Limit High vapor velocity strips working fluid from heat pipe walls 
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Boiling Limit Rapid boiling and surface bubbles in the evaporator prevents rewetting 

 

 

 
Figure 3. Heat transport limitations on heat pipes based on temperature and axial heat flux [48]. 

Environmental degradation describes changes to the heat pipe over the long-anticipated course of 

operating heat pipe reactors. For instance, heat pipe locations, for the SPR, are adjacent to fuel rods and 

will be subject to long-term irradiation. The working fluid may undergo transmutation into non-condensable 

gases from activation product decay, reducing heat transfer efficacy. Long-term irradiation can also lead to 

impurity-induced corrosion, especially within the wicking structure of capillary heat pipes. Impurities, such 

as oxygen, can be introduced during manufacturing, carried during charging of the working fluid, or found 

within the wicking structure [51]. For instance, in Reference [51], it is identified that heat pipes in high-

power applications (e.g., 75 kW) require 4 to 8 micron fibers to construct adequate wicking structures. This 

fine wicking structure is highly susceptible to corrosion damage and plugging, as dissolved containments 

plate out on to the evaporator surface [51]. Even if heat pipes are not initially designated to transfer large 

quantities of heat, failure of surrounding heat pipes may result in an environment condition that forces 

higher heat transfer requirements. Normal operation of heat pipes can also concentrate contaminants in the 

evaporator region where heat fluxes are highest, ultimately degrading the heat transfer performance of heat 

pipes over long periods of time [51]. Prolonged irradiation can also lead to crack formation along welds 

and blemishes of the heat pipe material. Neutron-induced swelling of the heat pipe tubing material can 

result in working fluid leakage and failure [34]. In Table 3, a summary of environmental degradation modes 

of heat pipes is provided. Note, the table list is not exhaustive and focuses specifically on heat pipe failures. 

Other external factors, such as the containment vessel (e.g., steel monolith), may also contribute to heat 

pipe failures but are not explored in this work.  

The effect of environmental degradation on heat pipes, while considered a local effect on individual 

heat pipes, can result in a global effect such as a cascading loss of surrounding heat pipes initiated by the 

loss of an individual heat pipe [34]. A cascade failure may result from a mechanistic or heat transfer limit 

standpoint. For instance, in the event of a single heat pipe failure within the SPR design that reduces its 

heat transfer capabilities, it is anticipated that the surrounding mechanical stress would increase to 

154.6 MPa [34], significantly higher than ASME-approved stress limits for 316 stainless steel, increasing 

the potential for subsequent heat pipe failures. Alternatively, a cascading failure may result from 

insufficient margin in the heat transfer capabilities, which may be unable to carry the additional thermal 

load, leading to the entrainment or boiling limit [40]. The development of a condition monitoring program 

may be applied to evaluate heat transport limits or environmental degradation that may occur in heat pipes. 
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Table 3. Degradation phenomenon of heat pipes [34]. 

Phenomenon Description 

Impurity-induced 

corrosion  

Impurities within the heat pipe leading to corrosion of the wicking 

structure. 

Crack formation and 

leakage 

Material cracks form in the tubing structure of the heat pipe leading to 

leakage of working fluid. 

Weld degradation Failure of heat pipe welds, either through prolonged exposure to 

contaminants or radiation or through a shaking event (e.g., earthquake, 

transportation).  

Irradiation-induced 

working fluid 

transmutation 

Conversion of working fluid into non-condensable gases from activation 

product decay, depending on working fluid composition. 

Irradiation-induced 

embrittlement/swelling 

Changes in tensile strength and volume of tubing material due to localized 

displacements in atomic structure by neutrons.  

Thermal aging-induced 

embrittlement 

Changes in tensile strength of tubing material. 

Support weld and 

coupling age-based 

degradation 

Welding heat pipes to the housing structure (i.e., monolith) has very 

limited physical access and would be challenging for IST and ISI. For 

long-term operation, heat pipe coupling and welds may degrade if 

maintenance cannot be performed. 

4.3.2. Heat Pipe Monitoring and Maintenance 

Considering available maintenance methodologies applicable for heat pipes is relevant for the 

development of a heat pipe condition monitoring methodology. This is to ensure that the condition 

monitoring method utilized aligns with current maintenance practices that can be applied for heat pipes. 

Due to the working fluid of heat pipes being sealed and generally inaccessible for inspection, different 

conventional, non-invasive, and invasive monitoring strategies could be deployed for detecting defect and 

anomalies within heat pipes. It is anticipated that instrumentation will have to be installed in dedicated 

channels to continuously monitor heat pipe conditions in the event of defect growth. These defects include, 

but are not limited to, corrosion and cracking of the cladding structure or plugging of the wicking structure. 

The objective of monitoring is to ensure that the heat transfer capabilities of the heat pipers are maintained.  

This section is separated into in-process and inservice monitoring and maintenance to differentiate the 

state of plant operation in which a method can be applied. In-process refers to when the reactor is operating. 

This includes during startups, normal operations, transients, and accident scenarios. IST activities are 

permitted to be performed in-process (i.e., valve testing). Inservice refers to when the reactor is undergoing 

maintenance and is not operating. This includes during shutdown, refueling, and planned/unplanned outage. 

These terms are used only to help readers differentiate when an activity is performed and is not regulatory 

terminology. 

4.3.2.1. In-Process Monitoring and Maintenance 

Conventional methods, such as temperature, flow rate, and pressure sensing, are anticipated to be 

crucial to ensure that heat pipes can maintain the intended heat transfer rates. For instance, thermocouples 

can inform on the temperature distributions around fuel pins and heat pipes which can be used to detect the 

onset of heat transfer limits (shown in Figure 3). Heat flux, the other important parameter in determining 

the presence of transfer limits, may be measured directly via thermoelectric modules [52] or calculated 
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indirectly using temperature difference between the hot end (i.e., evaporation region) and cold end (i.e., 

condensation region) of the heat pipe. Alternatively, if pressure difference along the heat pipe can be 

measured, heat transfer limits may also be inferred [53]. However, instrumenting heat pipes channels for 

in-situ monitoring is an active research field; there are limited publications that discuss potential 

configurations. Two different experimental case studies are presented from References [54] and [55] to 

demonstrate how sensors may be configured into a heat pipe reactor to determine performance.  

In Reference [54], researchers integrate optical fiber and thermocouple temperature and strain sensors 

in milled channels along the monolith block to record axial temperature of heated channels. Two different 

integrations were tested, floating, where sensors are placed in larger milled channels without attachment to 

the monolith, and embedded, where sensors were fused with the monolith via sonotrode [54]. Monolith 

surface thermocouples and strain gauges were also attached. Figure 4 and Figure 5 provide a top-down and 

cross section of the monolith illustrating where sensors are placed. Cartridge heaters were used as a heat 

source in place of fuel rods. A boron nitride past was used as a gap filler between the cartridge heaters and 

the wall of the monolith to provide better heat transfer. A single sodium heat pipe is inserted into the center 

channel of the monolith as the heat exchanger, with an external water-cooled chiller at the condenser end 

of the heat pipe. 

The researchers were able to monitor the strain and temperature response along the axial length of the 

monolith. These detailed temperature measurements enable the temperature distribution within the 

monolith to be more accurately mapped, which is necessary for determining thermal stress. In Figure 6, a 

temperature distribution is mapped from the various temperature sensors at specific axially locations. 

During the experimental process, certain challenges occurred [54] that should be considered when 

developing a heat pipe condition monitoring program. One of the key issues encountered was sensor 

reliability; specifically, the fiber optic strain sensor failed after 140 minutes of operation due to a mechanical 

break at the fiber sensing head [54]. The result was that the entire sensing length of the strain gauge was 

broken and could not be used. The root cause of the failure was that fiber optic sensors can be easily strained 

at the entrance of the embedded region during handling and installation. Sensor sensitivity was also 

identified in References [56, 57, 58]. Reference [54] implements redundant sensors to partially address this 

issue. In essence, a condition monitoring program receiving signals from the reactor will need the capability 

to detect and handle sensor values that degrade or break over time, whether in redundant or non-redundant 

configurations. Another lesson learned was that improper filling of the boron nitride paste in the heater 

cartridge channels increased the local temperature by ~30𝑜𝐶 [54]. A similar geometry fabrication issue was 

also identified in Reference [55] that led to localized hotspots in the monolith. Variations in temperature 

due to geometry or fabrication can impact the longevity of heat pipes and other structural components. 

Establishing baseline performance testing and trend analysis (i.e., IST) through embedded thermocouples 

and stress gauges may help identify the onset of component failure. While long-term reliability and handling 

procedures are still undergoing research, it is anticipated that as more experience is gained and processes 

are refined, these challenges can be resolved.  
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Figure 4. (a) Photo and (b) schematic of the sensor placement along the hex block test article. The 

red/green segment of the embedded/floating fibers indicates usable sensing range. Black bands at fiber 

ends indicate termination where no sensing data can be acquired. The hex block is 280 mm long, and the 

embedded region is situated 25 mm from either end of the block. Reproduction from Ref. [54]. 

 

Figure 5. Transverse cross-sectional view of heat pipe monolith showing sensor position. Reproduction 

from Ref. [54]. 
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Figure 6. Temperature recorded by floating fiber, embedded, and surface thermocouple temperature 

sensors mapped over heating cycles and at specific locations along the monolith [54]. 

In Reference [55], a similar heat pipe monolith experiment was conducted, where type K thermocouple 

sensors were placed in milled notches within the heat pipe channel as opposed to embedding on the exterior 

side of the monolith. This experiment also utilized heater cartridges to control and heat the monolith. In 

Figure 7, the cross-sectional view of the heat pipe and notch placement is shown. In Figure 8, the axially 

positioning of thermocouples is shown. Each point indicates a probe location. To remove heat from the 

system, a water-cooled gas-gap calorimeter is setup at the condenser end of the heat pipe.  

 

Figure 7. Transverse cross-sectional view of heat pipe monolith with milled notches in center heat pipe 

channel. Reproduced from Reference [55]. 

 

Figure 8. Positioning diagram of thermocouples along heat pipe. Reproduced from Reference [55]. 
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In this experiment, researchers were able to collect the axial temperature profile at steady state and 

transient conditions of the heat pipe. These values are important as they may be used to determine thermal 

heat transfer performance of the heat pipe along the length of the channel. In Figure 9, the temperature 

profile at different radial separations at the same axial location is shown. Discrepancy between the radial 

temperature sensors was due to slight geometric variations in the installation of the heat pipe to the core 

block.  

 

Figure 9. Temperature profile of heat pipe in evaporator region across core block during heating cycles. 

Reproduced from Reference [55]. 

4.3.2.2. Inservice Monitoring and Maintenance 

Non-invasive methods for defect detection include ultrasonic imaging, acoustic emissions, 

thermography, laser ultrasonics, eddy currents detection, and X-radiography [59]. The usage of non-

destructive methods for detecting external and internal defects is crucial for detecting degradations to ensure 

safe and reliable operation and maintenance of heat pipes [60]. Regardless of the type of instrumentation, 

qualification to ensure that these sensors are also operational over the extended operational period is 

anticipated. Note that these technologies are presented based on experience from other industries (e.g., oil 

and gas and sewage) as heat-pipe-specific monitoring technologies are still under development.  

Ultrasonic inspections use sound signals above the normal human range (>20 kHz) to estimate 

properties of irradiated materials by analyzing the reflected or transmitted signal from the materials [61]. 

Ultrasonic inspections consist of units like pulsers, receivers, transducers, and devices to display the signals 

[60]. For example, a pulser produces high-voltage electrical pulses that drive a transducer, which then 

generates high-frequency ultrasonic waves. Ultrasonic data is usually collected in three formats: A-scan, 

B-scan, and C-scans. A-scan gives an amplitude scan, B-scan provides cross-sectional views of materials 

to show trends, and C-scan shows three-dimensional ultrasonic scans in horizontal and vertical directions 

across material thickness [60]. In Reference [62], non-destructive pipeline testing was conducted using 

ultrasonic imaging and a generalized neural network for regression. The aim of using the ultrasonic scan in 

conjunction with the neural network model was to determine the dimensions of the corrosion and to generate 

entire images of the internal and external walls of oil pipeline.  

In addition to the model, the authors also introduced a neuro-fuzzy decision-based algorithms that can 

detect and classify the corrosion occurring in the oil pipes [62]. Due to the necessity to reduce noise in 

ultrasonic signals and enhance even small defects, wavelet transformation may be used to enhance flaw 

location information from ultrasonic signals, while showing good localization of defects [63]. The results 

were then sent to an artificial neural network that can detect and classify faults. Thus, ultrasonic methods 

can be useful as a non-invasive testing method to detect anomalies in heat pipes, while also having potential 
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to develop automated methods for condition monitoring by using data from ultrasonic testing for the 

development of data analytics models. However, some limitations of ultrasonic testing include its 

susceptibility to external noise and its need for a relatively smooth surface, and it can produce incorrect 

results for materials with low thickness.  

Acoustic emission is another non-destructive method for fault detection that can be used for heat pipes. 

Acoustic emissions generate stress waves by sudden movement in stressed materials that can help in 

detecting deformations or crack growths. Sudden movement caused through transient elastic waves 

produces stress waves that radiate into the component to excite a piezoelectric transducer [64]. This raises 

stress in the component, which generates different emissions in the form of signals captured by sensors. 

These data from the sensors can be analyzed to understand defects within the component. Cracks and 

material defects of even relatively small magnitudes in heat pipes can be detected using the passive acoustic 

emissions method. Acoustic emission testing has also been used to detect leakages in pipe. However, 

acoustic emission testing is limited since it does not work over long detection ranges and is sometimes 

complex to interpret. The length of detection is determined by a variety of factors including but not limited 

to material properties, shape of the acoustic waveguide (e.g., heat pipe shape), touching surfaces (e.g., 

support structures), frequency of acoustic emission, intermediate interfaces (e.g., attachment material 

between the transducer and the heat pipe), and strength of transducer (e.g., amplitude of probing acoustic 

wave). Note that acoustic emission testing is also very prone to environmental interference and noise, which 

may limit the range of detection. Optimization techniques like using wavelet threshold functions could be 

a useful addition to ensure noise is removed from the data generated by the acoustic emission testing. These 

data can then be used to train ML/AI models that can be used for fault detection, classification, and 

prediction for condition monitoring of heat pipes.  

X-radiography can be used by generating ionizing radiation to produce images of the internals of a 

component to detect faults. X-radiography consists of two parts: a radiation source and a detector. When 

X-rays pass through an object, the difference in mass attenuation coefficient as the X-rays pass through 

generate different imaging responses. As such, X-radiography testing can be used to detect shape defects, 

shrinkage defects, cavities in materials, or sponge shrinkage defects while providing information on their 

intensities, orientations, sizes, and shapes [65]. X-radiography is a popular technique for pipeline and piping 

inspection. However, a key limitation of X-radiography is the penetration depth and potential invisibility 

of heat pipes. For example, one report suggests that the penetration depth of solid steel 316 is between  

3–20 mm [66]. In addition, if both the heat pipes and housing monolith are both constructed using 

316 stainless steel or similar materials, X-radiography may not be able to distinguish the components apart 

for defect analysis. In addition, if X-radiography is intended to be used while the plant is in service, other 

high energy radiation given off by nearby fuel pins may completely obscure the X-ray image (e.g., high 

noise). Lastly, X-radiography requires a receiver that is typically positioned opposite to the radiation source 

to generate the image. Assuming a penetration depth of 20 mm, this would imply that sources and detectors 

would have to be installed in close proximity to heat pipes to be able to capture the structural condition; 

therefore, limitations in space are a concern. While small detectors do exist (e.g., semi-conductor X-ray 

detectors [67]), these detectors are highly sensitive to environmental degradation (e.g., radiation-induced 

crystal-lattice defects) and may not survive if within close proximity to heat and radiation sources (e.g., 

fuel pins) [67]. 

Similarly, thermography can be used to capture hot spots [22] within the heat pipe, detecting various 

operational limits of the heat pipe, such as the boiling limit. This helps with condition monitoring to 

determine whether the heat pipe is functioning within the normal operational limits. Thermography can also 

be used to detect corrosion, flow erosion at high temperatures, and hidden material defects [68].  

Defects in electrically conductive materials can also be detected using eddy currents. Alternating 

current-driven coils, delivered via a bobbin probe (or other sensor heads), induces eddy currents within the 

material via electromagnetic coupling. This eddy current circulation, in turn, produces a secondary 

magnetic field. The characteristics of this field vary depending on the existence of flaws or defects within 
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the material that impede the eddy current flow. These variations are detected by either coil or magnetic 

sensors [69]. Any small defects within the components can influence and vary the eddy currents, which can 

be monitored. Eddy current testing has only a single frequency, whereas pulsed eddy current testing has a 

broadband of frequencies increasing its applicability in capturing various frequency-dependent defects [69]. 

Eddy current methods can thus detect small cracks and material defects including corrosion, but defects 

that do not come in direct contact with the probe cannot be detected and are thus not viable for large area 

applications. However, a significant limitation of this method for condition monitoring is the reliance on a 

physical sensor head to sweep across the material surface for detection. For instance, it is unlikely that a 

probe can be used to examine the internal structure of sealed heat pipes. In addition, eddy current probes 

are conventionally used to assess smooth surfaces (e.g., steam generator piping). It is unknown what effect 

an irregular wicking structure of the heat pipes will have on eddy current measurements. All such methods 

can generate data to develop a data analytics model that can be used for condition monitoring of heat pipes.  

 

4.4. Technical Considerations and Opportunities for Digital Twin 
Deployment 

In this section, a discussion on the technical considerations and opportunities for developing and 

deploying a DT condition monitoring program specific to heat pipes is provided. General considerations 

for a DT condition monitoring program are discussed in Section 5.  

4.4.1. Heat Pipe Modeling Challenges 

Simulation codes (e.g., Sockeye [45] and HTPIPE [70]) of heat pipe reactors may be used to address 

design, testing, and operating experience inadequacies. There are three general categories to describe heat 

pipe codes: full two-phase, gas-only, and super thermal conductivity codes. Basically, the differentiator 

between the codes is the number of material phases modeled.  

In full two-phase code [45], both the gaseous and liquid forms of the working fluid are modeled, 

allowing for more comprehensive physical phenomenon simulation, such as capillary action, evaporation, 

and condensation, etc. While computationally expensive, these codes can be used to model transient and 

startup events in addition to heat transfer limits. However, at scale (e.g., multiple heat pipe or large 

geometry), full two-phase codes can have slow computational performance (e.g., cannot be run in real-

time). Furthermore, additional code validation for two-phase codes is still required, especially under 

varying thermal and pressure conditions.  

In gas-only codes [50, 70], typically a non-condensable gas emulates the working fluid’s convective 

and conductive heat transfer mechanisms. Gas-only codes may be used to model steady state operating 

conditions. While validation for gas-only codes is more mature than the full two-phase codes, they cannot 

be used to model transients and startups, and the heat transfer limits must be determined analytically. A key 

benefit to gas-only codes is that they are relatively faster than full two-phase codes, especially when scaled 

to full reactor size or multiple heat pipe bundles.  

Lastly, in super thermal conductivity codes [71], the heat pipe’s heat transport model (i.e., convective 

vapor flow) is replaced with a high-efficiency heat conductance material model (i.e., conduction model). 

While super thermal conductivity codes have certain benefits (e.g., computational speed and scale) over the 

gas-only and full two-phase codes, they do not capture realistic heat pipe physics and may introduce model 

uncertainty. For heat transfer limits (e.g., viscosity, entrainment), these limits are analytically derived. The 

model itself cannot be used to derive the limits or determine damage incurred on the heat pipe when a limit 

is reached [71] as neither the geometry nor model physics accurately reflect the heat pipe.  

These codes, while helpful at identifying the thermal characteristics and properties of heat pipe reactors, 

may introduce unrealistic assumptions and uncertainties if they are also subsequently used to train DT 

models for heat pipe condition monitoring. This is especially true for heat pipe reactor designs, as a lack of 
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operational experience impedes accurate model development. Parameters, such as geometric dimensions, 

material density, and nuclear data, can all introduce uncertainty, significantly impacting modeling and 

simulation data. Transient behavior of heat pipes is also not well understood, and important research in 

phase change (e.g., solid to liquid and vapor) modeling is being conducted. 

In Reference [72], it is identified that liquid-metal heat pipes on startup typically involve a number of 

nonlinear mass and heat transport processes undergoing various phase changes. As such, there are major 

modeling difficulties when it comes to simulating multiphase interaction of the working fluid, microporous 

wick flow, and compressible gas dynamics [72]. Typically, a sophisticated model with multiple sub-model 

implementations is required to accurately simulate the phase change physics within heat pipes. On the other 

hand, lump modeling approaches, while computational efficient at exploring the macro characteristics of 

the heat pipe physics, overlook key driving effects that contribute to heat transfer limits. For instance, in 

Reference [73], a lumped heat conduction model was used to simulate heat pipe startup and working fluid 

evaporation. However, this method neglects the modeling of the working fluid vapor region and the vapor’s 

thermal resistance within the heat pipe, potentially resulting in highly inaccuracy as flowing vapor 

contributes to convective heat transfer. These model simplifications contributed significantly to wall 

temperature prediction inaccuracy when compared to experimental data, specifically within the adiabatic 

region (i.e., between the evaporation and condensation ends of the heat pipe) [72].   

Experimental evidence is also not free from uncertainty. In previous heat pipe experimental studies [74, 

75], variations in heat-pipe wall emissivity, thermal mass of structures, wicking structure construction 

imperfections, and reference temperatures to determine radiation heat loss were identified as potential 

sources of uncertainty. In Reference [55], they identify that minor variations in the experimental setup 

resulting in geometric asymmetry of the monolith block had meaningful temperature impact on the heat 

pipe. In Reference [55], this variation was at most ±5°C between the sensors placed at the same axially 

location. Ultimately, the implication of experimental data uncertainty on model development is that some 

degree of aleatoric uncertainty is present and potentially unquantifiable, impacting validation efforts.  

Modeling uncertainty is not limited to the working fluid heat transfer dynamics. In Reference [76], it is 

discussed how there is significant uncertainty in the high energy region of 235U reactions that can impact 

core physics calculations, especially within the SPR design. This is also identified in Reference [34], which 

states that fast reactor 235U nuclear reaction cross sections have uncertainties on the order of the beginning-

of-life excess reactivity (i.e., 2,000 pcm). As certain microreactors are planned to be fast reactors, this 

uncertainty can impact core simulation calculations. This is a concern as heat pipes are anticipated to 

undergo radiation-induced corrosion due to their close proximity to fuel pins; inaccurate modeling of 

reactor physics can alter the rate of anticipated degradation of heat pipes (and support structures) [77].  

Lastly, these simulator codes and models themselves need further validation and verification work. For 

instance, only preliminary verification, validation, and uncertainty quantification on Sockeye was 

performed in References [78, 79] on a limited set of experimental data from the SPHERE experiment. Until 

further simulation validation can be completed, Sockeye is limited to modeling heat pipe internal fluid and 

heat transfer properties. Simulation experience with defects and degradations and their impact on the heat 

pipe is limited; corresponding validation data is limited as well. However, as Sockeye is a thermal fluids 

code, it can model the effects of a degradation or defect on heat transfer performance as long as the input 

parameters for the defect are provided. Determining the correct input parameters requires experimental data 

collection. In essence, additional maturity is required should Sockeye be used to generate data for DT 

condition monitoring programs.  

4.4.2. Qualification of Reactor Technologies for Deployment Length 

Sensors and other instrumentation will be crucial for advanced condition monitoring activities. Sensor 

qualification is the process of testing and ensuring that a sensor meets certain performance criterion under 

a specified environmental condition. Note that while testing is not the only method of qualification, under 

limited/no operating experience or analytical methods, it is a comprehensive method. There are two 



 

28 

particular issues associated with sensor qualification: identifying the test environment sufficient for the 

operational environment and ensuring these sensors meet requirements.  

Identifying a test environment involves determining how long a test will be conducted on a sensor and 

under what conditions, analogous to the intended operational environment. However, due to the lack of 

operational experience for heat pipe reactors, determining the right set of conditions may be challenging. 

For instance, microreactors are anticipated to operate for extended periods of time without active 

maintenance [21]. Ensuring that these sensors are usable and capable of maintaining operability over 

extended periods of time in high-temperature and irradiated environments while also in unique geometries 

is still an active area of research [80]. While sensors exist that are qualified for other industrial applications 

and may be postulated to be usable for advanced reactors, the potential for radiation-driven corrosion and 

transmutation of sensor materials introduces uncertainty in their lifespan. Sensor failure modes novel to 

nuclear heat pipe environments may complicate qualification and require novel methods to address the 

uncertainty in their lifespan and reliability. Ensuring sensor operation ensures the availability of the 

monitoring program to assess the heat pipe condition.  

Finding an appropriate test environment may be also difficult if the chosen sensors are also classified 

as important to safety. These sensors would require, but not be limited to, additional qualifications under 

accidents, anticipated operational occurrences, external events, and natural phenomena scenarios beyond 

normal operating conditions. However, it is important to keep in mind that the requirement for highly 

qualified sensing must consider the safety determination of the associated condition monitoring program. 

If the conditioning monitoring program is not important to safetya and the sensors it utilizes are also not 

used for other important safety systems, a high criterion for sensor qualification is not necessarily 

warranted. 

Generating experimental data to justify component reliability may also be completed through 

accelerated testing methods (ATM) [49, 81]. ATM is the process of magnifying life-limiting effects during 

component testing to accelerate aging degradation (e.g., at high operating temperature or mass fluence) 

[81]. The immediate benefit of ATM is the faster generation of realistic heat pipe defects, from 10 years of 

operational life to 3 years under accelerated aging. To conduct ATM, typically one relevant material stressor 

is identified (e.g., temperature) and varied, while other stressors are held constant. The increased stress state 

is held until the component fails or cannot work properly. In essence, ATM tests how individual stress 

factors can lead to component failure. However, realistic component failures may result from a combination 

of multiple (individually benign) stress factors. Selecting the correct accelerating test conditions to 

extrapolate component reliability is difficult, especially if the environmental condition has multiple input 

parameters (e.g., temperature, pressure, moisture).  

4.4.3. Regulatory Considerations on Heat Pipe Condition Monitoring 

New and advanced reactors that use heat pipes may be required to develop IST programs. ASME has 

developed new guidance for IST programs (referred to as the OM-2 Code [41]) in new and advanced 

reactors. The NRC staff is considering the preparation of an RG to accept the new ASME OM-2 Code with 

applicable conditions for reference by applicants in their licensing documents. Applicants for reactors that 

use heat pipes could consider the new ASME guidance in developing their IST program. A key feature 

discussed in microreactor design is the implementation of safety function through inherent safety measures, 

which include non-actuated safety systems (i.e., heat pipes). These systems are designed on naturally 

occurring physical processes to achieve crucial safety functions. However, non-actuated safety systems 

may challenge traditional methods to evaluate the level of safety of reactor design [82]. Reactor designs 

that utilize heat pipes are planned for operating at sub-atmospheric pressure [82]. The total volume of 

primary coolant is divided into hundreds of individually self-contained heat removal devices [82]. These 

 
a SSCs “important to safety” as defined in 10 CFR 50 Appendix A are structures, systems, and components that provide 

reasonable assurance that the facility can be operated without undue risk to the health and safety of the public. 
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heat pipes may be designed to act as redundancies to each other such that the loss of one heat pipe is not 

crucial. This differs from conventional reactors with a single large volume of coolant and will make loss-

of-coolant transient analysis different. In this respect, the loss of a single heat pipe or a cascading failure of 

multiple heat pipes may be an important license basis event [82]. Evaluation of other effects relevant to the 

identification of LBEs will also be required and may consist of the following categories seen in Table 4.  

Table 4. Relevant considerations in selecting LBEs. 

Phenomenon Description 

Evaluation of heat-pipe heat transport 

limits and safe operating regimes 

Heat pipes may functionally fail due to one of the heat 

transport limits discussed in Table 2.  

Demonstration of inherent safety Inherent safety depends on several factors: 

• Reversible return to safe operation once the heat transport 

limit is exceeded 

• Confirmation of no single failure or common mode 

failure in LBEs. 

Separate effect heat pipe performance 

versus integrated heat pipe 

performance 

Evaluating heat pipe performance goals across either 

individual or grouped heat pipe performance. Depends on the 

design chosen. 

Heat pipe construction Reliable construction of vacuum-filled heat pipes, welding, 

and quantification of impurities in working fluid and internal 

structure (e.g., wicking). 

Corrosion and chemistry issues Evaluation of the aggregation of working fluid impurities 

over the lifespan of heat pipe operation and the impact on 

performance.  

Testing of functional containment 

defense-in-depth elements 

Characterization of heat pipe leakage and LBE response to 

failures of identified containment barriers. 

 

  



 

30 

5. GENERIC CONSIDERATIONS FOR DT CONDITION MONITORING 
PROGRAMS 

This section discusses generic considerations for developing a DT for a condition monitoring program. 

These considerations may apply to either of the case studies presented above.  

5.1. Digital Twin for Condition Monitoring Verification and Validation  

Currently, RG 1.168 [83] discusses the verification and validation (V&V) of software used in safety 

systems. This also applies to all activities in the installation, testing, operation, maintaining, or modifying 

of the safety-related functions of an SSC [83]. It is anticipated that a DT for condition monitoring of safety-

related SSCs (i.e., RCPs) is a software model that would impact the maintenance scheduling and would be 

subject to RG 1.168 [83]. This RG may also be applied for non-safety-related but “important to safety” 

systems [83]. Furthermore, RG 1.170 discusses software unit testing of digital computer software used in 

safety systems of NPP. This RG also applies to non-safety-related but “important to safety” systems.   

Verification of a DT for condition monitoring is the act of confirming with objective evidence that the 

specified requirements have been fulfilled (e.g., for correctness, consistency, accuracy). Validation is the 

act of confirming that the DT satisfies end user needs. These definitions are derived from IEEE 1012-2004, 

endorsed in RG 1.168 [83]. V&V does not refer to the underlying software or operating system that executes 

the DT functions. This report does not cover the V&V of these subsystems. V&V of condition monitoring 

DTs is an important activity both in licensing and development as it can validate the veracity of the model, 

providing confidence in its functionality through observation of modeling and algorithmic error. However, 

there are several challenges when conducting V&V for condition monitoring DTs, namely: (1) uncertain 

consistency of fault signatures, (2) inadequate experimental or operational data, (3) combinatorial damage, 

and (4) model reverification and maintenance.   

Uncertain consistency of fault signature data refers to the condition where the identifying signatures 

(e.g., vibration spectral side bands) for the same fault condition may change over time. Note that the nature 

of the fault does not change; rather the instrumentation monitoring the condition of the component may 

change over time, due to wear, environmental degradation, or small changes to performance caused by 

maintenance. For instance, sensor drift, the gradual change in sensor output deviating from originally 

calibrated values, can impact the predictive output of DT condition monitoring models. Verification work, 

conducted during model development, to determine whether a DT satisfies specified requirements may be 

incomplete, and the detection effectiveness may decrease as plant conditions change. This issue arises as 

relevant fault data is difficult to collect [31]; the addition of sensor drift would further complicate this 

collection issue. While methods exist to detect sensor drift, such as discrete average block-based methods, 

cumulative sum, and exponentially weighted moving average algorithms, these methods only detect the 

onset of drift and cannot be used to “correct” the input for the DT models [84]. Furthermore, these methods 

are insensitive to very noisy or prolonged drift conditions, which can hinder detection of drift [84].  

Operational data, while available, may not be useful in the verification process as (a) fault signatures 

are not collected in completeness due to proactive maintenance, (b) are one-off scenarios that are not 

comparable, and (c) are collected under different conditions [31]. To ensure continued operation of the 

component, an operator may choose to proactively replace or repair the component at the earliest signs of 

performance deviation, regardless of the degree or presence of a fault. As such, data on these fault 

conditions are partial and cannot be used for verification. Furthermore, faults may be one-off conditions 

and non-repeating. For instance, improper bearing loading is a one-off condition that can be resolved by 

reloading the bearings appropriately. V&V partially relies on repetitive confirmation that the model meets 

requirements; verification on one-off examples may make it hard to justify that the model performs well on 

a class of faults. This further extends to the condition that the fault was collected and corrected. True faults 

are “far and few between.” Plant conditions during a fault are not guaranteed to be the same for each 

condition. When monitoring conditions are inconsistent, it is difficult to justify that the model performance 
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will also be consistent, especially when the data is limited [85]. While experimental data can address some 

of these issues, it is imperfect. Namely, faults generated under laboratory conditions may not represent 

realistic fault conditions. For instance, in Reference [31], it is identified that methods of generating damage 

artificially (e.g., electric discharge machining, drilling, or manual engraving) to simulate bearing damages 

are typically uncharacteristic of real bearing damages. Verification using experimental data may provide a 

skewed perspective on the true performance of the DT. 

Another potential challenge is the presence of multiple faults. Typically, model V&V in literature is 

conducted on a single phenomenon to identify efficacy and does not include multiple faults, which can 

detract from the intended model function. In reality, faults are not necessarily single point damages and 

may be distributed across different sites [31]. The consideration here is no single site may be significant 

enough to be clearly identifiable, but rather the combination of multiple minor fault sites may lead to the 

determination that a fault is present [85]. It is not clear how the current V&V for DT would approach multi-

site faults, especially if each fault individually is insignificant. This issue may be partially resolved if the 

scope of the DT is to determine whether a component is faulty or not, instead of determining the exact root 

cause of the fault. While a loss of resolution is anticipated, the simplified V&V process may be more 

achievable. 

While preliminary V&V data, regardless of how it was generated (e.g., experimentally or derived from 

historical databases), may not be initially available, developers may assume that operational data can be 

used to refine and further validate the model. The premise being that operational data is more relevant to 

the intended function of the DT condition monitoring model. Aside from the operational data challenges 

mentioned above, this may present a potential conflict between initial V&V data and collected operational 

data. Assuming that operational data is “more relevant” than the initial dataset, it is unclear how conflicting 

evidence should be addressed. For instance, consider the bearing damage example from Reference [31]. If 

an initial DT model is verified on this particular fault type, how should more realistic bearing damage data 

be used and should the original dataset be integrated or disavowed? Furthermore, as more information 

becomes available, what approach should be utilized to maintain and update these models with more 

relevant information?  

A/B testing, also known as bucket testing or split testing, is one approach proposed to address model 

maintenance [86]. A/B testing is used to evaluate the difference between a new and old model version in 

terms of performance or impact by exposing the models to a small representative dataset [86]. A/B testing 

is used routinely in software development (e.g., websites) to ensure that the new version improves upon the 

existing version [87]. A refers to the original model while B refers to the revised model. In DT for condition 

monitoring, A/B testing may take the form where an A is compared against B for a period of time, where B 

has no impact on operation until it can be shown to improve upon performance. However, A/B testing for 

condition monitoring DTs has some additional considerations. A challenge related to A/B testing is the 

duration of the test [86]. Feedback on A/B testing for websites is nearly spontaneous, and performance 

changes can be gauged quickly. However, for condition monitoring, as true component faults are rare, A/B 

testing would have to be conducted for an extended period of time before it can be confirmed that the new 

model is better. Over this period of time, more operational data will become available; A/B testing may 

result in models that are always out-of-date, inflexible to the up-to-date operational conditions [86]. 

Furthermore, A/B testing only reveals holistic level performance and cannot reveal how multiple individual 

model changes affect performance. For instance, retraining may change all weights and biases within the 

model. The holistic impact may be positive, but there is the potential that the model becomes more/less 

sensitive to specific scenarios [86].  

Essentially, many of the challenges associated with V&V of DT for condition monitoring is the 

difficulty in acquiring relevant data in the necessary quantity to adequately understand a phenomenon. The 

drivers of this issue are associated with the uniqueness and rareness of true faults in components. Devising 

a method to integrate this new data with existing data is also perceived to be a challenge.  



 

32 

5.2. Model Explainability 

Development or deployment of models based on data analytics like statistical and/or ML models require 

some extent of explainability such that the model responses are understandable to operators. Understanding 

model response is important as it can provide confidence in prediction reliability [88] and may be used to 

further diagnose degradation issues [89]. Different models have different levels of explainability. When 

considering ML/AI-based models, deep learning models like neural networks can have very good accuracy 

and predictive capabilities but lie low on the explainable scale, while linear regression models may have 

performance capability lower to neural networks but land high on the explainable scale. The extent of 

explainability depends on the complexity and degree of nonlinearity of the problem modeled. For example, 

highly nonlinear problems may require vast neural networks with multiple hidden layers to adequately 

model them. Ultimately, explainability can be incorporated through a variety of ways, such as surrogate 

modeling, data visualization, performance metrics, and using explainability tools/interfaces.  

Surrogate modeling is where a simple model is constructed to explain a limited set of outputs of a 

complex model (e.g., neural network). The premise is that the surrogate model provides information on 

how an output was generated based on the locality of the data source. Some examples of surrogate modeling 

include linear regression and decision tree. 

In linear regression, it is assumed that the phenomenon near the test data point is approximately linear 

(e.g., the decision boundary); such nonlinearities in the complex model can be approximated with a linear 

model. For example, Local Interpretable Model-agnostic Explanations (LIME) is a commonly used model-

agnostic local method that works by locally creating small perturbations around the test sample to see how 

model predictions change and assigning weights to linear ridge regression model to explain the output [90]. 

However, it must be understood that LIME is a post hoc method and not intended to be used in real time, a 

criterion for DT. Furthermore, parametric selection of kernel size and perturbation generation range is a 

significant concern (see Figure 10). There is active research into discovering: (1) the best method for 

selecting the range to generate perturbations around the test point and (2) how to choose the correct value 

for kernel width in model construction. First, the range to generate perturbations determines the linear 

model used for explanation and is dependent on the local curvature of the complex model regression line 

[91]. Insufficient or too large ranges lead to unstable LIME explanations as either scenario leads to 

misconstruction of the linear regression line around the test point [91]. This leads to the second challenge 

of kernel width selection, which confines the generated perturbation range to a subset of the most relevant 

datapoints (see the green area in Figure 10). Poor kernel width selection can result in meaningful 

explanations even if the model is noncoherent [92].  

Decision trees are a non-parametric learning method that predicts a value based on a set of binary 

decision rules (e.g., yes/no, higher than/lower than). Like a tree structure, each decision rule leads to 

subsequent, more refined decision rules. An output may be explained based on the answers to these set of 

rules. The assumption here is that if a decision’s tree output matches a complex model’s output, the complex 

model’s output can be explained to some degree by the decision trees decision rule answer. However, a key 

limitation to decision trees is the inflexibility of updating the tree to new information. For instance, when a 

new more relevant dataset is presented and integrated into the existing dataset, the structure of the tree is 

not maintained, and an entirely new set of decision rules are created that match the combined dataset. 

Existing answers are no longer relevant, and a new set of answers can be used to explain both old and new 

samples. In such cases, two different sets of decision rules may be used to justify the same outcome, 

presenting potentially conflicting information. 
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Figure 10. Selection of perturbation and kernel range when deriving LIME model. Original image 

modified from Reference [93]. 

Aside from surrogate modeling, Shapley Additive exPlanations (SHAP) [94] is a popular approach for 

explanations. SHAP scoring is a model-agnostic method that determines the degree of contribution that a 

feature makes to a model output. SHAP is a popular method as it achieves three desirable properties: local 

accuracy, missingness, and consistency [94]. Local accuracy refers to the requirement that the explanation 

model output at least matches the output of the complex model. Missingness is the quality where missing 

features will have no impact on the explanation. Lastly, consistency is the property where if a model 

changes such that the input feature’s contribution increases or stays the same (regardless of the other 

features), that feature’s attribution should also increase or stay the same (or at least not decrease). However, 

recent published papers have identified that SHAP scores may yield misleading information about the 

relative importance of features for predictions [95]. In a range of classifier experiments performed in 

Reference [95], it was shown that high SHAP scores (i.e., highly relevant) can be assigned to irrelevant 

features. No special treatment or modification of the dataset was needed to generate this outcome, rather 

this misassignment is related to how SHAP scores are inherently computed. The opposite can also be true, 

where a relevant feature is assigned a zero SHAP score (i.e., not relevant) [95]. The implication is that 

SHAP may be misused in communicating the explainability of a model outcome. 

Partial dependence plot (PDP) [96] and individual conditional expectation (ICE) [97] are two global 

model-agnostic graphical visualization tools to analyze the interaction between the target response and a 

set of input features of interest. PDP shows the average effect of input features on the target output; ICE 

visualizes dependency for each sample separately, generating a different visual response per sample. While 

PDP is good at showing the average effect of target features, it may obscure heterogenous relationships 

caused by interactions. For instance, for a PDP plot showing positive correlation between an input feature 

and target growth, some feature samples may be negatively correlated, but the average over all feature 

samples is positively correlated [96]. ICE does not have this limitation as each feature sample is individually 

modeled. However, an issue with PDP and ICE is the visualization ability in high dimensions [97]. 

Typically, PDP and ICE only plot one or two features at a time, where the x-axis is the domain of the feature 

and the y-axis is the strength of dependency. For two features, the x-axis is feature one, the y-axis is feature 

two, and the z-axis is the strength of dependency. Investigating interaction between three or more features 

is a visualization limitation.  
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6. SUMMARY 

In this report, two different use cases for condition monitoring were presented, along with how 

advanced technologies, such as sensing instrumentation, data storage and analytics, and ML/AI modeling 

methods for DTs, can be applied to augment existing condition monitoring approaches. For each use case, 

the report covered identifying the scope of monitoring, determining safety classifications based on existing 

guidance, monitoring degradation modes, and selecting appropriate monitoring parameters. The two use 

cases, RCP and heat pipes, were discussed in detail to present the implementation of the condition 

monitoring approach using advanced technologies. Such technologies may improve existing regulated 

maintenance practices while simultaneously improving overall plant performance by reducing unnecessary 

plant outages. There are also several challenges and considerations for the successful implementation of 

advanced condition monitoring systems. Therefore, key considerations include: 

• Addressing verification, validation, and uncertainty in condition monitoring data, simulation models, 

and predictive algorithms 

• Balancing the predictive capabilities of complex ML/AI models with the need for model 

explainability and interpretability of model outcomes 

• Aligning the existing inspection, testing, non-destructive examination, and other maintenance 

techniques with the advanced condition monitoring program 

• Developing methodologies for performance assessment of the advanced condition monitoring 

approaches. 

The use cases presented in this report underscore the need to address several considerations associated 

with condition monitoring DTs that are anticipated to integrate ML/AI models, such as the construction of 

data collection, modification, and integrity management methods as well as trustworthiness and 

explainability of model predictions. There is much expressed interest in using advanced condition 

monitoring techniques to meet IST requirements and improve operations and maintenance efficiency. The 

NRC is preparing to effectively and efficiently evaluate using these technologies through research activities.  
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