Constellation

LG-25-068

April 29, 2025

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

> Limerick Generating Station, Units 1 and 2 Renewed Facility Operating License Nos. NPF-39 and NPF-85 <u>NRC Docket Nos. 50-352 and 50-353</u>

Subject: 2024 Annual Radiological Environmental Operating Report

In accordance with the requirements of Section 6.9.1.7 of Limerick Generating Station (LGS) Units 1 and 2 Technical Specifications (TS) and Section 6.1 of the LGS Units 1 and 2 Offsite Dose Calculation Manual (ODCM), this letter submits the 2024 Annual Radiological Environmental Operating Report. This report provides the 2024 results for the Radiological Environmental Monitoring Program (REMP), as called for in the ODCM.

In assessing the data collected for the REMP, it has been concluded that the operation of LGS Units 1 and 2 had no adverse impact on the environment. No plant-produced fission or activation products were found in any pathway modeled by the REMP. The results of the groundwater protection program are also included in this report.

There are no commitments contained in this letter.

If you have any questions or require additional information, please contact Will Pratt at 610-718-2700.

Respectfully,

Michael 2. Ballin

Michael F. Gillin Site Vice President – Limerick Generating Station Constellation Energy Generation, LLC

Attachment: 2024 Annual Radiological Environmental Operating Report

| CC: | Administrator, Region I, USNRC        |  |
|-----|---------------------------------------|--|
|     | LGS USNRC Senior Resident Inspector   |  |
|     | B. Edwards, Inspector Region I, USNRC |  |
|     | LGS Senior Project Manager-NRR, USNRC |  |

(w/attachment) (w/attachment) (w/attachment) (w/attachment)

TS 6.9.1.7



### Limerick Generating Station



# Annual Radiological Environmental Operating Report 2024

Docket Nos. 50-352 and 50-353

| Company: Constellation       Plant: Limerick Generating Station         TABLE OF CONTENTS         1.0       LIST OF ACRONYMS AND DEFINITIONS       3         2.0       EXECUTIVE SUMMARY       4         2.1       Summary of Conclusions       5         3.0       INTRODUCTION       7         4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22 | Ar         | nnual R             | adiological Environmental Operation | ating Report         | YEAR: 2024            | Page 1 of 82  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-------------------------------------|----------------------|-----------------------|---------------|
| TABLE OF CONTENTS         1.0       LIST OF ACRONYMS AND DEFINITIONS       3         2.0       EXECUTIVE SUMMARY       4         2.1       Summary of Conclusions       5         3.0       INTRODUCTION       7         4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                         | Comp       | any: C              | onstellation                        | Plant: Limerick      | <b>Generating Sta</b> | tion          |
| 1.0       LIST OF ACRONYMS AND DEFINITIONS       3         2.0       EXECUTIVE SUMMARY       4         2.1       Summary of Conclusions       5         3.0       INTRODUCTION       7         4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                   | TADU       |                     | ONTENTS                             |                      |                       |               |
| 1.0       EIST OF ACRONTMIS AND DEFINITIONS       3         2.0       EXECUTIVE SUMMARY       4         2.1       Summary of Conclusions       5         3.0       INTRODUCTION       7         4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                  |            |                     | UNIENIS                             | 0                    |                       | 2             |
| 2.0       EXECUTIVE SUMMARY       4         2.1       Summary of Conclusions       5         3.0       INTRODUCTION       7         4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                              | 1.0        |                     | DE ACRONTINS AND DEFINITION         | S                    |                       |               |
| 3.0       INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0        |                     | Summary of Canalusiana              |                      |                       |               |
| 4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       8         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                  | 2.0        |                     |                                     |                      |                       |               |
| 4.0       SITE DESCRIPTION AND SAMPLE LOCATIONS       0         5.0       RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS       10         6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                  | 3.0<br>4.0 |                     |                                     |                      |                       | ۲۲<br>و       |
| 6.0       MAPS OF COLLECTION SITES       17         7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0<br>5.0 |                     |                                     |                      |                       | ENTS 10       |
| 7.0       REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN<br>ENVIRONMENTAL SAMPLES.       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF<br>RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0        | MAPS                | OF COLLECTION SITES                 |                      |                       | _INTO10<br>17 |
| ENVIRONMENTAL SAMPLES       20         8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF         RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0        | REPO                | RTING LEVELS FOR RADIOACTI          |                      | ATIONS IN             |               |
| 8.0       SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF         RESULTS       21         8.1       Environmental Direct Radiation Dosimetry Results       21         8.2       Air Particulate and Radioiodine Sample Results       22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0        | ENVIF               | RONMENTAL SAMPLES                   |                      |                       |               |
| RESULTS    21      8.1    Environmental Direct Radiation Dosimetry Results    21      8.2    Air Particulate and Radioiodine Sample Results    22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0        | SAMP                | LING PROGRAM, PROGRAM MO            | DIFICATION AND       | INTEPRETATION         | OF            |
| <ul> <li>8.1 Environmental Direct Radiation Dosimetry Results</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | RESU                | LTS                                 |                      |                       | 21            |
| 8.2 Air Particulate and Radioiodine Sample Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 8.1                 | Environmental Direct Radiation D    | osimetry Results     |                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 8.2                 | Air Particulate and Radioiodine Sa  | ample Results        |                       | 22            |
| 8.3 Waterborne Sample Results 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 8.3                 | Waterborne Sample Results           |                      |                       |               |
| 8.4 Ingestion Pathway Sample Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 8.4                 | Ingestion Pathway Sample Result     | s                    |                       |               |
| 9.0 LAND USE CENSUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0        | LAND                | USE CENSUS                          |                      |                       | 27            |
| 10.0 SAMPLE DEVIATIONS, ANOMALIES AND UNAVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0       | SAMP                | LE DEVIATIONS, ANOMALIES AN         | ND UNAVAILABILI      | ΓΥ                    |               |
| 11.0 OTHER SUPPLEMENTAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0       | OTHE                | R SUPPLEMENTAL INFORMATIC           | )N                   |                       |               |
| 11.1 Offsite Dose Calculation Manual (ODCM) Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 11.1                | Offsite Dose Calculation Manual (   | (ODCM) Changes .     |                       |               |
| 11.2 NEI 07-07 Onsite Radiological Groundwater Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 11.2                | NEI 07-07 Onsite Radiological Gr    | oundwater Monitor    | ing Program           |               |
| 11.3 Independent Spent Fuel Storage Installation (ISFSI) Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 11.3                | Independent Spent Fuel Storage      | Installation (ISFSI) | Monitoring Progra     | m 34          |
| 11.4 Corrections to Previous Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0       | 11.4                | Corrections to Previous Reports     |                      |                       |               |
| 12.0 BIBLIOGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.0       | BIBLIC              | JGRAPHY                             |                      |                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ES                  |                                     |                      |                       | 0             |
| Table 1, Radiological Environmental Monitoring Program – Direct Radiation         9         7         10         11         12         13         14         15         16         17         17         18         19         10         10         11         12         13         14         15         16         17         18         19         10         10         10         11         12         13         14         14         15         16         17         18         19         10         10         10         10         10         11         12         13         14         14         15         16         17         18         17                                                                                                                                                                                                 | Table      | 1, Radi             | ological Environmental Monitoring I | Program – Direct R   | adiation              |               |
| Table 2, Radiological Environmental Monitoring Program – Airborne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 2, Radi             | ological Environmental Monitoring I | Program – Airborne   | 9                     |               |
| Table 3, Radiological Environmental Monitoring Program – Waterborne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table      | 3, Radi             | ological Environmental Monitoring I | Program – vvaterbo   | orne                  |               |
| Table 4, Radiological Environmental Monitoring Program – Ingestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 4, Radi<br>6 DEM    | Diogical Environmental Monitoring I | Program – Ingestio   | n                     |               |
| Table 5, REMP Sampling Locations – Direct Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table      | 5, REIVI            | P Sampling Locations - Direct Rac   |                      |                       |               |
| Table 6, Reporting Levels for Radioactivity Concentrations in Environmental Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table      | о, керс<br>7 Махі   | mum Values for the Limit of Detect  | entrations in Enviro | nmental Samples       |               |
| Table 7, Maximum values for the Limit of Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Table      | 7, IVIAXI<br>9 Lond | Hee Consula Negreet Recenters       | within 5 Miloo       |                       | 20<br>20      |
| Table 0, Land Use Census – Nearest Receptors within 5 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 0, Lanu<br>0. Somi  | Ose Cellsus – Nealest Receptors     | within 5 wiles       |                       |               |
| Table 9, Sample Deviation Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table      | 9, Sam<br>10 Mor    | othly Sample Results                |                      |                       |               |
| Table 10, Monthly Sample Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table      | 10, 1001<br>11 M/o  | akly Airborne Samples               |                      |                       |               |
| Table 11, Weekly Albome Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table      |                     | erry Aliborne Samples               | Water (nCi/L)        |                       |               |
| Table 13 Complete RFMP Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table      | 13 Cor              | nnlete REMP Results                 |                      |                       |               |
| Table 14 Cross Check Intercomparison Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table      | 14 Cro              | ss Check Intercomparison Results    |                      |                       | 63            |
| Table 15. Split Sample Intercomparison Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table      | 15. Spli            | t Sample Intercomparison Results    |                      |                       |               |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 2 of 82   |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

#### FIGURES

| Figure 1, Potential exposure pathways to Members of the Public due to Plant Operations [6]              | 7         |
|---------------------------------------------------------------------------------------------------------|-----------|
| Figure 2, REMP Sample Locations at Distances Less than Five Miles from the Limerick Generating          | 17        |
| Figure 3 REMP Sample Locations at Distances Greater than Five Miles from the Limerick Generation        | л.<br>а   |
| Station                                                                                                 | 9<br>. 18 |
| Figure 4, REMP Sample Locations on Site or Near the Limerick Generating Station                         | . 19      |
| Figure 5, Air Particulate: Analysis for Gross Beta, Average for Group 1 Indicator vs. Group 2 Indicator | r         |
| vs. Control Location                                                                                    | 22        |
| Figure 6, Surface Water Tritium Results                                                                 | 23        |
| Figure 7, 2024 Comparison of Beta Emitters in Split Samples CGS and TBE Analysis of 16C2                | 24        |
| Figure 8, Drinking Water Gross Beta Samples Control vs. Indicator Comparison                            | 25        |
| Figure 9, Drinking Water Tritium Sample Results                                                         | 25        |
| Figure 10, RGPP Sample Locations                                                                        | .33       |
| ATTACHMENTS                                                                                             |           |
| Attachment 1, Data Table Summary                                                                        | 39        |
| Attachment 2, Complete Data Table for All Analysis Results Obtained In 2024                             | 40        |
| Attachment 3, Cross Check Intercomparison Program                                                       | 59        |
| Attachment 4, Environmental Direct Radiation Dosimetry Results                                          | 81        |
|                                                                                                         |           |

#### 1.0 LIST OF ACRONYMS AND DEFINITIONS

- 1. Airborne Activity Sampling: Continuous sampling of air through the collection of particulates and radionuclides on filter media.
- 2. ARERR: Annual Radioactive Effluent Release Report
- 3. AREOR: Annual Radiological Environmental Operating Report
- 4. BWR: Boiling Water Reactor
- 5. Composite Sample: A series of single collected portions (aliquots) analyzed as one sample. The aliquots making up the sample are collected at time intervals that are very short compared to the composite period.
- 6. Control: A sampling station in a location not likely to be affected by plant effluents due to its distance and/or direction from the station.
- 7. Curie (Ci): A measure of radioactivity equal to  $3.7 \times 10^{10}$  disintegrations per second or 2.22 x  $10^{12}$  disintegrations per minute.
- 8. Direct Radiation Monitoring: The measurement of radiation dose at various distances from the plant is assessed using Thermoluminescent Dosimeters (TLD), Optically Stimulated Luminescence Dosimeters (OSLD) and pressurized ionization chambers.
- 9. EPA: Environmental Protection Agency
- 10. GPI: Groundwater Protection Initiative
- 11. Grab Sample: A single discrete sample drawn at one point in time.
- 12. Indicator: A sampling location that is likely to be affected by plant effluents due to its proximity and/or direction from the plant.
- 13. Ingestion Pathway: The ingestion pathway includes milk, fish, drinking water and garden produce. Also sampled (under special circumstances) are other media such as vegetation or animal products when additional information about particular radionuclides is needed.
- 14. ISFSI: Independent Spent Fuel Storage Installation
- 15. Lower Limit of Detection (LLD): An *a priori* measure of the detection capability of a radiochemistry measurement based on instrument setup, calibration, background, decay time, and sample volume. An LLD is expressed as an activity concentration. The MDA is used for reporting results. LLD are specified by a regulator, such as the NRC and are typically listed in the ODCM.

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 4 of 82   |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

- 16. MDA: Minimum Detectable Activity. For radiochemistry instruments, the MDA is the *a posteriori* minimum concentration that a counting system detects. It is the smallest concentration or activity of radioactive material in a sample that will yield a net count above instrument background and that is detected with 95% probability, with only five % probability of falsely concluding that a blank observation represents a true signal.
- 17. MDC: Minimum Detectable Concentration. This is essentially synonymous with MDA for the purposes of radiological monitoring.
- 18. Mean: The sum of all of the values in a distribution divided by the number of values in the distribution, synonymous with average.
- 19. Microcurie: 3.7 x 10<sup>4</sup> disintegrations per second, or 2.22 x10<sup>6</sup> disintegrations per minute.
- 20. N/A: Not Applicable
- 21. NEI: Nuclear Energy Institute
- 22. NIST: National Institute of Standards and Technology
- 23. NRC: Nuclear Regulatory Commission
- 24. ODCM: Offsite Dose Calculation Manual
- 25. OSLD: Optically Stimulated Luminescence Dosimeter
- 26. pCi/L: picocuries / Liter
- 27. PWR: Pressurized Water Reactor
- 28. REMP: Radiological Environmental Monitoring Program
- 29. TLD: Thermoluminescent Dosimeter

#### 2.0 EXECUTIVE SUMMARY

LGS Radiological Environmental Monitoring Program (REMP) was established prior to the station becoming operational to provide information on background radiation present in the area. The goal of LGS REMP is to evaluate the impact of the station on the environment. Environmental samples from different media are monitored as part of the program in accordance with specifications detailed in the Offsite Dose Calculation Manual (ODCM) [27] and other site-specific requirements. The program compares data from indicator locations near the plant, to Control locations farther away from the site to assess operation impacts.

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 5 of 82   |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

The Annual Radiological Environmental Operating Report (AREOR) provides data obtained through analyses of environmental samples collected at LGS for the reporting period, of January 1<sup>st</sup> through December 31<sup>st</sup>, 2024. During that time period, 1658 analyses were performed on 1362 samples. In assessing all the data gathered for this report and comparing these results with preoperational data and/or 10-year average values, it was concluded that the operation of LGS did not result in detection of plant related radionuclides in the environment.

#### 2.1 <u>Summary of Conclusions:</u>

No measurable activities above background levels were detected. All values were consistent with historical results, which indicate no adverse radiological environmental impacts associated with the operation of LGS. Naturally occurring radionuclides are present in the Earth's crust and atmosphere and exist in detectable quantities throughout the world. It is common to detect naturally occurring radionuclides in many of the samples collected for REMP. Some examples of naturally occurring radionuclides that are frequently seen in samples are potassium-40, beryllium-7, actinium-228 (present as a decay product of radium-228), and radium-226. Additionally, some relatively long-lived anthropogenic radioisotopes, such as strontium-90 and cesium-137, are also seen in some REMP samples; these radionuclides exist in measurable quantities throughout the world as a result of fallout from historic atmospheric nuclear weapons testing and other nuclear events worldwide, such as Fukushima and Chernobyl.

In 2024, Limerick Generating Station released to the environment through the radioactive effluent liquid and gaseous pathways approximately 68 curies of noble gas, fission, and activation products and approximately 62 curies of tritium.

Per the ODCM Control 6.2, the Annual Radioactive Effluent Release Report shall include an assessment of the radiation doses to the hypothetically highest exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources. The ODCM does not require population doses to be calculated. For purposes of this calculation the following assumptions were made:

• Long term annual average meteorology X/Q and D/Q and actual gaseous effluent releases were used.

• Gamma air dose, Beta air dose, Total Body, and Skin doses were attributed to noble gas releases.

• Critical organ and age group dose were attributed to iodine, particulate, Carbon-14, and tritium releases.

• 100 percent occupancy factor was assumed.

• Dosimetry measurements obtained from the REMP for the nearest residence to the Independent Spent Fuel Storage Installation (ISFSI) was used to determine direct radiation exposure.

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 6 of 82   |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

• The highest dose from the critical organ and critical age group for each release pathway were summed and added to the net dosimetry measurement from the nearest residence to the ISFSI for 40 CFR 190 compliance.

The maximum calculated dose to a real individual would not exceed 0.34 mrem (total body), 1.34 mrem (organ), or 0.29 mrem (thyroid).

All doses calculated were below all ODCM and 40 CFR Part 190 limits to a real individual.

|                                             | Whole Body | Thyroid  | Max Other Organ |
|---------------------------------------------|------------|----------|-----------------|
| Limit                                       | 25 mrem    | 75 mrem  | 25 mrem         |
| Gaseous - Noble Gas                         | 5.00E-03   | 5.00E-03 | 8.29E-03        |
| Gaseous - Particulates & Iodine             | 1.50E-03   | 1.57E-03 | 1.50E-03        |
| Carbon-14                                   | 2.43E-01   | 2.43E-01 | 1.21E+00        |
| Liquid                                      | 7.32E-02   | 2.16E-02 | 1.05E-01        |
| Direct Shine                                | 0          | 0        | 0               |
| Total Site Dose                             | 3.23E-01   | 2.71E-01 | 1.32E+00        |
| % Contribution of Carbon-14 to Gaseous Dose | 75         | 90       | 92              |
| Nearby Facility                             | 1.79E-02   | 1.79E-02 | 1.79E-02        |
| Total w/Other Nearby Facility <sup>2</sup>  | 3.41E-01   | 2.89E-01 | 1.34+00         |
| % of Limit                                  | 1.36       | 0.39     | 5.37            |

2024 Total Annual Offsite-Dose Comparison to 40 CFR 190 Limits for LGS<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> 2024 Total Annual Offsite-Dose Comparison to 40 CFR 190 Limits for LGS is a summation of Units to show compliance with 40 CFR Part 190 Limits.

<sup>&</sup>lt;sup>2</sup> Other fuel cycle sources within 5 miles of the site are considered in this analysis.

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 7 of 82  |       |
|----------------------------------------|-----------------|---------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating St | ation |

#### 3.0 INTRODUCTION

The Radiological Environmental Monitoring Program (REMP) provides data on measurable levels of radiation and radioactive materials in the environment. This program also evaluates the relationship between quantities of radioactive materials released from the plant and resultant doses to individuals from principal pathways of exposure. In this capacity, REMP provides a check on the effluent release program and dispersion modeling to ensure that concentrations in the environment due to radioactive effluents conform to the "As Low as Is Reasonably Achievable" (ALARA) design objectives of 10 CFR 50, Appendix I [1], and implements the requirements of Section IV.B.2 and IV.B.3 of Appendix I. REMP is designed to conform to the Nuclear Regulatory Commission (NRC) Regulatory Guide 4.1 [2], NUREG 1302 [4], and the 1979 NRC Branch Technical Position [5].



Figure 1, Potential exposure pathways to Members of the Public due to Plant Operations [6]

Quality assurance aspects of the sampling program and TLD/OSLD data collection are conducted in accordance with Regulatory Guides 4.15 [7] and 4.13 [8]. REMP also adheres to the requirements of Pennsylvania, LGS Technical Specifications, and Offsite Dose Calculation Manual (ODCM). These governing documents dictate the environmental sampling, sample analysis protocols, data reporting, and quality assurance requirements for the environmental monitoring program.

The Annual Radiological Environmental Operating Report provides summaries of the environmental data from exposure pathways, interpretations of the data, and analyses of trends of the results. Routinely monitored pathways include ingestion, inhalation, and direct radiation. Routes of exposure are based on site specific information such as meteorology, receptor locations, and water usage around the plant.

Annual Radiological Environmental Operating ReportYEAR: 2024Page 8 of 82Company: ConstellationPlant: Limerick Generating Station

#### 4.0 SITE DESCRIPTION AND SAMPLE LOCATIONS

The Limerick Generating Station (LGS), consisting of two 3,515 MW boiling water reactors owned and operated by Constellation Energy Generation, LLC, is located adjacent to the Schuylkill River in Montgomery County, Pennsylvania. Unit No. 1 went critical on 22 December 1984. Unit No. 2 went critical on 11 August 1989. The site is located in Piedmont countryside, transversed by numerous valleys containing small tributaries that feed into the Schuylkill River. On the eastern riverbank, elevation rises from approximately 110 to 300 feet mean sea level (MSL). On the western riverbank elevation rises to approximately 50 feet MSL to the western site boundary.

A Radiological Environmental Monitoring Program (REMP) for LGS was initiated in 1971. Review of the 1971 through 1977 REMP data resulted in the modification of the program to comply with changes in the Environmental Report Operating License Stage (EROL) [3] and the Branch Technical Position Paper (Rev. 1, 1979) [5]. The preoperational period for most media covers the periods 1 January 1982 through 21 December 1984 and was summarized in a separate report. This report covers those analyses performed by Constellation Generation Solutions (CGS), Landauer, and Teledyne Brown Engineering (TBE)/GEL Laboratories (GEL) on samples collected during the period of January 1, 2024 through December 31, 2024.

On 6 July 1996, a 10 CFR 20.2002 permit was issued to Limerick for storage of slightly contaminated soils, sediments and sludges obtained from the holding pond, cooling tower, and spray pond systems. These materials will decay to background while in storage. Final disposition will be determined at Station decommissioning.

On 21 July 2008, an ISFSI pad was put into service. The ISFSI is dry cask storage, where spent nuclear fuel is stored.

LGS sampling media are selected based on site specific information such as meteorology, receptor locations, and water usage around the plant. Sampling and analysis frequencies are documented in the Offsite Dose Calculation Manual and site procedures. Required sampling, analysis frequencies, and location of sample collected are captured in the following tables and figures:

- Table 1, Radiological Environmental Monitoring Program Direct Radiation
- Table 2, Radiological Environmental Monitoring Program Airborne
- Table 3, Radiological Environmental Monitoring Program Waterborne
- Table 4, Radiological Environmental Monitoring Program Ingestion
- Table 5, REMP Sampling Locations Direct Radiation
- Figure 2, REMP Sample Locations (at Distances Less than Five Miles from the Limerick Generating Station)
- Figure 3, REMP Sample Locations (at Distances Greater than Five Miles from the Limerick Generating Station)
- Figure 4, REMP Sample Locations (on Site or Near the Limerick Generating Station)

| Annual Radiological Environmental Operating Report |                 | YEAR: 2024     | Page 9 of 82 |
|----------------------------------------------------|-----------------|----------------|--------------|
| Company: Constellation                             | Plant: Limerick | Generating Sta | ation        |

#### 5.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REQUIREMENTS

| Requirement                                                                                                                                                                              | Sample Location Description,<br>Distance, and Direction | Sampling Collection/<br>Frequency | Type and Frequency of Analyses |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------|
| Direct Radiation                                                                                                                                                                         |                                                         |                                   |                                |
| 40 Routine monitoring stations either<br>with two or more dosimeters or with<br>one instrument for measuring and<br>recording dose rate continuously<br>placed as follows:               |                                                         |                                   |                                |
| <ol> <li>An inner ring of stations, one<br/>in each meteorological sector<br/>in the general area of the<br/>SITE BOUNDARY:</li> </ol>                                                   |                                                         |                                   |                                |
| (2) An outer ring of stations, one<br>in each meteorological sector,<br>in the 3-9 mile range from the<br>site                                                                           | See Table 5                                             | Quarterly                         | Gamma dose quarterly.          |
| (3) The balance of the stations<br>placed in special interest<br>areas, such as population<br>centers, nearby residences,<br>schools and in 1 or 2 areas to<br>serve as control stations |                                                         |                                   |                                |

Table 1, Radiological Environmental Monitoring Program – Direct Radiation

| Annual Radiological Environmental Operating Report |                 | YEAR: 2024     | Page 10 of 82 |
|----------------------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                             | Plant: Limerick | Generating Sta | ation         |

### Table 2, Radiological Environmental Monitoring Program – Airborne

| Requirement                                                                                                                                      | Sample Location Description,<br>Distance, and Direction |                                                             | Sampling Collection/<br>Frequency                                            | Type and Frequency of Analyses                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                  | 6C1                                                     | 11,305 feet NE of site<br>Limerick Airport                  |                                                                              |                                                                                                                               |
|                                                                                                                                                  | 10S3                                                    | 2,648 feet E of site<br>Keen Road                           |                                                                              |                                                                                                                               |
| <u>Airborne Radioiodine and</u><br><u>Particulates</u><br>Samples from 5 locations:                                                              | 11S1                                                    | 2,017 feet ESE of site<br>Retired LGS<br>Information Center |                                                                              | Radioiodine canisters:                                                                                                        |
| 3 samples from close to the 3 SITE<br>BOUNDARY locations (in different<br>sectors) of the highest calculated<br>annual average ground level D/Q. | 11S2 <sup>QC</sup>                                      | 2,017 feet ESE of site<br>Retired LGS<br>Information Center | Continuous sampler<br>operation<br>with sample collection<br>weekly, or more | I-131 analysis following canister change<br><u>Particulate Sampler:</u><br>Gross beta radioactivity analysis following filter |
| 1 sample from the vicinity community having one of the highest calculated annual ground level D/Q.                                               | 14S1                                                    | 3,319 feet SSE of site<br>Longview Road                     | frequently if required by dust loading.                                      | change:<br>Gamma isotopic analysis of composite (by<br>location) at least quarterly                                           |
| 1 sample from a control Location, as<br>for example 15-30km distant and in<br>the least prevalent wind direction                                 | 13S4                                                    | 1,186 feet SE of site<br>Longview Road                      |                                                                              |                                                                                                                               |
|                                                                                                                                                  | 15D1                                                    | 16,877 feet SE of site Spring City Substation               |                                                                              |                                                                                                                               |
|                                                                                                                                                  | 22G1 <sup>C</sup>                                       | 93,619 feet SW of site<br>Manor Substation                  |                                                                              |                                                                                                                               |

<sup>C</sup> Indicates a Control location

 $^{\mbox{\scriptsize QC}}$  Indicates a Quality Control duplicate sample location

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 11 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

### Table 3, Radiological Environmental Monitoring Program – Waterborne

| Requirement                                                                                                                                                                          | Sample Location Description, Distance, and Direction                                                                                                                                                                                                                                                                       | Sampling Collection/<br>Frequency                                                                                                                                                  | Type and Frequency of<br>Analyses                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Water</u><br>a. Surface<br>1 sample upstream<br>1 sample downstream                                                                                                               | <ul> <li>24S1 <sup>c</sup></li> <li>1,058 feet SW of site<br/>LGS Intake Building</li> <li>13B1</li> <li>9,225 feet SE of site<br/>Pennsylvania American<br/>Water Company River</li> </ul>                                                                                                                                | Sample collected from a<br>continuous water sampler,<br>monthly. In event sampler is<br>inoperable, weekly grab samples<br>will be collected until sampler<br>returned to service. | Gamma isotopic analysis monthly.<br>Composite for tritium analysis<br>quarterly.                                                                                                                                                                         |
| b. Ground<br>Samples from 1 or 2 sources only<br>if likely to be affected                                                                                                            | No Ground water is sampled and analyze<br>present in the area. The site is hydrologic<br>groundwater development (LGS USFAR                                                                                                                                                                                                | d due to no wells to which groundwat<br>ally isolated from all public groundwat<br>Section 2.4.13.2)                                                                               | er beneath the plant discharges are<br>er supplies and areas of extensive                                                                                                                                                                                |
| <ul> <li>c. Drinking</li> <li>1 sample of each on 1 to 3 of the nearest water supplies that could be affected by its discharge.</li> <li>1 sample from a control location</li> </ul> | <ul> <li>15F7 33,400 feet SSE of site<br/>Phoenixville Water<br/>Treatment Plant</li> <li>15F4 45,514 feet SE of site<br/>AQUA Water Company</li> <li>16C2 14,034 feet SSE of site<br/>Pennsylvania American<br/>Water Company Reservoir</li> <li>28F3 <sup>c</sup> 30,811 feet WNW of site<br/>Pottstown Water</li> </ul> | Sample collected from a<br>continuous water sampler,<br>monthly. In event sampler is<br>inoperable, weekly grab samples<br>will be collected until sampler<br>returned to service  | I-131 analysis on each composite<br>when the dose calculated for the<br>consumption of the water is<br>greater than 1 mrem per year.<br>Composite for gross beta and<br>gamma isotopic analysis monthly.<br>Composite for tritium analysis<br>quarterly. |
| d. Sediment from shoreline<br>1 sample from downstream area<br>with existing or potential<br>recreational value.                                                                     | 16B27,128 feet SSE of site<br>Down River from Plant<br>Discharge Area16C411,510 feet SSE of site<br>Down River from Plant<br>Discharge Area33A2 c4,435 feet NNW of site                                                                                                                                                    | A sediment sample is taken down<br>stream of discharge semi-<br>annually                                                                                                           | Gamma isotopic analysis<br>semiannually.                                                                                                                                                                                                                 |

<sup>c</sup> Indicates a Control location

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 12 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

### Table 4, Radiological Environmental Monitoring Program – Ingestion

| Requirement                                                                                                                  | Sample Location Description, Distance, and Direction |                                                                      | Sampling Collection/<br>Frequency                                                      | Type and Frequency of<br>Analyses                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Ingestion<br>a. Milk<br>Samples from milking animals in 3                                                                    | 18E1                                                 | 22,704 feet S of site<br>Miller Farm                                 |                                                                                        |                                                                                                                 |
| locations within 5 km distance<br>having the highest dose potential. If<br>there are none, then 1 sample from                | 19B1                                                 | 10,317 feet SSW of site<br>Kolb's Farm                               | Semimonthly when animals<br>are on pasture (April 1-Oct 1),<br>monthly at other times. | Gamma isotopic and I-131<br>analyses semimonthly<br>when animals are on<br>pasture : monthly at other<br>times. |
| between 5 to 8 km distance where<br>dose is calculated to be greater than<br>1 mrem per year. 1 sample from                  | 22B1                                                 | 20,011 feet SW of site<br>Pigeon Creek Farm                          |                                                                                        |                                                                                                                 |
| milking animals at a control location<br>(15-30km distance) and in the least<br>prevalent wind direction.                    | 8G1 <sup>c</sup>                                     | 54,504 feet ENE of site<br>Knechel Farm                              |                                                                                        |                                                                                                                 |
| <ul> <li>b. Fish and Invertebrates</li> <li>1 sample of each commercially and regrestionally important species in</li> </ul> | 16C5                                                 | 9,251 feet SE of site<br>LGS Discharge Area                          | Sample in season, or                                                                   | Gamma isotopic analyses                                                                                         |
| vicinity of plant discharge area.<br>1 sample of same species in area<br>not influenced by plant discharge.                  | 29C1 <sup>C</sup>                                    | 13,725 feet WNW of site<br>Area not influenced by Plant<br>Discharge | seasonal.                                                                              | on edible portions                                                                                              |

<sup>c</sup> Indicates a Control location

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 13 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Table 4, Radiological Environmental Monito | oring Program – Ingestion |
|--------------------------------------------|---------------------------|
|--------------------------------------------|---------------------------|

| Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Location Description, Distance, and Direction                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampling Collection/<br>Frequency                          | Type and Frequency of<br>Analyses                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <ul> <li>c. Food Products</li> <li>1 sample of each principal class of<br/>food products from any area that is<br/>irrigated by water in which liquid<br/>plant wastes have been discharged</li> <li>Samples of 3 different kinds of<br/>broad leaf vegetation grown nearest<br/>each of 2 different offsite locations<br/>of highest predicted annual average<br/>ground level D/Q if milk sampling is<br/>not performed.</li> <li>1 sample of each of the similar<br/>broad leaf vegetation grown 15-30<br/>km distance in the least prevalent<br/>wind direction if milk sampling is not<br/>performed.</li> </ul> | <ul> <li>There are no downstream food products that are irrigated by water in which liquid plant wastes have been discharged.</li> <li>11S3 1,848 feet ESE of site Retired LGS Information Center</li> <li>13S3 1,267 feet SE of site Longview Rd at the 500kv Substation</li> <li>31G1 <sup>C</sup> 71,808 feet NW of site Jollyview Farm (1560 Memorial Highway, Oley)</li> <li>No broadleaf vegetation sampling is credited toward REMP because milk sampling is performed.</li> </ul> | At time of harvest<br>Monthly during the growing<br>season | Gamma isotopic and I-131<br>analyses on each sample<br>Gamma isotopic and I-131<br>analyses on each sample |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                                                                                                            |

<sup>C</sup> Indicates a Control location

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 14 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Table 5, REMP Sampling Locations – Direct Radiation

| Site # | Location Type | Sector | Distance (in feet) | Description                    |
|--------|---------------|--------|--------------------|--------------------------------|
| 36S2   | Inner Ring    | N      | 3,183              | Evergreen/Sanatoga Roads       |
| 3S1    | Inner Ring    | NNE    | 2,301              | Field NNE Sector               |
| 5S1    | Inner Ring    | NE     | 2,350              | Possum Hollow                  |
| 7S1    | Inner Ring    | ENE    | 3,099              | Training Center                |
| 10S3   | Inner Ring    | E      | 2,648              | Keen Road                      |
| 11S1   | Inner Ring    | ESE    | 2,017              | Retired LGS Information Center |
| 13S2   | Inner Ring    | SE     | 2,149              | Longview Road                  |
| 14S1   | Inner Ring    | SSE    | 3,319              | Longview Road                  |
| 18S2   | Inner Ring    | S      | 1,390              | Intake Building Area           |
| 21S2   | Inner Ring    | SSW    | 977                | Intake Building Area           |
| 23S2   | Inner Ring    | SW     | 2,793              | Transmission Tower             |
| 25S2   | Inner Ring    | WSW    | 2,445              | Taylor House                   |
| 26S3   | Inner Ring    | W      | 2,088              | Meteorological Tower #2        |
| 29S1   | Inner Ring    | WNW    | 2,886              | Field WNW Sector               |
| 31S1   | Inner Ring    | NW     | 1,395              | NW Sector                      |
| 34S2   | Inner Ring    | NNW    | 3,071              | Meteorological Tower #1        |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 15 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

Table 5, REMP Sampling Locations – Direct Radiation

| Site # | Location Type | Sector | Distance (in feet) | Description          |
|--------|---------------|--------|--------------------|----------------------|
| 36D1   | Outer Ring    | N      | 18,527             | Romig Road           |
| 2E1    | Outer Ring    | NNE    | 25,112             | Laughing Water       |
| 4E1    | Outer Ring    | NE     | 25,221             | Neiffer Road         |
| 7E1    | Outer Ring    | ENE    | 22,489             | Game Farm            |
| 10E1   | Outer Ring    | E      | 20,826             | Royersford Road      |
| 10F3   | Outer Ring    | ESE    | 29,442             | Trappe Substation    |
| 13E1   | Outer Ring    | SE     | 22,772             | Vaughn Road          |
| 16F1   | Outer Ring    | SSE    | 26,608             | Pikeland Substation  |
| 19D1   | Outer Ring    | S      | 18,439             | Snowden Substation   |
| 20F1   | Outer Ring    | SSW    | 27,648             | Sheeder Substation   |
| 24D1   | Outer Ring    | SW     | 20,972             | Porters Mill Road    |
| 25D1   | Outer Ring    | WSW    | 21,044             | Hoffecker Rd/Keim St |
| 28D2   | Outer Ring    | W      | 20,231             | West Cedarville Road |
| 29E1   | Outer Ring    | WNW    | 26,110             | High Substation      |
| 31D2   | Outer Ring    | NW     | 20,446             | Poplar Substation    |
| 34E1   | Outer Ring    | NNW    | 24,243             | Yarnell Road         |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 16 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Lin           |            | Generating Sta | ation |

Table 5, REMP Sampling Locations – Direct Radiation

| Site # | Location Type    | Sector | Distance (in feet) | Description            |
|--------|------------------|--------|--------------------|------------------------|
| 5H1    | Control          | NE     | 130,742            | Birch Station          |
| 6C1    | Special Interest | NE     | 11,305             | Limerick Airport       |
| 9C1    | Special Interest | E      | 11,377             | Reed Road              |
| 13C1   | Special Interest | SE     | 14,980             | King Road              |
| 15D1   | Special Interest | SE     | 16,877             | Spring City Substation |
| 17B1   | Special Interest | S      | 8,462              | Linfield Substation    |
| 20D1   | Special Interest | SSW    | 16,157             | Ellis Woods Road       |
| 31D1   | Special Interest | WNW    | 15,853             | Lincoln Substation     |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 17 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

#### 6.0 MAPS OF COLLECTION SITES



Figure 2, REMP Sample Locations at Distances Less than Five Miles from the Limerick Generating Station





Figure 3, REMP Sample Locations at Distances Greater than Five Miles from the Limerick Generating Station





Figure 4, REMP Sample Locations on Site or Near the Limerick Generating Station

## 7.0 REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

Table 6, Reporting Levels for Radioactivity Concentrations in Environmental Samples

| Radionuclide | Water (pCi/L) | Air Particulates<br>or Gases<br>(pCi/m³) | Fish (pCi/Kg-<br>wet) | Milk (pCi/L) | Food Products<br>(pCi/Kg-wet) |
|--------------|---------------|------------------------------------------|-----------------------|--------------|-------------------------------|
| H-3          | 20,000 (1)    |                                          |                       |              |                               |
| Mn-54        | 1,000         |                                          | 30,000                |              |                               |
| Fe-59        | 400           |                                          | 10,000                |              |                               |
| Co-58        | 1,000         |                                          | 30,000                |              |                               |
| Co-60        | 300           |                                          | 10,000                |              |                               |
| Zn-65        | 300           |                                          | 20,000                |              |                               |
| Zr-Nb-95     | 400           |                                          |                       |              |                               |
| I-131        | 2 (2)         | 0.9                                      |                       | 3            | 100                           |
| Cs-134       | 30            | 10                                       | 1,000                 | 60           | 1,000                         |
| Cs-137       | 50            | 20                                       | 2,000                 | 70           | 2,000                         |
| Ba-La-140    | 200           |                                          |                       | 300          |                               |

Table 7, Maximum Values for the Limit of Detection

| Radionuclide   | Water<br>(pCi/L)        | Air Particulates<br>or Gases<br>(pCi/m³) | Fish<br>(pCi/Kg-wet) | Milk<br>(pCi/L) | Food Products<br>(pCi/Kg-wet) | Sediment<br>(pCi/Kg-dry) |
|----------------|-------------------------|------------------------------------------|----------------------|-----------------|-------------------------------|--------------------------|
| Gross Beta     | 4.0                     | 0.01                                     |                      |                 |                               |                          |
| H-3            | 2,000 (3)               |                                          |                      |                 |                               |                          |
| Mn-54          | 15                      |                                          | 130                  |                 |                               |                          |
| Fe-59          | 30                      |                                          | 260                  |                 |                               |                          |
| Co-58, Co-60   | 15                      |                                          | 130                  |                 |                               |                          |
| Zn-65          | 30                      |                                          | 260                  |                 |                               |                          |
| Zr-95, Nb-95   | 30, 15                  |                                          |                      |                 |                               |                          |
| I-131          | <b>1</b> <sup>(4)</sup> | 0.07                                     |                      | 1               | 60                            |                          |
| Cs-134         | 15                      | 0.05                                     | 130                  | 15              | 60                            | 150                      |
| Cs-137         | 18                      | 0.06                                     | 150                  | 18              | 80                            | 180                      |
| Ba-140, La-140 | 60, 15                  |                                          |                      | 15              |                               |                          |

<sup>&</sup>lt;sup>1</sup> For drinking water samples: If no drinking water pathway exists, a value of 30,000 pCi/L may be used.

<sup>4</sup> If no drinking water pathway exists, a value of 15 pCi/l may be used

<sup>&</sup>lt;sup>2</sup> If no drinking water pathway exists, a value of 20 pCi/l may be used

<sup>&</sup>lt;sup>3</sup> If no drinking water pathway exists, a value of 3,000 pCi/L may be used. Some states may require a lower LLD for drinking water sources- per 40 CFR 141 Safe Drinking Water Act.

## 8.0 SAMPLING PROGRAM, PROGRAM MODIFICATION AND INTEPRETATION OF RESULTS

At most nuclear stations, data was collected prior to plant operation to determine background radioactivity levels in the environment. Annual data is routinely compared to preoperational and/or 10-year average values to determine if changes in the environs are present. Strict comparison is difficult to make due to fallout from historical nuclear weapon testing. Cesium-137 can be routinely found in environmental samples as a result of above ground nuclear weapons testing. It is important to note, levels of Cs-137 in the environment are observed to fluctuate, for example, as silt distributions shift due to natural erosion and transport processes. Cs-137 may or may not be observed in sediment samples. Results from samples collected and analyzed during the year 2024 are described below.

In the following sections, results from direct radiation, air, water, and food products analyzed as part of REMP in 2024 will be discussed. Sampling program descriptions and deviations will also be discussed.

#### 8.1 Environmental Direct Radiation Dosimetry Results

Dose is measured as net exposure (field reading less transit reading) normalized to 91-day quarters. Data is treated and analyzed consistent with ANSI/HPS N13.37-2014 [19], which compares the measured dose for each location to the baseline background dose for that location. Environmental dose rates vary by location, depending on geological and land use considerations, and remain relatively constant for any given location (unless land use changes). Some facilities observe seasonal variation in environmental doses. Baseline Background Doses have been determined for both quarterly and annual measurements at each location using historical field measurements.

ANSI/HPS N13.37-2014 uses the concept of minimum differential dose (MDD), which is the minimum facility-related dose that can be detected above background. Due to natural background variations and measurement sensitivities and uncertainties, minimum differential dose is not zero. MDD is calculated based on statistical performance of the dosimetry system in the environment and is site specific.

Normalized doses that exceed the Minimum Differential Dose value above the Baseline Background Dose are considered to indicate Facility-Related Dose; a quality assurance review is performed to verify that any results indicating Facility-Related Dose are accurate.

During the calendar year 2024, a total of 40 locations were monitored and data analyzed in accordance with the requirements in Table 1, Radiological Environmental Monitoring Program – Direct Radiation. Attachment 4, Environmental Direct Radiation Dosimetry Results, provides the annual direct radiation dosimetry analysis.

There was no direct radiation dose detected from the facility. All OSLD measurements were analyzed, and none were found to have radiation levels that had increased over normal background radiation levels.

| Annual Radiological Environmental Oper | YEAR: 2024 | Page 22 of 82  |       |
|----------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limeric  |            | Generating Sta | ation |

#### 8.2 <u>Air Particulate and Radioiodine Sample Results</u>

Air particulate filters and charcoal canisters were collected from locations specified in Table 1, Radiological Environmental Monitoring Program – Direct Radiation. During the calendar year 2024, a total of 364 samples were collected and analyzed for gross beta, gamma emitters, and iodine. Particulate samplers are used to continuously collect airborne particulates on a filter. The samples are analyzed for gross beta activity following filter changeout, which occurs weekly. Gamma isotopic analysis is also performed on the samples collected at each location and is analyzed quarterly.

Air particulate samples were analyzed for concentrations of gross beta and gammaemitting nuclides. Gross beta and cosmogenic naturally occurring beryllium-7 (Be-7) were detected at levels consistent with those detected in previous years. No fission or activation products were detected. High-sensitivity I-131 analyses were performed on weekly air samples. All I-131 results were less than minimum detectable activity. Gross Beta results are plotted in Figure 5, below.



## Figure 5, Air Particulate: Analysis for Gross Beta, Average for Group 1 Indicator vs. Group 2 Indicator vs. Control Location

Air particulate and radioiodine results from this monitoring period, 2024, were compared to 10 year average as shown in Figure 5, and there were no significant changes.

#### 8.3 <u>Waterborne Sample Results</u>

#### 8.3.1 Surface Water (i.e., Bay, Lake etc.)

Composite water samples are collected monthly at the upstream control location and at the downstream indicator locations. Monthly composite samples are analyzed for gamma emitters. Aliquots from the monthly composites are combined to form a quarterly composite, which is then analyzed for tritium. Tritium was not detected in any samples in 2024, as tritium concentrations were below minimum detectable activity. During the calendar year 2024, a total of 24 surface water samples were collected and analyzed in accordance with the requirements in the ODCM and shown in Table 3, Radiological Environmental Monitoring Program – Waterborne. Tritium concentrations in surface water were well below the EPA tritium drinking water limit of 20,000 pCi/L.

The ODCM does not require low level iodine analysis from locations 13B1 and 24S1. Thus, beginning in 2024, 24S1 is no longer analyzed for low level iodine. Figure 6 shows surface water tritium results for the last 10 years.

ODCM requires gamma isotopic analysis on monthly samples and tritium analysis quarterly on composited samples. (ODCM Table 3.3-1 3.WATERBORNE, a. Surface,  $4^{th}$  column).



Figure 6, Surface Water Tritium Results

# Annual Radiological Environmental Operating ReportYEAR: 2024Page 24 of 82Company: ConstellationPlant: Limerick Generating Station

#### 8.3.2 16C2 Beta Analysis Comparison; CGS vs. TBE 2024

Constellation Generation Solutions (CGS) Laboratory participates in a split sample program with Teledyne Brown Engineering (TBE). Below is the comparison of the 2024 split sample analyses of 16C2 for beta emitters.



Figure 7, 2024 Comparison of Beta Emitters in Split Samples CGS and TBE Analysis of 16C2

#### 8.3.3 Drinking Water

A total of 48 drinking water samples were obtained in 2024. These samples were analyzed for gross beta, low level iodine, and gamma analysis monthly. These samples were analyzed for tritium quarterly in accordance with requirements in the ODCM and shown in Table 3, Radiological Environmental Monitoring Program – Waterborne. Total gross beta activities detected were consistent with those detected in previous years. No other fission or activation products were detected. Tritium concentrations in drinking water were less than MDA, thus far below the EPA tritium drinking water limit of 20,000 pCi/L.

# Annual Radiological Environmental Operating ReportYEAR: 2024Page 25 of 82Company: ConstellationPlant: Limerick Generating Station



Figure 8, Drinking Water Gross Beta Samples Control vs. Indicator Comparison



Figure 9, Drinking Water Tritium Sample Results

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 26 of 82 |        |
|---------------------------------------------|-----------------|---------------|--------|
| Company: Constellation                      | Plant: Limerick | Generating St | tation |

#### 8.3.4 Sediment from Shoreline

Shoreline sediment collections were made in June and November of 2024 and analyzed for gamma-emitting isotopes. Samples are collected at both indicator and control locations. A total of 6 shoreline samples were analyzed in accordance with requirements in the ODCM and shown in Table 3, Radiological Environmental Monitoring Program – Waterborne.

Sediment samples from all locations were analyzed for gamma-emitting nuclides. All analyses were less than minimum detectable activities. No fission or activation products were detected.

#### 8.4 Ingestion Pathway Sample Results

#### 8.4.1 <u>Milk</u>

Milk samples from milking animals were collected at 3 locations within 5 km having the highest dose potential, along with samples collected from a control location 15-30 km in the least prevalent wind direction. Samples were collected and analyzed monthly when cows were not on pasture and biweekly when cows were on pasture. Samples were analyzed for low level iodine and gamma-emitting nuclides. Concentrations of naturally occurring potasssium-40 were consistent with those detected in previous years. No fission or activation products were found.

#### 8.4.2 Fish and Invertebrates

A total of 8 fish samples were collected in 2024. These samples were analyzed for gamma emitting radionuclides in edible portions, in accordance with requirements of the ODCM and summarized in Table 4, Radiological Environmental Monitoring Program – Ingestion. These samples are collected from the indicator and control areas as required by the ODCM (with a bottom feeder species and a predator species collected at each location). All non-natural gamma emitters were less than the minimal detectable activity. Concentrations of naturally occurring potassium-40 (K-40) were consistent with those detected in previous years.

#### 8.4.3 Food Products

A total of 36 vegetation samples were analyzed in 2024 for gamma emitting radionuclides in accordance with requirements of the ODCM, as summarized in Table 4, Radiological Environmental Monitoring Program – Ingestion.

| Annual Radiological Environmental Oper | YEAR: 2024 | Page 27 of 82  |       |
|----------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: L        |            | Generating Sta | ation |

#### 8.4.4 Leafy Vegetation

In accordance with the ODCM and as described in Table 4, Radiological Environmental Monitoring Program – Ingestion, 36 broad leaf vegetation samples were collected from growing locations nearest site boundary in areas of highest predicted annual average ground level D/Q. Samples are collected and analyzed for gamma isotopic activity from the indicator and control locations monthly during growing season. It is common to detect Cs-137 in broadleaf samples at both indicator and control locations. Cs-137 can be attributed to offsite sources such as weapons testing, Chernobyl, and Fukushima events. All non-natural gamma emitters were less than the minimal detectable activity.

#### 9.0 LAND USE CENSUS

An annual land use census is required by the Offsite Dose Calculation Manual and is performed to ensure that changes in the use of areas at or beyond the site boundary are identified and modifications to REMP are made if required by changes in land use. The land use census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR 50 [1]. NUREG-1302 Control 3.12.2 specifies that "a Land Use Census shall be conducted and shall identify within a distance of 8 km (5 mi.) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden of greater than 50 m<sup>2</sup> (500 ft<sup>2</sup>) producing broad leaf vegetation. Note, per NUREG-1302, broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census.

A Land Use Census was conducted during the calendar year 2024, within the growing season, to identify changes in land use, receptor locations, and new exposure pathways. The results for the 2024 Land Use Census are listed in Table 8: Land Use Census – Nearest Receptors within 5 miles. The nearest gardens in all other sectors reported in the 2024 report are the same as the previous year's report. There was no observed water usage for agricultural irrigation of root vegetables drawn directly from the Schuylkill River downriver from Limerick Generating Station.

| Sector                                                                                          | Direction     | Nearest Residence<br>(Miles) | Nearest Garden <sup>(1)</sup><br>(Miles) | Nearest Dairy Animal<br>(Miles) |  |  |
|-------------------------------------------------------------------------------------------------|---------------|------------------------------|------------------------------------------|---------------------------------|--|--|
| А                                                                                               | Ν             | 0.63                         | 0.63                                     | Not Found in Sector             |  |  |
| В                                                                                               | NNE           | 0.72                         | 0.72                                     | Not Found in Sector             |  |  |
| С                                                                                               | NE            | 2.64                         | 2.64                                     | Not Found in Sector             |  |  |
| D                                                                                               | ENE           | 1.41                         | 1.41                                     | 10.32*                          |  |  |
| Е                                                                                               | E             | 0.78                         | 0.78                                     | Not Found in Sector             |  |  |
| F                                                                                               | ESE           | 0.65                         | 0.65                                     | Not Found in Sector             |  |  |
| G                                                                                               | SE            | 1.21                         | 1.21                                     | Not Found in Sector             |  |  |
| Н                                                                                               | SSE           | 1.31                         | 1.31                                     | Not Found in Sector             |  |  |
| J                                                                                               | S             | 1.16                         | 1.16                                     | 4.19*                           |  |  |
| К                                                                                               | SSW           | 1.09                         | 1.09                                     | 1.97*                           |  |  |
| L                                                                                               | SW            | 1.20                         | 1.20                                     | 3.79*                           |  |  |
| М                                                                                               | WSW           | 0.84                         | 0.84                                     | Not Found in Sector             |  |  |
| Ν                                                                                               | W             | 1.68                         | 1.68                                     | Not Found in Sector             |  |  |
| Р                                                                                               | WNW           | 0.84                         | 0.84                                     | Not Found in Sector             |  |  |
| Q                                                                                               | NW            | 1.55                         | 1.55                                     | Not Found in Sector             |  |  |
| R                                                                                               | NNW           | 1.36                         | 1.36                                     | Not Found in Sector             |  |  |
| (1) Large                                                                                       | er than 500 s | quare feet (as can best      | be determined from a dista               | ance)                           |  |  |
| * Denotes current REMP Dairy sample location                                                    |               |                              |                                          |                                 |  |  |
| Red Denotes the site/site information has been updated from the previous year's Land Use Census |               |                              |                                          |                                 |  |  |

#### Table 8, Land Use Census – Nearest Receptors within 5 Miles

#### 10.0 SAMPLE DEVIATIONS, ANOMALIES AND UNAVAILABILITY

Sampling and analysis are performed for media types addressed in the Offsite Dose Calculation Manual (ODCM). Sampling and analysis challenges may be experienced due to a multitude of reasons including environmental factors, loss of OSLDs, contamination of samples, etc. To aid classification of sampling and analysis challenges experienced in 2024, the following three terms are used to describe the issues: Sample Anomalies, Sample Deviation, and Unavailable Samples.

Media that experienced downtime (i.e., air samplers or water samplers) during a surveillance period are classified a "Sample Deviation." "Sample Anomalies" are defined as errors that were introduced to a sample once it arrived in the laboratory, errors that prevent the sample from being analyzed as it normally would, or errors that may have altered the outcome of the analysis (i.e., cross contamination, human error).

# Annual Radiological Environmental Operating ReportYEAR: 2024Page 29 of 82Company: ConstellationPlant: Limerick Generating Station

"Sample Unavailability" is defined as sample collection with no available sample (i.e., food crop, TLD).

All required samples were collected and analyzed as scheduled. There were no sample deviations or anomalies that required corrective action.

|                                | Table 9, Sample Deviation Summary |                                 |                                                                   |                                      |  |  |  |
|--------------------------------|-----------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------------------|--|--|--|
| Sample<br>Type and<br>Analysis | Location                          | Collection<br>Date or<br>Period | Reason for not conducting<br>REMP sampling as required<br>by ODCM | Plans for preventing<br>reoccurrence |  |  |  |
| N/A                            |                                   |                                 |                                                                   |                                      |  |  |  |
|                                |                                   |                                 |                                                                   |                                      |  |  |  |
|                                |                                   |                                 |                                                                   |                                      |  |  |  |
|                                |                                   |                                 |                                                                   |                                      |  |  |  |
|                                |                                   |                                 |                                                                   |                                      |  |  |  |

Annual Radiological Environmental Operating ReportYEAR: 2024Page 30 of 82Company: ConstellationPlant: Limerick Generating Station

#### 11.0 OTHER SUPPLEMENTAL INFORMATION

#### 11.1 Offsite Dose Calculation Manual (ODCM) Changes

| Date of<br>Change | Revision | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/18/2024         | 35       | The ODCM revision 35 changes included revising Table A-1<br>"Radiological Environmental Monitoring Program" to remove<br>inactive milk farm 25C1 and replace with milk farm 22B1 due to<br>the milk farm going out of business. Revised Table A-1<br>"Radiological Environmental Monitoring Program" to remove<br>inactive control milk farm 23F1 and replace with control milk farm<br>8G1 due to the milk farm going out of business. Revised Table<br>II2-32 "Nearest Gaseous Effluent Dose Receptors Distances" to<br>reflect the 2022 Land Use Census Results. Revised table to fix<br>Table A-1 typographical error for number of TLDs at each REMP<br>TLD location. Each TLD used to have 4 elements each, now<br>each OSLD has 2 elements each. Revised Table A-1 to fix<br>typographical error for airborne 6C1 sector from N to NE. Air<br>sampler 6C1 Location is in the right sector based on coordinates<br>and map was incorrect in Table A-1. |
| 10/4/2024         | 36       | The ODCM revision 36 changes included revising Table 4.2-1<br>"Radioactive Liquid Waste Sampling and Analysis Program". The<br>Hold Pond sampling frequency and minimum analysis frequency<br>of principal gamma emitters, I-131, dissolved and entrained gases<br>(gamma emitters) was changed from D (Daily), at least once per<br>24 hours to once per calendar day. The Note g, Samples from<br>the Hold Pond are grab samples obtained daily, was also deleted.<br>The Hold Pond was added to the ODCM revision 33 as a liquid<br>discharge point. The sample table frequency in the ODCM is<br>based on technical specifications and daily means once per 24<br>hours. Sampling once per calendar day is a more conservative<br>sample and analysis frequency to ensure the Hold Pond is<br>sampled every calendar day.                                                                                                                                |

#### 11.2 NEI 07-07 Onsite Radiological Groundwater Monitoring Program

Limerick Generating Station has developed a Groundwater Protection Initiative (GPI) program in accordance with NEI 07-07, Industry Ground Water Protection Initiative – Final Guidance Document. The purpose of the GPI is to ensure timely detection and an effective response to situations involving inadvertent radiological releases to groundwater in order to prevent migration of licensed radioactive material off-site and to quantify impacts on decommissioning. It is important to note that samples and results taken in support of NEI 07-07 on-site groundwater monitoring program are separate from the Radiological Environmental Monitoring Program (REMP).

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 31 of 82 |       |
|----------------------------------------|-----------------|---------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating St | ation |

The Station conformed with its Radiological Groundwater Protection Program (RGPP) in 2024 with respect to sampling protocol. The 2024 RGPP sample locations effectively monitored Systems, Structures, and Components of the Station. Therefore, RGPP sample locations should continue to be sampled in accordance with site procedures. Based on precipitation recapture sample results, tritium present in precipitation is not likely to adversely affect groundwater conditions at the Station. Based on the evaluation of groundwater flow direction, the wells sampled effectively monitored groundwater conditions at the facility.

There were no spills to ground containing radioactive material in 2024.

Samples were collected from onsite wells throughout the year in accordance with the station RGPP. Analytical results and anomalies are discussed below:

#### **RGPP Wells:**

#### <u>Tritium</u>

Limerick Generating Station has two background, four perimeter, and seven source designated wells that are sampled as part of the RGPP. Samples collected from source designated wells are analyzed for tritium quarterly; and samples collected from background and perimeter designated wells are analyzed for tritium annually. Samples from 13 locations were analyzed for tritium activity. Tritium values ranged from non-detectable to 3,580 pCi/L. There is no drinking water pathway available from these groundwater sample locations.

#### Strontium

Samples were analyzed for Sr-89 and Sr-90 and were not detected at concentrations greater than their respective LLDs in samples collected in 2024.

#### Gross Alpha (dissolved and suspended)

Gross-alpha (dissolved) was detected in four samples collected during the 2nd quarter 2024 RGPP sampling round. The gross-alpha concentrations did not exceed the current Alert Levels (three times the historic average).

#### Gamma Emitters

Gamma-radionuclide analysis was performed during the 2nd quarter 2024 RGPP sampling round. Gamma radionuclides, associated with station radionuclides, were not detected at concentrations exceeding their respective LLDS in 2024. The next time gamma-radionuclide analysis will be performed is 2026.

#### Select Transuranics

No samples were analyzed for select transuranics in 2024.

| Annual Radiological Environmental Operating Report |                                    | YEAR: 2024 | Page 32 of 82 |
|----------------------------------------------------|------------------------------------|------------|---------------|
| Company: Constellation                             | Plant: Limerick Generating Station |            |               |

#### Hard-To-Detect

Hard-to-detect (HTD) analyses were performed in 2021 on 7 groundwater locations. Hard to detects (Fe-55 and Ni-63) were not detected at concentrations greater than their respective LLDs. The next sampling event is scheduled to take place in 2026.

Precipitation Recapture:

#### <u>Tritium</u>

The Station collected precipitation recapture samples in January and July 2024. Eight samples were collected during the January and July 2024 sampling rounds. Tritium was detected in six of the eight samples collected in January 2024 with detections ranging between 214 pCi/L (RS-4, south-southwest sector) and 516 pCi/L (RS-3, southwest sector). Tritium was not detected in the samples collected during the July 2024 precipitation sampling round.

Intermittent, low-level tritium detections in monitoring well MW-LR-9 are currently being investigated. Tritium concentrations in MW-LR-9 decreased to historic concentrations since the Unit 1 Steam Seal Evaporator was temporarily repaired on December 17, 2023. As of the 4<sup>th</sup> quarter 2024, the maximum tritium concentration was 1,920 pCi/L (MW-LR-9). This is documented in issue report 04540232.





Figure 10, RGPP Sample Locations

Annual Radiological Environmental Operating ReportYEAR: 2024Page 34 of 82Company: ConstellationPlant: Limerick Generating Station

#### 11.3 Independent Spent Fuel Storage Installation (ISFSI) Monitoring Program

On July 21, 2008, an ISFSI pad was placed in service. The results from the dosimeter location 36S2 were used to determine the direct radiation exposure to the nearest residence from the ISFSI pad. For the 10 CFR 20.2002 permitted storage area, 0 cubic feet was placed on the pad.

#### 11.4 <u>Corrections to Previous Reports</u>

#### 11.4.1 2023 AREOR

- 1. In the 2023 AREOR, it was identified that the dose totals for Tables 1 and 2 should include a summation of all (Units 0, 1, and 2) release points. The spreadsheets (for Gaseous Releases only) used to calculate these values only included Unit 0. The changes to final numbers were negligible against totals and dose limits, which resulted in them not being initially identified. Adding Unit 1 and 2 gaseous release values had no significant impact on margin to any dose limits. Specifically, all values are less than or equal to 10 percent of their applicable dose limits (in all cases less than 0.01 percent of allowed limits were observed). These errors are documented in issue report 04853176. Table 1 note 2 was removed from Gaseous Noble Gas due to separation of gaseous effluents.
- 2. In 2023, the tritium released from the U1 and U2 MTLO Exhaust Vents was greater than 1 percent when compared to all gaseous tritium released from the site. The increase of tritium in the U1 and U2 MTLO Exhaust Vents in 2023 compared to previous years was due to a decrease in the site gaseous tritium released. Per RG 1.21 Revision 2, a significant release point is when any location from which radioactive material is released, contributes greater than 1 percent of the activity discharged from all the release points for a particular type of effluent considered. A significant release point is required to be included in the dose summary tables of the AREOR. There were 12 U1 MTLO Exhaust Vent abnormal release permits and 12 U2 MTLO Exhaust Vent abnormal release permits generated for 2023. The U1 and U2 MTLO Exhaust Vents were included in the gaseous dose summary tables. These errors are documented in issue report 04798720.
- 3. The corrections to the 2023 AREOR Table 1, Total Annual Offsite-Dose Comparison to 40 CFR 190 Limits for LGS and Table 2, Limerick Generating Station Site Dose Summary are as follows:
| Annual Radiological Environmental Operation | YEAR: 2024      | Page 35 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

|                                                | Whole Body          | Thyroid  | Max Other Organ     |
|------------------------------------------------|---------------------|----------|---------------------|
| Limit                                          | 25 mrem             | 75 mrem  | 25 mrem             |
| Gaseous <sup>2</sup> - Noble Gas               | 1.08E-03            | 1.08E-03 | 1.81E-03            |
| Gaseous - Particulates & lodine                | <del>1.13E-04</del> | 1.79E-04 | <del>1.14E-04</del> |
|                                                | 6.46E-04            | 7.03E-04 | 6.53E-04            |
| Carbon-14                                      | 2.39E-01            | 2.39E-01 | 1.19E+00            |
| Liquid                                         | 8.06E-03            | 4.91E-03 | 1.04E-02            |
| Direct Shine                                   | 0                   | 0        | 0                   |
| Total Site Dose                                | <del>2.48E-01</del> | 2.45E-01 | 1.20E+00            |
|                                                | 2.49E-01            | 2.46E-01 |                     |
| % Contribution of Carbon-14 to<br>Gaseous Dose | 96                  | 97       | 99                  |
| Nearby Facility                                | 2.17E-02            | 2.17E-02 | 2.17E-02            |
| Total w/Other Nearby Facility <sup>32</sup>    | 2.70E-01            | 2.66E-01 | 1.22E+00            |
|                                                | 2.71E-01            | 2.67E-01 |                     |
| % of Limit                                     | 1.08                | 0.36     | 4.90                |
|                                                |                     |          | 4.88                |

Table 1, Total Annual Offsite-Dose Comparison to 40 CFR 190 Limits for LGS<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Table 1 is a summation of Units to show compliance with 40 CFR Part 190 Limits.

 <sup>&</sup>lt;sup>2</sup> Gaseous dose values in Table 1 include organ dose from Noble Gas, Iodine, Tritium, and particulates.
 <sup>32</sup> Other fuel cycle sources within 5 miles of the site are considered in this analysis.

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 36 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

|     |                                 | Quarter 1           | Quarter 2            | Quarter 3 | Quarter 4            | Annual              |
|-----|---------------------------------|---------------------|----------------------|-----------|----------------------|---------------------|
| Lic | uid Effluents                   |                     |                      |           |                      |                     |
|     | Limit                           | 3 mrem              | 3 mrem               | 3 mrem    | 3 mrem               | 6 mrem              |
|     | Total Body Dose <sup>2</sup>    | 1.39E-04            | 5.37E-03             | 2.56E-03  | 1.62E-06             | 8.06E-03            |
|     | % Of Limit                      | 0.005               | 0.179                | 0.085     | <0.001               | 0.134               |
|     | Limit                           | 10 mrem             | 10 mrem              | 10 mrem   | 10 mrem              | 20 mrem             |
|     | Maximum Organ Dose <sup>3</sup> | 1.83E-04            | 6.75E-03             | 3.42E-03  | 1.62E-06             | 1.04E-02            |
|     | % Of Limit                      | 0.002               | 0.068                | 0.034     | <0.001               | 0.052               |
| Gas | eous Effluents                  |                     |                      |           |                      |                     |
|     | Limit                           | 10 mrad             | 10 mrad              | 10 mrad   | 10 mrad              | 20 mrad             |
|     | Gamma Air Dose <sup>4</sup>     | 3.45E-04            | 6.35E-04             | 1.07E-04  | 5.54E-05             | 1.14E-03            |
|     | % Of Limit                      | 0.003               | 0.006                | 0.001     | 0.001                | 0.006               |
|     | Limit                           | 20 mrad             | 20 mrad              | 20 mrad   | 20 mrad              | 40 mrad             |
|     | Beta Air Dose <sup>5</sup>      | 2.04E-04            | 3.97E-04             | 6.39E-05  | 3.24E-05             | 6.97E-04            |
|     | % Of Limit                      | 0.001               | 0.002                | <0.001    | <0.001               | 0.002               |
|     | Limit                           | 5 mrem              | 5 mrem               | 5 mrem    | 5 mrem               | 10 mrem             |
|     | NG Total Body Dose <sup>6</sup> | 3.28E-04            | 6.02E-04             | 1.02E-04  | 5.28E-05             | 1.08E-03            |
|     | % Of Limit                      | 0.007               | 0.012                | 0.002     | 0.001                | 0.011               |
|     | Limit                           | 15 mrem             | 15 mrem              | 15 mrem   | 15 mrem              | 30 mrem             |
|     | NG Skin Dose <sup>7</sup>       | 5.43E-04            | 1.01E-03             | 1.68E-04  | 8.76E-05             | 1.81E-03            |
|     | % Of Limit                      | 0.004               | 0.007                | 0.001     | 0.001                | 0.006               |
|     | Limit                           | 15 mrem             | 15 mrem              | 15 mrem   | 15 mrem              | 30 mrem             |
|     | Maximum Organ Dose <sup>8</sup> | <del>1.04E-05</del> | <del>5.99E-05</del>  | 4.05E-05  | <del>6.78E-05</del>  | <del>1.79E-04</del> |
|     |                                 | 1.79E-05            | 5.05E-04             | 4.79E-05  | 1.32E-04             | 7.03E-04            |
|     | % Of Limit                      | <0.001              | <del>&lt;0.001</del> | <0.001    | <del>&lt;0.001</del> | <del>0.001</del>    |
|     |                                 |                     | 0.003                |           | 0.001                | 0.002               |

| Table 2, Limerick | Generating | Station Site | Dose | Summary | 1 |
|-------------------|------------|--------------|------|---------|---|
| ,                 | <b>U</b>   |              |      |         |   |

- <sup>2</sup> Adult, LGS Outfall
  <sup>3</sup> Teenager, LGS Outfall, Liver
  <sup>4</sup> Site Boundary, All Age Groups
  <sup>5</sup> Site Boundary, All Age Groups
  <sup>6</sup> Site Boundary, All Age Groups
  <sup>7</sup> Site Boundary, All Age Groups
  <sup>8</sup> Child, Vegetation, Thyroid

<sup>&</sup>lt;sup>1</sup> Table 2 demonstrates compliance with 10 CFR Part 50, App. I Limits. Carbon-14 dose is not included in this table.

<sup>&</sup>lt;sup>2</sup> Adult, LGS Outfall

Annual Radiological Environmental Operating ReportYEAR: 2024Page 37 of 82Company: ConstellationPlant: Limerick Generating Station

#### 12.0 BIBLIOGRAPHY

- [1] "10 CFR 50, Domestic Licensing of Production and Utilization Facilities", US Nuclear Regulatory Commission, Washington, DC
- [2] "Regulatory Guide 4.1, Radiological Environmental Monitoring for Nuclear Power Plants, Revision 2," Nuclear Regulatory Commission, 2009
- [3] Environmental Report Operating License Stage, Limerick Generating Station, Units 1 and 2, Volumes 1–5 Philadelphia Electric Company
- [4] "NUREG-1302, Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Boiling Water Reactors," Nuclear Regulatory Commission, April 1991
- [5] "Branch Technical Position, Regulatory Guide 4.8, Revision 1," NRC000096, Submitted March 30, 2012, November 1979
- [6] "Japan Atomic Energy Agency," 06 November 2020. [Online]. Available: https://www.jaea.go.jp/english/04/ntokai/houkan/houkan\_02.html
- [7] "Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Inception through Normal Operations to License Termination) -- Effluent Streams and the Environment," Nuclear Regulatory Commission, July, 2007
- [8] "Regulatory Guide 4.13, Performance, Testing, and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications, Revision 2," Nuclear Regulatory Commision, June, 2019
- [9] "NUREG/CR-2919, XOQDOQ Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," Nuclear Regulatory Commission, September, 1982
- [10] "Measurements of Radionuclides in the environment Sampling and Analysis of plutonium in soil," Nuclear Regulatory Commission, 1974
- [11] NCRP, "Report No. 160, Ionizing Radiation Exposure of the Population of the United States," National Council on Radiation Protection, Bethesda, 2009.
- [12] Nuclear Regulatory Commission, 30 June 2015. [Online]. Available: http://www.nrc.gov/readingrm/basic-ref/students/animated-pwr.html. [Accessed October 2020]
- [13] "ICRP Publication 60, ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, 60, Annals of the ICRP Volume 21/1-3," International Commission on Radiation Protection, October, 1991
- [14] "NRC Resource Page," [Online]. Available: http://www.nrc.gov/about-nrc/radiation.html. [Accessed 10 November 2020]
- [15] "NUREG-0133, Preparation of Effluent Technical Specifications for Nuclear Power Plants," Nuclear Regulatory Commission, 1987
- [16] "Regulatory Guide 1.109, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Demonstrating Compliance with 10 CFR Part 50, Appendix I," Nuclear Regulatory Commission, Ocotober, 1977
- [17] Radiation Face Sheets, Health Physics Society, [Online]. Available: http://hps.org/hpspublications/radiationfactsheets.html. [Accessed 2020]
- [18] "NEI 07-07, Industry Ground Water Protection Initiative—Final Guidance Document, Rev. 1," Nuclear Energy Institute, Washington, D.C., 2019

| Annual Radiological Environmental Oper | YEAR: 2024                         | Page 38 of 82 |  |  |
|----------------------------------------|------------------------------------|---------------|--|--|
| Company: Constellation                 | Plant: Limerick Generating Station |               |  |  |

- [19] "ANSI 13.37, Environmental Dosimetry- Criteria for System Design and Implementation," Health Physics Society (HPS), April, 2014
- [20] "40 CFR Part 141, National Primary Drinking Water Regulations," US Environmental Protection Agency, Washington, DC
- [21] Nuclear Regulatory Commission, 25 June 2015. [Online]. Available: http://www.nrc.gov/readingrm/basic-ref/students/animated-bwr.html. [Accessed October 2020]
- [22] "40 CFR 190 Environmental Radiation Protection Standards for Nuclear Power Operation," US Environmental Protection Agency, Washington, DC
- [23] "NUREG-0324 XOQDOQ, Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," Nuclear Regulatory Commission, September, 1977
- [24] "10 CFR 20 Standards for Protection Against Radiation," US Nuclear Regulatory Commission, Washington, DC
- [25] "Pre operational Radiological Environmental Monitoring Program Report, Limerick Generating Station Units 1 and 2," 1 January 1982 through 21 December 1984, Teledyne Isotopes and Radiation Management Corporation
- [26] "Limerick Generating Station Land Use Census," 2024
- [27] "CY-LG-170-301 Limerick Generating Station Units 1 and 2 Offsite Dose Calculation Manual," Current Revision
- [28] "Annual Environmental Quality Assurance Report for the Radiological Environmental Monitoring Program (REMP)," GEL, 2024
- [29] "4<sup>th</sup> Quarter 2024 Quality Assurance Report," Teledyne Browne Engineering Environmental Services, January-December, 2024
- [30] Landauer Incorporated, Proprietary Procedures, Current Revisions
- [31] Normandeau Associates, Inc. (NAI) Sampling Procedures for Collection of Fish and Bottom Sediment for Radiological Analysis, Current Revisions
  - a. ER6 COLLECTION OF FISH SAMPLES FOR RADIOLOGICAL ANALYSIS
  - b. ER7 COLLECTION OF SEDIMENT SAMPLES FOR RADIOLOGICAL ANALYSIS
- [32] GEL Laboratory Procedures, Current Revisions
  - a. GL-RAD-A-002 Tritium
  - b. GL-RAD-A-022 Ni-63
  - c. GL-RAD-A-004 Sr89/90, Liquid
  - d. GL-RAD-A-040 Fe-55
- [33] Teledyne Browne Engineering (TBE), 2018 Analysis Procedures, Current Revisions
  - a. TBE-2001 Alpha Isotopic and Pu-241
  - b. TBE-2006 Iron-55 Activity in Various Matrices if needed
  - c. TBE-2007 Gamma Emitting Radioisotope Analysis
  - d. TBE-2008 Gross Alpha and/or Gross Beta Activity in Various Matrices
  - e. TBE-2011 Tritium Analysis in Drinking Water by Liquid Scintillation
  - f. TBE-2012 Radioiodine in Various Matrices
  - g. TBE-2013 Radionickel Activity in Various Matrices
  - h.TBE-2018 Radiostrontium Analysis by Chemical Separation
- [34] CY-AA-170-1000 Radiological Environmental Monitoring Program (REMP) and Meteorological Program Implementation, Current Revision
- [35] GHD, Inc. Hydrogeologic Investigation Report, Limerick Generating Station, 3146 Sanatoga Road, Pottstown, Pennsylvania, Ref. No. 11189800(1), December, 2019

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 39 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

#### Attachment 1, Data Table Summary

| Madiana                                 | Type, Total<br>Number of                    |                       | Indicator                                          | Location wit<br>Annual            | h Highest<br>Mean                               | Control                                                    | Number of                              |
|-----------------------------------------|---------------------------------------------|-----------------------|----------------------------------------------------|-----------------------------------|-------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| Medium or<br>Pathway Sampled<br>(Units) | Analyses<br>performed<br>(e.g., I-131, 400) | of Detection<br>(LLD) | меал <sup>-</sup> ;<br>(f²).<br>Range <sup>1</sup> | Name<br>Distance and<br>Direction | Mean <sup>1</sup><br>(f²)<br>Range <sup>1</sup> | Mean <sup>1</sup> (f <sup>2</sup> ).<br>Range <sup>1</sup> | Nonroutine<br>Reported<br>Measurements |
| Air Particulates<br>(pCi/m³)            | Gross Beta, (364)                           | 1.0                   | 2.12E-02<br>(312/312)<br>(5.73E-03-<br>5.41E-02)   | 13S4,<br>1,186 feet SE            | 2.25E-02<br>(52/52)<br>(6.45E-03-<br>4.02E-02)  | 1.90E-02<br>(52/52)<br>(6.52E-03-<br>3.24E-02)             | 0                                      |
| Direct Radiation<br>(mrem/qtr.)         | OSLD (320)                                  | N/A                   | 17.5<br>(312/312)<br>(11.1-26.4)                   | 13S2,<br>2,149 feet SE            | 25.10 (8/8)<br>(23.7-26.4)                      | 21.40 (8/8)<br>(18.1-25.2)                                 | 0                                      |
| Surface Water<br>(pCi/L)                | Gross Beta (48)                             | 4                     | 3.04, (36/36)<br>(1.57-5.16)                       | 15F4,<br>45,514 feet SE           | 3.39,<br>(12/12)<br>(1.84-5.16)                 | 2.95 (12/12)<br>(1.84-4.09)                                | 0                                      |

 <sup>&</sup>lt;sup>1</sup> Mean and range are based on detectable measurements only.
 <sup>2</sup> Fraction of detectable measurements at specified locations is indicated in parentheses.

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 40 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

#### Attachment 2, Complete Data Table for All Analysis Results Obtained In 2024

#### Table 10, Monthly Sample Results

Monthly Radionuclides in Surface Water (pCi/L)

|            |                   | 24S1 (Control)         |                   | 13B1           |                        |                   |
|------------|-------------------|------------------------|-------------------|----------------|------------------------|-------------------|
| Date       | Gamma<br>Emitters | Gross Beta<br>Activity | Uncertainty (2-σ) | Gamma Emitters | Gross Beta<br>Activity | Uncertainty (2-σ) |
| 1/29/2024  | *                 | ND                     | ND                | *              | ND                     | ND                |
| 3/4/2024   | *                 | ND                     | ND                | *              | ND                     | ND                |
| 4/1/2024   | *                 | ND                     | ND                | *              | ND                     | ND                |
| 4/29/2024  | *                 | ND                     | ND                | *              | ND                     | ND                |
| 6/3/2024   | *                 | ND                     | ND                | *              | ND                     | ND                |
| 7/1/2024   | *                 | ND                     | ND                | *              | ND                     | ND                |
| 7/29/2024  | *                 | ND                     | ND                | *              | ND                     | ND                |
| 9/3/2024   | *                 | ND                     | ND                | *              | ND                     | ND                |
| 9/30/2024  | *                 | ND                     | ND                | *              | ND                     | ND                |
| 10/28/2024 | *                 | ND                     | ND                | *              | ND                     | ND                |
| 12/2/2024  | *                 | ND                     | ND                | *              | ND                     | ND                |
| 12/30/2024 | *                 | ND                     | ND                | *              | ND                     | ND                |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 41 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Monthly Radionuclides in Drinking Water (pCi/L)

|            |                   | 28F3 (Control)            |                      |                   | 16C2                      |                      |                   | 15F4                      |                      |                   | 15F7                      |                      |
|------------|-------------------|---------------------------|----------------------|-------------------|---------------------------|----------------------|-------------------|---------------------------|----------------------|-------------------|---------------------------|----------------------|
| Date       | Gamma<br>Emitters | Gross<br>Beta<br>Activity | Uncertainty<br>(2-σ) |
| 1/29/2024  | *                 | 2.22E+00                  | 8.28E-01             | *                 | 1.97E+00                  | 8.20E-01             | *                 | 1.84E+00                  | 8.05E-01             | *                 | 1.85E+00                  | 8.01E-01             |
| 3/4/2024   | *                 | 1.84E+00                  | 7.85E-01             | *                 | 1.76E+00                  | 7.84E-01             | *                 | 1.85E+00                  | 7.90E-01             | *                 | 1.70E+00                  | 7.75E-01             |
| 4/1/2024   | *                 | 2.11E+00                  | 8.03E-01             | *                 | 1.57E+00                  | 7.70E-01             | *                 | 2.48E+00                  | 8.29E-01             | *                 | 2.16E+00                  | 8.03E-01             |
| 4/29/2024  | *                 | 1.91E+00                  | 7.50E-01             | *                 | 1.65E+00                  | 7.36E-01             | *                 | 2.16E+00                  | 7.69E-01             | *                 | 1.80E+00                  | 7.41E-01             |
| 6/3/2024   | *                 | 2.54E+00                  | 8.04E-01             | *                 | 2.06E+00                  | 7.72E-01             | *                 | 2.80E+00                  | 8.23E-01             | *                 | 3.39E+00                  | 8.62E-01             |
| 7/1/2024   | *                 | 3.22E+00                  | 8.25E-01             | *                 | 2.84E+00                  | 8.01E-01             | *                 | 3.92E+00                  | 8.73E-01             | *                 | 3.81E+00                  | 8.68E-01             |
| 7/29/2024  | *                 | 4.09E+00                  | 9.14E-01             | *                 | 2.50E+00                  | 8.10E-01             | *                 | 4.04E+00                  | 9.10E-01             | *                 | 2.68E+00                  | 8.76E-01             |
| 9/3/2024   | *                 | 2.85E+00                  | 8.38E-01             | *                 | 2.70E+00                  | 8.27E-01             | *                 | 3.64E+00                  | 8.93E-01             | *                 | 3.59E+00                  | 8.86E-01             |
| 9/30/2024  | *                 | 3.48E+00                  | 8.19E-01             | *                 | 3.96E+00                  | 8.51E-01             | *                 | 4.70E+00                  | 9.02E-01             | *                 | 4.76E+00                  | 9.06E-01             |
| 10/28/2024 | *                 | 3.88E+00                  | 9.29E-01             | *                 | 3.74E+00                  | 9.22E-01             | *                 | 4.29E+00                  | 9.55E-01             | *                 | 4.60E+00                  | 9.76E-01             |
| 12/2/2024  | *                 | 4.00E+00                  | 9.56E-01             | *                 | 2.75E+00                  | 8.76E-01             | *                 | 5.16E+00                  | 1.02E+00             | *                 | 3.96E+00                  | 9.52E-01             |
| 12/30/2024 | *                 | 3.24E+00                  | 8.59E-01             | *                 | 3.78E+00                  | 1.13E+00             | *                 | 3.81E+00                  | 8.96E-01             | *                 | 3.27E+00                  | 8.62E-01             |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 42 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

Monthly Radionuclides in Milk (pCi/L)

| Date      | 18E1 | 19B1 | 22B1 | 8G1 (Control) |
|-----------|------|------|------|---------------|
| 1/17/2024 | *    | *    | *    | *             |
| 2/12/2024 |      | *    | *    | *             |
| 2/13/2024 | *    |      |      |               |
| 3/12/2024 | *    | *    | *    | *             |
| 4/2/2024  | *    | *    | *    | *             |
| 4/16/2024 | *    | *    | *    | *             |
| 4/30/2024 | *    | *    | *    | *             |
| 5/14/2024 | *    | *    | *    | *             |
| 5/28/2024 | *    | *    | *    | *             |
| 6/11/2024 | *    | *    | *    | *             |
| 6/25/2024 | *    | *    | *    | *             |
| 7/9/2024  | *    | *    | *    | *             |
| 7/23/2024 | *    | *    | *    | *             |
| 8/6/2024  | *    | *    | *    | *             |
| 8/20/2024 | *    | *    | *    | *             |
| 9/3/2024  | *    | *    | *    | *             |
| 9/16/2024 | *    | *    | *    | *             |
| 10/1/2024 | *    | *    | *    | *             |

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 43 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Limerick             |  | Generating Sta | ation         |

Monthly Radionuclides in Milk (pCi/L)

| Date       | 18E1 | 19B1 | 22B1 | 8G1 (Control) |
|------------|------|------|------|---------------|
| 10/14/2024 | *    | *    | *    | *             |
| 10/28/2024 | *    | *    | *    | *             |
| 11/12/2024 | *    | *    | *    | *             |
| 11/25/2024 | *    | *    | *    | *             |
| 12/10/2024 | *    | *    | *    | *             |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 44 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

Monthly Radionuclides in Vegetation (pCi/kg wet)

| Sample Date | Sample Code                                     | Sample Type | Gamma Emitters |
|-------------|-------------------------------------------------|-------------|----------------|
| 6/18/2024   |                                                 | Horseradish | *              |
| 6/18/2024   |                                                 | Broccoli    | *              |
| 6/18/2024   |                                                 | Collards    | *              |
| 7/16/2024   |                                                 | Cabbage     | *              |
| 7/16/2024   |                                                 | Broccoli    | *              |
| 7/16/2024   | 11S3                                            | Cauliflower | *              |
| 8/13/2024   | ESE Sector<br>at retired LGS Information Center | Cabbage     | *              |
| 8/13/2024   |                                                 | Kale        | *              |
| 8/13/2024   |                                                 | Collards    | *              |
| 9/10/2024   |                                                 | Collards    | *              |
| 9/10/2024   |                                                 | Kale        | *              |
| 9/10/2024   |                                                 | Horseradish | *              |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 45 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

Monthly Radionuclides in Vegetation (pCi/kg wet)

| Sample Date | Sample Code                                                         | Sample Type | Gamma Emitters |
|-------------|---------------------------------------------------------------------|-------------|----------------|
| 6/18/2024   |                                                                     | Collards    | *              |
| 6/18/2024   | -                                                                   | Lettuce     | *              |
| 6/18/2024   |                                                                     | Horseradish | *              |
| 7/16/2024   |                                                                     | Collards    | *              |
| 7/16/2024   | 13S3<br>SE Sector<br>along Longview Road at the 500Kv<br>substation | Cabbage     | *              |
| 7/16/2024   |                                                                     | Broccoli    | *              |
| 8/13/2024   |                                                                     | Cabbage     | *              |
| 8/13/2024   |                                                                     | Collards    | *              |
| 8/13/2024   |                                                                     | Kale        | *              |
| 9/10/2024   |                                                                     | Collards    | *              |
| 9/10/2024   |                                                                     | Horseradish | *              |
| 9/10/2024   |                                                                     | Kale        | *              |

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 46 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

Monthly Radionuclides in Vegetation (pCi/kg wet)

| Sample Date | Sample Code                                 | Sample Type | Gamma Emitters |
|-------------|---------------------------------------------|-------------|----------------|
| 6/18/2024   |                                             | Broccoli    | *              |
| 6/18/2024   |                                             | Cauliflower | *              |
| 6/18/2024   |                                             | Kale        | *              |
| 7/16/2024   |                                             | Rhubarb     | *              |
| 7/16/2024   | 31G1 (Control)<br>NW sector, Jollyview Farm | Cabbage     | *              |
| 7/16/2024   |                                             | Squash      | *              |
| 8/13/2024   |                                             | Rhubarb     | *              |
| 8/13/2024   |                                             | Cabbage     | *              |
| 8/13/2024   |                                             | Squash      | *              |
| 9/10/2024   |                                             | Squash      | *              |
| 9/10/2024   |                                             | Collards    | *              |
| 9/10/2024   |                                             | Rhubarb     | *              |

\* All Non-Natural Radionuclides <MDA ND - No Data, Sample collected as required.

| Annual Radiological Environmental Operation | YEAR: 2024 | Page 47 of 82  |       |
|---------------------------------------------|------------|----------------|-------|
| Company: Constellation Plant: Limerick      |            | Generating Sta | ation |

Weekly Airborne Samples for I-131 (pCi/m3)

| Date      | 6C1 | 10S3 | 11S1 | 14S1 | 13S4 | 15D1 | 22G1 (Control) |
|-----------|-----|------|------|------|------|------|----------------|
| 1/8/2024  | *   | *    | *    | *    | *    | *    | *              |
| 1/16/2024 | *   | *    | *    | *    | *    | *    | *              |
| 1/22/2024 | *   | *    | *    | *    | *    | *    | *              |
| 1/29/2024 | *   | *    | *    | *    | *    | *    | *              |
| 2/6/2024  | *   | *    | *    | *    | *    | *    | *              |
| 2/12/2024 | *   | *    | *    | *    | *    | *    | *              |
| 2/19/2024 | *   | *    | *    | *    | *    | *    | *              |
| 2/26/2024 | *   | *    | *    | *    | *    | *    | *              |
| 3/4/2024  | *   | *    | *    | *    | *    | *    | *              |
| 3/11/2024 | *   | *    | *    | *    | *    | *    | *              |
| 3/18/2024 | *   | *    | *    | *    | *    | *    | *              |
| 3/25/2024 | *   | *    | *    | *    | *    | *    | *              |
| 4/1/2024  | *   | *    | *    | *    | *    | *    | *              |
| 4/8/2024  | *   | *    | *    | *    | *    | *    | *              |
| 4/15/2024 | *   | *    | *    | *    | *    | *    | *              |
| 4/22/2024 | *   | *    | *    | *    | *    | *    | *              |
| 4/29/2024 | *   | *    | *    | *    | *    | *    | *              |
| 5/6/2024  | *   | *    | *    | *    | *    | *    | *              |
| 5/13/2024 | *   | *    | *    | *    | *    | *    | *              |
| 5/20/2024 | *   | *    | *    | *    | *    | *    | *              |
| 5/28/2024 | *   | *    | *    | *    | *    | *    | *              |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 48 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Weekly Airborne Samples for I-131 (pCi/m3)

| Date       | 6C1 | 10S3 | 11S1 | 14S1 | 13S4 | 15D1 | 22G1<br>(Control) |
|------------|-----|------|------|------|------|------|-------------------|
| 6/3/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 6/10/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 6/17/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 6/25/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 7/1/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 7/8/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 7/15/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 7/22/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 7/29/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 8/5/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 8/12/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 8/19/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 8/26/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 9/3/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 9/9/2024   | *   | *    | *    | *    | *    | *    | *                 |
| 9/16/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 9/23/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 9/30/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 10/7/2024  | *   | *    | *    | *    | *    | *    | *                 |
| 10/14/2024 | *   | *    | *    | *    | *    | *    | *                 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 49 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Weekly Airborne Samples for I-131 (pCi/m3)

| 10/21/2024 | * | * | * | * | * | * | * |
|------------|---|---|---|---|---|---|---|
| 10/29/2024 | * | * | * | * | * | * | * |
| 11/4/2024  | * | * | * | * | * | * | * |
| 11/11/2024 | * | * | * | * | * | * | * |
| 11/18/2024 | * | * | * | * | * | * | * |
| 11/25/2024 | * | * | * | * | * | * | * |
| 12/2/2024  | * | * | * | * | * | * | * |
| 12/9/2024  | * | * | * | * | * | * | * |
| 12/16/2024 | * | * | * | * | * | * | * |
| 12/23/2024 | * | * | * | * | * | * | * |
| 12/30/2024 | * | * | * | * | * | * | * |

\*<MDA, Minimum Detectable Activity

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 50 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

|           | 60                        | C1       | 10                        | S3       | 11                        | S1       | 14                        | S1       | 13S4 15D1                 |          | D1                        | 22G1 (Control) |                           |          |
|-----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------------|---------------------------|----------|
| Date      | Gross<br>Beta<br>Activity | (2-σ)          | Gross<br>Beta<br>Activity | (2-σ)    |
| 1/8/2024  | 1.21E-02                  | 2.02E-03 | 1.67E-02                  | 2.20E-03 | 1.50E-02                  | 2.13E-03 | 1.42E-02                  | 2.09E-03 | 1.39E-02                  | 2.08E-03 | 1.60E-02                  | 2.17E-03       | 1.46E-02                  | 2.12E-03 |
| 1/16/2024 | 2.72E-02                  | 2.08E-03 | 2.47E-02                  | 2.01E-03 | 2.74E-02                  | 2.13E-03 | 2.34E-02                  | 1.98E-03 | 1.94E-02                  | 1.84E-03 | 2.84E-02                  | 2.13E-03       | 2.00E-02                  | 1.83E-03 |
| 1/22/2024 | 3.12E-02                  | 2.66E-03 | 2.65E-02                  | 2.51E-03 | 2.86E-02                  | 2.57E-03 | 2.62E-02                  | 2.49E-03 | 3.31E-02                  | 2.73E-03 | 3.02E-02                  | 2.60E-03       | 2.66E-02                  | 2.55E-03 |
| 1/29/2024 | 1.79E-02                  | 1.98E-03 | 1.56E-02                  | 1.90E-03 | 1.72E-02                  | 1.96E-03 | 1.50E-02                  | 1.87E-03 | 1.35E-02                  | 1.81E-03 | 1.68E-02                  | 1.96E-03       | 1.30E-02                  | 1.78E-03 |
| 2/6/2024  | 1.62E-02                  | 1.81E-03 | 1.55E-02                  | 1.78E-03 | 1.44E-02                  | 1.75E-03 | 1.32E-02                  | 1.70E-03 | 1.45E-02                  | 1.75E-03 | 1.57E-02                  | 1.78E-03       | 1.44E-02                  | 1.73E-03 |
| 2/12/2024 | 2.02E-02                  | 2.33E-03 | 2.14E-02                  | 2.37E-03 | 1.94E-02                  | 2.30E-03 | 1.88E-02                  | 2.29E-03 | 2.12E-02                  | 2.36E-03 | 2.00E-02                  | 2.35E-03       | 1.84E-02                  | 2.34E-03 |
| 2/19/2024 | 2.50E-02                  | 2.22E-03 | 2.39E-02                  | 2.19E-03 | 2.27E-02                  | 2.15E-03 | 2.05E-02                  | 2.07E-03 | 2.44E-02                  | 2.20E-03 | 2.21E-02                  | 2.15E-03       | 1.95E-02                  | 2.00E-03 |
| 2/26/2024 | 2.13E-02                  | 2.12E-03 | 2.07E-02                  | 2.10E-03 | 2.20E-02                  | 2.14E-03 | 2.02E-02                  | 2.08E-03 | 2.33E-02                  | 2.19E-03 | 2.10E-02                  | 2.11E-03       | 1.86E-02                  | 2.02E-03 |
| 3/4/2024  | 2.26E-02                  | 2.13E-03 | 2.15E-02                  | 2.10E-03 | 2.09E-02                  | 2.08E-03 | 1.93E-02                  | 2.02E-03 | 2.28E-02                  | 2.14E-03 | 2.08E-02                  | 2.08E-03       | 2.00E-02                  | 2.06E-03 |
| 3/11/2024 | 7.76E-03                  | 1.60E-03 | 6.89E-03                  | 1.56E-03 | 5.73E-03                  | 1.50E-03 | 6.17E-03                  | 1.53E-03 | 6.45E-03                  | 1.54E-03 | 6.89E-03                  | 1.56E-03       | 6.52E-03                  | 1.54E-03 |
| 3/18/2024 | 2.88E-02                  | 2.35E-03 | 2.74E-02                  | 2.31E-03 | 2.93E-02                  | 2.37E-03 | 2.85E-02                  | 2.34E-03 | 2.90E-02                  | 2.36E-03 | 2.89E-02                  | 2.35E-03       | 2.75E-02                  | 2.31E-03 |
| 3/25/2024 | 1.41E-02                  | 1.91E-03 | 1.56E-02                  | 1.96E-03 | 1.14E-02                  | 1.80E-03 | 1.26E-02                  | 1.85E-03 | 1.35E-02                  | 1.88E-03 | 1.44E-02                  | 1.92E-03       | 1.32E-02                  | 1.90E-03 |
| 4/1/2024  | 1.83E-02                  | 1.95E-03 | 2.13E-02                  | 2.06E-03 | 1.81E-02                  | 1.94E-03 | 1.65E-02                  | 1.88E-03 | 1.99E-02                  | 2.01E-03 | 1.97E-02                  | 2.00E-03       | 1.77E-02                  | 1.90E-03 |
| 4/8/2024  | 9.30E-03                  | 1.55E-03 | 7.86E-03                  | 1.48E-03 | 1.07E-02                  | 1.62E-03 | 7.86E-03                  | 1.48E-03 | 9.66E-03                  | 1.57E-03 | 9.26E-03                  | 1.55E-03       | 7.54E-03                  | 1.47E-03 |
| 4/15/2024 | 1.96E-02                  | 2.03E-03 | 1.85E-02                  | 1.99E-03 | 1.84E-02                  | 1.98E-03 | 1.66E-02                  | 1.92E-03 | 1.76E-02                  | 1.96E-03 | 1.87E-02                  | 2.00E-03       | 1.72E-02                  | 1.94E-03 |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 51 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

|           | 60                        | C1       | 10                        | S3       | 11                        | S1       | 14                        | S1       | 13                        | 13S4 15D1 |                           | 22G1 (Control) |                           |          |
|-----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|-----------|---------------------------|----------------|---------------------------|----------|
| Date      | Gross<br>Beta<br>Activity | (2-σ)     | Gross<br>Beta<br>Activity | (2-σ)          | Gross<br>Beta<br>Activity | (2-σ)    |
| 4/22/2024 | 1.68E-02                  | 1.97E-03 | 1.68E-02                  | 1.97E-03 | 1.60E-02                  | 1.94E-03 | 1.42E-02                  | 1.87E-03 | 1.73E-02                  | 1.99E-03  | 1.75E-02                  | 2.00E-03       | 1.59E-02                  | 1.94E-03 |
| 4/29/2024 | 2.36E-02                  | 2.24E-03 | 1.99E-02                  | 2.12E-03 | 1.93E-02                  | 2.10E-03 | 1.88E-02                  | 2.09E-03 | 2.15E-02                  | 2.18E-03  | 1.98E-02                  | 2.13E-03       | 1.97E-02                  | 2.16E-03 |
| 5/6/2024  | 1.79E-02                  | 2.04E-03 | 1.79E-02                  | 2.04E-03 | 1.64E-02                  | 1.98E-03 | 1.42E-02                  | 1.89E-03 | 1.82E-02                  | 2.04E-03  | 1.87E-02                  | 2.05E-03       | 1.46E-02                  | 1.87E-03 |
| 5/13/2024 | 1.22E-02                  | 1.79E-03 | 1.11E-02                  | 1.75E-03 | 1.17E-02                  | 1.77E-03 | 7.80E-03                  | 1.60E-03 | 1.25E-02                  | 1.80E-03  | 1.25E-02                  | 1.80E-03       | 1.07E-02                  | 1.73E-03 |
| 5/20/2024 | 1.46E-02                  | 1.91E-03 | 1.54E-02                  | 1.94E-03 | 1.53E-02                  | 1.94E-03 | 1.23E-02                  | 1.83E-03 | 1.47E-02                  | 1.91E-03  | 1.37E-02                  | 1.88E-03       | 1.35E-02                  | 1.91E-03 |
| 5/28/2024 | 2.23E-02                  | 1.92E-03 | 2.05E-02                  | 1.86E-03 | 2.13E-02                  | 1.89E-03 | 1.97E-02                  | 1.83E-03 | 2.28E-02                  | 1.94E-03  | 2.14E-02                  | 1.89E-03       | 2.07E-02                  | 1.88E-03 |
| 6/3/2024  | 2.04E-02                  | 2.29E-03 | 1.89E-02                  | 2.23E-03 | 2.01E-02                  | 2.28E-03 | 1.84E-02                  | 2.22E-03 | 2.08E-02                  | 2.31E-03  | 2.10E-02                  | 2.31E-03       | 1.76E-02                  | 2.13E-03 |
| 6/10/2024 | 2.31E-02                  | 2.16E-03 | 1.87E-02                  | 2.01E-03 | 2.13E-02                  | 2.10E-03 | 1.69E-02                  | 1.94E-03 | 2.27E-02                  | 2.15E-03  | 2.14E-02                  | 2.10E-03       | 1.87E-02                  | 2.04E-03 |
| 6/17/2024 | 1.82E-02                  | 2.01E-03 | 1.94E-02                  | 2.06E-03 | 1.66E-02                  | 1.95E-03 | 1.55E-02                  | 1.91E-03 | 1.86E-02                  | 2.03E-03  | 1.81E-02                  | 2.01E-03       | 1.60E-02                  | 1.93E-03 |
| 6/25/2024 | 2.60E-02                  | 2.05E-03 | 2.75E-02                  | 2.10E-03 | 2.67E-02                  | 2.08E-03 | 2.19E-02                  | 1.93E-03 | 2.50E-02                  | 1.94E-03  | 2.56E-02                  | 2.05E-03       | 2.22E-02                  | 1.95E-03 |
| 7/1/2024  | 1.74E-02                  | 2.16E-03 | 1.79E-02                  | 2.18E-03 | 1.59E-02                  | 2.09E-03 | 1.52E-02                  | 2.07E-03 | 1.91E-02                  | 2.23E-03  | 2.03E-02                  | 2.26E-03       | 1.79E-02                  | 2.16E-03 |
| 7/8/2024  | 2.13E-02                  | 2.09E-03 | 2.01E-02                  | 2.05E-03 | 1.88E-02                  | 2.01E-03 | 1.71E-02                  | 1.95E-03 | 2.15E-02                  | 2.11E-03  | 2.09E-02                  | 2.09E-03       | 2.00E-02                  | 2.06E-03 |
| 7/15/2024 | 2.02E-02                  | 2.12E-03 | 1.96E-02                  | 2.10E-03 | 1.95E-02                  | 2.09E-03 | 1.57E-02                  | 1.96E-03 | 2.15E-02                  | 2.16E-03  | 1.88E-02                  | 2.07E-03       | 1.82E-02                  | 2.05E-03 |
| 7/22/2024 | 2.39E-02                  | 2.23E-03 | 2.54E-02                  | 2.29E-03 | 2.50E-02                  | 2.27E-03 | 2.08E-02                  | 2.13E-03 | 2.95E-02                  | 2.41E-03  | 2.54E-02                  | 2.30E-03       | 2.03E-02                  | 2.34E-03 |
| 7/29/2024 | 2.09E-02                  | 2.10E-03 | 2.09E-02                  | 2.10E-03 | 1.98E-02                  | 2.06E-03 | 1.89E-02                  | 2.03E-03 | 2.13E-02                  | 2.12E-03  | 2.19E-02                  | 2.14E-03       | 1.91E-02                  | 2.04E-03 |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 52 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

|            | 60                        | C1       | 10                        | S3       | 11                        | S1       | 14                        | S1       | 13                        | S4       | 15                        | D1       | 22G1 (0                   | Control) |
|------------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|
| Date       | Gross<br>Beta<br>Activity | (2-σ)    |
| 8/5/2024   | 2.77E-02                  | 2.34E-03 | 2.75E-02                  | 2.34E-03 | 2.56E-02                  | 2.28E-03 | 2.17E-02                  | 2.15E-03 | 3.03E-02                  | 2.43E-03 | 2.89E-02                  | 2.39E-03 | 2.47E-02                  | 2.25E-03 |
| 8/12/2024  | 1.76E-02                  | 2.02E-03 | 1.76E-02                  | 2.02E-03 | 1.69E-02                  | 1.99E-03 | 1.63E-02                  | 1.97E-03 | 2.11E-02                  | 2.14E-03 | 1.91E-02                  | 2.07E-03 | 1.72E-02                  | 1.98E-03 |
| 8/19/2024  | 2.28E-02                  | 2.18E-03 | 2.42E-02                  | 2.23E-03 | 2.30E-02                  | 2.19E-03 | 2.02E-02                  | 2.10E-03 | 2.45E-02                  | 2.24E-03 | 2.12E-02                  | 2.13E-03 | 2.02E-02                  | 2.12E-03 |
| 8/26/2024  | 1.96E-02                  | 2.07E-03 | 1.91E-02                  | 2.08E-03 | 2.00E-02                  | 2.11E-03 | 1.60E-02                  | 1.97E-03 | 2.17E-02                  | 2.17E-03 | 1.86E-02                  | 2.06E-03 | 1.63E-02                  | 1.99E-03 |
| 9/3/2024   | 3.02E-02                  | 2.27E-03 | 3.91E-02                  | 2.46E-03 | 3.63E-02                  | 2.39E-03 | 2.67E-02                  | 2.12E-03 | 3.13E-02                  | 2.25E-03 | 3.29E-02                  | 2.30E-03 | 2.90E-02                  | 2.16E-03 |
| 9/9/2024   | 1.41E-02                  | 2.08E-03 | 1.54E-02                  | 2.17E-03 | 1.38E-02                  | 2.10E-03 | 1.52E-02                  | 2.16E-03 | 1.61E-02                  | 2.20E-03 | 1.58E-02                  | 2.18E-03 | 1.41E-02                  | 2.12E-03 |
| 9/16/2024  | 3.52E-02                  | 2.61E-03 | 3.16E-02                  | 2.48E-03 | 3.20E-02                  | 2.49E-03 | 3.01E-02                  | 2.43E-03 | 3.73E-02                  | 2.64E-03 | 3.39E-02                  | 2.54E-03 | 2.96E-02                  | 2.38E-03 |
| 9/23/2024  | 3.24E-02                  | 2.41E-03 | 2.80E-02                  | 2.31E-03 | 2.73E-02                  | 2.29E-03 | 2.47E-02                  | 2.20E-03 | 3.27E-02                  | 2.45E-03 | 2.92E-02                  | 2.35E-03 | 2.44E-02                  | 2.23E-03 |
| 9/30/2024  | 1.11E-02                  | 1.71E-03 | 8.68E-03                  | 1.61E-03 | 9.12E-03                  | 1.63E-03 | 8.96E-03                  | 1.62E-03 | 1.10E-02                  | 1.71E-03 | 1.10E-02                  | 1.71E-03 | 6.56E-03                  | 1.51E-03 |
| 10/7/2024  | 2.05E-02                  | 2.08E-03 | 2.15E-02                  | 2.12E-03 | 2.04E-02                  | 2.08E-03 | 1.82E-02                  | 2.00E-03 | 2.35E-02                  | 2.18E-03 | 2.14E-02                  | 2.12E-03 | 1.83E-02                  | 2.01E-03 |
| 10/14/2024 | 3.30E-02                  | 2.50E-03 | 4.80E-02                  | 2.87E-03 | 4.27E-02                  | 2.73E-03 | 3.29E-02                  | 2.45E-03 | 3.59E-02                  | 2.54E-03 | 4.11E-02                  | 2.69E-03 | 3.24E-02                  | 2.40E-03 |
| 10/21/2024 | 2.19E-02                  | 2.08E-03 | 1.60E-02                  | 1.89E-03 | 1.84E-02                  | 1.99E-03 | 1.65E-02                  | 1.91E-03 | 2.18E-02                  | 2.10E-03 | 1.90E-02                  | 2.00E-03 | 1.62E-02                  | 1.93E-03 |
| 10/29/2024 | 3.26E-02                  | 2.32E-03 | 3.04E-02                  | 2.27E-03 | 2.97E-02                  | 2.25E-03 | 3.00E-02                  | 2.25E-03 | 3.63E-02                  | 2.43E-03 | 3.23E-02                  | 2.32E-03 | 3.05E-02                  | 2.27E-03 |
| 11/4/2024  | 4.00E-02                  | 2.94E-03 | 5.41E-02                  | 3.31E-03 | 4.41E-02                  | 3.05E-03 | 3.92E-02                  | 2.91E-03 | 4.02E-02                  | 2.94E-03 | 4.16E-02                  | 2.99E-03 | 3.21E-02                  | 2.71E-03 |
| 11/11/2024 | 2.02E-02                  | 2.09E-03 | 2.08E-02                  | 2.11E-03 | 2.04E-02                  | 2.10E-03 | 1.60E-02                  | 1.94E-03 | 2.35E-02                  | 2.20E-03 | 2.10E-02                  | 2.13E-03 | 1.91E-02                  | 2.05E-03 |

| Annual Radiological Environmental Oper | ating Report    | YEAR: 2024     | Page 53 of 82 |
|----------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation         |

|            | 6C1 10S3                  |          | S3                        | 11S1     |                           | 14       | S1                        | 13       | S4                        | 15       | D1                        | 22G1 (0  | Control)                  |          |
|------------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|
| Date       | Gross<br>Beta<br>Activity | (2-σ)    |
| 11/18/2024 | 1.80E-02                  | 2.05E-03 | 1.83E-02                  | 2.06E-03 | 1.63E-02                  | 1.99E-03 | 1.40E-02                  | 1.90E-03 | 1.97E-02                  | 2.11E-03 | 1.91E-02                  | 2.09E-03 | 1.43E-02                  | 1.92E-03 |
| 11/25/2024 | 2.63E-02                  | 2.22E-03 | 2.47E-02                  | 2.17E-03 | 2.31E-02                  | 2.11E-03 | 2.15E-02                  | 2.06E-03 | 2.73E-02                  | 2.25E-03 | 2.74E-02                  | 2.25E-03 | 2.56E-02                  | 2.17E-03 |
| 12/2/2024  | 2.95E-02                  | 2.40E-03 | 2.68E-02                  | 2.31E-03 | 2.62E-02                  | 2.29E-03 | 2.35E-02                  | 2.21E-03 | 3.16E-02                  | 2.46E-03 | 3.30E-02                  | 2.50E-03 | 2.71E-02                  | 2.36E-03 |
| 12/9/2024  | 2.22E-02                  | 2.20E-03 | 2.10E-02                  | 2.16E-03 | 2.19E-02                  | 2.19E-03 | 1.91E-02                  | 2.09E-03 | 2.43E-02                  | 2.27E-03 | 2.16E-02                  | 2.18E-03 | 2.07E-02                  | 2.12E-03 |
| 12/16/2024 | 2.49E-02                  | 2.20E-03 | 2.87E-02                  | 2.32E-03 | 2.65E-02                  | 2.25E-03 | 2.23E-02                  | 2.11E-03 | 3.09E-02                  | 2.39E-03 | 3.03E-02                  | 2.37E-03 | 2.20E-02                  | 2.10E-03 |
| 12/23/2024 | 1.46E-02                  | 1.86E-03 | 1.62E-02                  | 1.94E-03 | 1.31E-02                  | 1.82E-03 | 1.45E-02                  | 1.87E-03 | 1.68E-02                  | 1.95E-03 | 1.49E-02                  | 1.87E-03 | 1.33E-02                  | 1.84E-03 |
| 12/30/2024 | 1.88E-02                  | 2.02E-03 | 2.03E-02                  | 2.06E-03 | 1.88E-02                  | 2.01E-03 | 1.75E-02                  | 1.97E-03 | 2.34E-02                  | 2.17E-03 | 2.00E-02                  | 2.07E-03 | 1.51E-02                  | 1.88E-03 |

| Annual Radiological Environmental Operating Report |                 | YEAR: 2024     | Page 54 of 82 |
|----------------------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                             | Plant: Limerick | Generating Sta | ation         |

# Table 12, Quarterly isotopic data – Air (pCi/m<sup>3</sup>), Water (pCi/L)

| Location          | Nuclide                                                    | Q1                                                                                                              | Q2                                                                                | Q3                                                  | Q4                    |  |  |  |
|-------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|--|--|--|
|                   | Quarterly Air Filter Composite for Gamma Emitters (pCi/m³) |                                                                                                                 |                                                                                   |                                                     |                       |  |  |  |
| 6C1               | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 10S3              | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 11S1              | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 14S1              | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 15D1              | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 22G1<br>(Control) | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
| 13S4              | Cs134, Cs137                                               | <mdas< td=""><td><mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""><td><mdas< td=""></mdas<></td></mdas<></td></mdas<> | <mdas< td=""><td><mdas< td=""></mdas<></td></mdas<> | <mdas< td=""></mdas<> |  |  |  |
|                   |                                                            |                                                                                                                 | Quarterly Tritium in Water (p                                                     | Ci/L)                                               |                       |  |  |  |
| 24S1              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |
| 13B1              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |
| 28F3              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |
| 16C2              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |
| 15F4              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |
| 15F7              | H-3                                                        | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>         | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>       | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<>   |  |  |  |

\* All Non-Natural Gamma Emitters <MDA

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 55 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Limerick             |  | Generating Sta | ation         |

# Table 13, Complete REMP Results

|                                                   | Ra          | dionuclides in Fish (pCi/kg wet) |                |
|---------------------------------------------------|-------------|----------------------------------|----------------|
| Sample Code                                       | Sample Date | Sample Type                      | Gamma Emitters |
| 29C1                                              | 05/2/2024   | Bottom Feeder                    | *              |
| BKG (Control)                                     | 05/2/2024   | Predator Fish                    | *              |
| Area not influenced by Plant                      | 10/9/2024   | Bottom Feeder                    | *              |
| Discharge                                         | 10/9/2024   | Predator Fish                    | *              |
|                                                   |             |                                  |                |
| 1005                                              | 05/30/2024  | Bottom Feeder                    | *              |
|                                                   | 05/30/2024  | Predator Fish                    | *              |
| LGS Discharge Area                                | 10/10/2024  | Bottom Feeder                    | *              |
|                                                   | 10/10/2024  | Predator Fish                    | *              |
|                                                   | Radio       | onuclides in Sediment (pCi/kg dr | у)             |
| Sample Code                                       |             | Sample Date                      | Gamma Emitters |
| 16C4                                              |             | 06/7/2024                        | *              |
| Discharge Area                                    |             | 11/15/2024                       | *              |
|                                                   |             |                                  |                |
| 16B2<br>SSE Sector, Down River from Plant         |             | 06/7/2024                        | *              |
| Discharge Area                                    |             | 11/15/2024                       | *              |
|                                                   |             |                                  |                |
| 33A2 (Control)                                    |             | 06/7/2024                        | *              |
| NNW Sector, Upstream from Plant<br>Discharge Area |             | 11/15/2024                       | *              |

\* All Non-Natural Gamma Emitters < MDA

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 56 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Lim                  |  | Generating Sta | ation         |

# Table 13, Complete REMP ResultsComplete RGPP Results ( $pCi/L \pm 2-\sigma$ )

| Location | Sample Date | Gross Alpha | Gross Alpha | Sr89  | SrQD   | Gamma<br>Emitters*              | Qualifier |
|----------|-------------|-------------|-------------|-------|--------|---------------------------------|-----------|
|          | 1/0/2024    | 5.08+5.2    |             | <1.46 | <0.852 |                                 | Quaimer   |
| DW-LR-1  | 5/3/2024    | 4 64+1 45   | <0.070      | ND    | ND     | ND                              | Resample  |
| MW-LR-1  | 4/10/2024   | <0.923      | <1 1        | <7.09 | <0.897 |                                 | Resumple  |
| MW-LR-1  | 4/10/2024   | ND          |             | ND    | ND     |                                 |           |
| MW-LR-2  | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td></td></mda<>    |           |
| MW-I R-4 | 4/9/2024    | <1 44       | <1.09       | <2.97 | <0.880 |                                 |           |
| MW-LR-5  | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td></td></mda<>    |           |
| MW-LR-5  | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td>Dup</td></mda<> | Dup       |
| MW-LR-5  | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td>QA</td></mda<>  | QA        |
| MW-LR-7  | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td></td></mda<>    |           |
| MW-LR-8  | 4/9/2024    | 1.65±0.973  | <0.878      | <2.68 | <0.869 | <mda< td=""><td></td></mda<>    |           |
| MW-LR-9  | 4/9/2024    | 2.5 ±1.16   | 4.32±1.61   | <3.93 | <0.905 | <mda< td=""><td></td></mda<>    |           |
| MW-LR-9  | 4/9/2024    | <1.45       | 2.17±1.33   | <4.65 | <0.948 | <mda< td=""><td>Dup</td></mda<> | Dup       |
| MW-LR-9  | 4/9/2024    | <7.08       | ND          | <1.09 | <0.819 | <mda< td=""><td>QA</td></mda<>  | QA        |
| MW-LR-10 | 4/9/2024    | 1.75±0.991  | <0.878      | <3.61 | <0.753 | <mda< td=""><td></td></mda<>    |           |
| P11      | 4/9/2024    | <1.38       | <0.88       | <5.45 | <0.95  | <mda< td=""><td></td></mda<>    |           |
| P14      | 4/9/2024    | <1.33       | <0.906      | <3.51 | <0.958 | <mda< td=""><td></td></mda<>    |           |
| P17      | 4/10/2024   | ND          | ND          | ND    | ND     | <mda< td=""><td></td></mda<>    |           |

ND - No Data, Sample collected as required.

(Dup) – Sample analyzed in duplicate by TBE.
 (QA) – Additional sample collected and analyzed for Quality Assurance by GEL.
 \* All non-natural gamma emitters less than minimum detectable activity.

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 57 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Limerick             |  | Generating Sta | ation         |

#### Table 13, Complete REMP Results

Concentration of Tritium in Groundwater (pCi/L  $\pm 2\sigma$ )

| Location      | Q1       | Q2       | Q3                 | Q4       |
|---------------|----------|----------|--------------------|----------|
| DW-LR-1       | <194     | <192     | <172               | <186     |
| MW-LR-1       | ND       | <193     | ND                 | ND       |
| MW-LR-2       | ND       | <198     | ND                 | ND       |
| MW-LR-3       | ND       | <193     | ND                 | ND       |
| MW-LR-4       | <194     | <194     | <187               | <184     |
| MW-LR-4 (Dup) | ND       | ND       | <186               | ND       |
| MW-LR-4 (QA)  | ND       | ND       | <169               | ND       |
| MW-LR-5       | ND       | <194     | ND                 | ND       |
| MW-LR-5 (Dup) | ND       | <195     | ND                 | ND       |
| MW-LR-5 (QA)  | ND       | <97.7    | ND                 | ND       |
| MW-LR-7       | ND       | <193     | ND                 | ND       |
| MW-LR-8       | 480±131  | 765±159  | 1330±217 / 721±155 | 430±132  |
| MW-LR-8 (Dup) | ND       | ND       | 727±160 /ND        | ND       |
| MW-LR-9       | 3580±423 | 3000±372 | 2650±338           | 1810±253 |
| MW-LR-9(Dup)  | 3400±403 | 2740±346 | No Data            | 1920±262 |
| MW-LR-9 (QA)  | 3270±283 | 2370±228 | ±                  | 1880±144 |
| MW-LR-10      | <186     | <184     | <191               | <182     |
| LR-P11        | <196     | <178     | <190               | <186     |
| LR-P14        | <189     | <196     | <190               | <184     |
| LR-P17        | ND       | <197     | ND                 | ND       |

ND - No Data, Sample collected as required. (Dup) – Sample analyzed in duplicate by TBE. (QA) – Additional sample collected and analyzed for Quality Assurance by GEL.

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 58 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Limerick             |  | Generating Sta | ation         |

Table 13, Complete REMP ResultsConcentration of Tritium in Recapture Samples (pCi/L  $\pm 2\sigma$ )

| LOCATION | 1/18/2024 | 8/26/2024 |
|----------|-----------|-----------|
| RS-1     | <195      | <185      |
| RS-2     | 288±134   | <188      |
| RS-3     | 516±141   | <186      |
| RS-4     | 214±130   | <186      |
| RS-5     | 226±130   | <185      |
| RS-6     | 235±131   | <188      |
| RS-7     | 244±132   | <186      |
| RS-8     | <187      | <188      |

| Annual Radiological Environmental Operating Report |  | YEAR: 2024     | Page 59 of 82 |
|----------------------------------------------------|--|----------------|---------------|
| Company: Constellation Plant: Lin                  |  | Generating Sta | ation         |

#### Attachment 3, Cross Check Intercomparison Program

Participation in cross check intercomparison studies is mandatory for laboratories performing analyses of REMP samples satisfying the requirements in the ODCM. Intercomparison studies provide a consistent and effective means to evaluate the accuracy and precision of analyses performed by a laboratory. Study results should fall within specified control limits and results that fall outside the control limits are investigated and corrected.

Constellation Generation Solutions Laboratory participated in the following proficiency testing studies provided by Environmental Resource Associates (ERA) and Eckert Ziegler Analytics (EZA) in 2024. The Laboratory's intercomparison program results for 2024 are summarized below.

Attachment 3 is a summary of Constellation Generation Solutions (CGS) laboratory's quality assurance program. It consists of Table 14, which is a compilation of the results of the CGS laboratory's participation in an interlaboratory comparison program with Environmental Resource Associates (ERA) located in Arvada, Colorado and Eckert and Ziegler Analytics, Inc. (EZA) located in Atlanta, Georgia.

It also includes a compilation of the results of the Constellation Generation Solutions (CGS) Laboratory's participation in a split sample program with Teledyne Brown Engineering located in Knoxville, Tennessee.

The CGS laboratory's intercomparison results are in full agreement when they were evaluated using designated acceptance ranges and the Resolution Test Criteria in accordance with the Constellation Radiochemistry Quality Control procedure, except as noted in the Pass/Fail column and described below. The CGS laboratory's results are provided with their analytical uncertainties of 2 sigma. When evaluating with the Resolution Test, a one sigma uncertainty is used to determine Pass or Fail and noted accordingly.

All results reported passed their respective acceptance ranges and Resolution Test Criteria with the following two exceptions:

RAD-137 I-131 water study on 04/08/2024 on Detector 6 (D6) failed high at 29.7 pCi/L for a true value of 25.1 pCi/L with an acceptance range of 21.7 – 28.5 pCi/L. This was a new detector and the study had very low area counts. Of the three runs, the other two values would have passed. Results on all other detectors were successful. Further review of the data indicated all the Ba-133 results in the other RAD-137 water study were in acceptable range. In that study, Ba-133 is meant to approximate I-131 results as it has an energy very close to I-131 in the spectrum. The detector is new in the lab and there is an ongoing review of its performance to identify the optimal operating range and any inherent bias.

| Annual Radiological Environmental Operating Report |                 | YEAR: 2024     | Page 60 of 82 |
|----------------------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                             | Plant: Limerick | Generating Sta | ation         |

E14044 Filter study on 12/05/24 failed low for Cs-134 on D6 reporting 91.3 +/- 3.25 pCi for a true value of 116 pCi. This study also had unusually low area counts in this range of the spectrum. The result did pass the acceptance range of 81.2 - 150.8 pCi, however due to the extremely low activity level, count times were extended significantly to capture other isotopes with lower yields resulting in very low uncertainties for higher yield isotopes. In the case of Cs-134 the uncertainty was less than 5% and at the level of recovery observed, the result failed the resolution test. Routine analysis is normally performed to achieve 15% +/- 5%. Review of all other studies performed on this detector showed successful performance for Cs-134 and all other isotopes. The evaluation of detector performance is ongoing to identify inherent bias or variability at low count rates as is observed in environmental samples.

The vendor laboratories used by CGS for subcontracting and interlaboratory comparison samples, GEL Laboratories and Teledyne Brown Engineering (TBE), also participate in the ERA and EZA interlaboratory comparison program. A presentation of their full data report is provided in their Annual Environmental Quality Assurance Program Reports, (Ref 42,43). In summary, GEL and TBE reported results met vendor and laboratory acceptance ranges with the following exceptions described here.

For TBE, the following three studies reported data that did not meet the specified acceptance criteria and were addressed through the TBE Corrective Action Program. Investigations of the failures are described as follows:

TBE Crosschecks failed high for MRAD-40 Gross Beta at 42.1 pCi/Filter. The true value was 22.2 pCi/Filter and the acceptable range was 13.5-33.5 pCi/Filter. All QC associated with the original sample was acceptable and no anomalies were found. This sample was used as the WG duplicate with a result of 42.5 pCi. Both samples were counted on the same detector. Upon comparison to historical sample data, the alpha activity of this ERA submitted sample was the highest assigned result, and the beta activity was the lowest. Therefore, the alpha-to-beta crosstalk was more significant than normal, causing the beta activity to report falsely high data. The counting room laboratory staff will adjust the alpha-to-beta crosstalk via correction calculation measures when high alpha are observed. Subsequent study MRAD-41 for Gross Beta filter returned acceptable results.

RAD-137 Gross Alpha in water failed low at 35.2 pCi/L. The true value was 52.6 pCi/L and the acceptable range was 39.6 – 65.6 pCi/L. A QuiKResponse repeat study was analyzed and failed high at 40.3 pCi/L and the acceptable range was 21.5 – 38.5 pCi/L. Investigation showed higher than usual solids in the ERA study, out of the usual range of client samples received by the lab. Also, a different attenuation curve, Th-230, was used for the crosscheck than had been used historically. This curve was less representative of client samples. The lab review of data also showed that a replicate run of the sample would have passed but the lab chose the wrong replicate to report. The lab has gone to a lower volume of sample and resumed using the Am-241

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 61 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

attenuation curve which more closely mirrors client samples and subsequent crosschecks are reporting acceptable.

Quarter 1-2024 gamma results for Co-60 (air filter) and Ce-141 (soil) both failed high. The reported result for the filter for Co-60 was 168+/- 12.7 pCi/Filter and the known value was 126+/-2.1 pCi/Filter; the reported results for the soil Ce-141 was 0.106 pCi/g and the known value was 0.0714+/- 0.0013 pCi/g. The root cause investigation showed successful results for the filter on another detector. All QC associated with this sample was acceptable. The soil was recounted on another detector and Ce-141 result of 0.085 was acceptable and generally the same for other geometries. All QC associated with this sample was acceptable. No effective corrective action can be taken at this time. Historically, the result for the filter for Co-60 and the result for the soil for Ce-141 have been well within TBE QC acceptance ranges. TBE has successfully passed cross-check results and it appears that these two results are anomalous. If there is a recurrence, a root cause investigation will be done promptly.

For the GEL Laboratory, the following six studies reported data that did not meet the specified acceptance criteria and were addressed through the GEL's internal nonconformance system. A summary is found below:

RAD-136 water Sr-90 failed high, while I-131 failed low.

RAD-136 water Strontium-90: The Group Leader has reviewed the method to identify the bias. The method LCS trend was reviewed and no anomalies were identified. The calibration used for the analysis was compared to the new calibration performed recently and the original reported data was processed with both calibrations for comparison. Data still maintained a high bias but was within the limits of the study. A sample of known Strontium concentration was analyzed, and the results were processed using the new calibration. The result was within the mid-range of the acceptance limits. Instrument run logs were reviewed and there was no indication of possible bias from a previously counted sample.

RAD-136 water lodine-131: The laboratory has reviewed the data and found no errors. All batch QC samples, including a duplicate, met acceptance criteria. The carrier yields were found to be slightly higher than typically seen in this method, possibly contributing to the low bias in the result. The laboratory will continue to investigate all steps of the analytical process.

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 62 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

RAD-137 water Sr-90 and I-131 studies both failed low.

RAD-137 water Strontium-90: The unacceptable result was analyzed by a modified method of 905.0 and recovered 83% of the known value which is acceptable for the laboratory's LCS. The PT sample was also analyzed by EPA DW method 905.0 and achieved an acceptable result recovering 94% of the assigned value. The RPD between the methods was 12%. The laboratory is evaluating calibration, yield determination, techniques, reagents, carriers, and each step of the process for areas of improvement.

RAD-137 water lodine-131: The laboratory has reviewed the data and no errors were noted. All batch QC samples, including an in-batch duplicate, met acceptance criteria. It was noted that the carrier yields were found to be slightly higher than are typically seen in this method including the reference sample used to calculate the LCS, potentially contributing to the low bias in the result.

#### RAD-138 Sr-90 and I-131 on water failed low.

Strontium-90: The laboratory conducted an in-depth review of all available data and did not identify any specific errors or anomalies that could explain the performance evaluation failure. The instrument calibrations were reviewed for possible significant areas of variance when compared to previous calibrations and none were noted. The quality department conducted direct observations of the analytical processes noting minor areas of improvement during precipitations and column separations. A definitive root cause was not isolated during the investigation.

lodine-131: The laboratory has reviewed the data and found no errors. All batch QC samples, including an inbatch duplicate, met the acceptance criteria. As part of the investigation, the quality department observed the preparation process. During the review, it was identified that a reagent may have been improperly diluted, potentially contributing to the low bias observed in the results. This procedural discrepancy has been noted as a probable cause requiring corrective action.

The laboratory has since successfully completed a single-blind spiked sample, achieving results within the acceptance criteria for both Sr-90 and I-131.

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 63 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Study Data | Study ID           | Llaita | Dadianualida | Reported | Assigned | Acc         | Acceptance  |                   |
|------------|--------------------|--------|--------------|----------|----------|-------------|-------------|-------------------|
| Sludy Dale | Study ID           | Units  | Radionuclide | Value    | Value    | Lower Limit | Upper Limit | Evaluation        |
| 3/14/2024  | E14036 Milk        | pCi/L  | I-131        | 96.7     | 90.8     | 63.6        | 118         | Pass              |
|            |                    | pCi/L  | Cs-134       | 182      | 198      | 139         | 257         | Pass              |
|            |                    | pCi/L  | Cs-137       | 181      | 171      | 120         | 222         | Pass              |
|            |                    | pCi/L  | Ce-141       | 88.1     | 85       | 59.5        | 111         | Pass              |
|            |                    | pCi/L  | Cr-51        | 281      | 230      | 161         | 299         | Pass              |
|            |                    | pCi/L  | Mn-54        | 187      | 183      | 128         | 238         | Pass              |
|            |                    | pCi/L  | Fe-59        | 93.6     | 86.5     | 60.6        | 112         | Pass              |
|            |                    | pCi/L  | Co-60        | 152      | 158      | 111         | 205         | Pass              |
|            |                    | pCi/L  | Zn-65        | 161      | 176      | 123         | 229         | Pass              |
|            |                    |        |              |          |          |             |             |                   |
| 3/14/2024  | E14037 Water       | pCi/L  | Beta Cs-137  | 238      | 231      | 162         | 300         | Pass              |
|            |                    |        |              |          |          |             |             |                   |
| 3/14/2024  | E14038<br>Charcoal | pCi    | I-131        | 75.9     | 90.2     | 63.1        | 117         | Pass              |
|            |                    | pCi    | I-131        | 79.0     | 90.2     | 63.1        | 117         | Pass              |
|            |                    | pCi    | I-131        | 77.1     | 90.2     | 63.1        | 117         | Pass              |
|            |                    | pCi    | I-131        | 77.3     | 90.2     | 63.1        | 117         | Pass              |
|            |                    |        |              |          |          |             |             |                   |
| 4/8/2024   | RAD-137<br>Water   | pCi/L  | I-131        | 27.1     | 25.1     | 21.7        | 28.5        | Pass              |
|            |                    | pCi/L  | I-131        | 25.1     | 25.1     | 21.7        | 28.5        | Pass              |
|            |                    | pCi/L  | I-131        | 27.5     | 25.1     | 21.7        | 28.5        | Pass              |
| 4/8/2024   | RAD-137<br>Water   | pCi/L  | I-131        | 29.7     | 25.1     | 21.7        | 28.5        | Fail <sup>1</sup> |

Table 14, Cross Check Intercomparison Results

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 64 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Table 14, Cross Check Intercomparison Results

| Study Data | Study (D         | Linita | Dedienuelide | Reported Reported | Assigned | Acc         | Performance |            |
|------------|------------------|--------|--------------|-------------------|----------|-------------|-------------|------------|
| Sludy Dale | Sludy ID         | Units  | Radionuciide | Value             | Value    | Lower Limit | Upper Limit | Evaluation |
| 4/8/2024   | RAD-137<br>Water | pCi/L  | Beta Cs-137  | 36.6              | 46.5     | 33.9        | 59.1        | Pass       |
|            |                  | pCi/L  | Cs-134       | 55.9              | 57.8     | 42.8        | 72.8        | Pass       |
|            |                  | pCi/L  | Cs-137       | 190               | 186      | 149         | 223         | Pass       |
|            |                  | pCi/L  | Co-60        | 98.8              | 98.8     | 79.7        | 118         | Pass       |
|            |                  | pCi/L  | Zn-65        | 228               | 240      | 188         | 292         | Pass       |
|            |                  |        |              |                   |          |             |             |            |
| 4/8/2024   | RAD-137<br>Water | pCi/L  | Cs-134       | 60.7              | 57.8     | 42.8        | 72.8        | Pass       |
|            |                  | pCi/L  | Cs-137       | 185               | 186      | 149         | 223         | Pass       |
|            |                  | pCi/L  | Co-60        | 97.7              | 98.8     | 79.7        | 118         | Pass       |
|            |                  | pCi/L  | Zn-65        | 233               | 240      | 188         | 292         | Pass       |
|            |                  |        |              |                   |          |             |             |            |
| 4/8/2024   | RAD-137<br>Water | pCi/L  | Cs-134       | 59.8              | 57.8     | 42.8        | 72.8        | Pass       |
|            |                  | pCi/L  | Cs-137       | 190               | 186      | 149         | 223         | Pass       |
|            |                  | pCi/L  | Co-60        | 97.2              | 98.8     | 79.7        | 118         | Pass       |
|            |                  | pCi/L  | Zn-65        | 240               | 240      | 188         | 292         | Pass       |
|            |                  |        |              |                   |          |             |             |            |
| 4/8/2024   | RAD-137<br>Water | pCi/L  | Cs-134       | 58.6              | 57.8     | 42.8        | 72.8        | Pass       |
|            |                  | pCi/L  | Cs-137       | 185               | 186      | 149         | 223         | Pass       |
| 4/8/2024   | RAD-137<br>Water | pCi/L  | Co-60        | 102               | 98.8     | 79.7        | 118         | Pass       |
|            |                  | pCi/L  | Zn-65        | 227               | 240      | 188         | 292         | Pass       |
|            |                  |        |              |                   |          |             |             |            |
| 6/13/2024  | E14101 Soil      | pCi/g  | Cs-134       | 0.406             | 0.408    | 0.286       | 0.530       | Pass       |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 65 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Study Data | Study ID      | Unito  | Dadianualida | Reported | Assigned | Acc         | Performance |            |
|------------|---------------|--------|--------------|----------|----------|-------------|-------------|------------|
| Sludy Dale | Study ID      | UTIILS | Radionuciide | Value    | Value    | Lower Limit | Upper Limit | Evaluation |
| 6/13/2024  | E14101 Soil   | pCi/g  | Cs-137       | 0.402    | 0.451    | 0.316       | 0.586       | Pass       |
|            |               | pCi/g  | Cs-134       | 0.372    | 0.408    | 0.286       | 0.530       | Pass       |
|            |               | pCi/g  | Cs-137       | 0.365    | 0.451    | 0.316       | 0.586       | Pass       |
|            |               |        |              |          |          |             |             |            |
| 6/13/2024  | E14039 Water  | pCi/L  | Beta Cs-137  | 265      | 262      | 183         | 341         | Pass       |
|            |               |        |              |          |          |             |             |            |
| 6/13/2024  | E14040        | pCi/L  | Ce-141       | 45.4     | 37.5     | 26.3        | 48.8        | Pass       |
|            |               | pCi/L  | Co-60        | 402      | 391      | 274         | 508         | Pass       |
|            |               | pCi/L  | Cr-51        | 250      | 291      | 204         | 378         | Pass       |
|            |               | pCi/L  | Cs-134       | 237      | 242      | 169         | 315         | Pass       |
|            |               | pCi/L  | Cs-137       | 233      | 229      | 160         | 298         | Pass       |
|            |               | pCi/L  | Fe-59        | 183      | 174      | 122         | 226         | Pass       |
|            |               | pCi/L  | Mn-54        | 209      | 204      | 143         | 265         | Pass       |
|            |               | pCi/L  | Zn-65        | 89.6     | 99.1     | 69.4        | 129         | Pass       |
|            |               |        |              |          |          |             |             |            |
| 6/13/2024  | E14040        | pCi/L  | Ce-141       | 40       | 37.5     | 26.3        | 48.8        | Pass       |
|            |               | pCi/L  | Co-60        | 397      | 391      | 274         | 508         | Pass       |
|            |               | pCi/L  | Cr-51        | 286      | 291      | 204         | 378         | Pass       |
|            |               | pCi/L  | Cs-134       | 238      | 242      | 169         | 315         | Pass       |
|            |               | pCi/L  | Cs-137       | 237      | 229      | 160         | 298         | Pass       |
|            |               | pCi/L  | Fe-59        | 183      | 174      | 122         | 226         | Pass       |
|            |               | pCi/L  | Mn-54        | 212      | 204      | 143         | 265         | Pass       |
|            |               | pCi/L  | Zn-65        | 95.4     | 99.1     | 69.4        | 129         | Pass       |
|            |               |        |              |          |          |             |             |            |
| 6/13/2024  | E14041 Filter | pCi    | Ce-141       | 25.4     | 25.2     | 17.6        | 32.8        | Pass       |
|            |               | pCi    | Co-60        | 258      | 262      | 183         | 341         | Pass       |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 66 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Study Data | Study ID          | Unito | Dadianualida | Reported | Assigned | Acc         | Acceptance  |            |  |
|------------|-------------------|-------|--------------|----------|----------|-------------|-------------|------------|--|
| Sludy Dale | Sludy ID          | Units | Radionuciide | Value    | Value    | Lower Limit | Upper Limit | Evaluation |  |
| 6/13/2024  | E14041 Filter     | pCi   | Cr-51        | 211      | 195      | 137         | 254         | Pass       |  |
|            |                   | pCi   | Cs-134       | 137      | 162      | 113         | 211         | Pass       |  |
|            |                   | pCi   | Cs-137       | 159      | 153      | 107         | 199         | Pass       |  |
|            |                   | pCi   | Fe-59        | 132      | 117      | 81.9        | 152         | Pass       |  |
|            |                   | pCi   | Mn-54        | 143      | 137      | 95.9        | 178         | Pass       |  |
|            |                   | pCi   | Zn-65        | 71.0     | 66.4     | 46.5        | 86.3        | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 6/13/2024  | E14042A Filter    | pCi   | Beta Cs-137  | 249      | 220      | 154         | 286         | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/12/2024  | E14043 Filter     | pCi   | Beta Cs-137  | 242      | 221      | 84.7        | 157         | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/12/2024  | E14102 Soil       | pCi/g | Cs-134       | 0.318    | 0.336    | 0.235       | 0.437       | Pass       |  |
|            |                   | pCi/g | Cs-137       | 0.287    | 0.295    | 0.207       | 0.384       | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/12/2024  | E14102 Soil       | pCi/g | Cs-134       | 0.299    | 0.336    | 0.235       | 0.437       | Pass       |  |
|            |                   | pCi/g | Cs-137       | 0.269    | 0.295    | 0.207       | 0.384       | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/12/2024  | E14102 Soil       | pCi/g | Cs-134       | 0.305    | 0.336    | 0.235       | 0.437       | Pass       |  |
|            |                   | pCi/g | Cs-137       | 0.277    | 0.295    | 0.207       | 0.384       | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/12/2024  | E14102 Soil       | pCi/g | Cs-134       | 0.312    | 0.336    | 0.235       | 0.437       | Pass       |  |
|            |                   | pCi/g | Cs-137       | 0.282    | 0.295    | 0.207       | 0.384       | Pass       |  |
|            |                   |       |              |          |          |             |             |            |  |
| 9/16/2024  | MRAD-41<br>Filter | pCi   | Cs-134       | 499      | 581      | 377         | 712         | Pass       |  |
|            |                   | pCi   | Cs-137       | 880      | 848      | 696         | 1110        | Pass       |  |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 67 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

Table 14, Cross Check Intercomparison Results

| Study Data | Study ID          | Linita | Padiapualida | Reported | Assigned | Acc         | ceptance    | Performance |
|------------|-------------------|--------|--------------|----------|----------|-------------|-------------|-------------|
| Sludy Dale | Study ID          | Units  | Radionuclide | Value    | Value    | Lower Limit | Upper Limit | Evaluation  |
| 9/16/2024  | MRAD-41<br>Filter | pCi    | Co-60        | 865      | 839      | 713         | 1070        | Pass        |
|            |                   | pCi    | Zn-65        | 269      | 239      | 196         | 365         | Pass        |
|            |                   |        |              |          |          |             |             |             |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | Cs-134       | 79.6     | 80.2     | 63.0        | 97.4        | Pass        |
|            |                   | pCi/L  | Cs-137       | 49.7     | 46.3     | 23.3        | 69.3        | Pass        |
|            |                   | pCi/L  | Co-60        | 47.9     | 45.3     | 31.6        | 59.0        | Pass        |
|            |                   | pCi/L  | Zn-65        | 108      | 114      | 75.0        | 153         | Pass        |
|            |                   |        |              |          |          |             |             |             |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | Cs-134       | 79.8     | 80.2     | 63.0        | 97.4        | Pass        |
|            |                   | pCi/L  | Cs-137       | 46.0     | 46.3     | 23.3        | 69.3        | Pass        |
|            |                   | pCi/L  | Co-60        | 49.4     | 45.3     | 31.6        | 59.0        | Pass        |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | Zn-65        | 106      | 114      | 75.0        | 153         | Pass        |
|            |                   |        |              |          |          |             |             |             |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | Cs-134       | 79.4     | 80.2     | 63.0        | 97.4        | Pass        |
|            |                   | pCi/L  | Cs-137       | 46.3     | 46.3     | 23.3        | 69.3        | Pass        |
|            |                   | pCi/L  | Co-60        | 47.5     | 45.3     | 31.6        | 59.0        | Pass        |
|            |                   | pCi/L  | Zn-65        | 106      | 114      | 75.0        | 153         | Pass        |
|            |                   |        |              |          |          |             |             |             |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | I-131        | 26.4     | 26.3     | 22.7        | 29.9        | Pass        |
|            |                   |        |              |          |          |             |             |             |
| 10/4/2024  | RAD-139<br>Water  | pCi/L  | I-131        | 26.3     | 26.3     | 22.7        | 29.9        | Pass        |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 68 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Study Data | Study ID      | Study ID Unite | Repo         | Reported Assigned | Acceptance |             | Performance |                   |
|------------|---------------|----------------|--------------|-------------------|------------|-------------|-------------|-------------------|
| Sludy Dale | Study ID      | Units          | Radionucilde | Value             | Value      | Lower Limit | Upper Limit | Evaluation        |
| 12/5/2024  | E14044 Filter | pCi            | Ce-141       | 75.7              | 74.8       | 52          | 97          | Pass              |
|            |               | pCi            | Co-58        | 105               | 97.9       | 69          | 127         | Pass              |
|            |               | pCi            | Cr-60        | 220               | 219        | 153         | 285         | Pass              |
|            |               | pCi            | Cr-51        | 182               | 185        | 130         | 241         | Pass              |
|            |               | pCi            | Cs-134       | 97.9              | 116        | 81          | 151         | Pass              |
|            |               | pCi            | Cs-137       | 144               | 144        | 101         | 187         | Pass              |
|            |               | pCi            | Fe-59        | 130               | 107        | 75          | 139         | Pass              |
|            |               | pCi            | Mn-54        | 113               | 104        | 73          | 135         | Pass              |
|            |               | pCi            | Zn-65        | 164               | 155        | 109         | 202         | Pass              |
|            |               |                |              |                   |            |             |             |                   |
| 12/5/2024  | E14044 Filter | pCi            | Ce-141       | 69.3              | 74.8       | 52          | 97          | Pass              |
|            |               | pCi            | Co-58        | 93.7              | 97.9       | 69          | 127         | Pass              |
|            |               | pCi            | Cr-60        | 196               | 219        | 153         | 285         | Pass              |
|            |               | pCi            | Cr-51        | 166               | 185        | 130         | 241         | Pass              |
|            |               | pCi            | Cs-134       | 91.3              | 116        | 81          | 151         | Fail <sup>1</sup> |
|            |               | pCi            | Cs-137       | 135               | 144        | 101         | 187         | Pass              |
|            |               | pCi            | Fe-59        | 113               | 107        | 75          | 139         | Pass              |
|            |               | pCi            | Mn-54        | 106               | 104        | 73          | 135         | Pass              |
|            |               | pCi            | Zn-65        | 146               | 155        | 109         | 202         | Pass              |
|            |               |                |              |                   |            |             |             |                   |
| 12/5/2024  | E14044 Filter | pCi            | Ce-141       | 66.6              | 74.8       | 52          | 97          | Pass              |
|            |               | pCi            | Co-58        | 92.4              | 97.9       | 69          | 127         | Pass              |
|            |               | pCi            | Cr-60        | 204               | 219        | 153         | 285         | Pass              |
|            |               | pCi            | Cr-51        | 175               | 185        | 130         | 241         | Pass              |
|            |               | pCi            | Cs-134       | 95.7              | 116        | 81          | 151         | Pass              |
|            |               | pCi            | Cs-137       | 139               | 144        | 101         | 187         | Pass              |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 69 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Study Data | Study ID           | Study ID Units Ra | Padionuclido | Radionuclide Reported Value | Assigned<br>Value | Acceptance  |             | Performance |
|------------|--------------------|-------------------|--------------|-----------------------------|-------------------|-------------|-------------|-------------|
| Sludy Dale | Sludy ID           |                   | Radionuciide |                             |                   | Lower Limit | Upper Limit | Evaluation  |
| 12/5/2024  | E14044 Filter      | pCi               | Fe-59        | 119                         | 107               | 75          | 139         | Pass        |
|            |                    | pCi               | Mn-54        | 102                         | 104               | 73          | 135         | Pass        |
|            |                    | pCi               | Zn-65        | 139                         | 155               | 109         | 202         | Pass        |
|            |                    |                   |              |                             |                   |             |             |             |
| 12/5/2024  | E14045 Water       | pCi/L             | Beta Cs-137  | 257                         | 240               | 168         | 312         | Pass        |
|            |                    |                   |              |                             |                   |             |             |             |
| 12/5/2024  | E14046<br>Charcoal | pCi               | I-131        | 58.0                        | 65.3              | 45.7        | 84.9        | Pass        |
|            |                    | pCi               | I-131        | 59.3                        | 65.3              | 45.7        | 84.9        | Pass        |
|            |                    | pCi               | I-131        | 59.4                        | 65.3              | 45.7        | 84.9        | Pass        |
|            |                    |                   |              |                             |                   |             |             |             |
| 12/5/2024  | E14047 Milk        | pCi/L             | Ce-141       | 74.7                        | 71.6              | 50.1        | 93.1        | Pass        |
|            |                    | pCi/L             | Co-58        | 95.2                        | 93.7              | 65.6        | 122         | Pass        |
|            |                    | pCi/L             | Co-60        | 211                         | 210               | 147         | 273         | Pass        |
|            |                    | pCi/L             | Cr-51        | 164                         | 177               | 124         | 230         | Pass        |
|            |                    | pCi/L             | Cs-134       | 114                         | 111               | 77.7        | 144         | Pass        |
|            |                    | pCi/L             | Cs-137       | 150                         | 138               | 96.6        | 179         | Pass        |
|            |                    | pCi/L             | Fe-59        | 112                         | 102               | 71.4        | 133         | Pass        |
|            |                    | pCi/L             | I-131        | 50.1                        | 51.0              | 35.7        | 66.3        | Pass        |
|            |                    | pCi/L             | Mn-54        | 106                         | 99.5              | 69.7        | 129         | Pass        |
|            |                    | pCi/L             | Zn-65        | 141                         | 149               | 104         | 194         | Pass        |
|            |                    |                   |              |                             |                   |             |             |             |
| 12/5/2024  | E14047 Milk        | pCi/L             | Ce-141       | 77.8                        | 71.6              | 50.1        | 93.1        | Pass        |
|            |                    | pCi/L             | Co-58        | 96.9                        | 93.7              | 65.6        | 122         | Pass        |
|            |                    | pCi/L             | Co-60        | 208                         | 210               | 147         | 273         | Pass        |
|            |                    | pCi/L             | Cr-51        | 205                         | 177               | 124         | 230         | Pass        |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 70 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Table 14, | Cross | Check | Intercompari | son Results |
|-----------|-------|-------|--------------|-------------|
|-----------|-------|-------|--------------|-------------|

| Study Data | Study JD    | Study ID Unite Padian | Dedienuelide | Reported | Assigned<br>Value | Acceptance  |             | Performance |
|------------|-------------|-----------------------|--------------|----------|-------------------|-------------|-------------|-------------|
| Sludy Dale | Sludy ID    | Units                 | Radionuciide | Value    |                   | Lower Limit | Upper Limit | Evaluation  |
| 12/5/2024  | E14047 Milk | pCi/L                 | Cs-134       | 110      | 111               | 77.7        | 144         | Pass        |
|            |             | pCi/L                 | Cs-137       | 140      | 138               | 96.6        | 179         | Pass        |
|            |             | pCi/L                 | Fe-59        | 100      | 102               | 71.4        | 133         | Pass        |
|            |             | pCi/L                 | I-131        | 45.5     | 51.0              | 35.7        | 66.3        | Pass        |
|            |             | pCi/L                 | Mn-54        | 109      | 99.5              | 69.7        | 129         | Pass        |
|            |             | pCi/L                 | Zn-65        | 136      | 149               | 104         | 194         | Pass        |
|            |             |                       |              |          |                   |             |             |             |
| 12/5/2024  | E14047 Milk | pCi/L                 | Ce-141       | 71.9     | 71.6              | 50.1        | 93.1        | Pass        |
|            |             | pCi/L                 | Co-58        | 89.7     | 93.7              | 65.6        | 122         | Pass        |
|            |             | pCi/L                 | Co-60        | 232      | 210               | 147         | 273         | Pass        |
|            |             | pCi/L                 | Cr-51        | 180      | 177               | 124         | 230         | Pass        |
|            |             | pCi/L                 | Cs-134       | 113      | 111               | 77.7        | 144         | Pass        |
|            |             | pCi/L                 | Cs-137       | 149      | 138               | 96.6        | 179         | Pass        |
|            |             | pCi/L                 | Fe-59        | 112      | 102               | 71.4        | 133         | Pass        |
|            |             | pCi/L                 | I-131        | 63.3     | 51.0              | 35.7        | 66.3        | Pass        |
|            |             | pCi/L                 | Mn-54        | 105      | 99.5              | 69.7        | 129         | Pass        |
|            |             | pCi/L                 | Zn-65        | 148      | 149               | 104         | 194         | Pass        |

<sup>1</sup> See Discussion at the beginning of Attachment 3
| Annual Radiological Environmental Operation | YEAR: 2024      | Page 71 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Tab | ole 15, Sp | lit Sample Inte | rcomparison Results |
|-----|------------|-----------------|---------------------|

| Sample<br>Type | Location | Sample<br>Date | Analysis   | Result Units | CGS A<br>W                                                            | Analysis<br>2σ | Split Analysis w<br>2σ           | Pass/Fail<br>(Split) |
|----------------|----------|----------------|------------|--------------|-----------------------------------------------------------------------|----------------|----------------------------------|----------------------|
| Water          | 16C2     | 1/29/2024      | Gross Beta | pCi/L        | 1.97                                                                  | 0.828          | 2.97±1.57                        | Pass                 |
| Water          | 16C2     | 1/29/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 1/29/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                |          |                |            |              |                                                                       |                |                                  |                      |
| Water          | 16C2     | 3/04/2024      | Gross Beta | pCi/L        | 1.76                                                                  | 0.784          | 2.98±1.44                        | Pass                 |
| Water          | 16C2     | 3/04/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 3/04/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                |          |                |            |              |                                                                       |                |                                  |                      |
| Water          | 16C2     | 4/01/2024      | Gross Beta | pCi/L        | 1.57                                                                  | 0.770          | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 4/01/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 4/01/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 4/01/2024      | Tritium    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                |          |                |            |              |                                                                       |                |                                  |                      |
| Water          | 16C2     | 4/29/2024      | Gross Beta | pCi/L        | 1.65                                                                  | 0.736          | 3.31±1.68                        | Pass                 |
| Water          | 16C2     | 4/29/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 4/29/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                |          |                |            |              |                                                                       |                |                                  |                      |
| Water          | 16C2     | 6/3/2024       | Gross Beta | pCi/L        | 2.06                                                                  | 0.772          | 4.2±1.67                         | Pass                 |
| Water          | 16C2     | 6/3/2024       | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 6/3/2024       | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                |          |                |            |              |                                                                       |                |                                  |                      |
| Water          | 16C2     | 7/1/2024       | Gross Beta | pCi/L        | 2.84                                                                  | 0.801          | 3.17±1.68                        | Pass                 |
| Water          | 16C2     | 7/1/2024       | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water          | 16C2     | 7/1/2024       | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 72 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Tabl | e 15, - | Split San | ple Interco | omparison | Results |
|------|---------|-----------|-------------|-----------|---------|

| Sample Type | Location | Sample<br>Date | Analysis   | Result Units | CGS A<br>w                                                            | Analysis<br>2σ | Split Analysis w<br>2σ           | Pass/Fail<br>(Split) |
|-------------|----------|----------------|------------|--------------|-----------------------------------------------------------------------|----------------|----------------------------------|----------------------|
| Water       | 16C2     | 7/1/2024       | Tritium    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 7/29/2024      | Gross Beta | pCi/L        | 2.50                                                                  | 0.810          | 3.75±1.80                        | Pass                 |
| Water       | 16C2     | 7/29/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 7/29/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |            |              |                                                                       |                |                                  |                      |
| Water       | 16C2     | 9/3/2024       | Gross Beta | pCi/L        | 2.70                                                                  | 0.827          | 3.82±1.68                        | Pass                 |
| Water       | 16C2     | 9/3/2024       | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 9/3/2024       | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |            |              |                                                                       |                |                                  |                      |
| Water       | 16C2     | 9/30/2024      | Gross Beta | pCi/L        | 3.96                                                                  | 0.851          | 3.92±1.75                        | Pass                 |
| Water       | 16C2     | 9/30/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 9/30/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 9/30/2024      | Tritium    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |            |              |                                                                       |                |                                  |                      |
| Water       | 16C2     | 10/28/2024     | Gross Beta | pCi/L        | 3.74                                                                  | 0.922          | 4.44±2.33                        | Pass                 |
| Water       | 16C2     | 10/28/2024     | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 10/28/2024     | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |            |              |                                                                       |                |                                  |                      |
| Water       | 16C2     | 12/2/2024      | Gross Beta | pCi/L        | 2.75                                                                  | 0.876          | 3.14±1.93                        | Pass                 |
| Water       | 16C2     | 12/2/2024      | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 12/2/2024      | Gamma      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |            |              |                                                                       |                |                                  |                      |
| Water       | 16C2     | 12/30/2024     | Gross Beta | pCi/L        | 3.78                                                                  | 1.13           | 3.08±1.63                        | Pass                 |
| Water       | 16C2     | 12/30/2024     | LLI        | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 73 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Table 15 | , Split Sample | e Intercompariso | n Results |
|----------|----------------|------------------|-----------|
|----------|----------------|------------------|-----------|

| Sample Type | Location | Sample<br>Date | Analysis | Result Units | CGS A<br>w                                                            | analysis<br>2σ | Split Analysis w<br>2σ           | Pass/Fail<br>(Split) |
|-------------|----------|----------------|----------|--------------|-----------------------------------------------------------------------|----------------|----------------------------------|----------------------|
| Water       | 16C2     | 12/30/2024     | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water       | 16C2     | 12/30/2024     | Tritium  | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 19B1     | 1/17/2024      | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 19B1     | 1/17/2024      | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 22B1     | 1/17/2024      | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 22B1     | 1/17/2024      | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 19B1     | 4/2/2024       | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 19B1     | 4/2/2024       | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 22B1     | 4/2/2024       | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 22B1     | 4/2/2024       | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 19B1     | 7/9/2024       | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 19B1     | 7/9/2024       | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 22B1     | 7/9/2024       | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 22B1     | 7/9/2024       | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 19B1     | 10/01/2024     | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 19B1     | 10/01/2024     | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|             |          |                |          |              |                                                                       |                |                                  |                      |
| Milk        | 22B1     | 10/01/2024     | Gamma    | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk        | 22B1     | 10/01/2024     | LLI      | pCi/L        | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 74 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

|  | Table 15, | Split Sample | Intercomparisor | n Results |
|--|-----------|--------------|-----------------|-----------|
|--|-----------|--------------|-----------------|-----------|

| Sample Type        | Location | Sample<br>Date | Analysis | Result Units       | CGS A<br>W                                                            | Analysis<br>2σ | Split Analysis w<br>2σ           | Pass/Fail<br>(Split) |
|--------------------|----------|----------------|----------|--------------------|-----------------------------------------------------------------------|----------------|----------------------------------|----------------------|
| Filter Composite   | 11S2     | 4/01/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite   | 11S2     | 7/01/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite   | 11S2     | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite   | 11S2     | 12/30/2024     | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                    |          |                |          |                    |                                                                       |                |                                  |                      |
| Sediment           | J2-1     | 10/29/24       | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                    |          |                |          |                    |                                                                       |                |                                  |                      |
| Water              | WA1      | 6/28/2024      | Gamma    | pCi/L              | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Water              | WA2      | 6/28/2024      | Gamma    | pCi/L              | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Oysters            | IA3      | 6/19/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Oysters            | IA6      | 6/19/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                    |          |                |          |                    |                                                                       |                |                                  |                      |
| Bottom<br>Sediment | WBS4     | 6/19/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Bottom<br>Sediment | WBS2     | 6/19/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                    |          |                |          |                    |                                                                       |                |                                  |                      |
| Vegetation         | IB10     | 7/22/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Vegetation         | IB11     | 7/22/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Vegetation         | IB12     | 7/22/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Vegetation         | East     | 7/23/2024      | Gamma    | pCi/Kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                    |          |                |          |                    |                                                                       |                |                                  |                      |
| Milk               | Farm A   | 09/03/2024     | Gamma    | Gamma              | pCi/L                                                                 |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk               | Farm A   | 09/03/2024     | Gamma    | LLI                | pCi/L                                                                 |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk               | Farm B   | 09/03/2024     | Gamma    | Gamma              | pCi/L                                                                 |                | <mda< td=""><td>Pass</td></mda<> | Pass                 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 75 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Sample Type                | Location | Sample<br>Date | Analysis | Result Units       | CGS Analysis<br>w 2σ                                                  |  | Split Analysis w<br>2σ           | Pass/Fail<br>(Split) |
|----------------------------|----------|----------------|----------|--------------------|-----------------------------------------------------------------------|--|----------------------------------|----------------------|
| Milk                       | Farm B   | 09/03/2024     | Gamma    | LLI                | pCi/L                                                                 |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                            |          |                |          |                    |                                                                       |  |                                  |                      |
| Milk                       | #55      | 09/09/2024     | Gamma    | Gamma              | pCi/L                                                                 |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Milk                       | #55      | 09/09/2024     | Gamma    | LLI                | pCi/L                                                                 |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
|                            |          |                |          |                    |                                                                       |  |                                  |                      |
| Fish (Spanish<br>Mackerel) | IA1      | 8/14/2024      | Gamma    | pCi/kg             | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-A1    | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-A2    | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-A3    | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-A4    | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-A5    | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-SFA1  | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-SFA2  | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-SFA3  | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |
| Filter Composite           | CC-SFA4  | 9/30/2024      | Gamma    | pCi/m <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td>Pass</td></mda<></td></mda<> |  | <mda< td=""><td>Pass</td></mda<> | Pass                 |

Table 15, Split Sample Intercomparison Results

LLI=Low Level Iodine

| Annual Radiological Environmental Operation | ating Report    | YEAR: 2024     | Page 76 of 82 |
|---------------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation         |

| Sample | Location        | Sample    | Analysis | Result             | 11S1     |            | 11S2 (Q)                       |          |
|--------|-----------------|-----------|----------|--------------------|----------|------------|--------------------------------|----------|
| Туре   |                 | Date      |          | Units              | CGS Re   | esult ± 2σ | TBE Split Result $\pm 2\sigma$ |          |
| Filter | 11S1 / 11S2 (Q) | 1/8/2024  | Beta     | pCi/M <sup>3</sup> | 1.50E-02 | 2.13E-03   | 9.90E-03                       | 3.75E-03 |
| Filter | 11S1 / 11S2 (Q) | 1/16/2024 | Beta     | pCi/M <sup>3</sup> | 2.74E-02 | 2.13E-03   | 1.39E-02                       | 3.47E-03 |
| Filter | 11S1 / 11S2 (Q) | 1/22/2024 | Beta     | pCi/M <sup>3</sup> | 2.86E-02 | 2.57E-03   | 1.80E-02                       | 4.61E-03 |
| Filter | 11S1 / 11S2 (Q) | 1/29/2024 | Beta     | pCi/M <sup>3</sup> | 1.72E-02 | 1.96E-03   | 1.05E-02                       | 3.42E-03 |
| Filter | 11S1 / 11S2 (Q) | 2/6/2024  | Beta     | pCi/M <sup>3</sup> | 1.44E-02 | 1.75E-03   | 1.58E-02                       | 3.56E-03 |
| Filter | 11S1 / 11S2 (Q) | 2/12/2024 | Beta     | pCi/M <sup>3</sup> | 1.94E-02 | 2.30E-03   | 1.43E-02                       | 4.13E-03 |
| Filter | 11S1 / 11S2 (Q) | 2/19/2024 | Beta     | pCi/M <sup>3</sup> | 2.27E-02 | 2.15E-03   | 1.65E-02                       | 3.75E-03 |
| Filter | 11S1 / 11S2 (Q) | 2/26/2024 | Beta     | pCi/M <sup>3</sup> | 2.20E-02 | 2.14E-03   | 1.86E-02                       | 3.95E-03 |
| Filter | 11S1 / 11S2 (Q) | 3/4/2024  | Beta     | pCi/M <sup>3</sup> | 2.09E-02 | 2.08E-03   | 1.65E-02                       | 3.69E-03 |
| Filter | 11S1 / 11S2 (Q) | 3/11/2024 | Beta     | pCi/M <sup>3</sup> | 5.73E-03 | 1.50E-03   | 4.73E-03                       | 3.00E-03 |
| Filter | 11S1 / 11S2 (Q) | 3/18/2024 | Beta     | pCi/M <sup>3</sup> | 2.93E-02 | 2.37E-03   | 2.16E-02                       | 4.13E-03 |
| Filter | 11S1 / 11S2 (Q) | 3/25/2024 | Beta     | pCi/M <sup>3</sup> | 1.14E-02 | 1.80E-03   | 9.19E-03                       | 3.44E-03 |
| Filter | 11S1 / 11S2 (Q) | 4/1/2024  | Beta     | pCi/M <sup>3</sup> | 1.81E-02 | 1.94E-03   | 1.64E-02                       | 3.88E-03 |
| Filter | 11S1 / 11S2 (Q) | 4/8/2024  | Beta     | pCi/M <sup>3</sup> | 1.07E-02 | 1.62E-03   | 7.40E-03                       | 3.12E-03 |
| Filter | 11S1 / 11S2 (Q) | 4/15/2024 | Beta     | pCi/M <sup>3</sup> | 1.84E-02 | 1.98E-03   | 1.52E-02                       | 3.76E-03 |
| Filter | 11S1 / 11S2 (Q) | 4/22/2024 | Beta     | pCi/M <sup>3</sup> | 1.60E-02 | 1.94E-03   | 1.75E-02                       | 3.94E-03 |
| Filter | 11S1 / 11S2 (Q) | 4/29/2024 | Beta     | pCi/M <sup>3</sup> | 1.93E-02 | 2.10E-03   | 1.44E-02                       | 4.15E-03 |
| Filter | 11S1 / 11S2 (Q) | 5/6/2024  | Beta     | pCi/M <sup>3</sup> | 1.64E-02 | 1.98E-03   | 1.01E-02                       | 3.56E-03 |
| Filter | 11S1 / 11S2 (Q) | 5/13/2024 | Beta     | pCi/M <sup>3</sup> | 1.17E-02 | 1.77E-03   | 9.62E-03                       | 3.11E-03 |
| Filter | 11S1 / 11S2 (Q) | 5/20/2024 | Beta     | pCi/M <sup>3</sup> | 1.53E-02 | 1.94E-03   | 1.23E-02                       | 3.60E-03 |
| Filter | 11S1 / 11S2 (Q) | 5/28/2024 | Beta     | pCi/M <sup>3</sup> | 2.13E-02 | 1.89E-03   | 1.72E-02                       | 3.39E-03 |
| Filter | 11S1 / 11S2 (Q) | 6/3/2024  | Beta     | pCi/M <sup>3</sup> | 2.01E-02 | 2.28E-03   | 1.14E-02                       | 4.30E-03 |
| Filter | 11S1 / 11S2 (Q) | 6/10/2024 | Beta     | pCi/M <sup>3</sup> | 2.13E-02 | 2.10E-03   | 1.55E-02                       | 4.01E-03 |
| Filter | 11S1 / 11S2 (Q) | 6/17/2024 | Beta     | pCi/M <sup>3</sup> | 1.66E-02 | 1.95E-03   | 1.32E-02                       | 3.83E-03 |
| Filter | 11S1 / 11S2 (Q) | 6/25/2024 | Beta     | pCi/M <sup>3</sup> | 2.67E-02 | 2.08E-03   | 1.64E-02                       | 3.52E-03 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 77 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Sample | Location        | Sample     | Analysis | Result             | 11S1     |            | 11S2 (Q)                       |          |
|--------|-----------------|------------|----------|--------------------|----------|------------|--------------------------------|----------|
| Туре   |                 | Date       |          | Units              | CGS Re   | esult ± 2σ | TBE Split Result $\pm 2\sigma$ |          |
| Filter | 11S1 / 11S2 (Q) | 7/1/2024   | Beta     | pCi/M <sup>3</sup> | 1.59E-02 | 2.09E-03   | 1.57E-02                       | 4.17E-03 |
| Filter | 11S1 / 11S2 (Q) | 7/8/2024   | Beta     | pCi/M <sup>3</sup> | 1.88E-02 | 2.01E-03   | 1.74E-02                       | 3.78E-03 |
| Filter | 11S1 / 11S2 (Q) | 7/15/2024  | Beta     | pCi/M <sup>3</sup> | 1.95E-02 | 2.09E-03   | 1.66E-02                       | 3.81E-03 |
| Filter | 11S1 / 11S2 (Q) | 7/22/2024  | Beta     | pCi/M <sup>3</sup> | 2.50E-02 | 2.27E-03   | 1.74E-02                       | 4.10E-03 |
| Filter | 11S1 / 11S2 (Q) | 7/29/2024  | Beta     | pCi/M <sup>3</sup> | 1.98E-02 | 2.06E-03   | 1.47E-02                       | 3.68E-03 |
| Filter | 11S1 / 11S2 (Q) | 8/5/2024   | Beta     | pCi/M <sup>3</sup> | 2.56E-02 | 2.28E-03   | 2.40E-02                       | 4.52E-03 |
| Filter | 11S1 / 11S2 (Q) | 8/12/2024  | Beta     | pCi/M <sup>3</sup> | 1.69E-02 | 1.99E-03   | 1.43E-02                       | 3.88E-03 |
| Filter | 11S1 / 11S2 (Q) | 8/19/2024  | Beta     | pCi/M <sup>3</sup> | 2.30E-02 | 2.19E-03   | 1.38E-02                       | 4.02E-03 |
| Filter | 11S1 / 11S2 (Q) | 8/26/2024  | Beta     | pCi/M <sup>3</sup> | 2.00E-02 | 2.11E-03   | 1.78E-02                       | 3.96E-03 |
| Filter | 11S1 / 11S2 (Q) | 9/3/2024   | Beta     | pCi/M <sup>3</sup> | 3.63E-02 | 2.39E-03   | 2.15E-02                       | 4.07E-03 |
| Filter | 11S1 / 11S2 (Q) | 9/9/2024   | Beta     | pCi/M <sup>3</sup> | 1.38E-02 | 2.10E-03   | 9.44E-03                       | 4.37E-03 |
| Filter | 11S1 / 11S2 (Q) | 9/16/2024  | Beta     | pCi/M <sup>3</sup> | 3.20E-02 | 2.49E-03   | 2.50E-02                       | 4.62E-03 |
| Filter | 11S1 / 11S2 (Q) | 9/23/2024  | Beta     | pCi/M <sup>3</sup> | 2.73E-02 | 2.29E-03   | 2.14E-02                       | 4.23E-03 |
| Filter | 11S1 / 11S2 (Q) | 9/30/2024  | Beta     | pCi/M <sup>3</sup> | 9.12E-03 | 1.63E-03   | 6.31E-03                       | 3.25E-03 |
| Filter | 11S1 / 11S2 (Q) | 10/7/2024  | Beta     | pCi/M <sup>3</sup> | 2.04E-02 | 2.08E-03   | 1.55E-02                       | 3.84E-03 |
| Filter | 11S1 / 11S2 (Q) | 10/14/2024 | Beta     | pCi/M <sup>3</sup> | 4.27E-02 | 2.73E-03   | 1.87E-02                       | 4.17E-03 |
| Filter | 11S1 / 11S2 (Q) | 10/21/2024 | Beta     | pCi/M <sup>3</sup> | 1.84E-02 | 1.99E-03   | 1.13E-02                       | 3.87E-03 |
| Filter | 11S1 / 11S2 (Q) | 10/29/2024 | Beta     | pCi/M <sup>3</sup> | 2.97E-02 | 2.25E-03   | 2.46E-02                       | 4.23E-03 |
| Filter | 11S1 / 11S2 (Q) | 11/4/2024  | Beta     | pCi/M <sup>3</sup> | 4.41E-02 | 3.05E-03   | 1.85E-02                       | 4.62E-03 |
| Filter | 11S1 / 11S2 (Q) | 11/11/2024 | Beta     | pCi/M <sup>3</sup> | 2.04E-02 | 2.10E-03   | 1.18E-02                       | 3.99E-03 |
| Filter | 11S1 / 11S2 (Q) | 11/18/2024 | Beta     | pCi/M <sup>3</sup> | 1.63E-02 | 1.99E-03   | 1.28E-02                       | 3.98E-03 |
| Filter | 11S1 / 11S2 (Q) | 11/25/2024 | Beta     | pCi/M <sup>3</sup> | 2.31E-02 | 2.11E-03   | 1.82E-02                       | 4.17E-03 |
| Filter | 11S1 / 11S2 (Q) | 12/2/2024  | Beta     | pCi/M <sup>3</sup> | 2.62E-02 | 2.29E-03   | 1.99E-02                       | 4.20E-03 |
| Filter | 11S1 / 11S2 (Q) | 12/9/2024  | Beta     | pCi/M <sup>3</sup> | 2.19E-02 | 2.19E-03   | 1.34E-02                       | 4.03E-03 |
| Filter | 11S1 / 11S2 (Q) | 12/16/2024 | Beta     | pCi/M <sup>3</sup> | 2.65E-02 | 2.25E-03   | 1.78E-02                       | 4.06E-03 |
| Filter | 11S1 / 11S2 (Q) | 12/23/2024 | Beta     | pCi/M <sup>3</sup> | 1.31E-02 | 1.82E-03   | 7.32E-03                       | 3.44E-03 |

| Annual Radiological Environmental Operation | YEAR: 2024      | Page 78 of 82  |       |
|---------------------------------------------|-----------------|----------------|-------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation |

| Sample   | Location                       | Sample     | Analysis | Result             | 11S1                                                              |            | 11S2 (Q)                     |             |
|----------|--------------------------------|------------|----------|--------------------|-------------------------------------------------------------------|------------|------------------------------|-------------|
| Туре     |                                | Date       |          | Units              | CGS Re                                                            | esult ± 2σ | TBE Split                    | Result ± 2σ |
| Filter   | 11S1 / 11S2 (Q)                | 12/30/2024 | Beta     | pCi/M <sup>3</sup> | 1.88E-02                                                          | 2.01E-03   | 1.38E-02                     | 3.69E-03    |
| Charcoal | 11S1 / 11S2 (Q)                | 1/8/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 1/16/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 1/22/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 1/29/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 2/6/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 2/12/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 2/19/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 2/26/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 3/4/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 3/11/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 3/18/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 3/25/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 4/1/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 4/8/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 4/15/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 4/22/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 4/29/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 5/6/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 5/13/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 5/20/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 5/28/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q)                | 6/3/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11 <mark>S1 / 11S2 (</mark> Q) | 6/10/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11 <mark>S1 / 11S2 (</mark> Q) | 6/17/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |

| Annual Radiological Environmental Operation | ating Report    | YEAR: 2024     | Page 79 of 82 |
|---------------------------------------------|-----------------|----------------|---------------|
| Company: Constellation                      | Plant: Limerick | Generating Sta | ation         |

| Sample   | Location        | Sample     | Analysis | Result             | 1                                                                 | 1S1        | 11S                          | 2 (Q)       |
|----------|-----------------|------------|----------|--------------------|-------------------------------------------------------------------|------------|------------------------------|-------------|
| Туре     |                 | Date       |          | Units              | CGS Re                                                            | esult ± 2σ | TBE Split I                  | Result ± 2σ |
| Charcoal | 11S1 / 11S2 (Q) | 6/25/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 7/1/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 7/8/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 7/15/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 7/22/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 7/29/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 8/5/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 8/12/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 8/19/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 8/26/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 9/3/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 9/9/2024   | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 9/16/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 9/23/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 9/30/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 10/7/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 10/14/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 10/21/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 10/29/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 11/4/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 11/11/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 11/18/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 11/25/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 12/2/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 12/9/2024  | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |
| Charcoal | 11S1 / 11S2 (Q) | 12/16/2024 | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |            | <mda< td=""><td></td></mda<> |             |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 80 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

Air Particulate Beta and Air Iodine Co-Located

| Sample<br>Type | Location        | Sample<br>Date | Analysis | Result<br>Units    | 11S1<br>CGS Result ± 2σ                                           |  | 11S<br>TBE Split I           | 2 (Q)<br>Result ± 2σ |
|----------------|-----------------|----------------|----------|--------------------|-------------------------------------------------------------------|--|------------------------------|----------------------|
| Charcoal       | 11S1 / 11S2 (Q) | 12/23/2024     | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |  | <mda< td=""><td></td></mda<> |                      |
| Charcoal       | 11S1 / 11S2 (Q) | 12/30/2024     | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |  | <mda< td=""><td></td></mda<> |                      |
| Charcoal       | 11S1 / 11S2 (Q) | 1/2/2025       | I-131    | pCi/M <sup>3</sup> | <mda< td=""><td></td><td><mda< td=""><td></td></mda<></td></mda<> |  | <mda< td=""><td></td></mda<> |                      |

(Q) - Indicates a Quality Control duplicate sample location

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 81 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

## Attachment 4, Environmental Direct Radiation Dosimetry Results

| Monitoring | Quarterly<br>Baseline,        | uarterly B <sub>Q</sub> +<br>aseline, MDD <sub>Q</sub> |      | Normalized Quarterly Monitoring Data,<br>Mo |           |      |                        | uarterly Fa<br>F <sub>Q</sub> =M | loility Dos<br>lo-Bo     | e,     | Annual<br>Baseline,            | B <sub>A</sub> +<br>MDD <sub>A</sub> | Annual<br>Monitoring | Annual Facility<br>Dose, F <sub>A</sub> =M <sub>A</sub> -B <sub>A</sub><br>(mrem. or "ND" |
|------------|-------------------------------|--------------------------------------------------------|------|---------------------------------------------|-----------|------|------------------------|----------------------------------|--------------------------|--------|--------------------------------|--------------------------------------|----------------------|-------------------------------------------------------------------------------------------|
| Location   | BQ<br>(mrem) (mrem)   1 2 3 4 |                                                        |      |                                             | (mre<br>1 | 2    | 11 F <sub>Q</sub> ≤ WI | 4                                | B <sub>A</sub><br>(mrem) | (mrem) | Data, M <sub>A</sub><br>(mrem) | $if \\ F_A \leq MDD_A)$              |                      |                                                                                           |
| 10E1       | 17.7                          | 22.5                                                   | 16.4 | 18.8                                        | 16.8      | 18.7 | ND                     | ND                               | ND                       | ND     | 71.0                           | 82.7                                 | 70.7                 | ND                                                                                        |
| 10F3       | 17.4                          | 22.2                                                   | 19.4 | 18.9                                        | 17.2      | 17.3 | ND                     | ND                               | ND                       | ND     | 69.7                           | 81.4                                 | 72.8                 | ND                                                                                        |
| 10S3       | 17.7                          | 22.4                                                   | 17.8 | 19.1                                        | 19.2      | 18.9 | ND                     | ND                               | ND                       | ND     | 70.9                           | 82.6                                 | 75.0                 | ND                                                                                        |
| 11S1       | 20.8                          | 25.5                                                   | 22.1 | 22.6                                        | 21.0      | 22.3 | ND                     | ND                               | ND                       | ND     | 83.1                           | 94.8                                 | 88.1                 | ND                                                                                        |
| 13C1       | 12.5                          | 17.2                                                   | 14.8 | 12.4                                        | 11.8      | 13.0 | ND                     | ND                               | ND                       | ND     | 49.8                           | 61.5                                 | 52.0                 | ND                                                                                        |
| 13E1       | 17.5                          | 22.2                                                   | 18.7 | 20.0                                        | 18.2      | 19.5 | ND                     | ND                               | ND                       | ND     | 70.1                           | 81.8                                 | 76.5                 | ND                                                                                        |
| 13S2       | 28.0                          | 32.8                                                   | 24.6 | 25.7                                        | 23.7      | 26.4 | ND                     | ND                               | ND                       | ND     | 112.1                          | 123.8                                | 100.4                | ND                                                                                        |
| 14S1       | 15.8                          | 20.5                                                   | 16.6 | 18.0                                        | 15.8      | 16.2 | ND                     | ND                               | ND                       | ND     | 63.2                           | 74.9                                 | 66.6                 | ND                                                                                        |
| 15D1       | 18.1                          | 22.9                                                   | 16.2 | 21.9                                        | 16.6      | 18.4 | ND                     | ND                               | ND                       | ND     | 72.5                           | 84.2                                 | 73.2                 | ND                                                                                        |
| 16F1       | 18.4                          | 23.1                                                   | 18.7 | 19.2                                        | 17.8      | 18.6 | ND                     | ND                               | ND                       | ND     | 73.4                           | 85.1                                 | 74.3                 | ND                                                                                        |
| 17B1       | 16.7                          | 21.4                                                   | 17.1 | 17.6                                        | 15.4      | 16.4 | ND                     | ND                               | ND                       | ND     | 66.8                           | 78.5                                 | 66.6                 | ND                                                                                        |
| 18S2       | 19.6                          | 24.3                                                   | 19.7 | 20.0                                        | 18.7      | 19.1 | ND                     | ND                               | ND                       | ND     | 78.4                           | 90.1                                 | 77.5                 | ND                                                                                        |
| 19D1       | 16.6                          | 21.3                                                   | 17.2 | 16.8                                        | 16.4      | 18.3 | ND                     | ND                               | ND                       | ND     | 66.3                           | 78.0                                 | 68.6                 | ND                                                                                        |
| 20D1       | 15.7                          | 20.5                                                   | 17.6 | 16.2                                        | 15.6      | 15.9 | ND                     | ND                               | ND                       | ND     | 63.0                           | 74.7                                 | 65.3                 | ND                                                                                        |
| 20F1       | 16.9                          | 21.6                                                   | 17.0 | 17.4                                        | 16.4      | 18.0 | ND                     | ND                               | ND                       | ND     | 67.5                           | 79.2                                 | 68.8                 | ND                                                                                        |
| 21S2       | 16.0                          | 20.7                                                   | 16.2 | 16.9                                        | 14.9      | 16.1 | ND                     | ND                               | ND                       | ND     | 64.1                           | 75.8                                 | 64.1                 | ND                                                                                        |
| 23S2       | 16.0                          | 20.7                                                   | 15.4 | 16.8                                        | 15.4      | 16.8 | ND                     | ND                               | ND                       | ND     | 63.9                           | 75.6                                 | 64.5                 | ND                                                                                        |
| 24D1       | 14.9                          | 19.6                                                   | 14.4 | 14.6                                        | 15.0      | 14.2 | ND                     | ND                               | ND                       | ND     | 59.7                           | 71.4                                 | 58.1                 | ND                                                                                        |
| 25D1       | 14.1                          | 18.8                                                   | 14.1 | 15.9                                        | 13.6      | 14.8 | ND                     | ND                               | ND                       | ND     | 56.5                           | 68.2                                 | 58.3                 | ND                                                                                        |
| 25S2       | 14.5                          | 19.3                                                   | 17.8 | 15.1                                        | 15.3      | 16.0 | ND                     | ND                               | ND                       | ND     | 58.1                           | 69.8                                 | 64.2                 | ND                                                                                        |
| 26S3       | 15.1                          | 19.8                                                   | 14.2 | 16.2                                        | 13.8      | 15.4 | ND                     | ND                               | ND                       | ND     | 60.4                           | 72.1                                 | 59.6                 | ND                                                                                        |
| 28D2       | 15.9                          | 20.6                                                   | 18.5 | 16.0                                        | 15.3      | 15.5 | ND                     | ND                               | ND                       | ND     | 63.5                           | 75.2                                 | 65.3                 | ND                                                                                        |
| 29E1       | 15.6                          | 20.3                                                   | 16.5 | 17.7                                        | 15.3      | 16.9 | ND                     | ND                               | ND                       | ND     | 62.3                           | 74.0                                 | 66.5                 | ND                                                                                        |
| 29S1       | 15.3                          | 20.1                                                   | 15.8 | 16.3                                        | 13.8      | 16.2 | ND                     | ND                               | ND                       | ND     | 61.4                           | 73.1                                 | 62.0                 | ND                                                                                        |

| Annual Radiological Environmental Oper | YEAR: 2024      | Page 82 of 82  |       |
|----------------------------------------|-----------------|----------------|-------|
| Company: Constellation                 | Plant: Limerick | Generating Sta | ation |

## Attachment 4, Environmental Direct Radiation Dosimetry Results

| Monitoring<br>Location | Quarterly<br>Baseline,<br>B <sub>Q</sub> | B <sub>Q</sub> +<br>MDD <sub>Q</sub> | Normalized Quarterly Monitoring Data,<br>M <sub>Q</sub><br>(mrem) |      |      |      | Quarterly Facility Dose,<br>F <sub>Q</sub> =M <sub>Q</sub> -B <sub>Q</sub><br>(mrem, or "ND" if FQ ≤ MDDQ) |    |    |    | Annual<br>Baseline,<br>B <sub>A</sub> | B <sub>A</sub> +<br>MDD <sub>A</sub> | Annual<br>Monitoring<br>Data, M <sub>A</sub> | Annual Facility<br>Dose, F <sub>A</sub> =M <sub>A</sub> -B <sub>A</sub><br>(mrem, or "ND" |
|------------------------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------|------|------|------|------------------------------------------------------------------------------------------------------------|----|----|----|---------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|
|                        | (mrem)                                   | (mrem)                               | 1                                                                 | 2    | 3    | 4    | 1                                                                                                          | 2  | 3  | 4  | (mrem)                                | (mrem)                               | (mrem)                                       | IT<br>F <sub>A</sub> ≤ MDD <sub>A</sub> )                                                 |
| 2E1                    | 18.0                                     | 22.7                                 | 17.7                                                              | 18.4 | 20.5 | 18.8 | ND                                                                                                         | ND | ND | ND | 71.9                                  | 83.6                                 | 75.3                                         | ND                                                                                        |
| 31D1                   | 20.7                                     | 25.5                                 | 21.7                                                              | 20.2 | 17.8 | 19.2 | ND                                                                                                         | ND | ND | ND | 83.0                                  | 94.7                                 | 79.0                                         | ND                                                                                        |
| 31D2                   | 17.8                                     | 22.5                                 | 19.7                                                              | 18.4 | 17.3 | 17.0 | ND                                                                                                         | ND | ND | ND | 71.2                                  | 82.9                                 | 72.3                                         | ND                                                                                        |
| 31S1                   | 17.9                                     | 22.6                                 | 17.8                                                              | 19.4 | 17.9 | 18.5 | ND                                                                                                         | ND | ND | ND | 71.6                                  | 83.3                                 | 73.5                                         | ND                                                                                        |
| 34E1                   | 16.8                                     | 21.5                                 | 18.3                                                              | 18.9 | 16.2 | 17.9 | ND                                                                                                         | ND | ND | ND | 67.0                                  | 78.7                                 | 71.2                                         | ND                                                                                        |
| 34S2                   | 17.9                                     | 22.6                                 | 18.5                                                              | 18.4 | 16.1 | 17.3 | ND                                                                                                         | ND | ND | ND | 71.6                                  | 83.3                                 | 70.2                                         | ND                                                                                        |
| 36D1                   | 15.5                                     | 20.3                                 | 15.5                                                              | 15.9 | 13.8 | 15.1 | ND                                                                                                         | ND | ND | ND | 62.1                                  | 73.8                                 | 60.4                                         | ND                                                                                        |
| 36S2                   | 18.3                                     | 23.1                                 | 17.1                                                              | 18.7 | 18.6 | 17.7 | ND                                                                                                         | ND | ND | ND | 73.4                                  | 85.1                                 | 72.1                                         | ND                                                                                        |
| 3S1                    | 17.5                                     | 22.3                                 | 17.4                                                              | 18.1 | 18.0 | 17.4 | ND                                                                                                         | ND | ND | ND | 70.1                                  | 81.8                                 | 70.8                                         | ND                                                                                        |
| 4E1                    | 12.9                                     | 17.6                                 | 14.2                                                              | 12.5 | 11.1 | 12.8 | ND                                                                                                         | ND | ND | ND | 51.4                                  | 63.1                                 | 50.7                                         | ND                                                                                        |
| 5H1                    | 21.6                                     | 26.3                                 | 22.1                                                              | 25.2 | 18.1 | 20.2 | ND                                                                                                         | ND | ND | ND | 86.3                                  | 98.0                                 | 85.6                                         | ND                                                                                        |
| 5S1                    | 20.0                                     | 24.7                                 | 19.4                                                              | 21.1 | 17.9 | 20.2 | ND                                                                                                         | ND | ND | ND | 80.0                                  | 91.7                                 | 78.6                                         | ND                                                                                        |
| 6C1                    | 17.4                                     | 22.1                                 | 16.2                                                              | 19.6 | 19.0 | 18.7 | ND                                                                                                         | ND | ND | ND | 69.5                                  | 81.2                                 | 73.4                                         | ND                                                                                        |
| 7E1                    | 18.6                                     | 23.4                                 | 17.3                                                              | 19.5 | 18.9 | 19.2 | ND                                                                                                         | ND | ND | ND | 74.6                                  | 86.3                                 | 74.9                                         | ND                                                                                        |
| 7S1                    | 18.3                                     | 23.0                                 | 19.9                                                              | 17.9 | 17.6 | 18.4 | ND                                                                                                         | ND | ND | ND | 73.1                                  | 84.8                                 | 73.8                                         | ND                                                                                        |
| 9C1                    | 17.0                                     | 21.7                                 | 18.1                                                              | 17.5 | 17.2 | 18.5 | ND                                                                                                         | ND | ND | ND | 68.1                                  | 79.8                                 | 71.4                                         | ND                                                                                        |

 $MDD_Q$  = Quarterly Minimum Differential Dose = 4.73 mrem  $MDD_A$  = Annual Minimum Differential Dose = 11.7 mrem

ND = Not Detected, where  $M_Q \le (B_Q+MDD_Q)$  or  $M_A \le (B_A+MDD_A)$