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ABSTRACT 

Nuclear criticality safety evaluations must demonstrate that operations are subcritical under both 
normal and credible abnormal conditions, and such evaluations often rely upon computational 
techniques to determine the neutron multiplication factor for complex three-dimensional 
systems. Validation of the computer codes and data used to model these systems establishes 
their suitability for specific applications. The validation activity also determines the 
computational bias and the uncertainty in that bias that is relevant to the application. The bias is 
developed from calculations of known laboratory critical experiments that are similar to the 
intended application of interest. This report describes techniques that can be used by criticality 
safety analysts to perform the validation activity, including determination of calculational bias, 
bias uncertainty, and the application of those values to develop limits that can be applied in 
safety analyses. This report builds upon earlier works in the criticality safety validation area and 
incorporates modern analytical techniques developed over the last twenty years, as well as 
lessons learned from observations of previous validation efforts. 
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EXECUTIVE SUMMARY 

The purpose of criticality safety is to prevent any inadvertent criticality from occurring during the 
handling or storage of fissile material. Calculations are frequently used to demonstrate that a 
sufficient subcritical margin exists. A key facet of the evaluation process is validation, which 
establishes the suitability of and determines the accuracy (i.e., bias) and the associated 
uncertainty of the computational method and data for the intended application. 

Several documents have been generated to support validation of criticality safety computational 
methods over a range of systems. In some cases, guidance has been developed to 
accommodate specific regulatory requirements. Many of these reports are targeted for specific 
types of applications, such as transportation of light-water reactor fuel. No single guidance 
document has been identified that is intended to apply to all types of systems while also 
incorporating both traditional and sensitivity/uncertainty (S/U)-based validation techniques. 
S/U-based validation techniques have been added to traditional validation techniques over the 
last 25 years and are additional tools to assist analysts in performing validation. The purpose of 
this report is to provide criticality safety computational method validation techniques for 
analyses involving all types of fissionable material operations. This is a work of synthesis, 
combining recommendations for acceptable validation approaches from their various sources. 
New recommendations are developed in areas where existing guidance is vague, incomplete, 
or lacking. 

In addition, this document was prepared to address typical validation issues identified from 
observations of previous validation efforts. These observations include (1) inappropriate critical 
experiment selection, (2) insufficient trending analysis, (3) incorrect application of bias and/or 
bias uncertainty, (4) failure to meet bias method prerequisites, (5) failure to identify validation 
gaps and weaknesses, and (6) inadequate documentation. This document was developed to 
augment previous criticality validation guidance documents, providing recommendations to 
more effectively address some of the identified issues.  

Section 1 of this document provides an introduction and some background information on 
criticality safety validation. Section 2 discusses the purpose of validation, and Section 3 
discusses the definition of a computational method. Section 4 provides suggestions for 
characterizing the safety analysis model, critical experiment selection and area of applicability 
determination. Section 5 provides background in several relevant statistical topics, and Section 
6 discusses a range of statistical methods for determining the bias and bias uncertainty. Section 
7 provides methods for identifying and addressing gaps and weaknesses in the validation. 
Documentation of the validation is discussed in Section 8. Finally, Section 9 summarizes the 
content of this report.  
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AEF average energy of neutrons causing fission 
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NIST National Institute of Standards and Technology 
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1 INTRODUCTION AND BACKGROUND  

The purpose of criticality safety is to prevent any inadvertent criticality from occurring during the 
handling or storage of fissile material [1]. Calculations are frequently used to demonstrate that a 
sufficient subcritical margin exists. A key facet of the evaluation process is validation, which 
establishes the suitability of and determines the accuracy (i.e., bias) and the associated 
uncertainty of the computational method and data for the intended application. Validation is 
required by consensus standards [2], [3] which are endorsed by the US Nuclear Regulatory 
Commission (NRC) [4]. 

Several documents have been generated to support validation of criticality safety computational 
methods over a range of systems. In some cases, guidance has been developed to 
accommodate specific regulatory requirements. Many of these reports are targeted for specific 
types of applications, such as transportation of light-water reactor fuel. No single guidance 
document has been identified that is intended to apply to all types of systems while also 
incorporating both traditional and sensitivity/uncertainty (S/U)-based validation techniques. S/U-
based validation techniques have been added to traditional validation techniques over the last 
25 years and serve as additional tools to assist analysts in performing validation. The purpose 
of this report is to provide criticality safety computational method validation techniques for 
analyses involving all types of fissionable material operations. This is a work of synthesis, 
combining recommendations for acceptable validation approaches from their various sources. 
New recommendations are provided for areas in which existing guidance is vague, incomplete, 
or lacking. 

This document was prepared to address typical validation issues identified from observations of 
previous validation efforts. These observations include (1) inappropriate critical experiment 
selection, (2) insufficient trending analysis, (3) incorrect application of bias and/or bias 
uncertainty, (4) failure to meet bias method prerequisites, (5) failure to identify validation gaps 
and weaknesses, and (6) inadequate documentation. This document was developed to 
augment previous criticality validation guidance documents and to provide recommendations to 
address some of the identified issues more effectively. 

Section 2 discusses the purpose of validation, and Section 3 discusses the definition of a 
computational method. Section 4 provides suggestions for characterizing the safety analysis 
model, selecting critical experiments, and determining the area of applicability. Section 5 
provides background in several relevant statistical topics, and Section 6 discusses a range of 
statistical methods for determining the bias and bias uncertainty. Section 7 provides methods for 
identifying and addressing gaps and weaknesses in the validation. Documentation of the 
validation is discussed in Section 8. Finally, Section 9 summarizes the content of this report.  
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2 THE PURPOSE OF VALIDATION  

Validation establishes the applicability of a computational method to a particular safety analysis 
model (referred to as system or process model in some contexts), thus quantifying the suitability 
of the computer codes and nuclear data to a specific application. The validation process is 
performed by comparing the results of critical experiments with the calculated results from 
models of the experiments using the computational method to be validated [2], [3]. Laboratory-
critical experiments (referred to as critical experiments for the remainder of the report) are 
controlled systems that achieve a keff of approximately 1. These experiments are used to 
investigate the parameters at which such a critical condition is achieved [1]. Thousands of 
critical experiments have been conducted, evaluated, and reported in the literature for 
validation. Currently, the most complete source of evaluated critical experiment descriptions is 
developed by the International Criticality Safety Benchmark Evaluation Project (ICSBEP) in the 
International Handbook of Evaluated Criticality Safety Benchmark Experiments, also known as 
the ICSBEP Handbook [5]. A key part of the validation process is the selection of experiments 
that are representative of the system or systems to be analyzed. The bias of the computational 
method is dependent on the materials in the model and the neutron energy spectrum in the 
system, so the selection of inappropriate experiments can lead to significant errors in the 
apparent bias for the system of interest. The experiment selection process is therefore carefully 
documented and reviewed during the validation process. All of the critical experiment models 
are also developed, documented, and reviewed to ensure that the bias is not impacted by 
modeling errors. This document focuses on the generation of the bias and bias uncertainty—not 
the more general topic of demonstrating the applicability of computational methods to criticality 
safety analysis. Well-established computational tools are generally used in analyses; the use of 
new or less commonly used tools would require a more complete demonstration of applicability. 

For each experiment used in the validation, the difference between the calculated and evaluated 
keff results is determined. The experiments used in the validation are selected based on their 
similarity to the safety analysis model being analyzed. It is important to determine the bias for 
the system of interest, which is expected to be the same for similar systems. Various methods 
of assessing this similarity and selecting experiments are discussed in Section 4. Because the 
experiments are selected based on their expected similarity to the application, the application 
can be treated statistically as another member of the population of systems represented by the 
set of critical experiments. Thus, the estimate of the bias of the computational method used in 
modeling the experiments, also referred to as the computational bias, is determined as the 
mean of these differences. The bias should also be examined as a function of a system 
parameter using a trending technique, which is frequently linear regression. Several 
independent system parameters should be examined individually as part of this assessment. 
The system parameters used are typically a property of the fissionable material, such as 
enrichment, or they can be a property of the system, such as the neutron energy spectrum. 
Trending analysis may provide a more rigorous method to determine the bias and its 
uncertainty. 

Several factors contribute to the uncertainty in the bias estimate. First, there are uncertainties 
associated with each experiment. These can be measurement or dimensional uncertainties, the 
result of incompletely characterized materials, or other unknown or uncertain characteristics in 
the experimental materials or configuration. Secondly, there is also uncertainty in the bias 
estimate because it is the result of sampling a fixed set of experiments. There is also a 
computational uncertainty associated with calculating keff for the experiment models. Criticality 
safety calculations most frequently use methods involving Monte Carlo neutron transport, a 
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stochastic technique which therefore yields a keff value with some associated uncertainty. This 
calculation uncertainty is generally significantly lower than the experimental uncertainties. 
Deterministic methods have uncertainties associated with discretization of the problem 
geometry to conform to the required spatial mesh. Deterministic methods and some Monte 
Carlo implementations use multigroup representation of the energy variable, which may also 
contribute to the bias or its uncertainty. Multigroup cross section processing requires a flux 
solution for a representative simplified model. Differences between this model and the full 
system should be minimized but are typically unavoidable and are reflected in the bias of the 
multigroup computational method. The uncertainty in the bias is also increased to provide 
greater statistical confidence that the estimated bias and uncertainty bound the actual bias. The 
variance, which is a measure of the variability of the differences between measured and 
calculated results within the chosen set of experiments, is used in the overall determination of 
the bias uncertainty. The statistical margins often lead to the bias uncertainty being significantly 
larger than the bias itself, so proper quantification of uncertainty is essential. 

Figure 2-1 provides a flow chart of the overall validation process. The first step, which is 
discussed in Section 4.1 below, is to identify the range of parameters in the safety analysis 
models. These characteristics identify the critical experiments needed for validation. This is 
followed by the selection of applicable benchmark experiments, which is described in Section 
4.2. A variety of accepted statistical methods are used for performing validation based on the 
calculated results of the benchmark models, and several of these methods are described in 
Section 6. The final result of the statistical analysis is the bias and bias uncertainty of the 
computational method. The validation only applies to systems that are similar to the critical 
experiments used, so an area of applicability must be defined; recommendations for 
establishing the area of applicability for a validation suite are provided in Section 4.3. The bias 
and bias uncertainty values are combined with any reactivity allowances to account for gaps or 
weaknesses in the set of critical benchmark experiments and the margin of subcriticality, as 
discussed in Section 7. All of these data are used as discussed in Section 6.6 to establish the 
upper subcritical limit (USL). Finally, the validation activity must be documented and reviewed: 
recommendations for the documentation are provided in Section 8. 

Verification is distinct from validation. Verification is the process of confirming that the 
algorithms used in the computational methods are coded correctly and functioning properly. 
This can be accomplished with a range of tests, including solving simplified problems with 
known solutions that are often analytical, processing known inputs to ensure that the expected 
outputs are generated, running inputs designed to fail, and other tests. Generally, the 
verification testing performed at installation is accomplished by executing a suite of test 
problems provided by the code developer and comparing the results to those provided. In 
addition to post-installation testing, the verification should be confirmed to remain valid after any 
changes to the computer operating system, and it should be rerun periodically to ensure that no 
unexpected changes have been made [4]. Both verification and validation must be performed 
and documented before the results from the computer code can be used in any safety 
assessment. 



 

2-3 

 

Figure 2-1 Flow Chart of the Validation Activity 
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3 DEFINITION OF COMPUTATIONAL METHOD 

The validation process establishes the bias and bias uncertainty for a particular computational 
method. American National Standards Institute (ANSI)/American Nuclear Society (ANS)-8.24 
[3], the consensus standard on validation, defines the calculational method as “The 
mathematical procedures, equations, approximations, assumptions and associated numerical 
parameters (e.g., cross sections) that yield calculated results.” The standard uses a slightly 
different term—calculational method instead of computational method—because the standard 
applies to both hand calculation methods and computer code calculations. This document is 
primarily focused on validating computer codes. 

It is necessary that important features of the computational method be the same for both 
benchmark and safety analysis model calculations to ensure that the bias and bias uncertainty 
generated during the validation is reflective of the bias and bias uncertainty expected when 
performing safety analysis calculations. This section discusses the important aspects of the 
computational method to be considered when making this determination. The components of 
the computational method include the code and cross section set, nuclear data, some input 
options, multigroup cross section processing techniques, variance reduction techniques, result 
selection, and the computer hardware and operating system. Each aspect of the computational 
method is discussed in further detail in this section. 

The most obvious component of the computational method is the computer code being used. 
The validation applies only to the code and version installed; any updates, including patches, 
require that the applicability of the validation to the updated code be assessed. In most cases, a 
new validation is required following patch installation, and it is always required following a 
version update. 

Other key aspects of the computational method are the cross sections and other nuclear 
data used by the computer code. These are often clearly delineated, but both SCALE [6] and 
the Monte Carlo N-Particle (MCNP®) code [7] allow user-specified cross sections to be loaded. 
For MCNP, this is accomplished with the extension on the ZAID of the relevant material card. 
SCALE users can load specific cross sections for continuous-energy calculations by specifying 
the file name (fname=) for an isotope in the composition block. Both codes have multiple 
thermal scattering data sets, also known as S(α,β) data. These data sets are available for many 
common materials. The thermal scattering data in SCALE are tied to the names specified in the 
composition block, whereas MCNP thermal scattering data are specified with the appropriate 
data card. Additional codes such as MONK [8] are used in some instances for licensing 
activities in the United States, and similar capabilities are available in these codes. An 
increasing number of cross section data treatments are provided as user options in recent 
releases of major computer codes. These options include Doppler broadening of cross sections 
to specific temperatures at time of execution, Doppler broadening resonance corrections 
especially important at elevated temperatures, and unionized or nuclide-specific energy points. 
In all instances, use should be reviewed carefully to ensure that the same nuclear data are 
applied as consistently as possible in the validation and application models. 

Some code input options may need to be included in the computational method description and 
used consistently between the validation and application models. Many of these issues apply 
primarily to deterministic codes, and they include quadrature set and scattering order. The 
polynomial expression order for scattering cross sections is typically not a user option, but it will 
impact results and should thus be used consistently in both types of models. These items are 



 

3-2 

closely related to the cross section consistency requirements discussed in the previous 
paragraph. 

Multigroup cross section processing is also an aspect of the computational method that 
should be as similar as possible between the validation and application models. The same type 
of processing used in the application models must be exercised in the validation models. For 
fuel rod arrays such as fuel assemblies, this is readily achieved because the validation cases 
will also involve arrays of rods. It may be a more subtle aspect of the computational method in 
process criticality models, in which different models may be appropriate for accurate modeling 
of different process cases. In some instances, it is impossible to achieve a complete match 
between cross section processing options, but this aspect should be included and addressed as 
a validation weakness. Validation gaps and weaknesses are discussed more fully in Section 7. 

Variance reduction techniques are rarely used in Monte Carlo keff calculations. Two 
exceptions to this rule are (1) implicit capture and (2) rouletting and splitting. Implicit capture, or 
survival biasing, does not kill particles on absorption, but it does reduce their weight to account 
for the probability of capture. Rouletting and splitting are used to control the number of particles 
being tracked and to maintain a fairly even distribution of weights in the problem. The rouletting 
and splitting inputs can generally be changed by the user, whereas implicit capture is almost 
always applied to improve the code’s calculational efficiency. Any variance reduction techniques 
that may be used must be included in the validation models and exercised in the same manner 
as in the application models.  

Regarding results selection, most Monte Carlo codes report multiple estimates of keff as the 
final result of the calculation. Universally, the code developers have defined a preferred “final 
answer” that is the most correct result of the calculation. This result should be used, but various 
site procedures may dictate the use of a different value. The same method should be used to 
select the final keff estimate for the calculation for both validation and safety analysis cases. 

The final aspect of the computational method discussed herein is the computer hardware and 
operating system. A validation only applies to the combination of computer hardware and 
software with which it is performed. This can be a challenging requirement given the frequency 
of operating system updates in contemporary computing, especially for purposes of 
cybersecurity vulnerabilities. It is incumbent on the code users to confirm that any system 
updates have not changed the operation of the computer code, thus rendering the validation 
inapplicable.  

In summary, a wide range of hardware, software, inputs, and procedures can be viewed as 
aspects of the computational method, each of which must be identified and used consistently 
between the validation cases and the safety analysis cases to confirm that the bias and bias 
uncertainty determined in the validation are applicable to the safety evaluation being performed. 
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4 CRITICAL EXPERIMENT SELECTION AND AREA OF 
APPLICABILITY DETERMINATION 

The primary function of criticality safety validation is to quantify the suitability of computational 
methods for specific fissionable material applications. The bias is the systematic difference 
between the calculated keff and benchmark keff. It may vary as a function of the materials 
present, the physical configuration and properties of the materials (i.e., density, chemical 
compound), and with environmental conditions such as temperature. Calculated keff values are 
biased estimates of real systems for a number of reasons, including: 

• neutron transport method approximations such as meshing, scattering angle sampling, 
and calculation of keff,  

• nuclear data errors, including errors in cross section measurements, use of conflicting 
measurement data, and use of assumed data based on nuclear models, and  

• approximations built into the data, such as reduction to multigroup data, resonance data 
descriptions, and use of S(α,β) thermal scattering data in continuous-energy 

calculations.   

Variations in the materials used, their arrangement, and their physical properties all affect which 
nuclear data are important to the bias of the computational method. For example, different 
portions of the cross section set are used when the neutron flux energy and spatial distribution 
change. For modern, rigorously tested transport methods, the nuclear data errors have a 
greater impact on the bias than the transport method approximations. However, analysts should 
not assume that the contributions of the transport method to the bias are negligible.  

In the area of critical experiment selection, the validation study documentation should explicitly 
describe: 

• the process and criteria used to select critical experiments,  

• the critical experiments selected,  

• expected keff values and keff value uncertainties,  

• references to critical experiment descriptions, and 

• the critical experiments excluded and the justifications for their exclusion. 

It is often efficient to approach a criticality code validation as a three-step process. The first step 
is to characterize the neutronically important features of the safety analysis applications to be 
analyzed. Secondly, critical experiments which are similar to the safety analysis models are 
selected, as well as the bias and bias uncertainty calculated using an appropriate method from 
Section 6. Thirdly, the characteristics of the suite of experiments selected should be 
documented as an area of applicability so its appropriateness can be judged for other 
applications. Further discussion of the documentation of the validation is provided in Section 8. 

4.1 Characterization of Safety Analysis Calculations 

Validation of the computational method is performed for specific safety analysis models. The 
characterization of the systems being modeled and the selection of critical experiments with 
similar features is essential for ensuring that the resulting bias and bias uncertainty are 
applicable. Both the normal and limiting abnormal conditions are relevant to making this 
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determination. For cases such as wet storage of fuel assemblies at reactor plants, the overall 
characteristics of the system and resulting models do not vary greatly between the normal and 
upset conditions. However, for cases such as process criticality assessments, the normal and 
credible upset conditions can vary greatly in terms of moderation, neutron energy spectrum, 
fissile mass, or other parameters. The importance of characterizing the safety analysis models 
is discussed in more detail in the remainder of this section. 

The important characteristics of the safety analysis model are identified in Appendix A of the 
ANSI/ANS-8.24 standard [3] and are considered here, starting with the materials present in the 
system. The materials of interest must be present in the critical experiments conducted to 
ensure that a useful validation of the computational method is performed. The fissionable, 
moderating, and primary absorbing species are most important in this regard and must be 
represented in the validation suite. In many cases, minor constituents of the safety analysis 
system are not used in critical experiments, so they cannot be directly validated. Fission 
products in criticality analyses of burned fuel systems are a common example, but other 
examples exist in many other applications. Criticality analyses for burned fuel systems present 
an additional challenge in this area because the fissile and absorbing materials present are 
changing with burnup and cooling time. In an ideal validation, different experiments would be 
available to validate these different fissile compositions. Methods to address validation gaps—
such as insufficient validation for the full range of materials present in the safety analysis case—
are discussed in Section 7, and a review of burnup credit validation considerations is presented 
in Section 4.2.4. 

It is also important to use experiments in validation with the same neutron energy spectrum as 
is present in the safety application models. A large number of different parameters are used as 
measures of the neutron energy spectrum, including (1) the energy of the average lethargy 
causing fission (EALF), (2) the average fission energy (AEF) or average fission energy group 
(AEG), (3) the moderation ratio (H/X), (4) or the pitch of fissile material units. The ICSBEP 
Handbook characterizes experiments using a scheme with three energy bins in which (1) the 
thermal range is defined as below 0.625 eV, (2) the fast range is above 100 keV, and (3) the 
intermediate range is between these two energies. Systems are categorized as fast, 
intermediate, or thermal if 50% or more of the fissions are caused by neutrons with energies in 
the associated range. Systems that do not have a majority of fissions in any single energy range 
are categorized as mixed [5]. This energy grid is generally sufficient for ensuring that the 
experiments’ energy spectra used in validation are similar to the safety analysis models’ energy 
spectra. Multiple validation analyses may be required if the normal and credible upset conditions 
of the application system differ significantly, especially with respect to moderation. 

Another parameter identified as important for selecting benchmarks is the geometry of the 
system [3]. The important aspects of the geometry are homogeneity versus heterogeneity, size 
and spacing of reflectors, presence of interstitial absorbers or moderators, and the number and 
distribution of fissile units. 

The characteristics of the safety analysis model are also important in trending analysis. The 
details of trending analysis are discussed in Section 6.3, but in general, these methods allow for 
the determination of the bias and bias uncertainty as a function of some independent parameter. 
The value of this independent parameter for the safety analysis model is used to determine the 
bias and uncertainty most relevant to the application. Therefore, different biases can be 
extracted for various application models from the same set of trended experiments. 
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The area of applicability of a validation suite, which is discussed more completely in Section 4.3, 
is also defined in terms of system characteristics. Each criticality safety evaluation must 
demonstrate that the validation suite being used is applicable to the safety analysis models 
used to demonstrate the safety basis for the operation. These characteristics include the 
material and spectrum metrics discussed earlier in this section, but they could also include 
reflection, physical form, geometry considerations, and multigroup cross section processing 
techniques. Many of these parameters should already be incorporated via the consideration of 
the materials present, but the form and placement of the material may also be important. For 
instance, thick steel reflectors may not provide adequate validation of thin interstitial steel 
panels typically included in fuel storage racks and baskets. A careful assessment of the 
characteristics of the safety analysis models will result in an effective, applicable validation. 

Validation does not justify modeling approximations, poor characterization of safety analysis 
models, or failure to perform a valid transport calculation. Modeling approximations must be 
justified independently of the validation process, preferably with explicit calculations to 
demonstrate their acceptability. Similarly, documentation of the safety analysis model must 
include justification of parameters used, even if the exact values of one or more of the 
parameters are unknown. The validity of the transport calculation is separate portion of the 
safety analysis that must also be ensured. Additional margin in the validation cannot 
compensate for a poorly characterized system or inaccurate calculation.  

4.2 Selection of Critical Experiments 

4.2.1 Traditional Selection Criteria for Critical Experiments 

For decades, criticality safety specialists have evaluated the relationship between calculated 
and actual keff values by performing criticality calculations for critical experiments with measured 
keff values. The relationship is typically quantified through development of a bias and its 
uncertainty or USL, either of which is used to ensure that keff values calculated for safety 
analysis models are subcritical. This analysis is frequently referred to as validation or as a 
validation study. Consistent with the requirements of ANSI/ANS-8.1 [2] and ANSI/ANS-8.24 [3], 
this validation is performed by comparing calculated results to measurements of real systems. 

Critical experiments similar to the safety analysis models are selected for use in a validation 
study because code and data biases vary significantly as a function of target nuclide and 
incident neutron energy. Analysts must select critical experiments that they expect will have the 
same computational bias as the safety analysis model(s) or from which they can extract the 
correct bias through trend analysis. The bias and uncertainty developed from the selected set of 
such critical experiments are then considered applicable to the model of the application of 
interest; it is crucial to select critical experiments that are adequately similar to the application. 
Critical experiments would ideally not be used in the validation study if (1) they have extra 
materials that may significantly affect the bias, (2) they are missing materials that may 
significantly affect the bias, or (3) the critical experiment configuration causes the materials to 
be exposed to a neutron flux energy spectrum that is significantly different from the 
application(s).   

In the absence of critical experiments designed to validate specific fissionable material systems, 
assessing the similarity of critical experiments to safety analysis models has generally been 
problematic. Historically, this has been accomplished using engineering judgement based 
qualitative comparisons, comparisons of key parameters, or comparisons of global figures of 
merit.   



 

4-4 

Criticality analysts use qualitative and quantitative information from the application of interest to 
select critical experiments from various reference documents. The ICSBEP Handbook contains 
detailed, independently reviewed descriptions of critical experiments. The Database for the 
International Criticality Safety Benchmark Experiment Project software, known as DICE [9], is 
also available. DICE is a searchable database of information characterizing the critical 
configurations described in the ICSBEP Handbook. Additional critical experiment description 
sources are available on the US Department of Energy (DOE) Nuclear Criticality Safety 
Program (NCSP) web page [10]. This site provides links to searchable databases of summary 
descriptions and references in which more complete experiment descriptions are available. Note 
that obtaining copies of the original reports listed in these databases may be difficult because of 
the age and limited distribution of the documents. Some reports may be obtained from one of 
the collections of reports held at various DOE sites or by searching the internet. For cases in 
which experiment descriptions are available in both the ICSBEP Handbook and in experiment-
specific technical reports, the ICSBEP Handbook version should be used because it has been 
independently reviewed specifically for use in criticality safety validation studies. If critical 
experiment descriptions are taken from sources other than the ICSBEP Handbook, then the 
analyst must develop his or her own critical experiment models, generate expected keff values 
that include consideration of modeling approximations, and quantify experimental uncertainties. 
The ICSBEP Handbook critical experiment descriptions provide this information. Sample inputs 
from the ICSBEP Handbook should not be used directly without a thorough review to ensure 
that the models are correct. Any discrepancies identified must be corrected to match the 
benchmark model description prior to inclusion in the validation suite. 

The analyst can evaluate similarity of a safety analysis model and an experiment in some 
scenarios by performing perturbation calculations. For example, if it is not clear whether an 
important neutron absorber is adequately similar in the critical experiments and safety analysis 
applications, then one might perform calculations with the density of the absorber varied by ±5% 
in the critical experiments and safety analysis application models and then compare the impacts 
on keff. The two systems would likely yield different biases associated with the perturbed 
material if the two models exhibit significantly different keff sensitivities to the variations.  

In some cases, validating the range of variations in the safety analysis applications will require 
use of critical experiments that also have a range of parameters. In these cases, it is sometimes 
appropriate to use trending analysis, which may yield a range of bias and uncertainty values 
that can be applied to the range of safety analysis model results. This process is often referred 
to as defining the area of applicability of a validation suite and is discussed in more detail in 
Section 4.3. 

In the traditional approach, the critical experiment set or sets used for the validation study are 
selected so that they have similar materials in similar geometries that result in similar energy-
dependent neutron spectra. Ideally, critical experiments would be performed using materials in 
configurations intended to be very similar to the actual fissionable material operation, as was 
done for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor during its design 
and construction [11], [12], [13]. Unfortunately, few critical experiments simulating real 
fissionable material operations are performed today. Consequently, critical experiments must be 
selected that are as similar to the operation’s safety analysis models as possible. 

As discussed in Section 4.1, the typical process is for the analyst to gather characteristic data 
from the safety analysis application model and then to use the data to select critical experiments 
considered as similar as possible to the safety analysis application. Some frequently used 
comparison parameters are listed below: 
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• Uranium and/or plutonium isotopic distributions, and for mixed U+Pu systems, the U/Pu 
ratio 

• Fuel pin pitch, fuel rod outer diameter, fuel bundle array size 

• Solution fissile concentration and composition 

• Dry compound composition and moisture content 

• Neutron energy spectrum indices (e.g., EALF, AEG, AEF, etc.) 

• Moderator ratios (e.g., H/U, H/235U, H/Pu—more generally referred to as H/X) 

• Moderator density and temperature 

• Neutron leakage fraction 

• Geometry 

• Similarity index (e.g., ck) 

• Reflector materials 

• Neutron absorber material, composition, and geometry 

• Structural materials 

4.2.2 Use of Sensitivity/Uncertainty Analysis for Critical Experiment Selection 

A technique using S/U analysis to select critical experiments was developed at ORNL [14] and 
implemented in the SCALE TSUNAMI code suite. In this technique, nuclide-, reaction- and 
energy-dependent keff sensitivity data are prepared for application models and critical 
experiment models. The sensitivity data are then combined with nuclear data uncertainty 
information to yield nuclide-, reaction- and energy-dependent keff uncertainty information for 
each critical experiment model and safety analysis model. A correlation coefficient, ck, indicating 
the degree to which two systems have similar keff sensitivity to nuclear data uncertainties, is 
then calculated for each critical experiment–application pair. The definition of the integral index 
ck can be found in Section 6.5.1.1.1 of the SCALE 6.2.3 manual [6]. A high correlation 
coefficient value (i.e., ck approaching 1.0) indicates that the critical experiments and safety 
analysis models have sensitivities similar to those of nuclear data with significant uncertainties. 
This technique assumes that the most likely nuclear data bias sources in the criticality 
calculations are the nuclear data with the highest model-specific uncertainties. Both the SCALE 
TSUNAMI tools and the MCNP Whisper code use the ck parameter to select applicable 
benchmarks for validation. 

An introduction to the use of the SCALE TSUNAMI tools is available in a TSUNAMI Primer [15]. 
Use of this technique is facilitated by the availability of critical experiment sensitivity data for 
over 450 configurations that were generated by ORNL, as well as over 4,000 configurations 
generated for the Nuclear Energy Agency (NEA) [16]. These sensitivity data files can be 
obtained with the DICE database. It is acceptable to use these sensitivity data for screening 
critical experiments. Further use of the sensitivity data—such as use of ck values as a trending 
or weighting parameter (see Section 6.3) or for generation of reactivity margins associated with 
validation gaps or weaknesses (see Section 7)—would require the sensitivity data files to be 
under a quality assurance (QA) plan. This can be accomplished by creating new sensitivity data 
within the requirements of a site’s QA plan. It may also be possible to confirm the accuracy of 
the existing distributed sensitivity data with direct perturbation calculations that are performed 
and documented within requirements of a site’s QA plan. 

The MCNP Whisper code is discussed in Section 6.2.2. Whisper makes use of an MCNP data 
format for tabulating sensitivities and does not read SCALE-formatted sensitivity data, including 
that distributed by the NEA. Instead, a library of over 1,000 experiments is provided with MCNP 
via the distribution. These sensitivity data are, like the NEA data, not generated by the 
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organization performing the validation activity. Whisper uses the ck values as a weighting 
function for individual experiments in its nonparametric statistical approach, as discussed in 
Section 6.2.2. 

Using S/U methods for critical experiment selection provides a defensible, quantitative approach 
to critical experiment selection. Prior to the advent of S/U methods, analysts had no choice but 
to use key parameter comparison and engineering judgement. The primary weakness 
associated with the use of S/U methods is that it requires use of nuclear data uncertainty 
information distributed as cross section covariance data files. The covariance data are not as 
mature as the cross section data currently in use and are not generated using any consistent, 
standardized methodology. Consequently, covariance data changes have raised questions 
concerning the impact of covariance data on critical experiment selection. The apparent degree 
of similarity between experiments and an application can be significantly affected by these 
updates [17]. Additionally, analysts may be required to demonstrate validation of some key 
safety features such as credited neutron absorbers, even though the S/U method results may 
suggest otherwise. Fixed neutron absorbers in many systems have a small sensitivity because 
the strong absorbing properties make them essentially black to neutrons. Small changes in the 
cross section, such as those estimated with the sensitivity coefficient, have very small keff 
impacts, despite the importance of the reactivity hold-down provided by the fixed absorber. A 
range of different nuclear covariance data is available, and comparison of results with different 
libraries may prove useful in bolstering experiment selection choices. Other available similarity 
metrics, such as the E parameter in the SCALE code system, do not use the covariance data in 
comparing experiments and applications. The integral index E is defined in Section 6.5.1.1.3 of 
the SCALE 6.2.3 manual [6]. The independence of these metrics from the covariance data is 
both a strength and a weakness: the strength is that changes in the covariance data do not 
change the apparent similarity between an experiment and application, and the weakness is 
that the sensitivity data are not weighted by the uncertainties. Therefore, large sensitivities will 
dominate the similarity assessment, even for reactions which have small uncertainties and are 
therefore unlikely to contribute significantly to the bias. Also, published guidance on the use of E 
and other parameters is extremely limited. 

Data adjustment methods attempt to develop a set of cross section adjustments to generate a 
consistent set of results from a large set of available benchmarks. The data adjustments are 
constrained by the nuclear covariance data, which are not as mature as the nuclear cross 
section data. Data adjustment also requires knowledge of the correlations among the 
benchmarks. As discussed in Section 6.5, there is no standard methodology for determining 
these correlations, and a wide range of correlation coefficients can be calculated from the same 
experimental evaluation by different analysts. Some questions also remain regarding the 
uniqueness of the solutions provided in these data adjustment methods, as well as the 
uncertainty that remains following the adjustment process. It is not clear how to process this 
residual uncertainty into a tolerance interval to assess bias uncertainty. Taken together, these 
difficulties preclude the use of data adjustment or assimilation methods as the primary method 
for determining bias and bias uncertainty in nuclear criticality safety validation at the time of 
writing. Developments addressing the shortcomings discussed above could allow for the 
adoption of such techniques in the future. 

4.2.3 Number of Critical Experiments Selected 

A validation analysis must consider the number of critical experiments to include and the bases 
for excluding some configurations. The number of critical experiments included may be informed 
by the requirements and desired results of the statistical analysis technique used to calculate 
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bias and uncertainty and by the ranges of parameters characterizing the applications of interest. 
The maximum number of critical experiments to include in the validation set is most likely limited 
by the number of critical experiments that are similar to the safety analysis models and by the 
amount of time available for critical experiment modeling. Today, it is not unusual to use 10–
100s of critical experiments in a validation study. It should be noted that larger validation suites 
are not necessarily better than smaller suites if the additional experiments included are less 
similar to the intended application or if they are highly correlated to each other. The impact of 
experimental correlations is discussed further in Section 6.5. 

As noted in ANSI/ANS-8.24 [3] Section 5.6, “To minimize systematic error, benchmarks should 
be drawn from multiple, independent experimental series.” Critical configurations performed 
using the same fissionable material, using the same apparatus, or being located at the same 
facility may have systematic errors. For example, if the same fissionable material is used in one 
or more series, then the critical experiment results (critical spacing, water level, concentration, 
etc.) will all include similar bias contributions related to errors in isotopic description of the 
material. This bias is then included in the computational method bias, which ideally would not 
include any bias related to experimental description. Using critical experiments that are 
independent minimizes the effect of systematic errors on the bias and uncertainty generated by 
the validation study. The clustering of results seen in different series of critical experiments 
indicates that there are correlations among the experiments and that different evaluations may 
indicate different biases. The impact of correlated critical experiments is discussed in more 
detail in Section 6.5. 

The biases for some groups or individual critical experiments may vary significantly from the rest 
of the group(s). In some cases, this leads to a conclusion that the individual bias estimates 
cannot be characterized as being normally distributed. This is relevant because many statistical 
methods for defining confidence intervals assume that the distribution of the bias estimates is 
normal. Section 6.3.2 of ANSI/ANS-8.24 [3] provides the following guidance on rejection of 
critical experiments: “[R]ejection of outliers shall be based on the inconsistency of the data with 
known physical behavior in the experimental data.” Analysts can reject some configurations 
within a series if there are valid technical reasons, such as lack of similarity to the application of 
interest, or results that are inconsistent with the other configurations in the series. Justification 
for removing some critical experiment results from a validation set must be carefully considered 
and documented. It is always inappropriate to remove results purely to obtain a less restrictive 
limit or to pass a normality test. 

4.2.4 Critical Experiment Selection Considerations for Burnup Credit Validation 

Validation of criticality calculations for spent nuclear fuel (SNF) systems has been and continues 
to be a technical challenge. Useful information on the validation of these systems can be found 
ANSI/ANS-8.27 [18], although the combined validation approach is not endorsed by Regulatory 
Guide 3.71 [4]. Ideally, criticality validation would be performed based on analysis of critical 
experiments with well-characterized fissionable material having compositions (i.e., actinides and 
fission products) similar to those of actual SNF. The fuel composition, which starts out as low-
enriched uranium dioxide fuel, changes significantly as plutonium and fission products are 
created. Various critical experiment fissionable material compositions are needed to evaluate 
the change in bias and bias uncertainty with SNF burnup. The fundamental problem is that there 
are insufficient critical experiments involving either well-characterized SNF or fissionable 
material designed to be similar to SNF that also have actinide and fission product content 
similar to that of used fuel.  
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Whereas many technical challenges associated with validation of burnup credit are discussed 
throughout this document, a more thorough discussion is provided in NUREG/CR-7109 [19]. 
This subsection provides a discussion of the advantages and drawbacks of the Haut Taux de 
Combustion (HTC) critical experiments, the commercial reactor critical (CRC) statepoints, and 
uranium and plutonium mixed oxide (MOX) experiments from the ICSBEP Handbook. The HTC 
experiments are a series of critical experiments performed in France in the 1980s that 
incorporated an actinide mixture specifically designed to represent discharged SNF. A mixture 
of uranium and plutonium oxides was fabricated specifically for these experiments. The CRC 
statepoints are a series of power reactor hot zero-power or hot full-power critical conditions for 
which detailed information has been collected. These statepoints were developed and defined 
for use in burnup credit validation as part of the Yucca Mountain Project [20]. 

4.2.4.1 HTC Experiments 

For validation of criticality calculations involving SNF, the HTC experiments will likely prove 
useful. These 156 critical configurations were assembled using fuel rods containing a mixture of 
enriched uranium and plutonium oxides designed to produce an actinide composition similar to 
that found in pressurized water reactor (PWR) fuel with an initial enrichment of 4.5 wt% 235U and 
a discharge burnup of 37,500 MWd/MTU. This is the only critical experiment set currently 
available with uranium and plutonium compositions very similar to spent fuel. An evaluation of 
these experiments is documented in NUREG/CR-6979 [21], and the experiments are described 
in four proprietary reports available from ORNL [22], [23], [24], [25]. These reports are available 
for limited approved purposes in the United States, contingent upon completion of a 
nondisclosure agreement with ORNL.  

As stated in NUREG/CR-6979 [21], the “HTC experiments have many characteristics that make 
them very valuable for the validation of actinide-only burnup credit calculations.” The fissile 
material is an extremely good match for the actinides present in SNF at typical discharge 
burnups. The distribution of the plutonium isotopes in particular is better than most of the mixed-
oxide critical experiments in the ICSBEP Handbook. The actinide content is a strength for 
validation of SNF at typical discharge burnups but is also a weakness for lower burnup 
assemblies. Damaged PWR assemblies or analyses involving boiling water reactor (BWR) 
assemblies at peak reactivity likely involve significantly lower burnups for which the HTC 
experiments are not very similar. Furthermore, the HTC rods do not contain fission products, 
which creates a validation gap for SNF analyses crediting these nuclides. 

4.2.4.2 CRC Statepoints 

It has been proposed that data from operating nuclear power plants could be used in the same 
way as critical experiments. Rather than using well-characterized fissile material in a critical 
experiment, the CRC statepoints would use well-characterized initial fuel and well-characterized 
in-reactor depletion conditions. To support this approach, CRC data have been accumulated for 
several nuclear power plants, and analysts have generated CRC models using these data. 
Because of challenges associated with this validation approach, no NRC-regulated license has 
yet been approved for which the use of CRC statepoints was the primary validation data source. 

Two major challenges must be addressed before CRC statepoint data may be successfully 
used as a primary data source in the validation of criticality calculations for SNF systems. The 
first challenge is that the expected keff value and its uncertainty must be determined for the 
model of the CRC statepoint. The second challenge is that the analyst must address the 
differences between CRC statepoint models and the safety analysis models involving SNF 
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systems. The differences between CRC statepoints and SNF systems (e.g., temperatures and 
moderator densities) may indicate that these systems have different biases and uncertainties, 
so the analyst may need to determine and justify bias and uncertainty adjustments to cover 
extrapolation from CRC statepoint model-based validation to SNF system models. 

The expected keff and uncertainty values are needed for comparison with the calculated keff 
value and uncertainty. Initially, one might think that the expected keff value should be exactly 1.0 
because the reactor was critical. However, the assumptions, simplifications, and approximations 
made in generating the CRC statepoint models all contribute to the bias and uncertainty in the 
keff value expected from the CRC statepoint model. Numerous assumptions and approximations 
are typically made concerning the detailed, spatially, and temporally varying distributions of 
temperatures, power density, and moderator density. These quantities vary significantly during 
reactor operation, and the local distributions are not measured. The differences between the 
simplified model conditions and the actual reactor conditions could introduce bias and 
uncertainty. Uncertainties in the materials and dimensions of assemblies and other core 
components introduce additional uncertainty in the expected keff value. 

If the challenges associated with (1) determining the expected keff value and its uncertainty for 
CRC statepoint models and (2) determining the adjustments that need to be made to the bias 
and uncertainty generated using CRC statepoint models can be overcome, then it may be 
possible to use CRC statepoints to validate criticality calculations involving SNF in storage and 
transportation configurations. This approach may have the added benefit of validating both SNF 
composition calculations and criticality keff calculations simultaneously. NRC staff have 
previously recommended against using the CRC statepoints for burnup credit validation in the 
Division of Spent Fuel Storage and Transportation Interim Staff Guidance 8, Revision 3 [26]. 

4.2.4.3 Mixed-Oxide Critical Experiments 

Almost 300 MIX-COMP-THERM critical experiments are documented in the ICSBEP Handbook 
[5]; these or other experiments with mixed uranium and plutonium fissile material may prove 
useful for validation of SNF system criticality safety analyses. The applicability of some of these 
experiments for PWR SNF analyses was assessed and is presented in NUREG/CR-6979 [21], 
and it was also assessed for multiple PWR analyses and for one BWR SNF analysis as 
presented in in NUREG/CR-7109 [19]. The impact of updates to the SCALE 6.2 covariance data 
on the apparent applicability of these experiments is also examined in a paper by Marshall et al. 
[17]. The SCALE 6.2 covariance data are largely based on Evaluated Nuclear Data File 
(ENDF)/B-VII.1 evaluations. Results from previous assessments indicate that a limited number 
of experiments exceeded the ck threshold of 0.8, but investigations using SCALE 6.2 revealed 
that none of the non-HTC MOX experiments exceeded the ck threshold of 0.8 for the PWR SNF 
system analyzed. An analysis of the ENDF/B-VIII.0 covariance data [27] indicates that these 
evaluations indicate that some non-HTC MOX experiments are applicable for SNF system 
validation. Future covariance data updates will likely also impact the apparent applicability of 
MOX experiments for the validation of SNF criticality safety analyses. 

4.2.4.4 Isotopic Validation 

Although this document is dedicated to the validation of keff calculations, burnup credit 
calculations also require the validation of the SNF isotopic compositions used as inputs to the 
criticality calculations. Detailed guidance on acceptable methods for performing isotopic 
validation can be found in the literature [28] and [29]. One approach to an integrated validation 
of SNF isotopic compositions and keff calculations is described in [30].   
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4.3 Defining the Area of Applicability 

Once the experiments have been selected to meet the validation needs of the application model 
or models, it is convenient to define the area of applicability, referred to as validation 
applicability in ANSI/ANS-8.24-2017 [3], so that future applications can be compared to the 
validation suite. The area of applicability is the breadth of the physically relevant parameters for 
a validation suite that can be used to judge how similar it would be to a given application. This 
section draws on Section 2.5 of NUREG/CR-6698 [31], Section 5 of NUREG/CR-6361 [32], and 
Appendix A of ANSI/ANS-8.24-2017 [3]. 

As in the initial selection of critical experiments, defining the area of applicability properly 
ensures that the bias generated by the validation suite reflects the bias that should be expected 
for the application or applications that fall within it. Having similar computational biases between 
the validation suite and the application is ensured by selecting critical experiments in which the 
same nuclear data are important to keff as the application of interest. Two important conditions 
necessary to ensure that similar biases are generated are (1) that the area of applicability 
sufficiently covers the important neutronic features of the application of interest, and (2) that 
there is no artificial reduction of the bias introduced by features present in experiments in the 
validation suite that are not present in the application. Further discussion of the potential 
challenges with regard to defining the area of applicability are discussed in Section 4.3.1. 

The process of defining the area of applicability to ensure that the bias is appropriate for the 
application is inseparable from the selection of the benchmark experiments. A good approach to 
defining the area of applicability is to examine the neutronically relevant key parameters 
associated with analyzed normal and credible abnormal conditions and then compare those to 
the set of critical experiments. If the new application model fits within the set of critical 
experiments, then the bias and bias uncertainty are appropriate for its validation.   

As with critical experiment selection, engineering judgement has historically been used to 
determine which parameters provide the most insight into the selection of appropriate 
experiments and the degree of deviation of those parameters from the application cases 
deemed acceptable in the critical experiments. The categories of physical parameters 
considered can be roughly subdivided into those related to the fissionable materials, those 
related to moderators and reflectors, those related to significant absorbers, and those related to 
the neutron energy spectrum within the system. Parameters considered for the fissionable 
materials should be the isotopic composition of the material (i.e., highly enriched uranium 
[HEU], low-enriched uranium [LEU], and ratios of Pu to U), the chemical form of the material 
(i.e., metal or oxide), the material concentration, and the material density. Parameters 
considered for the moderator and reflector should include chemical composition and density. 
Neutron cross sections of moderators and reflectors can vary substantially at thermal energy 
between chemical forms because of differences in the S(α,β) scattering data. The presence of 
any interstitial absorber materials should be considered, as well as whether that material is 
present in the fissile material, a liquid moderator, or as solid absorber plates or pins located 
within the system. Parameters considered to be representative of the neutron energy spectrum 
have included the EALF, AEG, and AEF, as well as ratios of moderating to fissile concentration 
(e.g., H/X). Ratios of the amount of moderating species to the amount of fissile species should 
not be used as trending parameters for validation of fuel lattices because the lumping of the fuel 
introduces spectral effects that may vary in unexpected ways. Useful recommendations on the 
allowed deviation of experiments from the parameters listed above can be found in Table 2.3 of 
NUREG/CR-6698 [31], which is adapted from Appendix E of LA-12683 [33]. The values of 
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deviations prescribed in Table 2.3 of NUREG/CR-6698 should be considered guidelines, and 
departure from these values may be acceptable with adequate justification. 

Within the past 25 years, S/U methods have been introduced as a means to determine if the 
area of applicability is defined appropriately for an application. S/U techniques explicitly account 
for the contributions of each nuclide-reaction pair to the sensitivity of keff as a function of energy. 
The sensitivity profiles can be generated for the application and for a large number of candidate 
critical experiments. The sensitivity profiles from the application and the experiments can then 
be folded together to generate integral indices (e.g., ck). Integral indices give a measure of how 
much sensitivity the underlying nuclear data shares between the experiment and the 
application. The integral index values that most closely approach 1 indicate the highest 
similarities. The cross section covariance data are propagated with the sensitivity profiles to 
generate ck values. The inclusion of the covariance data weights the overlap in the sensitivity 
profiles between the experiment and the application by the estimated uncertainty in the nuclear 
data as a function of nuclide, reaction, and energy. Historically, experiments with values of ck 
greater than 0.9 have been considered similar to an application, whereas experiments with ck 

values between 0.8 and 0.9 have been considered marginally similar by ORNL [34], [19]. The 
NRC has previously considered values of ck of greater than 0.95 to indicate “a very high degree 
of similarity” and values of ck greater than 0.90 to indicate “a high degree of similarity” with 
regard to providing justification of a minimum margin of subcriticality for fuel cycle facilities [35]. 
ck is not the only integral index, and S/U methods continue to be an area of active research. The 
values of ck that indicate the acceptability of an experiment in the validation of any particular 
application should be judged on an application-specific basis. Higher values always indicate a 
higher degree of similarity between cases. 

4.3.1 Extrapolation and Wide Interpolation 

Two of the most common errors introduced when defining the area of applicability are 
(1) inappropriately extrapolating the validation bias, and (2) defining the area of applicability so 
broadly that the bias generated by the validation suite does not reflect any individual application 
being validated. Existing guidance suggests limiting extrapolation to less than 10% and 
interpolation to be over ranges of less than 20% [35], although this should not be viewed purely 
as a mathematical exercise, and underlying physical phenomena should be considered. 

The first error, extrapolating the bias and bias uncertainty beyond the bounds of the range of the 
physically relevant parameters explicitly tested by the validation suite, assumes that the trend of 
the bias is not changing outside the area tested. At the very least, this introduces additional 
uncertainty into the validation process. It is possible that the data used by the application not 
covered by the validation suite are less well known or are in some way more flawed than the 
data tested by the validation suite.  

When dealing with unique applications, it is possible that some feature of the application will 
require extrapolation of the validation suite. The first and most obvious recommendation is to 
add experiments to cover the unvalidated feature, provided that those experiments do not add 
features which are highly dissimilar to the application. Assuming that the analyst has already 
used a large fraction of the applicable experiments, it then becomes necessary to examine ways 
to extend the area of applicability. A method to extend the area of applicability is to use the 
tolerance band method discussed in Section 6.3.2. When the statistical bands are used to 
extrapolate bias and bias uncertainty, they are accounting for the quadratic behavior of the 
statistical uncertainty, but they are not accounting for the potential issues associated with the 
nuclear data that are not tested appropriately. One approach to further investigate the nuclear 
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data component is to introduce a series of small material composition perturbations to the 
application model to show that the variation in keff is smooth over the range of the extrapolation. 
The trend from the perturbations to the application model should be included in the bias 
assessment. It is valid to include the statistical bands, even if the slope of the line is statistically 
indistinguishable from 0. The range of the extrapolation of the area of applicability with this 
method should be less than 10% [31]. Other means of addressing validation gaps and 
weaknesses are discussed in Section 7. 

A second common error in the definition of the validation suite that can lead to a 
nonconservative application of the bias is defining the area of applicability so broadly that the 
bias is diluted by experiments not relevant to potential applications. This practice can result in 
what is known as wide interpolation. Broad expansion of the area of applicability can result in a 
condition in which the bias for the entire validation suite is less restrictive than a subset of the 
suite which is more appropriate to the validation of a particular application. The consensus 
validation standard [3] contains an explicit warning regarding this practice.  

An overly broad definition of the area of applicability leads to the inclusion of experiments which 
use very different cross sections. A common example of this type of error is to attempt to define 
the area of applicability to include all potential applications that may be present at a facility. An 
example of this could occur at a facility that processes HEU. It is possible that HEU would be 
present in the form of metal ingots as initial feed to a process or as the final product. It is also 
possible that the process would include steps in which the HEU would be present in solution 
form. In such a situation, one might consider including both HEU metal and solution 
experiments so that one validation would produce a bias that could be applied to all of the 
criticality calculations performed at the site. However, this approach is problematic because the 
cross sections used by each calculation are vastly different and are known with different 
degrees of certainty. To illustrate this difference, fission cross section sensitivity profiles are 
shown from one HEU-SOL-THERM (HST) solution experiment and one HEU-MET-FAST (HMF) 
metal experiment in Figure 4-1. Figure 4-1 shows that there is virtually no overlap between the 
portions of the fission cross section used between the two calculations. A bias present in the 
fast energy portion of the cross section would impact the keff of a fast system, but it would not 
impact a thermal system, or vice versa. 
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Figure 4-1 Comparison of the Fission Cross Section Sensitivity Profiles of HMF-024-
001 and HST-014-001 Showing the Lack of Overlap of the Sensitivity 
Profiles Between Fast and Thermal Systems  

To further illustrate the issues caused by widely defining the area of applicability, a plot of many 
HST and HMF experiments is constructed in Figure 4-2. The unweighted bias would 
be -0.00133 Δkeff for the entire validation suite, -0.00380 Δkeff for the HST experiments only, and 
0.00124 Δkeff for the HMF experiments only. This example shows that if the analyst were to try 
to validate a solution application with a validation suite that included all of the experiments, then 
the bias would be underpredicted compared to a validation suite that included only the HST 
experiments. Another example of problems associated with wide interpolation would be the 
attempted validation of an HEU solution application with heavy water rather than light water as 
the primary moderating species. A heavy water HEU solution experiment with an EALF of 
13.42 eV, which lies between the EALF values of the HST and HMF experiments, is also shown 
in Figure 4-2. The bias predicted by an unweighted trend line associated with this EALF 
is -0.00216 Δkeff, but the true bias for the selected experiment is -0.01252 Δkeff . The magnitude 
of this misprediction, over 1% Δk, illustrates that it is possible to make errors with large impacts 
on reactivity margins by improperly defining the area of applicability. 
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Figure 4-2 Comparison of HST and HMF Systems with an HEU D2O Application as a 
Function of EALF 
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5 STATISTICAL BACKGROUND 

A significant amount of statistical terminology is used in validation methods, and a good 
understanding of the relevant statistics is important to properly perform a validation. One 
common area of misunderstanding is hypothesis testing. Therefore, Section 5.1 provides the 
background on hypothesis testing necessary to ensure understanding of its effective use in the 
relevant validation sections that follow. The assessment of normality is important when 
confirming the applicability of several statistical techniques and is discussed in Section 5.2. 
Goodness-of-fit testing for trends is important to establish that a trend is statistically meaningful, 
as discussed in Section 5.3. These concepts are addressed in this section so that the validation 
techniques can be discussed with appropriate statistical rigor without complicating the 
descriptions with this background information. 

5.1 Hypothesis Testing 

This section discusses the basic nomenclature and framework that apply to all types of 
hypothesis testing so that it can be referenced during more specific discussions in later 
sections. The need for statistical hypothesis testing arises within the context of this document 
when testing the assumption of normality (Section 5.2) and assessing the statistical validity of a 
trend (Section 5.3). Additional information related to hypothesis testing is available in most 
statistics textbooks or in Chapter 10 of NUREG-1475 [36]. 

When a hypothesis is being tested, the null hypothesis (H0) is the presupposed condition that 
may be rejected. The null hypothesis is either successfully or unsuccessfully rejected in favor of 
the alternative hypothesis (HA) based on a statistical procedure and selected values of statistical 
parameters. For example, in normality tests (see Section 5.2.2), the null hypothesis is that the 
data are drawn from a normal distribution, and the alternative hypothesis is that the data are 
drawn from a distribution that is not normal. In hypothesis testing, it must be accepted that there 
is some probability of error, because the decisions are being based on a sample rather than the 
entire population, and the sample may not behave like the entire population.  

In general, there are two kinds of errors than can be made:  

• The error of inadvertently rejecting a true null hypothesis, known as a false positive, or 
Type I error. The symbol most commonly associated with the probability of committing a 
Type I error is α. 

• The error of inadvertently accepting a false null hypothesis is known as a false negative 
or Type II error. The symbol most commonly associated with the probability of making a 
Type II error is β. 

The probability of avoiding a Type I error is known as the confidence level and is calculated as 
1- α. The probability of avoiding a Type II error is known as the power of a hypothesis test and is 
calculated as 1- β. A summary of this discussion is provided in tabular format in Table 5-1.  
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Table 5-1 Summary of Possible Results of Hypothesis Test 

 H0 is true H0 is false 

H0 rejected 
Type I error (false positive) 

has a probability of α 

Correct rejection 

has a probability of 1- β 

(power) 

H0 accepted 

Correct acceptance 

has a probability of 1- α 

(confidence) 

Type II error (false negative) 

has a probability of β 

 

All hypothesis tests considered in this document are posed in terms of α or the probability of 
inadvertently discarding a correct null hypothesis. As α increases, β decreases, although the 
exact numerical relationship cannot be calculated. In other words, as the probability of 
incorrectly rejecting a true null hypothesis increases, the probability of failing to reject a false 
null hypothesis decreases (or the ability to detect a faulty one increases). This indirect 
relationship is explored in Section 5.2.3 for common normality tests. An alternate means of 
implementing hypothesis testing that is often used in modern statistical software is to calculate 
the probability that the value of the test statistic for the sample could occur by chance if the null 
hypothesis were true, known as the p-value. The p-value can be compared to a predefined 
value of α. A p-value smaller than α indicates that it is unlikely that the sample could have 
occurred by chance if the null hypothesis were true, so the null hypothesis should be rejected.   

A common statistical misconception is that passing (failing to reject the null hypothesis) a 
hypothesis test at a given confidence level (1-α) implies that there may only be an α probability 
that null hypothesis is true. This is different from the true statement that the test has an α 
probability that the test inadvertently rejected a true null hypothesis.  

5.2 Assessment of Normality 

The assessment of normality is important during validation because the statistical tolerance 
limits used to calculate the bias uncertainty are sensitive to departures from normality. When 
used properly, the tolerance limits ensure that an appropriate fraction of the true population of 
applicable critical experiments lies above the calculated lower tolerance limit (LTL) with the 
required statistical confidence level. One of the conditions necessary to ensure that the 
appropriate proportion of the population of keff values in the validation suite lies above the LTL is 
that the assumption of the normality of the underlying population of critical experiments is valid 
or conservative. This is because the LTL is determined so that the specified proportion of the 
population is in the lower tail of a normal distribution. The population distribution for the normal 
distribution is known, so the number of standard deviations (K from Section 6.1) necessary to 
achieve the desired population fraction is also known. For other distributions, these factors may 
not capture the desired fraction of the population. Therefore, if it is not possible to show that the 
distribution from which the validation suite is drawn is normal or conservatively bounded by the 
normal distribution, then other statistical techniques (typically the nonparametric techniques 
discussed in Section 6.2) must be used to develop the LTL. In this context, it is conservative if 
the normal distribution has a larger proportion of the population in the lower tail than the 
distribution of critical experiments. This section discusses techniques used to assess the validity 
of the assumption that the validation suite is drawn from a normal distribution. 
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Before discussing normality assessment, the ways in which a distribution can depart from 
normality must be addressed. Distributions can depart from normality in two meaningful ways: 
(1) in the symmetry about the mean, or the skewness, and (2) the peakedness of the 
distribution, or kurtosis. As shown in Eq. (1), the value of the estimated skewness [37] of a 
sample describes the direction in which an unusually long tail is located relative to the mean. 
The normal distribution has a skewness of 0. Negative values indicate that the distribution has a 
heavy left tail, and positive values indicate that the distribution has a heavy right tail. The value 
of the calculated kurtosis of a distribution describes how broad the distribution is compared to a 
normal distribution. As shown in Eq. (2), kurtosis can either be expressed as absolute kurtosis 
[37], which has a value of 3 for a normal distribution, or excess kurtosis, which is calculated by 
subtracting 3 from the absolute kurtosis. A kurtosis of less than 3 indicates that the distribution 
is broader than normal and is termed platykurtic, and a kurtosis of greater than 3 indicates that 
the distribution is narrower than normal and is termed leptokurtic. Rigorously, kurtosis relates to 
the weight of the distribution tails, but either platykurtic or leptokurtic distributions may have 
heavier or lighter tails than the normal distribution. Figure 5-1 shows examples of distributions 
with positive and negative skewness (left) and leptokurtic and platykurtic distributions (right) 
compared to a normal distribution. Departures from normality that result from a combination of 
skewness and kurtosis also occur, and although they are ignored here for simplicity, they are 
considered later where appropriate.  
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Figure 5-1 Comparison of Deviated Distributions with Standard Normal Distribution 

Positively and negatively skewed distributions compared to 
standard normal distributions 

Leptokurtic and platykurtic distributions compared to the 
standard normal distribution 



 

5-4 

Within the context of a criticality safety validation, not all departures from normality result in a 
nonconservative estimate of the bias uncertainty. As discussed in Section 6.1, the bias 
uncertainty for a nontrending analysis is calculated by multiplying the standard deviation of keff 

by the K factor. The factor provides coverage of a specified proportion of the population 
(typically 95%) with a specified statistical confidence level (usually 95% confidence). 
Distributions which result in a smaller fraction of the population below that value will yield 
conservative validation parameters. For example, if the kurtosis of the distribution exceeds that 
of a normal distribution, then less of the population could be in the tails than would be for the 
normal distribution. The bias uncertainty would therefore be overestimated when normality-
based tolerance limit methods are applied. Applications of normality-based statistics to 
positively skewed distributions are similarly conservative because there are fewer keff values 
that deviate on the low reactivity side of the distribution. Conversely, distributions that result in 
more data in the negative tail than would be predicted by a normal distribution would lead to a 
nonconservative application of the LTL methods. 

The remainder of this subsection addresses the methods used to assess whether statistical 
techniques based on a normal distribution are appropriate or conservative for the development 
of the LTL. The techniques discussed in the remainder of this section can be broadly 
categorized as graphical techniques or formalized normality tests. Graphical techniques are 
discussed in Section 5.2.1, and formalized normality tests such as omnibus normality tests and 
single parameters tests for skewness and kurtosis are discussed in Section 5.2.2.   

5.2.1 Graphical Techniques 

Two main methods are used to graphically assess whether a sample was drawn from a normal 
distribution. The first method uses a histogram on which a normal curve has been 
superimposed. A histogram allows for visual inspection of the general features of the data 
sample and provides a good first look at the data. Histograms are also easy to construct in 
modern statistical software packages such as Dataplot [38] and R [39]. Standardizing the data 
by converting it to Z-scores (number of standard deviations a data point is from the mean) can 
help in the evaluation. The Z-score places the data on the same scale as a normal distribution, 
with a mean of 0 and a standard deviation of 1. The Z-score can be calculated for each data 
point in the sample using Eq. (3), 

𝑍𝑖 =
𝑘𝑛𝑜𝑟𝑚𝑖

− 𝑘𝑛𝑜𝑟𝑚

𝜎𝑘𝑛𝑜𝑟𝑚

, (3) 

 

where: 𝑘𝑛𝑜𝑟𝑚 are the normalized keff values, 

 𝑘𝑛𝑜𝑟𝑚 is the average of the normalized keff values, and 

 𝜎𝑘𝑛𝑜𝑟𝑚
is the standard deviation about 𝑘𝑛𝑜𝑟𝑚. 

Equations to calculate the values for these three variables are provided in Section 6.1. 

The second graphical normality assessment technique is the quantile-quantile plot, or the Q-Q 
plot, which provides a mechanism to evaluate whether the data might be drawn from a normal 
distribution. Many software packages implement the Q-Q plot: the one presented here is taken 
from R and requires no alteration to the default settings. The process to implement the Q-Q plot 
is as follows.  
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1. Sample data are ordered from smallest to largest. The result is referred to as ordered 
data.  

2. Ordered data are plotted against the appropriate quantiles from a normal distribution, 
creating a scatterplot of the sample data, or sample quantiles, where the x values are 
the theoretical quantiles, and the y values are the sample quantiles. 

3. If the points fall along a straight line (y=x), then this indicates that the data are likely 
drawn from the normal distribution. Departure from linearity indicates a deviation of the 
sample from the normal distribution. 

To demonstrate Q-Q and histogram plots for the normal distribution vs. other non-normal 
distributions, 200 data points were sampled from various distributions using the R software 
package. The data from these samples are presented in Figure 5-2 through Figure 5-6. Figure 
5-2 shows data sampled from a normal distribution. As expected, the results from a normal 
distribution fall reasonably close to the superimposed line, with little deviation of any of the 
points. Figure 5-3 and Figure 5-4 show how skewness would manifest itself in a Q-Q plot. 
Figure 5-3 shows negatively skewed data, which produces values that are more extreme in the 
left tail and less extreme in the right tail than expected from data sampled from a normal 
distribution. This results in a downward-shaped C curve that departs from the superimposed 
line. Conversely, Figure 5-4 shows a Q-Q plot based on the data sampled from a positively 
skewed distribution. The Q-Q plot in Figure 5-4 shows that there are less extreme data than 
expected in the left tail of the sample and more extreme data than expected in the right tail of 
the data. These plotted data result in a characteristic upward-shaped C curve compared to the 
superimposed line. Having less data in the negative or left tail of the distribution than would be 
present in a normal distribution would result in a conservative application of the single-sided 
lower tolerance band, whereas having more data in left tail would result in a nonconservative 
application of normal statistics. 

Figure 5-5 and Figure 5-6 show the effects of kurtosis on the Q-Q plot. Figure 5-5 shows a 
histogram of a leptokurtic distribution, along with the corresponding Q-Q plot. The Q-Q plot 
shows that the values of the Z-score in each tail are less than expected from a normal 
distribution. This results in values being lower than the superimposed line in the left tail and 
above the line for values in the right tail. Figure 5-6 shows a histogram of a platykurtic 
distribution, along with the corresponding Q-Q plot. The Q-Q plot in Figure 5-6 shows that the 
values of the Z-score in each tail are greater than expected, resulting in values greater than 
expected in the left tail and less than expected in the right tail.  

In practice, it is often difficult to make definitive judgements solely using graphical techniques, 
but they can be used to identify potentially nonconservative departures from normality. 
Distributions often depart from normality, resulting from a combination of skewness and excess 
kurtosis. However, showing that the left tail of the distribution contains a smaller fraction of the 
data than would be present in a sample from a normal distribution provides some confidence 
that the application of normality-based statistics would be conservative. These graphical 
methods should always be combined with either omnibus or single-parameter tests for the 
normal distribution. 
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Figure 5-2 Histogram (Left) and Normal Q-Q Plot (Right) of a 200-Point Sample Drawn 
from a Normal Distribution 

 

Figure 5-3 Histogram (Left) and Normal Q-Q Plot (Right) of a 200-Point Sample Drawn 
From a Negatively Skewed Distribution 
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Figure 5-4 Histogram (Left) and Normal Q-Q Plot (Right) of a 200-Point Sample Drawn 
from a Positively Skewed Distribution 

 

Figure 5-5 Histogram (Left) and Normal Q-Q Plot (Right) of a 200-Point Sample Drawn 
from a Leptokurtic Distribution 
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Figure 5-6 Histogram (Left) and Normal Q-Q Plot (Right) of a 200-Point Sample Drawn 
from a Platykurtic Distribution 

5.2.2 Normality Tests 

This section discusses statistical tests used to determine if the data sample being investigated 
might come from a normal distribution. There are two types of normality tests discussed here: 
omnibus tests and single-sided, single-parameter tests for skewness and kurtosis. Omnibus 
tests provide a single statistic that measures the goodness-of-fit of a normal (or potentially 
other) distribution to the sample. The test statistic is calculated for the sample and compared 
with tabulated values of the test statistic distribution for the specified confidence level and the 
number of points in the sample (degrees of freedom). Based on the relative values of the 
calculated and tabulated statistics, the analyst either rejects or fails to reject the assumption of 
normality. The single-sided tests for skewness and kurtosis similarly develop test statistics for 
comparison to a distribution based on the number of points in the sample and the desired level 
of confidence; however, these tests individually check for the skewness and kurtosis of a normal 
distribution. The single-sided tests can provide more information than the omnibus tests 
regarding what potential departures from normality may exist, and they may be more powerful at 
detecting those departures. It is noted that modern statistical software will generally calculate a 
p-value for these, which is the level of confidence that would be required to reject the 
assumption of normality. The p-value is typically compared to the prescribed level of confidence 
to decide if the assumption of normality is appropriate. 

All normality tests are posed with the null hypothesis (as previously discussed in Section 5.1) 
that the sample came from a normal distribution, with the alternative being that the data were 
not drawn from a normal distribution. This is formally stated below. 

0H : The data are normally distributed.  
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AH : The data do not follow a normal distribution.  

Because the null hypothesis is posed in the affirmative, the test requires that there be a 
preponderance of evidence to reject normality. Historically the 95% confidence level is used for 
most statistical applications, including criticality safety. Because the use of normal statistics 
generally results in a smaller bias uncertainty, σβ when compared to the nonparametric methods 
discussed in Section 6.2, this may allow for a nonconservative validation if not closely 
examined. As discussed in Section 5.1, the p-value for the normality test is not the probability 
that HA is true. 

Omnibus normality tests are discussed in Section 5.2.2.1, single-sided single parameter 
normality tests are discussed in Section 5.2.2.2, and a power comparison of normality tests is 
presented in Section 5.2.3. 

5.2.2.1 Omnibus Tests 

Several generally accepted omnibus normality tests are used in practice. Table 5-2 lists some of 
the generally acceptable tests, along with the references providing information on how to 
calculate test statistics and p-values. The methods are not presented here because statistical 
software can often generate these values with minimal user input. It is also noted that the list of 
tests presented here is not an exhaustive list of normality tests, and there are other tests that 
may be acceptable. All tests specified in Table 5-2 are available in the “nortest” package in 
R [40]. 

Table 5-2 List of Generally Acceptable Normality Tests 

Test Reference 

Chi-square Pg. 106 [41] 

Anderson-Darling Pg. 104 [41] 

Cramer-Von Mises Pg. 103 [41] 

Lilliefors Pg. 102 [41] 

Shapiro-Wilk Pg. 27 [41] 

Shapiro-Francia Pg. 29 [41] 

Jarque-Bera [42] 

 
Two potential issues are associated with using omnibus normality tests, as the normal 
assumption relates to criticality safety analyses. The first is that they may fail to reject normality 
at the traditional 95% confidence level for small sample sizes [43], [44]. The second issue 
associated with omnibus normality tests is that they may reject normality for samples which 
violate normality in ways that will not result in an underestimate of the bias uncertainty. The 
Kolmogorov-Smirnov test, a popular normality test, is cited as having particularly poor results for 
applications sensitive to the tails of a distribution [36], [44]. One such application is the 
calculation of single-sided LTLs discussed in Section 6.1. For this reason, the Kolmogorov-
Smirnov test should be avoided for criticality safety validation applications. The Chi-square test 
for normality is unique relative to the other tests described here because it requires a means for 
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grouping the data. It is important to note the sensitivity of the test depends on the choice of the 
number and width of the groups [36], as well as the confidence level and sample size. 

5.2.2.2 Single-Sided, Single-Parameter Tests for Normal Skewness and Kurtosis 

As previously discussed, it is possible to fail the omnibus normality tests discussed in Section 
5.2.2.1 for samples that would overestimate the bias uncertainty. This section presents methods 
that provide single-sided tests to determine if the skewness estimated by a sample is less than 
or statistically equal to 0 and if the kurtosis is greater than or statistically equal to 3 (or an 
excess kurtosis of 0). The test used to determine acceptable skewness is given by D’Agostino 
[45], and the test for acceptable kurtosis is given by Anscombe and Glynn [46]. Both the 
D’Agostino skewness test and Anscombe-Glynn kurtosis test are available in the R moments 
package [47]. As discussed in Section 5.2, distributions with excess kurtosis and/or positive 
skewness are conservatively represented with a normality-based LTL. 

5.2.3 Power Comparison of Normality Tests 

As previously noted, the tests for normality used here are posed so that the null hypothesis is 
that the data are consistent with a normal distribution. Because of the way the test is posed, the 
confidence level specified is the allowed error rate of rejecting the assumption of normality when 
the data are in fact drawn from a normal distribution. This does not directly indicate the 
probability that samples drawn from a non-normal distribution will pass the test. Rather, the 
statistical power of the test indicates how likely it is to detect non-normal behavior. Power 
studies documented by Razali et al. [44] test a few normality tests with some extreme 
distributions.  

Power studies performed for this work use unimodal distributions based on the perturbable 
normal distribution put forward by Jones and Pewsey [48]. The Jones and Pewsey distribution 
allows the user to enter factors that will transform the normal distribution into one that has 
different skewness and kurtosis. The normality tests discussed above are exercised here on 
distributions with negative skewness, negative excess kurtosis, and a combination of both. The 
distributions were produced so that they would result in 90% and 85% coverages of the 
population, respectively. This means that 90% of the data points in the first case and 85% of the 
data points in the second case lie above the point that is 1.645 standard deviations below the 
mean. This value was selected because it corresponds to 95% of the population for a normal 
distribution. Plots of these distributions are shown in Figure 5-7. For the 90% case, these 
deviations from normality would result in a 26.1% underprediction of the single-sided tolerance 
factor for the purely skewed case, a 32.3% underprediction for the purely kurtotic case, and a 
28.7% underprediction for the mixed case. For the 85% case, the skewed case would result in a 
50.5% underprediction, an 84.9% underprediction for the kurtotic case, and a 60.7% 
underprediction in the mixed case. 

Using the distributions described above, 1,000 samples of 50, 125, and 250 points were 
randomly generated for each of the conditions for the 90% and 85% population coverage 
distributions, as well as for a normal distribution. The samples were then subjected to all the 
normality tests discussed in Section 5.2.2.1 with varying values of α (0.05, 0.10, 0.15, and 0.20). 
For each combination of sampled distribution, value of α, and sample size, the probability that 
the distribution would be rejected was calculated by dividing the number of cases for which the 
p-value was less than α by 1,000. The probabilities of rejection for the samples drawn from a 
distribution that would cover 90% of the population with normal statistics are given in Table 5-3, 



 

5-11 

the probabilities of rejection for the 85% of the population case are given in Table 5-4, and the 
probabilities of rejection for the normal distribution are given in Table 5-5.  

 
 
 

Figure 5-7 Comparison of Platykurtic (Black), Negatively Skewed (Red), and Combined 
Platykurtic and Negatively Skewed (Orange) Distributions Used in the 
Power Study to the Normal Distribution (Green) for 90% and 85% of 
Population Coverage 

In general, the results in Table 5-3 and Table 5-4 show that the omnibus tests perform similarly 
when compared with one another. The results also show that all of the tests do a better job of 
rejecting distributions that depart from normality through skewness rather than kurtosis. The 
results in Table 5-5 show that the omnibus tests reproduce the values of α effectively for 
samples drawn from a normal distribution.  

This information shows that graphical techniques should be used to supplement quantitative 
normality testing because of the potentially low power of common statistical tests at small 
sample sizes and low values of α. 

  

Perturbed distributions offering 90% coverage of the 
population under the application of normal statistical 

one-sided tolerance factors. 
 

Perturbed distributions offering 85% coverage of the 
population under the application of normal statistical 

one-sided tolerance factors. 
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Table 5-3 Probability of Rejection for the 90% Coverage of Population Cases 

Kurtosis 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.07 0.16 0.22 0.28 0.12 0.20 0.28 0.34 0.21 0.30 0.38 0.46 

Cramer–Von Mises 0.06 0.14 0.20 0.27 0.12 0.19 0.25 0.30 0.19 0.28 0.36 0.43 

Lilliefors 0.06 0.13 0.18 0.25 0.08 0.15 0.21 0.26 0.13 0.24 0.33 0.40 

Shapiro-Wilk 0.09 0.16 0.22 0.28 0.13 0.22 0.28 0.34 0.20 0.30 0.36 0.43 

Shapiro-Francia 0.12 0.20 0.27 0.32 0.17 0.26 0.34 0.42 0.24 0.36 0.43 0.52 

Jarque-Bera 0.10 0.14 0.17 0.20 0.17 0.22 0.26 0.32 0.26 0.33 0.39 0.44 

Combination of skewness and kurtosis 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.09 0.16 0.23 0.28 0.16 0.24 0.30 0.37 0.25 0.35 0.44 0.50 

Cramer–Von Mises 0.09 0.16 0.21 0.27 0.15 0.24 0.30 0.36 0.23 0.33 0.41 0.48 

Lilliefors 0.08 0.15 0.19 0.25 0.13 0.21 0.28 0.34 0.18 0.31 0.39 0.44 

Shapiro-Wilk 0.11 0.17 0.23 0.27 0.16 0.24 0.32 0.38 0.28 0.39 0.46 0.51 

Shapiro-Francia 0.11 0.18 0.24 0.29 0.18 0.27 0.34 0.40 0.30 0.41 0.49 0.54 

Jarque-Bera 0.09 0.13 0.14 0.17 0.17 0.23 0.29 0.34 0.28 0.38 0.43 0.50 

Skewness 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.12 0.20 0.27 0.33 0.23 0.35 0.42 0.49 0.48 0.59 0.68 0.72 

Cramer–Von Mises 0.11 0.20 0.26 0.32 0.22 0.33 0.40 0.48 0.45 0.57 0.64 0.70 

Lilliefors 0.11 0.18 0.25 0.31 0.18 0.28 0.35 0.43 0.36 0.50 0.59 0.64 

Shapiro-Wilk 0.13 0.22 0.29 0.36 0.26 0.38 0.46 0.51 0.53 0.64 0.70 0.74 

Shapiro-Francia 0.14 0.22 0.28 0.35 0.24 0.37 0.44 0.50 0.50 0.61 0.69 0.73 

Jarque-Bera 0.09 0.14 0.17 0.20 0.19 0.28 0.36 0.43 0.46 0.57 0.65 0.70 
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Table 5-4 Probability of Rejection for the 85% of Coverage of Population Cases 

Kurtosis 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.15 0.24 0.32 0.38 0.32 0.44 0.53 0.60 0.61 0.72 0.77 0.81 

Cramer–Von Mises 0.15 0.23 0.32 0.39 0.30 0.43 0.52 0.59 0.59 0.70 0.76 0.80 

Lilliefors 0.12 0.21 0.29 0.35 0.24 0.36 0.45 0.52 0.42 0.59 0.68 0.74 

Shapiro-Wilk 0.13 0.20 0.27 0.34 0.27 0.38 0.45 0.51 0.51 0.62 0.70 0.75 

Shapiro-Francia 0.17 0.26 0.36 0.42 0.32 0.45 0.53 0.59 0.56 0.68 0.75 0.80 

Jarque-Bera 0.12 0.16 0.20 0.25 0.26 0.33 0.39 0.44 0.44 0.56 0.64 0.70 

Combination of skewness and kurtosis 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.19 0.30 0.37 0.43 0.41 0.53 0.61 0.66 0.69 0.77 0.83 0.90 

Cramer–Von Mises 0.19 0.29 0.36 0.42 0.38 0.50 0.57 0.64 0.65 0.75 0.80 0.88 

Lilliefors 0.17 0.26 0.33 0.39 0.31 0.44 0.51 0.58 0.54 0.66 0.72 0.87 

Shapiro-Wilk 0.21 0.31 0.37 0.44 0.44 0.55 0.61 0.66 0.70 0.79 0.85 0.87 

Shapiro-Francia 0.23 0.33 0.41 0.46 0.45 0.58 0.63 0.69 0.71 0.82 0.86 0.90 

Jarque-Bera 0.18 0.23 0.28 0.32 0.40 0.49 0.57 0.62 0.68 0.78 0.83 0.85 

Skewness 

Sample size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.29 0.42 0.49 0.86 0.64 0.76 0.82 0.86 0.94 0.97 0.98 0.99 

Cramer–Von Mises 0.28 0.39 0.47 0.85 0.59 0.71 0.79 0.84 0.91 0.96 0.97 0.98 

Lilliefors 0.21 0.31 0.40 0.81 0.48 0.61 0.69 0.77 0.82 0.90 0.94 0.96 

Shapiro-Wilk 0.32 0.44 0.53 0.87 0.68 0.78 0.83 0.87 0.96 0.98 0.99 0.99 

Shapiro-Francia 0.30 0.43 0.51 0.88 0.66 0.76 0.82 0.86 0.94 0.97 0.99 0.99 

Jarque-Bera 0.19 0.27 0.34 0.85 0.53 0.68 0.76 0.81 0.92 0.96 0.98 0.99 
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Table 5-5 Probability of Rejection for the Cases Drawn from a Normal Distribution 

Sample Size 50 125 250 

Test/α 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 

Anderson-Darling 0.04 0.09 0.15 0.19 0.05 0.11 0.16 0.21 0.04 0.10 0.15 0.21 

Cramer–Von Mises 0.04 0.09 0.14 0.20 0.05 0.11 0.15 0.20 0.05 0.11 0.15 0.20 

Lilliefors 0.04 0.10 0.15 0.20 0.06 0.12 0.16 0.22 0.04 0.11 0.15 0.20 

Shapiro-Wilk 0.05 0.10 0.15 0.20 0.05 0.10 0.16 0.21 0.04 0.08 0.13 0.19 

Shapiro-Francia 0.05 0.10 0.15 0.20 0.05 0.10 0.16 0.22 0.04 0.09 0.14 0.19 

Jarque-Bera 0.04 0.06 0.08 0.09 0.04 0.07 0.11 0.15 0.04 0.07 0.11 0.16 

 

5.3 Goodness-of-Fit Testing 

When evaluating the bias and bias uncertainty as a function of the independent variable, there 
are statistical and physical limitations. The primary statistical limitation of a linear regression-
based bias uncertainty is that, similar to the single-sided LTL calculation, the approach assumes 
that the residuals about the trendline are normally distributed. The physical limitations of trend-
based statistical procedures are discussed in Section 4.3.1. 

The information gathered thus far is sufficient to test the following hypothesis: 

0H : 1 0 =    

AH : 1 0  ,  

where 𝛽1 and 𝛽0 are the slope and intercept of the trendline.  

The test statistic 𝑡 is calculated using Eq. (4) and the information derived from the validation 
suite: 

𝑡𝑓𝑖𝑡 =
|𝛽1|

(
𝜎𝑓𝑖𝑡

√𝑆𝑥𝑥

)

. 
(4) 

Sxx is the sum of the squared errors for the independent variable and is determined using 
Eq. (21) for unweighted data and Eq. (22) for weighted data. 

The test statistic is then compared to the 𝑡-statistic, with n-2 degrees of freedom and a 
confidence level of 1- α. Therefore, conclusions reached based on the comparison with the 
𝑡-distribution are as follows: 

If  𝑡𝑓𝑖𝑡 >  𝑡𝑛−2,
𝛼

2
, then the null hypothesis is rejected, and the trended approach should be used 

for processing the validation results. The slope is statistically significant—nonzero— 
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or  

if  𝑡𝑓𝑖𝑡 <  𝑡𝑛−2,
𝛼

2
, then the null hypothesis cannot be rejected, and the trend should be ignored in 

favor of techniques that view the sample as uncorrelated. 

Historically, the value of α has been taken to be 0.05, which corresponds to having 95% 
confidence that the analyst has not inadvertently concluded there is a trend when one is not 
present. The t test provides a rigorous determination of whether or not the slope of the proposed 
trend is statistically significant. Trends that are statistically significant have a slope that is 
nonzero. This approach does not differ based on the sign of the slope. 
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6 DETERMINATION OF BIAS AND UNCERTAINTY 

This section discusses the methods used to convert the keff values calculated for selected 
critical experiments into parameters which can be applied to the results of safety analysis 
calculations. This will provide an appropriate level of confidence that the final value has the 
appropriate probability that the true system keff is lower than the regulatory limit.  

The validation parameters traditionally applied to safety analysis calculations are the bias, β, 
and the bias uncertainty, σβ. The bias is the deviation of the average keff of the validation suite 
from unity. The bias uncertainty accounts for the statistical uncertainty in the bias based on the 
standard deviation, sample size, and distribution of keff values of the validation suite. The values 
of β and σβ ensure that the systems that are predicted to be subcritical by the computational 
method will indeed be subcritical. 

Rigorously evaluated critical experiments are recognized as the best source of the integral 
measurement of keff values and are the current standard for criticality code and cross section 
library validation [31]. Part of the critical experiment evaluation process is the development of 
estimates of the expected value of experimental keff (kexp) and the uncertainty in kexp resulting 
from experimental uncertainties (σexp). The value of kexp takes any physical deviations from 1.0 
of the experiment into account, as well as the changes in keff from the measured configuration 
introduced by modeling simplifications included in the evaluation model (e.g., removal of support 
hardware from model). To account for deviation of the expected value of the evaluated 
experiment model from 1.0, the normalized keff (knorm) should be calculated for each critical 
experiment, as shown in Eq. (5), where kcalc is the calculated keff of the critical experiment 
model. The total uncertainty for each experiment (σi) is determined using Eq. (6), where σMC is 
the Monte Carlo uncertainty in kcalc. The σMC term would be 0 for deterministic methods that lack 
a stochastic uncertainty. The methods discussed in this section are taken from those used in 
work by Dean and Tayloe [31] and can also be traced to work by Trumble and Kimball [49]. 

 𝑘𝑛𝑜𝑟𝑚 =
𝑘𝑐𝑎𝑙𝑐

𝑘𝑒𝑥𝑝
 (5) 

 

 𝜎𝑖 = √𝜎𝑒𝑥𝑝
2 + 𝜎𝑀𝐶

2  (6) 

 

With regard to selecting a technique to calculate the bias and bias uncertainty, it is 
recommended that trends on physically relevant parameters be investigated first, because these 
techniques allow the analyst to generate a bias and bias uncertainty that are more reflective of 
the system being analyzed than nontrending methods. If no statistically significant trend is 
present in the data, then the univariate normality of the validation data set is assessed to 
determine whether the normality-based bias uncertainty methods are acceptable. If it is not 
possible to demonstrate that the normality-based bias uncertainty technique is appropriate, then 
nonparametric methods are used. A flow chart of the selection process is provided in Figure 6-1. 
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Figure 6-1 Statistical Method Selection Process 
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The methods presented above are discussed in detail in the following sections. Section 6.1 
discusses the methods used to calculate β and σβ using nontrending methods under the 
assumption that the validation suite is a sample drawn from a normal distribution. These 
techniques are the simplest and are most applicable when no statistically significant trends are 
identified in the data with respect to independent system variables. Section 6.2 discusses the 
nonparametric methods that can be used to develop β and σβ from an uncorrelated sample that 
does not satisfy the necessary criteria to be treated as having been drawn from a normal 
distribution. Nonparametric statistical methods are used for data sets that fail to meet the 
assumption of normality because no assumptions are made regarding the underlying population 
distribution. Section 6.3 discusses the methods used to determine β and σβ as a function of a 
physically relevant independent system variable, commonly referred to as trending analysis. 
These techniques can provide insight into the underlying physical cause of the bias of a 
computational method and can generate application-specific bias and bias uncertainty estimates 
for various similar safety analysis models. Figure 6-2 provides an overview of the methods 
presented in this section grouped into the different statistical approaches used in each 
technique. The methods are presented in the same order in Figure 6-2 as the subsections are 
presented in the text. 

 

Figure 6-2 Summary of Statistical Methods for Determining Bias and Bias Uncertainty 

Section 6.4 examines issues related to treatment of positive biases in validation analysis, and 
Section 6.5 addresses the potential impact of correlated critical experiments on bias and bias 
uncertainty. Section 6.6 discusses the methods that have traditionally been used to incorporate 
the validation bias and bias uncertainty into a criticality analysis to demonstrate compliance with 
regulatory limits. 

6.1 Nontrending Methods 

For cases in which no statistically significant knorm trend exists (see Section 6.3 for trending 
analysis) and the data are appropriately or conservatively represented by a normal distribution, 
it is possible to develop a bias and bias uncertainty using the LTL approach. The first step is to 

determine the mean value of knorm (�̅�𝑛𝑜𝑟𝑚), the standard deviation of knorm, the average total 

uncertainty, and the square root of the pooled uncertainty. �̅�𝑛𝑜𝑟𝑚 is given by Eq. (7) for 
unweighted calculations and by Eq. (8) for uncertainty weighted calculations. The uncertainty 
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weighting uses the inverse of the variance to reduce the weight applied to experiments with 
higher uncertainties. 

Uncertainty weighting is a generally recommended statistical approach for handling a series of 
similar measurements, and the purpose of the weighting is to reduce the importance of 
measurements with higher uncertainties [50]. Because the uncertainty in knorm shown in Eq. (6) 
is typically dominated by the experimental uncertainty derived by the individual evaluating the 
critical experiment, it is possible that the uncertainties in knorm can vary significantly from 
evaluation to evaluation due simply to the variability in the judgement of the evaluators between 
cases. Both weighted and unweighted approaches to the determination of the bias and bias 
uncertainty should be considered. When deciding whether a weighted or unweighted analysis is 
more appropriate, the variation in the experimental uncertainties from the critical experiment 
evaluations should be assessed. The uncertainty in knorm should still be used in the calculation of 
the average total uncertainty as given in Eq. (11) and Eq. (12) for cases in which it is decided 
that a weighted analysis is not appropriate and should only be excluded from the calculation of 
the average knorm and its variance.  

 𝑘𝑛𝑜𝑟𝑚 =
∑ 𝑘𝑛𝑜𝑟𝑚𝑖

𝑁
𝑖=1

𝑁
 (7) 

 

 𝑘𝑛𝑜𝑟𝑚 =
∑

𝑘𝑛𝑜𝑟𝑚𝑖
𝜎𝑖

2
𝑁
𝑖=1

∑
1

𝜎𝑖
2

𝑁
𝑖=1

   (8) 

 
The variance about �̅�𝑛𝑜𝑟𝑚 is given by Eq. (9) for unweighted calculations and in Eq. (10) for 
weighted calculations. 

 𝜎
𝑘𝑛𝑜𝑟𝑚

2 =
∑ (𝑘𝑛𝑜𝑟𝑚𝑖

− 𝑘𝑛𝑜𝑟𝑚)2𝑁
𝑖=1

𝑁 − 1
 (9) 

 

 𝜎
𝑘𝑛𝑜𝑟𝑚

2 =
(

1
𝑁 − 1) ∑

1
𝜎𝑖

2 (𝑘𝑛𝑜𝑟𝑚𝑖
− 𝑘𝑛𝑜𝑟𝑚)2𝑁

𝑖=1

1
𝑁

∑
1

𝜎𝑖
2

𝑁
𝑖=1

  (10) 

 
The average total uncertainty is calculated using Eq. (11) for unweighted calculations and in 
Eq. (12) for weighted calculations.  

�̄�2 =
∑ 𝜎𝑖

2𝑁
𝑖=1

𝑁
 (11) 

 

�̄�2 =
𝑁

∑
1

𝜎𝑖
2

𝑁
𝑖=1

 
(12) 

 
The square root of the pooled variance is computed using Eq. (13). The square root of the 
pooled variance accounts for the uncertainty associated with the individual keff values and the 
uncertainty from the statistical scatter of the keff values about the mean. 
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𝑆𝑝 = √𝜎
𝑘𝑛𝑜𝑟𝑚

2 + �̄�2 (13) 

 
The methods presented here calculate the variance about the mean (term from NUREG/CR-
6698 [31]), which will subsequently be referred to simply as the variance, and its square root will 
be referred to as the standard deviation. The variance of the mean is not an appropriate 
substitute, as was documented in NRC Information Notice 2011-03 [51]. The variance about the 
mean ensures that a suitable proportion of the population of validation keffs are above the LTL 
with the specified confidence level.  

The single-sided lower tolerance factor necessary for calculating the bias uncertainty must be 
determined once the average normalized keff and its standard deviation have been calculated. 
The assumption of a normal distribution must also have been assessed to be applicable or 
conservative (See Section 5.2) for the validation suite. The method presented for calculating the 
single-sided lower tolerance factor is originally taken from the National Institute of Standards 
and Technology (NIST) Engineering Statistics Handbook [52] and is applied by calculating the 
non-centrality parameter in Eq. (14) and subsequently using that value to calculate the single-
sided lower tolerance factor in Eq. (15). This method of calculating the single-sided lower 
tolerance factor is calculated using the inverse cumulative noncentral t-distribution, which may 
be found in statistical tables, or it may be calculated with most statistical packages. It may be 
difficult to calculate these values with a spreadsheet. If it is desired to calculate-single sided 
tolerance factors without the noncentral t-distribution, then alternate methods are provided in 
Natrella [53], but they may produce inaccurate results for small values of N. 

𝛿 = 𝑧𝑝√𝑁 (14) 

 

𝐾 =
𝑡𝛾,𝑁−1,𝛿

√𝑁
,   (15) 

 
where zp is the z-score corresponding to the desired proportion of the population, p,  
 N is the number of experiments in the validation suite and K is the single-sided lower 

tolerance factor,  
 𝛿 is the non-centrality parameter,  
 tγ,N-1,δ is the inverse of the cumulative noncentral t-distribution corresponding to the 

desired confidence level, γ, and 
 K is the single-sided lower tolerance factor. 

For convenience, values of K are presented in Table 6-1 for a 95% confidence level that 95% of 
the true population of keff values lies above the LTL for various values of N. The values in Table 
6-1 were calculated using Eq. (14), Eq. (15), and the R statistical package. It is conservative to 
use a value of K corresponding to a smaller sample size than is present in the validation suite if 
the confidence level and proportion of the population are both 95%. If it is necessary to change 
either the confidence level or the fraction of the population lying above the LTL, then Eq. (14) 
and Eq. (15) must be used in lieu of Table 6-1. 

Once the statistical parameters have been calculated, it is possible to determine the bias and 
bias uncertainty. Determination of the bias is independent of the underlying distribution. The 
bias uncertainty, however, requires that a specific proportion of the population of true keff values 
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lies above the calculated LTL, which is underpinned by the normal distribution. The bias is 
calculated using Eq. (16): 

𝛽 = 𝑘𝑛𝑜𝑟𝑚 − 1. (16) 

 
Equation (17) may be used to calculate the bias uncertainty if the assumption that the data used 
for the validation of the criticality code was drawn from a normal distribution can be justified. If 
the assumption of normality cannot be defended, then the methods presented in Section 6.2 
should be used. 

𝜎𝛽 = 𝐾𝑆𝑃 (17) 
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Table 6-1 Single-Sided Tolerance Factors for 95% Confidence that 95% of the True 
Population Lies Above the Tolerance Limit as a Function of the Number of 
Points in the Sample 

Number of points 
in sample 

(N) 

Single-sided lower 
tolerance 

multiplier (K) 

Number of points 
in sample 

(N) 

Single-sided lower 
tolerance 

multiplier (K) 

10 2.911 115 1.905 

11 2.815 120 1.899 

12 2.736 125 1.894 

13 2.671 130 1.888 

14 2.614 135 1.883 

15 2.566 140 1.879 

16 2.524 145 1.874 

17 2.486 150 1.870 

18 2.453 155 1.866 

19 2.423 160 1.862 

20 2.396 165 1.858 

21 2.371 170 1.855 

22 2.349 175 1.852 

23 2.328 180 1.849 

24 2.309 185 1.846 

25 2.292 190 1.843 

30 2.220 195 1.840 

35 2.167 200 1.837 

40 2.125 205 1.835 

45 2.092 210 1.832 

50 2.065 215 1.830 

55 2.042 220 1.828 

60 2.022 225 1.825 

65 2.005 230 1.823 

70 1.990 235 1.821 

75 1.976 240 1.819 

80 1.964 245 1.817 

85 1.954 250 1.815 

90 1.944 255 1.814 

95 1.935 260 1.812 

100 1.927 265 1.810 

105 1.919 270 1.809 

110 1.912 275 1.807 
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6.2 Nonparametric Methods 

Nonparametric methods, also known as distribution-free methods, differ from the nontrending 
methods presented in the previous subsection in that there is no assumption of normality 
underlying the analysis of the bias uncertainty. This approach tends to result in a larger bias 
uncertainty because more conservative analysis is required without an assumed underlying 
distribution of the benchmark results. Historically, the use of nonparametric methods has been 
based on rank-order approaches such as those outlined in Dean and Tayloe [31] and in 
Trumble and Kimball [49]. This approach will be presented in this subsection. Recently, a new 
USL determination method has been developed at Los Alamos National Laboratory for use with 
MCNP. This new method, Whisper, incorporates automatic experiment selection based on the 
ck parameter and determines the bias and bias uncertainty using a method derived from the 
extreme value theory (EVT) [54]. Some portions of the administrative margin (see Section 6.6) 
are also estimated in Whisper. A summary of this new method is also provided in this 
subsection. 

6.2.1 Historical Nonparametric Method 

If normality cannot be demonstrated for a validation suite, then methods must be used that do 
not rely upon the assumption of a normal distribution to calculate the bias uncertainty. The 
methods used to calculate the bias uncertainty that do not rely on the normal distribution are 
referred to as distribution free or nonparametric methods. The nonparametric methods 
presented here were previously presented in Dean and Tayloe [31] and Trumble and Kimball 
[49] and are originally traceable to Conover [55]. Nonparametric methods compute the bias 
uncertainty by determining the confidence level (C) that the lower ranks of each of the data 
points in the sample bound a prescribed proportion of the population. Once the data point has 
been selected, the bias uncertainty is calculated as the difference between the mean keff and 
that data point. The confidence level can be calculated using Eq. (18), 

𝐶 = 1 − ∑
𝑛!

𝑗! (𝑛 − 𝑗)!
(1 − 𝑞)𝑗𝑞𝑛−𝑗,

𝑚−1

𝑗=0

 (18) 

 
where  q is the desired proportion of the population (usually 0.95),  

n is the number of points in the sample, and 
m is the rank of the data point under consideration order indexing from lowest to 

highest 𝑘𝑛𝑜𝑟𝑚𝑖
 values, (m=1 for lowest point; m=2 for second lowest point).   

The nonparametric method presented here is used to calculate the confidence level that the 
specified proportion of the population lies above the lowest ranked points of the sample. The 
analyst works from the lowest data point to the point that yields a value of C less than the 
desired confidence level (0.95 most commonly.) For example, if a data set has 105 points with 
95% of the population covered with a confidence level of 95%, then the value of C for the lowest 
data point (m=1, n=105, and q=0.95) would be 0.9954. Because this is higher than the 95% 
confidence level, the next point is evaluated. The confidence level of the second lowest point 
(m=2, n=105, and q=0.95) is 0.9701, also satisfying the required confidence level. Finally, the 
third lowest data point would be examined. It fails to meet the desired confidence level (C of 
0.9008). From this process, it is determined that the second lowest point would be used. Using 
a lower order rank is always more conservative, so this process does not need to be used if the 
first rank is chosen for the sake of conservatism as long as the lowest rank provides the needed 
level of confidence. 
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For convenience, Table 6-2 provides the minimum number of points corresponding to 95% 
confidence that 95% of the population lies above each of the five lowest ranks. 

Table 6-2 Sample Size as a Function of Lower Rank of Data Points Necessary to Give 
95% Confidence that 95% of the Population Lies Above that Point 

Lower rank (m) Number of points in sample 

1 59 

2 93 

3 124 

4 153 

5 181 

 

As shown in Table 6-2, at least 59 points are required to have 95% confidence that at least 95% 
of the population is above the lowest point when making no assumption regarding the 
distribution of the population. For smaller samples, it is necessary to compensate for the lack of 
confidence that can be demonstrated with nonparametric methods. Based on Eq. (18), a sample 
with 30 points, for example, is only sufficient to establish 78.5% confidence that 95% of the 
population is above the lowest point. The reactivity margin for this lack of statistical confidence, 
termed the nonparametric margin (NPM), was put forward in Dean and Tayloe [31] and Trumble 
and Kimball [49]. The original basis for the values used in Dean and Tayloe [31] and Trumble 
and Kimball [49] was not documented in either reference. The values are believed to be 
conservative because they are large in comparison to typical bias and bias uncertainty values 
seen with modern codes and data sets. Whereas lower NPM values may be appropriate, this is 
difficult to demonstrate without knowing the basis for the currently accepted values. The values 
of NPM from Trumble and Kimball [49] are repeated in NUREG/CR-6698 [31] and are presented 
in Table 6-3 below. 

Table 6-3 NPM as a Function of the Degree of Confidence Calculated with Eq. (18)  

Degree of confidence for 
95% of the population 

NPM 

>90% 0.00 

>80% 0.01 

>70% 0.02 

>60% 0.03 

>50% 0.04 

>40% 0.05 

≤40% Need additional data 
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The bias uncertainty can be extracted from the other terms used in the historical nonparametric 
assessment. The underlying distribution has no impact on the average normalized keff, so 
Eq. (16) is still appropriate for the calculation of the bias. Because predictions of the extrema of 
a distribution are highly sensitive to the underlying distribution, the bias uncertainty must be 
calculated using Eq. (19) rather than Eq. (17): 

𝜎𝛽 = (�̄�𝑛𝑜𝑟𝑚 − 𝑘𝑛𝑜𝑟𝑚𝑟
) + 𝜎𝑘𝑛𝑜𝑟𝑚𝑟

+ 𝑁𝑃𝑀 𝑖𝑓 �̄�𝑛𝑜𝑟𝑚 ≤ 1, or 

(19) 

𝜎𝛽 = (1 − 𝑘𝑛𝑜𝑟𝑚𝑟
) + 𝜎𝑘𝑛𝑜𝑟𝑚𝑟

+ 𝑁𝑃𝑀 𝑖𝑓 �̄�𝑛𝑜𝑟𝑚  > 1, 

 

where  normk    is the mean normalized keff,  

rnormk  is the normalized keff of the point corresponding to the lower rank 

calculated by iterating to the desired level of confidence, 

normr
k  is the combined uncertainty in 

rnormk calculated with Eq. (6), and  

NPM  is the nonparametric margin for cases with less than the needed number of 
points necessary to justify a lower rank of one. 

6.2.2 Whisper Method 

The Whisper methodology brings several aspects of validation analysis into a single automated 
process. The methodology has been developed into a computational tool which is also called 
Whisper. The initial public release of the capability was in MCNP version 6.2, which was made 
publicly available in April 2018. A brief synopsis of the Whisper methods is presented here. 
More information is available in Kiedrowski [54].  

Whisper determines a calculation margin, which is the sum of the bias and bias uncertainty. The 
bias is estimated but is used solely for extracting the value of the bias uncertainty from the 
calculational margin. Both the bias and its uncertainty can then be reported, but only the sum 
(total calculational margin) is used in the USL determination. 

Experiment selection within the Whisper method is performed using S/U methods, specifically 
with the ck integral index (see Section 4.2.2 for more information about ck). Sensitivity data for a 
large number of critical experiments (on the order of 1,000) is distributed with MCNP to facilitate 
these comparisons. Prior to ck comparisons, a data adjustment process is completed to identify 
potential outlier experiments. These cases may then be excluded from the validation suite. As 
discussed below, the residual uncertainty from this data adjustment is used to determine the 
recommended minimum administrative margin for the application. The ck value is then 
determined for each remaining experiment and the application being validated. The ck values 
are then normalized so that the maximum value in the validation suite is set to 1. The 
normalized ck values will be used as weights in the determination of calculational margin. 

The Whisper software also determines the number of experiments to include in the bias 
calculation. The default minimum desired total weight is 25, assuming a perfectly correlated 
benchmark experiment (i.e., ck=1) exists within the validation suite.  A default penalty factor of 
100 is applied to the difference between ck=1 and the maximum ck value in the selected set of 
benchmarks to raise the minimum desired total weight and thus increase the number of 
benchmark experiments required. For example, if the highest ck value is 0.95 the difference is 
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0.05; this increases the target weight to 30. Both the penalty factor (100) and minimum desired 
total weight (25) may be arbitrarily changed by the user. The normalized ck values are summed, 
starting with the largest ck value, until the desired weight is achieved. There are two notable 
effects of this method: larger maximum ck values reduce the total weight requirement; and 
smaller maximum ck values allow less correlated benchmark experiments to be used in meeting 
the total weight requirement. There may also be scenarios in which smaller maximum ck values 
allow the target weight to be achieved with fewer critical experiments than for larger maximum 
ck values. An additional margin is included in the recommended administrative margin if the 
required weight cannot be achieved with the available benchmarks. The calculational margin is 
then determined based on the EVT methods as described in Kiedrowski [54]. 

The final step of the Whisper USL determination method is the calculation of the recommended 
minimum administrative margin. Whisper partitions the administrative margin into three terms: 
the first is assigned to the neutron transport software, the second to the nuclear data, and the 
third to the application. The determination of the application-specific portion of the administrative 
margin is left to the analyst for each application. The residual uncertainty remaining after the 
initial data adjustment process is used here as the nuclear data contribution to the 
administrative margin. Finally, a 0.5% Δk contribution to the administrative margin is added for 
potentially undetected errors in the neutron transport code. This term is unique to Whisper and 
goes beyond the requirements of ANSI/ANS-8.24 [3]. This term is additional to those required 
by traditional validation approaches, as the purpose of validation is to quantify the performance 
of the computation method for the application; it is conservative to add such a penalty. A larger 
margin for software errors is recommended for neutron transport codes that are not widely 
used [54]. Ultimately, the analyst controls the final USL by adjusting the application-specific 
portion of the administrative margin. 

The Whisper method is new and has seen limited applications at DOE-regulated facilities in the 
last few years. Whisper was developed to be a conservative approach to validation, and the 
overall conservatism of the methodology framework is likely sufficient to address concerns on 
many questions regarding implementation details. Largely administrative concerns remain 
regarding the use of the sensitivity data and calculated keff values distributed with MCNP that 
are generated on LANL computers and not by the organization performing the validation. There 
are also reported errors in some of the LANL benchmark models [56], and it is not clear how 
these errors may impact Whisper-based validation of MCNP. At this writing, the methodology 
has not been thoroughly reviewed for generic use at NRC licensed facilities. 

6.3 Analysis of Trends 

This section discusses trending techniques used to correlate keff bias with an independent 
variable. The techniques and descriptions used in this section are largely paraphrased from 
Chapter 10 of Tamhane and Dunlop [57] for unweighted analysis and from Bevington and 
Robinson [50] for weighted analysis. As discussed in Section 6.1, uncertainty weighting is 
generally recommended for analysis of a series of similar measurements. The uncertainties in 
critical experiment evaluations vary for many reasons and may not provide equivalent estimates 
of the total experimental uncertainties. Consideration should therefore be given to the use of 
weighted or unweighted statistics. 

Nuclear data sets have historically included errors which result in increasing biases with 
increasing dependence on specific portions of the data. Trending analysis of the critical 
benchmarks can reveal these dependencies. Appropriately characterized trends may capture 
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the bias of the application of interest better than a nontrending statistical model. The linear 
model typically used in this approach is given in Eq. (20), 

𝑘𝑓𝑖𝑡(𝑥) = 𝛽0 + 𝛽1𝑥, (20) 

 
where kfit(x) is the mean of the normalized keff as a function of x, 

x  is the physically relevant independent variable upon which a trend is 
being investigated, and 

β0 and β1 are the intercept and slope of the regression line correlating x and the 
normalized keff values. 

The generation of a linear trend requires the sum of squared differences about the mean of the 
independent variable (x) and the sum of the product of the differences for the knorm values and 
the independent variable. The first term, the sum of squared differences about the mean for the 
independent variable (denoted Sxx), can be calculated with Eq. (21) for an unweighted analysis 
and with Eq. (22) for a weighted analysis. The sum of the cross products of the independent 
variable with knorm (denoted Skx) can be calculated with Eq. (23) for an unweighted analysis and 

with Eq. (24) for a weighted analysis. It is noted that the value of �̅�𝑛𝑜𝑟𝑚 should be calculated 
with Eq. (7) for unweighted analyses and Eq. (8) for weighted analyses. It is also appropriate to 
calculate �̄� with Eqs. (7) and (8) by substituting the trend parameter for knorm. 

𝑆𝑥𝑥 = ∑(𝑥𝑖 − �̄�)2

𝑁

𝑖=1

 (21) 

 

𝑆𝑥𝑥 =

∑ (
1

𝜎𝑖
2 (𝑥𝑖 − 𝑥𝑁

𝑖=1 )2)

1
𝑁

∑
1

𝜎𝑖
2

𝑁
𝑖=1

 

 
 

(22) 

 

𝑆𝑘𝑥 = ∑(𝑘𝑛𝑜𝑟𝑚𝑖
− �̄�𝑛𝑜𝑟𝑚)(𝑥𝑖 − �̄�)

𝑁

𝑖=1

 (23) 

 

𝑆𝑘𝑥 =

∑ (
1

𝜎𝑖
2 (𝑥𝑖 − 𝑥𝑁

𝑖=1 )(𝑘𝑛𝑜𝑟𝑚𝑖
− �̄�𝑛𝑜𝑟𝑚))

1
𝑁

∑
1

𝜎𝑖
2

𝑁
𝑖=1

 (24) 

The slope of the regression line, β1, can be calculated using Eq. (25), and the intercept of the 
regression line, β0, can be calculated using Eq. (26). 
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𝛽1 =
𝑆𝑘𝑥

𝑆𝑥𝑥
 (25) 

 

𝛽0 = �̄�𝑛𝑜𝑟𝑚 − 𝛽1�̄� (26) 

It is also necessary to calculate the residual error associated with the regression line for each 
data point (𝑒𝑖), as shown in Eq. (27): 

𝑒𝑖 = 𝑘𝑛𝑜𝑟𝑚𝑖
− 𝑘𝑓𝑖𝑡(𝑥𝑖). (27) 

 
The residual error term can be used to calculate variance about the trend line. The residual 
standard error about the trend line is given by Eq. (28) for an unweighted analysis and in 
Eq. (29) for a weighted analysis: 

𝜎𝑓𝑖𝑡 = √
∑ 𝑒𝑖

2𝑁
𝑖=1

𝑁 − 2
 (28) 

 

𝜎𝑓𝑖𝑡 = √

1
𝑁 − 2

∑
1

𝜎𝑖
2 𝑒𝑖

2𝑁
𝑖=1

1
𝑁

∑
1

𝜎𝑖
2

𝑁
𝑖=1

 (29) 

 
where 𝑛 − 2 corresponds to the number of degrees of freedom associated with a linear fit 

solving for the two unknowns—𝛽0 and 𝛽1. 

6.3.1 Calculation of the Bias for a Statistically Significant Trend 

For cases in which a statistically significant trend has been found to exist (see Section 5.3 for 
assessment techniques), the bias as a function of the independent trend variable can be 
calculated using Eq. (30), which is equivalent to Eq. (16) for the nontrending technique. 

𝛽(𝑥) = 𝑘𝑓𝑖𝑡(𝑥) − 1 (30) 

A single-sided uncertainty about the trend line must also be developed. This uncertainty band 
establishes a limit above which a specified proportion of the population of critical experiments 
lies with sufficient statistical confidence. The statistical techniques used for this purpose are 
analogous to the single-sided LTL discussed in Section 6.1, but they differ in that they represent 
the statistical lower bound of the data as a function of an independent variable rather than as a 
constant value. Historically, there have been at least three methods used to calculate a lower 
tolerance band. These methods are referred to as the single-sided lower tolerance band, the 
confidence band with administrative margin, and the single-sided uniform width closed interval. 
Each of the methods uses the square root of the pooled variance as determined using Eq. (31). 
Note that these methods are sensitive to the departure of the distribution of the residuals from 
normality, as is the single-sided tolerance factor used in the LTL approach. The normality of the 
residuals can be assessed using the same methods discussed in Section 5.2. 
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𝑆𝑝 = √𝜎𝑓𝑖𝑡
2 + �̄�2 (31) 

where  σfit is the uncertainty in the fit given by Eq. (28), and 

 is the average total uncertainty given by Eq. (11) or Eq. (12). 

6.3.2 Single-Sided Lower Tolerance Band 

The single-sided lower tolerance band is the method of bias uncertainty calculation presented in 
the “Tolerance Band” section of NUREG/CR-6698 [31] (p.12). The source of these methods for 
use in the criticality safety analysis is Trumble and Kimball [49]. The original statistical model is 
from Chapter 3 of Miller [58]. The equation for the single-sided lower tolerance band is given by 
Eq.(32): 

𝜎(𝑥) = 𝑆𝑝 {√2𝐹𝛼
(2,𝑛−2) [

1

𝑛
+

(𝑥−�̄�)2

𝑆𝑥𝑥
] + 𝑧𝑃√

(𝑛−2)

𝜒
1−

𝛼
2

,𝑛−2

2 }. (32) 

 

The variables and statistical functions in (32) are explained in Table 6-4, which also includes the 
equation numbers for variables defined elsewhere in this document and the Excel and R input 
for the statistical functions, where α is the significance level (typically 0.05), and P is the 
proportion of the population covered (typically 0.95). 

Another method discussed in Trumble and Kimball [49], the confidence band approach, is not 
an appropriate trend validation technique because it does not account for the spread of the data 
around the trend line. This shortcoming is analogous to the difference between the variance of 
the mean vs. the variance about the mean identified in NRC Information Notice 2011-03 [51]. 

  



 

6-15 

Table 6-4 Explanation of the Variables and Statistical Functions in Eq. (32)  

Variable Variable description Method of calculation 

pS  
The square root of the pooled 
variance for trend calculations 

Eq. (31) 

(2, 2)nF

−
 

The inverse of the F probability 
distribution corresponding with a 
degree of fit of 2 and n-2 degrees 
of freedom 

R: qf(1-α,2,n-2) 
Excel: FINV(α,2,n-2) or F.INV.RT(α,2,n-2) 

n  
The number of critical 
experiments in the validation suite 

- 

xxS  The sum of squared errors for the 
independent variable  

Eq. (21) for weighted data  
Eq. (22) for unweighted data 
 

𝒛𝑷 

The inverse of the standard 
normal cumulative distribution that 
contains the fraction p of the 
distribution 

R: qnorm(P) 
Excel: NORMSINV(P) or NORM.S.INV(P) 

𝝌
𝟏−

𝜶
𝟐

,𝒏−𝟐

𝟐  
The inverse of the right-tailed 
probability of the Chi-squared 
distribution.  

R: qchisq(p=1-α/2, df=n-2, 
lower.tail=FALSE) 
Excel: CHIINV(1-α/2, n-2) or 
CHISQ.INV.RT(1-α/2,n-2) 

 

6.3.3 Confidence Band with Administrative Margin (USL-1) 

The second implementation of the trended validation approach for developing the bias 
uncertainty is from NUREG/CR-6361 [32]. Statistically, the method is a lower prediction band 
(the name in the title of the section is retained for continuity with previous documents) and is the 
basis of USL-1 from the USLSTATS code. The lower prediction band should be interpreted as 
the line above which there is 95% confidence that a future individual keff value would lie. The 
original statistical methods are discussed in Miller, Chapter 3, Section 2 [58]. For this method, 
the bias uncertainty as a function of the independent variable is calculated with Eq. (33). Skk is 
calculated in the same way as Sxx, except the normalized keff values are used instead of the 
independent variable. The value of t1-α,n-2 is the inverse t distribution corresponding to the 
desired confidence (usually 95%) that the next point will be above the prediction band, with n-2 
degrees of freedom. The inverse t distribution can be calculated in Excel using TINV((2α), n-2) 
or T.INV((1- α), n-2): 

 

𝜎𝛽(𝑥) = 𝑡1−𝛼,𝑛−2𝑆𝑝 {√1 +
1

𝑛
+

(𝑥 − �̄�)2

𝑆𝑥𝑥
}. (33) 

 
Historically, USL-1 is calculated by evaluating σβ(x) at the upper and lower ends of the range of 
the independent trending variable in the validation suite. The larger of those two values is then 
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used within the range as a constant bias uncertainty. This is expressed mathematically in 
Eq. (34):  

𝜎𝛽 = 𝑚𝑎𝑥{𝜎(𝑥𝑚𝑖𝑛)|𝜎(𝑥𝑚𝑎𝑥)} (34) 

Taking the maximum of the bias uncertainty across the range of applicability is a conservative 
treatment, and Lichtenwalter et al. [32] indicate that it is done for convenience. It is also 
acceptable to evaluate the bias uncertainty at the value of the trending variable corresponding 
to the application being validated. If used for extrapolation outside the range of critical 

experiments, 𝜎𝛽(𝑥) should be used. 

6.3.4 Single-Sided Uniform Width Closed Interval Approach (USL-2) 

This method of calculating the bias uncertainty is referred to as the USL-2 calculation in 
Lichtenwalter et al. [32] and is also included in the USLSTATS program. This method is a lower 
tolerance band approach similar to the method discussed in Section 6.3.2. The original 
statistical methods for this approach are taken from Bowden and Graybill [59], as well as 
Johnson  [60]. Calculation of the lower tolerance band is accomplished by first calculating the 
statistical parameters g, h, ρ, and A using Eq. (35), Eq. (36), Eq. (37), and Eq. (38). These 
parameters are used to determine the appropriate tolerance band. 

2

min( )1

xx

x x
g

n S

−
= +   (35) 

 

2

max( )1

xx

x x
h

n S

−
= +   (36) 

 

min max( )( )1 1

xx

x x x x

gh n S


 − −
= + 

 
  (37) 

 

𝐴 =
𝑔

ℎ
  (38) 

 
The value of D can then be calculated iteratively using these parameters in the integral in 
Eq. (39) to arrive at the desired level of confidence. The value of D is then used with the proper 
form of Eq. (40) based on the value of A to calculate the value of confidence constant, C*. Cα/P is 
calculated using Eq. (41), which is in turn used to calculate the bias uncertainty in Eq. (42).  

∫ ∫
1

2𝜋√1 − 𝜌2
[1 +

𝑢2 − 2𝜌𝑢𝑣 + 𝑣2

(𝑛 − 2)(1 − 𝜌2)
]

−𝑛
2

𝑑𝑢𝑑𝑣 ≤ 𝛼
𝐴𝐷

−𝐴𝐷

𝐷

−𝐷

  (39) 
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*C D g=   for 0.5 1.5A   

 
*C D h=   for other values of A 

(40) 

𝐶𝛼/𝑝 = 𝐶∗ + 𝑡𝑃,𝑛−2√
𝑛 − 2

𝜒𝛼,𝑛−2
2  

(41) 

𝜎𝛽 = 𝐶𝛼/𝑝 ⋅ 𝑆𝑝 (42) 

 

6.4 Using Positive Validation Analysis Biases 

For the purposes of this discussion and consistency with the definition provided in footnote 3 of 
ANSI/ANS-8.24 [3], a positive bias is produced by a validation study when the average of the 
calculated keff values exceeds the average of the expected keff values. Existence of a positive 
bias indicates that the computational method tends to produce keff values higher than the true 
value. Taking credit for this tendency is referred to as crediting a positive bias.  Crediting the 
positive bias lowers calculated safety analysis keff values after adjustment for bias and 
uncertainties, or it generates less restrictive USLs. 

Section 6.1.3 of ANSI/ANS-8.24 [3] states, “If a positive bias is used in the determination of the 
calculational margin, its use shall be justified by the close applicability of the benchmarks.” The 
standard requires a justification based on the confidence generated by having closely 
applicable, highly similar benchmarks. This requirement is an amplification of the primary 
requirement of a validation to be based on critical benchmark experiments that are as similar as 
possible to the safety analysis model. Justification for use of a positive bias must be 
documented. 

Generally, the NRC has not accepted credit for positive bias in licensing analyses. Regulatory 
Guide 3.71, Revision 3 [4] specifically takes exception to the positive bias allowance in 
ANSI/ANS-8.24 and states that staff, “may choose to evaluate its use on a case-by-case basis 
with suitable demonstration that the causes of the bias are known and in accordance with 
Section 6.1.3.” 

The motivation behind treating positive biases differently is to eliminate the potential 
nonconservatism that would result if a positive bias were overestimated. This is a valid concern 
but is equally applicable to any bias determination: an estimate of the bias that is less negative 
than the actual bias for the application system is also nonconservative. The best way to ensure 
an accurate bias estimate is to perform a thorough validation covering the entire parameter 
space in which the normal and credible abnormal conditions exist and to perform trending 
analyses to expose any changes of the bias as a function of a variable parameter in the analysis 
models. This is the reason that close applicability of the benchmarks is required to justify the 
use of a positive bias, and such close applicability of the benchmarks is a condition that should 
be satisfied for all validations. 

6.5 Issue, Impact, and Potential Inclusion of Correlated Critical Experiment 
Results 

A series of critical experiments is often performed with a limited number of parameters that are 
varied systematically to cover a range. This approach serves multiple purposes. Primarily, 
performing experiment series allows for the determination of system sensitivity to specific 
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parameters such as lattice pitch or reflector thickness. Unlike some types of experiments, critical 
experiments cannot vary in only a single independent parameter. Any change to a critical 
system makes it either subcritical or supercritical, so an offsetting additional change must be 
made to restore criticality. Some experiments are controlled with the mass of fuel present, and 
others are controlled with material separation, the amount of moderating material present, or the 
concentration of neutron absorber in the system. Generally, the system response to one 
parameter change, such as material separation, is well understood and is therefore used to 
offset changes in a different parameter. This allows for an estimation of the sensitivity of the 
system to changes in the second parameter, although the sensitivity is not necessarily known 
with the same accuracy as is possible in experiments with single variable controls. An additional 
benefit to performing experiments in series is that several related experiments can be performed 
at lower cost per experiment and in less time than if each experiment had been performed in 
isolation. 

The use of experiment series in traditional, non-data adjustment validation techniques creates 
additional complexities because the correlations among the individual experiments within the 
series are generally not treated in the statistics used in the analysis. All of the techniques 
presented in Sections 6.1, 6.2, and 6.3 assume that uncorrelated data are used. The correlation 
between a pair of experiments is a result of shared experimental components that include but 
are not limited to fissile, reflector, or absorbing materials, detector systems, and procedures. 
Many of these shared characteristics should have very little effect on the results of the 
experiments or the independence of the data measured or derived from the experiments. The 
use of common materials and fixtures, however, can create correlations among the experiments 
that demonstrably reduce the independence of each experiment in a series. This can impact the 
determination of the computational bias, but it is far more likely to affect the uncertainty in the 
bias. The uncertainty is increased because several measurements of the same system do not 
provide as much unique information as the same number of measurements of different systems. 
Thus, the correlation among experiments in a series acts to reduce the effective number of 
experiments in a validation set. The smaller number of effective experiments would lead to a 
larger uncertainty, so neglecting the correlations is nonconservative because it results in a lower 
bias uncertainty. The impacts of these correlations on the bias uncertainty are not considered in 
any of the methods presented in the previous sections. 

In some critical experiments, a high degree of correlation is a desired characteristic. The 
maximum amount of information can be extracted from substitution experiments only when 
other parameters are constant or nearly so. For these experiments, a lack of correlation would 
cause the impact of the substitution to be difficult to determine. The value of these experiments, 
especially when incorporated into data adjustment, is greatly increased by a high degree of 
correlation. 

A current challenge facing criticality safety practitioners and regulators is to establish a reliable 
method of determining the correlations among the critical experiments and ultimately to 
determine methods to incorporate them into usable validation techniques. More information on 
the determination of correlation coefficients is available in Hoefer [61] and in Marshall and 
Rearden [62]. One proposed validation technique incorporating correlations into trending 
analysis is also available [63]. 

6.6 Using Validation Analysis Results 

Two methods have traditionally been used to incorporate the validation bias and bias 
uncertainty into a criticality analysis to demonstrate compliance with the regulatory limit. The 



 

6-19 

first method calculates the USL against which the statistically bounded eigenvalue (keff + 2σcalc) 
of the safety analysis model is compared. This method is used when all physical uncertainties 
associated with the composition and arrangement of materials in the application of interest are 
included directly in the safety analysis model. The equations for the USL are given in Eq. (43) 
for the cases of both positive and negative values of β: 

𝑈𝑆𝐿 = 1 + 𝛽 − 𝜎𝛽 − 𝑀𝐴 − 𝑀𝐷 if 0  , or 

𝑈𝑆𝐿 = 1 − 𝜎𝛽 − 𝑀𝐴 − 𝑀𝐷 if 0  , 
(43) 

where  β is the bias, 
σβ is the bias uncertainty,  
MA is the administrative margin, and  
MD is margin added to account for any deficiencies associated the  

validation suite.  

The methods for calculating the bias (β) and bias uncertainty (σβ) are described in Sections 6.1, 
6.2, and 6.3 and are summarized in Table 6-5. The administrative margin used in calculation of 
the USL depends on regulatory guidance for the system being evaluated and the fidelity with 
which the system being analyzed is known. In general, the administrative margin is viewed to be 
reserved for unanticipated issues and is smaller for systems that are well known than for 
systems that are more difficult to characterize. MD is the margin used to account for identified 
deficiencies in the validation report such as unvalidated nuclides that are present in the safety 
analysis model. These deficiencies are discussed in more detail in Section 7. For more 
information on using a positive bias, see Section 6.4. 

Table 6-5 Summary of Bias and Bias Uncertainty Calculation Techniques 

Method Equation to calculate β Equation to calculate σβ 

Nontrending Eq. (16) Eq. (17) 

Historical nonparametric Eq. (16) Eq. (19) 

Single-sided lower tolerance band Eq. (30) Eq. (32) 

Confidence band with administrative 
margin (USL-1) 

Eq. (30) Eq. (33) 

Confidence band with administrative 
margin (USL-1), single band width 

Eq. (30) Eq. (34) 

Single-sided uniform width closed 
interval (USL-2) 

Eq.  (30) Eq. (42) 

 

The second method of developing a USL includes reactivity allowances for the treatment of 
uncertainties in the safety analysis model. Typically, these allowances are calculated using the 
square root of the sum of the squares of the keff uncertainties caused by independent 
uncertainties in material composition, geometry, or conditions. This representation of the USL is 
provided in Eq. (44). Examples of this approach are the new fuel vault and the spent fuel pool 
analysis regulated under Title 10 of the US Code of Federal Regulations (CFR) 50.68 [64]. It is 
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possible that a deficiency in the validation suite may be considered as part of σSAM rather than 
as part of MD. 

𝑈𝑆𝐿 = 1 + 𝛽 − ∑ 𝛽𝑆𝐴𝑀 − √𝜎𝛽
2 + ∑ 𝜎𝑆𝐴𝑀

2 − 𝑀𝐴 − 𝑀𝐷 if 0  , and 

𝑈𝑆𝐿 = 1 − ∑ 𝛽𝑆𝐴𝑀 − √𝜎𝛽
2 + ∑ 𝜎𝑆𝐴𝑀

2 − 𝑀𝐴 − 𝑀𝐷if 0  , 

 (44) 

 

where  
βSAM  are the biases associated with known deviations of the model from reality 

or account for parameters which have no best estimate value (e.g., spent 
fuel pool temperature), and 

σSAM  are uncertainties in the safety analysis model which have best estimate 
values and known uncertainties. 

 

The use of Eq. (43) represents a worst-case bounding treatment of parameters. On the other 
hand, Eq. (44) is used when the system is modeled with best-estimate values, and reactivity 
allowances are made for independent uncertainty assessments. 

An equivalent way to implement the validation parameters is to add them to the calculated keff 
(kcalc, adjusted for the Monte Carlo uncertainty of the calculation) to develop a maximum keff 
(kmax) that would then be compared to the limit. Using this approach, Eq. (43) would take the 
form of Eq. (45), and Eq. (44) would take the form of Eq. (46):  

𝑘max = 𝑘𝑐𝑎𝑙𝑐 − 𝛽 + 𝜎𝛽 + 𝑀𝐴 + 𝑀𝐷 if 0  , and 

𝑘max = 𝑘𝑐𝑎𝑙𝑐 + 𝜎𝛽 + 𝑀𝐴 + 𝑀𝐷if 0  ; 
(45) 

 

𝑘max = 𝑘𝑐𝑎𝑙𝑐 − 𝛽 + ∑ 𝛽𝑆𝐴𝑀 + √𝜎𝛽
2 + ∑ 𝜎𝑆𝐴𝑀

2 + 𝑀𝐴 + 𝑀𝐷 if 0  , and 

𝑘max = 𝑘𝑐𝑎𝑙𝑐 + ∑ 𝛽𝑆𝐴𝑀 + √𝜎𝛽
2 + ∑ 𝜎𝑆𝐴𝑀

2 + 𝑀𝐴 + 𝑀𝐷if 0  . 

(46) 
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7 IDENTIFYING AND ADDRESSING VALIDATION  
WEAKNESSES AND GAPS 

Frequently, criticality analysts will find that there is some feature (i.e., physical component, 
material, element, or nuclide) in their application models that cannot be validated by comparison 
with critical experiments. This might be the result of materials present in the safety analysis 
application that are not present in critical experiments or that are not present in critical 
experiments in a neutronic environment similar to the application. In some cases, one or more 
materials may be present in safety analysis models in materials with unique compositions.  

In this report, deficiencies in the validation study results or their applicability to an analysis are 
referred to as validation deficiencies. There may be a bias associated with the deficiency that is 
not captured by the validation study, and ignoring the missing bias component may be 
nonconservative. It is the responsibility of the analyst using the validation study results in the 
criticality safety analysis to identify and address validation deficiencies. There are several ways 
that some validation deficiencies may be addressed. Addressing major validation deficiencies 
with the potential for significant nonconservatisms will likely require discussions among all stake 
holders (i.e., analysts, operations, management, license holders and regulators).  

The most obvious way to address validation deficiencies is to identify additional critical 
experiments that can be used to extend the area of applicability of the validation or to 
demonstrate that, if there is a bias, it is conservative to neglect it. An analyst may be able to 
demonstrate that ignoring a deficiency is conservative by using critical experiments that are not 
similar to the application of interest, provided that those critical experiments can account for the 
effect of the material of interest. An example of this would be the ability to examine a set of 
experiments that were not like the application of interest but had some cases with an absorber 
present and some cases that did not include the absorber. From that series of experiments, the 
analyst could determine whether the absorber caused a change in the bias or not.  

In some situations, analysts have attempted to add a few experiments to cover a feature, 
material, or nuclide that is not present in the bulk of the validation suite to extend the area of 
applicability to include this missing feature(s). In general, this practice is not acceptable if the 
difficult-to-validate feature is only present in a small subset of the experiments and therefore 
cannot impact the overall bias. Hypothetically, one could attempt to quantify the bias using 
trending analysis. This would require more than a few experiments to support a statistically 
significant trend analysis. Without trending analysis, the extra bias associated with the few 
added experiments becomes averaged with the other critical experiments, reducing the 
associated bias. Therefore, one cannot generally address a validation gap by adding a few 
additional critical experiments. It is also important to carefully consider trending analysis for a 
parameter when many cases in the validation suite do not vary with respect to the parameter. 
One example of this problem is soluble boron in LEU fuel lattice experiments. As a general rule, 
only cases that contain soluble boron should be included in the trend analysis as a function of 
boron concentration because including a large number of cases with 0 ppm will statistically 
dilute the trend. An exception to this would be to include a case with no boron as part of a series 
of experiments that varied the soluble boron concentration. 

It may be possible to address validation deficiencies by modifying the safety analysis model. If 
removing an unvalidated nuclide, material, or feature causes keff to rise and the maximum keff is 
still acceptable, then the validation deficiency may then be avoided by removing the material or 
feature. The conservative modeling simplification can be justified by the increased reactivity of 
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the model, and validation of the absorber is no longer needed, as it is not credited. In all cases, 
the analyst is responsible for demonstrating that the modeling changes made to address the 
validation deficiency are conservative under all conditions to be analyzed. In general, these are 
changes that must be documented in the generation of the safety analysis model, not in the 
validation. 

One may be able to address a validation deficiency using sensitivity studies and knowledge of 
the nuclear data uncertainties. An example is validation of a neutron absorber panel heavily 
loaded with 10B. As a result of saturation of neutron absorbing effects and physical self-
shielding, changing the 10B content in the panel by 10% may have little or no effect on keff. As 
can be seen in Figure 7-1, the one-standard-deviation uncertainty in the 10B cross sections are 
no more than 2% over the entire relevant neutron energy range. Consequently, the 10B cross 
sections cannot be in error by 10%, and inclusion of a penalty equal to the 10% perturbation 
study effect on keff should adequately address the validation deficiency. The selection of the 
factor of 5 from the reported uncertainty to the uncertainty evaluated with perturbation 
calculations was purely arbitrary and was chosen because it is easy to defend. Other factors 
could be used, although the magnitude of the factor may also vary with confidence in the 
nuclear covariance data. 

 

Figure 7-1 Nuclear Data Uncertainty for 10B Total Cross Section 

A more detailed, less conservative analysis of this type may be performed using sensitivity and 
uncertainty analysis tools. In this analysis, nuclide-, reaction-, and energy-dependent keff 
sensitivity data are calculated for the safety analysis model. These sensitivity data are then 
combined with the nuclear data uncertainty information to yield problem-, nuclide- and reaction-
specific keff uncertainty values. This uncertainty analysis technique provides a quantitatively 
defensible estimate for the potential biases that may be associated with unvalidated nuclides 
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and features. Such an approach was used to address the lack of fission product validation in 
SNF calculations in NUREG/CR-7109 [19]. 

One last approach to dealing with unvalidated materials and features is to adopt a suitable Δkeff 
margin that is large enough to cover the potential biases associated with them. This approach 
should be based on the reactivity worth of the feature or material in the safety analysis model. 
Adopting this margin will require acceptance by technical reviewers, criticality safety program 
managers, and the relevant regulators. The difficulty of building this consensus will vary, 
depending on the available margin to the keff limits.  

The analyst is responsible for comparing the safety analysis models and the supporting 
validation study to identify validation deficiencies as part of each criticality safety assessment. 
The potential impact of validation deficiencies must be addressed. If a preexisting validation 
study is used to support criticality analysis, then the analyst must identify and address any 
existing impact of the validation deficiencies in the criticality analysis. 

 





 

8-1 

8 DOCUMENTATION 

The validation of the computational method must be documented in a formal report that is 
controlled under the appropriate QA program for the organization performing the criticality 
analyses. In general, there are many acceptable forms for a validation report, as long as the 
layout and content of the report allow a competent reviewer to reproduce the critical experiment 
selections, understand the applicability of the methods used to determine the bias and bias 
uncertainty, understand the calculation of the bias and its uncertainty, and implement the bias 
and bias uncertainty to determine the subcritical limits for a process. The layout of the report 
presented in Table 8-1 is a recommended organization of sections to be included in a validation 
report, with descriptions of information that should be included in each section. Other formats 
are acceptable as long as the required elements are documented. 

Table 8-1 Example Validation Report Layout with Description of Each Section 

Section title Section description 

Front matter/cover 
page 

Includes names and documentation of authors’ and independent 
reviewers’/verifiers’ qualifications, titles and tracking numbers, and any QA 
information needed to uniquely identify the document.  

Introduction 
Provides a brief description of the purpose of the particular valdiation in terms of 
the code and general system type being validated. 

Computational 
method 

Describes the computer hardware and operating system, code, cross section 
library, and any cross section processing codes used to prepare the cross 
sections for use in the Monte Carlo calculations. Descriptions of the options used 
within the cross section processing and Monte Carlo code should be included in 
this section so that judgements may be made with respect to the applicability to 
the options used in the safety analysis models.  

Definition of the 
area(s) of 
applicability 

Defines the types of application systems to be validated by the experiments. The 
definition of the area of applicability is discussed further in Section 4.3 but should 
include the dominant fissile and absorbing nuclides in the appropriate energy 
spectrum, with applicable moderators and reflectors. It is acceptable for the 
validation report to document more than one area of applicability. This section 
should also identify weaknesses to be addressed, including extrapolations and 
unvalidated nuclides. 

Selection of critical 
experiments 

Describes each critical experiment used and defends their selection. The 
experiments should be identified by ICSBEP experiment number (e.g., LEU-
COMP-THERM-003) if selected from the ICSBEP Handbook [5]. If selected from 
a different source, information to locate the source documentation should be 
provided. Information used to establish the area(s) of applicability should also be 
listed here (e.g., EALF, H/X). The rejection of any experiments, especially from 
within a series of similar experiments, must be documented and defended. 

Validation methods 

Discusses the methods chosen to process the validation suite for each area of 
applicability. This section should include a justification for the applicability to the 
data set of the statistical method used to generate the bias and bias uncertainty. 
The final bias and bias uncertainty values and equations should also be 
documented here. The application of the bias and bias uncertainty to the safey 
analysis models can be discussed here or on an application-specific basis. 

Summary 
A summary of the validation parameters and areas of applicability may be desired 
to facilitate easier use of the document by other analysts.  
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9 SUMMARY 

This document provides recommendations for determining the bias and bias uncertainty of 
computational methods associated with nuclear criticality safety. Proper implementation of the 
recommendations presented here should result in a validation in compliance with past guidance 
[31], [49], [32] and the consensus standard on validation [3].  

Section 2 discusses the purpose of validation, which is to establish an appropriate margin of 
subcriticality for an application by performing criticality calculations for a set of critical 
experiments with similar materials, geometries, and neutronic characteristics. Validation 
involves calculating the estimate of the computational method bias and its uncertainty based on 
the differences between the calculated and experimental keff values.  

Section 3 discusses the definition of a computational method. The most obvious components of 
the computational method are the computer code and nuclear data being used. Other 
components include multigroup cross section processing, variance reduction techniques, 
selection of results, and the computer hardware and operating system. 

The selection of critical experiments and determination of the area of applicability are discussed 
in Section 4, incorporating traditional and/or S/U-based approaches. Appropriate experiment 
selection is essential to a correct validation. The underlying fundamental assumption is that the 
safety application case is a member of the same population as the critical experiments in the 
validation case; this underscores the need for neutronic physics similarity of the application to 
the critical experiments, and it ensures that the bias and bias uncertainty calculated for the 
validation suite are appropriate to the application. Section 4.1 describes the importance of 
characterizing safety analysis models and the impact of the characteristics of the application 
system on the validation effort. The most important characteristic of the safety analysis model is 
the set of materials that are present. It is also important to use experiments in validation with the 
same neutron energy spectrum as the safety application models. Section 4.2 describes critical 
experiment selection using both traditional and S/U techniques. The discussion also addresses 
the number of experiments required for validation and specific considerations for burnup credit 
applications. Section 4.3 discusses establishing the area of applicability. The analyst must 
confirm that each safety analysis model falls within the applicability of a pre-existing validation 
or that an appropriate set of experiments has been selected for each specific application. In this 
regard, having a large library of acceptable experiments available under QA at a site would 
allow an analyst to select the most appropriate experiments and statistical treatments for each 
application. This more technically rigorous approach to validation may be problematic at some 
sites; however, using huge validation suites covering many different types of systems in a 
validation is not advisable and is discouraged in ANSI/ANS-8.24 [3]. 

Statistical background information is provided in Section 5. This section introduces hypothesis 
testing because correct understanding and interpretation of the statistical tools and tests are 
important to ensure that analysts draw appropriate conclusions from the results. Methods for 
assessing normality are provided because several of the statistical methods used in validation 
rely on the assumption that samples have been drawn from a normal distribution. Finally, tools 
for assessing the goodness of a fit to the sampled data are described. 

A range of statistical methods drawn from previous guidance documents is provided in 
Section 6. The methods presented include nontrending methods (Section 6.1), two 
nonparametric methods (Section 6.2), and three trending methods (Section 6.3). The equations 
for weighted and unweighted analysis of both trending and nontrending methods are provided. 
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A wide range of viable statistical methods is presented in Section 6. The application of the 
results and a summary of the methods (Table 6-5) are discussed in Section 6.6. Two methods 
are described that have traditionally been used to incorporate the validation bias and bias 
uncertainty into a criticality analysis to demonstrate compliance with regulatory limits. 

No validation suite is perfect. Critical experiments are no longer performed in great number to 
establish safe operating parameters for individual operations, so contemporary validation suites 
are constructed from experiments performed for different purposes and/or applications. This can 
lead to a lack of validation or a weak validation for some components of a safety analysis 
system. A rigorous, comprehensive assessment of these gaps and weaknesses is important for 
ensuring conservative safety analyses. Methods for conservatively addressing these gaps and 
weaknesses are described in Section 7. As in Section 4, both traditional and S/U-based 
techniques are discussed. 

Documentation of the validation is discussed in Section 8. Documentation is important to 
support independent and regulatory reviews and to facilitate the correct implementation of the 
results into safety analyses. A variety of implementation options are available based on different 
regulatory requirements and site practices. 

Validation of computational methods is an essential step in the criticality safety analysis 
process. Careful and correct validation is crucial for the use of simulation results to provide 
uncompromising safety to workers, the general public, and the environment. 
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APPENDIX A   
EXAMPLE CALCULATIONS OF BIAS AND BIAS UNCERTAINTY 

This section provides three examples of how the methods described in the body of the report 
can be implemented to calculate the biases and bias uncertainties needed to perform validation. 
Each of the data sets is drawn from the SCALE 6.2.2 validation report [A-1]. 

The bias of the computational method should be examined as a function of potentially 
meaningful independent variables first to provide an estimate of the bias that may be more 
reflective of the application system. The examples used here investigate the bias as a function 
of EALF to demonstrate the method, but several parameters should generally be examined. If 
no statistically significant trend in the data is found, then other nontrending analyses are used. 
The thought process associated with bias and bias uncertainty calculation techniques is 
discussed further in Section 6. The following subsections discuss the implementation of the 
techniques that have been discussed throughout the document. It is noted that there are other 
potential interpretations that may also be valid and what follows is only one implementation. 

A.1  Example 1

Table A-1 U-233 Critical Experiment Data Used in Example 1

Experiment C/E σC/E EALF 

U233-COMP-THERM-001-002 1.00082 0.00250 1.54E+00 

U233-COMP-THERM-001-003 1.00227 0.00241 7.82E-01 

U233-COMP-THERM-001-004 1.00058 0.00250 4.64E-01 

U233-SOL-INTER-001-001 0.98522 0.00818 6.86E+00 

U233-SOL-INTER-001-002 0.98053 0.00834 8.01E+00 

U233-SOL-INTER-001-003 0.98126 0.00648 8.62E+00 

U233-SOL-INTER-001-004 0.99217 0.00605 3.72E+00 

U233-SOL-INTER-001-005 0.98462 0.00807 9.22E+00 

U233-SOL-INTER-001-006 0.98553 0.00601 4.29E+00 

U233-SOL-INTER-001-007 0.98174 0.00579 9.65E+00 

U233-SOL-INTER-001-008 0.98015 0.00549 4.55E+00 

U233-SOL-INTER-001-009 0.97978 0.00666 7.35E+00 

U233-SOL-INTER-001-010 0.97862 0.00519 1.01E+01 

U233-SOL-INTER-001-011 0.98018 0.00559 7.76E+00 

U233-SOL-INTER-001-012 0.98123 0.00893 4.46E+00 

U233-SOL-INTER-001-013 0.98207 0.00697 5.09E+00 

U233-SOL-INTER-001-015 0.98000 0.00735 5.47E+00 

U233-SOL-INTER-001-017 0.98848 0.00544 2.55E+00 

U233-SOL-INTER-001-018 0.97843 0.00558 5.85E+00 

U233-SOL-INTER-001-019 0.97523 0.00810 6.10E+00 
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Table A-1 U-233 Critical Experiment Data Used in Example 1 (continued) 

Experiment C/E σC/E EALF 

U233-SOL-INTER-001-020 0.97965 0.00549 3.01E+00 

U233-SOL-INTER-001-021 0.97295 0.00487 6.36E+00 

U233-SOL-INTER-001-022 0.97805 0.00479 6.51E+00 

U233-SOL-INTER-001-023 0.99000 0.00465 4.72E+00 

U233-SOL-INTER-001-024 0.99236 0.00804 1.99E+00 

U233-SOL-INTER-001-025 0.98533 0.00798 2.28E+00 

U233-SOL-INTER-001-026 0.98907 0.00643 2.40E+00 

U233-SOL-INTER-001-028 0.98357 0.00600 2.56E+00 

U233-SOL-INTER-001-029 0.97727 0.00958 2.66E+00 

U233-SOL-INTER-001-031 0.99085 0.00704 2.70E+00 

U233-SOL-INTER-001-032 0.97571 0.00517 2.81E+00 

U233-SOL-INTER-001-033 0.99382 0.00457 2.08E+00 

U233-SOL-MIXED-001-014 0.98998 0.00515 2.30E+00 

U233-SOL-MIXED-001-016 0.97444 0.00273 1.81E+00 

U233-SOL-MIXED-001-030 0.97763 0.00518 1.46E+00 

U233-SOL-MIXED-002-003 0.98645 0.00671 1.30E+00 

U233-SOL-MIXED-002-005 0.98620 0.00543 1.37E+00 

U233-SOL-MIXED-002-006 0.97657 0.00967 1.42E+00 

U233-SOL-MIXED-002-008 0.97311 0.00652 1.47E+00 

U233-SOL-MIXED-002-009 0.96863 0.00484 1.50E+00 

U233-SOL-THERM-001-001 1.00141 0.00311 3.94E-02 

U233-SOL-THERM-001-002 1.00067 0.00330 4.00E-02 

U233-SOL-THERM-001-003 1.00012 0.00330 4.06E-02 

U233-SOL-THERM-001-004 1.00103 0.00331 4.12E-02 

U233-SOL-THERM-001-005 1.00025 0.00330 4.18E-02 

U233-SOL-THERM-002-001 1.00187 0.00868 1.74E-01 

U233-SOL-THERM-002-002 0.98990 0.00858 1.34E-01 

U233-SOL-THERM-002-003 1.00592 0.00872 1.05E-01 

U233-SOL-THERM-002-004 1.00252 0.00869 8.50E-02 

U233-SOL-THERM-002-005 1.00738 0.00873 7.41E-02 

U233-SOL-THERM-002-006 0.99400 0.00861 6.60E-02 

U233-SOL-THERM-002-007 0.98375 0.00853 6.25E-02 

U233-SOL-THERM-002-008 0.99783 0.00865 5.75E-02 

U233-SOL-THERM-002-009 0.98647 0.00855 5.19E-02 

U233-SOL-THERM-002-010 0.99937 0.00866 5.01E-02 

U233-SOL-THERM-002-011 1.00803 0.00874 4.67E-02 
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Table A-1 U-233 Critical Experiment Data Used in Example 1 (continued) 

Experiment C/E σC/E EALF 

U233-SOL-THERM-002-012 0.98872 0.00857 2.73E-01 

U233-SOL-THERM-002-013 0.98852 0.00857 4.88E-01 

U233-SOL-THERM-002-014 0.99754 0.00864 1.39E-01 

U233-SOL-THERM-002-015 1.00412 0.00870 9.56E-02 

U233-SOL-THERM-002-017 1.00640 0.00872 5.44E-02 

U233-SOL-THERM-003-001 1.00214 0.00873 3.15E-01 

U233-SOL-THERM-003-002 1.01754 0.01541 3.50E-01 

U233-SOL-THERM-003-003 0.99854 0.00869 3.36E-01 

U233-SOL-THERM-003-004 1.00206 0.01259 7.88E-01 

U233-SOL-THERM-003-005 1.00933 0.01233 1.06E+00 

U233-SOL-THERM-003-006 1.02084 0.00888 1.30E-01 

U233-SOL-THERM-003-007 1.01405 0.00882 8.37E-02 

U233-SOL-THERM-003-008 1.01003 0.00878 6.91E-02 

U233-SOL-THERM-003-009 1.00984 0.00878 6.20E-02 

U233-SOL-THERM-003-010 1.00751 0.00877 4.62E-02 

U233-SOL-THERM-004-001 0.99887 0.00876 1.72E-01 

U233-SOL-THERM-004-002 1.00241 0.00859 1.33E-01 

U233-SOL-THERM-004-003 0.99177 0.00879 2.73E-01 

U233-SOL-THERM-004-004 0.98154 0.00869 4.89E-01 

U233-SOL-THERM-004-005 0.98867 0.00887 3.86E-01 

U233-SOL-THERM-004-006 1.00145 0.01049 4.86E-01 

U233-SOL-THERM-004-007 0.99817 0.01036 3.83E-01 

U233-SOL-THERM-004-008 1.00466 0.01023 1.38E-01 

U233-SOL-THERM-005-001 1.00160 0.00401 6.19E-02 

U233-SOL-THERM-005-002 1.00456 0.00492 5.45E-02 

U233-SOL-THERM-008-001 1.00089 0.00290 3.72E-02 

U233-SOL-THERM-009-001 0.99933 0.00441 3.79E-02 

U233-SOL-THERM-009-002 1.00118 0.00401 3.75E-02 

U233-SOL-THERM-009-003 1.00163 0.00381 3.71E-02 

U233-SOL-THERM-009-004 0.99981 0.00380 3.67E-02 

U233-SOL-THERM-011-027 0.99022 0.00505 1.25E+00 

U233-SOL-THERM-012-001 1.00010 0.00280 1.73E-01 

U233-SOL-THERM-012-002 1.00004 0.00250 1.66E-01 

U233-SOL-THERM-012-003 1.00998 0.00233 1.48E-01 

U233-SOL-THERM-012-004 1.00247 0.00151 1.08E-01 

U233-SOL-THERM-012-005 1.00412 0.00713 9.14E-02 
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Table A-1 U-233 Critical Experiment Data Used in Example 1 (continued) 

Experiment C/E σC/E EALF 

U233-SOL-THERM-012-006 1.00523 0.00111 8.06E-02 

U233-SOL-THERM-012-007 1.00126 0.00381 5.43E-02 

U233-SOL-THERM-012-008 0.99854 0.00479 5.41E-02 

U233-SOL-THERM-013-001 1.00548 0.00735 1.57E-01 

U233-SOL-THERM-013-002 1.00557 0.00705 1.57E-01 

U233-SOL-THERM-013-003 1.00562 0.00695 1.58E-01 

U233-SOL-THERM-013-004 1.00595 0.00735 1.59E-01 

U233-SOL-THERM-013-005 1.00653 0.00675 1.60E-01 

U233-SOL-THERM-013-006 1.00647 0.00504 1.51E-01 

U233-SOL-THERM-013-007 1.00629 0.00544 1.52E-01 

U233-SOL-THERM-013-008 1.00681 0.00504 1.52E-01 

U233-SOL-THERM-013-009 1.00707 0.00454 1.53E-01 

U233-SOL-THERM-013-010 1.00769 0.00464 1.53E-01 

U233-SOL-THERM-013-011 1.00529 0.00543 1.50E-01 

U233-SOL-THERM-013-012 1.00621 0.00504 1.52E-01 

U233-SOL-THERM-013-013 1.00372 0.00623 1.51E-01 

U233-SOL-THERM-013-014 1.00642 0.00514 1.53E-01 

U233-SOL-THERM-013-015 1.02100 0.00787 1.05E-01 

U233-SOL-THERM-013-016 0.99338 0.00686 8.88E-02 

U233-SOL-THERM-013-017 0.99596 0.00518 8.63E-02 

U233-SOL-THERM-013-018 1.00020 0.00200 8.05E-02 

U233-SOL-THERM-013-019 0.99634 0.00887 8.07E-02 

U233-SOL-THERM-013-020 0.99820 0.00559 6.31E-02 

U233-SOL-THERM-013-021 1.00238 0.00341 5.67E-02 

U233-SOL-THERM-015-001 0.98999 0.00743 1.10E+00 

U233-SOL-THERM-015-002 0.98558 0.00690 1.24E+00 

U233-SOL-THERM-015-004 0.98933 0.00406 7.21E-01 

U233-SOL-THERM-015-007 0.98653 0.00691 7.95E-01 

U233-SOL-THERM-015-010 0.98994 0.00505 1.13E+00 

U233-SOL-THERM-015-011 0.99315 0.00745 6.93E-01 

U233-SOL-THERM-015-012 0.99395 0.00686 7.67E-01 

U233-SOL-THERM-015-013 0.99177 0.00684 8.07E-01 

U233-SOL-THERM-015-014 0.99644 0.00359 4.66E-01 

U233-SOL-THERM-015-015 0.98968 0.00594 8.47E-01 

U233-SOL-THERM-015-016 0.98839 0.00425 8.68E-01 

U233-SOL-THERM-015-017 0.99653 0.00289 5.05E-01 
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Table A-1 U-233 Critical Experiment Data Used in Example 1 (continued) 

Experiment C/E σC/E EALF 

U233-SOL-THERM-015-018 0.97430 0.00546 8.98E-01 

U233-SOL-THERM-015-019 0.97484 0.00507 9.12E-01 

U233-SOL-THERM-015-020 0.99483 0.00786 2.89E-01 

U233-SOL-THERM-015-021 0.99794 0.00699 3.15E-01 

U233-SOL-THERM-015-022 0.99612 0.00618 3.30E-01 

U233-SOL-THERM-015-023 0.99407 0.00547 3.43E-01 

U233-SOL-THERM-015-024 0.99084 0.00505 3.51E-01 

U233-SOL-THERM-015-025 0.99585 0.00229 2.25E-01 

U233-SOL-THERM-015-026 0.99396 0.00656 1.27E-01 

U233-SOL-THERM-015-027 0.99871 0.00629 1.31E-01 

U233-SOL-THERM-015-028 0.99682 0.00578 1.33E-01 

U233-SOL-THERM-015-029 0.99532 0.00508 1.35E-01 

U233-SOL-THERM-015-030 0.99465 0.00478 1.37E-01 

U233-SOL-THERM-015-031 0.99381 0.00547 1.38E-01 

U233-SOL-THERM-016-001 1.00439 0.00372 2.91E-01 

U233-SOL-THERM-016-002 1.00577 0.00443 2.92E-01 

U233-SOL-THERM-016-003 1.00458 0.00362 2.92E-01 

U233-SOL-THERM-016-004 1.00600 0.00353 2.91E-01 

U233-SOL-THERM-016-006 0.99620 0.00339 2.91E-01 

U233-SOL-THERM-016-007 0.99530 0.00338 2.91E-01 

U233-SOL-THERM-016-008 0.99461 0.00278 2.91E-01 

U233-SOL-THERM-016-009 0.99569 0.00269 2.91E-01 

U233-SOL-THERM-016-010 1.00389 0.00301 2.88E-01 

U233-SOL-THERM-016-011 1.00456 0.00412 2.88E-01 

U233-SOL-THERM-016-012 1.00485 0.00473 2.88E-01 

U233-SOL-THERM-016-013 1.00505 0.00362 1.45E-01 

U233-SOL-THERM-016-014 1.00482 0.00262 1.45E-01 

U233-SOL-THERM-016-015 1.00582 0.00272 1.45E-01 

U233-SOL-THERM-016-016 1.00965 0.00313 1.46E-01 

U233-SOL-THERM-016-017 0.99429 0.00279 1.47E-01 

U233-SOL-THERM-016-018 0.99588 0.00359 1.46E-01 

U233-SOL-THERM-016-019 0.99486 0.00348 1.46E-01 

U233-SOL-THERM-016-021 1.00902 0.00283 1.44E-01 

U233-SOL-THERM-016-022 1.00882 0.00343 1.44E-01 

U233-SOL-THERM-016-023 1.00895 0.00313 1.44E-01 

U233-SOL-THERM-016-024 1.00839 0.00242 1.44E-01 
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Table A-1 U-233 Critical Experiment Data Used in Example 1 (continued) 

Experiment C/E σC/E EALF 

U233-SOL-THERM-016-025 1.00106 0.00401 8.16E-02 

U233-SOL-THERM-016-026 1.00679 0.00343 8.16E-02 

U233-SOL-THERM-016-027 1.00384 0.00372 8.15E-02 

U233-SOL-THERM-016-028 0.99960 0.00371 8.14E-02 

U233-SOL-THERM-016-029 1.00033 0.00311 8.14E-02 

U233-SOL-THERM-016-030 0.99923 0.00320 8.14E-02 

U233-SOL-THERM-016-030 1.01071 0.00344 5.74E-02 

U233-SOL-THERM-016-031 1.01307 0.00325 5.74E-02 

U233-SOL-THERM-016-032 1.01283 0.00396 5.74E-02 

U233-SOL-THERM-016-033 1.00454 0.00322 1.15E-01 

U233-SOL-THERM-017-001 1.00051 0.00250 1.12E-01 

U233-SOL-THERM-017-002 1.00519 0.00352 1.09E-01 

U233-SOL-THERM-017-003 1.00581 0.00403 8.32E-02 

U233-SOL-THERM-017-004 1.00240 0.00291 8.15E-02 

U233-SOL-THERM-017-005 1.00021 0.00290 5.44E-02 

U233-SOL-THERM-017-006 0.99990 0.00370 5.54E-02 

 

A.1.1  Assessment of Trends 

To determine whether the bias in the computational method is best expressed as function of 
EALF for the 233U solution systems in the Example 1 data set provided in Table A-1, weighted 
and unweighted trendlines are constructed, and their statistical significance is tested using the 
methods discussed Sections 6.3 (trend calculation) and 5.3 (t-test). As the data span a few 
orders of magnitude, trends using the raw EALF values and the natural logarithm of the EALF 
values were investigated. The best fit on EALF was produced when first taking the natural 
logarithm of the EALF values so that set of calculations is discussed here. A similar approach to 
trending analysis is performed in Appendix D to ANSI/ANS-8.24-2017 [3]. The data set contains 
180 experiments, with an unweighted average C/E = 0.996612 and an unweighted average 
ln(EALF) = -1.19943. Using the uncertainty of each experiment to weight the data, the weighted 
average C/E = 0.999391, and the weighted ln(EALF) = -1.63147. 

To develop the trendlines,  the Sxx and Skx values were calculated using Eq. (21) and Eq. (23) 
for an unweighted analysis or Eq. (22) and Eq. (24) for a weighted analysis. The slope and 
intercept of the trendlines are then calculated using Eq. (25) and Eq. (26), respectively. The 
residuals about the trendline are then calculated using Eq. (27) and the uncertainty in the fit is 
calculated using Eq. (28) for a unweighted analysis and (29) for a weighted analysis. The 
t statistics for the fits are then calculated using Eq. (4).  

Once the t-statistic for the fit is calculated, there are two equivalent methods by which the 
statistical significance of the fit can be judged. The first method is by comparison of the t statistic 
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for the fit to the critical value from the t-distribution corresponding to n-2 degrees of freedom and 
95% confidence. For this example, the comparison is made to the t-statistic corresponding to 
α/2=0.025 (two-sided test because the slope can depart from zero in either the positive or 
negative direction, so the value of α is divided by 2) and 178 degrees of freedom (n-2). The 
t-statistics for the weighted and unweighted fits were found to be 13.34 and 14.41, respectively.
Because these values are larger than the appropriate critical values from the t-distribution of
1.97, the null hypothesis that there is no slope is rejected in favor of the calculated trendline.
The second method for assessing the statistical significance of a trendline is to calculate the
p-value of the t-statistic with statistical software and compare it to the prescribed value of α. In
this case, the p-values are 4.34e-26 and 3.34e-31 for the weighted and unweighted
calculations, respectively. Because these values are less than 0.025, the null hypothesis of zero
slope is again rejected in favor of the calculated trendline. The parameters calculated in the
determination of the trendline and the assessment of the statistical significance of the trendline
are presented in Table A-2.

Table A-2 Trend Statistical Significance Parameters for the Example 1 Data 

Parameter Weighted value Unweighted value 

Sxx 300.987172 425.815251 

Skx -1.41940943 -2.12011093

β0 0.991697698 0.99063965 

β1 -0.00471585 -0.0049789

σfit 0.00612913 0.0071257 

tfit 13.348571 14.418539 

tcritical 1.9734 1.9734 

p-value 4.3450e-26 3.3417e-31 

Once the calculated trend is determined to be statistically significant, it can be used in 
conjunction with the values of the trend parameter from the application cases to calculate the 
bias and bias uncertainty. For this example, the EALFs of three hypothetical application cases 
considered are 0.05, 1, and 50 eV, which have natural logarithms of -2.99573, 0, and 3.91202, 
respectively.  

To evaluate the bias and bias uncertainty as a function of EALF, a number of additional 
statistical parameters must be evaluated. Two bands are used for the bias uncertainty 
evaluation in this appendix: the single-sided lower tolerance band method from NUREG/CR-
6698, and the single-sided lower confidence band from NUREG/CR-6361, which is often 
referred to as the USL-1 method. For both methods, the average total uncertainty (�̄�) is needed 
and is calculated using Eq. (11) for unweighted analyses and Eq. (12) for weighted analyses. 
The pooled standard deviation (𝑆𝑝) can then be calculated using Eq.(31) for a trending analysis. 

Additionally, the statistical parameters for the NUREG/CR-6698 lower tolerance band from 
Table 6-4 and the inverse t-distribution calculation are needed for the NUREG/CR-6361 lower 
confidence band calculation. The values of these parameters are presented in Table A-3. 
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Table A-3 Parameters Necessary for Trended Bias Uncertainty Evaluation for the 
Example 1 Data 

Parameter Weighted value Unweighted value 

�̄� 0.004147 0.006218 

𝑆𝑝 0.007400 0.009457 

𝐹𝛼
(2,𝑛−2)

 3.04672 3.04672 

𝑛 180 180 

𝑧𝑃 1.64485 1.64485 

𝜒
1−

𝛼
2

,𝑛−2

2  142.94862 142.94862 

𝑡1−𝛼,𝑛−2 1.65345 1.65345 

 

Using the parameters calculated above, the trended value of calculation/experiment (C/E) 
(𝑘𝑓𝑖𝑡(𝑥)), the bias and bias uncertainty are estimated for each of the three application cases and 

are reported in Table A-4. The values of 𝑘𝑓𝑖𝑡(𝑥) and the trended biases in Table A-4 show that 

the bias is set to zero in cases that would result in a positive bias. In this example, the 0.05 eV 
case has the bias conservatively set to zero, whereas the 1 eV and 50 eV cases use the 
trendline to estimate the biases. The 50 eV case requires extrapolation of the trend because the 
maximum EALF in the data set is 10.1 eV. The bias uncertainties are estimated by the 
NUREG/CR-6698 and USL-1 bands. It is noted that for the USL-1 calculation, the bias 
uncertainty is calculated as the maximum of the values found by evaluation at the end points of 
the energy range and applied to all values in between (0.05 and 1 eV). For the 50 eV case, the 
bias uncertainty is evaluated at that point. 

Table A-4 Sample Calculation of Bias, Bias Uncertainties, and Calculational Margins 
for the Examples Cases 

 
0.05 eV 1 eV 50 eV 

Weighted Unweighted Weighted Unweighted Weighted Unweighted 

𝑘𝑓𝑖𝑡(𝑥) 1.00583 1.00556 0.99170 0.99064 0.97325 0.97116 

Trended bias 0 0 -0.00830 -0.00936 -0.02675 -0.02884 

NUREG/CR-6698 
bias uncertainty 

0.01556 0.02003 0.01577 0.01956 0.01958 0.02339 

NUREG/CR-6698 
calculational margin 

0.01556 0.02003 0.02407 0.02892 0.04633 0.05223 

USL-1 bias 
uncertainty 

0.01258 0.01590 0.01258 0.01590 0.01288 0.01615 

USL-1 calculational 
margin 

0.01258 0.01590 0.02088 0.02526 0.03963 0.04499 

 



A-9

A.1.2  Nontrending Assessment

Even though there is a statistically significant trend associated with the Example 1 data set, the 
process necessary to determine the bias and bias uncertainty without the trend is shown here. 
When assessing the nontrending bias, there are two methods for calculating the bias 
uncertainty: the normality-based LTL and the nonparametric LTL.  

To apply the normality-based LTL, the assumption that the data come from a normal distribution 
must be shown to be appropriate or conservative. To determine if a parametric assessment of 
the untrended bias and bias uncertainty is appropriate, the assumption of normality is assessed 
for the Example 1 data set. The data were standardized using Eq. (3) and the standardized data 
were used to create the histogram and Q-Q plot in Figure A-1, and they were also used to 
conduct a number of omnibus normality tests, the results of which are shown in Table A-5. In 
the plot of the Z-scores in the left half of Figure A-1, the data appear to be slightly negatively 
skewed. Similarly, the Q-Q plot has a slight downward facing “C,” which is similar to the right 
portion of Figure 5-3, also indicating a negative skewness. Additionally, except for the 
Kolmogorov-Smirnov test, the p-values for each of the omnibus normality tests produced here 
are less than 0.05. The p-value of less than 0.05 indicates that the null hypothesis that the data 
are a sample drawn from a normal distribution is rejected in favor of the alternative hypothesis 
that the data have some other underlying distribution at the 95% confidence level. It is noted 
that the Kolmogorov-Smirnov results are included to show the insensitivity to the data in the tails 
and to highlight why it may not be effective for these assessments. 

Figure A-1 Histogram (Left) and Normal Q-Q Plot (Right) of the Example 1 Data Set 
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Table A-5 Summary of Example 1 Normality Test P-Values 

Test Test p-value 

Chi-square (16 bins) 5.633e-05 

Anderson-Darling 2.605e-06 

Cramer-Von Mises 1.475e-05 

Lilliefors 1.987e-04 

Shapiro-Wilk 1.159e-04 

Shapiro-Francia 4.274e-04 

Jarque-Bera 0.01948 

Kolmogorov-Smirnov 0.05950 

 

Having concluded that the data are not drawn from a normal distribution, an assessment of the 
conservatism of applying a normal distribution-based calculation of the bias uncertainty is 
performed. In order to perform this evaluation, the skewness and kurtosis of the data are 
calculated, and the D’Agostino skewness and the Anscombe-Glynn kurtosis single-sided tests 
are performed, the results of which are shown in Table A-6. The results in Table A-6 show that 
the calculated skewness is -0.485, which is less than zero corresponding to a normal 
distribution, and that the skewness is statistically significantly less than zero at the 95% 
confidence level because the p-value for the single-sided D’Agostino skewness test is less than 
0.05. Based on the skewness results, it is appropriate to conclude that the data are negatively 
skewed in a statistically significant way. The kurtosis of the data is assessed in a similar 
manner, and the results are also presented in Table A-6. The kurtosis of the data is calculated 
to be 2.664, which is less than a normal value of 3, indicating that the distribution data are 
slightly platykurtic (heavy tails). The Anscombe-Glynn kurtosis test results indicate that, 
although the data have a calculated kurtosis of less than 3, the data are not statistically 
significantly less than 3 at the 95% confidence level because the p-value is greater than 0.05.  

Because the data are negatively skewed, it is not appropriate to use the normality-based LTL, 
and the nonparametric statistical treatment should be used. If the skewness had been positive 
or statistically indistinguishable from zero and kurtosis had been less than three or if it were 
statistically indistinguishable from three (as it is), then it would have been acceptable to the use 
the normal distribution-based LTL calculation.  

Table A-6 Summary of Example 1 Skewness and Kurtosis Assessment 

Parameter Value 

Skewness -0.485 

Skewness test p-value 4.009e-3 

Kurtosis 2.664 

Kurtosis test p-value 0.2213 

 

The assessment of the bias is the same for the nontrending analysis, regardless of the whether 
a parametric or nonparametric analysis is used. The bias assessment is simply the difference 
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between the mean C/E value (𝑘𝑛𝑜𝑟𝑚) and unity. The bias uncertainty is then evaluated using the 
traditional historical nonparametric method described in Section 6.2.1. Using the data in Table 
6-2 , it is determined that, because the validation suite includes more than 153 points, the 
fourth lowest point can be used to attain 95% confidence that 95% of the population of C/E lie 
above it. Therefore, the nonparametric LTL is produced by subtracting the uncertainty in the C/E 
from the C/E value that is the fourth lowest in the suite. Hence, in this case, the fourth lowest 
C/E is 0.97430 with an uncertainty of 0.00546, which results in a nonparametric LTL of 0.96884. 
For cases in which the bias uncertainty can be convoluted with other uncertainties in the safety 
analysis case, the LTL can be split into the bias by subtracting the mean C/E value from the LTL 

and calculating the bias as one minus the mean C/E value. The 𝑘𝑛𝑜𝑟𝑚, the bias, and the bias 
uncertainty are calculated for the Example 1 data set, and the results are shown in Table A-7 as 
weighted and unweighted calculation of the mean C/E value. 

Table A-7 Nonparametric Validation Parameters for the Example 1 Data Set 

Parameter Weighted value Unweighted value 

𝑘𝑛𝑜𝑟𝑚 0.99939 0.99661 

𝛽 -0.00061 -0.00339 

𝜎𝛽 0.03055 0.02777 

 

A graphical summary of the validation parameters is shown in Figure A-2 for the Example 1 data 
set. The calculations shown in Figure A-2 do not have any administrative margin and are meant 
to provide a comparison of the methods. Unweighted calculations are shown as dashed lines in 
the same color as the associated weighted calculations.
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A.2  Example 2 

Table A-8 HEU Solution Critical Experiment Data Used in Example 2 

Experiment C/E σC/E EALF 

HEU-SOL-THERM-001-001 0.99656 0.00598 8.16E-02 

HEU-SOL-THERM-001-002 0.99280 0.00713 2.72E-01 

HEU-SOL-THERM-001-003 1.00009 0.00350 8.00E-02 

HEU-SOL-THERM-001-004 0.99648 0.00528 2.91E-01 

HEU-SOL-THERM-001-005 0.99706 0.00489 4.34E-02 

HEU-SOL-THERM-001-006 1.00044 0.00460 4.49E-02 

HEU-SOL-THERM-001-007 0.99591 0.00398 7.74E-02 

HEU-SOL-THERM-001-008 0.99729 0.00379 8.17E-02 

HEU-SOL-THERM-001-009 0.99258 0.00536 2.91E-01 

HEU-SOL-THERM-001-010 0.99158 0.00536 4.65E-02 

HEU-SOL-THERM-013-001 0.99700 0.00259 3.25E-02 

HEU-SOL-THERM-013-002 0.99673 0.00359 3.39E-02 

HEU-SOL-THERM-013-003 0.99311 0.00357 3.53E-02 

HEU-SOL-THERM-013-004 0.99526 0.00358 3.60E-02 

HEU-SOL-THERM-014-001 0.99359 0.00278 4.57E-02 

HEU-SOL-THERM-014-002 1.01012 0.00526 4.72E-02 

HEU-SOL-THERM-014-003 1.01898 0.00887 4.93E-02 

HEU-SOL-THERM-016-001 0.98969 0.00357 7.76E-02 

HEU-SOL-THERM-016-002 1.00560 0.00694 8.15E-02 

HEU-SOL-THERM-016-003 1.02444 0.00810 9.05E-02 

HEU-SOL-THERM-028-001 0.99564 0.00229 4.75E-02 

HEU-SOL-THERM-028-002 0.99650 0.00339 4.80E-02 

HEU-SOL-THERM-028-003 0.99757 0.00260 4.76E-02 

HEU-SOL-THERM-028-004 0.99814 0.00280 4.80E-02 

HEU-SOL-THERM-028-005 0.99294 0.00308 4.76E-02 

HEU-SOL-THERM-028-006 0.99650 0.00229 4.80E-02 

HEU-SOL-THERM-028-007 0.99700 0.00379 4.79E-02 

HEU-SOL-THERM-028-008 0.99695 0.00269 4.81E-02 

HEU-SOL-THERM-028-009 0.99566 0.00488 1.43E-01 

HEU-SOL-THERM-028-010 0.99430 0.00527 1.45E-01 

HEU-SOL-THERM-028-011 0.99703 0.00509 1.44E-01 

HEU-SOL-THERM-028-012 0.99460 0.00458 1.47E-01 

HEU-SOL-THERM-028-013 0.99615 0.00578 1.47E-01 

HEU-SOL-THERM-028-014 0.99617 0.00458 1.49E-01 
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Table A-8 HEU Solution Critical Experiment Data Used in Example 2 (continued) 

Experiment C/E σC/E EALF 

HEU-SOL-THERM-028-015 1.00427 0.00643 1.48E-01 

HEU-SOL-THERM-028-016 1.00034 0.00520 1.51E-01 

HEU-SOL-THERM-028-017 0.99565 0.00657 1.50E-01 

HEU-SOL-THERM-028-018 0.99645 0.00598 1.52E-01 

HEU-SOL-THERM-029-001 0.99770 0.00659 1.55E-01 

HEU-SOL-THERM-029-002 1.00158 0.00581 1.54E-01 

HEU-SOL-THERM-029-003 0.99372 0.00676 1.56E-01 

HEU-SOL-THERM-029-004 0.99267 0.00735 1.63E-01 

HEU-SOL-THERM-029-005 0.99757 0.00668 1.66E-01 

HEU-SOL-THERM-029-006 0.99771 0.00649 1.66E-01 

HEU-SOL-THERM-029-007 0.99822 0.00629 1.65E-01 

HEU-SOL-THERM-030-001 0.99569 0.00388 4.81E-02 

HEU-SOL-THERM-030-002 0.99652 0.00319 4.88E-02 

HEU-SOL-THERM-030-003 0.99558 0.00309 4.84E-02 

HEU-SOL-THERM-030-004 0.99980 0.00640 1.56E-01 

HEU-SOL-THERM-030-005 0.99595 0.00578 1.57E-01 

HEU-SOL-THERM-030-006 0.99785 0.00589 1.59E-01 

HEU-SOL-THERM-030-007 0.99725 0.00638 1.63E-01 

 

A.2.1  Assessment of Trends 

To determine if the bias in the computational method is best expressed as function of EALF for 
the HEU solution systems presented in the Example 2 data set presented in Table A-8, 
weighted and unweighted trendlines are constructed, and their statistical significance is tested 
using the methods discussed Sections 6.3 (trend calculation) and 5.3 (t-test). The better fit on 
EALF was obtained when first taking the natural logarithm of the EALF values and then fitting. 
The data set contains 52 experiments, with an unweighted average C/E = 0.997788 and an 
unweighted average ln(EALF) = -2.42246. Using the uncertainty of each experiment to weight 
the data, the weighted average C/E = 0.996659, and the weighted ln(EALF) = -2.73842. 

First the Sxx and Skx values are calculated using Eq. (21) and Eq. (23) for an unweighted 
analysis or Eq. (22) and Eq. (24) for a weighted analysis. The slope and intercept of the 
trendlines are then calculated using Eq. (25) and Eq. (26), respectively. The residuals about the 
trendline are then calculated using Eq. (27), and the uncertainty in the fit is calculated using Eq. 
(28) for a unweighted analysis and Eq. (29) for a weighted analysis. The t-statistics for the fits 
are then calculated using Eq. (4).  

Once the t-statistic for the fit is calculated, there are two equivalent methods that can be used to 
determine the statistical significance of the fit. The first method is by comparing the t-statistic for 
the fit to the critical value from the t-distribution corresponding to n-2 degrees of freedom and 
95% confidence. For this example, the critical value is compared to the t-statistic corresponding 
to α/2=0.025 (a two-sided test because the slope can depart from zero in either the positive or 
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negative direction, so the value of α is divided by 2) and 50 degrees of freedom (n-2). The t-
statistics for the weighted fit was 0.2947 and 0.5618 for the unweighted fit. Because these 
values are smaller than the appropriate critical values from the t-distribution of 2.0086, the null 
hypothesis that there is no slope is not rejected in favor of the calculated trendline. The second 
method of assessing the statistical significance of a trendline is to calculate the p-value of the t-
statistic with statistical software and compare the result to the prescribed value of α. In this 
case, the p-value for the weighted calculation is 0.3798, and it is 0.3381 for the unweighted 
calculation. Because these values are greater than 0.025, the null hypothesis of zero slope is 
again not rejected in favor of the calculated trendline. The parameters calculated in the 
determination of the trendline and the assessment of the statistical significance of the trendline 
are presented in Table A-9. 

Table A-9 Trend Statistical Significance Parameters for the Example 2 Data 

Parameter Weighted value Unweighted value 

Sxx 16.750758 20.8918558 

Skx 0.0045487 -0.0153275 

β0 0.9974029 0.9960108 

β1 0.0002716 -0.0007337 

σfit 0.0037717 0.0059669 

tfit 0.2947 0.5618 

tcritical 2.0086 2.0086 

p-value 0.3798 0.3381 

 

A.2.2  Nontrending Assessment 

Because it has been determined that no statistically significant trend is associated with the 
Example 2 data set, the process necessary to determine the bias and bias uncertainty without 
the trend is shown here. When assessing the nontrending bias, there are two methods of 
calculating the bias uncertainty, the normality-based LTL, and the nonparametric LTL.  

To apply the normality-based LTL, the assumption that the data come from a normal distribution 
must be demonstrated to be appropriate or conservative. To determine if a parametric 
assessment of the untrended bias and bias uncertainty can be conducted, the assumption of 
normality is assessed for the Example 2 data set. The data were standardized using Eq. (3), 
and the standardized data were used to create the histogram and Q-Q plot in Figure A-3 , and 
they were also used to conduct a number of omnibus normality tests, the results of which are 
shown in Table A-10. In the plot of the Z-scores in the left half of Figure A-3, the data appear 
very center peaked, with a few points that are positively skewed compared to the imposed 
normal curve. It is also noted that there is no data with a Z-score of less than -1.5 standard 
deviations. Similarly, The Q-Q plot shows that the most negative points are not as negative as 
would be produced by a normal distribution, and the positive points are more positive than 
would be produced by a normal distribution. The p-values of less than 0.05 indicates that the 
null hypothesis that the data are a sample drawn from a normal distribution is rejected in favor 
of the alternative hypothesis that the data have some other underlying distribution. 
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Figure A-3 Histogram (Left) and Normal Q-Q Plot (Right) of the Example 2 Data Set 

Table A-10 Summary of Example 2 Normality Test P-Values 

Test p-value 

Chi-square (10 bins) 2.117e-08 

Anderson-Darling 1.052e-12 

Cramer-Von Mises 2.256e-09 

Lilliefors 5.607e-09 

Shapiro-Wilk 3.075e-09 

Shapiro-Francia 2.706e-08 

Jarque-Bera 2.200e-16 

Kolmogorov-Smirnov 6.222e-04 

 

Having concluded that the data are not drawn from a normal distribution, an assessment of the 
conservatism of applying a normal distribution-based calculation of the bias uncertainty is 
performed. To perform this evaluation, the skewness and kurtosis of the data are calculated, 
and the D’Agostino skewness test and the Anscombe-Glynn kurtosis single sided tests are 
performed. The skewness results in Table A-11 show that the calculated skewness is 2.720, 
which is greater than zero corresponding to a normal distribution. The kurtosis of the data is 
similarly assessed (Table A-11). The kurtosis of the data is calculated to be 11.597, which is 
greater than a normal value of 3, indicating that the distribution is leptokurtic (center peaked). 
Because skewness is greater than zero and the kurtosis is greater than three, it is not 
necessary to perform the single-sided tests, which are useful for showing that the data do not 
statistically significantly have more data in the lower tail than a normal distribution. Regardless, 
the tests were performed here and calculate p-values of near 1.0, which are clearly higher than 
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the 0.05 value necessary to conclude that the data are taken from a distribution with skewness 
less than 0 or a kurtosis less than 3. The result of this assessment is that the parametric LTL 
may be applied conservatively to this data set even though it appears to come from a 
distribution that is not normal. 

Table A-11 Summary of Example 2 Skewness and Kurtosis Assessment 

Parameter Value 

Skewness 2.720 

Skewness test p-value ~1.0 

Kurtosis 11.597 

Kurtosis test p-value ~1.0 

 

The parametric LTL bias is calculated by determining the mean C/E using Eq. (7) for an 
unweighted analysis and Eq. (8) for a weighted analysis. The bias is then calculated using Eq. 
(16) and the values of the mean C/E value. If this value is greater than zero, it is typically set to 

zero for conservatism. The uncertainty in 𝑘𝑛𝑜𝑟𝑚 is then calculated using Eq. (9) for an 
unweighted analysis or Eq. (10) for a weighted analysis. The average total uncertainty is 
calculated using Eq. (11) for an unweighted analysis or Eq. (12) for a weighted analysis. The 

average total uncertainty and the uncertainty in 𝑘𝑛𝑜𝑟𝑚 are then combined to form pooled 
uncertainty using Eq. (13). The one-sided tolerance factor is then determined either by using 
Eq. (14) and Eq. (15). Alternatively, the one-sided tolerance factor can be taken from Table 6-1 
for the next lowest number of experiments (50) if the regulatory statistical standard is 95% 
confidence that 95% of the population is covered. The calculated one-sided tolerance factor is 
2.055 and that value from Table 6-1 is 2.065, the calculated values are carried forward here. 
The bias uncertainty can then be obtained by multiplying the pooled uncertainty by the one-
sided tolerance factor according to Eq. (17). The bias, bias uncertainty, and all of the statistical 
parameters needed to perform the parametric LTL calculation are provided in Table A-12 . 

Table A-12 Parametric Validation Parameters for the Example 2 Data Set 

Parameter Weighted value Unweighted value 

𝑘𝑛𝑜𝑟𝑚 0.99666 0.99779 

𝛽 -0.00334 -0.00221 

𝜎𝑘𝑛𝑜𝑟𝑚
 0.00374 0.00593 

�̄� 0.00411 0.00519 

𝑆𝑝 0.00555 0.00788 

𝐾 2.055 2.055 

𝜎𝛽 0.01141 0.01619 

 

For comparison, the nonparametric LTL is also calculated. The assessment of the bias is the 
same for the nontrending analysis, regardless of whether a parametric or nonparametric 
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analysis is used, and it is simply the difference between the mean C/E value (𝑘𝑛𝑜𝑟𝑚) and unity. 
The bias uncertainty is then evaluated using the historical nonparametric method described in 
Section 6.2.1. Using the data in Table 6-2, it is determined that even the lowest rank point is not 
sufficient to attain 95% confidence that 95% of the population of C/E lies above it. However, the 
confidence calculated with Eq. (18) is 93% for a 95% population coverage. Table 6-3  
indicates that no additional NPM is necessary for validation suites with calculated confidences 
greater than 90%. Therefore, the nonparametric LTL is produced by subtracting the uncertainty 
in C/E from the lowest C/E value in the suite. In this case, the lowest C/E is 0.98969 with an 
uncertainty of 0.00357, which results in a nonparametric LTL of 0.98612. For cases in which the 
bias uncertainty can be convoluted with other uncertainties in the safety analysis case, the LTL 
can be split into the bias by subtracting the mean C/E value from the LTL and calculating the 

bias as one minus the mean C/E value. The 𝑘𝑛𝑜𝑟𝑚, the bias, and the bias uncertainty are 
calculated for the Example 2 data set, and the results are shown in Table A-13: weighted and 
unweighted calculation of the mean C/E value. 

Table A-13 Nonparametric Validation Parameters for the Example 2 Data Set 

Parameter Weighted value Unweighted value 

𝑘𝑛𝑜𝑟𝑚 0.99666 0.99779 

𝛽 -0.00334 -0.00221 

𝜎𝛽 0.01054 0.01167 

 

A graphical summary of the validation parameters is shown in Figure A-4 for the Example 2 data 
set. It is noted that the calculations shown in Figure A-4 do not have any administrative margin 
and are meant to provide a comparison of the methods. Unweighted calculations are shown as 
dashed lines in the same color as the corresponding weighted calculations. 
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A.3  Example 3 

Table A-14 Plutonium Solution Critical Experiment Data Used in Example 3 

Experiment C/E σC/E EALF 

PU-SOL-THERM-001-001 1.00459 0.00502 8.72E-02 

PU-SOL-THERM-001-002 1.00687 0.00504 1.10E-01 

PU-SOL-THERM-001-003 1.00913 0.00505 1.33E-01 

PU-SOL-THERM-001-004 1.00366 0.00502 1.49E-01 

PU-SOL-THERM-001-005 1.00770 0.00504 1.57E-01 

PU-SOL-THERM-001-006 1.00897 0.00505 3.41E-01 

PU-SOL-THERM-002-001 1.00366 0.00472 7.10E-02 

PU-SOL-THERM-002-002 1.00437 0.00472 7.26E-02 

PU-SOL-THERM-002-003 1.00335 0.00472 7.75E-02 

PU-SOL-THERM-002-004 1.00634 0.00473 8.09E-02 

PU-SOL-THERM-002-005 1.00895 0.00474 8.45E-02 

PU-SOL-THERM-002-006 1.00496 0.00472 9.22E-02 

PU-SOL-THERM-002-007 1.00744 0.00474 9.96E-02 

PU-SOL-THERM-003-001 1.00226 0.00471 5.84E-02 

PU-SOL-THERM-003-002 1.00188 0.00471 5.95E-02 

PU-SOL-THERM-003-003 1.00438 0.00472 6.19E-02 

PU-SOL-THERM-003-004 1.00402 0.00472 6.27E-02 

PU-SOL-THERM-003-005 1.00516 0.00473 6.54E-02 

PU-SOL-THERM-003-006 1.00556 0.00473 6.92E-02 

PU-SOL-THERM-003-007 1.00637 0.00473 5.92E-02 

PU-SOL-THERM-003-008 1.00511 0.00473 6.01E-02 

PU-SOL-THERM-004-001 1.00351 0.00472 5.35E-02 

PU-SOL-THERM-004-002 0.99840 0.00469 5.38E-02 

PU-SOL-THERM-004-003 1.00045 0.00470 5.48E-02 

PU-SOL-THERM-004-004 0.99843 0.00469 5.61E-02 

PU-SOL-THERM-004-005 0.99932 0.00470 5.47E-02 

PU-SOL-THERM-004-006 1.00134 0.00471 5.50E-02 

PU-SOL-THERM-004-007 1.00521 0.00473 5.60E-02 

PU-SOL-THERM-004-008 1.00084 0.00470 5.66E-02 

PU-SOL-THERM-004-009 1.00029 0.00470 5.87E-02 

PU-SOL-THERM-004-010 1.00185 0.00471 6.32E-02 

PU-SOL-THERM-004-011 1.00020 0.00470 6.83E-02 

PU-SOL-THERM-004-012 1.00253 0.00471 5.59E-02 

PU-SOL-THERM-004-013 0.99972 0.00470 5.57E-02 
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Table A-14 Plutonium Solution Critical Experiment Data Used in Example 3 
(continued) 

Experiment C/E σC/E EALF 

PU-SOL-THERM-005-001 1.00165 0.00471 5.57E-02 

PU-SOL-THERM-005-002 1.00243 0.00471 5.67E-02 

PU-SOL-THERM-005-003 1.00306 0.00472 5.77E-02 

PU-SOL-THERM-005-004 1.00474 0.00472 6.01E-02 

PU-SOL-THERM-005-005 1.00586 0.00473 6.29E-02 

PU-SOL-THERM-005-006 1.00545 0.00473 6.60E-02 

PU-SOL-THERM-005-007 1.00388 0.00472 6.91E-02 

PU-SOL-THERM-005-008 0.99898 0.00470 5.68E-02 

PU-SOL-THERM-005-009 1.00169 0.00471 5.80E-02 

PU-SOL-THERM-006-001 1.00038 0.00350 5.26E-02 

PU-SOL-THERM-006-002 1.00152 0.00351 5.35E-02 

PU-SOL-THERM-006-003 1.00118 0.00351 5.54E-02 

PU-SOL-THERM-007-001 1.00944 0.00475 2.70E-01 

PU-SOL-THERM-007-002 1.00376 0.00472 2.57E-01 

PU-SOL-THERM-007-003 1.00901 0.00474 1.11E-01 

PU-SOL-THERM-007-004 1.00301 0.00472 1.13E-01 

PU-SOL-THERM-007-005 1.00513 0.00473 1.11E-01 

PU-SOL-THERM-007-006 0.99891 0.00470 1.14E-01 

PU-SOL-THERM-007-007 0.99702 0.00469 1.13E-01 

PU-SOL-THERM-007-008 1.00074 0.00470 1.05E-01 

PU-SOL-THERM-011-001 1.00945 0.00525 6.24E-02 

PU-SOL-THERM-011-002 1.01406 0.00527 6.36E-02 

PU-SOL-THERM-011-003 1.01629 0.00529 6.60E-02 

PU-SOL-THERM-011-004 1.00865 0.00525 6.66E-02 

PU-SOL-THERM-011-005 1.00583 0.00523 7.40E-02 

PU-SOL-THERM-011-006 0.99378 0.00517 5.12E-02 

PU-SOL-THERM-011-007 0.99981 0.00520 5.22E-02 

PU-SOL-THERM-011-008 0.99637 0.00518 5.21E-02 

PU-SOL-THERM-011-009 0.99297 0.00516 5.34E-02 

PU-SOL-THERM-011-010 1.00309 0.00522 5.47E-02 

PU-SOL-THERM-011-011 0.99972 0.00520 5.84E-02 

PU-SOL-THERM-011-012 0.99918 0.00520 5.32E-02 

PU-SOL-THERM-020-001 1.00316 0.00592 6.55E-02 

PU-SOL-THERM-020-002 1.00570 0.00593 6.46E-02 

PU-SOL-THERM-020-003 1.00032 0.00590 5.90E-02 
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Table A-14 Plutonium Solution Critical Experiment Data Used in Example 3 
(continued) 

Experiment C/E σC/E EALF 

PU-SOL-THERM-020-004 1.00381 0.00592 7.59E-02 

PU-SOL-THERM-020-005 1.00419 0.00593 7.88E-02 

PU-SOL-THERM-020-006 0.99815 0.00589 6.04E-02 

PU-SOL-THERM-020-007 1.00314 0.00592 1.05E-01 

PU-SOL-THERM-020-008 0.99443 0.00587 7.57E-02 

PU-SOL-THERM-020-009 1.00401 0.00592 6.48E-02 

PU-SOL-THERM-020-010 1.00092 0.00591 5.87E-02 

PU-SOL-THERM-020-011 1.00221 0.00591 7.57E-02 

PU-SOL-THERM-020-012 1.00341 0.00592 7.88E-02 

PU-SOL-THERM-020-013 0.99258 0.00586 7.57E-02 

PU-SOL-THERM-020-014 0.99609 0.00588 1.06E-01 

PU-SOL-THERM-020-015 1.00349 0.00592 5.85E-02 

 

A.3.1  Assessment of Trends 

To determine if the bias in the computational method is best expressed as function of EALF for 
the Pu solution systems contained in the Example 3 data set provided in Table A-14 weighted 
and unweighted trendlines are constructed, and their statistical significance is tested using the 
methods discussed Sections 6.3 (trend calculation) and 5.3 (t-test). The best fit on EALF was 
produced by first taking the natural logarithm of the EALF and then fitting. The data set contains 
81 experiments, with an unweighted average C/E = 1.00295642 and an unweighted average 
ln(EALF) = -2.61567. Using the uncertainty of each experiment to weight the data, the weighted 
average C/E = 1.00296, and the weighted ln(EALF) = -2.62585. 

First the Sxx and Skx values are calculated using Eq. (21) and Eq. (23) for an unweighted 
analysis or Eq. (22) and Eq. (24) for a weighted analysis. The slope and intercept of the 
trendlines are then calculated using Eq. (25) and Eq. (26), respectively. The residuals about the 
trendline are then calculated using Eq.(27), and the uncertainty in the fit is calculated using Eq. 
(28) for a unweighted analysis and Eq. (29) for a weighted analysis. The t-statistics for the fits 
are then calculated using Eq. (4). 

Once the t-statistic for the fit is calculated, there are two equivalent methods by which the 
statistical significance of the fit can be judged. The first method is by comparison of the t-
statistic for the fit to the critical value from the t-distribution corresponding to n-2 degrees of 
freedom and 95% confidence. For this example, the critical value is compared to the t-statistic 
corresponding to α/2=0.025 (a two-sided test is used because the slope can depart from zero in 
either the positive or negative direction, so the value of α is divided by 2) and 79 degrees of 
freedom (n-2). The t-statistics for the weighted fit was 3.40 and 3.12 for the unweighted fit. 
These values are larger than the appropriate critical values from the t-distribution of 1.99; the 
null hypothesis that there is no slope is rejected in favor of the calculated trendline. The second 
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method of assessing the statistical significance of a trendline is to calculate the p-value of the t-
statistic with statistical software and then compare it to the prescribed value of α. In this case, 
the p-value was 0.0017 for the weighted calculation and 0.0038 for the unweighted calculation. 
Because these values are less than 0.025, the null hypothesis of zero slope is again rejected in 
favor of the calculated trendline. The parameters calculated in the determination of the trendline 
and the assessment of the statistical significance of the trendline are presented in Table A-15. 

Table A-15 Trend Statistical Significance Parameters for the Example 3 Data 

Parameter Weighted value Unweighted value 

Sxx 11.83255 11.58647 

Skx 0.044352 0.042674 

β0 1.0127992 1.0125901 

β1 0.0037483 0.0036831 

σfit 0.0037951 0.0040172 

tfit 3.3974 3.1208 

tcritical 1.9905 1.9905 

p-value 0.0017 0.0038 

 

Once the calculated trend is determined to be statistically significant, it can be used in 
conjunction with the values of the trend parameter from the application cases to calculate the 
bias and bias uncertainty. For this example, the EALFs of two the hypothetical application cases 
considered are 0.05 and 1 eV, which have natural logarithms of -2.99573 and 0.0, respectively.  

To evaluate the bias and bias uncertainty as a function of the natural logarithm of EALF, a 
number of additional statistical parameters need to be evaluated. Two bands are used for the 
bias uncertainty evaluation in this appendix: the Single-Sided Lower Tolerance Band method 
from NUREG/CR-6698, and the Single-Sided Lower Confidence Band method from 
NUREG/CR-6361, which is often referred to as the USL-1 method. For both methods, the 
average total uncertainty (�̄�) is needed and is calculated using Eq. (11) for unweighted analyses 
and Eq. (12) for weighted analyses. The pooled standard deviation (𝑆𝑝) for a trended bias 

assessment can then be calculated with Eq.(31). Additionally, the statistical parameters for the 
NUREG/CR-6698 lower tolerance band from Table 6-4 and the inverse t-distribution calculation 
are needed to perform the NUREG/CR-6361 lower confidence band calculation are required. 
The values of these parameters are presented in Table A-16. 
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Table A-16 Parameters Necessary for Trended Bias Uncertainty Evaluation for the 
Example 3 Data 

Parameter Weighted value Unweighted value 

�̄� 0.004899 0.005019 

𝑆𝑝 0.006197 0.0.006428 

𝐹𝛼
(2,𝑛−2)

 3.1122 3.1122 

𝑛 81 81 

𝑧𝑃 1.64485 1.64485 

𝜒
1−

𝛼
2

,𝑛−2

2  56.3089 56.3089 

𝑡1−𝛼,𝑛−2 1.66437 1.66437 

 

Using the parameters calculated above the trended value of C/E (𝑘𝑓𝑖𝑡(𝑥)), the bias and bias 

uncertainty are estimated for each of the application cases and are reported in Table A-17. The 
values of 𝑘𝑓𝑖𝑡(𝑥) and the trended bias in Table A-17  show that the bias is set to zero in both 

cases because otherwise the trendline would result in a positive bias. The 1 eV case requires 
extrapolation of the trend beyond the available data. The bias uncertainties are estimated by the 
NUREG/CR-6698 and USL-1 bands. It is noted that for the USL-1 calculation the bias 
uncertainty is calculated as the maximum of the values found by evaluating at the end points of 
the energy range. The larger of the two end point uncertainty values is then applied to the entire 
energy range. For the 1 eV case the bias uncertainty is evaluated at that point. 

Table A-17 Sample Calculation of Bias, Bias Uncertainties, and Calculational Margins 
for the Example 3 Cases 

Parameter 
0.05 eV 1 eV 

Weighted Unweighted Weighted Unweighted 

𝑘𝑓𝑖𝑡(𝑥) 1.00157 1.00156 1.01280 1.01259 

Trended bias 0 0 0 0 

NUREG-6698 bias uncertainty 0.01447 0.01505 0.02400 0.02498 

NUREG-6698 calculational margin 0.01447 0.01505 0.02400 0.02498 

USL-1 bias uncertainty 0.01137 0.01180 0.01302 0.01354 

USL-1 calculational margin 0.01137 0.01180 0.01302 0.01354 

 

A.3.2  Nontrending Assessment 

Even though it has been determined that a statistically significant trend is associated with the 
Example 3 data set, the process necessary to determine the bias and bias uncertainty without 
the trend is shown here. When assessing the nontrending bias, there are two methods for 
calculating the bias uncertainty: the normality-based LTL and the nonparametric LTL.  
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To apply the normality-based LTL, the assumption that the data come from a normal distribution 
must be shown to be appropriate or conservative. To determine if a parametric assessment of 
the untrended bias and bias uncertainty is needed, the assumption of normality is assessed for 
the Example 3 data set. The data were standardized using Eq. (3), and the standardized data 
were used to create the histogram and Q-Q plot in Figure A-5. The data were also used to 
conduct a number of omnibus normality tests, the results of which are shown in Table A-18. The 
Z-scores in the left half of Figure A-5  appear slightly center peaked, with a few points that are 
positively skewed compared to the imposed normal curve. Similarly, The Q-Q plot looks 
reasonably like the Q-Q plot generated from a normal distribution in Figure 5-2, so there are no 
remarkable non-normal features identified with graphical methods. All of the omnibus normality 
tests used here calculate p-values that are greater than 0.05, such that the null hypothesis that 
the data are a sample drawn from a normal distribution is not rejected in favor of the alternative 
hypothesis that the data have some other underlying distribution. Therefore, it is concluded that 
it is acceptable to use a normality-based LTL approach. 

 

Figure A-5 Histogram (Left) and Normal Q-Q Plot (Right) for the Example 3 Data Set 

Table A-18 Summary of Example 3 Normality Test P-Values 

Test p-value 

Chi-square (12 bins) 0.1875 

Anderson-Darling 0.1857 

Cramer-Von Mises 0.2327 

Lilliefors 0.3468 

Shapiro-Wilk 0.1791 

Shapiro-Francia 0.0933 

Jarque-Bera 0.1755 

Kolmogorov-Smirnov 0.775 
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The parametric LTL bias is calculated by determining the mean C/E using Eq. (7) for an 
unweighted analysis and Eq. (8) for a weighted analysis. The bias is then calculated using 
Eq. (16) and the values of the mean C/E values. If this value is greater than zero, it is typically 

set to zero for conservatism. The uncertainty in 𝑘𝑛𝑜𝑟𝑚 is then calculated using Eq. (9) for an 
unweighted analysis or Eq.  (10) for a weighted analysis. The average total uncertainty is 
calculated using Eq. (11) for an unweighted analysis or Eq. (12) for a weighted analysis. The 

average total uncertainty and the uncertainty in 𝑘𝑛𝑜𝑟𝑚 are then combined to form pooled 
uncertainty (𝑆𝑝) using Eq. (13) for the non-trending analysis. The one-sided tolerance factor is 

then determined either by calculation using Eq. (14) and Eq. (15)  according to the number of 
experiments in the validation suite (81). Alternatively, the one-sided tolerance factor can be 
taken from Table 6-1 for the next lowest number of experiments (80), provided that the 
regulatory statistical standard is 95% confidence that 95% of the population is covered. The 
calculated tolerance factor is used here. The bias uncertainty can then be obtained by 
multiplying the pooled uncertainty by the one-sided tolerance factor according to Eq. (17). The 
bias, bias uncertainty, and all of the statistical parameters needed to perform the parametric LTL 
calculation are provided in Table A-19. 

Table A-19 Parametric Validation Parameters for the Example 3 Data Set 

Parameter Weighted value Unweighted value 

𝑘𝑛𝑜𝑟𝑚 1.00296 1.00296 

𝛽 0 0 

𝜎𝑘𝑛𝑜𝑟𝑚
 0.00403 0.00423 

�̄� 0.00489 0.0502 

𝑆𝑝 0.00635 0.00656 

𝐾 1.962 1.962 

𝜎𝛽 0.01245 0.01288 

 

For the sake of comparison, the nonparametric LTL is also calculated. The assessment of the 
bias is the same for the nontrending analysis, regardless of the whether a parametric or 
nonparametric analysis is used, and it is simply the difference between the mean C/E value 

(𝑘𝑛𝑜𝑟𝑚) and unity. The bias uncertainty is then evaluated using the traditional historical 
nonparametric method described in Section 6.2.1. Using the data in Table 6-2, it is determined 
that the lowest rank point is sufficient to attain 95% confidence that 95% of the population of C/E 
values lie above it. However, there are not enough points to use the second lowest point. 
Therefore, the nonparametric LTL is produced by subtracting the uncertainty in C/E from the 
C/E value that is the lowest in the suite. The lowest C/E value is 0.99258 and its uncertainty is 
0.00586, so the resulting LTL is 0.98672. The bias uncertainty calculation using Eq. (19) 

indicates that the bias uncertainty should be calculated by using a 𝑘𝑛𝑜𝑟𝑚 value of 1 if 𝑘𝑛𝑜𝑟𝑚 > 1, 

as is the case here. The resulting bias uncertainty (σβ) is 0.01328. The 𝑘𝑛𝑜𝑟𝑚, the adjusted bias, 
and the bias uncertainty are calculated for the Example 3 data set, and the results are shown in 
Table A-20 as weighted and unweighted calculations of the mean C/E value.  
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Table A-20 Nonparametric Validation Parameters for the Example 3 Data Set 

Parameter Weighted value Unweighted value 

𝑘𝑛𝑜𝑟𝑚 1.00296 1.00296 

𝛽 0 0 

𝜎𝛽 0.01328 0.01328 

 

A graphical summary of the validation parameters is shown in Table A-6 for the Example 3 data 
set. The calculations shown in Table A-6 do not have any administrative margin and are meant 
to provide a comparison of the methods. Unweighted calculations are shown as a dashed line in 
the same color as the corresponding weighted calculations. 
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