

Advances in Seismic Methods

FOR NUCLEAR PLANT SITE CHARACTERIZATION

John Diehl, MS, PE President, GEOVision Geophysical Services https://geovision.com

About Me

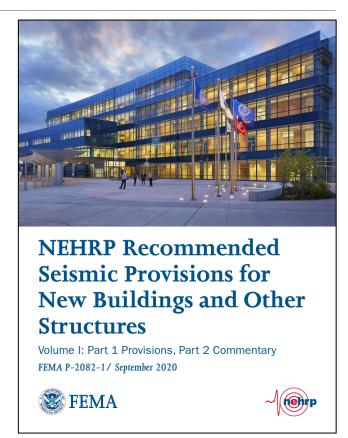
- BSME Cal Poly Pomona
- MSCE & MBA UCLA
- Authored/coauthored 30 publications
- Lifetime member of ASCE
- PE in the state of California
- Cofounded GEOVision in 1995

About GEOVision

- Since 1995
- All 5 founders still involved
- Couldn't find anyone in SoCal to do high quality geophysics
- Full suite of geophysical services for customers worldwide
- Over 120 NPP projects worldwide

About GEOVision

- Since 1995
- All 5 founders still involved
- Couldn't find anyone in SoCal to do high quality geophysics
- Full suite of geophysical services for customers worldwide
- Over 120 NPP projects worldwide



NPP Projects in the USA

How Seismic Methods help Geotechs

- Site Classification (Vs30, shear wave profile)
- Determine depth to bedrock, water table
- Rippability of rock
- Soil and rock properties
- Fault location and orientation
- Data for site response analysis

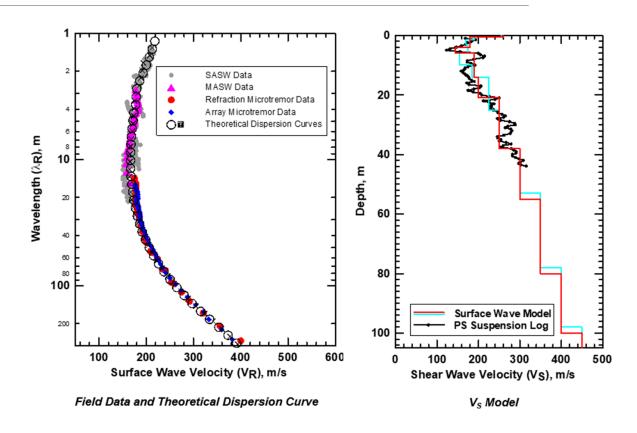
Currently available seismic methods

Surface Methods

- Seismic Refraction (ASTM D5777)
- Seismic Reflection (ASTM D7128)
- Surface wave methods including
 - SASW
 - MASW, MALW
 - H/V spectral ratio
 - array microtremor
 - refraction microtremor

Currently available seismic methods

Surface Methods


- Seismic Refraction (ASTM D5777)
- Seismic Reflection (ASTM D7128)
- Surface wave methods including
 - SASW
 - MASW, MALW
 - H/V spectral ratio
 - array microtremor
 - refraction microtremor

newest

Surface Wave Surveys

A Multimethod approach is necessary! Why?

- We rarely know in advance what tools will be needed, so we need the whole toolbox
- Sites can be complex (higher modes), and simple Rayleigh wave MASW may not work
- Includes different sources, and methods
- Sources can be impulsive, low or high energy, or vibratory
- Methods are complimentary
 - Borehole or surface
 - SASW, MASW and/or MALW (Love wave)
 - Active and passive
 - Linear or 2D (not ReMi, usually)

Seismic Sources

Hammer Energy Sources

Electromechanical Shaker

Accelerated Weight Drop

Bulldozer Energy Source

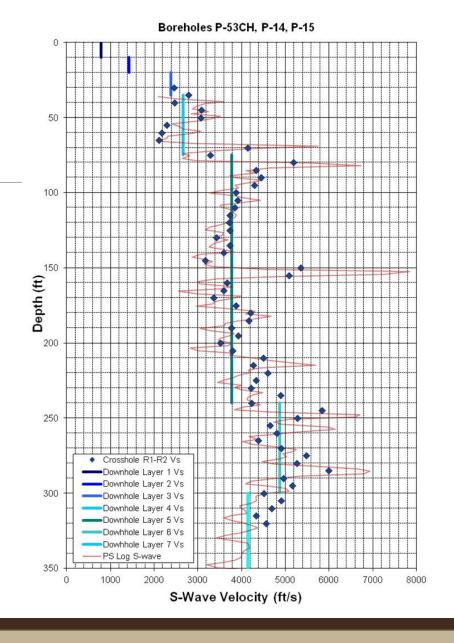
EnviroVib

Currently available seismic methods

Borehole Methods

- Downhole seismic (ASTM D7400)
- Crosshole seismic (ASTM D4428)
- P- and S-wave Suspension Logging (sometimes referred to as OYO Suspension logging)

Currently available seismic methods


Borehole Methods

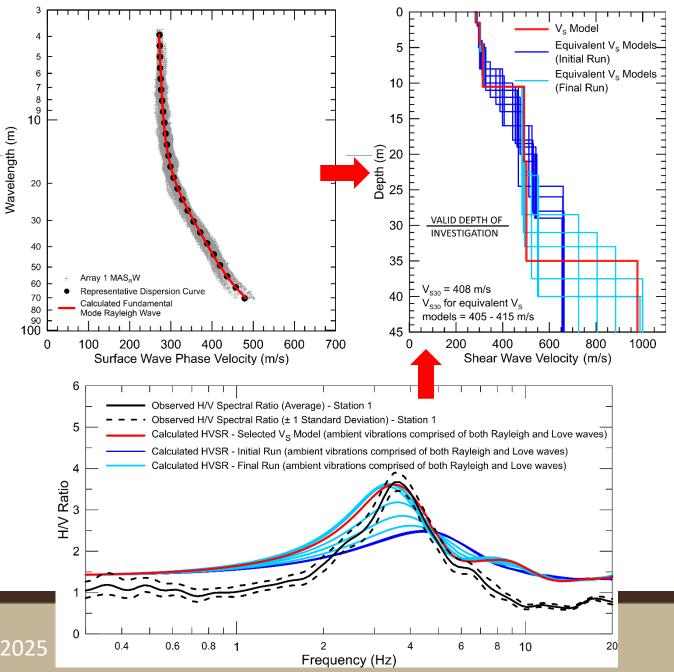
- Downhole seismic (ASTM D7400)
- Crosshole seismic (ASTM D4428)
- P- and S-wave Suspension Logging (sometimes referred to as OYO Suspension logging)

newest

Borehole techniques for shear wave

- •Suspension Logging single tool containing source and receivers
- •Down-hole receivers lowered down borehole with source at surface
- •Cross-hole source in one borehole, receivers in another

What is the future for seismic methods?


 Bringing state-of-the-art to state-of-practice (new ASTM standards); particularly for Surface Wave methods and P-S Suspension logging.

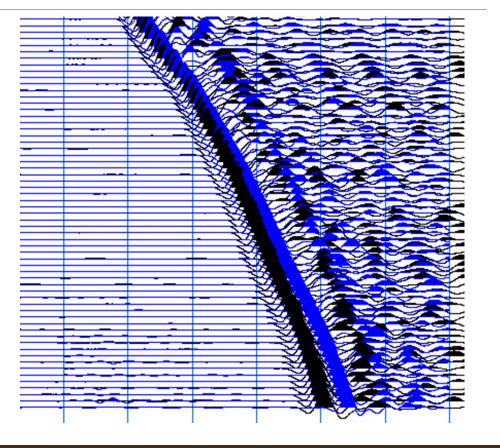
What is the future for surface methods?

- Incorporate H/V spectral ratio into site response studies
- Explore using 3 component sensors for better joint Love - Rayleigh wave analysis
- Explore how AI can help
 - Better inversion
 - Better modeling
- Standardize methods for measuring damping

Reconciling V_{ς} Models with **HVSR**

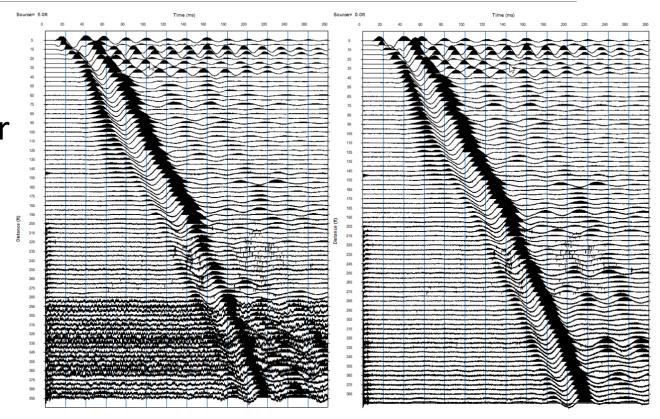
- ◆ Site CE.58135 UCSC Lick Electric Shop, Santa Cruz, California.
- Surface wave depth of investigation is about 30 - 35 m based on λ_{max} = 70 m.
- ◆ Initial ensemble of V_s models are not compatible with observed HVSR. HVSR response almost identical for the models (shown in dark blue).
- ◆ V_s model depth extended with higher velocity half space to better fit observed HVSR (shown in light blue). Half space velocity not well constrained.
- \bullet V_{S30} similar for all V_S models (405 415 m/s)

What is the future for surface methods?


- Incorporate H/V spectral ratio into site response studies
- Explore using 3 component sensors for better joint Love - Rayleigh wave analysis
- Explore how AI can help
 - Better inversion
 - Better modeling
- Standardize methods for measuring damping

What is the future for borehole seismic methods?

- Confront the issue of anisotropy
 - It does exist, more often than you think, but we don't check for it
 - How to check?
 - Multi-plank orientations during Downhole measurements
 - Develop new P-S Suspension tools that have built-in orientation logging


Example: Multiple plank operations to characterize S-wave splitting

- S-wave splitting observed from two plank orientations at same borehole.
- Polarization analysis required because axis of symmetry not parallel to plank orientations.
- 25 ms difference in first arrival at bottom of borehole (120 m depth).

What is the future for borehole seismic methods?

- Standardize on using polarization analysis to improve signal quality rather than depend on orientable geophones in Downhole seismic
- Standardize methods for measuring damping

What is the future for borehole seismic methods?

- Using Crosshole to measure both S_V and S_H in order to estimate overconsolidation ratio (OCR). Downhole and Suspension only measure S_H. Currently, the Crosshole method, as commonly executed, only measures S_V
- Using borehole gravimetry to perform in-situ density measurements (vertical microgravity)

Questions?

Advances in Seismic Methods

FOR NUCLEAR PLANT SITE CHARACTERIZATION

John Diehl, MS, PE President, GEOVision Geophysical Services https://geovision.com