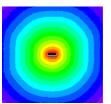


Storage and Transportation of TRISO and Metal Spent Nuclear Fuels

NRC's simulation capabilities supporting criticality, reactor physics, decay heat, and shielding for metallic fueled non-LWRs

Andy Bielen, Ph.D.

Office of Nuclear Regulatory Research Division of Systems Analysis Fuel & Source Term Code Development Branch


Objectives

- NRC's simulation capabilities supporting nuclear fuel safety for metallic fuel designs
 - Decay Heat
 - Neutron Multiplication & Criticality
 - Shielding and Radiation Protection
- Overview of data availability, gaps, and where additional data would be beneficial

Nuclear Physics Considerations for TRISO/SFR Spent Fuel Safety

Shielding and Radiation Protection

NRC Regulations limit radiation dose under all phases of the fuel cycle:

- Direct radiation dose
- Radioactive material releases
- Inadvertent criticality

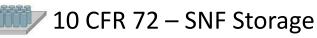
Computer codes used to determine:

- Irradiated fuel composition for nuclides that contribute to:
 - Direct radiation dose and dose from radioactive material releases
 - Decay heat
 - Determination of criticality safety (k_{eff})
- Radiation dose and k_{eff}

Codes must be validated against measured irradiated fuel data

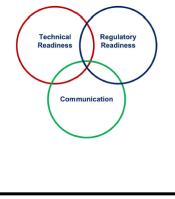
Neutron Multiplication and Criticality

10 CFR 20 – Radiation Protection


10 CFR 50/52 – Power Plants

) 10 CFR 70 – Fuel Cycle Facilities

10 CFR 71 – Transportation



Non-LWR Source Term & Fuel Cycle Demonstration Projects

LWR) Vision and Strategy, Volume 3 – Computer Code Development Plans for Severe Accident Progression, Source Term, and Consequence Analysis

Source Term

NRC's comprehensive neutronics package

- Cross-section processing
- Decay heat analyses
- Criticality safety
- Radiation shielding
- Radionuclide inventory & depletion generation
- Reactor core physics

NRC's comprehensive severe accident progression and source term code

- Accident progression
- Thermal-hydraulic response
- Core heat-up, degradation, and relocation
- Fission product release and transport behavior

 Technical Readiness
 Regulatory Readiness

💎 U.S.NRC

REVISION 1 MARCH 31, 2021

Fuel Cycle

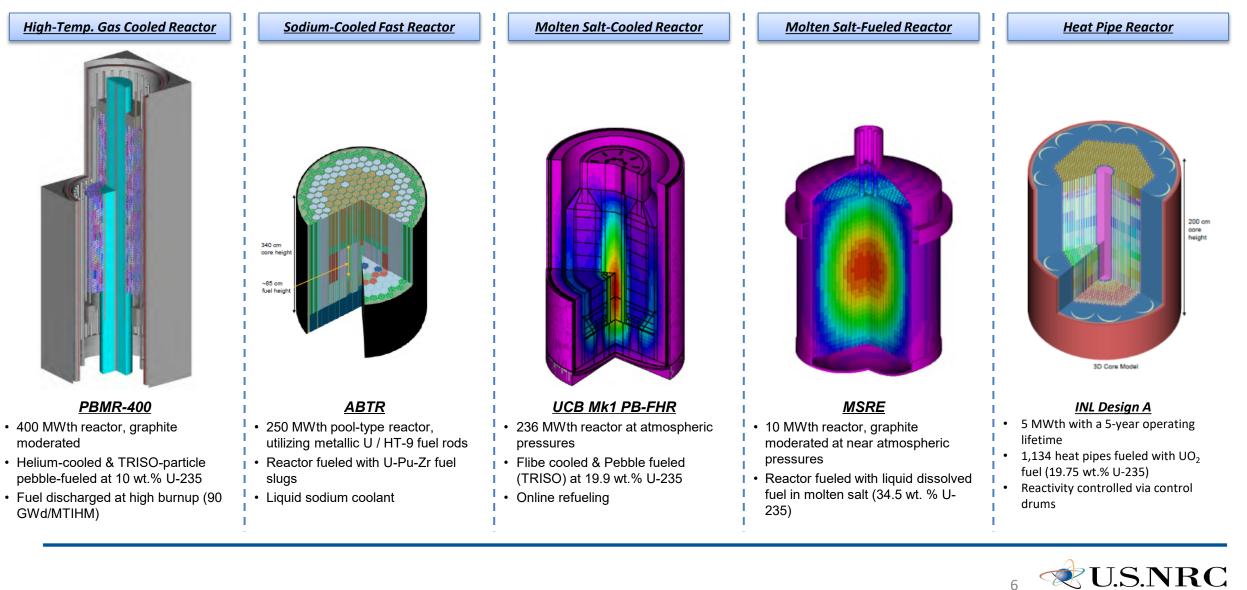
Non-LWR demonstration projects improve and validate SCALE & MELCOR for simulating non-LWRs for severe accident progression and fuel cycle analyses.

Using SCALE to Calculate Non-LWR Neutronics Quantities of Interest

Decay Heat

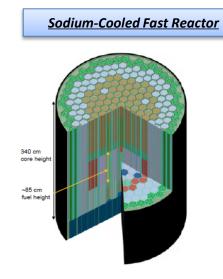
- SCALE/TRITON is used to generate specific ORIGEN reactor libraries; functionally bounds fuel enrichment and burnup.
- SCALE/ORIGAMI is used to obtain the spent fuel inventories; uses ORIGEN to compute detailed irradiated and decayed isotopic compositions.

Criticality Safety

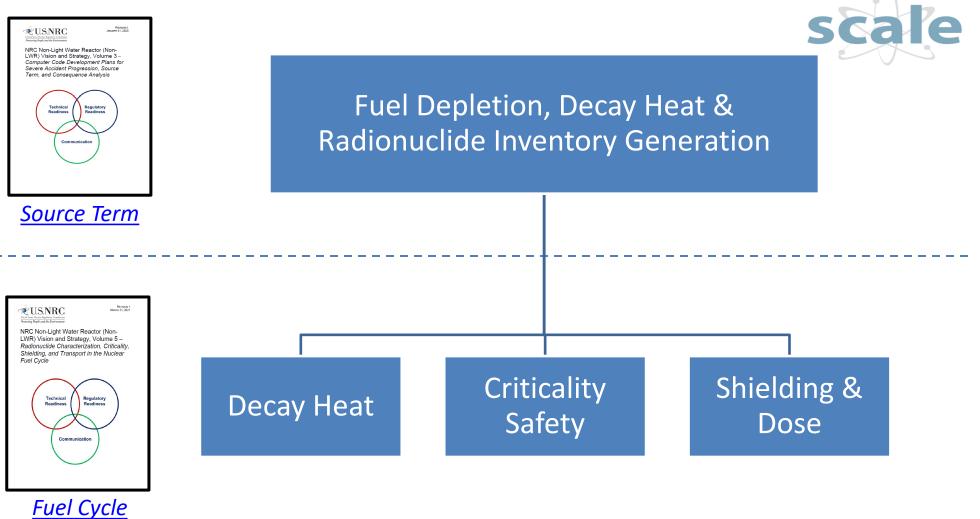

- SCALE/CSAS is used to perform criticality safety analyses. CSAS is a sequence that uses Monte Carlo transport codes KENO or Shift.
- Used to determine the multiplication factor of any system.

Shielding & Dose

- SCALE/MAVRIC is used to perform the shielding and dose analyses.
- Uses the radiation source term & radionuclide inventories generated from SCALE/TRITON or SCALE/ORIGAMI.



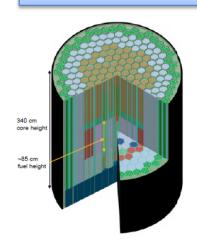
Non-LWR Reference Models



Sodium Fast Reactor Workflows

<u>ABTR</u>

- 250 MWth pool-type reactor, utilizing metallic – U-fueled / HT-9 clad fuel rods
- Reactor fueled with U-Pu-Zr fuel slugs
- Liquid sodium coolant

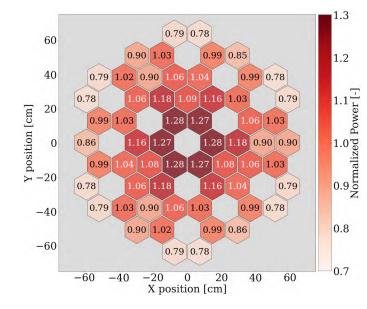


Fuel Depletion, Decay Heat, and Nuclide Inventory Generation scale

Fuel Depletion, Decay Heat & Radionuclide

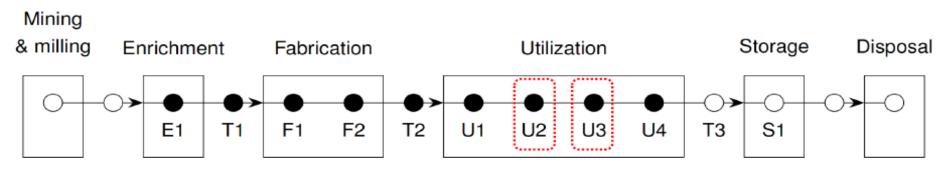
Inventory Generation

Sodium-Cooled Fast Reactor


ABTR

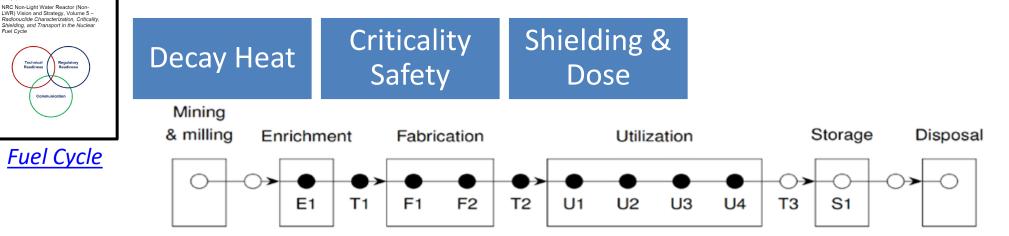
- 250 MWth pool-type reactor, utilizing metallic U /HT-9 fuel rods
- Reactor fueled with U-Pu-Zr fuel slugs
- Liquid sodium coolant

₹U.S.NRC NRC Non-Light Water Reactor (Non LWR) Vision and Strategy, Volume 3 – Computer Code Development Plans for Severe Accident Progression, Source erm and Consequence Analysis


Source Term

- SCALE/TRITON used for fuel depletion
 - Full core 3D continuous energy Monte Carlo physics
 - All fuel assemblies in the core depleted (Total of 60)
 - ORIGEN used to track >2,000 nuclides
- Radionuclide inventories used to support downstream analyses.
 - MELCOR for severe accident progression & radionuclide transport
 - MAVRIC for shielding & dose analyses

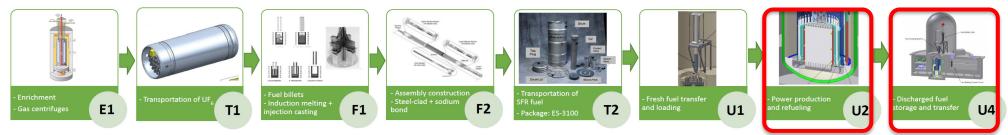
Sodium Fast Reactor Fuel Cycle


- E1 UF₆ enrichment
- $T1 Transportation of UF_6$ to fabrication facility
- F1 Fuel fabrication
- F2 Fuel assembly/pebble fabrication
- T2 Transportation of assemblies/pebbles/salt to plant
- U1 Fresh fuel staging/preparation/loading

- U2 Power production
- U3 Spent fuel pool/shuffle operations
- U4 On-site dry cask storage
- T3 Transportation of spent fuel to off-site storage
- S1 Off-site storage

Decay Heat, Criticality Safety, and Radiation Shielding / Dose

E1 – UF₆ enrichment

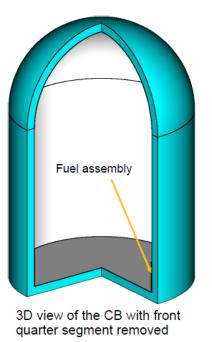

Revision 1 Materia 31, 2021

VUS.NRC

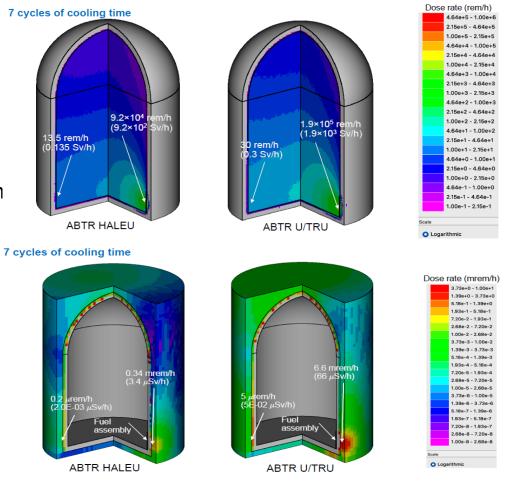
Fuel Cycle

- $T1 Transportation of UF_6$ to fabrication facility
- F1 Fuel fabrication
- F2 Fuel assembly/pebble fabrication
- T2 Transportation of assemblies/pebbles/salt to plant
- U1 Fresh fuel staging/preparation/loading

- U2 Power production
- U3 Spent fuel pool/shuffle operations
- U4 On-site dry cask storage
- T3 Transportation of spent fuel to off-site storage
- S1 Off-site storage

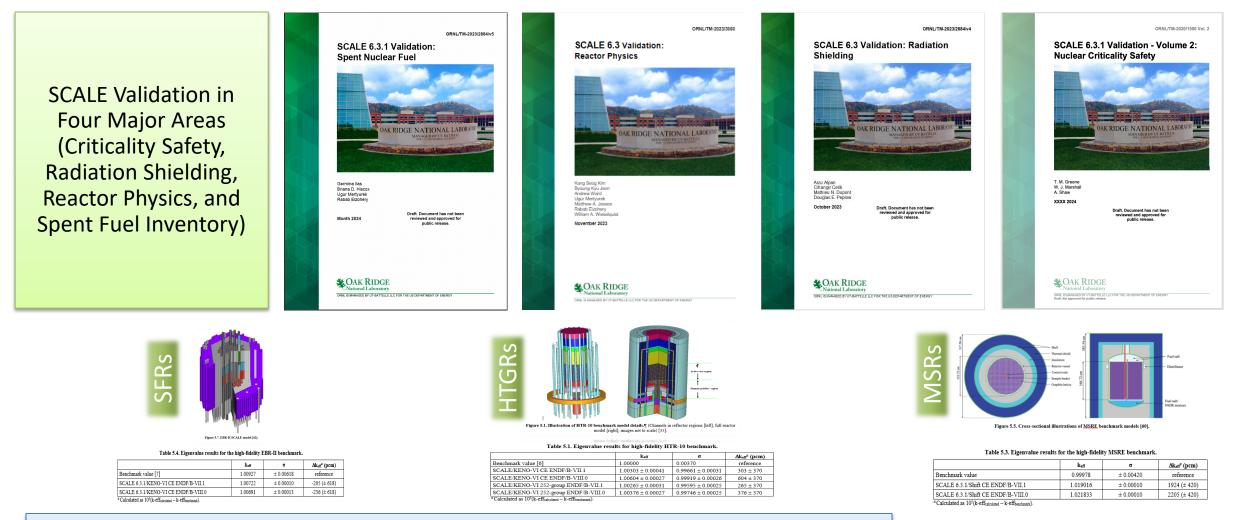


Shielding & Dose Analyses for Metallic Fuels / SFRs

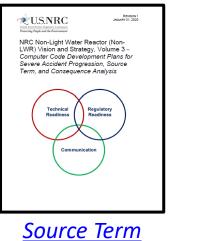

Scenario 1: Release of fission products during operation / refueling (U3)

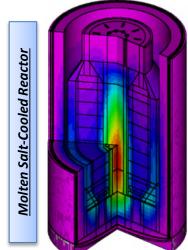
- Accident: Seismic event causing the refueling machine to fall and release the fuel assembly.
- Analysis: Determine fuel inventory and perform SCALE radiation dose calculations.

Generated inventories used for radiative source tern


- Leveraged from the non-LWR demonstration source term work
- TRITON & ORIGAMI for inventories
- MAVRIC for shielding & dose
- Radionuclide inventories used to support downstream analyses.
 - MELCOR for severe accident progression & radionuclide transport
 - MAVRIC for shielding & dose analyses

3D total dose rate maps of the containment building, generated from SCALE MAVRIC


NRC's Computer Codes and Validation



SCALE has been heavily validated for standard fuel designs in LWRs. SCALE 6.3 validation efforts are underway to validate SCALE for several advanced non-LWR systems.

Applications of non-LWR Demonstration Project - Kairos Hermes Construction Permit

Application Support

U.S.NRC

SAFETY EVALUATION

Related to the Kairos Power LLC

the Hermes Test

Docket 50-751

Construction Permit Application for

🔿 Kairos Power

UCB Mk1 PB-FHR

- 236 MWth reactor at atmospheric pressures
- Flibe cooled & Pebble fueled (TRISO) at 19.9 wt.% U-235
- Online refueling

- Generated a library of well-tested & demonstrated non-LWR reference plant models in SCALE & MELCOR.
- Models can be heavily leveraged to support licensing reviews.

Black: Moderator Pebble

Blue: FLiBe Red: Fuel Pebble

- Leveraged the FHR model to support the licensing review of Hermes I
 - Similarities between the UCB Mk1 & Hermes I noted
 - Leveraged existing models & insights from non-LWR demonstration project
- SCALE and MELCOR used for analyzing various scenarios (e.g., loss of forced circulation, accidental control rod withdrawal)

Non-LWR demonstration project was instrumental in an effective and efficient review of a first of a kind non-LWR.

Kairos Hermes I

- 35 MWth reactor at atmospheric pressures
- Flibe cooled & Pebble fueled (TRISO) at 19.75 wt.% U-235
- Online refueling

For More Information

SCALE/MELCOR non-LWR source term demons	
 Heat-pipe reactor workshop 	
• Slides д	
Video Recording EXIT	June 29, 202
SCALE report	
MELCOR report	
High-temperature gas-cooled reactor workshop	
• Slides 🖪	
Video Recording EXIT	July 20, 202
SCALE report	0, 20, 202
MELCOR report	
Fluoride-salt-cooled high-temperature reactor workshop	
• Slides 🖂	
Video Recording EXIT	September
SCALE report	14, 2021
MELCOR report	
Molten-salt-fueled reactor workshop	
Slides	
Video Recording EXIT	September
SCALE report	13, 2022
MELCOR report	
Sodium-cooled fast reactor workshop	
• Slides д	
Video Recording EXIT	September
SCALE report	20, 2022
MELCOR report	

SCALE/MELCOR non-LWR fuel cycle demonstration project	
 High-temperature gas-cooled reactor fuel cycle workshop Slides Video Recording (ETT) SCALE Report MELCOR Report 	February 28, 2023
Sodium-cooled fast reactor fuel cycle workshop Slides Video Recording SCALE Report MELCOR Report	September 20, 2023
 Motten salt reactor fuel cycle workshop Slides Video Recording SCALE Report MELCOR Report 	July 11, 2024
Microreactor fuel cycle workshop	Coming in 2025
Non-LWR Fuel Cycle Scenarios for SCALE and MELCOR Modeling Capability Demonstration Report	December 15, 2023

Public workshop videos, slides, reports at advanced reactor source term webpage

