

1101 Market Street, BR 2C, Chattanooga, Tennessee 37402

Sent Via Electronic Transmittal

January 27, 2025

Mr. Vojin Janjić (Water.Permits@tn.gov) Division of Water Resources Tennessee Department of Environment and Conservation (TDEC) Davy Crockett Tower, 9th Floor 500 James Roberston Parkway Nashville, Tennessee 37243

Dear Mr. Janjić:

TENNESSEE VALLEY AUTHORITY (TVA) – SEQUOYAH NUCLEAR PLANT (SQN) – NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT NO. TN0026450 – APPLICATION FOR RENEWAL

Enclosed is the NPDES renewal application package for SQN consisting of EPA Form 1, site map, Form 2C, flow schematic, and NPDES permit address form. Historical sampling data was compiled from September 2020 to August 2024. TVA would appreciate consideration of the following in the renewed permit.

Outfall 101

- In accordance with Part I Section 8 Narrative Requirements, enclosed is the study to confirm the calibration of the numerical model for the thermal discharge from SQN Outfall 101. There was no significant change in the model performance compared to the previous calibration.
- 2. Enclosed is a summary of the Reasonable Potential Evaluation and toxicity test results since 2014 showing the last 20 studies. As discussed in the enclosure, TVA requests that the current monitoring limit be replaced with an IC_{25} = 58.2%, which is consistent with the Technical Support Document for effluents demonstrating No Reasonable Potential.
 - a. In 2015, TVA received approval to use UV treatment on the effluent during Whole Effluent Toxicity testing for Fathead Minnows and requests that the approved treatment is referenced in the reissued permit. Enclosed is a copy of the 2015 approval.
- 3. TVA requests continuation of the 316(a) Alternate Thermal Limit (ATL) as incorporated in the current permit. Based on the results summarized in the enclosed Reservoir Fish Assemblage Index Report, TVA believes that thermal discharges from SQN have not had a negative effect on the balanced indigenous fish population in Chickamauga Reservoir. Enclosed is a copy of the most recent report for biological monitoring of the Tennessee River near SQN discharge during summer and autumn 2022.

IE25 NRR

Mr. Vojin Janjić Page 2 January 27, 2025

4. Based on compliance reliability, TVA requests the monitoring frequency for pH at Outfall 101 be reduced from once per week to once per month.

Biocide/Corrosion Treatment Plan (B/CTP)

As required by Part IV, Section D of the permit, enclosed is the current B/CTP. There are no changes to the B/CTP since the approved 2020 B/CTP submittal.

Clean Water Act Section 316(b) Impingement

In accordance with 40 CFR § 125.95(c), TVA submitted a letter to Tennessee Department of Environment and Conservation (TDEC) on July 25, 2022 requesting reduced application information required in permit TN0026450 on the basis that the source water, intake structure, cooling water system, and operating conditions remain substantially unchanged from the information submitted with the permit application on June 29, 2018 and upon which TDEC's BTA determination for entrainment was made. TDEC responded to TVA in a letter on July 27, 2022, granting a waiver for the required cooling water intake structure and waterbody application information to be submitted with the next renewal permit application.

Prior to the above waiver, on January 27, 2021, in accordance with Part I.A.7. of the facility NPDES permit and 40 CFR § 122.21(r)(6), TVA submitted its chosen method of compliance for impingement controls for both SQN's essential raw cooling water intake (ERCW) and condenser circulating water (CCW) intake. The ERCW intake withdraws water at less than 0.5 foot per second; therefore, TVA chose to comply with the option at 40 CFR 125.94(c)(3), to operate the cooling water intake structure with maximum through-screen intake velocity of 0.5 foot per second. Enclosures were provided including an engineering work record with associated references demonstrating the through-screen intake velocity at the ERCW intake is less than 0.5 foot per second.

In the same letter, TVA chose to comply with the option at 40 CFR 125.94(c)(5) by installing and operating modified traveling screens (MTWS) at the CCW intake structure. Included was a compliance schedule to complete the design, procurement, installation, and optimization of the MTWS at the CCW intake structure. Due to specific installation challenges around planned unit outages, the SQN project team has had to modify the original timeline. The updated schedule below, provided by the project team to align with planned unit outages, accurately reflects the current and expected completion milestones of the remainder of the project. Because this is TVA's first MTWS project which could lead to slight schedule changes in the future based on lessons learned, TVA requests that this the timeline is not incorporated into the permit but is utilized for informational purposes only.

Mr. Vojin Janjić Page 3 January 27, 2025

Milestone Activity	Conceptual Start	Conceptual Complete
Establish Project	Complete	Complete
Select TWS Vendor	Complete	Complete
Fish Return Modeling	Complete	Complete
Engineering Scoping and Design	May 2021	February 2025
Order TWS Assemblies and spares	Complete	Complete
Constructability Review	December 2021	February 2025
Prepare Unit 1 Modifications Work Plan	December 2021	January 2025
Receive Unit 1 TWS Assemblies	Complete	Complete
Prepare Unit 2 Modifications Work Plan	June 2022	April 2025
Install Unit 1 TWS	January 2025	October 2025
Receive Unit 2 TWS Assemblies	Complete	Complete
Install Unit 2 TWS	June 2025	February 2025
Develop Performance Optimization Study Plan	January 2026	August 2026
Implement Performance Optimization Study	October 2026	October 2028
Complete Performance Optimization Study Report	November 2028	April 2029
Submit Performance Optimization Study to TDEC		April 30, 2029

If you have questions or need additional information, please contact Callan Pierson by email at cpierson@tva.gov.

Sincerely,

Paul Peana

Paul Pearman Senior Manager Water Permits, Compliance, and Monitoring

Mr. Vojin Janjić Page 4 January 27, 2025

Enclosure

cc (Electronic Distribution w/ Enclosures): Ms. Jennifer Innes (Jennifer.Innes@tn.gov) Program Manager Chattanooga Environmental Field Office Division of Water Resources 1301 Riverfront Parkway, Suite #206 Chattanooga, Tennessee 37402

Ms. Sarah Terpstra (sarah.terpstra@tn.gov) Division of Water Resources Tennessee Department of Environment and Conservation (TDEC) Davy Crockett Tower, 9th Floor 500 James Robertson Parkway Nashville, Tennessee 37243

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

EPA T	Identifica	tion Number 020504	NPDES Permit Numb TN0026450	ber Se	Facil equoyah Nu	ity Name clear Plant (SQN)	OMB No. 2040-0004 Expires 07/31/2026		
Form 1 NPDES	9	EPA	Aţ	U.S. Er oplication for GE	NPDES Per	al Protection Agency rmit to Discharge Wa NFORMATION	stewater		
SECTIO	N 1. AC	TIVITIES REQUIRING AN NPDES PERMIT (40 CFR 122.21(F) AND (F)(1))							
	1.1	Applicants No	ot Required to Submit F	orm 1					
	1.1.1	Is the facility a treatment wo directed you to	new or existing <u>publicly</u> rks or has your permitting submit Form 2A?	owned g authority	1.1.2	Is the facility a <u>slude</u> that does not discha waters)?	<u>re-only facility</u> (i.e., a facility rge wastewater to surface		
		If yes, STOP. Form 1. Comp facility is also treating dome must also com	Do NOT complete lete Form 2A. If the a <u>treatment works</u> <u>estic sewage</u> , you plete Form 2S.	No No		If yes, STOP. Do NC Form 1. Complete F)T complete [√] No orm 2S.		
lit	<u>1.2</u>	Applicants R	equired to Submit Form	1					
Activities Requiring an NPDES Perm	1.2.1	1 Is the facility a concentrated animal feeding operation or a concentrated aquatic animal production facility? 1.2.2 Is the facility an existing manufacturing commercial, mining, or silvicultural facil currently discharging process waster □ Yes → Complete Form 1 and ☑ No ✓ Yes → Complete Form 2B □							
	1.2.3	Is the facility a new manufacturing, commercial, mining, or silvicultural facility that has not yet commenced to discharge? 1.2.4 Is the facility a new or existing manufacturing, commercial, mining, or silvicultural facility that has not yet commenced to discharge? Yes → Complete Form 1 and Form 2D No Yes → Complete Form 1 and Form 2E					or existing manufacturing, or silvicultural facility that nprocess wastewater? ete Form 1 v No orm 2E.		
	1.2.5	Is the facility a discharge is co associated w discharge is co stormwater?	new or existing facility omposed entirely of storr ith industrial activity or omposed of both stormy	whose nwater whose vater and non	1.2.6	Is the facility a new or existing treatment works treating domestic sewage that discharges wastewater to surface waters?			
		□ Yes →	Complete Form 1 and Form 2F unless exempted by 40 CFR 122.26(b)(14)(x) or (b)(15).	✓ No ✓ Yes →			Complete Form 1, I No Form 2S, and iny other applicable forms, is directed by rour permitting		
SECTIO	N 2. NA	ME, MAILING A	DDRESS, AND LOCATI	ON (40 CFR 1	22.21(F)(2))			
u	<u>2.1</u>	Facility Name							
catio		TVA Sequoyah	Nuclear Plant	1. M.S.					
d Lo	2.2	EPA Identific	ation Number						
s, an		TN5640020504							
dress	2.3	Facility Conta	act	and annual sur					
Add		Name (first an	d last)	Title		a state and a	Phone number		
iling		Thomas B. Mar	shall	Vice Presider	t, SQN		(423) 843-7001		
, Ma		Email address		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		And the Party of the Party			
Name		tbmarshall@tv	a.gov						

EP	A Identific	ation Number N	IPDES Permit Number	Facility Name	OMB No. 2040-0004 Expires 07/31/2026					
	TN5640	020504	TN0026450	Sequoyah Nuclear Plant (SQN)						
	2.4	Facility Mailing Addre	55							
		Street or P.O. box	and the first of the second							
		P.O. Box 2000 OPS 4A-S	QN							
	1.3	City or town	State)	ZIP code					
		Soddy Daisy	TN		37379					
ed ed	2.5	Facility Location								
dres	- 2 7	Street, route number, or	other specific identifie	er						
g Ad Con		Sequoyah Access Road								
iling ion (County name	County code (if	known)						
, Ma ocat		Hamilton								
ame nd L	13	City or town	State		ZIP code					
a N		Soddy Daisy	TN		37379					
SECTIC	ON 3. SI	C AND NAICS CODES (40 CFR 122.21(F)(3))								
	3.1	SIC Code(s)	Description (o)	ptional)						
		4911	Electric Services							
ß										
Code										
cs (
NAI	3.2	NAICS Code(s)	Description (or	otional)						
and		221112	Electric power a							
SIC		221115	Liectric power g							
SECTIO	N 4. OF	PERATOR INFORMATION	I (40 CFR 122.21(F)(4							
	4,1	Name of Operator								
	332	Tennessee Valley Author	rity (TVA)							
Ition	4.2	Is the name you listed in	Item 4.1 also the own	ner?						
orma		Yes DNo								
Info	43	Operator Status								
ator	1.0	Public—federal	Public-stat	te Other pub	lic (specify)					
Oper			Other (speci	ifv)						
0	4.4	Phone Number of Ope	rator	"]]						
		(423) 843-7001								
	1. 1	(120) 040 1001								

EPA	Identifica	tion Number	NPDES Permit N	lumber	Facility Name	(501)	OMB No. 2040-0004 Expires 07/31/2026					
	4.5	Operator Address	11002645	50	Sequoyan Nuclear Plant	(SQN)						
nation		Street or P.O. Box										
nforn inue		P.O. Box 2000 OPS	4A-SQN	lata		7ID code						
Cont		City or town	State				ZIP code					
pera		Email address of operator										
0		tbmarshall@tva.gov	V									
SECTIO	N 5. INC	DIAN LAND (40 CFR	122.21(F)(5))									
an	<u>5.1</u>	Is the facility locate	ed on Indian Land	?								
Indi Lan		Yes IN)									
SECTIO	N 6. EX	ISTING ENVIRONM	NG ENVIRONMENTAL PERMITS (40 CFR 122.21(F)(6))									
al	<u>6.1</u>	Existing Environm	nental Permits (check all that	apply and print or type the	corresponding	permit number for each)					
ment		NPDES (disch	arges to	RCRA	(hazardous wastes)	UIC UIC	(underground injection of					
/iron nits	-	TN0026450/	TNR050015	TN564	0020504		(5)					
ng Env Perr		PSD (air emiss See attached	sions)	Nonattainment program (CAA)			SHAPs (CAA)					
Existi		Ocean dumpin	g (MPRSA)	Dredge	e or fill (CWA Section 404)	Othe	er (specify)					
SECTIO	N 7. MA	P (40 CFR 122.21(F)(7))									
ap	<u>7.1</u>	Have you attached a topographic map containing all required information to this application? (See instructions for specific requirements.)										
×		Yes CAFO—Not Applicable (See requirements in Form 2B.)										
SECTIO	N 8. NA	TURE OF BUSINES	S (40 CFR 122.2	1(F)(8))								
	<u>8.1</u>	Describe the natur	e of your busines	S.								
		Sequoyah Nuclear	Plant (SQN) produ	uces electric (power by thermonuclear fi	ssion.						
ess												
usin												
of B		S. S. S. G. S. S.										
ture												
Nat												
SECTIO	9 1 9. CO	DOLING WATER INT	AKE STRUCTUR	RES (40 CFR	122.21(F)(9))							
	<u>0.1</u>			10.1								
ater tures	92	Identify the source	of cooling water	Note that fai	cilities that use a cooling w	ater intake stru	icture as described at					
oling Wa	0.2	40 CFR 125, Subp NPDES permitting	arts I and J may I authority to deter	have addition mine what sp	al application requirements becific information needs to	at 40 CFR 12 be submitted	2.21(r). Consult with your and when.)					
Co Intak		Cooling water is source screens (TWS) at the CC available for impingene	d from the TN River. A CW intake structure an ent mortality standard	As indicated in a nd maximum thr ds. TVA has cons	letter to TDEC dated January 27, ough-screen intake velocity of 0.1 tructed a fish return line and is in	2021, TVA has cho 5 foot per second the process of ins	osen modified traveling water at the ERCW as best technology talling the modified TWSs.					

EP	A Identifica	tion Number	NPDES Permit Number		Facility Name OMB No. 2040-0 Expires 07/31/2		
	TN56400	20504	TN0026450	Sequoya	ah Nuclear Plant (SQN)		
SECTIC	10.1	ARIANCE R	REQUESTS (40 CFR 122.21(F)(10))	the variar	nces authorized at 40 CER 122 21/m/2 (Check all that		
sts		apply. Co	nsult with your NPDES permitting author	rity to dete	ermine what information needs to be submitted and whe		
Reque			Fundamentally different factors (CWA Section 301(n))	Water quality related effluent limitations (CWA Section 302(b)(2))			
Iriance			Non-conventional pollutants (CWA Section 301(c) and (g))		Thermal discharges (CWA Section 316(a))		
No.			Not applicable				
ECTIC	N 11. CI	HECKLIST	AND CERTIFICATION STATEMENT (4	0 CFR 12	22.22(A) AND (D))		
	<u>11.1</u>	In Columr For each that not al	1 below, mark the sections of Form 1 th section, specify in Column 2 any attacher I applicants are required to provide attact	nat you ha nents that chments.	ave completed and are submitting with your application. t you are enclosing to alert the permitting authority. Note		
		ALC: NOT	Column 1		Column 2		
			Section 1: Activities Requiring an NF Permit	DES	w/ attachments		
1			Section 2: Name, Mailing Address, a Location	ind	w/ attachments		
			Section 3: SIC Codes		w/ attachments		
			Section 4: Operator Information		w/ attachments		
			Section 5: Indian Land		w/ attachments		
			Section 6: Existing Environmental P	ermits	w/ attachments		
Stateme		Section 7: Map			w/ topographic map w/ additional attachments		
tion \$			Section 8: Nature of Business		w/ attachments		
rtifica			Section 9: Cooling Water Intake Stru	ictures	w/ attachments		
nd Ce			Section 10.: Variance Requests		w/ attachments		
klist a			Section 11: Checklist and Certification Statement	n	. w/ attachments		
Chec	11.2	Provide th	e following certification. (See instruction	is to deter	mine the appropriate person to sign the application.)		
		Certificat	ion Statement				
		I certify un in accorda submitted responsib accurate, possibility	nder penalty of law that this document and ance with a system designed to assure to Based on my inquiry of the person or p le for gathering the information, the infor and complete. I am aware that there are of fine and imprisonment for knowing vi	chments were prepared under my direction or supervision ied personnel properly gather and evaluate the information ho manage the system, or those persons directly ubmitted is, to the best of my knowledge and belief, true, nt penalties for submitting false information, including the			
		Name (pri	nt or type first and last name)		Official title		
		Thomas B.	Marshall		Vice President, SQN		
		Signature	ml	-	Date signed 23 JANUARY, 2125		

Form 1 - SECTION 6. EXISTING ENVIRONMENTAL PERMITS (40 CFR 122.21(F)(6))

Chattanooga-Hamilton County Air Pollution Control Bureau

4150-30600701-01C Operating Permit, Cooling Tower, Unit 1
4150-30600701-03C Operating Permit, Cooling Tower, Unit 2
4150-30700804-06C Operating Permit, Insulation Saw A and Saw B
4150-10200501-08C Operating Permit, Auxiliary Boilers A and B
4150-30703099-09C Operating Permit, Carpenter Shop
4150-30900203-10C Operating Permit, Abrasive Blasting Operation
4150-20200102-11C Operating Permit, Emergency Generators 1A, 1B, 2A, 2B and Blackout Generators 1 and 2

0.75 mi

0

TVA Sequoyah Nuclear Plant NPDES Permit No. TN0026450

Hamilton County

EPA	Identification	on Number	NPDES Permit Number	F	Facility Name	OMB No. 2040-0004				
Т	N564002	20504	TN0026450	Sequoyah	Nuclear Plant (SQN)	Expires 07/31/2026				
Form 2C NPDES	9	EPA	L Applicatio EXISTING MANUFACTURI	J.S. Environme on for NPDES F NG, COMMERC	ntal Protection Agen Permit to Discharge V IAL, MINING, AND S	cy Vastewater ILVICULTURE OPERATIONS				
SECTIO	N 1. OU	TFALL LOCA	TION (40 CFR 122.21(G)(1))							
	1.1	Provide info	ormation on each of the facility's ou	utfalls in the table	e below.					
cation		Outfall Number	Receiving Water Name	Latit	Latitude Lo					
II Loc		101	Tennessee River	35°12'30" N		85°5'15" W				
Outfa		101E	Tennessee River	35°13'15" N		85°5'45" W				
	IMP103		SQN Diffuser Pond		35°8'15" N	85°8'00" W				
CILDER CLINE	N 3. AVI 3.1	Prave you a balance? (S ✓ Yes ERAGE FLOV	See instructions for drawing to this appin NS AND TREATMENT (40 CFR 1:	22.21(G)(3))	w and treatment inform	structions for example.)				
		necessary.								
		Operations Contributing to Flow								
		Operation Average Flow								
		1	See attachment titled "Section 3"			1490.854 mgd				
ment						mgd				
Treat						mgd				
s and			and the states of the			mgd				
Flow				Treatment	Units					
Average I		(include	Description size, flow rate through each treatm retention time, etc.)	nent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge				
			See attachment titled "Section 3"							

EPA 1	Identificati	ion Number 20504	NPDES Permit Number TN0026450	Sequoya	Facility Name h Nuclear Plant (SQN)	OMB No. 2040-0004 Expires 07/31/2026					
	3.1		**Ou	tfall Number	*** 101E						
	cont.		Opera	ations Contr	ibuting to Flow	Contraction of the					
			Operation		Average Flow						
		Discharge	es from Diffuser Pond during eme	rgency		o mgd					
			conditions only.			mgd					
						mgd					
						mgd					
				Treatmen	t Units						
		(include si	Description ze, flow rate through each treatme retention time, etc.)	ent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge					
led			Discharge to surface water		4-A	10 Section 1					
ontinu											
ent Co					and the same						
eatme											
nd Tr			**Ou	tfall Number	** <u>IMP103</u>						
ws a	11.5	Operations Contributing to Flow									
Flov			Operation		Av	erage Flow					
erage		S	ee attachment titled "Section 3"		1.230 mgd						
Ave						mgd					
						mgd					
						mgd					
	23.90			Treatmen	t Units						
		(include siz	Description ze, flow rate through each treatme retention time, etc.)	ent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge					
		Se	ee attachment titled "Section 3"								
E s	3.2	Are you apply	ring for an NPDES permit to operation	ate a privately	owned treatment works	? ction 4					
iyste User	3.3	Have you atta	ached a list that identifies each use	er of the treat	ment works?	00011 4.					
0	-	Ves									

EPA	Identification	on Number	NPDES Permit Number		Facility Name	OMB No. 2040-0004				
Т	N564002	20504	TN0026450	Sequoya	h Nuclear Plant (SQN)	Expires 07/31/2026				
Form 2C NPDES	9	EPA	L Applicatio EXISTING MANUFACTURII	J.S. Environm on for NPDES NG, COMMER	ental Protection Agency Permit to Discharge Wastewater CIAL, MINING, AND SILVICULTURE OPERATIONS					
SECTIO	N 1. OU [.]	TFALL LOCA	TION (40 CFR 122.21(G)(1))							
	<u>1.1</u>	Provide info	ormation on each of the facility's ou	utfalls in the ta	ole below.					
ation		Outfall Number	Receiving Water Name	Lat	itude	Longitude				
I Loc		IMP107	SQN Low Volume Waste Treatment Pond		35°8'30" N	85°8'00" W				
Outfal		110	Intake Forebay	35°13'30" N		85°5'15" W				
		116	Tennessee River		35°13'30" N	85°5'15" W				
Line Drawing	<u>2.1</u> N 3. AVI	Have you a balance? (S I Yes RAGE FLOV	ttached a line drawing to this appli See instructions for drawing require NS AND TREATMENT (40 CFR 1:	cation that sho ements. See E 22.21(G)(3))	ws the water flow throu xhibit 2C–1 at end of ins	gh your facility with a water structions for example.)				
	<u>3.1</u>	For each outfall identified under Item 1.1, provide average flow and treatment information. Add additional sheets if necessary.								
			**0	utfall Number	** <u>IMP 107</u>					
		Operations Contributing to Flow								
	1.55	Disch	arges from Metal Cleaning Waster	Average Flow						
ant						0.0022 mga				
atme			(1) Metal cleaning waste			0.000* mgd				
d Tre		(2) Net	t Storm Water (Runoff, precipitatio	on, less		0.0022 mgd				
vs an			evaporation)			mgd				
Flov				Treatmen	t Units					
Average		(include	Description size, flow rate through each treatm retention time, etc.)	nent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge				
			Sedimentation (Settling)		1-U					
			pH adjustment / neutralization		2-К					
		Cher	mical precipitation, chemical oxida	tion	2-C, 2-B					
			Flocculation		1-G					

* Influent lines to MCWP are disconnected. Last MCWP discharge occurred on 5/31/2006

EPA	Identificati	on Number	NPDES Permit Number TN0026450	Fa	acility Name	OMB No. 2040-0004 Expires 07/31/2026				
No.	31	1	**0	Hall Number**	110					
	cont.		Opera	tions Contribu	iting to Flow					
			Operation		Average Flow					
		Di	ischarges include wastewater from:			0.058 mgd				
		(1) ERCV	v system; (2) Cooling towers (closed	d cycle)		o** mgd				
		(3)	Liquid rad waste treatment system	n	and the second	0** mgd				
		(4) Net Storr	n Water (Runoff, precipitation, less	evaporatio		0.058 mgd				
				Treatment U	nits					
		(include s	Description size, flow rate through each treatme retention time, etc.)	ent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge				
led		Sec. 19	Discharge to surface waters		4-A					
ontinu										
ent Co										
eatm										
Ind Tr			**Out	fall Number**	116					
WS 5	1232.34	Operations Contributing to Flow								
e Flo			Operation		AV	erage Flow				
erage			CCW Intake Trash sluice		0.006 mga					
Av						mgd				
						mgd				
						mgd				
				Treatment U	nits					
		(include s	size, flow rate through each treatme retention time, etc.)	ent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge				
			Discharge to surface waters		4-A					
		1.12				The second second				
_	3.2	Are you app	lying for an NPDES permit to opera	te a privately ov	wned treatment works	?				
sten		Yes		1	✓ No → SKIP to Section 4.					
Sy	3.3	Have you at	tached a list that identifies each use	er of the treatme	ent works?					

** Recycle cooling water during closed mode operation is discharged through Outfall 110. Outfall 110 has been inactive for approximately 24 years, but remains in the event the plant goes into closed mode.

EPA	Identificati	on Number	NPDES Permit Number	17 C. No. 1	Facility Name	OMB No. 2040-0004					
Т	N56400	20504	TN0026450	Sequoyah	Nuclear Plant (SQN)	Expires 07/31/2026					
Form 2C NPDES	9	EPA	Applicati EXISTING MANUFACTURI	J.S. Environme on for NPDES I NG, COMMERC	ental Protection Agen Permit to Discharge V CIAL, MINING, AND S	ncy Wastewater ILVICULTURE OPERATIONS					
SECTIO	N 1. OU	TFALL LOCA	TION (40 CFR 122.21(G)(1))								
	1.1	Provide info	Provide information on each of the facility's outfalls in the table below.								
ation		Outfall Number	Receiving Water Name	Latit	tude	Longitude					
I Loc		117	Tennessee River	35°13'30" N		85°5'00" W					
Outfal	A A A A A A A A A A A A A A A A A A A	118	Intake Forebay	35°13'30" N		85°5'15" W					
		119	Tennessee River		35°13'44" N	85°5'7" W					
Line	<u>2.1</u> N 3 AV	Have you a balance? (S	Attached a line drawing to this appli See instructions for drawing require	cation that show ements. See Ex	vs the water flow throu hibit 2C–1 at end of in:	igh your facility with a water structions for example.)					
SECHO	3.1	For each o	utfall identified under Item 1.1 pro	vide average flo	w and treatment inform	nation. Add additional sheets if					
		necessary.									
			Outfall Number 117								
			Operations Contributing to Flow Operation Average Flow								
		Essential Ra	w Cooling Water screen and strain	ner backwash	0.014 mg						
rent						mad					
reatn						mgd					
T put						inga					
SWC 2						mgd					
e Flo			Description	Treatment	Units	Final Disposal of Solid or					
Average		(include	size, flow rate through each treatm retention time, etc.)	nent unit,	Code from Exhibit 2C–2	Liquid Wastes Other Than by Discharge					
		Discharge to surface waters			4-A						
			100 - 10 - 10 - 10 - 10 - 10 - 10 - 10								

EPA	A Identificati	on Number	NPDES Permit Number		Facility Name	OMB No. 2040-0004 Expires 07/31/2026				
1000	TN56400	20504	TN0026450	Sequoyal	n Nuclear Plant (SQN)					
	<u>3.1</u>		**0ι	utfall Number	** 118					
	<u></u>		Oper	rations Contri	buting to Flow	reserve Flow				
			Operation		A	relage Flow				
			Dredge Pond			0* mga				
						mgd				
						mgd				
						mgd				
			Desciption of the	Treatment	Units	E' Disconta (O d'da				
		(include size	e, flow rate through each treatm retention time, etc.)	nent unit,	Code from Exhibit 2C–2	Liquid Wastes Other Than by Discharge				
led			Discharge to surface waters		4-A					
ontinu			Sedimentation (Settling)		1-U					
lent C		1,22	Filtration		1-Q					
reatm	19									
and T			**Οι	utfall Number*	* 119					
SMO		Constant of the Fall	Operation Operations Contributing to Flow							
Flo			Operation		A	verage Flow				
erage		Backwa	sh water from intake water scr	eens		1.094 mgd				
Avi						mgd				
						mgd				
						mgd				
				Treatment	Units					
		(include size	Description e, flow rate through each treatm retention time, etc.)	ent unit,	Code from Exhibit 2C–2	Final Disposal of Solid or Liquid Wastes Other Than by Discharge				
			Discharge to surface waters		4-A					
	1									
-	3.2	Are you applyin	g for an NPDES permit to oper	ate a privately	owned treatment works	\$?				
sten		Yes			✓ No → SKIP to Se	ection 4.				
Sy	3.3	Have you attac	hed a list that identifies each us	ser of the treatr	nent works?					

*Pond is not in service at this time; therefore, outfall 118 is inactive. Only stormwater from surrounding vegetated area discharges. No industrial activity in area. If in service, the pond would provide sedimentation during dredge activities and filtration for lower depth waste waters.

EPA	Identificati	on Number	NPDES Permit N	Number	Sequov	Facility Name	+ (SON)		OMB No. 2040-0004 Expires 07/31/2026			
SECTIO	N A INT	ERMITTEN	T ELOWS (40 CER 122 2	21(G)(A))	Jequey		(50(11)	700 7 8 4				50 F
OLONIO	4.1	Except for	storm runoff, leaks, or s	pills, are any	/ discharges	described in Se	ections 1 a	and 3 in	ntermitter 5.	nt or se	easona	al?
	4.2	Provide in necessary	formation on intermittent	or seasonal	flows for ea	ch applicable o	utfall. Atta	ach add	litional pa	ages, if		
		Outfall Number	Operation (list)	Averag Davs/We	Frequenc	y Average onths/Year	Flow R Long-Term		Rate Maxim Dail	Rate Maximum		ation
			Metal cleaning waste	(a) days	/week (a) months/year	(a)	mgd	(a)	mgd	(a)	days
Flows		IMP 107	waters	days	/week	months/year		mgd		mgd		days
ttent I			(see footnote below)	days	/week	months/year		mgd		mgd		days
ntermi			Cooling Tower blow-	(b) days	/week (b) months/year	(b)	mgd	(b)	mgd	(b)	days
-		110	down basin	days	/week	months/year		mgd		mgd		days
			(see footnote below)	days	/week	months/year		mgd		mgd		days
			CCW Intake Trash	1 days	week 1	2 months/year	0.0060	mgd	0.0450	mgd	<1	days
		116	Sluice	days	/week	months/year		mgd		mgd		days
				days	/week	months/year		mgd		mgd		days
	<u> <u>0.1</u></u>	Image: Do any endem initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under Section 304 of the CWA apply to your facility? Image: Page initiation guidelines (ELGs) promugated by EPA under section 304 of the CWA apply to your facili										
ELGs	5.2	Provide th	e following information o	n applicable	ELGs.	Subcatagon			Bog	laton	Citat	ion
pplicable E		Steam E	Electric Power Plant		ELG	Subcategory			Regi	40 CFF	423	ion
A												
IS	5.3	Are any of	f the applicable ELGs exp	pressed in te	erms of prod	uction (or other	measure SKIP to Se	of oper ection 6	ration)?			
tatior	5.4	Provide a	n actual measure of daily	production	expressed in	terms and unit	s of appli	cable E	LGs.			
3ased Limit		Outfall Number	Operation, Product, or Material Quantity p					er Day	N	Jnit o leasu	f re	
Production-B												
Æ					1.00							

(a) Last MCWP discharge occurred on 5/31/2006. Influent lines are cut and capped. Stormwater flows only are discharged from pond.
 (b) Cooling Tower blowdown basin discharges recycled cooling water through outfall 110 while the plant is in closed mode. The plant has not entered closed mode for approximately 24 years. Outfall 110 remains inactive until closed mode operation is necessary, which will result in a discharge flow of approximately 1487.4276 MGD.
 (c) No dredging operations conducted during current permit cycle. Pond is vegetated and no industrial activity in the area.

EPA	A Identificat	ion Number	NPDES Permit N	lumber	Facility Name	+ (SON)	OMB Expir	No. 2040-000 res 07/31/2020			
PEOTIC			TN00264		sequoyari Nuclear Plan			-			
SECTIC	<u>4.1</u>	Except for	r storm runoff, leaks, or s	pills, are any disc	harges described in Se	ections 1 and 3 i	ntermittent or s	easonal?			
	4.2	Provide in	formation on intermittent	or seasonal flows	s for each applicable o	utfall. Attach add	ditional pages, i	f			
	1.70	necessary	/.	-							
		Outfall	Operation	Average	Average	Long-Term	Maximum	m Duratio			
	18.8	Number	(IIST)	Days/Week	Months/Year	Average	Daily				
w			ERCW Traveling Screet	4 days/week	12 months/year	0.0060 mgd	0.0450 mgd	<1 days			
Flow		117	and ERCW Strainer	days/week	months/year	mgd	mgd	day			
ittent			Backwash	days/week	months/year	mgd	mgd	day			
nterm			ERCW Dredge	3 days/week	12 months/year	0.0040 mgd	0.0096 mgd	<1 day			
-		118	Pond	days/week	months/year	mgd	mgd	day			
				days/week	months/year	mgd	mgd	day			
				days/week	months/year	mgd	mgd	day			
				days/week	months/year	mgd	mgd	days			
				days/week	months/year	mgd	mgd	days			
		facility?		No → SKIP to Section 6.							
-Gs	5.2					SKIP to Section 6	6.				
ole El		Provide th	e following information of	n applicable ELG	□ No → S	SKIP to Section (5.				
icab		Provide th	e following information of LG Category	n applicable ELG	No → S S. ELG Subcategory	SKIP to Section (6. Regulator	/ Citation			
ldd		Provide th El Steam E	e following information of L G Category Electric Power Plant	n applicable ELG:	■ No → S S. ELG Subcategory	SKIP to Section 6	6. Regulator 40 CFI	Citation			
Appl		Provide th El Steam E	e following information of LG Category	n applicable ELG	■ No → S S. ELG Subcategory	SKIP to Section 6	3. Regulator 40 CFI	y Citation			
Appl	5.3	Provide th El Steam E	e following information of LG Category Electric Power Plant	n applicable ELG	■ No → S S. ELG Subcategory	SKIP to Section (3. Regulator 40 CFI	y Citation			
ans Appl	<u>5.3</u>	Provide th El Steam E Are any of Yes	e following information of LG Category Electric Power Plant	n applicable ELG	No → S S. ELG Subcategory of production (or other ✓ No → S	SKIP to Section 6 measure of oper SKIP to Section 6	3. Regulator 40 CFI 40 cFI ration)?	y Citation R 423			
itations Appl	<u>5.3</u> <u>5.4</u>	Provide th El Steam E Are any of Yes Provide ar	e following information of LG Category Electric Power Plant	n applicable ELG: pressed in terms of production expre	 No → S ELG Subcategory of production (or other ✓ No → S ssed in terms and unit 	MERSURE to Section 6 measure of open SKIP to Section 6 s of applicable E	6. Regulator 40 CFI ation)? 6. ELGs.	y Citation R 423			
sed Limitations Appl	<u>5.3</u> <u>5.4</u>	Provide th El Steam E Are any of Yes Provide ar Outfall Number	e following information of LG Category Electric Power Plant The applicable ELGs exp n actual measure of daily Operati	n applicable ELG pressed in terms of production expre on, Product, or I	No → S S. ELG Subcategory of production (or other Image: No → S ssed in terms and unit Material	measure of oper SKIP to Section 6 SKIP to Section 6 SKIP to Section 6 s of applicable E Quantity p	3. Regulator 40 CFI 40 CFI ation)? 5. ELGS. er Day	V Citation 423 Unit of leasure			
iction-Based Limitations Appl	<u>5.3</u> <u>5.4</u>	Provide th El Steam E Are any of Yes Provide ar Outfall Number	e following information of LG Category Electric Power Plant The applicable ELGs exp n actual measure of daily Operati	n applicable ELG pressed in terms of production expre on, Product, or I	No → S S. ELG Subcategory of production (or other ✓ No → S ssed in terms and unit Material	measure of oper SKIP to Section 6 SKIP to Section 6 s of applicable E Quantity p	3. Regulatory 40 CFI 40 CFI and and and and and and and and and and	V Citation			
Production-Based Limitations Appl	<u>5.3</u> <u>5.4</u>	Provide th El Steam E Are any of Yes Provide ar Outfall Number	e following information of LG Category Electric Power Plant The applicable ELGs exponential actual measure of daily Operation	n applicable ELG pressed in terms of production expre on, Product, or I	No → S S. ELG Subcategory of production (or other Image: No → S ssed in terms and unit Material	Measure of oper SKIP to Section 6 SKIP to Section 6 s of applicable E Quantity p	3. Regulatory 40 CFI 40 CFI cation)? CLGs. er Day	V Citation			

EPA Form 3510-2C

EPA lo	dentificatio	on Number	NPDES Permit Number		Facility Name	0	MB No. 2040-000							
TI	N56400	20504	TN0026450	Sequoyal	n Nuclear Plant (SQN)		Expires 07/31/202							
	<u>5.5</u>	Are you reques term? (Consult when.)	ting alternative limits based with your NPDES permitting	on an anticipated authority to dete	increase in the actual pro- rmine what information nee	duction during t eds to be subm	he next permi itted and							
		T Yes		[✓ No									
CTION	N 6. IMP	ROVEMENTS (4	0 CFR 122.21(G)(6))											
	CTION 6. IMPROVEMENTS (40 CFR 122.21(G)(6)) 6.1 Are you presently required by any federal, state, or local authority to meet an implementation schedule for constructing, upgrading, or operating wastewater treatment equipment or practices or any other environm programs that could affect the discharges described in this application? Image: Program in the stable project in the table below. a 6.2 Briefly identify each applicable project in the table below.													
		Yes	NPDES Permit Number TN0026450 Facility Name Sequoyah Nuclear Plant (SQN) questing alternative limits based on an anticipated increase in the actual production during isult with your NPDES permitting authority to determine what information needs to be subr Image: State in the information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subr Image: State information needs to be subre No image: State information needs to be subre Itification and Description of Project Notapplicable Itification and optimization of modified Intake, 119 Cooling water intake Image: State state screens Image: State intake intake intake Image: State intake intake intake Imand optimization of modified Intake, 119			1								
s	<u>6.2</u>	Briefly identify e	each applicable project in the	e table below.										
provement		Brief Identifica	ation and Description of Project	Affected Outfalls (list outfall number)	Source(s) of Discharge	Final Comp Required	Projected							
s and im		Installation and	optimization of modified	Intake, 119	Cooling water intake		04/30/202							
Ipgrade		traveli	ng water screens											
		(BTA for im	pingement mortality)											
	<u>6.3</u>	Have you attack projects that ma	ned sheets describing any a ay affect your discharges) the	dditional water po at you now have	ollution control programs (c underway or planned? (op	or other environ tional item)	Required Projected 04/30/2029 other environmental inal item) other splicable							
		Yes		No	\checkmark	Not applicable								
CTION	N 7. EFF	EFFLUENT AND INTAKE CHARACTERISTICS (40 CFR 122.21(G)(7))												
	See the comple	e instructions to d te. Not all applica	etermine the pollutants and nts need to complete each t	parameters you a table.	are required to monitor and	, in turn, the tal	bles you mus							
	Table /	A. Conventional	and Non-Conventional Po	llutants										
	<u>7.1</u>	Are you requesting a waiver from your NPDES permitting authority for any Table A pollutants for any of your outfalls?												
		Yes			✓ No → SKIP to Item 7	.3.								
eristics	<u>7.2</u>	If yes, indicate for all outfalls.	the applicable outfalls below Attach waiver request and ot	or check the app her required infor	propriate box to indicate the mation to the application.	at you are requ	esting a waiv							
ומרוו		Outfall r	number	Outfall numb	er	Outfall numbe	r							
Clia		I am reque	esting a waiver for some poll	utants at all outfa	lls.									
ave		I am reque	esting a waiver for all polluta	nts at all outfalls	→ SKIP to Item 7.4.									
and int	<u>7.3</u>	Have you comp requested and	leted monitoring for all Tabl attached the results to this a	e A pollutants at opplication package	each of your outfalls for wh	ich a waiver ha	is not been							
uent		Yes												
	Table I	3. Toxic Metals,	Cyanide, Total Phenols, a	nd Organic Toxi	c Pollutants									
	7.4	Do any of the fa listed in Exhibit	acility's processes that contr 2C–3? (See end of instructi	ibute wastewater ons for exhibit.)	fall into one or more of the	primary indust	ry categories							
		Yes		1	■ No → SKIP to Item 7	7.8.								
	7.5	Have you check	ked "Testing Required" for a	Il toxic metals, cy	anide, and total phenols in	Section 1 of Ta	able B?							
		☑ Yes												

EPA Identifica	ation Number 020504	NPDES Permit Number TN0026450	Sequovah	Facility Nam Nuclear I	ne Plant (SQN)	C	MB No. 2040-0004 Expires 07/31/2026					
<u>7.6</u>	List the app identified in	I licable primary industry categories Exhibit 2C–3.	s and check the	boxes inc	licating the	required GC/MS fra	ction(s)					
		Primary Industry Category			Required (check	GC/MS Fraction(s applicable boxes)	;)					
		Steam electric power plants		Volatile	Acid	Base/neutral	Pesticide					
				Volatile	C Acid	Base/neutral	Pesticide					
				Volatile	Acid	Base/neutral	Pesticide					
7.7	Have you c GC/MS frac	Have you checked "Testing Required" for all required pollutants in Sections 2 through 5 of Table B for each of the GC/MS fractions checked in Item 7.6?										
7.8	Have you d where testin	hecked "Believed Present" or "Beling is not required?	ieved Absent" fo	r all pollu	tants listed	in Sections 1 throug	h 5 of Table B					
7.9	Have you p is required have indica	Have you provided (1) quantitative data for those Section 1, Table B, pollutants for which you have indicated testing is required or (2) quantitative data or other required information for those Section 1, Table B, pollutants that you have indicated are "Believed Present" in your discharge? Yes										
7.10	Does the a	Does the applicant qualify for a small business exemption under the criteria specified in the instructions?										
	Does the applicant quality for a small business exemption under the criteria specified in the instructions? Pres → Note that you qualify at the top of Table B, then SKIP to Item 7.12.											
Continued	Have you provided (1) quantitative data for those Sections 2 through 5, Table B, pollutants for which you have determined testing is required or (2) quantitative data or an explanation for those Sections 2 through 5, Table B, pollutants you have indicated are "Believed Present" in your discharge? Yes											
tis Table	e C. Certain Conventional and Non-Conventional Pollutants											
haracter haracter	Have you indicated whether pollutants are "Believed Present" or "Believed Absent" for all pollutants listed in Table C for all outfalls?											
Titake C	Have you c indirectly in	Have you completed Table C by providing quantitative data for those pollutants that are limited either directly or indirectly in an ELG? You must provide quantitative data even if the pollutant is "Believed Absent."										
and	✓ Yes	amplated Table C by providing gu		Not a	pplicable	acco pollutanto for u	which you have					
	indicated "E	Believed Present"?		an expla		lose pollutants for v	vilicit you have					
Table	D. Certain Ha	zardous Substances and Asbes	stos									
7.15	Have you ir for all outfa	idicated whether pollutants are "Be Is?	elieved Present"	or "Belie	ved Absent'	for all pollutants lis	ted in Table D					
7.16	Have you c and (2) prov	ompleted Table D by (1) describing viding quantitative data, if available	g the reasons th e?	e applica	ble pollutan	ts are expected to b	e discharged					
	Yes			No								
Table	E. 2,3,7,8-Tet	rachlorodibenzo-p-Dioxin (2,3,7,	,8-TCDD)		oongonore li	atod in the instruction	one or do you					
1.17	know or have	ve reason to believe that TCDD is	or may be prese	nt in the	effluent?	sted in the instruction	ons, or do you					
	Yes -	Complete Table E.	V	No -	SKIP to S	ection 8.						
7.18	Have you c	ompleted Table E by reporting qua	alitative data for	TCDD?								

EPA	Identificati	on Number NP	DES Permit Number	Facility Name	OMB No. 2040-0004
Т	N56400	20504	TN0026450	Sequoyah Nuclear Plant (SQN)	Expires 07/31/2026
SECTIO	N 8. USI <u>8.1</u>	ED OR MANUFACTURED Is any pollutant listed in an intermediate or final	TOXICS (40 CFR 122.21) Table B a substance or a c product or byproduct?	(G)(9)) component of a substance used or i ✓ No → SKIP to Sec	manufactured at your facility as stion 9.
Manufac Toxics	<u>8.2</u>	List the pollutants below 1.	. Attach additional sheets, 4.	if necessary. 7.	
sed or		2.	5.	8.	
2		3.	6.	9.	
SECTIO	N 9. BIO <u>9.1</u>	Do you have any knowle within the last three yea	GTS (40 CFR 122.21(G)(11 edge or reason to believe the rs on (1) any of your discharts)) hat any biological test for acute or c arges or (2) a receiving water in rela □ No → SKIP to Sec	thronic toxicity has been made ation to your discharge? ction 10.
Fests	9.2	Identify the tests and the	eir purposes below.		
oxicity 7		Test(s)	Purpose of Test(s)	Submitted to NPDES Permitting Authority?	Date Submitted
gical To		IC25 Static Renewal 7 Day Chronic Ceriodaphnia	Biomonitoring, chroni	C Yes No	07/11/2024
Biolo		IC25 Static Renewal 7 Day Chronic Pimephales promela	Biomonitoring, chronic	⊂ 🗹 Yes 🗆 No	07/11/2024
				Yes No	
SECTIO	N 10. CO	ONTRACT ANALYSES (4	0 CFR 122.21(G)(12))		
	10.1	Were any of the analyse	es reported in Section 7 per	formed by a contract laboratory or □ No → SKIP to Sec	consulting firm? ction 11.
	10.2	Provide information for e	each contract laboratory or	consulting firm below.	100 C
			Laboratory Number	1 Laboratory Number 2	Laboratory Number 3
		Name of laboratory/firm	GEL Laboratories, LLC		
ract Analyses		Laboratory address	2040 Savage Road Charleston, SC 29407		
Cont		Phone number	(843) 556-8171		
		Pollutant(s) analyzed	All parameters except fiel parameters (pH, temperature, flow, TRC)	d	

EPA	A Identificati	on Num	ber NPDES Permit I	Number	Facility Name	OMB No Expire						
	TN564002	20504	TN00264	50	Sequoyah Nuclear Plant (SQ	N)	Expires 07/3/12020					
SECTIO	ON 11. AI	DDITIC	ONAL INFORMATION (40 CFF	R 122.21(G)(13))	and the second						
	11.1	Has	the NPDES permitting author	ity requested			10					
ition			Yes			to Sectio	on 12.					
orma	11.2	List	the information requested and	attach it to t	his application.							
al Inf		1.			4.							
dition		2.			5.							
Ac		3. 6.										
SECTIO	N 12 CH	ECKI	IST AND CERTIFICATION S	TATEMENT	(40 CER 122 22(A) AND (D))	100 100 A 400						
	<u>12.1</u>	In C For that	column 1 below, mark the secti each section, specify in Colum not all applicants are required	ons of Form in 2 any attac to complete	2C that you have completed and chments that you are enclosing to all sections or provide attachmen	are subro alert the ots.	nitting with your application. e permitting authority. Note					
			Column 1		Colu	mn 2						
			Section 1: Outfall Location		w/ attachments							
			Section 2: Line Drawing		w/ line drawing		w/ additional attachments					
			Section 3: Average Flows an Treatment	d 🔽	w/ attachments		w/ list of each user of privately owned treatment works					
			Section 4: Intermittent Flows		w/ attachments							
ment	Refer		Section 5: Production		w/ attachments							
cation State			Section 6: Improvements		w/ attachments		w/ optional additional sheets describing any additional pollution control plans					
ertifi					w/ request for a waiver and		w/ explanation for					
t and C					w/ small business exemption request		w/ other attachments					
scklis			Section 7: Effluent and Intake		w/ Table A		w/ Table B					
Che			Characteristics		w/ Table C	1	w/ Table D					
					w/ Table E		w/ analytical results as an attachment					
			Section 8: Used or Manufacto Toxics	ured	w/ attachments							
			Section 9: Biological Toxicity Tests		w/ attachments	121						
			Section 10: Contract Analyse	s 🗖	w/ attachments	2						
			Section 11: Additional Information		w/ attachments							
		\checkmark	Section 12: Checklist and Certification Statement		w/ attachments							

EPA	Identificatio	on Number 20504	NPDES Permit Number TN0026450	Facility Name Sequoyah Nuclear Plant (SQN)	OMB No. 2040-0004 Expires 07/31/2026							
SECTIO	ON 12. CH	ECKLIST AND	CERTIFICATION STATEMEN	(40 CFR 122.22(a) and (d)) (Cont	inued)							
	12.2	Provide the following certification. (See instructions to determine the appropriate person to sign the application.)										
ent		Certification Statement										
Certification Stater		I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.										
) pue		Name (print or	type first and last name)	Offic	ial title							
list		THOMA	6 B MARSHALL	Vic	E PRESIDENT, SON							
Check		Signature	park	Date 23	JANUARY, 202-5							

SECTION 3. AVERAGE FLOWS AND TREATMENT (40 CFR 122.21(G)(3))

OUTFALL NO	OPERATION(S) CON FLOW	TRIBUTING	TREATMENT					
	OPERATION	AVERAGE FLOW	DESCRIPTION	LIST CODE	FINAL DISPOSAL			
101	Discharges from Diffuser Pond include:	1490.854 MGD	Discharge to surface water; sedimentation	4-A; 1-U				
OUTFALL NO	 (1) Low Volume Waste Treatment Pond (via Internal Monitoring Point 103): (a) Discharge from metal cleaning waste ponds (IMP 107) (b) Turbine building sump 	(1.230 MGD)	pH adjustment / neutralization	2-К				
	 (2) CCW Discharge Channel: (a) Raw cooling water system (b) Diesel fuel recover trench; high pressure fire water, potable water (c) Condenser Circulating system (d) Stormwater Runoff 	(1447.014 MGD)	(a) Disinfection (other)	2-Н				
	 (3) Cooling tower blowdown basin (a) Essential Raw Cooling Water system (b) Cooling towers (closed/helper mode) stormwater runoff (c) Liquid rad waste treatment system (d) Steam Generator Blowdown 	(40.436 MGD)	(a) Disinfection (other) (c) Ion exchange (d) Multi-media filtration	2-H; 2-J; 1-Q				
	 (4) Yard drainage pond: (a) Construction/ Demo landfill stormwater (b) Switchyard runoff (c) Various building heat loads (d) Yard drainage system 	(2.125 MGD)	Sedimentation (settling)	1-U				
	(5) Net Storm Water (Runoff, precipitation, less evaporation)	(0.049 MGD)						

SECTION 3. AVERAGE FLOWS AND TREATMENT (40 CFR 122.21(G)(3))

OUTFALL NO	OPERATION(S) CON FLOW	TRIBUTING		TREATMENT	FINAL DISPOSAL		
	OPERATION	AVERAGE FLOW	DESCRIPTION	LIST CODE	FINAL DISPOSAL		
103	Discharges from Low Volume Waste Treatment Pond (LVWTP):	1.230 MGD	Sedimentation (Settling), pH adjustment/ neutralization	1-U; 2-K			
	(1) Discharges from metalcleaning waste ponds (IMP107)	(0.0022 MGD)					
	 (2) Turbine Building Sump: (a) Miscellaneous Low Volume Wastewaters (b) Turbine building floor and equipment drains (c) Condensate demin. regeneration waste (d) Secondary system leaks and draindown (e) Steam Generator blowdown (f) Component Cooling System wastewater (g) Miscellaneous equipment cooling (h) Ice condenser waste (i) Alum sludge ponds (WTP) 	(1.047 MGD)	(b) pH adjustment / neutralization; (h) Sedimentation (settling); (i) Landfill	2-K; 1-U; 5-Q	(i) Landfill		
	(3) Neutral waste sump (WTP)	(0.177 MGD)					
	(4) Net Storm Water (Runoff, precipitation, less evaporation	(0.004 MGD)					

	EPA Identification Number TN5640020504	NPDE	S Permit Number 0026450	Sequoy	Facility Name yah Nuclear Plant	(SQN)	Outfall Number 101, Intake		OI E	MB No. 2040-0004 xpires 07/31/2026
TAE	LE A. CONVENTIONAL AND N	ON CONVEN	TIONAL POLLUTA	NTS (40 CF	R 122.21(g)(7)(ii	i)) ¹ El	fluent		Inta (option	ke nal)
	Pollutant	Waiver Requested (if applicable)	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
	Check here if you have applied	to your NPDE	ES permitting author	ity for a wai	ver for all of the p	ollutants listed or	n this table for the no	ted outfall.		
	Biochemical oxygen demand	_	Concentration	mg/L	2.32			1	2.81	1
1.	(BOD ₅)		Mass							
0	Chemical oxygen demand		Concentration	mg/L	<20.0			1	<20.0	1
2.	(COD)		Mass							
2			Concentration	mg/L	1.59			1	2.05	1
3.	I otal organic carbon (TOC)		Mass						<20.0	
	Total automatida (TCC)		Concentration	mg/L	<5.00			1	<10.0	1
4.	Total suspended solids (155)		Mass					in an		
-			Concentration	mg/L	0.0750	20.000		1	0.0530	1
Э.	Ammonia (as N)		Mass							
6.	Flow		Rate	MGD	2228.3		1784.4	46		
-	Temperature (winter)		°C	°C	27.1		16.5	24		
1.	Temperature (summer)		°C	°C	30.5		26.9	22	26.5	4
0	pH (minimum)		Standard units	s.u.	6.11			4	6.34	4
0.	pH (maximum)		Standard units	s.u.	6.71			4	6.76	4

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR Chapter I, Subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

This page intentionally left blank.

	EPA Identification Number TN5640020504	NPDES P TN00	ermit Number 26450	Seq	Facility Name uoyah Nuclear Pla	nt (SQN)	1	Outfall Number .01, Intake			OMB N Expire	lo. 2040-0004 s 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTAN	ITS (40 CF	R 122.21(g)(7)	l(v)) ¹ Effl	uent		Int (op	t ake tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
Sacti	Check here if you qualify as a small business per the instructions to Form 2C and, therefore, do not need to submit quantitative data for any of the organic toxic pollutants in Sections 2 through 5 of this table. Note, however, that you must still indicate in the appropriate column of this table if you believe any of the pollutants listed are present in your discharge.											
Jecu	Antimente tetel		15		Concontration	mall	<0.002			1	<0.002	1
1.1	(7440-36-0)				Mass	IIIg/L	<0.005				<0.005	1
	Arsenic, total				Concentration	mg/L	<0.005			1	< 0.005	1
1.2	(7440-38-2)				Mass							
13	Beryllium, total				Concentration	mg/L	<0.0005			1	<0.0005	1
1.0	(7440-41-7)				Mass							
1.4	Cadmium, total				Concentration	mg/L	<0.001			1	<0.001	1
	(7440-43-9)				Mass					1		
1.5	Chromium, total				Concentration	mg/L	<0.01			1	<0.01	1
	Copper total				Concentration	mg/l	<0.002			1	<0.002	1
1.6	(7440-50-8)				Mass	1116/ 2	-0.002			1	40.002	
17	Lead, total				Concentration	mg/L	<0.002			1	<0.002	1
1.7	(7439-92-1)				Mass							
18	Mercury, total				Concentration	mg/L	7.27e-7			4	5.7e-7	4
1.0	(7439-97-6)				Mass				Sister of	e Roppie III	62) (S. 6)	
1.9	Nickel, total				Concentration	mg/L	<0.002			1	<0.002	1
					Concentration					1		
1.10	Selenium, total (7782-49-2)				Mass	mg/L	<0.005			1	<0.005	1
	Silver total				Concentration	mg/l	<0.001			1	<0.001	1
1.11	(7440-22-4)				Mass							-

	EPA Identification Number TN5640020504	NPDES F	Permit Number 26450	Sec	Facility Name quoyah Nuclear Pla	nt (SQN)	1	Outfall Number 01, Intake			OMB M Expire	Vo. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (chee	ORGANIC T or Absence ck one)	TOXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹ Effl	uent		Inf (op	t ake tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Units (specify)		Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
1.12	Thallium, total				Concentration	mg/L	<0.002			1	<0.002	1
	(7440-28-0)				Mass						370	
1.13	Zinc, total (7440-66-6)				Concentration Mass	mg/L	<0.020			1	<0.020	1
1.14	Cyanide, total (57-12-5)	1			Concentration Mass	mg/L	<0.005			4	<0.005	4
1.15	Phenols, total				Concentration Mass	mg/L	<0.005			4	<0.005	4
Section	on 2. Organic Toxic Pollutants (GC/MS Fract	ion—Volatil	e Compound	ds)	No Bask				The Bally State	S. C. S. S.	
2.1	Acrolein (107-02-8)				Concentration Mass	mg/L	<0.005			1	<0.005	1
2.2	Acrylonitrile (107-13-1)				Concentration Mass	mg/L	<0.005			1	<0.005	1
2.3	Benzene (71-43-2)				Concentration Mass	mg/L	<0.001			1	<0.001	1
2.4	Bromoform (75-25-2)				Concentration Mass	mg/L	<0.001			1	<0.001	1
2.5	Carbon tetrachloride (56-23-5)				Concentration Mass	mg/L	<0.001			1	<0.001	1
2.6	Chlorobenzene (108-90-7)				Concentration	mg/L	<0.001			1	<0.001	1
2.7	Chlorodibromomethane (124-48-1)				Concentration	mg/L	<0.001			1	<0.001	1
2.8	Chloroethane (75-00-3)				Concentration Mass	mg/L	<0.001			1	<0.001	1

	EPA Identification Number TN5640020504	NPDES P TNOO	Permit Number 126450	Seq	Facility Name uoyah Nuclear Pla	nt (SQN)	1	Outfall Number 01, Intake			OMB N Expire	lo. 2040-0004 s 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (chea	ORGANIC T or Absence ck one)	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹ Efflu	uent		Int	ake
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
2.9	2-chloroethylvinyl ether		П	П	Concentration	mg/L	<0.005			1	<0.005	1
0.0	(110-75-8)				Mass							
2.10	Chloroform (67-66-3)				Concentration	mg/L	<0.001			1	<0.001	1
					Mass			3		1		
2.11	Dichlorobromomethane				Concentration	mg/L	<0.001			1	<0.001	1
	(75-27-4)				Mass							
2.12	1,1-dichloroethane (75-34-3)	\checkmark			Concentration Mass	mg/L	<0.001			1	<0.001	1
	1.2-dichloroethane		_		Concentration	mg/L	< 0.001			1	<0.001	1
2.13	(107-06-2)				Mass							
	1 1-dichloroethylene		_	_	Concentration	mg/L	<0.001			1	< 0.001	1
2.14	(75-35-4)				Mass							
	1.2-dichloropropane			_	Concentration	mg/L	<0.001			1	< 0.001	1
2.15	(78-87-5)				Mass							
	1.3-dichloropropylene			_	Concentration	mg/L	< 0.001			1	<0.001	1
2.16	(542-75-6)				Mass							
0.47	Ethylbenzene				Concentration	mg/L	<0.001			1	<0.001	1
2.17	(100-41-4)				Mass							
0.40	Methyl bromide				Concentration	mg/L	<0.001		and the same	1	<0.001	1
2.18	(74-83-9)				Mass							
0.40	Methyl chloride				Concentration	mg/L	<0.001			1	<0.001	1
2.19	(74-87-3)				Mass							
0.00	Methylene chloride				Concentration	mg/L	0.00421*			1	0.00337*	1
2.20	(75-09-2)				Mass							
2.21	1,1,2,2- tetrachloroethane				Concentration	mg/L	<0.001			1	<0.001	1
2.21	(79-34-5)				Mass							

EPA Form 3510-2C

* The lab report flagged this analysis: "The target analyte was detected in the associated blank."

EPA Identification Number		NPDES Permit Number			Facility Name	Outfall Number				No. 2040-0004			
TN5640020504 TN00			26450 Sequoyah Nuclear Plant (SQN)				101, Intake				Expires 07/31/2026		
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND	ORGANIC 1	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹					
			(chec	or Absence ok one)				Effluent				Intake (optional)	
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	lieved (specify) osent		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses	
2.22	Tetrachloroethylene				Concentration	mg/L	<0.001			1	<0.001	1	
2.22	(127-18-4)				Mass	2							
2.23	Toluene				Concentration	mg/L	<0.001			1	<0.001	1	
2.20	(108-88-3)				Mass								
2.24	1,2-trans-dichloroethylene				Concentration	mg/L	<0.001			1	<0.001	1	
2.24	(156-60-5)				Mass								
2.25	1,1,1-trichloroethane				Concentration	mg/L	<0.001			1	<0.001	1	
2.20	(71-55-6)				Mass			an segui	ng mara laka	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1.2. 19.80		
2.26	1,1,2-trichloroethane				Concentration	mg/L	<0.001			1	<0.001	1	
2.20	(79-00-5)			<u> </u>	Mass								
2 27	Trichloroethylene				Concentration	mg/L	< 0.001			1	<0.001	1	
2.21	(79-01-6)	Ľ			Mass								
2.28	Vinyl chloride				Concentration	mg/L	<0.001			1	<0.001	1	
2.20	(75-01-4)				Mass								
Sectio	on 3. Organic Toxic Pollutants (C	C/MS Fracti	on—Acid C	ompounds)									
3.1	2-chlorophenol (95-57-8)				Concentration Mass	mg/L	<0.00960			1	<0.00958	1	
0.0	2,4-dichlorophenol				Concentration	mg/L	< 0.00960			1	<0.00958	1	
3.2	(120-83-2)			L	Mass								
0.0	2,4-dimethylphenol				Concentration	mg/L	< 0.00960			1	<0.00958	1	
3.3	(105-67-9)				Mass								
24	4,6-dinitro-o-cresol				Concentration	mg/L	<0.00960			1	<0.00958	1	
3.4	(534-52-1)			Ц	Mass								
25	2,4-dinitrophenol				Concentration	mg/L	<0.0192			1	<0.0192	1	
3.5	(51-28-5)				Mass								

EPA Identification Number		NPDES Permit Number			Facility Name			Outfall Number			OMB No.			
TN5640020504 TN002			26450	6450 Sequoyah Nuclear Plant (SQN)				101, Intake				Expires 07/31/2026		
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (chea	ORGANIC T or Absence ck one)	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹ Efflu	uent		Intake (optional)			
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses		
3.6	2-nitrophenol				Concentration	mg/L	<0.00960			1	<0.00958	1		
	(88-75-5)				Mass	1.1871								
3.7	4-nitrophenol (100-02-7)				Concentration Mass	mg/L	<0.00960			1	<0.00958	1		
20	p-chloro-m-cresol				Concentration	mg/L	<0.00960			1	<0.00958	1		
3.0	(59-50-7)	V		Ц	Mass									
39	Pentachlorophenol				Concentration	mg/L	<0.00960			1	<0.00958	1		
	(87-86-5)				Mass									
3.10	Phenol (108-95-2)				Concentration Mass	mg/L	<0.00960			1	<0.00958	1		
3.11	2,4,6-trichlorophenol (88-05-2)				Concentration	mg/L	<0.00960			1	<0.00958	1		
Sectio	on 4. Organic Toxic Pollutants	GC/MS Fract	ion—Base /	Neutral Com	pounds)		A CONTRACTOR							
	Acenaphthene				Concentration									
4.1	(83-32-9)				Mass					Summer a				
12	Acenaphthylene				Concentration									
4.2	(208-96-8)				Mass									
4.3	Anthracene				Concentration		1							
	(120-12-7)				Mass									
4.4	Benzidine				Concentration									
	(92-07-5)				Mass									
4.5	Benzo (a) anthracene				Mass									
	Benzo (a) pyrepe			-	Concentration									
4.6	(50-32-8)				Mass									

EPA Identification Number		NPDES Permit Number			Facility Name		Outfall Number			OMB I Expin		
TADI		TOTAL DUE	26450	Seq	uoyah Nuclear Plant (SQN)		.UI, Intake			Слрик	5 0110 112020	
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTANTS (40 CI	-R 122.21(g)(7)	R 122.21(g)(/)(v))' Effluent			Int (op	ake ional)	
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses	
4.7	3,4-benzofluoranthene				Concentration							
	(205-99-2)				Mass							
4.8	Benzo (ghi) perylene			$\overline{\mathbf{V}}$	Concentration							
	(191-24-2)				Mass							
4.9	Benzo (k) fluoranthene				Concentration			100				
	(207-08-9)	-			Mass							
4.10	Bis (2-chloroethoxy) methane				Concentration							
	(111-91-1)	100 200			Mass				-			
4.11	Bis (2-chloroethyl) ether				Concentration	104.5000				199.3979		
	(111-44-4)				Mass							
4.12	Bis (2-chloroisopropyl) ether				Concentration							
	Die (2 sthulbered) shthelets				Concentration							
4.13	(117-81-7)				Mass							
	A bromonhanyl phonyl other				Concentration							
4.14	(101-55-3)			\checkmark	Mass							
	Butyl henzyl obthalate				Concentration							
4.15	(85-68-7)			\checkmark	Mass							
	2-chloronaphthalene				Concentration					2		
4.16	(91-58-7)				Mass							
	4-chlorophenyl phenyl ether		_		Concentration							
4.17	(7005-72-3)				Mass							
	Chrysene				Concentration							
4.18	(218-01-9)				Mass							
1.10	Dibenzo (a,h) anthracene				Concentration							
4.19	(53-70-3)				Mass							

EPA Identification Number		NPDES Permit Number			Facility Name		Outfall Number			OMB No. 2040-		
TN5640020504 TN00			26450 Sequoyah Nuclear Plant (SQN)			101, Intake				Expires 07/31/2026		
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)	(v)) ¹					
			(che	ck one)			Intake (optional)					
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses	
4 20	1,2-dichlorobenzene				Concentration							
1.20	(95-50-1)				Mass	1.891						
4.21	1,3-dichlorobenzene				Concentration							
	(541-73-1)				Mass							
4.22	1,4-dichlorobenzene				Concentration							
	(100-40-7)				Mass							
4.23	3,3-dichlorobenzidine				Concentration							
-	Diethyl obthalate				Concentration							
4.24	(84-66-2)				Mass					1	1.000	
1.05	Dimethyl phthalate				Concentration							
4.25	(131-11-3)				Mass							
1.26	Di-n-butyl phthalate				Concentration							
4.20	(84-74-2)				Mass			ALC: NO				
4 27	2,4-dinitrotoluene				Concentration							
1.21	(121-14-2)				Mass	Television and					address of	
4.28	2,6-dinitrotoluene				Concentration							
	(606-20-2)				Mass							
4.29	Di-n-octyl phthalate				Concentration							
	(117-64-0)				Mass							
4.30	1,2-Diphenylhydrazine (as azobenzene) (122-66-7)				Mass							
	Elucronthono				Concentration							
4.31	(206-44-0)				Mass							
	Fluorene		-	-	Concentration							
4.32	(86-73-7)				Mass							

EPA Identification Number TN5640020504		NPDES Permit Number			Facility Name		Outfall Number			OMB No. 2040-0004		
		TNOO	26450	Seq	uoyah Nuclear Plant (SQN)	101, Intake				Expires 07/31/2026		
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)(v)) ¹ Effluent				Intake (optional)		
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses	
4.33	Hexachlorobenzene				Concentration							
	(118-74-1)				Mass							
4.34	Hexachlorobutadiene			\checkmark	Concentration							
-	(07-00-3)				Mass							
4.35	Hexachlorocyclopentadiene			\checkmark	Concentration							
					Concentration							
4.36	(67-72-1)				Mass							
1.07	Indeno (1.2.3-cd) pyrene		-		Concentration							
4.37	(193-39-5)				Mass			1. 19 March				
1 38	Isophorone				Concentration							
4.00	(78-59-1)				Mass							
4.39	Naphthalene			$\overline{\mathbf{V}}$	Concentration							
	(91-20-3)				Mass							
4.40	Nitrobenzene			$\overline{\checkmark}$	Concentration							
	(98-90-3)				Mass							
4.41	N-nitrosodimethylamine			\checkmark	Concentration							
	(02-75-5)		-		Mass							
4.42	N-nitrosodi-n-propylamine				Mass							
	Nutiture edit here viewing				Concentration							
4.43	(86-30-6)			1	Mass							
	Phenanthrene		_		Concentration							
4.44	(85-01-8)				Mass							
1.15	Pyrene				Concentration							
4.43	(129-00-0)				Mass							

EPA Identification Number		NPDES Permit Number		Facility Name		Outfall Number			OMB No. 20 Expires 07/3			
TIDI		TOTAL DUD	20450	Seq	luoyan Nuclear Plant (SQN)							
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND Presence (chea	ORGANIC I or Absence ck one)	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)	(v))' Effli	Intake (optional)				
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses	
4.46	1,2,4-trichlorobenzene (120-82-1)				Concentration Mass							
Sectio	on 5. Organic Toxic Pollutants (GC/MS Fract	ion—Pestic	ides)	1111235							
5.1	Aldrin (309-00-2)				Concentration Mass							
5.2	α-BHC (319-84-6)			7	Concentration Mass							
5.3	β-BHC (319-85-7)			7	Concentration Mass							
5.4	γ-BHC (58-89-9)				Concentration Mass							
5.5	δ-BHC (319-86-8)				Concentration Mass							
5.6	Chlordane (57-74-9)				Concentration Mass							
5.7	4,4'-DDT (50-29-3)			V	Concentration Mass							
5.8	4,4'-DDE (72-55-9)			V	Concentration							
5.9	4,4'-DDD (72-54-8)				Concentration Mass							
5.10	Dieldrin (60-57-1)				Concentration Mass							
5.11	α-endosulfan (115-29-7)				Concentration Mass							
	EPA Identification Number TN5640020504	NPDES F TNOC	Permit Number 126450	Seq	Facility Name uoyah Nuclear Plar	nt (SQN)	0	utfall Number 01, Intake			OMB N Expire	lo. 2040-0004 es 07/31/2026
------	--	---------------------	-------------------------------	------------------------------------	-------------------------------------	-----------	---	---	--	-------------------------------	-----------------------------------	--------------------------------
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹ Effli	uent		Int	take
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Terr Average Daily Discharge (if available)	n Number of Analyses	Long- Term Average Value	Number of Analyses
5.12	β-endosulfan			$\overline{\checkmark}$	Concentration							
5.13	Endosulfan sulfate				Concentration							
5.14	Endrin (72-20-8)				Concentration Mass							
5.15	Endrin aldehyde (7421-93-4)			7	Concentration							
5.16	Heptachlor (76-44-8)				Concentration Mass							
5.17	Heptachlor epoxide (1024-57-3)				Concentration Mass							
5.18	PCB-1242 (53469-21-9)				Concentration Mass	mg/L	<0.001			4		
5.19	PCB-1254 (11097-69-1)				Concentration Mass	mg/L	<0.001			4		
5.20	PCB-1221 (11104-28-2)				Concentration Mass	mg/L	<0.001			4		
5.21	PCB-1232 (11141-16-5)				Concentration Mass	mg/L	<0.001			4		
5.22	PCB-1248 (12672-29-6)				Concentration Mass	mg/L	<0.001			4		
5.23	PCB-1260 (11096-82-5)				Concentration Mass	mg/L	<0.001			4		
5.24	PCB-1016 (12674-11-2)				Concentration Mass	mg/L	<0.001			4		

	EPA Identification Number NPDES Permit Number TN5640020504 TN0026450		Sea	Facility Name Sequovab Nuclear Plant (SON)		Outfall Number 101, Intake			OMB No. 2040-0004 Expires 07/31/2026							
TABL	E B. TOXIC METALS, CYANIDE	TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTANTS ((40 CFR 122.2	1(g)(7)	(v)) ¹				Caller Mark				
			Presence (cheo	or Absence			Effluent				Intake (optional)					
	Pollutant/Parameter (and CAS Number, if available)	Testing Required Believed Present		Believed Absent	Units (specify)	Maxir Da Disch (requi	num ily arge ired)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses				
5.25	Toxaphene (8001-35-2)				Concentration											
	(0001-33-2)	_	_	V			Ċ		Mass							

	EPA Identification Number TN5640020504		NPDES Per TN002	NPDES Permit Number TN0026450		Facility Name n Nuclear Plant (SQN)	Outfall Number N) 101, Intake			O E	MB No. 2040-0004 xpires 07/31/2026
TAE	BLE C. CERTAIN CO	NVENTIONAL	AND NON CO	NVENTIONAL PO	DLLUTANT	S (40 CFR 122.21(g)	(7)(vi)) ¹				
		Presence c	or Absence				Efflu	uent		Inta (optio	ke nal)
	Pollutant	Believed Present	Believed Absent	Units (specify	ts ify) Maximum Dail Discharge (required)		Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
	Check here if you b each pollutant. Check here if you b each pollutant.	elieve all polluta elieve all polluta	ants in Table (ants in Table (C to be present in C to be absent in y	your discha	rge from the noted ou ge from the noted ou	utfall. You need t	not complete the "P ot complete the "Pre	resence or Abse esence or Abser	ence" column of T nce" column of Ta	able C for Ible C for
1.	Bromide (24959-67-9)			Concentration Mass	mg/L	<0.200			1	<0.200	1
2.	Chlorine, total residual	V		Concentration Mass	mg/L	<0.047		<0.027	46	0.01	4
3.	Color	V		Concentration Mass	PCU	30.0			1	20.0	1
4.	Fecal coliform			Concentration Mass							
5.	Fluoride (16984-48-8)	7		Concentration Mass	mg/L	<0.100			1	<0.100	1
6	Nitrate-nitrite	7		Concentration Mass	mg/L	0.168			1	0.146	1
7.	Nitrogen, total organic (as N)			Concentration Mass	mg/L	0.229			1	0.265	1
8.	Oil and grease	V		Concentration Mass	mg/L	<5.578			4	<5.6025	4
9.	Phosphorus (as P), total (7723-14-0)	7		Concentration Mass	mg/L	<0.0500			1	<0.0500	1
10.	Sulfate (as SO ₄) (14808-79-8)			Concentration Mass	mg/L	7.72			1	7.66	1
11.	Sulfide (as S)			Concentration Mass	mg/L	<0.100			1	<0.100	1

	EPA Identification Number		NPDES Permit Number			Facility Name	Outfall Number			OMB No. 2040-0004	
	TN5640020504	1.2.2 3	TN002	6450	Sequoyal	n Nuclear Plant (SQN)	101, Intake		E	Expires 07/31/2026
TAE	LE C. CERTAIN CO	NVENTIONAL	AND NON CO	ONVENTIONAL PO	OLLUTANT	S (40 CFR 122.21(g)(7)(vi))¹				
		Presence of (check	or Absence				Effl	uent		Inta (optic	i ke mal)
	Pollutant	Believed Believe Present Abser		Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
10	Sulfite (as SO ₃)			Concentration	mg/L	3.2			4	5.12	4
12.	(14265-45-3)			Mass							
12	Surfactoria			Concentration	mg/L	0.0519			1	< 0.0500	1
13.	Surfaciants	V		Mass							
11	Aluminum, total			Concentration	mg/L	0.0531			1	<0.050	1
14.	(7429-90-5)	V I		Mass							
15	Barium, total			Concentration	mg/L	0.0296		1.	1	0.0266	1
10.	(7440-39-3)			Mass							
16	Boron, total			Concentration	mg/L	0.015			1	<0.015	1
10.	(7440-42-8)			Mass							
17	Cobalt, total			Concentration	mg/L	<0.001			1	<0.001	1
	(7440-48-4)			Mass							
18.	Iron, total			Concentration	mg/L	0.103			1	<0.100	1
	(7439-89-6)	housed		Mass							
19.	Magnesium, total			Concentration	mg/L	5.08			1	5.18	1
	(7439-95-4)		Summer	Mass							
20	Molybdenum,			Concentration	mg/L	<0.001			1	<0.001	1
20.	(7439-98-7)			Mass							
21	Manganese, total			Concentration	mg/L	0.385			1	0.202	1
21.	(7439-96-5)			Mass							
22	Tin, total			Concentration	mg/L	<0.005			1	<0.005	1
22.	(7440-31-5)			Mass							
23	Titanium, total			Concentration	mg/L	<0.010			1	<0.010	1
20.	(7440-32-6)			Mass							

	EPA Identification Number TN5640020504		NPDES Permit Number TN0026450		Facility Name Sequoyah Nuclear Plant (SQN)		Outfall Number 101, Intake			OMB No. 2040 Expires 07/31	
TAE	BLE C. CERTAIN CO	NVENTIONAL	AND NON CC	NVENTIONAL PO	DLLUTANT	S (40 CFR 122.21(g	(7)(vi)) ¹				
	Present		one)		Unite		Efflu	uent		Inta (optio	ke nal)
	Pollutant	Believed Present	Believed Absent	Units (specify	;))	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
24.	Radioactivity										
	Alpha total			Concentration	pCi/L	<3.00				<3.00	1
	Aipha, iotai	Ш		Mass							
	Rota total			Concentration	pCi/L	<4.00				<4.00	1
	Dela, IOlai			Mass			AND AND				
	Dadium total			Concentration	pCi/L	<3.00				<3.00	1
	Radium, totai	L		Mass							
	Padium 226 tatal			Concentration	pCi/L	1.25				<1.00	1
	raulum 220, lotal	Ц		Mass							

	EPA Identification Number	NPDES	S Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004
	TN5640020504	TN	10026450	Sequoyah	Nuclear Plant (SQN)	101, Intake	Expires 07/31/2026
TAB	LE D. CERTAIN HAZARDOUS	SUBSTANCE	S AND ASBEST	OS (40 CFR 122.	.21(g)(7)(vii))¹		
	Pollutant		Presence or (check of	Absence			Available Quantitative Data
	Tonutant		Believed Present	Believed Absent	Reason Polluta	ant Believed Present in Discharge	(specify units)
1.	Asbestos						A Contraction and and
2.	Acetaldehyde						
3.	Allyl alcohol			V			
4.	Allyl chloride			V		100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
5.	Amyl acetate					and the second	
6.	Aniline						
7.	Benzonitrile			I			
8.	Benzyl chloride				100 10 100		
9.	Butyl acetate						
10.	Butylamine			V			
11.	Captan			V			
12.	Carbaryl			V			
13.	Carbofuran						
14.	Carbon disulfide			I			
15.	Chlorpyrifos			I			S. Shalles the he
16.	Coumaphos						
17.	Cresol			V			
18.	Crotonaldehyde			I			
19.	Cyclohexane			1			

	EPA Identification Number N TN5640020504	PDES Permit Number TN0026450	Sequoyal	Facility Name n Nuclear Plant (SQN)	Outfall Number 101, Intake	OMB No. 2040-0004 Expires 07/31/2026
TAB	LE D. CERTAIN HAZARDOUS SUBST	ANCES AND ASBEST Presence o	OS (40 CFR 122 Absence	21(g)(7)(vii)) ¹		
	Pollutant	Believed Present	Believed Absent	- Reason Pollutant	Believed Present in Discharge	Available Quantitative Data (specify units)
20.	2,4-D (2,4-dichlorophenoxyacetic acid)					
21.	Diazinon		7			
22.	Dicamba					
23.	Dichlobenil		7			
24.	Dichlone					
25.	2,2-dichloropropionic acid					
26.	Dichlorvos					
27.	Diethyl amine					1 Sector Sector To
28.	Dimethyl amine			See Biocide Corr	osion Treatment Plan (B/CTP)	See below*
29.	Dintrobenzene		7			
30.	Diquat					
31.	Disulfoton		7			
32.	Diuron					
33.	Epichlorohydrin		V			
34.	Ethion					
35.	Ethylene diamine				1.1.1	
36.	Ethylene dibromide					
37.	Formaldehyde					
38.	Furfural					

*The use of dimethylamine will not result in detectible quantities at Outfall 101

	EPA Identification Number	NPDES Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004
	TN5640020504	TN0026450	Sequoyal	n Nuclear Plant (SQN)	101, Intake	Expires 07/31/2026
TAB	LE D. CERTAIN HAZARDOUS Pollutant	SUBSTANCES AND ASBES Presence ((chec	TOS (40 CFR 122 or Absence k one)	.21(g)(7)(vii)) ¹	ant Paliauad Propert in Discharge	Available Quantitative Data
	, on data	Believed Present	Believed Absent	Reason Pollut	ant believed Present in Discharge	(specify units)
39.	Guthion					
40.	Isoprene					
41.	Isopropanolamine					
42.	Kelthane					
43.	Kepone					
44.	Malathion					
45.	Mercaptodimethur					
46.	Methoxychlor					
47.	Methyl mercaptan					
48.	Methyl methacrylate					
49.	Methyl parathion		V			
50.	Mevinphos					
51.	Mexacarbate					
52.	Monoethyl amine					
53.	Monomethyl amine					
54.	Naled					
55.	Naphthenic acid					
56.	Nitrotoluene					
57.	Parathion			anter company	Star Walter	

	EPA Identification Number	NPD	ES Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004
	TN5640020504		TN0026450	Sequoyah	Nuclear Plant (SQN)	101, Intake	Expires 07/31/2026
TAB	LE D. CERTAIN HAZARDOUS	SUBSTAN	CES AND ASBEST	OS (40 CFR 122	.21(g)(7)(vii))¹		
	Pollutant		Presence or (check	r Absence one)	Descent Dellet		Available Quantitative Data
	1 Unitant		Believed Present	Believed Absent	Reason Pollut	ant Believed Present in Discharge	(specify units)
58.	Phenolsulfonate						
59.	Phosgene						
60.	Propargite						
61.	Propylene oxide			I			
62.	Pyrethrins			V			
63.	Quinoline						
64.	Resorcinol			I			
65.	Strontium			V			
66.	Strychnine						
67.	Styrene						
68.	2,4,5-T (2,4,5-trichlorophenoxy acid)	yacetic				Western Bar Stat	
69.	TDE (tetrachlorodiphenyl ethal	ne)					
70.	2,4,5-TP [2-(2,4,5-trichlorophe propanoic acid]	noxy)					
71.	Trichlorofon						
72.	Triethanolamine						
73.	Triethylamine						
74.	Trimethylamine						
75.	Uranium						
76.	Vanadium						

	EPA Identification Number NPD TN5640020504	IPDES Permit Number TN0026450 Se		Facility Name Nuclear Plant (SQN)	Outfall Number 101, Intake	OMB No. 2040-0004 Expires 07/31/2026
TAE	LE D. CERTAIN HAZARDOUS SUBSTAN	CES AND ASBEST	OS (40 CFR 122	.21(g)(7)(vii)) ¹		
	Pollutant	Presence or (check	Absence			Available Quantitative Data
	1 Unitant	Believed Present	Believed Absent	Reason Pollutan	Believed Present in Discharge	(specify units)
77.	Vinyl acetate					
78.	Xylene					
79.	Xylenol				Le sole Courts and the	
80.	Zirconium		•			

EPA Identification Number TN5640020504	EPA Identification Number NPDES Permit Number TN5640020504 TN0026450		Sequ	Facility Name oyah Nuclear Plant (SQN)	Outfall Number 101, Intake	OMB No. 2040-0004 Expires 07/31/2026
TABLE E. 2,3,7,8 TETRACHLORO	DIBENZO P DIOX	(IN (2,3,7,8 T	CDD) (40 CF	R 122.21(g)(7)(viii))		
Pollutant	TCDD Congeners Used or Manufactured	Prese Abs (chec Believed	nce or ence k one) Believed		Results of Screening Procee	lure
2,3,7,8-TCDD		Present	Absent			

	EPA Identification Number	NPDES Permit Number TN0026450		Seculo	Facility Name	(SON)	Outfall Number		OI E	MB No. 2040-0004 xpires 07/31/2026
TAI				NTS (AD CE	EP 122 21(a)(7)(ii	:(30(14)	105			
				113 (40 01	N 122.21(9)(7)(1	Ef	luent		Inta (option	ke nal)
	Pollutant	Walver Requested (if applicable)	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
	Check here if you have applied	to your NPDI	ES permitting author	ity for a wai	iver for all of the p	ollutants listed on	this table for the no	ted outfall.		
1	Biochemical oxygen demand		Concentration	mg/L	3.05			1		
1.	(BOD ₅)		Mass							
2	Chemical oxygen demand		Concentration	mg/L	<20.0			1		
2.	(COD)		Mass							
2	Total organic carbon (TOC)		Concentration	mg/L	1.84			1		
Э.			Mass							
1	Total suspended solids (TSS)		Concentration	mg/L	30.3		10.1	46		
4.	Total suspended solids (133)		Mass							
5	Ammonia (as N)		Concentration	mg/L	0.0630			1		
J.			Mass							
6.	Flow		Rate	MGD	2.214		1.326	46		
7	Temperature (winter)		°C	°C						
1.	Temperature (summer)		°C	°C	32.2			4		
0	pH (minimum)		Standard units	s.u.	6			50		
0.	pH (maximum)		Standard units	s.u.	8.8			50		

	EPA Identification Number	NPDES F	Permit Number		Facility Name	. (2011)	0	Dutfall Number			OMB N	No. 2040-0004
TADI			26450	Sec	luoyah Nuclear Pla	nt (SQN)		103			Expire	13 0110 112020
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (che	or Absence		ITS (40 CF	R 122.21(g)(7))(∨))¹ Efflue	ent		Int (op	t ake tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Tern Average Daily Discharg (if available	m Number of Analyses	Long- Term Average Value	Number of Analyses
	Check here if you qualify as a s 2 through 5 of this table. Note, h	mall business nowever, that	per the instr you must stil	uctions to For I indicate in th	rm 2C and, therefo ne appropriate colu	re, do not r mn of this t	need to submit table if you beli	quantitative data ieve any of the p	a for any of ollutants lis	the organic toxic sted are present in	pollutants in your disch	n Sections arge.
Section	on 1. Toxic Metals, Cyanide, and	d Total Pheno	ols		in the second second							
1.1	Antimony, total (7440-36-0)				Concentration Mass	mg/l	<0.003			1		
1.2	Arsenic, total (7440-38-2)				Concentration Mass	mg/L	<0.005			1		
1.3	Beryllium, total (7440-41-7)				Concentration	mg/L	<0.0005			1		
1.4	Cadmium, total (7440-43-9)				Concentration Mass	mg/L	<0.001			1		
1.5	Chromium, total (7440-47-3)				Concentration Mass	mg/L	<0.010			1		
1.6	Copper, total (7440-50-8)				Concentration Mass	mg/L	0.00235			1		
1.7	Lead, total (7439-92-1)				Concentration Mass	mg/L	<0.002			1		
1.8	Mercury, total (7439-97-6)				Concentration Mass	mg/L	8.82e-7			4		
1.9	Nickel, total (7440-02-0)				Concentration Mass	mg/L	<0.002			1		
1.10	Selenium, total (7782-49-2)				Concentration Mass	mg/L	<0.005			1		
1.11	Silver, total (7440-22-4)				Concentration Mass	mg/L	<0.001			1		

	EPA Identification Number TN5640020504	NPDES P TN00	ermit Number 26450	Seq	Facility Name	nt (SQN)	C	Outfall Number 103			OMB N Expire	lo. 2040-0004 es 07/31/2026
TABL	E B TOXIC METALS CYANIDE			ORGANIC		TS (40 CE	R 122 21(a)(7)	(v))1			and the se	
TABL	E D. FOXIO METALO, OTAMDE		Presence (cheo	or Absence		10 (40 01	(122.21(9)(7)	Effl	uent		Int (opt	ake ional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
1 12	Thallium, total				Concentration	mg/L	<0.002			1		
1.12	(7440-28-0)	I.▼			Mass					2008		
1.13	Zinc, total (7440-66-6)				Concentration Mass	mg/L	<0.020			1		
	Cyanide, total				Concentration	mg/L	< 0.005	2.200 20		4		
1.14	(57-12-5)				Mass			and some second	CONTRACT.	100 100		
1 15	Phonols total				Concentration	mg/L	<0.005			4		
1.15					Mass						40.50	
Sectio	on 2. Organic Toxic Pollutants	GC/MS Fract	ion—Volatil	e Compound	ds)							
2.1	Acrolein				Concentration	mg/L	<0.005	166.3.1		1	N. S. S. S. S.	
	(107-02-8)				Mass					Second.	No. Constant	
2.2	Acrylonitrile				Concentration	mg/L	< 0.005			1		
	(107-13-1)				Mass							
2.3	Benzene				Concentration	mg/L	<0.001			1		
	(11-43-2)				Mass							
2.4	Bromoform				Concentration	mg/L	<0.001			1		
					Mass		10.001					
2.5	Carbon tetrachloride	\checkmark			Mass	mg/L	<0.001			1		
-	Chlorohonzono				Concentration	mg/l	<0.001	-		1		
2.6	(108-90-7)				Mass	iiig/L	VU.UUI			1		
	Chlorodibromomethane		_	_	Concentration	mg/L	<0.001			1		
2.7	(124-48-1)				Mass	0,-						
20	Chloroethane				Concentration	mg/L	<0.001			1		
2.8	(75-00-3)				Mass							

	EPA Identification Number TN5640020504	NPDES P TNOO	Permit Number 126450	Seq	Facility Name uoyah Nuclear Plat	nt (SQN)	C	Dutfall Number 103			OMB I Expire	No. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹ Efflu	uent		Int (op	take tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
2.9	2-chloroethylvinyl ether				Concentration	mg/L	<0.005			1		
	(110-75-8)				Mass							
2.10	Chloroform (67-66-3)				Concentration	mg/L	<0.001			1		
					Mass							
2.11	Dichlorobromomethane	\checkmark			Mass	mg/L	<0.001					
					Concentration	mg/l	<0.001			1		
2.12	(75-34-3)				Mass	IIIg/L	VU.UU1			1		
	1.2-dichloroethane	_		_	Concentration	mg/L	<0.001			1		
2.13	(107-06-2)				Mass							-
0.44	1,1-dichloroethylene				Concentration	mg/L	<0.001			1		
2.14	(75-35-4)				Mass						NO. ST.	
2.15	1,2-dichloropropane				Concentration	mg/L	<0.001			1		
2.15	(78-87-5)				Mass							
2 16	1,3-dichloropropylene				Concentration	mg/L	<0.001			1		
2.10	(542-75-6)				Mass							
2.17	Ethylbenzene				Concentration	mg/L	<0.001			1		
	(100-41-4)				Mass							
2.18	Methyl bromide				Concentration	mg/L	<0.001			1		
	(74-83-9)				Mass							
2.19	Methyl chloride				Concentration	mg/L	< 0.001			1		
-	(14-01-3)				Mass	11	2.25*					
2.20	Methylene chloride				Concentration	mg/L	3.35*			1		
					Concentration	mall	<0.001			1		
2.21	(79-34-5)				Mass	mg/L	10.001			1		

EPA Form 3510-2C

* The lab report flagged this analysis: "The target analyte was detected in the associated blank."

	EPA Identification Number TN5640020504	NPDES P TN00	ermit Number 26450	Seq	Facility Name uoyah Nuclear Plar	nt (SQN)	C	outfall Number 103			OMB N Expire	lo. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹				
			Presence (chee	or Absence				Effl	uent		Int (opt	ake lional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
2.22	Tetrachloroethylene		П		Concentration	mg/L	<0.001			1		
	(127-18-4)				Mass							
2.23	Toluene (108-88-3)				Concentration Mass	mg/L	<0.001			1		
0.04	1,2-trans-dichloroethylene				Concentration	mg/L	<0.001			1		
2.24	(156-60-5)				Mass							
2.25	1,1,1-trichloroethane				Concentration	mg/L	<0.001			1		
2.25	(71-55-6)				Mass							
2.26	1,1,2-trichloroethane				Concentration	mg/L	<0.001			1		
2.20	(79-00-5)				Mass							
2.27	Trichloroethylene				Concentration	mg/L	<0.001			1		
	(79-01-6)				Mass							
2.28	Vinyl chloride				Concentration	mg/L	<0.001			1		
	(75-01-4)				Mass							
Section	on 3. Organic Toxic Pollutants	(GC/MS Fract	ion—Acid C	ompounds)							T	1
3.1	2-chlorophenol				Concentration	mg/L	<0.00950			1		
	(95-57-6)				Mass							
3.2	2,4-dichlorophenol				Concentration	mg/L	<0.00950			1		
	(120-03-2)				Mass							
3.3	2,4-dimethylphenol				Concentration	mg/L	<0.00950			1		
	(103-07-9)				Mass		-					
3.4	4,6-dinitro-o-cresol				Concentration	mg/L	<0.00950			1		
					Concentration		-0.010			1	-	
3.5	2,4-dinitrophenol				Mass	mg/L	<0.019			1		
	(01200)		1		11/1055			1.1.1				

	EPA Identification Number	NPDES F	ermit Number		Facility Name		C	utfall Number			OMB	lo. 2040-0004
	TN5640020504	TNOO	26450	Seq	uoyah Nuclear Plar	nt (SQN)		103			Expire	s 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹				
			Presence (chec	or Absence k one)				Effle	uent		Int (opt	ake ional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
3.6	2-nitrophenol			П	Concentration	mg/L	<0.00950			1		
0.0	(88-75-5)		-		Mass							
3.7	4-nitrophenol (100-02-7)				Concentration Mass	mg/L	<0.00950			1		
0.0	p-chloro-m-cresol				Concentration	mg/L	<0.00950			1		
3.8	(59-50-7)				Mass							
30	Pentachlorophenol			Concer Mass	Concentration	mg/L	<0.00950			1		
0.0	(87-86-5)			Ц	Mass							
3 10	Phenol			Cor	Concentration	mg/L	<0.00950			1		
0.10	(108-95-2)				Mass				111111111		1998 B	
3.11	2,4,6-trichlorophenol (88-05-2)				Concentration Mass	mg/L	<0.00950			1		
Sectio	on 4. Organic Toxic Pollutants (GC/MS Fracti	on-Base /I	Neutral Com	pounds)							
11	Acenaphthene				Concentration							
4.1	(83-32-9)			Ľ.	Mass							
42	Acenaphthylene				Concentration							
1.2	(208-96-8)				Mass							
4.3	Anthracene				Concentration							
	(120-12-7)		-	-	Mass	100-100						
4.4	Benzidine			V	Concentration							
	(92-87-5)				Mass							
4.5	Benzo (a) anthracene			\checkmark	Concentration							
					Concentration							
4.6	Benzo (a) pyrene (50-32-8)				Mass							

	EPA Identification Number NPDES Pe TN5640020504 TN002			Seq	Facility Name Juoyah Nuclear Plant (SQN)	C	Dutfall Number 103				OMB N Expire	lo. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTANTS (40 CH	R 122.21(g)(7)	(v)) ¹					
			Presence (che	or Absence ck one)			Efflu	ient			Int (opt	ake ional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-T Avera Dail Discha (if availa	erm Ige y arge able)	Number of Analyses	Long- Term Average Value	Number of Analyses
47	3,4-benzofluoranthene				Concentration							
7.1	(205-99-2)				Mass							
4.8	Benzo (ghi) perylene				Concentration							
4.0	(191-24-2)				Mass							
49	Benzo (k) fluoranthene				Concentration							
1.0	(207-08-9)				Mass							
4 10	Bis (2-chloroethoxy) methane				Concentration							- 200
	(111-91-1)				Mass							
4.11	Bis (2-chloroethyl) ether				Concentration							
	(111-44-4)	-		-	Mass			1.1				
4.12	Bis (2-chloroisopropyl) ether				Concentration							
	(102-80-1)	-			Mass							
4.13	Bis (2-ethylhexyl) phthalate				Concentration							
	(11/-81-/)				Mass							
4.14	4-bromophenyl phenyl ether				Concentration							
	(101-55-3)				Mass							
4.15	Butyl benzyl phthalate				Concentration				<u></u>			
	(85-68-7)				Mass						1.00	
4.16	2-chloronaphthalene				Concentration							
	(91-58-7)				Mass							
4.17	4-chlorophenyl phenyl ether				Concentration							
	(7005-72-3)				Mass							
4.18	Chrysene				Concentration							
	(218-01-9)				Mass							
4.19	Dibenzo (a,h) anthracene				Concentration							
	(53-70-3)				Mass							

	EPA Identification Number	NPDES F	Permit Number	Soc	Facility Name	C	Outfall Number			OMB I Expire	No. 2040-0004 es 07/31/2026
TADI		TOTAL DUE	NOLC AND			D 400 04(-)/7)	105				
TABL	E B. TOXIC METALS, CTANIDE		Presence (che	or Absence	UNIC POLLUTANTS (40 CF	·R 122.21(g)(7)	(V)) [.] Effli	uent		In (op	take tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
4 20	1,2-dichlorobenzene				Concentration					201 - Ya	
1.20	(95-50-1)	human			Mass	1.11					
4 21	1,3-dichlorobenzene				Concentration						
	(541-73-1)				Mass						
4.22	1,4-dichlorobenzene				Concentration						
	(106-46-7)	Bassand			Mass						
4.23	3,3-dichlorobenzidine				Concentration						
	(91-94-1)	Beccessell		Record	Mass						
4.24	Diethyl phthalate				Concentration						
	(84-66-2)				Mass						
4.25	Dimethyl phthalate				Concentration						
	(131-11-3)				Mass						
4.26	Di-n-butyl phthalate				Concentration						
	(84-74-2)				Mass						
4.27	2,4-dinitrotoluene				Concentration						
	(121-14-2)				Mass						
4.28	2,6-dinitrotoluene				Concentration						
	(606-20-2)				Mass						
4.29	Di-n-octyl phthalate				Concentration						
	(117-84-0)				Mass						
4.30	1,2-Diphenylhydrazine				Concentration						
	(as azobenzene) (122-66-7)	Reserved		Guession	Mass						
4.31	Fluoranthene				Concentration						
	(206-44-0)				Mass				-		
4.32	Fluorene				Concentration						
	(80-73-7)				Mass		Maria Maria				

	EPA Identification Number	NPDES P	ermit Number		Facility Name	C	utfall Number			OMB	lo. 2040-0004
	TN5640020504	TNOO	26450	Seq	uoyah Nuclear Plant (SQN)		103			Expire	s 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)	(v)) ¹				
			Presence (che	or Absence ck one)			Effle	uent		Int (opt	ional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
4.33	Hexachlorobenzene		П		Concentration						
	(118-74-1)		Second Second	Boscosofi	Mass						
4.34	Hexachlorobutadiene				Concentration						
	(87-68-3)				Mass						
4.35	Hexachlorocyclopentadiene				Concentration						
	(77-47-4)				Mass						
4.36	Hexachloroethane				Concentration						
	(67-72-1)	hassaadi		Reasonal	Mass						
4.37	Indeno (1,2,3-cd) pyrene				Concentration						
	(193-39-5)				Mass						
4.38	Isophorone				Concentration						
	(78-59-1)				Mass						
4.39	Naphthalene				Concentration						
	(91-20-3)				Mass						
4.40	Nitrobenzene				Concentration						
	(98-95-3)				Mass						
4.41	N-nitrosodimethylamine				Concentration						
	(62-75-9)				Mass						
4.42	N-nitrosodi-n-propylamine				Concentration						
2010	(621-64-7)		Annual	Beconvoil	Mass						
4.43	N-nitrosodiphenylamine				Concentration						
	(86-30-6)	hormonit		beenend	Mass						
4.44	Phenanthrene				Concentration						
	(85-01-8)				Mass						
4.45	Pyrene				Concentration						
	(129-00-0)				Mass						

	EPA Identification NumberNPDES Permit NumberTN5640020504TN0026450			Seq	Facility Name uoyah Nuclear Plant (SQN)	C	Outfall Number 103			OMB N Expire	lo. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND Presence (chee	ORGANIC T or Absence	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)	(v)) ¹ Effli	uent		Int	take
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
4.46	1,2,4-trichlorobenzene (120-82-1)				Concentration Mass						
Section	on 5. Organic Toxic Pollutants (0	GC/MS Fract	ion—Pestic	ides)							
5.1	Aldrin (309-00-2)				Concentration Mass						
5.2	α-BHC (319-84-6)				Concentration Mass						
5.3	β-BHC (319-85-7)			V	Concentration Mass						
5.4	γ-BHC (58-89-9)				Concentration						
5.5	δ-BHC (319-86-8)				Concentration Mass						
5.6	Chlordane (57-74-9)			V	Concentration Mass						
5.7	4,4'-DDT (50-29-3)				Concentration Mass						
5.8	4,4'-DDE (72-55-9)				Concentration Mass						
5.9	4,4'-DDD (72-54-8)			7	Concentration Mass						
5.10	Dieldrin (60-57-1)				Concentration Mass						
5.11	α-endosulfan (115-29-7)				Concentration Mass						

	EPA Identification Number	NPDES F	ermit Number		Facility Name	C	outfall Number			OMB	lo. 2040-0004
	TN5640020504	TNOO	26450	Seq	uoyah Nuclear Plant (SQN)		103			Expire	s 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE	, TOTAL PHE	NOLS, AND Presence (che	ORGANIC T or Absence ck one)	OXIC POLLUTANTS (40 CF	R 122.21(g)(7)	(v)) ¹ Efflu	Jent		Int (opt	t ake tional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
5.12	β-endosulfan				Concentration						
5.13	Endosulfan sulfate (1031-07-8)				Concentration Mass						
5.14	Endrin (72-20-8)				Concentration Mass						
5.15	Endrin aldehyde (7421-93-4)			V	Concentration Mass						
5.16	Heptachlor (76-44-8)			7	Concentration Mass						
5.17	Heptachlor epoxide (1024-57-3)				Concentration Mass						
5.18	PCB-1242 (53469-21-9)				Concentration Mass						
5.19	PCB-1254 (11097-69-1)			V	Concentration Mass						
5.20	PCB-1221 (11104-28-2)				Concentration Mass						
5.21	PCB-1232 (11141-16-5)				Concentration Mass						
5.22	PCB-1248 (12672-29-6)				Concentration Mass						
5.23	PCB-1260 (11096-82-5)				Concentration Mass						
5.24	PCB-1016 (12674-11-2)				Concentration Mass						

	EPA Identification Number TN5640020504	NPDES F TNOC	Permit Number 026450	Seq	Facility Name uoyah Nuclear Plar	nt (SQN)	0	utfall Number 103			OMB N Expire	lo. 2040-0004 es 07/31/2026
TABL	E B. TOXIC METALS, CYANIDE,	TOTAL PHE	NOLS, AND	ORGANIC T	OXIC POLLUTAN	TS (40 CF	R 122.21(g)(7)	(v)) ¹				
			Presence (che	or Absence ck one)				Effi	uent		Int (opt	ake ional)
	Pollutant/Parameter (and CAS Number, if available)	Testing Required	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long- Term Average Value	Number of Analyses
5.25	Toxaphene (8001-35-2)			V	Concentration Mass							

	EPA Identification Num TN5640020504	ber	NPDES Per TN002	rmit Number :6450	Sequoyal	Facility Name n Nuclear Plant (SQN)	Outfall Number 103		O E	MB No. 2040-0004 Expires 07/31/2026
TAE	BLE C. CERTAIN CO	NVENTIONAL Presence of (chec	AND NON CO or Absence k one)		OLLUTANT	S (40 CFR 122.21(g))(7)(vi))¹ Efflu	Jent		Inta (optic	i ke onal)
	Pollutant	Believed Present	Believed Absent	Units (specify	; /)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses
	Check here if you b each pollutant. Check here if you b each pollutant.	elieve all pollut elieve all pollut	ants in Table (ants in Table (C to be present in C to be absent in y	your dischar	rge from the noted or ge from the noted ou	utfall. You need <i>i</i> tfall. You need <i>n</i>	not complete the "Protection of complete the "Protection o	resence or Abse esence or Abser	nce" column of T nce" column of Ta	able C for able C for
1.	Bromide (24959-67-9)			Concentration Mass	mg/L	<0.200			1		
2.	Chlorine, total residual			Concentration Mass	mg/L	0.05			4		
3.	Color			Concentration Mass	PCU	40.0			1		
4.	Fecal coliform			Concentration Mass							
5.	Fluoride (16984-48-8)	2		Concentration Mass	mg/L	<0.100			1		
6	Nitrate-nitrite			Concentration Mass	mg/L	0.155			1		
7.	Nitrogen, total organic (as N)	7		Concentration Mass	mg/L	0.544			1		
8.	Oil and grease			Concentration Mass	mg/L	13		5.18	46		
9.	Phosphorus (as P), total (7723-14-0)			Concentration Mass	mg/L	0.109			1		
10.	Sulfate (as SO ₄) (14808-79-8)			Concentration Mass	mg/L	7.84			1		
11.	Sulfide (as S)			Concentration Mass	mg/L	<0.100			1		

EPA Identification Number NF TN5640020504		NPDES Per TN002	rmit Number Fac 26450 Sequoyah Nu		Facility Name Nuclear Plant (SQN)	Name Outfall Number ear Plant (SQN) 103			OMB No. 2040-0004 Expires 07/31/2026				
TAE	BLE C. CERTAIN CO		AND NON CO	ONVENTIONAL PO	DLLUTANT	S (40 CFR 122.21(g)	(7)(vi)) ¹						
		(check one)				Effluent				Intake (optional)			
	Pollutant	Believed Present	Believed Absent	Units (specify)	Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses		
12	Sulfite (as SO ₃)			Concentration	mg/L	3.2			4				
	(14265-45-3)			Mass									
13.	Surfactants			Concentration	mg/L	<0.0500			1				
				Mass									
14.	Aluminum, total			Concentration	mg/L	0.0791			1				
	(7429-90-5)			Mass									
15.	Barium, total	otal 🔽 🗖		Concentration	mg/L	0.0329			1				
	(7440-39-3)			Mass									
16.	6. Boron, total (7440-42-8)			Concentration	mg/L	0.0179			1				
				Mass									
17.	Cobalt, total			Concentration	mg/L	<0.001			1				
	(7440-48-4)			Mass									
18.	Iron, total	\checkmark		Concentration	mg/L	0.148			1				
	(1439-09-0)	(9-03-0)		Mass		5.40							
19.	Magnesium, total			Concentration	mg/L	5.43			1				
-	Molybdenum			Concentration		10.001			1				
20.	total	1		Concentration	mg/L	<0.001			1				
-	(7439-98-7)			IVIASS									
21.	Manganese, total			Concentration	mg/L	0.440			1				
-	(7439-96-5)			Mass									
22.	Tin, total			Concentration	mg/L	<0.005			1				
	(1440-31-3)			Mass	1	0.01							
23.	Titanium, total			Concentration	mg/L	<0.01			1				
	(7440-32-6)					Mass							

EPA Identification Number NPDES Perm TN5640020504 TN0026			mit Number Facility Name 6450 Sequoyah Nuclear Plant (SQN))	Outfall Number 103		OMB No. 2040-0004 Expires 07/31/2026								
TAE	LE C. CERTAIN CO	NVENTIONAL	AND NON CC	NVENTIONAL PO	LLUTANT	S (40 CFR 122.21(g)	(7)(vi)) ¹									
	Presenc (ct		r Absence			Effluent				Intake (optional)						
	Pollutant	Believed Present	Believed Absent	Units (specify)		Maximum Daily Discharge (required)	Maximum Monthly Discharge (if available)	Long-Term Average Daily Discharge (if available)	Number of Analyses	Long-Term Average Value	Number of Analyses					
24.	Radioactivity															
	Alpha, total	Alpha total							Concentration	pCi/L	<3.00					
1.1				Mass												
	Rota total			Concentration	pCi/L	<4.00										
				Mass												
	Radium total			Concentration	pCi/L	<3.00										
	Radium, total			Mass												
	Padium 226 total			Concentration	pCi/L	<1.00										
	Radium 226, total			Mass	1000											

EPA Identification Number		NPDES Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004
TN5640020504		TN0026450	Sequoyal	h Nuclear Plant (SQN)	103	Expires 07/31/2026
TAE	LE D. CERTAIN HAZARDOUS S	UBSTANCES AND ASBEST	TOS (40 CFR 122	21(g)(7)(vii)) ¹		
	Dollutant	Presence o	one)			Available Quantitative Data
	Pollutant	Believed Present	Believed Absent	Reason Pollut	ant Believed Present in Discharge	(specify units)
1.	Asbestos					
2.	Acetaldehyde		V			
3.	Allyl alcohol					
4.	Allyl chloride		V			
5.	Amyl acetate					
6.	Aniline					
7.	Benzonitrile					
8.	Benzyl chloride					
9.	Butyl acetate					
10.	Butylamine					
11.	Captan					
12.	Carbaryl					
13.	Carbofuran					
14.	Carbon disulfide		V			
15.	Chlorpyrifos		V			
16.	Coumaphos					
17.	Cresol					
18.	Crotonaldehyde					
19.	Cyclohexane					

EPA Identification Number NPD		ES Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004	
	TN5640020504	00007400	TN0026450	Sequoyah	Nuclear Plant (SQN)	103	Expires 01/31/2020
TAE	Pollutant		Presence of (check Believed	OS (40 CFR 122 Absence one) Believed	.21(g)(7)(vii))' Reason Pollut	ant Believed Present in Discharge	Available Quantitative Data (specify units)
20.	2,4-D (2,4-dichlorophenoxyace	tic acid)		Absent			
21.	Diazinon						
22.	Dicamba						
23.	Dichlobenil						
24.	Dichlone			V			
25.	2,2-dichloropropionic acid						
26.	Dichlorvos						
27.	Diethyl amine						
28.	Dimethyl amine						
29.	Dintrobenzene			V			
30.	Diquat						
31.	Disulfoton						
32.	Diuron						
33.	Epichlorohydrin						
34.	Ethion						
35.	Ethylene diamine						
36.	Ethylene dibromide					119 19 19 19 19 19 19 19 19 19 19 19 19	
37.	Formaldehyde						
38.	Furfural				M. Constant		

EPA Identification Number TN5640020504		NPDES Permit Number		Facility Name	Outfall Number	OMB No. 2040-000	
		TN0026450	Sequoya	h Nuclear Plant (SQN)	103	Expires 07/31/2026	
TAE	LE D. CERTAIN HAZARDOUS	SUBSTANCES AND ASBES	TOS (40 CFR 122	2.21(g)(7)(vii)) ¹			
	Dellutent	Presence	or Absence	Reason Pollutant Believed Present in Discharge		Available Quantitative Data	
	Pollutant	Believed Present	Believed Absent			(specify units)	
39.	Guthion						
40.	Isoprene						
41.	Isopropanolamine		V				
42.	Kelthane		V				
43.	Kepone						
44.	Malathion		V				
45.	Mercaptodimethur		V	B. C. Standard		and and a start of the	
46.	Methoxychlor						
47.	Methyl mercaptan						
48.	Methyl methacrylate						
49.	Methyl parathion						
50.	Mevinphos			S. Shakereker			
51.	Mexacarbate						
52.	Monoethyl amine						
53.	Monomethyl amine						
54.	Naled						
55.	Naphthenic acid						
56.	Nitrotoluene						
57.	Parathion		V				

EPA Identification Number NP		ES Permit Number		Facility Name	Outfall Number	OMB No. 2040-0004	
TN5640020504		N0026450	Sequoyah	Nuclear Plant (SQN)	103	Expires 07/31/2026	
TAB	LE D. CERTAIN HAZARDOUS	SUBSTANC	ES AND ASBEST	OS (40 CFR 122	.21(g)(7)(vii)) ¹		and the second
	Pollutant		Presence or (check	one)			Available Quantitative Data
			Believed Present	Believed Absent	Reason Pollut	ant Believed Present in Discharge	(specify units)
58.	Phenolsulfonate						
59.	Phosgene			7			
60.	Propargite						
61.	Propylene oxide			7			
62.	Pyrethrins			7			
63.	Quinoline						
64.	Resorcinol			7		and the state of the	
65.	Strontium			V			
66.	Strychnine						
67.	Styrene			7			
68.	2,4,5-T (2,4,5-trichlorophenox acid)	yacetic					
69.	TDE (tetrachlorodiphenyl etha	ne)					
70.	2,4,5-TP [2-(2,4,5-trichlorophe propanoic acid]	enoxy)		7			
71.	Trichlorofon						
72.	Triethanolamine					an sea and	
73.	Triethylamine						
74.	Trimethylamine						
75.	Uranium						
76.	Vanadium						
	EPA Identification Number NPE TN5640020504	DES Permit Number TN0026450	Sequoyah	Facility Name Nuclear Plant (SQN)	Outfall Number 103	OMB No. 2040-0004 Expires 07/31/2026	
-----	---	--------------------------------	--------------------	--	-----------------------	---	
TAE	BLE D. CERTAIN HAZARDOUS SUBSTAN	CES AND ASBEST	OS (40 CFR 122	.21(g)(7)(vii))1			
	Pollutant	Presence or (check	Absence			Available Quantitative Data	
	Politiant	Believed Present	Believed Absent	Reason Pollutant Believed Present in Discharge		(specify units)	
77.	Vinyl acetate						
78.	Xylene						
79.	Xylenol		7				
80.	Zirconium		V				

¹ Sampling shall be conducted according to sufficiently sensitive test procedures (i.e., methods) approved under 40 CFR 136 for the analysis of pollutants or pollutant parameters or required under 40 CFR Chapter I, Subchapter N or O. See instructions and 40 CFR 122.21(e)(3).

Diffuser Pond

DP

All flows shown in million gallons per day (MGD)

TENNESSEE VALLEY AUTHORITY (TVA) – SEQUOYAH NUCLEAR PLANT (SQN) -NPDES PERMIT NO. TN0026450 – WET REASONABLE POTENTIAL

Current Whole Effluent Toxicity (WET) Requirements:

Outfall 101 - 7-day or 3-brood $IC_{25} = 69\%$ [IWC = 69% effluent (1.4 TUc)]

Monitoring Frequency Governed by B/CTP: 1/year when oxidizing biocides used 1/year when non-oxidizing biocides used

Proposed WET Requirements:

Outfall 101 - 7-day or 3-brood $IC_{25} = 58.2\%$ [IWC = 58.2% effluent (1.7 TUc)]

> Monitoring Frequency Governed by B/CTP: 1/year when oxidizing biocides used 1/year when non-oxidizing biocides used

Background:

The current permit, effective August 1, 2020, requires chronic toxicity biomonitoring at a frequency governed by the B/CTP and with a monitoring limit $IC_{25} \ge 69\%$. Previous to the issuance of the current permit, Outfall 101 demonstrated No Reasonable Potential for excursions above the ambient water quality chronic (CCC) criterion using historical effluent data. This demonstration of No Reasonable Potential has been maintained throughout the current permit cycle as evidenced in the accompanying historical effluent data for the last 20 studies.

Based on guidance in EPA's Technical Support Document (TSD) for Water Qualitybased Toxics Control (EPA/505/2-90-001), a permit limit is not required when No Reasonable Potential exists for excursions above the CCC. In this situation, the TSD recommends that biomonitoring be conducted at a frequency of once every 5 years as part of the permit renewal process.

Dilution and Instream Waste Concentration Calculations

Outfall 101:

Design Flow = 1491 MGD

Tennessee River 1Q10 = 2563 MGD

Dilution Factor (DF): $DF = \frac{Qs}{Qw} = \frac{2563}{1491} = 1.72$ Instream Wastewater Concentration (IWC): $IWC = \frac{Qw}{Qs} = \frac{1491}{2563} \times 100 = 58.2\%$

Reasonable Potential Determination:

The last 20 studies for Outfall 101 were used for determining Reasonable Potential, with all studies resulting in no observed toxicity (<1.0 TUc) and a coefficient of variation equal to zero. This outcome demonstrates that no Reasonable Potential for excursions above the CCC exists, based on data obtained from testing conducted under the current operating conditions.

Historical data for the last 20 studies follows.

SQN Documentation:

Summary of SQN Outfall 101 WET Biomonitoring Results **

		Acute R	esults	Chronic
		(96-h Su	irvival)	Results
		% Survival	Study	Study
		in	loxicity	Toxicity
TratData	Tant Crasica	Unalluted	Units	Units (TUc)
l est Date	l est Species	Sample	(TUa)	
87. Sep 9-16, 2014	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100		
88. Aug 11-18, 2015	Ceriodaphnia dubia	100	<10	<1.0
	Pimephales promelas	95	1.0	
89. Oct 20-27, 2015	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	75		
90. May 17-24, 2016	Ceriodaphnia dubia	100	<10	<1.0
	Pimephales promelas	100		
91. Aug 2-9, 2016	Ceriodaphnia dubia	100	<10	<1.0
	Pimephales promelas	98		
92. May 2-9, 2017	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100		
93. Jul 25 - Aug 1, 2017	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100		
94. May 15-22, 2018	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100		
95. Oct 9-16, 2018	Ceriodaphnia dubia	100	<10	<1.0
	Pimephales promelas	100		
96. Apr 30 – May 7, 2019	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	1.0	-1.0
97. Aug 6-13, 2019	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	-1.0	-1.0
98. May 5-12, 2020	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	1.0	1.0
99. Oct 6-13, 2020	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100		
100. Jun 8-15, 2021	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100		
101. Sep 14-21, 2021	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100	-1,0	-1.0
102. May 3-10, 2022	Ceriodaphnia dubia	100	<1.0	<1.0
	Pimephales promelas	100	1.0	
103. Sep 13-20, 2022	Ceriodaphnia dubia	100	<10	<1.0
	Pimephales promelas	100	-1.0	-1.0
104. Jul 11-18, 2023	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	-1.0	-1.0
105. Sep 12-19, 2023	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	-1.0	-1.0
106. Jun 4-11, 2024	Ceriodaphnia dubia	100	<10	<10
	Pimephales promelas	100	\$1.0	\$1.0
n		40	20	20
Maximum		100	<1.0	<1.0
Minimum		75	<1.0	<1.0
Mean		99.2	<1.0	<1.0
CV		4.0%	0.00	0.00

**Last 20 studies only were included for determining RP. Shaded area includes data collected under the current permit.

TENNESSEE VALLEY AUTHORITY

Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of August 1, 2020

Prepared by

T. Matthew Boyington Walter L. Harper Jessica C. Brazille

Knoxville, Tennessee December 2024

EXECUTIVE SUMMARY

The National Pollutant Discharge Elimination System (NPDES) permit for Sequoyah Nuclear Plant (SQN) identifies the release of cooling water to the Tennessee River through the plant discharge diffusers as Outfall 101. The primary method to monitor compliance with the NPDES temperature limits for this outfall includes the use of a numerical model that solves a set of governing equations for the hydrothermal conditions produced in the river by the interaction of the SQN release and the river discharge. The numerical model operates in real-time and utilizes a combination of measured and computed values for the temperature, flow, and stage in the river; and the temperature and flow from the SQN discharge diffusers. The basic formulation of the numerical model is presented herein.

Part III, Section G of the permit states: *The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the division of Water Pollution Control.* This report is provided in fulfillment of these requirements.

Temperature measurements across the downstream end of the SQN mixing zone from fifty-three samples collected between 1982 and 2023 were used in this calibration study. This observed data was compared with computed downstream temperatures from the numerical model for the same periods of time. The results show acceptable agreement between computed and measured temperatures, particularly at river temperatures greater than 75°F. The overall average discrepancy between the measured and computed downstream temperatures was approximately 0.55 F° (0.31 C°). For downstream temperatures above 75°F, the average discrepancy was approximately 0.38 F° (0.21 C°). There was no significant change in the model performance compared to the previous calibration.

CONTENTS

1.2		-	1
	63		()
	1		

EXECUTIVE SUMMARY i
LIST OF FIGURES
LIST OF TABLES
INTRODUCTION
BACKGROUND
NUMERICAL MODEL
Plume Entrainment
Diffuser Effluent Re-Entrainment14
Diffuser Slot Width
CALIBRATION
Previous Calibration Data and Calibration Work15
New Calibration Data and Calibration Work18
Results of Updated Calibration
CONCLUSIONS
REFERENCES

LIST OF FIGURES

Page

Figure 1. Location of Sequoyah Nuclear Plant
Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant
Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant
Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers
Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser
Figure 6. Plume Centerline with Benton, McIntosh, and HydroK Entrainment Coefficients 13
Figure 7. Comparison of Computed and Measured Temperatures T _d for Field Studies from April 1982 through November 2023

LIST OF TABLES

Table 1. Summary of SQN Instream Thermal Limits for Outfall 101	5
Table 2. Comparison of Model Variation from Observed Temperatures at Station 8	4
Table 3. Plume Re-Entrainment Iteration Numbers and Factors 1	5
Table 4. Thermal Surveys at SQN from April 1982 through March 1983 1	6
Table 5. Thermal Surveys at SQN from March 1996 through April 2003 1	7
Table 6. Thermal Surveys at SQN from February 2004 through November 2023	7
Table 7. Thermal Surveys at SQN from November 2023 1	8

INTRODUCTION

The Sequoyah Nuclear Plant (SQN) is located on the right bank of Chickamauga Reservoir at Tennessee River Mile (TRM) 484.5. As shown in Figure 1, the plant is northeast of Chattanooga, Tennessee, about 13.5 miles upstream and 45.4 miles downstream of Chickamauga Dam and Watts Bar Dam, respectively. As shown in Figure 2, the reservoir in the vicinity of SQN contains a deep main channel with adjacent overbanks and embayments. The main channel is approximately 900 feet wide and 50 to 60 feet deep, depending on the pool elevation in Chickamauga Reservoir. The overbanks are highly irregular and usually less than 20 feet deep.

SQN has two units with a total summertime gross generating capacity of about 2350 MWe and an associated waste heat load of about 15.6x10⁹ Btu/hr (TVA, 2010). The heat transferred from the steam condensers to the cooling water is dissipated to the atmosphere by two natural draft cooling towers, to the river by a two-leg submerged multiport diffuser, or by a combination of both. The release to the river is identified in the National Pollutant Discharge Elimination System (NPDES) Permit as Outfall 101.

Figure 1. Location of Sequoyah Nuclear Plant

Figure 2. Chickamauga Reservoir in the Vicinity of Sequoyah Nuclear Plant

The compliance of SQN operation with the instream temperature limits specified in the NPDES permit (TDEC, 2020) is based on a downstream temperature that is calculated on a real-time basis by a numerical computer model. Part III, Section G of the permit states:

The numerical model used to determine compliance with the temperature requirements for Outfall 101 shall be subject of a calibration study once during the permit cycle. The study should be accomplished in time for data to be available for the next permit application for re-issuance of the permit. A report of the study will be presented to the Division of Water Pollution Control. Any adjustments to the numerical model to improve its accuracy will not need separate approval from the Division of Water Pollution Control; however, the Division will be notified when such adjustments are made.

This report presents a summary of compliance model and the required calibration study.

BACKGROUND

The original method of monitoring thermal compliance for the SQN diffuser discharge (i.e., Outfall 101), included two temperature stations located near the downstream corners of the mixing zone, Station 8 and Station 11 (see Figure 2). Because of the necessity to keep the navigation channel free of obstructions, temperature stations could not be situated between these locations to monitor the center of the thermal plume. The upstream ambient river temperature was measured at Station 13, located on the plant intake skimmer wall. In August 1983, the Tennessee Valley Authority (TVA) reported the results of six field studies of the SQN diffuser performance under various river and plant operating conditions (TVA, 1983a). The data summarized in the report showed that based on measured temperature variations across the downstream edge of the mixing zone, Station 8 and Station 11 were inadequate in providing a representative cross-sectional average temperature of the thermal plume. In particular, it was found that Station 11 often was not in the main path of flow of the thermal plume and did not always show elevated temperatures. The remaining downstream monitor. Station 8, also was not considered adequate because it again was located outside the navigation channel. In the report, TVA proposed an alternate method to monitor thermal compliance involving the use of a numerical model to simulate the behavior of the thermal plume in the mixing zone. The model would provide a real-time assessment of compliance with the thermal discharge limitations. Information required for the model included: the ambient river temperature upstream of the diffuser mixing zone (measured at Station 13, see Figure 2), the discharge in the river at SQN (determined from measurements at Watts Bar Dam and Chickamauga Dam), the depth of flow in the river (measured at Station 13), the temperature of the flow issuing from the plant diffusers (measured at Station 12, see Figure 2), and the discharge of the flow issuing from the diffusers (determined from measurements at both Station 12 and Station 13). A PC, located in the SQN Environmental Data Station (EDS), was to be used collect the required data, compute the thermal compliance parameters, and distribute the results to plant operators (see TVA, 1983b). The August 1983 report presented results demonstrating the validity of using the numerical model for tracking compliance with the Outfall 101 thermal limitations.

The method of using the numerical model was sent to the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), requesting approval for implementation as a valid means for monitoring SQN thermal compliance. The key advantage of the method includes a representation of the cross-sectional average downstream temperature that is at least as good as the instream temperature measurements from Station 8 and Station 11. The method also provides consistency with procedures that are used for scheduling releases from Watts Bar Dam and Chickamauga Dam, as well as procedures for operating Sequoyah Nuclear Plant. This consistency helps TVA minimize unexpected events that can potentially threaten the NPDES thermal limits for Outfall 101. In March 1984 approval was granted for TVA to use the numerical model as the primary method to track thermal compliance. Except for infrequent outages, the model has been in use ever since. Subsequently, Station 11 was removed from the river. However, Station 8 was retained to provide an optional method to track thermal compliance should there be a need to remove the model from service.

Due to the ever changing understanding of the hydrothermal aspects of Chickamauga Reservoir, as well as the operational aspects of the nuclear plant and river system, modifications have been necessary over the years for both the numerical model and thermal criteria for Outfall 101. The current version of the model is presented in more detail later. The current thermal criteria are presented in Table 1. The limit for the temperature at the downstream end of the mixing zone (T_d) is a 24-hour average value of 86.9°F (30.5°C) and an hourly average value of 93.0°F (33.9°C). The instream temperature rise (ΔT) is limited to a 24-hour average of 5.4 F° (3.0 C°) for months April through October, and 9.0 F° (5.0 C°) for months November through March. The latter "wintertime" limit was obtained by a 316(a) variance. The temperature rate-of-change at the downstream end of the mixing zone (dT_d/dt) is limited to ± 3.6 F°/hr (± 2 C°/hr). With the compliance model, dT_d/dt is based on 24-hour average river conditions and 15 minute plant conditions. Other details related to the temperature limits for Outfall 101 are provided in the notes accompanying Table 1. It is important to note that compliance with instream temperature limits are based on a computed downstream temperature at a depth of 5.0 feet. And in a similar fashion, the upstream temperature is measured at the 5.0 foot depth, based on the average of temperature readings at the 3-foot, 5-foot and 7-foot depths.

Originally, the ambient river temperature for the temperature rise was measured at Station 13, about 1.1 miles upstream of the discharge diffusers. However, under sustained low flow conditions, it was discovered that heat from the diffusers can migrate upstream and reach the area of Station 13. In this manner, the ambient temperature can become elevated, thereby artificially reducing the measured impact of the plant on the river (i.e., ΔT). As such, in late March 2006, a new ambient temperature station was installed in the river further upstream at TRM 490.4, about 6.8 miles upstream of the diffusers. In 2023, Station 14 was relocated nearby to a location more representative of the ambient river temperature profile. The location of Station 14 is shown in Figure 3.

Type of Limit	Averaging (hours)	NPDES Limit ²
Max Downstream Temperature, T _d	24	86.9°F (30.5°C)
Max Downstream Temperature, T _d	1	93.0°F (33.9°C)
Max Temperature Rise, ΔT	24	5.4 F°/9.0 F° (3.0 C°/5.0 C°)
Max Temperature Rate-of-Change, dT _d /dt	Mixed	±3.6 F°/hr (±2 C°/hr)

Table L. Summa	rv of SON	Instream	Thermal	Limits	for	Outfall	10	I
----------------	-----------	----------	---------	--------	-----	---------	----	---

Notes:

- 1. Compliance with the river limitations (river temperature, temperature rise, and rate of temperature change) shall be monitored by means of a numerical model that solves the thermohydrodynamic equations governing the flow and thermal conditions in the reservoir. This numerical model will utilize measured values of the upstream temperature profile and river stage; flow, temperature and performance characteristics of the diffuser discharge; and river flow as determined from releases at the Watts Bar and Chickamauga Dams. In the event that the modeling system described here is out of service, an alternate method will be employed to measure water temperatures at least one time per day and verify compliance of the maximum river temperature and maximum temperature rise. Depth average measurements can be taken at a downstream backup temperature monitor at the downstream end of the diffuser mixing zone (left bank Tennessee River mile 483.4) or by grab sampling from boats. Boat sampling will include average 5-foot depth measurements (average of 3, 5, and 7-foot depths). Sampling from a boat shall be made outside the skimmer wall (ambient temperature) and at quarter points and mid-channel at downstream Tennessee River mile 483.4 (downstream temperature). The downstream reported value will be a depth (3, 5, and 7-foot) and lateral (quarter points and midpoint) average of the instream measurements. Monitoring in the alternative mode using boat sampling shall not be required when unsafe boating conditions occur.
- 2. Compliance with river temperature, temperature rise, and rate of temperature change limitations shall be applicable at the edge of a mixing zone which shall not exceed the following dimensions: (1) a maximum length of 1500 feet downstream of the diffusers, (2) a maximum width of 750 feet, and (3) a maximum length of 275 feet upstream of the diffusers. The depth of the mixing zone measured from the surface varies linearly from the surface 275 feet upstream of the diffusers to the top of the diffuser pipes and extends to the bottom downstream of the diffusers. When the plant is operated in closed mode, the mixing zone shall also include the area of the intake forebay.
- 3. Information required by the numerical model and evaluations for the river temperature, temperature rise, and rate of temperature change shall be made every 15 minutes. The ambient temperature shall be determined at the 5-foot depth as the average of measurements at depths 3 feet, 5 feet, and 7 feet. The river temperature at the downstream end of the mixing zone shall be determined as that computed by the numerical model at a depth of 5 feet.
- 4. Daily maximum temperatures for the ambient temperature, the river temperature at the downstream edge of the mixing zone, and temperature rise shall be determined from 24-hour average values. The 24-hour average values shall be calculated every 15 minutes using the current and previous ninety-six 15-minute values, thus creating a 'rolling' average. The maximum of the ninety-six observations generated per day by this procedure shall be reported as the daily maximum value. For the river temperature at the downstream end of the mixing zone, the 1-hour average shall also be determined. The 1-hour average values shall be calculated every 15 minutes using the average of the current and previous four 15-minute values, again creating a rolling average.
- 5. The daily maximum 24-hour average river temperature is limited to 86.9°F (30.5°C). Since the state's criteria makes exception for exceeding the value as a result of natural conditions, when the 24-hour average ambient temperature exceeds 84.9°F (29.4°C) and the plant is operated in helper mode, the maximum temperature may exceed 86.9°F (30.5°C). In no case shall the plant discharge cause the 1-hour average downstream river temperature at the downstream of the mixing zone to exceed 93.0°F (33.9°C) without the consent of the permitting authority.
- 6. The temperature rise is the difference between the 24-hour average ambient river temperature measured at Station 14 and the computed 24-hour average temperature at the downstream end of the mixing zone. The 24-hour average temperature rise shall be limited to 5.4F° (3.0 C°) during the months of April through October. The 24-hour average temperature rise shall be limited to 9.0F° (5.0 C°) during the months of November through March.
- 7. The rate of temperature change shall be computed at 15-minute intervals based on the current 24-hour average ambient river temperature, current 24-hour-hour average river flow, and current values of the flow and temperature of water discharging through the diffuser pipes. The 1-hour average rate of temperature change shall be calculated every 15-minutes by averaging the current and previous four 15-minute values. The 1-hour average rate of temperature change shall be limited to 3.6F° (2 C°) per hour.

Figure 3. Locations of Instream Temperature Monitors for Sequoyah Nuclear Plant

NUMERICAL MODEL

The diffusers at SQN are located on the bottom of the navigation channel in Chickamauga Reservoir. As shown in Figure 4, each diffuser is 350 feet long, and contains seventeen 2-inch diameter ports per linear foot of pipe, arranged in rows over an arc of approximately 18 degrees in the downstream upper quadrant of the diffuser conduit. The two diffuser legs rest on an elevated pad approximately 10 feet above the bottom of the river, occupying the 700 feet of navigation channel on the plant-side of the river (right side of the channel, looking downstream). The flow in the immediate vicinity of the ports is far too complex to be analyzed on a real-time basis with current computer technology. Therefore, a simplifying assumption is made that the diffusers can be treated as a slot jet with a length equal to that of the perforated sections of the pipe. The width of this assumed slot is one of three empirical parameters used to calibrate the model. The second is a relationship used to compute the entrainment of ambient water along the trajectory of the plume and the third is a relationship for the amount of diffuser effluent that is re-entrained into the diffuser plume for sustained low river flow.

The initial development of the numerical model is described in detail by Benton (2003). Based on later studies that provided evidence that re-entrainment occurs (TVA, 2009), the original numerical model was modified to better reflect the local buildup of heat that occurs in the river under such conditions. Before presenting calibration results, it is appropriate first to provide a brief description of the model formulation.

Figure 4. Sequoyah Nuclear Plant Outfall 101 Discharge Diffusers

In general, the model treats the effluent discharge from the diffusers as a fully mixed, plane buoyant jet with a two-dimensional (vertical and longitudinal) trajectory. This is shown schematically in Figure 5. The jet discharges into a temperature-stratified, uniform-velocity flow and entrains ambient fluid as it evolves along its trajectory. The width, b, of the jet and the dilution of the effluent heat energy increase along the jet trajectory, decreasing the bulk mixed temperature along its path.

Figure 5. Two-Dimensional Plane Buoyant Jet Model for a Submerged Diffuser

Consideration of the mass, momentum, and energy for a cross section of the plume orthogonal to the jet trajectory and having a differential thickness *ds*, yields the following system of ordinary differential equations,

$$\frac{d}{ds}(\rho_j v_j b) = m_e \text{ (conservation of mass in jet),}$$
(1)
$$\frac{d}{ds}(\rho_j v_j b) = m_e \text{ (conservation of mass in jet),}$$
(2)

$$\frac{a}{ds}(\rho_j v_j bu) = m_e u_e \text{ (conservation of x momentum in jet)}, \tag{2}$$

$$\frac{d}{ds}(\rho_j v_j bv) = m_e v_e + bg(\rho_e - \rho_j) \text{ (conservation of y momentum in jet)}, \tag{3}$$

$$\frac{d}{ds}(\rho_j v_j bcT_j) = m_e cT_e \text{ (conservation of thermal energy in jet),}$$
(4)

$$\frac{dx}{ds} = \frac{u}{v_i}$$
, and (5)

 $\frac{dy}{ds} = \frac{v}{v_j} \text{ (velocity of jet tangent to trajectory).}$ (6)

The following auxiliary relationships also are needed to solve the differential equations,

$$m_e = \alpha \rho_e \left[(u_e - u)^2 + v^2 \right]^{1/2}, \tag{7}$$

$$\rho_j = \rho_{water}(T_j), \tag{8}$$

$$\rho_e = \rho_{water}(T_e), \tag{9}$$

$$T_e = T_{river}(y), \tag{10}$$

$$u_e = u_{river}, \tag{11}$$

$$v_e = 0, \text{ and} \tag{12}$$

$$v_j = \left(u^2 + v^2\right)^{1/2}.$$
(13)

In these equations, the subscripts *j* and *e* denote conditions within the buoyant *jet* and conditions within the water upstream of the mixing zone that is *entrained* by the jet, respectively. Thus, ρ_j denotes the density of water at a point inside the jet and ρ_e denotes the density of water entrained from upstream of the mixing zone. T_e denotes the temperature of the water upstream of the mixing zone that is entrained by the jet. The x-velocity of the entrained water, u_e , is the same as the river velocity, u_{river} , which is negligible in the vertical direction (i.e., $v_e = 0$). The magnitude of the velocity along the jet trajectory is denoted by v_j , with x- and y-components u and v, respectively. The individual jets issuing from the array of 2-inch diameter outlet ports of each diffuser are modeled as a plane jet issuing from a slot of width b_0 . Ideally, the slot width is chosen to preserve the total momentum flux issuing from the circular ports of the diffuser. However, for this formulation, the slot width is used as a term to calibrate the numerical model. The river velocity u_{river} is computed by a one-dimensional unsteady flow model of Chickamauga Reservoir. Apart from information for the reservoir geometry, the basic input for the flow model includes the measured hydro releases at Watts Bar Dam and Chickamauga Hydro Dam and the measured river water surface elevation at SQN.

The transverse gradients of velocity, temperature, and density that occur within the jet due to turbulent diffusion of the effluent momentum and energy are modeled as an entrainment mass flux, m_e , induced by the vectorial difference between the velocity of the jet and that of the river flow upstream of the mixing zone. Empirical relationships for the entrainment coefficient α are based on arguments of jet self-similarity and asymptotic behavior. These relationships incorporate non-dimensional parameters, such as a Richardson or densimetric Froude number, that describe the relative strengths of buoyancy and momentum flux in the jet (e.g., see Fischer et al., 1979). Again, as indicated earlier, the entrainment coefficient, like the slot width, is adjusted as part of the calibration process.

The initial conditions required by the model include,

$$b|_{s=s_0} = b_0$$
, (14)

$$x\big|_{s=s_0} = R\cos\theta \tag{15}$$

$$y\big|_{s=s_0} = R\sin\theta \tag{16}$$

$$u|_{s=s_0} = \frac{q_0}{b_0} \cos\theta,$$
(17)

$$v|_{s=s_0} = \frac{q_0}{b_0} \sin \theta$$
, and (18)

$$\left. T_{j} \right|_{s=s_{0}} = T_{0} \tag{19}$$

This system of differential equations, auxiliary equations, and initial conditions comprise a firstorder, initial-value problem that can be integrated from the diffuser slot outlet ($s = s_0$) to any point along the plume trajectory. Note in the above that R is the radius of the diffuser conduit, b_0 is the effective width of the diffuser slot, θ is the exit angle of the diffuser jet, T_0 is the temperature of effluent issuing from the slot, and q_0 is the effluent discharge per unit length of diffuser. In practice, integration of the governing equations is halted when the jet centerline reaches a point five feet below the water surface (the regulatory compliance depth) or when the upper boundary of the jet reaches the water surface. The jet temperature, T_j , at this point is reported as the fully-mixed temperature to which the thermal regulatory criteria are applied or to which monitoring station data at the edge of the regulatory mixing zone are compared. The integration is done with an adaptive step-size, fourth-order Runge-Kutta algorithm.

In the model, Station 13 (Figure 2), located 1.1 miles upstream of the diffusers, is used to represent the temperature of the water entrained in the mixing zone, $T_e = T_{river}(y)$. Whereas this is a good assumption for river flows where the effluent plume is carried downstream, it weakens for low river flows. Based on the understanding gained in field studies (TVA, 2009), it is known that partial re-entrainment of the effluent plume occurs at sustained low river flow, increasing the temperature of the water entering the mixing zone above that represented by Station 13. To simulate this phenomenon, the model modifies the Station 13 temperature profile for low river flows. For each point in the profile, a local densimetric Froude number is computed as

$$F_r = \frac{u_{river}}{\sqrt{g\left(\frac{\rho_e - \rho_p}{\rho_e}\right)} (Z_e - Z_b)},$$
(20)

where u_{river} is the average river velocity, Z_e - Z_b is the elevation of the profile point relative to the bottom elevation of the river, ρ_e is the entrainment water density at that elevation, and ρ_p is the density of the effluent plume at the 5-foot compliance depth. The densimetric Froude number represents the ratio of momentum forces to buoyancy forces in the river flow. If F_r is less than 1.0 (i.e., buoyancy greater than momentum), it is assumed that the buoyancy of the plume is sufficient to cause part of the plume to travel upstream and become re-entrained into the flow, thereby increasing the temperature of the water entering the mixing zone. The modified entrainment temperature T_e^N at each point in the Station 13 profile is computed by repeatedly evaluating

$$T_e^n = R \times T_p + (1.0 - R) \times T_e^{n-1}$$
(21)

for values of *n* from 1 to *N*, where *N* is the number of iterations of Eq. (21), *R* is a re-entrainment fraction, $T_e^{n=0}$ is the original Station 13 temperature, and T_p is the computed plume temperature at the 5-foot depth. *N* and *R* are functions of the 24-hour average river velocity. After new Station 13 temperatures have been computed for the entire profile, the mixing zone computation is performed again, using the modified profile to get a new plume temperature at the 5-foot depth. It is emphasized that the final result of the model is the computed temperature at the downstream end of the mixing zone. The instream temperature rise is still computed based on the temperature measurement at the new ambient temperature monitor, Station 14.

Values for N and R are calibrated based on observed temperatures at the downstream end of the diffuser mixing zone for low river flow conditions, as indicated earlier. Depending on the river stage, the modifications by Equation 21 begin to take effect as the 24-hour average river flow drops through the range of 17,000 cfs to 25,000 cfs, and increases as the 24-hour average river flow continues to drop. For river flows above this range, no modification is needed for re-entrainment.

The downstream temperature and instream temperature rise provided by the model are computed every 15 minutes, using instantaneous values of the measured diffuser discharge temperature (Station 12), measured upstream temperature profile (Station 13), measured ambient temperature (Station 14), measured river elevation (Station 13), and computed values of the river velocity (onedimensional unsteady flow model of Chickamauga Reservoir) and diffuser discharge. The diffuser discharge is computed based on the difference in water elevation between the SQN diffuser pond (Station 12) and the river (Station 13). All computations are performed every 15 minutes to provide rolling hourly and 24-hour average values. The hourly averages are based on the current and previous four 15-minute values, whereas the 24 hour averages are based on current and previous ninety-six 15-minute values. The temperature rate-of-change is determined slightly different, being computed every 15 minutes based on current 24-hour average river conditions and current 15-minute values of the flow and temperature of water discharging from the SQN diffusers. This method was adopted in August 2001 in order to distinguish between rate-of-change events due to changes in SQN operations (i.e. changes in plant discharge flow and/or temperature) and those due to non-SQN changes in operations (e.g., changes in river flow). Prior to this change, SQN was held accountable for temperature rate-of-change events over which it had very little control or influence.

Plume Entrainment

McIntosh Coefficient

Three empirical relationships for the plume entrainment coefficient are available in the numerical model. The first, developed by McIntosh, was inferred from a relationship for the entrainment coefficient determined from the data reported in 1983 (TVA, 1983a) and is given by

$$\propto = \begin{cases} 0.55 \text{ for } F_d < 0.75 \\ \frac{0.27}{F_d^{2.5}} \text{ for } 0.75 \le F_d \le 1.00 \\ 0.27 \text{ for } F_d > 1.00 \end{cases}$$

$$(22)$$

where F_d is the densimetric Froude number of the diffuser discharge defined by

$$F_d = \frac{w_d}{\sqrt{gb_o \frac{(\rho_d - \rho_o)}{\rho_o}}}.$$
(23)

The term w_d is the velocity of the diffuser discharge, g is the gravitational constant, b_0 is the diffuser slot width, ρ_d is the density of the diffuser discharge, and ρ_o is the density of the ambient river water at the discharge depth.

Benton Coefficient

The second entrainment coefficient, based on laboratory data, was originally developed by Benton in 1986 and is given by

$$\alpha = 0.31 + 1.69 \left[\frac{1 + tanh(6.543 * rmf - 2.0584)}{2} \right],$$
(24)

where

$$rmf = u_{river}^3 / b , \qquad (25)$$

and

$$b = Q_0 \left(\frac{g}{l}\right) \left(\frac{\rho_o - \rho_d}{\rho_o}\right).$$
(26)

Term u_{river} is the ambient river velocity, as previously defined, Q_0 is the diffuser discharge flowrate, and l is the length of the ported section of the diffuser.

HydroK Coefficient

A third coefficient, termed HydroK, was introduced as a reduced form of the entrainment coefficient from Jirka (2006). HydroK is appropriate for the range of operating conditions encountered at the power plant.

$$\frac{d q}{d s} = \beta \,\overline{w} \equiv \overline{w} \left\{ 2\sqrt{2} \,\alpha_{1s} + \frac{2\sqrt{2} \,\alpha_{2s} \sin\theta}{F_j} + \alpha_{4s} \frac{U_{riv}}{\overline{w}} |\cos\theta| \sin\theta \right\}$$
(27)

A detailed accounting of the analysis and derivation of this entrainment coefficient is provided by Uittenbogaard and Vlijm (2019).

Comparison

A comparison of the McIntosh, Benton, and HydroK entrainment coefficients is presented in Figure 6. The plume centerline using the HydroK coefficient is deemed to be the most realistic and aligns with literature and laboratory studies. Accordingly, the HydroK coefficient has been adopted. A detailed discussion is available in Uittenbogaard and Vlijm (2019).

Figure 6. Plume Centerline with Benton, McIntosh, and HydroK Entrainment Coefficients

A comparison of the computed compliance model for 2018–2024 using the HydroK entrainment coefficient is provided in Table 2. Computed temperatures from the model were compared to the 15-minute observed 5 ft temperatures at Station 8. For all years, the computed temperatures using the HydroK coefficient was closer to the observed temperatures than simulations using the Benton coefficient (the previous default). The standard deviation also outperformed in all cases.

Year	Benton En	trainment	HydroK E	ntrainment
	Average	Standard	Average	Standard
	Computed	Deviation of	Computed	Deviation of
	Temperature	Computed	Temperature	Computed
	Difference from	Temperature	Difference from	Temperature
	Observed	from Observed	Observed	from Observed
	Temperature at	Temperature at	Temperature at	Temperature at
	St 8	St 8	St 8	St 8
	(°F)	(°F)	(°F)	(°F)
2018	3.1	1.9	1.2	1.0
2019	3.4	3.4	1.6	2.3
2020	3.1	1.7	0.9	0.7
2021*	3.9	1.8	2.0	2.0
2022	2.0	1.9	1.2	1.6
2023	2.0	1.4	0.8	0.8
2024*	2.3	1.9	2.0	1.4

Table 2. Comparison of I	Model Variation	from Observed	Temperatures at	Station 8

* Partial year analyzed

Diffuser Effluent Re-Entrainment

Partial re-entrainment of the diffuser plume is known to occur under conditions of low river flow. When the diffuser plume attempts to entrain an amount of ambient flow greater than what is available from further upstream, the upper portions of the plume tend to migrate upstream and plunge downward to be mixed with the flow in the lower portion of the river. The formulation to simulate this phenomenon was presented earlier (Equations 20 and 21). The unknown coefficients to be determined in the calibration process are the number of iterations N and re-entrainment fraction R in Eq. (21), which are functions of the 24-hour average river velocity.

Based on the evaluation of numerous combinations of N and R for diffuser effluent re-entrainment (Eq. 20 and 21), Table 3 gives the values that resulted in computed downstream temperatures that most closely matched measurements in field surveys. For river velocities between the values given in Table 3, the re-entrainment factor R is interpolated between the table values. The number of iterations N is interpolated and then rounded to the nearest integer. No re-entrainment correction is performed for 24-hour river velocities greater than the highest value in the table.

Model runs were previously performed with and without the re-entrainment option enabled. With re-entrainment enabled, 54% of simulated data points more closely match the observed data. Without re-entrainment enabled, only 12% of simulated data points more closely match the observed data. Based upon these results, the re-entrainment correction method is used. The observed data points used for this comparison were collected from 1982-2018 and are reported in Tables 4, 5, and 6.

River Velocity (ft/sec)	Number of Iterations N	Re-entrainment Factor R
0.000	3	0.21930
0.050	3	0.13300
0.075	3	0.11000
0.100	3	0.10000
0.200	3	0.02670
0.300	3	0.03507
0.400	3	0.00893
0.500	3	0.00447
0.600	0	0.00000

Table 5. Flume Re-Enhamment iteration numbers and Fa	Factors
--	---------

Diffuser Slot Width

The effective slot width for a multiport diffuser of the type at SQN can be assumed to fall somewhere between the width of a rectangle with length equal to that of the diffuser section and area equal to the total area of the ports; and the width a rectangle with length equal to that of the diffuser section and area equal to the arc length of the perforated section of the diffuser. For the HydroK entrainment coefficient the slot with was determined to be 0.198 ft (Uittenbogaard and Vlijm 2019).

CALIBRATION

The numerical model is calibrated to achieve the best match between computed downstream temperatures and field measurements at the downstream end of the mixing zone. Field measurements at the downstream end of the mixing zone are of two types—those including samples from field surveys across the entire width of the mixing zone and those from Station 8, which includes samples only at the left-hand corner of the mixing zone (e.g., see Figure 2). Higher priority is given to matching data from field surveys, since such measurements are made across the entire width of the plume mixing zone and are more representative of the average temperature in the thermal plume at the 5-foot compliance depth.

Previous Calibration Data and Calibration Work

Prior to the NPDES permit of August 2020, field surveys were performed in 1981, 1982, 1983, 1987, 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2006, 2007, 2012 and 2018. In July 1981, TVA conducted the first field survey of the SQN thermal discharge (TVA, 1982). The results of the field surveys were compared to projections from modeling relationships developed from mixing theory and a physical model test of the discharge diffusers. Adequate agreement was achieved between measured data and model projections. In cases where there were discrepancies, the model underpredicted the observed dilutions (i.e., over-predicted temperatures).

Between April 1982 and March 1983, five field surveys containing seventeen sets of samples across the downstream end of the mixing zone were performed to acquire data for validation of the computed compliance technique (TVA, 1983a). The results of these surveys are given in Table 4. Only one SQN unit was operating during the March 1983 test—the other five tests were for operation with two units. The results of the numerical model compared favorably with the field-measured downstream temperatures. On average, the discrepancy between the measured and computed downstream temperatures was about 0.40 F° (0.22 C°). Since the accuracy of the temperature sensors used by TVA are only about ± 0.25 F° (± 0.14 C°), the agreement between the field measurements and the computer model was considered good. A similar comparison between the Station 8 and Station 11 temperatures and the measured average temperatures across the downstream edge of the mixing zone revealed that the discrepancy for Station 8 was about 0.79 F° (0.44 C°) and for Station 11 about 0.65 F° (0.36 C°). Consequently, it was concluded that the numerical model is not only an accurate representation of the downstream temperature but also is likely superior to the monitoring approach using Station 8 and Station 11.

In September 1987, TVA released a report describing the field surveys in support of the validation and calibration of the SQN numerical model that had been performed up to that date (TVA, 1987). In the report, a chart was introduced that described the ambient and operational conditions for which field surveys had been performed. This chart indicated combinations of river flow, season, and number of operating units, showing what tests had been performed, and assigning relative priorities for tests to be performed in the future. With this guidance, six more field surveys were performed between March 1996 and April 2003, to measure downstream temperatures for various river flows and at different times of year. The results of these surveys produced ten sets of samples across the downstream end of the mixing zone, as given in Table 55.

Between 2004 and 2023 a number of additional field surveys were performed, providing twenty-six more sets of samples containing temperature measurements across the downstream end of the diffuser mixing for various river flows and at different times of the year. The results of these surveys are given in Table 6 and Table 7.

River Temperatures (5-foot depth) Approx Tu Td ΔT Date Flow Stage Time Measured Measured Measured (cfs) (ft MSL) (°F) (°F) (°F) 04/04/1982 0900 CST 19900 676.46 56.8 61.9 5.1 04/04/1982 1000 CST 19800 676.46 56.7 60.1 3.4 04/04/1982 1100 CST 19600 676.47 56.7 61.2 4.5 04/04/1982 1200 CST 19700 676.50 57.2 61.9 4.7 04/04/1982 676.45 57.4 62.2 1300 CST 19700 4.8 05/14/1982 0900 CDT 7200 682.43 74.5 71.8 -2.7 73.4 05/14/1982 1100 CDT 9100 682.40 71.8 -1.6 05/14/1982 1300 CDT 6300 682.42 72.1 73.6 1.5 09/02/1982 1400 CDT 38500 680.30 78.1 80.1 2.0

Table 4. Thermal Surveys at SQN from April 1982 through March 1983

Date	S Market	River		Temperatures (5-foot depth)			
	Approx Time		Stage (ft MSL)	Tu	T _d	ΔΤ	
		(cfs)		Measured (°F)	Measured (°F)	Measured (°F)	
11/10/1982	1300 CST	36200	677.57	59.0	60.1	1.1	
11/10/1982	1400 CST	31600	677.59	59.0	60.6	1.6	
11/10/1982	1500 CST	32300	677.58	59.0	60.4	1.4	
03/31/1983	1100 CST	9800	676.34	51.4	54.3	2.9	
03/31/1983	1200 CST	9400	676.34	50.4	54.7	4.3	
03/31/1983	1300 CST	9300	676.34	52.5	54.5	2.0	
03/31/1983	1400 CST	9500	676.34	51.4	54.9	3.5	
03/31/1983	1500 CST	9400	676.36	51.4	54.9	3.5	

Table 5. Thermal Surveys at SQN from March 1996 through April 2003

Date		River		Temperatures (5-foot depth)			
	Approx	Flow (cfs)	Stage (ft MSL)	Tu	T _d	ΔΤ	
	Time			Measured (°F)	Measured (°F)	Measured (°F)	
03/01/1996	1100 CST	42456	676.96	45.9	48.8	2.9	
03/01/1996	1445 CST	28136	677.04	46.2	50.2	4.0	
03/01/1996	1600 CST	21962	677.00	46.1	51.4	5.3	
03/01/1996	1700 CST	20280	677.00	46.0	51.5	5.5	
07/24/1997	1550 CDT	40441	682.57	83.5	84.7	1.2	
03/24/1999*	1250 CST	35731	677.46	51.9	54.5	2.7	
08/02/2000	1000 CDT	12472	682.20	82.1	85.1	3.0	
08/02/2000	1100 CDT	8624	682.20	82.1	85.3	3.1	
07/27/2002	1250 CDT	17231	682.37	84.0	86.6	2.6	
04/23/2003	1445 CDT	34178	682.53	63.7	64.2	0.5	

* The survey of 03/24/1999 is lacking valid upstream temperature data and was not used in the calibration.

Table 6. Thermal Surveys at SQN from February 2004 through November 2023

	1	F	River	Temperatures (5-foot depth)			
Date	Approx Time	El	C.	Tu	T _d	ΔΤ	
Date		(cfs)	(ft MSL)	Measured (°F)	Measured (°F)	Measured (°F)	
02/14/2004	0600 CST	51133	677.50	43.7	46.3	2.6	
02/22/2004	1800 CST	18468	678.40	45.8	50.5	4.7	
08/22/2004	1800 CST	12340	682.00	79.8	84.1	4.3	
08/23/2004	1800 CST	39238	682.20	79.8	82.4	2.6	
04/01/2006	1915 CST	7084	677.20	59.7	63.5	3.8	
04/04/2006	0015 CST	7996	677.70	59.3	63.9	4.6	

04/04/2006	1105 CST	8251	677.80	59.6	61.3	1.7
04/04/2006	2030 CST	8258	678.00	59.0	63.2	4.2
04/05/2006	0915 CST	7917	678.20	59.2	62.8	3.6
04/05/2006	2215 CST	8277	678.40	60.4	64.2	3.8
04/06/2006	0915 CST	8174	678.50	59.7	63.3	3.6
04/06/2006	2315 CST	8077	678.70	61.0	64.5	3.5
04/07/2006	0840 CST	8162	678.80	59.9	63.9	4.0
04/07/2006	1435 CST	7889	678.80	60.0	64.7	4.7
05/22/2006	1445 CST	14511	682.00	73.4	72.9	-0.5
05/23/2006	1455 CST	17878	682.20	73.5	73.9	0.4
05/28/2006	1440 CST	13396	682.30	76.6	76.7	0.1
05/29/2006	1435 CST	13713	682.40	77.5	77.6	0.1
05/30/2006	1425 CST	14304	682.40	79.7	79.2	-0.5
09/20/2007	1200 CST	8545	681.80	79.3	83.4	4.1
09/21/2007	1300 CST	8629	681.70	80.6	82.5	1.9
09/22/2007	0600 CST	6969	681.70	79.5	81.8	2.3
11/04/2007	1200 CST	7664	678.70	64.9	69.5	4.6
11/16/2012	1400 CST	12599	678.62	57.0	60.3	3.3
08/22/2018	1600 CST	12531	682.70	81.9	84.0	2.1

The most recent calibration of the numerical model was performed in 2018 to support the NPDES permit of June 2015 (TVA, 2015). The data from Table 44, Table 5, and Table were used in this calibration. The average overall discrepancy between the measured and computed downstream temperatures was about 0.55 F° (0.31 C°). For downstream temperatures above 75°F, the average discrepancy improved to about 0.38 F° (0.21 C°).

New Calibration Data and Calibration Work

Since the 2018 model calibration, an additional field study was performed in November 2023 (Table 77). The study included the operation of two units at SQN and was conducted concurrently with independent measurements for the discharge through the diffusers (TVA, 2018). Measured data of downstream temperatures was collected for a 6-hour period at 5 locations which were spread equally across the entire end of the mixing zone. Those five locations were averaged across the 3 foot, 5 foot, and 7 foot depths. With this new field measurement, altogether fifty-three data points with sets of temperature samples across the downstream end of the mixing zone were available for updating the model calibration (i.e., Table 4 through Table 77).

Date	and the second	F	River	Temperatures (5-foot depth)			
	Approx Time	FI	0.	Tu	T _d	ΔΤ	
		(cfs)	(ft MSL)	Measured (°F)	Measured (°F)	Measured (°F)	
11/15/2023	1500 CST	20566	677.48	62.0	66.2	4.2	

Table 7. Thermal Surveys at SQN from November 2023

Results of Updated Calibration

The computed and measured downstream temperatures for the fifty-three downstream temperature data points collected in SQN field surveys since March 1982 are shown in

Figure 77. The newest measurement on Figure 7 is denoted with a blue circle. A modeled value of 65.7°F (18.72°C) was calculated compared to the newly measured field value of 66.2°F (19.0°C) for a difference of 0.5 F°. The average discrepancy between all the measured and all the computed downstream temperatures was approximately 0.55 F° (0.31 C°). For downstream temperatures above 75°F (23.89°C), the average discrepancy was 0.38 F° (0.21 C°); however, for the most recent field measurement the downstream temperature was not above 75°F. There was no discernable change in the overall model performance compared to the previous calibration.

Figure 7. Comparison of Computed and Measured Temperatures T_d for Field Studies from April 1982 through August 2023

CONCLUSIONS

The numerical model for the SQN effluent discharge computes the temperature at the downstream end of the mixing zone with sufficient accuracy for use as the primary method of verifying thermal compliance for Outfall 101. In the updated calibration study summarized herein, which used the results from fifty-three sets of temperature samples across the downstream end of the diffuser mixing zone, the average discrepancy between the measured and computed downstream temperatures was approximately 0.55 F° (0.31 C°). For downstream temperatures above 75°F, the average discrepancy was approximately 0.38 F° (0.21 C°). There was no discernable change in the overall model performance compared to the previous calibration.

REFERENCES

Benton, D.J. (2003), "Development of a Two-Dimensional Plume Model," Dynamic Solutions, LLC, Knoxville, Tennessee, May 2003.

Fischer, H. B., E. J. List, R. C. Y. Yoh, J. Imberger, and N. H. Brooks (1979), *Mixing in Inland and Coastal Waters*, Academic Press: New York, 1979.

Jirka, G.H. (2006). Integral Model for Turbulent Buoyant Jets in Unbounded Stratified Flows Part 2: Plane Jet Dynamics Resulting from Multiport Diffuser Jets. Environmental Fluid Mechanics (2006) 6: 43-100.

TDEC (2005), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, July 29, 2005.

TDEC (2011), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, January 31, 2011.

TDEC (2015), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, June 1, 2015.

TDEC (2020), "NPDES Permit No. TN0026450, Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES)", Tennessee Department of Environment and Conservation, Division of Water Pollution Control, Nashville, Tennessee 37243-1534, August 1, 2020.

TVA (1982), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, "A Field Verification of Sequoyah Nuclear Plant Diffuser Performance Model One-Unit Operation," TVA Division of Air and Water Resources, Water Systems Development Branch, Report No. WR28-1-45-110, October 1982.

TVA (1983a), McIntosh, D.A., B.E. Johnson, and E.B. Speaks, "Validation of Computerized Thermal Compliance and Plume Development at Sequoyah Nuclear Plant," Tennessee Valley Authority, Division of Air and Water Resources, Water Systems Development Branch Report No. WR28-I-45-115, August 1983.

TVA (1983b), Waldrop, W.R., and D.A. McIntosh, *Real-Time Computation of Compliance with Thermal Water Quality Standards*, Proceedings of Microcomputers in Civil Engineering, University of Central Florida, Orlando, Florida, November 1983.

TVA (1987), Ostrowski, P., and M.C. Shiao, "Quality Program for Verification of Sequoyah Nuclear Plant Thermal Computed Compliance System," Tennessee Valley Authority, Office of Natural Resources and Economic Development, Division of Air and Water Resources Report No. WR28-3-45-134, September 1987.

TVA (2003), Harper, W.L., "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of August 2001, Report No. WR2003-1-45-149, Tennessee Valley Authority, River Operations, June 2003.

TVA (2009), Harper, W.L. and P.N. Hopping, "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005, Report No. WR2009-1-45-150, Tennessee Valley Authority, River Operations, January 2009.

TVA (2009), "Ambient Temperature and Mixing Zone Studies for Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of September 2005," Report No. WR2009-1-45-151, Tennessee Valley Authority, River Operations, January 2009.

TVA (2010), "Sequoyah Nuclear Plant (SQN) – Revised Thermal Performance Baseline and Capacity Ratings," Memo from Scott D. Terry to J.D. Williams (B85100419001), April 14, 2010.

TVA (2013), Boyington, T.M., P.N. Hopping, and W.L. Harper, "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of March 2011, Report No. WR2013-1-45-152, Tennessee Valley Authority, River Operations & Renewable, April 2013.

TVA (2018), Brazille, J.C., T.M. Boyington, and W.L. Harper, "Study to Confirm the Calibration of the Numerical Model for the Thermal Discharge from Sequoyah Nuclear Plant as Required by NPDES Permit No. TN0026450 of November 2018, Report No. WR2018-1-45-153, Tennessee Valley Authority, River Operations & Renewable, April 2013.

TVA (2018), "Sequoyah Nuclear Plant (SQN)--Update of Flowrate Characteristics Through the Diffusers," Memo from Colleen Montgomery to Millicent M. Garland, September 5, 2018.

Uittenbogaard, R. and R. Vlijm (2019), "Adapting TVA's slotjet model for coupling with Delft3D-FLOW." Report from Deltares. Delft, Netherlands.

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11th Floor Nashville. Tennessee 37243-1102

November 23, 2015

CERTIFIED MAIL RETURN RECEIPT REQUESTED RETURN RECEIPT # 7009 2820 0003 6036 8543

Mr. Terry Cheek Senior Manager TVA Water Permits, Compliance, and Monitoring 1101 Market Street, BR 4A ecopy: techeek@tva.gov Chattanooga, TN 37402

Re: UV Treatment of Effluent for Toxicity Testing for Fathead Minnows (*Pimephales promelas*) TVA-Sequoyah Nuclear Plant NPDES TN0026450, Hamilton County

Dear Mr. Cheek:

The Division has received your request dated October 26, 2015, to use UV treatment on the effluent from Sequoyah Nuclear Plant, for the purposes of pathogen removal. This treated effluent is used during Whole Effluent Toxicity (WET) testing for Fathead Minnows (*Pimephales promelas*).

The Division approves the use of UV radiation at the above referenced facility, similar to prior approvals granted in 2006 at Kingston and Cumberland fossil plants. We have considered the concern for potential changes in test results when organic compounds are present, as identified in section 11.3.4.6.1 (Use of UV light to irradiate the sample) in EPA's Guidance Document for WET testing. Since organic compounds are not routinely reported in this facility's effluent, it is reasonable to approve testing in this manner.

If you have any further questions, please contact Robert Alexander at (615) 532-0659 or via e-mail at <u>robert.alexander@tn.gov</u>, or you may contact me at (615) 532-0670 or via e-mail at <u>jessica.murphy@tn.gov</u>.

Sincerely, Jessica Murphy

Manager, Compliance and Enforcement

cc: Vojin Janjic, Water-Based Systems EPA Region 4, r4permits@epa.gov

Sequoyah Nuclear Plant Biocide/Chemical Treatment Plan NPDES Permit No. TN0026450

Chemical treatment programs have been implemented at Sequoyah Nuclear Plant to control fouling, plugging, and pipe wall thinning of the raw water systems. Most of the chemicals used in these treatment programs are added at three locations: Essential Raw Cooling Water (ERCW intake for ERCW A train and ERCW B train and Raw Cooling Water (RCW) pump suction header for RCW to ensure these raw water systems are protected. These systems, the ERCW and RCW, are essential for the safe and reliable operation of the plant. The SQN Biocide/Chemical Treatment Plan (B/CTP) is designed to allow for protection of these systems while ensuring that the concentration of chemicals in the effluent does not adversely impact the receiving stream. SQN demonstrates compliance with the treatment plans below using mass balance calculations where possible. The chemicals currently used are described below.

Carbon Steel Corrosion Inhibition

SQN uses a combination of two chemicals to provide corrosion protection for carbon steel piping in the plant: Spectrus BD1500 (nonionic surfactant biodispersant) and Flogard MS6236 (phosphate additive). These products are injected into the ERCW and RCW (approved by TDEC May 26, 2009). Spectrus BD1500 is injected up to 3 times per week, for 30 minutes, year round. Flogard MS 6236 is injected seasonly from March to November, 5 days per week in the ERCW system. Flogard MS 6236 is also injected year round in the RCW, five times per week. The concentration of nonionic surfactant (Spectrus BD1500) in the plant effluents will not exceed 2.0 ppm, and the phosphorus (Flogard MS6236) will not exceed 0.20 ppm.

Raw Cooling Water Biocide Treatments

Protection of the raw cooling water pipe systems requires oxidizing biocide (chlorination) and non-oxidizing biocide treatments to control macro invertebrates and microbiologically induced corrosion. Oxidizing treatments are aimed at both macroinvertebrate and microbiologically induced corrosion control. Non-oxidizing biocides are aimed at macro-invertebrate control. SQN treats plant systems for mollusk control with a non-oxidizing biocide, Spectrus CT 1300 (approved April 27, 2005).

Routine Raw Water Treatment with Oxidizing Biocides (Chlorination)

To control macro invertebrates and microbiologically induced corrosion, routine raw water treatments with oxidizing biocide are necessary. SQN Plans to treat with oxidizing biocides 2-5 days per week during cool weather periods and 5-7 days per week during warm weather periods for 4-12 hours per day. Continuous treatment is sometimes necessary (up to 24 hours per day). Periods of continuous oxidizing biocide treatment may also be required following treatments with non-oxidizing biocide.

Towerbrom 960 (approved by TDEC April 27, 2005) is used for oxidizing biocide treatments. Application of this product will be in compliance with the NPDES permit limits for Outfall 101 for Total Residual Chlorine (TRC).

Non Oxidizing Biocide Treatment (Mollusk Control)

SQN will use Spectrus CT 1300 for 48 hour treatments, 5 times per year per train for ERCW A and B. It will also be injected in the RCW 6 times per year. SQN will show by mass balance calculation that the required concentrations are being met for each application.

GENERAL REQUIREMENTS OF THE B/CTP

The following are general requirements issued to Sequoyah Nuclear Plant in an April 27, 2005 letter from TDEC:

- 1. Oxidizing and non-oxidizing biocides are not to be used at the same time, in each system train, (e.g., ERCW Train A, ERCW Train B, or RCW),
- Whole effluent toxicity testing (biomonitoring) of Outfall 101 shall be undertaken once per year when oxidizing biocides are being used and once per year when non-oxidizing biocides are being used.
- Whole effluent toxicity testing (biomonitoring) of Outfall 110 shall be undertaken once per year when oxidizing biocides are being used and once per year when non-oxidizing biocides are being used.
- 4. Whole effluent toxicity testing performed under requirements of the NPDES permit may be coordinated with the requirements of (2) and (3) above.
- 5. The sampling and test procedures used for biomonitoring shall be the same as those described in the NPDES permit. Analysis of the samples shall be preformed the same regardless of how the sample is collected, e.g., if composite sample collection is used, the test method for the sample shall be the same as if the sample was collected by grab sample.
- 6. The acceptable methods for detection of TRO shall be the same as those specified in the NPDES permit for TRC.
- 7. Annually, a report shall be submitted to the Division presenting the biomonitoring data for tests conducted during treatments, a summary of analytical results (daily maximum, daily average, number of samples), the approximate duration in hours of each chemical used, quantity in pounds of each chemical used, and any minor changes that have occurred to the plan. The report shall be submitted to the Enforcement and Compliance Section in Nashville and to the Chattanooga Field office by February 15 of the year following the reporting year. Significant changes to the plan must be submitted for Division approval prior to their initiation. Minor changes (e.g. chemical names or vendor changes of essentially the same chemical) do not require pre-approval, but shall be indicated in the annual report or when the plan is revised.
- 8. TVA-SQN is required to maintain all records on file of sampling and analytical data, toxicity test results, records of quantities fed per day of each chemical, and mass balance calculations. These records shall be maintained on site for a period of at least three years.

9/29/2020

PRODUCT	PURPOSE	FREQUENCY of Discharge	ACTIVE INGREDIENTS	% ACTIVE INGREDIEN T	REPRESENTATIVE AQUATIC TOXICITY /DESCRIPTOR	DISCHARGE CONCENTRATION ¹
					(ppm active ingredients)	(ppm active ingredients)
Flogard MS6236	Iron Corrosion Inhibition	Continuous	Orthophosphate, sodium tripolyphosphate	30	7-d $IC_{25} = 152$ (C. dubia) 7-d $IC_{25} = 494$ (P. promelas)	<0.2
Spectrus BD1500	Surfactant to facilitate oxidizing biocides	Periodic	Nonionic Surfactant	15	7-d IC ₂₅ = 98 (C. dubia) 7-d IC ₂₅ = 450 (P. promelas)	<2.0
Towerbrom 960	Oxidizing Biocide (Chlorination)	Periodic	Sodium Bromide & Sodium Dichloroisocyanur ate	96	48-h $LC_{50} = 2.43$ (D. magna) 48-h $LC_{50} = 0.679$ (P. promelas)	< 0.05 mg/L TRC (NPDES permit limit at OSN 101)
Spectrus CT1300 ²	Non Oxidizing Biocide (Mollusk Control)	Periodic	Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC)	50	7-d IC ₂₅ = 0.049 (C. dubia) 7-d IC ₂₅ = 0.130 (P. promelas)	<0.001 active ingredient in stream after mixing <0.05 measured in effluent

Table 1. Raw Water Chemical Additives at Sequoyah Nuclear Plant

The maximum discharge concentration is indicated EXCEPT where noted. Concentrations are achieved through dilution.

2. Spectrus CT 1300 is a non-oxidizing biocide used for mollusk control.

3. Non-oxidizing biocide treatments are not applied at the same time as oxidizing biocide treatments.

SQN

Product	Injection Point	Max Feed (ppm)	In Plant Target (ppm)	Frequency of Application	Average Duration of Application.	Estimated Max Days per Year	Maximum Daily Usage (lbs) ²
Flogard MS6236 ⁵	ERCW Trains A & B and RCW	2.4	2.6	Daily	24 hours per day	365	22754
Spectrus BD1500	ERCW Trains A & B and RCW	2.5	2.5	156 days per year	0.5 hrs/day	156	50
Spectrus CT1300 ⁴ (CT App)	ERCW Trains A & B and RCW	3.0	3.0	22 days per year	48 hours	22	855
Towerbrom 960 ³	ERCW Trains A & B and RCW	1.5	1.5	312 days per year	4-12 hours/day	312	1425

Table 2. Raw Water Chemical Application Guide¹

1. Concentrations and usage are expressed for the active ingredient(s) shown on the first page of this plan.

2. Maximum Daily Usage provides an indication of loading in the receiving stream. It is the maximum amount of active ingredients for the worst case scenario of flow and feed concentration being proposed plus a 10% margin of error. SQN will track daily usage and will request a change to this plan should an increase in maximum daily usage become necessary for the continued safe operation of the plant.

3. Towerbrom 960 is 96% active producing 57% free halogen (chlorine or bromine). Chlorine will be less than NPDES permit limits at NPDES discharge point (Outfall 101).

4. SQN uses the non-oxidizing biocide Spectrus CT 1300 for mollusk control.

5. Flogard MS6236 application to ERCW A & B is seasonal. It is applied 24 hours/day, 5 days/week from March - November. RCW application is 18-20 hours/day, 365 days/year.

6. Concentrations and usage are expressed for the active ingredient(s) shown on the first page of this plan.
SQN B/CTP 2019

MS6236	2.4 mg	1 lb	71,800 gal	3.7851	60 min	24 hr	1.10	2275 lbs/day Flogard MS6236
2.4 ppm active	1	454,000 mg	min	gal	1 hr	day	100	
Spectrus BD1500 ¹	2.5 mg	1 lb	71,800 gals	3.7851			1.10	= 50 lbs Spectrus BD 1500
2.5 ppm active	1	454,000 mg		gal			8.18	
Towerbrom 960	1.5 mg	1 lb	71,800 gals	3.7851	60	24 hr	1.10	= 1425 lbs Towerbrom 960
1.5 ppm active	1	454,000 mg	min	gal	l hr	day		
Spectrus CT1300	3 mg	1 lb	21,000 gal	3.7851	60 min	24 hr	1.10	= 855 lbs (quat)
3 ppm active	1	454,000 mg	min	gal	1 hr	day		

Table 3. Calculations Showing Worst Case Scenario (final values rounded to the nearest 5 lbs)

Evaluating the Presence and Maintenance of a Balanced Indigenous Population of Fish and Wildlife in the Tennessee River Downstream of TVA's Sequoyah Nuclear Plant

Soddy Daisy, Hamilton County, Tennessee

Tennessee Valley Authority January 2025

TABLE OF CONTENTS

EXECUTIV	E SUMMARY	viii
1.0 INT	RODUCTION	1
1.1 Fa	cility Information	1
1.2 De	escription of the Receiving Waterbody	2
1.3 Re	gulatory Basis	2
1.3.1	Applicable Thermal Criteria	2
1.3.2	Currently Permitted Conditions	3
1.3.3	Criteria for Alternate Thermal Limits Under § 316(a)	3
1.3.4	Mixing Zone Requirements in Tennessee Rule 0400-4005	5
2.0 BIC	DLOGICAL STUDIES AND ASSESSMENTS	6
2.1 Pro	evious § 316(a) Demonstration Study	6
2.2 Co	ntemporary Studies	7
2.3 Pro	eviously Accepted BIP Assessment Practice	8
2.3.1	Results of BIP Studies, 2000 – 2022	9
2.3.1.	1 Reservoir Fish Assemblage Index (RFAI)	9
2.4 Mo 20	etric-by-Metric Comparison of 2022 Data between Sites and Comparison to 2000- 21 Data	. 10
2.4.1	Results of 2022 BIP Study	. 10
3.0 EPA	A-DEFINED ELEMENTS OF A BALANCED INDIGENOUS POPULATION	.13
3.1 Fo	cusing on the EPA Region 4 BIP Descriptions	. 13
3.2 Ot	her Considerations for a Balanced Indigenous Population	. 18
3.2.1	Macroinvertebrate Community	. 18
3.2.2	Threatened and Endangered Species	. 19
3.2.3	Wildlife Community	. 20
3.2.4	Aquatic Habitat	. 20
3.2.4.	1 Physical Habitat	. 20
3.2.5	Representative Important Species	. 21
3.2.6	Zone of Passage	. 21
3.2.6.	1 Field Measurements Relative to Zone of Passage	. 22
3.2.7	Water Supply and Recreational Use Support Evaluation	. 22
4.0 DIS	CUSSION and CONCLUSIONS	23
4.1 Relati	onship to Clean Water Act Section 316(b)	. 23

5.0 LITERATURE CITED	25
FIGURES	27
TABLES	
APPENDICES	72

LIST OF FIGURES

Figure 1. Vicinity map for Sequoyah Nuclear Plant depicting location of dams upstream (Watts Bar) and downstream (Chickamauga) from the plant, Hiwassee River entering upstream, and Eastside Utility District water supply intake
Figure 2. Location of Condenser Circulating Water (CCW) intake, cooling towers, and NPDES- permitted multiport diffuser discharge (Outfall 101) at Sequoyah Nuclear Plant
Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant NPDES-permitted multiport diffuser discharge Outfall 101
Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant NPDES-permitted multiport diffuser discharge Outfall 101
Figure 5. Reservoir Fish Assemblage Index (RFAI) scores and ratings from sites located directly upstream and downstream of Sequoyah Nuclear plant (SQN; TRM 484) conducted during summer 2011and 2022 and autumn 2000-2011, 2013, 2015, 2017, and 2019 - 2022 and as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 6. Numbers of indigenous species collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 7. Relative proportions of tolerant fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and 2022, autumn 2000-2011, 2013, 2015, 2017, 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 8. Relative proportions of non-indigenous fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and 2022, autumn 2000-2011, 2013, 2015, 2017, 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 9. Relative proportions of omnivore fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and 2022 autumn 2000-2011, 2013, 2015, 2017, 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 10. Reservoir Benthic Index (RBI) scores^ and ratings from sites located directly upstream and downstream* of Sequoyah Nuclear plant (SQN; TRM 484) conducted during summer 2011 and 2022 and autumn 2001-2004, 2006, 2011, 2013, 2017, 2020, and 2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir
Figure 11. Transects established upstream and downstream of Sequoyah Nuclear plant for the integrative multi-metric aquatic shoreline and river bottom habitat assessment

Figure 12. Substrate composition at ten equally spaced points per transect (Transects 1 and 2 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020
Figure 13. Substrate composition at ten equally spaced points per transect (Transects 3 and 4 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020
Figure 14. Substrate composition at ten equally spaced points per transect (Transects 5 and 6 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020
Figure 15. Substrate composition at ten equally spaced points per transect (Transects 7 and 8 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020
Figure 16. Substrate composition at ten equally spaced points per transect (Transects 1 and 2 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020
Figure 17. Substrate composition at ten equally spaced points per transect (Transects 3 and 4 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020
Figure 18. Substrate composition at ten equally spaced points per transect (Transects 5 and 6 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020
Figure 19. Substrate composition at ten equally spaced points per transect (Transects 7 and 8 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020

LIST OF TABLES

Table 1. Table 1. Seasonal Reservoir Fish Assemblage Index (RFAI) scores from fish community monitoring at sites located directly upstream and downstream of Sequoyah Nuclear Plant (TRM 484) on Chickamauga Reservoir during summer 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019 - 2022
Table 2. Comparison of RFAI scores and metrics (gears combined) for fish collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (SUM.) 2011 and 2022 and autumn (AUT.) 2000-2011, 2013, 2015, 2017, 2019-2022
Table 3. Statistical analyses of RFAI scores, observed values for each RFAI metric, and species and abundances of trophic guilds and tolerant fish collected upstream (TRM 409.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during 2000 through 2022 52
Table 4. Numbers of indigenous species and individuals of each trophic guild represented in fish collected upstream (U; TRM 490.5) and downstream (D; TRM 482.0) of Sequoyah Nuclear Plant during summer (SUM.) 2011 and 2022 and autumn (AUT.) 2000-2011, 2013, 2015, 2017, and 2019-2022.53
Table 5. Numbers of indigenous taxa and total mean densities per square meter (m ²) of each functional feeding group ¹ represented in benthic macroinvertebrate samples collected downstream ("Down"; TRMs 482.0, 481.3 and 483.4) and upstream ("Up"; TRM 490.5) of SQN for years sampled, 2002-2004, 2006, summer and autumn 2011, 2013, 2015, 2017, 2020, and 2022
Table 6. Results of tests performed on means select RFAI metrics (gears combined) for fishcollected downstream (TRM 482.0) and upstream (TRM 490.5) of Sequoyah NuclearPlant during summer and autumn 2022
Table 7. Individual observed values ("Obs") and metric scores and overall benthic macroinvertebrate index scores (lab-processed) for upstream and downstream sampling sites near Sequoyah Nuclear Plant, Chickamauga Reservoir, summer and autumn 2022 56
Table 8. Numbers of indigenous fish species and individuals with upper incipient lethal limits (UILT) of 95 °F to 102 °F (considered heat-tolerant) collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (Sum.) 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019-2022
Table 9. Relative abundance of indigenous fish considered heat-tolerant (upper incipient lethal limits of 95-102°F) and heat-sensitive (upper incipient lethal limits ≤ 91°F) collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (Sum.) 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019-2022
Table 10. List of indigenous fish species occurring in the vicinity of Sequoyah Nuclear Plant based on sampling during 2000-2011, 2013, 2015, 2017, and 2019-2022, upper incipient lethal limits (UILT) from Yoder et.al. (2006), and thermal tolerance designations (heat-sensitive/ intermediate/ heat-tolerant) used to achieve results in Tables 10 and 11

Table 11. Numbers of non-indigenous fish species and individuals collected upstream (TRM490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019-202261

Table 12. List of non-indigenous fish species occurring in the vicinity of Sequoyah Nuclear Plant based on seasonal sampling during summer 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022, and associated upper incipient lethal limits (UILT) from Yoder et.al. (2006)	
Table 13. Records of federal and state-listed aquatic animal species in the vicinity ^{1,2,3} of Sequoyah Nuclear Plant (TRM 484)	
Table 14. Wildlife observed during visual surveys conducted upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2011, 2013, 2015, 2020, and 202264	

LIST OF APPENDICES

Appendix A. Field study design, sampling methods, and Reservoir Fish Assemblage Index methodology used by TVA to monitor biological communities in the vicinity of Sequoyah Nuclear Plant during the period 2000-2011, 2013, 2015, 2017, 2019-2022.
Appendix B. Evaluation of Sequoyah Nuclear Plant operating conditions during 2018-2022 89
Appendix C. Letter from TDEC to TVA dated September 17, 2001, approving use of RFAI as methodology in determining BIP status of aquatic community at TVA power plants 98
Appendix D. Pages 25 and 36 from EPA Region 1. 2011. Draft NPDES Permit for the PSNH Merrimack Station; Clean Water Act NPDES Permitting Determinations for the Thermal Discharge and Cooling Water Intake Structures at Merrimack Station in Bow, New Hampshire NPDES Permit No. NH 0001465
Appendix E. Results from fish community monitoring upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during 2000-2021 and summer and autumn 2022
Appendix F. Letter dated August 11, 2011 from Christopher B. Thomas, Chief, Pollution Control & Implementation Branch, Water Protection Branch, EPA Region 4 to Paul E. Davis, Director, Division of Water Pollution Control, TDEC, regarding EPA review and comments on the draft NPDES permit for TVA's Gallatin Fossil Plant (NPDES TN0005428)

EXECUTIVE SUMMARY

This document presents results of biological monitoring conducted during summer and autumn 2022 as a means to evaluate the status of the aquatic community in the Tennessee River (Chickamauga Reservoir) downstream of TVA's Sequoyah Nuclear Plant thermal discharge. This report is intended to support continuance of the 316(a) alternate thermal limit (ATL) for the plant discharge based on successful demonstration, in accordance with Section 316(a) of the Clean Water Act, that a balanced indigenous population (BIP) of fish and wildlife was present and being maintained in the river downstream of the plant.

In evaluating the selected fish community metrics relevant to determination of the maintenance of a BIP of fish and wildlife, it is apparent that the fish community structure at the thermally affected downstream reach was similar to that at the unaffected upstream reach during 2022. RFAI data from the mid-2000s to 2017 indicated decreasing trends in certain aspects of fish communities at both upstream and downstream reaches. However, recent data from 2019 through 2022 suggest a potential rebound.

In evaluating the data in the context of EPA's interpretation of the regulatory definition of a BIP, TVA believes that a BIP is currently being demonstrated in Chickamauga Reservoir downstream of the SQN plant based on the most recent biological data collected in 2022 (see Section 3.0 of this report). The interpretation requires demonstration that the following attributes are present and being maintained in the waterbody:

- 1. The population is typically characterized by diversity at all trophic levels,
- 2. The population has the capacity to sustain itself through cyclic seasonal changes,
- 3. The necessary food chain species are present,
- 4. Pollution-tolerant species are not dominant, and
- 5. Indigenous species are appropriately represented.

Based on the findings reported herein, TVA believes that continuation of the current ATL of 30.5°C (86.9°F) at the end of the mixing zone for the Sequoyah Nuclear Plant discharge (Outfall 101) will nevertheless reasonably assure the protection and propagation of a BIP.

1.0 INTRODUCTION

This document presents results of biological monitoring conducted during summer and autumn 2022 as a means to evaluate the status of the aquatic community in the Tennessee River (Chickamauga Reservoir) downstream of the Tennessee Valley Authority's (TVA) Sequoyah Nuclear Plant (SQN) thermal discharge. This report is intended to support continuance of the alternate thermal limit (ATL) for the plant discharge (Outfall 101) in a renewed National Pollutant Discharge Elimination System (NPDES) permit for the facility (NPDES Permit No.: TN0026450) based on successful demonstration, in accordance with Section 316(a) of the Clean Water Act, that a balanced indigenous population (BIP) of fish and wildlife was present and being maintained in the river downstream of the plant.

This report is constructed to target § 316(a) regulatory requirements and the characteristic elements of a BIP. In the context of § 125, Subpart H, this report constitutes the § 316(a) "demonstration" the Director requires in considering whether to grant an ATL in the NPDES permit for a facility. The readers of this report are directed to Appendix A for the details of field study design, biological community sampling methods, and Reservoir Fish Assemblage Index methodology.

1.1 Facility Information

The SQN plant located in Hamilton County, Tennessee (Figure 1), employs two nuclear-powered steam generating units that were brought into operation sequentially in 1981 and 1982, respectively. Located on the right descending bank of Chickamauga Reservoir on the Tennessee River, the SQN plant withdraws cooling water from Chickamauga Reservoir via an intake channel and skimmer wall at Tennessee River mile (TRM) 484.8 (Figure 2). The facility employs a once-through (open cycle) condenser cooling water system and can also operate with cooling towers in helper mode. Heated effluent is discharged to Chickamauga Reservoir via Outfall 101 located at TRM 483.6 (Figure 2) as authorized by the NPDES permit.

When operating at design (nameplate) capacity (2,441 megawatts [MW]), the units require approximately 1.11 x 10⁶ gallons per minute (gpm) or 1,602 million gallons per day (mgd) of condenser cooling water and reject 16.4 x 10⁹ BTU per hour of waste heat. This waste heat increases the temperature of the cooling water by approximately 16.4 °C (29.5 °F) before it is discharged into the river. The actual condenser flow, and hence the change in temperature from ambient (Δ T), may vary somewhat with the circulating water pump head and the condenser efficiency.

Relevant plant operational data—mean daily temperatures at the CCW intake and discharge, mean daily flow through the CCW system, and mean daily power generation by the two nuclear units at SQN—were compiled from 2018 through 2022 and are included in Appendix B. Biological monitoring was conducted upstream and downstream of SQN during summer on August 21 and 22 and again during autumn on November 21 and 22, 2022.

1.2 Description of the Receiving Waterbody

Sequoyah Nuclear Plant is located on the right descending bank of Chickamauga Reservoir (TRM 484.5) approximately 18 miles northeast of Chattanooga, Tennessee, and 7 miles southwest of Soddy-Daisy, Tennessee (Figure 1). Chickamauga Reservoir was impounded in 1940 and at full pool covers approximately 36,240 acres.

In the vicinity of SQN, the reservoir consists of a shallow overbank area on the plant side which extends from TRM 484 downstream to TRM 481.8 and varies in depth from 2 to 20 ft and in width from 500 to 3,100 ft. This shallow area is bordered by a main river channel, which is about 900 feet (ft) wide and approximately 60 ft deep. Along this reach there are several small, shallow embayments.

Flow of the Tennessee River at SQN is controlled primarily by releases from Watts Bar Dam (WBH) upstream and Chickamauga Dam (CHH) downstream (flow is made up of approximately 23% WBH releases and 77% CHH releases), and to a lesser extent by the Hiwassee River, which enters the reservoir approximately 16 miles upstream of SQN at TRM 500 (Figure 1). The SQN plant is situated approximately 54.5 river miles downstream from WBH and 13.5 river miles upstream from CHH. Flow past the plant is highly variable, ranging from annual daily averages of 15,000 to 50,000 cfs (1977-2022). Daily average flows during 2022 were slightly lower than historical flows during January through May and October through November, and similar during the summer months.

1.3 Regulatory Basis

Sequoyah Nuclear Plant's NPDES permit, inclusive of the ATL, was recently renewed and issued on July 30, 2020 (effective date of August 1, 2020). The permit is valid for 5 years and is set to expire on July 31, 2025. The current status of a BIP in Chickamauga Reservoir is relevant to the continuation of the ATL in the next permit.

1.3.1 Applicable Thermal Criteria

The Tennessee Department of Environment and Conservation (TDEC) has specified "use classifications" for the state's surface waters and developed temperature criteria intended to support those uses (TDEC Rule 0400-40-04 and 0400-40-03.03, respectively). The Tennessee River at the location of SQN has been classified for the following uses: Municipal, Industrial, and Domestic Water Supply, Industrial Water Supply, Fish and Aquatic Life, Recreation, Irrigation, Livestock Watering and Wildlife, and Navigation. Except for Irrigation and Livestock Watering and Wildlife (qualitative criteria), temperature criteria relevant to warm-water conditions of the Tennessee River at SQN specify that:

"The maximum water temperature change shall not exceed $3^{\circ}C$ [5.4°F] relative to an upstream control point. The temperature of the water shall not exceed $30.5^{\circ}C$ [86.9°F] and the maximum rate of change shall not exceed $2^{\circ}C$ [3.6°F] per hour. The temperature of impoundments where

stratification occurs will be measured at a depth of 5 feet, or mid-depth whichever is less, and the temperature in flowing streams shall be measured at mid-depth." [Rule 0400-40-03-.03]

The SQN plant's "once-through" cooling water system design utilizing cooling towers in helper mode provides for the most thermodynamically efficient method of generating electricity and as a result produces a heated discharge. As such, the thermal discharge typically exceeds TDEC's established temperature criteria, therefore, multiport diffusers with mixing zone are used to adequately mix the thermal effluent to meet the state water quality standard at the end of the mixing zone. In such cases, the TDEC rules specific to the Fish and Aquatic Life use classification provide that:

"A successful demonstration as determined by the state conducted for thermal discharge limitations under Section 316(a) of the Clean Water Act, (33 U.S.C. §1326), shall constitute compliance... [with the temperature criteria]."

TVA has previously madesuch successful demonstration for the SQN thermal discharge in support of mixing zone criteria as further discussed below.

1.3.2 Currently Permitted Conditions

Currently permitted thermal discharge limitations for SQN specify that the daily maximum temperature is not to exceed 30.5°C (86.9°F) at the end of the mixing zone (Page 3 of 31, NPDES permit TN0026450). This mixing zone criteria are based on a previous demonstration by TVA, in accordance with CWA §316(a) and TDEC Rule 0400-40-03-.03 noted above, that a balanced indigenous population (BIP) of fish, shellfish, and wildlife is supported in the Tennessee River potentially affected by the thermal discharge. The mixing zone criteria, as supported by the biological studies, also encompass other components of the TDEC temperature criteria, specifically the change in temperature from ambient/upstream conditions and rate of change in temperature. SQN has maintained a good compliance record with its mixing zone criteria throughout each NPDES permit term since first authorized in the late-1980s; ongoing biological monitoring has consistently demonstrated the mixing zone criteria are protective of aquatic communities in the river near the facility.

1.3.3 Criteria for Alternate Thermal Limits Under § 316(a)

The regulatory provisions that implement CWA §316(a) provide limited guidance on precisely what the demonstration study must contain to be considered adequate and do not identify precise criteria against which to measure whether a "*balanced and indigenous*" aquatic community is protected and maintained. Instead, the regulations provide broad guidelines.

Under the broad regulatory guidelines, the discharger must show that the ATL desired, "considering the cumulative impact of its thermal discharge together with all other significant impacts on the species affected," will "assure the protection and propagation of a balanced, indigenous community of shellfish, fish and wildlife in and on the body of water into which the

discharge is to be made (40 CFR §125.73). Critical to the demonstration is the meaning of the term "balanced indigenous community". The rules provide the following definition:

"The term "balanced indigenous community" is synonymous with the term balanced, indigenous population (i.e., BIP) in the Act and means a biotic community typically characterized by diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species and by a lack of domination by pollution tolerant species. Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications" (40 CFR §125.73).

Pursuant to this regulatory definition, a successful demonstration must show that under the desired ATL, and in light of the cumulative impact of the thermal discharge together with all other significant impacts on the species affected, the following characteristics, which are indicative of a BIP, will continue to exist: (1) diversity, (2) the capacity of the community to sustain itself through cyclic seasonal changes, (3) presence of necessary food chain species, and (4) a lack of domination by pollution tolerant species.

There are several methodologies a discharger may pursue in making a §316(a) demonstration. Under the regulations, <u>new dischargers</u> must use predictive methods (e.g., laboratory studies, literature surveys, or modeling) to estimate an appropriate ATL that will assure the protection and propagation of a balanced, indigenous community prior to commencing the thermal discharge. However, <u>existing dischargers</u>, such as SQN, need not use predictive methods. For such dischargers, §316(a) demonstrations may be based upon the "*absence of prior appreciable harm*" to a balanced, indigenous community (see 40 CFR §125.73(c)(1)(i) and (ii)). Such demonstrations must show either that:

- i) No appreciable harm has resulted from the thermal component of the discharge taking into account the interaction of such thermal component with other pollutants and the additive effect of other thermal sources to a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge has been made; or
- ii) Despite the occurrence of such previous harm, the desired alternative effluent limitations (or appropriate modifications thereof) will nevertheless assure the protection and propagation of a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge is made.

Furthermore, in determining whether or not prior appreciable harm has occurred, the regulations provide that the permitting agency consider the length of time during which the applicant has been discharging and the nature of the discharge. The regulations do not define "*prior appreciable harm*." However, using the definition of "balanced, indigenous community," mixing zone criteria are generally granted under either of the following circumstances:

- 1. When a discharger shows that the characteristics of a BIP (i.e., diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species, and a lack of domination by pollution tolerant species) exist. Stated another way, the existence of such characteristics essentially prove that the aquatic community has not been appreciably harmed; <u>or</u>
- 2. Despite any evidence of previous harm, the characteristics of a BIP, as stated above, will nevertheless be protected and assured under the ATL.

The standard to "assure" a BIP does not require a "no effects" determination, but rather "reasonable assurance" of the protection and propagation of a BIP¹.

1.3.4 Mixing Zone Requirements in Tennessee Rule 0400-40-.05

As noted above, §316(a) pertains to the Fish and Aquatic Life use classification and provides NPDES-permitted facilities a regulatory compliant means of demonstrating that promulgated temperature criteria may be more stringent than necessary to support a BIP. In such cases, less stringent thermal criteria (i.e., ATLs) are justified. However, other use classifications such as Domestic Water Supply and Recreation must be protected as well. Compliance with TDEC temperature criteria for these uses is typically determined after the discharge has had the opportunity to mix with the receiving water; that is, an allowable mixing zone is determined.

TDEC rules define the mixing zone as:

"That section of a flowing stream or impounded waters in the immediate vicinity of an outfall where an effluent becomes dispersed and mixed." [0400-40-03-.04(12)]

The rules [0400-40-03-.05(2)] further provide that mixing zones are to be restricted in area and length and not:

- 1. prevent the free passage of fish or cause aquatic life mortality in the receiving waters;
- 2. contain materials in concentrations that exceed acute criteria beyond the zone immediately surrounding the outfall;
- 3. result in offensive conditions;
- 4. produce undesirable aquatic life or result in dominance of a nuisance species;
- 5. endanger the public health or welfare; or

¹ See In re Dominion Energy Brayton Point, LLC, 13 E.A.D. 407, 2007 WL 3324213, at *16 (EAB Sept. 27, 2007); see also In re Public Service Company of New Hampshire et al. (Seabrook Station, Units 1 and 2), 1 E.A.D. 332, 1977 WL 22370, at *11-14 (EAB June 10, 1977).

- 6. adversely affect the reasonable and necessary uses of the area;
- 7. create a condition of chronic toxicity beyond the edge of the mixing zone;
- 8. adversely affect nursery and spawning areas; or
- 9. adversely affect species with special state or federal status.

While TVA's §316(a) demonstration study plan fully examines the effects of the thermal discharge on the aquatic life components of the mixing zone requirements, the potential effects to other non-aquatic life use classifications (items 3, 5, and 6 above) are generally not evaluated. Therefore, this plan has been revised herein to incorporate and/or collect additional information needed to address the reasonable potential for impairment of other non-aquatic life uses in the Tennessee River near the facility.

2.0 BIOLOGICAL STUDIES AND ASSESSMENTS

2.1 Previous § 316(a) Demonstration Study

TVA conducted comprehensive §316(a) demonstration-related studies of the SQN thermal effluent in the mid-1980s to support establishment of the current mixing zone criteria for the plant discharge (TVA 1989). The minimum average daily flow for the Tennessee River near SQN at the time of the early studies was 6,000 cfs.

The mid-1980s studies included extensive sampling of the aquatic community including:

- Phytoplankton,
- Periphyton,
- Aquatic macrophytes,
- Zooplankton,
- Benthic macroinvertebrates; and
- Fish populations.

Hydrothermal, water quality and other parameters also were evaluated.

Major findings of these studies included:

- Average dissolved concentration in the water column was similar immediately upstream and downstream of SQN.
- Analysis of the data indicate that the assemblages of phytoplankton, zooplankton, and macroinvertebrates were diverse and, in general, relatively abundant.
- Dominance of blue-green algae was similar upstream and downstream of SQN.

- The phytoplankton and zooplankton communities were found to be similar, or if different, not impacted by SQN operation, at all stations during 20 of the 27 survey months when the plant was in operation.
- Species richness in the benthic macroinvertebrate communities during pre-operational and operational monitoring was similar.
- No changes were documented in the aquatic macrophyte community that reflected effects of the thermal effluent.
- Fish species occurrence and abundance data indicated insignificant impacts. Avoidances of the plume could not be detected for any species of fish. One study found that sauger (*Sander canadensis*) were not concentrated in the thermal plume during winter months nor inhibited from movement past SQN. Results of gonadal inspections indicate that the heated discharge did not adversely affect fish reproduction.
- Other fisheries studies indicated that the thermal discharge resulted in no discernible increase in parasitism.
- No mortalities of threadfin shad due to cold shock following shutdown of SQN were observed or reported, and none are anticipated to occur in the future.

2.2 Contemporary Studies

In 2001, TVA and TDEC reached an agreement whereby results of TVA's River and Reservoir Monitoring program (f.k.a., "Vital Signs" program), designed to measure ecological and water quality health on a reservoir-wide basis, would be the accepted study design for measuring the presence and maintenance of a BIP to support § 316(a)-based ATLs (Appendix C). Study design at the time (starting in 2001) was based on measuring biotic integrity using multi-metric community structure assessment techniques and focused on fish community sampling in three zonal areas of the reservoir during autumn: the inflow, transitional and forebay zones. Seasonal assessments (summer & autumn) were conducted in 2011 and 2022 at the request of TDEC. Macroinvertebrate community sampling began in 2009. Biological sampling zones and collection methods are illustrated in Figures 3 and 4.

In 2009-2010, there was increasing regulatory interest at the federal level in having NPDES permit applicants update studies supporting ATLs and to better focus study design on the regulatory definition of a BIP as provided in 40 CFR §125.73. Accordingly, TVA developed Study Plans incorporating sampling locations closer to its power plants to supplement data collected in the three reservoir zonal areas, and included more traditional comparative analysis techniques in addition to the long-used multi-metric assessment techniques. New assessments of wildlife communities that could potentially be impacted by thermal discharges were also conducted.

The TVA's biological assessment data has consistently indicated that fish assemblages of Chickamauga Reservoir downstream of the SQN thermal discharge were similar to those of upstream reference locations. The findings have demonstrated, with acceptance by TDEC and EPA Region 4, the presence, protection, and maintenance of a BIP in Chickamauga Reservoir in support of continuing the ATL in the SQN NPDES permit.

2.3 Previously Accepted BIP Assessment Practice

As previously indicated, beginning in 2001 and up until about 2010, TVA's use of multi-metric assessment techniques was for the most part the accepted primary method of demonstrating a BIP for supporting the continuance of the existing ATL at SQN, and the status of the fish community was the primary community of interest (Appendix C).

TVA's multi-metric Reservoir Fish Assemblage Index (RFAI) attempts to address characteristics of a BIP in a holistic manner by measuring 12 population "metrics", scoring the metrics based on expectations of healthy populations in the region, and summing the scores to arrive at an overall RFAI score and subsequent rating. The maximum RFAI score attainable is 60. Ecological health ratings are then applied to the scoring ranges: 12-21 "Very Poor", 22-31 "Poor", 32-40 "Fair", 41-50 "Good", or 51-60 "Excellent". It has generally been accepted that an RFAI rating of "Fair" or better in the thermally affected area can be considered demonstration of a BIP, particularly where RFAI scores for unaffected upstream areas are similar. A difference of six points or less between the thermally affected area and unaffected upstream area indicates statistical similarity of the fish communities between the two sites.

Beginning in 2009 until the present, TVA has conducted autumn (and summer 2011 and 2022) monitoring of the benthic macroinvertebrate community in Chickamauga Reservoir, developing its Reservoir Benthic Index (RBI) of biotic integrity for Tennessee River reservoirs. Multi-metric assessment methods for evaluating ecological health of benthic communities in large river systems and/or artificial reservoir settings are not as well established as they are for wadeable streams, but nonetheless, provide valuable supplemental information in support of the fish community assessment. TVA's RBI is similarly calculated as the RFAI except that it uses seven metrics specific to the macroinvertebrate assemblage. Each metric is assigned a score based on reference conditions and then summed to produce an overall RBI score for each sample site. The maximum RBI score is 35. Ecological health ratings are then applied to scoring ranges: 7-12 "Very Poor", 13-18 "Poor", 19-23 "Fair", 24-29 "Good", or 30-35 "Excellent." A difference of four points or less between the thermally affected area and unaffected upstream area indicates statistical similarity of the benthic macroinvertebrate community between the two sites.

As stated by EPA Region 1 in the supporting documents for the draft Merrimack Station NPDES permit²: "Assessing changes in the resident fish community of a water body often provides the most conspicuous evidence of impacts to the overall aquatic community" The BIP determination in that proceeding (in 2011) relied largely on fish community data for the Hooksett

² EPA Region 1. 2011. Draft NPDES Permit for the PSNH Merrimack Station; Appendix D, page 36.

Pool portion of the Merrimack River, the receiving water for the Merrimack Station thermal discharge. However, EPA Region 1 also noted that a comprehensive § 316(a) demonstration is not just limited to fish; planktonic organisms, macroinvertebrates, "habitat formers" (e.g., aquatic vegetation), and wildlife are all important communities to be assessed, but importantly "at the level of detail appropriate to the facility's potential to impact these communities." Explaining further, EPA indicated "no hard and fast rule can be made as to the amount of data that must be furnished [for a successful § 316(a) demonstration] . . . and much depends on the circumstances of the particular discharge and receiving waters." ³

2.3.1 Results of BIP Studies, 2000 – 2022

2.3.1.1 Reservoir Fish Assemblage Index (RFAI)

In 2000 (baseline), autumn RFAI scores were "48-Good" for the downstream site and "46-Good" for the upstream site, and in 2022, RFAI scores for summer were rated "39-Fair" for the downstream site and "41-Good" for the thermally unaffected site upstream of SQN (Figure 6). Additionally, RFAI scores for autumn 2022 were rated "46-Good" downstream and "47-Good" for the upstream location. Average RFAI scores for the period of 2000–2022 were "40-Fair" at the downstream site and "42- Good" at the upstream site. Score differences over the sample years have averaged about 3 points and recently (since 2007) have been six points or less (statistically similar) during each sample. Summer sampling at the same sites in 2011 resulted in RFAI scores that were equalto those during autumn 2011, with both sites receiving scores of "37-Fair" (Table 1).

Over the period of 2000–2022, averages of the following between the thermally affected downstream and upstream reference sites were highly similar (Table 2):

- Average numbers of species
 - o Two more indigenous species upstream than downstream
 - One more centrarchid species upstream than downstream
 - Same number of intolerant species upstream as downstream
 - One more benthic invertivore species upstream than downstream
 - Same number of top carnivore species upstream as downstream
- Average proportions
 - Downstream site, as compared to upstream site:
 - Slightly lower for percent tolerant individuals (by ~1%)
 - Slightly higher for percent of sample dominated by one species (by ~2%)
 - Slightly higher for percent for non-native individuals (by ~2%)
 - Slightly lower percent top carnivore individuals (by ~2%)
 - Slightly lower for percent omnivore individuals (by ~1%)
 - Slightly lower for percent individuals with anomalies (by 0.2%)
- Catch rate
 - Average number of fish per effort was about 3 fish lower downstream

³ Seabrook, 1977 EPA App. LEXIS 16, at *31; as cited in EPA Region 1.2011. Draft NPDES Permit for the PSNH Merrimack Station; Appendix D, page 25.

2.4 Metric-by-Metric Comparison of 2022 Data between Sites and Comparison to 2000–2020 Data

To determine if there are any differences in the ecological health of the fish communities at the thermally affected downstream site and upstream reference site in 2022, this section presents results of 2022 monitoring from the two sites, focusing on the twelve metrics of the RFAI methodology. This section also includes a comparison of 2022 data with that of 2000-2021 to determine if there are any differences between current fish communities and historical.

2.4.1 Results of 2022 BIP Study

Table 2 presents RFAI scores and observed data values for the individual metrics of the RFAI during summer and autumn 2022. More detailed 2022 results including metric scores of the RFAI, and lists and abundances of fish species collected during 2022 can be found in Appendix E. Based on review of Table 2, the following observations can be made regarding the overall RFAI scores and fish community metrics for the downstream site:

- <u>Total RFAI scores</u> Scores for 2022 were similar between downstream and upstream sites, during both autumn and summer sampling events. The score downstream during autumn 2022 was the second highest recorded at this reach since 2001 (Table 1). RFAI scores at both reaches have not been statistically different (i.e. "similar", or differed by six points or less; Appendix A). When compared between reaches, scores since 2000 have not been significantly different (P=0.17; Table 3).
- <u>Number of species (indigenous)</u> There was a slight difference between reaches in numbers of indigenous species collected per effort during autumn (2) and summer (2) 2022. In comparison, both reaches observed 2 species above the 2000-2021 average in the summer sample and 3 species above average in the autumn sample (table 2). Total indigenous species upstream have been consistently higher (P=0.003) than those downstream since 2000, but only by an average of about two species (Table 3).
- <u>Number of centrarchid species (excluding black bass)</u> The numbers of centrarchid species collected at both reaches have remained steady since 2000 and have only differed by more than two species during one sample (2015). Even so, numbers of centrarchid species have been significantly higher upstream (P=0.002) by an average difference of 0.9 species (table 3). This continued in both summer and autumn 2022, with six species collected upstream and downstream. The same six centrarchid species were observed in both reaches. (Appendix E).
- <u>Number of benthic invertivore species</u> The same number of benthic invertivore species were collected at the upstream reach and downstream reach in summer 2022 and one more species collected at the upstream location (5) than the downstream reach (4) during autumn 2022. Average numbers of benthic invertivore species collected since 2000 differ by 0.5 at both reaches, and these have not been significantly different (P=0.06; Table 3).

- <u>Number of intolerant species</u> Numbers of intolerant species have varied little among samples, ranging from collections of three to six up to eight species over the sample period. Species collected during 2022 fell within this range. Two more intolerant species was collected upstream (5) than downstream (3) during summer of 2022, and one more was collected upstream (7) than downstream (6) during autumn 2022. Numbers of intolerant species collected since 2000 have not been significantly different (P=0.31).
- <u>Percent individuals as tolerant</u> Catch rates of tolerant fish in 2022 were the same at both upstream and downstream reaches (59%) during summer of 2022, and differed by 2% during autumn 2022. This percentage has showed little difference between upstream and downstream reaches since 2007 and has exhibited similar trends between reaches during most years, and averaging a 1% difference through time. As a result, percentages of tolerant individuals were not significantly different between reaches since 2000 (P=0.81).
- <u>Percent of sample dominated by one species</u> Bluegill was the most prevalent species collected at both reaches during summer and autumn 2022. Their numbers increased at both reaches since 2008 and was the primary contributor to the historically high total number of individuals collected in 2022 (Appendix E). This percentage has varied widely at both reaches since 2000 but trended similarly, and as a result, no significant difference between reaches was observed (P=0.69; Table 3).
- <u>Percent individuals as non-indigenous</u> Percentages have varied widely at both reaches since 2010 but have trended similarly (Figure 8). When compared among the sample years, the percentages of non-indigenous fishes have not been significantly different between reaches (P=0.46). The values for both reaches in summer and autumn 2022 were highly similar and slightly higher than respective historical averages during the summer sample while being slightly lower than those respective averages during autumn. The same non-indigenous species were collected in both reaches in 2022 (Appendix E).
- <u>Number of top carnivore species</u> Numbers of top carnivore species collected since 2000 have not varied much ranging from 8 or 9 to 11 species at both reaches with the same number of species reported at both reaches in summer 2022 (11). Historically, there has been no difference in numbers of top carnivore species between reaches (P=0.13). Additionally, numbers of top carnivores and catch rates were not significantly different between reaches in 2022.
- <u>Percent individuals as top carnivores</u> Percentages of top carnivores at both reaches in 2022 were within the historical ranges observed, and varied by 4.2% between upstream and downstream during summer 2022 and only 0.8% during autumn 2022. This percentage was consistently higher upstream from 2000 to 2007, similar between reaches the next eight samples, and higher downstream during 2019 through Summer 2022. Even with these trends, differences in percentages between reaches have been less than 10% during most sample years and have not been significantly different between reaches (P=0.29).

- <u>Percent individuals as omnivores</u> Percentages of omnivores have generally followed the same patterns at both reaches among samples, and as a result, reaches have not differed (P=0.79) with respect to percentages of omnivores (Table 3). Including summer and autumn 2022, differences between reaches have been minimal, rising above 10% during only five of 19 sample years.
- <u>Average number per effort</u> Catch rates at both reaches have been highly variable over the sample years, ranging from approximately 20 to 110 fish per effort at both reaches. Average catch rates were 3 fish per effort higher at the downstream reach during summer 2022 and 2 fish per effort higher upstream during autumn 2022. Catch rates have not been significantly different over the sample years (P=0.80).
- <u>Percent of individuals with anomalies</u> The percent of individuals exhibiting anomalies has remained consistently low at both reaches, rarely rising above 2%. No difference in percent anomalies has existed between reaches (P=0.90).

In evaluating these metrics, it is apparent from the RFAI score and observed values for each of the twelve metrics that the fish community structure at the thermally affected downstream site in 2022 was similar to that in the unaffected area upstream and that BIP was maintained downstream of SQN.

When compared to previous years, RFAI scores and observed metric values from the mid-2000s to 2017 indicated decreasing trends in certain aspects of fish communities at <u>both</u> upstream and downstream reaches (Figure 5 and Table 2). However, recent scores and observed metric values from 2019-2021 and 2022 show a potential rebound. Analysis at the species level shows that these recent shifts are attributed mainly to increased abundance of bluegill and gizzard shad (both tolerant species) and the non-indigenous Mississippi silverside at both reaches (Appendix E). However, given this trend exists in both affected and unaffected areas, it is appropriate to conclude cause(s) as environmental and reservoir-wide, and not related to SQN's thermal effluent.

One potential cause for some, if not all, shifts in scores and observed values could be increased coverage of aquatic macrophytes at the sample reaches. The first result would be an inability to sample shoreline habitat historically sampled. Many top carnivore species are collected along rocky and woody substrate found along shoreline. Not being able to reach these habitats would reduce the numbers of top carnivores collected, decreasing their proportion in the samples.

The second result could be an assemblage shift to higher proportions of species associated with increased vegetation, one being bluegill. Many studies have documented the link between this species and increased submerged aquatic vegetation (Bettoli et al. 1993; Giblin 2017). Not being able to sample along the shoreline—only along edges of vegetation—would result in collections of large numbers of bluegill.

Unfortunately, no macrophyte coverage data exists, only anecdotal information. Attempts have been made to obtain these data for Chickamauga Reservoir, but it appears that no aquatic macrophyte data has been collected.

3.0 EPA-DEFINED ELEMENTS OF A BALANCED INDIGENOUS POPULATION

Specific definitional elements of a BIP have been provided in the public record by EPA Region 4 regarding the thermal discharge from another TVA power plant (Gallatin). Below, each element is described focusing, as has historically been done, on how fish populations in the Tennessee River downstream of SQN either achieve or do not achieve the expectations for the BIP element.

3.1 Focusing on the EPA Region 4 BIP Descriptions

EPA Region 4 has identified in past communications with TVA (and other electric utilities) the five essential elements that it has determined constitute a BIP based on interpretation of the regulations. In a letter from EPA to TDEC dated August 11, 2011, regarding its review of the Gallatin Fossil Plant NPDES permit renewal,⁴ EPA included guidance on demonstrating a BIP. In the letter EPA states:

The definition of "balanced, indigenous community" at 40 CFR § 125.71(c) contains several key elements. To be consistent with the regulations, each of these key elements should be specifically addressed in the demonstration, and the Study Plan should be designed to generate information relevant to these elements. Those elements include: (1) "a population typically characterized by diversity at all trophic levels;" (2) "the capacity to sustain itself through cyclic seasonal changes;" (3) "presence of necessary food chain species;" (4) "non-domination of pollution-tolerant species;" and (5) "indigenous".

⁴ Letter dated August 11, 2011 from Christopher B. Thomas, Chief, Pollution Control & Implementation Branch, Water Protection Branch, EPA Region 4 to Paul E. Davis, Director, Division of Water Pollution Control, TDEC, regarding EPA review and comments on the draft NPDES permit for TVA's Gallatin Fossil Plant (NPDES TN0005428). Provided in Appendix F.

Further, EPA Region 4 provided helpful insight on each of the BIP elements identified in its letter to TDEC. Below each element is presented along with TVA's interpretation of the most current SQN biological data for Summer and Autumn 2022.

With regard to BIP element 1, EPA indicates:

"<u>A population typically characterized by diversity at all trophic levels</u>" means that all of the major trophic levels present in the unaffected portion of the water body should be present in the heat-affected portions. The EPA recognizes that community structure differences will occur, however, the number of species represented in each trophic level in the unaffected portions should be reasonably similar in the heat-affected portions of the water body.

Trophic levels are usually interpreted as the typical ecological levels of producers (algae, macrophytes), herbivores (zooplankton, invertebrate grazers, and algae-eating fish), and predators (predatory invertebrates and fish). The presence of these trophic levels can be deduced from the feeding habits (guilds) of the fish sampled. The RFAI multi-metric analysis was designed to

evaluate appropriate densities and diversity of these trophic states present in the fish community.

A list of benthic macroinvertebrates and corresponding densities from all summer and autumn samples upstream and downstream of SQN presented in Table 5 with functional feeding group designations. More detailed 2022 results, including results of statistical tests, metric scores of the RBI and lists and abundances of benthic macroinvertebrate species collected during summer and autumn 2022 can be found in Appendix E.

From review of Tables 4 and 5, TVA concludes:

Fish Community (Table 4)

- All expected major trophic levels present in the unaffected portion of the waterbody are present in the affected portion in summer and autumn 2022.
- The number of species representing each trophic guild in the affected reach was "reasonably similar" to that for the unaffected portions of the waterbody during both seasons. During summer 2022, five trophic guilds were represented equally between reaches while the insectivore guild only varied by two species. During autumn 2022, the trophic guilds were either represented equally between reaches or differed by only one or two species. This was supported by statistical tests performed on numbers of species and catch rates for each trophic guild which showed no differences between reaches (Appendix E).
- The most prevalent guilds in both reaches (by number of species) and during both seasons have been top carnivores (e.g., largemouth bass), insectivores (e.g., bluegill), and omnivores (e.g., gizzard shad). Most guilds have shown no consistent dominance between the reaches (Table 4), but benthic invertivores have been collected in significantly higher numbers upstream over the sample years (higher in 14 of the 19 sample years including both summer samples). The only guild to exhibit significant differences between reaches was insectivores (P=0.04). More insectivore species were collected upstream during 14 of the 21 sample events. Even with the significant difference, the difference in historical averages was only 1 species (Table 3) By numbers of individuals, omnivores and insectivores have almost always (13 of 17 samples) been more abundant in the upstream sampling reach than in the downstream reach, but the differences have not been significant (P>0.05). All other trophic guilds have shown no consistent dominance in abundance between reaches (Table 4).
- Trophic guild representation (number of species) in both reaches has remained steady since 2000, and both autumn and summer 2022 differed by only two species and each reach was represented by two to three species above average. (Table 4).

Macroinvertebrate Community (Table 5)

• All expected functional feeding groups were present upstream and downstream of SQN during both summer and autumn 2022.

- The number of macroinvertebrate taxa represented in each functional feeding group in the affected reach is "reasonably similar" to, if not more favorable than, that for the unaffected portions of the waterbody with downstream reach having higher numbers of taxa during most years sampled including summer and autumn 2022.
- The most dominant taxa groups during summer 2022 included "gathering/collector" (GC) and "scrapers" (SC). GC dominance was greater at the thermally affected downstream site and SC were the same at both reaches during the summer sample. Averages for other well-represented groups are generally greater downstream as well.
- Total densities of all taxa combined were generally higher at the thermally unaffected site from 2002 to 2006, and higher at the thermally affected site 2011 through 2022. The largest differences between sites were observed in the CG functional feeding group and is also higher at the downstream site. Average densities of other functional feeding groups were "reasonably similar" between sampling areas.
- Overall, increasing trends in number of species and mean densities were noted at both sampling areas, but to a greater degree at the downstream site, and were driven mostly by the PR and GC functional feeding groups.

With regard to BIP element 2, EPA indicates:

"<u>The capacity to sustain itself through cyclic seasonal changes</u>" means that any additional thermal stress will not cause significant community instability during times of natural extremes in environmental conditions. Community data should be collected during normal seasonal extremes as well as during optimal seasonal conditions. Data should be compared between heat affected and unaffected portions of the receiving water body to account for normalcommunity changes corresponding with a change in season.

To provide a detailed analysis of the seasonal maintenance of BIP in areas affected by the SQN thermal discharge, data from the summer 2022 sample was compared in Table 6 to autumn 2022. To maximize number of data points, values of metrics in Table 6 were computed for each electrofishing effort and compared using ANOVA and Tukey's Studentized Range Test.

Total scores of the multi-metric assessment were similar for both reaches during the two seasons. At the downstream reach, four metrics showed no difference between seasons: numbers of indigenous species, numbers of benthic invertivores species, number of intolerant species, and proportion of sample as omnivores.

Those indicating statistical differences between summer and autumn samples were abundance of indigenous fish, Percent individuals as omnivores, and percent of individuals as tolerant. The statistical differences of abundance of indigenous species and percent individuals as tolerant are directly related to the historic high abundance of bluegill observed in autumn of 2022, at both the upstream and downstream reaches. Percent as tolerant individuals was lower and more favorable during the summer sample. Numbers of non-indigenous species were collected at the downstream

reach more consistently than upstream, but only by about 0.4 species per effort.

To assess maintenance of BIP of the benthic macroinvertebrate community through seasons, data were compared during summer and autumn 2022 in Table 7. The RBI scores downstream of the plant were equal, rated "Excellent" during both seasons, and scored higher than the upstream sampling area during both seasons, indicating the ability to sustain through seasonal changes.

With regard to BIP element 3, EPA indicates:

"<u>Presence of necessary food chain species</u>" means that the necessary food webs remain intact so that communities will be sustaining. We believe that exhaustive food web studies are not necessary provided that invertebrate, fish and wildlife communities are otherwise healthy, i.e., represented by sufficiently high species diversity and abundance (appropriate for that portion of the receiving water body) for the identified trophic levels and sustaining through normal seasonal changes.

As noted previously, all major macroinvertebrate functional feeding groups present in the unaffected portion of the waterbody were present in the affected portion. The number of species representing each functional feeding group in the affected reach was "reasonably similar" to those in the unaffected reach, and prevalence (abundance) of the major functional feeding groups varied between the downstream and upstream sites over the sample history (Table 5). In addition, the downstream reaches have scored or averaged in the "Excellent" range during eight of ten sample years, including the last five.

For the fish community (Table 4), all major trophic levels present in the upstream reach were observed in the downstream reach, and collections were not different between reaches. When compared among all samples, most guilds showed no difference in numbers of species or abundance between reaches. Numbers of insectivore species was significantly higher upstream, but only by one species (Table 3). These results indicate that the long-term presence of necessary food chain items at the downstream reach has not been different from upstream.

With regard to BIP element 4, EPA indicates:

"<u>Non-domination of pollution-tolerant species</u>" means that in the case of a thermal effluent community assemblages in heat affected portions of the water body dominated by heattolerant species do not constitute a BIP. The EPA recognizes that because all species have varying levels of thermal tolerance, communities in the heat affected portions of the receiving water body may possess altered assemblages in terms of species present and abundance. All community data should be collected, analyzed and presented to clearly demonstrate that affected communities have not shifted to primarily heat-tolerant assemblages.

Table 8 presents the numbers of indigenous fish species and individuals with upper incipient lethal limits (UILT) of 95 °F to 102 °F (considered "heat tolerant") collected upstream and downstream of SQN during summer 2011 and 2022 and autumn 2000 through 2022. Differences between reaches have mostly been small, differing by more than two species only once and with long term

averages of 11 species for both reaches. As expected, a Wilcoxon Rank Sum statistical test performed on the datasets indicates that average numbers of species have not been statistically different between reaches (P=0.90). Additionally, average abundance of heat tolerant individuals has not been different (P=0.69) between reaches. These data indicate no expressed dominance of heat tolerant species in either reach and no historical shift in abundance between reaches.

Table 9 presents the relative abundance of heat tolerant and heat sensitive (UILT <91 °F) indigenous fish species collected upstream and downstream of SQN during summer 2011 and 2022 and autumn 2000 through 2022. In direct comparison, heat tolerant species make up a much greater proportion than heat sensitive species in both upstream and downstream sample reaches. There were no differences in relative abundances of heat tolerant (P=0.41) or heat sensitive (P=1.0) fish between reaches.

With regard to BIP element 5, EPA indicates:

"Indigenous" has been further clarified in the regulations: "Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications. Normally, however, such a community will not include species whose presence is attributable to the introduction of pollutants that will be eliminated by compliance by all sources with section 301(b)(2) of the Act and may not include species whose presence or abundance is attributable to alternative effluent limitations imposed pursuant to section 316(a)." The EPA recognizes that non-indigenous species are present in most aquatic systems in the United States. All community data should be analyzed and presented to demonstrate that community assemblages in the heat-affected portions of the receiving water body are not significantly different from non-affected communities with regard to the number of non-indigenous species in the assemblages.

Table 11 presents the number of non-indigenous fish species and the number of individuals representing these species collected upstream and downstream of SQN during summer 2011 and 2022 and autumn 2000 through 2022. Though Chickamauga Reservoir represents an artificial, man-made feature, available data indicate there are very few non-indigenous fish species present in the reservoir around SQN, and similar numbers of species were collected in both reaches during summer and autumn samples. A Wilcoxon Rank Sum statistical test performed on the autumn 2022 dataset indicates that numbers of non-indigenous species and abundances were not different between reaches in 2022 (Appendix E) or long-term (autumn 2000-2022; P=0.61; P=0.90). Recent increases in abundance of individuals have been observed at across both reaches since 2011 (figure 8). These increases can be attributed primarily to one species, Mississippi silverside, which are known to school in large numbers. When encountered, these large numbers often result in "oversampling" by electrofishing efforts, causing misrepresentation of the species in relative proportions of the community. Thermal tolerance data for the non-indigenous species are presented in Table 12. Of the six non-indigenous species identified, UILT data designate striped bass and yellow perch as heat sensitive and common carp and goldfish as heat tolerant; data are not available for the remaining two species.

Further, there are no known species in the study area whose presence is attributable to the SQN thermal discharge or to any known pollutant.

3.2 Other Considerations for a Balanced Indigenous Population

As noted earlier from the EPA Region 1 Merrimack Station permitting, assessing changes and important trends in the resident fish community of a water body often provides the most conspicuous evidence of impacts to the overall aquatic community,⁵ but information on other communities such as planktonic organisms, macroinvertebrates, "habitat formers" (e.g., aquatic vegetation), and wildlife also inform decision making with regard to the presence/absence of a BIP.

3.2.1 Macroinvertebrate Community

Because benthic macroinvertebrates are relatively immobile, negative impacts to aquatic ecosystems can be detected earlier in benthic macroinvertebrate communities than in fish communities. These data have been used historically to supplement multi-metric RFAI results to provide a more thorough examination of differences in aquatic communities upstream and downstream of thermal discharges.

In 2010, TVA contracted Third Rock Consultants to conduct a survey for freshwater mussels in the Chickamauga Reservoir within areas that may be affected by plant operations and areas outside of areas potentially affected by SQN (Third Rock 2010). The survey produced a total of 280 live specimens representing eleven species were collected from semi-quantitative transect lines, and qualitative and quantitative samples. No federally threatened or endangered, or state protected mussels were found during the survey. River substrates were noted as "unsuitable habitat," with varying degrees of silt over hard packed clay/sand.

In summary, ecological conditions of benthic macroinvertebrate communities, when compared between the downstream and upstream reaches, have been consistently "similar" or more favorable downstream since initiation of sampling and laboratory-processing of data in 2001. Results support the general conclusion that the SQN thermal effluent has had no adverse environmental impact on the benthic macroinvertebrate community downstream of the plant.

However, as noted earlier, the downstream reaches have scored or averaged in the "Excellent" range during eight of ten sample years, including the last five (Figure 11). In addition, the status of the macroinvertebrate community structure based on specific metrics, as presented in Table 7, and summarized in previous Section 3.1 regarding BIP Elements 1 (diversity at all trophic levels), 2 (sustain through seasonal changes), and 3 (food chain species), demonstrate a seasonally abundant and diverse macroinvertebrate community present at both downstream and upstream sites.

⁵ EPA Region 1. 2011. Draft NPDES Permit for the PSNH Merrimack Station; page 36.

3.2.2 Threatened and Endangered Species

Table 13 provides a list of federal or state protected aquatic species with potential to occur in the Chickamauga Reservoir within a 10-mile radius of SQN. One fish species—laurel dace—is listed under federal protection, and two species of fish are under state protection or tracked within Tennessee: highfin carpsucker and lake sturgeon. The laurel dace is known from first and second order headwater tributaries and not large rivers, and has not been collected by TVA from 1993 to 2022 in the vicinity of SQN. It is highly unlikely this species would be collected in Chickamauga Reservoir given its preference for smaller stream habitat. One major change has been the delisting of the Snail darter. During the work to get this species de-listed it was determined that adults and spawning individuals inhabit sand and gravel shoals, large creeks and rivers, and in deeper portions of rivers and reservoirs where current is present. This habitat is rare in the vicinity of SQN, and as a result, no snail darters have been collected in RFAI samples.

One individual of lake sturgeon was collected during TVA's biological monitoring from 2000 to 2022 in the vicinity of SQN (in 2003). This species has been the focus of restoration efforts by state and federal fisheries managers in Tennessee and is known to occur in the Tennessee River system from Knoxville downstream to Guntersville, Alabama. The highfin carpsucker is also tracked at the state level and is deemed as in need of management. This species was collected only once in 1994 at TRM 490.5 (TVA Data); it is highly unlikely this species still occurs in Chickamauga Reservoir.

Additionally, TVA queried the U.S. Fish and Wildlife Service (USFWS) Environmental Conservation Online System (ECOS) and the USFWS Information for Planning and Consultation (IPAC) to supplement information on rare aquatic species and designated potentially occurring near SQN. The ECOS and IPAC systems utilize known federally listed species by county. These data inherently search broader areas than the TVA Database queries and, consequently, listed additional federally listed species as potentially occurring near the SQN project. While TVA recognizes these additional species may occur or have occurred in Hamilton County, Tennessee, we have determined that they would not be affected by SQN since they are either no longer occurring in the Tennessee River near SQN or occur in habitats outside of the affected SQN project area within Hamilton County.

Records of seven state- and federally-listed mussel species—dromedary pearlymussel, fanshell, orangefoot pimpleback pearlymussel, pink mucket, rough pigtoe, sheepnose, and shiny pigtoe pearlymussel—are believed to or known to occur from within a 10-mile radius of SQN. Three of these are extant records less than 25 years old, three have uncertain status, and one is a historical record greater than 25 years old (Table 13). However, as mentioned previously, no federally threatened or endangered, or State-protected mussels were found during the 2010 survey of the Tennessee River/Chickamauga Reservoir adjacent to SQN conducted by Third Rock (2010). River substrates were noted as "unsuitable habitat," with varying degrees of silt over hard packed clay/sand.

3.2.3 Wildlife Community

Beginning in 2011, visual wildlife surveys have been conducted to assess bird, reptile, and mammal populations around SQN. Numbers and categories of wildlife observed during 2011, 2013, 2015, 2020, and 2022 are presented in Table 14. Observations recorded during each year were primarily of birds, with similar species observed along each transect. Similar species and numbers of birds, mammals and reptiles were observed upstream and downstream along each bank during each year.

These observations suggest that a relatively healthy ecological community exists both upstream and downstream of SQN. However, because the typical behavior of reptiles, amphibians, and mammals limits visibility of these groups by visual survey methods, estimation of the presence and diversity of these taxa was also limited. It is important to note that the visual encounter survey provides a preliminary near shore wildlife assessment to determine if the thermally affected area downstream of a power plant has adversely affected the bird, reptile, amphibian or mammal communities. If such adverse environmental impact is suspected, more sampling strategies that could provide more quantitative data will be proposed to more accurately estimate the presence and diversity of these groups.

3.2.4 Aquatic Habitat

The type, quality, and abundance of aquatic habitats dictate the diversity and abundance of organisms present in aquatic systems. To minimize bias in biological assessments, it is important to adequately describe/characterize shoreline and pelagic habitats in reference and "affected" reaches when attempting to discern potential impacts to biological systems from pollutant sources. Habitat Formers

Habitat formers are mentioned in EPA's § 316(a) guidance document (EPA 1977) as an element of investigation in § 316(a) demonstrations. In freshwater systems, aquatic macrophytes, submerged and emergent, are the most obvious habitat formers and can be critical to the structure and function of ecological systems.

In the case of the anthropogenically modified Chickamauga Reservoir, important habitat formers such as aquatic macrophytes were not present in abundance in the system during TVA's shoreline habitat survey conducted in winter 2020. The survey did not identify aquatic macrophytes at either downstream and upstream biological monitoring reach (Tables 15 and 16). However, several species of aquatic macrophytes are known to occur in relatively high abundance across the overbanks and shallow waters of Chickamauga reservoir during the summer months. It is likely that these habitat formers were not visible during the assessment period due to winter level reservoir draw downs or natural die offs.

3.2.4.1 Physical Habitat

TVA collects shoreline and river bottom habitat data upstream and downstream of SQN (Figure 12) every five years to characterize habitats important to fish. The objective is to find comparable habitats at the upstream and downstream sampling reaches to, as much as possible, minimize any habitat differences that might bias interpretation of the results of the thermal study.

Within the sample area upstream of SQN, the average Shoreline Aquatic Health Index (SAHI) score for the left descending bank was 25 and right descending bank was 22. The shoreline sections at the downstream reach scored similarly between shorelines: 23 on the left descending bank and 20 on the right descending bank. Scores at both downstream and upstream reaches rated in the "Fair" range. No aquatic macrophytes were observed at either reach (Tables 14 and 15).

Figures 13 through 20 depict proportions of substrate types observed along each transect sampled for river bottom substrate. Seven substrate types were identified at both reaches; sand and clay were only observed at the reach upstream of SQN. Silt and mollusk shell were the most prevalent substrates in both reaches making up a combined 77% at the upstream reach and 93% downstream (Table 17).

3.2.5 Representative Important Species

In its processing of the Merrimack Station NPDES permit and associated review of § 316(a) studies, EPA Region 1 states: "[W]hile it is appropriate to identify and focus on representative important species for 'predictive' § 316(a) demonstrations, non-predictive (i.e., retrospective, or 'Type I') demonstrations, which are designed to assess prior appreciable harm, should not be restricted to assessing the status of representative important species. In fact, EPA's Draft 1977 316(a) Technical Guidance recommends that references to Representative Important Species be eliminated from Type I demonstrations [emphasis added] (EPA 1977a)...[W]hen assessing community-wide impacts, there is no reason to exclude any resident species that was present prior to the increase in discharges of heated effluent to Hooksett Pool."⁶

⁶ See EPA Region 1.2011. Draft NPDES Permit for the PSNH Merrimack Station; Appendix D, page 36. <u>https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/MerrimackStationAttachD.pdf</u>

Representative Important Species (RIS) are defined in EPA guidance as those species which are representative in terms of their biological requirements of a balanced, indigenous community of fish, shellfish, and wildlife in the body of water into which the discharge is made (EPA 1977). In agreement with EPA Region 1's interpretation of the § 316(a) guidance with regard to Type I (non-predictive) demonstrations, all species collected by TVA in RFAI sampling around SQN, including non-indigenous species, were considered to be RIS and were included in the data analyses.

3.2.6 Zone of Passage

TVA collected depth profiles of temperature from the river surface to the bottom at points along transects to characterize and map the SQN thermal plume. Transects were located upstream of the discharge in an area not affected by the thermal plume (ambient), proximate to the thermal discharge point, and at various locations downstream of the discharge concentrated in the near field area of the plume where the change in plume temperature was expected to be most rapid. The total number of transects needed to fully characterize and delineate the plume was determined in the field.

As part of its § 316(a) demonstration studies conducted for SQN in 2022, TVA collected temperature data profiles in the thermally influenced portion of the Chickamauga Reservoir and

compared these to profiles collected upstream of the SQN plant in the unaffected portion of the river. Measurements were collected in the summer and autumn of 2022.

On the date of the autumn 2022 survey, ambient water temperature profiles were collected approximately 2 river miles upstream of the SQN plant at TRM 485.4, and profiles to represent thermal discharge temperatures were collected at TRM 483.7. Profiles were also collected at TRM 482.8, TRM 482.0 and at TRM 481.6. Similarly, on the date of the Summer 2022 survey, an ambient water temperature profile was collected upstream of SQN at TRM 485.4, with representative thermal discharge profiles taken at TRM 483.7. However, the additional profile locations differed due to the detection of thermal plume temperatures and were collected at TRM 483.1, TRM 482.7, TRM 482.0, and TRM 481.2. These data indicated that the thermal plume (water temperatures greater than 2 °C or 3.6 °F above ambient temperatures) was predominately detected in the mid-channel and right descending bank from the discharge transect 1.8 miles downstream and was confined to the top 4 m at all three transects below the discharge during the summer sample. The thermal plume was not detected on the date of the Autumn 2022 sample (Table 18).

All profiles used to characterize the thermal plume make clear that it is confined to the upper strata of the Tennessee River, indicating that an adequate zone of passage exists in the lower strata for fish to traverse the area of the reservoir around the plant.

3.2.6.1 Field Measurements Relative to Zone of Passage

Water temperature, conductivity, dissolved oxygen, and pH were measured along vertical depth profiles at nine locations within each RFAI sample reach (Table 19). Water temperatures observed within the upstream reach on the day of the 2022 summer sample ranged from 78.9 to 80.5 °F, compared to a range of 79.9 to 84.2 °F in the downstream reach. Dissolved oxygen concentrations were similar at both upstream and downstream locations with the downstream reach ranging from 5.0 to 6.46 mg/L compared to a range of 4.6 to 8.2 mg/L at the upstream reach.

During the autumn 2022 sample, water temperatures observed within the upstream reach varied little with a range from 51.6 to 55.0 °F, compared to a similar range with slightly elevated temperatures of 52.8 to 55.8 °F in the downstream reach. Dissolved oxygen concentrations were favorable at both upstream and downstream locations ranging from 9.1 to 9.9 mg/L. The pH remained within the state criterion of 6.5-9.0 s.u. across all reaches and sampling dates. These results indicate that a sufficient zone of passage past SQN existed for fish and other aquatic life during autumn 2022.

Daily average water temperatures in the reach downstream of SQN during 2022 did not exceed the current thermal variance of 90 °F.

3.2.7 Water Supply and Recreational Use Support Evaluation

TVA is aware of one domestic water supply intake located within approximately 10 river miles downstream of the SQN thermal discharge: Eastside Utility District Intake at TRM 473.0 (Figure 1). As discussed previously, the thermal plume did not extend beyond the lower boundary of the downstream sample reach (approximately TRM 482); this location is nearly nine miles upstream

of this intake. Therefore, water temperatures in the vicinity of this intake were not affected by the SQN thermal plume.

4.0 DISCUSSION and CONCLUSIONS

A number of factors drive variability in these data creating a challenge for interpretation with regard to the thermal effects of the SQN discharge on the aquatic community downstream of the plant. Inter-annual variations occur naturally in biological systems in response to food availability, predation, and ambient environmental conditions including river flow meteorological conditions; these factors may or may not be equally expressed upstream and downstream of the plant. As described in Section 3.2.4, the artificial nature of reservoirs in general, along with differences in river bottom habitat between the downstream and upstream reaches, also contribute to the challenge. Contributions of these individual factors to variation observed in the data are difficult to tease apart from plant-related thermal impacts, except during extremes of drought and during low flows.

Nonetheless, it seems apparent from the period of record data that the biological community downstream has overall been similar to the biological community upstream based on RFAI scores. Importantly, the RFAI index incorporates § 316(a) definitional elements such as diversity (number of species), trophic levels (categorization by feeding guild), presence of necessary food chain species, non-domination of pollution-tolerant species, and representation of indigenous species. Further, the repetitive sampling and scoring across many years provides a measure of sustainability (and trends).

In evaluating the selected fish community metrics of the RFAI, it is apparent that the fish community structure at the thermally affected downstream reach was similar to that of the thermally unaffected upstream site in summer and autumn 2022. When compared to the 2000–2021 averages, the 2022 data indicate similarity or improvement at <u>both</u> reaches in all twelve metrics.

In evaluating the data in the context of EPA's interpretation of the regulatory definition of a BIP, TVA believes that a BIP is currently being demonstrated in Chickamauga Reservoir based on the most recent biological data collected in 2022. As such, TVA believes that continuation of the current ATL of daily maximum temperature of 30.5 °C (86.9 °F) at the end of the mixing zone will reasonably assure the protection and propagation of a BIP.

Should TDEC determine that a BIP does <u>not</u> currently exist, TDEC has the authority under the § 316(a) regulations to approve TVA's requested ATL on the basis that: 1) a BIP was maintained for decades up and until 2022 and 2) there is reasonable assurance that a BIP will be supported going forward. Such assurance can be confirmed via additional biological monitoring with supporting thermal modeling as a continued condition of the renewed permit. Again, absolute certainty⁷ is not required in approving an ATL.

4.1 Relationship to Clean Water Act Section 316(b)

TDEC issued the renewed NPDES permit for SQN on July 30, 2020. Included in the permit renewal application materials submitted on June 29, 2018, were reports required under §

122.21(r)(2)-(13), the results of which were to inform the Commissioner's decisions about the Best Technology Available (BTA) for reducing entrainment of fish eggs and larvae through the SQN cooling water system. Upon review of these results by TDEC and USFWS, it was determined that SQN's cooling water intake structure represented BTA. However, TDEC still believes that 316(a) sampling should be continued during the current permit cycle in summer at least once and compared to historical autumn sampling data.

Additional § 316(a) related studies of the SQN thermal discharge effects conducted in parallel with the study requirements of § 316(b) over the next permit cycle will allow for the Commissioner's holistic assessment of the impact of SQN operations on the aquatic community from thermal discharge and cooling water intake perspectives, and inform decision making for regulatory compliance with both regulations in the subsequent NPDES permit.

⁷ See EPA Region 1.2011. Draft NPDES Permit for the PSNH Merrimack Station; Appendix D, page 25. https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/MerrimackStationAttachD.pdf

5.0 LITERATURE CITED

- Bettoli PW, Maceina MJ, Noble RL, Betsill RK. 1993. Response of a reservoir fish community to aquatic vegetation removal. N Am J Fisheries Manag. 13:110–124; (Giblin 2017)
- Giblin, Shawn M. 2017. Identifying and quantifying environmental thresholds for ecological shifts in a large semi-regulated river, Journal of Freshwater Ecology, 32:1, 433-453, DOI: 10.1080/02705060.2017.1319431).
- EPA (U.S. Environmental Protection Agency) and NRC (U.S. Nuclear Regulatory Commission).
 1977 (draft). Interagency 316(a) Technical Guidance Manual and Guide for Thermal
 Effects Sections of Nuclear Facilities Environmental Impact Statements. U.S.
 Environmental Protection Agency, Office of Water Enforcement, Permits Division,
 Industrial Permits Branch, Washington, DC.
- Etnier, D.A. and W.C. Starnes. 1993. The Fishes of Tennessee. University of Tennessee Press, Knoxville, 681 pp.
- Hickman, G. D. and T. A. McDonough. 1996. Assessing the Reservoir Fish Assemblage Index-A potential measure of reservoir quality. *In*: D. DeVries (Ed.) Reservoir symposium-Multidimensional approaches to reservoir fisheries management. Reservoir Committee, Southern Division, American Fisheries Society, Bethesda, MD. pp 85-97.
- Hubert, W. A. 1996. Passive capture techniques, entanglement gears. Pages 160-165 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.
- Jennings, M. J., L. S. Fore, and J. R. Karr. 1995. Biological monitoring of fish assemblages in the Tennessee Valley reservoirs. Regulated Rivers 11:263-274.
- Levene, H. 1960. Robust tests for equality of variances. *In*: Contributions to probability and statistics: essays in honor of Harold Hotelling. I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann (eds). pp. 278–292. Stanford University Press. Menlo Park, CA.
- Mann, H. B. and D.R. Whitney. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:50–60.
- Plafkin, J.L., Barbour, M.T., Porter, K.D., Gross, S.K., and Hughes, R.M. (1989). Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001, Washington DC, USA.
- Reynolds, J. B., 1996. Electrofishing. Pages 221-251 in B. R. Murphy and D. W. Willis, editors. Fisheries techniques, 2nd edition. American Fisheries Society Bethesda, Maryland, USA.
- Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27:379-423, 623-656.

- Shapiro, S. S. and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591–611.
- Tennessee Valley Authority [TVA]. 1989. A Predictive 316(a) Demonstration for an Alternative Winter Thermal Discharge Limit for Sequoyah Nuclear Plant, Chickamauga Reservoir, Tennessee. Tennessee Valley Authority, Chattanooga, TN
- Third Rock Consultants, LLC (Third Rock). 2010. Draft Report: Mollusk and Habitat Survey of the Tennessee River Near Sequoyah Nuclear Power Plant (Hamilton County, TN). Prepared for Tennessee Valley Authority.
- Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1:80-83.
- U.S. Environmental Protection (EPA). 1977 (draft). Interagency 316(a) technical guidance manual and guide for thermal effects sections of nuclear facilities Environmental Impact Statements. U.S. Environmental Protection Agency, Office of Water Enforcement, Permits Division, Industrial Permits Branch, Washington, DC.
- Yoder, C.O., B.J. Armitage, and E.T. Rankin. 2006. Re-evaluation of the technical justification for existing Ohio River mainstem temperature criteria. Midwest Biodiversity Institute, Columbus, Ohio.
FIGURES

Figure 1. Vicinity map for Sequoyah Nuclear Plant depicting location of dams upstream (Watts Bar) and downstream (Chickamauga) from the plant, Hiwassee River entering upstream, and Eastside Utility District water supply intake

Figure 2. Location of Condenser Circulating Water (CCW) intake, cooling towers, and NPDESpermitted multiport diffuser discharge (Outfall 101) at Sequoyah Nuclear Plant

Figure 3. Biological monitoring zone downstream of Sequoyah Nuclear plant NPDES-permitted multiport diffuser discharge Outfall 101

Figure 4. Biological monitoring zone upstream of Sequoyah Nuclear plant NPDES-permitted multiport diffuser discharge Outfall 101

Figure 5. Reservoir Fish Assemblage Index (RFAI) scores and ratings from sites located directly upstream and downstream of Sequoyah Nuclear plant (SQN; TRM 484) conducted during summer 2011 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 and as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

Figure 6. Numbers of indigenous species collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

Figure 7. Relative proportions of tolerant fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

Figure 8. Relative proportions of non-indigenous fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

Figure 9. Relative proportions of omnivore fishes collected at sites upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

*Downstream transects located at TRM 482.0 during 2001-2004 and 2006 and TRMs 483.4 and 481.3 during 2011, 2013, 2015, 2017, 2020, and 2022 ^RBI scores for 2011, 2013, 2017, 2020, and 2022 are averages of scores for the two downstream transects and based on lab-processed data

Figure 10. Reservoir Benthic Index (RBI) scores^ and ratings from sites located directly upstream and downstream* of Sequoyah Nuclear plant (SQN; TRM 484) conducted during summer 2011 and autumn 2001-2004, 2006, 2011, 2013, 2017, 2020, and 2022 as part of the Reservoir Ecological Health Monitoring Program in Chickamauga Reservoir

Figure 11. Transects established upstream and downstream of Sequoyah Nuclear plant for the integrative multi-metric aquatic shoreline and river bottom habitat assessment

Figure 12. Substrate composition at ten equally spaced points per transect (Transects 1 and 2 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020

Figure 13. Substrate composition at ten equally spaced points per transect (Transects 3 and 4 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020

Figure 14. Substrate composition at ten equally spaced points per transect (Transects 5 and 6 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020

Figure 15. Substrate composition at ten equally spaced points per transect (Transects 7 and 8 shown) across the Tennessee River (Chickamauga Reservoir) downstream of SQN, autumn 2020

Figure 16. Substrate composition at ten equally spaced points per transect (Transects 1 and 2 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020

Figure 17. Substrate composition at ten equally spaced points per transect (Transects 3 and 4 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020

Figure 18. Substrate composition at ten equally spaced points per transect (Transects 5 and 6 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020

Figure 19. Substrate composition at ten equally spaced points per transect (Transects 7 and 8 shown) across the Tennessee River (Chickamauga Reservoir) upstream of SQN, autumn 2020

TABLES

	RFAI	Scores	
Year	Downstream (TRM 482.0)	Upstream (TRM 490.5)	Difference
2000	48	46	2
2001	46	45	1
2002	43	51	8
2003	45	42	3
2004	41	49	8
2005	39	46	7
2006	35	47	12
2007	38	44	6
2008	38	34	4
2009	37	41	4
2010	39	39	0
Summer 2011	37	37	0
2011	35	35	0
2013	39	39	0
2015	33	37	4
2017	35	35	0
2019	38	41	3
2020	47	45	2
2021	40	40	0
Summer 2022	39	41	2
2022	46	47	1
2000-2021 Autumn Average	39.8	42.0	3.6

Table 1. Seasonal Reservoir Fish Assemblage Index (RFAI) scores from fish community monitoring at siteslocated directly upstream and downstream of Sequoyah Nuclear Plant (TRM 484) on ChickamaugaReservoir during summer 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, 2019-2022

*12-21 "Very Poor"; 22-31 "Poor"; 32-40 "Fair"; 41-50 "Good"; 51-60 "Excellent"

Table 2. Comparison of RFAI scores and metrics (gears combined) for fish collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (SUM.) 2011 and autumn (AUT.) 2000-2011, 2013, 2015, 2017, 2019-2022

Metrics	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	SUM. 2011	2011	2013	2015	2017	2019	2020	2021	SUM. 2022	2022	2000-2021 AUT. AVG	2000-2021 AUT. RANGE
DOWNSTREAM (TRM 482.0)									5 M				3	1921		13/15/							
RFAI Score	48	46	43	45	41	39	35	38	38	37	39	37	35	39	33	35	38	47	40	39	46	40	33 - 48
1. Number of species	26	28	23	24	27	26	25	25	29	22	25	27	24	26	27	25	27	28	28	28	29	26	22 - 29
2. Number of centrarchid species (excluding <i>Micropterus</i> spp.)	6	6	6	5	5	7	5	5	6	4	6	7	6	7	4	6	6	5	6	6	6	6	4 - 7
3. Number of benthic invertivore sp.	2	3	3	3	3	3	3	3	3	3	3	3	3	4	3	2	4	4	4	3	4	3	2 - 4
4. Number of intolerant species	5	5	5	5	5	5	3	4	5	4	5	5	4	6	3	3	4	6	4	3	6	5	3 - 6
5. Percent tolerant individuals	62.2	56.9	62.9	49.6	56.9	65.0	66.7	64.7	75.3	70.5	43.9	81.7	43.6	71.6	58.9	80.0	70.7	62.1	58.7	59.7	83.8	62.2	43.6 - 80.0
6. Percent dominance by 1 species	35.3	32.8	27.1	20.9	26.3	26.6	29.5	26.8	50.1	45.3	40.0	42.7	33.5	45.0	27.4	55.5	33.4	16.7	19.5	26.3	68.5	32.9	16.7 - 55.5
7. Percent non-native species	3.7	3.2	4.7	3.8 .	6.1	14.3	10.2	9.4	8.7	8.1	40.8	4.3	34.7	15.4	6.3	6.3	11.3	19.9	23.0	13.5	6.2	12.8	3.2 - 40.8
8. Number of top carnivore species	9	11	10	11	10	10	8	9	11	8	10	10	9	9	11	11	9	11	10	11	10	10	8 - 11
9. Percent top carnivores	14.4	21.4	21.0	15.8	14.1	12.5	11.1	16.2	10.5	16.5	9.4	11.0	5.2	7.7	21.8	11.4	13.6	17.6	15.8	17.7	7.9	14.2	5.2 - 21.8
10. Percent omnivores	20.9	17.3	31.0	23.7	23.7	32.2	27.7	30.5	17.8	18.6	25.1	35.2	29.7	16.0	38.0	16.6	31.0	36.8	30.3	27.2	11.0	25.9	16.0 - 38.0
11. Average number per run	37.1	49.8	27.4	33.4	42.8	43.6	42.2	31.5	55.4	49.6	64.9	42.0	109.3	60.2	22.8	40.8	36.8	40.5	37.7	39.4	114.2	45.9	22.8 - 109.3
12. Percent anomalies	1.7	1.3	0.8	0.4	1.3	0.7	0.4	1.0	1.7	1.0	0.7	1.0	0.5	0.9	0.9	0.9	1.4	1.4	1.9	0.9	1.0	1	0.4 - 1.9
UPSTREAM (TRM 490.5)																							
RFAI Score	46	45	51	42	49	46	47	44	34	41	39	37	35	39	37	35	41	45	40	41	47	42	34 - 51
1. Number of species	21	30	29	29	31	28	29	30	26	27	26	28	26	32	27	27	31	32	29	30	31	28	21 - 32
2. Number of centrarchid species (excluding <i>Micropterus</i> spp.)	6	7	7	7	7	6	6	7	7	5	6	6	6	7	7	7	7	6	6	6	6	7	5 - 7
3. Number of benthic invertivore sp.	2	3	5	3	4	4	4	3	3	3	3	4	3	4	4	3	4	6	5	3	5	4	2 - 6
4. Number of intolerant species	5	5	6	5	5	7	5	4	3	4	5	6	3	5	4	3	6	8	6	5	7	5	3 - 8
5. Percent tolerant individuals	40.8	48.5	52.9	56.3	48.6	67.3	60.0	63.1	81.9	66.7	53.3	76.3	78.1	78.1	65.0	77.6	62.5	65.6	73.2	59.6	81.5	63.3	40.8 - 81.9
6. Percent dominance by 1 species	18.6	20.9	28.6	22.2	23.8	33.5	32.7	28.1	47.3	37.3	31.7	36.8	40.0	41.9	23.2	45.0	21.5	27.3	42.3	29.8	63.2	31.4	18.6 - 47.3
7. Percent non-native species	6.8	4.9	4.0	7.7	6.5	9.3	7.2	8.9	5.2	7.7	30.6	6.4	10.8	3.7	9.6	4.0	23.3	17.7	10.4	11.3	5.9	9.9	3.7 - 30.6
8. Number of top carnivore species	10	10	10	11	11	9	10	11	9	10	11	10	11	10	11	11	11	10	9	11	12	10	9 - 11
9. Percent top carnivores	39.3	29.4	23.1	17.4	26.1	19.4	19.1	25.1	9.7	14.9	7.5	8.8	8.2	7.9	18.3	13.5	9.8	10.2	10.6	13.5	8.7	17.2	7.5 - 39.3
10. Percent omnivores	15.8	30.5	17.3	27.5	18.6	22.8	34.7	32.1	31.5	19.6	20.1	36.3	33.3	30.6	32.0	25.6	31.3	30.5	22.7	24.2	13.4	26.5	15.8 - 34.7
11. Average number per run	18.7	39.8	50.4	34.7	37.1	30.1	39.5	45.8	59.0	97.0	92.0	54.7	79.0	46.5	20.4	37.0	45.0	59.8	48.0	36.2	115.8	48.9	18.7 - 97.0
12. Percent anomalies	2.6	0.8	0.6	2.5	1.1	0.5	0.3	1.1	0.9	1.8	0.4	0.5	0.3	0.5	3.3	2.1	1.3	0.7	1.4	0.9	0.7	. 1.2	0.3 - 3.3

	Mean		Standard Deviation	on	_	
	Upstream (TRM 490.5)	Downstream (TRM 482.0)	Upstream (TRM 490.5)	Downstream (TRM 482.0)	P- value	Significant Difference?
RFAI Score	42.3	40.1	5.0	4.5	0.17	No
1. Number of species	28.5	26.0	2.7	2.0	0.003	Yes
2. Number of centrarchid species (excluding Micropterus		5.6			0.002	Var
spp.)	6.5		0.6	0.8	0.002	Ies
3. Number of benthic invertivore species	3.7	3.2	1.0	0.6	0.06	No
4. Number of intolerant species	5.1	4.6	1.4	1.0	0.31	No
5. Percent tolerant individuals	64.3	63.4	12.1	10.8	0.81	No
6. Percent dominance by one species	33.1	34.7	11.4	13.2	0.69	No
7. Percent non-indigenous species	9.7	12.4	7.0	10.5	0.46	No
8. Number of top carnivore species	10.4	9.8	0.8	1.0	0.13	No
9. Percent top carnivores	16.7	13.9	8.7	4.7	0.29	No
10. Percent omnivores	25.8	25.2	6.7	7.6	0.79	No
11. Average number per run	52.4	49.5	26.1	24.4	0.80	No
12. Percent anomalies	1.2	1.0	0.9	0.4	0.90	No
Number of insectivore species	7.6	6.8	1.3	1.2	0.04	Yes
Number of omnivore species	5.2	5.3	1.1	0.7	0.96	No
Number of planktivore species	0.9	0.8	0.3	0.4	0.39	No
Number of benthic invertivore individuals	39.0	26.1	23.7	13.1	0.05	No
Number of insectivore individuals	601.9	565.7	432.0	436.1	0.74	No
Number of omnivore individuals	330.6	288.8	145.5	142.1	0.25	No
Number of planktivore individuals	28.0	32.5	53.5	99.3	0.64	No
Number of top carnivore individuals	206.7	171.1	83.0	49.6	0.23	No
Total number of individuals	1208.1	1084.4	576.3	486.4	0.56	No
Number of tolerant species	9.3	9.2	1.1	1.0	0.81	No
Number of tolerant individuals	872.3	781.8	528.4	451.2	0.76	No

Table 3. Statistical analyses of RFAI scores, observed values for each RFAI metric, and species and abundances of trophic guilds and tolerant fish collected upstream (TRM 409.5) and downstream (TRM 482.0) of Sequovah Nuclear Plant during autumn 2000 through 2022

 β - Comparing two population means from normally distributed independent samples. n1=n2=15, degree of freedom=n1+n2-2=28, α =0.05, t α /2=2.048. Ho: μ 1= μ 2; Ho rejected if t>t α /2.

 γ - Non-parametric Wilcoxon Rank Sum test on large independent samples. α =0.05, $z\alpha/2$ =1.96. Ho: two sampled populations have identical probability distributions. Ho rejected if P< α or $|z|>z\alpha/2$

Table 4. Numbers of indigenous species and individuals of each trophic guild represented in fish collected upstream (U; TRM 490.5) and downstream (D; TRM 482.0) of Sequoyah Nuclear Plant during summer (SUM.) 2011 and 2022, and autumn (AUT.) 2000-2011, 2013, 2015, 2017, 2019-2022

				N	lumber	of Spe	ecies		Number of Individuals								
Year	Site	BI	HB	IN	OM	РК	PS	TC	Total	BI	HB	IN	OM	PK	PS	TC	Total
2000	D	2		9	5		1	9	26	11		533	185		1	127	857
	U	2		6	2		1	10	21	19		173	61		4	179	436
2001	D	3		7	6	1		11	28	18		710	231	3		327	1,289
	U	3		9	7	1		10	30	52		312	313	10		344	1,031
2002	D	3		6	4			10	23	19		273	207			143	642
	U	5		9	3	1	1	10	29	19		559	221	134	3	316	1,252
2003	D	3		6	4			11	24	34		444	203			134	815
N	U	3		9	5	1		11	29	26		381	243	18		182	850
2004	D	3		6	6	1	1	10	27	28		575	248	16	1	179	1,047
	U	4		8	6	1	1	11	31	37		425	182	5	2	249	900
2005	D	3		7	5	1		10	26	23		407	375	26		146	977
	U	4		9	5	1		9	28	21		340	174	7		159	701
2006	D	3		8	5	1		8	25	25		512	296	5		130	968
	U	4		8	5	1	1	10	29	21		310	348	60	1	228	968
2007	D	3		7	5	1		9	25	15		333	254	3		161	766
	U	3		8	6	1	1	11	30	39		358	393	1	1	319	1,111
2008	D	3		9	5	1		11	29	23		829	262	23		185	1,322
2000	0	3		8	5	1		9	26	18		776	485	3		162	1,444
2009	D	3		5	5	1		8	22	16		663	227	3		203	1,112
	U	3		7	5	1	1	10	27	24		1191	475	205	2	372	2,269
2010	D	3		7	5			10	25	48		365	417			182	1,012
	U	3		6	5	1		11	26	108		861	476	1		203	1,649
Sum. 2011	D	3		7	6	1		10	27	19		506	378	2		117	1,022
0011	0	4		1	6	1		10	28	35		634	498	1		142	1,310
2011	D	3		6	5	1		9	24	21		382	809	439		163	1,814
2012	U	3	1	2	5	1		11	26	25	14	886	669	22		170	1,786
2013	D	4		/	2	1		9	26	22		905	236	3		124	1,290
2015	D	4	1	9	0	1	1	10	32	0.3	2	119	302	0	1	105	1,140
2015		3		2	5	1		11	27	30		118	216	54		137	501
2017	D	4		6	5	1		11	21	21		184	100	1		100	472
2017	D	2		5	0	1		11	25	10		675	150	0		134	987
2010	 	3		0	6	1		0	27	24		276	247	4		139	921
2019	D	4		0	0	1		9	21	05		3/0	247	5		104	85/
2020	0	4	1	0	0	1		11	28	00	1	348	339	3		123	901
2020	D	4		0	0	1		10	28	30		235	305	11		206	84/
2021	0 D	0	1	0	5	1	1	10	32	40	2	202	433	42	1	108	1,259
2021	D	4 5	-	0	5	1		10	28	52		200	278	2		139	13/
Sum 2022	D	2		7	6	1	0	9	29	35		272	271	0		105	1,107
5um. 2022	D	2		0	6	1		11	20	48		372	2/0	5		185	835
2022	D	3		9	6	1		10	20	138		2149	201	10		247	045
2022	U	4 5		0	5	1		10	31	14 64		2148	270	18		247	2703
AUTANC	D	3	1	0	5	0.0	0.1	12	31	04	1	2023	304		0.1	1/2	004
AUTAVG	D	3		1	5	0.8	0.1	10	26	27		478	290	33	0.1	167	994
2000-2021	U	4	0.2	8	5	0.9	0.4	10	28	38	1	523	328	30	0.8	203	1123

BI-benthic invertivore; HB-herbivore; IN-insectivore; OM-omnivore; PK-planktivore; PS-parasitic; TC-top carnivore; D-downstream; U-upstream

Table 5. Numbers of indigenous taxa and total mean densities per square meter (m²) of each functional feeding group¹ represented in benthic macroinvertebrate samples collected downstream ("Down"; TRMs 482.0, 481.3 and 483.4) and upstream ("Up"; TRM 490.5) of SQN for years sampled, 2002-2004, 2006, summer and autumn 2011, 2013, 2015, 2017, 2020, and 2022.

		20	02	20	003	20	004	20	006	Sui	mmer 2	011	A	utumn 2	011		2013			2015			2017			2020		Su	mmer 20	022	Au	tumn 20	022	AUT	Verage
		TRM 482.0	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5*	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	TRM 481.3	TRM 483.4	TRM 490.5	2002	-2022						
		D	U	D	U	D	U	D	U	D	D	U	D	D	U	D	D	U	D	D	U	D	D	U	D	D	U	D	D	U	D	D	U	D	U
	CF	1	1	3	1	2	2	3	2	6	4	2	3	6	3	4	4	3	8	4	2	5	5	3	5	6	3	3	7	2	5	7	3	4	2
	CG	5	4	6	3	5	3	7	3	10	17	8	11	16	11	20	20	8	12	18	10	18	14	4	13	16	10	12	19	9	9	13	9	13	7
	PA	0	1	0	0	0	0	0	0	0	1	0	0	1	0	1	1	0	1	0	0	1	1	0	1	2	0	1	1	0	0	0	0	1	0.1
# Sanaira	PR	3	3	5	6	6	6	9	6	10	13	7	9	13	8	15	12	10	11	19	10	11	11	7	10	11	9	11	11	10	10	14	7	11	7
# Species	SC	2	1	2	2	2	4	2	3	3	5	1	1	4	2	5	3	1	6	7	2	4	4	2	5	5	2	7	7	2	3	4	1	4	2
	SH	0	0	0	0	0	0	2	0	0	2	0	3	2	0	2	2	1	1	3	1	1	1	0	2	3	1	2	2	2	2	2	2	2	1
	PI	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	3	2	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0
	Sum	11	10	16	12	15	15	23	14	29	43	18	28	42	24	48	43	23	42	53	25	40	36	16	36	43	25	36	47	25	30	40	22	34	19
																															-				
	CF	90	108	212	80	133	173	28	148	128	57	258	77	175	170	133	163	242	125	150	403	242	398	260	103	423	413	115	143	927	93	102	257	165	225
	CG	197	130	97	208	203	168	177	33	702	1280	155	183	2340	205	600	515	315	503	1423	327	627	462	133	742	1588	383	375	1705	267	537	402	233	662	214
	PA	0	2	0	0	0	0	0	0	0	13	0	0	13	0	2	2	0	2	0	0	2	5	0	3	15	0	2	15	0	0	0	0	3	0.2
Total Mean	PR	135	517	168	387	120	340	252	353	188	313	345	283	1192	317	910	1420	328	302	1052	387	758	862	333	525	1520	553	395	598	397	610	335	472	653	399
Density/m ²	SC	23	2	63	53	107	80	75	52	10	23	2	3	73	5	43	75	8	95	28	5	33	32	13	45	23	12	40	172	18	10	52	7	49	24
	SH	0	0	0	0	0	0	10	0	0	30	0	5	7	0	8	3	2	8	50	2	3	17	0	7	7	2	8	13	15	5	12	3	9	1
	PI	0	0	0	0	0	0	0	0	0	3	0	2	0	0	2	3	0	5	20	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0
	Sum	445	759	540	728	563	761	542	586	1028	1719	760	553	3800	697	1698	2181	895	1040	2723	1124	1665	1776	739	1425	3576	1363	935	2646	1624	1257	903	972	1543	862
-																																			
	% CF	20	14	39	11	24	23	5	25	12	3	34	14	5	24	8	7	27	12	6	36	15	22	35	7	12	30	12	5	57	7	11	26	13	25
	% CG	44	17	18	29	36	22	33	6	68	74	20	33	62	29	35	24	35	48	52	29	38	26	18	52	44	28	40	64	16	43	45	24	40	24
0/	% PA	0	0.3	0	0	0	0	0	0	0	1	0	0	0.3	0	0.1	0.1	0	0.2	0	0	0.1	0.3	0	0.2	0.4	0	0	1	0	0	0	0	0	0
Composition	% PR	30	68	31	53	21	45	46	60	18	18	45	51	31	45	54	65	37	29	39	34	46	49	45	37	43	41	42	23	24	49	37	49	41	48
	% SC	5	0.3	12	7	19	11	14	9	1	1	0.3	1	2	1	3	3	1	9	1	0.4	2	2	2	3	1	1	4	7	1	1	6	1	5	3
	% SH	0	0	0	0	0	0	2	0	0	2	0	1	0.2	0	0.5	0.1	0.2	1	2	0.2	0.2	1	0	0.5	0.2	0.1	0.9	0.5	0.9	0.4	1.3	0.3	1	0,1
	% PI	0	0	0	0	0	0	0	0	0	0.2	0	0.4	0	0	0.1	0.1	0	0.5	1	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0

Functional Feeding Groups: FC-filtering collector; GC-gathering collector; OM-omnivore; PA-parasitic; PR-predator; SC-scraper; SH-shredder

²Other: organisms whose trophic relationships do not fit into a single general category

*Represents data from two five-sample upstream transects collected at TRMs 488 and 490.5 during summer 2011

	Downstream (TRM 482.0)						Up	stream (TRM	490.5)	
Metrics	Summer 2022	Autumn 2022	Z-statistic	P-Value	Significant?	Summer 2022	Autumn 2022	Z-statistic	P-Value	Significant?
RFAI Score	39	46	-	-	-	41	47		-	-
Number of Indigenous Spp.	11.4	10.8	-0.5448	0.5859	No	10.6	12.1	1.0623	0.2881	No
Abundance (# of indigenous individuals)	56.9	178.4	3.4227	0.0006	Yes	53.5	181.6	3.5883	0.0003	Yes
Bluegill Abundance	17.3	130.3	4.3156	<.0001	Yes	18.0	121.9	3.4442	0.0006	Yes
Number of Non-Indigenous Spp.	2.2	1.8	-0.9017	0.3672	No	1.9	1.5	-1.218	0.2232	No
Number of Benthic Invertivore Spp.	0.9	0.7	-0.4879	0.6256	No	1.3	1.5	0.6579	0.5106	No
Number of Intolerant Spp.	0.7	1.3	1.8715	0.0613	No	1.3	2.3	2.4673	0.0136	Yes
Percent Individuals as Omnivores	27.7	12.1	-2.8623	0.0042	Yes	23.3	12.6	-2.6964	0.0070	Yes
Percent Individuals as Tolerant	59.9	80.3	2.9038	0.0037	Yes	61.8	73.1	1.4103	0.1585	No

Table 6. Results of tests performed on means select RFAI metrics (gears combined) for fish collected downstream (TRM 482.0) and upstream(TRM 490.5) of Sequoyah Nuclear Plant during summer and autumn 2022

 Table 7. Comparison of RBI metric ratings and total scores for laboratory-processed samples collected upstream and downstream of Sequoyah

 Nuclear Plant, Chickamauga Reservoir, summer and autumn 2022

			Su	mmer					Au	tumn		
	Dow	nstream	Down	istream	Ups	tream	Dowr	nstream	Dowr	nstream	Ups	tream
	TR	M 481.3	TRM	1 483.4	TRM	1 490.5	TRM	4 481.3	TRM	1 483.4	TRM	490.5
RBI Metrics	Obs	Score	Obs	Score	Obs	Score	Obs	Score	Obs	Score	Obs	Score
1. Average number of taxa	10.6	5	18.0	5	10.3	5	10.7	5	13.1	5	8.6	5
2. Proportion of samples with long-lived organisms	0.9	5	1.0	5	1.0	5	0.9	5	0.9	5	0.9	3
3. Average number of EPT taxa	1.3	5	1.9	5	1.2	3	1.2	5	1.2	5	1.4	3
4. Average proportion of oligochaete individuals	25.5	3	42.9	1	18.7	3	11.3	5	12.1	5	10.6	5
5. Average proportion of total abundance comprised by the two most abundant taxa	68.5	5	72.1	5	73.9	5	79.4	5	64.5	5	72.8	5
6. Average density excluding chironomids and oligochaetes	441.7	5	1076.7	5	1215.0	5	411.7	5	856.7	5	576.7	3
7. Zero-samples – proportion of samples containing no organisms	0	5	0	5	0	5	0	5	0	5	0	5
Benthic Index Score		33		31		31	1333	35		35		29
Ecological Health Rating		Excellent		Excellent		Excellent		Excellent		Excellent		Good

*Reservoir Benthic Index Score Range: 7-12 ("Very Poor"), 13-18 ("Poor"), 19-23 ("Fair"), 24-29 ("Good"), 30-35 ("Excellent") ^RBI scores are averages of scores from the two downstream transects (TRMs 481.3 and 483.4)

Table 8. Numbers of indigenous fish species and individuals with upper incipient lethal limits (UILT) of 95 °F to 102 °F (considered heat-tolerant) collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (Sum.) 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022

	Number o	f Species	Number of l	Individuals
	Downstream	Upstream	Downstream	Upstream
2000	12	8	607	208
2001	13	13	853	517
2002	9	11	483	708
2003	10	11	484	504
2004	10	12	595	503
2005	11	10	670	493
2006	12	11	675	592
2007	11	13	532	678
2008	11	12	1,060	1,220
2009	10	11	834	1,519
2010	11	11	732	1,280
Sum. 2011	12	11	830	977
2011	10	9	1,155	1,505
2013	10	12	993	827
2015	12	10	315	281
2017	10	11	783	686
2019	12	11	486	455
2020	11	10	428	837
2021	11	11	339	705
Sum. 2022	12	12	486	434
2022	12	12	2,179	1,974
Autumn AVG	11	11	748	815

Note: UILTs known for 74% (45 of 61) of indigenous fish species (Table 10) collected in the vicinity of SQN during 2000-2011, 2013, 2015, 2017, and 2019-2022, and sourced from Yoder et al. (2006)

Table 9. Relative abundance of indigenous fish considered heat-tolerant (upper incipient lethal limits of 95-102°F) and heat-sensitive (upper incipient lethal limits \leq 91°F) collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer (Sum.) 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022

	Relative Ab Heat-Tolera	undance of int Species	Relative Ab Heat-Sensit	undance of ive Species
Year	Downstream	Upstream	Downstream	Upstream
2000	70.8	47.7	13.1	12.8
2001	66.2	50.1	9.4	13.3
2002	75.2	56.5	6.5	7.3
2003	59.4	59.3	14	6.6
2004	56.8	55.9	18.9	10.0
2005	68.6	70.3	8.7	5.3
2006	69.7	61.2	7.6	3.8
2007	69.5	61.0	6.4	5.3
2008	80.2	84.5	2.4	0.8
2009	75.0	66.9	1.1	2.1
2010	72.3	77.6	6.0	7.2
Sum. 2011	81.2	74.6	3.1	7.4
2011	63.7	84.3	1.8	1.5
2013	77.0	72.2	4.7	7.3
2015	56.1	59.5	8.0	15.7
2017	79.3	74.0	1.7	6.1
2019	59.6	52.7	19.4	25.7
2020	52.8	68.0	26.9	11.3
2021	46.8	65.6	30.2	16.3
Sum. 2022	57.0	54.1	20.5	27.8
2022	81.4	72.5	6.9	17.8
Autumn AVG	67.4	65.3	10.2	9.3

Table 10. List of indigenous fish species occurring in the vicinity of Sequoyah Nuclear Plant based on sampling during 2000-2011, 2013, 2015, 2017, and 2019-2022, upper incipient lethal limits (UILT) from Yoder et.al. (2006), and thermal tolerance designations (heat-sensitive/ intermediate/ heat-tolerant) used to achieve results in Tables 10 and 11

Common Namo	UILT (OF)	Thermal Tolerance
Common Name	UILI (F)	Designation
American brook lamprey	85	Heat-sensitive
Logperch	87	Heat-sensitive
Spotted sucker	88	Heat-sensitive
Emerald shiner	90	Heat-sensitive
Bluntnose minnow	90	Heat-sensitive
Greenside darter	90	Heat-sensitive
Mooneye	90	Heat-sensitive
Dusky darter	91	Heat-sensitive
Northern hog sucker	91	Heat-sensitive
Sauger	91	Heat-sensitive
Walleye	91	Heat-sensitive
Warmouth	91	Heat-sensitive
White crappie	91	Heat-sensitive
Freshwater drum	92	Intermediate
Golden redhorse	92	Intermediate
Smallmouth redhorse	92	Intermediate
Striped shiner	92	Intermediate
Creek chub	93	Intermediate
Golden shiner	93	Intermediate
Black crappie	94	Intermediate
Largemouth bass	94	Intermediate
Redear sunfish	94	Intermediate
Skipjack herring	94	Intermediate
Smallmouth bass	94	Intermediate
Quillback	95	Heat-tolerant
Brook silverside	95	Heat-tolerant
River carpsucker	95	Heat-tolerant
Rock bass	95	Heat-tolerant
Highfin carpsucker	95	Heat-tolerant
Brown bullhead	95	Heat-tolerant
Gizzard shad	96	Heat-tolerant
Green sunfish	96	Heat-tolerant
White bass	96	Heat-tolerant
Longear sunfish	97	Heat-tolerant
Spotfin shiner	97	Heat-tolerant
Spotted bass	97	Heat-tolerant
Bluegill	98	Heat-tolerant
Yellow bullhead	98	Heat-tolerant
Blue catfish	99	Heat-tolerant

Comment Name		Thermal Tolerance
Common Name	UILT (°F)	Designation
Smallmouth buffalo	99	Heat-tolerant
Bullhead minnow	99	Heat-tolerant
Flathead catfish	100	Heat-tolerant
Longnose gar	100	Heat-tolerant
Western mosquitofish	101	Heat-tolerant
Channel catfish	101	Heat-tolerant
Black buffalo	No UILT data	
Black redhorse	No UILT data	
Chestnut lamprey	No UILT data	
Lake sturgeon	No UILT data	
Largescale stoneroller	No UILT data	
River darter	No UILT data	
River redhorse	No UILT data	
Silver redhorse	No UILT data	
Smallmouth redhorse	No UILT data	
Snubnose darter	No UILT data	
Spotted gar	No UILT data	
Steelcolor shiner	No UILT data	
Stripetail darter	No UILT data	
Threadfin shad	No UILT data	
Whitetail shiner	No UILT data	
Yellow bass	No UILT data	

*Heat-sensitive – UILTs ≤ 91°F; Intermediate – UILTs 92–94°F; Heat-tolerant – UILTs ≥ 95–102°F

Table 11. Numbers of non-indigenous fish species and individuals collected upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and 2022, and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022

Sec. No.	Number o	f Species	Number of l	Individuals
	Downstream	Upstream	Downstream	Upstream
2000	4	4	33	32
2001	2	2	40	49
2002	3	4	31	51
2003	2	3	32	67
2004	3	5	65	60
2005	3	3	156	70
2006	2	2	108	71
2007	4	4	74	102
2008	4	3	121	76
2009	4	4	96	186
2010	4	4	662	703
Sum. 2011	4	4	45	88
2011	3	4	948	213
2013	4	4	232	43
2015	4	3	36	49
2017	4	4	66	41
2019	5	5	104	260
2020	5	5	202	264
2021	4	4	217	125
Sum. 2022	4	4	133	102
2022	4	4	178	171
Autumn AVG	4	4	179	139

Table 12. List of non-indigenous fish species occurring in the vicinity of Sequoyah Nuclear Plant based on seasonal sampling during summer 2011 and 2022 and autumn 2000-2011, 2013, 2015, 2017, and 2019-2022 and associated upper incipient lethal limits (UILT) from Yoder et.al. (2006)

Common Name	UILT (°F)	Thermal Tolerance Designation						
Striped bass	90	Heat-sensitive						
Yellow perch	91	Heat-sensitive						
Common carp	99	Heat-tolerant						
Goldfish	100	Heat-tolerant						
Mississippi silverside	No UILT data							
Redbreast sunfish	No UILT data							

*Heat-sensitive – UILTs \leq 91°F; Heat-tolerant – UILTs \geq 95–101°F

Source	Scientific Name	Common Name	Federal Status ⁴	State Status ⁴
TVA Natural Heritage				1. 2. 1
Database ¹	FISHES			
	Carpiodes velifer	Highfin Carpsucker	-	NMGT
	Acipenser fulvescens	Lake Sturgeon	-	END
	Chrosomus saylori	Laurel Dace	LE	NMGT
	Percina tanasi	Sna il Darter ⁵	DL	THR
	MUSSELS			
	Dromus dromas	Dromedary Pearlymussel ⁵	LE	END
	Cyprogenia stegaria	Fanshell'	LE	END
	Plethobasus cooperianus	Orangefoot Pimpleback Pearlymussel ⁵	LE	END
	Lampsilis abrupta	Pink Mucket'	LE	END
	Pleurobemaplenum	Rough Pigtoe ³	LE	END
	Plethobasus cyphyus	Sheepnose'	LE	END
	Fusconaia subrotunda	Longsolid	THR	
	Fusconaia cor	Shiny Pigtoe Pearlymussel ⁶	LE	END
ECOS/IPAC ²	FISHES			
	Chrosomus savlori	Laurel Dace	LE	
	Percina tanasi	Snail Darter	DL	
	MUSSELS			
	Fusconaia subrotunda	Longsolid	THR	
	Plethobasus cooperianus	Orangefoot Pimpleback Pearlymussel	LE	
	Cyprogenia stegaria	Fanshell	LE	
	Lampsilis abrupta	Pink Mucket Pearlymussel	LE	
	Quadrula intermedia	Cumberland Monkeyface	LE	
	Enjoblasma tomulosa tomulosa	Tuberoled Placeom Poorlymyseel	IE	
	Epioblasma torulosa torulosa Tubercled Blossom Pearlymussel Dromus dromas Dromedary Pearlymussel Plaurohamanlamum Pauch Pictor			
			LE	
	Pleurobemaplenum	Rough Pigtoe	LE	
TDEC ³	FISHES			
	Percina tanasi	SnailDarter		THR
	Carpiodes velifer	Highfin Carpsucker		NMGT
	MUSSELS			
	Dromus dromas	Dromedary Pearlymussel		END
	Quadrula intermedia	Cumberland Monkeyface Pearlymussel		END
	Plethobasus cooperianus	Orangefoot Pimpleback Pearlymussel		END
	Lampsilis abrunta	Pink Mucket Pearlymussel		END
	Pleurobemaplenum	Rough Pigtoe		END
	CRUSTACEANS			
	Stygobromus nortoni	Norton's Cave Amphipod		RNSL
	Cambarus extraneus	Chickamauga Cravfish		END

 Table 13. Records of federal and state-listed aquatic animal species in the vicinity^{1,2,3} of Sequoyah Nuclear Plant (TRM 484)

¹TVA Natural Heritage Database returns records within the 10-digit Hydrologic Unit watershed that encompasses SQN intake, queried by Todd Amacker (TVA) on 1/10/2025

² U.S. Fish and Wildlife Service (USFWS) Environmental Conservation Online System (ECOS) and the Information for Planning and Consultation (IPAC) internet resource pages returns records by county

³ Tennessee Department of Environment and Conservation "Rare Species by County" website returns records by county

⁴ Status Codes: LE or END = Listed Endangered; LT or THR - Listed Threatened; D or NMGT = Deemed in need of management; PT = Proposed Threatened; RNSL = Rare, Not State Listed.

 5 H? = Uncertain status

 6 H = Historical record \geq 25 years old

 7 E = Extant record \leq 25 years old

Table 14. Wildlife observed during visual surveys conducted upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during summer 2011 and autumn 2011, 2013, 2015, and 2020

	TRM 490.5 RDB						TRM 490.5 LDB						TRM 482 RDB						TRM 482 LDB					
Sampling year	Sum. 11	Aut. 11	13	15	20	Aut. 22	Sum. 11	Aut. 11	13	15	20	Aut. 22	Sum. 11	Aut. 11	13	15	20	Aut. 22	Sum. 11	Aut. 11	13	15	20	Aut. 22
Birds																		2000	1253				2.1.1	
American coot					2	8						6		335			24	250		603	17		31	
American crow	4		1	1	2		1		1	1	4				3	1	2						3	
American goldfinch															1									
American widgeon														2										
Bald eagle						1																		2
Belted kingfisher	1				1			1		1	1	1		3		5		2	1	2	3	3	1	
Black-crowned																				1				
night heron																				1				
Blue jay			1								2			1			1				1			
Blue-winged teal																					1			
Brown thrasher											2				1									
Carolina chickadee			2												5		1							
Carolina wren								1																1
Cattle egret																					1		1	
Cliff swallow	1				1		2						3						5			4		
Common loon																		2						
Double-crested			2	2	4				6	1			2	1		6	5			5	3	7	11	
cormorant			-	-	-				0	1			-			0					-			
Eastern bluebird						2																		
European starling											10								30		2		20	
Gadwall																				3				
Golden eagle									1															
Great blue heron	5	4	11	3	3	2	5	1	16	2	5	2	4	5	1	3	2	5	2	7	8	5	3	4
Grebe sp.						2												7						
Green heron									1										1					
Gull Sp.																		400						2
Green-winged teal																				2				
House sparrow						3						3			2									3
Junco									2															
Killdeer																				2				
Mallard			17	4	1									5			2	6		13		10		12
Mockingbird			1			1					3			1	7		3							1
Mourning dove					2					2														
Osprey	1		1										2								1		1	
Plover sp.												1												
Table 14. (conti	nued)																							

64
Northern cardinal			1	5	3	1				1	1										1		1	
Pied-billed grebe														2						2				
Red-shouldered Hawk						1																		
Red-tailed Hawk						1																		1
Red-winged blackbird							5																	
Rock dove															1									
Spotted sandpiper						2														2				
Tufted titmouse															1					3				1
Turkey vulture		2			1	3			2	19								100						
Unspecified duck		2															4	1						
Unspecified perching bird	4									4			6		8	1			3			3	2	
Western kingbird			5																				2	
White ibis																	1					6		
Wood duck			3	2										1					15					
Reptile/Amphibian																								
Map turtle			4						16						1						3			
Painted turtle			2					4																
Unspecified turtle				3	5						10					2		2				5		
																	2						5	
Mammals																								
Eastern grey squirrel						2					2		1		1		1		2				2	
White-tailed deer						and the		4			195			4	Pa R									
Total Birds	16	8	45	17	20	27	13	3	29	31	28	13	17	356	30	16	45	775	57	645	38	38	76	27
Bird Species	5	2	11	6	10	12	4	3	7	7	8	5	4	10	9	4	9	9	6	12	10	6	10	9
Total Rept/Amph	-		6	3	5	-	-)	4	16	-	10	-	-	-	1	2	-	2	-	-	3	5	-	-
Rept/Amph Species	-	-	2	1	1	-	-	1	1	-	1	-	-	-	1	1	-	1	-	-	1	1	-	-
Total Mammals	-	-	-	-	-	1	-	4	-	-	2	-	1	4	1	-	1	-	2	-	-	-	2	-
Mammal Species	-	-	-	-	-	1	-	1	-	-	1	-	1	1	1	-	1	-	1	-	-	-	1	-

Table 15.	Shoreline	Aquatic Healt	1 Index sco	res for	shoreline	habitat a	assessmen	ts conducted	d within the
Reservoir	Fisheries	Assemblage In	dex sample	reach	upstream	of Sequ	oyah Nucl	ear plant (F	figure 9)
during au	tumn 2020)							

Left Descending Bank	1	2	3	4	5	6	7	8	Avg.
Aquatic	0%	0%	0%	0%	0%	0%	0%	0%	0%
Macrophytes									
SAHI Variables									
Cover	5	3	5	3	3	3	3	3	4
Substrate	5	1	3	1	5	5	5	5	4
Erosion	1	3	1	3	3	5	1	1	2
Canopy Cover	5	5	5	3	1	5	5	5	4
Riparian Zone	5	5	5	3	1	5	5	5	4
Habitat	3	1	3	1	1	3	3	5	3
Slope	5	5	5	5	1	5	5	5	5
Total	20	23	27	19	15	31	27	31	25
Rating	Good	Fair	Good	Fair	Poor	Good	Good	Good	Fair
Right				Description of					
Descending	1	2	3	4	5	6	7	8	Avg.
Bank									0
Aquatia									
Macrophytes	0%	0%	0%	0%	0%	0%	0%	0%	0%
SAHI Variables									
Cover	3	5	3	1	3	5	5	5	4
Substrate	5	3	5	5	1	1	1	5	3
Erosion	1	1	1	1	3	3	3	1	2
Canopy Cover	5	5	3	5	3	3	3	3	4
Riparian Zone	3	5	1	5	5	1	1	1	3
Habitat	3	5	1	3	1	1	1	1	2
Slope	5	5	3	5	5	5	5	1	4
Total	25	29	17	25	21	19	19	17	22
Rating	Fair	Good	Fair	Fair	Fair	Fair	Fair	Fair	Fair

Scoring criteria: poor (7-16); fair (17-26); and good (27-35)

Left Descending Bank	1	2	3	4	5	6	7	8	Avg.
Aquatic Macrophytes									
SAHI Variables									
Cover	3	3	3	5	5	5	5	3	4
Substrate	1	1	1	3	1	3	5	1	2
Erosion	3	1	1	1	1	1	3	3	2
Canopy Cover	5	5	3	3	5	5	1	5	4
Riparian Zone	5	3	3	1	5	5	1	5	4
Habitat	3	3	3	5	5	3	1	1	3
Slope	5	5	5	5	5	5	1	5	5
Total	25	21	19	23	27	27	17	23	23
Rating	Fair	Fair	Fair	Fair	Good	Good	Fair	Fair	Fair
Right Descending Bank	1	2	3	4	5	6	7	8	Avg.
Aquatic Macrophytes									
SAHI Variables									
Cover	1	5	5	3	3	3	1	1	3
Substrate	3	1	1	3	3	5	3	1	3
Erosion	3	3	3	3.	3	3	3	5	3
Canopy Cover	3	5	3	3	3	1	5	5	4
Riparian Zone	5	5	1	1	1	1	3	5	3
Habitat	1	1	3	3	1	1	1	1	2
Slope	3	5	3	3	3	1	5	3	3
Total	19	25	19	19	17	15	21	21	20
Rating	Fair	Fair	Fair	Fair	Fair	Poor	Fair	Fair	Fair

Table 16. Shoreline Aquatic Health Index scores for shoreline habitat assessments conductedwithin the Reservoir Fisheries Assemblage Index sample reach downstream of SequoyahNuclear plant (Figure 9) during autumn 2020

Scoring criteria: poor (7-16); fair (17-26); and good (27-35).

Table 17. Substrate percentages and average water depth (ft) per transect recorded upstream anddownstream of Sequoyah Nuclear Plant (Figure 9), autumn 2020

	% Substrate per transect upstream of SQN													
Substrate Type	1	2	3	4	5	6	7	8	Avg					
Mollusk	21.5	66.8	74.1	41.0	32.5	30.6	39.8	23.6	41.2					
Silt	23.7	32.5	5.4	10.0	59.5	62.4	51.2	38.7	35.4					
Bedrock	46.5	-	18.5	7.0	-	-	-	31.0	12.9					
Clay	-	-	-	38.0	8.0	-	-	-	5.8					
Sand	2.1	-	-	4.0	-	7.0	-	1.6	1.8					
Detritus	2.0	-	-	-	-	-	9.0	2.7	1.7					
Gravel	1.9	0.2	-	-	-	-	-	2.3	0.6					
Cobble	-	0.5	2.0	-	-	-	-	-	0.3					
Wood	2.3	-	-	-	-	-	-	0.1	0.3					
Avg. depth (ft)	33.0	39.0	42.6	40.1	20.1	22.3	27.0	30.2	31.8					

Actual depth range: 4.0 to 47.1 ft

Substrate Type	1	2	3	4	5	6	7	8	Avg				
Silt	41.5	37.3	42.0	32.0	82.0	81.0	81.5	78.0	59.4				
Mollusk	53.0	47.2	46.0	55.0	16.0	14.6	18.5	19.0	33.7				
Gravel	1.0	3.0	12.0	13.0	2.0	0.8	-	2.0	4.2				
Bedrock	-	10.0	-	-	-	-	-	-	1.3				
Cobble	4.5	2.5	-	-	-	-	-	-	0.9				
Detritus	-	-	-	-	-	2.5	-	1.0	0.4				
Wood	-	-	-	-	-	1.1	-	-	0.1				
Avg. depth (ft)	25.9	27.9	32.5	29.4	23.1	25.0	25.8	20.9	26.3				
Actual depth range	Actual depth range: 2.9 to 67.5 ft												

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER RESOURCES Water-Based Systems William R. Snodgrass - Tennessee Tower 312 Rosa L. Parks Avenue, 11th Floor Nashville, TN 37243-1102	
Please complete all sections. If one person serves multiple functions, please repeat this information in	n each section.
PERMIT NUMBER: TN0026450 DATE: January 202	24
PERMITTED FACILITY: Sequoyah Nuclear Plant (SQN) COUNTY: Hamilton	
OFFICIAL PERMIT CONTACT:	
(The permit signatory authority, e.g. responsible corporate officer, principle executive officer or ranking elected official	al)
Official Contact: Thomas B. Marshall	dent, SQN
Mailing Address: Sequoyah Access Road, OPS 4A-SQN City: Soddy Daisy	State: TN Zip: 37379
Phone number(s): (423) 843-7001 E-mail: tbmarshall@tva	.gov
PERMIT BILLING ADDRESS (where invoices should be sent):	
Billing Contact: Travis R. Markum	ntal Scientist
Mailing Address: Sequoyah Acess Road, OPS 5N-SQN City: Soddy Daisy	ate: TN Zip: 37379
Phone number(s): (423) 843-6714 E-mail: trmarkum@tva.g	gov
FACILITY LOCATION (actual location of permit site and local contact for site activity):	
Facility Location Contact: Travis P Markum Title or Position: Environm	mental Scientist
Facility Location (physical street address): City: S	
Seqouyah Access Road Soddy Daisy	IN 3/3/9
(423) 843-6714 trmarkum@tv	/a.gov
Alternate Contact (if desired): Beth A. Jenkins Title or Position: Plant Mana	ager
Mailing Address: Sequoyah Acess Road, LP 4J-C City: Soddy Daisy St	^{zate:} TN ^{Zip:} 37379
Phone number(s): (423) 843-6502 E-mail: bajenkins@tva.g	gov
FACILITY REPORTING (Discharge Monitoring Report (DMR) or other reporting):	
Cognizant Official authorized for permit reporting: Thomas B. Marshall Title or Position: Vice Pre	esident
Mailing Address: Sequoyah Access Road, OPS 4A-SQN City: Soddy Daisy	State: TN ^{Zip:} 37379
Phone number(s): (423) 843-7001	va.gov
Fax number for reporting: Does the facility have interest in starting	ng electronic DMR reporting? Yes No

To reiterate, in order to ensure that TVA's future Study Plan is adequate to demonstrate that the Gallatin Plant should get continuance of a Section 3 L6(a) variance during the term of its next NPDES permit, the EPA requests the opportunity to review a draft 316(a) plan prior to TVA commencing the study. Note that the above study elements are required for all facilities subject to a thermal variance. [f you have any questions, please contact Ms. Karrie-Jo Shell of my staff at (404) 562-9308.

d

Christopher B. Thomas, Chief Pollution Control and Implementation Branch Water Protection Division

cc: Ms. Linden P. Johnson Manager, Water Permitting and Compliance TVA - Environmental Affairs e. <u>"Indigenous"</u> has been further clarified in the regulations: "Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications. Normally, however, such a community will not include species whose presence is attributable to the introduction of pollutants that will be eliminated by compliance by all sources with section 30l(b)(2) of the Act and may not include species whose presence or abundance is attributable to alternative effluent limitations imposed pursuant to section 316(a)." The EPA recognizes that non-indigenous species are present in most aquatic systems in the United States. All community data should be analyzed and presented to demonstrate that community assemblages in the heat-affected portions of the receiving water body are not significantly different from non-affected communities with regard to the number of non-indigenous species in the assemblages.

In addition to the foregoing components of the BIP definition, the Study Plan should also include provisions for the identification of RIS (e.g., a list of threatened, endangered, thermally sensitive, or commercially or recreationally valuable species up- and downstream of the study area), as contemplated in 40 CFR § 125.72(b). 40 CFR § 125.71(b) defines RIS as "species which are representative, in terms of their biological needs, of a balanced, indigenous community of shellfish, fish and wildlife in the body of water into which a discharge of heat is made."

The following EPA comments should be specifically addressed in the study plan prior to TVA commencing sampling. The plan should:

- i) include available information on wildlife in the receiving water body areas based on communications with the state's wildlife agency. See item a) above.
- include a diagram depicting the thermal plume under the worst case scenario and address the presence or absence of a zone of passage for which fish can travel around the thermal plume.
- iii) provide information of which fish collected are either heat-sensitive or nuisance species. See item d) above.
- iv) provide a list of any receiving water body species that are endangered or threaten in accordance with federal and state regulations.
- v) select more appropriate sampling locations in order to avoid data that is difficult to interpret.
- vi) analyze and present data to clearly demonstrate that affected communities have not shifted to primarily heat tolerant asst-mblages.
- vii) analyze and present all data to demonstrate that community assemblages **in** the heat-affected portions of the receiving water body are not significantly different from non-affected communities with regard to the number of non-indigenous species in the assemblages.
- viii) include recent data or information on benthic macroinvertebrates. See item a) above.

In keeping with the requirements of CWA Section 316, the plant needs to address the BIP's of the phyletic groups (amphibians, reptiles, birds, mammals) in the "wildlife" category. This group should be restricted to animals that are dependent on the receiving waters. For example, the blackbird population needs to be included but waterfowl or Kingfishers might be. Mammals that only drink from the receiving waters (i.e., whitetail deer) don't need to be included, but the beaver population might be. Once those BIPs are identified, the permittee should come up with a list of the wildlife species from all phyletic groups that may be affected by the temp changes in the receiving waters. The effects could be either direct or indirect depending on their dependence on the receiving water for habitat, food, etc. There may be several species of turtles present but some may be highly vulnerable and others not as much. The U.S. Fish and Wildlife Service and state wildlife agency can supply most, or all, of the information. Specifically, the plant should describe what effects the temperature changes might have on organisms that have habitats located near the point of discharge and depend on the receiving water body for survival. For example, amphibians can be affected directly in terms of survival and development of eggs and early life stages that are water dependent. Later, juvenile stages and adults could be affected by changes in prev items (food distribution) in the thermal affected area. All stages could be affected by increases in predation if warmer areas attract more predators. So for species for each group, the permittee needs to discuss the effects the thermal variance might have in regards to maintain a BIP of these organisms.

- b. <u>"The capacity to sustain itself through cyclic seasonal changes"</u> means that any additional thermal stress will not cause significant community instability during times of natural extremes in environmental conditions. Community data should be collected during normal seasonal extremes as well as during optimal seasonal conditions. Data should be compared between heat affected and unaffected portions of the receiving water body to account for normal community changes corresponding with a change in season.
- c. <u>"Presence of necessary food chain species"</u> means that the necessary food webs remain intact so that communities will be sustaining. We believe that exhaustive food web studies are not necessary provided that invertebrate, fish and wildlife communities are otherwise healthy, i.e., represented by sufficiently high species diversity and abundance (appropriate for that portion of the receiving water body) for the identified trophic levels and sustaining through normal seasonal changes.
- d. <u>"Non-domination of pollution-tolerant species"</u> means that in the case of a thermal effluent, community assemblages in heat affected portions of the water body dominated by heat-tolerant species do not constitute a BIP. The EPA recognizes that because all species have varying levels of thermal tolerance, communities in the heat affected portions of the receiving water body may possess altered assemblages in terms of species present and abundance. All community data should be collected, analyzed and presented to clearly demonstrate that affected communities have not shifted to primarily heat tolerant assemblages.

by pollution tolerant species. Such a community may include historically non-native species introduced in connection with a program of wildlife management and species whose presence or abundance results from substantial, irreversible environmental modifications. Normally, however, such a community will not include species whose presence is attributable to the introduction of pollutants that will be eliminated by compliance by all sources with section 301(b)(2) of the Act: and may not include species whose presence or abundance is attributable to alternative effluent limitations imposed pursuant to section 316(a)."

The Environmental Appeals Board stated in its decision in In Re Dominion Energy Brayton Point, LLC, 12 Environmental Appeals Decision (E.A.D.) 490 (2006)("Brayton Point"), "this definition clearly envisions a consideration of more than the population of organisms currently inhabiting the water body. In this vein, although it permits inclusion of certain 'historically non-native species' that are currently present, it explicitly excludes certain currently present species whose presence or abundance is attributable to avoidable pollution or previously-granted section 316(a) variances."

Page 557 of the Brayton Point E.A.D. goes on to further state that a BIP "can be the indigenous population that existed prior to the impacts of pollutants, not solely the current populations of organisms."

To the question of how a permittee should identify a BIP in an area that has been altered by impacts from an existing thermal discharge, the Brayton Point E.A.D. points out that it may be appropriate to use a nearby water body unaffected by the existing thermal discharge as a reference area. Examination of an appropriate reference area may be applicable in this case.

The definition of "balanced, indigenous community" at 40 CFR § 125.71(c) contains several key elements. To be consistent with the regulations, each of these key elements should be specifically addressed in the demonstration, and the Study Plan should be designed to generate information relevant to these elements. Those elements include: (1) "a population typically characterized by diversity at all trophic levels;" (2) "the capacity to sustain itself through cyclic seasonal changes;" (3) "presence of necessary food chain species;" (4) "non-domination of pollution-tolerant species;" and (5) "indigenous." Each of these elements is discussed in more detail below:

a. <u>"A population typically characterized by diversity at all trophic levels"</u> means that all of the major trophic levels present in the unaffected portion of the water body should be present in the heat-affected portions. The EPA recognizes that community structure differences will occur, however, the number of species represented in each trophic level in the unaffected portions should be reasonably similar in the heat-affected portions of the water body. Sampling and analysis of fish and invertebrate communities should be done such that the major trophic levels are identified and represented by reasonably similar species distributions. Also, the study plan should be expanded to include some observations of wildlife (i.e., water fowl, mammals, amphibians, etc.) both upstream and immediately downstream of the discharge point that may be impacted by the thermal discharge.

1982 rule. These wastewaters discharge from CCR impoundments. Thus, BAT-based limits would currently need to be established through BPJ for discharges from CCR impoundments.

Based on our review of the fact sheet, it does not appear that the Tennessee Department of Environment and Conservation (TDEC) examined pollutants expected to be present in the discharge from the CCR impoundment (i.e., ash pond) to establish appropriate TBELs as required by CWA § 301(a)(l) and applicable federal regulations at 40 Code of Federal Regulations (CFR) § 125.3 (applicable to state NPDES permit programs per 40 CFR § 125.25). Therefore, TDEC should reconsider the guidance and tht: obligations under CWA § 301 in this pt:rmit reissuance by evaluating the costs for TVA to install, at a minimum, chemical precipitation or biological treatment for the ash pond discharge in order to reduce the etlluent discharge of metals. If the revised analysis still concludes that the existing pond is BAT, TDEC could establish TBELs that reflect the performance of the pond using reported t:ftluent characteristic data for metals contained in the facility's Discharge Monitoring Reports and/or recent permit application.

2. Section 316(a) Report and the Study Plan for the Subsequent Permit

The draft permit lacks detail and does not generate information sufficient to support a CWA Section 316(a) variance determination for the next permit cycle. The EPA's comments are submitted in order to ensure that the study plan to be developed during the next permit cycle will generate information sufficient to support a determination of whether the TVA Gallatin Plant's thermal variance under Section 316(a) of the CWA can be approved.

The EPA recognizes that, under 40 CFR § 125.73(c), existing sources seeking variance renewal are not typically required to conduct the same detailed, comprehensive studies required under§ 125.72(a) and (b). Also, under § 125.73, existing sources can base their demonstration on a lack of appreciable harm instead of completing predictive studies. However, under § 125.72(c), the type of detailed studies contemplated under§ 125.72(a) and (b) can be required whenever determined to be necessary. After examining the record of prior 316(a) variance determinations for the TVA Gallatin Plant, the EPA has concerns regarding the need for a more thorough examination and definition of the Balanced and Indigenous Population (BIP), the identification of Representative Important Species (RISs), and a closer examination of whether the variance is protective. Given the thinness of the available record to justify prior variance determinations, the EPA believes a more focused study is needed. The EPA acknowledges that TVA has in the past collected a substantial amount of data in support of its variance. TVA may use existing data in completing its study and may incorporate the existence of such data into the study plan design; however, the existing data needs to be evaluated and presented in the context of a BIP definition that the existing record does not adequately provide.

Section 316(a) of the CWA contains the term "BIP" but does not define it. However, 40 CFR § 125.71(c) defines the term "balanced, indigenous community"¹as:

"A biotic community typically characterized by diversity, the capacity to sustain itself through cyclic seasonal changes, presence of necessary food chain species and by a lack of domination

¹ "Balanced, indigenous community" and BIP are equivalent terms.

Appendix F. Letter dated August 11, 2011 from Christopher B. Thomas, Chief, Pollution Control & Implementation Branch, Water Protection Branch, EPA Region 4 to Paul E. Davis, Director, Division of Water Pollution Control, TDEC, regarding EPA review and comments on the draft NPDES permit for TVA's Gallatin Fossil Plant (NPDES TN0005428)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 4 ATLANTA FEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960

AUG 1 1 2011

Mr. Paul E. Davis
Director, Division of Water Pollution Control
Tennessee Department of Environment and Conservation
6th Floor, L & C Annex
401 Church Street
Nashville, Tennessee 37243-1534

Dear Mr. Davis:

On May 19, 2011, the Environmental Protection Agency received for renewal the draft National Pollutant Discharge Elimination System (NPDES) permit for the Tennessee Valley Authority (TVA) Gallatin Fossil Plant, NPDES permit number TN0005428, which expired on November 29, 2009, and is being administratively continued. In a letter to you dated June 14, 2011, we requested up to 90 days to review the proposed permit in accordance with Section IV.B.6.c. of the Tennessee/EPA Memorandum of Agreement. We have completed our review and offer the following comments:

1. Technology-Based Limits for the Ash Pond

The NPDES permit must include numeric technology-based effluent limits (TBELs) for the ash pond (outfall 001) as required by the Clean Water Act (CWA) and implementing regulations. The CWA Section 301(a)(1) requires that permits include limitations based on the application of statutorily prescribed levels of treatment ("technology-based effluent limitations"). Where the EPA has not promulgated technology-based effluent guidelines for a particular class or category of industrial discharger, or where the technology-based effluent guidelines do not address all waste streams or pollutants discharged by the industrial discharger, the permitting authority must establish TBELs on a case-by-case basis in individual NPDES permits, based on its best professional judgment or "BPJ."

In October 2009, the EPA completed a study of wastewater discharges from both Flue Gas Desulfurization (FGD) and Coal Combustion Residuals (CCR) impoundments (i.e., ash ponds). Findings indicate the need for revised effluent guidelines (EGL) for these wastestreams to due to the potential for metals to exist in relatively high concentrations. The Agency plans to promulgate a revised EGL in 2013. In order to address these discharges during the interim period, on June 7, 2010, the EPA issued guidance entitled "National Pollutant Discharge Elimination System (NPDES) Permitting of Wastewater Discharges from Flue Gas Desulfurization (FGD) and Coal Combustion Residuals (CCR) Impoundments at Steam Electric Power Plants." The record for the 1982 ELG indicates that Best Available Technology (BAT) was not established for fly ash or bottom ash transporter water in the final

> Internet Address (URL) + http://www.epa.gov Recycled/Recyclable + Printed with Vegetable Oil Based inks on Recycled Paper (Minimum 30% Postconsumer)

Table E-4 (continued)

				Esimated Mean Density (per m ²)								
					Summer			Autumn				
Phylum				TRM	TRM	TRM	TRM	TRM	TRM	1.5		
(Subphylum)	Order	Family	Scientific Name	481.3	483.4	490.5	481.3	483.4	490.5	FFG	Invasive	
Class		(Subfamily)		DS	DS	US	DS	DS	US		Species	
	Odonata	Coenagrionidae	Coenagrionidae	-	-	-		2		Predator	-	
	Trichoptera	Hydroptilidae	Hydroptila sp.		-	-	2	-	-	Piercer	-	
		Leptoceridae	Oecetis sp.	20	23	8	12	12	8	Predator	-	
		Polycentropodidae	Cernotina sp.	-	-		-	8	-	Predator	-	
			Cyrnellus fraternus	2	58		5	52	1	Filterer	-	
			Nyctiophylax sp.	-	-	2		4 - 1	-	Predator	-	
	Coleoptera	Psephenidae	Psephenus herricki	2					_	Scraper	_	
Mollusca												
Bivalvia	Unionoida	Unionidae	Utterbackia imbecillis		2	-	-		_	Filterer	_	
	Veneroida	Corbiculidae	Corbicula fluminea <10mm	32	262	45	33	245	65	Filterer	X	
			Corbicula fluminea >10mm	90	123	178	152	175	133	Filterer	X	
		Dreissenidae	Dreissena polymorpha	-	-		_	13		Filterer	Х	
		Sphaeriidae	Sphaeriidae	10-11	2		15	17	147	Filterer	-	
			Eupera cubensis	-	30		120-22	7	-	Filterer	-	
			Musculium transversum	112	37	920	60	2	103	Filterer	_	
			Pisidium sp.	-	10	7	3	1	2	Filterer		
Gastropoda	Architaenioglossa	Viviparidae	Callinina subpurpurea	17	25	5	2	13	7	Scraper	-	
			Campeloma decisum	2	3	-	-	-	-	Scraper		
			Viviparus sp.	1	-	-	2		-	Scraper	-	
	Basommatophora	Ancylidae	Ferrissia rivularis	-	-	-	1922-53	2		Scraper	-	
		Planorbidae	Helisoma anceps			-	-	2	-	Scraper		
			Menetus dilatatus		2	-			-	Scraper		
	Neotaenioglossa	Hydrobiidae	Amnicola limosa	2	3	-	-	-	-	Scraper	-	
			Somatogyrus sp.	5	5	13	-	3	-	Scraper		
		Pleuroceridae	Elimia sp.	2	Ref _			S. 275	14.12.19	Scraper	-	
			Pleurocera sp.	-	2		-		_	Scraper	5.82°C	
			Pleurocera canaliculata	12	48	-	7	32	-	Scraper		
Number of Samples		and the state of the		10	10	10	10	10	10			
Mean Density / meter ²				1057	3058	1848	1443	1337	1170			
Taxa Richness				37	49	27	32	46	23			
Total area sampled (m ²)				0.6	0.6	0.6	0.6	0.6	0.6			

TRM - Tennessee River Mile

DS - Downstream; US - Upstream FFG - Functional Feeding Groups

Table E-4 (continued)

				1000	Esim	ated Mean	Density (p	er m ²)		12	
					Summer			Autumn			
Phylum (Subphylum) Class	Order	Family (Subfamily)	Scientific Name	TRM 481.3 DS	TRM 483.4 DS	TRM 490.5 US	TRM 481.3 DS	TRM 483.4 DS	TRM 490.5 US	FFG	Invasive Species
Arthropoda (Hexapoda)	Diptera	Ceratopogonidae				-	3		-	Predator	-
Insecta		Chironomidae	Ablabesmyia annulata	17	10	27	20	5	7	Predator	_
			Ablabesmyia rhamphe gp.	7	28	-	-	25	-	Predator	
			Axarus sp.	-	7	80 - P	-	-	-	Gatherer	
			Chironomus sp.		10	2	37	37	35	Gatherer	12-22
			Cladopelma sp.	-	2	_	-	-	-	Gatherer	-
			Cladotanytarsus sp.	-	2	-	-		-	Gatherer	11-11
			Coelotanypus sp.	223	113	275	462	60	390	Predator	- 11
			Conchapelopia sp.	-		-	2		-	Predator	-
			Corynoneura sp.	-		2	-	-	-	Gatherer	-
			Cricotopus sp.	-	-	-	3	2	-	Shredder	- 1
			Cryptochironomus sp.	-	13	7	25	13	2	Predator	-
			Dicrotendipes neomodestus	8	7	-	295	83	2	Gatherer	
			Dicrotendipes simpsoni	-	22	2	-	22		Gatherer	
			Dicrotendipes sp.	2	118	2	-	8	7	Gatherer	
			Epoicocladius flavens		2	3	-	2	3	Gatherer	-
			Fissimentum sp.	3	-		3	-	-	Gatherer	-
			Glyptotendipes sp.	-			-	-	2	Shredder	
			Microchironomus sp.	-	-	3		-	-	Gatherer	-
			Microtendipes pedellus gp.	2	-	-	5	17	5	Filterer	-
			Nanocladius sp.	2	2			-	-	Gatherer	
			Nanocladius distinctus	-	3	-	-	3	-	Gatherer	-
			Parachironomus frequens		2	-	-	-	-	Predator	-
			Parachironomus sp.	12	18	-	-	-	-	Predator	-
			Polypedilum fallax gp.	-	2				-	Shredder	
			Polypedilum flavum	-	-	2	2	-	-	Shredder	24
			Polypedilum halterale gp.	7	12	13	-	10	2	Shredder	-
			Polypedilum scalaenum gp.	2	-	-	-	-	-	Shredder	
			Procladius sp.	12	12	55	8	17	22	Predator	1
			Pseudochironomus sp.	-	-	-		3		Gatherer	-
			Rheotanytarsus exiguus gp.	-	2	-	-24	3		Filterer	-
			Stictochironomus caffrarius gp.	-	-	-	-	-	2	Gatherer	-
			Tanytarsus sp.		3	-	5	3	-	Filterer	-
	Ephemeroptera	Caenidae	Caenis sp.	2	8	-	5	-	2	Gatherer	-
		Ephemeridae	Hexagenia sp. <10mm	18	7	3	20	60	57	Gatherer	_
		1	Hexagenia sp. >10mm	17	22	10	13	7	7	Gatherer	-
		Leptohyphidae	Tricorythodes sp.	2			-		-	Gatherer	-

 Table E-4. Ecological designations and mean densities per square meter of benthic macroinvertebrate taxa collected in samples downstream (TRMs 481.3 and 483.4) and upstream (TRM 490.5) of Sequoyah Nuclear Plant during summer and autumn 2022

					Esim	ated Mean	Density (p	er m ²)			
					Summer		1	Autumn			
Phylum				TRM	TRM	TRM	TRM	TRM	TRM		
(Subphylum)	Order	Family	Scientific Name	481.3	483.4	490.5	481.3	483.4	490.5	FFG	Invasive
Class		(Subfamily)		DS	DS	US	DS	DS	US	1999	Species
Nemertea				-	-	1	-	3		Predator	
Platyhelminthes											
Trepaxonemata	Neoophora	Planariidae	Girardia tigrina	33	247	7	18	140	-	Predator	-
Annelida											
Hirudinea				18	-	-	5	-	-	Predator	-
	Arhynchobdellida	Erpobdellidae			3	-	-	2		Predator	-
	Rhynchobdellida	Glossiphoniidae	Glossiphoniidae	-	-		-	-	2	Predator	
			Actinobdella inequiannulata	2	-	-	-	2	-	Predator	
			Helobdella sp.	-	7	-	3		-	Predator	
			Helobdella elongata	17	18	8	13	2	2	Predator	
			Helobdella stagnalis	33	103	7	38	43	40	Predator	-
			Helobdella triserialis	2	15	_	-	-	-	Parasitic	-
			Placobdella montifera	2	-	2	-	2	-	Predator	
Oligochaeta	Haplotaxida	Naididae		1			1.1.1.1.1.1.1				
		(Naidinae)		-	42	2	2	12	-	Gatherer	-
			Arcteonais lomondi	-	-	-	-	3	-	Gatherer	-
			Dero sp.	7	437	-	2	7	-	Gatherer	N
			Nais sp.	2	28	-		-	-	Gatherer	-
			Slavina appendiculata	-	8	-		2	-	Gatherer	-
			Stephensoniana sp.		83	-	-	-	-	Scraper	-
		(Pristininae)	Pristina sp.	2	32	_		2	-	Gatherer	-
		(Rhyacodrilinae)	Branchiura sowerbyi		27	2	2	2		Gatherer	Х
		(Tubificinae whc)	immature Tubificinae whc		_	2	8	20	2	Gatherer	-
			Aulodrilus pigueti	23	18		-	-	-	Gatherer	-
		(Tubificinae whoc)	immature Tubificinae wohc	275	865	188	148	120	115	Gatherer	_
			Limnodrilus sp.		27	2	-	-	_	Gatherer	
			Limnodrilus hoffmeisteri	12	27	47	-	4	-	Gatherer	-
	Enchytraeida	Enchytraeidae	Enchytraeidae	-	_	1	3		-	Gatherer	
Arthropoda (Crustacea)	Isopoda	Asellidae	Lirceus sp.	-	2	-		-	- 1	Gatherer	
Malacostraca	Amphipoda	Corophiidae	Apocorophium lacustre	-	_	1 1-1	-	2	-	Filterer	-
		Crangonyctidae	Crangonyx sp.	2	5		-	7		Gatherer	-
		Gammaridae	Gammarus sp.	-	5		-	5		Gatherer	-
		Hyalellidae	Hyalella azteca	-	-	-	-	-	3	Gatherer	-

 Table E-3. Comparison of RBI metric ratings and total scores for laboratory-processed samples collected upstream and downstream of Sequoyah Nuclear Plant, Chickamauga Reservoir, summer and autumn 2022

			Sur	nmer					Au	tumn		
	Dow	nstream	Down	istream	Ups	tream	Down	istream	Dowr	istream	Ups	tream
	TR	M 481.3	TRM	1 483.4	TRM	1 490.5	TRM	1 481.3	TRM	1 483.4	TRM	1 490.5
RBI Metrics	Obs	Score	Obs	Score	Obs	Score	Obs	Score	Obs	Score	Obs	Score
1. Average number of taxa	10.6	5	18.0	5	10.3	5	10.7	5	13.1	5	8.6	5
2. Proportion of samples with long-lived organisms	0.9	5	1.0	5	1.0	5	0.9	5	0.9	5	0.9	3
3. Average number of EPT taxa	1.3	5	1.9	5	1.2	3	1.2	5	1.2	5	1.4	3
4. Average proportion of oligochaete individuals	25.5	3	42.9	1	18.7	3	11.3	5	12.1	5	10.6	5
5. Average proportion of total abundance comprised by the two most abundant taxa	68.5	5	72.1	5	73.9	5	79.4	5	64.5	5	72.8	5
6. Average density excluding chironomids and oligochaetes	441.7	5	1076.7	5	1215.0	5	411.7	5	856.7	5	576.7	3
7. Zero-samples – proportion of samples containing no organisms	0	5	0	5	0	5	0	5	0	5	0	5
Benthic Index Score		33		31		31		35		35		29
Ecological Health Rating		Excellent		Excellent		Excellent		Excellent		Excellent		Good

Obs: Observed metric value

EPT: Ephemeroptera, Plecoptera, and Trichoptera

RBI: Reservoir Benthic Index

TRM: Tennessee River Mile

Ecological Health Ratings: 7-12 ("Very Poor"), 13-18 ("Poor"), 19-23 ("Fair"), 24-29 ("Good"), 30-35 ("Excellent")

Forebay criteria were used to score sites downstream of SQN, and transition criteria were used to score the site upstream of SQN

Table E-2. Species collected, ecological and recreational designation and corresponding electrofishing (EF) and gill net (GN) catch per unit effort downstream (TRM 482.0) of Sequoyah Nuclear Plant discharge – Summer 2022

Common Name	Scientific Name	Trophic Level	Native Species	Tolerance	Heat Sensitive Species	Comm. Valuable Species	Rec. Valuable Species	EF Catch Rate Per Run	EF Catch Rate Per Hour	EF Total Fish	GN Catch Rate Per Net Night	GN Total Fish	Total Fish Combined	Percent Composition
Spotted gar	Lepisosteus oculatus	TC	Х			Х		2.6	10	39	0.2	2	41	4.16
Longnose gar	Lepisosteus osseus	TC	Х	TOL		Х					0.1	1	1	0.10
Skipjack herring	Alosa chrysochloris	TC	Х	INT		Х		*			0.6	6	6	0.61
Gizzard shad	Dorosoma cepedianum	OM	Х	TOL		Х		1.2	4.62	18	6.1	61	79	8.01
Threadfin shad	Dorosoma petenense	РК	Х			Х		0.33	1.28	5			5	0.51
Common carp*	Cyprinus carpio	OM		TOL		Х		0.87	3.33	13	0.2	2	15	1.52
Golden shiner	Notemigonus crysoleucas	OM	Х	TOL		X		0.8	3.08	12	0.1	1	13	1.32
Spotfin shiner	Cyprinella spiloptera	IN	Х	TOL				3.13	12.05	47			47	4.77
Bluntnose minnow	Pimephales notatus	OM	Х	TOL	Х	Х		8.4	32.31	126			126	12.78
Smallmouth buffalo	Ictiobus bubalus	OM	Х			Х		0.07	0.26	1	0.1	1	2	0.20
Spotted sucker	Minytrema melanops	BI	Х	INT	Х	Х		0.07	0.26	1	0.2	2	3	0.30
Blue catfish	Ictalurus furcatus	OM	Х			Х	Х				0.7	7	7	0.71
Channel catfish	Ictalurus punctatus	OM	Х			Х	Х	0.33	1.28	5	2.1	21	26	2.64
Flathead catfish	Pylodictis olivaris	TC	Х			Х	Х	0.2	0.77	3	0.7	7	10	1.01
White bass	Morone chrysops	TC	Х				Х				0.3	3	3	0.30
Yellow bass	Morone mississippiensis	TC	X				Х	0.07	0.26	1	1.1	11	12	1.22
Warmouth	Lepomis gulosus	IN	Х		Х		Х	0.07	0.26	1			1	0.10
Redbreast sunfish*	Lepomis auritus	IN		TOL			Х	1.27	4.87	19			19	1.93
Green sunfish	Lepomis cyanellus	IN	Х	TOL			Х	0.13	0.51	2	•		2	0.20
Bluegill	Lepomis macrochirus	IN	Х	TOL			Х	17.13	65.9	257	0.2	2	259	26.27
Redear sunfish	Lepomis microlophus	IN	Х				Х	3.27	12.56	49	0.5	5	54	5.48
Spotted bass	Micropterus punctulatus	TC	Х	•			Х	0.47	1.79	7	4.1	41	48	4.87
Largemouth bass	Micropterus salmoides	TC	Х	TOL		1	Х	1.8	6.92	27			27	2.74
White crappie	Pomoxis annularis	TC	Х	TOL	Х		Х				0.1	1	1	0.10
Black crappie	Pomoxis nigromaculatus	TC	Х				Х	0.27	1.03	4	1.9	19	23	2.33
Snubnose darter	Etheostoma simoterum	SP	Х	100 F 100				0.47	1.79	7			7	0.71
Yellow perch*	Perca flavescens	IN			1.1.1		Х	0.4	1.54	6			6	0.61
Logperch	Percina caprodes	BI	Х		Х			2.73	10.51	41			41	4.16
Walleye	Stizostedion vitreum	TC	Х		Х		Х				0.3	3	3	0.30
Freshwater drum	Aplodinotus grunniens	BI	Х			Х					0.4	4	4	0.41
Brook silverside	Labidesthes sicculus	IN	Х	INT		Х		0.13	0.51	2			2	0.20
Mississippi silverside*	Menidia audens	IN				Х		6.2	23.85	93			93	9.43
Total		-	28		6	16	16	52.41	201.54	786	20	200	986	100.00
Number Samples								15			10			
Species Collected								25			20	-		

An asterisk (*) denotes aquatic nuisance species. Trophic level: benthic invertivore (BI), herbivore (HB), insectivore (IN), omnivore (OM), planktivore (PK), parasitic (PS), specialized insectivore (SP), top carnivore (TC); Tolerance: tolerant species (TOL), intolerant species (INT); Comm.-Commercially, Rec.-Recreationally.

Common Name	Scientific Name	Trophic Level	Native Species	Tolerance	Heat Sensitive Species	Comm. Valuable Species	Rec. Valuable Species	EF Catch Rate Per Run	EF Catch Rate Per Hour	EF Total Fish	GN Catch Rate Per Net Night	GN Total Fish	Total Fish Combined	Percent Composition
Spotted gar	Lepisosteus oculatus	TC	Х		•	Х	1.	0.27	1.06	4	0.2	2	6	0.66
Skipjack herring	Alosa chrysochloris	TC	Х	INT		Х				11.	0.7	7	7	0.77
Gizzard shad	Dorosoma cepedianum	OM	Х	TOL		X		4.67	18.57	70	2.7	27	97	10.72
Threadfin shad	Dorosoma petenense	PK	Х			Х		0.07	0.27	1			1	0.11
Common carp*	Cyprinus carpio	OM		TOL		Х	11	1	3.98	15	0.7	7	22	2.43
Golden shiner	Notemigonus crysoleucas	OM	Х	TOL		Х		1.07	4.24	16			16	1.77
Spotfin shiner	Cyprinella spiloptera	IN	Х	TOL				0.4	1.59	6			6	0.66
Bluntnose minnow	Pimephales notatus	OM	Х	TOL	X	Х		4.8	19.1	72			72	7.96
Smallmouth buffalo	Ictiobus bubalus	OM	Х			X	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.07	0.27	1	1911 · · · · ·		1	0.11
Spotted sucker	Minytrema melanops	BI	Х	INT	Х	X		0.4	1.59	6	0.1	1	7	0.77
Blue catfish	Ictalurus furcatus	OM	Х			Х	Х				0.3	3	3	0.33
Channel catfish	Ictalurus punctatus	OM	Х			X	Х	0.13	0.53	2	0.6	6	8	0.88
Flathead catfish	Pylodictis olivaris	TC	Х		1. 1.	Х	Х	0.4	1.59	6	0,4	4	10	1.10
White bass	Morone chrysops	TC	Х				X				0.1	1	1	0.11
Yellow bass	Morone mississippiensis	TC	Х				Х	0.27	1.06	4	2.1	21	25	2.76
Warmouth	Lepomis gulosus	IN	X		Х		X	0.13	0.53	2	1	+ .	2	0.22
Redbreast sunfish*	Lepomis auritus	IN		TOL	1		Х	1.47	5.84	22	and the second second		22	2.43
Green sunfish	Lepomis cyanellus	IN	Х	TOL		1	Х	0.13	0.53	2	and a suite		2	0.22
Bluegill	Lepomis macrochirus	IN	X	TOL			Х	17.53	69.76	263	0.7	7	270	29.83
Longear sunfish	Lepomis megalotis	IN	Х	INT	+		Х	0.6	2.39	9	1.		9	0.99
Redear sunfish	Lepomis microlophus	IN	Х	-		1	Х	1.53	6.1	23	1.3	13	36	3.98
Smallmouth bass	Micropterus dolomieu	TC	Х	INT	1	-	Х	0.13	0.53	2	0.3	3	5	0.55
Spotted bass	Micropterus punctulatus	TC	Х				Х	0.73	2.92	11	1.4	14	25	2.76
Largemouth bass	Micropterus salmoides	TC	Х	TOL		1	Х	1.4	5.57	21	1.1	11	32	3.54
Hybrid bass	Hybrid micropterus sp.	TC	Х				Х	0.07	0.27	1			1	0.11
Black crappie	Pomoxis nigromaculatus	TC	Х			-	Х				0.8	8	8	0.88
Stripetail darter	Etheostoma kennicotti	SP	Х					0.07	0.27	1			1	0.11
Snubnose darter	Etheostoma simoterum	SP	Х	2				0.33	1.33	5			5	0.55
Yellow perch*	Perca flavescens	IN				1.1.1	Х	0.8	3.18	12	· · · ·		12	1.33
Logperch	Percina caprodes	BI	Х		X			9.33	37.14	140			140	15.47
Sauger	Stizostedion canadense	TC	Х		Х		X				0.1	1	1	0.11
Walleye	Stizostedion vitreum	TC	Х		X		X				0.1	1	1	0.11
Freshwater drum	Aplodinotus grunniens	BI	X			X		0.07	0.27	1	0.2	2	3	0.33
Brook silverside	Labidesthes sicculus	IN	X	INT		X		0.13	0.53	2	· · · · · · · · · · · · · · · · · · ·		2	0.22
Mississippi silverside*	Menidia audens	IN				X		3.07	12.2	46			46	5.08
Total			31	Contract of	6	15	19	51.07	203.21	766	13.9	139	905	100.00
Number Samples								15			10			
Species Collected			100 100 10		A STREET	TAR NO.		29			19			

Table E-2. Species collected, ecological and recreational designation and corresponding electrofishing (EF) and gill net (GN) catch per unit effort upstream (TRM 490.5) of Sequoyah Nuclear Plant discharge – Summer 2022

An asterisk (*) denotes aquatic nuisance species. Trophic level: benthic invertivore (BI), herbivore (HB), insectivore (IN), omnivore (OM), planktivore (PK), parasitic (PS), specialized insectivore (SP), top carnivore (TC); Tolerance: tolerant species (TOL), intolerant species (INT); Comm.-Commercially, Rec.-Recreationally.

Common Name	Scientific Name	Trophic Level	Native Species	Tolerance	Heat Sensitive Species	Comm. Valuable Species	Rec. Valuable Species	EF Catch Rate Per Run	EF Catch Rate Per Hour	EF Total Fish	GN Catch Rate Per Net Night	GN Total Fish	Total Fish Combined	Percent Composition
Spotted gar	Lepisosteus oculatus	TC	Х			Х		0.8	2.78	12		•	12	0.42
Skipjack herring	Alosa chrysochloris	TC	Х	INT		Х		0.07	0.23	1	0.5	5	6	0.21
Gizzard shad	Dorosoma cepedianum	OM	Х	TOL		Х		6.47	22.45	97	0.7	7	104	3.64
Threadfin shad	Dorosoma petenense	РК	Х			Х		1.2	4.17	18		•	18	0.63
Common carp*	Cyprinus carpio	OM		TOL		Х		2.47	8.56	37	0.4	4	41	1.44
Golden shiner	Notemigonus crysoleucas	OM	Х	TOL		Х		0.87	3.01	13	and the set the		13	0.46
Bluntnose minnow	Pimephales notatus	OM	Х	TOL	Х	Х		8.4	29.17	126			126	4.41
Northern hog sucker	Hypentelium nigricans	BI	Х	INT	Х			0.13	0.46	2			2	0.07
Smallmouth buffalo	Ictiobus bubalus	OM	Х			Х					0.1	1	1	0.04
Spotted sucker	Minytrema melanops	BI	X	INT	Х	Х		0.4	1.39	6	0.2	2	8	0.28
Blue catfish	Ictalurus furcatus	OM	X			Х	Х	0.07	0.23	1	1.1	11	12	0.42
Channel catfish	Ictalurus punctatus	OM	Х			Х	Х	0.8	2.78	12	0.5	5	17	0.60
Flathead catfish	Pylodictis olivaris	TC	Х			Х	Х	0.07	0.23	1	0.5	5	6	0.21
White bass	Morone chrysops	TC	X				Х	0.2	0.69	3	0.1	1	4	0.14
Yellow bass	Morone mississippiensis	TC	X			1 a 1	Х	0.47	1.62	7	0.7	7	14	0.49
Rock bass	Ambloplites rupestris	TC	Х	INT			Х	0.07	0.23	1			1	0.04
Warmouth	Lepomis gulosus	IN	Х		Х		Х	2.13	7.41	32	0.1	1	33	1.16
Redbreast sunfish*	Lepomis auritus	IN		TOL			Х	3.93	13.66	59	- · · ·		59	2.07
Green sunfish	Lepomis cyanellus	IN	Х	TOL			Х	0.4	1.39	6			6	0.21
Bluegill	Lepomis macrochirus	IN	Х	TOL			Х	130.27	452.31	1954	0.1	1	1955	68.50
Longear sunfish	Lepomis megalotis	IN	Х	INT			Х	0.33	1.16	5			5	0.18
Redear sunfish	Lepomis microlophus	IN	Х				Х	5.73	19.91	86	0.3	3	89	3.12
Spotted bass	Micropterus punctulatus	TC	Х				Х	1.93	6.71	29	2.1	21	50	1.75
Largemouth bass	Micropterus salmoides	TC	Х	TOL			Х	5.93	20.6	89			89	3.12
Black crappie	Pomoxis nigromaculatus	TC	Х				Х	1.47	5.09	22	0.6	6	28	0.98
Stripetail darter	Etheostoma kennicotti	SP	X					0.13	0.46	2	1. C.		2	0.07
Snubnose darter	Etheostoma simoterum	SP	X				-	2.53	8.8	38			38	1.33
Yellow perch*	Perca flavescens	IN					Х	2.07	7.18	31			31	1.09
Logperch	Percina caprodes	BI	Х		Х		1. 1. 1.	0.07	0.23	1			1	0.04
Walleye	Stizostedion vitreum	TC	Х		Х		X				1.5	15	15	0.53
Freshwater drum	Aplodinotus grunniens	BI	Х			Х		0.07	0.23	1	0.2	2	3	0.11
Brook silverside	Labidesthes sicculus	IN	X	INT		Х		1.2	4.17	18			18	0.63
Mississippi silverside*	Menidia audens	IN				Х		3.13	10.88	47			47	1.65
Total			29		6	15	17	183.81	638.19	2,757	9.7	97	2,854	100.00
Number Samples								15			10			
Species Collected								31	- A		17			

Table E-2. Species collected, ecological and recreational designation and corresponding electrofishing (EF) and gill net (GN) catch per unit effort downstream (TRM 482.0) of Sequovah Nuclear Plant discharge – Autumn 2022

An asterisk (*) denotes aquatic nuisance species. Trophic level: benthic invertivore (BI), herbivore (HB), insectivore (IN), omnivore (OM), planktivore (PK), parasitic (PS), specialized insectivore (SP), top carnivore (TC); Tolerance: tolerant species (TOL), intolerant species (INT); Comm.-Commercially, Rec.-Recreationally.

Common Name	Scientific Name	Trophic Level	Native Species	Tolerance	Heat Sensitive Species	Comm. Valuable Species	Rec. Valuable Species	EF Catch Rate Per Run	EF Catch Rate Per Hour	EF Total Fish	GN Catch Rate Per Net Night	GN Total Fish	Total Fish Combined	Percent Composition
Spotted gar	Lepisosteus oculatus	TC	Х			Х		0.07	0.21	1	1.1.1	•	1	0.03
Skipjack herring	Alosa chrysochloris	TC	Х	INT		Х	1		1	*	1.5	15	15	0.52
Gizzard shad	Dorosoma cepedianum	OM	Х	TOL		Х		2.27	7.28	34	0.3	3	37	1.28
Largescale stoneroller	Campostoma oligolepis	HB	Х					0.07	0.21	1	A Chine Land		1	0.03
Common carp*	Cyprinus carpio	OM		TOL	· · · ·	Х		0.27	0.86	4			4	0.14
Golden shiner	Notemigonus crysoleucas	OM	Х	TOL		Х		0.13	0.43	2			2	0.07
Spotfin shiner	Cyprinella spiloptera	IN	Х	TOL	•			0.07	0.21	1			1	0.03
Bluntnose minnow	Pimephales notatus	OM	Х	TOL	Х	Х		22.13	71.09	332			332	11.47
Northern hog sucker	Hypentelium nigricans	BI	Х	INT	Х			0.07	0.21	1			1	0.03
Spotted sucker	Minytrema melanops	BI	Х	INT	Х	Х		2.33	7.49	35	0.5	5	40	1.38
Smallmouth redhorse	Moxostoma breviceps	BI	Х		· · · ·	Х		0.07	0.21	1	N. 19. 19. 19.		1	0.03
Golden redhorse	Moxostoma erythrurum	BI	Х			Х		0.07	0.21	1	0.1	1	2	0.07
Blue catfish	Ictalurus furcatus	OM	Х		1.1.1.1.1.1	Х	Х	0.07	0.21	1	0.3	3	4	0.14
Channel catfish	Ictalurus punctatus	OM	Х		1.1.1.	Х	Х	0.07	0.21	1	0.7	7	8	0.28
Flathead catfish	Pylodictis olivaris	TC	Х			Х	Х	0.07	0.21	1	0.4	4	5	0.17
White bass	Morone chrysops	TC	X		10.000		Х				0.4	4	4	0.14
Yellow bass	Morone mississippiensis	TC	Х				Х				4	40	40	1.38
Rock bass	Ambloplites rupestris	TC	Х	INT			Х	0.07	0.21	1			1	0.03
Warmouth	Lepomis gulosus	IN	Х		Х		Х	5	16.06	75			75	2.59
Redbreast sunfish*	Lepomis auritus	IN		TOL			Х	4.67	14.99	70		1.1	70	2.42
Green sunfish	Lepomis cyanellus	IN	Х	TOL		1.	Х	0.27	0.86	4	1949 - A.		4	0.14
Bluegill	Lepomis macrochirus	IN	X	TOL		100 A .	Х	121.87	391.43	1828	0.1	1	1829	63.18
Longear sunfish	Lepomis megalotis	IN	Х	INT			Х	1.07	3.43	16	14. Let 19. 19.		16	0.55
Redear sunfish	Lepomis microlophus	IN	Х				Х	3.07	9.85	46	1	10	56	1.93
Smallmouth bass	Micropterus dolomieu	TC	Х	INT			Х	0.8	2.57	12	0.1	1	13	0.45
Spotted bass	Micropterus punctulatus	TC	Х				Х	2.2	7.07	33	3.1	31	64	2.21
Largemouth bass	Micropterus salmoides	TC	Х	TOL			Х	4.93	15.85	74	0.5	5	79	2.73
Black crappie	Pomoxis nigromaculatus	TC	Х	1	-	A second	Х	0.4	1.28	6	0.7	7	13	0.45
Snubnose darter	Etheostoma simoterum	SP	Х					2.73	8.78	41	1. 1		41	1.42
Yellow perch*	Perca flavescens	IN					Х	3	9.64	45	0.1	1	46	1.59
Logperch	Percina caprodes	BI	X		X			1.33	4.28	20			20	0.69
Sauger	Stizostedion canadense	TC	Х		Х		Х				0.2	2	2	0.07
Walleve	Stizostedion vitreum	TC	X		Х		X			8	1.6	16	16	0.55
Brook silverside	Labidesthes sicculus	IN	X	INT		Х		0.07	0.21	1			1	0.03
Mississippi silverside*	Menidia audens	IN			· · · ·	X		3.4	10.92	51			51	1.76
Total Number Samples Species Collected			31		7	14	19	182.64 15 30	586.47	2,739	15.6 10 18	156	2,895	100.00

Table E-2. Species collected, ecological and recreational designation and corresponding electrofishing (EF) and gill net (GN) catch per unit effort upstream (TRM 490.5) of Sequoyah Nuclear Plant discharge – Autumn 2022

An asterisk (*) denotes aquatic nuisance species. Trophic level: benthic invertivore (BI), herbivore (HB), insectivore (IN), omnivore (OM), planktivore (PK), parasitic (PS), specialized insectivore (SP), top carnivore (TC); Tolerance: tolerant species (TOL), intolerant species (INT); Comm.-Commercially, Rec.-Recreationally.

Table E-1 Continued.							
Autumn 2022	Real Providence	TRM 482			TRM 490.5		
Metric		Obs		Score	Obs		Score
10. Percent omnivores	Electrofishing	10.40% Blue catfish Bluntnose minnow Channel catfish Common carp Gizzard shad	<0.1% 4.60% 0.40% 1.30% 3.50%	2.5	13.70% Blue catfish Bluntnose minnow Channel catfish Common carp Gizzard shad	<0.10% 12.10% <0.10% 0.10% 1.20%	2.5
		Golden shiner	0.50%		Golden shiner	0.10%	
	Gill Netting	28.90% Blue catfish Channel catfish Common carp Gizzard shad Smallmouth buffalo Blue catfish	11.30% 5.20% 4.10% 7.20% 1.00% 11.30%	1.5	8.30% Blue catfish Channel catfish Gizzard shad	1.9 4.5 1.9	2.5
C. Fish abundance and health							
11. Average number per run	Electrofishing	183.80		1.5	182.60		1.5
	Gill Netting	9.70		0.5	15.60		1.5
12. Percent anomalies	Electrofishing	1.00		2.5	0.70		2.5
	Gill Netting	1.00		2.5	1.90		2.5
Overall RFAI Score				46 Good			47 Good

	TRM 482			TRM 490.5		
	Obs		Score	Obs		Score
Combined	10 Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted bass Spotted bass Spotted gar Walleye White bass Yellow bass		5	12 Black crappie Flathead catfish Largemouth bass Rock bass Sauger Skipjack herring Smallmouth bass Spotted bass Spotted gar Walleye White bass Yellow bass		5
Electrofishing	6.00% Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted bass Spotted gar White bass Yellow bass	0.80% <0.01% 3.20% <0.01% <0.01% 1.10% 0.40% 0.10% 0.30%	1.5	4.70% Black crappie Flathead catfish Largemouth bass Rock bass Smallmouth bass Spotted bass Spotted gar	0.20 <0.01 2.70 0.01 0.40 1.20 <0.01	0.5
Gill Netting	61.90% Black crappie Flathead catfish Skipjack herring Spotted bass Walleye White bass Yellow bass	6.20% 5.20% 5.20% 21.60% 15.50% 1.00% 7.20%	2.5	80.10% Black crappie Flathead catfish Largemouth bass Sauger Skipjack herring Smallmouth bass Spotted bass Walleye White bass Yellow bass	4.50% 2.60% 3.20% 1.30% 9.60% 0.60% 19.90% 10.30% 2.60%	2.5
	Combined Electrofishing Gill Netting	TRM 482 ObsCombined10Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted bass Spotted bass Yellow bassElectrofishing6.00%Black crappie Flathead catfish Largemouth bass Rock bass Yellow bassElectrofishing6.00%Black crappie Flathead catfish Largemouth bass Rock bass Syotted bass Spotted bass Stellow bassGill Netting61.90%Back crappie Flathead catfish Skipjack herring Spotted bass Walleye White bass Yellow bass	TRM 482 ObsCombined10Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted bass Spotted bass Spotted gar Walleye White bass Yellow bassElectrofishing6.00% Black crappie0.80% Flathead catfish Largemouth bass Rock bass Stipjack herring Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Slipjack herring Spotted bass Skipjack herring Spotted bass Spotted bass 	TRM 482 ObsScoreCombined10 Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted bass Spotted gar Walleye White bass Yellow bass5Electrofishing6.00% Plathead catfish Largemouth bass 3.20% Rock bass Skipjack herring Spotted gar Walleye White bass Sigipack herring Spotted gar Walleye Non% Flathead catfish Spotted bass Sigipack herring Spotted bass Sigipack herring Spotted bass Sigipack herring Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Sigipack herring Spotted ba	TRM 482 ObsTRM 490.5 ObsCombined1012Black crappie Flathead catfish Largemouth bass Rock bass Skipjack herring Spotted gar Walleye12Black crappie Flathead catfish Largemouth bass Rock bass5Stipjack herring Spotted gar White bass Yellow bass5Electrofishing6.00%4.70%Black crappie Flathead catfish Largemouth bass Yellow bass1.5Electrofishing6.00%1.5Black crappie Plathead catfish Spotted bass Sopted bass Note bass1.5Stipjack herring Spotted bass Spotted bass <td>TRM 482 Obs TRM 490.5 Score Combined 10 Black crappie Flathed catfish Largemouth bass Rock bass 12 Black crappie Flathed catfish Largemouth bass Rock bass Black crappie Spotted gar Spotted gar Walleye 5 Skipjack herring Spotted gar 5 Sithjack herring Spotted gar 5 Walleye Spotted gar Walleye Spotted gar White bass 201% Flathead catfish Largemouth bass 2.00% Black crappie 0.80% Flathead catfish Convbass 0.01% Black crappie 0.80% Flathead catfish Spotted bass 2.70 Rock bass 0.01% Spotted bass 1.15 Spotted bass 1.20 Spotted bass 1.20% Spotted bass 1.00% Spotted bass 1.00% Spotted bass 1.00% Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20% Spotted bass 2.00% Skipjack herring 5.20% Spotted bass 2.60% Flathead catfish 5.20% <</td>	TRM 482 Obs TRM 490.5 Score Combined 10 Black crappie Flathed catfish Largemouth bass Rock bass 12 Black crappie Flathed catfish Largemouth bass Rock bass Black crappie Spotted gar Spotted gar Walleye 5 Skipjack herring Spotted gar 5 Sithjack herring Spotted gar 5 Walleye Spotted gar Walleye Spotted gar White bass 201% Flathead catfish Largemouth bass 2.00% Black crappie 0.80% Flathead catfish Convbass 0.01% Black crappie 0.80% Flathead catfish Spotted bass 2.70 Rock bass 0.01% Spotted bass 1.15 Spotted bass 1.20 Spotted bass 1.20% Spotted bass 1.00% Spotted bass 1.00% Spotted bass 1.00% Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20 Spotted bass 1.20% Spotted bass 2.00% Skipjack herring 5.20% Spotted bass 2.60% Flathead catfish 5.20% <

Autumn 2022		TRM 482			TRM 490.5		
Metric		Obs		Score	Obs		Scor
5. Percent tolerant individuals	Electrofishing	86.40%			85.80%		
		Bluegill	70.90%		Bluegill	66.70%	
		Bluntnose minnow	4.60%		Bluntnose minnow	12.10%	
		Common carp	1.30%		Common carp	0.10%	
		Gizzard shad	3.50%	0.5	Gizzard shad	1.20%	0.5
		Golden shiner	0.50%	0.5	Golden shiner	0.10%	0.5
		Green sunfish	0.20%		Green sunfish	0.10%	
		Largemouth bass	3.20%		Largemouth bass	2.70%	
		Redbreast sunfish	2.10%		Redbreast sunfish	2.60%	
					Spotfin shiner	<0.01%	
	Gill Netting	12.40%			5.80%		
		Bluegill	1.00%		Bluegill	0.60%	
		Common carp	4.10%	2.5	Gizzard shad	1.90%	2.5
		Gizzard shad	7.20%		Largemouth bass	3.20%	
6. Percent dominance by one species	Electrofishing	70.90% Bluegill		0.5	66.70% Bluegill		0.5
	Gill Netting	21.60% Spotted bass		1.5	25.60% Yellow bass		1.5
7. Percent non-indigenous species	Electrofishing	6.30%		-	6.20%		22
	S	Common carp	1.30%		Common carp	0.10%	
		Mississippi silverside	1.70%	0.5	Mississippi silverside	1.90%	0.5
		Redbreast sunfish	2.10%	0.0	Redbreast sunfish	2.60%	
		Yellow perch	1.10%		Yellow perch	1.60%	
	Gill Netting	4.10%		25	0.60%		2.5
		Common carp		2.5	Yellow perch		2.5

Autumn 2022		TRM 482		TRM 490.5	
Metric		Obs	Score	Obs	Score
A. Species richness and composition					
1. Number of indigenous species (Tables 12 and 13)	Combined	29	5	31	5
2. Number of centrarchid species	Combined	6		6	
(less Micropterus)		Black crappie		Black crappie	
		Bluegill		Bluegill	
		Green sunfish	5	Green sunfish	5
		Longear sunfish		Longear sunfish	
		Redear sunfish		Redear sunfish	
		Warmouth		Warmouth	
3. Number of benthic invertivore species	Combined	4		5	
		Freshwater drum		Golden redhorse	
		Logperch	2	Logperch	2
		Northern hog sucker	3	Northern hog sucker	3
		Spotted sucker		Smallmouth redhorse	
				Spotted sucker	
4. Number of intolerant species	Combined	6		7	
		Brook silverside		Brook silverside	
		Longear sunfish		Longear sunfish	
		Northern hog sucker	-	Northern hog sucker	-
		Rock bass	5	Rock bass	2
		Skipjack herring		Skipjack herring	
		Spotted sucker		Smallmouth bass	
				Castlad analyses	

Summer 2022		TRM 482			TRM 490.5		
Metric		Obs		Score	Obs		Score
10. Percent omnivores	Electrofishing	22.30% Bluntnose minnow Channel catfish Common carp Gizzard shad Golden shiner Smallmouth buffalo	16.00% 0.60% 1.70% 2.30% 1.50% 0.10%	2.5	23.00% Bluntnose minnow Channel catfish Common carp Gizzard shad Golden shiner Smallmouth buffalo	9.40% 0.30% 2.00% 9.10% 2.10% 0.10%	1.5
	Gill Netting	46.50% Blue catfish Channel catfish Common carp Gizzard shad Golden shiner Smallmouth buffalo	3.50% 10.50% 1.00% 30.50% 0.50%	0.5	30.90% Blue catfish Channel catfish Common carp Gizzard shad	2.20% 4.30% 5.00% 19.40%	1.5
C. Fish abundance and health 11. Average number per run	Electrofishing	52.40		0.5	51.10		0.5
	Gill Netting	20		1.5	13.90		1.5
12. Percent anomalies	Electrofishing	0.80%		2.5	1.20%		2.5
	Gill Netting	1.50%		2.5	0%		2.5
Overall RFAI Score				39 Fair			41 Good

PHT 1 1	1 12 4	1 6	a 11	· · · · ·
1 ah	e K		onf	inned)
1. 66 8.7			UIIU	mucu,

	11111 402			1 KW 490.5		
	Obs		Score	Obs		Sco
Combined	11			11		
	Black crappie			Black crappie		
	Flathead catfish			Flathead catfish		
	Largemouth bass			Largemouth bass		
	Longnose gar			Sauger		
	Skipjack herring		5	Skipjack herring		5
	Spotted bass		5	Smallmouth bass		2
	Spotted gar			Spotted bass		
	Walleye			Spotted gar		
	White bass			Walleye		
	White crappie			White bass		
	Yellow bass			Yellow bass		
Electrofishing	10.30%			6.40%		
	Black crappie	0.50%		Flathead catfish	0.80%	
	Flathead catfish	0.40%		Hybrid bass	0.10%	
	Largemouth bass	3.40%		Largemouth bass	2.70%	1.11
	Spotted bass	0.90%	2.5	Smallmouth bass	0.30%	1.5
	Spotted gar	5.00%		Spotted bass	1.40%	
	Yellow bass	0.10%		Spotted gar	0.50%	
				Yellow bass	0.50%	
Gill Netting	47 00%			52 50%		
On roung	Black crappie	9 50%		Black crannie	5.80%	
	Flathead catfieb	3 50%		Flathead catfish	2 90%	
	Longnose gar	0.50%		I argemouth base	7 00%	
	Skipiack herring	3.00%		Sauger	0.70%	
	Snotted base	20 50%		Skipiack herring	5.00%	
	Spotted gar	1.00%	1.5	Smallmouth base	2 20%	2.5
	Walleye	1.50%		Spotted bass	10 10%	
	White bass	1.50%		Spotted gar	1 40%	
	White crappie	0.50%		Walleve	0.70%	
	Vallow base	5 50%		White bass	0.70%	
	I enow bass	5.50%		Wallow hass	15 100/	
	Combined Electrofishing Gill Netting	ObsCombined11Black crappie Flathead catfish Largemouth bass Longnose gar Skipjack herring Spotted bass Spotted bass 	Obs Combined 11 Black crappie Flathead catfish Largemouth bass Longnose gar Skipjack herring Spotted bass Spotted gar Walleye White bass White bass White bass White bass White crappie Yellow bass Spotted bass Spotted gar Walleye White bass White bass Wolleye White bass White bass Wolleye Spotted gar Yellow bass Open carrier Spotted gar Spotted bass Spotted gar Spotted gar Spotted gar Spotted gar Spotted gar Wellow bass Uppose gar Black crappie Spotted gar Longnose gar Spotted bass Spotted bass Spotted gar Walleye	ObsScoreCombined11Black crappie Flathead catfish Largemouth bass Longnose gar Skipjack herring Spotted bass Spotted bass White crappie Yellow bass5Electrofishing10.30%Electrofishing10.30%Gill Netting47.00% Black crappie Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted bass2.5Gill Netting47.00% Flathead catfish Spotted bass Spotted bass S	ObsScoreObsCombined11Black crappie1Black crappieFlathead catfish Largemouth bass Sopotted bass Sopotted gar Walleye5Skipjack herring Spotted bass Spotted gar Wilte bassElectrofishing10.30%6.40%Electrofishing10.30%6.40%Flathead catfish Largemouth bass Spotted gar White bassFlathead catfish Ulleye White bass Yellow bassElectrofishing10.30%6.40%Flathead catfish Largemouth bass Spotted gar Yellow bass2.5Spotted bass Spotted gar Yellow bass50% Spotted bass Spotted gar Yellow bassGill Netting47.00% Black crappie Plathead catfish Longnose gar Spotted bass 20.5%2.5Gill Netting47.00% Flathead catfish Longnose gar Spotted bass 20.5% Skipjack herring Spotted bass 20.5% Skipjack herring Spotted bass 20.5% Spotted bass 20.5% Spotted bass 20.5% Spotted bass Spotted bass 20.5% Spotted bass Spotted	ObsScoreObsCombined11Black crappie Flathead catfish Largemouth bass Longnose gar Skipjack herring Spotted bass Walleye11Black crappie Skipjack herring Spotted gar White bass5Skipjack herring Smallmouth bass Spotted gar Walleye White bassElectrofishing10.30%6.40%Electrofishing10.30%6.40%Flathead catfish Plathead catfish0.80% Vellow bassElectrofishing10.30%5Electrofishing10.30%2.5Spotted gar Vellow bass3.40% Spotted garSpotted gar Vellow bass0.10%Compose gar Spotted gar0.00% Spotted garGill Netting47.00%52.50% Plathead catfish Plathead catfish Spotted gar Spotted gar Spotted gar Spotted gar Spotted gar Spotted bass50% Spotted bass Spotted bass Spotted bass Spotted gar Spotted gar Spotted bass52.50% Smallmouth bass Spotted bass Spotted bass Spotted bass Spotted bass Spotted gar Spotted bass Spotted bass

Summer 2022		TRM 482			TRM 490.5		
Metric		Obs		Score	Obs		Score
5. Percent tolerant individuals	Electrofishing	66.30% Bluegill Bluntnose minnow Common carp Gizzard shad Golden shiner Green sunfish Largemouth bass Redbreast sunfish	32.70% 16.00% 1.70% 2.30% 1.50% 0.30% 3.40% 2.40%	0.5	63.60% Bluegill Bluntnose minnow Common carp Gizzard shad Golden shiner Green sunfish Largemouth bass Redbreast sunfish Spotfin shiner	34.30% 9.40% 2.00% 9.10% 2.10% 0.30% 2.70% 2.90% 0.80%	0.5
	Gill Netting	34.00% Bluegill Common carp Gizzard shad Golden shiner Longnose gar White crappie	1.00% 1.00% 30.50% 0.50% 0.50%	0.5	37.40% Bluegill Common carp Gizzard shad Largemouth bass	5.00% 5.00% 19.40% 7.90%	0.5
6. Percent dominance by one species	Electrofishing	32.70% Bluegill		1.5	34.30% Bluegill		1.5
	Gill Netting	30.50% Gizzard shad		0.5	19.40% Gizzard shad		1.5
7. Percent non-indigenous species	Electrofishing	16.70% Common carp Mississippi silverside Redbreast sunfish Yellow perch	1.70% 11.80% 2.40% 0.80%	0.5	12.40% Common carp Mississippi silverside Redbreast sunfish Yellow perch	2.00% 6.00% 2.90% 1.60%	0.5
	Gill Netting	1.00%		5	5.00%		1.5

Summer 2022		TRM 482		TRM 490.5	
Metric		Obs	Score	Obs	Score
A. Species richness and composition					
1. Number of indigenous species (Tables 12 and 13)	Combined	28	5	30	5
2. Number of centrarchid species (less <i>Micropterus</i>)	Combined	6 Black crappie Bluegill		5 Black crappie Bluegill	
		Green sunfish Redear sunfish Warmouth	5	Green sunfish Longear sunfish Redear sunfish	5
		White crappie		Warmouth	
3. Number of benthic invertivore species	Combined	3 Freshwater drum Logperch Spotted sucker	1	3 Freshwater drum Logperch Spotted sucker	1
4. Number of intolerant species	Combined	3 Brook silverside Skipjack herring Spotted sucker	3	5 Brook silverside Longear sunfish Skipjack herring Smallmouth bass Spotted sucker	5

Table E-1. Observed values (Obs) and metric scores and total Reservoir Fish Assemblage Index scores upstream (TRM 490.5) and
downstream (TRM 482) of Sequoyah Nuclear plant for samples collected during summer and autumn 2022

Figure E-2. Relative abundance of bluegill collected at sites upstream and downstream of SQN during 2000 through 2022

Figure E-1 (continued). Observed values for the twelve RFAI metrics from samples conducted upstream and downstream of SQN, 2000-2022

Figure E-1. Observed values for the twelve RFAI metrics from samples conducted upstream and downstream of SQN, 2000-2022

Appendix E. Results from fish community monitoring upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant during 2000-2021, and summer and autumn 2022.

Figure E-1. Observed values for the twelve RFAI metrics from samples conducted upstream and downstream of SQN, 2000-2022

Table 5-2:.. Spffie-s ide-utme-d hy l\forli.mark Station .us be-iug representatirre of tJbe fish community irn Hookse-U Pool

- 1. Alewife (Alosa pseudoha.rengus)
- 2. American shad (Alosa sapidissima)
- 3. Adan.tic saJbnon (Salmo salar)
- 4. FaUfish (Semotifus corpOfafa)
- 5. Largemouth bass (*l\1tcropterns salmoides*)
- 6. Pumpkmseed (Lepomis gibbosus)
- 7. SmaUmouth bass (*lv.ltcropterns dolomie:u*)
- 8. White sucker (atostmm1.s commersoni)
- 9. Yellow perch (Perea flavescens)

EPA agrees that the species]iste.d ,vere pa.rt of the hafanoed, mdigenous fish community in]967. Merrimack:Station s data and anaJ.yses of these species are an important component of EPA s assessment of thennall irmipact.s. However, while it is appropriate ts0 identify and focus on representative irmiportant species fop redicti, e" § 316(a) demonstrations, non-predicti, e (*i., e.*. retrospective, or <Typer) demons trutions which are designed to assess prior apprecial he ha.rm, should not he restricted to assessing the status of representcati, e important species. In fact, EPA's Draft]977 316(a) Technical Gnid.1.t1ce recommends that references to Reipresentative Importa.o.t Species be dimina.ted from Type I demonstrations (EPA]977a).. Merrimack:Stations § 316(a) demonstration is large]yretrospecti e (Type I). Therefore, EPA':sassessment of the balanced indigenous fish community of Hooksett Pool encompassed aH species present in 1967. This does not mean that every species of fish present in 1967 requires an in-deptihre, iew, hut ,vhen assessing community-wide iimpacts, there is no reason to exclude a hy resident species that ,vas present prior to the increase in discharges of heated effluent to Hooksett Pool.

5.3.. Ot!hel Aquaitir Communities

Assessing changes in the resident fish community of a water body often pro, ides the most oonsp,icuous e, idence of impacts to the overall aqruatic community, but a comp]ete §316(a) variance demonstration is not li!mirted to fish. P]:mktonic organis.ms (*e.g.*, phyts0plankton, zooplankton, me.roplankton.), macroinvertebrates (*e.g.*, shellfish), habitat formers (*e.g.*, subaquatic, egetcation), and wifotlife are an supposed to be assessed at the level of detail appropriate to the facilirty s potentia.ll to iimpact tihese communities. EPA provides specific guidanoe for f.aci]ities devdoping demonstrations in its Draft]977 3] 6(a) Tecl.imcal Gnid.mce.

Merrimack: Station does not assess i:m.pact.s tc aquatic communities other th.an fish. in the Fisheries Aru!Jlysis Report. However, iit does state that the Station's past and current operations have resulted in no appreciable harm to the babnoed, indigenous populations of fish and other aquatic organismsm the :segment of the Merrimack River receiving the Station's th.enual discharge. Merrimack: Station bases this conclusion on an reports, pasti and present, preipared by

Appendix D. Pages 25 and 36 from EPA Region 1. 2011. Draft NPDES Permit for the PSNH Merrimack Station; Clean Water Act NPDES Permitting Determinations for the Thermal Discharge and Cooling Water Intake Structures at Merrimack Station in Bow, New Hampshire NPDES Permit No. NH 0001465

> [t]he Congress intended that there be a very limited waiver for those major sources of thermal effluents which could establish beyond any question the lack of relationship between federally established effluent limitations and that water quality which assures the protection of public water supplies and the protection and propagation of a balanced, indigenous population of fish, shellfish, and wildlife, and allows recreational activities, in and on the water.

Congressional Research Service, "A Legislative History of the Water Pollution Control Act Amendments of 1977," Vol. IV, 95th Cong., 2nd Session, (cited hereinafter as the "1977 Legislative History"), at 642 (Senate Report); *see also id.* at 457.

EPA has not, however, interpreted § 316(a) to require absolute certainty before a variance could be granted. *Seabrook*, 1977 EPA App. LEXIS 16, at *32. In reality, achieving absolute certainty about a § 316(a) determination is likely to be impossible. *See id.* EPA has stated, however, that "[t]he greater the risk, the greater the degree of certainty that should be required." *Id. See also* 44 Fed. Reg. at 32,894.

The above material suggests that EPA should take a conservative approach to assessing variance applications in order to ensure that the standard of assuring the protection and propagation of the BIP is satisfied. Such an approach is also appropriate in light of the fact that the applicant for a § 316(a) variance is asking to be excused from the otherwise applicable limitations, and given the CWA's overarching goal of restoring and maintaining the "biological integrity of the Nation's waters," 33 U.S.C. § 1251(a), and attaining "water quality which provides for the protection and propagation of fish, shellfish and wildlife." 33 U.S.C. § 1251(a)(2).

While the variance applicant's burden is a stringent one, EPA's NPDES permit decisions are subject to the "arbitrary and capricious" standard of review under the Administrative Procedures Act. 5 U.S.C. §§ 701–706. Thus, EPA decisions regarding whether a permit applicant has carried its burden in seeking a § 316(a) variance, and in setting the thermal discharge limits included in the permit, must have a rational basis and be consistent with applicable law.

With respect to the question of how much evidence is needed to support a § 316(a) variance, EPA has explained that, "no hard and fast rule can be made as to the amount of data that must be furnished . . . and much depends on the circumstances of the particular discharge and receiving waters." *Seabrook*, 1977 EPA App. LEXIS 16, at *31. At the same time, information requirements are likely to increase to the extent that there is greater reason for concern over the protection and propagation of the BIP. As EPA stated in the preamble to its current § 316(a)related regulations in 40 C.F.R. Part 125, Subpart H:

Section 125.72 accordingly gives the Director the flexibility to require substantially less information in the case of renewal requests. This does not mean, however, that the Director may not require a full demonstration for a The Division of Water Pollution Control anticipates that the collection of physical data on the Allen fossil plant discharge and near field Mississippi River characteristics should suffice to show that the discharge is not likely to have an adverse impact in the river below the discharge point.

The Division would like to see annual data ;;collected in the Cumberland River system for the next three years. After that period, the Divi ion would expect that the RFAI data be collected once every two years. The Tennessee Rive system may be sampled with a frequency of once every two years. The Division considers the long history of reservoir operation and the history of plant operations indicate that annual frequency is not necessary except where there are significant changes to either reservoir operations or to discharges made to the reservoirs.

If you have questions, please contact **Mr.** Larry Bunting at (615) 532-0665 or by E-mail at *lbunting@mail.state.tn.us*.

Sincerely,

Manager, Permit Section Division of Water Pollution Control

SAQ/LCBu TVA316a_2001.doc

cc: Division of Water Pollution Control, Permit Section, Vojin Janjic Division of Water Pollution Control, Environmental Assistance Centers-Memphis, Knoxville, Nashville, Johnson City Permit files Appendix C. Letter from TDEC to TVA dated September 17, 2001, approving use of RFAI as methodology in determining BIP status of aquatic community at TVA power plants

SEP 27 2001

ENVIRONMENTAL AFFAIRS

Voor	Data	Intake Temperature,	Discharge Temperature,	CCW	Total	Flow past SON
Ital	12/21/2020	F 52.1	F 52.7	2714	2206	16182
	AVG	66	67.4	2/14	2390	54314
2021	1/31/2021	17.3	47.8	2662	2201	40288
	2/28/2021	47.5	47.0	2002	2390	56414
	2/20/2021	40.2 54.2	40.5	2000	2395	65025
	3/31/2021	54.5	54.7	1040	1402	03933
	4/30/2021	60.9	62.7	1940	1493	48310
	5/31/2021	66.8	73.2	2504	1709	18734
	6/30/2021	74.9	79.9	2/12	2357	20785
	7/31/2021	80.8	84.7	2697	2337	21167
	8/31/2021	82.1	84.4	2694	2173	32002
	9/30/2021	78.3	79.8	2702	2178	38331
	10/31/2021	73.1	73.5	1535	1203	42163
	11/30/2021	60.2	61.7	2625	2037	33186
	12/31/2021	54	56.9	2697	2393	23653
	AVG	64.9	67.1	2510	2089	36748
2022	1/31/2022	48.9	49.3	2651	2395	52677
	2/28/2022	48.4	47.7	2624	2395	55515
	3/31/2022	55.5	55.2	2636	2393	63758
	4/30/2022	61.5	65.9	2706	2386	12672
	5/31/2022	68.7	76.1	2668	2370	18772
	6/30/2022	78.2	82.8	2676	2043	20984
	7/31/2022	82.6	86.3	2649	2320	22106
	8/31/2022	82.2	84.1	2743	2327	27040
	9/30/2022	78.8	81	2755	2347	30950
	10/31/2022	67.9	70	2470	1867	24485
	11/30/2022	60.9	62.4	1967	1432	26426
	12/31/2022	52.2	53.3	2692	2396	46815
	AVG	65.5	67.8	2603	2223	33517
Year	Date	Intake Temperature, °F	Discharge Temperature, °F	CCW flow	Total Generation	Flow past SQN
------	------------	------------------------------	---------------------------------	-------------	---------------------	---------------
2018	1/31/2018	42.7	43.7	2465	2390	20557
	2/28/2018	48.7	48.9	2281	2315	73191
	3/31/2018	53.4	54	2328	2387	53524
	4/30/2018	59.4	61	1984	1375	25716
	5/31/2018	69.5	74.6	2802	2103	30508
	6/30/2018	76.4	79.4	2791	2353	42886
	7/31/2018	81.1	85.7	2685	2318	25398
	8/31/2018	81.7	83.8	2693	2324	28745
	9/30/2018	81.4	82.6	2688	2314	42427
	10/31/2018	73.1	74.4	2757	2156	36620
	11/30/2018	58.2	57.9	1694	1232	62411
	12/31/2018	50.5	50.2	2635	1847	82122
	AVG	64.7	66.4	2484	2093	43675
2019	1/31/2019	49.2	49.5	2644	2386	93129
	2/28/2019	49.4	51.8	2657	2387	103951
	3/31/2019	53.4	56.1	2651	2392	112942
	4/30/2019	62.7	63.8	2624	2241	33372
	5/31/2019	72	75.6	2669	2366	38756
	6/30/2019	77.2	79.9	2750	2349	34375
	7/31/2019	81.4	85.9	2675	2329	28338
	8/31/2019	83.1	85.6	2683	2193	28439
	9/30/2019	82.3	84.4	2923	2012	23185
	10/31/2019	74.6	76.5	2067	1392	19863
	11/30/2019	59.4	59.1	2509	1325	35929
	12/31/2019	52.7	52.6	2710	2255	64533
	AVG	66.5	68.4	2630	2136	51401
2020	1/31/2020	50.7	50.6	2688	2257	71529
	2/29/2020	50.7	50.9	2715	2391	114774
	3/31/2020	54.6	54.4	2697	2356	87796
	4/30/2020	61.7	61.4	2045	1531	73007
	5/31/2020	66.6	69.4	2740	2008	49246
	6/30/2020	76	79.6	2715	2360	28418
	7/31/2020	81.2	85.8	2703	2310	23495
	8/31/2020	83.6	84.9	2854	2299	27220
	9/30/2020	80.3	82.3	2828	2342	29709
	10/31/2020	71.3	71.5	2748	2377	44528
	11/30/2020	62.9	64.9	2747	2390	55864

Table B-1. Intake and discharge water temperatures (°F), megawatts generated, and flow* (cfs) of the condenser circulating water (CCW) system at Sequoyah Nuclear Plant and flow past the plant, 2018-2022

Figure B-3. Comparison of Tennessee River flows (cfs) past Sequoyah Nuclear (SQN) plant to SQN plant condenser cooling water withdrawals (cfs) during 2022

Figure B-2. Megawatts generated, water temperatures of the intake and discharge, and flow through the condenser circulating water (CCW) system at Sequoyah Nuclear Plant during the years prior to the survey (2018-2021) and during survey (2022)

Figure B-1. Monthly Average Megawatts generated, water temperatures of the intake and discharge, and flow through the condenser circulating water (CCW) system at Sequoyah Nuclear Plant during 2022

Appendix B. Evaluation of Sequoyah Nuclear Plant operating conditions during 2018-2022

Evaluation of Plant Operating Conditions

Relevant plant operational data—mean daily temperatures at the CCW intake and discharge, mean daily flow through the CCW system, and mean daily power generation by the three nuclear units at SQN—were compiled from 2018 through 2022.

Biological monitoring was conducted upstream and downstream of SQN on August 21 and 22, and November 21 and 22, 2022. Daily mean generation for both days in August was 2,330 MW, while the mean generation for sampling days in November was 1180.1 respectively, with the summer sample occurring during slightly above the historical average. Daily mean intake temperatures for these dates were 85.5 °F for summer and 49.2 for autumn. Daily mean discharge temperature on the date sampling occurred in the affected downstream reach was 85.6 °F in the summer sample and 49 °F during the autumn sample. Daily flow rates were 2,763 and 2,765 cfs for both summer sample dates and 2372 and 2502 cfs for the autumn sample dates, both of which are higher than the observed historical average of 1,806 cfs (Table B-1, Figure B-1).

During 2022, daily mean generation ranged from 1,432 to 2,396 MW, with an annual daily average of 2,223 MW. Mean daily CCW flow during 2022 ranged from 1,967 to 2,755 cfs and averaged 2,603 cfs (Figure B-3). Daily mean intake temperatures ranged from 48.4 to 82.6 °F, with an annual average of 65.5 °F. Daily mean discharge temperatures ranged from 47.7 to 86.3 °F, with an annual average of 67.8 °F. Daily averages of CCW flow and generation during 2022 were generally higher when compared to 2018- 2021 daily averages while river flow was generally lower.(Table B-1, Figure B-2).

Table A-4. Scoring criteria for laboratory-processed benthic macroinvertebrate community samples from inflow, transition, and forebay zones of mainstem Tennessee River reservoirs

Benthic Community		Forebay		-	Transition			Inflow	
Metrics	1	3	5	1	3	5	1	3	5
Average number of taxa	< 2.8	2.8-5.5	> 5.5	< 3.3	3.3-6.6	> 6.6	< 4.2	4.2-8.3	> 8.3
Proportion of samples with long-lived organisms	< 0.6	0.6-0.8	> 0.8	< 0.6	0.6-0.9	> 0.9	< 0.6	0.6-0.8	> 0.8
Average number of EPT (Ephemeroptera, Plecoptera, Trichoptera)	< 0.6	0.6-0.9	> 0.9	< 0.6	0.6-1.4	> 1.4	< 0.9	0.9-1.9	> 1.9
Average proportion of oligochaete individuals	> 41.9	41.9-21.0	< 21.0	> 21.9	21.9-11.0	< 11.0	>23.9	23.9-12.0	< 12.0
Average proportion of total abundance comprised by the two most abundant taxa	> 90.3	90.3-81.7	< 81.7	> 87.9	87.9-77.8	< 77.8	> 86.2	86.2-73.1	< 73.1
Average density excluding chironomids and oligochaetes	< 125.0	125.0-249.9	> 249.9	< 305.0	305.0-609.9	> 609.9	< 400.0	400.0-799.9	> 799.9
Zero-samples - proportion of samples containing no organisms	> 0		0	> 0		0	> 0		0

Transition criteria were used to score sites upstream of SQN (TRM 488.0 and TRM 490.5); Forebay criteria were used to score sites downstream of SQN (TRM 481.3 and TRM 483.4)

Metric					Sco	ring Crite	eria			
			Forebay			Fransition	1	1.1.1	Inflow	
Metric	Gear	1	3	5	1	3	5	1	3	5
1. Total species	Combined	<14	14-27	>27	<15	15-29	>29	<14	14-27	>27
2. Total Centrarchid species	Combined	<2	2-4	>4	<2	2-4	>4	<3	3-4	>4
3. Total benthic invertivores	Combined	<4	4-7	>7	<4	4-7	>7	<3	3-6	>6
4. Total intolerant species	Combined	<2	2-4	>4	<2	2-4	>4	<2	2-4	>4
5. Percent tolerant individuals	Electrofishing Gill netting	>62% >28%	31-62% 14-28%	<31% <14%	>62% >32%	31-62% 16-32%	<31% <16%	>58%	29-58%	<29%
6. Percent dominance by 1 species	Electrofishing Gill netting	>50% >29%	25-50% 15-29%	<25% <15%	>40% >28%	20-40% 14-28%	<20% <14%	>46%	23-46%	<23%
7. Percent non-indigenous species	Electrofishing	>4%	2-4%	<2%	>6%	3-6%	<3%	>17%	8-17%	<8%
	Gill netting	>16%	8-16%	<8%	>9%	5-9%	<5%			
8. Total top carnivore species	Combined	<4	4-7	>7	<4	4-7	>7	<3	3-6	>6
9. Percent top carnivores	Electrofishing	<5%	5-10%	>10%	<6%	6-11%	>11%	<11%	11-22%	>22%
	Gill netting	<25%	25-50%	>50%	<26%	26-52%	>52%			
10. Percent omnivores	Electrofishing	>49%	24-49%	<24%	>44%	22-44%	<22%	>55%	27-55%	<27%
	Gill netting	>34%	17-34%	<17%	>46%	23-46%	<23%			
11. Average number per run	Electrofishing	<121	121-241	>241	<105	105-210	>210	<51	51-102	>102
	Gill netting	<12	12-24	>24	<12	12-24	>24			
12. Percent anomalies	Electrofishing	>5%	2-5%	<2%	>5%	2-5%	<2%	>5%	2-5%	<2%
	Gill netting	>5%	2-5%	<2%	>5%	2-5%	<2%	44		

Table A-3. RFAI scoring criteria for inflow, transition, and forebay sections of upper mainstem reservoirs* in the Tennessee River system.

* Upper mainstem Tennessee River reservoirs include Chickamauga, Fort Loudon, Melton Hill, Nickajack, Tellico, and Watts Bar.

		100	Propor	tion (%)		Number	of spo	ecies				
		Tr	isected rang	ge ^a		Tr	isected rang	ge ^a		Observed (TRM 4	Upstream 190.5)	Obse Downs (TRM -	rved tream 482.0)
Trophic Guild	Zone	-	Expected	+	Average ^b	-	Expected	+	Average ^b	Proportion	Number of Species	Proportion	Number of Species
Benthic Invertivore	Transition Forebay	< 2.5 < 4.5	2.5 to 5.0 4.5 to 9.0	> 5.0 > 9.0	2.8 ± 0.1 2.5 ± 0.1	< 2 < 2	2 to 4 2 to 4	>4 >4	3.9 ± 0.2 3.3 ± 0.3	2.4	3	1.5	2
Insectivore	Transition Forebay	< 24.2 < 28.5	24.2 to 48.4 28.5 to 57.1	> 48.4 > 57.1	42.9 ± 2.1 54.3 ± 2.7	< 4 < 4	4 to 8 4 to 8	> 8 > 8	7.8 ± 0.4 8.7 ± 0.5	58.1	8	70.0	7
Top Carnivore	Transition Forebay	< 12.0 < 16.1	12.0 to 23.9 16.1 to 32.1	> 23.9 > 32.1	$\begin{array}{c} 14.2 \pm 0.7 \\ 17.1 \pm 0.9 \end{array}$	< 4 < 4	4 to 8 4 to 8	> 8 > 8	7.8 ± 0.4 9.9 ± 0.3	13.5	11	11.4	11
Omnivore	Transition Forebay	> 29.9 > 20.8	29.9 to 59.7 20.8 to 41.6	< 59.7 < 41.6	27.8 ± 1.4 20.7 ± 1.0	> 5 > 6	3 to 5 3 to 6	<3 <3	5.8 ± 0.3 6.1 ± 0.3	25.6	7	16.6	7
Planktivore	Transition Forebay	> 25.6 > 5.8	25.6 to 51.2 5.8 to 11.5	< 51.2 < 11.5	12.5 ± 0.6 2.4 ± 0.1	0 0	1 1	> 1 > 1	1.1 ± 0.1 1.0 ± 0.1	0.4	1	0.6	1
Paracitic	Transition Forebay	< 0.4 < 0.3	0.4 to 0.7 0.3 to 0.7	> 0.7 > 0.7	$\begin{array}{c} 0.3 \pm 0.01 \\ 0.2 \pm 0.01 \end{array}$	0 0	1 1	> 1 > 1	1.0 ± 0.1 0.1 ± 0.08				
Herbivore	Transition Forebay	< 0.2	0.2 to 0.4	> 0.4	0.1 <u>+</u> 0.01	0	1	> 1	1.0 <u>+</u> 0.1	A.F.	-	-	- 1

Table A-2. Expected trophic guild proportions* and expected numbers of all species* (including non-indigenous) in upper mainstem Tennessee River reservoir transition and forebay zones, compared to values observed during 2020 monitoring at Sequoyah Nuclear Plant.

* Expected values were calculated using data collected from 1993 to 2020 in upper mainstem Tennessee River reservoirs. Over this period, 915 electrofishing runs and 610 overnight gill net sets were conducted in transition areas; 1,275 electrofishing runs and 850 overnight gill net sets were conducted in forebay areas.

^a Trisected ranges are intended to show below expected (-), expected, and above expected (+) values for trophic level proportions and species occurring within the transition zones in upper mainstem Tennessee River reservoirs.

^bAverage expected values are bound by 95% confidence intervals.

Metric	Scoring Criteria	Score
Cover	Stable cover (boulders, rootwads, brush, logs, aquatic vegetation, artificial structures) in 25 to 75% of the drawdown zone	5
	Stable cover in 10 to 25% or $>$ 75% of the drawdown zone	3
	Stable Cover in < 10% of the drawdown zone	1
Substrate	Percent of drawdown zone with gravel substrate >40	5
	Percent of drawdown zone with gravel substrate between 10 and 40	3
	Percent substrate gravel < 10	1
Erosion	Little or no evidence of erosion or bank failure. Most bank surfaces stabilized by woody vegetation.	5
	Areas of erosion small and infrequent. Potential for increased erosion due to less desirable vegetation cover (grasses) on $> 25\%$ of bank surfaces.	3
	Areas of erosion extensive, exposed or collapsing banks occur along > 30% of shoreline.	1
Canopy Cover	Tree or shrub canopy > 60% along adjacent bank	5
	Tree or shrub canopy 30 to 60% along adjacent bank	3
	Tree or shrub canopy < 30% along adjacent bank	1
Riparian Zone	Width buffered > 18 meters	5
	Width buffered between 6 and 18 meters	3
	Width buffered < 6 meters	1
Habitat	Habitat diversity optimum. All major habitats (logs, brush, native vegetation, boulders, gravel) present in proportions characteristic of high quality, sufficient to support all life history aspects of target species. Ready access to deeper sanctuary areas present.	5
	Habitat diversity less than optimum. Most major habitats present, but proportion of one is less than desirable, reducing species diversity. No ready access to deeper sanctuary areas.	3
	Habitat diversity is nearly lacking. One habitat dominates, leading to lower species diversity. No ready access to deeper sanctuary areas.	1
Gradient	Drawdown zone gradient abrupt (>1 meter per 10 meters). Less than 10% of shoreline with abrupt gradient due to dredging.	5
	Drawdown zone gradient abrupt. (>1 meter per 10 meters) in 10 to 40% of the shoreline resulting from dredging. Rip-rap used to stabilize bank along > 10% of the shoreline.	3
	Drawdown zone gradient abrupt in >40 % of the shoreline resulting from dredging. Sea wals used to stabilize bank along >10 % of the shoreline.	1

Table A-1. Shoreline Aquatic Habitat Index (SAHI) metrics and scoring criteria

Figure A-1. Locations of water temperature monitoring stations used to compare water temperatures upstream of Sequoyah Nuclear Plant (SQN) intake (ambient) and downstream of SQN discharge

electrofishing sample reaches upstream and downstream of SQN, transects were established across the river at the most upstream boundary, at mid-reach, and at the most downstream boundary. Along each transect, samples were collected at the RDB, in mid-channel, and at the LDB by recording readings at one- to two-meter intervals along a vertical gradient from just above the bottom of the river to approximately 0.3 meters from the surface.

Thermal Plume Characterization

Physical measurements to characterize and map the SQN thermal plume were collected concurrent with biological field sampling. The plume was characterized under representative thermal maxima and seasonally expected low flow conditions. Measurements were collected during periods of normal operation of SQN, as reasonably practicable, to capture the thermal plume under existing river flow/reservoir elevation conditions. This effort evaluated potential impacts on recreation and water supply uses and allowed general delineation of the "Primary Study Area" – per the EPA (1977) draft guidance defined as the "*entire geographic area bounded annually by the locus of the 2°C above ambient surface isotherms as these isotherms are distributed throughout an annual period*" – ensuring placement of the biological sampling locations within thermally influenced areas.

However, it is important to emphasize that the $\geq 2^{\circ}$ C isopleth boundary is not a bright line; it is dynamic, changing geometrically in response to changes in ambient river flows and temperatures and SQN operations. As such, samples collected outside of, but generally proximate to the Primary Study Area boundary cannot be considered free of thermal influence and thus should not be discounted. Every effort was made to collect biological samples in thermally affected areas as guided by the Primary Study Area definition.

Depth profiles of temperature from the river surface to the bottom were collected at points along transects crossing the plume. One transect was located proximate to the thermal discharge point; subsequent downstream transects were concentrated in the near field area of the plume where the change in plume temperature was expected to be most rapid. The distance between transects in the remainder of the Primary Study Area increased with distance downstream (or away from the discharge point). The farthest downstream transect was just outside of the Primary Study Area. A transect upstream of the discharge, in an area not affected by the thermal plume, was included for determining ambient temperature conditions. The total number of transects needed to fully characterize and delineate the plume was determined in the field.

Collection of temperature profiles along a given transect began at or near the shoreline from which the discharge originated and continued until the far shore was reached. Measurements across a transect were typically conducted at points 10%, 30%, 50%, 70%, and 90% from the originating shoreline, though the number of measurement points along transects was sometimes decreased or increased in proportion to the magnitude of the temperature change across a given transect. The distances between transects, and between points of measurement along each transect, depended on the size of the discharge plume.

Temperature data were compiled and analyzed to present the horizontal and vertical dimensions of the SQN thermal plume using spatial analysis techniques to yield plume cross-sections, which can be used to demonstrate the existence of a zone of passage for fish and other aquatic species under or around the plume.

Water Quality Parameters at Fish Sampling Sites during RFAI Samples

Water quality conditions were measured using a Hydrolab[®] that provided readings for water temperature (°C), conductivity (μ S/cm), dissolved oxygen (mg/L), and pH. Within each of the

simply due to method variation (25% of the QA paired sample sets exceeded that value). Any difference in scores of four points or greater between communities is examined on a metric-by-metric basis to determine what caused the difference in scores and the potential for the difference to be thermally related.

Visual Encounter Survey (Wildlife Observations)

Permanent survey sites were established on both the right and left descending banks at one location upstream of the SQN thermal discharge, centered at TRM 490.5 (Figure 4), and at a second location downstream of the discharge, centered at TRM 482.0 (Figure 5). Each survey site spanned a distance of 2,100 m along the shoreline, and the beginning and ending points were marked using global positioning system (GPS) for relocation.

Surveys were conducted by steadily traversing the site by boat, at approximately 30 m offshore and parallel to the shoreline, and simultaneously recording observations of wildlife. The sampling frame of each survey generally followed the strip or belt transect concept: from the center-line of each transect landward to an area that included the shoreline and riparian zone (i.e., belt width generally averages 60 m where vision is not obscured), all individuals observed were enumerated. Wildlife observed visually or detected audibly was identified to the lowest taxonomic trophic level, and a direct count of individuals observed per trophic level was recorded. If a flock of a species or a mixed flock of a group of species was observed, numbers of individuals present of each species were estimated. Time was recorded at the start and end points of each survey to provide a general measure of effort expended. Variation of observation times among surveys was primarily due to the difficulty of approaching some wildlife species without inadvertently flushing them from basking or perching sites.

The principal objective of the surveys was to provide a preliminary set of observations to verify that trophic levels of birds, mammals and reptiles were not affected by thermal effects from the SQN discharge. If expected trophic levels were not represented, further investigation will be used to target particular species or species groups (guilds) in an attempt to determine the cause.

Chickamauga Reservoir Flow and SQN Temperature

Total daily average discharge from Watts Bar and Chickamauga dams was used to describe the amount of water flowing past SQN and was obtained from TVA's River Operations database. Given the location of the SQN plant on Chickamauga Reservoir (Figure 1), flow past SQN was estimated as 23 percent of releases from Watts Bar Dam and 77 percent of releases from Chickamauga Dam.

Water temperature data were also obtained from TVA's River Operations database. Locations of water temperature monitoring stations used to compare water temperatures upstream of SQN intake and downstream of SQN discharge are depicted in Figure 9. Station 14 (TRM 490.4) was used to measure the ambient temperature upstream of the SQN intake. Station 8 (TRM 483.4) was used to measure temperatures downstream of the SQN discharge. Water temperatures at both stations were computed as the average of temperatures measured at depths of 3, 5, and 7 ft.

then applied to scores (Table A-4). The individual metrics are described below:

- (1) Average number of taxa Calculated by averaging the total number of taxa present in each sample at a site. Greater taxa richness indicates better conditions than lower taxa richness
- (2) Proportion of samples with long-lived organisms A presence/absence metric that is evaluated based on the proportion of samples with at least one long-lived organism (*Corbicula, Hexagenia*, mussels, or snails) present. The presence of long-lived taxa is indicative of conditions that allow long-term survival.
- (3) Average number of EPT taxa Calculated by averaging the number of *Ephemeroptera* (mayfly), *Plecoptera* (stonefly), and *Trichoptera* (caddisfly) taxa present in each sample at a site. Higher diversity of these taxa indicates good water quality and better habitat conditions.
- (4) Percentage of oligochaetes Calculated by averaging the percentage of oligochaetes in each sample at a site. Oligochaetes are considered tolerant organisms, so a higher proportion indicates poorer water quality.
- (5) Percentage as dominant taxa Used as an evenness indicator, this metric is calculated by selecting the two most abundant taxa in a sample, summing the number of individuals in those two taxa, dividing that sum by the total number of animals in the sample, and converting to a percentage for that sample. The percentages are then averaged for the 10 samples at each site. Because the most abundant taxa often differ among the 10 samples at a site, this approach allows more discretion to identify imbalances at a site than developing an average for a single dominant taxon for all samples at a site. Dominance of one or two taxa indicates poor conditions.
- (6) Average density excluding chironomids and oligochaetes Calculated by first summing the number of organisms excluding chironomids and oligochaetes present in each sample and then averaging these densities for the 10 samples at a site. This metric examines the community, excluding taxa which often dominate under adverse conditions. Higher abundance of taxa other than chironomids and oligochaetes indicates good water quality conditions.
- (7) Zero-samples: Proportion of samples containing no organisms For each site, the proportion of samples in which no organisms are present. "Zero-samples" indicate living conditions unsuitable to support aquatic life (i.e. toxicity, unsuitable substrate, etc.). A site with no zero samples was assigned a score of five. Any site with one or more zero samples was assigned a score of one.

A similar or higher benthic index score at the downstream sites compared to the upstream site was used as the basis for determining absence of impact on the benthic macroinvertebrate community related to SQN's thermal discharge. The QA component of REH monitoring compared benthic index scores from 49 paired sample sets collected over seven years. Differences between these paired sets ranged from 0 to 14 points; the 75th percentile was four points, the 90th percentile was six points. The mean difference between these 49 paired scores was 3.1 points with 95% confidence limits of 2.2 and 4.1. Based on these results, a difference of four points or less was the value selected for defining "similar" scores between upstream and downstream benthic communities. That is, if benthic scores at the downstream sites are within four points of the upstream score, the communities are considered similar. However, differences greater than four points can be expected

N = total number of individuals

 n_i = total number of individuals in the ith species.

An independent two-sample *t*-test was used to test for differences in CPUE, species richness, and diversity values upstream and downstream of SQN ($\alpha = 0.05$). Before statistical tests were performed using this method, data were analyzed for normality using the Shapiro-Wilk test (Shapiro and Wilk, 1965) and homogeneity of variance using Levene's test (Levene 1960). Non-normal data or data with unequal variances were transformed using either square root conversion or the ln(x+1) transformation. Transformed data were reanalyzed for normal distribution and equal variances. If transformation normalized the data or resulted in homogeneous variances, transformed data were tested using an independent two-sample *t*-test. If transformed data were not normally distributed or had unequal variances, statistical analysis was conducted using the Wilcoxon-Mann-Whitney test (Mann and Whitney, 1947; Wilcoxon, 1945).

Benthic Macroinvertebrate Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN

To assess the benthic macroinvertebrate community in the vicinity of SQN from 2000 to 2020, along transects established across the full width of Chickamauga reservoir upstream of SQN in the transition/mid-reservoir zone at TRM 490.5 (Figure 4) and downstream in the forebay area at TRMs 483.4 and 481.3 (Figure 5). Prior to this time, a sampling site in the forebay zone of Chickamauga Reservoir at TRM 482.0 was used as the downstream comparison site. Benthic scores and community composition from this site were used through 2010 (field-processed) for downstream comparisons to the upstream benthic site at TRM 490.5.

Beginning in 2011, samples were collected in the reservoir's forebay and transition zones along transects established across the full width of the reservoir at three sites. One site upstream of the plant intake was maintained at TRM 490.5 (Figure 4). To more accurately assess any possible effects of the SQN discharge on the benthic communities downstream, two sites were selected: just downstream of the mixing zone (TRM 483.4) and at a site further downstream (TRM 481.3) (Figure 5).

During autumn 2020, benthic macroinvertebrate data were collected along these three transects. The upstream transect was used as a control site for comparison to the downstream benthic communities potentially affected by the SQN thermal effluent. A Ponar dredge (area per sample 0.06 m^2) was used to collect benthic samples at ten points equally spaced along each transect. When heavier substrate was encountered, a Peterson dredge (area per sample 0.11 m^2) was used. Sediments from each sample were washed on a 533 μ screen, and organisms were picked from the screen and from any remaining substrate. Samples were fixed in formalin and sent to an independent consultant who identified each organism collected to the lowest possible taxonomic level.

Benthic samples were evaluated using seven metrics that represent characteristics of the benthic community. Results for each metric were assigned a rating of 1, 3, or 5, based on comparison to reference conditions developed for REH reservoir transition sample sites (Table 4). For each sample site, the ratings for the seven metrics were then summed to produce an RBI score. Potential RBI scores ranged from 7 to 35. Ecological health ratings derived from the range of potential values (7-12 "Very Poor", 13-18 "Poor", 19-23 "Fair", 24-29 "Good", or 30-35 "Excellent") were

impacted fish community. The threshold is used to serve as a conservative screening level; i.e., any fish community that meets these criteria is obviously not adversely impacted. RFAI scores below this level require a more in-depth look to determine if BIP exists. An inspection of individual RFAI metric results and species of fish used in each metric are an initial step to help identify if operation of SQN is a contributing factor. This approach is appropriate because a validated multi-metric index is being used and scoring criteria applicable to the zone of study are available.

A comparison of RFAI scores from the area downstream of SQN to those from the upstream (control) area is one basis for determining if operation of the plant has had any impacts on the resident fish community. The definition of "similar" is integral to accepting the validity of these interpretations. The Quality Assurance (QA) component of the VS monitoring program deals with how well the RFAI scores can be repeated and is accomplished by collecting a second set of samples at 15%-20% of the areas each year. Comparison of paired-sample QA data collected over seven years shows that the difference in RFAI index scores ranges from 0 to 18 points. The mean difference between these 54 paired scores is 4.6 points with 95% confidence limits of 3.4 and 5.8. The 75th percentile of the sample differences is 6, and the 90th percentile is 12. Based on these results, a difference of 6 points or less in the overall RFAI scores is the value selected for defining "similar" scores between upstream and downstream fish communities. That is, if the downstream RFAI score is within 6 points of the upstream score and if there are no major differences in overall fish community composition, then the two locations are considered similar. It is important to bear in mind that differences greater than 6 points can be expected simply due to method variation (25%) of the QA paired sample sets exceeded that value). An examination of the 12 metrics (with emphases on fish species used for each metric) is conducted to analyze any difference in scores and the potential for the difference to be thermally related.

Statistical Analyses

In addition to RFAI analyses, data were analyzed using traditional statistical methods. Data from the survey were used to calculate catch per unit effort (CPUE), expressed as number of fish per electrofishing run or fish per net night. CPUE values were calculated by pollution tolerance, trophic guilds (e.g., benthic invertivores, top carnivores, etc.), thermal sensitivity (Yoder et al. 2006), and indigenousness. CPUE, species richness, and diversity values were computed for each electrofishing effort (to maximize sample size; n = 30) and compared upstream and downstream to assess potential effects of power plant discharges.

Diversity was quantified using two commonly used diversity indices: Shannon diversity index (Shannon 1948) diversity index. This index accounts for the number of species present, as well as the relative abundance of each species.

Shannon diversity index values were computed using the formula:

$$H' = -\sum_{i=1}^{N} \left(\frac{n_i}{N}\right) \ln\left(\frac{n_i}{N}\right)$$

Where:

S = total number of species

upper mainstem Tennessee River reservoirs absent from point source effects (i.e. power plant discharges). Data from 1,275 electrofishing runs (a total of 382,500 meters of shoreline sampled) and from 850 overnight experimental gill net sets were included in this analysis for forebay areas in upper mainstem Tennessee River reservoirs. For upper mainstem Tennessee River transition zones, data from 915 electrofishing runs and 610 overnight experimental gill net sets were included. From these data, the range of proportional values for each trophic level and the range of the number of species included in each trophic level were trisected. These trisections were intended to show less than expected, expected and above expected values for trophic level proportions and species occurring within each reservoir zone in upper mainstem Tennessee River reservoirs. The data were also averaged and bound by confidence intervals (95%) to further evaluate expectations for proportions of each trophic level and the number of species representing each trophic level by reservoir zone (Table A-2).

(4) A lack of domination by pollution-tolerant species: Domination by pollution-tolerant species is determined by metrics 3 ("Number of benthic invertivore species"), 4 ("Number of intolerant species"), 5 ("Percent tolerant individuals"), 6 ("Percent dominance by one species"), and 10 ("Percent omnivores").

Scoring categories are based on "expected" fish community characteristics in the absence of humaninduced impacts other than impoundment of the reservoir. These categories were developed from historical REH fish assemblage data representative of forebay and transition zones from upper mainstem Tennessee River reservoirs (Hickman and McDonough, 1996). Attained values for each of the 12 metrics were compared to the scoring criteria and assigned scores to represent relative degrees of degradation: least degraded (5); intermediately degraded (3); and most degraded (1). Scoring criteria for upper mainstem Tennessee River reservoirs are shown in Table A-3.

If a metric was calculated as a percentage (e.g., "Percent tolerant individuals"), the data from electrofishing and gill netting were scored separately and allotted half the total score for that individual metric. Individual metric scores for a sampling area (i.e., upstream or downstream) were summed to obtain the RFAI score for the area.

TVA uses RFAI results to determine maintenance of BIP using two approaches. One is "absolute" in that it compares the RFAI scores and individual metrics to predetermined values. The other is "relative" in that it compares RFAI scores attained downstream to scores at the upstream control site. The "absolute" approach is based on Jennings et al. (1995) who suggested that favorable comparisons of the RFAI score attained from the potential impact zone to a predetermined criterion can be used to identify the presence of normal community structure and function, and hence existence of BIP. For multi-metric indices, TVA uses two criteria to ensure a conservative screening of BIP. First, if an RFAI score reaches 70% of the highest attainable score of 60 (adjusted upward to include sample variability as described below), and second, if fewer than half of RFAI metrics receive a low (1) or moderate (3) score, then community structure and function are considered normal, indicating that BIP had been maintained and no further evaluation would be needed.

RFAI scores range from 12 to 60. Ecological health ratings (12-21 "Very Poor", 22-31 "Poor", 32-40 "Fair", 41-50 "Good", or 51-60 "Excellent") are then applied to scores. As discussed in detail below, the average variation for RFAI scores in TVA reservoirs is $6 (\pm 3)$. Therefore, any location that attains a RFAI score of 45 (75% of the highest score) or higher would be considered to have BIP. It must be stressed that scores below this threshold do not necessarily reflect an adversely

Fish Health

(12) Percent anomalies – Incidence of diseases, lesions, tumors, external parasites, deformities, blindness, and natural hybridization is noted for all fish collected, with higher incidence indicating less favorable environmental conditions.

RFAI methodology addresses all four attributes or characteristics of a "balanced indigenous population" (BIP), defined by the CWA as described below:

- (1) A biotic community characterized by diversity appropriate to the ecoregion: Diversity is addressed by the metrics in the Species Richness and Composition category, especially metric 1 "Number of species." Determination of reference conditions based on the forebay and transition zones of upper mainstem Tennessee River reservoirs (as described below) ensures appropriate species expectations for the ecoregion.
- (2) The capacity for the community to sustain itself through cyclic seasonal change: TVA uses an autumn data collection period for biological indicators, both REH and upstream/downstream monitoring. Autumn monitoring is used to document community condition or health after being subjected to the wide variety of stressors throughout the year.

One of the main benefits of using biological indicators is their ability to integrate stressors through time. Examining the condition or health of a community at the end of the "biological year" (i.e., autumn) provides insights into how well the community has dealt with the stresses through an annual seasonal cycle. Likewise, evaluation of the condition of individuals in the community (in this case, individual fish as reflected in Metric 12) provides insights into how well the community can be expected to withstand stressors through winter. Further, multiple sampling years during the permit renewal cycle add to the evidence of whether the autumn monitoring approach has correctly demonstrated the ability of the community to sustain itself through repeated seasonal changes.

(3) The presence of necessary food chain species: Integrity of the food chain is measured by the Trophic Composition metrics, with support from the Abundance metric and Species Richness and Composition metrics. A healthy fish community is comprised of species that utilize complex feeding mechanisms extending into multiple levels of the aquatic food web. Three dominant fish trophic levels exist within Tennessee River reservoirs: insectivores, omnivores, and top carnivores. To determine the presence of necessary food chain species, these three groups should be well represented within the overall fish community. Other fish trophic levels include benthic invertivores, planktivores, herbivores, and parasitic species. Insectivores include most sunfish, minnows, and silversides. Omnivores include gizzard shad, common carp, carpsuckers, buffalo, and channel and blue catfish. Top carnivores include bass, gar, skipjack herring, crappie, flathead catfish, sauger, and walleye. Benthic invertivores include largescale stonerollers. Lampreys in the genus *Ichthyomyzon* are the only parasitic species occurring in Tennessee River reservoirs.

To establish expected proportions of each trophic guild and the expected number of species included in each guild occurring in transition zones in upper mainstem Tennessee River reservoirs (Nickajack, Chickamauga, Watts Bar, and Fort Loudon reservoirs), data collected from 1993 to 2022 were analyzed for each reservoir zone (inflow, transition, forebay). Samples collected in the downstream vicinity of thermal discharges were not included in this analysis so that accurate expectations could be calculated with the assumption that these data represent what should occur in

Species Richness and Composition

- (1) **Total number of species** Greater numbers of species are considered representative of healthier aquatic ecosystems. As conditions degrade, numbers of species at an area decline.
- (2) Number of centrarchid species Sunfish species (excluding black basses) are invertivores and a high diversity of this group is indicative of reduced siltation and suitable sediment quality in littoral areas.
- (3) Number of benthic invertivore species Due to the special dietary requirements of this species group and the limitations of their food source in degraded environments, numbers of benthic invertivore species increase with better environmental quality.
- (4) Number of intolerant species A category of species that are particularly intolerant of physical, chemical, and thermal habitat degradation. Higher numbers of intolerant species suggest the presence of fewer environmental stressors.
- (5) Percentage of tolerant individuals (excluding young-of-year) An increased proportion of individuals tolerant of degraded conditions signifies poorer water quality.
- (6) **Percent dominance by one species** Ecological quality is considered reduced if one species inordinately dominates the resident fish community.
- (7) Percentage of non-indigenous species Based on the assumption that nonindigenous species reduce the quality of resident fish communities.
- (8) Number of top carnivore species Higher diversity of piscivores is indicative of the availability of diverse and plentiful forage species and the presence of suitable habitat.

Trophic Composition

- (9) **Percent top carnivores** A measure of the functional aspect of top carnivores which feed on major planktivore populations.
- (10) Percent omnivores Omnivores are less sensitive to environmental stresses due to their ability to vary their diets. As trophic links are disrupted due to degraded conditions, specialist species such as insectivores decline while opportunistic omnivorous species increase in relative abundance.

Abundance

(11) Average number per run (number of individuals) – Based on the assumption that high quality fish assemblages support large numbers of individuals.

River Bottom Habitat

Along each transect described above, a benthic grab sample was collected with a Ponar dredge at each of ten points equally spaced from the LDB to the RDB. Substrate material collected with the Ponar was emptied into a screen, and percent composition of each substrate was estimated to determine existing benthic habitat across the width of the river. Water depths (feet) at each sample location were recorded. If no substrate was collected after multiple Ponar drops, it was assumed that the substrate was bedrock. For example, when the Ponar was pulled shut, collectors could feel substrate consistency. If it shut easily and was not embedded in the substrate on numerous drops within the same location, the substrate was recorded as bedrock.

Fish Community Sampling Methods and Data Analysis for Sites Upstream and Downstream of SQN

Thermal discharge from SQN enters Chickamauga Reservoir in the Tennessee River at TRM 483.6 (Figure 2). To evaluate the fish community in the vicinity of SQN, two sample sites were selected. One site was centered in the transition zone of Chickamauga Reservoir at TRM 490.5, upstream of the plant's intake (Figure 3), and served as a reference site unaffected by the thermal discharge. The second site was centered in the transition zone at TRM 482.0, downstream of the cooling water discharge (Figure 4), and served as the site affected by thermal effluent. TVA's Reservoir Ecological Health (REH) program monitors three additional sample areas on Chickamauga Reservoir: Forebay, TRM 472.3; Inflow, TRM 529.0; and Hiwassee River Embayment, HiRM 8.5.

Fish sampling methods utilized include boat electrofishing and gill netting (Hubert 1996; Reynolds 1996). Electrofishing methodology consisted of fifteen boat electrofishing runs near the shoreline, each 300 meters long and of approximately 10 minutes duration. The total near-shore area sampled was approximately 4,500 meters (15,000 feet).

Experimental gill nets (so called because of their use for research as opposed to commercial fishing) were used as an additional gear type to collect fish from deeper habitats not effectively sampled by electrofishing. Each experimental gill net consists of five 6.1-meter panels for a total length of 30.5 meters (100.1 feet). The distinguishing characteristic of experimental gill nets is mesh size that varies between panels. For this application, each net has panels with mesh sizes of 2.5, 5.1, 7.6, 10.2, and 12.7 cm. Experimental gill nets are typically set perpendicular to river flow, extending from near shore to the main channel of the reservoir. Ten experimental gill nets were set overnight in each sample reach.

Fish collected were identified by species, counted, and examined for anomalies (such as disease, deformations, parasites or hybridization). The resulting data were analyzed using RFAI methodology.

The RFAI uses 12 fish community metrics from four general categories: Species Richness and Composition; Trophic Composition; Abundance; and Fish Health. Individual species can be utilized for more than one metric, though hybrid species and non-indigenous species are excluded from metrics counting numbers of individual species. Together, these 12 metrics provide a balanced evaluation of fish community integrity. The individual metrics are shown below, grouped by category:

Appendix A. Field study design, sampling methods, and Reservoir Fish Assemblage Index methodology used by TVA to monitor biological communities in the vicinity of Sequoyah Nuclear Plant during the period 2000-2011, 2013, 2015, 2017, 2019-2022.

Evaluation of Plant Operating Conditions

Data describing the operation of SQN during the course of biological monitoring—specifically daily averages of power generation, water temperatures at the CCW system intake and discharge, and the flow rate of water through the CCW system—were collected, compiled, analyzed and compared to available historical operations data to assist in the interpretation of thermal plume characteristics and biological community information.

Aquatic Habitat in the Vicinity of SQN

Shoreline and river bottom habitat data presented in this report were collected during autumn 2020. TVA assumes habitat data to be valid for five years, barring any major changes to the river/reservoir (e.g. major flood event). No significant changes have occurred in the river system from the initial characterization, but in the event of such a change, habitat will be re-evaluated during the following sample period.

Shoreline Aquatic Habitat Assessment

An integrative multi-metric index (Shoreline Aquatic Habitat Index or SAHI), including several habitat parameters important to resident fish species, was used to measure existing fish habitat quality in the vicinity of SQN. Using the general format developed by Plafkin et al. (1989), seven metrics were established to characterize selected physical habitat attributes important to reservoir resident fish populations which rely heavily on the littoral (shoreline) zone for reproductive success, juvenile development, and adult feeding (Table A-1). Habitat Suitability Indices (U.S. Fish and Wildlife Service), along with other sources of information on biology and habitat requirements (Etnier and Starnes 1993), were consulted to develop "reference" criteria or "expected" conditions from a high quality environment for each parameter. Some generalizations were necessary in setting up scoring criteria to cover the various requirements of all species into a single index.

When possible, the quality of shoreline aquatic habitat was assessed while traveling parallel to the shoreline in a boat and evaluating the habitat within 10 vertical feet of full pool. Transects were established across the width of Chickamauga Reservoir within the fish community sampling reaches upstream and downstream of SQN (Figure 11). At each transect, near-shore aquatic habitat was assessed along sections of shoreline corresponding to the left descending bank (LDB) and right descending bank (RDB). For each shoreline section (16 upstream and 16 downstream of SQN), percentages of aquatic macrophytes in the littoral areas were estimated, then each section was scored by comparing the observed conditions associated with each individual metric to the "reference" conditions and assigning the observations a corresponding value: "Good" – 5; "Fair" – 3; or "Poor" – 1 (Table A-1). The scores for each of the seven metrics were summed to obtain the SAHI value for the shoreline section, and this value was assigned a habitat quality descriptor based on trisecting the range of potential SAHI values ("Poor", 7-16; "Fair", 17-26; and "Good", 27-35).

APPENDICES

November, 2022	-		LDB						Mid- channe	el					RDB			
TRM 490.5	Depth	°C	°F	рН	Cond	DO	Depth	°C	°F	рН	Cond	DO	Depth	°C	°F	рН	Cond	DO
Upstream	0.30	11.65	52.97	7.83	197.20	9.70	0.30	12.80	55.04	7.76	198.30	9.14	0.30	12.55	54.59	7.66	198.20	9.23
Boundary	1.50	11.22	52.20	7.81	197.40	9.70	1.50	12.77	54.99	7.75	199.70	9.13	1.50	12.45	54.41	7.61	198.60	9.27
	2.50	10.88	51.58	7.80	197.50	9.84	3.00	12.77	54.99	7.73	198.50	9.14	2.40	12.41	54.34	7.60	198.60	9.47
							4.00	12.76	54.97	7.71	198.00	9.12						
							6.00	12.74	54.93	7.71	198.10	9.14						
							8.00	12.74	54.93	7.71	198.00	9.10						
							8.50	12.72	54.90	7.70	198.10	9.19						
Mid-reach	0.30	11.94	53.49	7.74	199.20	9.33	0.30	12.69	54.84	7.78	197.30	9.17	0.30	12.65	54.77	7.81	198.80	9.27
	1.50	11.90	53,42	7.68	199.70	9.32	1.50	12.64	54.75	7.75	197.40	9.17	1.50	12.63	54.73	7.81	198.50	9.28
	2.60	11.85	53.33	7.69	199.50	9.43	3.00	12.61	54.70	7.73	197.20	9.18	3.00	12.63	54.73	7.78	198.40	9.29
							5.00	12.58	54.64	7.73	197.30	9.16	3.60	12.61	54.70	7.79	198.50	9.41
							7.00	12.54	54.57	7.72	197.90	9.15						
							9.00	12.53	54.55	7.70	198.10	9.16						
							10.00	12.55	54.59	7.68	197.90	9.20						
Downstream Roundary	0.30	12.58	54.64	7.79	198.00	9.22	1.50	12.76	54.97	7.79	199.00	9.24	0.30	11.96	53.53	7.79	201.20	9.36
Downstream Doundary	1.50	12.50	54.50	7.78	198.10	9.23	3.00	12.69	54.84	7.78	197.90	9.23	1.50	11.91	53.44	7.81	201.00	9.39
	3.00	12.43	54.37	7.77	198.20	9.26	4.00	12.63	54.73	7.77	197.90	9.25	3.00	11.91	53.44	7.79	201.00	9.43
	4.20	12.35	54.23	7.77	198.30	9.31	5.00	12.56	54.61	7.77	198.00	9.29	4.00	11.90	53.42	7.79	201.00	9.49
							6.00	12.47	54.45	7.77	198.10	9.33						
							7.00	12.31	54.16	7.77	198.10	9.33						
							8.00	12.25	54.05	7.77	198.20	9.35						
							9.00	12.20	53.96	7.77	198.20	9.36						
							10.00	12.18	53.92	7.76	198.30	9.38						
							11.20	12.17	53.91	7.76	198.30	9.35						

Table 19. (Continued)

November,	2022	-		LDB						Mid-ch	annel					RDB			
TRM 482		Depth	°C	°F	pH	Cond	DO	Depth	°C	°F	pH	Cond	DO	Depth	°C	°F	pH	Cond	DO
Upstream	-	0.3	11.61	52.90	7.95	199.20	9.55	0.30	13.22	55.80	7.97	198.10	9.26	0.30	12.33	54.19	7.91	197.90	9.26
Boundary		1.5	11.57	52.83	7.95	200.10	9.55	1.50	13.19	55.74	7.96	198.20	9.27	1.50	12.29	54.12	7.90	197.70	9.31
		3	11.55	52.79	7.94	200.10	9.64	3.00	13.12	55.62	7.95	198.00	9.28	2.30	12.34	54.21	7.87	197.60	9.60
		3.4	11.55	52.79	7.93	200.20	9.91	4.00	13.09	55.56	7.94	198.00	9.28						
								5.00	13.18	55.72	7.93	198.00	9.27						
								6.00	13.05	55.49	7.94	198.00	9.26						
								7.00	13.17	55.71	7.93	197.70	9.25						
								8.00	12.92	55.26	7.92	198.30	9.27						
								8.90	12.87	55.17	7.92	197.80	9.29						
								9.90	12.74	54.93	7.93	197.90	9.30						
								11.00	12.86	55.15	7.91	198.10	9.27						
								12.00	12.68	54.82	7.91	197.90	9.26						
								13.10	12.63	54.73	7.90	197.90	9.24						
								14.10	12.59	54.66	7.89	197.70	9.26						
								15.10	12.72	54.90	7.88	197.60	9.27						
Mid-reach		0.3	13.14	55.65	7.93	198.60	9.33	0.30	13.05	55.49	7.94	198.20	9.30	0.30	12.96	55.33	7.91	199.30	9.22
		1.4	13.13	55.63	7.92	198.60	9.31	1.50	13.06	55.51	7.94	198.10	9.29	1.50	12.49	54.48	7.88	198.60	9.23
		2.8	12.97	55.35	7.92	199.30	9.34	3.00	12.98	55.36	7.93	198.30	9.27	3.00	12.46	54.43	7.86	198.50	9.30
								4.00	12.79	55.02	7.93	198.10	9.28	3.50	12.48	54.46	7.85	198.30	9.75
								5.00	12.61	54.70	7.92	198.20	9.30						
								5.90	12.53	54.55	7.93	198.30	9.31						
								8.00	12.45	54.41	7.92	198.20	9.31						
								10.00	12.44	54.39	7.90	198.00	9.30						
								12.10	12.43	54.37	7.89	198.00	9.35						
								14.10	12.42	54.36	7.88	198.00	9.59						
Downstream Bound	dany	0.3	13.09	55.56	7.96	198.80	9.37	0.30	13.13	55.63	7.95	198.40	9.30	2.50	13.18	55.72	7.85	199.20	9.81
Downstream Doune	uary	1.5	13.07	55.53	7.96	198.70	9.34	1.50	13.06	55.51	7.94	198.40	9.29	0.30	13.17	55.71	7.88	199.20	9.36
		2.4	13.08	55.54	7.98	199.00	9.19	3.00	13.04	55.47	7.95	198.40	9.28	1.50	13.17	55.71	7.87	199.20	9.43
								4.00	13.09	55.56	7.93	198.40	9.30						
								5.00	13.06	55.51	7.94	198.50	9.29						
								6.00	13.04	55.47	7.93	198.40	9.32						
								7.00	13.00	55.40	7.93	198.40	9.31						
								8.00	13.00	55.40	7.92	198.40	9.32						
								9.00	12.97	55.35	7.92	198.50	9.29						
								10.00	12.95	55.31	7.92	198.40	9.27						
								11.00	12.94	55.29	7.92	198.50	9.27						
								12.00	12.95	55.31	7.92	198.50	9.26						
								13.00	12.94	55.29	7.90	198.50	9.31						
								15.00	12.94	55.29	7.90	198.50	9.29						
					-12-20			17.10	12.94	55.29	7.88	198.60	9.28						

73

Table 19. (Continued)

Summer 2022	_		LD	В					Mid-cha	nnel					R	DB		
TRM 490.5	Depth	°C	°F	рН	Cond	DO	Depth	°C	°F	рН	Cond	DO	Depth	°C	°F	рН	Cond	DO
Upstream	0.3	26.96	80.52	8.18	176.5	8.19	0.3	26.37	79.46	7.62	176.5	6.16	0.3	26.3	79.34	7.44	177.9	5.37
Boundary	1.5	26.88	80.38	7.81	177	6.13	1.5	26.28	79.30	7.53	176.7	5.42	1.5	26.29	79.32	7.41	177.8	5.24
	3	26.44	79.59	7.48	177.9	4.83	3	26.21	79.17	7.48	177.5	5.08	3	26.23	79.21	7.31	178.2	5.2
	4.3	26.36	79.44	7.46	178.1	4.59	4	26.2	79.16	7.47	178.1	4.99	4	26.21	79.17	7.24	178.1	5.16
							6	26.19	79.14	7.45	178.8	4.76	5.2	26.17	79.10	7.09	178.3	5.45
							8	26.12	79.01	7.43	179	4.55						
							10.1	26.05	78.89	7.44	179.4	4.68						
Mid-reach	0.3	26.62	79.91	7.7	178.3	6.21	0.3	26.49	79.68	7.73	178.1	6.71	0.3	26.42	79.55	7.62	176.5	6.07
	1.5	26.55	79.79	7.52	179.5	5.01	1.5	26.4	79.52	7.63	178.3	6.15	1.5	26.39	79.50	7.63	176.5	6.12
	3	26.39	79.50	7.48	177.3	4.96	3	26.29	79.32	7.51	179.3	5.24	2.7	26.36	79.44	7.62	175.6	6.15
	3.2	26.39	79.50	7.49	177.7	4.88	5	26.18	79.12	7.46	179.6	4.79						
							7	26.12	79.01	7.43	179.3	4.68						
							9	26.12	79.01	7.43	178.7	4.65						
							11	26.11	78.99	7.41	178.4	4.56						
							11.3	26.11	78.99	7.44	178.4	4.66						
Downstream Boundary	0.3	26.6	79.88	7.86	177.6	7.39	0.3	26.52	79.73	7.66	177.9		0.3	26.68	80.02	7.71	179.4	6.59
Downstream Doundary	1.5	26.58	79.84	7.78	177.6	6.8	1.5	26.42	79.55	7.59	176.8	5.65	1.5	26.62	79.91	7.68	179.3	6.51
	2.7	26.22	79.19	7.5	176.8	4.91	3	26.28	79.30	7.5	176.7	5.21	3	26.59	79.86	7.64	179.3	6.24
							5	26.25	79.25	7.48	176.8	5.16	4	26.55	79.79	7.57	179.2	5.96
							6	26.24	79.23	7.47	176.6	5.13	4.6	26.44	79.59	7.49	178.2	5.38
							8	26.22	79.19	7.46	176.2	5.07						
							10	26.21	79.17	7.45	176.4	5.04						
							12	26.2	79.16	7.45	176	5.02						
							12.8	26.2	79.16	7.46	176.4	5.12						
							16	26.81	80.25	7.45	179.2	5.24						
							18	26.77	80.18	7.43	180.7	5.04						
		1.2.1					18.6	26.77	80.18	7.42	180.7	5.02	1.1.1.1					

Summer LDB **RDB** Mid-channel 2022 -**TRM 482** °F °F °F Depth °C pH Cond DO Depth °C pH Cond DO Depth °C pH Cond DO Upstream 0.3 28.96 84.13 7.55 180.00 5.88 0.30 28.95 84.11 7.53 180.00 5.79 0.30 28.31 82.96 7.59 180.20 6.11 Boundary 1.5 28.95 84.11 7.56 180.20 5.85 1.50 29.01 84.22 7.54 180.20 5.80 1.50 80.78 7.61 179.30 27.10 6.27 28.92 7.53 5.75 28.99 84.18 7.53 5.79 26.84 7.59 3 84.06 180.10 3.00 179.90 3.00 80.31 178.70 6.03 28.52 83.34 7.51 5.66 4.00 28.95 84.11 7.52 5.79 26.60 79.88 7.58 178.80 4 180.50 180.20 4.00 6.46 4.8 27.77 81.99 7.50 180.10 5.71 5.00 28.96 84.13 7.52 179.90 5.79 7.52 7.00 28.74 83.73 180.10 5.79 7.52 9.00 28.25 82.85 179.80 5.76 27.79 82.02 7.52 5.78 11.00 179.60 27.39 7.51 5.69 13.00 81.30 179.40 15.00 26.86 80.35 7.50 179.70 5.64 17.00 26.72 80.10 7.49 179.60 5.56 17.60 26.69 80.04 7.48 179.30 5.54 Mid-reach 0.3 28.40 5.90 84.13 7.56 180.20 5.86 0.30 28.23 82.81 179.40 83.12 7.57 179.80 0.30 28.96 7.58 6.31 5.84 1.5 28.39 83.10 7.55 179.90 1.50 28.68 83.62 7.55 179.70 5.85 1.50 28.13 82.63 7.65 178.90 6.42 5.42 3 28.28 82.90 7.51 179.50 3.00 28.59 83.46 7.55 179.70 5.79 3.00 28.06 82.51 7.57 179.50 5.97 5.40 28.53 28.04 82.47 4 28.18 82.72 7.48 178.30 4.00 83.35 7.53 179.60 5.76 4.00 7.55 179.50 5.84 5.00 28.16 82.69 7.53 5.78 28.02 82.44 179.40 5.00 7.56 179.60 6.02 7.00 27.94 82.29 7.52 179.60 5.77 9.00 27.79 82.02 7.52 179.40 5.78 11.00 27.55 81.59 7.51 5.77 179.20 26.93 7.50 5.78 13.00 80.47 178.60 7.40 5.34 15.00 26.76 80.17 176.80 15.30 26.75 80.15 7.39 176.70 5.10 Downstream 0.3 27.95 82.31 7.55 179.30 5.99 0.30 28.45 83.21 7.56 179.70 5.90 0.30 28.21 82.78 7.55 179.80 5.77 Boundary 1.5 27.85 82.13 7.55 179.00 5.74 1.50 28.40 83.12 7.55 179.90 5.93 1.50 28.15 82.67 7.54 180.10 5.76 27.74 81.93 7.52 5.65 28.37 83.07 7.53 179.60 5.88 28.15 82.67 7.55 3 178.60 3.00 3.00 179.60 5.84 4 27.74 81.93 7.50 178.80 5.68 28.19 82.74 7.52 179.60 5.72 4.00 27.90 82.22 7.52 179.70 5.77 6.00 8.00 27.34 81.21 7.52 179.00 5.76 80.53 7.49 5.66 10.00 26.96 179.20 12.00 80.37 7.48 179.00 5.62 26.87 14.00 26.86 80.35 7.48 178.90 5.52 5.24 26.81 80.26 7.45 179.20 16.00 7.43 5.04 18.00 26.77 80.19 180.70 7.42 5.02 18.60 26.77 80.19 180.70

Table 19. Water quality parameters collected during summer and autumn 2022 along vertical depth profiles at three transects within biological sample reaches sited upstream (TRM 490.5) and downstream (TRM 482.0) of Sequoyah Nuclear Plant

Table 18. (Continued)

	Ambient - TRM 485.4	SQN	Discharge 483.7	-TRM]	ГRM 483.	1		FRM 482.	7		ГRM 482.	0	1	FRM 481.	2
Depth (m)	Thalweg - 30%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%	10%	50%	90%
Summer 2022				Sec. ale	and an	-				Section of				10-15	1944	1.00
0.3	79.84	82.96	84.11	84.13	83.59	84.52	83.52	82.81	84.13	83.12	83.26	83.64	83.26	82.78	83.21	82.31
1.5	79.72	80.78	84.22	84.11	83.53	84.16	83.53	82.63	83.62	83.10	83.23	83.55	83.26	82.67	83.12	82.13
3	79.61	80.31	84.18	84.06	83.52	83.70	83.43	82.51	83.46	82.90	83.01	83.41	83.03	82.67	83.07	81.93
4		79.88	84.11	83.34		83.10	83.37	82.47	83.35	82.72	82.89	83.17	82.87		82.74	81.93
5	79.57		84.13	81.99				82.44	82.69							
6						82.33						82.99			82.22	
7	79.52		83.73						82.29							
8						81.93						82.90			81.21	
9	79.54		82.85						82.02							
10						81.18						82.53			80.53	
11	79.52		82.02						81.59							
12						80.60						81.73			80.37	
13	79.48		81.30						80.47							
14						80.46						80.42			80.35	
15			80.35						80.17							
16						80.28						80.20			80.26	
17			80.10													
18									la sta			80.20			80.19	

Transect and Profile Location (% from right descending bank)

*Shaded numbers represent temperatures 3.6°F (2°C) or greater above ambient temperature (i.e., thermal plume).

Table 18.Depth profiles of water temperature (°F) collected to determine the extent of the thermal plume* discharged from TVA's SequoyahNuclear Plant during autumn and summer 2022

							Transect	and Pro	file Loca	tion (% fro	om right de	scending	bank)							
		Ambi	ent-TRM	485.4		5	SQN Disc	charge-T	RM 483.	7		Г	RM 482.	8			1	RM 481	.6	
Depth (m)	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%	10%	30%	50%	70%	90%
Autumn 2022												742					1.5%			
0.3	54.19	54.41	54.39	53.71	52.84	54.19	54.28	55.80	54.21	52.90	55.33	55.15	55.49	55.71	55.65	55.71	55.09	55.63	55.71	55.56
1.5	54.23	54.46	54.39	53.69	52.81	54.12	54.30	55.74	54.25	52.83	54.48	55.04	55.51	55.71	55.63	55.71	55.02	55.51	55.71	55.53
3		54.46	54.37	53.73	52.65		54.25	55.62	54.21	52.79	54.43	55.06	55.36	55.42	55.35			55.47	55.69	
4		54.45	54.37		52.52		54.27	55.56	54.14			55.04	55.02	55.26				55.56	55.69	
5		54.46	54.36				54.27	55.72	54.14				54.70	55.35				55.51		
6		54.46	54.36				54.23	55.49	54.16				54.55	55.29				55.47	55.69	
7		54.48	54.28				54.25	55.71	53.98				54.41	55.04				55.40		
8		54.46	54.36					55.26	53.80				54.39	54.93				55.40	55.49	
9		54.46	54.37					55.17	53.92				54.37	54.72				55.35		
10		54.48	54.28					54.93	53.82				54.36	54.68				55.31	55.27	
11		54.48						55.15	53.83					54.68				55.29		
12		54.46						54.82	53.83									55.31	55.33	
13								54.73												
14								54.66										55.29	55.26	
15								54.90										55.29		
17																		55.29	55.31	

*Shaded numbers represent temperatures 3.6°F (2°C) or greater above ambient temperature (i.e., thermal plume).