

## EPRI Research on Long Term Operations: Considerations for Life Beyond 80

NRC Hybrid Workshop on Structural Materials: What Research for Beyond 80



Sam Johnson

**EPRI** 

Sr. Team Lead

October 3<sup>rd</sup>, 2024



Why is LTO needed?

reactors is one of the most costeffective ways to produce carbonfree electricity and meet future
power demand needs.



### **Energy Security**

• Reduces dependence on fossil fuels & energy imports



### **Energy Diversity**

• Supports generation portfolio risk management





### Reliability

Consistent supply with high-capacity factors



#### Carbon Free

• Existing nuclear is essential to meeting carbon reduction goals

LTO is key to accomplishing carbon reduction goals around the world



### Status of LTO Worldwide



<sup>\*</sup>IAEA PRIS database, end of 2023, % of global operational nuclear capacity



## Nuclear Long Term Operation Research at EPRI

2024 +

#### **PROGRAM BEGINS**

Prompted by the question:
"Is there anything that would prevent
plants from operating beyond 60 years?
80? More?"

2010

2020

#### **PROGRAM MILESTONES**

- No generic technical roadblocks to 60+ years
- First Subsequent License Renewal applications submitted and approved
- Regulatory process and aging management well understood

#### ONGOING NEEDS

- Support for members worldwide
- Aging management research
- Continued research: 80+ years?



## LTO and Aging Management Major Focus Areas



#### Reactor Vessel, Core Internals, Primary Components

- Technical bases to support the aging of RPV, internals materials, steam generator, etc. (MRP, BWRVIP, SGMP)
- Advances in repair options such as welding for highly irradiated materials (WRTC)
- Water chemistry to protect and mitigate potential aging effects



#### **Concrete and Civil Structures**

- Developed guidance on Alkali Silica Reaction
- Developed guidance on irradiation effects on the concrete biological shield and on structures
- Developed guidance on best practices for structural aging management programs



#### **Electrical Cables**

- Research that supports cable reliability through end of plant operation
- Advances in condition monitoring technology and cable testing methods for aging management programs
- Cable Users Group (CUG) to share OE and best practices



#### **Other Projects**

- Risk Insights for Aging Management Program implementation + LAMBDA software for asset management
- Spent Fuel Pool Coupon International Database to support an industrywide AMP, i-LAMP
- Advancing the state of practice relative to Selective Leaching and advanced NDE



#### **Ongoing Knowledge Transfer**

- **EPRI Training** Distance learning, computer based, classroom, and on-site technical training on aging management processes and practices
- EPRI Tech Apps (1) LTO Assessment & Program Review, and (2) LTO Workshop & Training Support

## Concrete Research Program Support of LTO

- Research Reports on guidance for aging management of civil infrastructure for LTO 60+
  - Concrete Irradiation, ASR, Corrosion, Visual Inspections (see next slide)
- Participants in Various Industry Working Groups
  - NEI LR Task Force
  - IGALL Working Group 3 Civil Infrastructure
  - ICIC
- Utility Support of Aging Management Implementation
  - Procedure Review, Training, Workshops, etc.



### **EPRI Research on Concrete Aging Management Highlights**

| Topic                      | Title                                                                                                                                           | Deliverable Number |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Structures<br>Monitoring   | Structures Monitoring Program Guidelines: Best Practices and Example Procedure                                                                  | 3002018488         |
|                            | Structures Monitoring Best Practices: Personnel Qualifications                                                                                  | 3002016085         |
|                            | Long-Term Operations: Subsequent License Renewal Aging Effects for Structures and Structural Components (Structural Tools)                      | 3002013084         |
|                            | Field Guide: Visual Inspection of Concrete Structures                                                                                           | 3002007799         |
|                            | Materials Reliability Program: EPRI Review of the Kansai Takahama Units 1 and 2 Aging Evaluations for Extending Operational Periods (MRP-429)   | 3002012037         |
| Reinforcement<br>Corrosion | Field Guide: Corrosion Inspection of Reinforced Concrete Structures in the Nuclear Fleet                                                        | 3002010446         |
|                            | Nondestructive Evaluation Inspection of Concrete Structures Subjected to Corrosion                                                              | 1025627            |
|                            | Tools to Develop Aging Management Programs for Corrosion-Affected Concrete Structures                                                           | 3002010299         |
|                            | Modeling Platforms for Chloride-Induced Corrosion of Concrete Structures                                                                        | 3002013195         |
|                            | Guidelines for Selecting Remediation Strategies for Corrosion Control of Reinforced Concrete Structures                                         | 3002013236         |
|                            | Program on Technology Innovation: Corrosion Mitigation of Conventionally Reinforced Concrete Structures                                         | 3002003090         |
| Alkali Silica<br>Reaction  | Long-Term Operations: Aging Management of Concrete Structures Affected by Alkali-Silica Reaction                                                | 3002016056         |
|                            | Evaluation of Laboratory Tests to Detect Up-to-Date Expansion and Remaining Expansion in Concrete Structures Affected by Alkali Silica Reaction | 3002013192         |
|                            | Tools for Early Detection of ASR in Concrete Structures                                                                                         | 3002005389         |
|                            | Modeling Concrete Structures Affected by Alkali Silica Reaction: Hydro-Quebec Approach for Hydraulic and Nuclear Power Plants                   | 3002013190         |
| Concrete<br>Irradiation    | 2020 Update to Irradiation of Concrete Guidance: Basis for Evaluation of Concrete Biological Shield Wall for Aging Management, Rev 1            | 3002018400         |
|                            | Structural Model of PWR Concrete Reactor Pressure Vessel Supports – Effects of Chronic Radiation Exposure on Margin                             | 3002007347         |
|                            | Structural Disposition of Neutron Radiation Exposure in BWR Vessel Support Pedestals                                                            | 3002008128         |
|                            | Long-term Operations: Estimation of Gamma Dose in Boiling Water Reactor Concrete Biological Shield Walls                                        | 3002016055         |

## LTO Beyond 80

## **EMDA Summary of Concrete**

- The EMDA (NUREG/CR-7153 Vol 4) identified the following as potential knowledge gaps for assessing concrete up to 80 years of operations
  - Alkali Silica Reaction
  - Concrete Irradiation
  - Creep of Post Tension Containments
  - Boric Acid Attack of Concrete
- EPRI, NRC, and DOE have coordinated and communicated on research for Alkali Silica Reaction, Concrete Irradiation, and Nondestructive Evaluation



## **Aging Management Activities**

Inspection / Monitoring



Analysis / Evaluation



Mitigation / Modernization



Repair / Replacement





## Concrete and Civil Structures Beyond 80 Years

- There are no new degradation mechanisms for concrete structures operating beyond 80 years
- Structural Functionality is not dependent on age
- Potential for degradation to occur and progression of degradation can increase with time
  - Corrosion of reinforcement due to Chloride Ingress, Carbonation
  - Cracking due to expansion (ASR, DEF)
  - Concrete Irradiation (More plants to exceed threshold)
- Mitigation Strategies and Modernizations can be implemented and optimized for longer operations
  - Cathodic Protection Systems
  - Enhanced Inspection and Monitoring (Drones, Remote Monitoring)



## Aging Management Activities – The Path Forward

# Inspection / Monitoring

- AdvancedInspection andNDE Techniques
- Remote Monitoring Sensors

# Analysis / Evaluation

- Degradation modeling
- Guidance for Fitness for Service

# Mitigation / Modernization

- Enhanced Mitigation Technologies
- Modernization Technologies

# Repair / Replacement

- New Repair Materials
- Advanced Repair methodologies

EPRI research moving forward will focus on tools to provide more reliable and efficient aging management of civil infrastructure



