

Risk-Informing Materials Issues Risk Informed Materials Assessment Project

Dan Widrevitz — Stephen Cumblidge Technical Exchange Meeting June 27, 2024

Topics

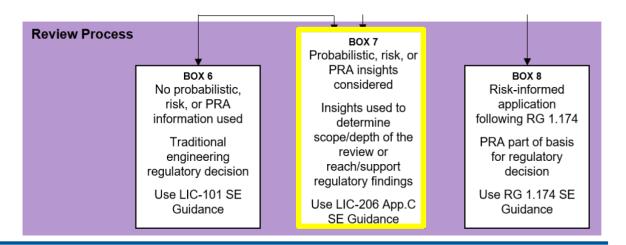
- Purpose and Applicability of RIMA Project
- Defense-in-Depth
- Safety Margin
- Risk Impacts (use of risk insights)
- Performance Monitoring
- Tier List
- Sampling Considerations
- Sampling Analysis

RIMA - Purpose

Risk-Informed Materials Assessment Project

A risk-informed materials engineering forward guidance development project

Leveraging the processes and guidance of RG 1.174, ADM-200, etc. to enable more efficient and effective reviews


Providing applicants and reviewers guidance in utilizing risk-informed decision making for non-integrated reviews

RIMA - Applicability

Target submittals:

LIC-206 Box 7 Type applications and reviews with non-integrated teams (e.g. materials engineers and counterparts only)

RIMA – Preliminary Concepts

Staff has been generating a preliminary set of RIMA concepts to support potential guidance document development

What it is (will be):

- Clearer/broader guidance in the language of materials engineers
- Applicant guidance to enable high quality submittals and efficient staff review

What it is not (will not be):

- New policy
- Deviation from RG 1.174

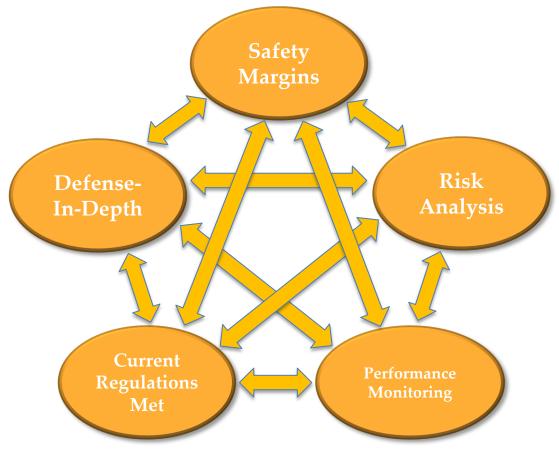
The following slides detail current preliminary concepts

RIMA – Defense in Depth

Further clarify the relationship between materials engineering topics and defense-in-depth considerations.

Typically, materials engineering reviews do not establish defensein-depth characterizations, rather materials engineering supports commensurate level of assurance based on characterization.

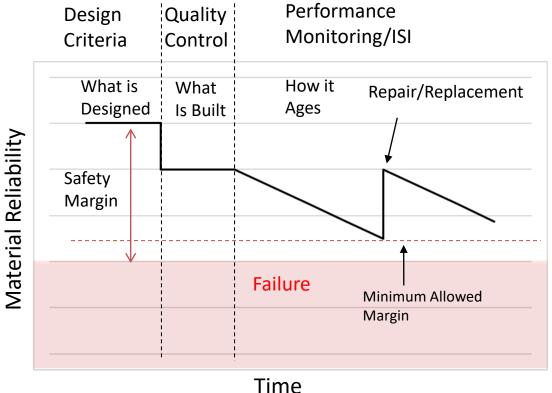
Is treatment of subject systems commensurate with defense-indepth functions of subject systems.



RIMA – Defense in Depth

Key consideration:

Is there enough "assurance" from other four Principles of RIDM to credit subject system for defense in depth?



RIMA – Safety Margins

Further clarify the relationship between materials engineering topics and safety margin considerations.

Key consideration:

Are safety margins large enough, in concert with other Principles of RIDM, to manage uncertainties?

RIMA – Risk Impacts

Clarification and discussion of risk insights derived from qualitative or non-PRA modeling (e.g. PFM).

How insights related to one or more elements of the Risk Triplet (what can go wrong, how often, and what are the consequences) can be leveraged.

(More in a few slides)

RIMA – Risk Impacts

PFM is often a Risk Impact insight:

Risk Triplet

What can go wrong?

How often?

What are the consequences?

Frequency of potential initiating event such as LOCA

RIMA – Performance Monitoring

Further clarify the relationship between materials engineering performance monitoring and the other Principles of RIDM.

Expanded discussion of performance monitoring and bathtub curb relationship.

Discussion of management of novel performance monitoring results.

RIMA – Performance Monitoring

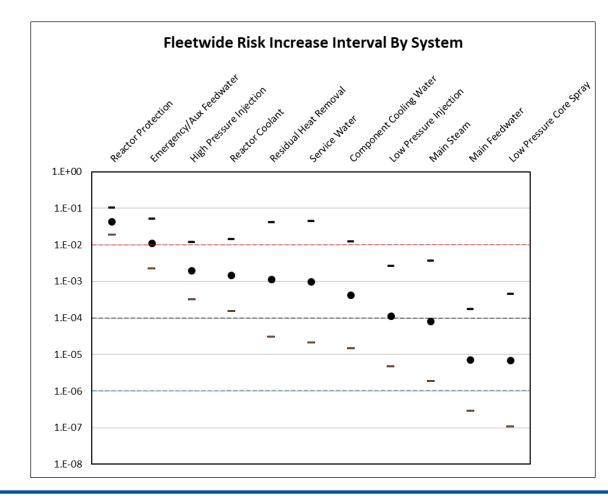
Performance monitoring adequacy rests on several pillars.

- How much monitoring?
- What kind of monitoring?
- How often?
- Are there triggers for more or less monitoring within program?

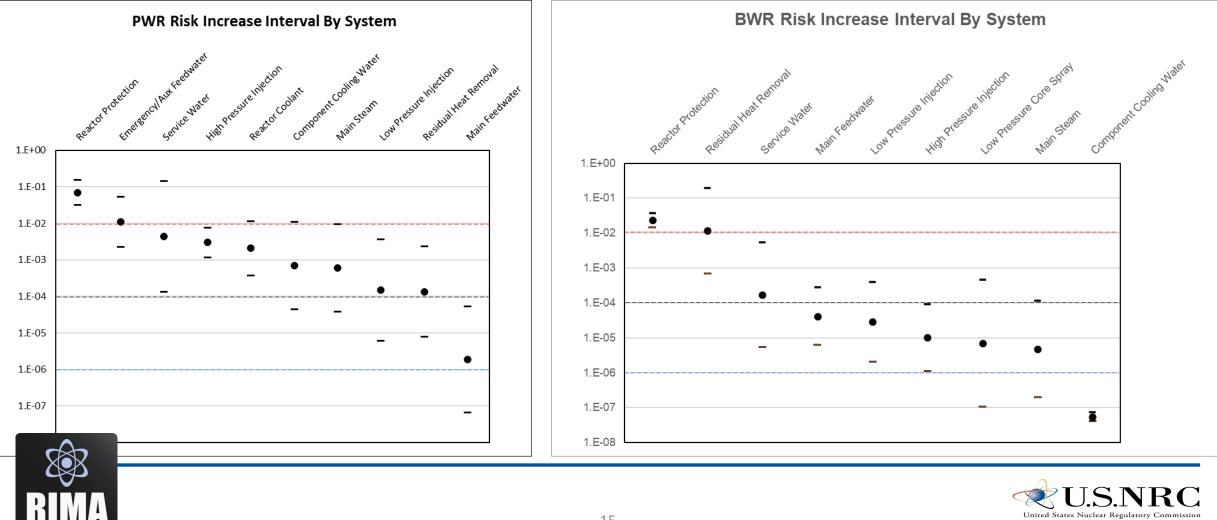
Answers to these questions must be judged in context of other Principles of RIDM (e.g. how does subject system support defense-in-depth, etc.)

RIMA – Tier List

The materials staff wanted a risk ranking of important systems to help risk-inform materials reviews


The NRC Staff used the SPAR-Dash tool to rank important systems

For this work we have decided to focus on broad systems rather than components


Tier List – Fleetwide System Importance

Tier List – PWR and BWR System Importance

Protecting People and the Environment

Tier List – Final Tier List

Fleetwide			
Tier X	X Reactor Protection		
	Emergency/Aux Feedwater		
Tier 1	High Pressure Injection		
	Reactor Coolant		
	Residual Heat Removal		
	Service Water		
	Component Cooling Water		
Tier 2	Low Pressure Injection		
	Main Steam		
Tier 3	Main Feedwater		
	Low Pressure Core Spray		

	PWR
Tier X	Reactor Protection
	Emergency/Aux Feedwater
Tier 1	Service Water
	High Pressure Injection
	Reactor Coolant
	Component Cooling Water
	Main Steam
Tier 2	Low Pressure Injection
	Residual Heat Removal
Tier 3	Main Feedwater

BWR
Reactor Protection
Residual Heat Removal
Service Water
Main Feedwater
Low Pressure Injection
High Pressure Injection
Low Pressure Core Spray
Main Steam
Component Cooling Water

Tier List – Takeaways

The Tier List is not directly applicable to individual plant reviews as there is large variability in risk significance from plant to plant for the same systems

The risk rankings are helpful to focus attention when looking at fleet-wide issues

The list is a tool to teach new staff about the importance of different systems

RIMA – Sampling Considerations

Expanded discussion of performance monitoring including framework to help identify target concepts supporting optimization of performance monitoring

Includes discussion of qualitative factors as well as a sample statistically driven sampling calculation

Leverage bathtub curve terminology to create common language for discussion

RIMA – Sampling Considerations

The following tables are initial thoughts regarding the impact of various considerations on necessary sampling.

- \checkmark Means a consideration likely indicates a particular column applies
- \uparrow Means a consideration increases emphasis
- \downarrow Means a consideration decreases emphasis

Color \downarrow vs. \downarrow implies a stronger or weaker association between a consideration and a particular column.

Sampling Considerations – Generic Lift Stage

Generic life-stage determination table

	Burn-in	Maturity	Wear-out
Novel material, process, or design	\checkmark		
Novel repair	\checkmark		
Repair	\checkmark	\checkmark	
Novel degradation mechanism identified	\checkmark		\checkmark
Novel degradation parameters (CGR, etc.)	\checkmark		\checkmark
Degradation threatening function			\checkmark
PSI only	\checkmark		
PSI + 1 interval of ISI	\checkmark		
PSI + more than 1 intervals of ISI	\checkmark	\checkmark	

* Checks in multiple columns are "ors"

Sampling Considerations – Qualitative Factors

Component

Dopulation

Qualitative factors affecting sampling intensity table

	level sampling	Level sampling
Burn-in	\checkmark	\checkmark
Maturity period	\checkmark	\checkmark
Wear-out	\checkmark	\checkmark
Safety related	1	1
RISC-2 (50.69 approved designation, system designation)	<u>↑</u>	1
Consequence significant	<u>↑</u>	1
Aging management program	<u>↑</u>	1
Failure tolerant (LBB, etc.)	↓	
Low impact on other safety significant systems	\downarrow	
Redundant	↓	
Isolable	\downarrow	

* Gray marks indicate that column should be considered but is not a priori necessary

Sampling Considerations – Emergent Events

Qualitative factors affecting sampling due to emerging events table

	Component	Population	Site sampling	Population
	level sampling	level sampling	expansion	sampling expansion
Site-specific event or chemistry issue		\uparrow	\uparrow	
Novel indications identified at a single site			\uparrow	\uparrow
Novel indications identified at multiple sites			\uparrow	1
OE limitations (e.g. low coverages or other issues)	\uparrow	1		
Extensive OE demonstrating no degradation	\checkmark	\checkmark		
Extensive OE demonstrating limited degradation	\checkmark	\checkmark		
Extensive OE demonstrating unmodeled degradation	\checkmark	\checkmark	↑	1
Extensive OE demonstrating modeled degradation	\checkmark	\checkmark		

* Marks in multiple columns indicate row indicates multiple columns are applicable or should be considered

RIMA – Sampling Analysis

Quantitative sampling calculation can be derived from statistical calculations

For example, NRC staff leveraged this in support of review of PROMISE Code submittals

Detailed discussion of approach in PVP2023-105203, Statistical Approach toe Developing a Performance Monitoring Program

Binomial Distribution

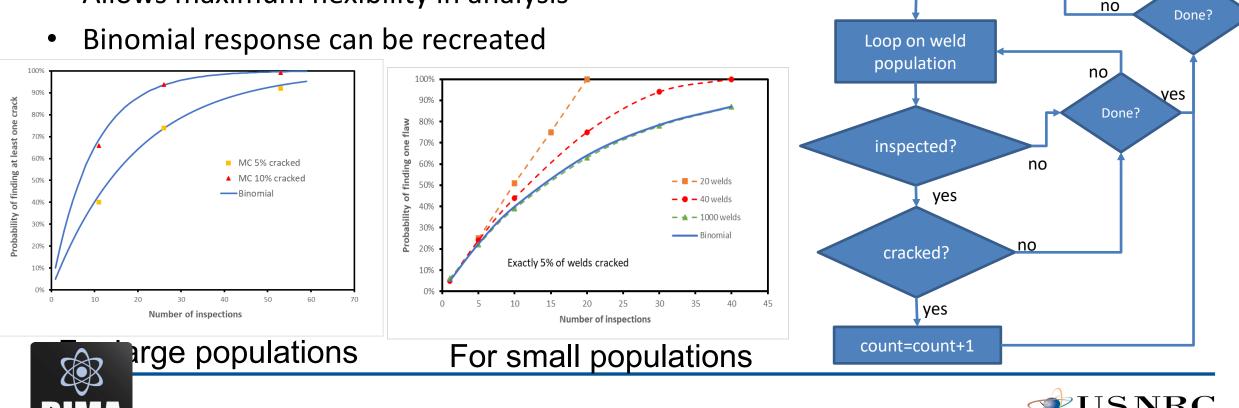
- The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N
- Can be used to find # of inspections needed to find a crack
- Only a function of the number of inspections and the % cracked
- Very easy to use (beware of limitations)

$$f(k,n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$
$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

k= number of successes (cracks found)
n=number of trials (inspections)
p= probability of success on an individual trial
(% of population cracked)
If k=0 then this is the probability of no
successes is:

$$f(n,p) = (1-p)^n$$

and therefore, the probability of at least one success is:


$$L - f(n, p)$$

Protecting People and the Environmen

Monte Carlo Analysis

- Same idea can be developed through a MC analysis
- Allows maximum flexibility in analysis

Sample a weld

population with x%

cracked

MC Loop, n

realizations

p=count/n

yes

Sample Inspection of

y% of welds

Sampling

Combining insights from Sampling Consideration slides with Sampling Analysis approaches allows for high quality proposals in performance monitoring space

Take Aways

RIMA Project aims to build forward from RG 1.174 and similar guidance in materials engineering specific language

- Focus is on non-integrated (e.g. NRC materials engineer reviewer only) submittals
- Guidance on all five Principles of RIDM to be translated and extended
- Tier List and Sampling Considerations provide increased domain specific granularity of guidance

