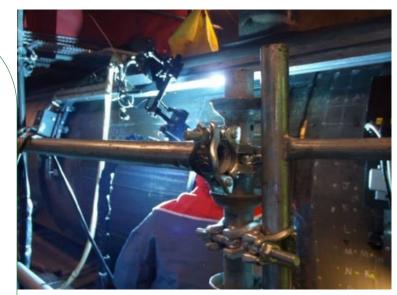


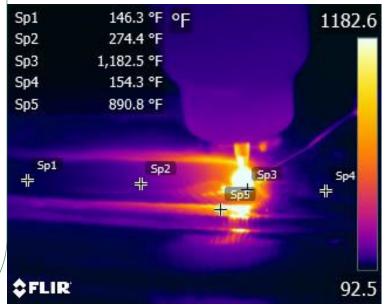
Welding & Repair Technology Center (WRTC)

Industry / NRC Materials Programs Technical Information Exchange Public Meeting

Steve McCracken, Senior Technical Executive

June 25, 2024


 in
 X
 F


 www.epri.com
 © 2024 Electric Power Research Institute, Inc. All rights reserved.

WRTC's Areas of Interest

Overview and significant Program updates since the last meeting

- No reports submitted to NRC
- No expected report submittals
- Areas of interest since last meeting will be highlighted
- Technical discussions with NRC are being planned for key topics and will also be highlighted

EPC

WRTC/ASME/Industry Meeting with NRC (March 7, 2023) – Summary (Refresher)

- Session 1: Nuclear Regulatory Commission (NRC) staff held a public meeting with the Electric Power Research Institute's Welding and Repair Technology Center (EPRI-WRTC).
 - Purpose of meeting was to have a technical exchange focusing on several ASME code cases with goal to gain a better understanding of the NRC's basis for the conditions and to help in future to reduce some conditions. (Examples)
 - Code Case N-847-1, "Partial Excavation and Deposition of Weld Metal for Mitigation of Class 1 Items..."
 - Code Case N-894, a new code case for repair of piping with thermal fatigue cracking
 - Code Case N-818-1, "Use of NDE and Fracture Mechanics for acceptance of Full Penetration Butt Welds in Lieu of Weld Repair, Class 1 and 2...."
 - Code Case N-853-1, "PWR Class 1 Primary Piping Alloy 600 Full Penetration Branch Connection Weld Metal Buildup for Material Susceptible to Primary Water Stress Corrosion Cracking, Section XI.."
- Session 2: Key Projects for Collaboration areas were discussed
 - Weldability Threshold for Irradiated materials
 - Effective Heat Input
 - Spent Fuel Canister Repair and Cold Spray Repair
 - Hardness Protocol for Temper Bead Welding

WRTC/ASME/Industry Meeting – Future Meetings

- Continue discussion/technical exchange focused on ASME code cases
 - Conditionally approved, Disapproved, Area of optimization or clarification
 - Include Code Case 752 Risk Informed R&R (continues to be an important case for the industry)
- Continue discussions on Key Projects for Collaboration
 - Status of Additive Manufacturing Code Cases, and evaluations
 - Goal to establish collaboration with Irradiated material weldability studies
 - Continue discussion (as needed)
 - Effective Heat Input
 - Spent Fuel Canister Repair and Cold Spray Repair
 - Hardness Protocol for Temper Bead Welding

Date for future meeting is still being determined

WRTC - Research Focus Areas (RFA)

WRTC organizes research/development work into 8 RFAs

- Each RFA has projects with related scope
 - ~ 50 ongoing projects across all WRTC

Weldability and Welding Alloy Development

• Mix of Tactical (short term) and Strategic (fundamental) Research

Small Bore Piping Issues

Focus on alternative to socket welds, small bore failures, remedies and training, and code repairs

Code and Standards

Technical bases of Code and Regulatory acceptance, optimization, and expansion of current Code

Tactical Implementation of Repair Methods and Training

Guidance documents, training, and technical information exchange

Advance Manufacturing

Supporting advance manufacturing methods, material testing and Code Acceptance

5

6

7

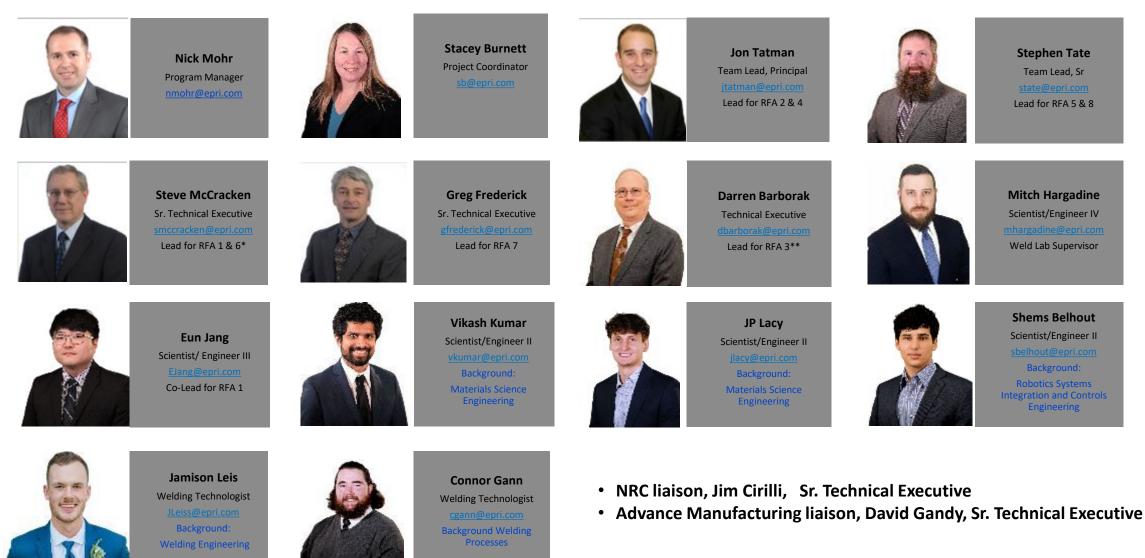
8

documents

Focus on the weldability thresholds for repair options, and measurement of the helium effects on weldability

Focuses on key welding alloys, fabricability, and guidance

4

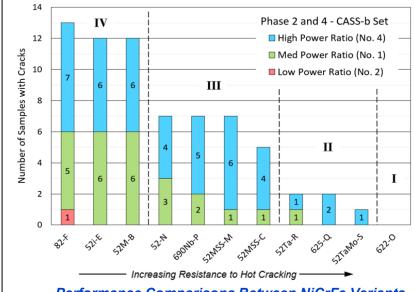

Optimized Joining, Fabrication, and Repair Processes

Technology transfer for innovative technologies, techniques, and processes, either to support joining processes, code acceptance, or data collection.

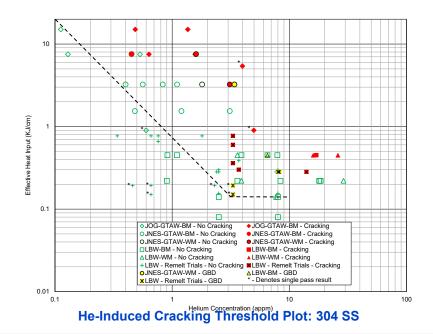
Repair Solutions for Structures

Focuses on supporting spent fuel pools, canisters, tanks, and non-metallic repairs and mitigation

WRTC TEAM


*Primary WRTC contact for ASME Section XI, **Primary WRTC contact for ASME Section IX

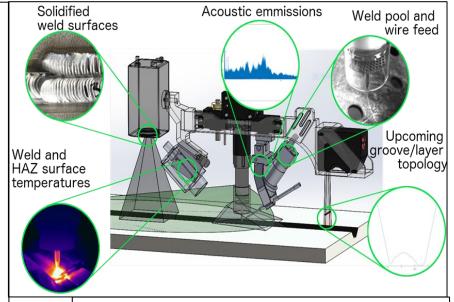
WRTC's RFA 1: Material Weldability and Welding Alloy Development


- Research and understand weldability of materials and filler materials
- Representative Demonstrations
- Develop solutions for improved weldability, implementation guidance and lessons learned
 - Current focus on high Cr Nickle alloys (Alloy 52 variants), duplex stainless steel and martensitic SS filler materials
 - Evaluation of alloys for new nuclear and small modular reactors
 - Goal to improved weldability and selection criteria for welding alloys for all applications (overlay, cavity, repair, fabrication)

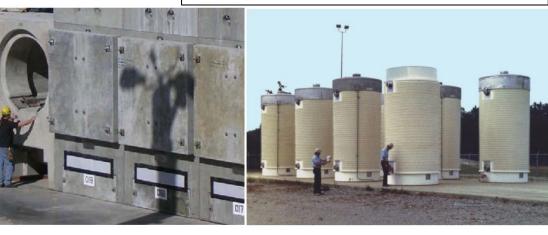
WRTC's RFA 2: Irradiated Materials Repair Solutions

- Welding challenges are being evaluated related to the high helium content generated in aged reactor internals
- Conventional and advance welding process under review on representative materials
- Weldability thresholds are being expanded based on effective heat input, helium content and welding process
- Identified as area of collaboration and further discussion with NRC

Performance Comparisons Between NiCrFe Variants



WRTC's RFA 3: Optimize Joining, Fabrication, and Repair Processes


- Technology transfer for innovative technologies, techniques, and processes, either to support joining processes, code acceptance, or data collection
- Some key activities
 - Cold Spray process and other repair processes are being evaluated for Spent Fuel Canisters
 - Alternative methods for measuring heat input (Effective Heat Input).
 Supporting Hardness drop criterion for temper bead and Effective Heat input for temper bead
 - Adaptive Feedback welding being researched to control welding conditions through AI, and machine learning control

WRTC's RFA 4: Repair Solutions for Structures

- Development of repair solutions for critical nuclear structures current focus on containment, spent fuel pool (SFP), and dry cask storage system (DCSS) structures
- Interface with EPRI Extended Storage Collaboration Program (ESCP)
- New case for Repair & Replacement of canisters is planned for future discussion with NRC.

Adaptive Feedback Welding Technology

Dry Cask Storage (NRC, ML062200058)

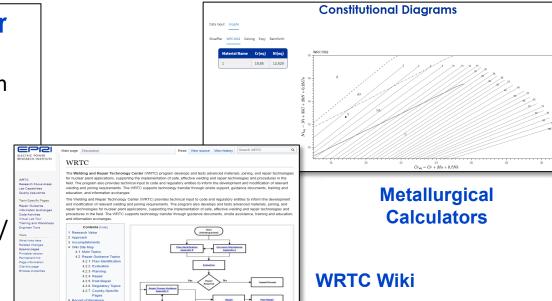

WRTC's RFA 5; Small Bore Piping Issues

- Training material for understanding small bore piping issues, high cycle fatigue, and leak sealing.
- Implementation guidance for Mechanical joints and fittings (Lokring)
- Understanding small bore piping issues and eliminating small bore piping failures
- Socket welds and overlay leak repairs

WRTC's RFA 6: Codes and Standards

- Promote and progressing Codes and Regulatory adoption of Code Cases, Code Revisions via technical basis research, industry papers (e.g. PVP), etc.
- Reduce burden in requirements based on industry practices and promote utilization of repair processes.
- Publishes an Annual Report on status of Code changes, Code Cases, and Technical Issues
- Key ASME Activities for WRTC will be discussed on Wednesday

High cycle fatigue testing of elbow mechanical fitting



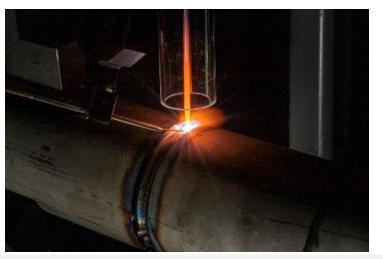
WRTC's RFA: 7 – Tactical Implementation of Repair Methods and Training;

- Development and implementation of specific repair solutions such as guidance for implementing new and innovative repairs and mitigation methods.
- Innovative tools developed for helping members find relevant information quickly
- Trending and tracking of industry performance and development / maintenance of guideline documents.
- OE, training, workshops, information exchanges, training, and assessment/ benchmarking activities (Knowledge Transfer)

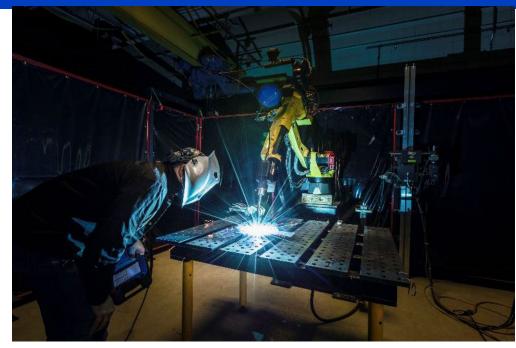
WRTC's RFA 8; Advance Manufacturing -Development and Evaluation

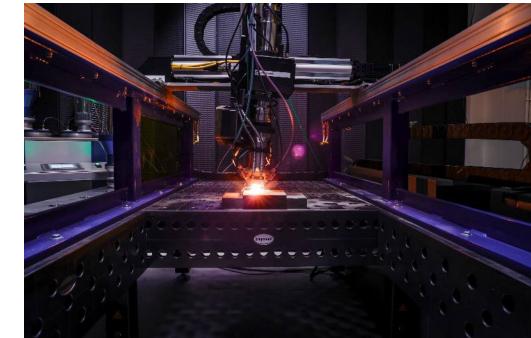
- Explore potential advanced manufacturing, materials and applications, reduce barriers to implementation
- Provide technical bases documents
- Progressing code and regulatory adoption
- Powder Metallurgy, Additive, Hardfacing and Coatings Applications for new and operating fleets

PM-HIP Scaled SMR Head and Valve body


WRTC Lab Capabilities

WRTC combines extensive laboratory capabilities and detailed familiarity with industry and regulatory issues to investigate and evaluate fabrication and repair/replacement techniques.


- Facilities and Lab Capabilities includes:
 - Material testing
 - Welding and Joining technology
 - Metallurgical support
 - Mockup/demonstration support
- EPRI can replicate field welding conditions such as techniques, materials, joining processes, and equipment to create realistic welding environments in the laboratory.
- The laboratory and staff expertise gives WRTC the ability to research a wide range of research such as advanced materials, weldability evaluations, and repair solutions


For a virtual tour of the WRTC labs with additional information pertaining to the equipment and ongoing research in these labs please visit the WRTC virtual lab tour website: <u>WRTC Welding Virtual Lab Tour</u>

Overview of EPRI nuclear laboratories website: Nuclear Laboratories

EPRI 10th International Conference on Advances in Materials, Manufacturing, and Repair for Power Plants

Thermal power generation:

- Steam Power (HRSG, boilers, steam turbines
- Gas turbines

• CSP & geothermal

Advanced Energy Systems:

- Small modular reactors
- Advanced nuclear technologies
- Bulk energy storage
- sCO2 power cycles
- Next gen CSP
- A-USC steam
- Hydrogen, energy production, & more

- High-Temperature Materials: superalloys, CSEF steels, stainless steels, intermetallics, non-metallics, coatings, claddings
- Damage Mechanisms & Properties: Creep, creep-fatigue, oxidation and corrosion, weld performance, wear/erosion
- **Component Manufacturing**: *castings, forgings, blades, rotors, valves, shop & field fabrication processes, etc*
- Advanced Manufacturing: additive (PBF, DED, etc.), Powder Metallurgy Hot Isostatic Pressing (PM-HIP), advanced welding and cladding processes
- **Qualification**: *Design, design rules, codes & standards,*
- **Performance**: Field experience, Life management, Fitness-for-Service (FFS), feature testing, modeling & validation
- **Repair**: weld repair, rejuvenation, advanced repair methods
- Emerging High-Temperature Materials Technology: refractories, new alloy developments, modeling developments

https://www.asminternational.org/epri-2024/

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved