Energy Harbor Nuclear Corp Perry Nuclear Power Plant 10 Center Road Perry, Ohio 44081 Rod L. Penfield Site Vice President, Perry Nuclear 440-280-5382 724-462-0816 (cell) April 22, 2024 L-24-096 10CFR50.36(a) ATTN: Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001 SUBJECT: Perry Nuclear Power Plant Docket No. 5000-440 Annual Radiological Environmental Operating Report Enclosed is the Annual Radiological Environmental Operating Report for the Perry Nuclear Power Plant (PNPP) for the period of January 1, 2023 through December 31, 2023. This document partially satisfies the requirements of the PNPP Technical Specifications (TS), the PNPP Offsite Dose Calculation Manual (ODCM), and the Environmental Protection Plan contained in Appendix B of the PNPP Operating License. There are no regulatory commitments contained in this letter. If there are any questions or if additional information is required, please contact Mr. Eli Crosby, Manager of Radiation Protection and Chemistry at (440) 280-5032. Sincerely, Rod Penfield **Enclosures:** A PNPP 2023 Annual Radiological Environmental Operating Report CC: NRC Project Manager NRC Resident Inspector NRC Region III # **Enclosure A** L-24-096 PNPP 2023 Annual Radiological Environmental Operating Report Annual Radiological Environmental Operating Report | YEAR: 2023 | Page 1 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant # Annual Radiological Environmental Operating Report 2023 Document Number: L-24-096 Page 2 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** # TABLE OF CONTENTS | | | | <u>Page</u> | |--------|---------|---|-------------| | 1.0 | EXEC | UTIVE SUMMARY | 6 | | | 1.1 | Radiological Environmental Monitoring Program | 6 | | | 1.2 | Pre-Occupational REMP | 6 | | | 1.3 | Operational REMP | 6 | | 2.0 | INTRO | DDUCTION | 7 | | 3.0 | SAMP | LE LOCATIONS | 8 | | 4.0 | MAPS | OF COLLECTION SITES | 10 | | 5.0 | SAMP | LING ANALYSIS | 12 | | | 5.1 | Sampling Program | 13 | | | 5.2 | Sampling Changes | 14 | | 6.0 | ATMO | SPHERIC MONITORING | 14 | | 7.0 | TERRI | ESTRIAL MONITORING | 16 | | 7.1 | Milk | | 16 | | 7.2 | Broadl | eaf Vegetation | 16 | | 8.0 | AQUA | TIC MONITORING | 16 | | | 8.1 | Water | 17 | | | 8.2 | Sediment | 17 | | | 8.3 | Fish | 18 | | 9.0 | DIREC | CT RADIATION MONITORING | 18 | | 10.0 | CONC | LUSION | 19 | | 11.0 | INTER | -LABORATORY CROSS-CHECK COMPARISON PROGRAM | 19 | | 12.0 | LAND | USE CENSUS EXPOSURE PATHWAY | 19 | | | 12.1 | Introduction | 20 | | | 12.2 | Discussion and Results | 20 | | 13.0 | ANNU | AL ENVIRONMENTAL OPERATING REPORT | 22 | | 14.0 | ODCM | NON-COMPLIANCES | 22 | | | 14.1 | Non-Compliances | 22 | | | 14.2 | Sampling Challenges | 23 | | | 15.0 | CORRECTIONS TO PREVIOUS REPORTS | 23 | | 16.0 | BIBLIC | DGRAPHY | 23 | | Attach | ment 1: | Inter-Laboratory Cross Check Comparison Program Results | 25 | | Attach | ment 2: | REMP Data Summary Reports | 43 | | Attach | ment 3: | 2022 REMP Detailed Data Report | 50 | # **Annual Radiological Environmental Operating Report** YEAR: 2023 L-24-096 Page 3 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** # **TABLES** | <u>Pag</u> e | <u>e</u> | |--|----------| | Table 1: REMP Sampling Locations | 9 | | Table 2: REMP Sample Analyses14 | 4 | | Table 3: Air Particulate and Radioiodine Comparison of Current Year and Historic Data15 | 5 | | Table 4: Nearest Residence - By Sector | | | Table 5: Nearest Garden - By Sector2 | 1 | | | | | | | | <u>FIGURES</u> | | | <u>Page</u> | <u>e</u> | | Figure 1: Potential exposure pathways to members of the public from plant operations [1] | 8 | | Figure 2: REMP Sample Locations within Two Miles of the Plant Site10 | 0 | | Figure 3: REMP Sampling Locations between Two and Eight Miles from the Plant Site1 | 1 | | Figure 4: REMP Sampling Locations Greater Than Eight Miles from the Plant Site12 | 2 | | Figure 5: Air Particulate and Radioiodine Comparison of Current Year and Historic Data15 | | | Figure 6: Annual Average Gross Beta Activity in Water1 | | | Figure 7: Average Quarterly TLD Dose18 | | | Figure 8: Land Use Census Map2 | 1 | | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 4 of 81 | |--|----------------------------------|------------------------|--------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### LIST OF ACRONYMS AND DEFINITIONS - 1. <u>Airborne Activity Sampling</u>: Continuous sampling of air through the collection of particulates and radionuclides on filter media. Periodic soil samples are collected for gamma isotopic analysis to provide information on deposition to the soil from airborne releases. - 2. AIP: Air, Iodine and Particulate - 3. ARERR: Annual Radioactive Effluent Release Report - 4. AREOR: Annual Radioactive Environmental Operating Report - 5. <u>BLV</u>: Broad Leaf Vegetation - 6. <u>BWR</u>: Boiling Water Reactor - 7. <u>Composite Sample</u>: A series of single collected portions (aliquots) analyzed as one sample. The aliquots making up the sample are collected at time intervals that are very short compared to the composite period. - 8. <u>Control</u>: A sampling station in a location not likely to be affected by plant effluents due to its distance and/or direction from Perry Nuclear Power Plant. - 9. <u>Curie (Ci)</u>: A measure of radioactivity; equal to 3.7E+10 disintegrations per second or 2.22E+12 disintegrations per minute. - 10. <u>Direct Radiation Monitoring</u>: The measurement of radiation dose at various distances from the plant is assessed using Thermoluminescent dosimeters. - 11. DW: Drinking Water - 12. Grab Sample: A single discrete sample drawn at one point in time. - 13. <u>Indicator</u>: A sampling location that is likely to be affected by plant effluents due to its proximity and/or direction from the plant. - 14. <u>Ingestion Pathway</u>: The ingestion pathway includes milk, fish, drinking water and garden produce. Also sampled (under special circumstances) are other media such as vegetation and animal products such as eggs and meat when additional information about particular radionuclides is needed. - 15. <u>Lower Limit of Detection (LLD)</u>: The smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with a 5% probability of a false conclusion that a blank observation represents "real" signal. - 16. MDA: Minimum Detectable Activity - 17. Mean: The average, i.e., the sum of results divided by the number of results. - 18. Not Applicable - 19. NIST: National Institute of Standards and Technology. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 5 of 81 | |--|----------------------------------|------------------------|--------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | - 20. NRC: Nuclear Regulatory Commission - 21. ODCM: Offsite Dose Calculation Manual - 22. <u>pCi</u>: is equal to one trillionth of a curie or 2.22 disintegrations per second. - 23. <u>pCi/L</u>: picocuries / Liter - 24. PNPP: Perry Nuclear Power Plant - 25. <u>PWR</u>: Pressurized Water Reactor - 26. REMP: Radiological Environmental Monitoring Program - 27. <u>SW</u>: Surface Water - 28. <u>TLD</u>: Thermoluminescent Dosimeter - 29. <u>TS</u>: Technical Specification | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 6 of 81 | |--|----------------------------------|------------------------|--------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 1.0 EXECUTIVE SUMMARY The Annual Radiological Environmental Operating Report (AREOR) details the results of Radiological Environmental Monitoring Program (REMP) conducted at the Perry Nuclear Power Plant (PNPP) from January 01 through December 31, 2023. This report meets all requirements in PNPP Offsite Dose Calculation Manual (ODCM). Report topics include radiological environmental monitoring and the land use census. The results of the environmental and effluent programs indicate that the operations of the PNPP did not result in any adverse environmental impact. ## 1.1 Radiological Environmental Monitoring Program The Radiological Environmental Monitoring Program (REMP) was established in 1981 to monitor the radiological conditions in the environment around PNPP. The operational REMP was initiated in 1986 and has continued through this reporting period. The REMP is conducted in accordance with the PNPP ODCM. This program includes collection and analysis of environmental samples and evaluation of results at indicator as well as control locations. Indicator samples are collected at locations determined to be most influenced by operation of the PNPP. Control samples are collected at locations beyond the measurable influence of the PNPP for data comparison. ### 1.2 Pre-Occupational REMP The REMP was established at PNPP six years before the plant became operational. Between 1981 and 1986 environmental monitoring involved collection and analysis of environmental samples. This pre-operational program was designed to provide data on background radiation levels and radioactivity normally present in the area in order to establish a baseline for data comparison prior to operation of the plant. PNPP has continued to monitor the environment during plant operation by collecting and analyzing samples of air, milk, fish, vegetation, water, and sediment, as well as by measuring radiation directly. The contribution of radionuclides to the environment resulting from PNPP operation is assessed by comparing results from the environmental
monitoring program with preoperational data, operational data from previous years, and control location data. The results for each sample type are compared to historical data to determine whether trends or changes in concentrations are observable. ## 1.3 Operational REMP Results of air samples collected to monitor the radioactivity in the atmosphere indicated normal background radionuclide concentrations. Terrestrial monitoring vegetation analysis due to the unavailability of milk samples, the results of which indicated concentrations of radioactivity similar to those found in previous years. Analyses of vegetation samples detected only natural radioactivity similar to that observed in previous years and indicated no radioactivity attributable to operation of the PNPP. Aquatic monitoring included the collection and analyses of water, fish, and shoreline sediments. The analytical results of these samples showed normal background radionuclide concentrations. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 7 of 81 | |--|----------------------------------|------------------------|--------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | Direct radiation measurements showed no significant changes from previous years. The indicator locations averaged 14.4 mrem/quarter and control locations averaged 14.2 mrem/quarter. Radiation dose near PNPP was similar to the radiation dose measured at locations greater than ten miles away from PNPP. Results from indicator samples collected during this reporting period were compared to control sample results and pre-operational data. Based on the results, it can be concluded that the operation of the PNPP resulted in no significant increase in the radionuclide concentrations observed in the surrounding environment. The results of the REMP indicate adequate control of radioactivity released from PNPP. These results also demonstrate that PNPP complies with federal regulations. #### 2.0 INTRODUCTION The REMP was established at PNPP for several reasons. First, it verifies the adequacy of plant design and operation to control radioactive materials and limit effluent releases. Second, it assesses the radiological impact, if any, that the plant has had on the surrounding environment. Third, it ensures compliance with regulatory guidelines. The REMP is conducted in accordance with Appendix B of the PNPP Operating License, Technical Specifications, the ODCM, Nuclear Regulatory Commission (NRC) Regulatory Guide 4.1, NUREG 1302 [3], and the 1979 NRC Branch Technical Position [9]. A variety of samples are collected as part of the PNPP REMP. The selection of sample types, locations, and collection frequency are based on many variables. Potential pathways for the transfer of radionuclides through the environment to humans, sample availability, local meteorology, population characteristics, land use, and NRC requirements are all factors and diagramed in Figure 1. To ensure that the REMP data is significant and valuable, detailed sampling methods and procedures are followed to ensure that samples are collected in the same manner and from the same locations each time. All samples are packaged on site and then shipped to an independent vendor laboratory for analysis. The vendor laboratory analyzes the samples and reports results to the PNPP Chemistry Unit staff, the Lake County General Health District, and the State of Ohio Department of Health. Additionally, the Lake County General Health District obtains monthly "split" samples of milk (when available), water, and vegetation to perform an independent verification of PNPP's REMP. The Radiological Environmental Monitoring Program (REMP) provides data on measurable levels of radiation and radioactive materials in the environment. This program also evaluates the relationship between quantities of radioactive materials released from the plant and resultant doses to individuals from principal pathways of exposure. In this capacity, REMP provides a check on the effluent release program and dispersion modeling to ensure that concentrations in the environment radioactive effluents conform to the "As Low as Is Reasonably Achievable" (ALARA) design objectives of 10 CFR 50, Appendix I. REMP is designed to conform to the NRC Regulatory Guide 4.1, NUREG 1302 [3], and the 1979 NRC Branch Technical Position [9]. **Annual Radiological Environmental Operating Report** YEAR: 2023 L-24-096 Page 8 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Figure 1: Potential exposure pathways to members of the public from plant operations [1]. Quality assurance aspects of the sampling program and TLD data collection are conducted in accordance with Regulatory Guide 4.15 [7] and Regulatory Guide 4.13 [11]. REMP also adheres to the requirements of the State of Ohio, PNPP Technical Specifications, and the Offsite Dose Calculation Manual (ODCM). These documents dictate the environmental sampling, sample analysis protocols, data reporting, and quality assurance requirements for the environmental monitoring program. The Annual Radioactive Environmental Operating Report provides summaries of the environmental data from exposure pathways, interpretations of the data, and analyses of trends of the results. Routinely monitored pathways include ingestion, inhalation, and direct radiation. Routes of exposure are based on site specific information such as meteorology, receptor locations, and water usage around the plant. #### 3.0 SAMPLE LOCATIONS REMP samples are collected at numerous locations, both on site and up to 16.2 miles away from the plant. Sampling locations are divided into two general categories: indicator and control. Indicator locations are relatively close to the plant and monitor for any environmental impact due to plant operations. Control locations are those that are unaffected by plant operation; they are a greater distance from the plant and in the least prevalent wind directions. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 9 of 81 | |---|--|------------------------|--------------| | Company: Energy Harbor Plant: Perry Nuclear Power Plant | | lant | | Data obtained from the indicator locations are compared with data from the control locations. This comparison allows naturally occurring background radiation to be considered when evaluating any radiological impact PNPP may have had on the environment. Table 1, Figure 2, Figure 3, and Figure 4 identify the PNPP REMP sampling locations. Many REMP samples are collected in addition to those required by the PNPP ODCM. The ODCM requirements for each sample type are discussed in more detail later in the report. Table 1: REMP Sampling Locations | ocation # | Description | Miles | Direction | Media (1) | |-----------|---------------------------------------|-------|-----------|----------------------| | 1 | Chapel Road | 3.4 | ENE | TLD, AÌP | | 2 | Kanda Garden | 1.9 | ENE | Broadleaf Vegetation | | 3 | Meteorological Tower | 1.0 | SE | TLD, AIP | | 4 | Site Boundary | 0.7 | S | TLD, AIP | | 5 | Quincy Substation | 0.6 | SW | TLD, AIP | | 6 | Concord Service Center | 11.0 | SSW | TLD, AIP | | 7 | Site Boundary | 0.6 | NE | TLD, AIP | | 8 | Site Boundary | 0.8 | Е | TLD | | 9 | Site Boundary | 0.7 | ESE | TLD | | 10 | Site Boundary | 0.8 | SSE | TLD | | 11 | Parmly Rd. at Center Rd. | 0.6 | SSW | TLD | | 12 | Site Boundary | 0.6 | WSW | TLD | | 13 | Madison-on-the-Lake | 4.7 | ENE | TLD | | 14 | Hubbard Rd. | 4.9 | Е | TLD | | 15 | Eagle St. Substation | 5.1 | ESE | TLD | | 16 | Eubank Garden | 0.9 | S | Broadleaf Vegetation | | 20 | Rainbow Farms | 1.9 | Е | Broadleaf Vegetation | | 21 | Hardy Rd. – Painesville Township Park | 5.1 | WSW | TLD | | 23 | High St. Substation | 7.9 | WSW | TLD | | 24 | St. Clair Ave. at Mentor Substation | 15.1 | SW | TLD | | 25 | Offshore - PNPP discharge | 0.6 | NNW | Fish | | 29 | River Rd.at Turney Rd. | 4.3 | SSE | TLD | | 30 | Lane Rd. | 4.8 | SSW | TLD | | 31 | Wood Rd. at River Rd. | 4.8 | SE | TLD | | 32 | Offshore – Mentor-on-the-Lake | 15.8 | WSW | Fish | | 33 | River Rd. at Blair Rd. | 4.5 | S | TLD | | 34 | PNPP Intake | 0.2 | NW | Surface Water | | 35 | Site Boundary | 0.6 | Е | TLD, AIP | | 36 | Lake County Water Plant | 3.9 | WSW | TLD, Drinking Water | | 37 | Gerlica Farm | 1.5 | ENE | Broadleaf Vegetation | | 39 | Painesville Purification Plant | 8.3 | W | Drinking Water | | 53 | 3715 Parmly Rd. | 0.5 | WSW | TLD | | 54 | Hale Rd. School | 4.6 | SW | TLD | | 55 | Center Rd. behind soccer field | 2.5 | S | TLD | | 56 | Madison High School | 4.0 | ESE | TLD | | 57 | Perry High School | 1.7 | S | TLD | | 58 | Antioch Rd. | 0.8 | ENE | TLD | | 59 | Lake Shoreline at Green Rd. | 4.0 | ENE | Surface Water | | 60 | Lake Shoreline at Perry Park | 1.0 | WSW | Surface Water | | 64 | Northwest Drain Mouth | 0.4 | WNW | Sediment | | 66 | Lake Shore, Metropolitan Park | 1.4 | NE | Sediment | | 70 | H&H Farm Stand | 16.2 | SSW | Broadleaf Vegetation | | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 10 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | Plant | ## 4.0 MAPS OF COLLECTION SITES Figure 2: REMP Sample Locations within Two Miles of the Plant Site. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 11 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | Figure 3: REMP Sampling Locations between Two and Eight Miles from the Plant Site **Annual Radiological Environmental Operating
Report** YEAR: 2023 L-24-096 Page 12 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Figure 4: REMP Sampling Locations Greater Than Eight Miles from the Plant Site. #### 5.0 SAMPLING ANALYSIS When environmental samples are analyzed for radioactivity, several types of measurements are performed to provide information about the types of radiation and radionuclides present. The major analyses that are performed are discussed below. Gross beta activity measures the total amount of beta-emitting radioactivity present in a sample and acts as a tool to identify samples that may require further analysis. Beta radiation may be released by many different radionuclides. Since beta-decay results in a continuous energy spectrum rather than the discrete energy levels, or "peaks", associated with gamma radiation, identification of specific beta-emitting nuclides is more difficult. Therefore, gross beta activity only indicates whether the sample contains normal or abnormal amounts of beta emitting radioactivity; it does not specifically identify the radionuclides present. | Annual Radiological Environmental Operating Report | YEAR: 20 | |--|----------| | | L-24-096 | 023 Page 13 of 81 **Company: Energy Harbor Plant: Perry Nuclear Power Plant** Gamma spectral analysis provides more specific information than does the analysis for gross beta activity. Gamma spectral analysis identifies each radionuclide and the amount of radioactivity present in the sample that is emitting gamma radiation. Each radionuclide has a very specific "fingerprint" that allows for accurate identification and quantification. lodine activity analysis measures the amount of radioactive iodine present in a sample. Some media (e.g., air sample charcoal cartridges) are analyzed directly by gamma spectral analysis. With other media (e.g., milk when available), the radioiodines are extracted by chemical separation before being analyzed by gamma spectral analysis. Tritium activity analysis measures the amount of the radionuclide tritium (H-3) present in a sample. Tritium is an isotope of hydrogen that emits low-energy beta particles. Tritium occurs naturally from interactions with atmospheric cosmic rays and is also man-made from the nuclear fission process. Gamma doses received by Thermoluminescent Dosimeters (TLD) while in the field are determined by a special laboratory procedure. Thermoluminescence is a process by which ionizing radiation interacts with the sensitive phosphor material in the TLD. Energy is trapped in the TLD material and can be stored for months or years. This capability provides a method to measure the dose received over long periods of time. The amount of energy that was stored in the TLD as a result of interaction with radiation is released by a controlled heating process and measured in a calibrated reading system. As the TLD is heated, the phosphor releases the stored energy as light. The amount of light is directly proportional to the amount of radiation to which the TLD was exposed. The required REMP detection limits for samples are determined by sample media and the radionuclide that is being analyzed. The NRC has established LLDs for REMP sample analysis. These LLDs are listed in the PNPP ODCM. The vendor laboratory for REMP sample analysis has complied with these LLDs. Table 2 provides a list of the analyses performed on environmental samples collected for the PNPP REMP, with the exception of terrestrial monitoring of milk samples. No milkproducing animals are located within the required distance per the ODCM, reference Section 7.1 Milk. #### 5.1 **Sampling Program** The contribution of radionuclides to the environment resulting from PNPP operation is assessed by comparing results from the environmental monitoring program with preoperational data (i.e., data from before 1986), operational data from previous years, and control location data. The results for each sample type are discussed below and compared to historical data to determine if there are any observable trends. All results are expressed as concentrations. Refer to Appendix B, 2023 REMP Data Summary Reports for a detailed listing of these results. The NRC requires special reporting whenever sample analysis results exceed set limits. No values exceeded those limits. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 14 of 81 | |---|--|------------------------|---------------| | Company: Energy Harbor Plant: Perry Nuclear Power Plant | | lant | | Table 2: REMP Sample Analyses | Туре | Sample | Frequency | Analysis | |--------------------------------|-------------------------|--|---| | | Airborne | Weekly | Gross Beta Activity | | Atmospheric
Monitoring | Particulates | Quarterly | Gamma Spectral Analysis | | g | Airborne
Radioiodine | Weekly | lodine-131 | | Terrestrial | Milk | Monthly Semi-Monthly when | Gamma Spectral Analysis & lodine-131 | | Monitoring | Broadleaf
Vegetation | Monthly during growing season | Gamma Spectral Analysis & lodine-131 | | | Drinking Water | Monthly | Gross Beta Activity & Gamma Spectral Analysis | | | | Quarterly | Tritium Activity | | A superior B A series since | Surface Water | Monthly | Gamma Spectral Analysis | | Aquatic Monitoring | | Quarterly | Tritium Activity | | | Fish | Annually if seasonal. Semi-Annually if not seasonal. | Gamma Spectral Analysis | | | Sediment | Semi-annually | Gamma Spectral Analysis | | Direct Radiation
Monitoring | TLD | Quarterly &
Annually | Gamma Dose | # 5.2 Sampling Changes There were no changes to the REMP program during this reporting period. ## 6.0 ATMOSPHERIC MONITORING Air sampling is conducted to detect any increase in the concentration of airborne radionuclides. The PNPP REMP maintains an additional two air sampling locations above the five locations (four indicators and one control) required by the ODCM. Six of these locations are within four miles of the plant site; the seventh is used as a control location and is eleven miles from PNPP. Page 15 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Air sampling pumps draw continuous samples at a rate of approximately two cubic feet per minute. The air is drawn through glass fiber filters to collect particulate material and a charcoal cartridge to adsorb iodine. The samples are collected on a weekly basis, 52 weeks a year, from each of the seven air sampling stations. Due to how the 2023 calendar year fell, 53 weeks of data were collected and included in this report. Air samples are analyzed weekly for gross beta activity and radioiodine activity. The air samples are also analyzed by gamma spectral analysis quarterly. A total of 370 air particulate and 370 air radioiodine samples were collected and analyzed. Gross beta activity was detected in 370 of the 370 air samples. The average gross beta activity for all indicator locations was 0.025 pCi/m³ and the controls was 0.026 pCi/m³. Historically, the concentration of gross beta in air has been essentially identical at indicator and control locations. Figure 5 reflects the average gross beta activity for 2023 and previous years. With the exception of naturally occurring beryllium-7, no radionuclides above the LLD values were identified in the quarterly gamma spectral analysis. All radioiodine samples were less than the lower limit of detection for iodine-131. Figure 5: Air Particulate Gross Beta Comparison of Current Year and Historic Data Air particulate and gross beta results from this monitoring period, 2023, were similar compared to preoperational data as shown in Figure 5 and Table 3 There were no significant changes in baseline. Table 3: Air Particulate Gross Beta Comparison of Current Year and Historic Data | Pre-Operational (pCi/m³) | 2023 Sample Result Average (pCi/m³) | | |--------------------------|-------------------------------------|--| | 0.023 | 0.025 | | | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 16 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 7.0 TERRESTRIAL MONITORING Collecting and analyzing samples of milk (when available) and broadleaf vegetation provides data to assess the build-up of radionuclides that may be ingested by humans. The historical data from soil and vegetation samples provides information on atmospheric radionuclide deposition. #### **7.1** Milk Since the milk sampling locations do not meet the requirements of the ODCM (no milk-producing animals are located within the required distance), broadleaf vegetation sampling (discussed below) is performed by PNPP. Milk was collected from the available locations to augment vegetation sampling until Spring 2018. ## 7.2 Broadleaf Vegetation Because there is not a milking animal within 5 km of the plant, PNPP sampled broadleaf vegetation as required by the ODCM. These samples are collected monthly during the growing season from four gardens in the vicinity of PNPP and one control location 16.2 miles SSW from PNPP. Sixty three (63) samples were collected and analyzed by gamma spectral analysis. Four vegetation types were grown and collected: collard greens, turnip greens, kale, and Swiss chard. Beryllium-7 and potassium-40, both naturally occurring radionuclides, were found in the samples. No other radionuclides were detected. The decrease in the number samples from previous years is because three garden participants were unable to produce swiss chard for the 2023 growing season. This was corelated to excessive rain during the spring. A second planting was attempted in mid-July to attempt obtaining end of season vegetation;
however, this planting was unsuccessful. #### 8.0 AQUATIC MONITORING Radionuclides may be present in Lake Erie from many sources other than the PNPP. These sources include atmospheric deposition, run-off, soil erosion, and releases of radioactivity in liquid effluents from hospitals, universities, or other industrial facilities. These sources provide two forms of potential radiation exposure: external and internal. External exposure can occur from contact with water or shoreline sediments, while internal exposure can occur from either direct ingestion of radionuclides or the transfer of radionuclides through the aquatic food chain. Direct exposure can occur through ingestion by drinking the water, while the transfer via the aquatic food chain occurs from the eventual consumption of aquatic organisms, such as fish. PNPP samples water, shoreline sediments, and fish to monitor these pathways. | Annual Radiological Environmental Operating Report | | Radiological Environmental Operating Report YEAR: 2023 L-24-096 | | |--|----------------------------------|---|------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 8.1 Water Water is sampled from five locations along Lake Erie in the vicinity of the PNPP as required by the PNPP ODCM when available and as weather permits. Sixty (60) monthly composite samples were collected and analyzed for gross beta activity and gamma spectral analysis. Monthly composite samples are analyzed for gamma emitters. Aliquots from the monthly composites are combined to form quarterly composites which is then analyzed for tritium. Gross beta activity was detected in 44 of the 60 samples collected. The indicator annual average gross beta activity was 1.5 pCi/L and the control average gross beta activity was 1.1 pCi/L. Refer to Figure 6 for the annual average gross beta activity for both indicator and control locations. No gamma activity was detected in any of the 60 samples collected. The 20 quarterly composite samples had 6 samples where tritium activity was detected. Any positive result less than 500 pCi/L is considered as background activity and not due to plant operations. The highest tritium activity was 221.3 pCi/L. Figure 6: Annual Average Gross Beta Activity in Water # 8.2 Sediment Sampling shoreline sediments provides an indication of the accumulation of particulate radionuclides which may lead to an external radiation source to fishermen and swimmers from shoreline exposure. Sediment was sampled from two locations. A total of four sediment samples were collected and were analyzed by gamma spectroscopy. The only radionuclide detected was naturally occurring potassium-40. | Annual Radiological Environmental Operating Report | | I Radiological Environmental Operating Report YEAR: 2023
L-24-096 | | |--|----------------------------------|---|------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 8.3 Fish Fish are analyzed primarily to quantify the radionuclide intake by humans and secondarily to serve as indicators of radioactivity in the aquatic ecosystem. Fish are collected from two locations annually during the fishing season as required by the ODCM. Important sport or commercial species are targeted, and only the fillets are sent to the laboratory for analysis. Eighteen (18) fish samples were collected and analyzed: 9 indicator and 9 control samples. The species were smallmouth bass, walleye, white sucker, red horse sucker, gizzard shad, yellow perch, freshwater drum, golden red horse, channel catfish, and white perch. Only naturally occurring potassium-40 was detected in these samples. #### 9.0 DIRECT RADIATION MONITORING Environmental radiation is measured directly at 27 locations around the PNPP site and at two control locations using thermoluminescent dosimeters (TLDs). The locations are positioned in two rings around the plant as well as at the site boundary. The inner ring is within a one-mile radius of the plant site; the outer ring is four to five miles from the plant. The control locations are over ten miles from the plant in the two least prevalent wind directions. Each location has three TLDs, two of which are changed quarterly, and one that is changed annually. A total of 261 TLDs were collected and analyzed. This includes 232 collected on a quarterly basis and 29 collected annually. Annual TLDs are not required per the ODCM and are used for supplemental data only. The annual average dose for all indicator locations was 59.2 mrem versus 57.3 mrem for the control locations. The average quarterly dose for the indicator locations was 14.4 mrem versus 14.2 mrem for the control locations. Refer to Figure 7 for the average quarterly TLD dose rates for both indicator and control locations. Figure 7: Average Quarterly TLD Dose | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 19 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 10.0 CONCLUSION There are no discernable trends or increase in radiological parameters when comparing current monitoring results to pre-operational studies. Non-routine analyses were not required during this reporting period. While you can note a slight increase in data of control vs indicator locations, there is no significant impact on the surrounding environment due to the operation of the Perry Nuclear Power Plant. ## 11.0 INTER-LABORATORY CROSS-CHECK COMPARISON PROGRAM The purpose of the Inter-laboratory Cross-Check Comparison Program is to provide an independent check on the vendor laboratory's analytical procedures. Samples with a known concentration of specific radionuclides are provided to the vendor laboratory. The vendor laboratory measures and reports the concentration of specified radionuclides. The known values are then compared to the vendor results. Results consistently outside established acceptance criteria indicate a need to check instruments or procedures. Regulatory Guide 4.15 [7] specifically requires that contractor laboratories that performed environmental measurement participate in the EPA's Environmental Radioactivity Laboratory Inter Comparison Studies Program, or an equivalent program. The EPA's program is no longer funded or offered. The reason that the EPA program was referenced in the regulatory guide is that the EPA standards were traceable to National Bureau of Standards (now known as National Institute of Standards and Technology). In response, the vendor lab incorporated a program offered by Environmental Resource Associates (ERA), which covered the same analyses in the same matrix at the same frequency as the EPA program. ERA has received NIST accreditation as an equivalent program. In addition to comparison cross checks performed with ERA, the vendor laboratory routinely monitors the quality of their analyses by analyzing "spiked" samples (samples with a specific quantity of radioactive material present in them) and participating in the Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP). See Attachment 1 for the vendor Inter-Laboratory Cross-Check Comparison Program Results. #### 12.0 LAND USE CENSUS EXPOSURE PATHWAY To estimate radiation dose attributable to operation of the PNPP, the potential pathways through which public exposure can occur must be known. To identify these pathways, an Annual Land Use Census is performed as part of the REMP. During the census, PNPP personnel travel public roads within a five-mile radius of the plant to locate key radiological exposure pathways. These key pathways include the nearest resident and nearest garden in each of the ten meteorological land sectors that surround the plant. The information obtained from the census is entered into a computer program used to assess hypothetical dose to members of the public. The predominant land use within the census area continues to be rural and/or agricultural. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 20 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 12.1 Introduction Each year a Land Use Census is conducted to identify the locations of the nearest available milking animal, garden (of greater than 500 square feet), and residence in each of the meteorological sectors that is over land. Information gathered during the Land Use Census is used for off-site dose assessment and to update sampling locations for the REMP. The census is conducted by traveling all roads within a five-mile radius of the plant site and recording and mapping the locations of the nearest resident, available milk animal, and vegetable garden. The Land Use Census was conducted in August 2023. The census identified the garden, and residence locations identified in Table 4 and Table 5 that are depicted in Figure 8. Note that the W, WNW, NW, NNW, N, and NNE sectors extend over Lake Erie and are not included in the survey. No location with an available milking animal was identified. #### 12.2 Discussion and Results In general, the predominant land use within the census area continues to be rural/agricultural. In recent years, however, it has been noted that tracts of land once used for farming are now being developed as mini-industrial parks and residential housing. This is reflected in the loss of available milking animals within a five-kilometer radius of PNPP to support the REMP. There were no changes to the REMP sampling locations compared to the 2022
Land Use Census. Refer to Figure 2, Figure 3, and Figure 4, for the REMP sampling locations. Table 4 identifies the nearest residences, by sector, to the PNPP. There were no changes from the 2022 Land Use Census. Refer to Figure 8 for map locator numbers. Table 4: Nearest Residence - By Sector | Sector | Location Address | Miles from PNPP | Map Locator Number | |--------|----------------------|-----------------|--------------------| | NE | 2348 W. Hemlock | 0.9 | 11 | | ENE | 2452 Antioch | 1.1 | 12 | | E | 2634 Antioch | 1.1 | 10 | | ESE | 2836 Antioch | 1.1 | 4 | | SE | 4671 North Ridge | 1.3 | 15 | | SSE | 4225 Red Mill Valley | 1.1 | 16 | | S | 3121 Center Rd. | 0.9 | 7 | | SSW | 3850 Clark | 0.9 | 8 | | SW | 3021 Perry Park | 1.3 | 13 | | WSW | 3460 Parmly | 1.0 | 14 | Table 5 lists the nearest gardens by sector to the PNPP consisting of at least 500 square feet. Refer to Figure 8 for map locator numbers. | Annual Radiological Environmental Operating Report | | erating Report YEAR: 2023
L-24-096 | | |--|----------------------------------|---|------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | Table 5: Nearest Garden - By Sector | Sector | Location Address | Miles from PNPP | Map Locator Number | |--------|------------------|-----------------|--------------------| | NE | 4384 Lockwood | 0.7 | 1 | | ENE | 4602 Lockwood | 1.1 | 2 | | E | 2626 Antioch | 1 | 3 | | ESE | 2836 Antioch | 1.1 | 4 | | SE | 4495 North Ridge | 1.3 | 5 | | SSE | 3119 Parmly | 0.9 | 6 | | S | 3121 Center | 0.9 | 7 | | SSW | 3300 Ohio St. | 2.3 | 17 | | SW | 2997 Perry Park | 1.2 | 9 | | WSW | 3460 Parmly | 1 | 14 | Figure 8: Land Use Census Map | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 22 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | lant | #### 13.0 ANNUAL ENVIRONMENTAL OPERATING REPORT The NRC issued Amendment No. 178 to Facility Operating License No. NPF-58 on October 19, 2017. This amendment revises the PNPP "Environmental Protection Plan (Non-radiological)" (EPP) to clarify and enhance wording to remove duplicative or outdated program information, and to relieve the burden of submitting unnecessary or duplicative information to the NRC. As a result of the above Amendment issued in October 2017, redundant program information is no longer required to be compiled and included in this report. This includes the sections: Clam/Mussel Monitoring, Herbicide Applications, and Special Reports which included National Pollutant Discharge Elimination System Permit exceedances, and the EPP from previous years. #### 14.0 ODCM NON-COMPLIANCES Sampling and analysis are performed for media types addressed in the Offsite Dose Calculation Manual. ODCM non-compliances occur when a sample required by the ODCM is not obtained and/or analyzed. Sampling and analysis challenges may be experienced due to a multitude of reasons including environmental factors, loss of TLDs, contamination of samples, etc. To aid classification of sampling and analysis challenges experienced in 2023, the following three terms are used to describe the issues: Sample Anomalies (SA), Sample Deviation (SD), and Unavailable Samples (US). Media that experienced downtime (*i.e.*, air samplers or water samplers) during a surveillance period are classified a "Sample Deviation". "Sample Anomalies" are defined as errors that were introduced to a sample once it arrived in the laboratory or errors that prevent the sample from being analyzed as it normally would or may alter the outcome of the analysis (*i.e.*, cross contamination, human error). "Sample Unavailability" is defined as sample collection evolution with no available sample (*i.e.*, food crop, TLD). #### 14.1 Non-Compliances There was one ODCM non-compliance for 2023. During the week of 3/2/2023 no iodine and particulate sample was obtained at the P-1 location (Chapel Road). This occurred due to an accident on 2/21/2023 when a vehicle collided with air sample station #1. The offsite air sample station was damaged when the vehicle struck it and a nearby power pole. This traffic accident was caused by non-site personnel. Due to the nature of the accident the power had been cut off to the air sample station for an extended period of time. Air sampler station #1 was reassembled and restored with a complete pump rebuild, keypad, and turbine replacement. Temporary power was routed to the sample station from a nearby business the following week until the completion of restoration of power to a new power pole. This full evolution took around seven weeks: First Energy installed a new power pole and meter, the Lake County Building | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 23 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | | Department inspected the electricians' work and provided approval of compliance, then power was reconnected to the sample station and restoration of service was achieved. This was captured in the stations Corrective Action Program. # 14.2 Sampling Challenges There was sample unavailability at 3 garden locations for vegetation, specifically swiss chard, for the duration of the growing season. This was attributed to the excessive rains during the spring and a failed second planting of swiss chard in July at these locations. Sample Deviation did occur due to the previous listed ODCM non-compliance. In the following 6 weeks after 2/21/23 accident that removed power to air sample station #1 (Chapel Road) reduced air sample run times occurred due to business temporary power availability not being continuous. This is noted in sample volume collected for this station. This was captured in the stations Corrective Action Program. #### 15.0 CORRECTIONS TO PREVIOUS REPORTS There were no corrections identified for previous reports. #### 16.0 BIBLIOGRAPHY - 1. Japan Atomic Energy Agency. [Online] November 06, 2021. https://www.jaea.go.jp/english/04/ntokai/houkan/houkan_02.html. - 2. Measurements of Radionuclides in the Environment Sampling and Analysis of Plutonium in Soil. s.l.: Nuclear Regulatory Commission, 1974. ADAMS Accession No. ML003739541. - 3. NUREG-1302, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Boiling Water Reactors,". s.l.: Nuclear Regulatory Commission, April 1991. ADAMS Accession No. ML091050059. - 4. NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors," . s.l.: Nuclear Regulatory Commission, April 1991. ADAMS Accession No. ML091050061. - 5. NRC Resource Page. [Online] [Cited: November 10, 2021.] http://www.nrc.gov/about-nrc/radiation.html. - 6. NUREG-0133, Preparation of Effluent Technical Specifications for Nuclear Power Plants. s.l.: Nuclear Regulatory Commission, 1987. ML091050057. - 7. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Inception through Normal Operations to License Termination) -- Effluent Streams and the Environment. s.l.: Nuclear Regulatory Commission, July, 2007. ML071790506. | Annual Radiological Environmental Op | YEAR: 2023
L-24-096 | Page 24 of 81 | | |--------------------------------------|----------------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | | - 8. ANSI 13.37, Environmental Dosimetry- Criteria for System Design and Implementation. s.l.: Health Physics Society (HPS), May, 2019. - 9. Branch Technical Position, Revision 1. s.l.: NRC000096, Submitted March 30, 2012, November 1979. - 10. Regulatory Guide 4.1, "Radiological Environmental Monitoring for Nuclear Power Plants", Revision 2. s.l.: Nuclear Regulatory Commission, 2009. ADAMS Accession No. ML091310141. - 11. Regulatory Guide 4.13, Performance, Testing, and Procedural Specifications for Thermoluminescence Dosimetry: Environmental Applications, Revision 2. s.l.: Nuclear Regulatory Commission, June, 2019. ML19044A595. Annual Radiological Environmental Operating Report YEAR: 2023 L-24-096 Page 25 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant # Attachment 1: Inter-Laboratory Cross Check Comparison Program Results #### APPENDIX A INTERLABORATORY AND INTRALABORATORY COMPARISON PROGRAM RESULTS NOTE: Appendix A is updated four times a year. The complete appendix is included in March, June, September and December monthly progress reports only. October, 2022 through September, 2023 **Annual Radiological Environmental Operating Report** YEAR: 2023 L-24-096 Page 26 of 81 Company: Energy Harbor **Plant: Perry Nuclear Power Plant** #### Appendix A #### Interlaboratory/ Intralaboratory Comparison Program Results Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of its quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems. Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used. Results in
Table A-1 were obtained through participation in the RAD PT Study Proficiency Testing Program administered by Environmental Resource Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada. Table A-2 lists results for thermoluminescent dosimeters (TLDs), via irradiation and evaluation by the University of Wisconsin-Madison Radiation Calibration Laboratory at the University of Wisconsin Medical Radiation Research Center. Table A-3 lists results of the analyses on intralaboratory "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request. Table A-4 lists results of the analyses on intralaboratory "blank" samples for the past twelve months. Data for previous years available upon request. Table A-5 lists analytical results from the intralaboratory "duplicate" program for the past twelve months. Acceptance is based on each result being within 25% of the mean of the two results or the two sigma uncertainties of each result overlap. The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program. Results in Table A-7 were obtained through participation in the MRAD PT Study Proficiency Testing Program administered by Environmental Resource Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML). Attachment A lists the laboratory acceptance criteria for various analyses. Out-of-limit results are explained directly below the result. | I Annual Padiological Environmental Cherating Penert I | | YEAR: 2023
L-24-096 | Page 27 of 81 | | |--|----------------------------------|------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | | | Attachment A ACCEPTANCE CRITERIA FOR INTRALABORATORY "SPIKED" SAMPLES | Analysis | Ratio of lab result to known value. | |---|-------------------------------------| | Gamma Emitters | 0.8 to 1.2 | | Strontium-89,
Strontium-90 | 0.8 to 1.2 | | Potassium-40 | 0.8 to 1.2 | | Gross alpha | 0.5 to 1.5 | | Gross beta | 0.8 to 1.2 | | Tritium | 0.8 to 1.2 | | Radium-226,
Radium-228 | 0.7 to 1.3 | | Plutonium | 0.8 to 1.2 | | Iodine-129,
Iodine-131 | 0.8 to 1.2 | | Nickel-63,
Technetium-99,
Uranium-238 | 0.7 to 1.3 | | Iron-55 | 0.8 to 1.2 | | Other Analyses | 0.8 to 1.2 | | Annual Radiological Environmental O | Operating | Report | |--|-----------|--------| |--|-----------|--------| Page 28 of 81 **Company: Energy Harbor** TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)^a. RAD study | | | | 1010 0100 | , | | | |-----------------------|-----------|-----------|-----------------|--------|-----------------|-------------------| | Concentration (pCi/L) | | | | | | | | Lab Code | Date | Analysis | Laboratory | ERA | Acceptance | | | | | | Result | Value | Limits | Acceptance | | RAD-132 Stud | у | | | | | | | ERDW-162 | 2/23/2023 | Ba-133 | 33.0 ± 3.5 | 30.5 | 24.2 - 34.6 | Pass | | ERDW-162 | 2/23/2023 | Cs-134 | 30.7 ± 3.0 | 28.2 | 21.9 - 31.1 | Pass | | ERDW-162 | 2/23/2023 | Cs-137 | 191 ± 7 | 190 | 171 - 211 | Pass | | ERDW-162 | 2/23/2023 | Co-60 | 110 ± 4 | 110 | 99.0 - 123 | Pass | | ERDW-162 | 2/23/2023 | Zn-65 | 109 ± 8 | 105 | 94.5 - 125 | Pass | | ERDW-162 | 2/23/2023 | Gr. Alpha | 25.3 ± 0.2 | 30.0 | 15.3 - 39.2 | Pass | | ERDW-162 | 2/23/2023 | G. Beta | 15.0 ± 0.1 | 16.5 | 9.25 - 24.8 | Pass | | ERDW-162 | 2/23/2023 | Ra-226 | 7.58 ± 0.52 | 8.26 | 6.21 - 9.71 | Pass | | ERDW-162 | 2/23/2023 | Ra-228 | 7.44 ± 1.53 | 7.17 | 4.51 - 9.20 | Pass | | ERDW-162 | 2/23/2023 | H-3 | 22,600 ± 467 | 21,600 | 18,900 - 23,800 | Pass | | RAD-134 Stud | у | | | | | | | ERDW-1956 | 7/10/2023 | Ba-133 | 64.1 ± 4.7 | 66.5 | 55.4 - 73.2 | Pass | | ERDW-1956 | 7/10/2023 | Cs-134 | 97.0 ± 4.8 | 90.8 | 74.5 - 99.9 | Pass | | ERDW-1956 | 7/10/2023 | Cs-137 | 179 ± 8 | 163 | 147 - 181 | Pass | | ERDW-1956 | 7/10/2023 | Co-60 | 26.6 ± 2.9 | 20.7 | 17.5 - 25.6 | Fail ^b | | ERDW-1956 | 7/10/2023 | Zn-65 | 318 ± 12 | 290 | 261 - 339 | Pass | | ERDW-50167 | 7/10/2023 | Gr. Alpha | 34.3 ± 1.9 | 47.9 | 24.9 - 60.3 | Pass | | ERDW-50167 | 7/10/2023 | G. Beta | 27.4 ± 1.2 | 28.6 | 18.2 - 36.4 | Pass | | ERDW-50171 | 7/10/2023 | Ra-226 | 19.3 ± 0.9 | 17.4 | 12.9 - 19.9 | Pass | | ERDW-50171 | 7/10/2023 | Ra-228 | 7.11 ± 1.59 | 7.16 | 4.50 - 9.18 | Pass | | ERDW-50173 | 7/10/2023 | H-3 | 10,500 ± 326 | 9,860 | 8,570 - 10,800 | Pass | | ERDW-50169 | 7/10/2023 | I-131 | 23.9 ± 1.2 | 24.4 | 20.2 - 28.9 | Pass | | | | | | | | | ^a Results obtained by Microbac Laboratories Inc. - Northbrook as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resource Associates (ERA). The Cobalt-60 result did not meet ERA acceptance criteria. The sample was reanalyzed and passed for all analytes. (Co-60 reanalysis result was 21.2 ± 3.0 pCi/L). No cause for the earlier failure could be determined. | Annual Radiological Environmental Operating Report | |--| |--| Page 29 of 81 **Company: Energy Harbor** TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).^a | | | | | mrem | | | |--------------|------------------|-------------|-----------|-----------------------|--------------------------|--| | Lab Code | Irradiation | | Delivered | Reported ^b | Performance ^c | | | | Date | Description | Dose | Dose | Quotient (P) | | | Environmenta | al, Inc. | Group 1 | | | | | | 2022-23-1 | 2/7/2023 | Spike 1 | 134.0 | 134.5 | 0.00 | | | 2022-23-1 | 2/7/2023 | Spike 2 | 134.0 | 131.1 | -0.02 | | | 2022-23-1 | 2/7/2023 | Spike 3 | 134.0 | 134.0 | 0.00 | | | 2022-23-1 | 2/7/2023 | Spike 4 | 134.0 | 130.7 | -0.02 | | | 2022-23-1 | 2/7/2023 | Spike 5 | 134.0 | 131.5 | -0.02 | | | 2022-23-1 | 2/7/2023 | Spike 6 | 134.0 | 139.3 | 0.04 | | | 2022-23-1 | 2/7/2023 | Spike 7 | 134.0 | 134.8 | 0.01 | | | 2022-23-1 | 2/7/2023 | Spike 8 | 134.0 | 130.7 | -0.02 | | | 2022-23-1 | 2/7/2023 | Spike 9 | 134.0 | 133.1 | -0.01 | | | 2022-23-1 | 2/7/2023 | Spike 10 | 134.0 | 129.9 | -0.03 | | | 2022-23-1 | 2/7/2023 | Spike 11 | 134.0 | 125.6 | -0.06 | | | 2022-23-1 | 2/7/2023 | Spike 12 | 134.0 | 139.5 | 0.04 | | | 2022-23-1 | 2/7/2023 | Spike 13 | 134.0 | 135.2 | 0.01 | | | 2022-23-1 | 2/7/2023 | Spike 14 | 134.0 | 135.8 | 0.01 | | | 2022-23-1 | 2/7/2023 | Spike 15 | 134.0 | 133.6 | 0.00 | | | 2022-23-1 | 2/7/2023 | Spike 16 | 134.0 | 132.7 | -0.01 | | | 2022-23-1 | 2/7/2023 | Spike 17 | 134.0 | 125.1 | -0.07 | | | 2022-23-1 | 2/7/2023 | Spike 18 | 134.0 | 131.9 | -0.02 | | | 2022-23-1 | 2/7/2023 | Spike 19 | 134.0 | 125.3 | -0.06 | | | 2022-23-1 | 2/7/2023 | Spike 20 | 134.0 | 128.2 | -0.04 | | | Mean (Spike | 1-20) | | | 132.1 | -0.01 | | | Standard Dev | viation (Spike 1 | -20) | | 4.1 | 0.03 | | a TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose. b Reported dose was converted from exposure (R) to Air Kerma (cGy) using a conversion of 0.876. Conversion from air kerma to ambient dose equivalent for Cs-137 at the reference dose point H*(10)K_a = 1.20 . mrem/cGy = 1000. c Performance Quotient (P) is calculated as ((reported dose - conventionally true value) + conventionally true value) where the conventionally true value is the delivered dose. d Acceptance is achieved when neither the absolute value of the mean of the P values, nor the standard deviation of the P values exceed 0.15. | Annual Radiological Environmental Operating Report | |---| |---| Page 30 of 81 **Company: Energy Harbor** TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO₄: Dy Cards).^a | | | | | mrem | | |--------------|------------------|-------------|-----------|-----------------------|--------------------------| | Lab Code | Irradiation | | Delivered | Reported ^b | Performance ^c | | | Date | Description | Dose | Dose | Quotient (P) | | Environmenta | al, Inc. | Group 2 | | | | | 2022-23-2 | 2/7/2023 | Spike 21 | 70.0 | 71.7 | 0.02 | | 2022-23-2 | 2/7/2023 | Spike 22 | 70.0 | 72.1 | 0.03 | | 2022-23-2 | 2/7/2023 | Spike 23 | 70.0 | 66.2 | -0.05 | | 2022-23-2 | 2/7/2023 | Spike 24 | 70.0 | 70.6 | 0.01 | | 2022-23-2 | 2/7/2023 | Spike 25 | 70.0 | 71.0 | 0.01 | | 2022-23-2 | 2/7/2023 | Spike 26 | 70.0 | 71.3 | 0.02 | | 2022-23-2 | 2/7/2023 | Spike 27 | 70.0 | 68.4 | -0.02 | | 2022-23-2 | 2/7/2023 | Spike 28 | 70.0 | 70.2 | 0.00 | | 2022-23-2 | 2/7/2023 | Spike 29 | 70.0 | 72.1 | 0.03 | | 2022-23-2 | 2/7/2023 | Spike 30 | 70.0 | 71.2 | 0.02 | | 2022-23-2 | 2/7/2023 | Spike 31 | 70.0 | 67.5 | -0.04 | | 2022-23-2 | 2/7/2023 | Spike 32 | 70.0 | 68.8 | -0.02 | | 2022-23-2 | 2/7/2023 | Spike 33 | 70.0 | 72.2 | 0.03 | | 2022-23-2 | 2/7/2023 | Spike 34 | 70.0 | 69.6 | -0.01 | | 2022-23-2 | 2/7/2023 | Spike 35 | 70.0 | 69.7 | 0.00 | | 2022-23-2 | 2/7/2023 | Spike 36 | 70.0 | 68.0 | -0.03 | | 2022-23-2 | 2/7/2023 | Spike 37 | 70.0 | 72.2 | 0.03 | | 2022-23-2 | 2/7/2023 | Spike 38 | 70.0 | 70.6 | 0.01 | | 2022-23-2 | 2/7/2023 | Spike 39 | 70.0 | 70.4 | 0.01 | | 2022-23-2 | 2/7/2023 | Spike 40 | 70.0 | 66.5 | -0.05 | | Mean (Spike | 21-40) | | | 70.0 | 0.00 | | Standard Dev | viation (Spike 2 | 1-40) | | 1.9 | 0.03 | a TLD's were irradiated by
the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose. b Reported dose was converted from exposure (R) to Air Kerma (cGy) using a conversion of 0.876. Conversion from air kerma to ambient dose equivalent for Cs-137 at the reference dose point H*(10)K_a = 1.20. mrem/cGy = 1000. c Performance Quotient (P) is calculated as ((reported dose - conventionally true value) + conventionally true value) where the conventionally true value is the delivered dose. d Acceptance is achieved when neither the absolute value of the mean of the P values, nor the standard deviation of the P values exceed 0.15. **Company: Energy Harbor** TABLE A-3. Intralaboratory "Spiked" Samples | | | | Conce | ntration ^a | | | | |--------------------------|------------|-----------|--------------------------------|-----------------------|--------------------------------|------------|--------------------| | Lab Code ^b | Date | Analysis | Laboratory results
2s, n=1° | Known
Activity | Control
Limits ^d | Acceptance | Ratio
Lab/Knowr | | SPDW-40361 | 10/12/2022 | Ra-226 | 10.0 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.81 | | SPDW-40344 | 11/3/2022 | Ra-228 | 13.2 ± 1.8 | 13.4 | 9.4 - 17.4 | Pass | 0.99 | | SPDW-40346 | 11/8/2022 | Gr. Alpha | 42.0 ± 2.2 | 60.2 | 30.1 - 90.3 | Pass | 0.70 | | SPDW-40346 | 11/8/2022 | Gr. Beta | 16.6 ± 1.0 | 17.7 | 14.2 - 21.2 | Pass | 0.94 | | SPDW-40352 | 11/17/2022 | Sr-90 | 18.8 ± 1.2 | 17.1 | 13.7 - 20.5 | Pass | 1.10 | | SPDW-40355 | 11/18/2022 | H-3 | 10.143 ± 316 | 10.400 | 8.320 - 12.480 | Pass | 0.98 | | SPDW-40364 | 11/30/2022 | Gr. Alpha | 38.4 ± 1.5 | 49.1 | 24.6 - 73.7 | Pass | 0.78 | | SPDW-40364 | 11/30/2022 | Gr. Beta | 30.9 ± 1.2 | 31.5 | 25.2 - 37.8 | Pass | 0.98 | | LCS-W-110822 | | Cs-137 | 222 ± 10 | 206 | 165 - 247 | Pass | 1.08 | | LCS-W-110822 | | Co-57 | 1,060 ± 117 | 973 | 778 - 1,168 | Pass | 1.09 | | LCS-W-110822 | | Co-60 | 250 ± 8 | 251 | 201 - 301 | Pass | 1.00 | | LCS-W-110822 | | Mn-54 | 537 ± 18 | 511 | 409 - 613 | Pass | 1.05 | | LCS-W-110822 | | Zn-65 | 673 ± 35 | 708 | 566 - 850 | Pass | 0.95 | | LCS-W-110822 | 2/1/2022 | Zn-65 | 6/3 ± 35 | 708 | 300 - 830 | Pass | 0.95 | | SPDW-40372 | 11/21/2022 | Ra-226 | 11.3 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.92 | | SPU-3883 | 12/1/2022 | H-3 | 21,694 ± 1,387 | 23,900 | 19,120 - 28,680 | Pass | 0.91 | | SPW-3950 | 12/1/2022 | Ni-63 | 1,937 ± 28 | 2,135 | 1,708 - 2,562 | Pass | 0.91 | | SPDW-40366 | 12/2/2022 | H-3 | 22,466 ± 464 | 23,900 | 19,120 - 28,680 | Pass | 0.94 | | SPW-3969 | 12/2/2022 | Ni-63 | 2,123 ± 29 | 2,135 | 1,708 - 2,562 | Pass | 0.99 | | SPW-3881 | 12/5/2022 | Tc-99 | 85.0 ± 1.6 | 108 | 75 - 140 | Pass | 0.79 | | SPDW-40374 | 12/12/2022 | H-3 | 22.554 ± 463 | 23.900 | 19.120 - 28.680 | Pass | 0.94 | | SPDW-40382 | 12/12/2022 | Ra-226 | 12.7 ± 0.4 | 12.3 | 8.6 - 16.0 | Pass | 1.03 | | SPDW-40380 | 12/22/2022 | H-3 | 22,200 ± 462 | 23,900 | 19,120 - 28,680 | Pass | 0.93 | | SPDW-26 | 1/5/2023 | Ra-228 | 11.8 ± 1.9 | 13.4 | 9.4 - 17.4 | Pass | 0.88 | | SPDW-50002 | 1/11/2023 | H-3 | 21,747 ± 452 | 22.100 | 17.680 - 26.520 | Pass | 0.98 | | SPDW-50002
SPDW-50004 | 1/20/2023 | H-3 | 21,861 ± 458 | 22,100 | 17,680 - 26,520 | Pass | 0.99 | | SPDW-50004
SPDW-50006 | 1/5/2023 | Ra-226 | 11.3 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.92 | | SPDW-50034 | 1/27/2023 | Ra-226 | 12.6 ± 0.4 | 12.3 | 8.6 - 16.0 | Pass | 1.02 | | LCS-SO-012723 | 8/1/2020 | Cs-134 | 17.1 ± 0.2 | 19.2 | 15.4 - 23.0 | Pass | 0.89 | | LCS-SO-012723 | 8/1/2020 | Zn-65 | 13.8 ± 1.7 | 14.1 | 11.3 - 16.9 | Pass | 0.98 | | LCS-SO-012723 | 8/1/2020 | Co-60 | 26.4 ± 0.2 | 27.0 | 21.6 - 32.4 | Pass | 0.98 | | LCS-SO-012723 | 8/1/2020 | Co-57 | 30.7 ± 0.1 | 30.9 | 24.7 - 37.1 | Pass | 0.99 | | LCS-SO-012723 | 8/1/2020 | Mn-54 | 17.7 ± 0.8 | 16.5 | 13.2 - 19.8 | Pass | 1.07 | | LCS-SO-012723 | 8/1/2020 | K-40 | 18.4 ± 0.7 | 16.8 | 13.4 - 20.2 | Pass | 1.10 | | SPDW-50010 | 1/31/2023 | Ra-228 | 9.7 ± 1.3 | 13.4 | 9.4 - 17.4 | Pass | 0.72 | | SPDW-50010 | 1/31/2023 | Ra-226 | 9.7 ± 1.3 | 13.4 | 9.4 - 17.4 | Pass | 0.72 | | SPDW-50008 | 2/3/2023 | H-3 | 21,961 ± 459 | 22,100 | 17,680 - 26,520 | Pass | 0.99 | | SPDW-50016 | 2/10/2023 | H-3 | 22,137 ± 462 | 22,100 | 17,680 - 26,520 | Pass | 1.00 | | SPDW-50012 | 2/24/2023 | Sr-90 | 18.6 ± 1.2 | 17.1 | 13.7 - 20.5 | Pass | 1.09 | | SPDW-50032 | 2/16/2023 | Ra-228 | 13.1 ± 1.9 | 13.4 | 9.4 - 17.4 | Pass | 0.98 | | SPDW-50018 | 2/16/2023 | Gr. Alpha | 19.1 ± 1.3 | 23.5 | 11.8 - 28.2 | Pass | 0.81 | | SPDW-50018 | 2/16/2023 | Gr. Beta | 133 ± 2 | 141 | 112 - 169 | Pass | 0.94 | | SPDW-50021 | 2/17/2023 | H-3 | 21,843 ± 459 | 22,100 | 17,680 - 26,520 | Pass | 0.99 | | SPDW-50047 | 2/24/2023 | Ra-226 | 12.8 ± 0.4 | 12.3 | 8.6 - 16.0 | Pass | 1.04 | Liquid sample results are reported in pCi/Liter, air filters (pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg). b Laboratory codes: W & SPW (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine). ^c Results are based on single determinations. ^d Acceptance criteria are listed in Attachment A of this report. | Annual Radiological | Environmental | Operating | Report | |----------------------------|---------------|-----------|---------| | Allitual Naululugival | | Operating | INCHOIL | Page 32 of 81 **Company: Energy Harbor** TABLE A-3. Intralaboratory "Spiked" Samples | | Concentration* | | | | | | | |-----------------------|----------------|-----------|--------------------------------|-------------------|--------------------------------|------------|--------------------| | Lab Code ^b | Date | Analysis | Laboratory results
2s, n=1° | Known
Activity | Control
Limits ^d | Acceptance | Ratio
Lab/Known | | SPDW-50049 | 3/17/2023 | H-3 | 22,120 ± 465 | 22.100 | 17,680 - 26,520 | Pass | 1.00 | | SPDW-50056 | 3/24/2023 | H-3 | 21.911 ± 463 | 22,100 | 17.680 - 26.520 | Pass | 0.99 | | SPDW-50060 | 3/16/2023 | Ra-226 | 12.9 ± 0.4 | 12.3 | 8.6 - 16.0 | Pass | 1.05 | | SPDW-50097 | 4/13/2023 | Ra-226 | 11.7 ± 0.5 | 12.3 | 8.6 - 16.0 | Pass | 0.95 | | SPDW-50068 | 4/14/2023 | H-3 | 22,656 ± 482 | 22,100 | 17,680 - 26,520 | Pass | 1.03 | | SPDW-50081 | 4/25/2023 | H-3 | 21,594 ± 461 | 22,100 | 17,680 - 26,520 | Pass | 0.98 | | SPDW-50131 | 5/3/2023 | Ra-226 | 11.4 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.93 | | SPDW-50104 | 5/12/2023 | H-3 | 21,513 462 | 22,100 | 17,680 - 26,520 | Pass | 0.97 | | SPDW-50117 | 5/26/2023 | H-3 | 22,069 468 | 22,100 | 17,680 - 26,520 | Pass | 1.00 | | SPDW-50182 | 6/8/2023 | Ra-226 | 10.4 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.85 | | SPDW-50137 | 6/12/2023 | H-3 | 21,898 ± 456 | 22,100 | 17,680 - 26,520 | Pass | 0.99 | | SPDW-50138 | 6/12/2023 | H-3 | 21,898 ± 456 | 22,100 | 17,680 - 26,520 | Pass | 0.99 | | SPDW-50153 | 6/26/2023 | H-3 | 21,672 ± 456 | 22,100 | 17,680 - 26,520 | Pass | 0.98 | | SPDW-50153 | 6/26/2023 | H-3 | 21,672 ± 456 | 22,100 | 17,680 - 26,520 | Pass | 0.98 | | SPDW-50259 | 7/19/2023 | Ra-226 | 10.5 ± 0.3 | 12.3 | 8.6 - 16.0 | Pass | 0.85 | | SPDW-50219 | 8/15/2023 | Sr-90 | 17.5 ± 1.1 | 17.1 | 13.7 - 20.5 | Pass | 1.02 | | SPDW-50291 | 8/28/2023 | Ra-226 | 11 ± 0 | 12.3 | 8.6 - 16.0 | Pass | 0.89 | | SPDW-50249 | 8/22/2023 | Gr. Alpha | 16.7 ± 1.4 | 23.5 | 11.8 - 28.2 | Pass | 0.71 | | SPDW-50249 | 8/22/2023 | Gr. Beta | 128 ± 2 | 141 | 112 - 169 | Pass | 0.91 | | SPDW-50252 | 8/18/2023 | H-3 | 21,628 ± 459 | 22,100 | 17,680 - 26,520 | Pass | 0.98 | | SPDW-50257 | 8/25/2023 | H-3 | 22,152 ± 469 | 22,100 | 17,680 - 26,520 | Pass | 1.00 | | LCS-09/12/23 | 8/1/2020 | Cs-134 | 17,533 ± 346 | 19,170 | 15,336 - 23,004 | Pass | 0.91 | | LCS-09/12/23 | 8/1/2020 | Co-60 | 27,480 ± 347 | 26,055 | 20,844 - 31,266 | Pass | 1.05 | | LCS-09/12/23 | 8/1/2020 | K-40 | 20,183 1268 | 18,468 | 14,774 - 22,162 | Pass | 1.09 | | SPDW-50270 | 9/6/2023 | H-3 | 22,287 ± 469 | 22,100 | 17,680 - 26,520 | Pass | 1.01 | | SPDW-50283 | 9/25/2023 | H-3 | 21,062 ± 444 | 22,100 | 17,680 - 26,520 | Pass | 0.95 | a Liquid sample results are reported in pCi/Liter, air filters (pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg). b Laboratory codes: W & SPW (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine). ^c Results are based on single determinations. ^d Acceptance criteria are listed in Attachment A of this report. **Company: Energy Harbor** TABLE A-4. Intralaboratory "Blank" Samples | Lab Code ^b | | • | Analysis ^c | Concentration ^a | | | | |-----------------------|--------|------------|-----------------------|----------------------------|-----------------------|-------------------|--| | | Sample | | | Laboratory results (4.66σ) | | Acceptance | | | | Type | | | LLD | Activity ^d | Criteria (4.66 σ) | | | SPDW-40345 | Water | 11/8/2022 | Gr. Alpha | 0.53 | -0.17 ± 0.36 | 2 | | | SPDW-40345 | Water | 11/8/2022 | Gr. Beta | 0.78 | -0.05 ± 0.54 | 4 | | | SPDW-40350 | Water | 11/11/2022 | H-3 | 166 | 96 ± 84 | 200 | | | SPDW-40352 | Water | 11/17/2022 | Sr-89 | 0.66 | -0.01 ± 0.53 | 5 | | | SPDW-40352 | Water | 11/17/2022 | Sr-90 | 0.61 | 0.11 ± 0.29 | 1 | | | SPDW-40354 | Water | 11/18/2022 | H-3 | 155 | 21 ± 76 | 200 | | | SPDW-40354 | Water | 11/18/2022 | I-131 | 0.18 | -0.11 ± 0.09 | 1 | | | SPW-3880 | Water | 12/1/2022 | Tc-99 | 5.58 | 2.99 ± 3.44 | 200 | | | SPU-3882 | Urine | 12/1/2022 | H-3 | 1157 | 599 ± 642 | 2000 | | | SPW-3949 | Water | 12/2/2022 | Ni-63 | 16.3 | 9.0 ± 10.0 | 200 | | | SPW-3968 | Water | 12/2/2022 | Ni-63 | 15.9 | 0.0 ± 9.6 | 200 | | | SPDW-40370 | Water | 12/7/2022 | I-131 | 0.10 | -0.04 ± 0.06 | 1 | | | SPDW-40381 | Water | 12/12/2022 | Ra-226 | 0.06 | -0.04 ± 0.05 | 2 | | | SPDW-40379 | Water | 12/22/2022 | H-3 |
162 | 107 ± 84 | 200 | | | SPW-25 | Water | 1/5/2023 | Ra-228 | 0.98 | 0.74 ± 0.54 | 2 | | | SPDW-50000 | Water | 1/6/2023 | I-131 | 0.36 | -0.10 ± 0.16 | 1 | | | SPDW-50001 | Water | 1/11/2023 | H-3 | 157 | 13 ± 74 | 200 | | | SPDW-50003 | Water | 1/20/2023 | H-3 | 161 | 98 ± 85 | 200 | | | SPDW-50005 | Water | 1/5/2023 | Ra-226 | 0.02 | 0.00 ± 0.03 | 2 | | | SPDW-50033 | Water | 1/27/2023 | Ra-226 | 0.03 | -0.01 ± 0.03 | 2 | | | SPDW-50009 | Water | 1/31/2023 | Ra-228 | 1.40 | 0.69 ± 0.75 | 2 | | | SPDW-50007 | Water | 2/3/2023 | H-3 | 160 | 17 ± 80 | 200 | | | SPDW-50015 | Water | 2/10/2023 | H-3 | 159 | 91 ± 84 | 200 | | | SPDW-50011 | Water | 2/9/2023 | Sr-89 | 0.62 | 0.24 ± 0.49 | 5 | | | SPDW-50011 | Water | 2/9/2023 | Sr-90 | 0.66 | -0.02 ± 0.30 | 1 | | | SPDW-50018 | Water | 2/16/2023 | Gr. Alpha | 0.62 | 0.01 ± 0.44 | 2 | | | SPDW-50018 | Water | 2/16/2023 | Gr. Beta | 0.78 | -0.10 ± 0.54 | 4 | | | SPDW-50020 | Water | 2/17/2023 | H-3 | 154 | 122 ± 80 | 200 | | | SPDW-50031 | Water | 2/16/2023 | Ra-228 | 0.82 | 0.42 ± 0.43 | 2 | | | SPDW-50046 | Water | 2/24/2023 | Ra-226 | 0.03 | 0.05 ± 0.04 | 2 | | | SPDW-50044 | Water | 3/13/2023 | I-131 | 0.15 | -0.06 ± 0.08 | 1 | | | SPDW-50048 | Water | 3/17/2023 | H-3 | 163 | 80 ± 80 | 200 | | | SPDW-50055 | Water | 3/24/2023 | H-3 | 169 | 63 ± 82 | 200 | | | SPDW-50059 | Water | 3/16/2023 | Ra-226 | 0.04 | -0.02 ± 0.03 | 2 | | | SPDW-50063 | Water | 3/28/2023 | Ra-226 | 0.06 | -0.01 ± 0.05 | 2 | | | SPDW-50067 | Water | 4/14/2023 | H-3 | 173 | 92 ± 87 | 200 | | | SPDW-50069 | Water | 4/17/2023 | I-131 | 0.11 | -0.05 ± 0.08 | 1 | | | SPDW-50102 | Water | 5/15/2023 | I-131 | 0.15 | -0.01 ± 0.08 | 1 | | | SPDW-50103 | Water | 5/12/2023 | H-3 | 161 | 67 ± 80 | 200 | | | SPDW-50116 | Water | 5/26/2023 | H-3 | 161 | 122 ± 87 | 200 | | Liquid sample results are reported in pCi/Liter, air filters (pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/g). b Laboratory codes: W & SPW (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine). ^c I-131(G); iodine-131 as analyzed by gamma spectroscopy. ^d Activity reported is a net activity result. | Annual Radiological Environmental Operation | g Report | |--|----------| |--|----------| Page 34 of 81 **Company: Energy Harbor** TABLE A-4. Intralaboratory "Blank" Samples | Lab Code ^b | Sample | Date | Analysis ^c | Concentration ^a | | | | |-----------------------|--------|-----------|-----------------------|----------------------------|-----------------------|-------------------|--| | | | | | Laboratory results (4.66σ) | | Acceptance | | | | Туре | | | LLD | Activity ^d | Criteria (4.66 o) | | | SPDW-50137 | Water | 6/12/2023 | H-3 | 157 | 125 ± 80 | 200 | | | SPDW-50154 | Water | 6/26/2023 | H-3 | 157 | 105 ± 80 | 200 | | | SPDW-50181 | Water | 6/8/2023 | Ra-226 | 0.04 | -0.07 ± 0.03 | 2 | | | SPDW-50218 | Water | 8/15/2023 | Sr-89 | 0.66 | -0.07 ± 0.48 | 5 | | | SPDW-50218 | Water | 8/15/2023 | Sr-90 | 0.55 | 0.02 ± 0.26 | 1 | | | SPDW-50248 | Water | 8/22/2024 | Gr. Alpha | 0.57 | -0.03 ± 0.40 | 2 | | | SPDW-50248 | Water | 8/22/2024 | Gr. Beta | 0.70 | 0.28 ± 0.50 | 4 | | | SPDW-50256 | Water | 8/25/2023 | H-3 | 161 | 75 ± 84 | 200 | | | SPDW-50258 | Water | 7/19/2023 | Ra-226 | 0.06 | -0.25 ± 0.04 | 2 | | | SPDW-50270 | Water | 9/6/2023 | H-3 | 160 | 90 ± 81 | 200 | | | SPDW-50282 | Water | 9/25/2023 | H-3 | 163 | 53 ± 79 | 200 | | | SPDW-50290 | Water | 8/28/2023 | Ra-226 | 0.05 | 0.00 ± 0.04 | 2 | | Liquid sample results are reported in pCi/Liter, air filters (pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g). b Laboratory codes: W & SPW (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine). ^c I-131(G); iodine-131 as analyzed by gamma spectroscopy. d Activity reported is a net activity result. | Annual Radiological Environmental Operating Report | |--| |--| Page 35 of 81 **Company: Energy Harbor** Plant: Perry Nuclear Power Plant TABLE A-5. Intralaboratory "Duplicate" Samples | | | | | Concentration ^a | | | |-----------------------|------------|-----------|-------------------|----------------------------|-------------------|--------------| | | | | | | Averaged | | | Lab Code ^b | Date | Analysis | First Result | Second Result | Result | Acceptance | | AP-100321A/B | 10/3/2022 | Gr. Beta | 0.015 ± 0.003 | 0.011 ± 0.003 | 0.013 ± 0.002 | Pass | | SO-3140,3141 | 10/3/2022 | Be-7 | 0.353 ± 0.180 | 0.304 ± 0.163 | 0.328 ± 0.121 | Pass | | SO-3140,3141 | 10/3/2022 | K-40 | 11.2 ± 0.6 | 11.0 ± 0.6 | 11.1 ± 0.4 | Pass | | SO-3140,3141 | 10/3/2022 | Cs-137 | 0.055 ± 0.016 | 0.069 ± 0.020 | 0.062 ± 0.013 | Pass | | SO-3140,3141 | 10/3/2022 | TI-208 | 0.132 ± 0.022 | 0.114 ± 0.024 | 0.123 ± 0.016 | Pass | | SO-3140,3141 | 10/3/2022 | Bi-214 | 0.315 ± 0.041 | 0.390 ± 0.041 | 0.353 ± 0.029 | Pass | | SO-3140,3141 | 10/3/2022 | Pb-212 | 0.344 ± 0.029 | 0.357 ± 0.029 | 0.351 ± 0.020 | Pass | | SO-3140,3141 | 10/3/2022 | Pb-214 | 0.362 ± 0.043 | 0.446 ± 0.047 | 0.404 ± 0.032 | Pass | | SO-3140,3141 | 10/3/2022 | Ra-226 | 0.602 ± 0.250 | 0.768 ± 0.248 | 0.685 ± 0.176 | Pass | | SO-3140,3141 | 10/3/2022 | Ac-228 | 0.442 ± 0.101 | 0.405 ± 0.083 | 0.423 ± 0.066 | Pass | | SO-3140,3141 | 10/3/2022 | Gr. Alpha | 4.07 ± 1.77 | 4.43 ± 2.17 | 4.25 ± 1.40 | Pass | | SO-3140,3141 | 10/3/2022 | Gr. Beta | 15.6 ± 1.6 | 17.0 ± 1.5 | 16.3 ± 1.1 | Pass | | AP-101021A/B | 10/10/2022 | Gr. Beta | 0.037 ± 0.005 | 0.040 ± 0.005 | 0.039 ± 0.004 | Pass | | S-3501,3502 | 10/18/2022 | K-40 | 16.3 ± 1.2 | 16.3 ± 1.3 | 16.3 ± 0.9 | Pass | | AP-101821A/B | 10/18/2022 | Gr. Beta | 0.026 ± 0.003 | 0.027 ± 0.003 | 0.026 ± 0.002 | Pass | | DW-40328.40329 | 10/25/2022 | Ra-226 | 2.13 ± 0.18 | 2.17 ± 0.28 | 2.15 ± 0.17 | Pass | | AP-102621A/B | 10/26/2022 | Gr. Beta | 0.051 ± 0.005 | 0.047 ± 0.005 | 0.049 ± 0.003 | Pass | | | | | | | | | | SG-3557,3558 | 11/1/2022 | Gr. Alpha | 24.5 ± 4.0 | 25.0 ± 4.0 | 24.8 ± 2.8 | Pass | | SG-3557,3558 | 11/1/2022 | Gr. Beta | 26.7 ± 2.2 | 29.3 ± 2.3 | 28.0 ± 1.6 | Pass | | SG-3557,3558 | 11/1/2022 | Pb-214 | 9.23 ± 0.15 | 9.23 ± 0.32 | 9.23 ± 0.18 | Pass | | SG-3557,3558 | 11/1/2022 | Ac-228 | 7.35 ± 0.31 | 8.26 ± 0.63 | 7.81 ± 0.35 | Pass | | AP-110221A/B | 11/2/2022 | Gr. Beta | 0.020 ± 0.003 | 0.020 ± 0.003 | 0.020 ± 0.002 | Pass | | | | | | | | | | DW-40341,40342 | 11/7/2022 | Ra-226 | 1.18 ± 0.15 | 0.89 ± 0.14 | 1.04 ± 0.10 | Pass | | DW-40341,40342 | 11/7/2022 | Ra-228 | 1.98 ± 0.95 | 3.32 ± 1.12 | 2.65 ± 0.73 | Pass | | AP-110921A/B | 11/9/2022 | Gr. Beta | 0.025 ± 0.003 | 0.025 ± 0.003 | 0.025 ± 0.002 | Pass | | AP-111621A/B | 11/16/2022 | Gr. Beta | 0.013 ± 0.002 | 0.015 ± 0.002 | 0.014 ± 0.002 | Pass | | AP-112321A/B | 11/23/2022 | Gr. Beta | 0.034 ± 0.004 | 0.031 ± 0.004 | 0.032 ± 0.003 | Pass | | AP-113021A/B | 11/30/2022 | Gr. Beta | 0.056 ± 0.005 | 0.058 ± 0.005 | 0.057 ± 0.003 | Pass | | | | | | | | Pass | | SG-4016,4017 | 12/5/2022 | Gr. Alpha | 24.5 ± 4.0 | 25.0 ± 4.0 | 24.7 ± 2.9 | Pass | | SG-4016,4017 | 12/5/2022 | Gr. Beta | 26.7 ± 2.2 | 29.3 ± 2.3 | 28.0 ± 1.6 | | | SG-4016,4017 | 12/5/2022 | Pb-214 | 8.64 ± 0.30 | 9.28 ± 0.30 | 8.96 ± 0.21 | Pass
Pass | | SG-4016,4017 | 12/5/2022 | Ac-228 | 10.8 ± 0.8 | 10.0 ± 0.8 | 10.4 ± 0.6 | | | AP-120721A/B | 12/7/2022 | Gr. Beta | 0.034 ± 0.003 | 0.030 ± 0.003 | 0.032 ± 0.002 | Pass | | DW-40375,40376 | 12/14/2022 | Ra-228 | 5.05 ± 0.96 | 7.15 ± 1.09 | 6.10 ± 0.73 | Pass | | DW-40375,40376 | 12/14/2022 | Ra-226 | 3.33 ± 0.27 | 4.28 ± 0.29 | 3.81 ± 0.20 | Pass | | AP-121621A/B | 12/16/2022 | Gr. Beta | 0.039 ± 0.004 | 0.033 ± 0.004 | 0.036 ± 0.003 | Pass | | AP-122721A/B | 12/27/2022 | Gr. Beta | 0.018 ± 0.002 | 0.016 ± 0.002 | 0.017 ± 0.001 | Pass | | W-21,22 | 12/27/2022 | Ra-226 | 0.99 ± 0.29 | 1.52 ± 0.34 | 1.26 ± 0.22 | Pass | | AP-122821A/B | 12/28/2022 | Gr. Beta | 0.042 ± 0.003 | 0.039 ± 0.003 | 0.041 ± 0.002 | Pass | | Annual Radiological Environmental Operating Repo | ort | |--|-----| |--|-----| Page 36 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** TABLE A-5. Intralaboratory "Duplicate" Samples | | | | | Concentration ^a | | | |-----------------------|-----------|-----------|-----------------|----------------------------|-----------------|------------| | | | | | | Averaged | | | Lab Code ^b | Date | Analysis | First Result | Second Result | Result | Acceptance | | | | | | | | _ | | WW-65,66 | 1/10/2023 | Gr. Beta | 15.4 ± 2.0 | 17.2 ± 2.1 | 16.3 ± 1.5 | Pass | | WW-107,108 | 1/18/2023 | H-3 | 153 ± 88 | 132 ± 87 | 143 ± 62 | Pass | | SG-187,188 | 1/30/2023 | Gr. Alpha | 28.1 ± 3.9 | 22.0 ± 3.5 | 25.1 ± 2.6 | Pass | | SG-187,188 | 1/30/2023 | Gr. Beta | 22.3 ± 1.8 | 22.2 ± 1.8 | 22.3 ± 1.3 | Pass | | SG-187,188 | 1/30/2023 | Pb-214 | 4.08 ± 0.16 | 3.38 ± 0.09 | 3.73 ± 0.09 | Pass | | SG-187,188 | 1/30/2023 | Ac-228 | 3.88 ± 0.28 | 3.98 ± 0.14 | 3.93 ± 0.16 | Pass | | SWU-201,202 | 1/31/2023 | H-3 | 171 ± 89 | 234 ± 92 | 203 ± 64 | Pass | | SW-243,244 | 2/7/2023 | H-3 | 358 ± 98 | 262 ± 93 | 310 ± 68 | Pass | | PW-266,267 | 2/6/2023 | Ra-226 | 0.61 ± 0.18 | 0.37 ± 0.20 | 0.49 ± 0.13 | Pass | | DW-50028.50029 | 2/27/2023 | Ra-226 | 0.68 ± 0.13 | 0.76 ± 0.13 | 0.72 ± 0.09 | Pass | | DW-50028.50029 | 2/27/2023 | Ra-228 | 2.26 ± 0.65 | 1.20 ± 0.65 | 1.73 ± 0.46 | Pass | | DW-50052,50053 | 2/27/2023 | Ra-228 | 0.48 ± 0.57 | 1.19 ± 0.65 | 0.84 ± 0.43 | Pass | | DW-50035,50036 | 2/28/2023 | Gr. Alpha | 3.68 ± 1.42 | 4.00 ± 1.29 | 3.84 ± 0.96 | Pass | | DW-50035,50036 | 2/28/2023 | Gr. Beta | 2.50 ± 0.64 |
1.99 ± 0.64 | 2.25 ± 0.45 | Pass | | LW-518.519 | 3/8/2023 | Gr. Beta | 1.71 ± 0.64 | 1.38 ± 0.64 | 1.55 ± 0.45 | Pass | | SG-571,572 | 3/8/2023 | Pb-214 | 7.80 ± 0.46 | 8.20 ± 0.35 | 8.00 ± 0.29 | Pass | | SG-571,572 | 3/8/2023 | Ac-228 | 11.9 ± 0.8 | 11.4 ± 0.6 | 11.7 ± 0.5 | Pass | | SG-571.572 | 3/8/2023 | Gr. Alpha | 86.5 ± 10.6 | 89.6 ± 11.0 | 88.1 ± 7.6 | Pass | | DW-50052,50053 | 3/17/2023 | Gr. Alpha | 9.16 ± 1.02 | 14.7 ± 1.2 | 11.9 ± 0.8 | Pass | | DW-50052,50053 | 3/17/2023 | Gr. Beta | 6.03 ± 0.71 | 7.58 ± 0.75 | 6.81 ± 0.52 | Pass | | CF-700.701 | 3/22/2023 | K-40 | 2.91 ± 0.32 | 3.30 ± 0.36 | 3.11 ± 0.24 | Pass | | SW-679,680 | 3/27/2023 | H-3 | 14,480 ± 389 | 14,487 ± 389 | 14,484 ± 275 | Pass | | SG-974.975 | 4/4/2023 | Gr. Alpha | 12.0 ± 2.1 | 12.1 ± 2.1 | 12.1 ± 1.5 | Pass | | DW-50074,50075 | 4/21/2023 | Ra-226 | 1.63 ± 0.22 | 1.56 ± 0.28 | 1.60 ± 0.18 | Pass | | DW-50074,50075 | 4/21/2023 | Ra-228 | 3.41 ± 0.98 | 2.14 ± 0.80 | 2.78 ± 0.63 | Pass | | U-1038.1039 | 4/20/2023 | Gr. Beta | 6.14 ± 1.71 | 6.46 ± 2.19 | 6.30 ± 1.39 | Pass | | WW-1101.1102 | 4/25/2023 | H-3 | 358 ± 96 | 334 ± 95 | 346 ± 68 | Pass | | VVVV-1101,1102 | 4/25/2025 | H-3 | 358 ± 96 | 334 ± 95 | 346 ± 68 | 1 455 | | DW-50092,50093 | 5/1/2023 | Ra-226 | 1.00 ± 0.22 | 1.46 ± 0.19 | 1.23 ± 0.15 | Pass | | DW-50092,50093 | 5/1/2023 | Ra-228 | 1.11 ± 0.73 | 1.57 ± 0.82 | 1.34 ± 0.55 | Pass | | WW-1122,1123 | 5/2/2023 | H-3 | 307 ± 93 | 229 ± 89 | 268 ± 64 | Pass | | WW-1269,1270 | 5/17/2023 | H-3 | 366 ± 100 | 214 ± 92 | 290 ± 68 | Pass | | DW-50110,50111 | 5/29/2023 | Ra-226 | 6.27 ± 0.40 | 4.77 ± 0.26 | 5.52 ± 0.24 | Pass | | DW-50110,50111 | 5/29/2023 | Ra-228 | 2.81 ± 0.97 | 3.53 ± 0.98 | 3.17 ± 0.69 | Pass | | SW-1356,1357 | 5/30/2023 | H-3 | 380 ± 94 | 257 ± 88 | 319 ± 64 | Pass | | WW-1398,1399 | 5/24/2023 | H-3 | 571 ± 103 | 613 ± 105 | 592 ± 74 | Pass | | SG-1377,1378 | 5/30/2023 | Pb-214 | 1.07 ± 0.14 | 1.19 ± 0.15 | 1.13 ± 0.10 | Pass | | SG-1377,1378 | 5/30/2023 | Ac-228 | 1.23 ± 0.28 | 1.11 ± 0.23 | 1.17 ± 0.18 | Pass | | Annual Radiological | Environmental | Operating | Poport | |----------------------------|---------------|-----------|--------| | Annual Radiological | Environmental | Operating | Report | Page 37 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** TABLE A-5. Intralaboratory "Duplicate" Samples | | | | | Concentration ^a | | | |----------------------------|-----------|-----------|-----------------|----------------------------|-----------------|------------| | | | | | | Averaged | | | Lab Code ^b | Date | Analysis | First Result | Second Result | Result | Acceptance | | DW-50124.50125 | 6/5/2023 | Ra-226 | 0.25 ± 0.08 | 0.24 ± 0.09 | 0.25 ± 0.06 | Pass | | DW-50126,50127 | 6/5/2023 | Gr. Alpha | 2.50 ± 1.17 | 3.87 ± 1.39 | 3.19 ± 0.91 | Pass | | WW-1441.1442 | 6/6/2023 | Gr. Beta | 2.55 ± 0.64 | 1.91 ± 0.67 | 2.23 ± 0.46 | Pass | | SW-1483.1484 | 6/8/2023 | H-3 | 281 ± 90 | 281 ± 90 | 281 ± 64 | Pass | | CF-1546,1547 | 6/12/2023 | K-40 | 7.77 ± 0.34 | 7.48 ± 0.48 | 7.63 ± 0.29 | Pass | | S-1567.1568 | 6/14/2023 | K-40 | 9.75 ± 0.71 | 9.80 ± 0.77 | 9.78 ± 0.52 | Pass | | WW-1630.1631 | 6/6/2023 | H-3 | 319 ± 93 | 236 ± 89 | 278 ± 64 | Pass | | F-1945.1946 | 6/26/2023 | K-40 | 3.81 ± 0.34 | 3.22 ± 0.54 | 3.52 ± 0.32 | Pass | | DW-50157.50158 | 6/26/2023 | Gr. Beta | 0.93 ± 0.59 | 1.09 ± 0.06 | 1.01 ± 0.30 | Pass | | DW-00107,00100 | 0/20/2020 | Or. Dota | 0.50 1 0.55 | 1.05 1 0.00 | 1.01 1 0.00 | | | DW-50160,50161 | 7/5/2023 | Ra-226 | 2.63 ± 0.32 | 2.77 ± 0.27 | 2.70 ± 0.21 | Pass | | DW-50160,50161 | 7/5/2023 | Ra-228 | 2.46 ± 0.78 | 2.51 ± 0.81 | 2.49 ± 0.56 | Pass | | DW-50188,50189 | 7/21/2023 | Ra-226 | 3.07 ± 0.30 | 2.63 ± 0.20 | 2.85 ± 0.18 | Pass | | DW-50188,50189 | 7/21/2023 | Ra-228 | 5.28 ± 0.92 | 5.08 ± 0.90 | 5.18 ± 0.64 | Pass | | DW-50197,50198 | 7/24/2023 | Gr. Alpha | 5.82 ± 1.50 | 5.78 ± 1.30 | 5.80 ± 0.99 | Pass | | DW-50200,50201 | 7/24/2023 | Ra-226 | 2.51 ± 0.24 | 4.07 ± 0.29 | 3.29 ± 0.19 | Pass | | DW-50200,50201 | 7/24/2023 | Ra-228 | 7.04 ± 1.13 | 6.55 ± 1.09 | 6.80 ± 0.79 | Pass | | SG-2199,2200 | 7/25/2023 | Pb-214 | 1.18 ± 0.22 | 1.03 ± 0.19 | 1.11 ± 0.15 | Pass | | SG-2199,2200 | 7/25/2023 | Ac-228 | 1.74 ± 0.32 | 1.86 ± 0.42 | 1.80 ± 0.26 | Pass | | SG-2315,2316 | 8/3/2023 | Gr. Alpha | 59.5 ± 6.7 | 48.2 ± 6.1 | 53.9 ± 4.5 | Pass | | SG-2315,2316 | 8/3/2023 | Gr. Beta | 39.8 ± 2.9 | 34.4 ± 2.6 | 37.1 ± 1.9 | Pass | | DW-50200.50201 | 8/9/2023 | Ra-228 | 1.88 ± 0.71 | 1.29 ± 0.70 | 1.59 ± 0.50 | Pass | | DW-50262.50263 | 8/24/2023 | Ra-228 | 2.62 ± 0.87 | 1.46 ± 0.52 | 2.04 ± 0.51 | Pass | | DW-50262,50263 | 8/24/2023 | Ra-228 | 2.62 ± 0.87 | 2.8 ± 0.67 | 2.71 ± 0.55 | Pass | | DW-50262.50263 | 8/24/2023 | Ra-228 | 2.62 ± 0.87 | 1.73 ± 0.67 | 2.18 ± 0.55 | Pass | | DW-50268,50269 | 8/29/2023 | Gr. Alpha | 0.87 ± 0.69 | 0.97 ± 0.81 | 0.92 ± 0.53 | Pass | | SG-2660.2661 | 9/4/2023 | Gr. Alpha | 68.5 ± 7.1 | 51.0 ± 6.3 | 59.8 ± 4.7 | Pass | | SG-2660,2661 | 9/4/2023 | Pb-214 | 13.7 ± 0.5 | 14.2 ± 0.5 | 14.0 ± 0.4 | Pass | | SG-2660,2661 | 9/4/2023 | Ac-228 | 14.4 ± 0.8 | 14.2 ± 0.5 | 14.4 ± 0.6 | Pass | | W-2776.2777 | 9/18/2023 | Gr. Alpha | 1.86 ± 1.73 | 0.99 ± 1.64 | 1.43 ± 1.19 | Pass | | W-2776,2777
W-2776,2777 | 9/18/2023 | Ra-226 | 0.43 ± 0.10 | 0.55 ± 0.27 | 0.49 ± 0.14 | Pass | | W-2776,2777 | 9/18/2023 | Ra-228 | 1.71 ± 1.07 | 3.33 ± 1.12 | 2.52 ± 0.77 | Pass | | | 9/27/2023 | Ra-226 | 0.51 ± 0.09 | 0.54 ± 0.20 | 0.53 ± 0.11 | Pass | Note: Duplicate analyses are performed on every twentieth sample received. Results are not listed for those analyses with activities that measure below the LLD. a Results are reported in units of pCi/L, except for air filters (pCi/Filter or pCi/m3), food products, vegetation, soil and sediment (pCi/g). AP (Air Particulate), AV (Aquatic Vegetation), BS (Bottom Sediment), CF (Cattle Feed), CH (Charcoal Canister), DW (Drinking Water), E (Egg), F (Fish), G (Grass), LW (Lake Water), MI (Milk), P (Precipitation), PM (Powdered Milk), S (Solid), SG (Sludge), SO (Soil), SS (Shoreline Sediment), SW (Surface Water), SWT (Surface Water Treated), SWU (Surface Water Untreated), U (Urine), VE (Vegetation), W (Water), WW (Well Water). | Annual Radiological Environmental Op | erating Report | YEAR: 2023
L-24-096 | Page 38 of 81 | |--------------------------------------|----------------|------------------------|---------------| | Company: Energy Harbor | ıclear Power P | lant | | TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP). | Reference Lab Code b Date MADW-2613 8/1/2022 MADW-2613 8/1/2022 MASO-2737 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAAP-2737 8/1/2022 MAVE-2740 | | | Concentration ⁶ | • | | |--|-------------|-------------------|----------------------------|-----------------------|------------| | MADW-2613 8/1/2022 MASO-2737 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAVE-2740 | | | Known | Acceptance | | | MADW-2613 8/1/2022 MASO-2737 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Analysis | Laboratory result | Activity | Range ^c | Acceptance | | MASO-2737 8/1/2022 MADW-2733 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Gross Alpha | 1.39 ± 0.10 | 0.90 | 0.27 - 1.53 | Pass | | MASO-2737 8/1/2022 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Gross Beta | 1.69 ± 0.04 | 1.31 | 0.66 - 1.97 | Pass | | MASO-2737 8/1/2022 MADW-2733 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | 0 101 | | | 400 045 | | | MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Cs-134 | 523 ± 5 | 627 | 439 - 815
NA ° | Pass | | MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MADW-2733 MAP-2735 8/1/2022 MAAP-2735 MAVE-2740 | Cs-137 | 1.18 ± 2.21 | 0 | | Pass | | MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MADW-2733 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Co-57 | 715 ± 6 | 786 | 550 - 1022
NA ° | Pass | | MASO-2737 8/1/2022 MASO-2737 8/1/2022 MASO-2737 8/1/2022 MADW-2733 MAAP-2735 MAAP-2736 8/1/2022 MAVE-2740 | Co-60
 -0.04 ± 1.07 | 0 | | Pass | | MASO-2737 8/1/2022 MADW-2733 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | Mn-54 | 903 ± 11 | 841 | 589 - 1093 | Pass | | MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2736 8/1/2022
MAVE-2740 8/1/2022 | Zn-65 | 1227 ± 19 | 1140 | 798 - 1482 | Pass | | MADW-2733 8/1/2022 MADW-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2736 8/1/2022 MAVE-2740 | K-40 | 595 ± 37 | 537 | 376 - 698 | Pass | | MADW-2733 8/1/2022 MADW-2733 8/1/2022 MADW-2733 8/1/2022 MADW-2733 8/1/2022 MADW-2733 8/1/2022 MADW-2733 8/1/2022 MAAP-2735 MAVE-2740 | Cs-134 | 13.6 ± 0.3 | 17.1 | 12.0 - 22.2 | Pass | | MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Cs-137 | 16.0 ± 0.4 | 16.8 | 11.8 - 21.8 | Pass | | MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MADW-2733 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022 | Co-57 | 27.5 ± 0.4 | 30.0 | 21.0 - 39.0 | Pass | | MADW-2733 8/1/2022 MADW-2733 8/1/2022 MADW-2733 8/1/2022 MAAP-2735 MAVE-2740 | Co-60 | 14.4 ± 0.3 | 17.0 | 11.9 - 22.1 | Pass | | MADW-2733 8/1/2022
MADW-2733 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Mn-54 | -0.03 ± 0.10 | 0 | NA ° | Pass | | MADW-2733 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAAP-2735 8/1/2022 MAVE-2740 | Zn-65 | 11.5 ± 0.6 | 11.3 | 7.9 - 14.7 | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | K-40 | 3.88 ± 1.51 | 0 | NA ° | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Sr-90 | 6.79 ± 0.32 | 7.73 | 5.41 - 10.05 | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Cs-134 | -0.001 ± 0.029 | 0 | NA ° | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Cs-137 | 1.76 ± 0.11 | 1.53 | 1.07 - 1.99 | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Co-57 | 3.50 ± 0.07 | 3.32 | 2.32 - 4.32 | Pass | | MAAP-2735 8/1/2022
MAAP-2735 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022 | Co-60 | 2.11 ± 0.08 | 1.99 | 1.39 - 2.59 | Pass | | MAAP-2735 8/1/2022 MAVE-2740 | Mn-54 | 2.18 ± 0.13 | 1.88 | 1.32 - 2.44 | Pass | | MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | Zn-65 | 1.83 ± 0.22 | 1.58 | 1.11 - 2.05 | Pass | | MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | 0-404 | 0.04 . 0.00 | • | NA ° | | | MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | Cs-134 | 0.01 ± 0.06 | 0 | | Pass | | MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | Cs-137 | 1.15 ± 0.12 | 1.083 | 0.758 - 1.408
NA ° | Pass | | MAVE-2740 8/1/2022
MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | Co-57 | -0.003 ± 0.035 | 0 | | Pass | | MAVE-2740 8/1/2022
MAAP-544 2/1/2023 | Co-60 | 4.71 ± 0.14 | 4.62 | 3.23 - 6.01 | Pass | | MAAP-544 2/1/2023 | Mn-54 | 2.67 ± 0.19 | 2.43 | 1.70 - 3.16 | Pass | | | Zn-65 | 7.73 ± 0.39 | 7.49 | 5.24 - 9.74 | Pass | | MAAP-544 2/1/2023 | Gross Alpha | 1.23 ± 0.10 | 0.97 | 0.29 - 1.65 | Pass | | | Gross Beta | 1.67 ± 0.06 | 1.49 | 0.75 - 2.24 | Pass | | MADW-543 2/1/2023 | Gross Alpha | 0.843 ± 0.074 | 1.19 | 0.36 - 2.02 | Pass | | MADW-543 2/1/2023 | Gross Beta | 0.578 ± 0.093 | 5.94 | 2.97 - 8.91 | Fail d | | Annual Radiological Environmental | Operating Report | |-----------------------------------|------------------| |-----------------------------------|------------------| Page 39 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP). | | | | (| Concentration ⁶ | 1 | | |------------|-----------|----------|-------------------|----------------------------|--------------------|------------| | | Reference | | | Known | Acceptance | | | Lab Code b | Date | Analysis | Laboratory result | Activity | Range ^c | Acceptance | | | | | | | | | | MASO-540 | 2/1/2023 | Cs-134 | 2.33 ± 2.77 | 0 | NA ° | Pass | | MASO-540 | 2/1/2023 | Cs-137 | 1.22 ± 2.41 | 0 | NA ° | Pass | | MASO-540 | 2/1/2023 | Co-57 | 585 ± 4 | 698 | 489 - 907 | Pass | | MASO-540 | 2/1/2023 | Co-60 | 727 ± 8 | 795 | 557 - 1034 | Pass | | MASO-540 | 2/1/2023 | Mn-54 | 1180 ± 10 | 1230 | 861 - 1599 | Pass | | MASO-540 | 2/1/2023 | Zn-65 | 846 ± 11 | 990 | 693 - 1287 | Pass | | MASO-540 | 2/1/2023 | K-40 | 526 ± 23 | 574 | 402 - 746 | Pass | | MADW-545 | 2/1/2023 | Cs-134 | 9.17 ± 0.17 | 9.6 | 6.7 - 12.5 | Pass | | MADW-545 | 2/1/2023 | Cs-137 | 9.38 ± 0.29 | 8.7 | 6.1 - 11.3 | Pass | | MADW-545 | 2/1/2023 | Co-57 | -0.01 ± 0.08 | 0.0 | NA ° | Pass | | MADW-545 | 2/1/2023 | Co-60 | 7.47 ± 0.18 | 7.24 | 5.07 - 9.41 | Pass | | MADW-545 | 2/1/2023 | Mn-54 | 12.3 ± 0.3 | 11.3 | 7.9 - 14.7 | Pass | | MADW-545 | 2/1/2023 | Zn-65 | 15.7 ± 0.5 | 15.3 | 10.7 - 19.9 | Pass | | MADW-545 | 2/1/2023 | K-40 | 1.23 ± 1.52 | 0 | NA ° | Pass | | MADW-545 | 2/1/2023 | Sr-90 | -0.0035 ± 0.0172 | 0 | NA ° | Pass | | MAAP-538 | 2/1/2023 | Cs-134 | 1.12 ± 0.04 | 1.52 | 1.06 - 1.98 | Pass | | MAAP-538 | 2/1/2023 | Cs-137 | 0.56 ± 0.07 | 0.630 | 0.441 - 0.819 | Pass | | MAAP-538 | 2/1/2023 | Co-57 | 0.62 ± 0.30 | 0.661 | 0.463 - 0.859 | Pass | | MAAP-538 | 2/1/2023 | Co-60 | 0.89 ± 0.07 | 1.05 | 0.74 - 1.37 | Pass | | MAAP-538 | 2/1/2023 | Mn-54 | 2.02 ± 0.09 | 2.14 | 1.50 - 2.78 | Pass | | MAAP-538 | 2/1/2023 | Zn-65 | 2.13 ± 0.14 | 2.25 | 1.58 - 2.93 | Pass | | MAAP-538 | 2/1/2023 | Sr-90 | 0.004 ± 0.061 | 0 | NA ° | Pass | | MAVE-545 | 2/1/2023 | Cs-134 | 7.45 ± 0.39 | 7.60 | 5.32 - 9.88 | Pass | | MAVE-545 | 2/1/2023 | Cs-137 | 0.010 ± 0.084 | 0 | NA ° | Pass | | MAVE-545 | 2/1/2023 | Co-57 | 6.83 ± 0.17 | 6.93 | 4.85 - 9.01 | Pass | | MAVE-545 | 2/1/2023 | Co-60 | 6.89 ± 0.17 | 6.51 | 4.56 - 8.46 | Pass | | MAVE-545 | 2/1/2023 | Mn-54 | 9.08 ± 0.28 | 8.03 | 5.62 - 10.44 | Pass | | MAVE-545 | 2/1/2023 | Zn-65 | 7.83 ± 0.39 | 7.43 | 5.20 - 9.66 | Pass | | | | | | | | | ^{*} Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation). b Laboratory codes as follows: MAW (water), MADW (water), MAAP (air filter), MASO (soil) and MAVE (vegetation). MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide an acceptance range. d A decimal point was misplaced in a unit conversion. If the conversion was was done properly the result: 5.78 ± 0.93 Bq/L would have been within MAPEP's acceptance range. | Annual Radiological Environmental Operating Re | eport | |--|-------| |--|-------| Page 40 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** TABLE A-7. Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)^a. | | MRAD-38 Study | | | | | | | | | |-----------------------|---------------|-------------|----------------------|---------------------------|-----------------------------------|------------|--|--|--| | | | | | | | | | | | | Lab Code ^b | Date | Analysis | Laboratory
Result | ERA
Value ^c | Acceptance
Limits ^d | Acceptance | | | | | ERAP-599 | 3/20/2023 | Cs-134 | 139 | 153 | 99 - 188 | Pass | | | | | ERAP-599 | 3/20/2023 | Cs-137 | 970 | 892 | 733 -
1170 | Pass | | | | | ERAP-599 | 3/20/2023 | Co-60 | 474 | 467 | 397 - 593 | Pass | | | | | ERAP-599 | 3/20/2023 | Mn-54 | < 3.3 | < 35.0 | 0.00 - 35.0 | Pass | | | | | ERAP-599 | 3/20/2023 | Zn-65 | 1280 | 1110 | 910 - 1700 | Pass | | | | | ERAP-599 | 3/20/2023 | Sr-90 | 143 | 137 | 87 - 187 | Pass | | | | | ERAP-598 | 3/20/2023 | Gross Alpha | 72.7 | 76.8 | 40.1 - 127 | Pass | | | | | ERAP-598 | 3/20/2023 | Gross Beta | 35.0 | 32.8 | 19.9 - 49.6 | Pass | | | | ^a Results obtained by Environmental, Inc., Midwest Laboratory (EIML) as a participant in the crosscheck program for proficiency testing administered by Environmental Resource Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML). b Laboratory code ERAP (air filter). Results are reported in units of (pCi/Filter). ^c The ERA Assigned values for the air filter standards are equal to 100% of the parameter present in the standard as determined by the gravimetric and/or volumetric measurements made during standard preparation as applicable. The acceptance limits are established per the guidelines contained in the Department of Energy (DOE) report EML-564, Analysis of Environmental Measurements Laboratory (EML) Quality Assessment Program (QAP) Data Determination of Operational Criteria and Control Limits for Performance Evaluation Purposes or ERA's SOP for the generation of Performance Acceptance Limits. | Annual Radiological Environmental Op | YEAR: 2023
L-24-096 | Page 41 of 81 | | | |---|------------------------|---------------|--|--| | Company: Energy Harbor Plant: Perry Nuclear Power Plant | | | | | Appendix B **Data Reporting Conventions** YEAR: 2023 L-24-096 Page 42 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** #### APPENDIX B. DATA REPORTING CONVENTIONS #### Data Reporting Conventions 1.0. All activities, except gross alpha and gross beta, are decay corrected to collection time or the end of the collection period. #### 2.0. Single Measurements Each single measurement is reported as follows: $x \pm s$ where: x = value of the measurement; $s = 2\sigma$ counting uncertainty (corresponding to the 95% confidence level). In cases where the activity is less than the lower limit of detection L, it is reported as: < L, where L = the lower limit of detection based on 4.66 σ uncertainty for a background sample. #### 3.0. Duplicate analyses If duplicate analyses are reported, the convention is as follows. : 3.1 Individual results: For two analysis results; $x_1 \pm s_1$ and $x_2 \pm s_2$ Reported result: $x \pm s$; where $x = (1/2)(x_1 + x_2)$ and $s = (1/2)\sqrt{s_1^2 + s_2^2}$ 3.2. Individual results: < L₁ < L₂ Reported result: < L, where L = lower of L₁ and L₂ 3.3. <u>Individual results:</u> x ± s, < L <u>Reported result:</u> x ± s if x ≥ L; < L otherwise. #### 4.0. Computation of Averages and Standard Deviations 4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average x̄ and standard deviation "s" of a set of n numbers x₁, x₂ . . . x_n are defined as follows: $$\bar{x} = \frac{1}{n} \sum x$$ $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ - 4.2 Values below the highest lower limit of detection are not included in the average. - 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported. - 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported. - 4.5 In rounding off, the following rules are followed: - 4.5.1. If the number following those to be retained is less than 5, the number is dropped, and the retained numbers are kept unchanged. As an example, 11.443 is rounded off to 11.44. - 4.5.2. If the number following those to be retained is equal to or greater than 5, the number is dropped and the last retained number is raised by 1. As an example, 11.445 is rounded off to 11.45. | Annual Radiological Environmental Operating R | YEAR: 2023
L-24-096 | Page 43 of 81 | | |---|------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclear | r Power Plant | | # Attachment 2: REMP Data Summary Reports | Pathway Type, Total Number of | | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of
Non-routine | |-------------------------------|-----------------------|-----------------------|--|--|-------------------------------------|--|-----------------------------|--------------------------| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹
Detected/Collected
Range | Detected/Collected
Range | Reported
Measurements | | | | | 0.054 | 0.056 | 3 | 0.058 | 0.061 | | | Air
pCi/m ³ | Be-7
28 | N/A | 28/28 | 24/24 | 1.0 | 4/4 | 4/4 | 0 | | P = 11.11 | | | 0.038 - 0.068 | 0.038 - 0.068 | SE | 0.043 – 0.065 | 0.049 – 0.068 | | | | _ | | < LLD | < LLD | | | < LLD | | | Air
pCi/m ³ | Co-58
28 | N/A | 0/28 | 0/24 | _ | _ | 0/4 | 0 | | P = | | | _ | _ | | | _ | | | | | | < LLD | < LLD | | | < LLD | | | Air
pCi/m ³ | Co-60
28 | NI/Δ | 0/28 | 0/24 | _ | _ | 0/4 | 0 | | P = 11.11 | | | _ | _ | | | _ | | | | | | < LLD | < LLD | | | < LLD | | | Air
pCi/m ³ | Cs-134
28 | 0.005 | 0/28 | 0/24 | _ | _ | 0/4 | 0 | | P = | | | _ | _ | | | _ | | | | | | < LLD | < LLD | | | < LLD | | | Air
pCi/m ³ | Cs-137
28 | 0.045 | 0/28 | 0/24 | _ | _ | 0/4 | 0 | | F = 4.11 | | | _ | _ | | | _ | | | | | | 0.025 | 0.025 | 7 | 0.026 | 0.026 | | | Air
pCi/m ³ | Gross Beta
370 | Gross Beta 0.0075 | 370/370 | 317/317 | 0.6 | 53/53 | 53/53 | 0 | | . h | | | 0.007 - 0.050 | 0.007 - 0.050 | NE | 0.009 - 0.048 | 0.011 – 0.049 | | ¹ Mean and range are based on detectable measurements only. YEAR: 2023 L-24-096 Page 44 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant | Pathway | Type, Total
Number of | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of Non-routine | | |--------------------|--------------------------|-----------------------|--|---|-------------------------------------|--|------------------------------|--------------------------|--| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹
Detected/Collected
Range | Detected/Collected
Range | Reported
Measurements | | | Air | 1.404 | | < LLD | < LLD | | | <lld< td=""><td></td></lld<> | | | | pCi/m ³ | I-131
370 | 0.050 | 0/370
— | 0/317 | _ | _ | 0/53
— | 0 | | | Broadleaf | | | 544.6 | 544.9 | 2 | 719.1 | 543.7 | | | | Vegetation | Be-7
63 | N/A | 39/63 | 34/49 | 1.9 | 9/12 | 10/13 | 0 | | | pCi/kg wet | 03 | | 158 – 1249 | 158 – 1249 | ENE | 292 - 1249 | 314 – 838 | | | | Broadleaf | | | 4746.6 | 4693.9 | 16 | 4855.0 | 4931.2 | | | | Vegetation | K-40
63 | N/A | 63/63 | 49/49 | 0.9 | 12/12 | 14/14 | 0 | | | pCi/kg wet | | | 2768 – 8101 | 2768 – 7528 | S | 4044 - 6275 | 3333 - 8101 | | | | Broadleaf | Co-58
63 | I NI/A | < LLD | <lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<> | | | < LLD | | | | Vegetation | | | 0/63 | 0/49 | _ | _ | 0/14 | 0 | | | pCi/kg wet | | | _ | _ | | | _ | | | | Broadleaf | | | < LLD | <lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<> | | | < LLD | | | | Vegetation | Co-60
63 | N/A | 0/63 | 0/49 | _ | _ | 0/14 | 0 | | | pCi/kg wet | | | _ | _ | | | _ | | | | Broadleaf | | | < LLD | <lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<> | | | < LLD | | | | Vegetation | I-131
63 | 45 | 0/63 | 0/49 | _ | _ | 0/14 | 0 | | | pCi/kg wet | 03 | | _ | _ | | | _ | | | | Broadleaf | | | < LLD | <lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<> | | | < LLD | | | | Vegetation | Cs-134
63 | 45 | 0/63 | 0/49 | _ | _ | 0/14 | 0 | | | pCi/kg wet | | | _ | | | | | | | ¹ Mean and range are based on detectable measurements only. | Annual Radiological Environmental Operating R | eport | YEAR: 202
L-24-096 | |---|---------------------|-----------------------| | Energy Harbor | Plant: Perry Nuclea | r Power Plant | YEAR: 2023 Page 45 of 81 L-24-096 | Pathway | Type, Total
Number of | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of
Non-routine | | |-----------------------|--------------------------|-----------------------|--|---|-------------------------------------|--|-----------------------------|--------------------------|--| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹ Detected/Collected Range | Detected/Collected
Range | Reported
Measurements | | | Broadleaf | | | < LLD | <lld< td=""><td></td><td></td><td>< LLD</td><td></td></lld<> | | | < LLD | | | | Vegetation pCi/kg wet | Cs-137
63 | 60 | 0/63 | 0/49 | _ | _ | 0/14 | 0 | | | poi/kg wet | | | _ | _ | | | _ | |
| | | | | 1660.5 | 1565.4 | 25 | 1565.4 | 1755.6 | | | | Fish
pCi/kg wet | K-40
18 | N/A | 18/18 | 9/9 | 0.6 | 9/9 | 9/9 | 0 | | | p a wing was | | | 605 - 3797 | 851 - 2184 | NNW | 851 - 2184 | 605 - 3797 | | | | | | | < LLD | < LLD | | | < LLD | | | | Fish
pCi/kg wet | Mn-54
18 | 1 4/1 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | powing mon | | . • | | _ | _ | | | _ | | | | | | < LLD | < LLD | | | < LLD | | | | Fish
pCi/kg wet | Fe-59
18 | | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | Powing mor | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Fish
pCi/kg wet | Co-58
18 | 97 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | powing mor | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Fish
pCi/kg wet | Co-60
18 | 97 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | pointy wot | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Fish
pCi/kg wet | Zn-65
18 | 195 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | F 3 " NG 11 31 | | | _ | _ | | | _ | | | ¹ Mean and range are based on detectable measurements only. **Company: Energy Harbor** | Annual Radiological Environmental Operating F | YEAR: 2023
L-24-096 | Page 46 of 81 | | |---|------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclea | r Power Plant | | | Pathway | Type, Total
Number of | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of
Non-routine
Reported
Measurements | | | |---------------------|--------------------------|-----------------------|--|--|-------------------------------------|--|-----------------------------|--|--|-----| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹
Detected/Collected
Range | Detected/Collected
Range | | | | | | | | < LLD | < LLD | | | < LLD | | | | | Fish
pCi/kg wet | Cs-134
18 | 97 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | | powing mor | | | _ | _ | | | _ | | | | | | | | < LLD | < LLD | | | < LLD | | | | | Fish
pCi/kg wet | Cs-137
18 | 112 | 0/18 | 0/9 | _ | _ | 0/9 | 0 | | | | powing not | | | _ | _ | | | _ | | | | | | | | 7589.0 | 7589.0 | 66 | 7607.5 | N/A | | | | | Sediment pCi/kg wet | K-40
4 | 10 N/A | 4/4 | 4/4 | 1.4 | 2/2 | N/A | 0 | | | | pointy wot | | | | 6850 - 8291 | 6850 - 8291 | NE | 6983 - 8232 | N/A | | | | | | | < LLD | < LLD | | | N/A | | | | | Sediment pCi/kg wet | Co-58
4 | Co-58
4 50 | 0/4 | 0/4 | _ | _ | N/A | 0 | | | | pointy wot | | | _ | _ | | | N/A | | | | | | | | < LLD | < LLD | | | N/A | | | | | Sediment pCi/kg wet | Co-60
4 | 40 | 0/4 | 0/4 | _ | _ | N/A | 0 | | | | pointy wot | 7 | | _ | _ | | | N/A | | | | | | | | < LLD | < LLD | | | N/A | | | | | Sediment pCi/kg wet | Cs-134
4 | 112 | 0/4 | 0/4 | _ | _ | N/A | 0 | | | | pointy wot | ' | | _ | _ | | | N/A | | | | | | | | < LLD | < LLD | | | N/A | | | | | Sediment pCi/kg wet | Cs-137
4 | 135 | 0/4 | 0/4 | _ | _ | N/A | 0 | | | | pointy wet | | 4 | 4 | 4 | | _ | _ | | | N/A | ¹ Mean and range are based on detectable measurements only. Page 47 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant | Pathway | Type, Total
Number of | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of
Non-routine
Reported
Measurements | | | | | | |-----------------------|--------------------------|-----------------------|--|--|-------------------------------------|--|------------------------------|--|------|-----|-----|-----|---| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹ Detected/Collected Range | Detected/Collected
Range | | | | | | | | | | | 14.8 | 14.8 | 36 | 18.7 | 14.2 | | | | | | | | TLD (E)
mR/91 days | Direct
116 | 1.0 | 116/116 | 108/108 | 3.9 | 4/4 | 8/8 | 0 | | | | | | | in vor dayo | | | 8.1 – 20.0 | 9.8 – 20.0 | WSW | 16.6 – 18.5 | 12.4 – 16.3 | | | | | | | | | | | 14.4 | 14.4 | 33 | 18.5 | 14.2 | | | | | | | | TLD (Q)
mR/91 days | Direct
116 | 1.0 | 116/116 | 108/108 | 4.5 | 4/4 | 8/8 | 0 | | | | | | | IIII (o i dayo | | | 10.3 – 20.6 | 10.3 – 20.6 | S | 16.7 – 20.3 | 12.4 – 16.8 | | | | | | | | TLD | | | 59.0 | 59.2 | 29 | 75.6 | 57.3 | | | | | | | | mR/365 | Direct
29 | 1.0 | 29/29 | 27/27 | 4.3 | 1/1 | 2/2 | 0 | | | | | | | days | | | 48.2 – 75.6 | 48.2 – 75.6 | SSE | 75.6 – 75.6 | 53.8 – 60.7 | | | | | | | | | Gross Beta
60 | | | 1.4 | 1.5 | 34 | 1.6 | 1.1 | | | | | | | Water
pCi/L | | | 44/60 | 37/48 | 0.2 | 10/12 | 7/12 | 0 | | | | | | | P 0 1/ 2 | | | 0.9 – 3.3 | 0.9 – 3.3 | NW | 1.0 – 3.3 | 1.0 – 1.4 | | | | | | | | | | | 195.9 | 195.9 | 59 | 221.3 | <lld< td=""><td></td></lld<> | | | | | | | | Water
pCi/L | H-3 | | H-3
20 | | | | 1500 | 6/20 | 6/16 | 4.0 | 1/4 | 0/4 | 0 | | P = " = | | | 166.0 – 221.3 | 166.0 – 221.3 | ENE | 221.3 – 221.3 | _ | | | | | | | | | | | < LLD | < LLD | | | < LLD | | | | | | | | Water
pCi/L | Mn-54
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | | | | | P 0 1/ 2 | | | _ | _ | | | _ | | | | | | | | | | | < LLD | < LLD | | | < LLD | | | | | | | | Water
pCi/L | Fe-59
60 | Fe-59 22 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | | | | | F = " = | | | _ | _ | | | _ | | | | | | | ¹ Mean and range are based on detectable measurements only. | Annual Radiological Environmental Operating R | YEAR: 2023
L-24-096 | Page 48 of 81 | | |---|------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclea | r Power Plant | | | Pathway | Type, Total
Number of | Lower Limit | All Locations Mean ¹ | Indicator Mean ¹ | Location w | ith Highest Annual
Mean | Control Mean ¹ | Number of | | |--------------------|--------------------------|-----------------------|--|--|-------------------------------------|--|-----------------------------|---|--| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹
Detected/Collected
Range | Detected/Collected
Range | Non-routine
Reported
Measurements | | | | | | < LLD | < LLD | | | < LLD | | | | Water
pCi/L | Co-58
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | F = " | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Water
pCi/L | Co-60
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | P = " = | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Water | Zn-65
60 | 22 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | pCi/L | | | _ | _ | | | _ | | | | | | 95 22 | < LLD | < LLD | | | | < LLD | | | Water
pCi/L | Zr-95
60 | | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | POWE | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Water
pCi/L | Nb-95
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | POWE | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Water
pCi/L | Cs-134
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | POWE | | | _ | _ | | | _ | | | | | | | < LLD | < LLD | | | < LLD | | | | Water
pCi/L | Cs-137
60 | 13 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | P 2 1/ L | | | _ | _ | | | _ | | | ¹ Mean and range are based on detectable measurements only. | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 49 of 81 | |--|----------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear | Power Plant | | | Pathway | Type, Total
Number of | | Indicator Mean ¹ | Location with Highest Annual
Mean | | Control Mean ¹ | Number of | | |--------------------|--------------------------|-----------------------|--|--|-------------------------------------|--|-----------------------------|---| | Sampled
(Units) | Analyses
Performed | of Detection
(LLD) | Detected/Collected
Range ¹ | Detected/Collected
Range ¹ | Location #
Distance
Direction | Mean ¹
Detected/Collected
Range | Detected/Collected
Range | Non-routine
Reported
Measurements | | | | | < LLD | < LLD | | | < LLD | | | Water
pCi/L | Ba-140
60 | 45 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | | | | _ | _ | | | _ | | | | | | < LLD | < LLD | | | < LLD | | | Water
pCi/L | La-140
60 | 11 | 0/60 | 0/48 | _ | _ | 0/12 | 0 | | F = " = | | | _ | _ | | | _ | | ¹ Mean and range are based on detectable measurements only. YEAR: 2023 L-24-096 Page 50 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** # Attachment 3: 2022 REMP Detailed Data Report #### MONTHLY PROGRESS REPORT to ENERGY HARBOR # RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) FOR THE PERRY NUCLEAR POWER PLANT Reporting Period: January-December, 2023 Prepared and Submitted by ENVIRONMENTAL, INC., MIDWEST LABORATORY Project Number: 8033 Reviewed and Approved A. Banavali, PhD. Laboratory Director Date 2/14/24 Distribution: S. Chapin P. Hintz, Ohio Department of Health B. Mechenbier, Lake County Health Department YEAR: 2023 L-24-096 Page
51 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** #### PERRY NUCLEAR POWER PLANT #### TABLE OF CONTENTS | Section | | Page | |----------|--|------| | | List of Tables | iii | | 1.0 | INTRODUCTION | iv | | 2.0 | LISTING OF MISSED SAMPLES | v | | 3.0 | DATA TABLES | vi | | | | | | | | | | Appendic | <u>ses</u> | | | Α | Interlaboratory Comparison Program Results | A-1 | | В | Data Reporting Conventions | B-1 | YEAR: 2023 L-24-096 Page 52 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** ### PERRY NUCLEAR POWER PLANT #### LIST OF TABLES | No. | <u>Title</u> | Page | |-----|---|-------| | 1 | Direct Radiation, Quarterly and Annual | . 1-1 | | 2 | Airborne Particulate Filters and Charcoal Canisters | 2-1 | | 3 | Airborne Particulate Filters | 3-1 | | 4 | Lake Water | 4-1 | | 5 | Milk | 5-1 | | 7 | Food Products | 7-1 | | 9 | Fish | 9-1 | | 11 | Sediments | 11-1 | YEAR: 2023 L-24-096 Page 53 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant #### PERRY NUCLEAR POWER PLANT #### 1.0 INTRODUCTION The following constitutes the current 2023 report for the Radiological Environmental Monitoring Program conducted at the Perry Nuclear Power Plant in Perry, Ohio. Results of completed analyses are presented in the attached tables. The data obtained in the program were within ranges previously encountered and to be expected in the environmental media sampled. All concentrations, except gross beta, are decay corrected to the time of collection. Airborne iodine is decay corrected to the midpoint of the collection period. All samples were collected within the scheduled period, unless noted otherwise in Table 2.0, Listing of Missed Samples. Annual Radiological Environmental Operating Report YEAR: 2023 L-24-096 Page 54 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant PNPP #### 2.0 LISTING OF MISSED SAMPLES | Sample Type | Location | Expected
Collection
Date | Reason | |-------------|----------|--------------------------------|---| | AP/AI | PE-001 | 03-02-23 | The sample housing destroyed by a car accident. | | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 55 of 81 | |--|----------------------------------|------------------------|---------------| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | | 3.0 DATA TABLES | Annual Radiological Environmental Operating Report | |--| |--| Page 56 of 81 Company: Energy Harbor **Plant: Perry Nuclear Power Plant** Table 1. Direct Radiation (TLDs), Quarterly Exposure. Units: mR/91 days | | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | |--------------|----------------|---------------|----------------|---------------| | Date Placed | 12-14-22 | 03-17-23 | 07-12-23 | 10-04-23 | | Date Removed | 03-17-23 | 07-12-23 | 10-04-23 | 12-26-23 | | E-1 | 15.0 ± 0.7 | 13.0 ± 1.0 | 13.5 ± 0.7 | 15.4 ± 1.0 | | E-3 | 12.4 ± 0.7 | 9.8 ± 0.8 | 11.7 ± 0.8 | 11.8 ± 0.9 | | E-4 | 13.0 ± 0.7 | 13.8 ± 0.8 | 12.1 ± 0.6 | 16.0 ± 0.8 | | E-5 | 14.6 ± 0.6 | 10.6 ± 0.7 | 14.0 ± 0.4 | 12.9 ± 0.7 | | E-6 | 16.1 ± 0.7 | 13.1 ± 0.8 | 15.0 ± 0.5 | 16.3 ± 0.9 | | E-7 | 15.2 ± 0.7 | 12.0 ± 0.8 | 15.0 ± 0.6 | 14.0 ± 0.9 | | E-8 | 13.7 ± 0.7 | 13.9 ± 0.9 | 13.0 ± 0.8 | 16.4 ± 0.8 | | E-9 | 13.6 ± 0.6 | 11.3 ± 0.8 | 13.4 ± 0.5 | 15.3 ± 0.8 | | E-10 | 12.6 ± 0.5 | 12.7 ± 1.1 | 12.1 ± 0.4 | 14.8 ± 1.1 | | E-11 | 13.4 ± 0.7 | 14.5 ± 0.8 | 12.7 ± 0.7 | 17.2 ± 0.8 | | E-12 | 15.3 ± 0.6 | 11.5 ± 0.9 | 16.0 ± 0.6 | 13.7 ± 0.9 | | E-13 | 14.4 ± 0.9 | 11.9 ± 0.9 | 14.4 ± 0.8 | 14.1 ± 0.9 | | E-14 | 14.0 ± 0.6 | 13.7 ± 0.8 | 13.8 ± 0.6 | 16.2 ± 0.8 | | E-15 | 13.6 ± 0.7 | 11.4 ± 1.0 | 13.4 ± 0.7 | 13.5 ± 1.0 | | E-21 | 15.3 ± 0.7 | 13.4 ± 0.7 | 15.4 ± 0.7 | 15.3 ± 0.8 | | E-23 | 18.2 ± 0.5 | 14.2 ± 0.7 | 18.2 ± 0.5 | 16.1 ± 0.8 | | E-24 | 13.0 ± 0.6 | 12.6 ± 0.8 | 12.4 ± 0.5 | 15.2 ± 0.8 | | E-29 | 19.3 ± 0.8 | 16.2 ± 0.9 | 19.7 ± 0.8 | 18.4 ± 0.7 | | E-30 | 17.8 ± 0.7 | 15.8 ± 0.8 | 17.6 ± 0.6 | 17.9 ± 0.8 | | E-31 | 18.7 ± 0.7 | 17.7 ± 0.7 | 18.5 ± 0.7 | 20.0 ± 0.8 | | E-33 | 17.6 ± 0.8 | 16.6 ± 0.8 | 16.9 ± 0.8 | 18.5 ± 0.8 | | E-35 | 13.9 ± 0.6 | 12.9 ± 0.9 | 14.1 ± 0.5 | 15.8 ± 1.0 | | E-36 | 18.8 ± 1.0 | 15.3 ± 0.8 | 17.7 ± 0.8 | 19.7 ± 0.9 | | E-53 | 14.0 ± 0.5 | 13.2 ± 0.8 | 13.7 ± 0.5 | 15.5 ± 0.8 | | E-54 | 15.3 ± 0.5 | 13.0 ± 0.8 | 15.3 ± 0.4 | 17.6 ± 0.8 | | E-55 | 15.5 ± 1.2 | 12.6 ± 0.8 | 15.9 ± 1.1 | 14.0 ± 0.8 | | E-56 | 16.1 ± 0.6 | 13.7 ± 0.9 | 15.8 ± 0.4 | 15.6 ± 0.8 | | E-57 | 14.4 ± 0.8 | 14.9 ± 1.0 | 14.0 ± 0.6 | 17.5 ± 1.2 | | E-58 | 14.9 ± 0.8 | 11.7 ± 0.7 | 15.3 ± 0.7 | 13.8 ± 0.8 | | Mean ± s.d. | 15.2 ± 1.9 | 13.3 ± 1.8 | 14.8 ± 2.1 | 15.8 ± 2.0 | | E-Control 1 | 10.6 ± 0.5 | 8.5 ± 1.0 | 10.5 ± 0.5 | 9.1 ± 1.1 | | E-Control 2 | 8.5 ± 0.6 | 8.3 ± 0.8 | 8.1 ± 0.5 | 9.7 ± 0.9 | YEAR: 2023 L-24-096 Page 57 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Table 1. Direct Radiation (TLDs), Quarterly Exposure. Units: mR/91 days | | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | |--------------|---------------|---------------|------------|------------| | Date Placed | 12-14-22 | 03-17-23 | 07-12-23 | 10-04-23 | | Date Removed | 03-17-23 | 07-12-23 | 10-04-23 | 12-26-23 | | Q-1 | 13.1 ± 0.9 | 13.6 ± 1.0 | 12.9 ± 0.8 | 15.8 ± 1.4 | | Q-3 | 12.6 ± 0.7 | 11.2 ± 0.7 | 12.6 ± 0.7 | 14.9 ± 0. | | 2-4 | 13.9 ± 0.5 | 12.0 ± 0.6 | 13.7 ± 0.5 | 13.4 ± 0.0 | | Q-5 | 11.9 ± 0.7 | 11.1 ± 0.6 | 11.3 ± 0.7 | 12.7 ± 0.0 | | 2-6 | 15.1 ± 0.4 | 12.4 ± 0.5 | 14.6 ± 0.6 | 13.7 ± 0.0 | | 2-7 | 13.0 ± 0.5 | 12.0 ± 0.5 | 12.4 ± 0.5 | 13.5 ± 0. | | Q-8 | 13.9 ± 0.4 | 13.9 ± 0.5 | 15.0 ± 0.6 | 15.9 ± 0.0 | | Q-9 | 11.0 ± 0.6 | 10.5 ± 0.5 | 10.3 ± 0.8 | 12.4 ± 1.3 | | Q-10 | 13.6 ± 0.5 | 12.6 ± 0.5 | 13.0 ± 0.6 | 14.5 ± 0.5 | | 2-11 | 15.3 ± 0.5 | 13.3 ± 0.6 | 16.2 ± 0.6 | 15.2 ± 0.1 | | Q-12 | 14.9 ± 0.6 | 13.8 ± 0.5 | 14.1 ± 0.7 | 17.7 ± 0.0 | | Q-13 | 14.1 ± 0.5 | 13.0 ± 0.9 | 13.2 ± 0.6 | 14.9 ± 0.0 | | Q-14 | 14.7 ± 0.5 | 12.2 ± 0.5 | 14.1 ± 0.6 | 14.0 ± 0.5 | | 2-15 | 12.0 ± 0.5 | 12.2 ± 0.7 | 10.9 ± 0.6 | 14.5 ± 0.1 | | 2-21 | 16.8 ± 0.7 | 16.0 ± 0.8 | 16.0 ± 1.1 | 19.8 ± 1. | | 2-23 | 17.9 ± 1.1 | 14.1 ± 0.7 | 16.8 ± 0.8 | 16.1 ± 0.9 | | 2-24 | 14.3 ± 1.2 | 13.3 ± 0.6 | 13.6 ± 1.1 | 16.8 ± 0.7 | | 2-29 | 16.1 ± 0.6 | 17.9 ± 0.7 | 15.3 ± 0.7 | 20.6 ± 0.7 | | 2-30 | 17.1 ± 0.5 | 15.5 ± 0.6 | 16.5 ± 0.6 | 17.8 ± 0.7 | | 2-31 | 15.4 ± 0.7 | 17.3 ± 0.7 | 14.3 ± 0.5 | 19.2 ± 0.7 | | 2-33 | 18.7 ± 0.7 | 16.7 ± 0.7 | 20.3 ± 0.8 | 18.3 ± 0.7 | | 2-35 | 11.8 ± 0.5 | 13.3 ± 0.8 | 10.9 ± 0.5 | 15.0 ± 0.9 | | 2-36 | 15.4 ± 0.5 | 16.3 ± 0.5 | 14.7 ± 0.6 | 18.4 ± 0.6 | | Q-53 | 13.8 ± 0.5 | 13.7 ± 0.9 | 13.2 ± 0.5 | 17.5 ± 1.3 | | 2-54 | 15.6 ± 0.6 | 12.4 ± 0.6 | 14.7 ± 0.5 | 13.6 ± 0.6 | | 2-55 | 14.3 ± 0.6 | 13.9 ± 0.5 | 13.4 ± 0.8 | 17.9 ± 0.6 | | Q-56 | 13.6 ± 0.5 | 12.4 ± 0.6 | 12.8 ± 0.7 | 14.1 ± 0.6 | | Q-57 | 13.5 ± 0.8 | 15.0 ± 0.8 | 12.4 ± 0.8 | 17.0 ± 0.8 | | 2-58 | 13.8 ± 1.0 | 12.6 ± 0.5 | 13.4 ± 1.1 | 14.5 ± 0.5 | | Mean ± s.d. | 14.4 ± 1.8 | 13.6 ± 1.9 | 13.9 ± 2.1 | 15.9 ± 2.2 | | Q-Control 1 | 9.5 ± 0.4 | 8.3 ± 0.9 | 9.3 ± 0.4 | 8.7 ± 1.1 | | Q-Control 2 | 8.8 ± 0.6 | 8.6 ± 0.5 | 9.9 ± 0.7 | 9.2 ± 0.5 | | Annual Radiological Environmental Operating Report | | YEAR: 2023
L-24-096 | Page 58 of 81 | | |--|----------------------------------|------------------------|---------------|--| | Company: Energy Harbor | Plant: Perry Nuclear Power Plant | | | | Table 1. Direct Radiation (TLDs), Annual Exposure. Units: mR/365 days | | 2023 | |--------------|------------| | Date Placed | 12-14-22 | | Date Removed | 12-26-23 | | | | | A-1 | 50.5 ± 2.9 | | A-3 | 49.8 ± 2.0 | | A-4 | 49.5 ± 2.6 | | A-5 | 49.1 ± 1.5 | | A-6 | 60.7 ± 1.4 | | A-7 | 51.9 ± 1.6 | | A-8 | 61.2 ± 1.2 | | A-9 | 48.2 ± 3.0 | | A-10 | 56.0 ± 2.0 | | A-11 | 56.6 ± 1.1 | | A-12 | 61.9 ± 1.9 | | A-13 | 60.7 ± 4.2 | | A-14 | 53.8 ± 2.5 | | A-15 | 49.9 ± 2.2 | | A-21 | 66.7 ± 4.1 | | A-23 | 64.6 ± 2.4 | | A-24 | 53.8 ± 2.7 | | A-29 | 73.7 ± 2.0 | | A-30 | 67.1 ± 1.5 | | A-31 | 70.6 ± 2.3 | | A-33 | 75.6 ± 2.3 | | A-35 | 55.3 ± 1.7 | | A-36 | 61.3 ± 2.5 | | A-53 | 55.8 ± 3.8 | | A-54 | 59.8 ± 3.4 | | A-55 | 67.2 ± 1.3 | | A-56 | 52.6 ± 2.4 | | A-57 | 66.5 ± 1.7 | | A-58 | 61.9 ± 1.6 | | Mean ± s.d. | 59.0 ± 7.7 | | A-Control 1 | 32.4 ± 1.8 | | A-Control 2 | 32.2 ± 1.3 | Page 59 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-1 Units: pCi/m³ | Date
Collected | Volume
(m³) | Gross Beta | I-131 | Date
Collected | Volume
(m³) | Gross Beta | I-131 | |-------------------|----------------|-------------------|-----------|-------------------|----------------|-------------------|---------| | Required LLD |) | 0.0075 | 0.050 | | | 0.0075 | 0.05 | | 01-04-23 | 608 | 0.031 ± 0.003 | < 0.010 | 07-04-23 | 525 | 0.022 ± 0.003 | < 0.012 | | 01-11-23 | 623 | 0.027 ± 0.003 | < 0.007 | 07-12-23 | | 0.020 ± 0.002 | < 0.009 | | 01-18-23 | 607 | 0.025 ± 0.003 | < 0.006 | 07-19-23 | | 0.020 ± 0.002 | < 0.00 | | 01-25-23 | 612 | 0.020 ± 0.003 | < 0.008 | 07-26-23 | | 0.024 ± 0.003 | < 0.01 | | 02-01-23 | 619 | 0.024 ± 0.003 | < 0.008 | 08-02-23 | | 0.015 ± 0.003 | < 0.01 | | 02-08-23 | 600 | 0.032 ± 0.003 | < 0.007 | 08-09-23 | 584 | 0.025 ± 0.003 | < 0.01 | | 02-15-23 | 554 | 0.030 ± 0.003 | < 0.008 | 08-16-23 | | 0.019 ± 0.003 | < 0.01 | | 02-21-23 | 500 | 0.033 ± 0.003 | < 0.006 b | 08-23-23 | | 0.021 ± 0.003 | < 0.017 | | 03-02-23 | 000 | NS ^a | 0.000 | 08-30-23 | | 0.017 ± 0.003 | < 0.013 | | 03-09-23 | 569 | 0.023 ± 0.003 | < 0.005 | 09-07-23 | 631 | 0.030 ±
0.003 | < 0.008 | | 03-15-23 | 515 | 0.015 ± 0.003 | < 0.011 | 09-13-23 | 449 | 0.015 ± 0.003 | < 0.019 | | 03-22-23 | 152 | 0.014 ± 0.009 | < 0.029 ° | 09-20-23 | 610 | 0.017 ± 0.003 | < 0.01 | | 03-28-23 | 182 | 0.022 ± 0.007 | < 0.017 ° | 09-27-23 | | 0.025 ± 0.003 | < 0.008 | | | | | | | | | | | 1Q 2023 I | Mean ± s.d. | 0.025 ± 0.006 | < 0.029 | 3Q 2023 | Mean ± s.d. | 0.021 ± 0.004 | < 0.019 | | 04-04-23 | 192 | 0.007 ± 0.007 | < 0.023 ° | 10-04-23 | | 0.029 ± 0.003 | < 0.01 | | 04-12-23 | 221 | 0.013 ± 0.006 | < 0.019 ° | 10-11-23 | | 0.025 ± 0.003 | < 0.01 | | 04-19-23 | 648 | 0.020 ± 0.003 | < 0.008 | 10-18-23 | | 0.015 ± 0.003 | < 0.013 | | 04-26-23 | 643 | 0.011 ± 0.002 | < 0.006 | 10-25-23 | | 0.025 ± 0.003 | < 0.01 | | 05-03-23 | 634 | 0.008 ± 0.002 | < 0.010 | 11-01-23 | 529 | 0.022 ± 0.003 | < 0.01 | | 05-10-23 | 637 | 0.011 ± 0.002 | < 0.007 | 11-08-23 | | 0.039 ± 0.004 | < 0.00 | | 05-17-23 | 645 | 0.018 ± 0.003 | < 0.007 | 11-15-23 | 532 | 0.019 ± 0.003 | < 0.010 | | 05-24-23 | 647 | 0.019 ± 0.003 | < 0.007 | 11-22-23 | 523 | 0.028 ± 0.003 | < 0.007 | | 05-30-23 | 538 | 0.013 ± 0.002 | < 0.007 | 11-29-23 | 520 | 0.024 ± 0.003 | < 0.000 | | 06-06-23 | 633 | 0.019 ± 0.003 | < 0.005 | 12-06-23 | | 0.033 ± 0.004 | < 0.01 | | 06-14-23 | 740 | 0.018 ± 0.002 | < 0.006 | 12-13-23 | 503 | 0.030 ± 0.003 | < 0.009 | | 06-21-23 | 626 | 0.018 ± 0.002 | < 0.009 | 12-20-23 | 521 | 0.030 ± 0.003 | < 0.008 | | 06-28-23 | 612 | 0.012 ± 0.002 | < 0.013 | 12-27-23 | 529 | 0.040 ± 0.004 | < 0.011 | | | | | | 01-03-24 | 485 | 0.021 ± 0.003 | < 0.015 | | 2Q 2023 N | Mean ± s.d. | 0.014 ± 0.004 | < 0.023 | 4Q 2023 | Mean ± s.d. | 0.027 ± 0.007 | < 0.015 | | | | | | Cumulative | Average | 0.022 | | ^a "NS" = No sample; see Table 2.0, Listing of Missed Samples. ^b Six days run time due to a car accident. ⁶ Reduced run time due to temporary power availability during equipment repairs to power structure following previous listed car accident. YEAR: 2023 L-24-096 Page 60 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-3 Units: pCi/m³ | Date
Collected | Volume
(m³) | Gross Beta | I-131 | Date
Collected | Volume
(m³) | Gross Beta | I-131 | |-------------------|----------------|-------------------|---------|-------------------|----------------|-------------------|---------| | Required LL | <u>.D</u> | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 561 | 0.035 ± 0.003 | < 0.011 | 07-04-23 | 450 | 0.024 ± 0.004 | < 0.014 | | 01-11-23 | 573 | 0.025 ± 0.003 | < 0.007 | 07-12-23 | 616 | 0.023 ± 0.003 | < 0.010 | | 01-18-23 | 583 | 0.028 ± 0.003 | < 0.006 | 07-19-23 | 531 | 0.024 ± 0.003 | < 0.014 | | 01-25-23 | 554 | 0.027 ± 0.003 | < 0.009 | 07-26-23 | 536 | 0.023 ± 0.003 | < 0.013 | | 02-01-23 | 551 | 0.027 ± 0.003 | < 0.008 | 08-02-23 | 557 | 0.020 ± 0.003 | < 0.013 | | 02-08-23 | 559 | 0.035 ± 0.003 | < 0.008 | 08-09-23 | | 0.027 ± 0.003 | < 0.015 | | 02-15-23 | 538 | 0.028 ± 0.003 | < 0.009 | 08-16-23 | 561 | 0.023 ± 0.003 | < 0.014 | | 02-22-23 | 576 | 0.037 ± 0.003 | < 0.005 | 08-23-23 | 580 | 0.020 ± 0.003 | < 0.017 | | 03-02-23 | 619 | 0.021 ± 0.003 | < 0.007 | 08-30-23 | 569 | 0.017 ± 0.003 | < 0.012 | | 03-09-23 | 529 | 0.026 ± 0.003 | < 0.006 | 09-07-23 | 666 | 0.031 ± 0.003 | < 0.006 | | 03-15-23 | 482 | 0.016 ± 0.003 | < 0.012 | 09-13-23 | 498 | 0.014 ± 0.003 | < 0.017 | | 03-22-23 | 541 | 0.030 ± 0.003 | < 0.008 | 09-20-23 | 567 | 0.019 ± 0.003 | < 0.012 | | 03-29-23 | 545 | 0.031 ± 0.003 | < 0.005 | 09-27-23 | 555 | 0.027 ± 0.003 | < 0.007 | | 1Q 2023 | Mean ± s.d. | 0.028 ± 0.006 | < 0.012 | 3Q 2023 | Mean ± s.d. | 0.022 + 0.005 | -0.047 | | 10 2023 | Weall I S.U. | 0.020 ± 0.006 | < 0.012 | 3Q 2023 | mean ± s.d. | 0.022 ± 0.005 | < 0.017 | | 04-05-23 | 546 | 0.028 ± 0.003 | < 0.007 | 10-04-23 | 567 | 0.030 ± 0.003 | < 0.010 | | 04-12-23 | 543 | 0.032 ± 0.003 | < 0.007 | 10-11-23 | 551 | 0.031 ± 0.003 | < 0.011 | | 04-19-23 | 540 | 0.024 ± 0.003 | < 0.009 | 10-18-23 | 546 | 0.019 ± 0.003 | < 0.013 | | 04-26-23 | 557 | 0.015 ± 0.003 | < 0.007 | 10-25-23 | 562 | 0.029 ± 0.003 | < 0.009 | | 05-03-23 | 539 | 0.008 ± 0.003 | < 0.012 | 11-01-23 | 553 | 0.026 ± 0.003 | < 0.010 | | 05-10-23 | 533 | 0.015 ± 0.003 | < 0.008 | 11-08-23 | 545 | 0.048 ± 0.004 | < 0.005 | | 05-17-23 | 562 | 0.020 ± 0.003 | < 0.007 | 11-15-23 | 557 | 0.027 ± 0.003 | < 0.009 | | 05-24-23 | 546 | 0.020 ± 0.003 | < 0.009 | 11-22-23 | 543 | 0.032 ± 0.003 | < 0.007 | | 05-30-23 | 519 | 0.017 ± 0.003 | < 0.007 | 11-29-23 | 551 | 0.029 ± 0.003 | < 0.007 | | 06-07-23 | 561 | 0.021 ± 0.003 | < 0.006 | 12-06-23 | 549 | 0.034 ± 0.003 | < 0.010 | | 06-14-23 | 526 | 0.018 ± 0.003 | < 0.008 | 12-13-23 | 546 | 0.034 ± 0.003 | < 0.008 | | 06-21-23 | 532 | 0.024 ± 0.003 | < 0.010 | 12-20-23 | 550 | 0.035 ± 0.003 | < 0.008 | | 06-28-23 | 540 | 0.015 ± 0.003 | < 0.015 | 12-27-23 | 560 | 0.050 ± 0.004 | < 0.011 | | | | | | 01-03-24 | 527 | 0.022 ± 0.003 | < 0.014 | | 2Q 2023 | Mean ± s.d. | 0.020 ± 0.006 | < 0.015 | 4Q 2023 | Mean ± s.d. | 0.032 ± 0.009 | < 0.014 | | | | | | Cumulative | Average | 0.026 | | YEAR: 2023 L-24-096 Page 61 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-4 Units: pCi/m³ | Date | Volume | | | Date | Volume | | | |-------------|-------------------|-------------------|---------|------------|-------------------|-------------------|---------| | Collected | (m ³) | Gross Beta | I-131 | Collected | (m ³) | Gross Beta | I-131 | | Required LL | <u>D</u> | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 651 | 0.034 ± 0.003 | < 0.010 | 07-04-23 | 461 | 0.028 ± 0.004 | < 0.01 | | 01-11-23 | 663 | 0.024 ± 0.003 | < 0.006 | 07-12-23 | 619 | 0.023 ± 0.003 | < 0.01 | | 01-18-23 | 677 | 0.027 ± 0.003 | < 0.005 | 07-19-23 | 542 | 0.022 ± 0.003 | < 0.01 | | 01-25-23 | 651 | 0.021 ± 0.003 | < 0.008 | 07-26-23 | 499 | 0.024 ± 0.003 | < 0.01 | | 02-01-23 | 661 | 0.025 ± 0.003 | < 0.007 | 08-02-23 | 516 | 0.020 ± 0.003 | < 0.01 | | 02-08-23 | 636 | 0.033 ± 0.003 | < 0.007 | 08-09-23 | 578 | 0.026 ± 0.003 | < 0.01 | | 02-15-23 | 529 | 0.022 ± 0.003 | < 0.009 | 08-16-23 | 563 | 0.020 ± 0.003 | < 0.01 | | 02-22-23 | 547 | 0.033 ± 0.003 | < 0.005 | 08-23-23 | 580 | 0.021 ± 0.003 | < 0.01 | | 03-02-23 | 622 | 0.021 ± 0.003 | < 0.007 | 08-30-23 | 566 | 0.014 ± 0.003 | < 0.012 | | 03-09-23 | 526 | 0.028 ± 0.003 | < 0.006 | 09-07-23 | 681 | 0.027 ± 0.003 | < 0.00 | | 03-15-23 | 456 | 0.017 ± 0.003 | < 0.013 | 09-13-23 | 485 | 0.015 ± 0.003 | < 0.01 | | 03-22-23 | 546 | 0.027 ± 0.003 | < 0.008 | 09-20-23 | 613 | 0.020 ± 0.003 | < 0.01 | | 03-29-23 | 534 | 0.030 ± 0.003 | < 0.006 | 09-27-23 | 567 | 0.022 ± 0.003 | < 0.00 | | 1Q 2023 | Mean ± s.d. | 0.026 ± 0.005 | < 0.013 | 3Q 2023 | Mean ± s.d. | 0.022 ± 0.004 | < 0.01 | | 04-05-23 | 550 | 0.026 ± 0.003 | < 0.007 | 10-04-23 | 573 | 0.032 ± 0.003 | < 0.01 | | 04-12-23 | 544 | 0.028 ± 0.003 | < 0.007 | 10-11-23 | 583 | 0.028 ± 0.003 | < 0.01 | | 04-19-23 | 539 | 0.022 ± 0.003 | < 0.009 | 10-18-23 | 551 | 0.016 ± 0.003 | < 0.01 | | 04-26-23 | 544 | 0.015 ± 0.003 | < 0.007 | 10-25-23 | 571 | 0.027 ± 0.003 | < 0.00 | | 05-03-23 | 523 | 0.008 ± 0.003 | < 0.012 | 11-01-23 | 576 | 0.024 ± 0.003 | < 0.01 | | 05-10-23 | 538 | 0.014 ± 0.003 | < 0.008 | 11-08-23 | 581 | 0.039 ± 0.003 | < 0.00 | | 05-17-23 | 566 | 0.021 ± 0.003 | < 0.007 | 11-15-23 | 586 | 0.023 ± 0.003 | < 0.00 | | 05-24-23 | 549 | 0.021 ± 0.003 | < 0.009 | 11-22-23 | 578 | 0.028 ± 0.003 | < 0.00 | | 05-30-23 | 452 | 0.015 ± 0.003 | < 0.009 | 11-29-23 | 588 | 0.022 ± 0.003 | < 0.00 | | 06-06-23 | 553 | 0.021 ± 0.003 | < 0.006 | 12-06-23 | 587 | 0.030 ± 0.003 | < 0.00 | | 06-14-23 | 620 | 0.017 ± 0.003 | < 0.007 | 12-13-23 | 589 | 0.031 ± 0.003 | < 0.00 | | 06-21-23 | 534 | 0.022 ± 0.003 | < 0.010 | 12-20-23 | 590 | 0.031 ± 0.003 | < 0.00 | | 06-28-23 | 542 | 0.015 ± 0.003 | < 0.015 | 12-27-23 | 599 | 0.037 ± 0.003 | < 0.01 | | | | | | 01-03-24 | 569 | 0.019 ± 0.003 | < 0.01 | | 2Q 2023 | Mean ± s.d. | 0.019 ± 0.005 | < 0.015 | 4Q 2023 | Mean ± s.d. | 0.028 ± 0.006 | < 0.01 | | | | | | Cumulative | Average | 0.024 | | YEAR: 2023 L-24-096 Page 62 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-5 Units: pCi/m³ | Date
Collected | Volume
(m³) | Gross Beta | I-131 | Date
Collected | Volume
(m³) | Gross Beta | I-131 | |-------------------|----------------|-------------------|---------|-------------------|----------------|-------------------|---------| | Required LL | <u>D</u> | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 445 | 0.037 ± 0.004 | < 0.014 | 07-04-23 | 454 | 0.026 ± 0.004 | < 0.014 | | 01-11-23 | 449 | 0.025 ± 0.004 | < 0.009 | 07-12-23 | 605 | 0.022 ± 0.003 | < 0.010 | | 01-18-23 | 594 | 0.026 ± 0.003 | < 0.006 | 07-19-23 | 543 | 0.024 ± 0.003 | < 0.014 | | 01-25-23 | 590 | 0.019 ± 0.003 | < 0.009 | 07-26-23 | 544 | 0.024 ± 0.003 | < 0.013 | | 02-01-23 | 576 | 0.025 ± 0.003 | < 0.008 | 08-02-23 | 480 | 0.020 ± 0.003 | < 0.01 | | 02-08-23 | 602 | 0.033 ± 0.003 | < 0.007 | 08-09-23 | 632 | 0.025 ± 0.003 | < 0.013 | | 02-15-23 | 539 | 0.026 ± 0.003 | < 0.009 | 08-16-23 | 608 | 0.020 ± 0.003 | < 0.013 | | 02-22-23 | 544 | 0.033 ± 0.003 | < 0.005 | 08-23-23 | 610 | 0.022 ± 0.003 | < 0.016 | | 03-02-23 | 622 | 0.019 ± 0.003 | < 0.007 | 08-30-23 | 630 | 0.014 ± 0.002 | < 0.011 | | 03-09-23 | 534 | 0.026 ±
0.003 | < 0.006 | 09-07-23 | 706 | 0.028 ± 0.003 | < 0.007 | | 03-15-23 | 461 | 0.015 ± 0.003 | < 0.013 | 09-13-23 | 486 | 0.014 ± 0.003 | < 0.017 | | 03-22-23 | 545 | 0.031 ± 0.003 | < 0.008 | 09-20-23 | 655 | 0.020 ± 0.002 | < 0.010 | | 03-29-23 | 537 | 0.030 ± 0.003 | < 0.006 | 09-27-23 | 603 | 0.024 ± 0.003 | < 0.007 | | 1Q 2023 | Mean ± s.d. | 0.027 ± 0.006 | < 0.014 | 3Q 2023 | Mean ± s.d. | 0.022 ± 0.004 | < 0.017 | | 04-05-23 | 556 | 0.027 ± 0.003 | < 0.007 | 10-04-23 | 617 | 0.026 ± 0.003 | < 0.009 | | 04-12-23 | 550 | 0.030 ± 0.003 | < 0.007 | 10-11-23 | 577 | 0.024 ± 0.003 | < 0.01 | | 04-19-23 | 539 | 0.021 ± 0.003 | < 0.009 | 10-18-23 | 587 | 0.014 ± 0.003 | < 0.012 | | 04-26-23 | 549 | 0.017 ± 0.003 | < 0.007 | 10-25-23 | 593 | 0.026 ± 0.003 | < 0.009 | | 05-03-23 | 523 | 0.008 ± 0.003 | < 0.012 | 11-01-23 | 588 | 0.026 ± 0.003 | < 0.010 | | 05-10-23 | 554 | 0.013 ± 0.003 | < 0.008 | 11-08-23 | 592 | 0.041 ± 0.003 | < 0.004 | | 05-17-23 | 538 | 0.024 ± 0.003 | < 0.008 | 11-15-23 | 615 | 0.024 ± 0.003 | < 0.008 | | 05-24-23 | 544 | 0.022 ± 0.003 | < 0.009 | 11-22-23 | 578 | 0.030 ± 0.003 | < 0.008 | | 05-30-23 | 471 | 0.016 ± 0.003 | < 0.008 | 11-29-23 | 585 | 0.028 ± 0.003 | < 0.007 | | 06-06-23 | 543 | 0.030 ± 0.003 | < 0.006 | 12-06-23 | 587 | 0.035 ± 0.003 | < 0.009 | | 06-14-23 | 616 | 0.019 ± 0.003 | < 0.007 | 12-13-23 | 585 | 0.039 ± 0.003 | < 0.008 | | 06-21-23 | 524 | 0.023 ± 0.003 | < 0.010 | 12-20-23 | 586 | 0.033 ± 0.003 | < 0.00 | | 06-28-23 | 520 | 0.016 ± 0.003 | < 0.016 | 12-27-23 | 604 | 0.044 ± 0.003 | < 0.01 | | | | | | 01-03-24 | 562 | 0.019 ± 0.003 | < 0.013 | | 2Q 2023 | Mean ± s.d. | 0.020 ± 0.007 | < 0.016 | 4Q 2023 | Mean ± s.d. | 0.029 ± 0.008 | < 0.013 | | | | | | Cumulative | Average | 0.025 | | YEAR: 2023 L-24-096 Page 63 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-6 Units: pCi/m³ | Date
Collected | Volume
(m³) | Gross Beta | I-131 | Date
Collected | Volume
(m³) | Gross Beta | I-131 | |-------------------|----------------|-------------------|---------|-------------------|----------------|-------------------|---------| | Required LL | D | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 521 | 0.038 ± 0.004 | < 0.012 | 07-05-23 | 461 | 0.026 ± 0.004 | < 0.014 | | 01-11-23 | 494 | 0.030 ± 0.004 | < 0.008 | 07-12-23 | 538 | 0.022 ± 0.003 | < 0.012 | | 01-18-23 | 503 | 0.034 ± 0.004 | < 0.007 | 07-19-23 | 527 | 0.026 ± 0.003 | < 0.012 | | 01-25-23 | 467 | 0.025 ± 0.004 | < 0.011 | 07-26-23 | 539 | 0.024 ± 0.003 | < 0.013 | | 02-01-23 | 471 | 0.035 ± 0.004 | < 0.010 | 08-02-23 | 539 | 0.020 ± 0.003 | < 0.014 | | 02-08-23 | 524 | 0.037 ± 0.004 | < 0.008 | 08-09-23 | 524 | 0.026 ± 0.003 | < 0.01 | | 02-15-23 | 487 | 0.020 ± 0.003 | < 0.010 | 08-16-23 | 515 | 0.023 ± 0.003 | < 0.01 | | 02-22-23 | 499 | 0.036 ± 0.004 | < 0.005 | 08-23-23 | 528 | 0.023 ± 0.003 | < 0.018 | | 03-02-23 | 561 | 0.018 ± 0.003 | < 0.008 | 08-30-23 | 516 | 0.016 ± 0.003 | < 0.013 | | 03-09-23 | 491 | 0.023 ± 0.003 | < 0.006 | 09-07-23 | 574 | 0.032 ± 0.003 | < 0.009 | | 03-15-23 | 399 | 0.012 ± 0.004 | < 0.015 | 09-13-23 | 419 | 0.017 ± 0.003 | < 0.020 | | 03-22-23 | 478 | 0.026 ± 0.004 | < 0.009 | 09-20-23 | 495 | 0.022 ± 0.003 | < 0.014 | | 03-29-23 | 480 | 0.029 ± 0.004 | < 0.006 | 09-27-23 | 477 | 0.027 ± 0.003 | < 0.009 | | 1Q 2023 | Mean ± s.d. | 0.028 ± 0.008 | < 0.015 | 3Q 2023 | Mean ± s.d. | 0.023 ± 0.004 | < 0.020 | | 04-05-23 | 474 | 0.029 ± 0.004 | < 0.009 | 10-04-23 | 476 | 0.030 ± 0.004 | < 0.012 | | 04-12-23 | 446 | 0.035 ± 0.004 | < 0.009 | 10-11-23 | 462 | 0.026 ± 0.004 | < 0.012 | | 04-19-23 | 462 | 0.021 ± 0.003 | < 0.003 | 10-11-23 | 429 | 0.017 ± 0.004 | < 0.016 | | 04-26-23 | 466 | 0.015 ± 0.003 | < 0.008 | 10-25-23 | 454 | 0.033 ± 0.004 | < 0.012 | | 05-03-23 | 422 | 0.011 ± 0.003 | < 0.015 | 11-01-23 | 451 | 0.024 ± 0.004 | < 0.013 | | 05-10-23 | 461 | 0.015 ± 0.003 | < 0.010 | 11-08-23 | 447 | 0.047 ± 0.004 | < 0.006 | | 05-17-23 | 472 | 0.020 ± 0.003 | < 0.009 | 11-15-23 | 451 | 0.023 ± 0.003 | < 0.011 | | 05-24-23 | 481 | 0.019 ± 0.003 | < 0.010 | 11-22-23 | 450 | 0.032 ± 0.004 | < 0.008 | | 05-30-23 | 421 | 0.017 ± 0.003 | < 0.009 | 11-29-23 | 468 | 0.028 ± 0.004 | < 0.009 | | 06-06-23 | 476 | 0.028 ± 0.004 | < 0.007 | 12-06-23 | 479 | 0.034 ± 0.004 | < 0.01 | | 06-14-23 | 527 | 0.015 ± 0.003 | < 0.008 | 12-13-23 | 474 | 0.033 ± 0.004 | < 0.010 | | 06-21-23 | 453 | 0.023 ± 0.003 | < 0.012 | 12-20-23 | 473 | 0.034 ± 0.004 | < 0.009 | | 06-28-23 | 460 | 0.016 ± 0.003 | < 0.018 | 12-27-23 | 582 | 0.049 ± 0.004 | < 0.010 | | | | | | 01-03-24 | 579 | 0.021 ± 0.003 | < 0.013 | | 2Q 2023 | Mean ± s.d. | 0.020 ± 0.007 | < 0.018 | 4Q 2023 | Mean ± s.d. | 0.031 ± 0.009 | < 0.016 | | | | | | Cumulative | Average | 0.026 | | YEAR: 2023 L-24-096 Page 64 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-7 Units: pCi/m³ | Date | Volume | | | Date | Volume | | | |-------------|-------------------|-------------------|---------|------------|-------------------|-------------------|---------| | Collected | (m ³) | Gross Beta | I-131 | Collected | (m ³) | Gross Beta | I-131 | | Required LL | <u>D</u> | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 658 | 0.029 ± 0.003 | < 0.010 | 07-04-23 | 390 | 0.034 ± 0.004 | < 0.017 | | 01-11-23 | 674 | 0.023 ± 0.003 | < 0.006 | 07-12-23 | 505 | 0.027 ± 0.003 | < 0.012 | | 01-18-23 | 673 | 0.020 ± 0.003 | < 0.005 | 07-19-23 | 416 | 0.034 ± 0.004 | < 0.007 | | 01-25-23 | 653 | 0.018 ± 0.003 | < 0.008 | 07-26-23 | 408 | 0.035 ± 0.004 | < 0.017 | | 02-01-23 | 653 | 0.024 ± 0.003 | < 0.007 | 08-02-23 | | 0.026 ± 0.003 | < 0.013 | | 02-08-23 | 616 | 0.030 ± 0.003 | < 0.007 | 08-09-23 | 552 | 0.025 ± 0.003 | < 0.015 | | 02-15-23 | 546 | 0.026 ± 0.003 | < 0.009 | 08-16-23 | 532 | 0.017 ± 0.003 | < 0.015 | | 02-22-23 | 555 | 0.029 ± 0.003 | < 0.005 | 08-23-23 | 542 | 0.022 ± 0.003 | < 0.018 | | 03-02-23 | 625 | 0.021 ± 0.003 | < 0.007 | 08-30-23 | 535 | 0.016 ± 0.003 | < 0.013 | | 03-09-23 | 527 | 0.027 ± 0.003 | < 0.006 | 09-07-23 | 622 | 0.026 ± 0.003 | < 0.008 | | 03-15-23 | 453 | 0.019 ± 0.004 | < 0.013 | 09-13-23 | 437 | 0.017 ± 0.003 | < 0.019 | | 03-22-23 | 533 | 0.029 ± 0.003 | < 0.008 | 09-20-23 | 553 | 0.018 ± 0.003 | < 0.012 | | 03-29-23 | 522 | 0.028 ± 0.003 | < 0.006 | 09-27-23 | 529 | 0.021 ± 0.003 | < 0.008 | | IQ 2023 | Mean ± s.d. | 0.025 ± 0.004 | < 0.013 | 3Q 2023 | Mean ± s.d. | 0.024 ± 0.007 | < 0.019 | | 04-05-23 | 533 | 0.030 ± 0.003 | < 0.008 | 10-04-23 | 526 | 0.035 ± 0.003 | < 0.011 | | 04-12-23 | 502 | 0.037 ± 0.004 | < 0.008 | 10-11-23 | 532 | 0.026 ± 0.003 | < 0.012 | | 04-19-23 | 480 | 0.024 ± 0.003 | < 0.010 | 10-18-23 | 510 | 0.015 ± 0.003 | < 0.013 | | 04-26-23 | 543 | 0.016 ± 0.003 | < 0.007 | 10-25-23 | 521 | 0.030 ± 0.003 | < 0.010 | | 05-03-23 | 489 | 0.009 ± 0.003 | < 0.013 | 11-01-23 | 507 | 0.024 ± 0.003 | < 0.012 | | 05-10-23 | 519 | 0.019 ± 0.003 | < 0.009 | 11-08-23 | 489 | 0.048 ± 0.004 | < 0.008 | | 05-17-23 | 517 | 0.025 ± 0.003 | < 0.008 | 11-15-23 | 496 | 0.021 ± 0.003 | < 0.010 | | 05-24-23 | 485 | 0.026 ± 0.003 | < 0.010 | 11-22-23 | 489 | 0.033 ± 0.004 | < 0.007 | | 05-30-23 | 406 | 0.023 ± 0.004 | < 0.010 | 11-29-23 | 492 | 0.027 ± 0.004 | < 0.008 | | 06-06-23 | 477 | 0.031 ± 0.004 | < 0.007 | 12-06-23 | 491 | 0.036 ± 0.004 | < 0.01 | | 06-14-23 | 531 | 0.022 ± 0.003 | < 0.008 | 12-13-23 | 469 | 0.035 ± 0.004 | < 0.010 | | 06-21-23 | 469 | 0.028 ± 0.003 | < 0.012 | 12-20-23 | 472 | 0.036 ± 0.004 | < 0.009 | | 06-28-23 | 453 | 0.019 ± 0.003 | < 0.018 | 12-27-23 | 499 | 0.048 ± 0.004 | < 0.012 | | | | | | 01-03-24 | 514 | 0.024 ± 0.003 | < 0.015 | | 2Q 2023 | Mean ± s.d. | 0.024 ± 0.007 | < 0.018 | 4Q 2023 | Mean ± s.d. | 0.031 ± 0.009 | < 0.015 | | | | | | Cumulative | Average | 0.026 | | YEAR: 2023 L-24-096 Page 65 of 81 Company: Energy Harbor **Plant: Perry Nuclear Power Plant** **PNPP** Table 2. Airborne particulates and charcoal canisters, analyses for gross beta and iodine-131. Location: P-35 Units: pCi/m³ | Date
Collected | Volume
(m³) | Gross Beta | I-131 | Date
Collected | Volume
(m³) | Gross Beta | I-131 | |-------------------|----------------|-------------------|---------|-------------------|----------------|-------------------|---------| | Required LL | D | 0.0075 | 0.050 | | | 0.0075 | 0.050 | | 01-04-23 | 569 | 0.034 ± 0.003 | < 0.013 | 07-04-23 | 469 | 0.028 ± 0.004 | < 0.018 | | 01-11-23 | 590 | 0.025 ± 0.003 | < 0.014 | 07-12-23 | 618 | 0.026 ± 0.003 | < 0.014 | | 01-18-23 | 590 | 0.028 ± 0.003 | < 0.005 | 07-19-23 | 537 | 0.026 ± 0.003 | < 0.012 | | 01-25-23 | 574 | 0.020 ± 0.003 | < 0.007 | 07-26-23 | 539 | 0.028 ± 0.003 | < 0.013 | | 02-01-23 | 581 | 0.023 ± 0.003 | < 0.005 | 08-02-23 | 534 | 0.017 ± 0.003 | < 0.013 | | 02-08-23 | 592 | 0.032 ± 0.003 | < 0.008 | 08-09-23 | 586 | 0.026 ± 0.003 | < 0.009 | | 02-15-23 | 539 | 0.027 ± 0.003 | < 0.009 | 08-16-23 | 572 | 0.023 ± 0.003 | < 0.011 | | 02-22-23 | 555 | 0.034 ± 0.003 | < 0.006 | 08-23-23 | 589 | 0.023 ± 0.003 | < 0.009 | | 03-02-23 | 626 | 0.018 ± 0.003 | < 0.006 | 08-30-23 | 570 | 0.014 ± 0.003 | < 0.012 | | 03-09-23 | 535 | 0.023 ± 0.003 | < 0.003 | 09-07-23 | 673 | 0.028 ± 0.003 | < 0.007 | | 03-15-23 | 463 | 0.016 ± 0.003 | < 0.011 | 09-13-23 | 487 | 0.015 ± 0.003 | < 0.005 | | 03-22-23 | 547 | 0.028 ± 0.003 | < 0.010 | 09-20-23 | 603 | 0.020 ± 0.003 | < 0.006 | | 03-29-23 | 540 | 0.033 ± 0.003 | < 0.006 | 09-27-23 | 580 | 0.026 ± 0.003 | < 0.006 | | 1Q 2023 | Mean
± s.d. | 0.026 ± 0.006 | < 0.014 | 3Q 2023 | Mean ± s.d. | 0.023 ± 0.005 | < 0.018 | | 04-05-23 | 556 | 0.027 ± 0.003 | < 0.009 | 10-04-23 | 572 | 0.030 ± 0.003 | < 0.006 | | 04-12-23 | 553 | 0.036 ± 0.003 | < 0.010 | 10-11-23 | 593 | 0.023 ± 0.003 | < 0.000 | | 04-19-23 | 549 | 0.025 ± 0.003 | < 0.010 | 10-18-23 | 565 | 0.015 ± 0.003 | < 0.006 | | 04-26-23 | 548 | 0.015 ± 0.003 | < 0.005 | 10-25-23 | 583 | 0.029 ± 0.003 | < 0.004 | | 05-03-23 | 544 | 0.009 ± 0.003 | < 0.010 | 11-01-23 | 578 | 0.021 ± 0.003 | < 0.005 | | 05-10-23 | 544 | 0.018 ± 0.003 | < 0.009 | 11-08-23 | 570 | 0.049 ± 0.004 | < 0.006 | | 05-17-23 | 556 | 0.024 ± 0.003 | < 0.009 | 11-15-23 | 581 | 0.020 ± 0.003 | < 0.007 | | 05-24-23 | 545 | 0.022 ± 0.003 | < 0.010 | 11-22-23 | 573 | 0.031 ± 0.003 | < 0.008 | | 05-30-23 | 463 | 0.018 ± 0.003 | < 0.017 | 11-29-23 | 579 | 0.025 ± 0.003 | < 0.006 | | 06-06-23 | 550 | 0.025 ± 0.003 | < 0.012 | 12-06-23 | 589 | 0.034 ± 0.003 | < 0.006 | | 06-14-23 | 622 | 0.022 ± 0.003 | < 0.013 | 12-13-23 | 563 | 0.035 ± 0.003 | < 0.004 | | 06-21-23 | 547 | 0.024 ± 0.003 | < 0.011 | 12-20-23 | 597 | 0.032 ± 0.003 | < 0.005 | | 06-28-23 | 538 | 0.018 ± 0.003 | < 0.016 | 12-27-23 | 591 | 0.043 ± 0.003 | < 0.006 | | | | | | 01-03-24 | 559 | 0.021 ± 0.003 | < 0.006 | | 2Q 2023 | Mean ± s.d. | 0.022 ± 0.007 | < 0.017 | 4Q 2023 | Mean ± s.d. | 0.029 ± 0.009 | < 0.008 | | | | | | Cumulative | Average | 0.025 | | YEAR: 2023 L-24-096 Page 66 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Table 3. Airborne particulates, analyses for gamma-emitting isotopes. Collection: Quarterly Composite Units: pCi/m³ | Location | | PE | -1 | | | |------------------------|---------------|---------------|---------------|---------------|----------| | Quarter | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | Req. LLD | | Lab Code | PEAP - 866 | PEAP - 2130 | PEAP - 3094 | PEAP - 4128 | | | Vol. (m ³) | 6141 | 7416 | 7499 | 7321 | | | Be-7 | 0.051 ± 0.009 | 0.054 ± 0.010 | 0.052 ± 0.007 | 0.038 ± 0.007 | - | | Co-58 | < 0.0006 | < 0.0005 | < 0.0003 | < 0.0004 | - | | Co-60 | < 0.0005 | < 0.0005 | < 0.0010 | < 0.0002 | - | | Cs-134 | < 0.0005 | < 0.0005 | < 0.0004 | < 0.0006 | 0.005 | | Cs-137 | < 0.0006 | < 0.0004 | < 0.0007 | < 0.0004 | 0.045 | | Location | | PE | :-3 | | | | Lab Code | PEAP - 867 | PEAP - 2131 | PEAP - 3096 | PEAP - 4129 | | | Vol. (m³) | 7211 | 7044 | 7253 | 7707 | | | Be-7 | 0.065 ± 0.009 | 0.063 ± 0.011 | 0.062 ± 0.009 | 0.043 ± 0.007 | | | Co-58 | < 0.0003 | < 0.0005 | < 0.0004 | < 0.0003 | | | Co-60 | < 0.0005 | < 0.0004 | < 0.0002 | < 0.0002 | - | | Cs-134 | < 0.0004 | < 0.0005 | < 0.0004 | < 0.0005 | 0.005 | | Cs-137 | < 0.0005 | < 0.0002 | < 0.0004 | < 0.0003 | 0.045 | | Location | | PE | -4 | | | | Lab Code | PEAP - 868 | PEAP - 2132 | PEAP - 3097 | PEAP - 4130 | | | Vol. (m³) | 7699 | 7054 | 7270 | 8121 | | | Be-7 | 0.062 ± 0.009 | 0.058 ± 0.010 | 0.060 ± 0.008 | 0.045 ± 0.007 | | | Co-58 | < 0.0004 | < 0.0005 | < 0.0005 | < 0.0003 | - | | Co-60 | < 0.0008 | < 0.0002 | < 0.0010 | < 0.0004 | - | | Cs-134 | < 0.0004 | < 0.0006 | < 0.0005 | < 0.0004 | 0.005 | | Cs-137 | < 0.0006 | < 0.0004 | < 0.0007 | < 0.0004 | 0.045 | | Location | | PE | -5 | | | | Lab Code | PEAP - 869 | PEAP - 2133 | PEAP - 3098 | PEAP - 4131 | | | Vol. (m³) | 7038 | 7027 | 7556 | 8256 | | | Be-7 | 0.063 ± 0.011 | 0.058 ± 0.010 | 0.053 ± 0.009 | 0.046 ± 0.007 | | | Co-58 | < 0.0005 | < 0.0004 | < 0.0004 | < 0.0003 | | | Co-60 | < 0.0005 | < 0.0002 | < 0.0003 | < 0.0006 | | | Cs-134 | < 0.0003 | < 0.0004 | < 0.0005 | < 0.0004 | 0.005 | | Cs-137 | < 0.0005 | < 0.0004 | < 0.0003 | < 0.0002 | 0.045 | | Annual Radiological Environmental | Operating Report | |--|------------------| |--|------------------| Page 67 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Table 3. Airborne particulates, analyses for gamma-emitting isotopes. Collection: Quarterly Composite Units: pCi/m³ | Location | | PI | E-6 | | | |------------------------|---------------|---------------|---------------|---------------|----------| | Quarter | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | Req. LLD | | Lab Code | PEAP - 871 | PEAP - 2134 | PEAP - 3099 | PEAP - 4132 | | | Vol. (m³) | 6375 | 6021 | 6652 | 6675 | | | Be-7 | 0.063 ± 0.000 | 0.068 ± 0.014 | 0.063 ± 0.009 | 0.049 ± 0.008 | _ | | Co-58 | < 0.0004 | < 0.0007 | < 0.0003 | < 0.0004 | | | Co-60 | < 0.0006 | < 0.0007 | < 0.0011 | < 0.0005 | - 5 | | Cs-134 | < 0.0005 | < 0.0005 | < 0.0004 | < 0.0005 | 0.005 | | Cs-137 | < 0.0003 | < 0.0004 | < 0.0007 | < 0.0003 | 0.045 | | Location | | PE | E-7 | | | | Lab Code | PEAP - 872 | PEAP - 2135 | PEAP - 3100 | PEAP - 4133 | | | Vol. (m ³) | 7688 | 6404 | 6599 | 7007 | | | Be-7 | 0.054 ± 0.009 | 0.066 ± 0.011 | 0.068 ± 0.009 | 0.040 ± 0.008 | 2 | | Co-58 | < 0.0007 | < 0.0006 | < 0.0005 | < 0.0007 | | | Co-60 | < 0.0010 | < 0.0004 | < 0.0002 | < 0.0005 | | | Cs-134 | < 0.0005 | < 0.0006 | < 0.0005 | < 0.0006 | 0.005 | | Cs-137 | < 0.0007 | < 0.0004 | < 0.0004 | < 0.0004 | 0.045 | | Location | | PE | -35 | | | | Lab Code | PEAP - 873 | PEAP - 2136 | PEAP - 3101 | PEAP - 4134 | | | Vol. (m³) | 7301 | 7115 | 7357 | 8093 | | | Be-7 | 0.063 ± 0.011 | 0.064 ± 0.011 | 0.061 ± 0.008 | 0.043 ± 0.012 | | | Co-58 | < 0.0005 | < 0.0006 | < 0.0003 | < 0.0006 | | | Co-60 | < 0.0004 | < 0.0002 | < 0.0010 | < 0.0005 | - | | Cs-134 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0006 | 0.005 | | Cs-137 | < 0.0003 | < 0.0003 | < 0.0007 | < 0.0005 | 0.045 | Page 68 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** | Location: P-34 | | Collection: Monthly | Units: pCi/L | | | |----------------|------------|---------------------|--------------|------------|------------| | | | | | | | | Lab Code | PELW- 157 | PELW- 371 | PELW- 963 | PELW- 1206 | | | Start Date | 12-27-22 | 01-23-23 | 02-21-23 | 03-21-23 | Req. LLD | | End Date | 01-23-23 | 02-21-23 | 03-21-23 | 04-25-23 | | | Gross beta | 1.1 ± 0.6 | 1.3 ± 0.6 | 3.3 ± 0.7 | < 0.9 | 3.0 | | Mn-54 | < 1.8 | < 3.9 | < 1.1 | < 1.5 | 11 | | Fe-59 | < 4.8 | < 5.3 | < 5.3 | < 8.1 | 22 | | Co-58 | < 2.3 | < 3.8 | < 1.7 | < 2.6 | 11 | | Co-60 | < 1.9 | < 3.8 | < 1.2 | < 2.0 | 11 | | Zn-65 | < 3.9 | < 3.5 | < 3.4 | < 4.2 | 22 | | Zr-95 | < 4.1 | < 8.0 | < 4.1 | < 4.3 | 22 | | Nb-95 | < 1.8 | < 4.1 | < 3.1 | < 4.2 | 11 | | Cs-134 | < 1.9 | < 5.1 | < 1.6 | < 2.3 | 11 | | Cs-137 | < 2.5 | < 5.0 | < 1.8 | < 2.8 | 13 | | Ba-140 | < 9.4 | < 12.0 | < 39.2 | < 41.6 | 45 | | La-140 | < 2.5 | < 5.2 | < 7.9 | < 9.7 | 11 | | | | | | - | | | Lab Code | PELW- 1317 | PELW- 1889 | PELW- 2526 | PELW- 2602 | | | Start Date | 04-25-23 | 05-22-23 | 06-28-23 | 07-25-23 | Req. LLD | | End Date | 05-22-23 | 06-28-23 | 07-25-23 | 08-29-23 | Neq. LLD | | Gross beta | < 0.8 | | | | 2.0 | | | | 1.0 ± 0.5 | 1.0 ± 0.5 | 1.2 ± 0.5 | 3.0 | | Mn-54 | < 3.1 | < 1.4 | < 1.5 | < 2.5 | 11 | | Fe-59 | < 3.4 | < 3.7 | < 5.5 | < 4.5 | 22 | | Co-58 | < 1.9 | < 1.7 | < 1.7 | < 2.0 | 11 | | Co-60 | < 2.3 | < 2.6 | < 3.5 | < 7.5 | 11 | | Zn-65 | < 6.3 | < 2.7 | < 3.8 | < 3.4 | 22 | | Zr-95 | < 3.6 | < 3.8 | < 4.4 | < 3.3 | 22 | | Nb-95 | < 2.5 | < 2.0 | < 2.2 | < 5.1 | 11 | | Cs-134 | < 2.9 | < 1.4 | < 1.8 | < 3.3 | 11 | | Cs-137 | < 2.7 | < 2.5 | < 3.2 | < 7.2 | 13 | | Ba-140 | < 16.7 | < 37.8 | < 41.3 | < 24.2 | 45 | | La-140 | < 3.5 | < 9.9 | < 8.1 | < 3.8 | 11 | | Lab Code | PELW- 2928 | PELW- 3281 | PELW- 3781 | PELW- 3961 | | | Start Date | 08-29-23 | 09-26-23 | 10-24-23 | 11-28-23 | Reg. LLD | | End Date | 09-26-23 | 10-24-23 | 11-28-23 | 12-19-23 | . rod. CLD | | Gross beta | 1.3 ± 0.6 | 3.8 ± 0.7 | 2.5 ± 0.7 | 1.0 ± 0.5 | 3.0 | | Mn-54 | < 2.4 | < 2.1 | < 3.3 | < 2.9 | 11 | | Fe-59 | < 2.7 | < 4.3 | | | | | Co-58 | | | < 5.0 | < 4.7 | 22 | | | < 3.4 | < 1.7 | < 1.8 | < 2.6 | 11 | | Co-60 | < 6.6 | < 3.5 | < 4.1 | < 2.6 | 11 | | Zn-65 | < 3.4 | < 4.9 | < 2.5 | < 6.3 | 22 | | Zr-95 | < 4.4 | < 5.6 | < 4.9 | < 6.4 | 22 | | Nb-95 | < 4.1 | < 2.9 | < 2.3 | < 6.5 | 11 | < 4.0 < 6.3 < 3.1 < 14.2 Cs-134 Cs-137 Ba-140 La-140 < 2.9 < 3.2 < 18.2 < 5.5 11 13 45 < 3.1 < 4.9 < 29.1 < 3.5 < 3.0 < 11.2 < 3.7 a Recount = 1.8 ± 0.3 pCi/L. Page 69 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** | Table 4. Lake water, analyses for gross beta and gamma emitting isotopes. | PNPP | |---|------| |---|------| | Locat | ion: P-36 | Collection: Monthl | y composites | Units: pCi/L | | | |------------------------|-----------------------|-----------------------|-----------------------|------------------------|----------|--| | Lab Code
Start Date | PELW- 158
12-27-22 | PELW- 373
01-23-23 | PELW- 964
02-21-23 | PELW- 1208
03-21-23 | Req. LLI | | | End Date | 01-23-23 | 02-21-23 | 03-21-23 | 04-25-23 | req. LLi | | | Gross beta | 1.8 ± 0.6 | < 0.9 | < 0.9 | 1.7 ± 0.6 | 3.0 | | | Mn-54 | < 1.7 | < 3.1 | < 1.9 | < 2.2 | 11 | | | Fe-59 | < 3.8 | < 6.0 | < 6.1 | < 6.3 | 22 | | | Co-58 | < 2.1 | < 2.0 | < 1.9 | < 2.6 | 11 | | | Co-60 | < 1.5 | < 3.4 | < 1.6 | < 5.4 | 11 | | | Zn-65 | < 4.0 | < 3.9 | < 6.6 | < 5.6 | 22 | | | Zr-95 | < 2.9 | < 6.3 | < 5.6 | < 4.2 | 22 | | | Nb-95 | < 2.0 | < 4.0 | < 4.7 | < 3.9 | 11 | | | Cs-134 | < 2.3 | < 3.4 | < 2.5 | < 2.4 | 11 | | | Cs-137 | < 2.7 | < 3.3 | < 2.6 | < 4.5 | 13 | | | Ba-140 | < 9.0 | < 10.3 | < 31.1 | < 43.2 | 45 | | | La-140 | < 1.2 | < 3.3 | < 6.8 | < 6.8 | 11 | | | Lab Code | PELW- 1318 | PELW- 1890 | PELW- 2527 | PELW- 2603 | | | | Start Date | 04-25-23 | 05-22-23 | 06-28-23 | 07-25-23 | Req. LL | | | End Date | 05-22-23 | 06-28-23 | 07-25-23 | 08-29-23 | 11041 | | | Gross beta | < 0.9 | < 0.8 | < 0.8 | 1.0 ± 0.8 | 3.0 | | | Mn-54 | < 3.1 | < 2.5 | < 2.0 | < 2.9 | 11 | | | Fe-59 | < 3.2 | < 7.5 | < 5.2 | < 5.8 | 22 | | |
Co-58 | < 3.2 | < 3.4 | < 1.4 | < 3.8 | 11 | | | Co-60 | < 2.5 | < 2.4 | < 4.0 | < 8.0 | 11 | | | Zn-65 | < 5.5 | < 3.6 | < 3.9 | < 8.2 | 22 | | | Zr-95 | < 4.1 | < 6.6 | < 4.4 | < 7.7 | 22 | | | Nb-95 | < 1.9 | < 5.1 | < 4.5 | < 3.5 | 11 | | | Cs-134 | < 2.9 | < 2.7 | < 2.3 | < 4.8 | 11 | | | Cs-137
Ba-140 | < 3.4
< 19.3 | < 2.9 | < 3.3 | < 6.7 | 13 | | | La-140 | < 5.4 | < 34.7
< 10.5 | < 41.5
< 5.4 | < 16.1
< 3.9 | 45
11 | | | | | | | | | | | Lab Code | PELW- 2929 | PELW- 3282 | PELW- 3782 | PELW- 3962 | | | | Start Date | 08-29-23 | 09-26-23 | 10-24-23 | 11-28-23 | Req. LL | | | End Date | 09-26-23 | 10-24-23 | 11-28-23 | 12-19-23 | | | | Gross beta
Mn-54 | 1.1 ± 0.5 | 3.4 ± 0.7 | 2.4 ± 0.6 | 1.5 ± 0.6 | 3.0 | | | vin-54
Fe-59 | < 1.8 | < 2.8 | < 2.5 | < 2.0 | 11 | | | | < 4.1 | < 3.2 | < 5.3 | < 7.0 | 22 | | | Co-58
Co-60 | < 3.8 | < 1.7 | < 3.2 | < 2.0 | 11 | | | Zn-65 | < 5.8
< 4.7 | < 8.4
< 4.9 | < 6.2 | < 5.7 | 11 | | | Zr-95 | < 4.7 | < 6.7 | < 3.3 | < 4.8 | 22 | | | Nb-95 | < 3.2 | < 2.9 | < 7.9
< 2.8 | < 4.4 | 22 | | | ND-93
Cs-134 | < 3.5 | < 5.1 | < 3.8 | < 3.4
< 3.4 | 11 | | | Cs-137 | < 5.9 | < 7.6 | < 5.8 | < 5.8 | 11
13 | | | Ba-140 | < 12.3 | < 9.2 | < 27.7 | < 35.7 | 45 | | | La-140 | < 3.0 | < 2.7 | < 2.6 | < 3.8 | 11 | | ^{*} Recount 1.0 ± 0.3 pCi/L. Mn-54 Company: Energy Harbor **Plant: Perry Nuclear Power Plant** Table 4. Lake water, analyses for gross beta and gamma emitting isotopes. PNPP Location: P-39 Collection: Monthly composites Units: pCi/L Lab Code PELW- 159 PELW- 374 PELW- 965 PELW- 1209 Start Date 12-27-22 01-23-23 02-21-23 03-31-23 Req. LLD End Date 01-23-23 02-21-23 03-21-23 04-25-23 Gross beta 1.2 ± 0.5 1.0 ± 0.5 < 0.9 1.1 ± 0.5 3.0 < 1.5 < 0.8 < 2.1 < 1.9 11 | Fe-59 | < 3.0 | < 2.7 | < 2.7 | < 5.3 | 22 | |----------|------------|------------|------------|------------|----| | Co-58 | < 1.8 | < 0.8 | < 3.2 | < 2.5 | 11 | | Co-60 | < 1.5 | < 1.2 | < 5.8 | < 2.1 | 11 | | Zn-65 | < 2.8 | < 1.8 | < 4.9 | < 2.3 | 22 | | Zr-95 | < 2.9 | < 1.2 | < 6.7 | < 2.7 | 22 | | Nb-95 | < 1.7 | < 1.2 | < 4.8 | < 3.6 | 11 | | Cs-134 | < 1.5 | < 1.0 | < 3.2 | < 1.9 | 11 | | Cs-137 | < 1.2 | < 1.2 | < 4.2 | < 2.2 | 13 | | Ba-140 | < 4.7 | < 4.1 | < 43.4 | < 26.2 | 45 | | La-140 | < 1.7 | < 0.9 | < 7.8 | < 5.5 | 11 | | Lab Code | PELW- 1319 | PELW- 1891 | PELW- 2528 | PELW- 2604 | | | Start Date | 04-25-23 | 05-22-23 | 06-28-23 | 07-25-23 | Reg. LLD | |------------|---------------|-----------|----------|----------|----------| | End Date | 05-22-23 | 06-28-23 | 07-25-23 | 08-29-23 | | | Gross beta | 1.4 ± 0.6 | 1.0 ± 0.5 | < 0.9 | < 0.9 | 3.0 | | Mn-54 | < 2.0 | < 0.8 | < 2.2 | < 6.5 | 11 | | Fe-59 | < 5.4 | < 4.1 | < 5.0 | < 8.3 | 22 | | Co-58 | < 2.7 | < 1.5 | < 3.3 | < 8.8 | 11 | | Co-60 | < 6.5 | < 2.7 | < 4.4 | < 5.6 | 11 | | Zn-65 | < 1.9 | < 2.2 | < 3.7 | < 5.5 | 22 | | Zr-95 | < 6.1 | < 2.7 | < 5.1 | < 9.1 | 22 | | Nb-95 | < 2.5 | < 2.5 | < 4.7 | < 7.1 | 11 | | Cs-134 | < 3.2 | < 1.4 | < 2.4 | < 6.6 | 11 | | Cs-137 | < 5.5 | < 2.3 | < 3.8 | < 5.1 | 13 | | Ba-140 | < 20.2 | < 36.0 | < 42.2 | < 29.3 | 45 | | La-140 | < 2.8 | < 6.6 | < 8.0 | < 5.6 | 11 | | | 2.0 | 0.0 | 0.0 | 0.0 | | |------------|---------------|------------|------------|------------|----------| | Lab Code | PELW- 2930 | PELW- 3283 | PELW- 3783 | PELW- 3963 | | | Start Date | 08-29-23 | 09-26-23 | 10-24-23 | 11-28-23 | Req. LLD | | End Date | 09-26-23 | 10-24-23 | 11-28-23 | 12-19-23 | | | Gross beta | 1.0 ± 0.5 | 5.6 ± 0.9 | < 0.8 | < 0.4 | 3.0 | | Mn-54 | < 3.9 | < 0.9 | < 2.1 | < 2.7 | 11 | | Fe-59 | < 2.3 | < 1.8 | < 3.2 | < 7.0 | 22 | | Co-58 | < 3.3 | < 0.8 | < 2.1 | < 3.2 | 11 | | Co-60 | < 7.2 | < 1.3 | < 6.6 | < 2.8 | 11 | | Zn-65 | < 3.4 | < 1.5 | < 8.4 | < 7.2 | 22 | | Zr-95 | < 5.9 | < 1.5 | < 4.5 | < 7.4 | 22 | | Nb-95 | < 3.5 | < 1.2 | < 3.1 | < 3.2 | 11 | | Cs-134 | < 4.5 | < 0.9 | < 4.5 | < 3.3 | 11 | | Cs-137 | < 8.0 | < 1.1 | < 6.4 | < 3.6 | 13 | | Ba-140 | < 17.0 | < 5.0 | < 23.0 | < 22.2 | 45 | | La-140 | < 2.4 | < 1.3 | < 2.5 | < 7.3 | 11 | ^{*}Reanalysis = 1.1 ± 0.5 pCi/L. ^b Backup sample analysis result = 1.5 ± 0.6 pCi/L. Page 71 of 81 Company: Energy Harbor Plant: Perry Nuclear Power Plant Table 4. Lake water, analyses for gross beta and gamma emitting isotopes. | Location: P-59 | | Collection: Monthly composites | | Units: pCi/L | | |------------------------|-----------------------|--------------------------------|-----------------------|------------------------|----------| | Lab Code
Start Date | PELW- 160
12-27-22 | PELW- 375
01-23-23 | PELW- 966
02-21-23 | PELW- 1199
03-21-23 | Req. LLD | | End Date | 01-23-23 | 02-21-23 | 03-21-23 | 04-25-23 | Ney. LLD | | Gross beta | 1.7 ± 0.6 | 1.8 ± 0.6 | 1.7 ± 0.6 | 1.5 ± 0.6 | 3.0 | | Mn-54 | < 1.8 | < 1.1 | < 1.8 | < 1.8 | 11 | | Fe-59 | < 3.1 | < 2.0 | < 4.4 | < 7.3 | 22 | | Co-58 | < 2.7 | < 1.3 | < 2.4 | < 2.2 | 11 | | Co-60 | < 6.0 | < 2.8 | < 1.3 | < 5.1 | 11 | | Zn-65 | < 4.9 | < 2.9 | < 2.8 | < 4.5 | 22 | | Zr-95 | < 4.9 | < 1.8 | < 3.7 | < 4.8 | 22 | | Nb-95 | < 2.7 | < 1.4 | < 3.9 | < 4.2 | 11 | | Cs-134 | < 3.0 | < 1.3 | < 1.6 | < 2.6 | 11 | | Cs-137 | < 4.5 | < 2.4 | < 1.7 | < 4.3 | 13 | | Ba-140 | < 13.8 | < 4.1 | < 30.8 | < 30.5 | 45 | | La-140 | < 2.4 | < 1.7 | < 8.8 | < 7.1 | 11 | | Lab Code | PELW- 1320 | PELW- 1892 | PELW- 2529 | PELW- 2605 | | | Start Date | 04-25-23 | 05-22-23 | 06-28-23 | 07-25-23 | Reg. LLD | | End Date | 05-22-23 | 06-28-23 | 07-25-23 | 08-29-23 | req. LLD | | Gross beta | < 0.9 | 0.9 ± 0.5 | 0.9 ± 0.5 | < 0.8 | 3.0 | | Mn-54 | < 5.6 | < 1.3 | < 5.1 | < 7.3 | 11 | | Fe-59 | < 5.2 | < 1.8 | < 6.0 | < 5.7 | 22 | | Co-58 | < 3.0 | < 1.3 | < 2.8 | < 4.3 | 11 | | Co-60 | < 3.8 | < 2.7 | < 4.6 | < 4.0 | 11 | | Zn-65 | < 7.1 | < 2.9 | < 4.3 | < 6.1 | 22 | | Zr-95 | < 9.6 | < 3.8 | < 7.6 | < 8.5 | 22 | | Nb-95 | < 5.3 | < 2.4 | < 4.4 | < 6.9 | 11 | | Cs-134 | < 5.5 | < 1.4 | < 4.1 | < 5.9 | 11 | | Cs-137 | < 6.2 | < 2.3 | < 4.7 | < 6.0 | 13 | | Ba-140 | < 23.8 | < 26.9 | < 37.1 | < 31.3 | 45 | | La-140 | < 4.7 | < 5.4 | < 10.9 | < 3.5 | 11 | | Lab Code | PELW- 2931 | PELW- 3285 | PELW- 3784 | PELW- 3964 | | | Start Date | 08-29-23 | 09-26-23 | 10-24-23 | 11-28-23 | Req. LLD | | End Date | 09-26-23 | 10-24-23 | 11-28-23 | 12-19-23 | | | Gross beta | 1.6 ± 0.6 | 2.0 ± 0.6 | 1.2 ± 0.6 | 1.1 ± 0.6 | 3.0 | | Mn-54 | < 5.6 | < 4.6 | < 2.3 | < 2.7 | 11 | | Fe-59 | < 4.8 | < 6.8 | < 4.4 | < 5.2 | 22 | | Co-58 | < 7.8 | < 4.3 | < 4.2 | < 2.1 | 11 | | Co-60 | < 6.9 | < 7.7 | < 1.5 | < 2.6 | 11 | | Zn-65 | < 7.9 | < 3.5 | < 1.8 | < 5.1 | 22 | | Zr-95 | < 9.4 | < 6.2 | < 6.0 | < 2.7 | 22 | | Nb-95 | < 5.4 | < 2.1 | < 5.3 | < 5.2 | 11 | | Cs-134 | < 7.5 | < 3.6 | < 2.6 | < 2.2 | 11 | | Cs-137 | < 6.8 | < 8.6 | < 3.9 | < 2.9 | 13 | | Ba-140 | < 32.6 | < 12.7 | < 19.9 | < 18.5 | 45 | | La-140 | < 4.7 | < 4.2 | < 3.7 | < 7.7 | 11 | ^a Recount = 1.1 ± 0.3 pCi/L. Page 72 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** | Table 4. Lake water, analyses for gross beta and gamma emitting isotopes. | | | | | |---|--------------------------------|--------------|--|--| | Location: P-60 | Collection: Monthly composites | Units: pCi/L | | | | Location: P-60 | | Collection: Monthly composites | | Units: pCi/L | | |----------------|---------------|--------------------------------|---------------------|--------------|-----------| | Lab Code | PELW- 161 | PELW- 376 | PELW- 967 | PELW- 1210 | | | Start Date | 12-27-22 | 01-23-23 | 02-21-23 | 03-21-23 | Req. LLD | | End Date | 01-23-23 | 02-21-23 | 03-21-23 | 04-25-23 | | | Gross beta | 2.8 ± 0.7 | 1.0 ± 0.6 | 1.2 ± 0.6 | 1.4 ± 0.6 | 3.0 | | Mn-54 | < 2.3 | < 2.0 | < 1.6 | < 1.4 | 11 | | Fe-59 | < 5.1 | < 4.3 | < 3.5 | < 3.5 | 22 | | Co-58 | < 2.3 | < 1.7 | < 1.8 | < 1.5 | 11 | | Co-60 | < 2.0 | < 4.7 | < 2.9 | < 2.7 | 11 | | Zn-65 | < 2.5 | < 3.8 | < 2.8 | < 2.1 | 22 | | Zr-95 | < 5.1 | < 3.4 | < 3.4 | < 3.2 | 22 | | Nb-95 | < 2.9 | < 2.9 | < 3.0 | < 2.1 | 11 | | Cs-134 | < 2.3 | < 2.6 | < 1.4 | < 1.3 | 11 | | Cs-137 | < 2.1 | < 3.7 | < 2.4 | < 2.2 | 13 | | Ba-140 | < 9.5 | < 12.1 | < 32.6 | < 17.9 | 45 | | La-140 | < 1.8 | < 3.0 | < 8.4 | < 5.2 | 11 | | ab Code | PELW- 1321 | PELW- 1893 | PELW- 2530 | PELW- 2606 | | | Start Date | 04-25-23 | 05-22-23 | 06-28-23 | 07-25-23 | Reg. LLD | | End Date | 05-22-23 | 06-28-23 | 07-25-23 | 08-29-23 | rvoq. ccc | | Gross beta | < 1.0 | 1.3 ± 0.6 | 1.1 ± 0.6 | < 0.9 | 3.0 | | /n-54 | < 4.1 | < 1.2 | < 4.0 | < 6.0 | 11 | | e-59 | < 6.0 | < 2.5 | < 10.1 | < 6.4 | 22 | | Co-58 | < 2.2 | < 1.6 | < 3.7 | < 5.0 | 11 | | Co-60 | < 2.6 | < 2.4 | < 3.2 | < 5.3 | 11 | | Zn-65 | < 8.3 | < 2.4 | < 5.4 | < 5.7 | 22 | | Zr-95 | < 7.7 | < 3.3 | < 9.7 | < 10.9 | 22 | | Nb-95 | < 4.2 | < 2.6 | < 6.1 | < 7.3 | 11 | | Cs-134 | < 3.4 | < 1.3 | < 3.5 | < 7.5 | 11 | | Cs-137 | < 3.8 | < 2.0 | < 4.2 | < 3.7 | 13 | | 3a-140 | < 18.8 | < 25.1 | < 44.8 | < 20.9 | 45 | | .a-140 | < 5.8 | < 7.0 | < 12.4 ^a | < 8.4 | 11 | | ab Code | PELW- 2932 | PELW- 3286 | PELW- 3785 | PELW- 3965 | | | Start Date | 08-29-23 | 09-26-23 | 10-24-23 | 11-28-23 | Req. LLD | | End Date | 09-26-23 | 10-24-23 | 11-28-23 | 12-19-23 | | | Gross beta | 2.0 ± 0.6 | 2.7 ± 0.7 | 1.3 ± 0.6 | 1.2 ± 0.6 | 3.0 | | /ln-54 | < 7.6 | < 7.0 | < 2.3 | < 3.5 | 11 | | e-59 | < 5.2 | < 7.9 | < 7.4 | < 8.5 | 22 | | Co-58 | < 6.3 | < 3.7 | < 1.7 | < 2.3 | 11 | | Co-60 | < 4.4 | < 7.3 | < 1.8 | < 2.1 | 11 | | n-65 | < 12.7 | < 11.6 | < 4.5 | < 6.8 | 22 | | r-95 | < 9.2 | < 11.9 | < 4.8 | < 5.7 | 22 | | lb-95 | < 5.1 | < 7.5 | < 2.0 | < 3.0 | 11 | | S-134 | < 8.5 | < 9.9 | < 3.4 | < 3.4 | 11 | | Cs-137 | < 7.4 | < 4.2 | < 3.2 | < 4.1 | 13 | | 3a-140 | < 24.4 | < 38.4 | < 19.1 | < 31.1 | 45 | | _a-140 | < 5.2 | < 5.4 | < 3.9 | < 6.1 | 11 | ^a Unable to reach LLD due to late sample arrival. ^b Recount = 1.3 ± 0.3 pCi/L. YEAR: 2023 L-24-096 Page 73 of 81 Company:
Energy Harbor Plant: Perry Nuclear Power Plant Table 4. Lake Water, analysis for tritium. Collection: Quarterly composites of monthly collections. Units: pCi/L | O'IIIO | . poirt | Required limit of detection: | | 1500 pCi/L | | |----------|-----------|------------------------------|------------|------------|--| | Location | | P-34 | | | | | Period | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | | | Lab Code | PELW- 969 | PELW- 1915 | PELW- 2978 | PELW- 4019 | | | H-3 | 217 ± 88 | 166 ± 83 | < 167 | < 169 | | | Location | | P-36 | | | | | Period | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | | | Lab Code | PELW- 970 | PELW- 1916 | PELW- 2979 | PELW- 4020 | | | H-3 | 192 ± 86 | 192 ± 85 | < 167 | < 169 | | | Location | | P-39 | | | | | Period | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | | | Lab Code | PELW- 971 | PELW- 1917 | PELW- 2980 | PELW- 4021 | | | H-3 | < 162 | < 158 | < 167 | < 169 | | | Location | | P-59 | | | | | Period | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | | | Lab Code | PELW- 972 | PELW- 1918 | PELW- 2981 | PELW- 4022 | | | H-3 | 221 ± 88 | < 158 | < 167 | < 169 | | | Location | | P-60 | | | | | Period | 1st Qtr. | 2nd Qtr. | 3rd Qtr. | 4th Qtr. | | | Lab Code | PELW- 973 | PELW- 1919 | PELW- 2982 | PELW- 4023 | | | H-3 | < 162 | 187 ± 85 | < 167 | < 169 | | YEAR: 2023 L-24-096 Page 74 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 7. Food Products, analyses for gamma emitting isotopes. Collection: Monthly Units: pCi/kg wet | | | | | Office. Poling well | | |----------------|----------------|---------------|---------------|---------------------|-----------| | Location | : P-2 | | | | | | Lab Code | PEVE- 1958 | PEVE- 1959 | PEVE- 1970 | PEVE- 2382 | | | Date Collected | 07-12-23 | 07-12-23 | 07-13-23 | 08-08-23 | Reg. LLD | | Sample Type | Collard Greens | Kale | Turnip Greens | Turnip Greens | 1104. EED | | Be-7 | 570 ± 263 | 854 ± 202 | 292 ± 124 | 731 ± 288 | - | | K-40 | 4248 ± 559 | 6187 ± 511 | 3612 ± 463 | 5102 ± 605 | - | | Co-58 | < 17 | < 14 | < 15 | < 20 | - | | Co-60 | < 43 | < 11 | < 20 | < 22 | - | | I-131 | < 30 | < 21 | < 19 | < 35 | 45 | | Cs-134 | < 24 | < 21 | < 11 | < 22 | 45 | | Cs-137 | < 38 | < 13 | < 10 | < 23 | 60 | | Lab Code | PEVE- 2383 | PEVE- 2384 | PEVE- 2690 | PEVE- 2691 | | | Date Collected | 08-08-23 | 08-08-23 | 09-12-23 | 09-12-23 | Reg. LLD | | Sample Type | Collard Greens | Kale | Turnip Greens | Kale | | | Be-7 | 486 ± 248 | < 296 | 953 ± 257 | < 242 | | | K-40 | 3862 ± 488 | 4102 ± 839 | 5726 ± 614 | 4032 ± 522 | - | | Co-58 | < 17 | < 26 | < 21 | < 17 | - | | Co-60 | < 13 | < 32 | < 38 | < 39 | - | | I-131 | < 35 | < 40 | < 36 | < 39 | 45 | | Cs-134 | < 20 | < 27 | < 20 | < 22 | 45 | | Cs-137 | < 22 | < 37 | < 35 | < 36 | 60 | | Lab Code | PEVE- 2692 | PEVE- 3102 | PEVE- 3103 | PEVE- 3104 | | | Date Collected | 09-12-23 | 10-10-23 | 10-10-23 | 10-10-23 | Reg. LLD | | Sample Type | Collard Greens | Turnip Greens | Kale | Collard Greens | | | Be-7 | < 355 | 1249 ± 259 | 665 ± 118 | 672 ± 262 | - | | K-40 | 3540 ± 932 | 6679 ± 587 | 6445 ± 344 | 4629 ± 598 | - | | Co-58 | < 17 | < 10 | < 10 | < 11 | - | | Co-60 | < 16 | < 35 | < 8 | < 33 | - | | I-131 | < 35 | < 33 | < 14 | < 43 | 45 | | Cs-134 | < 35 | < 20 | < 12 | < 22 | 45 | | Cs-137 | < 29 | < 33 | < 8 | < 31 | 60 | YEAR: 2023 L-24-096 Page 75 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 7. Food Products, analyses for gamma emitting isotopes. Collection: Monthly Units: pCi/kg wet | Location: | D-16 | |-----------|------| | LOCATION. | | | Location | n: P-16 | | | | | |----------------|----------------|----------------|---------------|----------------|-----------| | Lab Code | PEVE- 1960 | PEVE- 1961 | PEVE- 1962 | PEVE- 2385 | | | Date Collected | 07-12-23 | 07-12-23 | 07-12-23 | 08-08-23 | Box IIID | | Sample Type | Kale | Collard Greens | | | Req. LLD | | запріе туре | Kale | Collard Greens | Turnip Greens | Turnip Greens | | | Be-7 | < 208 | 421 ± 121 | 593 ± 289 | 634 ± 324 | - | | K-40 | 4913 ± 591 | 4044 ± 302 | 4743 ± 502 | 5137 ± 594 | - | | Co-58 | < 14 | < 7 | < 18 | < 8 | - | | Co-60 | < 21 | < 10 | < 16 | < 42 | - | | I-131 | < 38 | < 10 | < 40 | < 27 | 45 | | Cs-134 | < 20 | < 10 | < 24 | < 22 | 45 | | Cs-137 | < 18 | < 7 | < 14 | < 31 | 60 | | | | | | | | | Lab Code | PEVE- 2386 | PEVE- 2387 | PEVE- 2693 | PEVE- 2694 | | | Date Collected | 08-08-23 | 08-08-23 | 09-12-23 | 09-12-23 | Reg. LLD | | Sample Type | Collard Greens | Kale | Kale | Turnip Greens | , | | Be-7 | < 203 | < 208 | < 231 | 362 ± 80 | | | K-40 | 4326 ± 488 | 4241 ± 529 | 5072 ± 644 | 4592 ± 258 | - | | Co-58 | < 12 | < 19 | < 14 | < 6 | - | | Co-60 | < 37 | < 19 | < 38 | < 8 | - | | I-131 | < 35 | < 34 | < 29 | < 6 | 45 | | Cs-134 | < 20 | < 20 | < 27 | < 10 | 45 | | Cs-137 | < 30 | < 15 | < 41 | < 6 | 60 | | Lab Code | PEVE- 2695 | PEVE- 3105 | PEVE- 3106 | PEVE- 3107 | | | Date Collected | 09-12-23 | 10-10-23 | 10-10-23 | 10-10-23 | Reg. LLD | | Sample Type | Collard Greens | Kale | Turnip Greens | Collard Greens | 1104. 220 | | Be-7 | 457 ± 217 | 489 ± 196 | 696 ± 94 | 443 ± 83 | - | | K-40 | 6275 ± 611 | 5011 ± 542 | 5381 ± 279 | 4525 ± 247 | - | | Co-58 | < 11 | < 12 | < 6 | < 6 | - | | Co-60 | < 36 | < 30 | < 5 | < 5 | - | | I-131 | < 20 | < 38 | < 12 | < 11 | 45 | | Cs-134 | < 19 | < 13 | < 9 | < 8 | 45 | | Cs-137 | < 34 | < 28 | < 7 | < 6 | 60 | YEAR: 2023 L-24-096 Page 76 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** | Table 7. Food Products | , analyses | for gamma | emitting | isotopes. | |------------------------|------------|-----------|----------|-----------| |------------------------|------------|-----------|----------|-----------| | Collection | Collection: Monthly Units: pCi/kg wet | | | | | |----------------|---------------------------------------|----------------|----------------|----------------|-----------| | Location | : P-20 | | | | | | Lab Code | PEVE- 2388 | PEVE- 2390 | PEVE- 2391 | PEVE- 2696 | | | Date Collected | 08-08-23 | 08-08-23 | 08-08-23 | 09-12-23 | Reg. LLD | | Sample Type | Turnip Greens | Collard Greens | Kale | Collard Greens | TVOQ. EED | | Be-7 | 351 ± 181 | < 320 | < 104 | < 397 | | | K-40 | 5564 ± 553 | 3887 ± 710 | 5496 ± 496 | 4649 ± 814 | - | | Co-58 | < 14 | < 26 | < 13 | < 31 | - | | Co-60 | < 34 | < 11 | < 15 | < 22 | - | | I-131 | < 37 | < 33 | < 14 | < 42 | 45 | | Cs-134 | < 19 | < 33 | < 16 | < 42 | 45 | | Cs-137 | < 27 | < 27 | < 14 | < 30 | 60 | | Lab Code | PEVE- 2697 | PEVE- 2698 | PEVE- 3108 | PEVE- 3109 | | | Date Collected | 09-12-23 | 09-12-23 | 10-10-23 | 10-10-23 | Pea IID | | Sample Type | Kale | Turnip Greens | Collard Greens | Kale | Req. LLD | | Be-7 | < 253 | 408 ± 151 | 475 ± 112 | 227 ± 67 | | | K-40 | 4816 ± 901 | 2768 ± 327 | 4951 ± 308 | 4834 ± 236 | - | | Co-58 | < 29 | < 6 | < 7 | < 5 | - | | Co-60 | < 34 | < 24 | < 9 | < 5 | - | | I-131 | < 19 | < 16 | < 16 | < 10 | 45 | | Cs-134 | < 43 | < 13 | < 11 | < 7 | 45 | | Cs-137 | < 34 | < 19 | < 8 | < 5 | 60 | | Lab Code | PEVE- 3110 | | | | | | Date Collected | 10-10-23 | | | | Req. LLD | | Sample Type | Turnip Greens | | | | rtoq. LLD | | Be-7 | 201 ± 61 | | | | | | K-40 | 4617 ± 226 | | | | - | | Co-58 | < 5 | | | | | | Co-60 | < 6 | | | | - | | l-131 | < 10 | | | | 45 | | Cs-134 | < 6 | | | | 45 | | Cs-137 | < 5 | | | | 60 | YEAR: 2023 L-24-096 Page 77 of 81 Company: Energy Harbor **Plant: Perry Nuclear Power Plant** Table 7. Food Products, analyses for gamma emitting isotopes. | Collection: Monthly | | | | Units: pCi/kg we | t | |---------------------|----------------|----------------|----------------|------------------|----------| | Location: P-37 | | | | pg | | | | | | | | | | Lab Code | PEVE- 1965 | PEVE- 1966 | PEVE- 1967 | PEVE- 1968 | | | Date Collected | 07-13-23 | 07-13-23 | 07-13-23 | 07-13-23 | Req. LLI | | Sample Type | Swiss Chard | Turnip Greens | Collard Greens | Kale | | | Be-7 | 520 ± 199 | 894 ± 165 | 235 ± 134 | 331 ± 150 | | | K-40 | 5607 ± 574 | 4180 ± 410 | 3721 ± 401 | 3810 ± 342 | | | Co-58 | < 13 | < 8 | < 8 | < 8 | | | Co-60 | < 34 | < 27 | < 26 | < 24 | - | | I-131 | < 32 | < 24 | < 21 | < 20 | 45 | | Cs-134 | < 18 | < 14 | < 12 | < 12 | 45 | | Cs-137 | < 29 | < 22 | < 24 | < 23 | 60 | | Lab Code | PEVE- 2392 | PEVE- 2393 | PEVE- 2394 | PEVE- 2395 | | | Date Collected | 08-08-23 | 08-08-23 | 08-08-23 | 08-08-23 | Req. LL | | Sample Type | Turnip Greens | Collard Greens | Kale | Swiss Chard | rtoq. EE | | Be-7 | 844 ± 341 | < 313 | < 186 | 585 ± 238 | | | K-40 | 5306 ± 686 | 3126 ± 421 | 3695 ± 493 | 7528 ± 791 | | | Co-58 | < 14 | < 14 | < 8 | < 33 | | | Co-60 | < 11 | < 31 | < 18 | < 26 | - | | I-131 | < 40 | < 28 | < 21 | < 15 | 45 | | Cs-134 | < 29 | < 17 | < 22 | < 31 | 45 | | Cs-137 | < 29 | < 28 | < 21 | < 34 | 60 | | Lab Code | DEVE 2000 | DEVE 2700 | DEVE 2704 | DE1/E 0700 | | | Date Collected | PEVE- 2699 | PEVE- 2700 | PEVE- 2701 | PEVE- 2702 | D 111 | | | 09-12-23 | 09-12-23 | 09-12-23 | 09-12-23 | Req. LL | | Sample Type | Collard Greens | Turnip Greens | Swiss Chard | Kale | | | Be-7 | < 154 | 461 ± 214 | 657 ± 382 | < 149 | - | | K-40 | 2833 ± 487 | 3955 ± 495 | 5538 ± 942 | 3453 ± 579 | - | | Co-58 | < 9 | < 11 | < 36 | < 18 | - | | Co-60 | < 35 | < 29 | < 18 | < 15 | - | | I-131 | < 22 | < 16 | < 30 | < 37 | 45 | | Cs-134 | < 22 | < 15 | < 35 | < 27 | 45 | | Cs-137 | < 28 | < 28 | < 37 | < 24 | 60 | | Lab Code | PEVE- 3111 | PEVE- 3112 | PEVE- 3113 | PEVE- 3114 | | | Date Collected | 10-10-23 | 10-10-23 | 10-10-23 | 10-10-23 | Req. LLI | | Sample Type | Collard Greens | Turnip Greens | Swiss Chard | Kale | | | Be-7 | 158 ± 94 | 870 ± 273 | 552 ± 329 | 189 ± 57 | - | | K-40 | 2999 ± 230 | 5334 ± 568 | 6560 ± 979 | 4351 ± 213 | - | | Co-58 | < 9 | < 20 | < 30 | < 5 | - | | Co-60 | < 4 | < 13 | < 18 | < 6 | - | | -131 | < 24 | < 43 | < 44 | < 10 | 45 | | Cs-134 | < 9 | < 19 | < 43 | < 6 | 45 | | Cs-137 | < 10 | < 20 | < 25 | < 5 | 60 | YEAR: 2023 L-24-096 Page 78
of 81 **Company: Energy Harbor** Cs-137 **Plant: Perry Nuclear Power Plant** PNPP 60 Table 7. Food Products, analyses for gamma emitting isotopes. | Collection: Monthly | | | | Units: pCi/kg wet | | | |---------------------|----------------|-------------|---------------|-------------------|-----------|--| | Location: P-70 | | | | Janes pornag mon | | | | | | | | | | | | Lab Code | PEVE- 1963 | PEVE- 1964 | PEVE- 2396 | PEVE- 2397 | | | | Date Collected | 07-12-23 | 07-12-23 | 08-08-23 | 08-08-23 | Reg. LLI | | | Sample Type | Collard Greens | Kale | Turnip Greens | Collard Greens | | | | Be-7 | < 174 | < 149 | 534 ± 147 | < 133 | | | | K-40 | 5598 ± 537 | 5625 ± 350 | 4894 ± 444 | 3398 ± 372 | | | | Co-58 | < 11 | < 11 | < 18 | < 13 | - | | | Co-60 | < 33 | < 11 | < 12 | < 26 | - | | | -131 | < 27 | < 16 | < 27 | < 17 | 45 | | | Cs-134 | < 17 | < 16 | < 17 | < 14 | 45 | | | Cs-137 | < 33 | < 12 | < 13 | < 21 | 60 | | | Lab Code | PEVE- 2398 | PEVE- 2399 | PEVE- 2704 | PEVE- 2705 | | | | Date Collected | 08-08-23 | 08-08-23 | 09-12-23 | 09-12-23 | Req. LL | | | Sample Type | Kale | Swiss Chard | Turnip Greens | Collard Greens | . 104: EE | | | Be-7 | 314 ± 160 | 633 ± 327 | 362 ± 307 | 473 ± 223 | | | | K-40 | 3333 ± 392 | 6177 ± 656 | 3964 ± 727 | 3455 ± 550 | - | | | Co-58 | < 12 | < 20 | < 29 | < 12 | | | | Co-60 | < 27 | < 41 | < 16 | < 41 | - | | | -131 | < 28 | < 41 | < 44 | < 18 | 45 | | | Cs-134 | < 12 | < 21 | < 36 | < 23 | 45 | | | Cs-137 | < 21 | < 36 | < 30 | < 39 | 60 | | | | | | | | | | | Lab Code | PEVE- 2706 | PEVE- 2707 | PEVE- 3115 | PEVE- 3117 | | | | Date Collected | 09-12-23 | 09-12-23 | 10-10-23 | 10-10-23 | Req. LL0 | | | Sample Type | Swiss Chard | Kale | Turnip Greens | Collard Greens | | | | Be-7 | 692 ± 337 | < 308 | 838 ± 227 | 444 ± 178 | | | | <-40 | 6445 ± 927 | 3411 ± 782 | 5731 ± 529 | 3652 ± 383 | - | | | Co-58 | < 30 | < 29 | < 12 | < 11 | - | | | Co-60 | < 38 | < 20 | < 33 | < 21 | - | | | -131 | < 31 | < 43 | < 33 | < 29 | 45 | | | Cs-134 | < 35 | < 21 | < 20 | < 13 | 45 | | | Cs-137 | < 29 | < 35 | < 24 | < 19 | 60 | | | ab Code | PEVE- 3118 | PEVE- 3119 | | | | | | Date Collected | 10-10-23 | 10-10-23 | | | Pon III | | | Sample Type | Swiss Chard | Kale | | | Req. LLI | | | Be-7 | 822 ± 246 | 325 ± 180 | | | | | | (-40 | 8101 ± 720 | 5253 ± 646 | | | | | | Co-58 | < 20 | < 26 | | | - | | | Co-60 | < 33 | < 15 | | | | | | 131 | < 27 | < 40 | | | 45 | | | Cs-134 | < 21 | < 25 | | | 45 | | | Cs-137 | < 30 | < 17 | | | 60 | | < 17 < 30 YEAR: 2023 L-24-096 Page 79 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 9. Fish, analyses for gamma emitting isotopes. | Collection: Semiannually Units: pCi/kg wet | | | | | |--|---|--|--|---| | | | P-25 | | | | PEF- 1881
06-01-23 | PEF- 1882
06-01-23 | PEF- 2864
09-21-23 | PEF- 2865
09-21-23 | Req. LLC | | Smallmouth Bass | Walleye | White Sucker | Red Horse Sucker | | | 1718 ± 300 | 2127 ± 316 | 1133 ± 352 | 2184 ± 380 | | | < 16 | < 11 | < 16 | < 14 | 94 | | < 101 | < 98 | < 38 | < 51 | 195 | | < 26 | < 19 | < 26 | | 97 | | < 16 | < 18 | < 15 | < 15 | 97 | | < 32 | < 33 | < 42 | | 195 | | < 18 | < 14 | < 20 | < 18 | 97 | | < 13 | < 9 | < 18 | < 18 | 112 | | | | P-25 | | | | PEF- 2866
09-11-23 | PEF- 2867
09-21-23 | PEF- 2868
09-21-23 | PEF- 2869
09-21-23 | Req. LLC | | Gizzard Shad | Walleye | Yellow Perch | Freshwater Drum | | | | PEF- 1881
06-01-23
Smallmouth Bass
1718 ± 300
< 16
< 101
< 26
< 16
< 32
< 18
< 13 | PEF- 1881 PEF- 1882 06-01-23 06-01-23 06-01-23 Smallmouth Bass Walleye 1718 ± 300 2127 ± 316 | P-25 PEF- 1881 PEF- 1882 PEF- 2864 06-01-23 06-01-23 09-21-23 Smallmouth Bass Walleye White Sucker 1718 ± 300 2127 ± 316 1133 ± 352 | P-25 PEF- 1881 PEF- 1882 PEF- 2864 06-01-23 06-01-23 09-21-23 09-21-23 09-21-23 Smallmouth Bass Walleye White Sucker Red Horse Sucker 1718 ± 300 2127 ± 316 1133 ± 352 2184 ± 380 < 16 < 11 < 16 < 14 < 16 < 14 < 16 < 14 < 16 < 17 < 16 < 17 < 16 < 17 < 16 < 18 < 15 < 15 < 15 < 15 < 15 < 32 < 33 < 42 < 33 < 42 < 33 < 18 < 18 < 18 < 18 < 18 < 18 < 19 < 18 < 18 | | Location | | | P-20 | | | |----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------| | Lab Code
Date Collected | PEF- 2866
09-11-23 | PEF- 2867
09-21-23 | PEF- 2868
09-21-23 | PEF- 2869
09-21-23 | Req. LLC | | Sample Type | Gizzard Shad | Walleye | Yellow Perch | Freshwater Drum | | | K-40 | 1204 ± 325 | 1327 ± 338 | 851 ± 215 | 1611 ± 282 | - | | Mn-54 | < 14 | < 15 | < 14 | < 12 | 94 | | Fe-59 | < 30 | < 30 | < 44 | < 58 | 195 | | Co-58 | < 19 | < 28 | < 9 | < 11 | 97 | | Co-60 | < 8 | < 33 | < 27 | < 15 | 97 | | Zn-65 | < 37 | < 41 | < 30 | < 28 | 195 | | Cs-134 | < 20 | < 19 | < 14 | < 18 | 97 | | Cs-137 | < 12 | < 26 | < 22 | < 7 | 112 | | Location | | P-25 | | |----------------|-------------|------|----------| | Lab Code | PEF- 2870 | | | | Date Collected | 09-21-23 | | Req. LLD | | Sample Type | White Perch | | | | K-40 | 1934 ± 273 | | | | Mn-54 | < 11 | | 94 | | Fe-59 | < 47 | | 195 | | Co-58 | < 12 | | 97 | | Co-60 | < 9 | | 97 | | Zn-65 | < 19 | | 195 | | Cs-134 | < 14 | | 97 | | Cs-137 | < 13 | | 112 | YEAR: 2023 L-24-096 Page 80 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** Table 9. Fish, analyses for gamma emitting isotopes. Collection: Semiannually | Units: pCi | | |------------|--| | | | | | | | Collect | tion: Semiannually | | | Units: pCi/kg wet | | |----------------|--------------------|-------------|--------------|-------------------|----------| | Location | | | P-32 | | | | Lab Code | PEF- 1884 | PEF- 1885 | PEF- 1186 | PEF- 1887 | | | Date Collected | 06-01-23 | 06-01-23 | 06-01-23 | 06-29-23 | Req. LLI | | Sample Type | Golden Red Horse | White Perch | Yellow Perch | Walleye | | | K-40 | 2055 ± 358 | 2652 ± 426 | 2011 ± 240 | 3797 ± 417 | | | Mn-54 | < 16 | < 24 | < 12 | < 12 | 94 | | Fe-59 | < 102 | < 192 | < 84 | < 57 | 195 | | Co-58 | < 32 | < 42 | < 19 | < 18 | 97 | | Co-60 | < 14 | < 26 | < 10 | < 14 | 97 | | Zn-65 | < 42 | < 52 | < 19 | < 27 | 195 | | Cs-134 | < 22 | < 34 | < 16 | < 19 | 97 | | Cs-137 | < 13 | < 23 | < 9 | < 15 | 112 | | Location | | | P-32 | | | | Lab Code | PEF- 2871 | PEF- 2872 | PEF- 2873 | PEF- 2874 | | | Date Collected | 09-21-23 | 09-21-23 | 09-21-23 | 09-21-23 | Req. LLI | | Sample Type | Channel Catfish | Gizzard | Walleye | Freshwater Drum | | | K-40 | 812 ± 260 | 1063 ± 333 | 1428 ± 344 | 1377 ± 365 | - | | Mn-54 | < 18 | < 21 | < 12 | < 21 | 94 | | Fe-59 | < 44 | < 24 | < 27 | < 56 | 195 | | Co-58 | < 25 | < 32 | < 20 | < 18 | 97 | | Co-60 | < 10 | < 34 | < 11 | < 5 | 97 | | Zn-65 | < 29 | < 36 | < 34 | < 29 | 195 | | Cs-134 | < 16 | < 22 | < 16 | < 21 | 97 | | Cs-137 | < 14 | < 28 | < 17 | < 20 | 112 | | Location | | | P-32 | | | | Lab Code | PEF- 2875 | | | | | | Date Collected | 09-21-23 | | | | Req. LLD | | Sample Type | White Perch | | | | | | K-40 | 605 ± 251 | | | | | | Mn-54 | < 16 | | | | 94 | | Fe-59 | < 51 | | | | 195 | | Co-58 | < 13 | | | | 97 | | Co-60 | < 14 | | | | 97 | | Zn-65 | < 26 | | | | 195 | | Cs-134 | < 15 | | | | 97 | | Cs-137 | < 12 | | | | 112 | YEAR: 2023 L-24-096 Page 81 of 81 **Company: Energy Harbor** **Plant: Perry Nuclear Power Plant** PNPP Table 11. Sediments, analyses for gamma emitting isotopes. Collection: Semiannually Units: pCi/kg dry | Location | | P-64 | | |----------------|------------|------------|----------| | Lab Code | PEBS- 1299 | PEBS- 3156 | | | Date Collected | 05-09-23 | 10-10-23 | Req. LLC | | K-40 | 6850 ± 424 | 8291 ± 439 | | | Co-58 | < 15.3 | < 13.8 | 50 | | Co-60 | < 8.0 | < 12.0 | 40 | | Cs-134 | < 13.4 | < 10.9 | 112 | | Cs-137 | < 10.2 | < 14.9 | 135 | | Location | | P-66 | | | Lab Code | PEBS- 1300 | PEBS- 3157 | | | Date Collected | 05-09-23 | 10-10-23 | Req. LLD | | K-40 | 6983 ± 431 | 8232 ± 395 | | | Co-58 | < 13.7 | < 17.0 | 50 | | Co-60 | < 14.1 | < 9.6 | 40 | | Cs-134 | < 13.5 | < 10.9 | 112 | | Cs-137 | < 9.6 | < 13.1 | 135 |