

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

March 11, 2024

MEMORANDUM TO:	Gerond A. George, Chief Licensing Projects Branch Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation
FROM:	Daniel G. King, ATF Project Manager <i>/RA/</i> Licensing Projects Branch Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation
SUBJECT:	SUMMARY OF THE FEBRUARY 26 TO 27, 2024, PHENOMENON IDENTIFICATION AND RANKING TABLE PANEL DISCUSSION ON HIGH BURNUP FUEL DISPERSAL AND ITS CONSEQUENCES RANKINGS PUBLIC MEETING

From February 26, 2024, to February 27, 2024, the U.S. Nuclear Regulatory Commission (NRC) staff and Information System Laboratories, Inc. (ISL) held a hybrid phenomenon identification and ranking table (PIRT) panel public meeting with representatives from the nuclear industry to discuss high burnup uranium dioxide fuel fragmentation, relocation, and dispersal (FFRD). The purpose of the meeting was to provide an opportunity for the PIRT panel to complete phenomena identification and ranking tables related to reactivity-initiated accident phenomena. This was a follow-up to the December 2023 (Agencywide Documents and Management System (ADAMS) Accession No. ML23352A274) and January 2024 (Accession No. ML24023A577) PIRT panel meetings. The meeting notice can be found in ADAMS under Accession No. ML24057A096.

Key observations from the meeting discussions:

- The PIRT panelists noted that fuel dispersal during a postulated reactivity-initiated accident (RIA) would be more limited than during a postulated loss-of-coolant accident.
- Fuel rod failure during a postulated RIA depends strongly on the core loading pattern. High burnup fuel is more susceptible to failure when placed near high-powered, lowerburnup assemblies. Existing methodologies can capture the core power distribution with a high degree of accuracy.

CONTACT: Daniel G. King, NRR/DORL 301-415-1233

James Corson, RES/DSA 301-415-2458

- Transient fission gas release during an RIA both influences the likelihood of fuel rod failure and the potential magnitude of radionuclide release. While some transient fission gas release data exists, there is significant uncertainty in the results.
- Fuel fragment release to the reactor coolant system could potentially result in energetic fuel-coolant interactions. Note that existing NRC guidance includes limits to prevent catastrophic fuel rod failure that could challenge core coolability. However, these limits are meant to prevent release of molten fuel and do not explicitly consider the impact of solid fuel fragments. See Section C.6 of Regulatory Guide 1.236 (Accession No. ML20055F490).

The following schedule going forward was agree upon by NRC staff, ISL, and panelists.

February 28, 2024	Panel members provide their contributions to the conclusions section of the draft report.
February 29, 2024 Mid-March, 2024 Late-March, 2024	ISL will send an updated draft of the report to the panelists for their review. The panel meets to discuss their final comments on the draft report. ISL submits draft final report to NRC for publication. NRC will release the draft report publicly while it prepares the report for publication as a NUREG/CR.

There were four public comments received during the public comment period. First a member of the public asked the NRC staff about the logistics of the PIRT process and the connection to previous PIRT exercises. The NRC staff noted that previous Accident Tolerant Fuel PIRTs can be found at: https://www.nrc.gov/reactors/power/atf/pirt.html, noting this exercise focused on high burnup uranium dioxide FFRD. A member of the public then asked a series of questions related to the potential development of hydrogen during hypothetical accident scenarios. Next, a member of the public commented on the higher burnup connection to increased enrichment. Lastly, a member of the public asked several technical questions regarding the control rod drive mechanism for boiling water reactors. The PIRT panel provided additional information on the control rod drive mechanism (Accession No. ML12158A334). The NRC staff acknowledged all comments and questions from the public and will take them into consideration.

No regulatory decisions were made in the meeting.

Enclosures:

- 1. List of Attendees
- 2. Table of Contents for the Draft FFRD PIRT Report

List of Attendees

PHENOMENON IDENTIFICATION AND RANKING TABLE PANEL DISCUSSION ON HIGH BURNUP FUEL DISPERSAL AND ITS CONSEQUENCES RANKINGS PUBLIC MEETING February 26 to 27, 2024

U.S. Nuclear Regulatory Commission (NRC)				
First Name	Last Name			
Kristy	Bucholtz			
Shawn	Campbell			
James	Corson			
Elijah	Dickson			
Hossein	Esmaili			
Daniel	King			
Joseph	Messina			
Carla	Roque-Cruz			
Ashley	Smith			
Chris	Van Wert			

Non-NRC						
First Name	Last Name	Organization (if provided)				
Don	Algama	U.S. Department of Energy				
Kevin	Barber	Westinghouse Electric Company				
Jana	Bergman					
Carl	Beyer	Pacific Northwest National Laboratory				
Francis	Bolger	Electric Power Research Institute				
Mary Beth	Brangan					
Nathan	Capps	Oak Ridge National Laboratory				
Connie	Kline					
Dave	Kropaczek	Veracity Nuclear				
Edwin	Lyman	Union of Concerned Scientists				
Wade	Marcum	Oregon State University				
Alred	Meyers					
Brian	Mount	Dominion Energy				
Kurshad	Muftuoglu	EPRI				
Vesselin	Palazov	Information System Laboratories, Inc. (ISL)				
Harold	Scott					
Gretar	Tryggvason	Johns Hopkins University				
Michael	Tudisco	Constellation Nuclear				
Kalene	Walker					
Jason	Williams	ISL				
	Wolfgang					

Note: Attendance list based on Microsoft Teams participant list. This list does not include individuals who did not provide their last name either in registering for the meeting or by a follow-up email.

Table of Contents for the Draft FFRD PIRT Report

1. INTRODUCTION

- 1.1 Background
- 1.2 Objectives

2. PHENOMENA IDENTIFICATION AND RANKING METHODOLOGY

- 2.1 Technological Scope and Licensing Events Outline
- 2.2 PIRT Elicitation Process Outline
- 2.3 **PIRT Generation Approach**

3. PHENOMENA IDENTIFICATION AND RANKING TABLES

- 3.1 PIRT on High Burnup FFRD and Its Consequences for Whole-Core Thermal Events
 - 3.1.1 High Burnup FFRD PIRT for Whole-Core Thermal Events (LOCAs)
 - 3.1.2 Summary of Panel Discussions
 - 3.1.3 Key PIRT Panel Considerations

3.2 PIRT on High Burnup FFRD and Its Consequences for Local Core Events

- 3.2.1 High Burnup FFRD PIRT for Local Core Events (RIAs)
- 3.2.2 Summary of Panel Discussions
- 3.2.3 Key PIRT Panel Considerations

3.3 PIRT on High Burnup FFRD and Its Consequences for Fuel Handling Accidents

- 3.3.1 High Burnup FFRD PIRT for Fuel Handling Accidents
- 3.3.2 Summary of Panel Notes
- 3.3.3 Summary of Panel Deliberation Insights
- 3.3.4 Key FHA PIRT Panel Considerations

4. SUMMARY AND CONCLUSIONS

- APPENDIX A: FFRD PIRT PANEL MEMBERS
- APPENDIX B: FFRD PIRT on High Burnup FFRD and Its Consequences for Whole-Core Thermal Events with All Panel Votes
- APPENDIX C: PIRT on High Burnup FFRD and Its Consequences for Local Core Events (RIAs) with Panel Votes
- APPENDIX D: PIRT on High Burnup FFRD and Its Consequences for FHAs with Panel Votes

G. George

DISTRIBUTION:

GGeorge, NRR DHarrison, NRR DKing, NRR CRoque-Cruz, NRR JDonoghue, NRR MRoss-Lee, NRR SKrepel, NRR JMessina, NRR ASmith, NRR

KWebber, RES HEsmaili, RES JCorson, RES KBucholtz, NRR SCampbell, RES EDickson, NRR MMahoney, NRR CVanWert, NRR

ADAMS Accession No.: MI 24059A418 (Meeting Summary)

OFFICE	NRR/DORL/LLPB PM	RES/DSA/FSCB	NRR/DORL/LLPB LA	RES/DSA/FSCB BC			
NAME	DKing	JCorson	DHarrison	HEsmaili			
DATE	02/28/2024	02/29/2024	02/29/2024	03/11/2024			
OFFICE	NRR/DORL/LLPB BC	NRR/DORL/LLPB PM					
NAME	GGeorge	DKing					
DATE	03/04/2024	03/11/2024					

OFFICIAL RECORD COPY