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How Data can Support AM Qualification Efforts

I. II. III. IV.

record keeping enhanced understanding property prediction accelerated design
• Data and metadata are 

recorded primarily for 
provenance purposes.

• Data are painstakingly 
reviewed manually to 
identify problems.

• In-situ sensor data are of 
generally low quality and 
minimal volume.

• Historical datasets are 
difficult to access and may 
be inconsistently 
formatted.

• Data and metadata are 
consistently recorded for 
every build and are used to 
better understand the 
process.

• Artificial intelligence is used 
to automatically analyze 
in-situ data and identify 
anomalies and flaw 
indications.

• In-situ sensor data are of 
high quality and require 
large storage volumes.

• Sensors and algorithms are 
sufficiently robust to 
determine if a given build 
was printed under nominal 
conditions.

• In-situ data are spatially 
registered with ex-situ 
characterization data, at 
scale.

• Process simulations are 
performed at scale and 
linked to in-situ data.

• The correlation between 
anomalies (indications) 
and flaws is understood 
with statistical methods.

• Artificial intelligence and 
physics-based modeling 
are used to predict local 
material properties.

• Physics-based models are 
used to predict part 
performance based on the 
in-situ data (i.e., is a flaw 
truly a defect).

• Each part’s digital thread 
can be used to simulate its 
digital twin.

• In-situ data, process 
simulations, and local 
property predictions are 
leveraged during the 
design process.

• Artificial intelligence is used 
to automatically iterate 
both the part design and 
the manufacturing process 
steps.
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Scaled Deployment of the Peregrine Software and Datasets

 15 U.S. government labs are using and 
collaboratively developing Peregrine 

 14 R&D licenses have been granted to industry 
partners and international laboratories

 3 CRADAs have leveraged Peregrine

 3 different universities have received copies of 
Peregrine for research purposes 

 15+ companies and universities have 
downloaded Peregrine datasets containing over 
400 GB of in-situ and ex-situ data
 https://doi.ccs.ornl.gov/ui/doi/341 
 https://doi.ccs.ornl.gov/ui/doi/417 
 https://doi.ccs.ornl.gov/ui/doi/451 
 https://doi.ccs.ornl.gov/ui/doi/452 
 https://doi.ccs.ornl.gov/ui/doi/454 

 6 journal papers and 1 U.S. patent are related to 
Peregrine technologies
 https://doi.org/10.1016/j.addma.2020.101453
 https://doi.org/10.1016/j.mfglet.2021.05.007
 https://doi.org/10.3389/fmech.2021.767444
 https://doi.org/10.1016/j.addma.2022.103298
 https://doi.org/10.1016/j.mfglet.2023.01.003
 https://www.osti.gov/doepatents/biblio/1986640 
 https://doi.org/10.1016/j.addma.2023.103817 

DOE
NNSA
DOD

Aerospace
Automotive
Nuclear
Other

Academia

https://doi.ccs.ornl.gov/ui/doi/341
https://doi.ccs.ornl.gov/ui/doi/417
https://doi.ccs.ornl.gov/ui/doi/451
https://doi.ccs.ornl.gov/ui/doi/452
https://doi.ccs.ornl.gov/ui/doi/454
https://doi.org/10.1016/j.addma.2020.101453
https://doi.org/10.1016/j.mfglet.2021.05.007
https://doi.org/10.3389/fmech.2021.767444
https://doi.org/10.1016/j.addma.2022.103298
https://doi.org/10.1016/j.mfglet.2023.01.003
https://www.osti.gov/doepatents/biblio/1986640
https://doi.org/10.1016/j.addma.2023.103817
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Powder Bed Printing Systems

 9 L-PBF systems at ORNL
 Aconity MIDI
 AddUp FormUp 350
 Concept Laser M2
 Concept Laser X-Line 2000R
 EOS M290
 Renishaw AM250/AM400

 4 EB-PBF systems at ORNL
 Arcam Q10/Q10+
 Arcam Spectra H

 6 Binder Jet systems at ORNL
 ExOne 25Pro
 ExOne Innovent/Innovent+
 ExOne M-Flex

 10+ different systems at government and industry partners
 3D Systems ProX 320
 Desktop Metal Shop Printer
 Digital Metal P2500
 EOS M280
 EOS M400
 GE H2.5
 SLM 125
 SLM 280
 Trumpf TruPrint 1000

 As of September 2023, there are 2500+ builds loaded into 
Peregrine and available on the MDF Digital Platform, 
adding approximately 50 builds per month

CL M2 AddUp 350

Arcam Q10 EOS M290

X1 M-Flex
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Peregrine Project Philosophy
 “We can’t keep making unique solutions for each printer”
 Extreme flexibility to support any cameras of scientific or industrial interest

 Wide range of mounting orientations and lighting configurations
 Any resolution (<1 MP to 60 MP)
 Arbitrary number of sensor modalities (e.g., visible, LWIR, NIR)
 Arbitrary number of images captured per layer
 Multiple cameras to stich together a large field of view

 Enable data collection from many different printer manufacturers
 Load in OEM images after the build completes
 Watch an OEM folder for new images during printing
 Real-time data acquisition over USB cameras
 Load in OEM log files and scan paths with “parsers”
 “Workspaces” manage printer-specific settings and configurations
 Interfaces do not rely on OEM support

 Many different users and use-cases
 Machine operators collect in-situ and meta data
 Material scientists compare in-situ to ex-situ data
 Data scientists investigate trends and correlations at scale
 Managers and regulators want to maintain data provenance 
 Researchers want freedom to make changes while industry wants ease of use

 Must integrate with the MDF Digital Platform without relying on it
 Must function via both graphical and scripting interfaces
 Cannot rely on HPC resources and must function many different computers
 Must be responsive to feature requests with only a small development team breadth

de
pt

h

Problem 
Space for 

Data-Driven 
Qualification

MDF
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Data Acquisition

NIR video summation

 All data collection and analysis can be performed in real-time using  
direct USB connections to multiple cameras

 Cameras, optics, lighting, and mounting are printer-specific 

 Data acquisition is printer-agnostic, relying on motion tracking and 
video analysis to achieve camera triggering 

 Advanced buffering and threading techniques are used to maintain 
high data acquisition and processing rates

 Typically, layer-wise data are captured as snapshots, e.g., a single 
frame immediately after layer fusion or after powder spreading

 Alternatively, video streams can be rapidly processed into 
summation, maximum, and time-of-maximum composite images

time

sig
na

l
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Data Calibration, Registration, and Fusion

print dot pattern1

visible-light

TI-NIR

LWIR

detect dots2

level lighting4

align to CAD3

apply5

visible-light

TI-NIR

LWIR

fuse6



9

What is Deep Learning?

data features vs. 
truth

Machine Learning

%
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Deep Learning

parts

printed material

part

part
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Data Annotation and Training

 Humans annotate pixels from in-situ data, and 
can use X-CT as ground truths

 Training an initial model typically requires four 
layers, or about 20 million pixels 

 Initial annotation and training can be 
completed within a 48-hour period 

 Data augmentation and transfer learning 
reduces the annotation burden
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ncam

32
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Ronneberger et al. 2015
https://arxiv.org/abs/1505.04597 
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Dynamic Multi-label Segmentation Convolutional Neural Network (DMSCNN)

camera channels (ncam)

STL

3×3 or 5×5 convolution with ReLU
1×1 convolution with ReLU
batch normalization

2×2 max pool

nearest neighbor up-sample
up-sample

skip connection
data copy/no operation

fully connected layer with dropout

image stack

binary classification layer

down-sample

concatenation [ ]  

pixel-wise heuristics
  compare to STL
  threshold camera data
  filter based on object size
  filter based on object morphology

https://arxiv.org/abs/1505.04597


12

Example In-Situ L-PBF Data
post-fusion

post-spreading

10 mm

printed powder

10 mm

10 mm

super-elevation

10 mm

spatter

10 mm

under melting

10 mm

edge swelling

over melting

10 mm

recoater streaking

machine health sensors

metadata

 Concept Laser M2 L-PBF printer

 OEM 5 MP visible-light camera

 Printed in stainless steel 316L

 Build designed to test spatial variations
 Different anomalies are visible in 

the post-fusion versus the       
post-spreading images

 Shown as false-color composites 
to highlight the anomalies

laser scan path on-axis 
photodiode
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Visualization of DMSCNN Anomaly Detections as function of 
build height

location of swelling over entire build

thickness

 All the meta, in-situ, and ex-situ data for a build is 
packaged into a build analysis with a set format

 Different visualizations help the user answer questions 
about both the whole build and individual specimens

 Most visualizations focus on either spatial distribution 
anomaly indications or evolution through the build height

 “Reverse layer search” and other search tools allow for 
the rapid identification of layers of interest

 As-printed geometries can be measured from in-situ data

interactive 
layer search

3D point cloud

anomalies by 
part volume
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Co-Registration of Ex-Situ Data
 The build analysis enables ex-situ data to be 

organized and visualized within the full build context 

 X-ray computed tomography (X-CT) scans are 
automatically registered to individual specimens 
and then placed in the global coordinate system

 Flaws observed in the X-CT scans are then used to 
train the DMSCNN to detect in-situ flaw indications

 Volumetric measurements such as tensile tests or 
density measurements are assigned to specimens

 The registered process parameters and laser scan 
paths are used to instantiate thermal simulations

 Co-registration and consistent formatting ensure 
provenance – if there is a question about a melt pool 
cross-section measurement, the corresponding 
micrograph is immediately accessible

pycnometer 
density

melt pool width

X-CT scans

simulated 
thermal 
gradient

process 
parameters
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Scaling Data Collection, Performance Metrics, and Analytics Capabilities

*Courtesy of Michael Heiden and Sandia National Laboratory

3DS ProX 320

AddUp 350

Arcam Q10

Arcam Spectra H

CL M2

CL X-Line 2000R

X1 25Pro

EOS M290

EOS M400

X1 InnoventX1 M-FlexRenishaw AM250

Renishaw AM400

SLM 280 Laser

Electron Beam

Binder Jet

CL M2 Arcam Q10

validation receiver operating characteristics (ROC) curves for different technologies
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AMMT/TCR Tensile Testing Campaign

 Printed 5 Concept Laser M2 builds with varying 
process parameters, printing conditions, and local 
part geometry

 Collected visible-light layer-wise images, machine 
health data, and scan path information

 In-situ data and local part geometry are packaged 
into ~1 mm3 super-voxels

 Thousands of individually tracked SS-J3 coupons 
were extracted from printed SS 316L using wire EDM

 Performed 6,299 room-temperature static tensile 
tests and measured UTS, YS, UE, and TE
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Tensile Property Prediction Results

 Each 1 mm3 super-voxel is represented by a 
single feature vector

 A multi-layer perceptron (shallow neural 
network) is trained to predict the UTS, YS, UE, 
and TE at each super-voxel

 Trends correlated to process parameters and 
local part geometry are correctly predicted

 The final AI Relay demonstrates a 61% error 
reduction in UTS predictions relative to estimates 
made without any in-situ information

measured SS-J3s predicted super-voxels
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Interfaces with the MDF Digital Platform

cameras data 
acquisition

image 
calibration

networked data transfer, storage, and compute resources

printer registration 
& fusion

on-axis 
sensing

spatial 
mapping registration

temporal 
sensing registration

CAD / STL 
models

parameter 
layout

layer 
slicing

tool path 
generation

segmentation

training 
data

ex-situ 
data

DMSCNN 
training

build analysis 
container

browser-based Digital Tool

metadata

property 
tests

property 
tests

X-CT scansX-CT 
reconstruction

X-CT 
segmentation

X-CT 
registration

scan 
path

thermal 
simulations

visualization

feature 
vectors

super-
voxels

property 
predictions

property 
tests

VPPM 
training

FEM 
simulations

process 
control

reporting

Amir Ziabari

Stephanie Cooper

Zack Snow

Gerry Knapp

Jamie Stump

John Coleman

William Halsey

Native 
Peregrine

Python 
Module

MDF Software 
Tool

MDF Digital 
Platform

Luke Scime

Vincent Paquit 

Alex Plotkowski

Yousub Lee

Michael Borish

automated 
microscopy

Amra Peles 

Ryan Dehoff
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Conclusions

 The capabilities needed for data to support part qualification are 
developed along a continuum and our focus will shift across multiple 
technical areas over time

 The Peregrine development team maintains a multi-year backlog for 
tracking bugs, new features, and fundamentally new capabilities

 Being able to release new capabilities across the U.S. Government 
every 1 – 2 weeks has significant implications for accelerating in-situ 
sensing research and data-driven part qualification

 Our goal for 2024 is to begin incorporating software features developed 
at other DOE Laboratories back into the Peregrine code base

 Specific areas of focus for 2024 include:
 A generalized interface for loading in tool path vectors 
 An integrated visualization and analysis tool suite for X-CT data
 Integration with fracture mechanics models for predicting fatigue life
 Increased integration with thermal and microstructure simulation tools
 Improved integration with the MDF Digital Platform and web interface
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