

Accelerated Printability Feasibility and Prioritization of Additively Manufactured Structural Materials

Isabella van Rooyen¹, Sebastien Dryepondt², Srinivas Aditya Mantri³, Michael McMurtrey⁴, Miles Beaux⁵, T.S. Byun², Subhashish Meher¹, Ankit Roy¹, Mohan Sai Kiran Kumar Yadav Nartu¹, Bryant Alan Kanies⁵

¹ Pacific Northwest National Laboratory
 ² Oak Ridge National Laboratory
 ³ Argonne National Laboratory
 ⁴ Idaho National Laboratory
 ⁵ Los Alamos National Laboratory

Material Identification

Decision making through Diverse Surveying

Office of

NUCLEAR ENERGY

Develop materials as an integrated part of advanced manufacturing (AM)

2

Examples of Specific Reactor Type Score Card

Material Score Cards 2020/2021

							MS	R							VHTR			
ID	Criteria	Guidance	316	316H	304	Alloy 800H	Alloy N	Graphite	SiC	HT9	IN617	316	304	Alloy 800H	Graphite	SiC	IN617	IN718
1	Code Availability	Codes are available for all areas = 5 For two of the three areas = 3 For one area = 1	3 (3)	0 (1)	3 (3)	1 (2)	0	1 (2)	2 (2)	2	1 (2)	1 (3)	2 (3)	1 (2)	1 (2)	2 (2)	1 (2)	1 (1)
2	Minimal Gaps in Data	No or few gaps in data availability = 5																
	Availability for Performance Values and Measurement s	Moderate gaps in data availability = 3 Large gap in available data = 1	3 (3)	1 (1)	3 (3)	1 (2)	0 (1)	Pacific Northwest	<u>N</u> r(lumi efere	enced	f rea l; co	ctor: mbi	<u>s</u> the ned fo	materia or all re	al typ acto	oe wa or type	S S Austenitic Steel
3	Technical Maturity for End Use/Developm ent Stage	TRL 8-9 and/or MRL 8-10 = 5 TRL/MRL 7-8 = 4; TRL/MRL 5- 6 = 3; TRL/MRL 3-4 = 2; TRL/MRL1-2 = 1	3 (3)	1 (1)	3 (3)	2 (3)	0 (1)	ctor type	UNITE OF		£			tcorrei 617	Victoria 718 Victoria 800H	scao		Ferritic/Martensitic Carbon Alloy Steel Nickel Alloy Other
4	Deployment readiness requirements	Ready for industry deployment within 2 years = 5; In 3-5 years = 4; In 6-7 years = 3; In 8-9 years = 2; In \geq 10 years = 1	3 (5)	1 (1)	3 (5)	2 (5)	0 (1)	nber of Read	п.	Ŧ	4		h			h.,		
5	Supply Chain Availability	No anticipated supply chain risks or impacts = 5; Moderate impacts = 3; Major impacts = 1	3 (3)	1 (1)	3 (3)	3 (3)	1 (3)	1 Nur 0 950	5 F.R. 5 F.R. 5 C.W. 5304	Steel 709 15 Ti	Steel 4187 A213 Neel	icels le 92 Steel	Steel Steel	4690 Steel. 10 Ni 617	00H 0y N 0y X EAs	/SIC CIC bon.	ulloy asiz Vik	
6	Programmatic Factors	Applications across all reactor types and/or multiple industry entities interested in a reactor type = 5	5 (5)	1 (1)	5 (5)	4 (4)	4 (1)	Preliminary Data Se	pt 2021	D9: Alloy	AFA : SI HT9 5	ODS S Grad SA533 L	2250-10Mo	al type	Alloy 8 All Alloy Hastell H	SIC SIC	N N V Zr Aluminum N	Core

Environmental Compatibility

Cotogony	Critoria	Evoluction			Score Reference		
Category	Criteria	Evaluation	5	4	3	2	1
	Radiation Resistance	The ability of a material to maintain its shape, size, and properties after exposure to radiation	Material exhibits <1% volumetric change and limited mechanical property degradation at doses of ≥300 dpa	Material exhibits <1% volumetric change and limited mechanical property degradation at doses between 200 and 300 dpa	Material exhibits <1% volumetric change mechanical property degradation at doses between 100 and 200 dpa	Material exhibits <1% volumetric change and limited mechanical property degradation at doses between 50 and 100 dpa	Material exhibits <1% volumetric change and limited mechanical property degradation at doses ≤50 dpa
I Compatibility	Elemental Transmutation	Elemental stability of a material and impact of transmutation	Transmutation of elements in the material is not a concern	Transmutation of elements in the material results in at least one of the concerns or only causes concern when dose received is comparable with the reactor or material lifetime, meaning the material would be replaced before transmutation was cause for concern	Transmutation of elements in the material results in two of the concerns, or transmutation is only a concern in one neutron spectrum (either fast or thermal) but not the other	Transmutation of the elements in the material leads to premature material failure or three of the major concerns	Transmutation of constituent elements disqualifies the material from consideration or results in all of the major concerns
enta	High-Temperature Oxidation Resistance	The ability of a material to resist oxidation at high temperatures	Oxidation initiation occurs at temperatures ≥800°C	Oxidation initiation occurs at temperatures ≥600°C	Oxidation initiation occurs at temperatures ≥400°C	Oxidation initiation occurs at temperatures ≥200°C	Oxidation initiation occurs at temperatures <200°C
ıvironmo	Neutronics Compatibility	Degree of negative impact to the neutron economy of reactors	Material has a low thermal and fast neutron capture cross section and exhibits no detrimental reactions to either spectrum of neutrons	Material has moderately low thermal or fast neutron capture cross sections	Material has a low neutron capture cross section in one of either thermal or fast spectrums	Material has moderately high thermal or fast neutron capture cross sections, making it likely unsuitable for in-core applications	Material is a known neutron absorber or has a large neutron capture cross section at both fast and thermal energies
Ш	Coolant Compatibility and Corrosion Resistance	Number of coolants, corrosion, erosion considerations The material's relative stability in a given coolant, including its resistance to corrosion, erosion, and other chemical reactions	Material is compatible with all types of coolants, showing no significant degradation	Material is compatible with 3/4 types of coolants, exhibiting good stability and inertness 4	Material is compatible with two types of coolants, exhibiting good stability in those coolants	Material is compatible in only one type of coolant, exhibiting significant instability in the other types of coolants	Material is not compatible with any of the coolant types, showing significant degradation in short periods of time

Physical and mechanical properties

A /	0 %				Score Reference		
Category	Criteria	Evaluation	5	4	3	2	1
	Thermal Conductivity	Capability (with high thermal conductivity) to increase the thermal efficiency of an energy system and reduce transitional thermal stress in the components	Maintain >100 W/(m⋅K) over lifetime	Maintain 50–100 W/(m·K) over lifetime	Maintain 10–50 W/(m·K) over lifetime	Falls to <10 W/(m⋅K) in the end of lifetime	Begins with a low thermal conductivity < 10 W/(m·K)
erties	Thermal Capacity	General thermal capacity such as melting point, softening point, phase stability across temperature range	Operation temperatures in all reactor types <0.4 T _M	Operation temperatures in most reactor types in 0.4–0.6 $T_{\rm M}$	Operation temperatures in some reactor types in 0.4– 0.6 T_M	Operation temperatures in some reactor types >0.6 T_M	Operation temperatures in most reactor types >0.6 T _M
Propé	Tensile Properties	High-temperature tensile properties including strength, ductility, and type of failure	Yield strength >200 MPa; uniform ductility >2%; no brittle failure mode over lifetime	Yield strength >150 MPa; uniform ductility >2%; no brittle failure mode over lifetime	Yield strength >100 MPa; uniform ductility >2%; no brittle failure mode over lifetime	Yield strength >100 MPa; uniform ductility >2%; possibly brittle failure mode in lifetime	Yield strength >100 MPa; uniform ductility <2%; possibly brittle failure mode in lifetime
anical	Creep Performance	Risk of losing dimension stability in long-term service	No creep rupture expected in lifetime. No measurable creep strain (<0.001% in lifetime) in all reactor types	No creep rupture expected in lifetime. Little creep strain <0.01% in lifetime in most reactor types.	No creep rupture expected in lifetime. No creep strain <0.1% in lifetime in most reactor types.	No creep rupture expected in lifetime. Creep strain >0.1% in lifetime in some reactor types.	Possible creep rupture in lifetime. Creep strain >1% in lifetime in some reactor types.
lech :	Fatigue	Risk of component failure owing to crack growth by cyclic loading	Load conditions in most reactor types are more than 20% below the fatigue limit	Load conditions in some reactor types are more than 20% below the fatigue limit	Load conditions in most reactor types are close but below the fatigue limit	Load conditions in some reactor types are above the fatigue limit	Load conditions in most reactor types are above the fatigue limit
nd N	Fracture Toughness	Capability to avoid the most probable failure mode with aging and degradation	Fracture toughness >150 MPa√m over lifetime	Fracture toughness >100 MPa√m over lifetime	Fracture toughness >50 MPa√m over lifetime	Fracture toughness >50 MPa√m over most of lifetime	Fracture toughness <50 MPa√m over most of lifetime
ysical a	Microstructural Dependency	The sensitivity of material's properties to its microstructure	Properties are not sensitive to microstructure and processing route. Microstructure is highly stable in any service environment	Properties are not sensitive to microstructure and processing route. Microstructure is reasonably stable in most of service environments.	Properties are somewhat dependent on microstructure and processing route. Microstructure is reasonably stable in most of service environments.	Properties are sensitive to microstructure and processing route. Microstructure is reasonably stable in most of service environments.	Properties are sensitive to microstructure and processing route. Microstructure is not stable in some service environments.
Ph	Scope For Microstructural Enhancement	The possibility of enhancing material properties by microstructural engineering through feasible processing routes	Microstructure is easily controlled for desirable properties within traditional and advanced processing means. No limitation in mass production and product size.	Microstructure is easily controlled for desirable properties within traditional and advanced processing means. Some limitations in mass production and product size.	Microstructure can be controlled for desirable properties through a few limited processing methods only	Microstructure can be controlled for desirable properties through a specially designed processing method only	Microstructure can be controlled for a few properties through a specially designed processing method only

Manufacturability

0-1	Oritoria	F orely of the m			Score Reference		
Category	Criteria	Evaluation	5	4	3	2	1
	Reproducibility/Consistency	Degree of reproducibility and consistency in product quality for various manufacturing routes/methods of the same material (e.g., for the same material, 3D printing is not consistent, but casting is)	Number of critical parameters that need to be carefully monitored >1	Number of critical parameters that need to be carefully monitored >3	Number of critical parameters that need to be carefully monitored >5	Number of critical parameters that need to be carefully monitored >7	Number of critical parameters that need to be carefully monitored >9
	Process Complexity	Number of processing steps (when writing, provide post processing information)	If it involves: 0 preprocessing steps but a maximum of 1 postprocessing steps	If it involves: 0–1 preprocessing steps but a maximum of 2 postprocessing steps	If it involves: 0–2 preprocessing steps but a maximum of 3 postprocessing steps	If it involves: 0–3 preprocessing steps but a maximum of 4 postprocessing steps	If it involves: 0–4 preprocessing steps but a maximum of 5 postprocessing step
'ability	Cost	Overall cost for production of components (considering the same concern as reproducibility/consistency)	If it the overall cost is 30%–50% lower than the current commercial processing method	If the overall cost is 10%– 30% lower than the current commercial processing method	If the overall cost is comparable with the current commercial processing method	If the overall cost is 10%– 30% higher than the current commercial processing method	If the overall cost is 30%–50% higher than the current commercia processing method
nufactur	Scalability	The ability to increase the overall # of components being produced with a certain material, and the ability to produce dimensionally larger components	Zero concerns in terms of time delay/additional required equipment/ for scaling up	1–3 concerns in terms of time delay/additional required equipment/ for scaling up	3–5 concerns in terms of time delay/additional required equipment/for scaling up	5–7 concerns in terms of time delay/additional required equipment/for scaling up	Almost impossible to scale up
Mar	Production Method Technological Readiness Level (TRL)	The already qualified processing techniques receive a score of 5, and the ones still in the process a 3, and completely new processes receive 1	The processes with TRL between 7 and 9	The processes with TRL between 5 and 7	The processes with TRL between 3 and 5	The processes with TRL between 1 and 3	First report on the process
	Raw Material Supply	Precursor availability in the United States	If all the raw materials required for the process are manufactured and supplied in the United States. Also, the supplier/manufacturer is cheapest among the available sources internationally.	If all the raw materials required for the process are manufactured and supplied in the United States. Also, the supplier/manufacturer is not cheapest among the available sources internationally. 6	If all the raw materials required for the process are not manufactured in the United States but the supplier is based in the United States	If all the raw materials required for the process are not manufactured in the United States but can be shipped internationally	If all the raw materials required for the process are not manufactured in the United States but cannot be shipped internationally

Manufacturability (continue)

Cotocom	Critorio	Evoluction			Score Reference		
Category	Criteria	Evaluation	5	4	3	2	1
ity	Flexibility Of Manufacturing	# of methods which can be used to manufacture material	If the material can be manufactured via 100% of the available processing techniques	If the material can be manufactured via 80% of the available processing techniques	If the material can be manufactured via 60% of the available processing techniques	If the material can be manufactured via 40% of the available processing techniques	If the material can be manufactured via 20% of the available processing techniques
Manufacturabil	Conventional Machining	Need for drilling, joining, welding, riveting, etc.	A ready-to-go part can be directly manufactured without any postprocessing	A ready-to-go part can be directly manufactured with negligible postprocessing	Multiple subparts need to be manufactured with minimal postprocessing but require joining/welding/ri veting	Multiple subparts need to be manufactured with significant postprocessing but require joining/welding/ri veting	Parts with reasonable size scale cannot be manufactured
	Near Net Shaping (Complexity Of Shape)	How complex of a shape can the manufacturing process of a material make?	Not limited by the complexity of the design	Somewhat limited by the complexity of the design 7	Limited but few complex geometries can be achieved	Only simple geometries can be achieved	Only 1D/2D geometries are possible

Prioritization of current reactor materials for advanced manufacturing: Nickel Alloys INL & ORNL

 Three Ni-based alloy categories based on potential applications: (1) Low Co, (2) High temperature High Strength & (3) Molten Salt Compatible

			INL		ORNL
			625		718
• Ext	ensive literature		282		282
revi	ew was conducted		244		Hastelloy N
			233		230
			617		800H
	st promising alloys		740H		740H
			GRX810		
	Low Co		High temperature strength		Molten salt (Low Cr)
	718 (20Cr-5Nb-3Mo)	28	2 (20Cr-10Co-8.5Mo-2.1Ti-1.5	5AI)	Hastelloy N (7Cr-16Mo
	625 (22Cr-9Mo-3.5Nb)		230 (22Cr-14W-<5Co)		244 (8Cr-22.5Mo-6W)
	800H (32Ni-21Cr-40Fe)		617 (22Cr-12.5Co-9Mo)		

8

ENER

NUCLEAR ENERGY

Prioritization of current reactor materials for advanced manufacturing: Lo Co Ni-based alloys justification INL & ORNL

718: Used in various reactors (PNNL Scorecard report), well-known & available AM alloy

- Irradiation campaign initiated under TCR
- Creep data were generated and was consistent with wrought 718
- 625: Well-known & available AM alloy
 - Growing interest from industry
 - Also considered for molten salt reactors
- 800H: Code qualified but very limited AM data & difficulty in procuring powder
 - Carpenter needs an order >500kg
 - Lower priority compared to 718 & 625

- Similar results between as printed and heat treated (2h@1174°C+6h@1204°C+1h@945°C+8h@718°C, 8h@621°C)
 - Similar results along and perpendicular to BD

9

Prioritization of current reactor materials for advanced manufacturing: High temperature high strength alloys INL & ORNL

282: Not currently used by NE industry but powder is widely available with several academic and industrial [projects on AM 282

- Defects density varies in builds fabricated for extensive characterization

- SA, 1h@1180°C+ aging 4h 800°C for recrystallization and grain size control

230 : Not currently used by NE industry but powders is available with limited studies

- Initial results show crack propensity

617: Code qualified alloy but limited AM work (wire-based), 90lbs was received for printing trials

Lower priority for other alloys (233, 740H,etc.)

10

Office of
NUCLEAR ENERGY

Prioritization of current reactor materials for advanced manufacturing: Low-Cr Molten Salt-Compatible Alloys INL & ORNL

Hastelloy N.

- Hastelloy N.
 2nd Ni-based alloy with score card.
 Superior performance in molten salt compared to ^{und}₂ Specimen Mass 316H
- No powder available and limited AM data
- Interest specific to molten salt reactors

Haynes 244

- Superior strength compared to Hastelloy N
- Initial results indicate higher corrosion resistance in molten salt likely due to high W concentration
- No commercial powder and AM data. Limited data even for wrought alloy

Average of 3 capsules

Prioritization of current reactor materials for advanced manufacturing: Further Alloy Selection INL & ORNL

Low Co printable & available alloys.

- 718: Lower cost, strength at T<700°C, AM irradiation data
- 625: Higher temperature capability & corrosion resistance

High Strength alloys: 282 selected based on current AM data & availability

- Further optimization of 282 printing parameters
- Continue comparison with LPBF 230 & 617

Molten Salt Compatible, Hast. N versus 244

- Hastelloy N: Wrought data available, superior compatibility
- 244. Very high strength, Better corrosion resistance in molten salt than high Cr alloys?

FY24 objectives

- Generate relevant database using optimized LPBF materials & collaborate with digital manufacturing team to establish processing-microstructure-properties correlation

Prioritization of current reactor materials for advanced manufacturing: Fe-based Alloys ANL & PNNL

Ferritic/Martensitic Steels

- 9Cr-1Mo based alloys (Grade-91, Grade-92) code qualified, practically no AM work, powder not commercially available.
- HT9: Key alloy in PNNL score scorecards report. Has wider cross-industry appeal. Powder not commercially available, and limited AM work.

Austenitic Steels

- A-709: Close to being code qualified. No work on AM, powder not available commercially. cross-industry appeal.
- D-9: Titanium modified SS-316. Similar aspects to SS-316 can be implemented. Powder not commercially available, and no AM work.
- AFA Steel: Cross-industry appeal. Better SCC properties than SS-316. Powder is not available commercially, no AM work.
- ODS FeCrAI: High strength, corrosion resistance, collaborate with ORNL

Single Track Experiments to Optimize Process Parameters

- Single track studies are performed to determine optimal process parameters to produce a conduction/slight keyholing welds
- Weld mode produces fully dense parts
- 72 parameter sets are initially planned for Grade 91
- Laser Power, Exposure Time, and Point distance varied: Finalizing initial conditions based of literature review and inputs from Renishaw
- Variations in volumetric energy density kept within ~10% of "optimized condition" for each "set".

- <u>NORMAL</u> "Conduction mode" = adequate penetration and overlap to the previous layers and adjacent melt pools
- <u>LOW ED</u> = low laser power or high lasing speeds that produce a much smaller "conduction mode" shaped melt pool. Results in lack of fusion between layers and among adjacent melt pools
- <u>HIGH ED</u> = excessively high laser power and low lasing speeds that concentrates the heat making it penetrate through too many layers. Forms keyholing, and lack of fusion among adjacent melt pools from insufficient overlapping.
- <u>DISRUPTED</u> = poor process parameters, corrupt material properties, contaminants, etc.

Printability Studies HT9 Alloy (Ferritic/Martensitic) ANL & PNNL

- Build quality good with low porosity
- SEM shows columnar grains with agglomerated smaller equiaxed grain morphology
- STEM results show presence of nanoparticles containing Cr, Mo, V, Al, Mn, O, and C

15

- Some grain boundary are enriched in Cr and C suggesting formation of Cr carbides
- Average hardness is 411.6 ±24.7 HV

Printability Studies D-9 (Austentic steel) ANL & PNNL

- SEM and EBSD analyses show well crystalized columnar grains
- No significant texture is observed in D-9
- Average microhardness is 189 ±16.8 HV

Printability Studies ODS Fe-Cr-Al ANL & PNNL

- Fabricated at ORNL
- TEM results show presence of nanoscale precipitate with Y, Zr, O.
- EBSD indicate the directional residual stress

17

 Variation in microhardness value, highest near substrate with value of (227.9 ±11.0 HV)

Printability Study using Machine Learning ANL & PNNL

Printability: the ability to avoid defects like cracking, balling and lack of fusion, that are caused by thermal stresses

Alloy	Al	Fe		Element X	Power	Scan speed	process paramet ers	Balling probabil ity
AlSi10Mg	0.89	0.001	0.03	0.05	130	50	xx	1
SS316	0	0.67	0.03	0.01	150	100	xx	0
Co-Cr	0	0.01	0.40	0.03	170	90	xx	0
More single principal alloys	0	0.80	0.01	0.10	140	130	xx	1
CoCrFeMnNi	0	0.20	0.25	0.20	220	170	xx	1
VNbMoTaW	0	0	0.20	0.20	190	140	xx	0
Al _{0.5} CoCrFeNi	0.11	0.22	0.22	0.22	110	80	xx	0
More HEAs	0.20	0.25	0.35	0.10	140	120	xx	1

 Neural network (NN) model using 240 training data and 26 testing data predicts the tendency of **balling** defect formation for a **given composition**, under a given set of processing conditions

ICAM 2023 presentation: Chemical composition-based machine learning model to predict deformation in additive manufacturing,. Roy A., A.R. Swope, R. Devanathan, M. Komarasamy, and I. van Rooyen

Other allovs with varving concentration of Material properties elements x, y, z. Viscosity Surface tension Density Thermal conductivity Specific heat Defect formation and analysis in Flow 3D as a function of wt. Latent heat of fusion % of carbon or any element x **FLOW-3D** All simulations data will guide experiments DOM: TO and also feed Laser parameters into the ML training dataset Laser velocity and **Output from FLOW 3D** informs the Potts model Dower for microstructural and Spot radius phase evolution Wavelength Hatch spacing Specific heat

SS316L with

0.02 wt% C

SS316L with

0.01 wt% C

SS316L with

0.03 wt% C

MPEAs with varying

concentration of elements x, y, z.

FY24 work will demonstrate a methodology for the rapid prediction of alloy printability as a function of composition using Thermo-Calc and FLOW-3D software followed by ML prediction

18

RECEIPT OF Office of NUCLEAR ENERGY

oxide-dispersion strengthened (ODS) alloys by employing advanced manufacturing technologies. **Scientific Achievement**

To accelerate the development, evaluation, and deployment of

Preliminary feasibility studies of

new materials for advanced

manufacturing – ORNL

- New ODS alloy processing routes employing AM processes, but not mechanical milling, were designed and applied.
- Desirable mechanical properties were achieved, depending on alloy • and processing route.

Impact & Potential Application Space

• The processing route without mechanical milling might enable the economical mass production of ODS reactor components.

Details

- Seventeen ferritic and austenitic ODS variants were produced via new processing routes combining AM and TMT processes.
- The highest strength (YS > 1 GPa) was measured from a ferritic ODS alloy; the highest ductility (TE > 40%) and fracture toughness (K_c > 200 MPa \sqrt{m}) were from austenitic ODS alloys.
- Application of decision criteria matrix led to the downselection of ٠ austenitic ODS alloys for nearer application.

1200

1000

800

400

Strength (MPa) 600

19

YS (MPa)

UTS (MPa)

Additively Manufactured ODS Alloys

AM Austenitic ODS Alloy

AM oxide dispersion strengthened (ODS) steels

Experiment Details

Post-Build Thermomechanical Processing Condition

Characterization and Testing

• 700 °C and 800 °C for post-build TMP.

20

Testing Temperatures: Room Temperature – 600 °C

ENERG

Office of

NUCLEAR ENERGY

Application of Decision Criteria Matrix & Score Card

ODS Alloys

Cate

Category	Criteria	Ferritic Steels	Austenitic Steels
es	Applicability to Different Reactor Types	4	3
n Spa	Other Industry Experience	1	1
tio	Data Availability	3	2
oplica	Code & Standards Availability	1	1
A	Component Versatility	3	3
ility	Radiation Resistance	4	4
ıpatib	Elemental Transmutation	4	3
l Com	High Temperature Oxidation Resistance	3	4
menta	Neutronics Compatibility	4	3
Environ	Coolant Compatibility & Corrosion Resistance	3	4

The ODS austenitic alloys yielded slightly higher average score than the ODS ferritic alloys (3.26 vs. 3.07).

ategory	Criteria	Ferritic Steels	Austenitic Steels
a	Thermal Conductivity	3	3
nic	Thermal Capacity	4	4
hai	Tensile Properties	3	4
lec rtie	Creep Performance	4	4
bel bel	Fatigue	4	4
al a Pro	Fracture Toughness	2	4
sic F	Microstructural Dependency	3	3
Phy	Scope for Microstructural Enhancement	4	4
	Reproducibility/Consistency	3	4
>	Process Complexity	3	3
ilit	Cost	2	2
rab	Scalability	2	2
stul	Production Method TRL	3	3
anufac	Raw Material Supply	4	4
ž	Flexibility of Manufacturing	4	4
rage	21 U.S. DEPARTMENT OF		

Assessment of Advanced Manufacturing Techniques for Composite and Refractory Alloy Structures - LANL

Objective: To identify, vet, and develop advanced manufacturing techniques for refractory lined composites and refractory alloys for nuclear energy applications.

Composite	C-C	W/C-C	Mo/C-C	Zr/C-C	SiC-SiC	W/SiC-SiC	Mo/SiC-SiC	Zr/SiC-SiC
Overall score	94	91	90	89	102	95	93	94

The most significant variances in scoring are linked to Data Availability, Elemental Transmutation, Thermal Capacity, and a small variance in Raw Material Supply.

- W/SiC-SiC will maintain its structural integrity at elevated temperatures, is thought to have satisfactory neutronics properties, and sufficient compatibility with liquid metal coolants (Pb, Li) and coolants used in MSRs and GFRs. It is seen as a candidate material for both in-core and out-of-core structural components.
- C-103 has been used in other industries, such as the aerospace industry. It is anticipated to have superior creep performance, fatigue, fracture toughness, and neutronics compatibility compared to WTa and WNiFe.

Bryant A. Kanies and Miles F. Beaux II, Michael J. Brand, Robin A. Montoya, Erofili Kardoulaki, A. David Andersson

Single weld studies performed on TZM, W, and Ta were performed to inform the scoring of refractory alloys.

TZM

106

WTa

87

22

Refractory Alloy

Overall score

WNiFe

97

C-103

105

Preliminary Feasibility Studies of New Materials for Advanced Manufacturing - LANL

Prior and Ongoing Work at LANL

 Previous work & capabilities:

- Inspired idea for composites
- Informed decision criteria matrix/down-selection
- Provided proof of concept for manufacturability
- Previous project produced free-standing molybdenum tubes via CVD
- LANL Capability: Ion **Sputtering Physical Vapor** Deposition (PVD) of tube interiors

200-400°C $Mo(s) + Cl_2(g) \longrightarrow MoCl_5(g)$ 500-800°C $MoCl_5(g) + \frac{3}{2}H_2(g) \longrightarrow Mo(s) + 5HCl(g)$ Quartz substrate with Mo coated inner surface 5 6 7 8 9 10 12 13 14 Free standing Mo tube extracted from the guartz mandrel **3 4 5 6** 2 Junio

CVD of Mo Tubes

23

Preliminary Feasibility Studies of New Materials for Advanced Manufacturing - LANL

Prior and Ongoing Work at LANL:

Bulk Refractory Alloys Considerations:

- LANL Microreactor Program
 - Used single bead welds to elucidate relationship between scanning time and laser power
 - Demonstrated capability to produce AM TZM alloy
- Feasibility and material down select was being informed by:
 - Previous/ongoing work on stainless steels, TZM, and other refractory alloy cube production and analysis
 - Broad literature review

Preliminary Feasibility Studies of New Materials for Advanced Manufacturing - LANL

Prior and Ongoing Work at LANL:

Bulk Refractory Alloys Considerations:

- AMMT Project :
 - Decision matrix evaluation of a broad range of bulk refractory alloys that could be produced by a Laser Powder Bed Fusion (LPBF)
 - Optimization of AM process for select alloys
 - Production and characterization of refractory lined backbones and alloys.
- Next Steps & Future Work:
 - Additional refractory alloys will be identified and evaluated and down selected in early fiscal year 2024.
 - Powders needed to investigate refractory alloys will be obtained.
 - Cubes for selected refractory alloy and tubes coated with refractory liners will be produced and characterized for feasibility in fiscal year 2024.

Office of

NUCLEAR ENERGY

• Beyond FY24: Production of a multichannel part from selected alloy or refractory lined backbone.

25

Preliminary Feasibility Studies of New Materials for AM: High Entropy Alloys (HEAs) - PNNL

Why High Entropy Alloys?

- exhibit unusual lattice distortion and sluggish diffusion, immobilize the radiation-induced defects decreased swelling and segregation
- Tuned microstructure by exploiting their varied phase stability in different temperature regimes for enhanced sink strength.
- Multiple interfaces via secondary phase precipitation and multi-modal distribution of grain sizes enhance the sink strength

L-AM

Manufacturing Process

Solid-state

This classification is based on *phase stability and mode of deformation*

- Stable HEAs deform via dislocation slip and metastable HEAs via TRIP and/or twinning induced plasticity (TWIP) upon mechanical/thermal damage.
- Stable HEAs can be further classified based on the type of phases that constitute the microstructure.

.

26

RGY Office of **NUCLEAR ENERGY**

Feasibility Study of Advanced Manufacturing Techniques and Compositions of High Entropy Alloys (HEAs)

Objectives:

- (1) Evaluating current *manufacturing techniques* addressing challenges and needs for *upscaling*
- (2) Identify & down select *nuclear energy relevant HEAs* using decision matrix

Scientific Achievement:

- Six promising HEAs identified for nuclear focusing on high temperature properties:
 - $AI_{0.3}Cu_{0.5}CrFeNi_2,~AI_5Cr_{12}Fe_{35}Mn_{28}Ni_{20}$ and $AI_{10}Cr_{12}Fe_{35}Mn_{23}Ni_{20}^*$: NRC , RT high strength
 - $(Ni_2Co_2FeCr)_{92}Al_4Nb_4$, ppt strengthened HEA (330MPA at 870°C)
 - GRX-810 (ODS-NiCoCr with minor AI, Ti, Nb, W, and C): medium HEA
 - Al_{0.3}Ti_{0.2}Co_{0.7}CrFeNi_{1.7} *: ppt strengthened FCC HEA ; (expected high strength up to 1100°C)
- Experiments Al_{0.3}Ti_{0.2}Co_{0.7}CrFeNi_{1.7}:
 - Characterization of **DED** and **SLM** one-step annealed conditions, high strength
 @ 500°C (samples manufactured by UNT)
- Experiments for bulk & economic manufacturing
 - Characterization of DED fabricated functionally graded HEAs: economic INL provisional patented process demonstrated with CoCrNiFe_{0.5}
 - Solid phase processing (SPP) planned in FY 24 for bulk upscaling for alloys*

Mohan Nartu, Subhashish Meher, Isabella van Rooyen, Shalini Tripathi, Nathan Canfield

Presentation:

Nartu et al., HEAs for Nuclear Energy Applications and Potential Advanced Manufacturing Methods at International Conference on Additive Manufacturing (ICAM) 2023.

DED and SLM one-step annealed Al_{0.3}Ti_{0.2}Co_{0.7}CrFeNi_{1.7}

Publication:

Nartu, M.S.K.K.Y., et al., Microstructure and Temperature Dependent Indentation Response of Additively Manufactured Precipitation-Strengthened Al_{0.3}Ti_{0.2}Co_{0.7}CrFeNi_{1.7}High Entropy Alloy. JOM, 2023.

Presentation:

Nartu et al., Engineering heterogeneous microstructures in Additively Manufactured Al_{0.3}Ti_{0.2}Co_{0.7}CrFeNi_{1.7} High Entropy Alloy for potential nuclear applications at Materials in Nuclear Energy Systems (MiNES 2023).

Impact & Potential Application Space:

- Preliminary decision matrix provides promising HEA compositions
- Complex high temperature components, HEA coating for high temperature application
- (NiCoFeCrCu_{0.12} is researched under another DOE-NE program for extreme high irradiation dose for cladding)

Meher et al., Development of High Entropy Alloy based Coatings via Directed Energy Deposition (DED) Additive Manufacturing for Nuclear Applications at 3rd World Congress on High Entropy Alloys (HEA 2023), 2023 NRC Workshop on Advanced Manufacturing Technologies

Decision Criteria Matrix Applied to Diverse Material Types

Composite		W/(C-C			Mo	/C-C			Zr	/C-C			W/Si	C-Si	C	Γ	Mo/S	iC-Si	С		Zr/Si	C-SiC	;
Categories	AS	EC	РМ	Ма	AS	EC	PM	Ма	AS	EC	PM	Ма	AS	EC	PM	Ма	AS	EC	PM	Ма	AS	EC	PM	Ma
Category scores	19	15	25	32	18	13	25	33	17	15	24	33	19	18	26	32	17	16	26	33	17	19	25	33
Overall score		9)1			8	39			;	89			Q	95			ç	92			9	4	
	Refr	actor	ry All	oy		ΤZ	Μ			W	Га			WN	Fe			C-1	03					
		Catego	ories		AS	EC	РМ	Ма	AS	EC	PM	Ма	AS	EC	PM	Ма	AS	EC	PM	Ма				
	Ca	tegory	scores		23	18	32	33	18	16	26	27	22	19	29	27	23	21	34	27				
	Ov	rerall	score	•		10	6			8	7			97	7			10	5					

ODS	F	erriti Ste	c OD eels	S	Au	steni Ste	itic O eels	DDS				
Categories	AS	EC	PM	Ма	AS	EC	РМ	Ма				
Category scores	12	18	27	26	10	18	30	30				
Overall score		8	3			8	8					

HEA	Al _{0.3} Ti _{0.2} Co _{0.7} Cr FeNi _{1.7}				Al ₁₀ Cr ₁₂ Fe ₃₅ Mn ₂ ₃ Ni ₂₀			
Categories	AS	EC	РМ	Ма	AS	EC	PM	Ма
Category scores	8	0	15	33.5	10	0	18	34.5
Overall score	56.5				62.5			

Office of

NUCLEAR ENERGY

U.S. DEPARTMENT OF

Material Identification

Decision making through Diverse Surveying

NUCLEAR ENERGY

Develop materials as an integrated part of advanced manufacturing (AM)

ENERGY Office of **NUCLEAR ENERGY**

Additive Friction Surfacing (AM)

Process Description and First 316H work

Nascent large scale manufacturing process with the potential for improved properties, cost and lead time

316-H bar stock deposited directly onto 316-L plate at PNNL

PNNL team: David Garcia, Mayur Pole, Ken Ross

- Refined grain structure produces improved properties demonstrated in aluminum
- Overmatched properties possible in austenitic stainless steels
- Potentially order of magnitude cost staving on material alone compared to fusion based methods
- High deposition rate
- Application space
 - Near-net shape additive manufacturing
 - Component life extension
 - Cladding
 - Functionally graded and dissimilar materials

